ADC12D2000RF
12-Bit, Single 4.0 GSPS RF Sampling ADC
1.0 General Description
3.0 Features
The 12-bit 2.0 GSPS ADC12D2000RF is an RF-sampling
GSPS ADC that can directly sample input frequencies up to
and above 2.7 GHz. The ADC12D2000RF augments the very
large Nyquist zone of Texas Instruments’ GSPS ADCs with
excellent noise and linearity performance at RF frequencies,
extending its usable range beyond the 3rd Nyquist zone.
The ADC12D2000RF provides a flexible LVDS interface
which has multiple SPI programmable options to facilitate
board design and FPGA/ASIC data capture. The LVDS outputs are compatible with IEEE 1596.3-1996 and supports
programmable common mode voltage. The product is packaged in a lead-free 292-ball thermally enhanced BGA package over the rated industrial temperature range of -40°C to
+85°C.
To achieve the full rated performance for Fclk > 1.6 GHz,
it is necessary to write the max power settings once to
Register 6h via the Serial Interface; see Section 19.0 Register Definitions for more information.
■ Excellent noise and linearity up to and above fIN = 2.7 GHz
■ Configurable to either 4.0 GSPS interleaved or 2.0 GSPS
2.0 Applications
■ 3G/4G Wireless Basestation
■
■
■
■
■
■
■
■
— Receive Path
— DPD Path
Wideband Microwave Backhaul
RF Sampling Software Defined Radio
Military Communications
SIGINT
RADAR / LIDAR
Wideband Communications
Consumer RF
Test and Measurement
dual ADC
■ New DESCLKIQ Mode for high bandwidth, high sampling
■
■
■
■
■
■
■
rate apps
Pin-compatible with ADC1xD1x00, ADC12Dx00RF
Internally terminated, buffered, differential analog inputs
Interleaved timing automatic and manual skew adjust
Test patterns at output for system debug
Time Stamp feature to capture external trigger
Programmable gain, offset, and tAD adjust feature
1:1 non-demuxed or 1:2 demuxed LVDS outputs
4.0 Key Specifications
■ Resolution
12 Bits
Interleaved 4.0 GSPS ADC
■ IMD3 (Fin = 2.7GHz @ -13dBFS)
■ IMD3 (Fin = 2.7GHz @ -16dBFS)
■ Noise Floor Density
■ Power
-60.6 dBc (typ)
-64.7 dBc (typ)
-154 dBm/Hz (typ)
4.6 W (typ)
Dual 2.0 GSPS ADC, Fin = 498 MHz
■ ENOB
■ SNR
■ SFDR
■ Power per Channel
8.7 Bits (typ)
54.8 dB (typ)
64.6 dBc (typ)
2.3 W (typ)
5.0 Block Diagram
30173711
© 2012 Texas Instruments Incorporated
301737
www.ti.com
ADC12D2000RF 12-Bit 4.0 GSPS RF Sampling ADC
June 26, 2012
-40
-7 dBFS
-10 dBFS
-13 dBFS
-16 dBFS
IMD3 (dBFS)
-50
-60
-70
-80
-90
-100
0
1
2
3
INPUT FREQUENCY (GHz)
4
30173798
ADC12D2000RF Non-DES Mode IMD3
0
AMPLITUDE (dBFS)
ADC12D2000RF 12-Bit 4.0 GSPS RF Sampling ADC
6.0 RF Performance
Fin = 2.7 GHz
-30
-60
-90
-120
1300
1310
1320
1330
FREQUENCY (MHz)
1340
30173714
ADC12D2000RF DES Mode FFT
CW Blocker: Fin = 2675 MHz; Total Power = -13 dBFS
WCDMA Blocker: Fc = 2685 MHz; Bandwidth = 3.84 MHz; Total Power = -13 dBFS
IMD3 Product Power = -74 dBFS
www.ti.com
2
ADC12D2000RF 12-Bit 4.0 GSPS RF Sampling ADC
7.0 Connection Diagram
30173701
FIGURE 1. ADC12D2000RF Connection Diagram
The center ground pins are for thermal dissipation and must be soldered to a ground plane to ensure rated performance.
See Section 18.5 SUPPLY / GROUNDING, LAYOUT AND THERMAL RECOMMENDATIONS for more information.
8.0 Ordering Information
Industrial Temperature Range (-40°C < TA < +85°C)
NS Package
ADC12D2000RFIUT/NOPB
Lead-free 292-Ball BGA Thermally Enhanced Package
ADC12D2000RFIUT
Leaded 292-Ball BGA Thermally Enhanced Package
ADC12D2000RFRB
Reference Board
3
www.ti.com
ADC12D2000RF 12-Bit 4.0 GSPS RF Sampling ADC
Table of Contents
1.0 General Description ......................................................................................................................... 1
2.0 Applications .................................................................................................................................... 1
3.0 Features ........................................................................................................................................ 1
4.0 Key Specifications ........................................................................................................................... 1
5.0 Block Diagram ................................................................................................................................ 1
6.0 RF Performance .............................................................................................................................. 2
7.0 Connection Diagram ........................................................................................................................ 3
8.0 Ordering Information ....................................................................................................................... 3
9.0 Ball Descriptions and Equivalent Circuits ............................................................................................ 7
10.0 Absolute Maximum Ratings ........................................................................................................... 16
11.0 Operating Ratings ....................................................................................................................... 16
12.0 Converter Electrical Characteristics ................................................................................................ 17
13.0 Specification Definitions ................................................................................................................ 28
14.0 Transfer Characteristic ................................................................................................................. 30
15.0 Timing Diagrams ......................................................................................................................... 31
16.0 Typical Performance Plots ............................................................................................................ 34
17.0 Functional Description .................................................................................................................. 39
17.1 OVERVIEW ......................................................................................................................... 39
17.2 CONTROL MODES .............................................................................................................. 39
17.2.1 Non-Extended Control Mode ........................................................................................ 39
17.2.1.1 Dual Edge Sampling Pin (DES) ........................................................................... 39
17.2.1.2 Non-Demultiplexed Mode Pin (NDM) ................................................................... 39
17.2.1.3 Dual Data Rate Phase Pin (DDRPh) .................................................................... 40
17.2.1.4 Calibration Pin (CAL) ......................................................................................... 40
17.2.1.5 Calibration Delay Pin (CalDly) ............................................................................ 40
17.2.1.6 Power Down I-channel Pin (PDI) ......................................................................... 40
17.2.1.7 Power Down Q-channel Pin (PDQ) ...................................................................... 40
17.2.1.8 Test Pattern Mode Pin (TPM) ............................................................................. 40
17.2.1.9 Full-Scale Input Range Pin (FSR) ....................................................................... 40
17.2.1.10 AC / DC-Coupled Mode Pin (VCMO) ................................................................... 40
17.2.1.11 LVDS Output Common-mode Pin (VBG) ............................................................. 40
17.2.2 Extended Control Mode ............................................................................................... 41
17.2.2.1 The Serial Interface ........................................................................................... 41
17.3 FEATURES ......................................................................................................................... 42
17.3.1 Input Control and Adjust .............................................................................................. 43
