0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AM5K2E04XABD25

AM5K2E04XABD25

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    FCBGA1089

  • 描述:

    SOC MPU KEYSTONE II 1089FCBGA

  • 数据手册
  • 价格&库存
AM5K2E04XABD25 数据手册
Product Folder Sample & Buy Technical Documents Tools & Software Support & Community AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 AM5K2E0x Multicore ARM KeyStone II System-on-Chip (SoC) 1 AM5K2E0x Features and Description 1.1 Features 1 • ARM® Cortex®-A15 MPCore™ CorePac – Up to Four ARM Cortex-A15 Processor Cores at up to 1.4-GHz – 4MB L2 Cache Memory Shared by all CortexA15 Processor Cores – Full Implementation of ARMv7-A Architecture Instruction Set – 32KB L1 Instruction and Data Caches per Core – AMBA 4.0 AXI Coherency Extension (ACE) Master Port, Connected to MSMC (Multicore Shared Memory Controller) for Low Latency Access to SRAM and DDR3 • Multicore Shared Memory Controller (MSMC) – 2 MB SRAM Memory for ARM CorePac – Memory Protection Unit for Both SRAM and DDR3_EMIF • Multicore Navigator – 8k Multi-Purpose Hardware Queues with Queue Manager – One Packet-Based DMA Engine for ZeroOverhead Transfers • Network Coprocessor – Packet Accelerator Enables Support for • Transport Plane IPsec, GTP-U, SCTP, PDCP • L2 User Plane PDCP (RoHC, Air Ciphering) • 1 Gbps Wire Speed Throughput at 1.5 MPackets Per Second – Security Accelerator Engine Enables Support for • IPSec, SRTP, 3GPP and WiMAX Air Interface, and SSL/TLS Security • ECB, CBC, CTR, F8, A5/3, CCM, GCM, HMAC, CMAC, GMAC, AES, DES, 3DES, Kasumi, SNOW 3G, SHA-1, SHA-2 (256-bit Hash), MD5 • Up to 6.4 Gbps IPSec and 3 Gbps Air Ciphering – Ethernet Subsystem • Eight SGMII Ports with Wire Rate Switching • IEEE1588 v2 (with Annex D/E/F) Support • 8 Gbps Total Ingress/Egress Ethernet BW from Core • • • • • Audio/Video Bridging (802.1Qav/D6.0) • QOS Capability • DSCP Priority Mapping Peripherals – Two PCIe Gen2 Controllers with Support for • Two Lanes per Controller • Supports Up to 5 GBaud – One HyperLink • Supports Connections to Other KeyStone Architecture Devices Providing Resource Scalability • Supports Up to 50 GBaud – 10-Gigabit Ethernet (10-GbE) Switch Subsystem • Two SGMII/XFI Ports with Wire Rate Switching and MACSEC Support • IEEE1588 v2 (with Annex D/E/F) Support – One 72-Bit DDR3/DDR3L Interface with Speeds Up to 1600 MTPS in DDR3 Mode – EMIF16 Interface – Two USB 2.0/3.0 Controllers – USIM Interface – Two UART Interfaces – Three I2C Interfaces – 32 GPIO Pins – Three SPI Interfaces – One TSIP • Support 1024 DS0s • Support 2 Lanes at 32.768/16.3848.192 Mbps Per Lane System Resources – Three On-Chip PLLs – SmartReflex Automatic Voltage Scaling – Semaphore Module – Twelve 64-Bit Timers – Five Enhanced Direct Memory Access (EDMA) Modules Commercial Case Temperature: – 0ºC to 85ºC Extended Case Temperature: – -40ºC to 100ºC 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 1.2 • • • • Applications Avionics and Defense Communications Industrial Automation Automation and Process Control 1.3 www.ti.com • • • Servers Enterprise Networking Cloud Infrastructure KeyStone II Architecture TI's KeyStone II Multicore Architecture provides a unified platform for integrating RISC processing cores along with both hardware/firmware based application-specific acceleration and high performance I/Os. The KeyStone II Multicore Architecture is a proven device architecture to achieve the full performance entitlement through the following major components: TeraNet, Multicore Shared Memory Controller, Multicore Navigator, and HyperLink. TeraNet is a multipoint to multipoint non-blocking switch fabric. Its distributed arbiter provides multiple duplex communication channels in parallel between the master and slave ports without interference. The priority based arbitration mechanism ensures the delivery of the critical traffic delivery in the system. The Multicore Shared Memory Controller (MSMC) is the center of the KeyStone II memory architecture. It provides multiple fast and high-bandwidth channels for processor cores to access DDR and minimizes the access latency by directly connecting to the DDR. The MSMC also provides the flexibility to expand processor cores with little impact at the device level. In addition, it provides multi-bank based fast on-chip SRAM shared among processor cores and IOs. It also provides the I/O cache coherency for the device when the Cortex-A15 processor core is integrated. The Multicore Navigator provides a packet-based IPC mechanism among processing cores and packet based peripherals. The hardware-managed queues supports multiple-in-multiple-out mode without using mutex. Coupled with the packet-based DMA, the Multicore Navigator provides a highly efficient and software-friendly tool to offload the processing core to achieve other critical tasks. HyperLink provides a 50-GBaud chip-level interconnect that allows devices to work in tandem. Its low latency, low overhead and high throughput makes it an ideal interface for chip-to-chip interconnections. There are two generations of KeyStone architecture. The AM5K2E0x device is based on KeyStone II, which integrates a Cortex-A15 processor CorePac. 1.4 Device Description The AM5K2E0x is a high performance device based on TI's KeyStone II Multicore SoC Architecture, incorporating the most performance-optimized Cortex-A15 processor dual-core or quad-core CorePac that can run at a core speed of up to 1.4 GHz. TI's AM5K2E0x device enables a high performance, powerefficient and easy to use platform for developers of a broad range of applications such as enterprise grade networking end equipment, data center networking, avionics and defense, medical imaging, test and automation. TI's KeyStone II Architecture provides a programmable platform integrating various subsystems (for example, ARM CorePac (Cortex-A15 Processor Quad Core CorePac), network processing, and uses a queue-based communication system that allows the device resources to operate efficiently and seamlessly. This unique device architecture also includes a TeraNet switch that enables the wide mix of system elements, from programmable cores to high-speed IO, to each operate at maximum efficiency with no blocking or stalling. The AM5K2E0x KeyStone II device integrates a large amount of on-chip memory. The Cortex-A15 processor cores each have 32KB of L1Data and 32KB of L1 Instruction cache. The up to four Cortex A15 cores in the ARM CorePac share a 4MB L2 Cache. The device also integrates 2MB of Multicore Shared Memory (MSMC) that can be used as a shared L3 SRAM. All L2 and MSMC memories incorporate error detection and error correction. For fast access to external memory, this device includes a 64-bit DDR-3 (72-bit with ECC support) external memory interface (EMIF) running at 1600 MTPS. 2 AM5K2E0x Features and Description Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 The device enables developers to use a variety of development and debugging tools that include GNU GCC, GDB, Open source Linux, Eclipse based debugging environment enabling kernel and user space debugging using a variety of Eclipse plug-ins including TI's industry leading IDE Code Composer Studio. 1.5 Enhancements in KeyStone II The KeyStone II architecture provides many major enhancements over the previous KeyStone I generation of devices. The KeyStone II architecture integrates an ARM Cortex-A15 processor quad-core cluster to enable Layer 2 (MAC/RLC) and higher layer processing. The external memory bandwidth has been doubled with the integration of dual DDR3 1600 EMIFs. MSMC internal memory bandwidth is quadrupled with MSMC V2 architecture improvements. Multicore Navigator supports 2× the number of queues, descriptors and packet DMA, 4× the number of micro RISC engines and a significant increase in the number of push/pops per second, compared to the previous generation. The new peripherals that have been added include the USB 3.0 controller and Asynchronous EMIF controller for NAND/NOR memory access. The 2-port Gigabit Ethernet switch in KeyStone I has been replaced with an 8-port Gigabit Ethernet switch and a 10 GbE switch in KeyStone II. Time synchronization support has been enhanced to reduce software workload and support additional standards like IEEE1588 Annex D/E and SyncE. The number of GPIOs and serial interface peripherals like I2C and SPI have been increased to enable more board level control functionality. Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E0x Features and Description 3 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 1.6 www.ti.com Functional Block Diagram The figures below show the functional block diagrams of the AM5K2E0x devices. AM5K2E04 Memory Subsystem 2MB MSM SRAM 72-Bit DDR3 EMIF MSMC Debug & Trace Boot ROM 32KB L1 32KB L1 32KB L1 32KB L1 P-Cache D-Cache P-Cache D-Cache Semaphore ARM A15 Secure Mode Power Management ARM A15 4MB L2 Cache ARM A15 PLL 3´ ARM A15 32KB L1 32KB L1 32KB L1 32KB L1 P-Cache D-Cache P-Cache D-Cache EDMA 4 ARM Cores @ up to 1.4 GHz 5´ TeraNet HyperLink Multicore Navigator Queue Manager Packet DMA Security Accelerator 1GBE 1GBE 1GBE 1GBE Packet Accelerator 1GBE 1GBE 1GBE 9-Port Ethernet Switch 1GBE 10GBE 3-Port Ethernet Switch 10GBE 10GBE 2´ PCIe ´2 3´ SPI 2´ UART 2´ USB 3.0 3´ I2C GPIO ´32 EMIF16 TSIP USIM Network Coprocessor Figure 1-1. AM5K2E04 Functional Block Diagram 4 AM5K2E0x Features and Description Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 AM5K2E02 Memory Subsystem 2MB MSM SRAM 72-Bit DDR3 EMIF MSMC Debug & Trace Boot ROM Semaphore Secure Mode Power Management 4MB L2 Cache ARM A15 PLL 3´ ARM A15 32KB L1 32KB L1 32KB L1 32KB L1 P-Cache D-Cache P-Cache D-Cache EDMA 2 ARM Cores @ up to 1.4 GHz 5´ TeraNet HyperLink Multicore Navigator Queue Manager Packet DMA Security Accelerator 1GBE 1GBE 1GBE 1GBE Packet Accelerator 1GBE 1GBE 1GBE 1GBE 9-Port Ethernet Switch 2´ PCIe ´2 3´ SPI 2´ UART 2´ USB 3.0 3´ I2C GPIO ´32 EMIF16 TSIP USIM Network Coprocessor Figure 1-2. AM5K2E02 Functional Block Diagram Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E0x Features and Description 5 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table of Contents 1 1 8.1 Device Boot ........................................ 129 1.1 Features .............................................. 1 8.2 Device Configuration ............................... 148 1.2 Applications ........................................... 2 1.3 KeyStone II Architecture.............................. 2 9.1 Absolute Maximum Ratings........................ 175 ................................... 2 1.5 Enhancements in KeyStone II ........................ 3 1.6 Functional Block Diagram ............................ 4 Revision History ......................................... 7 Device Characteristics .................................. 8 3.1 ARM CorePac ........................................ 9 3.2 Development Tools .................................. 10 3.3 Device Nomenclature ............................... 10 3.4 Related Documentation from Texas Instruments ... 12 3.5 Related Links ........................................ 13 3.6 Community Resources .............................. 13 3.7 Trademarks.......................................... 13 3.8 Electrostatic Discharge Caution ..................... 13 3.9 Glossary ............................................. 13 ARM CorePac ........................................... 14 4.1 Features ............................................. 16 4.2 System Integration .................................. 16 4.3 ARM Cortex-A15 Processor ......................... 16 4.4 CFG Connection .................................... 18 4.5 Main TeraNet Connection ........................... 18 4.6 Clocking and Reset ................................. 19 Terminals ................................................ 20 5.1 Package Terminals .................................. 20 5.2 Pin Map ............................................. 20 5.3 Terminal Functions .................................. 25 5.4 Pullup/Pulldown Resistors .......................... 53 Memory, Interrupts, and EDMA for AM5K2E0x .. 55 6.1 Memory Map SummaryAM5K2E0x ................. 55 6.2 Memory Protection Unit (MPU) for AM5K2E0x ..... 64 6.3 Interrupts for AM5K2E0x ............................ 77 9.2 Recommended Operating Conditions 9.3 Electrical Characteristics........................... 177 9.4 Power Supply to Peripheral I/O Mapping .......... 178 AM5K2E0x Features and Description 1.4 2 3 4 5 6 6.4 7 6 Device Description Enhanced Direct Memory Access (EDMA3) Controller ........................................... 103 9 Device Operating Conditions....................... 175 ............. 176 10 AM5K2E0x Peripheral Information and Electrical Specifications ......................................... 179 10.1 Recommended Clock and Control Signal Transition Behavior............................................ 179 10.2 Power Supplies 10.3 Power Sleep Controller (PSC) ..................... 187 10.4 10.5 Reset Controller .................................... 193 Core PLL (Main PLL), DDR3 PLL, NETCP PLL and the PLL Controllers ................................ 198 10.6 DDR3 PLL.......................................... 212 10.7 NETCP PLL ........................................ 214 10.8 DDR3 Memory Controller .......................... 216 10.9 I2C Peripheral ...................................... 217 10.10 SPI Peripheral .................................... .................................... 179 221 10.11 HyperLink Peripheral ............................. 224 ................................. PCIe Peripheral ................................... Packet Accelerator ............................... Security Accelerator .............................. 10.12 UART Peripheral 226 10.13 227 10.14 10.15 10.16 Network Coprocessor Gigabit Ethernet (GbE) Switch Subsystem ................................. 10.17 SGMII/XFI Management Data Input/Output (MDIO) ............................................. 10.18 Ten-Gigabit Ethernet (10GbE) Switch Subsystem ......................................... 227 228 228 230 231 10.19 Timers............................................. 231 10.20 General-Purpose Input/Output (GPIO) ........... 232 10.21 Semaphore2 ...................................... 233 10.22 Universal Serial Bus 3.0 (USB 3.0) ............... 233 10.23 TSIP Peripheral ................................... 234 System Interconnect ................................. 114 10.24 Universal Subscriber Identity Module (USIM) .... 236 ................ Switch Fabric Connections Matrix - Data Space .. 10.26 Emulation Features and Capability ............... 239 7.1 Internal Buses and Switch Fabrics 7.2 7.3 114 Switch Fabric Connections Matrix - Configuration Space .............................................. 120 114 10.25 EMIF16 Peripheral ................................ 236 10.27 Debug Port (EMUx) ............................... 241 11.1 Device Boot and Configuration .................... 129 11.2 Table of Contents ...................................... ...................................... Packaging Information ............................. 11 Mechanical Data Bus Priorities ....................................... 128 7.4 8 ............... Thermal Data 248 248 248 Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 2 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision C (August 2014) to Revision D • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Page Added Top Navigation links to front page of the document ..................................................................... 1 Changed Product Status to Production Data ..................................................................................... 1 Changed Mission Critical Systems to Avionics and Defense in Section 1.2 .................................................. 2 Changed mission critical to avionics and defense in first paragraph of Section 3.2.1 ...................................... 2 Changed Product Status to PD and changed footnote (3) in Table 3-1 ....................................................... 8 Changed second list item under Software Development Tools in Section 3.2.1 ........................................... 10 Added Related Links, Community Resources, Trademarks, Electrostatic Discharge Caution, and Glossary sections to Section 3 ................................................................................................................ 13 Added Figure 4-1 .................................................................................................................... 14 Changed DDR3A to DDR3 in Table 4-1 ......................................................................................... 16 Changed All instances of DDR3A to DDR3 in Table 5-2 ...................................................................... 25 Changed Supply DDR3AREFSSTL to DDR3REFSSTL in Table 5-3 ........................................................ 38 Changed the DVDD15 Volts and Supply Description in Table 5-3 ........................................................... 