Product
Folder
Order
Now
Technical
Documents
Tools &
Software
Support &
Community
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
ADC12D1800 12-Bit, Single 3.6 GSPS Ultra High-Speed ADC
1 Device Overview
1.1
Features
1
• Configurable to Either 3.6 GSPS Interleaved or
1.8 GSPS Dual ADC
• Pin-Compatible with ADC10D1000/1500 and
ADC12D1000/1600
• Internally Terminated, Buffered, Differential Analog
Inputs
• Interleaved Timing Automatic and Manual Skew
Adjust
• Test Patterns at Output for System Debug
• Programmable 15-bit Gain and 12-bit Plus Sign
Offset
• Programmable tAD Adjust Feature
• 1:1 Non-Demuxed or 1:2 Demuxed LVDS Outputs
• AutoSync Feature for Multi-Chip Systems
• Single 1.9-V ± 0.1-V Power Supply
1.2
•
•
•
Applications
Wideband Communications
Data Acquisition Systems
RADAR/LIDAR
1.3
• Key Specifications
– Resolution: 12 Bits
– Interleaved 3.6 GSPS ADC
– Noise Floor Density –153.5 dBm/Hz (typ)
– IMD3 –61 dBFS (typ)
– Noise Power Ratio 48.5 dB (typ)
– Power 4.4 W (typ)
– Full Power Bandwidth 1.75 GHz (typ)
– Dual 1.8 GSPS ADC, Fin = 125MHz
– ENOB: 9.4 (typ)
– SNR 58.5 dB (typ)
– SFDR 73 dBc (typ)
– Power 4.4 W (typ)
– Full Power Bandwidth 2.8 GHz (typ)
•
•
•
Set-top Box
Consumer RF
Software Defined Radio
Description
The 12-bit, 3.6 GSPS ADC12D1800 is the latest advance in TI's Ultra-High-Speed ADC family and builds
upon the features, architecture and functionality of the 10-bit GHz family of ADCs.
The ADC12D1800 provides a flexible LVDS interface which has multiple SPI programmable options to
facilitate board design and FPGA/ASIC data capture. The LVDS outputs are compatible with IEEE 1596.31996 and supports programmable common mode voltage.
The product is packaged in a leaded or lead-free 292-ball thermally enhanced BGA package over the
rated industrial temperature range of –40°C to +85°C.
To achieve full rated performance for fCLK > 1.6 GHz, write the maximum power settings one time to
Register 6h through the serial interface; see Section 5.6.1 for more information.
Device Information (1)
PART NUMBER
ADC12D1800
(1)
PACKAGE
BGA (292)
BODY SIZE (NOM)
27.00 mm × 27.00 mm
For all available packages, see the orderable addendum at the end of the data sheet.
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
1.4
www.ti.com
Functional Block Diagram
Figure 1-1. Functional Block Diagram
2
Device Overview
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
Table of Contents
1
Device Overview ......................................... 1
Features .............................................. 1
1.2
Applications ........................................... 1
4.15
Converter Switching Characteristics: Calibration ... 26
Description ............................................ 1
4.16
Typical Characteristics .............................. 30
Functional Block Diagram ............................ 2
1.4
5
Revision History ......................................... 3
Pin Configuration and Functions ..................... 5
4.2
ESD Ratings
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
Converter Electrical Characteristics: Static
Converter Characteristics ...........................
Converter Electrical Characteristics: Dynamic
Converter Characteristics ...........................
Converter Electrical Characteristics: Analog Input
and Output and Reference Characteristics .........
Converter Electrical Characteristics: I-Channel to QChannel Characteristics .............................
Converter Electrical Characteristics: Sampling Clock
Characteristics ......................................
Converter Electrical Characteristics: AutoSync
Feature Characteristics .............................
Converter Electrical Characteristics: Digital Control
and Output Pin Characteristics .....................
Converter Electrical Characteristics: Power Supply
Characteristics.......................................
Converter Electrical Characteristics: AC Electrical
Characteristics.......................................
Functional Block Diagram ........................... 35
35
24
Absolute Maximum Ratings ......................... 15
4.4
4.5
Overview
5.2
10 Mechanical, Packaging, and Orderable
Information .............................................. 81
4.1
4.3
............................................
5.1
23
Specifications ........................................... 15
........................................
Recommended Operating Conditions ...............
Thermal Information .................................
Detailed Description ................................... 35
.................................
...........................
5.5
Programming ........................................
5.6
Register Maps .......................................
Application and Implementation ....................
6.1
Application Information ..............................
6.2
Typical Application ..................................
Power Supply Recommendations ..................
7.1
System Power-on Considerations ...................
Layout ....................................................
8.1
Layout Guidelines ...................................
8.2
Layout Example .....................................
8.3
Thermal Management ...............................
Device and Documentation Support ...............
9.1
Device Support ......................................
9.2
Documentation Support .............................
9.3
Community Resources ..............................
9.4
Trademarks..........................................
9.5
Electrostatic Discharge Caution .....................
9.6
Glossary .............................................
Pin Attributes ......................................... 6
3.1
4
Converter Timing Requirements: Serial Port
Interface ............................................ 25
1.1
1.3
2
3
4.14
15
16
6
16
17
7
18
8
20
21
9
22
22
22
5.3
Feature Description
36
5.4
Device Functional Modes
43
44
49
56
56
66
69
69
72
72
74
76
78
78
80
80
80
81
81
2 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision P (July 2015) to Revision Q
•
Changed cross-reference in last paragraph of Description section to point to correct section
Page
............................
Changes from Revision O (January 2014) to Revision P
•
Page
Added Pin Configuration and Functions section, Handling Rating table, Feature Description section, Device
Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout
section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information
section ................................................................................................................................. 1
Changes from Revision N (MARCH 2013) to Revision O
•
1
Page
Added notification that Aperture Delay Adjust feature cannot be used in DES mode (DESI, DESQ, DESIQ or
DESCLKIQ) for CLK frequencies above 1600 MHz in multiple sections where applicable ............................... 37
Revision History
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
3
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
www.ti.com
Changes from Revision M (March 2013) to Revision N
•
4
Page
Changed layout of National Data Sheet to TI format ........................................................................... 54
Revision History
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
3 Pin Configuration and Functions
NXA Package
292-Pin BGA
Top-View
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
19
20
A
GND
V_A
SDO
TPM
NDM
V_A
GND
V_E
GND_E
DId0+
V_DR
DId3+
GND_DR
DId6+
V_DR
DId9+
DId11-
GND_DR
A
B
Vbg
GND
ECEb
SDI
CalRun
V_A
GND
GND_E
V_E
DId0-
DId2+
DId3-
DId5+
DId6-
DId8+
DId9-
DId10+
DI0+
DI1+
DI1-
B
C
Rtrim+
Vcmo
Rext+
SCSb
SCLK
V_A
NC
V_E
GND_E
DId1+
DId2-
DId4+
DId5-
DId7+
DId8-
DId10-
DI0-
V_DR
DI2+
DI2-
C
D
DNC
Rtrim-
Rext-
GND
GND
CAL
DNC
V_A
V_A
DId1-
V_DR
DId4-
GND_DR
DId7-
V_DR
GND_DR
V_DR
DI3+
DI4+
DI4-
D
E
V_A
Tdiode+
DNC
GND
GND_DR
DI3-
DI5+
DI5-
E
F
V_A
GND_TC Tdiode-
DNC
GND_DR
DI6+
DI6-
GND_DR
F
G
V_TC
GND_TC
V_TC
V_TC
DI7+
DI7-
DI8+
DI8-
G
H
VinI+
V_TC
GND_TC
V_A
GND
GND
GND
GND
GND
GND
DI9+
DI9-
DI10+
DI10-
H
J
VinI-
GND_TC
V_TC
VbiasI
GND
GND
GND
GND
GND
GND
V_DR
DI11+
DI11-
V_DR
J
K
GND
VbiasI
V_TC
GND_TC
GND
GND
GND
GND
GND
GND
ORI+
ORI-
DCLKI+
DCLKI-
K
L
GND
VbiasQ
V_TC
GND_TC
GND
GND
GND
GND
GND
GND
ORQ+
ORQ-
DCLKQ+ DCLKQ-
L
M
VinQ-
GND_TC
V_TC
VbiasQ
GND
GND
GND
GND
GND
GND
N
VinQ+
V_TC
GND_TC
V_A
GND
GND
GND
GND
GND
GND
P
V_TC
GND_TC
V_TC
R
V_A
GND_TC
V_TC
T
V_A
GND_TC GND_TC
U
GND_TC
CLK+
PDI
GND
GND
RCOut1-
V
CLK-
DCLK
_RST+
PDQ
CalDly
DES
RCOut2+ RCOut2-
W
DCLK
_RST-
GND
DNC
DDRPh
RCLK-
V_A
Y
GND
V_A
FSR
RCLK+
RCOut1+
2
3
4
5
1
17
18
GND_DR DId11+
GND_DR DQ11+
DQ11-
GND_DR
M
DQ9+
DQ9-
DQ10+
DQ10-
N
V_TC
DQ7+
DQ7-
DQ8+
DQ8-
P
V_TC
V_DR
DQ6+
DQ6-
V_DR
R
GND
V_DR
DQ3-
DQ5+
DQ5-
T
DNC
V_A
V_A
DQd1-
V_DR
DQd4-
V_E
GND_E
DQd1+
DQd2-
DQd4+
DQd5-
GND
GND_E
V_E
DQd0-
DQd2+
DQd3-
DQd5+
V_A
GND
V_E
GND_E
DQd0+
V_DR
DQd3+
6
7
8
9
10
11
12
V_DR
V_DR
GND_DR
DQ3+
DQ4+
DQ4-
U
DQd7+
DQd8-
DQd10-
DQ0-
GND_DR
DQ2+
DQ2-
V
DQd6-
DQd8+
DQd9-
DQd10+
DQ0+
DQ1+
DQ1-
W
V_DR
DQd9+
GND_DR DQd11+ DQd11- GND_DR
15
16
GND_DR DQd7-
GND_DR DQd6+
13
14
17
18
19
Y
20
The center ground pins are for thermal dissipation and must be soldered to a ground plane to ensure rated
performance. See Section 4.4 for more information.
Pin Configuration and Functions
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
5
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
3.1
www.ti.com
Pin Attributes
Table 3-1. Pin Attributes — Analog Front-End and Clock Balls
PIN NO.
NAME
EQUIVALENT CIRCUIT
Differential signal I- and Q-inputs. In the Non-Dual
Edge Sampling (Non-DES) Mode, each I- and Qinput is sampled and converted by its respective
channel with each positive transition of the CLK
input. In Non-ECM (Non-Extended Control Mode)
and DES Mode, both channels sample the I-input.
In Extended Control Mode (ECM), the Q-input
may optionally be selected for conversion in DES
Mode by the DEQ Bit (Addr: 0h, Bit 6).
VA
50k
H1
J1
N1
M1
VinI+
VinIVinQ+
VinQ-
DESCRIPTION
AGND
VCMO
100
Control from VCMO
VA
50k
Each I- and Q-channel input has an internal
common mode bias that is disabled when DCcoupled Mode is selected. Both inputs must be
either AC- or DC-coupled. The coupling mode is
selected by the VCMO Pin.
In Non-ECM, the full-scale range of these inputs is
determined by the FSR Pin; both I- and Qchannels have the same full-scale input range. In
ECM, the full-scale input range of the I- and Qchannel inputs may be independently set via the
Control Register (Addr: 3h and Addr: Bh).
AGND
The input offset may also be adjusted in ECM.
VA
U2
V1
CLK+
CLK-
50k
AGND
VA
100
VBIAS
50k
Differential Converter Sampling Clock. In the NonDES Mode, the analog inputs are sampled on the
positive transitions of this clock signal. In the DES
Mode, the selected input is sampled on both
transitions of this clock. This clock must be ACcoupled.
AGND
VA
V2
W1
DCLK_RST+
DCLK_RST-
AGND
100
VA
Differential DCLK Reset. A positive pulse on this
input is used to reset the DCLKI and DCLKQ
outputs of two or more ADC12D1800s in order to
synchronize them with other ADC12D1800s in the
system. DCLKI and DCLKQ are always in phase
with each other, unless one channel is powered
down, and do not require a pulse from DCLK_RST
to become synchronized. The pulse applied here
must meet timing relationships with respect to the
CLK input. Although supported, this feature has
been superseded by AutoSync.
AGND
6
Pin Configuration and Functions
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
Table 3-1. Pin Attributes — Analog Front-End and Clock Balls (continued)
PIN NO.
NAME
EQUIVALENT CIRCUIT
VA
VCMO
C2
200k
VCMO
Enable AC
Coupling
8 pF
GND
Common Mode Voltage Output or Signal Coupling
Select. If AC-coupled operation at the analog
inputs is desired, this pin should be held at logiclow level. This pin is capable of sourcing/ sinking
up to 100 µA. For DC-coupled operation, this pin
should be left floating or terminated into highimpedance. In DC-coupled Mode, this pin provides
an output voltage which is the optimal commonmode voltage for the input signal and should be
used to set the common-mode voltage of the
driving buffer.
Bandgap Voltage Output or LVDS Common-mode
Voltage Select. This pin provides a buffered
version of the bandgap output voltage and is
capable of sourcing/sinking 100 uA and driving a
load of up to 80 pF. Alternately, this pin may be
used to select the LVDS digital output commonmode voltage. If tied to logic-high, the 1.2V LVDS
common-mode voltage is selected; 0.8V is the
default.
VA
B1
DESCRIPTION
VBG
GND
VA
C3
D3
Rext+
Rext-
V
External Reference Resistor terminals. A 3.3 kΩ
±0.1% resistor should be connected between
Rext+/-. The Rext resistor is used as a reference
to trim internal circuits which affect the linearity of
the converter; the value and precision of this
resistor should not be compromised.
GND
VA
C1
D2
Rtrim+
Rtrim-
V
Input Termination Trim Resistor terminals. A 3.3
kΩ ±0.1% resistor should be connected between
Rtrim+/-. The Rtrim resistor is used to establish
the calibrated 100Ω input impedance of VinI, VinQ
and CLK. These impedances may be fine tuned
by varying the value of the resistor by a
corresponding percentage; however, the tuning
range and performance is not ensured for such an
alternate value.
GND
VA
Tdiode_P
E2
F3
Tdiode+
Tdiode-
GND
VA
Temperature Sensor Diode Positive (Anode) and
Negative (Cathode) Terminals. This set of pins is
used for die temperature measurements. It has
not been fully characterized.
Tdiode_N
GND
Pin Configuration and Functions
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
7
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
www.ti.com
Table 3-1. Pin Attributes — Analog Front-End and Clock Balls (continued)
PIN NO.
NAME
EQUIVALENT CIRCUIT
DESCRIPTION
VA
Y4
W5
RCLK+
RCLK-
50k
AGND
100
VA
VBIAS
50k
Reference Clock Input. When the AutoSync
feature is active, and the ADC12D1800 is in Slave
Mode, the internal divided clocks are synchronized
with respect to this input clock. The delay on this
clock may be adjusted when synchronizing
multiple ADCs. This feature is available in ECM
via Control Register (Addr: Eh).
AGND
VA
Y5
U6
V6
V7
RCOut1+
RCOut1RCOut2+
RCOut2-
100:
100:
-
+
Reference Clock Output 1 and 2. These signals
provide a reference clock at a rate of CLK/4, when
enabled, independently of whether the ADC is in
Master or Slave Mode. They are used to drive the
RCLK of another ADC12D1800, to enable
automatic synchronization for multiple ADCs
(AutoSync feature). The impedance of each trace
from RCOut1 and RCOut2 to the RCLK of another
ADC12D1800 should be 100Ω differential. Having
two clock outputs allows the auto-synchronization
to propagate as a binary tree. Use the DOC Bit
(Addr: Eh, Bit 1) to enable/ disable this feature;
default is disabled.
A GND
Table 3-2. Pin Attributes — Control and Status Balls
PIN NO.
NAME
EQUIVALENT CIRCUIT
VA
V5
DES
GND
DESCRIPTION
Dual Edge Sampling (DES) Mode select. In the
Non-Extended Control Mode (Non-ECM), when
this input is set to logic-high, the DES Mode of
operation is selected, meaning that the VinI input
is sampled by both channels in a time-interleaved
manner. The VinQ input is ignored. When this
input is set to logic-low, the device is in Non-DES
Mode, i.e. the I- and Q-channels operate
independently. In the Extended Control Mode
(ECM), this input is ignored and DES Mode
selection is controlled through the Control Register
by the DES Bit (Addr: 0h, Bit 7); default is NonDES Mode operation.
VA
V4
Calibration Delay select. By setting this input logichigh or logic-low, the user can select the device to
wait a longer or shorter amount of time,
respectively, before the automatic power-on selfcalibration is initiated. This feature is pin-controlled
only and is always active during ECM and NonECM.
CalDly
GND
8
Pin Configuration and Functions
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
Table 3-2. Pin Attributes — Control and Status Balls (continued)
PIN NO.
NAME
EQUIVALENT CIRCUIT
VA
D6
CAL
GND
DESCRIPTION
Calibration cycle initiate. The user can command
the device to execute a self-calibration cycle by
holding this input high a minimum of tCAL_H after
having held it low a minimum of tCAL_L. If this input
is held high at the time of power-on, the automatic
power-on calibration cycle is inhibited until this
input is cycled low-then-high. This pin is active in
both ECM and Non-ECM. In ECM, this pin is
logically OR'd with the CAL Bit (Addr: 0h, Bit 15)
in the Control Register. Therefore, both pin and bit
must be set low and then either can be set high to
execute an on-command calibration.
VA
B5
Calibration Running indication. This output is
logic-high while the calibration sequence is
executing. This output is logic-low otherwise.
CalRun
GND
VA
50 k:
U3
V3
PDI
PDQ
Power Down I- and Q-channel. Setting either input
to logic-high powers down the respective I- or Qchannel. Setting either input to logic-low brings the
respective I- or Q-channel to an operational state
after a finite time delay. This pin is active in both
ECM and Non-ECM. In ECM, each Pin is logically
OR'd with its respective Bit. Therefore, either this
pin or the PDI and PDQ Bit in the Control Register
can be used to power-down the I- and Q-channel
(Addr: 0h, Bit 11 and Bit 10), respectively.
GND
VA
A4
Test Pattern Mode select. With this input at logichigh, the device continuously outputs a fixed,
repetitive test pattern at the digital outputs. In the
ECM, this input is ignored and the Test Pattern
Mode can only be activated through the Control
Register by the TPM Bit (Addr: 0h, Bit 12).
TPM
GND
VA
A5
Non-Demuxed Mode select. Setting this input to
logic-high causes the digital output bus to be in
the 1:1 Non-Demuxed Mode. Setting this input to
logic-low causes the digital output bus to be in the
1:2 Demuxed Mode. This feature is pin-controlled
only and remains active during ECM and NonECM.
NDM
GND
Pin Configuration and Functions
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
9
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
www.ti.com
Table 3-2. Pin Attributes — Control and Status Balls (continued)
PIN NO.
NAME
EQUIVALENT CIRCUIT
VA
Y3
FSR
GND
VA
W4
DDRPh
GND
DESCRIPTION
Full-Scale input Range select. In Non-ECM, this
input must be set to logic-high; the full-scale
differential input range for both I- and Q-channel
inputs is set by this pin. In the ECM, this input is
ignored and the full-scale range of the I- and Qchannel inputs is independently determined by the
setting of Addr: 3h and Addr: Bh, respectively.
Note that the logic-high FSR value in Non-ECM
corresponds to the minimum allowed selection in
ECM.
DDR Phase select. This input, when logic-low,
selects the 0° Data-to-DCLK phase relationship.
When logic-high, it selects the 90° Data-to-DCLK
phase relationship, i.e. the DCLK transition
indicates the middle of the valid data outputs. This
pin only has an effect when the chip is in 1:2
Demuxed Mode, i.e. the NDM pin is set to logiclow. In ECM, this input is ignored and the DDR
phase is selected through the Control Register by
the DPS Bit (Addr: 0h, Bit 14); the default is 0°
Mode.
VA
50 k:
B3
ECE
Extended Control Enable bar. Extended feature
control through the SPI interface is enabled when
this signal is asserted (logic-low). In this case,
most of the direct control pins have no effect.
When this signal is de-asserted (logic-high), the
SPI interface is disabled, all SPI registers are
reset to their default values, and all available
settings are controlled via the control pins.