17.3.1.1 AC/DC-coupled Mode ........................................................................................ 43
17.3.1.2 Input Full-Scale Range Adjust ............................................................................ 43
17.3.1.3 Input Offset Adjust ............................................................................................ 43
17.3.1.4 DES/Non-DES Mode ......................................................................................... 43
17.3.1.5 DES Timing Adjust ............................................................................................ 44
17.3.1.6 Sampling Clock Phase Adjust ............................................................................. 44
17.3.2 Output Control and Adjust ............................................................................................ 44
17.3.2.1 SDR / DDR Clock ............................................................................................. 44
17.3.2.2 LVDS Output Differential Voltage ........................................................................ 45
17.3.2.3 LVDS Output Common-Mode Voltage ................................................................. 45
17.3.2.4 Output Formatting ............................................................................................. 45
17.3.2.5 Demux/Non-demux Mode .................................................................................. 45
17.3.2.6 Test Pattern Mode ............................................................................................ 45
17.3.2.7 Time Stamp ..................................................................................................... 45
17.3.3 Calibration Feature ..................................................................................................... 45
17.3.3.1 Calibration Control Pins and Bits ......................................................................... 46
17.3.3.2 How to Execute a Calibration .............................................................................. 46
17.3.3.3 Power-on Calibration ......................................................................................... 46
17.3.3.4 On-command Calibration ................................................................................... 46
17.3.3.5 Calibration Adjust .............................................................................................. 46
17.3.3.6 Read / Write Calibration Settings ........................................................................ 46
17.3.3.7 Calibration and Power-Down .............................................................................. 47
17.3.3.8 Calibration and the Digital Outputs ...................................................................... 47
17.3.4 Power Down .............................................................................................................. 47
18.0 Applications Information ............................................................................................................... 48
18.1 THE ANALOG INPUTS ......................................................................................................... 48
18.1.1 Acquiring the Input ...................................................................................................... 48
18.1.2 Driving the ADC in DES Mode ...................................................................................... 48
18.1.3 FSR and the Reference Voltage ................................................................................... 48
www.ti.com
4
48
49
49
49
49
49
49
50
50
50
50
50
50
50
50
50
51
51
51
51
51
51
51
53
53
53
55
55
55
56
56
56
57
64
List of Figures
FIGURE 1. ADC12D2000RF Connection Diagram ............................................................................................ 3
FIGURE 2. LVDS Output Signal Levels ......................................................................................................... 28
FIGURE 3. Input / Output Transfer Characteristic ............................................................................................ 30
FIGURE 4. Clocking in 1:2 Demux Non-DES Mode* ......................................................................................... 31
FIGURE 5. Clocking in Non-Demux Non-DES Mode* ........................................................................................ 31
FIGURE 6. Clocking in 1:4 Demux DES Mode* ............................................................................................... 32
FIGURE 7. Clocking in Non-Demux Mode DES Mode* ...................................................................................... 32
FIGURE 8. Data Clock Reset Timing (Demux Mode) ........................................................................................ 33
FIGURE 9. Power-on and On-Command Calibration Timing ................................................................................ 33
FIGURE 10. Serial Interface Timing ............................................................................................................. 33
FIGURE 11. Serial Data Protocol - Read Operation .......................................................................................... 41
FIGURE 12. Serial Data Protocol - Write Operation .......................................................................................... 42
FIGURE 13. DDR DCLK-to-Data Phase Relationship ........................................................................................ 44
FIGURE 14. SDR DCLK-to-Data Phase Relationship ........................................................................................ 44
FIGURE 15. Driving DESIQ Mode ............................................................................................................... 48
FIGURE 16. AC-coupled Differential Input ..................................................................................................... 49
FIGURE 17. Single-Ended to Differential Conversion Using a Balun ...................................................................... 49
FIGURE 18. Differential Input Clock Connection .............................................................................................. 49
FIGURE 19. Power and Grounding Example .................................................................................................. 52
FIGURE 20. HSBGA Conceptual Drawing ..................................................................................................... 53
FIGURE 21. Power-on with Control Pins set by Pull-up / down Resistors ................................................................ 54
FIGURE 22. Power-on with Control Pins set by FPGA pre Power-on Cal ................................................................ 54
FIGURE 23. Power-on with Control Pins set by FPGA post Power-on Cal ............................................................... 55
FIGURE 24. Supply and DCLK Ramping ....................................................................................................... 55
FIGURE 25. Typical Temperature Sensor Application ....................................................................................... 56
List of Tables
TABLE 1. Analog Front-End and Clock Balls ................................................................................................... 7
TABLE 2. Control and Status Balls .............................................................................................................. 10
TABLE 3. Power and Ground Balls .............................................................................................................. 13
5
www.ti.com
ADC12D2000RF 12-Bit 4.0 GSPS RF Sampling ADC
18.1.4 Out-Of-Range Indication ..............................................................................................
18.1.5 Maximum Input Range ................................................................................................
18.1.6 AC-coupled Input Signals ............................................................................................