38 Changed Start Address for PCIe1SerDes Config to 00 0232 6000, End Address for USB 0 MMR CFG to 00 026F FFFF, and all instances of DDR3A to DDR3 in Table 6-1 .............................................................. 55 Changed CPT_DDR3A to CPT_DDR3 in Table 6-6 ............................................................................ 66 Changed DDR3A to DDR3 in Event No. 388 Name and Description in Table 6-22 ....................................... 78 Changed DDR3A to DDR3 in Section 6.4 ...................................................................................... 104 Changed DDR3A to DDR3 in Section 7 ........................................................................................ 114 Changed DDR3A to DDR3 in Figure 7-3 ....................................................................................... 117 Changed DDR3A to DDR3 in Figure 7-6 ....................................................................................... 122 Added EMIF and NAND to Description in Table 8-2 .......................................................................... 131 Changed DDR3A to DDR3 in Section 8.1.4 .................................................................................... 147 Changed DDR3APLLCTL0 and DDR3APLLCTL1 to DDR3PLLCTL0 and DDR3PLLCTL1 in Table 8-26 ............ 149 Changed AVSIFSEL Description value 11 to Reserved in Table 8-27 ..................................................... 153 Changed ARMENDIAN_CFG4_0 Default Value to 0x00023A00 in Table 8-42 ........................................... 164 Changed ARMENDIAN_CFG5_1 Default Value to 0x00000006 in Table 8-44 ........................................... 165 Changed DDR3AVREFSSTL to DDR3VREFSSTL and DDR3A to DDR3 in Section 9.1................................ 175 Changed MIN, NOM, and MAX values for CVDD Initial and CVDD1; changed DVDD15 to DDR3 I/O voltage and added values; changed DDR3A to DDR3 and DDR3AVREFSSTL to DDR3VREFSSTL; changed DSP to SOC in footnote (4) in Section 9.2 ........................................................................................................ 176 Changed DDR3A to DDR3 in Section 9.3 ...................................................................................... 177 Changed DDR3A to DDR3 and changed DVDD15 to DDR3 memory I/O voltage and DDR3 (1.5/1.35 V) I/O Buffer Type in Table 9-1 .......................................................................................................... 178 Changed DDR3A to DDR3 and added 1.35 V to Voltage for DVDD15 in Table 10-1 .................................... 179 Changed EMIF(DDR3A) to EMIF(DDR3) in Table 10-6 ...................................................................... 187 Changed DDR3A EMIF to DDR3 EMIF in Table 10-7 ........................................................................ 188 Changed DDR3A in Section 10.4.3 ............................................................................................. 195 Changed DDR3A in Section 10.5................................................................................................ 198 Changed Figure 10-7 .............................................................................................................. 199 Deleted second sentence from Section 10.5.1.1 .............................................................................. 200 Changed DDR3A to DDR3 in Table 10-13 ..................................................................................... 201 Changed Address Range 00 0231 0128 to Reserved in Table 10-15 ...................................................... 202 Changed OUTPUT DIVIDE Field Description in Table 10-16 ............................................................... 203 Changed MAX value for tj(CORECLKN) and tj(CORECLKP) in Table 10-27 ............................................. 209 Changed Figure 10-26 ............................................................................................................ 214 Changed PAPLL Field Description in Table 10-32 ............................................................................ 215 Changed MAX value for tc(NETCPCLKN) and tc(NETCPCLKP) in Table 10-33 ......................................... 215 Changed DDR3A Memory Controller to DDR3 Memory Controller in Section 10.8 ...................................... 216 Changed MIN and MAX values for tc(CEL) in Table 10-56 .................................................................. 236 Changed DDR3A to DDR3 in Table 10-62 ..................................................................................... 244 Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Revision History 7 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com 3 Device Characteristics Table 3-1 provides an overview of the AM5K2E0x device. The table shows the significant features of the device, including the capacity of on-chip RAM, the peripherals, the CPU frequency, and the package type with pin count. Table 3-1. Characteristics of the AM5K2E0x Processor HARDWARE FEATURES AM5K2E02 ARM Cortex A15 Cores ARM Cores 32KB ARM L1 data cache memory size (per core) 32KB ARM L2 unified cache memory size (shared by all cores) 4MB DDR3 memory controller (72-bit bus width) [1.5 V/1.35V] (clock source = DDRREFCLKN|P) 1 EDMA3 (64 independent channels) [CPU/3 clock rate] 5 Hyperlink 1 USB 3.0 2 (1) 1 I2C 3 SPI 3 PCIe (2 lanes per instance) 2 UART 2 10/100/1000/10000 Ethernet ports 0 10/100/1000 Ethernet ports 8 Management Data Input/Output (MDIO) Twelve 64-bit or Twenty four 32-bit 32 TSIP 1 Packet Accelerator 1 Security Accelerator (2) 1 2MB MSM SRAM 256 KB L3 ROM Organization JTAG BSDL_ID JTAGID Register (address location: 0x02620018) Frequency ARM-A15 Processor BGA Package 0x0B9A_602F 1.25 GHz 1.4 GHz Core (V) SmartReflex variable supply I/O (V) 1.35 V, 1.5 V, 1.8 V, and 3.3 V 27 mm x 27 mm 1089-Pin Flip-Chip Plastic BGA (ABD) Process Technology nm Product Status (3) Product Preview (PP), Advance Information (AI), or Production Data (PD) (1) (2) (3) 8 8 General-Purpose Input/Output port (GPIO) On-Chip L3 Memory Voltage 2 3 64-bit timers (configurable) Accelerators 4 ARM L1 instruction cache memory size (per core) USIM Peripherals AM5K2E04 2 28 nm PD The USIM is implemented for support of secure devices only. Contact your local technical sales representative for further details. The Security Accelerator function is subject to export control and will be enabled only for approved device shipments. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Device Characteristics Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com 3.1 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 ARM CorePac The ARM CorePac of the AM5K2E0x integrates a Cortex-A15 Cluster (4 Cortex-A15 processors) with additional logic for bus protocol conversion, emulation, interrupt handling, and debug related enhancements. The Cortex-A15 processor is an ARMv7A-compatible, multi-issue out-of-order, superscalar pipeline with integrated L1 caches. The implementation also supports advanced SIMDV2 (Neon technology) and VFPv4 (Vector Floating Point) architecture extensions, security, virtualization, LPAE (Large Physical Address Extension), and multiprocessing extensions. The quad core cluster includes a 4MB L2 cache and support for AMBA4 AXI and AXI Coherence Extension (ACE) protocols. For more information see the KeyStone II Architecture ARM CorePac User's Guide User Guide (SPRUHJ4). Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Device Characteristics 9 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 3.2 3.2.1 www.ti.com Development Tools Development Support In case the customer would like to develop their own features and software on the AM5K2E0x device, TI offers an extensive line of development tools for the KeyStone II platform, including tools to evaluate the performance of the processors, generate code, develop algorithm implementations, and fully integrate and debug software and hardware modules. The tool's support documentation is electronically available within the Code Composer Studio™ Integrated Development Environment (IDE). The following products support development of KeyStone devices: • Software Development Tools: – Code Composer Studio Integrated Development Environment (IDE), including Editor C/C++/Assembly Code Generation, and Debug plus additional development tools – Scalable, Real-Time foundation software, which provides the basic run-time target software needed to support any application • Hardware Development Tools: – Extended Development System (XDS™) Emulator (supports multiprocessor system debug) XDS™ – EVM (Evaluation Module) 3.3 Device Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all devices and support tools. Each family member has one of two prefixes: X or [blank]. These prefixes represent evolutionary stages of product development from engineering prototypes through fully qualified production devices/tools. 