GND
VA
100 k:
C4
SCS
Serial Chip Select bar. In ECM, when this signal is
asserted (logic-low), SCLK is used to clock in
serial data which is present on SDI and to source
serial data on SDO. When this signal is deasserted (logic-high), SDI is ignored and SDO is in
TRI-STATE.
GND
VA
100 k:
C5
SCLK
Serial Clock. In ECM, serial data is shifted into
and out of the device synchronously to this clock
signal. This clock may be disabled and held logiclow, as long as timing specifications are not
violated when the clock is enabled or disabled.
GND
10
Pin Configuration and Functions
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
Table 3-2. Pin Attributes — Control and Status Balls (continued)
PIN NO.
NAME
EQUIVALENT CIRCUIT
DESCRIPTION
VA
100 k:
B4
Serial Data-In. In ECM, serial data is shifted into
the device on this pin while SCS signal is asserted
(logic-low).
SDI
GND
VA
A3
Serial Data-Out. In ECM, serial data is shifted out
of the device on this pin while SCS signal is
asserted (logic-low). This output is at TRI-STATE
when SCS is de-asserted.
SDO
GND
D1, D7, E3, F4,
W3, U7
DNC
NONE
Do Not Connect. These pins are used for internal
purposes and should not be connected, i.e. left
floating. Do not ground.
C7
NC
NONE
Not Connected. This pin is not bonded and may
be left floating or connected to any potential.
Table 3-3. Pin Attributes — Power and Ground Balls
PIN NO.
NAME
EQUIVALENT CIRCUIT
DESCRIPTION
A2, A6, B6, C6,
D8, D9, E1, F1,
H4, N4, R1, T1,
U8, U9, W6, Y2,
Y6
VA
NONE
Power Supply for the Analog circuitry. This supply
is tied to the ESD ring. Therefore, it must be
powered up before or with any other supply.
G1, G3, G4, H2,
J3, K3, L3, M3,
N2, P1, P3, P4,
R3, R4
VTC
NONE
Power Supply for the Track-and-Hold and Clock
circuitry.
A11, A15, C18,
D11, D15, D17,
J17, J20, R17,
R20, T17, U11,
U15, U16, Y11,
Y15
VDR
NONE
Power Supply for the Output Drivers.
A8, B9, C8, V8,
W9, Y8
VE
NONE
Power Supply for the Digital Encoder.
NONE
Bias Voltage I-channel. This is an externally
decoupled bias voltage for the I-channel. Each pin
should individually be decoupled with a 100 nF
capacitor via a low resistance, low inductance
path to GND.
NONE
Bias Voltage Q-channel. This is an externally
decoupled bias voltage for the Q-channel. Each
pin should individually be decoupled with a 100 nF
capacitor via a low resistance, low inductance
path to GND.
J4, K2
L2, M4
VbiasI
VbiasQ
Pin Configuration and Functions
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
11
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
www.ti.com
Table 3-3. Pin Attributes — Power and Ground Balls (continued)
PIN NO.
NAME
EQUIVALENT CIRCUIT
A1, A7, B2, B7,
D4, D5, E4, K1,
L1, T4, U4, U5,
W2, W7, Y1, Y7,
H8:N13
DESCRIPTION
GND
NONE
Ground Return for the Analog circuitry.
F2, G2, H3, J2,
K4, L4, M2, N3,
P2, R2, T2, T3,
U1
GNDTC
NONE
Ground Return for the Track-and-Hold and Clock
circuitry.
A13, A17, A20,
D13, D16, E17,
F17, F20, M17,
M20, U13, U17,
V18, Y13, Y17,
Y20
GNDDR
NONE
Ground Return for the Output Drivers.
A9, B8, C9, V9,
W8, Y9
GNDE
NONE
Ground Return for the Digital Encoder.
Table 3-4. Pin Attributes — High-Speed Digital Outputs
PIN NO.
NAME
EQUIVALENT CIRCUIT
DESCRIPTION
VDR
K19
K20
L19
L20
DCLKI+
DCLKIDCLKQ+
DCLKQ-
-
+
+
-
Data Clock Output for the I- and Q-channel data
bus. These differential clock outputs are used to
latch the output data and, if used, should always
be terminated with a 100Ω differential resistor
placed as closely as possible to the differential
receiver. Delayed and non-delayed data outputs
are supplied synchronously to this signal. In 1:2
Demux Mode or Non-Demux Mode, this signal is
at ¼ or ½ the sampling clock rate, respectively.
DCLKI and DCLKQ are always in phase with each
other, unless one channel is powered down, and
do not require a pulse from DCLK_RST to
become synchronized.
DR GND
VDR
K17
K18
L17
L18
ORI+
ORIORQ+
ORQ-
-
+
+
-
Out-of-Range Output for the I- and Q-channel.
This differential output is asserted logic-high while
the over- or under-range condition exists, i.e. the
differential signal at each respective analog input
exceeds the full-scale value. Each OR result
refers to the current Data, with which it is clocked
out. If used, each of these outputs should always
be terminated with a 100Ω differential resistor
placed as closely as possible to the differential
receiver.
DR GND
12
Pin Configuration and Functions
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
Table 3-4. Pin Attributes — High-Speed Digital Outputs (continued)
PIN NO.
NAME
J18
J19
H19
H20
H17
H18
G19
G20
G17
G18
F18
F19
E19
E20
D19
D20
D18
E18
C19
C20
B19
B20
B18
C17
·
M18
M19
N19
N20
N17
N18
P19
P20
P17
P18
R18
R19
T19
T20
U19
U20
U18
T18
V19
V20
W19
W20
W18
V17
DI11+
DI11DI10+
DI10DI9+
DI9DI8+
DI8DI7+
DI7DI6+
DI6DI5+
DI5DI4+
DI4DI3+
DI3DI2+
DI2DI1+
DI1DI0+
DI0·
DQ11+
DQ11DQ10+
DQ10DQ9+
DQ9DQ8+
DQ8DQ7+
DQ7DQ6+
DQ6DQ5+
DQ5DQ4+
DQ4DQ3+
DQ3DQ2+
DQ2DQ1+
DQ1DQ0+
DQ0-
EQUIVALENT CIRCUIT
DESCRIPTION
VDR
-
+
+
-
I- and Q-channel Digital Data Outputs. In NonDemux Mode, this LVDS data is transmitted at the
sampling clock rate. In Demux Mode, these
outputs provide ½ the data at ½ the sampling
clock rate, synchronized with the delayed data, i.e.
the other ½ of the data which was sampled one
clock cycle earlier. Compared with the DId and
DQd outputs, these outputs represent the later
time samples. If used, each of these outputs
should always be terminated with a 100Ω
differential resistor placed as closely as possible
to the differential receiver.
DR GND
Pin Configuration and Functions
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
13
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
www.ti.com
Table 3-4. Pin Attributes — High-Speed Digital Outputs (continued)
14
PIN NO.
NAME
A18
A19
B17
C16
A16
B16
B15
C15
C14
D14
A14
B14
B13
C13
C12
D12
A12
B12
B11
C11
C10
D10
A10
B10
·
Y18
Y19
W17
V16
Y16
W16
W15
V15
V14
U14
Y14
W14
W13
V13
V12
U12
Y12
W12
W11
V11
V10
U10
Y10
W10
DId11+
DId11DId10+
DId10DId9+
DId9DId8+
DId8DId7+
DId7DId6+
DId6DId5+
DId5DId4+
DId4DId3+
DId3DId2+
DId2DId1+
DId1DId0+
DId0·
DQd11+
DQd11DQd10+
DQd10DQd9+
DQd9DQd8+
DQd8DQd7+
DQd7+DQd6+
DQd6DQd5+
DQd5DQd4+
DQd4DQd3+
DQd3DQd2+
DQd2DQd1+
DQd1DQd0+
DQd0-
EQUIVALENT CIRCUIT
DESCRIPTION
VDR
-
+
+
-
Delayed I- and Q-channel Digital Data Outputs. In
Non-Demux Mode, these outputs are at TRISTATE. In Demux Mode, these outputs provide ½
the data at ½ the sampling clock rate,
synchronized with the non-delayed data, i.e. the
other ½ of the data which was sampled one clock
cycle later. Compared with the DI and DQ outputs,
these outputs represent the earlier time samples.
If used, each of these outputs should always be
terminated with a 100Ω differential resistor placed
as closely as possible to the differential receiver.
DR GND
Pin Configuration and Functions
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
4 Specifications
4.1
(see
Absolute Maximum Ratings
(1) (2)
)
MIN
Supply voltage (VA, VTC, VDR, VE)
Supply difference
max(VA/TC/DR/E) − min(VA/TC/DR/E)
MAX
UNIT
2.2
V
0
100
mV
Voltage on any input pin
(except VIN±)
−0.15
(VA + 0.15)
V
VIN± voltage range
–0.5
2.5
V
0
100
mV
50
mA
Ground difference
max(GNDTC/DR/E) -min(GNDTC/DR/E)
Input current at any pin (3)
–50
ADC12D1800 package power dissipation at TA ≤ 65°C (3)
Storage temperature, Tstg
(1)
(2)
(3)
–65
4.95
W
150
°C
Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. There is no specification of operation at the
Absolute Maximum Ratings. Section 4.3 indicates conditions for which the device is functional, but do not ensure specific performance
limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the
test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
All voltages are measured with respect to GND = GNDTC = GNDDR = GNDE = 0V, unless otherwise specified.
When the input voltage at any pin exceeds the power supply limits (for example, less than GND or greater than VA), the current at that
pin should be limited to 50 mA. In addition, over-voltage at a pin must adhere to the maximum voltage limits. Simultaneous over-voltage
at multiple pins requires adherence to the maximum package power dissipation limits. These dissipation limits are calculated using
JEDEC JESD51-7 thermal model. Higher dissipation may be possible based on specific customer thermal situation and specified
package thermal resistances from junction to case.
4.2
ESD Ratings
VALUE
V(ESD)
(1)
(2)
Electrostatic discharge
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)
±2500
Charged device model (CDM), per JEDEC specification JESD22C101 (2)
±1000
Machine model (MM)
±250
UNIT
V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
Specifications
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
15
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
4.3
www.ti.com
Recommended Operating Conditions
(1) (2)
(see
)
MIN
MAX
TA ADC12D1800
(Standard JEDEC thermal model)
−40
50
°C
TA ADC12D1800
(Enhanced thermal model/heatsink)
−40
85
°C
120
°C
Supply voltage (VA, VTC, VE)
+1.8
+2.0
V
Driver supply voltage (VDR)
+1.8
VA
V
VIN+/- Voltage range (3)
–0.4
2.4
(DC-coupled)
V
1.0 (DC-coupled at 100% duty cycle)
2.0 (DC-coupled at 20% duty cycle)
2.8 (DC-coupled at 10% duty cycle)
V
Ambient temperature range
TJ Junction temperature range (applies only to maximum operating speed)
VIN+/- Differential voltage range (4)
VIN+/- Current range (3)
VIN+/- Power
–50
±50 peak
(A.C.-coupled)
(maintaining common mode voltage,
A.C.-coupled)
15.3
(not maintaining common mode voltage,
A.C.-coupled)
17.1
Ground difference
max(GNDTC/DR/E) – min(GNDTC/DR/E)
CLK+/- Voltage range
Differential CLK amplitude VP–P
Common mode input voltage VCMI
(1)
(2)
(3)
(4)
UNIT
mA
dBm
0
V
0
VA
V
0.4
2
V
VCMO - 150
VCMO + 150
mV
Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. There is no specification of operation at the
Absolute Maximum Ratings. Section 4.3 indicates conditions for which the device is functional, but do not ensure specific performance
limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the
test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
All voltages are measured with respect to GND = GNDTC = GNDDR = GNDE = 0V, unless otherwise specified.
Proper common mode voltage must be maintained to ensure proper output codes, especially during input overdrive.
This rating is intended for DC-coupled applications; the voltages listed may be safely applied to VIN+/- for the life-time duty-cycle of the
part.
4.4
Thermal Information
ADC12D1800
THERMAL METRIC (1)
NXA (BGA)
UNIT
292 PINS
RθJA
Junction-to-ambient thermal resistance
16
°C/W
RθJC(top)
Junction-to-case (top) thermal resistance
2.9
°C/W
RθJC(bot)
Junction-to-case (bottom) thermal resistance
2.5
°C/W
(1)
16
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report, SPRA953.
Specifications
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
4.5
SNAS500Q – MAY 2010 – REVISED MAY 2017
Converter Electrical Characteristics: Static Converter Characteristics
Unless otherwise specified, the following apply after calibration for VA = VDR = VTC = VE = +1.9V; I- and Q-channels, ACcoupled, unused channel terminated to AC ground, FSR Pin = High; CL = 10 pF; Differential, AC coupled Sine Wave
Sampling Clock, fCLK = 1.8 GHz at 0.5 VP-P with 50% duty cycle (as specified); VBG = Floating; Extended Control Mode with
Register 6h written to 1C00h; Rext = Rtrim = 3300Ω ± 0.1%; Analog Signal Source Impedance = 100Ω Differential; 1:2
Demultiplex Non-DES Mode; Duty Cycle Stabilizer on. Max limits are TA = TMIN to TMAX, TJ < 105°C, unless otherwise noted. (1)
(2) (3)
PARAMETER
TEST CONDITIONS
TYP
MAX
UNIT
12
bits
Resolution with no missing codes
TA = TMIN to TMAX, TJ < 105°C
INL
Integral non-linearity
(Best fit)
1 MHz DC-coupled over-ranged
sine wave
±2.5
LSB
DNL
Differential non-linearity
1 MHz DC-coupled over-ranged
sine wave
±0.4
LSB
VOFF
Offset error
5
LSB
VOFF_ADJ
Input offset adjustment range
Extended Control Mode
±45
PFSE
Positive full-scale error
See
(4)
See
(4)
NFSE
Negative full-scale error
Out-of-range output code
(1)
(5)
mV
±25
mV
±25
mV
(VIN+) − (VIN−) > + full scale
4095
(VIN+) − (VIN−) < − full scale
0
The analog inputs, labeled I/O, are protected as shown below. Input voltage magnitudes beyond the Absolute Maximum Ratings may
damage this device.
V
A
TO INTERNAL
CIRCUITRY
I/O
GND
(2)
(3)
(4)
(5)
To ensure accuracy, it is required that VA, VTC, VE and VDR be well-bypassed. Each supply pin must be decoupled with separate bypass
capacitors.
Typical figures are at TA = 25°C, and represent most likely parametric norms. Test limits are specified to TI's AOQL (Average Outgoing
Quality Level).
Calculation of Full-Scale Error for this device assumes that the actual reference voltage is exactly its nominal value. Full-Scale Error for
this device, therefore, is a combination of Full-Scale Error and Reference Voltage Error. See Figure 4-1. For relationship between Gain
Error and Full-Scale Error, see Specification Definitions for Gain Error.
This parameter is ensured by design and is not tested in production.
Specifications
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
17
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
4.6
www.ti.com
Converter Electrical Characteristics: Dynamic Converter Characteristics
Limits are TA = TMIN to TMAX, TJ < 105°C
PARAMETER
FPBW
Full power bandwidth
TEST CONDITIONS
UNIT
2.8
GHz
1.25
GHz
DESIQ Mode
1.75
GHz
D.C. to Fs/2
0.5
dB
D.C. to Fs
1.2
dB
DESI, DESQ Mode
D.C. to Fs/2
4.0
dB
DESIQ Mode
D.C. to Fs/2
3.6
dB
10-18
Error/S
ample
Code error rate
NPR
Noise power ratio
See
3rd order intermodulation
distortion
DESIQ Mode
FIN1 = 1212.52MHz at -7dBFS
FIN2 = 1217.52 MHz at -7dBFS
(1)
50Ω single-ended termination, DES Mode
Noise floor density
MAX
DESI, DESQ Mode
CER
IMD3
TYP
Non-DES Mode
Non-DES Mode
Gain flatness
MIN
Wideband input, DES Mode (2)
48.5
dB
-61
dBFS
-54
dBc
-153.5
dBm/Hz
-152.5
dBFS/H
z
-152.6
dBm/Hz
-151.6
dBFS/H
z
9.4
bits
NON-DES MODE (3) (4)
AIN = 125 MHz at -0.5 dBFS
ENOB
Effective Number of Bits
AIN = 248 MHz at -0.5 dBFS
8.4
9.2
bits
AIN = 498 MHz at -0.5 dBFS
8.4
9.1
bits
AIN = 1147 MHz at -0.5 dBFS
8.5
bits
AIN = 1448 MHz at -0.5 dBFS
8.4
bits
AIN = 125 MHz at -0.5 dBFS
SINAD
SNR
Signal-to-Noise Plus
Distortion Ratio
Signal-to-Noise Ratio
58
dB
AIN = 248 MHz at -0.5 dBFS
52.1
57.3
dB
AIN = 498 MHz at -0.5 dBFS
52.1
56.3
dB
AIN = 1147 MHz at -0.5 dBFS
52.9
dB
AIN = 1448 MHz at -0.5 dBFS
52.5
dB
AIN = 125 MHz at -0.5 dBFS
58.6
dB
AIN = 248 MHz at -0.5 dBFS
52.9
57.8
dB
AIN = 498 MHz at -0.5 dBFS
52.9
57.3
dB
AIN = 1147 MHz at -0.5 dBFS
53.9
dB
AIN = 1448 MHz at -0.5 dBFS
53.1
dB
AIN = 125 MHz at -0.5 dBFS
THD
(1)
(2)
(3)
(4)
18
Total Harmonic Distortion
-68.5
dB
AIN = 248 MHz at -0.5 dBFS
-60
-66.6
dB
AIN = 498 MHz at -0.5 dBFS
-60
-63.2
dB
AIN = 1147 MHz at -0.5 dBFS
-59.5
dB
AIN = 1448 MHz at -0.5 dBFS
-61.1
dB
The NPR was measured using an Agilent N6030A Arbitrary Waveform Generator (ARB) to generate the input signal. See the Wideband
Performance for an example spectrum. The "noise" portion of the signal was created by tones spaced at 500 kHz and the "notch" was a
25 MHz absence of tones centered at 320 MHz. The bandwidth of this equipment is only 500 MHz, so the final reported NPR was
extrapolated from the measured NPR as if the entire Nyquist band were occupied with noise.
The Noise Floor Density was measured for two conditions: the analog input terminated with 50Ω, and in the presence of a 500 MHz
wideband noise signal with total power just below the maximum input level to the ADC. In both cases, the spurs at DC, Fs/4 and Fs/2
were not included in the noise floor calculation. The power over the entire Nyquist band (except for the noise signal) was integrated and
the average number is reported.
The Dynamic Specifications are ensured for room to hot ambient temperature only (25°C to 85°C). Refer to the plots of the dynamic
performance vs. temperature in the Typical Performance Plots to see typical performance from cold to room temperature (-40°C to
25°C).
The Fs/2 spur was removed from all the dynamic performance specifications.
