0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ADC12D800RFIUT

ADC12D800RFIUT

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    PBGA292

  • 描述:

    IC ADC 12BIT FOLD INTERP 292BGA

  • 数据手册
  • 价格&库存
ADC12D800RFIUT 数据手册
ADC12D500RF, ADC12D800RF ADC12D800/500RF 12-Bit, 1.6/1.0 GSPS RF Sampling ADC Data Manual PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Literature Number: SNAS502E July 2011 – Revised March 2013 ADC12D500RF, ADC12D800RF www.ti.com SNAS502E – JULY 2011 – REVISED MARCH 2013 Contents 1 Introduction 1.1 1.2 1.3 2 3 .............................................................................................................. 8 2.1 Block Diagram ............................................................................................................... 8 2.2 RF Performance ............................................................................................................. 9 2.3 ADC12D800/500RF Connection Diagram ............................................................................. 10 2.4 Ball Descriptions and Equivalent Circuits .............................................................................. 11 Electrical Specifications ..................................................................................................... 19 3.1 Absolute Maximum Ratings .............................................................................................. 19 3.2 Operating Ratings ......................................................................................................... 19 3.3 Package Thermal Resistance ............................................................................................ 20 Device Information 3.4 3.5 3.6 3.7 3.8 3.9 3.10 3.11 3.12 3.13 3.14 4 20 21 24 25 25 25 26 27 27 29 29 .................................................................................................... 30 Transfer Characteristic .................................................................................................... 32 Timing Diagrams .......................................................................................................... 33 Typical Performance Plots .................................................................................................. 36 Functional Description ....................................................................................................... 46 6.1 6.2 2 Converter Electrical Characteristics Static Converter Characteristics ......................................................................................... Converter Electrical Characteristics Dynamic Converter Characteristics ..................................................................................... Converter Electrical Characteristics Analog Input/Output and Reference Characteristics .................................................................. Converter Electrical Characteristics I-Channel to Q-Channel Characteristics ................................................................................ Converter Electrical Characteristics Sampling Clock Characteristics ......................................................................................... Converter Electrical Characteristics AutoSync Feature Characteristics ....................................................................................... Converter Electrical Characteristics Digital Control and Output Pin Characteristics ........................................................................ Converter Electrical Characteristics Power Supply Characteristics ............................................................................................ Converter Electrical Characteristics AC Electrical Characteristics ............................................................................................. Converter Electrical Characteristics Serial Port Interface ............................................................ Converter Electrical Characteristics Calibration ....................................................................... Specification Definitions 4.1 4.2 5 6 ........................................................................................................................ 7 Features ...................................................................................................................... 7 Applications .................................................................................................................. 7 Description ................................................................................................................... 7 Overview .................................................................................................................... Control modes ............................................................................................................. 6.2.1 Non-Extended Control Mode .................................................................................. 6.2.1.1 Dual Edge Sampling Pin (DES) .................................................................. 6.2.1.2 Non-Demultiplexed Mode Pin (NDM) ............................................................ 6.2.1.3 Dual Data Rate Phase Pin (DDRPh) ............................................................ 6.2.1.4 Calibration Pin (CAL) .............................................................................. 6.2.1.5 Calibration Delay Pin (CalDly) .................................................................... 6.2.1.6 Power Down I-channel Pin (PDI) ................................................................ 6.2.1.7 Power Down Q-channel Pin (PDQ) .............................................................. 6.2.1.8 Test Pattern Mode Pin (TPM) .................................................................... 6.2.1.9 Full-Scale Input Range Pin (FSR) ............................................................... 6.2.1.10 AC/DC-Coupled Mode Pin (VCMO) ............................................................... 6.2.1.11 LVDS Output Common-mode Pin (VBG) ........................................................ 6.2.2 Extended Control Mode ........................................................................................ Contents 46 46 46 47 47 47 48 48 48 48 48 49 49 49 49 Copyright © 2011–2013, Texas Instruments Incorporated ADC12D500RF, ADC12D800RF www.ti.com 6.3 6.4 SNAS502E – JULY 2011 – REVISED MARCH 2013 6.2.2.1 The Serial Interface ................................................................................ Features .................................................................................................................... 6.3.1 Input Control and Adjust ....................................................................................... 6.3.1.1 AC/DC-coupled Mode ............................................................................. 6.3.1.2 Input Full-Scale Range Adjust .................................................................... 6.3.1.3 Input Offset Adjust ................................................................................. 6.3.1.4 DES/Non-DES Mode .............................................................................. 6.3.1.5 DES Timing Adjust ................................................................................. 6.3.1.6 Sampling Clock Phase Adjust .................................................................... 6.3.2 Output Control and Adjust ..................................................................................... 6.3.2.1 SDR / DDR Clock .................................................................................. 