3.3.1 Device Development Evolutionary Flow The device development evolutionary flow is as follows: • X: Experimental device that is not necessarily representative of the final device's electrical specifications • [Blank]: Fully qualified production device Support tool development evolutionary flow: • X: Development-support product that has not yet completed Texas Instruments internal qualification testing. • [Blank]: Fully qualified development-support product Experimental (X) and fully qualified [Blank] devices and development-support tools are shipped with the following disclaimer: Developmental product is intended for internal evaluation purposes. Fully qualified and production devices and development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that experimental devices (X) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, ABD), the temperature range (for example, blank is the default case temperature range), and the device speed range, in Megahertz (for example, blank is 1000 MHz [1 GHz]). For device part numbers and further ordering information for AM5K2E0x in the ABD package type, see the TI website www.ti.com or contact your TI sales representative. 10 Device Characteristics Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com 3.3.2 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Part Number Legend The following figures provide a legend for reading the complete device name for a KeyStone II device. ( _ ) AM5 K2 E 02 (_) PREFIX X = Experimental device Blank = Qualified device ( _ ) ABD ( _ ) ( _ ) MAXIMUM DEVICE SPEED 25 = 1.25 GHz 4 = 1.4 GHz DEVICE FAMILY AM5 = ARM SoC TEMPERATURE RANGE Blank = Commercial temperature range (0°C to +85°C) A = Extended temperature range (-40°C to +100°C) ARCHITECTURE K2 = KeyStone II PACKAGE TYPE ABD = 1089-pin plastic ball grid array, with Pb-free solder balls and die bumps PLATFORM E SECURITY Blank = Security Accelerator disabled / General Purpose device X = Security Accelerator enabled / General Purpose device D = Security Accelerator enabled / High Security device with TI developmental keys S = Security Accelerator enabled / High Security device with production keys DEVICE NUMBER 02 SILICON REVISION Blank = Initial 1.0 silicon Figure 3-1. Device Nomenclature for AM5K2E02 ( _ ) AM5 K2 E 04 PREFIX X = Experimental device Blank = Qualified device (_) ( _ ) ABD ( _ ) ( _ ) MAXIMUM DEVICE SPEED 25 = 1.25 GHz 4 = 1.4 GHz DEVICE FAMILY AM5 = ARM SoC TEMPERATURE RANGE Blank = Commercial temperature range (0°C to +85°C) A = Extended temperature range (-40°C to +100°C) ARCHITECTURE K2 = KeyStone II PACKAGE TYPE ABD = 1089-pin plastic ball grid array, with Pb-free solder balls and die bumps PLATFORM E SECURITY Blank = Security Accelerator disabled / General Purpose device X = Security Accelerator enabled / General Purpose device D = Security Accelerator enabled / High Security device with TI developmental keys S = Security Accelerator enabled / High Security device with production keys DEVICE NUMBER 04 SILICON REVISION Blank = Initial 1.0 silicon Figure 3-2. Device Nomenclature for AM5K2E04 Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Device Characteristics 11 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 3.4 www.ti.com Related Documentation from Texas Instruments These documents describe the AM5K2E0x Multicore ARM KeyStone II System-on-Chip (SoC). Copies of these documents are available on the Internet at www.ti.com. KeyStone Architecture Timer 64P User's Guide SPRUGV5 KeyStone II Architecture ARM Bootloader User's Guide SPRUHJ3 KeyStone II Architecture ARM CorePac User's Guide SPRUHJ4 KeyStone Architecture Chip Interrupt Controller (CIC) User's Guide SPRUGW4 KeyStone I Architecture Debug and Trace User's Guide SPRUGZ2 DDR3 Design Requirements for KeyStone Devices application report SPRABI1 KeyStone Architecture DDR3 Memory Controller User's Guide SPRUGV8 KeyStone Architecture External Memory Interface (EMIF16) User's Guide SPRUGZ3 Emulation and Trace Headers Technical Reference Manual SPRU655 KeyStone Architecture Enhanced Direct Memory Access 3 (EDMA3) User's Guide SPRUGS5 KeyStone Architecture General Purpose Input/Output (GPIO) User's Guide SPRUGV1 Gigabit Ethernet (GbE) Switch Subsystem (1 GB) User's Guide SPRUGV9 KeyStone Architecture Gigabit Ethernet (GbE) Switch Subsystem User's Guide SPRUHJ5 KeyStone Architecture HyperLink User's Guide SPRUGW8 Hardware Design Guide for KeyStone II Devices application report SPRABV0 KeyStone Architecture Inter-IC control Bus (I2C) User's Guide SPRUGV3 KeyStone Architecture Memory Protection Unit (MPU) User's Guide SPRUGW5 KeyStone Architecture Multicore Navigator User's Guide SPRUGR9 KeyStone Architecture Multicore Shared Memory Controller (MSMC) User's Guide SPRUGW7 KeyStone II Architecture Multicore Shared Memory Controller (MSMC) User's Guide SPRUHJ6 KeyStone II Architecture Network Coprocessor (NETCP) for K2E and K2L Devices User's Guide SPRUHZ0 Optimizing Application Software on KeyStone Devices application report SPRABG8 KeyStone II Architecture Packet Accelerator 2 (PA2) for K2E and K2L Devices User's Guide SPRUHZ2 KeyStone Architecture Peripheral Component Interconnect Express (PCIe) User's Guide SPRUGS6 KeyStone Architecture Phase Locked Loop (PLL) Controller User's Guide SPRUGV2 KeyStone Architecture Power Sleep Controller (PSC) User's Guide SPRUGV4 KeyStone II Architecture Security Accelerator 2 (SA2) for K2E and K2L Devices User's Guide SPRUHZ1 Security Addendum for KeyStone II Devices application report (1) SPRABS4 KeyStone Architecture Semaphore2 Hardware Module User's Guide SPRUGS3 KeyStone II Architecture Serializer/Deserializer (SerDes) User's Guide SPRUHO3 KeyStone Architecture Serial Peripheral Interface (SPI) User's Guide SPRUGP2 KeyStone Architecture Telecom Serial Interface Port (TSIP) User's Guide SPRUGY4 KeyStone Architecture Universal Asynchronous Receiver/Transmitter (UART) User's Guide SPRUGP1 KeyStone II Architecture Universal Serial Bus 3.0 (USB 3.0) User's Guide SPRUHJ7 KeyStone II Architecture IQN2 User's Guide SPRUH06 (1) 12 Contact a TI sales office to obtain this document. Device Characteristics Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com 3.5 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 3-2. Related Links 3.6 PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY AM5K2E04 Click here Click here Click here Click here Click here AM5K2E02 Click here Click here Click here Click here Click here Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help developers get started with Embedded Processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices. 3.7 Trademarks Code Composer Studio, XDS, E2E are trademarks of Texas Instruments. MPCore is a trademark of ARM Ltd or its subsidiaries. ARM, Cortex are registered trademarks of ARM Ltd or its subsidiaries. All other trademarks are the property of their respective owners. 3.8 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 3.9 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Device Characteristics 13 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com 4 ARM CorePac The ARM CorePac is added in the AM5K2E0x to enable the ability for layer 2 and layer 3 processing onchip. Operations such as traffic control, local O&M, NBAP/FP termination, and SCTP processing can all be performed with the Cortex-A15 processor core. The ARM CorePac of the AM5K2E0x integrates one or more Cortex-A15 processor clusters with additional logic for bus protocol conversion, emulation, interrupt handling, and debug related enhancements. The Cortex-A15 processor is an ARMv7A-compatible, multi-issue out-of-order superscalar execution engine with integrated L1 caches. The implementation also supports advanced SIMDv2 (NEON technology) and VFPv4 (vector floating point) architecture extensions, security, virtualization, LPAE (large physical address extension), and multiprocessing extensions. The ARM CorePac includes an L2 cache and support for AMBA4 AXI and AXI coherence extension (ACE) protocols. An interrupt controller is included in the ARM CorePac to handle host interrupt requests in the system. The ARM CorePac has three functional clock domains, including a high-frequency clock domain used by the Cortex-A15. The high-frequency domain is isolated from the rest of the device by asynchronous bridges. The following figures show the