Specifications
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
Converter Electrical Characteristics: Dynamic Converter Characteristics (continued)
Limits are TA = TMIN to TMAX, TJ < 105°C
PARAMETER
2nd
Harm
Second Harmonic
Distortion
3rd Harm Third Harmonic Distortion
SFDR
Spurious-Free Dynamic
Range
DES MODE
ENOB
SINAD
SNR
THD
2nd
Harm
(5)
TEST CONDITIONS
MIN
TYP
MAX
UNIT
AIN = 125 MHz at -0.5 dBFS
73
dBc
AIN = 248 MHz at -0.5 dBFS
87
dBc
AIN = 498 MHz at -0.5 dBFS
70
dBc
AIN = 1147 MHz at -0.5 dBFS
62
dBc
AIN = 1448 MHz at -0.5 dBFS
66
dBc
AIN = 125 MHz at -0.5 dBFS
76.8
dBc
AIN = 248 MHz at -0.5 dBFS
67.4
dBc
AIN = 498 MHz at -0.5 dBFS
66.3
dBc
AIN = 1147 MHz at -0.5 dBFS
63
dBc
AIN = 1448 MHz at -0.5 dBFS
63.6
dBc
AIN = 125 MHz at -0.5 dBFS
73
AIN = 248 MHz at -0.5 dBFS
67.5
58
dBc
AIN = 498 MHz at -0.5 dBFS
66.1
58
dBc
AIN = 1147 MHz at -0.5 dBFS
60.2
dBc
AIN = 1448 MHz at -0.5 dBFS
60.3
dBc
AIN = 125 MHz at -0.5 dBFS
8.9
AIN = 248 MHz at -0.5 dBFS
8.8
AIN = 498 MHz at -0.5 dBFS
8.6
bits
AIN = 1147 MHz at -0.5 dBFS
8
bits
AIN = 1448 MHz at -0.5 dBFS
8
bits
AIN = 125 MHz at -0.5 dBFS
55.6
dB
AIN = 248 MHz at -0.5 dBFS
54.8
AIN = 498 MHz at -0.5 dBFS
53.8
dB
AIN = 1147 MHz at -0.5 dBFS
50
dB
AIN = 1448 MHz at -0.5 dBFS
49.8
dB
AIN = 125 MHz at -0.5 dBFS
55.8
AIN = 248 MHz at -0.5 dBFS
55.3
AIN = 498 MHz at -0.5 dBFS
54.5
dB
AIN = 1147 MHz at -0.5 dBFS
50.4
dB
AIN = 1448 MHz at -0.5 dBFS
50.1
dB
AIN = 125 MHz at -0.5 dBFS
-67.8
dB
AIN = 248 MHz at -0.5 dBFS
-65
AIN = 498 MHz at -0.5 dBFS
-62
dB
AIN = 1147 MHz at -0.5 dBFS
-60.6
dB
AIN = 1448 MHz at -0.5 dBFS
-61.9
dB
AIN = 125 MHz at -0.5 dBFS
78
dBc
AIN = 248 MHz at -0.5 dBFS
74.4
dBc
AIN = 498 MHz at -0.5 dBFS
72.5
dBc
AIN = 1147 MHz at -0.5 dBFS
70.5
dBc
AIN = 1448 MHz at -0.5 dBFS
72.8
dBc
dBc
(3) (4) (5)
Effective number of bits
Signal-to-noise plus
distortion ratio
Signal-to-noise ratio
Total harmonic distortion
Second harmonic
distortion
bits
8.4
52.1
bits
dB
dB
52.9
-60
dB
dB
These measurements were taken in Extended Control Mode (ECM) with the DES Timing Adjust feature enabled (Addr: 7h). This feature
is used to reduce the interleaving timing spur amplitude, which occurs at fs/2-fin, and thereby increase the SFDR, SINAD and ENOB.
Specifications
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
19
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
www.ti.com
Converter Electrical Characteristics: Dynamic Converter Characteristics (continued)
Limits are TA = TMIN to TMAX, TJ < 105°C
PARAMETER
TEST CONDITIONS
3rd Harm Third harmonic distortion
Spurious-free dynamic
range
SFDR
4.7
MIN
TYP
MAX
UNIT
AIN = 125 MHz at -0.5 dBFS
72.6
dBc
AIN = 248 MHz at -0.5 dBFS
66.5
dBc
AIN = 498 MHz at -0.5 dBFS
63.2
dBc
AIN = 1147 MHz at -0.5 dBFS
61.8
dBc
AIN = 1448 MHz at -0.5 dBFS
63.8
dBc
AIN = 125 MHz at -0.5 dBFS
58.9
AIN = 248 MHz at -0.5 dBFS
60.4
AIN = 498 MHz at -0.5 dBFS
60.5
dBc
AIN = 1147 MHz at -0.5 dBFS
56.7
dBc
AIN = 1448 MHz at -0.5 dBFS
55.6
dBc
dBc
58
dBc
Converter Electrical Characteristics: Analog Input and Output and Reference
Characteristics
Limits are TA = TMIN to TMAX, TJ < 105°C
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
740
800
860
mVP-P
ANALOG INPUTS
Analog differential input full
scale range
VIN_FSR
(1)
(2)
FSR Pin High
Extended Control Mode
FM(14:0) = 4000h
(default)
800
mVP-P
FM(14:0) = 7FFFh
1000
mVP-P
Analog input capacitance,
non-DES mode (1) (2)
Differential
0.02
pF
Each input pin to ground
1.6
pF
Analog input capacitance,
DES mode (1) (2)
Differential
0.08
pF
Each input pin to ground
2.2
CIN
RIN
Non-Extended Control
Mode
Differential input resistance
91
100
pF
109
Ω
This parameter is ensured by design and is not tested in production.
The differential and pin-to-ground input capacitances are lumped capacitance values from design; they are defined as shown below.
VIN+
CIN, PIN-TO-GND
CIN, DIFF
VINCIN, PIN-TO-GND
20
Specifications
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
Converter Electrical Characteristics: Analog Input and Output and Reference
Characteristics (continued)
Limits are TA = TMIN to TMAX, TJ < 105°C
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
1.15
1.25
1.35
V
COMMON MODE OUTPUT
VCMO
Common mode output
voltage
ICMO = ±100 µA
TC_VCM
Common mode output
voltage temperature
coefficient
ICMO = ±100 µA
O
VCMO_LVL
CL_VCMO
VCMO input threshold to set
DC-coupling Mode
38
ppm/°C
0.63
V
(1)
Maximum VCMO load
capacitance
80
pF
1.35
V
BANDGAP REFERENCE
VBG
Bandgap reference output
voltage
IBG = ±100 µA
TC_VBG
Bandgap reference voltage
temperature coefficient
IBG = ±100 µA
CL_VBG
4.8
Maximum bandgap
reference load capacitance
1.15
1.25
32
ppm/°C
(1)
80
pF
Converter Electrical Characteristics: I-Channel to Q-Channel Characteristics
PARAMETER
TEST CONDITIONS
Offset match
X-TALK
TYP
LIM
UNIT
2
LSB
Positive full-scale match
Zero offset selected in
Control Register
2
LSB
Negative full-scale match
Zero offset selected in
Control Register
2
LSB
Phase matching (I, Q)
fIN = 1.0 GHz
(VIN-)
0.0V
+VIN/2
Differential Analog Input Voltage (+VIN/2) - (-VIN/2)
Figure 4-1. Input / Output Transfer Characteristic
26
Specifications
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
Sample N
DI
Sample N-1
DId
VINI+/-
Sample N+1
tAD
CLK+
tOD
DId, DI
Sample N-39 and
Sample N-38
Sample N-37 and Sample N-36
Sample N-35 and Sample N-34
tOSK
DCLKI+/(0° Phase)
tSU
tH
DCLKI+/(90° Phase)
The timing for these figures is shown for the one input only (I or Q). However, both I- and Q-inputs may be used. For
this case, the I-channel functions precisely the same as the Q-channel, with VinI, DCLKI, DId and DI instead of VinQ,
DCLKQ, DQd and DQ. Both I- and Q-channel use the same CLK.
Figure 4-2. Clocking in 1:2 Demux Non-DES Mode
Sample N
Sample N-1
DQ
DQ
VINQ+/-
Sample N+1
tAD
CLK+
tOD
DQ
Sample N-37
Sample N-36
Sample N-35
Sample N-34
Sample N-33
tOSK
DCLKQ+/(0° Phase)
The timing for these figures is shown for the one input only (I or Q). However, both I- and Q-inputs may be used. For
this case, the I-channel functions precisely the same as the Q-channel, with VinI, DCLKI, DId and DI instead of VinQ,
DCLKQ, DQd and DQ. Both I- and Q-channel use the same CLK.
Figure 4-3. Clocking in Non-Demux Non-DES Mode
Specifications
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
27
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
www.ti.com
DId
VINQ+/-
DQd
c
Sample
N-1.5
Sample N-1
DQ
DI
c
c Sample N
Sample N-0.5
c
Sample N+1
tAD
c
c
CLK+/tOD
DQd, DId,
DQ, DI
Sample N-37.5, N-37,
N-36.5, N-36
Sample N-39.5, N-39,
N-38.5, N-38
Sample N-35.5, N-35,
N-34.5, N-34
tOSK
DCLKQ+/(0° Phase)
tSU
tH
DCLKQ+/(90° Phase)
The timing for these figures is shown for the one input only (I or Q). However, both I- and Q-inputs may be used. For
this case, the I-channel functions precisely the same as the Q-channel, with VinI, DCLKI, DId and DI instead of VinQ,
DCLKQ, DQd and DQ. Both I- and Q-channel use the same CLK.
Figure 4-4. Clocking in 1:4 Demux DES Mode
Sample N - 0.5
Sample N-1
DI
DQ
Sample N
DI
VINQ+/-
Sample N + 0.5
DQ
Sample N+1
tAD
CLK+
tOD
DQ, DI Sample N-37.5, N-37
Sample N-36.5, N-36
Sample N-35.5, N-35
Sample N-34.5, N-34
Sample N-33.5, N-33
tOSK
DCLKQ+/(0° Phase)
The timing for these figures is shown for the one input only (I or Q). However, both I- and Q-inputs may be used. For
this case, the I-channel functions precisely the same as the Q-channel, with VinI, DCLKI, DId and DI instead of VinQ,
DCLKQ, DQd and DQ. Both I- and Q-channel use the same CLK.
Figure 4-5. Clocking in Non-Demux Mode DES Mode
Synchronizing Edge
tSYNC_DLY
CLK
tHR
tSR
DCLK_RSTtOD
DCLK_RST+
tPWR
DCLKI+
DCLKQ+
Figure 4-6. Data Clock Reset Timing (Demux Mode)
28
Specifications
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
tCAL
tCAL
CalRun
tCAL_H
tCalDly
Calibration Delay
determined by
CalDly (Pin V4)
CAL
tCAL_L
POWER
SUPPLY
Figure 4-7. Power-on and On-Command Calibration Timing
Single Register Access
SCS
tSCS
tHCS
tHCS
1
8
24
9
SCLK
SDI
Command Field
Data Field
LSB
MSB
tSH
tSSU
tBSU
SDO
read mode)
Data Field
High Z
MSB
High Z
LSB
Figure 4-8. Serial Interface Timing
Specifications
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
29
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
www.ti.com
4.16 Typical Characteristics
VA = VDR = VTC = VE = 1.9V, fCLK = 1.8 GHz, fIN = 498 MHz, TA= 25°C, I-channel, 1:2 Demux Non-DES Mode
(1:1 Demux Non-DES Mode has similar performance), unless otherwise stated. For NPR plots, notch width = 25
MHz, fc = 320 MHz.
3
1.0
2
0.5
INL (LSB)
INL (LSB)
1
0
0.0
-1
-0.5
-2
+INL
-INL
-3
0
-1.0
-50
4,095
OUTPUT CODE
0
50
100
TEMPERATURE (°C)
Figure 4-9. INL vs. Code (ADC12D1800)
Figure 4-10. INL vs. Temperature (ADC12D1800)
0.75
0.50
0.50
DNL (LSB)
DNL (LSB)
0.25
0.25
0.00
0.00
-0.25
-0.25
-0.50
+DNL
-DNL
-0.75
0
4,095
-0.50
-50
OUTPUT CODE
50
100
Figure 4-12. DNL vs. Temperature (ADC12D1800)
10
10
9
9
ENOB
ENOB
Figure 4-11. DNL vs. Code (ADC12D1800)
8
7
8
7
NON-DES MODE
DES MODE
NON-DES MODE
DES MODE
6
6
-50
0
50
1.6
100
TEMPERATURE (°C)
1.8
2.0
2.2
VA(V)
Figure 4-13. ENOB vs. Temperature (ADC12D1800)
30
0
TEMPERATURE (°C)
Figure 4-14. ENOB vs. Supply Voltage (ADC12D1800)
Specifications
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
10
10
9
9
ENOB
ENOB
Typical Characteristics (continued)
8
7
8
7
NON-DES MODE
DES MODE
NON-DES MODE
DES MODE
6
6
0
600
1,200
1,800
CLOCK FREQUENCY (MHz)
Figure 4-15. ENOB vs. Clock Frequency (ADC12D1800)
0
1,500
62
60
SNR (dB)
9
ENOB
1,000
INPUT FREQUENCY (MHz)
Figure 4-16. ENOB vs. Input Frequency (ADC12D1800)
10
8
7
58
56
54
NON-DES MODE
DES MODE
6
0.75
500
1.00
1.25
NON-DES MODE
DES MODE
1.50
52
-50
1.75
VCMI(V)
Figure 4-17. ENOB vs. VCMI (ADC12D1800)
0
50
100
TEMPERATURE (°C)
Figure 4-18. SNR vs. Temperature (ADC12D1800)
62
62
NON-DES MODE
DES MODE
60
SNR (dB)
SNR (dB)
60
58
56
54
58
56
54
NON-DES MODE
DES MODE
52
1.6
52
1.8
2.0
2.2
VA(V)
Figure 4-19. SNR vs. Supply Voltage (ADC12D1800)
0
600
1,200
1,800
CLOCK FREQUENCY (MHz)
Figure 4-20. SNR vs. Clock Frequency (ADC12D1800)
Specifications
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
31
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
www.ti.com
Typical Characteristics (continued)
-40
60
-50
THD (dBc)
SNR (dB)
58
56
54
-60
-70
52
NON-DES MODE
DES MODE
NON-DES MODE
DES MODE
50
0
500
1,000
INPUT FREQUENCY (MHz)
Figure 4-21. SNR vs. Input Frequency (ADC12D1800)
-40
-40
-50
-50
-60
100
-60
NON-DES MODE
DES MODE
NON-DES MODE
DES MODE
-80
1.6
-80
1.8
2.0
2.2
VA(V)
Figure 4-23. THD vs. Supply Voltage (ADC12D1800)
0
-40
80
-50
70
-60
-70
600
1,200
1,800
CLOCK FREQUENCY (MHz)
Figure 4-24. THD vs. Clock Frequency (ADC12D1800)
SFDR (dBc)
THD (dBc)
50
-70
-70
60
50
NON-DES MODE
DES MODE
NON-DES MODE
DES MODE
-80
0
500
1,000
1,500
INPUT FREQUENCY (MHz)
Figure 4-25. THD vs. Input Frequency (ADC12D1800)
32
0
TEMPERATURE (°C)
Figure 4-22. THD vs. Temperature (ADC12D1800)
THD (dBc)
THD (dBc)
-80
-50
1,500
40
-50
0
50
100
TEMPERATURE (°C)
Figure 4-26. SFDR vs. Temperature (ADC12D1800)
Specifications
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
80
80
70
70
SFDR (dBc)
SFDR (dBc)
Typical Characteristics (continued)
60
60
50
50
NON-DES MODE
DES MODE
NON-DES MODE
DES MODE
40
1.6
40
1.8
2.0
2.2
VA (V)
Figure 4-27. SFDR vs. Supply Voltage (ADC12D1800)
0
600
1,200
1,800
CLOCK FREQUENCY (MHz)
Figure 4-28. SFDR vs. Clock Frequency (ADC12D1800)
80
0
DES MODE
AMPLITUDE (dBFS)
SFDR (dBc)
70
60
50
-25
-50
-75
NON-DES MODE
DES MODE
40
-100
0
500
1,000
1,500
INPUT FREQUENCY (MHz)
Figure 4-29. SFDR vs. Input Frequency (ADC12D1800)
0
0
-40
1,200
1,800
NON-DES MODE
NON-DES
-50
-25
CROSSTALK (dBFS)
AMPLITUDE (dBFS)
600
FREQUENCY (MHz)
Figure 4-30. Spectral Response at FIN = 498 MHz (ADC12D1800)
-50
-75
-60
-70
-80
-100
-90
0
300
600
900
FREQUENCY (MHz)
Figure 4-31. Spectral Response at FIN = 498 MHz (ADC12D1800)
0
1,000
2,000
3,000
AGGRESSOR INPUT FREQUENCY (MHz)
Figure 4-32. Crosstalk vs. Source Frequency (ADC12D1800)
Specifications
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
33
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
www.ti.com
Typical Characteristics (continued)
5.0
0
4.5
POWER (W)
SIGNAL GAIN (dB)
-3
-6
-9
-12
NON-DES MODE
DES MODE
DESIQ MODE
4.0
3.5
3.0
2.5
-15
DEMUX
NON-DEMUX
2.0
0
1,000
2,000
3,000
INPUT FREQUENCY (MHz)
Figure 4-33. Full Power Bandwidth (ADC12D1800)
0
600
1,200
1,800
CLOCK FREQUECY (MHz)
Figure 4-34. Power Consumption vs. Clock Frequency
(ADC12D1800)
50
NPR (dB)
45
40
35
30
25
-30
-25
-20
-15
-10
-5
RMS NOISE LOADING LEVEL (dB)
Figure 4-35. NPR vs. RMS Noise Loading Level (ADC12D1800)
34
Specifications
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
5 Detailed Description
5.1
Overview
The ADC12D1800 is a versatile A/D converter with an innovative architecture which permits very high
speed operation. The controls available ease the application of the device to circuit solutions. Optimum
performance requires adherence to the provisions discussed here and in the Section 6.1 Section. This
section covers an overview, a description of control modes (Extended Control Mode and Non-Extended
Control Mode), and features.
The ADC12D1800 uses a calibrated folding and interpolating architecture that achieves a high Effective
Number of Bits (ENOB). The use of folding amplifiers greatly reduces the number of comparators and
power consumption. Interpolation reduces the number of front-end amplifiers required, minimizing the load
on the input signal and further reducing power requirements. In addition to correcting other non-idealities,
on-chip calibration reduces the INL bow often seen with folding architectures. The result is an extremely
fast, high performance, low power converter.
The analog input signal (which is within the converter's input voltage range) is digitized to twelve bits at
speeds of 150 MSPS to 3.6 GSPS, typical. Differential input voltages below negative full-scale will cause
the output word to consist of all zeroes. Differential input voltages above positive full-scale will cause the
output word to consist of all ones. Either of these conditions at the I- or Q-input will cause the Out-ofRange I-channel or Q-channel output (ORI or ORQ), respectively, to output a logic-high signal.
In ECM, an expanded feature set is available via the Serial Interface. The ADC12D1800 builds upon
previous architectures, introducing a new DES Mode Timing Adjust, AutoSync feature for multi-chip
synchronization and increasing to 15-bit for gain and 12-bit plus sign for offset the independent
programmable adjustment for each channel.
Each channel has a selectable output demultiplexer which feeds two LVDS buses. If the 1:2 Demux Mode
is selected, the output data rate is reduced to half the input sample rate on each bus. When Non-Demux
Mode is selected, the output data rate on each channel is at the same rate as the input sample clock and
only one 12-bit bus per channel is active.
5.2
Functional Block Diagram
Detailed Description
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
35
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
5.3
www.ti.com
Feature Description
The ADC12D1800 offers many features to make the device convenient to use in a wide variety of
applications. Table 5-1 is a summary of the features available, as well as details for the control mode
chosen. "N/A" means "Not Applicable."
Table 5-1. Features and Modes
CONTROL PIN
ACTIVE IN
ECM
FEATURE
NON-ECM
ECM
DEFAULT ECM STATE
AC/DC-coupled Mode
Selection
Selected via VCMO
(Pin C2)
Yes
Not available
N/A
Input Full-scale Range Adjust
Selected via FSR
(Pin Y3)
No
Selected via the Config Reg
(Addr: 3h and Bh)
Low FSR value
Input Offset Adjust Setting
Not available
N/A
Selected via the Config Reg
(Addr: 2h and Ah)
Offset = 0 mV
DES/Non-DES Mode Selection
Selected via DES
(Pin V5)
No
Selected via the DES Bit
(Addr: 0h; Bit: 7)
Non-DES Mode
DES Timing Adjust
Not available
N/A
Selected via the DES Timing
Adjust Reg (Addr: 7h)
Mid skew offset
Sampling Clock Phase
Adjust (1)
Not available
N/A
Selected via the Config Reg
(Addr: Ch and Dh)
tAD adjust disabled
DDR Clock Phase Selection
Selected via DDRPh
(Pin W4)
No
Selected via the DPS Bit
(Addr: 0h; Bit: 14)
0° Mode
LVDS Differential Voltage
Amplitude Selection
Higher amplitude only
N/A
Selected via the OVS Bit
(Addr: 0h; Bit: 13)
Higher amplitude
LVDS Common-Mode Voltage
Amplitude Selection
Selected via VBG
(Pin B1)
Yes
Not available
N/A
Output Formatting Selection
Offset Binary only
N/A
Selected via the 2SC Bit
(Addr: 0h; Bit: 4)
Offset Binary
Test Pattern Mode at Output
Selected via TPM
(Pin A4)
No
Selected via the TPM Bit
(Addr: 0h; Bit: 12)
TPM disabled
Demux/Non-Demux Mode
Selection
Selected via NDM
(Pin A5)
Yes
Not available
N/A
AutoSync
Not available
N/A
Selected via the Config Reg
(Addr: Eh)
Master Mode,
RCOut1/2 disabled
DCLK Reset
Not available
N/A
Selected via the Config Reg
(Addr: Eh; Bit 0)
DCLK Reset disabled
Time Stamp
Not available
N/A
Selected via the TSE Bit
(Addr: 0h; Bit: 3)
Time Stamp disabled
Input Control and Adjust
Output Control and Adjust
Calibration
On-command Calibration
Selected via CAL
(Pin D6)
Yes
Selected via the CAL Bit
(Addr: 0h; Bit: 15)
N/A
(CAL = 0)
Power-on Calibration Delay
Selection
Selected via CalDly
(Pin V4)
Yes
Not available
N/A
Calibration Adjust
Not available
N/A
Selected via the Config Reg
(Addr: 4h)
tCAL
Read/Write Calibration
Settings
Not available
N/A
Selected via the SSC Bit
(Addr: 4h; Bit: 7)
R/W calibration values
disabled
Power down I-channel
Selected via PDI
(Pin U3)
Yes
Selected via the PDI Bit
(Addr: 0h; Bit: 11)
I-channel operational
Power down Q-channel
Selected via PDQ
(Pin V3)
Yes
Selected via the PDQ Bit
(Addr: 0h; Bit: 10)
Q-channel operational
Power-Down
(1)
36
Sampling Clock Phase Adjust cannot be used in DES mode (DESI, DESQ, DESIQ or DESCLKIQ) at CLK frequencies above 1600 MHz.