18.1.7 DC-coupled Input Signals ............................................................................................
18.1.8 Single-Ended Input Signals ..........................................................................................
18.2 THE CLOCK INPUTS ...........................................................................................................
18.2.1 CLK Coupling .............................................................................................................
18.2.2 CLK Frequency ..........................................................................................................
18.2.3 CLK Level ..................................................................................................................
18.2.4 CLK Duty Cycle ..........................................................................................................
18.2.5 CLK Jitter ..................................................................................................................
18.2.6 CLK Layout ................................................................................................................
18.3 THE LVDS OUTPUTS ...........................................................................................................
18.3.1 Common-mode and Differential Voltage .........................................................................
18.3.2 Output Data Rate ........................................................................................................
18.3.3 Terminating Unused LVDS Output Pins .........................................................................
18.4 SYNCHRONIZING MULTIPLE ADC12D2000RFS IN A SYSTEM ................................................
18.4.1 DCLK Reset Feature ...................................................................................................
18.5 SUPPLY / GROUNDING, LAYOUT AND THERMAL RECOMMENDATIONS ................................
18.5.1 Power Planes .............................................................................................................
18.5.2 Bypass Capacitors ......................................................................................................
18.5.3 Ground Planes ...........................................................................................................
18.5.4 Power System Example ...............................................................................................
18.5.5 Thermal Management .................................................................................................
18.6 SYSTEM POWER-ON CONSIDERATIONS .............................................................................
18.6.1 Power-on, Configuration, and Calibration .......................................................................
18.6.2 Power-on and Data Clock (DCLK) .................................................................................
18.7 RECOMMENDED SYSTEM CHIPS ........................................................................................
18.7.1 Temperature Sensor ...................................................................................................
18.7.2 Clocking Device .........................................................................................................
18.7.3 Amplifiers for Analog Input ...........................................................................................
18.7.4 Balun Recommendations for Analog Input ......................................................................
19.0 Register Definitions ......................................................................................................................
20.0 Physical Dimensions ....................................................................................................................
ADC12D2000RF 12-Bit 4.0 GSPS RF Sampling ADC
TABLE 4. High-Speed Digital Outputs ..........................................................................................................
TABLE 5. Package Thermal Resistance ........................................................................................................
TABLE 6. Static Converter Characteristics .....................................................................................................
TABLE 7. Dynamic Converter Characteristics ................................................................................................
TABLE 8. Analog Input / Output and Reference Characteristics ............................................................................
TABLE 9. I-Channel to Q-Channel Characteristics ............................................................................................
TABLE 10. Sampling Clock Characteristics ...................................................................................................
TABLE 11. Digital Control and Output Pin Characteristics ...................................................................................
TABLE 12. Power Supply Characteristics ......................................................................................................
TABLE 13. AC Electrical Characteristics ........................................................................................................
TABLE 14. Serial Port Interface .................................................................................................................
TABLE 15. Calibration .............................................................................................................................
TABLE 16. Non-ECM Pin Summary .............................................................................................................
TABLE 17. Serial Interface Pins ..................................................................................................................
TABLE 18. Command and Data Field Definitions .............................................................................................
TABLE 19. Features and Modes ................................................................................................................
TABLE 20. Supported Demux, Data Rate Modes .............................................................................................
TABLE 21. Test Pattern by Output Port in Demux Mode ....................................................................................
TABLE 22. Test Pattern by Output Port in Non-Demux Mode ..............................................................................
TABLE 23. Calibration Pins .......................................................................................................................
TABLE 24. Unused Analog Input Recommended Termination .............................................................................
TABLE 25. Unused AutoSync and DCLK Reset Pin Recommendation ...................................................................
TABLE 26. Temperature Sensor Recommendation ..........................................................................................
TABLE 27. Amplifier Recommendation .........................................................................................................
TABLE 28. Balun Recommendations ............................................................................................................
TABLE 29. Register Addresses ..................................................................................................................
www.ti.com
6
14
16
17
17
21
22
22
23
24
24
26
26
39
41
41
42
45
45
45
46
48
51
55
56
56
57
TABLE 1. Analog Front-End and Clock Balls
Ball No.
Name
H1/J1
N1/M1
VinI+/VinQ+/-
U2/V1
V2/W1
Equivalent Circuit
Description
Differential signal I- and Q-inputs. In the Non-Dual Edge Sampling (Non-DES) Mode, each I- and
Q-input is sampled and converted by its respective channel with each positive transition of the
CLK input. In Non-ECM (Non-Extended Control
Mode) and DES Mode, both channels sample the
I-input. In Extended Control Mode (ECM), the Qinput may optionally be selected for conversion
in DES Mode by the DEQ Bit (Addr: 0h, Bit 6).
Each I- and Q-channel input has an internal common mode bias that is disabled when DC-coupled Mode is selected. Both inputs must be either
AC- or DC-coupled. The coupling mode is selected by the VCMO Pin.
In Non-ECM, the full-scale range of these inputs
is determined by the FSR Pin; both I- and Qchannels have the same full-scale input range. In
ECM, the full-scale input range of the I- and Qchannel inputs may be independently set via the
Control Register (Addr: 3h and Addr: Bh).
The input offset may also be adjusted in ECM.
CLK+/-
Differential Converter Sampling Clock. In the
Non-DES Mode, the analog inputs are sampled
on the positive transitions of this clock signal. In
the DES Mode, the selected input is sampled on
both transitions of this clock. This clock must be
AC-coupled.
DCLK_RST+/-
Differential DCLK Reset. A positive pulse on this
input is used to reset the DCLKI and DCLKQ
outputs of two or more ADC12D2000RFs in order
to synchronize them with other
ADC12D2000RFs in the system. DCLKI and
DCLKQ are always in phase with each other,
unless one channel is powered down, and do not
require a pulse from DCLK_RST to become
synchronized. The pulse applied here must meet
timing relationships with respect to the CLK input.
7
www.ti.com
ADC12D2000RF 12-Bit 4.0 GSPS RF Sampling ADC
9.0 Ball Descriptions and Equivalent Circuits
ADC12D2000RF 12-Bit 4.0 GSPS RF Sampling ADC
Ball No.