ARM CorePac. KeyStone II ARM CorePac (Quad Core) ARM ARM Cluster Generic Interrupt Controller 400 480 SPI Interrupts 16 PPI VBUSP2AXI Bridge 64 Bits Global Time Base Counter 32KB L1 P-Cache 32KB L1 P-Cache 32KB L1 P-Cache APB MUX APB Debug 32KB L1 D-Cache Debug SubSystem PTM (´4) APB CTI/CTM ARM A15 Main PLL ATB APB 32KB L1 D-Cache ARM VBUSP Registers CTM 32KB L1 D-Cache TeraNet (DMA) OCP ARM Trace ATB ARM A15 ARM CorePac Clock Boot Config 32KB L1 D-Cache ARM A15 32KB L1 P-Cache Endian CFG AM5K2E04 Timer 0 - 3 TeraNet (CFG) VBUSP ARM A15 L2 Cache Control and Snoop Control Unit ARM INTC STM ATB 4 MB L2 Cache IRQ, FIQ, VIRQ, VFIQ CTI (´4) AXI-VBUS Master VBUSP 256b VBUSM TeraNet (CFG) MSMC DDR3 ARM A15 Core Clock PSC ARM PLL Figure 4-1. AM5K2E04 ARM CorePac Block Diagram 14 ARM CorePac Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 KeyStone II ARM CorePac (Dual Core) ARM ARM Cluster 480 SPI Interrupts Generic Interrupt Controller 400 8 PPI VBUSP2AXI Bridge 64 Bits Global Time Base Counter 32KB L1 P-Cache ATB APB MUX APB Debug SubSystem PTM (´4) Debug TeraNet (DMA) OCP ARM Trace APB APB CTI/CTM ARM A15 ARM CorePac Clock Boot Config 32KB L1 D-Cache VBUSP ATB 32KB L1 P-Cache Endian CFG AM5K2E02 Timer 0 - 3 TeraNet (CFG) ARM A15 L2 Cache Control and Snoop Control Unit ARM INTC STM ATB 4 MB L2 Cache IRQ, FIQ, VIRQ, VFIQ 32KB L1 D-Cache CTM CTI (´4) ARM VBUSP Registers AXI-VBUS Master VBUSP 256b VBUSM TeraNet (CFG) MSMC DDR3 ARM A15 Core Clock Main PLL PSC Figure 4-2. AM5K2E02 ARM CorePac Block Diagram Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 ARM CorePac 15 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 4.1 www.ti.com Features The key features of the Quad Core ARM CorePac are as follows: • One or more Cortex-A15 processors, each containing: – Cortex-A15 processor revision R2P4. – ARM architecture version 7 ISA. – Multi-issue, out-of-order, superscalar pipeline. – L1 and L2 instruction and data cache of 32KB, 2-way, 16 word line with 128-bit interface. – Integrated L2 cache of 4MB, 16-way, 16-word line, 128-bit interface to L1 along with ECC/parity. – Includes the NEON media coprocessor (NEON™), which implements the advanced SIMDv2 media processing architecture and the VFPv4 Vector Floating Point architecture. – The external interface uses the AXI protocol configured to 128-bit data width. – Includes the System Trace Macrocell (STM) support for non-invasive debugging. – Implements the ARMv7 debug with watchpoint and breakpoint registers and 32-bit advanced peripheral bus (APB) slave interface to CoreSight™ debug systems. • Interrupt controller – Supports up to 480 interrupt requests – An integrated Global Time Base Counter (clocked by the SYSCLK divided by 6) • Emulation/debug – Compatible with CoreSight™ architecture 4.2 System Integration The ARM CorePac integrates the following group of submodules. • Cortex-A15 Processors: Provides a high processing capability, including the NEON™ technology for mobile multimedia acceleration. The Cortex-A15 communicates with the rest of the ARM CorePac through an AXI bus with an AXI2VBUSM bridge and receives interrupts from the ARM CorePac interrupt controller (ARM INTC). • Interrupt Controller: Handles interrupts from modules outside of the ARM CorePac (for details, see Section 4.3.3). • Clock Divider: Provides the required divided clocks to the internal modules of the ARM CorePac and has a clock input from the Main PLL. • In-Circuit Emulator: Fully compatible with CoreSight™ architecture and enables debugging capabilities. 4.3 4.3.1 ARM Cortex-A15 Processor Overview The ARM Cortex-A15 processor incorporates the technologies available in the ARM7™ architecture. These technologies include NEON™ for media and signal processing and Jazelle™ RCT for acceleration of real-time compilers, Thumb®-2 technology for code density, and the VFPv4 floating point architecture. For details, see the ARM Cortex-A15 Processor Technical Reference Manual. 4.3.2 Features Table 4-1 shows the features supported by the Cortex-A15 processor core. Table 4-1. Cortex-A15 Processor Core Supported Features FEATURES DESCRIPTION ARM version 7-A ISA Standard Cortex-A15 processor instruction set + Thumb2, ThumbEE, JazelleX Java accelerator, and media extensions Backward compatible with previous ARM ISA versions 16 ARM CorePac Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 4-1. Cortex-A15 Processor Core Supported Features (continued) FEATURES DESCRIPTION Cortex-A15 processor version R2P4 Integer core Main core for processing integer instructions NEON core Gives greatly enhanced throughput for media workloads and VFP-Lite support Architecture Extensions Security, virtualization and LPAE (40-bit physical address) extensions L1 Lcache and Dcache 32KB, 2-way, 16 word line, 128 bit interface L2 cache 4096KB, 16-way, 16 word line, 128 bit interface to L1, ECC/Parity is supported shared between cores L2 valid bits cleared by software loop or by hardware Cache Coherency Support for coherent memory accesses between A15 cores and other non-core master peripherals (Ex: EDMA) in the DDR3 and MSMC SRAM space. Branch target address cache Dynamic branch prediction with Branch Target Buffer (BTB) and Global History Buffer (GHB), a return stack, and an indirect predictor Enhanced memory management unit Mapping sizes are 4KB, 64KB, 1MB, and 16MB Buses 128b AXI4 internal bus from Cortex-A15 converted to a 256b VBUSM to interface (through the MSMC) with MSMC SRAM, DDR EMIF, ROM, Interrupt controller and other system peripherals Non-invasive Debug Support Processor instruction trace using 4x Program Trace Macrocell (Coresight™ PTM), Data trace (print-f style debug) using System Trace Macrocell (Coresight™ STM) and Performance Monitoring Units (PMU) Misc Debug Support JTAG based debug and Cross triggering Voltage SmartReflex voltage domain for automatic voltage scaling Power Support for standby modes and separate core power domains for additional leakage power reduction 4.3.3 ARM Interrupt Controller The ARM CorePac interrupt controller (AINTC) is responsible for prioritizing all service requests from the system peripherals and the secondary interrupt controller CIC2 and then generating either nIRQ or nFIQ to the Cortex-A15 processor. The type of the interrupt (nIRQ or nFIQ) and the priority of the interrupt inputs are programmable. The AINTC interfaces to the Cortex-A15 processor via the AXI port through an VBUS2AXI bridge and runs at half the processor speed. It has the capability to handle up to 480 requests, which can be steered/prioritized as A15 nFIQ or nIRQ interrupt requests. The general features of the AINTC are: • Up to 480 level sensitive shared peripheral interrupts (SPI) inputs • Individual priority for each interrupt input • Each interrupt can be steered to nFIQ or nIRQ • Independent priority sorting for nFIQ and nIRQ • Secure mask flag On the chip level, there is a dedicated chip level interrupt controller to serve the ARM interrupt controller. See Section 6.3 for more details. The figures below show an overall view of the ARM CorePac Interrupt Controller. Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 ARM CorePac 17 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com ARM INTC Peripherals 480 SPI Interrupts CIC2 CPU/6 Clock Generic Interrupt Controller 400 Global Time Base Counter GTB Counter Clock Power On Reset VBUSP2AXI Bridge VBUSP Interface FIQ, IRQ, Virtual FIQ, Virtual IRQ 8 PPIs Cortex A15 64 Bits 16 Software Generated Inputs Figure 4-3. ARM Interrupt Controller for Two Cortex-A15 Processor Cores ARM INTC Peripherals 480 SPI Interrupts CIC2 CPU/6 Clock GTB Counter Clock Power On Reset VBUSP Interface Generic Interrupt Controller 400 Global Time Base Counter VBUSP2AXI Bridge FIQ, IRQ, Virtual FIQ, Virtual IRQ 16 PPIs Cortex A15 64 Bits 16 Software Generated Inputs Figure 4-4. ARM Interrupt Controller for Four Cortex-A15 Processor Cores 4.3.4 Endianess The ARM CorePac can operate in either little endian or big endian mode. When the ARM CorePac is in little endian mode and the rest of the system is in big endian mode, the bridges in the ARM CorePac are responsible for performing the endian conversion. 4.4 CFG Connection The ARM CorePac has two slave ports. The AM5K2E0x masters cannot access the ARM CorePac internal memory space. 1. Slave port 0 (TeraNet 3P_A) is a 32 bit wide port used for the ARM Trace module. 2. Slave port 1 (TeraNet 3P_B) is a 32 bit wide port used to access the rest of the system configuration. 4.5 Main TeraNet Connection There is one master port coming out of the ARM CorePac. The master port is a 256 bit wide port for the transactions going to the MSMC and DDR_EMIF data spaces. 