Detailed Description
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
5.3.1
SNAS500Q – MAY 2010 – REVISED MAY 2017
Input Control and Adjust
There are several features and configurations for the input of the ADC12D1800 so that it may be used in
many different applications. This section covers AC/DC-coupled Mode, input full-scale range adjust, input
offset adjust, DES/Non-DES Mode, DES Timing Adjust, and sampling clock phase adjust.
5.3.1.1
AC/DC-coupled Mode
The analog inputs may be AC or DC-coupled. See Section 5.5.1.1.10 for information on how to select the
desired mode and Section 6.1.1.7 and Section 6.1.1.6 for applications information.
5.3.1.2
Input Full-Scale Range Adjust
The input full-scale range for the ADC12D1800 may be adjusted in ECM. In Non-ECM, the control pin
must be set to logic-high; see Section 5.5.1.1.9. In ECM, the input full-scale range may be adjusted with
15-bits of precision. See VIN_FSR in Section 4.7 for electrical specification details. Note that the full-scale
input range setting in Non-ECM (logic-high only) corresponds to the lowest full-scale input range settings
in ECM. It is necessary to execute an on-command calibration following a change of the input full-scale
range. See Section 5.6.1 for information about the registers.
5.3.1.3
Input Offset Adjust
The input offset adjust for the ADC12D1800 may be adjusted with 12-bits of precision plus sign via ECM.
See Section 5.6.1 for information about the registers.
5.3.1.4
DES Timing Adjust
The performance of the ADC12D1800 in DES Mode depends on how well the two channels are
interleaved, i.e. that the clock samples either channel with precisely a 50% duty-cycle, each channel has
the same offset (nominally code 2047/2048), and each channel has the same full-scale range. The
ADC12D1800 includes an automatic clock phase background adjustment in DES Mode to automatically
and continuously adjust the clock phase of the I- and Q-channels. In addition to this, the residual fixed
timing skew offset may be further manually adjusted, and further reduce timing spurs for specific
applications. See the DES Timing Adjust (Addr: 7h). As the DES Timing Adjust is programmed from 0d to
127d, the magnitude of the Fs/2-Fin timing interleaving spur will decrease to a local minimum and then
increase again. The default, nominal setting of 64d may or may not coincide with this local minimum. The
user may manually skew the global timing to achieve the lowest possible timing interleaving spur.
5.3.1.5
Sampling Clock Phase (Aperture) Delay Adjust
NOTE
Sampling Clock Phase Adjust cannot be used in DES mode (DESI, DESQ, DESIQ or
DESCLKIQ) at CLK frequencies above 1600 MHz.
The sampling clock (CLK) phase may be delayed internally to the ADC up to 825 ps in ECM. This feature
is intended to help the system designer remove small imbalances in clock distribution traces at the board
level when multiple ADCs are used, or to simplify complex system functions such as beam steering for
phase array antennas.
Additional delay in the clock path also creates additional jitter when using the sampling clock phase adjust.
Because the sampling clock phase adjust delays all clocks, including the DCLKs and output data, the user
is strongly advised to use the minimal amount of adjustment and verify the net benefit of this feature in his
system before relying on it.
Using this feature at its maximum setting, for the maximum sampling clock rate, may affect the integrity of
the sampling clock on chip. Therefore, it is not recommended to do so. The maximum setting for the
coarse adjust is 825ps. The period for the maximum sampling clock rate of is 555ps, so it should not be
necessary to exceed this value in any case.
Detailed Description
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
37
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
5.3.2
www.ti.com
Output Control and Adjust
There are several features and configurations for the output of the ADC12D1800 so that it may be used in
many different applications. This section covers DDR clock phase, LVDS output differential and commonmode voltage, output formatting, Demux/Non-demux Mode, Test Pattern Mode, and Time Stamp.
5.3.2.1
DDR Clock Phase
The ADC12D1800 output data is always delivered in Double Data Rate (DDR). With DDR, the DCLK
frequency is half the data rate and data is sent to the outputs on both edges of DCLK; see Figure 5-1. The
DCLK-to-Data phase relationship may be either 0° or 90°. For 0° Mode, the Data transitions on each edge
of the DCLK. Any offset from this timing is tOSK; see Section 4.13 for details. For 90° Mode, the DCLK
transitions in the middle of each Data cell. Setup and hold times for this transition, tSU and tH, may also be
found in Section 4.13. The DCLK-to-Data phase relationship may be selected via the DDRPh Pin in NonECM (see Section 5.5.1.1.3) or the DPS bit in the Configuration Register (Addr: 0h; Bit: 14) in ECM.
Data
DCLK
0° Mode
DCLK
90° Mode
Figure 5-1. DDR DCLK-to-Data Phase Relationship
5.3.2.2
LVDS Output Differential Voltage
The ADC12D1800 is available with a selectable higher or lower LVDS output differential voltage. This
parameter is VOD and may be found in Section 4.11. The desired voltage may be selected via the OVS Bit
(Addr: 0h, Bit 13). For many applications, in which the LVDS outputs are very close to an FPGA on the
same board, for example, the lower setting is sufficient for good performance; this will also reduce the
possibility for EMI from the LVDS outputs to other signals on the board. See Section 5.6.1 for more
information.
5.3.2.3
LVDS Output Common-Mode Voltage
The ADC12D1800 is available with a selectable higher or lower LVDS output common-mode voltage. This
parameter is VOS and may be found in Section 4.11. See Section 5.5.1.1.11 for information on how to
select the desired voltage.
5.3.2.4
Output Formatting
The formatting at the digital data outputs may be either offset binary or two's complement. The default
formatting is offset binary, but two's complement may be selected via the 2SC Bit (Addr: 0h, Bit 4); see
Section 5.6.1 for more information.
5.3.2.5
Test Pattern Mode
The ADC12D1800 can provide a test pattern at the four output buses independently of the input signal to
aid in system debug. In Test Pattern Mode, the ADC is disengaged and a test pattern generator is
connected to the outputs, including ORI and ORQ. The test pattern output is the same in DES Mode or
Non-DES Mode. Each port is given a unique 12-bit word, alternating between 1's and 0's. When the part is
programmed into the Demux Mode, the test pattern’s order is described in Table 5-2. If the I- or Q-channel
is powered down, the test pattern will not be output for that channel.
38
Detailed Description
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
Table 5-2. Test Pattern by Output Port in
Demux Mode
TIME
Qd
Id
Q
I
ORQ
ORI
T0
000h
004h
008h
010h
0b
0b
T1
FFFh
FFBh
FF7h
FEFh
1b
1b
T2
000h
004h
008h
010h
0b
0b
T3
FFFh
FFBh
FF7h
FEFh
1b
1b
T4
000h
004h
008h
010h
0b
0b
T5
000h
004h
008h
010h
0b
0b
T6
FFFh
FFBh
FF7h
FEFh
1b
1b
T7
000h
004h
008h
010h
0b
0b
T8
FFFh
FFBh
FF7h
FEFh
1b
1b
T9
000h
004h
008h
010h
0b
0b
T10
000h
004h
008h
010h
0b
0b
T11
FFFh
FFBh
FF7h
FEFh
1b
1b
T12
000h
004h
008h
010h
0b
0b
T13
...
...
...
...
...
...
COMMENTS
Pattern
sequence
n
Pattern
sequence
n+1
Pattern
sequence
n+2
When the part is programmed into the Non-Demux Mode, the test pattern’s order is described in Table 53.
Table 5-3. Test Pattern by Output Port in
Non-Demux Mode
5.3.2.6
TIME
Q
I
ORQ
ORI
T0
000h
004h
0b
0b
T1
000h
004h
0b
0b
T2
FFFh
FFBh
1b
1b
T3
FFFh
FFBh
1b
1b
T4
000h
004h
0b
0b
T5
FFFh
FFBh
1b
1b
T6
000h
004h
0b
0b
T7
FFFh
FFBh
1b
1b
T8
FFFh
FFBh
1b
1b
T9
FFFh
FFBh
1b
1b
T10
000h
004h
0b
0b
T11
000h
004h
0b
0b
T12
FFFh
FFBh
1b
1b
T13
FFFh
FFBh
1b
1b
T14
...
...
...
...
COMMENTS
Pattern
sequence
n
Pattern
sequence
n+1
Time Stamp
The Time Stamp feature enables the user to capture the timing of an external trigger event, relative to the
sampled signal. When enabled via the TSE Bit (Addr: 0h; Bit: 3), the LSB of the digital outputs (DQd, DQ,
DId, DI) captures the trigger information. In effect, the 12-bit converter becomes an 11-bit converter and
the LSB acts as a 1-bit converter with the same latency as the 11-bit converter. The trigger should be
applied to the DCLK_RST input. It may be asynchronous to the ADC sampling clock.
Detailed Description
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
39
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
5.3.3
www.ti.com
Calibration Feature
The ADC12D1800 calibration must be run to achieve specified performance. The calibration procedure is
exactly the same regardless of how it was initiated or when it is run. Calibration trims the analog input
differential termination resistors, the CLK input resistor, and sets internal bias currents which affect the
linearity of the converter. This minimizes full-scale error, offset error, DNL and INL, which results in the
maximum dynamic performance, as measured by: SNR, THD, SINAD (SNDR) and ENOB.
5.3.3.1
Calibration Control Pins and Bits
Table 5-4 is a summary of the pins and bits used for calibration. See Section 3.1 for complete pin
information and Figure 4-7 for the timing diagram.
Table 5-4. Calibration Pins
PIN (BIT)
NAME
FUNCTION
D6
(Addr: 0h; Bit 15)
CAL
(Calibration)
Initiate calibration
V4
CalDly
(Calibration Delay)
Select power-on calibration delay
(Addr: 4h)
Calibration Adjust
Adjust calibration sequence
B5
CalRun
(Calibration Running)
Indicates while calibration is running
C1/D2
Rtrim+/(Input termination trim resistor)
External resistor used to calibrate analog and CLK inputs
C3/D3
Rext+/(External Reference resistor)
External resistor used to calibrate internal linearity
5.3.3.2
How to Execute a Calibration
Calibration may be initiated by holding the CAL pin low for at least tCAL_L clock cycles, and then holding it
high for at least another tCAL_H clock cycles, as defined in Section 4.15. The minimum tCAL_L and tCAL_H
input clock cycle sequences are required to ensure that random noise does not cause a calibration to
begin when it is not desired. The time taken by the calibration procedure is specified as tCAL. The CAL Pin
is active in both ECM and Non-ECM. However, in ECM, the CAL Pin is logically OR'd with the CAL Bit, so
both the pin and bit are required to be set low before executing another calibration via either pin or bit.
5.3.3.3
Power-on Calibration
For standard operation, power-on calibration begins after a time delay following the application of power,
as determined by the setting of the CalDly Pin and measured by tCalDly (see Section 4.15). This delay
allows the power supply to come up and stabilize before the power-on calibration takes place. The best
setting (short or long) of the CalDly Pin depends upon the settling time of the power supply.
It is strongly recommended to set CalDly Pin (to either logic-high or logic-low) before powering the device
on since this pin affects the power-on calibration timing. This may be accomplished by setting CalDly via
an external 1kΩ resistor connected to GND or VA. If the CalDly Pin is toggled while the device is poweredon, it can execute a calibration even though the CAL Pin/Bit remains logic-low.
The power-on calibration will be not be performed if the CAL pin is logic-high at power-on. In this case, the
calibration cycle will not begin until the on-command calibration conditions are met. The ADC12D1800 will
function with the CAL pin held high at power up, but no calibration will be done and performance will be
impaired.
If it is necessary to toggle the CalDly Pin during the system power up sequence, then the CAL Pin/Bit
must be set to logic-high before the toggling and afterwards for 109 Sampling Clock cycles. This will
prevent the power-on calibration, so an on-command calibration must be executed or the performance will
be impaired.
40
Detailed Description
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
5.3.3.4
SNAS500Q – MAY 2010 – REVISED MAY 2017
On-Command Calibration
In addition to the power-on calibration, it is recommended to execute an on-command calibration
whenever the settings or conditions to the device are altered significantly, in order to obtain optimal
parametric performance. Some examples include: changing the FSR via ECM, power-cycling either
channel, and switching into or out of DES Mode. For best performance, it is also recommended that an
on-command calibration be run 20 seconds or more after application of power and whenever the operating
temperature changes significantly, relative to the specific system performance requirements.
Due to the nature of the calibration feature, it is recommended to avoid unnecessary activities on the
device while the calibration is taking place. For example, do not read or write to the Serial Interface or use
the DCLK Reset feature while calibrating the ADC. Doing so will impair the performance of the device until
it is re-calibrated correctly. It is recommended to not apply a strong narrow-band signal to the analog
inputs during calibration. This may impair the accuracy of the calibration; broad spectrum noise is
Acceptable.
5.3.3.5
Calibration Adjust
The sequence of the calibration event itself may be adjusted. This feature can be used if a shorter
calibration time than the default is required; see tCAL in Section 4.15. However, the performance of the
device, when using this feature is not ensured.
The calibration sequence may be adjusted via CSS (Addr: 4h, Bit 14). The default setting of CSS = 1b
executes both RIN and RIN_CLK Calibration (using Rtrim) and internal linearity Calibration (using Rext).
Executing a calibration with CSS = 0b executes only the internal linearity Calibration. The first time that
Calibration is executed, it must be with CSS = 1b to trim RIN and RIN_CLK. However, once the device is at
its operating temperature and RIN has been trimmed at least one time, it will not drift significantly. To save
time in subsequent calibrations, trimming RIN and RIN_CLK may be skipped, i.e. by setting CSS = 0b.
Detailed Description
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
41
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
5.3.3.6
www.ti.com
Read/Write Calibration Settings
When the ADC performs a calibration, the calibration constants are stored in an array which is accessible
via the Calibration Values register (Addr: 5h). To save the time which it takes to execute a calibration, tCAL,
or to allow for re-use of a previous calibration result, these values can be read from and written to the
register at a later time. For example, if an application requires the same input impedance, RIN, this feature
can be used to load a previously determined set of values. For the calibration values to be valid, the ADC
must be operating under the same conditions, including temperature, at which the calibration values were
originally determined by the ADC.
To read calibration values from the SPI, do the following:
1. Set ADC to desired operating conditions.
2. Set SSC (Addr: 4h, Bit 7) to 1.
3. Read exactly 240 times the Calibration Values register (Addr: 5h). The register values are R0, R1, R2...
R239 where R0 is a dummy value. The contents of R should be stored.
4. Set SSC (Addr: 4h, Bit 7) to 0.
5. Continue with normal operation.
To write calibration values to the SPI, do the following:
1. Set ADC to operating conditions at which Calibration Values were previously read.
2. Set SSC (Addr: 4h, Bit 7) to 1.
3. Write exactly 239 times the Calibration Values register (Addr: 5h). The registers should be written R1,
R2, ... , R239.
4. Make two additional dummy writes of 0000h.
5. Set SSC (Addr: 4h, Bit 7) to 0.
6. Continue with normal operation.
5.3.3.7
Calibration and Power-Down
If PDI and PDQ are simultaneously asserted during a calibration cycle, the ADC12D1800 will immediately
power down. The calibration cycle will continue when either or both channels are powered back up, but
the calibration will be compromised due to the incomplete settling of bias currents directly after power up.
Therefore, a new calibration should be executed upon powering the ADC12D1800 back up. In general, the
ADC12D1800 should be recalibrated when either or both channels are powered back up, or after one
channel is powered down. For best results, this should be done after the device has stabilized to its
operating temperature.
5.3.3.8
Calibration and the Digital Outputs
During calibration, the digital outputs (including DI, DId, DQ, DQd and OR) are set logic-low, to reduce
noise. The DCLK runs continuously during calibration. After the calibration is completed and the CalRun
signal is logic-low, it takes an additional 60 Sampling Clock cycles before the output of the ADC12D1800
is valid converted data from the analog inputs. This is the time it takes for the pipeline to flush, as well as
for other internal processes.
5.3.4
Power Down
On the ADC12D1800, the I- and Q-channels may be powered down individually. This may be
accomplished via the control pins, PDI and PDQ, or via ECM. In ECM, the PDI and PDQ pins are logically
OR'd with the Control Register setting. See Section 5.5.1.1.6 andSection 5.5.1.1.7 for more information.
42
Detailed Description
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
5.4
SNAS500Q – MAY 2010 – REVISED MAY 2017
Device Functional Modes
The ADC12D1800RF has two functional modes for sampling the input signal, DES mode and Non-DES
mode and two mode to output sample data, Demux mode and Non-Demux Mode.
5.4.1
DES/Non-DES Mode
The ADC12D1800 can operate in Dual-Edge Sampling (DES) or Non-DES Mode. The DES Mode allows
for a single analog input to be sampled by both I- and Q-channels. One channel samples the input on the
rising edge of the sampling clock and the other samples the same input signal on the falling edge of the
sampling clock. A single input is thus sampled twice per clock cycle, resulting in an overall sample rate of
twice the sampling clock frequency, e.g. 3.6 GSPS with a 1.8 GHz sampling clock. Since DES Mode uses
both I- and Q-channels to process the input signal, both channels must be powered up for the DES Mode
to function properly.
In Non-ECM, only the I-input may be used for the DES Mode input. See Section 5.5.1.1.1 for information
on how to select the DES Mode. In ECM, either the I- or Q-input may be selected by first using the DES
bit (Addr: 0h, Bit 7) to select the DES Mode. The DEQ Bit (Addr: 0h, Bit: 6) is used to select the Q-input,
but the I-input is used by default. Also, both I- and Q-inputs may be driven externally, i.e. DESIQ Mode, by
using the DIQ bit (Addr: 0h, Bit 5). See Section 6.1.1 for more information about how to drive the ADC in
DES Mode.
The DESIQ Mode results in the best bandwidth. In general, the bandwidth decreases from Non-DES
Mode to DES Mode (specifically, DESI or DESQ) because both channels are sampling off the same input
signal and non-ideal effects introduced by interleaving the two channels lower the bandwidth. Driving both
I- and Q-channels externally (DESIQ Mode) results in better bandwidth for the DES Mode because each
channel is being driven, which reduces routing losses (increases bandwidth).
In the DES Mode, the outputs must be carefully interleaved in order to reconstruct the sampled signal. If
the device is programmed into the 1:4 Demux DES Mode, the data is effectively demultiplexed by 1:4. If
the sampling clock is 1.8 GHz, the effective sampling rate is doubled to 3.6 GSPS and each of the 4
output buses has an output rate of 900 MSPS. All data is available in parallel. To properly reconstruct the
sampled waveform, the four bytes of parallel data that are output with each DCLK must be correctly
interleaved. The sampling order is as follows, from the earliest to the latest: DQd, DId, DQ, DI. See
Figure 4-4. If the device is programmed into the Non-Demux DES Mode, two bytes of parallel data are
output with each edge of the DCLK in the following sampling order, from the earliest to the latest: DQ, DI.
See Figure 4-5.