6.3.2.2 LVDS Output Differential Voltage ................................................................ 6.3.2.3 LVDS Output Common-Mode Voltage .......................................................... 6.3.2.4 Output Formatting .................................................................................. 6.3.2.5 Demux/Non-demux Mode ......................................................................... 6.3.2.6 Test Pattern Mode ................................................................................. 6.3.2.7 Time Stamp ......................................................................................... 6.3.3 Calibration Feature ............................................................................................. 6.3.3.1 Calibration Control Pins and Bits ................................................................ 6.3.3.2 How to Execute a Calibration .................................................................... 6.3.3.3 Power-on Calibration .............................................................................. 6.3.3.4 On-command Calibration ......................................................................... 6.3.3.5 Calibration Adjust .................................................................................. 6.3.3.6 Read/Write Calibration Settings .................................................................. 6.3.3.7 Calibration and Power-Down ..................................................................... 6.3.3.8 Calibration and the Digital Outputs .............................................................. 6.3.4 Power Down ..................................................................................................... Applications Information .................................................................................................. 6.4.1 THE ANALOG INPUTS ........................................................................................ 6.4.1.1 Acquiring the Input ................................................................................. 6.4.1.2 Driving the ADC in DES Mode ................................................................... 6.4.1.3 FSR and the Reference Voltage ................................................................. 6.4.1.4 Out-Of-Range Indication .......................................................................... 6.4.1.5 Maximum Input Range ............................................................................ 6.4.1.6 AC-coupled Input Signals ......................................................................... 6.4.1.7 DC-coupled Input Signals ......................................................................... 6.4.1.8 Single-Ended Input Signals ....................................................................... 6.4.2 THE CLOCK INPUTS .......................................................................................... 6.4.2.1 CLK Coupling ....................................................................................... 6.4.2.2 CLK Frequency ..................................................................................... 6.4.2.3 CLK Level ........................................................................................... 6.4.2.4 CLK Duty Cycle .................................................................................... 6.4.2.5 CLK Jitter ............................................................................................ 6.4.2.6 CLK Layout ......................................................................................... 6.4.3 THE LVDS OUTPUTS ......................................................................................... 6.4.3.1 Common-mode and Differential Voltage ........................................................ 6.4.3.2 Output Data Rate .................................................................................. 6.4.3.3 Terminating Unused LVDS Output Pins ........................................................ 6.4.4 SYNCHRONIZING MULTIPLE ADC12D800/500RFS IN A SYSTEM ................................... 6.4.4.1 AutoSync Feature .................................................................................. 6.4.4.2 DCLK Reset Feature .............................................................................. 6.4.5 SUPPLY/GROUNDING, LAYOUT AND THERMAL RECOMMENDATIONS ........................... 6.4.5.1 Power Planes ....................................................................................... Copyright © 2011–2013, Texas Instruments Incorporated Contents 49 51 53 53 53 53 53 54 54 54 54 55 55 56 56 56 57 57 57 58 58 58 59 59 60 60 60 60 60 60 60 61 62 62 62 63 63 63 63 64 64 64 64 64 65 65 65 65 65 66 66 67 67 3 ADC12D500RF, ADC12D800RF SNAS502E – JULY 2011 – REVISED MARCH 2013 6.5 6.4.5.2 Bypass Capacitors ................................................................................. 6.4.5.3 Ground Planes ..................................................................................... 6.4.5.4 Power System Example ........................................................................... 6.4.5.5 Thermal Management ............................................................................. 6.4.6 SYSTEM POWER-ON CONSIDERATIONS ................................................................ 6.4.6.1 Power-on, Configuration, and Calibration ....................................................... 6.4.6.2 Power-on and Data Clock (DCLK) ............................................................... 6.4.7 RECOMMENDED SYSTEM CHIPS ......................................................................... 6.4.7.1 Temperature Sensor ............................................................................... 6.4.7.2 Clocking Device .................................................................................... 6.4.7.3 Amplifiers for the Analog Input ................................................................... 6.4.7.4 Balun Recommendations for Analog Input ..................................................... Register Definitions ....................................................................................................... Revision History 4 www.ti.com Contents 67 67 68 68 70 70 71 72 72 73 73 73 74 ......................................................................................................................... 80 Copyright © 2011–2013, Texas Instruments Incorporated ADC12D500RF, ADC12D800RF www.ti.com SNAS502E – JULY 2011 – REVISED MARCH 2013 List of Figures 2-1 ADC12D800RF DES Mode IMD3 ................................................................................................ 9 2-2 ADC12D800RF DES Mode FFT 2-3 4-1 4-2 4-3 4-4 4-5 4-6 4-7 4-8 4-9 6-1 6-2 6-3 6-4 6-5 6-6 6-7 6-8 6-9 6-10 6-11 6-12 6-13 6-14 6-15 6-16 ............................................................................................... See Package Number NXA0292A ............................................................................................. LVDS Output Signal Levels ..................................................................................................... Input / Output Transfer Characteristic ........................................................................................ Clocking in 1:2 Demux Non-DES Mode* ...................................................................................... Clocking in Non-Demux Non-DES Mode*..................................................................................... Clocking in 1:4 Demux DES Mode* ............................................................................................ Clocking in Non-Demux Mode DES Mode* ................................................................................... Data Clock Reset Timing (Demux Mode) ..................................................................................... Power-on and On-Command Calibration Timing............................................................................. Serial Interface Timing ........................................................................................................... Serial Data Protocol - Read Operation ........................................................................................ Serial Data Protocol - Write Operation ........................................................................................ DDR DCLK-to-Data Phase Relationship ...................................................................................... SDR DCLK-to-Data Phase Relationship ...................................................................................... Driving DESIQ Mode ............................................................................................................. AC-coupled Differential Input ................................................................................................... Single-Ended to Differential Conversion Using a Balun ..................................................................... Differential Input Clock Connection ............................................................................................ AutoSync Example ............................................................................................................... Power and Grounding Example ................................................................................................ HSBGA Conceptual Drawing ................................................................................................... Power-on with Control Pins set by Pull-up/down Resistors................................................................. Power-on with Control Pins set by FPGA pre Power-on Cal ............................................................... Power-on with Control Pins set by FPGA post Power-on Cal .............................................................. Supply and DCLK Ramping ..................................................................................................... Typical Temperature Sensor Application ...................................................................................... Copyright © 2011–2013, Texas Instruments Incorporated List of Figures 10 10 31 33 33 34 34 34 35 35 35 51 51 55 55 61 62 63 64 66 68 69 71 71 71 72 73 5 ADC12D500RF, ADC12D800RF SNAS502E – JULY 2011 – REVISED MARCH 2013 www.ti.com List of Tables 2-1 Analog Front-End and Clock Balls ............................................................................................. 11 2-2 Control and Status Balls ......................................................................................................... 13 2-3 Power and Ground Balls 2-4 High-Speed Digital Outputs ..................................................................................................... 17 6-1 Non-ECM Pin Summary ......................................................................................................... 47 6-2 Serial Interface Pins.............................................................................................................. 49 6-3 Command and Data Field Definitions 6-4 6-5 ........................................................................................................ ......................................................................................... Features and Modes ............................................................................................................ Supported Demux, Data Rate Modes ......................................................................................... 16 50 52 56 6-6 Test Pattern by Output Port in Demux Mode ...................................................................................................................... 56 6-7 Test Pattern by Output Port in Non-Demux Mode ................................................................................................................ 57 6-8 Calibration Pins ................................................................................................................... 58 6-9 Unused Analog Input Recommended Termination .......................................................................... 61 6-10 Unused AutoSync and DCLK Reset Pin Recommendation ................................................................ 66 6-11 Temperature Sensor Recommendation ....................................................................................... 72 6-12 Amplifier Recommendations .................................................................................................... 73 6-13 Balun Recommendations ........................................................................................................ 73 6-14 Register Addresses .............................................................................................................. 74 6-15 Configuration Register 1......................................................................................................... 74 6-16 Reserved .......................................................................................................................... 75 6-17 I-channel Offset Adjust 6-18 I-channel Full Scale Range Adjust ............................................................................................. 75 6-19 Calibration Adjust ................................................................................................................. 76 6-20 Calibration Values ................................................................................................................ 76 6-21 Reserved - ADC12D800RF ..................................................................................................... 76 6-22 Reserved - ADC12D500RF ..................................................................................................... 76 6-23 DES Timing Adjust ............................................................................................................... 77 6-24 Reserved .......................................................................................................................... 77 6-25 Reserved .......................................................................................................................... 77 6-26 Q-channel Offset Adjust ......................................................................................................... 77 6-27 Q-channel Full-Scale Range Adjust 6-28 Aperture Delay Coarse Adjust .................................................................................................. 78 6-29 Aperture Delay Fine Adjust 6-30 AutoSync .......................................................................................................................... 79 6-31 Reserved .......................................................................................................................... 79 6 List of Tables .......................................................................................................... ........................................................................................... ..................................................................................................... 