18 ARM CorePac Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com 4.6 4.6.1 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Clocking and Reset Clocking The Cortex-A15 processor core clocks are sourced from the Controller. The Cortex-A15 processor core clock has a maximum frequency of 1.4 GHz. The ARM CorePac subsytem also uses the SYSCLK1 clock source from the main PLL which is locally divided (/1, /3 and /6) and provided to certain sub-modules inside the ARM CorePac. AINTC sub module runs at a frequency of SYSCLK1/6. 4.6.2 Reset The ARM CorePac does not support local reset. It is reset whenever the device is under reset. In addition, the interrupt controller (AINTC) can only be reset during POR and RESETFULL. AINTC also resets whenever device is under reset. For the complete programming model, refer to the KeyStone II Architecture ARM CorePac User's Guide (SPRUHJ4). Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 ARM CorePac 19 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com 5 Terminals 5.1 Package Terminals Figure 5-1 shows the ABD 1089-ball grid array package (bottom view). 32 33 28 30 31 29 26 27 25 24 22 23 18 20 21 19 14 16 17 15 12 13 8 10 11 9 4 6 7 5 2 3 1 A B C D E F G H J K L M N P R T U V W Y AA AB AC AD AE AF AG AH AJ AK AL AM AN Figure 5-1. ABD 1089-Pin BGA Package (Bottom View) 5.2 Pin Map The following figures show the AM5K2E0x pin assignments in four panels (A, B, C, and D). A B C D Figure 5-2. Pin Map Panels (Bottom View) 20 Terminals Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 NOTE XFI pins are associated with the 10-GbE feature and are supported only in the AM5K2E04 part. 33 32 31 30 29 28 27 26 VSS DVDD15 DDRDQM7 DDRDQS6P DDRD48 DDRD49 DDRDQS5P DDRD45 B DVDD15 DDRD63 DDRD50 DDRDQS6N DDRD52 DDRD44 DDRDQS5N DDRD46 C DDRDQS7P DDRD61 DVDD15 DDRD53 VSS DDRD42 VSS DDRD47 D DDRDQS7N DDRD62 VSS DDRD55 DVDD15 DDRD41 DVDD15 DDRDQM5 E DDRD60 DDRD59 DDRDQM6 DDRD54 DDRD51 DDRD40 DDRD43 DDRDQM4 F DDRD57 DDRD58 DDRD56 VSS DVDD15 VSS DVDD15 VSS G VCNTL1 VCNTL4 VSS DVDD15 VSS DVDD15 VSS DVDD15 H USIMIO RSV000 VCNTL2 VCNTL3 VCNTL0 VSS DVDD15 VSS J USIMCLK RSV001 VCNTL5 RSV013 RSV014 DVDD18 VSS CVDD A K TIMI0 TIMI1 TIMO0 TIMO1 USIMRST VSS DVDD18 VSSTMON L SPI2CLK SPI0SCS3 SPI0SCS0 SPI2SCS3 SPI0SCS2 DVDD18 VSS CVDDTMON M SPI1CLK SPI1SCS1 SPI0DIN SPI0CLK SPI0SCS1 VSS DVDD18 VSS N SPI1SCS3 VSS DVDD18 SPI1SCS2 SPI0DOUT DVDD18 VSS CVDD P SPI2SCS2 SPI1DOUT SPI2SCS0 SPI2DIN SPI1SCS0 VSS DVDD18 VSS R UART0CTS UART0RTS SPI2DOUT SPI1DIN SPI2SCS1 DVDD18 VSS CVDD T UART1RTS UART1TXD UART1CTS UART0TXD UART0RXD VSS DVDD18 VSS U UART0DTR VSS DVDD18 VD UART1RXD DVDD18 VSS CVDD V GPIO03 GPIO04 GPIO07 GPIO00 VCL VSS DVDD18 VSS W GPIO09 GPIO06 GPIO08 GPIO05 UART0DSR DVDD18 VSS CVDD Y GPIO14 GPIO12 GPIO15 GPIO11 GPIO02 VSS DVDD18 VSS AA GPIO16 VSS DVDD18 GPIO13 GPIO01 DVDD18 VSS CVDD AB GPIO18 GPIO17 GPIO19 GPIO25 GPIO10 VSS DVDD18 VSS AC GPIO21 GPIO24 GPIO23 GPIO26 GPIO20 DVDD18 VSS CVDD AD GPIO28 GPIO27 GPIO29 GPIO31 GPIO22 VSS DVDD18 VSS AE GPIO30 VSS DVDD18 RSV030 RESET DVDD18 VSS DVDD18 AF RSV029 RESETFULL BOOTCOMPLETE HOUT TDO VSS DVDD18 VSS AG RSV028 TRST TDI SCL0 SDA2 SDA0 VSS DVDD18 AH POR TMS SCL2 SCL1 RESETSTAT VSS DVDD18 VSS AJ TCK SDA1 TSIP0FSA DVDD18 VSS RSV018 SGMII00REFRES RSV019 AK TSIP0CLKB TSIP0FSB TSIP0CLKA VSS SGMII0TXN1 SGMII0TXP1 VSS SGMII0TXN3 AL TSIP0TR1 TSIP0TX0 VSS SGMII0TXN0 SGMII0TXP0 VSS SGMII0TXN2 SGMII0TXP2 AM DVDD18 TSIP0TX1 TSIP0TR0 VSS SGMII0RXP1 SGMII0RXN1 VSS SGMII0RXP3 AN VSS DVDD18 VSS SGMII0RXP0 SGMII0RXN0 VSS SGMII0RXP2 SGMII0RXN2 33 32 31 30 29 28 27 26 Figure 5-3. AM5K2Ex Left End Panel (A) — Bottom View Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Terminals 21 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com 25 24 23 22 21 20 19 18 A DDRD39 DDRDQS4P DDRCB00 DDRDQS8N DDRCB07 DDRCB06 DDRCKE1 DDRA08 B DDRD38 DDRDQS4N DDRD32 DDRDQS8P DDRCB05 DDRDQM8 RSV021 DDRBA2 C DVDD15 DDRD35 VSS DDRCB04 DVDD15 DDRCKE0 VSS DDRA14 D VSS DDRD34 DVDD15 DDRCB01 VSS DDRRESET DVDD15 DDRA11 E DDRD37 DDRD36 DDRD33 DDRCB02 DDRCB03 RSV022 DDRA15 DDRA12 F DVDD15 VSS DVDD15 VSS DVDD15 VSS DVDD15 VSS G VSS AVDDA10 VSS AVDDA9 VSS DVDD15 VSS DDRRZQ2 H DVDD15 VSS DVDD15 VSS DVDD15 VSS DVDD15 VSS J VSS VNWA2 VSS CVDD VSS CVDD VSS CVDD K CVDD VSS CVDD VSS CVDD VSS CVDD VSS L VSS CVDD1 VSS CVDD VSS CVDD VSS CVDD M CVDD VSS CVDD1 VSS CVDD VSS CVDD VSS N VSS CVDD1 VSS CVDD VSS CVDD VSS CVDD P CVDD VSS CVDD VSS CVDD VSS CVDD VSS R VSS CVDD VSS CVDD VSS CVDD VSS CVDD T CVDD VSS CVDD VSS CVDD VSS CVDD VSS U VSS CVDD VSS CVDD VSS CVDD VSS CVDD V CVDD VSS CVDD VSS CVDD VSS CVDD VSS W VSS CVDD VSS CVDD VSS CVDD VSS CVDD Y CVDD VSS CVDD1 VSS CVDD VSS CVDD VSS AA VSS CVDD1 VSS CVDD VSS CVDD VSS CVDD AB CVDD VSS CVDD1 VSS CVDD VSS CVDD VSS AC VSS CVDD VSS CVDD VSS CVDD VSS CVDD AD CVDD VSS VNWA3 VSS CVDD VSS CVDD VSS AE VSS VDDALV VSS VDDALV VSS VDDALV VSS VDDALV AF VDDALV VSS VDDALV VSS VDDALV VSS VDDALV VSS AG VSS VDDALV VSS VDDALV VSS VDDALV VSS VDDALV AH VDDAHV VSS VDDAHV VSS VDDAHV VSS VDDAHV VSS AJ SGMII0CLKN SGMII0CLKP VSS SGMII01REFRES VSS RSV016 VSS PCIE0CLKN AK SGMII0TXP3 VSS SGMII0TXN5 SGMII0TXP5 VSS SGMII0TXN7 SGMII0TXP7 VSS AL VSS SGMII0TXN4 SGMII0TXP4 VSS SGMII0TXN6 SGMII0TXP6 VSS PCIE0TXN0 AM SGMII0RXN3 VSS SGMII0RXP5 SGMII0RXN5 VSS SGMII0RXP7 SGMII0RXN7 VSS AN VSS SGMII0RXP4 SGMII0RXN4 VSS SGMII0RXP6 SGMII0RXN6 VSS PCIE0RXP0 25 24 23 22 21 20 19 18 Figure 5-4. AM5K2Ex Left Center Panel (B) — Bottom View 22 Terminals Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 17 16 15 14 13 12 11 10 9 DDRA06 DDRCLKOUTP1 DDRCLKOUTN1 RSV023 DDRA10 DDRCE0 DDRD26 DDRDQS3P DDRD31 A DDRA09 DDRA02 DDRCLKOUTP0 DDRCLKOUTN0 DDRRAS DDRCAS DDRD25 DDRDQS3N DDRD29 B DVDD15 DDRA03 DDRA01 VSS DDRBA1 DDRCE1 DVDD15 DDRD27 VSS C VSS DDRA04 DDRA00 DVDD15 DDRBA0 DDRODT0 VSS DDRD28 DVDD15 D DDRA07 DDRA05 DDRRZQ0 AVDDA7 DDRWE DDRA13 DDRODT1 DDRD24 DDRD30 E DVDD15 VSS DDRVREFSSTL VSS DVDD15 VSS DVDD15 VSS DVDD15 F VSS AVDDA8 VSS DVDD15 VSS DDRRZQ1 VSS DVDD15 VSS G DVDD15 VSS DVDD15 VSS DVDD15 VSS DVDD15 VSS DVDD15 H VSS CVDD VSS CVDD VSS CVDD VSS CVDDCMON VSSCMON J CVDD VSS CVDD VSS CVDD VSS CVDD VSS VPP0 K VSS CVDD VSS CVDD VSS CVDD VSS CVDD VSS L CVDD VSS CVDD VSS CVDD1 VSS CVDD1 VSS VPP1 M VSS CVDD VSS CVDD VSS CVDD1 VSS CVDD VSS N CVDD VSS CVDD VSS CVDD VSS USB1DVDD33 VSS VNWA1 P VSS CVDD VSS CVDD VSS VDDUSB1 VSS USB1VPH VSS R CVDD VSS CVDD VSS CVDD VSS VDDUSB1 VSS USB1VPTX T VSS CVDD VSS CVDD VSS CVDD VSS VDDUSB0 VSS U CVDD VSS CVDD VSS CVDD VSS VDDUSB0 VSS USB0VPTX V VSS CVDD VSS CVDD VSS CVDD VSS USB0VPH VSS W CVDD VSS CVDD VSS CVDD1 VSS USB0DVDD33 VSS CVDD Y VSS CVDD VSS CVDD1 VSS CVDD1 VSS CVDD VSS AA CVDD VSS CVDD VSS CVDD VSS CVDD VSS CVDD AB VSS CVDD VSS CVDD VSS CVDD VSS CVDD VSS AC CVDD VSS CVDD VSS CVDD VSS CVDD VSS VNWA4 AD VSS VDDALV VSS VDDALV VSS VDDALV VSS VDDALV VSS AE VDDALV VSS VDDALV VSS VDDALV VSS VDDALV VSS VDDALV AF VSS VDDALV VSS PCIE0REFRES VSS RSV017 VSS XFIREFRES0 VSS AG VDDAHV VSS VDDAHV VSS VDDAHV VSS VDDAHV VSS RSV020 AH PCIE0CLKP VSS PCIE1CLKN PCIE1CLKP VSS XFICLKN XFICLKP PCIE1REFRES VSS AJ PCIE0TXN1 PCIE0TXP1 VSS PCIE1TXN1 PCIE1TXP1 VSS XFITXN1 XFITXP1 VSS AK PCIE0TXP0 VSS PCIE1TXN0 PCIE1TXP0 VSS XFITXN0 XFITXP0 VSS PCIE0RXP1 PCIE0RXN1 VSS PCIE1RXP1 PCIE1RXN1 VSS XFIRXP1 XFIRXN1 PCIE0RXN0 VSS PCIE1RXP0 PCIE1RXN0 VSS XFIRXP0 XFIRXN0 VSS 17 16 15 14 13 12 11 10 HYPLNK0TXN0 AL VSS AM HYPLNK0RXP0 AN 9 Figure 5-5. AM5K2Ex Right Center Panel (C) — Bottom View Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Terminals 23 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com 8 7 6 5 4 3 2 1 DDRD22 DDRDQS2N DDRD09 DDRD08 DDRDQS1P DDRDQM0 DVDD15 VSS A DDRD23 DDRDQS2P DDRD19 DDRD10 DDRDQS1N DDRD15 DDRD07 DVDD15 B DDRD21 DVDD15 DDRD20 VSS DDRD12 DVDD15 DDRDQS0N DDRDQS0P C DDRDQM2 VSS DDRD16 DVDD15 DDRD13 VSS DDRD05 DDRD01 D DDRDQM3 DDRD18 DDRD17 DDRD11 DDRD14 DDRDQM1 DDRD00 DDRD03 E VSS DVDD15 VSS DVDD15 VSS DDRD06 DDRD02 DDRD04 F AVDDA6 VSS EMIFD09 EMIFD00 DDRCLKP DDRCLKN RSV004 RSV005 G VSS DVDD15 EMIFD06 EMIFD04 EMIFD13 EMIFD11 EMIFD08 EMIFD07 H RSV010 VSS EMIFD05 EMIFD15 EMIFD12 VSS DVDD18 EMIFD03 J RSV009 AVDDA2 EMIFD14 EMIFD10 EMIFD02 EMIFD01 EMIFA19 EMIFA20 K DVDD18 VSS EMIFA23 EMIFA17 EMIFA21 EMIFA14 EMIFA16 EMIFA11 L VSS DVDD18 EMIFA18 EMIFA09 EMIFA10 EMIFA06 DVDD18 VSS M DVDD18 VSS EMIFA05 EMIFA08 EMIFA07 EMIFWAIT1 VSS USB1RX0M N VSS DVDD18 EMIFA04 EMIFA01 USB1DM EMIFA00 USB1TX0P USB1RX0P P USB1VP VSS EMIFBE1 EMIFWE USB1DP EMIFA22 USB1TX0M VSS R VSS DVDD18 EMIFWAIT0 EMIFA13 USBCLKM EMIFA15 VSS USB0RX0M T USB0VP VSS EMIFA02 