5.4.2
Demux/Non-Demux Mode
The ADC12D1800 may be in one of two demultiplex modes: Demux Mode or Non-Demux Mode (also
sometimes referred to as 1:1 Demux Mode). In Non-Demux Mode, the data from the input is simply output
at the sampling rate on one 12-bit bus. In Demux Mode, the data from the input is output at half the
sampling rate, on twice the number of buses. Demux/Non-Demux Mode may only be selected by the NDM
pin; see Section 5.5.1.1.2. In Non-DES Mode, the output data from each channel may be demultiplexed by
a factor of 1:2 (1:2 Demux Non-DES Mode) or not demultiplexed (Non-Demux Non-DES Mode). In DES
Mode, the output data from both channels interleaved may be demultiplexed (1:4 Demux DES Mode) or
not demultiplexed (Non-Demux DES Mode).
Detailed Description
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
43
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
5.5
www.ti.com
Programming
5.5.1
Control Modes
The ADC12D1800 may be operated in one of two control modes: Non-extended Control Mode (Non-ECM)
or Extended Control Mode (ECM). In the simpler Non-ECM (also sometimes referred to as Pin Control
Mode), the user affects available configuration and control of the device through the control pins. The
ECM provides additional configuration and control options through a serial interface and a set of 16
registers, most of which are available to the customer.
5.5.1.1
Non-Extended Control Mode
In Non-extended Control Mode (Non-ECM), the Serial Interface is not active and all available functions are
controlled via various pin settings. Non-ECM is selected by setting the ECE Pin to logic-high. Note that, for
the control pins, "logic-high" and "logic-low" refer to VA and GND, respectively. Nine dedicated control pins
provide a wide range of control for the ADC12D1800 and facilitate its operation. These control pins
provide DES Mode selection, Demux Mode selection, DDR Phase selection, execute Calibration,
Calibration Delay setting, Power Down I-channel, Power Down Q-channel, Test Pattern Mode selection,
and Full-Scale Input Range selection. In addition to this, two dual-purpose control pins provide for AC/DCcoupled Mode selection and LVDS output common-mode voltage selection. See Table 5-5 for a summary.
Table 5-5. Non-ECM Pin Summary
PIN NAME
LOGIC-LOW
LOGIC-HIGH
FLOATING
Dedicated Control Pins
DES
Non-DES Mode
DES
Mode
Not valid
NDM
Demux
Mode
Non-Demux Mode
Not valid
DDRPh
0° Mode
90° Mode
Not valid
CAL
CalDly
See Section 5.5.1.1.4 section
Not valid
Shorter delay
Longer delay
Not valid
PDI
I-channel active
Power Down
I-channel
Power Down
I-channel
PDQ
Q-channel active
Power Down
Q-channel
Power Down
Q-channel
TPM
Non-Test Pattern Mode
Test Pattern Mode
Not valid
FSR
Not allowed
Nominal FS input Range
Not valid
VCMO
AC-coupled operation
Not allowed
DC-coupled operation
Not allowed
Higher LVDS common-mode
voltage
Lower LVDS common-mode
voltage
Dual-purpose Control Pins
VBG
5.5.1.1.1 Dual Edge Sampling Pin (DES)
The Dual Edge Sampling (DES) Pin selects whether the ADC12D1800 is in DES Mode (logic-high) or
Non-DES Mode (logic-low). DES Mode means that a single analog input is sampled by both I- and Qchannels in a time-interleaved manner. One of the ADCs samples the input signal on the rising sampling
clock edge (duty cycle corrected); the other ADC samples the input signal on the falling sampling clock
edge (duty cycle corrected). In Non-ECM, only the I-input may be used for DES Mode, a.k.a. "DESI
Mode". In ECM, the Q-input may be selected via the DEQ Bit (Addr: 0h, Bit: 6), a.k.a. "DESQ Mode". In
ECM, both the I- and Q-inputs maybe selected, a.k.a. "DESIQ Mode".
To use this feature in ECM, use the DES bit in the Configuration Register (Addr: 0h; Bit: 7). See
Section 5.4.1 for more information.
44
Detailed Description
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
5.5.1.1.2 Non-Demultiplexed Mode Pin (NDM)
The Non-Demultiplexed Mode (NDM) Pin selects whether the ADC12D1800 is in Demux Mode (logic-low)
or Non-Demux Mode (logic-high). In Non-Demux Mode, the data from the input is produced at the
sampled rate at a single 12-bit output bus. In Demux Mode, the data from the input is produced at half the
sampled rate at twice the number of output buses. For Non-DES Mode, each I- or Q-channel will produce
its data on one or two buses for Non-Demux or Demux Mode, respectively. For DES Mode, the selected
channel will produce its data on two or four buses for Non-Demux or Demux Mode, respectively.
This feature is pin-controlled only and remains active during both Non-ECM and ECM. See Section 5.4.2
for more information.
5.5.1.1.3 Dual Data Rate Phase Pin (DDRPh)
The Dual Data Rate Phase (DDRPh) Pin selects whether the ADC12D1800 is in 0° Mode (logic-low) or
90° Mode (logic-high). The Data is always produced in DDR Mode on the ADC12D1800. The Data may
transition either with the DCLK transition (0° Mode) or halfway between DCLK transitions (90° Mode). The
DDRPh Pin selects 0° Mode or 90° Mode for both the I-channel: DI- and DId-to-DCLKI phase relationship
and for the Q-channel: DQ- and DQd-to-DCLKQ phase relationship.
To use this feature in ECM, use the DPS bit in the Configuration Register (Addr: 0h; Bit: 14). See
Section 5.3.2.1 for more information.
5.5.1.1.4 Calibration Pin (CAL)
The Calibration (CAL) Pin may be used to execute an on-command calibration or to disable the power-on
calibration. The effect of calibration is to maximize the dynamic performance. To initiate an on-command
calibration via the CAL pin, bring the CAL pin high for a minimum of tCAL_H input clock cycles after it has
been low for a minimum of tCAL_L input clock cycles. Holding the CAL pin high upon power-on will prevent
execution of the power-on calibration. In ECM, this pin remains active and is logically OR'd with the CAL
bit.
To use this feature in ECM, use the CAL bit in the Configuration Register (Addr: 0h; Bit: 15). See
Section 5.3.3 for more information.
5.5.1.1.5 Calibration Delay Pin (CalDly)
The Calibration Delay (CalDly) Pin selects whether a shorter or longer delay time is present, after the
application of power, until the start of the power-on calibration. The actual delay time is specified as tCalDly
and may be found in Section 4.15. This feature is pin-controlled only and remains active in ECM. It is
recommended to select the desired delay time prior to power-on and not dynamically alter this selection.
See Section 5.3.3 for more information.
5.5.1.1.6 Power Down I-channel Pin (PDI)
The Power Down I-channel (PDI) Pin selects whether the I-channel is powered down (logic-high) or active
(logic-low). The digital data output pins, DI and DId, (both positive and negative) are put into a high
impedance state when the I-channel is powered down. Upon return to the active state, the pipeline will
contain meaningless information and must be flushed. The supply currents (typicals and limits) are
available for the I-channel powered down or active and may be found in Section 4.12. The device should
be recalibrated following a power-cycle of PDI (or PDQ).
This pin remains active in ECM. In ECM, either this pin or the PDI bit (Addr: 0h; Bit: 11) in the Control
Register may be used to power-down the I-channel. See Section 5.3.4 for more information.
Detailed Description
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
45
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
www.ti.com
5.5.1.1.7 Power Down Q-channel Pin (PDQ)
The Power Down Q-channel (PDQ) Pin selects whether the Q-channel is powered down (logic-high) or
active (logic-low). This pin functions similarly to the PDI pin, except that it applies to the Q-channel. The
PDI and PDQ pins function independently of each other to control whether each I- or Q-channel is
powered down or active.
This pin remains active in ECM. In ECM, either this pin or the PDQ bit (Addr: 0h; Bit: 10) in the Control
Register may be used to power-down the Q-channel. See Section 5.3.4 for more information.
5.5.1.1.8 Test Pattern Mode Pin (TPM)
The Test Pattern Mode (TPM) Pin selects whether the output of the ADC12D1800 is a test pattern (logichigh) or the converted analog input (logic-low). The ADC12D1800 can provide a test pattern at the four
output buses independently of the input signal to aid in system debug. In TPM, the ADC is disengaged
and a test pattern generator is connected to the outputs, including ORI and ORQ. See Section 5.3.2.5 for
more information.
5.5.1.1.9 Full-Scale Input Range Pin (FSR)
The Full-Scale Input Range (FSR) Pin sets the full-scale input range for both the I- and Q-channel; for the
ADC12D1800, only the logic-high setting is available. The input full-scale range is specified as VIN_FSR in
Section 4.7. In Non-ECM, the full-scale input range for each I- and Q-channel may not be set
independently, but it is possible to do so in ECM. The device must be calibrated following a change in
FSR to obtain optimal performance.
To use this feature in ECM, use the Configuration Registers (Addr: 3h and Bh). See Section 5.3.1 for
more information.
5.5.1.1.10 AC/DC-Coupled Mode Pin (VCMO)
The VCMO Pin serves a dual purpose. When functioning as an output, it provides the optimal commonmode voltage for the DC-coupled analog inputs. When functioning as an input, it selects whether the
device is AC-coupled (logic-low) or DC-coupled (floating). This pin is always active, in both ECM and NonECM.
5.5.1.1.11 LVDS Output Common-mode Pin (VBG)
The VBG Pin serves a dual purpose. When functioning as an output, it provides the bandgap reference.
When functioning as an input, it selects whether the LVDS output common-mode voltage is higher (logichigh) or lower (floating). The LVDS output common-mode voltage is specified as VOS and may be found in
Section 4.11. This pin is always active, in both ECM and Non-ECM.
5.5.1.2
Extended Control Mode
In Extended Control Mode (ECM), most functions are controlled via the Serial Interface. In addition to this,
several of the control pins remain active. See Table 5-1 for details. ECM is selected by setting the ECE
Pin to logic-low. If the ECE Pin is set to logic-high (Non-ECM), then the registers are reset to their default
values. So, a simple way to reset the registers is by toggling the ECE pin. Four pins on the ADC12D1800
control the Serial Interface: SCS, SCLK, SDI and SDO. This section covers the Serial Interface. The
Register Definitions are located at the end of the datasheet so that they are easy to find, see
Section 5.6.1.
46
Detailed Description
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
5.5.1.2.1 Serial Interface
The ADC12D1800 offers a Serial Interface that allows access to the sixteen control registers within the
device. The Serial Interface is a generic 4-wire (optionally 3-wire) synchronous interface that is compatible
with SPI type interfaces that are used on many micro-controllers and DSP controllers. Each serial
interface access cycle is exactly 24 bits long. A register-read or register-write can be accomplished in one
cycle. The signals are defined in such a way that the user can opt to simply join SDI and SDO signals in
his system to accomplish a single, bidirectional SDI/O signal. A summary of the pins for this interface may
be found in Table 5-6. See Figure 4-8 for the timing diagram and Section 4.14 for timing specification
details. Control register contents are retained when the device is put into power-down mode. If this feature
is unused, the SCLK, SDI, and SCS pins may be left floating because they each have an internal pull-up.
Table 5-6. Serial Interface Pins
PIN
NAME
C4
SCS (Serial Chip Select bar)
C5
SCLK (Serial Clock)
B4
SDI (Serial Data In)
A3
SDO (Serial Data Out)
SCS: Each assertion (logic-low) of this signal starts a new register access, i.e. the SDI command field
must be ready on the following SCLK rising edge. The user is required to de-assert this signal after the
24th clock. If the SCS is de-asserted before the 24th clock, no data read/write will occur. For a read
operation, if the SCS is asserted longer than 24 clocks, the SDO output will hold the D0 bit until SCS is
de-asserted. For a write operation, if the SCS is asserted longer than 24 clocks, data write will occur
normally through the SDI input upon the 24th clock. Setup and hold times, tSCS and tHCS, with respect to
the SCLK must be observed. SCS must be toggled in between register access cycles.
SCLK: This signal is used to register the input data (SDI) on the rising edge; and to source the output
data (SDO) on the falling edge. The user may disable the clock and hold it at logic-low. There is no
minimum frequency requirement for SCLK; see fSCLK in Section 4.14 for more details.
SDI: Each register access requires a specific 24-bit pattern at this input, consisting of a command field
and a data field. If the SDI and SDO wired are shared (3-wire mode), then during read operations it is
necessary to tri-state the master which is driving SDI while the data field is being output by the ADC on
SDO. The master must be at TRI-STATE before the falling edge of the 8th clock. If SDI and SDO are not
shared (4-wire mode), then this is not necessary. Setup and hold times, tSH and tSSU, with respect to the
SCLK must be observed.
SDO: This output is normally at TRI-STATE and is driven only when SCS is asserted, the first 8 bits of
command data have been received and it is a READ operation. The data is shifted out, MSB first, starting
with the 8th clock's falling edge. At the end of the access, when SCS is de-asserted, this output is at TRISTATE once again. If an invalid address is accessed, the data sourced will consist of all zeroes. If it is a
read operation, there will be a bus turnaround time, tBSU, from when the last bit of the command field was
read in until the first bit of the data field is written out.
Table 5-7 shows the Serial Interface bit definitions.
Detailed Description
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
47
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
www.ti.com
Table 5-7. Command and Data Field Definitions
BIT NO.
NAME
COMMENTS
1
Read/Write (R/W)
1b indicates a read operation
0b indicates a write operation
2-3
Reserved
Bits must be set to 10b
4-7
A
16 registers may be addressed. The order is
MSB first
8
X
This is a does not matter bit.
9-24
D
Data written to or read from addressed
register
The serial data protocol is shown for a read and write operation in Figure 5-2 and Figure 5-3, respectively.
1
2
3
4
5
6
7
8
R/W
1
0
A3
A2
A1
A0
X
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
D5
D4
D3
D2
D1
D0
25
SCSb
SCLK
SDI
SDO
*Only required to be tri-stated in 3-wire mode.
D15 D14 D13 D12 D11 D10
D9
D8
D7
D6
Figure 5-2. Serial Data Protocol - Read Operation
1
2
3
4
5
6
7
8
R/W
1
0
A3
A2
A1
A0
X
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
D15 D14
D13
D12
D11
D10
D9
D8
D7
D6
D5
D4
D3
D2
D1
D0
25
SCSb
SCLK
SDI
SDO
Figure 5-3. Serial Data Protocol - Write Operation
48
Detailed Description
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
5.6
SNAS500Q – MAY 2010 – REVISED MAY 2017
Register Maps
5.6.1
Register Definitions
Eleven read/write registers provide several control and configuration options in the Extended Control
Mode. These registers have no effect when the device is in the Non-extended Control Mode. Each register
description below also shows the Power-On Reset (POR) state of each control bit. See Table 5-8 for a
summary. For a description of the functionality and timing to read/write the control registers, see
Section 5.5.1.2.1.
Special Note: Register 6h must be written to 1C00h for the device to perform at full rated performance for
Fclk > 1.6GHz.
Table 5-8. Register Addresses
A3
A2
A1
A0
HEX
REGISTER ADDRESSED
0
0
0
0
0h
Configuration Register 1
0
0
0
1
1h
Reserved
0
0
1
0
2h
I-channel Offset
0
0
1
1
3h
I-channel Full-Scale Range
0
1
0
0
4h
Calibration Adjust
0
1
0
1
5h
Calibration Values
0
1
1
0
6h
Bias Adjust
0
1
1
1
7h
DES Timing Adjust
1
0
0
0
8h
Reserved
1
0
0
1
9h
Reserved
1
0
1
0
Ah
Q-channel Offset
1
0
1
1
Bh
Q-channel Full-Scale Range
1
1
0
0
Ch
Aperture Delay Coarse Adjust
1
1
0
1
Dh
Aperture Delay Fine Adjust
1
1
1
0
Eh
AutoSync
1
1
1
1
Fh
Reserved
Detailed Description
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
49
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
www.ti.com
Table 5-9. Configuration Register 1
Addr: 0h (0000b)
POR state: 2000h
Bit
15
14
13
12
11
10
9
8
7
6
5
4
3
Name
CAL
DPS
OVS
TPM
PDI
PDQ
Res
LFS
DES
DEQ
DIQ
2SC
TSE
POR
0
0
1
0
0
0
0
0
0
0
0
0
0
2
1
0
Res
0
0
0
Bit 15
CAL: Calibration Enable. When this bit is set to 1b, an on-command calibration is initiated. This bit is not reset automatically
upon completion of the calibration. Therefore, the user must reset this bit to 0b and then set it to 1b again to execute another
calibration. This bit is logically OR'd with the CAL Pin; both bit and pin must be set to 0b before either is used to execute a
calibration.
Bit 14
DPS: DCLK Phase Select. For DDR, set this bit to 0b to select the 0° Mode DDR Data-to-DCLK phase relationship and to 1b
to select the 90° Mode. If the device is in Non-Demux Mode, this bit has no effect; the device will always be in 0°DDR Mode.
Bit 13
OVS: Output Voltage Select. This bit sets the differential voltage level for the LVDS outputs including Data, OR, and DCLK. 0b
selects the lower level and 1b selects the higher level. See VOD in Section 4.11 for details.
Bit 12
TPM: Test Pattern Mode. When this bit is set to 1b, the device will continually output a fixed digital pattern at the digital Data
and OR outputs. When set to 0b, the device will continually output the converted signal, which was present at the analog
inputs. See Section 5.3.2.5 for details about the TPM pattern.
Bit 11
PDI: Power-down I-channel. When this bit is set to 0b, the I-channel is fully operational; when it is set to 1b, the I-channel is
powered-down. The I-channel may be powered-down via this bit or the PDI Pin, which is active, even in ECM.
Bit 10
PDQ: Power-down Q-channel. When this bit is set to 0b, the Q-channel is fully operational; when it is set to 1b, the Q-channel
is powered-down. The Q-channel may be powered-down via this bit or the PDQ Pin, which is active, even in ECM.
Bit 9
Reserved. Must be set to 0b.
Bit 8
LFS: Low-Frequency Select. If the sampling clock (CLK) is at or below 300 MHz, set this bit to 1b for improved performance.
Bit 7
DES: Dual-Edge Sampling Mode select. When this bit is set to 0b, the device will operate in the Non-DES Mode; when it is set
to 1b, the device will operate in the DES Mode. See Section 5.4.1 for more information.
Bit 6
DEQ: DES Q-input select, a.k.a. DESQ Mode. When the device is in DES Mode, this bit selects the input that the device will
operate on. The default setting of 0b selects the I-input and 1b selects the Q-input.
Bit 5
DIQ: DES I- and Q-input, a.k.a. DESIQ Mode. When in DES Mode, setting this bit to 1b shorts the I- and Q-inputs internally to
the device. If the bit is left at its default 0b, the I- and Q-inputs remain electrically separate. To operate the device in DESIQ
Mode, Bits must be set to 101b. In this mode, both the I- and Q-inputs must be externally driven; see Section 5.4.1 for
more information.
Bit 4
2SC: Two's Complement output. For the default setting of 0b, the data is output in Offset Binary format; when set to 1b, the
data is output in Two's Complement format.
Bit 3
TSE: Time Stamp Enable. For the default setting of 0b, the Time Stamp feature is not enabled; when set to 1b, the feature is
enabled. See Section 5.3.2 for more information about this feature.
Bits 2:0
Reserved. Must be set as shown.
Table 5-10. Reserved
Addr: 1h (0001b)
Bit
POR state: 2A0Eh
15
14
13
12
11
10
9
8
0
0
1
0
1
0
1
0
Name
6
5
4
3
2
1
0
0
0
0
0
1
1
1
0
Res
POR
Bits 15:0
50
7
Reserved. Must be set as shown.
Detailed Description
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
Table 5-11. I-channel Offset Adjust
Addr: 2h (0010b)
Bit
POR state: 0000h
15
Name
14
13
Res
POR
0
0
12
11
10
9
8
7
OS
0
6
5
4
3
2
1
0
0
0
0
0
0
OM(11:0)
0
0
0
0
0
0
0
0
Bits 15:13
Reserved. Must be set to 0b.
Bit 12
OS: Offset Sign. The default setting of 0b incurs a positive offset of a magnitude set by Bits 11:0 to the ADC output. Setting
this bet to 1b incurs a negative offset of the set magnitude.
Bits 11:0
OM(11:0): Offset Magnitude. These bits determine the magnitude of the offset set at the ADC output (straight binary coding).
The range is from 0 mV for OM(11:0) = 0d to 45 mV for OM(11:0) = 4095d in steps of ~11 µV. Monotonicity is specified by
design only for the 9 MSBs.
Code
Offset [mV]
0000 0000 0000 (default)
0
1000 0000 0000
22.5
1111 1111 1111
45
Table 5-12. I-channel Full Scale Range Adjust
Addr: 3h (0011b)
Bit
15
Name
Res
POR
0
POR state: 4000h
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
FM(14:0)
1
0
0
0
0
0
0
0
Bit 15
Reserved. Must be set to 0b.