C2
B1
C3/D3
C1/D2
E2/F3
www.ti.com
Name
Equivalent Circuit
Description
VCMO
Common Mode Voltage Output or Signal
Coupling Select. If AC-coupled operation at the
analog inputs is desired, this pin should be held
at logic-low level. This pin is capable of sourcing/
sinking up to 100 µA. For DC-coupled operation,
this pin should be left floating or terminated into
high-impedance. In DC-coupled Mode, this pin
provides an output voltage which is the optimal
common-mode voltage for the input signal and
should be used to set the common-mode voltage
of the driving buffer.
VBG
Bandgap Voltage Output or LVDS Commonmode Voltage Select. This pin provides a
buffered version of the bandgap output voltage
and is capable of sourcing / sinking 100 uA and
driving a load of up to 80 pF. Alternately, this pin
may be used to select the LVDS digital output
common-mode voltage. If tied to logic-high, the
1.2V LVDS common-mode voltage is selected;
0.8V is the default.
Rext+/-
External Reference Resistor terminals. A 3.3 kΩ
±0.1% resistor should be connected between
Rext+/-. The Rext resistor is used as a reference
to trim internal circuits which affect the linearity of
the converter; the value and precision of this
resistor should not be compromised.
Rtrim+/-
Input Termination Trim Resistor terminals. A 3.3
kΩ ±0.1% resistor should be connected between
Rtrim+/-. The Rtrim resistor is used to establish
the calibrated 100Ω input impedance of VinI,
VinQ and CLK. These impedances may be fine
tuned by varying the value of the resistor by a
corresponding percentage; however, the tuning
range and performance is not guaranteed for
such an alternate value.
Tdiode+/-
Temperature Sensor Diode Positive (Anode) and
Negative (Cathode) Terminals. This set of pins is
used for die temperature measurements. It has
not been fully characterized.
8
Y4/W5
Y5/U6
V6/V7
Name
Equivalent Circuit
Description
RCLK+/-
Reference Clock Input.
The AutoSync feature is not supported on the
ADC12D2000RF. The pin structures are still
shown in the event that a design is supporting
multiple pin compatible devices in the family that
supports AutoSync, such as the ADC1xD1x00
and ADC12Dx00RF families. See Table 25 for
recommendations about terminating unused
pins.
RCOut1+/RCOut2+/-
Reference Clock Output 1 and 2.
The AutoSync feature is not supported on the
ADC12D2000RF. The pin structures are still
shown in the event that a design is supporting
multiple pin compatible devices in the family that
supports AutoSync, such as the ADC1xD1x00
and ADC12Dx00RF families. See Table 25 for
recommendations about terminating unused
pins.
9
www.ti.com
ADC12D2000RF 12-Bit 4.0 GSPS RF Sampling ADC
Ball No.
ADC12D2000RF 12-Bit 4.0 GSPS RF Sampling ADC
TABLE 2. Control and Status Balls
Ball No.
Name
Equivalent Circuit
Description
DES
Dual Edge Sampling (DES) Mode select. In the
Non-Extended Control Mode (Non-ECM), when
this input is set to logic-high, the DES Mode of
operation is selected, meaning that the VinI input
is sampled by both channels in a time-interleaved
manner. The VinQ input is ignored. When this
input is set to logic-low, the device is in Non-DES
Mode, i.e. the I- and Q-channels operate
independently. In the Extended Control Mode
(ECM), this input is ignored and DES Mode
selection is controlled through the Control
Register by the DES Bit (Addr: 0h, Bit 7); default
is Non-DES Mode operation.
CalDly
Calibration Delay select. By setting this input
logic-high or logic-low, the user can select the
device to wait a longer or shorter amount of time,
respectively, before the automatic power-on selfcalibration is initiated. This feature is pincontrolled only and is always active during ECM
and Non-ECM.
D6
CAL
Calibration cycle initiate. The user can command
the device to execute a self-calibration cycle by
holding this input high a minimum of tCAL_H after
having held it low a minimum of tCAL_L. If this input
is held high at the time of power-on, the automatic
power-on calibration cycle is inhibited until this
input is cycled low-then-high. This pin is active in
both ECM and Non-ECM. In ECM, this pin is
logically OR'd with the CAL Bit (Addr: 0h, Bit 15)
in the Control Register. Therefore, both pin and
bit must be set low and then either can be set high
to execute an on-command calibration.
B5
CalRun
V5
V4
www.ti.com
Calibration Running indication. This output is
logic-high while the calibration sequence is
executing. This output is logic-low otherwise.
10
U3
V3
A4
A5
Y3
W4
Name
Equivalent Circuit
Description
PDI
PDQ
Power Down I- and Q-channel. Setting either
input to logic-high powers down the respective Ior Q-channel. Setting either input to logic-low
brings the respective I- or Q-channel to an
operational state after a finite time delay. This pin
is active in both ECM and Non-ECM. In ECM,
each Pin is logically OR'd with its respective Bit.
Therefore, either this pin or the PDI and PDQ Bit
in the Control Register can be used to powerdown the I- and Q-channel (Addr: 0h, Bit 11 and
Bit 10), respectively.
TPM
Test Pattern Mode select. With this input at logichigh, the device continuously outputs a fixed,
repetitive test pattern at the digital outputs. In the
ECM, this input is ignored and the Test Pattern
Mode can only be activated through the Control
Register by the TPM Bit (Addr: 0h, Bit 12).
NDM
Non-Demuxed Mode select. Setting this input to
logic-high causes the digital output bus to be in
the 1:1 Non-Demuxed Mode. Setting this input to
logic-low causes the digital output bus to be in the
1:2 Demuxed Mode. This feature is pin-controlled
only and remains active during ECM and NonECM.
FSR
Full-Scale input Range select. In Non-ECM, this
input must be set to logic-high; the full-scale differential input range for both I- and Q-channel
inputs is set by this pin. In the ECM, this input is
ignored and the full-scale range of the I- and Qchannel inputs is independently determined by
the setting of Addr: 3h and Addr: Bh, respectively. Note that the logic-high FSR value in NonECM corresponds to the minimum allowed
selection in ECM.