EMIFA12 USBCLKP VSS USB0TX0M USB0RX0P U VSS DVDD18 EMIFA03 USB1RESREF USB1VBUS USB0DP USB0TX0P VSS V RSV011 RSV012 USB1ID0 USB0VBUS USB0ID0 USB0DM VSS EMIFCE2 W VSS DVDD18 USB0RESREF EMU17 EMIFCE1 EMIFRW EMIFOE EMIFCE3 Y DVDD18 VSS EMU01 EMU15 VSS DVDD18 EMIFBE0 EMIFCE0 AA VSS DVDD18 HYPLNK0TXPMCLK EMU06 EMU08 EMU14 EMU16 USB0DRVVBUS AB DVDD18 VSS HYPLNK0TXFLCLK EMU00 EMU02 EMU07 EMU13 USB1DRVVBUS AC VSS AVDDA3 EMU04 VSS DVDD18 EMU05 EMU12 HYPLNK0RXPMDAT AD DVDD18 XFIMDIO EMU03 TSSYNCEVT SYSCLKOUT HYPLNK0RXFLDAT RSV002 HYPLNK0RXPMCLK AE VSS AVDDA1 XFIMDCLK HYPLNK0TXPMDAT TSCOMPOUT EMU10 RSV003 CORECLKP AF RSV015 VSS NETCPCLKSEL RSV008 EMU11 TSPUSHEVT0 TSRXCLKOUT1P CORECLKN AG VSS XFIREFRES1 MDCLK0 MDIO0 HYPLNK0TXFLDAT EMU09 EMU18 TSRXCLKOUT1N AH HYPLNK0CLKN HYPLNK0CLKP VSS HYPLNK0REFRES VSS HYPLNK0RXFLCLK TSRXCLKOUT0N TSRXCLKOUT0P AJ HYPLNK0TXN1 HYPLNK0TXP1 VSS HYPLNK0TXN3 HYPLNK0TXP3 VSS TSREFCLKP TSREFCLKN AK HYPLNK0TXP0 VSS HYPLNK0TXN2 HYPLNK0TXP2 VSS RSV006 RSV007 TSPUSHEVT1 AL HYPLNK0RXP1 HYPLNK0RXN1 VSS HYPLNK0RXP3 HYPLNK0RXN3 VSS NETCPCLKP VSS AM HYPLNK0RXN0 VSS HYPLNK0RXP2 HYPLNK0RXN2 VSS NETCPCLKN VSS VSS AN 8 7 6 5 4 3 2 1 Figure 5-6. AM5K2Ex Right End Panel (D) — Bottom View 24 Terminals Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com 5.3 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Terminal Functions The terminal functions table (Table 5-2) identifies the external signal names, the associated pin (ball) numbers, the pin type (I, O/Z, or I/O/Z), whether the pin has any internal pullup/pulldown resistors, and gives functional pin descriptions. This table is arranged by function. The power terminal functions table (Table 5-3) lists the various power supply pins and ground pins and gives functional pin descriptions. Table 5-4 shows all pins arranged by signal name. Table 5-5 shows all pins arranged by ball number. Some pins have additional functions beyond their primary functions. There are 21 pins that have a secondary function and 15 pins that have a tertiary function. Secondary functions are indicated with a superscript 2 (2) and tertiary functions are indicated with a superscript 3 (3). For more detailed information on device configuration, peripheral selection, multiplexed/shared pins, and pullup/pulldown resistors, see Section 8.2. Use the symbol definitions in Table 5-1 when reading Table 5-2. Table 5-1. I/O Functional Symbol Definitions FUNCTIONAL SYMBOL DEFINITION Internal 100-µA pulldown or pullup is provided for this terminal. In most systems, a 1-kΩ resistor can be used to oppose the IPD/IPU. IPD or IPU A GND Table 5-2 COLUMN HEADING IPD/IPU Analog signal Type Ground Type I Input terminal Type O Output terminal Type P Power supply voltage Type Z Three-state terminal or high impedance Type Table 5-2. Terminal Functions — Signals and Control by Function SIGNAL NAME BALL NO. TYPE IPD/IPU DESCRIPTION BOOTMODE_RSVD2 Y31 I Down ARM Big Endian Configuration pin. Secondary function for GPIO15. AVSIFSEL[0]2 K33 I Down Default value (bootstrapped) for SR PINMUX Register (SR_PINCTL). Secondary function for TIMI0 AVSIFSEL[1]2 K32 I Down Default value (bootstrapped) for SR PINMUX Register (SR_PINCTL). Secondary function for TIMI1 BOOTCOMPLETE AF31 OZ Down Boot progress indication output BOOTMODE002 AA29 I Down User defined Boot Mode pin. Secondary function for GPIO01. BOOTMODE012 Y29 I Down User defined Boot Mode pin. Secondary function for GPIO02. BOOTMODE022 V33 I Down User defined Boot Mode pin. Secondary function for GPIO03. BOOTMODE03 2 V32 I Down User defined Boot Mode pin. Secondary function for GPIO04. BOOTMODE04 2 W30 I Down User defined Boot Mode pin. Secondary function for GPIO05. BOOTMODE052 W32 I Down User defined Boot Mode pin. Secondary function for GPIO06. BOOTMODE06 2 V31 I Down User defined Boot Mode pin. Secondary function for GPIO07. BOOTMODE07 2 W31 I Down User defined Boot Mode pin. Secondary function for GPIO08. BOOTMODE082 W33 I Down User defined Boot Mode pin. Secondary function for GPIO09. BOOTMODE09 2 AB29 I Down User defined Boot Mode pin. Secondary function for GPIO10. BOOTMODE10 2 Y30 I Down User defined Boot Mode pin. Secondary function for GPIO11. BOOTMODE112 Y32 I Down User defined Boot Mode pin. Secondary function for GPIO12. BOOTMODE122 AA30 I Down User defined Boot Mode pin. Secondary function for GPIO13. BOOTMODE13 2 AA33 I Down User defined Boot Mode pin. Secondary function for GPIO16. BOOTMODE14 2 AB32 I Down User defined Boot Mode pin. Secondary function for GPIO17. BOOTMODE152 AB33 I Down User defined Boot Mode pin. Secondary function for GPIO18. V30 I Up Little Endian Configuration pin. Secondary function for GPIO00. Boot Configuration Pins 2 LENDIAN Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Terminals 25 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 5-2. Terminal Functions — Signals and Control by Function (continued) SIGNAL NAME BALL NO. TYPE IPD/IPU DESCRIPTION MAINPLLODSEL2 Y33 I Down Post divider select for main PLL.. Secondary function for GPIO14. CORECLKN AG1 I CORECLKP AF1 I DDRCLKN G3 I DDRCLKP G4 I HOUT AF30 OZ HYPLNK0CLKN AJ8 I HYPLNK0CLKP AJ7 I NETCPCLKN AN3 I NETCPCLKP AM2 I NETCPCLKSEL AG6 I PCIE0CLKN AJ18 I PCIE0CLKP AJ17 I PCIE1CLKN AJ15 I PCIE1CLKP AJ14 I POR AH33 I RESETFULL AF32 I Up Full reset RESETSTAT AH29 O Up Reset Status Output. Drives low during Power-on Reset (No HHV override). Available after core and IOs are completely powered-up. RESET AE29 I Up Warm reset of non-isolated portion of the device SGMII0CLKN AJ25 I SGMII0CLKP AJ24 I SYSCLKOUT AE4 OZ TSREFCLKN AK1 I TSREFCLKP AK2 I TSRXCLKOUT0N AJ2 O TSRXCLKOUT0P AJ1 O TSRXCLKOUT1N AH1 O TSRXCLKOUT1P AG2 O USBCLKM T4 I USBCLKP U4 I XFICLKN AJ12 I XFICLKP AJ11 I Clock / Reset 26 Terminals System clock input to main PLL DDR3 reference clock input to DDR PLL Up Interrupt output pulse created by IPCGRH HyperLink reference clock to drive HyperLink SerDes NETCP sub-system reference clock Down NETCP clock select to choose between core clock and NETCPCLK pins PCIe Clock input to drive PCIe0 SerDes PCIe Clock Input to drive PCIe1 SerDes Power-on reset SGMII reference clock to drive both SGMII0 SerDes SGMII reference clock to drive the SGMII SerDes Down System clock output to be used as a general purpose output clock for debug purposes Clock from external OCXO/VCXO for SyncE SERDES recovered clock output for SyncE SERDES recovered clock output for SyncE USB0_3.0 reference clock XFI reference clock to drive the XFI SerDes Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 5-2. Terminal Functions — Signals and Control by Function (continued) SIGNAL NAME BALL NO. TYPE IPD/IPU DESCRIPTION DDRA00 D15 OZ DDRA01 C15 OZ DDRA02 B16 OZ DDRA03 C16 OZ DDRA04 D16 OZ DDRA05 E16 OZ DDRA06 A17 OZ DDRA07 E17 OZ DDRA08 A18 OZ DDRA09 B17 OZ DDRA10 A13 OZ DDRA11 D18 OZ DDRA12 E18 OZ DDRA13 E12 OZ DDRA14 C18 OZ DDRA15 E19 OZ DDRBA0 D13 OZ DDRBA1 C13 OZ DDRBA2 B18 OZ DDRCAS B12 OZ DDRCB00 A23 IOZ DDRCB01 D22 IOZ DDRCB02 E22 IOZ DDRCB03 E21 IOZ DDRCB04 C22 IOZ DDRCB05 B21 IOZ DDRCB06 A20 IOZ DDRCB07 A21 IOZ DDRCE0 A12 OZ DDR3 EMIF chip enable0 DDRCE1 C12 OZ DDR3 EMIF chip enable1 DDRCKE0 C20 OZ DDR3 EMIF clock enable0 DDRCKE1 A19 OZ DDR3 EMIF clock enable1 DDRCLKOUTN0 B14 OZ DDRCLKOUTP0 B15 OZ DDRCLKOUTN1 A15 OZ DDRCLKOUTP1 A16 OZ DDR3 DDR3 EMIF address bus DDR3 EMIF bank address DDR3 EMIF column address strobe DDR3 EMIF check bits DDR3 EMIF Output Clocks to drive SDRAMs for Rank0 DDR3 EMIF Output Clocks to drive SDRAMs for Rank1 Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Terminals 27 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 5-2. Terminal Functions — Signals and Control by Function (continued) SIGNAL NAME BALL NO. TYPE DDRD00 E2 IOZ DDRD01 D1 IOZ DDRD02 F2 IOZ DDRD03 E1 IOZ DDRD04 F1 IOZ DDRD05 D2 IOZ DDRD06 F3 IOZ DDRD07 B2 IOZ DDRD08 A5 IOZ DDRD09 A6 IOZ DDRD10 B5 IOZ DDRD11 E5 IOZ DDRD12 C4 IOZ DDRD13 D4 IOZ DDRD14 E4 IOZ DDRD15 B3 IOZ DDRD16 D6 IOZ DDRD17 E6 IOZ DDRD18 E7 IOZ DDRD19 B6 IOZ DDRD20 C6 IOZ DDRD21 C8 IOZ DDRD22 A8 IOZ DDRD23 B8 IOZ DDRD24 E10 IOZ DDRD25 B11 IOZ DDRD26 A11 IOZ DDRD27 C10 IOZ DDRD28 D10 IOZ DDRD29 B9 IOZ DDRD30 E9 IOZ DDRD31 A9 IOZ DDRD32 B23 IOZ DDRD33 E23 IOZ DDRD34 D24 IOZ DDRD35 C24 IOZ DDRD36 E24 IOZ DDRD37 E25 IOZ DDRD38 B25 IOZ DDRD39 A25 IOZ DDRD40 E28 IOZ DDRD41 D28 IOZ DDRD42 C28 IOZ DDRD43 E27 IOZ DDRD44 B28 IOZ DDRD45 A26 IOZ DDRD46 B26 IOZ DDRD47 C26 IOZ 28 Terminals IPD/IPU DESCRIPTION DDR3 EMIF data bus DDR3 EMIF data bus DDR3 EMIF data bus Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 5-2. Terminal Functions — Signals and Control by Function (continued) SIGNAL