Bits 14:0
FM(14:0): FSR Magnitude. These bits increase the ADC full-scale range magnitude (straight binary coding.) The allowable
range is from 800 mV (16384d) to 1000 mV (32767d) with the default setting at 800 mV (16384d). Monotonicity is specified by
design only for the 9 MSBs. A greater range of FSR values is available in ECM, i.e. FSR values above 800 mV. See VIN_FSR in
Section 4.7 for characterization details.
Code
FSR [mV]
100 0000 0000 0000 (default)
800
111 1111 1111 1111
1000
Detailed Description
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
51
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
www.ti.com
Table 5-13. Calibration Adjust
Addr: 4h (0100b)
POR state: DF4Bh
Bit
15
14
Name
Res
CSS
POR
1
1
13
12
11
10
9
8
Res
0
1
1
7
6
5
4
SSC
1
1
1
0
3
2
1
0
0
1
1
Res
1
0
0
1
Bit 15
Reserved. Must be set as shown.
Bit 14
CSS: Calibration Sequence Select. The default 1b selects the following calibration sequence: reset all previously calibrated
elements to nominal values, do RIN Calibration, do internal linearity Calibration. Setting CSS = 0b selects the following
calibration sequence: do not reset RIN to its nominal value, skip RIN calibration, do internal linearity Calibration. The calibration
must be completed at least one time with CSS = 1b to calibrate RIN. Subsequent calibrations may be run with CSS = 0b (skip
RIN calibration) or 1b (full RIN and internal linearity Calibration).
Bits 13:8
Reserved. Must be set as shown.
Bit 7
SSC: SPI Scan Control. Setting this control bit to 1b allows the calibration values, stored in Addr: 5h, to be read/written. When
not reading/writing the calibration values, this control bit should left at its default 0b setting. See Section 5.3.3 for more
information.
Bits 6:0
Reserved. Must be set as shown.
Table 5-14. Calibration Values
Addr: 5h (0101b)
Bit
POR state: XXXXh
15
14
13
12
11
10
9
8
X
X
X
X
X
X
X
X
Name
7
6
5
4
3
2
1
0
X
X
X
X
X
X
X
SS(15:0)
POR
Bits 15:0
X
SS(15:0): SPI Scan. When the ADC performs a self-calibration, the values for the calibration are stored in this register and may
be read from/ written to it. Set SSC (Addr: 4h, Bit 7) to read/write. See Section 5.3.3 for more information.
Table 5-15. Bias Adjust
Addr: 6h (0110b)
Bit
15
POR state: 1C20h
14
13
12
11
10
9
Name
8
7
6
5
4
3
2
1
0
0
1
0
0
0
0
0
MPA(15:0)
POR
0
Bits 15:0
0
0
1
1
1
0
0
0
MPA(15:0): Max Power Adjust. This register must be written to 1C00h to achieve full rated performance for Fclk >
1.6GHz.
Table 5-16. DES Timing Adjust
Addr: 7h (0111b)
Bit
15
POR state: 8140h
14
13
Name
12
11
10
9
8
7
6
5
DTA(6:0)
POR
1
0
0
0
4
3
2
1
0
0
0
0
0
Res
0
0
0
1
0
1
0
0
Bits 15:9
DTA(6:0): DES Mode Timing Adjust. In the DES Mode, the time at which the falling edge sampling clock samples relative to
the rising edge of the sampling clock may be adjusted; the automatic duty cycle correction continues to function. See
Section 5.3.1 for more information. The nominal step size is 30fs.
Bits 8:0
Reserved. Must be set as shown.
52
Detailed Description
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
Table 5-17. Reserved
Addr: 8h (1000b)
Bit
POR state: 0000h
15
14
13
12
11
10
9
8
Name
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
Res
POR
0
Bits 15:0
0
0
0
0
0
0
0
Reserved. Must be set as shown.
Table 5-18. Reserved
Addr: 9h (1001b)
Bit
POR state: 0000h
15
14
13
12
11
10
9
8
Name
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
0
5
4
3
2
1
0
0
0
0
0
0
Res
POR
0
Bits 15:0
0
0
0
0
0
0
0
Reserved. Must be set as shown.
Table 5-19. Q-channel Offset Adjust
Addr: Ah (1010b)
Bit
15
Name
POR state: 0000h
14
13
Res
POR
0
0
12
11
10
9
8
7
6
0
0
0
0
0
0
OS
0
OM(11:0)
0
0
Bits 15:13
Reserved. Must be set to 0b.
Bit 12
OS: Offset Sign. The default setting of 0b incurs a positive offset of a magnitude set by Bits 11:0 to the ADC output. Setting
this bet to 1b incurs a negative offset of the set magnitude.
Bits 11:0
OM(11:0): Offset Magnitude. These bits determine the magnitude of the offset set at the ADC output (straight binary coding).
The range is from 0 mV for OM(11:0) = 0d to 45 mV for OM(11:0) = 4095d in steps of ~11 µV. Monotonicity is specified by
design only for the 9 MSBs.
Code
Offset [mV]
0000 0000 0000 (default)
0
1000 0000 0000
22.5
1111 1111 1111
45
Table 5-20. Q-channel Full-Scale Range Adjust
Addr: Bh (1011b)
Bit
15
Name
Res
POR
0
POR state: 4000h
14
13
12
11
10
9
8
1
0
0
0
0
0
0
7
6
5
4
3
2
1
0
0
0
0
0
0
0
0
FM(14:0)
0
Bit 15
Reserved. Must be set to 0b.
Bits 14:0
FM(14:0): FSR Magnitude. These bits increase the ADC full-scale range magnitude (straight binary coding.) The allowable
range is from 800 mV (16384d) to 1000 mV (32767d) with the default setting at 800 mV (16384d). Monotonicity is specified by
design only for the 9 MSBs. A greater range of FSR values is available in ECM, i.e. FSR values above 800 mV. See VIN_FSR in
Section 4.7 for characterization details.
Code
FSR [mV]
100 0000 0000 0000 (default)
800
111 1111 1111 1111
1000
Detailed Description
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
53
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
www.ti.com
Table 5-21. Aperture Delay Coarse Adjust
Addr: Ch (1100b)
Bit
15
POR state: 0004h
14
13
12
11
Name
10
9
8
7
6
5
4
CAM(11:0)
POR
0
0
0
0
0
0
0
0
0
0
0
3
2
STA
DCC
0
1
0
1
0
Res
0
0
Aperture Delay Adjust feature cannot be used in DES mode (DESI, DESQ, DESIQ or DESCLKIQ) for CLK
frequencies above 1600 MHz.
Using the tAD Adjust feature at its maximum setting, for the maximum sampling clock rate, may affect the
integrity of the sampling clock on chip. Therefore, it is not recommended to do so. The maximum setting
for the coarse adjust is 825ps. The period for the maximum sampling clock rate of is 555ps, so it should
not be necessary to exceed this value in any case.
Bits 15:4
CAM(11:0): Coarse Adjust Magnitude. This 12-bit value determines the amount of delay that will be applied to the input CLK
signal. The range is 0 ps delay for CAM(11:0) = 0d to a maximum delay of 825 ps for CAM(11:0) = 2431d (±95 ps due to PVT
variation) in steps of ~340 fs. For code CAM(11:0) = 2432d and above, the delay saturates and the maximum delay applies.
Additional, finer delay steps are available in register Dh. The STA (Bit 3) must be selected to enable this function.
Bit 3
STA: Select tAD Adjust. Set this bit to 1b to enable the tAD adjust feature, which will make both coarse and fine adjustment
settings, i.e. CAM(11:0) and FAM(5:0), available.
Bit 2
DCC: Duty Cycle Correct. This bit can be set to 0b to disable the automatic duty-cycle stabilizer feature of the chip. This
feature is enabled by default.
Bits 1:0
Reserved. Must be set to 0b.
Table 5-22. Aperture Delay Fine Adjust
Addr: Dh (1101b)
Bit
15
POR state: 0000h
14
13
Name
12
11
10
9
FAM(5:0)
POR
0
0
0
0
8
7
6
5
4
Res
0
0
0
3
2
1
0
0
0
0
0
Res
0
0
0
0
0
Aperture Delay Adjust feature cannot be used in DES mode (DESI, DESQ, DESIQ or DESCLKIQ) for CLK
frequencies above 1600 MHz.
Using the tAD Adjust feature at its maximum setting, for the maximum sampling clock rate, may affect the
integrity of the sampling clock on chip. Therefore, it is not recommended to do so. The maximum setting
for the coarse adjust is 825ps. The period for the maximum sampling clock rate of is 555ps, so it should
not
be
necessary
to
exceed
this
value
in
any
case.
Bits 15:10
FAM(5:0): Fine Aperture Adjust Magnitude. This 6-bit value determines the amount of additional delay that will be applied to
the input CLK when the Clock Phase Adjust feature is enabled via STA (Addr: Ch, Bit 3). The range is straight binary from 0 ps
delay for FAM(5:0) = 0d to 2.3 ps delay for FAM(5:0) = 63d (±300 fs due to PVT variation) in steps of ~36 fs.
Bits 9:0
Reserved. Must be set as shown.
54
Detailed Description
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
Table 5-23. AutoSync
Addr: Eh (1110b)
Bit
15
POR state: 0003h
14
13
12
Name
POR
11
10
9
8
7
6
DRC(8:0)
0
0
0
0
0
5
Res
0
0
0
0
0
4
3
SP(1:0)
0
0
0
2
1
0
ES
DOC
DR
0
1
1
Bits 15:7
DRC(8:0): Delay Reference Clock (9:0). These bits may be used to increase the delay on the input reference clock when
synchronizing multiple ADCs. The minimum delay is 0s (0d) to 1000 ps (319d). The delay remains the maximum of 1000 ps for
any codes above or equal to 639d. See Section 6.1.4 for more information.
Bits 6:5
Reserved. Must be set as shown.
Bits 4:3
SP(1:0): Select Phase. These bits select the phase of the reference clock which is latched. The codes correspond to the
following phase shift:
00 = 0°
01 = 90°
10 = 180°
11 = 270°
Bit 2
ES: Enable Slave. Set this bit to 1b to enable the Slave Mode of operation. In this mode, the internal divided clocks are
synchronized with the reference clock coming from the master ADC. The master clock is applied on the input pins RCLK. If this
bit is set to 0b, then the device is in Master Mode.
Bit 1
DOC: Disable Output reference Clocks. Setting this bit to 0b sends a CLK/4 signal on RCOut1 and RCOut2. The default
setting of 1b disables these output drivers. This bit functions as described, regardless of whether the device is operating in
Master or Slave Mode, as determined by ES (Bit 2).
Bit 0
DR: Disable Reset. The default setting of 1b leaves the DCLK_RST functionality disabled. Set this bit to 0b to enable
DCLK_RST functionality.
Table 5-24. Reserved (1)
Addr: Fh (1111b)
Bit
15
POR state: 0018h
14
13
12
11
10
9
8
Name
POR
(1)
7
6
5
4
3
2
1
0
0
0
0
1
1
0
0
0
Res
0
0
0
0
0
0
0
0
Bits 15:0 Reserved. This address is read only.
Detailed Description
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
55
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
www.ti.com
6 Application and Implementation
NOTE
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
6.1
Application Information
6.1.1
Analog Inputs
The ADC12D1800 will continuously convert any signal which is present at the analog inputs, as long as a
CLK signal is also provided to the device. This section covers important aspects related to the analog
inputs including: acquiring the input, driving the ADC in DES Mode, the reference voltage and FSR, out-ofrange indication, AC/DC-coupled signals, and single-ended input signals.
6.1.1.1
Acquiring the Input
Data is acquired at the rising edge of CLK+ in Non-DES Mode and both the falling and rising edges of
CLK+ in DES Mode. The digital equivalent of that data is available at the digital outputs a constant number
of sampling clock cycles later for the DI, DQ, DId and DQd output buses, a.k.a. Latency, depending on the
demultiplex mode which is selected. See tLAT in Section 4.13. In addition to the Latency, there is a
constant output delay, tOD, before the data is available at the outputs. See tOD in Section 4.13 and
Figure 4-2 to Figure 4-5.
The output latency versus Demux/Non-Demux Mode is shown in Table 6-1 and Table 6-2, respectively.
For DES Mode, note that the I- and Q-channel inputs are available in ECM, but only the I-channel input is
available in Non-ECM.
Table 6-1. Output Latency in Demux Mode
(1)
DES MODE
DATA
NON-DES MODE
DI
I-input sampled with rise of CLK,
34 cycles earlier
Q-input sampled with rise of CLK,
34 cycles earlier
I-input sampled with rise of CLK,
34 cycles earlier
DQ
Q-input sampled with rise of CLK,
34 cycles earlier
Q-input sampled with fall of CLK,
34.5 cycles earlier
I-input sampled with fall of CLK,
34.5 cycles earlier
DId
I-input sampled with rise of CLK,
35 cycles earlier
Q-input sampled with rise of CLK,
35 cycles earlier
I-input sampled with rise of CLK,
35 cycles earlier
DQd
Q-input sampled with rise of CLK,
35 cycles earlier
Q-input sampled with fall of CLK,
35.5 cycles earlier
I-input sampled with fall of CLK,
35.5 cycles earlier
Q-INPUT
(1)
I-INPUT
Available in ECM only.
Table 6-2. Output Latency in Non-Demux Mode
(1)
56
DATA
NON-DES MODE
DES MODE
Q-INPUT (1)
I-INPUT
DI
I-input sampled with rise of CLK,
34 cycles earlier
Q-input sampled with rise of CLK,
34 cycles earlier
I-input sampled with rise of CLK,
34 cycles earlier
DQ
Q-input sampled with rise of CLK,
34 cycles earlier
Q-input sampled with rise of CLK,
34.5 cycles earlier
I-input sampled with rise of CLK,
34.5 cycles earlier
DId
No output;
high impedance.
DQd
No output;
high impedance.
Available in ECM only.
Application and Implementation
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
6.1.1.2
SNAS500Q – MAY 2010 – REVISED MAY 2017
Driving the ADC in DES Mode
The ADC12D1800 can be configured as either a 2-channel, 1.8 GSPS device (Non-DES Mode) or a 1channel 3.6GSPS device (DES Mode). When the device is configured in DES Mode, there is a choice for
with which input to drive the single-channel ADC. These are the 3 options:
DES – externally driving the I-channel input only. This is the default selection when the ADC is configured
in DES Mode. It may also be referred to as “DESI” for added clarity.
DESQ – externally driving the Q-channel input only.
DESIQ – externally driving both the I- and Q-channel inputs. VinI+ and VinQ+ should be driven with the
exact same signal. VinI- and VinQ- should be driven with the exact same signal, which is the differential
complement to the one driving VinI+ and VinQ+.
The input impedance for each I- and Q-input is 100Ω differential (or 50Ω single-ended), so the trace to
each VinI+, VinI-, VinQ+, and VinQ- should always be 50Ω single-ended. If a single I- or Q-input is being
driven, then that input will present a 100Ω differential load. For example, if a 50Ω single-ended source is
driving the ADC, then a 1:2 balun will transform the impedance to 100Ω differential. However, if the ADC
is being driven in DESIQ Mode, then the 100Ω differential impedance from the I-input will appear in
parallel with the Q-input for a composite load of 50Ω differential and a 1:1 balun would be appropriate.
See Figure 6-1 for an example circuit driving the ADC in DESIQ Mode. A recommended part selection is
using the Mini-Circuits TC1-1-13MA+ balun with Ccouple = 0.22µF.
Ccouple
50:
Source
VINI+
100:
1:1 Balun
Ccouple
VINI-
Ccouple
VINQ+
100:
Ccouple
VINQADC1XD1X00
Figure 6-1. Driving DESIQ Mode
In the case that only one channel is used in Non-DES Mode or that the ADC is driven in DESI or DESQ
Mode, the unused analog input should be terminated to reduce any noise coupling into the ADC. See
Table 6-3 for details.
Table 6-3. Unused Analog Input Recommended Termination
MODE
POWER DOWN
COUPLING
RECOMMENDED TERMINATION
Non-DES
Yes
AC/DC
Tie Unused+ and Unused– to Vbg
DES/Non-DES
No
DC
Tie Unused+ and Unused– to Vbg
DES/Non-DES
No
AC
Tie Unused+ to Unused–
Application and Implementation
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
57
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
6.1.1.3
www.ti.com
FSR and the Reference Voltage
The full-scale analog differential input range (VIN_FSR) of the ADC12D1800 is derived from an internal
bandgap reference. In Non-ECM, this full-scale range must be set by the logic-high setting of the FSR Pin;
see Section 5.5.1.1.9. The FSR Pin operates on both I- and Q-channels. In ECM, the full-scale range may
be independently set for each channel via Addr:3h and Bh with 15 bits of precision; see Section 5.6.1.
The best SNR is obtained with a higher full-scale input range, but better distortion and SFDR are obtained
with a lower full-scale input range. It is not possible to use an external analog reference voltage to modify
the full-scale range, and this adjustment should only be done digitally, as described.
A buffered version of the internal bandgap reference voltage is made available at the VBG Pin for the user.
The VBG pin can drive a load of up to 80 pF and source or sink up to 100 μA. It should be buffered if more
current than this is required. This pin remains as a constant reference voltage regardless of what full-scale
range is selected and may be used for a system reference. VBG is a dual-purpose pin and it may also be
used to select a higher LVDS output common-mode voltage; see Section 5.5.1.1.11.
6.1.1.4
Out-of-Range Indication
Differential input signals are digitized to 12 bits, based on the full-scale range. Signal excursions beyond
the full-scale range, i.e. greater than +VIN_FSR/2 or less than -VIN_FSR/2, will be clipped at the output. An
input signal which is above the FSR will result in all 1's at the output and an input signal which is below
the FSR will result in all 0's at the output. When the conversion result is clipped for the I-channel input, the
Out-of-Range I-channel (ORI) output is activated such that ORI+ goes high and ORI- goes low while the
signal is out of range. This output is active as long as accurate data on either or both of the buses would
be outside the range of 000h to FFFh. The Q-channel has a separate ORQ which functions similarly.
6.1.1.5
Maximum Input Range
The recommended operating and absolute maximum input range may be found in Section 4.3 and
Section 4.1, respectively. Under the stated allowed operating conditions, each Vin+ and Vin- input pin may
be operated in the range from 0V to 2.15V if the input is a continuous 100% duty cycle signal and from 0V
to 2.5V if the input is a 10% duty cycle signal. The absolute maximum input range for Vin+ and Vin- is
from -0.15V to 2.5V. These limits apply only for input signals for which the input common mode voltage is
properly maintained.
58
Application and Implementation
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
6.1.1.6
SNAS500Q – MAY 2010 – REVISED MAY 2017
AC-Coupled Input Signals
The ADC12D1800 analog inputs require a precise common-mode voltage. This voltage is generated onchip when AC-coupling Mode is selected. See Section 5.5.1.1.10 for more information about how to select
AC-coupled Mode.
In AC-coupled Mode, the analog inputs must of course be AC-coupled. For an ADC12D1800 used in a
typical application, this may be accomplished by on-board capacitors, as shown in Figure 6-2. For the
ADC12D1800RB, the SMA inputs on the Reference Board are directly connected to the analog inputs on
the ADC12D1800, so this may be accomplished by DC blocks (included with the hardware kit).
When the AC-coupled Mode is selected, an analog input channel that is not used (e.g. in DES Mode)
should be connected to AC ground, e.g. through capacitors to ground . Do not connect an unused analog
input directly to ground.
Ccouple
VIN+
Ccouple
VINVCMO
ADC12D1XXX
Figure 6-2. AC-coupled Differential Input
The analog inputs for the ADC12D1800 are internally buffered, which simplifies the task of driving these
inputs and the RC pole which is generally used at sampling ADC inputs is not required. If the user desires
to place an amplifier circuit before the ADC, care should be taken to choose an amplifier with adequate
noise and distortion performance, and adequate gain at the frequencies used for the application.
6.1.1.7
DC-Coupled Input Signals
In DC-coupled Mode, the ADC12D1800 differential inputs must have the correct common-mode voltage.
This voltage is provided by the device itself at the VCMO output pin. It is recommended to use this voltage
because the VCMO output potential will change with temperature and the common-mode voltage of the
driving device should track this change. Full-scale distortion performance falls off as the input common
mode voltage deviates from VCMO. Therefore, it is recommended to keep the input common-mode voltage
within 100 mV of VCMO (typical), although this range may be extended to ±150 mV (maximum). See VCMI
in Section 4.7 and ENOB vs. VCMI in Section 4.16. Performance in AC- and DC-coupled Mode are similar,
provided that the input common mode voltage at both analog inputs remains within 100 mV of VCMO.