DDRPh
DDR Phase select. This input, when logic-low,
selects the 0° Data-to-DCLK phase relationship.
When logic-high, it selects the 90° Data-to-DCLK
phase relationship, i.e. the DCLK transition
indicates the middle of the valid data outputs.
This pin only has an effect when the chip is in 1:2
Demuxed Mode, i.e. the NDM pin is set to logiclow. In ECM, this input is ignored and the DDR
phase is selected through the Control Register by
the DPS Bit (Addr: 0h, Bit 14); the default is 0°
Mode.
11
www.ti.com
ADC12D2000RF 12-Bit 4.0 GSPS RF Sampling ADC
Ball No.
ADC12D2000RF 12-Bit 4.0 GSPS RF Sampling ADC
Ball No.
Name
Equivalent Circuit
Description
ECE
Extended Control Enable bar. Extended feature
control through the SPI interface is enabled when
this signal is asserted (logic-low). In this case,
most of the direct control pins have no effect.
When this signal is de-asserted (logic-high), the
SPI interface is disabled, all SPI registers are
reset to their default values, and all available
settings are controlled via the control pins.
SCS
Serial Chip Select bar. In ECM, when this signal
is asserted (logic-low), SCLK is used to clock in
serial data which is present on SDI and to source
serial data on SDO. When this signal is deasserted (logic-high), SDI is ignored and SDO is
in TRI-STATE.
C5
SCLK
Serial Clock. In ECM, serial data is shifted into
and out of the device synchronously to this clock
signal. This clock may be disabled and held logiclow, as long as timing specifications are not
violated when the clock is enabled or disabled.
B4
SDI
Serial Data-In. In ECM, serial data is shifted into
the device on this pin while SCS signal is
asserted (logic-low).
A3
SDO
Serial Data-Out. In ECM, serial data is shifted out
of the device on this pin while SCS signal is
asserted (logic-low). This output is at TRI-STATE
when SCS is de-asserted.
D1, D7, E3, F4,
W3, U7
DNC
NONE
Do Not Connect. These pins are used for internal
purposes and should not be connected, i.e. left
floating. Do not ground.
C7
NC
NONE
Not Connected. This pin is not bonded and may
be left floating or connected to any potential.
B3
C4
www.ti.com
12
Ball No.
Name
Equivalent Circuit
A2, A6, B6, C6,
D8, D9, E1, F1,
H4, N4, R1, T1,
U8, U9, W6, Y2,
Y6
VA
NONE
Power Supply for the Analog circuitry. This
supply is tied to the ESD ring. Therefore, it must
be powered up before or with any other supply.
G1, G3, G4, H2,
J3, K3, L3, M3,
N2, P1, P3, P4,
R3, R4
VTC
NONE
Power Supply for the Track-and-Hold and Clock
circuitry.
A11, A15, C18,
D11, D15, D17,
J17, J20, R17,
R20, T17, U11,
U15, U16, Y11,
Y15
VDR
NONE
Power Supply for the Output Drivers.
A8, B9, C8, V8,
W9, Y8
VE
NONE
Power Supply for the Digital Encoder.
NONE
Bias Voltage I-channel. This is an externally
decoupled bias voltage for the I-channel. Each
pin should individually be decoupled with a 100
nF capacitor via a low resistance, low inductance
path to GND.
J4, K2
VbiasI
Description
L2, M4
VbiasQ
NONE
Bias Voltage Q-channel. This is an externally
decoupled bias voltage for the Q-channel. Each
pin should individually be decoupled with a 100
nF capacitor via a low resistance, low inductance
path to GND.
A1, A7, B2, B7,
D4, D5, E4, K1,
L1, T4, U4, U5,
W2, W7, Y1, Y7,
H8:N13
GND
NONE
Ground Return for the Analog circuitry.
F2, G2, H3, J2,
K4, L4, M2, N3,
P2, R2, T2, T3, U1
GNDTC
NONE
Ground Return for the Track-and-Hold and Clock
circuitry.
A13, A17, A20,
D13, D16, E17,
F17, F20, M17,
M20, U13, U17,
V18, Y13, Y17,
Y20
GNDDR
NONE
Ground Return for the Output Drivers.
A9, B8, C9, V9,
W8, Y9
GNDE
NONE
Ground Return for the Digital Encoder.
13
www.ti.com
ADC12D2000RF 12-Bit 4.0 GSPS RF Sampling ADC
TABLE 3. Power and Ground Balls
ADC12D2000RF 12-Bit 4.0 GSPS RF Sampling ADC
TABLE 4. High-Speed Digital Outputs
Ball No.
K19/K20
L19/L20
K17/K18
L17/L18
www.ti.com
Name
Equivalent Circuit
Description
DCLKI+/DCLKQ+/-
Data Clock Output for the I- and Q-channel data
bus. These differential clock outputs are used to
latch the output data and, if used, should always
be terminated with a 100Ω differential resistor
placed as closely as possible to the differential
receiver. Delayed and non-delayed data outputs
are supplied synchronously to this signal. In 1:2
Demux Mode or Non-Demux Mode, this signal is
at ¼ or ½ the sampling clock rate, respectively.
DCLKI and DCLKQ are always in phase with
each other, unless one channel is powered down,
and do not require a pulse from DCLK_RST to
become synchronized.
ORI+/ORQ+/-
Out-of-Range Output for the I- and Q-channel.
This differential output is asserted logic-high
while the over- or under-range condition exists,
i.e. the differential signal at each respective
analog input exceeds the full-scale value. Each
OR result refers to the current Data, with which it
is clocked out. If used, each of these outputs
should always be terminated with a 100Ω
differential resistor placed as closely as possible
to the differential receiver. ORQ (Note 19).