75 78 78 Copyright © 2011–2013, Texas Instruments Incorporated ADC12D500RF, ADC12D800RF www.ti.com SNAS502E – JULY 2011 – REVISED MARCH 2013 ADC12D800/500RF 12-Bit, 1.6/1.0 GSPS RF Sampling ADC Check for Samples: ADC12D500RF, ADC12D800RF 1 Introduction 1.1 Features 12 • Excellent Noise and Linearity up to and Above fIN = 2.7 GHz • Configurable to Either 1.6/1.0 GSPS Interleaved or 800/500 MSPS Dual ADC • New DESCLKIQ Mode for High Bandwidth, High Sampling Rate Apps • Pin-Compatible with ADC1xD1x00 • AutoSync Feature for Multi-Chip Synchronization • Internally Terminated, Buffered, Differential Analog Inputs • Interleaved Timing Automatic and Manual Skew Adjust • Test Patterns at Output for System Debug • Time Stamp Feature to Capture External Trigger • Programmable Gain, Offset, and tAD Adjust Feature • 1:1 Non-Demuxed or 1:2 Demuxed LVDS Outputs 1.2 • • • • Applications 3G/4G Wireless Basestation – Receive Path – DPD Path Wideband Microwave Backhaul RF Sampling Software Defined Radio Military Communications 1.3 • Key Specifications – Resolution 12 Bits – Interleaved 1.6/1.0 GSPS ADC • IMD3 (Fin = 2.7GHz @ -13dBFS): -63/-61 dBc (typ) • IMD3 (Fin = 2.7GHz @ -16dBFS): -71/-69 dBc (typ) • Noise Floor: -152.2/-150.5 dBm/Hz (typ) • Noise Power Ratio: 50.4/50.7 dB (typ) • Power: 2.50/2.02 W (typ) – Dual 800/500 MSPS ADC, Fin = 498 MHz • ENOB: 9.5/9.6 Bits (typ) • SNR: 59.7/59.7 dB (typ) • SFDR: 71.2/72 dBc (typ) • Power per Channel: 1.25/1.01 W (typ) • • • • • SIGINT RADAR / LIDAR Wideband Communications Consumer RF Test and Measurement Description The 12-bit 1.6/1.0 GSPS ADC12D800/500RF is an RF-sampling GSPS ADC that can directly sample input frequencies up to and above 2.7 GHz. The ADC12D800/500RF augments the very large Nyquist zone of TI’s GSPS ADCs with excellent noise and linearity performance at RF frequencies, extending its usable range beyond the 7th Nyquist zone The ADC12D800/500RF provides a flexible LVDS interface which has multiple SPI programmable options to facilitate board design and FPGA/ASIC data capture. The LVDS outputs are compatible with IEEE 1596.3-1996 and supports programmable common mode voltage. The product is packaged in a lead-free 292-ball thermally enhanced BGA package over the rated industrial temperature range of -40°C to +85°C. 1 2 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2011–2013, Texas Instruments Incorporated ADC12D500RF, ADC12D800RF SNAS502E – JULY 2011 – REVISED MARCH 2013 2 Device Information 2.1 Block Diagram 8 Device Information www.ti.com Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ADC12D500RF ADC12D800RF ADC12D500RF, ADC12D800RF www.ti.com 2.2 SNAS502E – JULY 2011 – REVISED MARCH 2013 RF Performance -50 IMD3(dBFS) -60 -7dBFS -10dBFS -13dBFS -16dBFS -70 -80 -90 -100 0.0 A. B. C. 0.5 1.0 1.5 2.0 2.5 FREQUENCY (GHz) 3.0 CW Blocker: Fin = 2710.47MHz; Total Power = -13dBFS WCDMA Blocker: Fc = 2700MHz; Bandwidth = 3.84MHz; Total Power = -13dBFS IMD3 Product Power = -73dBFS Figure 2-1. ADC12D800RF DES Mode IMD3 0 MAGNITUDE (dB) Fin = 2.7GHz -30 -60 -90 -120 470 475 480 485 490 495 500 505 FREQUENCY (MHz) Figure 2-2. ADC12D800RF DES Mode FFT Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ADC12D500RF ADC12D800RF Device Information 9 ADC12D500RF, ADC12D800RF SNAS502E – JULY 2011 – REVISED MARCH 2013 2.3 www.ti.com ADC12D800/500RF Connection Diagram 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 A GND V_A SDO TPM NDM V_A GND V_E GND_E DId0+ V_DR DId3+ GND_DR DId6+ V_DR DId9+ B Vbg GND ECEb SDI CalRun V_A GND GND_E V_E DId0- DId2+ DId3- DId5+ DId6- DId8+ DId9- DId10+ C Rtrim+ Vcmo Rext+ SCSb SCLK V_A NC V_E GND_E DId1+ DId2- DId4+ DId5- DId7+ DId8- DId10- D DNC Rtrim- Rext- GND GND CAL DNC V_A V_A DId1- V_DR DId4- GND_DR DId7- V_DR GND_DR E V_A Tdiode+ DNC F V_A G 18 19 20 DId11- GND_DR A DI0+ DI1+ DI1- B DI0- V_DR DI2+ DI2- C V_DR DI3+ DI4+ DI4- D GND GND_DR DI3- DI5+ DI5- E GND_TC Tdiode- DNC GND_DR DI6+ DI6- GND_DR F V_TC GND_TC V_TC V_TC DI7+ DI7- DI8+ DI8- G H VinI+ V_TC GND_TC V_A GND GND GND GND GND GND DI9+ DI9- DI10+ DI10- H J VinI- GND_TC V_TC VbiasI GND GND GND GND GND GND V_DR DI11+ DI11- V_DR J K GND VbiasI V_TC GND_TC GND GND GND GND GND GND ORI+ ORI- DCLKI+ DCLKI- K L GND VbiasQ V_TC GND_TC GND GND GND GND GND GND ORQ+ ORQ- DCLKQ+ DCLKQ- L M VinQ- GND_TC V_TC VbiasQ GND GND GND GND GND GND N VinQ+ V_TC GND_TC V_A GND GND GND GND GND GND P V_TC GND_TC V_TC R V_A GND_TC V_TC T V_A GND_TC GND_TC U GND_TC CLK+ PDI GND GND RCOut1- V CLK- DCLK _RST+ PDQ CalDly DES RCOut2+ RCOut2- W DCLK _RST- GND DNC DDRPh RCLK- Y GND V_A FSR RCLK+ RCOut1+ 1 2 3 GND_DR DId11+ GND_DR DQ11+ DQ11- GND_DR M DQ9+ DQ9- DQ10+ DQ10- N V_TC DQ7+ DQ7- DQ8+ DQ8- P V_TC V_DR DQ6+ DQ6- V_DR R GND V_DR DQ3- DQ5+ DQ5- T 4 5 DNC V_A V_A DQd1- V_DR DQd4- V_E GND_E DQd1+ DQd2- DQd4+ DQd5- DQd5+ V_DR V_DR GND_DR DQ3+ DQ4+ DQ4- U DQd7+ DQd8- DQd10- DQ0- GND_DR DQ2+ DQ2- V DQd6- DQd8+ DQd9- DQd10+ DQ0+ DQ1+ DQ1- W V_DR DQd9+ GND_DR DQd11+ DQd11- GND_DR GND_DR DQd7- V_A GND GND_E V_E DQd0- DQd2+ DQd3- V_A GND V_E GND_E DQd0+ V_DR DQd3+ GND_DR DQd6+ 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Y 20 Figure 2-3. See Package Number NXA0292A The center ground pins are for thermal dissipation and must be soldered to a ground plane to ensure rated performance. See SUPPLY/GROUNDING, LAYOUT AND THERMAL RECOMMENDATIONS for more information. 10 Device Information Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ADC12D500RF ADC12D800RF ADC12D500RF, ADC12D800RF www.ti.com 2.4 SNAS502E – JULY 2011 – REVISED MARCH 2013 Ball Descriptions and Equivalent Circuits Table 2-1. Analog Front-End and Clock Balls Ball No. Name Equivalent Circuit Description Differential signal I- and Q-inputs. In the Non-Dual Edge Sampling (Non-DES) Mode, each I- and Qinput is sampled and converted by its respective channel with each positive transition of the CLK input. In Non-ECM (Non-Extended Control Mode) and DES Mode, both channels sample the I-input. In Extended Control Mode (ECM), the Q-input may optionally be selected for conversion in DES Mode by the DEQ Bit (Addr: 0h, Bit 6). VA 50k AGND H1/J1 N1/M1 VinI+/VinQ+/- VCMO 100 Control from VCMO VA Each I- and Q-channel input has an internal common mode bias that is disabled when DCcoupled Mode is selected. Both inputs must be either AC- or DC-coupled. The coupling mode is selected by the VCMO Pin. In Non-ECM, the full-scale range of these inputs is determined by the FSR Pin; both I- and Qchannels have the same full-scale input range. In ECM, the full-scale input range of the I- and Qchannel inputs may be independently set via the Control Register (Addr: 3h and Addr: Bh). Note that the high and low full-scale input range setting in Non-ECM corresponds to the mid and minimum full-scale input range in ECM. 50k AGND The input offset may also be adjusted in ECM. VA U2/V1 50k AGND CLK+/- VA 100 VBIAS 50k Differential Converter Sampling Clock. In the NonDES Mode, the analog inputs are sampled on the positive transitions of this clock signal. In the DES Mode, the selected input is sampled on both transitions of this clock. This clock must be ACcoupled. AGND VA V2/W1 AGND DCLK_RST+/- 100 VA Differential DCLK Reset. A positive pulse on this input is used to reset the DCLKI and DCLKQ outputs of two or more ADC12D800/500RFs in order to synchronize them with other ADC12D800/500RFs in the system. DCLKI and DCLKQ are always in phase with each other, unless one channel is powered down, and do not require a pulse from DCLK_RST to become synchronized. The pulse applied here must meet timing relationships with respect to the CLK input. Although supported, this feature has been superseded by AutoSync. (1) AGND (1) This pin/bit functionality is not tested in production test; performance is tested in the specified/default mode only. Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ADC12D500RF ADC12D800RF Device Information 11 ADC12D500RF, ADC12D800RF SNAS502E – JULY 2011 – REVISED MARCH 2013 www.ti.com Table 2-1. Analog Front-End and Clock Balls (continued) Ball No. Name Equivalent Circuit Description VA VCMO C2 200k VCMO Enable AC Coupling 8 pF GND Bandgap Voltage Output or LVDS Common-mode Voltage Select. This pin provides a buffered version of the bandgap output voltage and is capable of sourcing/sinking 100 uA and driving a load of up to 80 pF. Alternately, this pin may be used to select the LVDS digital output commonmode voltage. If tied to logic-high, the 1.2V LVDS common-mode voltage is selected; 0.8V is the default. VA B1 Common Mode Voltage Output or Signal Coupling Select. If AC-coupled operation at the analog inputs is desired, this pin should be held at logiclow level. This pin is capable of sourcing/ sinking up to 100 µA. For DC-coupled operation, this pin should be left floating or terminated into highimpedance. In DC-coupled Mode, this pin provides an output voltage which is the optimal commonmode voltage for the input signal and should be used to set the common-mode voltage of the driving buffer. VBG GND VA C3/D3 Rext+/- V External Reference Resistor terminals. A 3.3 kΩ ±0.1% resistor should be connected between Rext+/-. The Rext resistor is used as a reference to trim internal circuits which affect the linearity of the converter; the value and precision of this resistor should not be compromised. GND VA C1/D2 Rtrim+/- V Input Termination Trim Resistor terminals. A 3.3 kΩ ±0.1% resistor should be connected between Rtrim+/-. The Rtrim resistor is used to establish the calibrated 100Ω input impedance of VinI, VinQ and CLK. These impedances may be fine tuned by varying the value of the resistor by a corresponding percentage; however, the tuning range and performance is not specified for such an alternate value. GND VA Tdiode_P E2/F3 GND Tdiode+/- VA Temperature Sensor Diode Positive (Anode) and Negative (Cathode) Terminals. This set of pins is used for die temperature measurements. It has not been fully characterized. Tdiode_N GND 12 Device Information Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ADC12D500RF ADC12D800RF ADC12D500RF, ADC12D800RF www.ti.com SNAS502E – JULY 2011 – REVISED MARCH 2013 Table 2-1. Analog Front-End and Clock Balls (continued) Ball No. Name Equivalent Circuit Description VA Y4/W5 50k AGND RCLK+/- 100 VA VBIAS 50k Reference Clock Input. When the AutoSync feature is active, and the ADC12D800/500RF is in Slave Mode, the internal divided clocks are synchronized with respect to this input clock. The delay on this clock may be adjusted when synchronizing multiple ADCs. This feature is available in ECM via Control Register (Addr: Eh). (1) AGND VA 100: Y5/U6 V6/V7 100: RCOut1+/RCOut2+/- + Reference Clock Output 1 and 2. These signals provide a reference clock at a rate of CLK/4, when enabled, independently of whether the ADC is in Master or Slave Mode. They are used to drive the RCLK of another ADC12D800/500RF, to enable automatic synchronization for multiple ADCs (AutoSync feature). The impedance of each trace from RCOut1 and RCOut2 to the RCLK of another ADC12D800/500RF should be 100Ω differential. Having two clock outputs allows the autosynchronization to propagate as a binary tree. Use the DOC Bit (Addr: Eh, Bit 1) to enable/ disable this feature; default is disabled. (1) A GND (1) This pin/bit functionality is not tested in production test; performance is tested in the specified/default mode only. Table 2-2. Control and Status Balls Ball No. Name Equivalent Circuit VA V5 DES GND Description Dual Edge Sampling (DES) Mode select. In the Non-Extended Control Mode (Non-ECM), when this input is set to logic-high, the DES Mode of operation is selected, meaning that the VinI input is sampled by both channels in a time-interleaved manner. The VinQ input is ignored. When this input is set to logic-low, the device is in Non-DES Mode, i.e. the I- and Q-channels operate independently. In the Extended Control Mode (ECM), this input is ignored and DES Mode selection is controlled through the Control Register by the DES Bit (Addr: 0h, Bit 7); default is NonDES Mode operation. VA V4 Calibration Delay select. By setting this input logichigh or logic-low, the user can select the device to wait a longer or shorter amount of time, respectively, before the automatic power-on selfcalibration is initiated. This feature is pin-controlled only and is always active during ECM and NonECM. CalDly GND Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ADC12D500RF ADC12D800RF Device Information 13 ADC12D500RF, ADC12D800RF SNAS502E – JULY 2011 – REVISED MARCH 2013 www.ti.com Table 2-2. Control and Status Balls (continued) Ball No. Name Equivalent Circuit VA D6 CAL GND Description Calibration cycle initiate. The user can command the device to execute a self-calibration cycle by holding this input high a minimum of tCAL_H after having held it low a minimum of tCAL_L. If this input is held high at the time of power-on, the automatic power-on calibration cycle is inhibited until this input is cycled low-then-high. This pin is active in both ECM and Non-ECM. In ECM, this pin is logically OR'd with the CAL Bit (Addr: 0h, Bit 15) in the Control Register. Therefore, both pin and bit must be set low and then either can be set high to execute an on-command calibration. VA B5 Calibration Running indication. This output is logic-high while the calibration sequence is executing. This output is logic-low otherwise. CalRun GND VA 50 k: U3 V3 PDI PDQ Power Down I- and Q-channel. Setting either input to logic-high powers down the respective I- or Qchannel. Setting either input to logic-low brings the respective I- or Q-channel to a operational state after a finite time delay. This pin is active in both ECM and Non-ECM. In ECM, each Pin is logically OR'd with its respective Bit. Therefore, either this pin or the PDI and PDQ Bit in the Control Register can be used to power-down the I- and Q-channel (Addr: 0h, Bit 11 and Bit 10), respectively. GND VA A4 Test Pattern Mode select. With this input at logichigh, the device continuously outputs a fixed, repetitive test pattern at the digital outputs. In the ECM, this input is ignored and the Test Pattern Mode can only be activated through the Control Register by the TPM Bit (Addr: 0h, Bit 12). TPM GND VA A5 Non-Demuxed Mode select. Setting this input to logic-high causes the digital output bus to be in the 1:1 Non-Demuxed Mode. Setting this input to logic-low causes the digital output bus to be in the 1:2 Demuxed Mode. This feature is pin-controlled only and remains active during ECM and NonECM. NDM GND 14 Device Information Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ADC12D500RF ADC12D800RF ADC12D500RF, ADC12D800RF www.ti.com SNAS502E – JULY 2011 – REVISED MARCH 2013 Table 2-2. Control and Status Balls (continued) Ball No. Name Equivalent Circuit VA Y3 FSR GND VA W4 DDRPh GND Description Full-Scale input Range select. In Non-ECM, when this input is set to logic-low or logic-high, the fullscale differential input range for both I- and Qchannel inputs is set to the lower or higher FSR value, respectively. In the ECM, this input is ignored and the full-scale range of the I- and Qchannel inputs is independently determined by the setting of Addr: 3h and Addr: Bh, respectively. Note that the high (lower) FSR value in Non-ECM corresponds to the mid (min) available selection in ECM; the FSR range in ECM is greater. DDR