Application and Implementation
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
59
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
6.1.1.8
www.ti.com
Single-Ended Input Signals
The analog inputs of the ADC12D1800 are not designed to accept single-ended signals. The best way to
handle single-ended signals is to first convert them to differential signals before presenting them to the
ADC. The easiest way to accomplish single-ended to differential signal conversion is with an appropriate
balun-transformer, as shown in Figure 6-3.
Ccouple
50:
Source
VIN+
100:
1:2 Balun
Ccouple
VINADC12D1XXX
Figure 6-3. Single-Ended to Differential Conversion Using a Balun
When selecting a balun, it is important to understand the input architecture of the ADC. The impedance of
the analog source should be matched to the ADC12D1800's on-chip 100Ω differential input termination
resistor. The range of this termination resistor is specified as RIN in Section 4.7.
6.1.2
Clock Inputs
The ADC12D1800 has a differential clock input, CLK+ and CLK-, which must be driven with an ACcoupled, differential clock signal. This provides the level shifting necessary to allow for the clock to be
driven with LVDS, PECL, LVPECL, or CML levels. The clock inputs are internally terminated to 100Ω
differential and self-biased. This section covers coupling, frequency range, level, duty-cycle, jitter, and
layout considerations.
6.1.2.1
CLK Coupling
The clock inputs of the ADC12D1800 must be capacitively coupled to the clock pins as indicated in
Figure 6-4.
Ccouple
CLK+
Ccouple
CLK-
ADC12D1XXX
Figure 6-4. Differential Input Clock Connection
The choice of capacitor value will depend on the clock frequency, capacitor component characteristics and
other system economic factors. For example, on the ADC12D1800RB, the capacitors have the value
Ccouple = 4.7 nF which yields a high pass cutoff frequency, fc = 677.2 kHz.
60
Application and Implementation
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
6.1.2.2
SNAS500Q – MAY 2010 – REVISED MAY 2017
CLK Frequency
Although the ADC12D1800 is tested and its performance is specified with a differential 1.8 GHz sampling
clock, it will typically function well over the input clock frequency range; see fCLK(min) and fCLK(max) in
Section 4.13. Operation up to fCLK(max) is possible if the maximum ambient temperatures indicated are
not exceeded. Operating at sample rates above fCLK(max) for the maximum ambient temperature may
result in reduced device reliability and product lifetime. This is due to the fact that higher sample rates
results in higher power consumption and die temperatures. If fCLK < 300 MHz, enable LFS in the Control
Register (Addr: 0h, Bit 8).
6.1.2.3
CLK Level
The input clock amplitude is specified as VIN_CLK in Section 4.9. Input clock amplitudes above the max
VIN_CLK may result in increased input offset voltage. This would cause the converter to produce an output
code other than the expected 2047/2048 when both input pins are at the same potential. Insufficient input
clock levels will result in poor dynamic performance. Both of these results may be avoided by keeping the
clock input amplitude within the specified limits of VIN_CLK.
6.1.2.4
CLK Duty Cycle
The duty cycle of the input clock signal can affect the performance of any A/D converter. The
ADC12D1800 features a duty cycle clock correction circuit which can maintain performance over the 20%to-80% specified clock duty-cycle range. This feature is enabled by default and provides improved ADC
clocking, especially in the Dual-Edge Sampling (DES) Mode.
6.1.2.5
CLK Jitter
High speed, high performance ADCs such as the ADC12D1800 require a very stable input clock signal
with minimum phase noise or jitter. ADC jitter requirements are defined by the ADC resolution (number of
bits), maximum ADC input frequency and the input signal amplitude relative to the ADC input full scale
range. The maximum jitter (the sum of the jitter from all sources) allowed to prevent a jitter-induced
reduction in SNR is found to be
tJ(MAX) = ( VIN(P-P)/ VFSR) x (1/(2(N+1) x π x fIN))
(1)
where tJ(MAX) is the rms total of all jitter sources in seconds, VIN(P-P) is the peak-to-peak analog input signal,
VFSR is the full-scale range of the ADC, "N" is the ADC resolution in bits and fIN is the maximum input
frequency, in Hertz, at the ADC analog input.
tJ(MAX) is the square root of the sum of the squares (RSS) sum of the jitter from all sources, including: the
ADC input clock, system, input signals and the ADC itself. Since the effective jitter added by the ADC is
beyond user control, it is recommended to keep the sum of all other externally added jitter to a minimum.
6.1.2.6
CLK Layout
The ADC12D1800 clock input is internally terminated with a trimmed 100Ω resistor. The differential input
clock line pair should have a characteristic impedance of 100Ω and (when using a balun), be terminated at
the clock source in that (100Ω) characteristic impedance.
It is good practice to keep the ADC input clock line as short as possible, tightly coupled, keep it well away
from any other signals, and treat it as a transmission line. Otherwise, other signals can introduce jitter into
the input clock signal. Also, the clock signal can introduce noise into the analog path if it is not properly
isolated.
Application and Implementation
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
61
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
6.1.3
www.ti.com
LVDS Outputs
The Data, ORI, ORQ, DCLKI and DCLKQ outputs are LVDS. The electrical specifications of the LVDS
outputs are compatible with typical LVDS receivers available on ASIC and FPGA chips; but they are not
IEEE or ANSI communications standards compliant due to the low +1.9V supply used on this chip. These
outputs should be terminated with a 100Ω differential resistor placed as closely to the receiver as possible.
If the 100Ω differential resistor is built in to the receiver, then an externally placed resistor is not
necessary. This section covers common-mode and differential voltage, and data rate.
6.1.3.1
Common-mode and Differential Voltage
The LVDS outputs have selectable common-mode and differential voltage, VOS and VOD; see
Section 4.11. See Section 5.3.2 for more information.
Selecting the higher VOS will also increase VOD slightly. The differential voltage, VOD, may be selected for
the higher or lower value. For short LVDS lines and low noise systems, satisfactory performance may be
realized with the lower VOD. This will also result in lower power consumption. If the LVDS lines are long
and/or the system in which the ADC12D1800 is used is noisy, it may be necessary to select the higher
VOD.
6.1.3.2
Output Data Rate
The data is produced at the output at the same rate it is sampled at the input. The minimum
recommended input clock rate for this device is fCLK(MIN); see Section 4.13. However, it is possible to
operate the device in 1:2 Demux Mode and capture data from just one 12-bit bus, e.g. just DI (or DId)
although both DI and DId are fully operational. This will decimate the data by two and effectively halve the
data rate.
6.1.3.3
Terminating Unused LVDS Output Pins
If the ADC is used in Non-Demux Mode, then only the DI and DQ data outputs will have valid data present
on them. The DId and DQd data outputs may be left not connected; if unused, they are internally at TRISTATE.
Similarly, if the Q-channel is powered-down (i.e. PDQ is logic-high), the DQ data output pins, DCLKQ and
ORQ may be left not connected.
6.1.4
Synchronizing Multiple ADC12D1800S in a System
The ADC12D1800 has two features to assist the user with synchronizing multiple ADCs in a system;
AutoSync and DCLK Reset. The AutoSync feature and designates one ADC12D1800 as the Master ADC
and other ADC12D1800s in the system as Slave ADCs. The DCLK Reset feature performs the same
function as the AutoSync feature, but is the first generation solution to synchronizing multiple ADCs in a
system; it is disabled by default. For the application in which there are multiple Master and Slave
ADC12D1800s in a system, AutoSync may be used to synchronize the Slave ADC12D1800(s) to each
respective Master ADC12D1800 and the DCLK Reset may be used to synchronize the Master
ADC12D1800s to each other.
If the AutoSync or DCLK Reset feature is not used, see Table 6-4 for recommendations about terminating
unused pins.
62
Application and Implementation
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
Table 6-4. Unused AutoSync and DCLK Reset Pin Recommendation
PINS
6.1.4.1
UNUSED TERMINATION
RCLK+/-
Do not connect.
RCOUT1+/-
Do not connect.
RCOUT2+/-
Do not connect.
DCLK_RST+
Connect to GND via 1kΩ resistor.
DCLK_RST-
Connect to VA via 1kΩ resistor.
AutoSync Feature
AutoSync is a feature which continuously synchronizes the outputs of multiple ADC12D1800s in a system.
It may be used to synchronize the DCLK and data outputs of one or more Slave ADC12D1800s to one
Master ADC12D1800. Several advantages of this feature include: no special synchronization pulse
required, any upset in synchronization is recovered upon the next DCLK cycle, and the Master/Slave
ADC12D1800s may be arranged as a binary tree so that any upset will quickly propagate out of the
system.
An example system is shown below in Figure 6-5 which consists of one Master ADC and two Slave ADCs.
For simplicity, only one DCLK is shown; in reality, there is DCLKI and DCLKQ, but they are always in
phase with one another.
Master
ADC12D1XXX
RCOut1
RCOut2
CLK
DCLK
Slave 2
ADC12D1XXX
RCLK
RCOut1
RCOut2
CLK
RCLK
Slave 1
ADC12D1XXX
DCLK
RCOut1
CLK
RCLK
RCOut2
DCLK
CLK
Figure 6-5. AutoSync Example
In order to synchronize the DCLK (and Data) outputs of multiple ADCs, the DCLKs must transition at the
same time, as well as be in phase with one another. The DCLK at each ADC is generated from the CLK
after some latency, plus tOD minus tAD. Therefore, in order for the DCLKs to transition at the same time,
the CLK signal must reach each ADC at the same time. To tune out any differences in the CLK path to
each ADC, the tAD adjust feature may be used. However, using the tAD adjust feature will also affect when
the DCLK is produced at the output. If the device is in Demux Mode, then there are four possible phases
which each DCLK may be generated on because the typical CLK = 1GHz and DCLK = 250 MHz for this
case. The RCLK signal controls the phase of the DCLK, so that each Slave DCLK is on the same phase
as the Master DCLK.
The AutoSync feature may only be used via the Control Registers. For more information, see AN-2132
(SNAA073).
Application and Implementation
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
63
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
6.1.4.2
www.ti.com
DCLK Reset Feature
The DCLK reset feature is available via ECM, but it is disabled by default. DCLKI and DCLKQ are always
synchronized, by design, and do not require a pulse from DCLK_RST to become synchronized.
The DCLK_RST signal must observe certain timing requirements, which are shown in Figure 4-6 of the
Timing Diagrams. The DCLK_RST pulse must be of a minimum width and its deassertion edge must
observe setup and hold times with respect to the CLK input rising edge. These timing specifications are
listed as tPWR, tSR and tHR and may be found in Section 4.13.
The DCLK_RST signal can be asserted asynchronously to the input clock. If DCLK_RST is asserted, the
DCLK output is held in a designated state (logic-high) in Demux Mode; in Non-Demux Mode, the DCLK
continues to function normally. Depending upon when the DCLK_RST signal is asserted, there may be a
narrow pulse on the DCLK line during this reset event. When the DCLK_RST signal is de-asserted, there
are tSYNC_DLY CLK cycles of systematic delay and the next CLK rising edge synchronizes the DCLK output
with those of other ADC12D1800s in the system. For 90° Mode (DDRPh = logic-high), the synchronizing
edge occurs on the rising edge of CLK, 4 cycles after the first rising edge of CLK after DCLK_RST is
released. For 0° Mode (DDRPh = logic-low), this is 5 cycles instead. The DCLK output is enabled again
after a constant delay of tOD.
For both Demux and Non-Demux Modes, there is some uncertainty about how DCLK comes out of the
reset state for the first DCLK_RST pulse. For the second (and subsequent) DCLK_RST pulses, the DCLK
will come out of the reset state in a known way. Therefore, if using the DCLK Reset feature, it is
recommended to apply one "dummy" DCLK_RST pulse before using the second DCLK_RST pulse to
synchronize the outputs. This recommendation applies each time the device or channel is powered-on.
When using DCLK_RST to synchronize multiple ADC12D1800s, it is required that the Select Phase bits in
the Control Register (Addr: Eh, Bits 3,4) be the same for each Master ADC12D1800.
6.1.5
Recommended System Chips
TI recommends these other chips including temperature sensors, clocking devices, and amplifiers in order
to support the ADC12D1800 in a system design.
6.1.5.1
Temperature Sensor
The ADC12D1800 has an on-die temperature diode connected to pins Tdiode+/- which may be used to
monitor the die temperature. TI also provides a family of temperature sensors for this application which
monitor different numbers of external devices, see Table 6-5.
Table 6-5. Temperature Sensor Recommendation
NUMBER OF EXTERNAL
DEVICES MONITORED
RECOMMENDED TEMPERATURE
SENSOR
1
LM95235
2
LM95213
4
LM95214
The temperature sensor (LM95235/13/14) is an 11-bit digital temperature sensor with a 2-wire System
Management Bus (SMBus) interface that can monitor the temperature of one, two, or four remote diodes
as well as its own temperature. It can be used to accurately monitor the temperature of up to one, two, or
four external devices such as the ADC12D1800, a FPGA, other system components, and the ambient
temperature.
64
Application and Implementation
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
The temperature sensor reports temperature in two different formats for +127.875°C/-128°C range and
0°/255°C range. It has a Sigma-Delta ADC core which provides the first level of noise immunity. For
improved performance in a noisy environment, the temperature sensor includes programmable digital
filters for Remote Diode temperature readings. When the digital filters are invoked, the resolution for the
Remote Diode readings increases to 0.03125°C. For maximum flexibility and best accuracy, the
temperature sensor includes offset registers that allow calibration for other types of diodes.
Diode fault detection circuitry in the temperature sensor can detect the absence or fault state of a remote
diode: whether D+ is shorted to the power supply, D- or ground, or floating.
In the following typical application, the LM95213 is used to monitor the temperature of an ADC12D1800 as
well as an FPGA, see Figure 6-6. If this feature is unused, the Tdiode+/- pins may be left floating.
7
ADC12D1XXX
IE = IF
D1+
100 pF
IR
5
IE = IF
FPGA
D-
100 pF
6
D2+
IR
LM95213
Figure 6-6. Typical Temperature Sensor Application
6.1.5.2
Clocking Device
The clock source can be a PLL/VCO device such as the LMX2531LQxxxx family of products. The specific
device should be selected according to the desired ADC sampling clock frequency. The ADC12D1800RB
uses the LMX2531LQ1778E, with the ADC clock source provided by the Aux PLL output. Other devices
which may be considered based on clock source, jitter cleaning, and distribution purposes are the
LMK01XXX, LMK02XXX, LMK03XXX and LMK04XXX product families.
6.1.5.3
Amplifiers for Analog Input
The following amplifiers can be used for ADC12D1800 applications which require DC coupled input or
signal gain, neither of which can be provided with a transformer coupled input circuit. In addition, several
of the amplifiers provide single ended to differential conversion options:
Table 6-6. Amplifier Recommendation
AMPLIFIER
BANDWIDTH
BRIEF FEATURES
LMH3401
7 GHz
Fixed gain, single ended to differential conversion
LMH5401
8 GHz
Configurable Gain, single ended to differential
conversion
LMH6401
4.5 GHz
Digital Variable Controlled Gain
LMH6554
2.8 GHz
Configurable gain
LMH6555
1.2 GHz
Fixed gain
Application and Implementation
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
65
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
6.1.5.4
www.ti.com
Balun Recommendations for Analog Input
The following baluns are recommended for the ADC12D1800 for applications which require no gain. When
evaluating a balun for the application of driving an ADC, some important qualities to consider are phase
error and magnitude error.
Table 6-7. Balun Recommendations
BALUN
6.2
BANDWIDTH
Mini-Circuits TC1-1-13MA+
4.5 - 3000 MHz
Anaren B0430J50100A00
400 - 3000 MHz
Mini-Circuits ADTL2-18
30 - 1800 MHz
Typical Application
The ADC12D1800 can be used to directly sample a signal in the RF frequency range for downstream
processing. The wide input bandwidth, buffered input, high sampling rate and make ADC12D1800 ideal for
RF sampling applications.
Power
Management
Memory
1:2 Balun
BPF
LVDS outputs
GSPS ADC
I-Channel
1:2 Balun
.
.
.
FPGA
USB
Port
BPF
GSPS ADC
Q-Channel
10-MHz
Reference
Clocking
Solution
Figure 6-7. Simplified Schematic
66
Application and Implementation
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
6.2.1
SNAS500Q – MAY 2010 – REVISED MAY 2017
Design Requirements
In this example ADC12D1800 will be used to sample signals in DES mode and Non-Des mode. The
design parameters are listed Table 6-8.
Table 6-8. Design Parameters
DESIGN PARAMETERS
EXAMPLE VALUES (NON-DESI MODE)
EXAMPLE VALUES
(DESI MODE)
Signal Center Frequency
2000 MHz
1125 MHz
Signal Bandwidth
100 MHz
400 MHz
ADC Sampling Rate
1800 MSPS
3600 MSPS
Signal Nominal Amplitude
–7 dBm
–7 dBm
Signal Maximum Amplitude
6 dBm
6 dBm
Minimum SNR (In BW of Interest)
46 dBc
46 dBc
Minimum THD (In BW of Interest)
–54 dBc
–61 dBc
Minimum SFDR (In BW of
Interest)
53 dBc
53 dBc
6.2.2
Detailed Design Procedure
Use the following steps to design the RF receiver:
• Select the appropriate mode of operation (DES mode or Non-DES mode).
• Use the input signal frequency to select an appropriate sampling rate.
• Select the sampling rate so that the input signal is within the Nyquist zone and away from any
harmonics and interleaving tones.
• Select the system components such as clocking device, amplifier for analog input and Balun according
to sampling frequency and input signal frequency.
• See Section 6.1.5.2 for the recommended clock sources.
• See Table 6-4 for recommended analog amplifiers.
• See Table 6-5 for recommended Balun components.
• Select the bandpass filters and limiter components based on the requirement to attenuate the
unwanted input signals.
Application and Implementation
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
67
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
6.2.3
www.ti.com
Application Curves
0
0
-10
-10
-20
-20
-30
-30
Magnitude (dBFS)
Frequency (MHz)
The following curves show an RF signal at 1997.97 MHz captured at a sample rate of 1800 MSPS in
NON-DES mode and an RF signal at 1123.97 MHz sample at an effective sample rate of 3600 MSPS in
DES mode.
-40
-50
-60
-70
-80
-40
-50
-60
-70
-80
-90
-90
-100
-100
-110
-110
0
100
200
300 400 500 600
Magnitude (dBFS)
Fin = 1997.97
MHz at –7dBfs
700
800
900
0
200
D002
Fs = 1800
MSPS
400
600 800 1000 1200 1400 1600 1800
Frequency (MHz)
D001
Fin = 1123.97
MHz at –7 dBFS
Figure 6-8. Spectrum NON-DES Mode
Fs = 3600
MHz
Figure 6-9. Spectrum DES Mode
Table 6-9. ADC12D1800 Performance for Single Tone
Signal at 1997.97 MHz in NON-DES Mode
PARAMETER
VALUE
SNR
47.9 dBc
SFDR
54.9 dBc
THD
–58.2 dBc
SINAD
47.5 dBc
ENOB
7.6 bits
Table 6-10. ADC12D1800 Performance for Single Tone
Signal at 1123.97 MHz in DES Mode
68
PARAMETER
VALUE
SNR
47.7 dBc
SFDR
55.6 dBc
THD
–62.8 dBc
SINAD
47.6 dBc
ENOB
7.6 bits
Application and Implementation
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
7 Power Supply Recommendations
7.1
System Power-on Considerations
There are a couple important topics to consider associated with the system power-on event including
configuration and calibration, and the Data Clock.
7.1.1
Power-on, Configuration, and Calibration
Following the application of power to the ADC12D1800, several events must take place before the output
from the ADC12D1800 is valid and at full performance; at least one full calibration must be executed with
the device configured in the desired mode.
Following the application of power to the ADC12D1800, there is a delay of tCalDly and then the Power-on
Calibration is executed. This is why it is recommended to set the CalDly Pin via an external pull-up or pulldown resistor. This ensured that the state of that input will be properly set at the same time that power is
applied to the ADC and tCalDly will be a known quantity. For the purpose of this section, it is assumed that
CalDly is set as recommended.
The Control Bits or Pins must be set or written to configure the ADC12D1800 in the desired mode. This
must take place via either Extended Control Mode or Non-ECM (Pin Control Mode) before subsequent
calibrations will yield an output at full performance in that mode. Some examples of modes include
DES/Non-DES Mode, Demux/Non-demux Mode, and Full-Scale Range.