14
Name
Equivalent Circuit
J18/J19
H19/H20
H17/H18
G19/G20
G17/G18
F18/F19
E19/E20
D19/D20
D18/E18
C19/C20
B19/B20
B18/C17
·
M18/M19
N19/N20
N17/N18
P19/P20
P17/P18
R18/R19
T19/T20
U19/U20
U18/T18
V19/V20
W19/W20
W18/V17
DI11+/DI10+/DI9+/DI8+/DI7+/DI6+/DI5+/DI4+/DI3+/DI2+/DI1+/DI0+/·
DQ11+/DQ10+/DQ9+/DQ8+/DQ7+/DQ6+/DQ5+/DQ4+/DQ3+/DQ2+/DQ1+/DQ0+/-
I- and Q-channel Digital Data Outputs. In NonDemux Mode, this LVDS data is transmitted at
the sampling clock rate. In Demux Mode, these
outputs provide ½ the data at ½ the sampling
clock rate, synchronized with the delayed data,
i.e. the other ½ of the data which was sampled
one clock cycle earlier. Compared with the DId
and DQd outputs, these outputs represent the
later time samples. If used, each of these outputs
should always be terminated with a 100Ω
differential resistor placed as closely as possible
to the differential receiver.
A18/A19
B17/C16
A16/B16
B15/C15
C14/D14
A14/B14
B13/C13
C12/D12
A12/B12
B11/C11
C10/D10
A10/B10
·
Y18/Y19
W17/V16
Y16/W16
W15/V15
V14/U14
Y14/W14
W13/V13
V12/U12
Y12/W12
W11/V11
V10/U10
Y10/W10
DId11+/DId10+/DId9+/DId8+/DId7+/DId6+/DId5+/DId4+/DId3+/DId2+/DId1+/DId0+/·
DQd11+/DQd10+/DQd9+/DQd8+/DQd7+/DQd6+/DQd5+/DQd4+/DQd3+/DQd2+/DQd1+/DQd0+/-
Delayed I- and Q-channel Digital Data Outputs.
In Non-Demux Mode, these outputs are at TRISTATE. In Demux Mode, these outputs provide
½ the data at ½ the sampling clock rate,
synchronized with the non-delayed data, i.e. the
other ½ of the data which was sampled one clock
cycle later. Compared with the DI and DQ
outputs, these outputs represent the earlier time
samples. If used, each of these outputs should
always be terminated with a 100Ω differential
resistor placed as closely as possible to the
differential receiver.
15
Description
www.ti.com
ADC12D2000RF 12-Bit 4.0 GSPS RF Sampling ADC
Ball No.
ADC12D2000RF 12-Bit 4.0 GSPS RF Sampling ADC
10.0 Absolute Maximum Ratings
11.0 Operating Ratings
(Note 1, Note 2)
(Note 1, Note 2)
Supply Voltage (VA, VTC, VDR, VE)
Supply Difference
max(VA/TC/DR/E)min(VA/TC/DR/E)
Voltage on Any Input Pin
(except VIN+/-)
0V to 100 mV
−0.15V to
(VA + 0.15V)
VIN+/- Voltage Range
-0.5V to 2.5V
Ground Difference
max(GNDTC/DR/E)
-min(GNDTC/DR/E)
Input Current at Any Pin (Note 3)
ADC12D2000RF Package Power
Dissipation at TA ≤ 45°C (Note 3)
ESD Susceptibility (Note 4)
Human Body Model
Charged Device Model
Machine Model
Storage Temperature
Ambient Temperature Range
ADC12D2000RF (Standard
−40°C ≤ TA ≤ +45°C
JEDEC thermal model)
ADC12D2000RF (Enhanced
−40°C ≤ TA ≤ +85°C
thermal model / heatsink)
Junction Temperature Range applies only to maximum operating
TJ ≤ +120°C
speed
Supply Voltage (VA, VTC, VE)
+1.9V to +2.1V
Driver Supply Voltage (VDR)
+1.9V to VA
2.2V
0V to 100 mV
±50 mA
VIN+/- Voltage Range (Note 14)
VIN+/- Differential Voltage Range
(Note 15)
5.34 W
2500V
1000V
250V
−65°C to +150°C
VIN+/- Current Range (Note 14)
VIN+/- Power
-0.4V to 2.4V
(d.c.-coupled)
1.0V (d.c.-coupled
@100% duty cycle)
2.0V (d.c.-coupled
@20% duty cycle)
2.8V (d.c.-coupled
@10% duty cycle)
±50 mA peak
(a.c.-coupled)
15.3 dBm
(maintaining
common mode
voltage, a.c.coupled)
17.1 dBm
(not maintaining
common mode
voltage, a.c.coupled)
Ground Difference
max(GNDTC/DR/E)
-min(GNDTC/DR/E)
0V
0V to VA
CLK+/- Voltage Range
Differential CLK Amplitude
0.4VP-P to 2.0VP-P
Common Mode Input Voltage
VCMO - 150mV <
VCMI < VCMO +150mV
TABLE 5. Package Thermal Resistance
Package
θJA
292-Ball BGA Thermally 16°C/W
Enhanced Package
θJC1
θJC2
2.9°C/W 2.5°C/W
Soldering process must comply with Texas Instruments’ Reflow Temperature Profile specifications. Refer to
www.national.com/packaging.