Phase select. This input, when logic-low, selects the 0° Data-to-DCLK phase relationship. When logic-high, it selects the 90° Data-to-DCLK phase relationship, i.e. the DCLK transition indicates the middle of the valid data outputs. This pin only has an effect when the chip is in 1:2 Demuxed Mode, i.e. the NDM pin is set to logiclow. In ECM, this input is ignored and the DDR phase is selected through the Control Register by the DPS Bit (Addr: 0h, Bit 14); the default is 0° Mode. VA 50 k: B3 ECE Extended Control Enable bar. Extended feature control through the SPI interface is enabled when this signal is asserted (logic-low). In this case, most of the direct control pins have no effect. When this signal is de-asserted (logic-high), the SPI interface is disabled, all SPI registers are reset to their default values, and all available settings are controlled via the control pins. GND VA 100 k: C4 SCS Serial Chip Select bar. In ECM, when this signal is asserted (logic-low), SCLK is used to clock in serial data which is present on SDI and to source serial data on SDO. When this signal is deasserted (logic-high), SDI is ignored and SDO is in tri-stated. GND VA 100 k: C5 SCLK Serial Clock. In ECM, serial data is shifted into and out of the device synchronously to this clock signal. This clock may be disabled and held logiclow, as long as timing specifications are not violated when the clock is enabled or disabled. GND Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ADC12D500RF ADC12D800RF Device Information 15 ADC12D500RF, ADC12D800RF SNAS502E – JULY 2011 – REVISED MARCH 2013 www.ti.com Table 2-2. Control and Status Balls (continued) Ball No. Name Equivalent Circuit Description VA 100 k: B4 Serial Data-In. In ECM, serial data is shifted into the device on this pin while SCS signal is asserted (logic-low). SDI GND VA A3 Serial Data-Out. In ECM, serial data is shifted out of the device on this pin while SCS signal is asserted (logic-low). This output is tri-stated when SCS is de-asserted. SDO GND D1, D7, E3, F4, W3, U7 DNC NONE Do Not Connect. These pins are used for internal purposes and should not be connected, i.e. left floating. Do not ground. C7 NC NONE Not Connected. This pin is not bonded and may be left floating or connected to any potential. Table 2-3. Power and Ground Balls Ball No. Name Equivalent Circuit A2, A6, B6, C6, D8, D9, E1, F1, H4, N4, R1, T1, U8, U9, W6, Y2, Y6 VA NONE Power Supply for the Analog circuitry. This supply is tied to the ESD ring. Therefore, it must be powered up before or with any other supply. G1, G3, G4, H2, J3, K3, L3, M3, N2, P1, P3, P4, R3, R4 VTC NONE Power Supply for the Track-and-Hold and Clock circuitry. A11, A15, C18, D11, D15, D17, J17, J20, R17, R20, T17, U11, U15, U16, Y11, Y15 VDR NONE Power Supply for the Output Drivers. A8, B9, C8, V8, W9, Y8 VE NONE Power Supply for the Digital Encoder. NONE Bias Voltage I-channel. This is an externally decoupled bias voltage for the I-channel. Each pin should individually be decoupled with a 100 nF capacitor via a low resistance, low inductance path to GND. NONE Bias Voltage Q-channel. This is an externally decoupled bias voltage for the Q-channel. Each pin should individually be decoupled with a 100 nF capacitor via a low resistance, low inductance path to GND. J4, K2 L2, M4 16 Device Information VbiasI VbiasQ Description Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ADC12D500RF ADC12D800RF ADC12D500RF, ADC12D800RF www.ti.com SNAS502E – JULY 2011 – REVISED MARCH 2013 Table 2-3. Power and Ground Balls (continued) Ball No. Name Equivalent Circuit A1, A7, B2, B7, D4, D5, E4, K1, L1, T4, U4, U5, W2, W7, Y1, Y7, H8:N13 Description GND NONE Ground Return for the Analog circuitry. F2, G2, H3, J2, K4, L4, M2, N3, P2, R2, T2, T3, U1 GNDTC NONE Ground Return for the Track-and-Hold and Clock circuitry. A13, A17, A20, D13, D16, E17, F17, F20, M17, M20, U13, U17, V18, Y13, Y17, Y20 GNDDR NONE Ground Return for the Output Drivers. A9, B8, C9, V9, W8, Y9 GNDE NONE Ground Return for the Digital Encoder. Table 2-4. High-Speed Digital Outputs Ball No. Name Equivalent Circuit Description VDR K19/K20 L19/L20 DCLKI+/DCLKQ+/- - + + - Data Clock Output for the I- and Q-channel data bus. These differential clock outputs are used to latch the output data and, if used, should always be terminated with a 100Ω differential resistor placed as closely as possible to the differential receiver. Delayed and non-delayed data outputs are supplied synchronously to this signal. In 1:2 Demux Mode or Non-Demux Mode, this signal is at ¼ or ½ the sampling clock rate, respectively. DCLKI and DCLKQ are always in phase with each other, unless one channel is powered down, and do not require a pulse from DCLK_RST to become synchronized. DR GND VDR K17/K18 L17/L18 ORI+/ORQ+/- - + + - Out-of-Range Output for the I- and Q-channel. This differential output is asserted logic-high while the over- or under-range condition exists, i.e. the differential signal at each respective analog input exceeds the full-scale value. Each OR result refers to the current Data, with which it is clocked out. If used, each of these outputs should always be terminated with a 100Ω differential resistor placed as closely as possible to the differential receiver. DR GND Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ADC12D500RF ADC12D800RF Device Information 17 ADC12D500RF, ADC12D800RF SNAS502E – JULY 2011 – REVISED MARCH 2013 www.ti.com Table 2-4. High-Speed Digital Outputs (continued) 18 Ball No. Name J18/J19 H19/H20 H17/H18 G19/G20 G17/G18 F18/F19 E19/E20 D19/D20 D18/E18 C19/C20 B19/B20 B18/C17 · M18/M19 N19/N20 N17/N18 P19/P20 P17/P18 R18/R19 T19/T20 U19/U20 U18/T18 V19/V20 W19/W20 W18/V17 DI11+/DI10+/DI9+/DI8+/DI7+/DI6+/DI5+/DI4+/DI3+/DI2+/DI1+/DI0+/· DQ11+/DQ10+/DQ9+/DQ8+/DQ7+/DQ6+/DQ5+/DQ4+/DQ3+/DQ2+/DQ1+/DQ0+/- A18/A19 B17/C16 A16/B16 B15/C15 C14/D14 A14/B14 B13/C13 C12/D12 A12/B12 B11/C11 C10/D10 A10/B10 · Y18/Y19 W17/V16 Y16/W16 W15/V15 V14/U14 Y14/W14 W13/V13 V12/U12 Y12/W12 W11/V11 V10/U10 Y10/W10 DId11+/DId10+/DId9+/DId8+/DId7+/DId6+/DId5+/DId4+/DId3+/DId2+/DId1+/DId0+/· DQd11+/DQd10+/DQd9+/DQd8+/DQd7+/DQd6+/DQd5+/DQd4+/DQd3+/DQd2+/DQd1+/DQd0+/- Device Information Equivalent Circuit Description VDR - + + - I- and Q-channel Digital Data Outputs. In NonDemux Mode, this LVDS data is transmitted at the sampling clock rate. In Demux Mode, these outputs provide ½ the data at ½ the sampling clock rate, synchronized with the delayed data, i.e. the other ½ of the data which was sampled one clock cycle earlier. Compared with the DId and DQd outputs, these outputs represent the later time samples. If used, each of these outputs should always be terminated with a 100Ω differential resistor placed as closely as possible to the differential receiver. DR GND VDR - + + - Delayed I- and Q-channel Digital Data Outputs. In Non-Demux Mode, these outputs are tri-stated. In Demux Mode, these outputs provide ½ the data at ½ the sampling clock rate, synchronized with the non-delayed data, i.e. the other ½ of the data which was sampled one clock cycle later. Compared with the DI and DQ outputs, these outputs represent the earlier time samples. If used, each of these outputs should always be terminated with a 100Ω differential resistor placed as closely as possible to the differential receiver. DR GND Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ADC12D500RF ADC12D800RF ADC12D500RF, ADC12D800RF www.ti.com SNAS502E – JULY 2011 – REVISED MARCH 2013 These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 3 Electrical Specifications 3.1 Absolute Maximum Ratings (1) (2) Supply Voltage (VA, VTC, VDR, VE) 2.2V Supply Difference max(VA/TC/DR/E)- min(VA/TC/DR/E) 0V to 100 mV −0.15V to (VA + 0.15V) Voltage on Any Input Pin (except VIN+/-) VIN+/- Voltage Range -0.5V to 2.5V Ground Difference max(GNDTC/DR/E) -min(GNDTC/DR/E) Input Current at Any Pin 0V to 100 mV (3) ±50 mA ADC12D800/500RF Package Power Dissipation at TA ≤ 85°C (3) 3.45 W ESD Susceptibility (4) Human Body Model 2500V Charged Device Model 1000V Machine Model 250V −65°C to +150°C Storage Temperature (1) (2) (3) (4) 3.2 Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. There is no specification of operation at the Absolute Maximum Ratings. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions. All voltages are measured with respect to GND = GNDTC = GNDDR = GNDE = 0V, unless otherwise specified. When the input voltage at any pin exceeds the power supply limits, i.e. less than GND or greater than VA, the current at that pin should be limited to 50 mA. In addition, over-voltage at a pin must adhere to the maximum voltage limits. Simultaneous over-voltage at multiple pins requires adherence to the maximum package power dissipation limits. These dissipation limits are calculated using JEDEC JESD51-7 thermal model. Higher dissipation may be possible based on specific customer thermal situation and specified package thermal resistances from junction to case. Human body model is 100 pF capacitor discharged through a 1.5 kΩ resistor. Machine model is 220 pF discharged through 0Ω. Charged device model simulates a pin slowly acquiring charge (such as from a device sliding down the feeder in an automated assembler) then rapidly being discharged. Operating Ratings (1) (2) −40°C ≤ TA ≤ 85°C ADC12D800/500RF Ambient Temperature Range (Standard JEDEC thermal model) Junction Temperature Range TJ ≤ 135°C Supply Voltage (VA, VTC, VE) +1.8V to +2.0V Driver Supply Voltage (VDR) +1.8V to VA VIN+/- Voltage Range (3) -0.4V to 2.4V (DC) VIN+/- Differential Voltage (3) 1.0V (d.c.-coupled @ 100% duty cycle) 2.0V (d.c.-coupled @ 20% duty cycle) 2.8V (d.c.-coupled @ 10% duty cycle) VIN+/- Current Range (3) ±50 mA (a.c.-coupled) VIN+/- Power 15.3 dBm (maintaining common mode voltage, a.c.-coupled) 17.1 dBm (not maintaining common-mode voltage, a.c.-coupled) Ground Difference max(GNDTC/DR/E) -min(GNDTC/DR/E) (1) (2) (3) 0V Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. There is no specification of operation at the Absolute Maximum Ratings. Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For ensured specifications and test conditions, see the Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions. All voltages are measured with respect to GND = GNDTC = GNDDR = GNDE = 0V, unless otherwise specified. Proper common mode voltage must be maintained to ensure proper output codes, especially during input overdrive. Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ADC12D500RF ADC12D800RF Electrical Specifications 19 ADC12D500RF, ADC12D800RF SNAS502E – JULY 2011 – REVISED MARCH 2013 www.ti.com Operating Ratings(1)(2) (continued) CLK+/- Voltage Range 0V to VA Differential CLK Amplitude 0.4VP-P to 2.0VP-P Common Mode Input Voltage VCMO - 150 mV < VCMI < VCMO +150 mV Package Thermal Resistance (1) (2) 3.3 (1) Package θJA θJC1 θJC2 292-Ball BGA Thermally Enhanced Package 16°C/W 2.9°C/W 2.5°C/W Soldering process must comply with Texas Instrument's Reflow Temperature Profile specifications. Refer to www.ti.com/packaging. See (Note 2). Reflow temperature profiles are different for lead-free and non-lead-free packages. (2) 3.4 Converter Electrical Characteristics Static Converter Characteristics Unless otherwise specified, the following apply after calibration for VA = VDR = VTC = VE = +1.9V; I- and Q-channels, ACcoupled, unused channel terminated to AC ground, FSR Pin = High; CL = 10 pF; Differential, AC coupled Sine Wave Sampling Clock, fCLK = 800/500 MHz at 0.5 VP-P with 50% duty cycle (as specified); VBG = Floating; Non-Extended Control Mode; Rext = Rtrim = 3300Ω ± 0.1%; Analog Signal Source Impedance = 100Ω Differential; Non-Demux Non-DES Mode; Duty Cycle Stabilizer on. Boldface limits apply for TA = TMIN to TMAX. All other limits TA = 25°C, unless otherwise noted. (1) (2) (3) Symbol Parameter Conditions ADC12D800RF Typ Resolution with No Missing Codes Lim ADC12D500RF Typ 12 Lim Units (Limits) 12 bits INL Integral Non-Linearity (Best fit) 1 MHz DC-coupled over-ranged sine wave ±2.5 ±7.25 ±2.5 ±7.25 LSB (max) DNL Differential Non-Linearity 1 MHz DC-coupled over-ranged sine wave ±0.4 ±0.95 ±0.4 ±0.95 LSB (max) VOFF Offset Error 5 5 LSB VOFF_ADJ Input Offset Adjustment Range Extended Control Mode ±45 ±45 mV PFSE Positive Full-Scale Error See (4) NFSE Negative Full-Scale Error See (4) Out-of-Range Output Code (5) (VIN+) − (VIN−) > + Full Scale 4095 4095 (VIN+) − (VIN−) < − Full Scale 0 0 (1) ±30 ±30 mV (max) ±30 ±30 mV (max) The analog inputs, labeled "I/O", are protected as shown below. Input voltage magnitudes beyond the Absolute Maximum Ratings may damage this device. V A TO INTERNAL CIRCUITRY I/O GND (2) (3) (4) (5) 20 To ensure accuracy, it is required that VA, VTC, VE and VDR be well-bypassed. Each supply pin must be decoupled with separate bypass capacitors. Typical figures are at TA = 25°C, and represent most likely parametric norms. Test limits are specified to TI's AOQL (Average Outgoing Quality Level). Calculation of Full-Scale Error for this device assumes that the actual reference voltage is exactly its nominal value. Full-Scale Error for this device, therefore, is a combination of Full-Scale Error and Reference Voltage Error. See Figure 4-2. For relationship between Gain Error and Full-Scale Error, see Specification Definitions for Gain Error. This parameter is ensured by design and is not tested in production. Electrical Specifications Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ADC12D500RF ADC12D800RF ADC12D500RF, ADC12D800RF www.ti.com 3.5 SNAS502E – JULY 2011 – REVISED MARCH 2013 Converter Electrical Characteristics Dynamic Converter Characteristics (1) Symbol Parameter Conditions Bandwidth ADC12D800RF Typ Lim ADC12D500RF Typ Lim Units (Limits) Non-DES Mode, DESCLKIQ Mode -3dB (2) 2.7 2.7 GHz -6dB 3.1 3.1 GHz -9dB 3.5 3.5 GHz -12dB 4.0 4.0 GHz -3dB (2) 1.2 1.2 GHz -6dB 2.3 2.3 GHz -9dB 2.7 2.7 GHz -12dB 3.0 3.0 GHz -3dB (2) 1.75 1.75 GHz -6dB 2.7 2.7 GHz D.C. to Fs/2 ±0.1 ±0.02 dB D.C. to Fs ±0.3 ±0.3 dB D.C. to 3Fs/2 ±0.5 ±0.3 dB D.C. to Fs/2 ±0.7 ±0.6 dB D.C. to Fs ±2.2 ±1.0 dB D.C. to 3Fs/2 ±3.4 ±1.8 dB D.C. to Fs/2 ±0.6 ±0.3 dB D.C. to Fs ±1.1 ±0.7 dB D.C. to 3Fs/2 ±2.0 ±1.1 dB D.C. to Fs/2 ±0.4 ±0.2 dB D.C. to Fs ±0.7 ±0.5 dB D.C. to 3Fs/2 ±1.0 ±0.7 dB 10-18 10-18 Error/Sam ple 50.4 50.7 dB FIN = 2670MHz ± 2.5MHz @ ‑13dBFS -76 -74 dBFS -63 -61 dBc FIN = 2070MHz ± 2.5MHz @ ‑13dBFS -80 -79 dBFS -67 -66 dBc FIN = 2670MHz ± 2.5MHz @ ‑16dBFS -87 -85 dBFS -71 -69 dBc FIN = 2070MHz ± 2.5MHz @ ‑16dBFS -85 -84 dBFS -69 -68 dBc DESI, DESQ Mode DESIQ Mode Gain Flatness Non-DES Mode DESI, DESQ Mode DESIQ Mode DESCLKIQ Mode CER Code Error Rate NPR Noise Power Ratio DES Mode, fc,notch = Fs/4, Notch width = 5% of Fs/2 IMD3 3rd order Intermodulation Distortion DES Mode (1) (2) This parameter is ensured by design and/or characterization and is not tested in production. The -3dB point is the traditional Full-Power Bandwidth (FPBW) specification. Although the insertion loss is approximately half at this frequency, the dynamic performance of the ADC does not necessarily begin to degrade to a level below which it may be effectively used in an application. The ADC may be used at input frequencies above the -3dB FPBW point, for example, into the 5th and 6th Nyquist zones. Depending on system requirements, it is only necessary to compensate for the insertion loss. Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ADC12D500RF ADC12D800RF Electrical Specifications 21 ADC12D500RF, ADC12D800RF SNAS502E – JULY 2011 – REVISED MARCH 2013 www.ti.com Converter Electrical Characteristics Dynamic Converter Characteristics (1) (continued) Symbol Parameter Conditions Noise Floor Density 50Ω single-ended input termination, DES Mode ADC12D800RF Typ Lim ADC12D500RF Typ Lim Units (Limits) -152.2 -150.5 dBm/Hz -151.2 -149.6 dBFS/Hz Non-DES Mode (3) (4) (5) ENOB Effective Number of Bits SINAD Signal-to-Noise Plus Distortion Ratio SNR Signal-to-Noise Ratio THD Total Harmonic Distortion 2nd Harm 3rd Harm SFDR (3) (4) (5) 22 Second Harmonic Distortion Third Harmonic Distortion Spurious-Free Dynamic Range AIN = 125 MHz @ -0.5 dBFS 9.6 9.1 9.7 9.1 bits (min) AIN = 248 MHz @ -0.5 dBFS 9.5 9.7 bits AIN = 498 MHz @ -0.5 dBFS 9.5 9.6 bits AIN = 998 MHz @ -0.5 dBFS 9.2 9.3 bits AIN = 1498 MHz @ -0.5 dBFS 8.9 9.2 bits AIN = 125 MHz @ -0.5 dBFS 59.7 60.0 dB AIN = 248 MHz @ -0.5 dBFS 58.7 59.9 dB AIN = 498 MHz @ -0.5 dBFS 58.8 59.4 dB AIN = 998 MHz @ -0.5 dBFS 57.1 58.0 dB AIN = 1498 MHz @ -0.5 dBFS 55.1 56.9 AIN = 125 MHz @ -0.5 dBFS 60.2 AIN = 248 MHz @ -0.5 dBFS 59.8 60.3 dB AIN = 498 MHz @ -0.5 dBFS 59.7 59.7 dB AIN = 998 MHz @ -0.5 dBFS 58.4 58.7 dB 57.5 60.4 dB 57.5 57.3 dB (min) AIN = 1498 MHz @ -0.5 dBFS 56.4 AIN = 125 MHz @ -0.5 dBFS -69.0 AIN = 248 MHz @ -0.5 dBFS -65.1 -70.3 dB AIN = 498 MHz @ -0.5 dBFS -66.0 -70.4 dB AIN = 998 MHz @ -0.5 dBFS -63.2 -66.5 dB AIN = 1498 MHz @ -0.5 dBFS -60.8 -67.4 dB AIN = 125 MHz @ -0.5 dBFS 80.1 80.5 dBc AIN = 248 MHz @ -0.5 dBFS 78.5 77.0 dBc AIN = 498 MHz @ -0.5 dBFS 77.9 85.7 dBc AIN = 998 MHz @ -0.5 dBFS 67.9 81.0 dBc AIN = 1498 MHz @ -0.5 dBFS 63.1 76.5 dBc AIN = 125 MHz @ -0.5 dBFS 76.3 77.6 dBc AIN = 248 MHz @ -0.5 dBFS 66.5 73.8 dBc AIN = 498 MHz @ -0.5 dBFS 73.2 74.4 dBc AIN = 998 MHz @ -0.5 dBFS 66.8 68.5 dBc AIN = 1498 MHz @ -0.5 dBFS 68.8 70.3 AIN = 125 MHz @ -0.5 dBFS 73.4 AIN = 248 MHz @ -0.5 dBFS 66.5 73.8 dBc AIN = 498 MHz @ -0.5 dBFS 71.2 72.0 dBc AIN = 998 MHz @ -0.5 dBFS 66.8 68.5 dBc AIN = 1498 MHz @ -0.5 dBFS 63.1 70.5 dBc -62.5 62.5 -71.4 74.3 dB -62.5 dB (max) dBc 62.5 dBc (min) The Dynamic Specifications are ensured for room to hot ambient temperature only (25°C to 85°C). Refer to the plots of the dynamic performance vs. temperature in the Typical Performance Plots to see typical performance from cold to room temperature (-40°C to 25°C). The Fs/2 spur was removed from all the dynamic performance spectifications. Typical dynamic performance at Fin = 248 MHz, 498 MHz, 998 MHz, and 1498 MHz is ensured by design and/or characterization and is not tested in production. Electrical Specifications Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ADC12D500RF ADC12D800RF ADC12D500RF, ADC12D800RF www.ti.com SNAS502E – JULY 2011 – REVISED MARCH 2013 Converter Electrical Characteristics Dynamic Converter Characteristics (1) (continued) Symbol Parameter Conditions ADC12D800RF Typ Lim ADC12D500RF Typ Lim Units (Limits) DES Mode (1) (2) ENOB SINAD SNR THD 2nd Harm 3rd Harm SFDR (1) (2) Effective Number of Bits Signal-to-Noise Plus Distortion Ratio Signal-to-Noise Ratio Total Harmonic Distortion Second Harmonic Distortion Third Harmonic Distortion Spurious-Free Dynamic Range AIN = 125 MHz @ -0.5 dBFS 9.4 9.6 bits AIN = 248 MHz @ -0.5 dBFS 9.3 9.5 bits AIN = 498 MHz @ -0.5 dBFS 9.3 9.5 bits AIN = 998 MHz @ -0.5 dBFS 9 9.2 bits AIN = 1498 MHz @ -0.5 dBFS 8.7 8.7 bits AIN = 125 MHz @ -0.5 dBFS 58.6 59.6 dB AIN = 248 MHz @ -0.5 dBFS 57.8 59.0 dB AIN = 498 MHz @ -0.5 dBFS 57.9 59.0 dB AIN = 998 MHz @ -0.5 dBFS 55.8 57.3 dB AIN = 1498 MHz @ -0.5 dBFS 54.0 53.5 dB AIN = 125 MHz @ -0.5 dBFS 59.1 60.0 dB AIN = 248 MHz @ -0.5 dBFS 58.5 59.6 dB AIN = 498 MHz @ -0.5 dBFS 58.3 59.4 dB AIN = 998 MHz @ -0.5 dBFS 56.2 58.1 dB AIN = 1498 MHz @ -0.5 dBFS 54.3 53.8 dB AIN = 125 MHz @ -0.5 dBFS -68.3 -70.5 dB AIN = 248 MHz @ -0.5 dBFS -65.9 -67.8 dB AIN = 498 MHz @ -0.5 dBFS -68.5 -69.2 dB AIN = 998 MHz @ -0.5 dBFS -66.2 -64.5 dB AIN = 1498 MHz @ -0.5 dBFS -65.3 -64.6 dB AIN = 125 MHz @ -0.5 dBFS 80.3 81.3 dBc AIN = 248 MHz @ -0.5 dBFS 83.2 78.0 dBc AIN = 498 MHz @ -0.5 dBFS 80.5 79.5 dBc AIN = 998 MHz @ -0.5 dBFS 80.2 69.5 dBc AIN = 1498 MHz @ -0.5 dBFS 71.8 75.1 dBc AIN = 125 MHz @ -0.5 dBFS 72.5 75.1 dBc AIN = 248 MHz @ -0.5 dBFS 68.8 72.4 dBc AIN = 498 MHz @ -0.5 dBFS 76.1 73.8 dBc AIN = 998 MHz @ -0.5 dBFS 68.1 67.8 dBc AIN = 1498 MHz @ -0.5 dBFS 73.2 66.2 dBc AIN = 125 MHz @ -0.5 dBFS 71.9 74.3 dBc AIN = 248 MHz @ -0.5 dBFS 67.6 70.4 dBc AIN = 498 MHz @ -0.5 dBFS 68.8 70.3 dBc AIN = 998 MHz @ -0.5 dBFS 66.2 67.3 dBc AIN = 1498 MHz @ -0.5 dBFS 63.9 56.7 dBc The Dynamic Specifications are ensured for room to hot ambient temperature only (25°C to 85°C). Refer to the plots of the dynamic performance vs. temperature in the Typical Performance Plots to see typical performance from cold to room temperature (-40°C to 25°C). These measurements were taken in Extended Control Mode (ECM) with the DES Timing Adjust feature enabled (Addr: 7h). This feature is used to reduce the interleaving timing spur amplitude, which occurs at Fs/2-Fin, and thereby increase the SFDR, SINAD and ENOB. Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ADC12D500RF ADC12D800RF Electrical Specifications 23 ADC12D500RF, ADC12D800RF SNAS502E – JULY 2011 – REVISED MARCH 2013 3.6 www.ti.com Converter Electrical Characteristics Analog Input/Output and Reference Characteristics Symbol Parameter Conditions ADC12D800RF Typ Lim ADC12D500RF Typ Lim Units (Limits) Analog Inputs VIN_FSR Analog Differential Input Full Scale Non-Extended Control Mode Range FSR Pin Low 530 mVP-P (min) 670 670 mVP-P (max) 730 730 mVP-P (min) 870 mVP-P (max) 530 600 FSR Pin High 600 800 800 870 Extended Control Mode CIN RIN FM(14:0) = 0000h 600 600 mVP-P FM(14:0) = 4000h (default) 800 800 mVP-P FM(14:0) = 7FFFh 1000 1000 mVP-P Analog Input Capacitance, Non-DES Mode (1) Differential 0.02 0.02 pF Each input pin to ground 1.6 1.6 pF Analog Input Capacitance, DES Mode (1) Differential 0.08 0.08 pF Each input pin to ground 2.2 2.2 pF 100 100 Ω Differential Input Resistance Common Mode Output VCMO Common Mode Output Voltage ICMO = ±100 µA TC_VCMO Common Mode Output Voltage Temperature Coefficient ICMO = ±100 µA VCMO_LVL VCMO input threshold to set DC-coupling Mode CL_VCMO Maximum VCMO Load Capacitance See 1.25 1.15 1.35 1.25 1.15 V (min) 1.35 V (max) (2) 38 38 ppm/°C 0.63 0.63 V (1) 80 80 pF Bandgap Reference VBG Bandgap Reference Output Voltage IBG = ±100 µA TC_VBG Bandgap Reference Voltage Temperature Coefficient IBG = ±100 µA (2) CL_VBG Maximum Bandgap Reference load Capacitance See (1) (2) 24 1.25 1.15 1.35 32 1.25 1.15 V (min) 1.35 V (max) 32 ppm/°C (1) 80 80 pF This parameter is ensured by design and is not tested in production. This parameter is ensured by design and/or characterization and is not tested in production. Electrical Specifications Copyright © 2011–2013, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: ADC12D500RF ADC12D800RF ADC12D500RF, ADC12D800RF www.ti.com 3.7 Converter Electrical Characteristics I-Channel to Q-Channel Characteristics Symbol X-TALK (1) (2) Parameter Conditions (1) ADC12D800RF Typ Lim ADC12D500RF Typ Lim Units (Limits) Offset Match See 2 2 LSB Positive Full-Scale Match Zero offset selected in Control Register 2 2 LSB Negative Full-Scale Match Zero offset selected in Control Register 2 2 LSB Phase Matching (I, Q) fIN = 1.0 GHz (2)
ADC12D800RFIUT 价格&库存

很抱歉,暂时无法提供与“ADC12D800RFIUT”相匹配的价格&库存,您可以联系我们找货

免费人工找货