The simplest case is when device is in Non-ECM and the Control Pins are set by pull-up/down resistors,
see Figure 7-1. For this case, the settings to the Control Pins ramp concurrently to the ADC voltage.
Following the delay of tCalDly and the calibration execution time, tCAL, the output of the ADC12D1800 is
valid and at full performance. If it takes longer than tCalDly for the system to stabilize at its operating
temperature, it is recommended to execute an on-command calibration at that time.
Another case is when the FPGA configures the Control Pins (Non-ECM) or writes to the SPI (ECM), see
Figure 7-2. It is always necessary to comply with the Section 4.3 and Section 4.1; for example, the Control
Pins may not be driven below the ground or above the supply, regardless of what the voltage currently
applied to the supply is. Therefore, it is not recommended to write to the Control Pins or SPI before power
is applied to the ADC12D1800. As long as the FPGA has completed writing to the Control Pins or SPI, the
Power-on Calibration will result in a valid output at full performance. Once again, if it takes longer than
tCalDly for the system to stabilize at its operating temperature, it is recommended to execute an oncommand calibration at that time.
Due to system requirements, it may not be possible for the FPGA to write to the Control Pins or SPI
before the Power-on Calibration takes place, see Figure 7-3. It is not critical to configure the device before
the Power-on Calibration, but it is critical to realize that the output for such a case is not at its full
performance. Following an On-command Calibration, the device will be at its full performance.
Pull-up/down
resistors set
Control Pins
Power to
ADC
CalDly
ADC output
valid
Calibration
Power-on
Calibration
On-command
Calibration
Figure 7-1. Power-on with Control Pins set by Pull-up/down Resistors
Power Supply Recommendations
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
69
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
www.ti.com
FPGA writes
Control Pins
Power to
ADC
ADC output
valid
CalDly
Calibration
Power-on
Calibration
On-command
Calibration
Figure 7-2. Power-on with Control Pins set by FPGA pre Power-on Cal
FPGA writes
Control Pins
Power to
ADC
CalDly
Calibration
Power-on
Calibration
On-command
Calibration
Figure 7-3. Power-on with Control Pins set by FPGA post Power-on Cal
7.1.2
Power-on and Data Clock (DCLK)
Many applications use the DCLK output for a system clock. For the ADC12D1800, each I- and Q-channel
has its own DCLKI and DCLKQ, respectively. The DCLK output is always active, unless that channel is
powered-down or the DCLK Reset feature is used while the device is in Demux Mode. As the supply to
the ADC12D1800 ramps, the DCLK also comes up, see this example from the ADC12D1800RB: Figure 74. While the supply is too low, there is no output at DCLK. As the supply continues to ramp, DCLK
functions intermittently with irregular frequency, but the amplitude continues to track with the supply. Much
below the low end of operating supply range of the ADC12D1800, the DCLK is already fully operational.
70
Power Supply Recommendations
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
mV
www.ti.com
Slope = 1.22V/ms
1900
1710
VA
1490
1210
660
635
520
DCLK
300
time
Figure 7-4. Supply and DCLK Ramping
Power Supply Recommendations
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
71
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
www.ti.com
8 Layout
8.1
8.1.1
Layout Guidelines
Power Planes
All supply buses for the ADC should be sourced from a common linear voltage regulator. This ensures
that all power buses to the ADC are turned on and off simultaneously. This single source will be split into
individual sections of the power plane, with individual decoupling and connection to the different power
supply buses of the ADC. Due to the low voltage but relatively high supply current requirement, the
optimal solution may be to use a switching regulator to provide an intermediate low voltage, which is then
regulated down to the final ADC supply voltage by a linear regulator. Please refer to the documentation
provided for the ADC12D1800RB for additional details on specific regulators that are recommended for
this configuration.
Power for the ADC should be provided through a broad plane which is located on one layer adjacent to
the ground plane(s). Placing the power and ground planes on adjacent layers will provide low impedance
decoupling of the ADC supplies, especially at higher frequencies. The output of a linear regulator should
feed into the power plane through a low impedance multi-via connection. The power plane should be split
into individual power peninsulas near the ADC. Each peninsula should feed a particular power bus on the
ADC, with decoupling for that power bus connecting the peninsula to the ground plane near each
power/ground pin pair. Using this technique can be difficult on many printed circuit CAD tools. To work
around this, zero ohm resistors can be used to connect the power source net to the individual nets for the
different ADC power buses. As a final step, the zero ohm resistors can be removed and the plane and
peninsulas can be connected manually after all other error checking is completed.
8.1.2
Bypass Capacitors
The general recommendation is to have one 100nF capacitor for each power/ground pin pair. The
capacitors should be surface mount multi-layer ceramic chip capacitors similar to Panasonic part number
ECJ-0EB1A104K.
8.1.3
Ground Planes
Grounding should be done using continuous full ground planes to minimize the impedance for all ground
return paths, and provide the shortest possible image/return path for all signal traces.
8.1.4
Power System Example
The ADC12D1800RB uses continuous ground planes (except where clear areas are needed to provide
appropriate impedance management for specific signals), see Figure 8-1. Power is provided on one plane,
with the 1.9V ADC supply being split into multiple zones or peninsulas for the specific power buses of the
ADC. Decoupling capacitors are connected between these power bus peninsulas and the adjacent ground
planes using vias. The capacitors are located as close to the individual power/ground pin pairs of the ADC
as possible. In most cases, this means the capacitors are located on the opposite side of the PCB to the
ADC.
72
Layout
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
Linear
Regulator
Cross Section
Line
Switching
Regulator
HV or Unreg
Voltage
Intermediate
Voltage
1.9V ADC Main
VTC VA
VE
VDR
ADC
30123202
Top Layer ± Signal 1
Dielectric 1
Ground 1
Dielectric 2
Signal 2
Dielectric 3
Ground 2
Dielectric 4
Signal 3
Dielectric 5
Power 1
Dielectric 6
Ground 3
Dielectric 7
Bottom Layer ± Signal X
Figure 8-1. Power and Grounding Example
Layout
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
73
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
8.2
www.ti.com
Layout Example
The following examples show layout-example plots. Figure 6-15 show a typical stack up for a 10 layer
board.
Balun transformer to convert the
SE CLK signal to the differential signal
CLK path
with minimal
adjacent circuit
For best grounding and thermal
performance, all ground pins on
the internal pad should be connected
to all the ground layers with vias.
Analog input path
with minimal
adjacent circuit
High-speed data paths and DCLK
signals should be of the same length
Figure 8-2. ADC12D1800RF Layout Example 1 – Top side and inner layers
74
Layout
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
All high-speed signal routing should use
impedance-controlled traces, either 50-Ω
single-ended or 100-Ω differential.
Decoupling
capacitors near
the device
Decoupling capacitors
near VIN
The four holes highlighted with black
squares are for the socket version of the
board and are not required for the end application.
Figure 8-3. ADC12D1800RF Layout Example 1 – Bottom side and inner layers
L1 ± SIG
0.0036''
L2 ± GND
0.0060''
L3 ± SIG
0.0070''
L4 ± PWR
0.0030''
L5 ±GND
0.0070''
0.0580''
L6 ± SIG
0.0060''
L7 ± PWR
0.0070''
L8 ± SIG
0.0060''
L9 ± GND
0.0036''
L10 ± SIG
1/2 oz. Copper on L1, L3, L6, L8, L10
1 oz. Copper on L2, L4, L5, L7, L9
100 Ÿ, Differential Signaling and 50 Ÿ Single ended on SIG Layers
Low loss dielectric adjacent very high speed trace layers
Finished thickness 0.0620" including plating and solder mask
Figure 8-4. ADC12D1800RF Typical Stackup – 10 Layer Board
Layout
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
75
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
8.3
www.ti.com
Thermal Management
The Heat Slug Ball Grid Array (HSBGA) package is a modified version of the industry standard plastic
BGA (Ball Grid Array) package. Inside the package, a copper heat spreader cap is attached to the
substrate top with exposed metal in the center top area of the package. This results in a 20%
improvement (typical) in thermal performance over the standard plastic BGA package.
4JC_1
Copper Heat Slug
Mold Compound
Not to Scale
Cross Section Line
IC Die
Substrate
4JC_2
Figure 8-5. HSBGA Conceptual Drawing
The center balls are connected to the bottom of the die by vias in the package substrate, Figure 8-5. This
gives a low thermal resistance between the die and these balls. Connecting these balls to the PCB ground
planes with a low thermal resistance path is the best way dissipate the heat from the ADC. These pins
should also be connected to the ground plane via a low impedance path for electrical purposes. The direct
connection to the ground planes is an easy method to spread heat away from the ADC. Along with the
ground plane, the parallel power planes will provide additional thermal dissipation.
The center ground balls should be soldered down to the recommended ball pads (See AN-1126
[SNOA021]). These balls will have wide traces which in turn have vias which connect to the internal
ground planes, and a bottom ground pad/pour if possible. This ensures a good ground is provided for
these balls, and that the optimal heat transfer will occur between these balls and the PCB ground planes.
In spite of these package enhancements, analysis using the standard JEDEC JESD51-7 four-layer PCB
thermal model shows that ambient temperatures must be limited to a max of 65°C to ensure a safe
operating junction temperature for the ADC12D1800. However, most applications using the ADC12D1800
will have a printed circuit board which is more complex than that used in JESD51-7. Typical circuit boards
will have more layers than the JESD51-7 (eight or more), several of which will be used for ground and
power planes. In those applications, the thermal resistance parameters of the ADC12D1800 and the circuit
board can be used to determine the actual safe ambient operating temperature up to a maximum of 85°C.
Three key parameters are provided to allow for modeling and calculations. Because there are two main
thermal paths between the ADC die and external environment, the thermal resistance for each of these
paths is provided. θJC1 represents the thermal resistance between the die and the exposed metal area on
the top of the HSBGA package. θJC2 represents the thermal resistance between the die and the center
group of balls on the bottom of the HSBGA package. The final parameter is the allowed maximum junction
temperature, which is TJ.
In other applications, a heat sink or other thermally conductive path can be added to the top of the
HSBGA package to remove heat. In those cases, θJC1 can be used along with the thermal parameters for
the heat sink or other thermal coupling added. Representative heat sinks which might be used with the
ADC12D1800 include the Cool Innovations p/n 3-1212XXG and similar products from other vendors. In
many applications, the printed circuit board will provide the primary thermal path conducting heat away
from the ADC package. In those cases, θJC2 can be used in conjunction with printed circuit board thermal
modeling software to determine the allowed operating conditions that will maintain the die temperature
below the maximum allowable limit. Additional dissipation can be achieved by coupling a heat sink to the
copper pour area on the bottom side of the printed circuit board.
Typically, dissipation will occur through one predominant thermal path. In these cases, the following
calculations can be used to determine the maximum safe ambient operating temperature:
76
Layout
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
TJ = TA + PD × (θJC+θCA)
TJ = TA + PC(MAX) × (θJC+θCA)
For θJC, the value for the primary thermal path in the given application environment should be used (θJC1
or θJC2). θCA is the thermal resistance from the case to ambient, which would typically be that of the heat
sink used. Using this relationship and the desired ambient temperature, the required heat sink thermal
resistance can be found. Alternately, the heat sink thermal resistance can be used to find the maximum
ambient temperature. For more complex systems, thermal modeling software can be used to evaluate the
printed circuit board system and determine the expected junction temperature given the total system
dissipation and ambient temperature.
Layout
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
77
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
www.ti.com
9 Device and Documentation Support
9.1
9.1.1
Device Support
Third-Party Products Disclaimer
TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES
NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR
SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR
SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.
9.1.2
Specification Definitions
APERTURE (SAMPLING) DELAY is the amount of delay, measured from the sampling edge of the CLK
input, after which the signal present at the input pin is sampled inside the device.
APERTURE JITTER (tAJ) is the variation in aperture delay from sample-to-sample. Aperture jitter can be
effectively considered as noise at the input.
CODE ERROR RATE (CER) is the probability of error and is defined as the probable number of word
errors on the ADC output per unit of time divided by the number of words seen in that amount of time. A
CER of 10-18 corresponds to a statistical error in one word about every 31.7 years.
CLOCK DUTY CYCLE is the ratio of the time that the clock waveform is at a logic high to the total time of
one clock period.
DIFFERENTIAL NON-LINEARITY (DNL) is the measure of the maximum deviation from the ideal step
size of 1 LSB. It is measured at the relevant sample rate, fCLK, with fIN = 1MHz sine wave.
EFFECTIVE NUMBER OF BITS (ENOB, or EFFECTIVE BITS) is another method of specifying Signal-toNoise and Distortion Ratio, or SINAD. ENOB is defined as (SINAD − 1.76) / 6.02 and states that the
converter is equivalent to a perfect ADC of this many (ENOB) number of bits.
FULL POWER BANDWIDTH (FPBW) is a measure of the frequency at which the reconstructed output
fundamental drops to 3 dB below its low frequency value for a full-scale input.
GAIN ERROR is the deviation from the ideal slope of the transfer function. It can be calculated from Offset
and Full-Scale Errors. The Positive Gain Error is the Offset Error minus the Positive Full-Scale Error. The
Negative Gain Error is the Negative Full-Scale Error minus the Offset Error. The Gain Error is the
Negative Full-Scale Error minus the Positive Full-Scale Error; it is also equal to the Positive Gain Error
plus the Negative Gain Error.
INTEGRAL NON-LINEARITY (INL) is a measure of worst case deviation of the ADC transfer function
from an ideal straight line drawn through the ADC transfer function. The deviation of any given code from
this straight line is measured from the center of that code value step. The best fit method is used.
INTERMODULATION DISTORTION (IMD) is a measure of the near-in 3rd order distortion products (2f2 f1, 2f1 - f2) which occur when two tones which are close in frequency (f1, f2) are applied to the ADC input. It
is measured from the input tones level to the higher of the two distortion products (dBc) or simply the level
of the higher of the two distortion products (dBFS). The input tones are typically -7dBFS.
78
Device and Documentation Support
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
SNAS500Q – MAY 2010 – REVISED MAY 2017
LSB (LEAST SIGNIFICANT BIT) is the bit that has the smallest value or weight of all bits. This value is
VFS / 2N
(2)
where VFS is the differential full-scale amplitude VIN_FSR as set by the FSR input and "N" is the ADC
resolution in bits, which is 12 for the ADC12D1800.
LOW VOLTAGE DIFFERENTIAL SIGNALING (LVDS) DIFFERENTIAL OUTPUT VOLTAGE (V ID and
VOD) is two times the absolute value of the difference between the VD+ and VD- signals; each signal
measured with respect to Ground. VOD peak is VOD,P= (VD+ - VD-) and VOD peak-to-peak is VOD,P-P=
2*(VD+ - VD-); for this product, the VOD is measured peak-to-peak.
VD+
VDVOS
½×VOD
VD+
VD -
GND
½×VOD = | VD+ - VD- |
Figure 9-1. LVDS Output Signal Levels
LVDS OUTPUT OFFSET VOLTAGE (VOS) is the midpoint between the D+ and D- pins output voltage
with respect to ground; i.e., [(VD+) +( VD-)]/2. See Figure 9-1.
MISSING CODES are those output codes that are skipped and will never appear at the ADC outputs.
These codes cannot be reached with any input value.
MSB (MOST SIGNIFICANT BIT) is the bit that has the largest value or weight. Its value is one half of full
scale.
NEGATIVE FULL-SCALE ERROR (NFSE) is a measure of how far the first code transition is from the
ideal 1/2 LSB above a differential −VIN/2. For the ADC12D1800 the reference voltage is assumed to be
ideal, so this error is a combination of full-scale error and reference voltage error.
NOISE FLOOR DENSITY is a measure of the power density of the noise floor, expressed in dBFS/Hz and
dBm/Hz. '0 dBFS' is defined as the power of a sinusoid which precisely used the full-scale range of the
ADC.
NOISE POWER RATIO (NPR) is the ratio of the sum of the power outside the notched bins to the sum of
the power in an equal number of bins inside the notch, expressed in dB.
OFFSET ERROR (VOFF) is a measure of how far the mid-scale point is from the ideal zero voltage
differential input.
Offset Error = Actual Input causing average of 8k samples to result in an average code of 2047.5.
OUTPUT DELAY (tOD) is the time delay (in addition to Latency) after the rising edge of CLK+ before the
data update is present at the output pins.
OVER-RANGE RECOVERY TIME is the time required after the differential input voltages goes from ±1.2V
to 0V for the converter to recover and make a conversion with its rated accuracy.
PIPELINE DELAY (LATENCY) is the number of input clock cycles between initiation of conversion and
when that data is presented to the output driver stage. The data lags the conversion by the Latency plus
the tOD.
POSITIVE FULL-SCALE ERROR (PFSE) is a measure of how far the last code transition is from the ideal
1-1/2 LSB below a differential +VIN/2. For the ADC12D1800 the reference voltage is assumed to be ideal,
so this error is a combination of full-scale error and reference voltage error.
Device and Documentation Support
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
79
ADC12D1800
SNAS500Q – MAY 2010 – REVISED MAY 2017
www.ti.com
SIGNAL TO NOISE RATIO (SNR) is the ratio, expressed in dB, of the rms value of the fundamental for a
single-tone to the rms value of the sum of all other spectral components below one-half the sampling
frequency, not including harmonics or DC.
SIGNAL TO NOISE PLUS DISTORTION (S/(N+D) or SINAD) is the ratio, expressed in dB, of the rms
value of the fundamental for a single-tone to the rms value of all of the other spectral components below
half the input clock frequency, including harmonics but excluding DC.
SPURIOUS-FREE DYNAMIC RANGE (SFDR) is the difference, expressed in dB, between the rms values
of the input signal at the output and the peak spurious signal, where a spurious signal is any signal
present in the output spectrum that is not present at the input, excluding DC.
θJA is the thermal resistance between the junction to ambient.
θJC1 represents the thermal resistance between the die and the exposed metal area on the top of the
HSBGA package.
θJC2 represents the thermal resistance between the die and the center group of balls on the bottom of the
HSBGA package.
TOTAL HARMONIC DISTORTION (THD) is the ratio expressed in dB, of the rms total of the first nine
harmonic levels at the output to the level of the fundamental at the output. THD is calculated as
THD = 20 x log
A 2 +... +A 2
f2
f10
A f12
(3)
where Af1 is the RMS power of the fundamental (output) frequency and Af2 through Af10 are the RMS
power of the first 9 harmonic frequencies in the output spectrum.
– Second Harmonic Distortion (2nd Harm) is the difference, expressed in dB, between the RMS power
in the input frequency seen at the output and the power in its 2nd harmonic level at the output.
– Third Harmonic Distortion (3rd Harm) is the difference expressed in dB between the RMS power in
the input frequency seen at the output and the power in its 3rd harmonic level at the output.
9.2
9.2.1
Documentation Support
Related Documentation
For related documentation, see the following:
• AN-1126 BGA (Ball Grid Array), SNOA021
• AN-2132 Synchronizing Multiple GSPS ADCs in a System: The AutoSync Feature, SNAA073
9.3
Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the
respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views;
see TI's Terms of Use.
TI E2E™ Online Community The TI engineer-to-engineer (E2E) community was created to foster
collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge,
explore ideas and help solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools
and contact information for technical support.
9.4
Trademarks
E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
80
Device and Documentation Support
Copyright © 2010–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: ADC12D1800
ADC12D1800
www.ti.com
9.5
SNAS500Q – MAY 2010 – REVISED MAY 2017
Electrostatic Discharge Caution
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
9.6
Glossary
TI Glossary This glossary lists and explains terms, acronyms, and definitions.
10 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the
most current data available for the designated devices. This data is subject to change without notice and
revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
Copyright © 2010–2017, Texas Instruments Incorporated
Mechanical, Packaging, and Orderable Information
Submit Documentation Feedback
Product Folder Links: ADC12D1800
81
PACKAGE OPTION ADDENDUM
www.ti.com
30-Sep-2021
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
(3)
Device Marking
(4/5)
(6)
ADC12D1800CIUT
ACTIVE
BGA
NXA
292
40
Non-RoHS
& Green
Call TI
Level-3-220C-168 HR
-40 to 85
ADC12D1800CIUT
ADC12D1800CIUT/NOPB
ACTIVE
BGA
NXA
292
40
RoHS & Green
SNAG
Level-3-250C-168 HR
-40 to 85
ADC12D1800CIUT
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of