www.ti.com
16
Unless otherwise specified, the following apply after calibration for VA = VDR = VTC = VE = +2.0V; I- and Q-channels, AC-coupled,
unused channel terminated to AC ground, FSR Pin = High; Differential, AC coupled Sine Wave Sampling Clock, fCLK = 2.0 GHz at
0.5 VP-P with 50% duty cycle (as specified); VBG = Floating; Extended Control Mode with Register 6h written to 1C0Eh; Rext =
Rtrim = 3300Ω ± 0.1%; Analog Signal Source Impedance = 100Ω Differential; 1:2 Demultiplex Non-DES Mode; Duty Cycle Stabilizer
on. Boldface limits apply for TA = TMIN to TMAX and for TJ < 120°C. All other limits TA = 25°C, unless otherwise noted. (Note 5,
Note 6, Note 7)
TABLE 6. Static Converter Characteristics
Symbol
Parameter
Conditions
ADC12D2000RF
Typ
Resolution with No Missing Codes
Lim
Units
(Limits)
12
bits
INL
Integral Non-Linearity
(Best fit)
1 MHz DC-coupled over-ranged
sine wave
±2.5
LSB
DNL
Differential Non-Linearity
1 MHz DC-coupled over-ranged
sine wave
±0.5
LSB
VOFF
Offset Error
5
LSB
VOFF_ADJ
Input Offset Adjustment Range
Extended Control Mode
±45
mV
PFSE
Positive Full-Scale Error
(Note 8)
±25
mV (max)
NFSE
Negative Full-Scale Error
(Note 8)
±25
mV (max)
Out-of-Range Output Code (Note (VIN+) − (VIN−) > + Full Scale
9)
(VIN+) − (VIN−) < − Full Scale
4095
0
TABLE 7. Dynamic Converter Characteristics
(Note 10)
Symbol
Parameter
Bandwidth
Conditions
ADC12D2000RF
Typ
Lim
Units
(Limits)
Non-DES Mode, DESCLKIQ Mode
-3 dB (Note 17)
2.7
GHz
-6 dB
3.1
GHz
-9 dB
3.5
GHz
-12 dB
4.0
GHz
-3 dB (Note 17)
1.2
GHz
-6 dB
2.3
GHz
-9 dB
2.7
GHz
-12 dB
3.0
GHz
-3 dB (Note 17)
1.75
GHz
-6 dB
2.7
GHz
DESI Mode, DESQ Mode
DESIQ Mode
17
www.ti.com
ADC12D2000RF 12-Bit 4.0 GSPS RF Sampling ADC
12.0 Converter Electrical Characteristics
ADC12D2000RF 12-Bit 4.0 GSPS RF Sampling ADC
Symbol
Parameter
Gain Flatness
Conditions
ADC12D2000RF
Typ
Lim
Units
(Limits)
Non-DES Mode
D.C. to Fs/2
±0.4
dB
D.C. to Fs
±1.1
dB
D.C. to 3Fs/2
±1.7
dB
D.C. to 2Fs
±5.7
dB
D.C. to Fs/2
±2.7
dB
D.C. to Fs
±9.2
dB
±1.6
dB
±1.2
dB
10-18
Error/
Sample
FIN = 2670 MHz ± 2.5MHz
@ -13 dBFS
-73.6
dBFS
-60.6
dBc
FIN = 2070 MHz ± 2.5MHz
@ -13 dBFS
-76.1
dBFS
-60.1
dBc
FIN = 2670 MHz ± 2.5MHz
@ -16 dBFS
-80.7
dBFS
-64.7
dBc
FIN = 2070 MHz ± 2.5MHz
@ -16 dBFS
-70.9
dBFS
-54.9
dBc
50Ω single-ended termination,
DES Mode
-154
dBm/Hz
-153
dBFS/Hz
DESI, DESQ Mode
DESIQ Mode
D.C. to Fs/2
DESCLKIQ Mode
D.C. to Fs/2
CER
Code Error Rate
IMD3
3rd order Intermodulation
Distortion
Noise Floor Density
www.ti.com
DES Mode
18
Parameter
Conditions
ADC12D2000RF
Typ
Lim
Units
(Limits)
Non-DES Mode (Note 11, Note 13, Note 20)
ENOB
SINAD
SNR
THD
2nd Harm
3rd Harm
SFDR
Effective Number of Bits
Signal-to-Noise Plus Distortion
Ratio
Signal-to-Noise Ratio
Total Harmonic Distortion
Second Harmonic Distortion
Third Harmonic Distortion
Spurious-Free Dynamic Range
AIN = 125 MHz @ -0.5 dBFS
8.9
AIN = 248 MHz @ -0.5 dBFS
8.9
AIN = 498 MHz @ -0.5 dBFS
8.7
AIN = 1147 MHz @ -0.5 dBFS
8.3
bits
AIN = 1448 MHz @ -0.5 dBFS
8.1
bits
AIN = 125 MHz @ -0.5 dBFS
55.1
dB
AIN = 248 MHz @ -0.5 dBFS
55.1
dB
AIN = 498 MHz @ -0.5 dBFS
54.4
AIN = 1147 MHz @ -0.5 dBFS
51.5
dB
AIN = 1448 MHz @ -0.5 dBFS
50.3
dB
AIN = 125 MHz @ -0.5 dBFS
55.6
dB
AIN = 248 MHz @ -0.5 dBFS
55.6
AIN = 498 MHz @ -0.5 dBFS
54.8
AIN = 1147 MHz @ -0.5 dBFS
51.9
dB
AIN = 1448 MHz @ -0.5 dBFS
50.6
dB
AIN = 125 MHz @ -0.5 dBFS
-64.4
dB
AIN = 248 MHz @ -0.5 dBFS
-65.2
dB
AIN = 498 MHz @ -0.5 dBFS
-65.2
AIN = 1147 MHz @ -0.5 dBFS
-63.0
AIN = 1448 MHz @ -0.5 dBFS
-63.4
dB
AIN = 125 MHz @ -0.5 dBFS
-79.8
dBc
AIN = 248 MHz @ -0.5 dBFS
-75.5
dBc
AIN = 498 MHz @ -0.5 dBFS
-69.5
dBc
AIN = 1147 MHz @ -0.5 dBFS
-67.5
dBc
AIN = 1448 MHz @ -0.5 dBFS
-71.8
dBc
AIN = 125 MHz @ -0.5 dBFS
-67.8
dBc
AIN = 248 MHz @ -0.5 dBFS
-68.3
dBc
AIN = 498 MHz @ -0.5 dBFS
-71.1
dBc
AIN = 1147 MHz @ -0.5 dBFS
-66.1
dBc
AIN = 1448 MHz @ -0.5 dBFS
-67.5
dBc
AIN = 125 MHz @ -0.5 dBFS
66.4
dBc
AIN = 248 MHz @ -0.5 dBFS
67.8
AIN = 498 MHz @ -0.5 dBFS
64.6
AIN = 1147 MHz @ -0.5 dBFS
57.3
dBc
AIN = 1448 MHz @ -0.5 dBFS
55.9
dBc
19
bits
bits
8.0
49.7
bits (min)
dB (min)
dB
50.1
-60
dB (min)
dB (max)
dB
dBc
50.4
dBc (min)
www.ti.com
ADC12D2000RF 12-Bit 4.0 GSPS RF Sampling ADC
Symbol
ADC12D2000RF 12-Bit 4.0 GSPS RF Sampling ADC
Symbol
Parameter
Conditions
ADC12D2000RF
Typ
Lim
Units
(Limits)
DES Mode (Note 11, Note 12, Note 13, Note 20)
ENOB
SINAD
SNR
THD
2nd Harm
3rd Harm
SFDR
www.ti.com
Effective Number of Bits
Signal-to-Noise Plus Distortion
Ratio
Signal-to-Noise Ratio
Total Harmonic Distortion
Second Harmonic Distortion
Third Harmonic Distortion
Spurious-Free Dynamic Range
AIN = 125 MHz @ -0.5 dBFS
8.9
bits
AIN = 248 MHz @ -0.5 dBFS
8.9
bits
AIN = 498 MHz @ -0.5 dBFS
8.6
bits
AIN = 1147 MHz @ -0.5 dBFS
8.3
bits
AIN = 1448 MHz @ -0.5 dBFS
8.1
bits
AIN = 125 MHz @ -0.5 dBFS
55.1
dB
AIN = 248 MHz @ -0.5 dBFS
55.1
dB
AIN = 498 MHz @ -0.5 dBFS
53.7
dB
AIN = 1147 MHz @ -0.5 dBFS
51.5
dB
AIN = 1448 MHz @ -0.5 dBFS
50.2
dB
AIN = 125 MHz @ -0.5 dBFS
55.6
dB
AIN = 248 MHz @ -0.5 dBFS
55.6
dB
AIN = 498 MHz @ -0.5 dBFS
54.1
dB
AIN = 1147 MHz @ -0.5 dBFS
51.8
dB
AIN = 1448 MHz @ -0.5 dBFS
50.6
dB
AIN = 125 MHz @ -0.5 dBFS
-63.5
dB
AIN = 248 MHz @ -0.5 dBFS
-64.6
dB
AIN = 498 MHz @ -0.5 dBFS
-64.2
dB
AIN = 1147 MHz @ -0.5 dBFS
-65.6
dB
AIN = 1448 MHz @ -0.5 dBFS
-60.7
dB
AIN = 125 MHz @ -0.5 dBFS
-75.5
dBc
AIN = 248 MHz @ -0.5 dBFS
-76.7
dBc
AIN = 498 MHz @ -0.5 dBFS
-79.5
dBc
AIN = 1147 MHz @ -0.5 dBFS
-79.5
dBc
AIN = 1448 MHz @ -0.5 dBFS
-64.9
dBc
AIN = 125 MHz @ -0.5 dBFS
-65.5
dBc
AIN = 248 MHz @ -0.5 dBFS
-65.4
dBc
AIN = 498 MHz @ -0.5 dBFS
-67.3
dBc
AIN = 1147 MHz @ -0.5 dBFS
-67.1
dBc
AIN = 1448 MHz @ -0.5 dBFS
-65.1
dBc
AIN = 125 MHz @ -0.5 dBFS
65.0
dBc
AIN = 248 MHz @ -0.5 dBFS
64.9
dBc
AIN = 498 MHz @ -0.5 dBFS
64.2
dBc
AIN = 1147 MHz @ -0.5 dBFS
61.9
dBc
AIN = 1448 MHz @ -0.5 dBFS
62.3
dBc
20
Symbol
Parameter
Conditions
ADC12D2000RF
Typ
Lim
Units
(Limits)
Analog Inputs
VIN_FSR
Analog Differential Input Full Scale Non-Extended Control Mode
Range
FSR Pin High
740
mVP-P
(min)
860
mVP-P
(max)
800
Extended Control Mode
CIN
RIN
FM(14:0) = 4000h (default)
800
mVP-P
FM(14:0) = 7FFFh
1000
mVP-P
Analog Input Capacitance,
Differential
Non-DES Mode (Note 9, Note 16) Each input pin to ground
0.02
pF
1.6
pF
Analog Input Capacitance,
DES Mode (Note 9, Note 16)
Differential
0.08
pF
Each input pin to ground
2.2
pF
Differential Input Resistance
100
91
Ω (min)
109
Ω (max)
Common Mode Output
VCMO
Common Mode Output Voltage
ICMO = ±100 µA
TC_VCMO
Common Mode Output Voltage
Temperature Coefficient
ICMO = ±100 µA (Note 10)
VCMO_LVL
VCMO input threshold to set
DC-coupling Mode
(Note 10)
CL_VCMO
Maximum VCMO Load Capacitance (Note 9)
1.25
1.15
V (min)
1.35
V (max)
38
ppm/°C
0.63
V
80
pF
Bandgap Reference
VBG
Bandgap Reference Output
Voltage
IBG = ±100 µA
TC_VBG
Bandgap Reference Voltage
Temperature Coefficient
IBG = ±100 µA (Note 10)
CL_VBG
Maximum Bandgap Reference
load Capacitance
(Note 9)
1.25
1.15
V (min)
1.35
V (max)
32
ppm/°C
80
21
pF
www.ti.com
ADC12D2000RF 12-Bit 4.0 GSPS RF Sampling ADC
TABLE 8. Analog Input / Output and Reference Characteristics
ADC12D2000RF 12-Bit 4.0 GSPS RF Sampling ADC
TABLE 9. I-Channel to Q-Channel Characteristics
Symbol
X-TALK
Parameter
Conditions
ADC12D2000RF
Typ
Lim
Units
(Limits)
Offset Match
(Note 10)
2
LSB
Positive Full-Scale Match
Zero offset selected in
Control Register
2
LSB
Negative Full-Scale Match
Zero offset selected in
Control Register
2
LSB
Phase Matching (I, Q)
fIN = 1.0 GHz (Note 10)