NAME BALL NO. TYPE DDRD48 A29 IOZ IPD/IPU DESCRIPTION DDRD49 A28 IOZ DDRD50 B31 IOZ DDRD51 E29 IOZ DDRD52 B29 IOZ DDRD53 C30 IOZ DDRD54 E30 IOZ DDRD55 D30 IOZ DDRD56 F31 IOZ DDRD57 F33 IOZ DDRD58 F32 IOZ DDRD59 E32 IOZ DDRD60 E33 IOZ DDRD61 C32 IOZ DDRD62 D32 IOZ DDRD63 B32 IOZ DDRDQM0 A3 OZ DDRDQM1 E3 OZ DDRDQM2 D8 OZ DDRDQM3 E8 OZ DDRDQM4 E26 OZ DDRDQM5 D26 OZ DDRDQM6 E31 OZ DDRDQM7 A31 OZ DDRDQM8 B20 OZ DDRDQS0N C2 IOZ Up/Dn DDRDQS0P C1 IOZ Up/Dn DDRDQS1N B4 IOZ Up/Dn DDRDQS1P A4 IOZ Up/Dn DDRDQS2N A7 IOZ Up/Dn DDRDQS2P B7 IOZ Up/Dn DDRDQS3N B10 IOZ Up/Dn DDRDQS3P A10 IOZ Up/Dn DDRDQS4N B24 IOZ Up/Dn DDRDQS4P A24 IOZ Up/Dn DDRDQS5N B27 IOZ Up/Dn DDRDQS5P A27 IOZ Up/Dn DDRDQS6N B30 IOZ Up/Dn DDRDQS6P A30 IOZ Up/Dn DDRDQS7N D33 IOZ Up/Dn DDRDQS7P C33 IOZ Up/Dn DDRDQS8N A22 IOZ Up/Dn DDRDQS8P B22 IOZ Up/Dn DDRODT0 D12 OZ DDR3 EMIF on-die termination outputs used to set termination on the SDRAMs DDRODT1 E11 OZ DDR3 EMIF on-die termination outputs used to set termination on the SDRAMs DDRRAS B13 OZ DDR3 EMIF row address strobe DDRRESET D20 OZ DDR3 reset signal. IO will work in LVCMOS mode to comply with JEDEC standard. DDRRZQ0 E15 A PTV compensation reference resistor pin for DDR3 DDRRZQ1 G12 A PTV compensation reference resistor pin for DDR3 DDRRZQ2 G18 A PTV compensation reference resistor pin for DDR3 DDRWE E13 OZ DDR3 EMIF write enable DDR3 EMIF data bus DDR3 EMIF Data Masks DDR3 EMIF data strobe. Programmable pull-up/dn 350-650 ohm. Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Terminals 29 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 5-2. Terminal Functions — Signals and Control by Function (continued) SIGNAL NAME BALL NO. TYPE IPD/IPU EMIFA00 P3 O Down EMIFA01 P5 O Down EMIFA02 U6 O Down EMIFA03 V6 O Down EMIFA04 P6 O Down EMIFA05 N6 O Down EMIFA06 M3 O Down EMIFA07 N4 O Down EMIFA08 N5 O Down EMIFA09 M5 O Down EMIFA10 M4 O Down EMIFA11 L1 O Down EMIFA12 U5 O Down EMIFA13 T5 O Down EMIFA14 L3 O Down EMIFA15 T3 O Down EMIFA16 L2 O Down EMIFA17 L5 O Down EMIFA18 M6 O Down EMIFA19 K2 O Down EMIFA20 K1 O Down EMIFA21 L4 O Down EMIFA22 R3 O Down EMIFA23 L6 O Down EMIFBE0 AA2 O Up EMIFBE1 R6 O Up EMIFCE0 AA1 O Up EMIFCE1 Y4 O Up EMIFCE2 W1 O Up EMIFCE3 Y1 O Up EMIFOE Y2 O Up EMIFRW Y3 O Up EMIFWAIT0 T6 I Down EMIFWAIT1 N3 I Down EMIFWE R5 O Up DESCRIPTION EMIF 30 Terminals EMIF address EMIF address EMIF control signals Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 5-2. Terminal Functions — Signals and Control by Function (continued) SIGNAL NAME BALL NO. TYPE IPD/IPU EMIFD00 G5 IOZ Down DESCRIPTION EMIFD01 K3 IOZ Down EMIFD02 K4 IOZ Down EMIFD03 J1 IOZ Down EMIFD04 H5 IOZ Down EMIFD05 J6 IOZ Down EMIFD06 H6 IOZ Down EMIFD07 H1 IOZ Down EMIFD08 H2 IOZ Down EMIFD09 G6 IOZ Down EMIFD10 K5 IOZ Down EMIFD11 H3 IOZ Down EMIFD12 J4 IOZ Down EMIFD13 H4 IOZ Down EMIFD14 K6 IOZ Down EMIFD15 J5 IOZ Down EMU00 AC5 IOZ Up EMU01 AA6 IOZ Up EMU02 AC4 IOZ Up EMU03 AE6 IOZ Up EMU04 AD6 IOZ Up EMU05 AD3 IOZ Up EMU06 AB5 IOZ Up EMU07 AC3 IOZ Up EMU08 AB4 IOZ Up EMU09 AH3 IOZ Up EMU10 AF3 IOZ Up EMU11 AG4 IOZ Up EMU12 AD2 IOZ Up EMU13 AC2 IOZ Up EMU14 AB3 IOZ Up EMU15 AA5 IOZ Up EMU16 AB2 IOZ Up EMU17 Y5 IOZ Up EMU18 AH2 IOZ Up EMU193 AB32 IOZ Down EMU (Unique select for EMU muxing on each GPIO pin.) Tertiary function for GPIO17. EMU203 AB33 IOZ Down EMU (Unique select for EMU muxing on each GPIO pin.) Tertiary function for GPIO18. 3 AB31 IOZ Down EMU (Unique select for EMU muxing on each GPIO pin.) Tertiary function for GPIO19. 3 EMU22 AC29 IOZ Down EMU (Unique select for EMU muxing on each GPIO pin.) Tertiary function for GPIO20. EMU233 AC33 IOZ Down EMU (Unique select for EMU muxing on each GPIO pin.) Tertiary function for GPIO21. EMU243 AD29 IOZ Down EMU (Unique select for EMU muxing on each GPIO pin.) Tertiary function for GPIO22. 3 EMU25 AC31 IOZ Down EMU (Unique select for EMU muxing on each GPIO pin.) Tertiary function for GPIO23. EMU263 AC32 IOZ Down EMU (Unique select for EMU muxing on each GPIO pin.) Tertiary function for GPIO24. EMU273 AB30 IOZ Down EMU (Unique select for EMU muxing on each GPIO pin.) Tertiary function for GPIO25. 3 AC30 IOZ Down EMU (Unique select for EMU muxing on each GPIO pin.) Tertiary function for GPIO26. 3 EMU29 AD32 IOZ Down EMU (Unique select for EMU muxing on each GPIO pin.) Tertiary function for GPIO27. EMU303 AD33 IOZ Down EMU (Unique select for EMU muxing on each GPIO pin.) Tertiary function for GPIO28. 3 AD31 IOZ Down EMU (Unique select for EMU muxing on each GPIO pin.) Tertiary function for GPIO29. 3 AE33 IOZ Down EMU (Unique select for EMU muxing on each GPIO pin.) Tertiary function for GPIO30. EMIF data EMU EMU21 EMU28 EMU31 EMU32 Emulation and trace port Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Terminals 31 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 5-2. Terminal Functions — Signals and Control by Function (continued) SIGNAL NAME BALL NO. TYPE IPD/IPU EMU333 AD30 Down IOZ DESCRIPTION EMU (Unique select for EMU muxing on each GPIO pin.) Tertiary function for GPIO31. General Purpose Input/Output (GPIO) GPIO00 V30 IOZ Up GPIO01 AA29 IOZ Down GPIO02 Y29 IOZ Down GPIO03 V33 IOZ Down GPIO04 V32 IOZ Down GPIO05 W30 IOZ Down GPIO06 W32 IOZ Down GPIO07 V31 IOZ Down GPIO08 W31 IOZ Down GPIO09 W33 IOZ Down GPIO10 AB29 IOZ Down GPIO11 Y30 IOZ Down GPIO12 Y32 IOZ Down GPIO13 AA30 IOZ Down GPIO14 Y33 IOZ Down GPIO15 Y31 IOZ Down GPIO16 AA33 IOZ Down GPIO17 AB32 IOZ Down GPIO18 AB33 IOZ Down GPIO19 AB31 IOZ Down GPIO20 AC29 IOZ Down GPIO21 AC33 IOZ Down GPIO22 AD29 IOZ Down GPIO23 AC31 IOZ Down GPIO24 AC32 IOZ Down GPIO25 AB30 IOZ Down GPIO26 AC30 IOZ Down GPIO27 AD32 IOZ Down GPIO28 AD33 IOZ Down GPIO29 AD31 IOZ Down GPIO30 AE33 IOZ Down GPIO31 AD30 IOZ Down HYPLNK0RXN0 AN8 I HYPLNK0RXN1 AM7 I HYPLNK0RXN2 AN5 I HYPLNK0RXN3 AM4 I HYPLNK0RXP0 AN9 I HYPLNK0RXP1 AM8 I HYPLNK0RXP2 AN6 I HYPLNK0RXP3 AM5 I HYPLNK0TXN0 AL9 O HYPLNK0TXN1 AK8 O HYPLNK0TXN2 AL6 O HYPLNK0TXN3 AK5 O HYPLNK0TXP0 AL8 O HYPLNK0TXP1 AK7 O HYPLNK0TXP2 AL5 O HYPLNK0TXP3 AK4 O GPIOs GPIOs HyperLink 32 Terminals HyperLink receive data HyperLink transmit data Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 5-2. Terminal Functions — Signals and Control by Function (continued) SIGNAL NAME BALL NO. TYPE IPD/IPU HYPLNK0RXFLCLK AJ3 O down HYPLNK0RXFLDAT AE3 O down HYPLNK0RXPMCLK AE1 I down HYPLNK0RXPMDAT AD1 I down HYPLNK0TXFLCLK AC6 I down HYPLNK0TXFLDAT AH4 I down HYPLNK0TXPMCLK AB6 O down HYPLNK0TXPMDAT AF5 O down HYPLNK0REFRES AJ5 A DESCRIPTION HyperLink sideband signals HyperLink SerDes reference resistor input (3 kΩ ±1%) I2C 2 SCL0 AG30 IOZ I C0 clock SCL1 AH30 IOZ I2C1 clock SCL2 AH31 IOZ I2C2 clock SDA0 AG28 IOZ I2C0 data SDA1 AJ32 IOZ I2C1 data SDA2 AG29 IOZ I2C2 data JTAG TCK AJ33 I Up JTAG clock input TDI AG31 I Up JTAG data input TDO AF29 OZ Up JTAG data output TMS AH32 I Up JTAG test mode input TRST AG32 I Down JTAG reset MDCLK0 AH6 O Down MDIO0 Clock MDIO0 AH5 IOZ Up MDIO0 Data XFIMDCLK AF6 O Down XFI MDIO Clock XFIMDIO AE7 IOZ Up XFI MDIO Data PCIE0REFRES AG14 A PCIE0RXN0 AN17 I PCIE0RXP0 AN18 I PCIE0RXN1 AM16 I PCIE0RXP1 AM17 I PCIE0TXN0 AL18 O PCIE0TXP0 AL17 O PCIE0TXN1 AK17 O PCIE0TXP1 AK16 O PCIE1REFRES AJ10 A PCIE1RXN0 AN14 I PCIE1RXP0 AN15 I PCIE1RXN1 AM13 I PCIE1RXP1 AM14 I PCIE1TXN0 AL15 O PCIE1TXP0 AL14 O PCIE1TXN1 AK14 O PCIE1TXP1 AK13 O SGMII00REFRES AJ27 A SGMII0 SerDes reference resistor input (3 kΩ ±1%) SGMII01REFRES AJ22 A SGMII1 SerDes reference resistor input (3 kΩ ±1%) SGMII0RXN0 AN29 I SGMII0RXP0 AN30 I MDIO PCIe PCIexpress0 SerDes reference resistor input (3 kΩ ±1%) PCIexpress0 lane 0 receive data PCIexpress0 lane 1 receive data PCIexpress0 lane 0 transmit data PCIexpress0 lane 1 transmit data PCIexpress1 SerDes reference resistor input (3 kΩ ±1%) PCIexpress1lane 0 receive data PCIexpress1lane 1 receive data PCIexpress1 lane 0 transmit data PCIexpress1 lane 1 transmit data SGMII Ethernet MAC SGMII0 port 0 receive data Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Terminals 33 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 5-2. Terminal Functions — Signals and Control by Function (continued) SIGNAL NAME BALL NO. TYPE SGMII0RXN1 AM28 I IPD/IPU DESCRIPTION SGMII0RXP1 AM29 I SGMII0RXN2 AN26 I SGMII0RXP2 AN27 I SGMII0RXN3 AM25 I SGMII0RXP3 AM26 I SGMII0RXN4 AN23 I SGMII0RXP4 AN24 I SGMII0RXN5 AM22 I SGMII0RXP5 AM23 I SGMII0RXN6 AN20 I SGMII0RXP6 AN21 I SGMII0RXN7 AM19 I SGMII0RXP7 AM20 I SGMII0TXN0 AL30 O SGMII0TXP0 AL29 O SGMII0TXN1 AK29 O SGMII0TXP1 AK28 O SGMII0TXN2 AL27 O SGMII0TXP2 AL26 O SGMII0TXN3 AK26 O SGMII0TXP3 AK25 O SGMII0TXN4 AL24 O SGMII0TXP4 AL23 O SGMII0TXN5 AK23 O SGMII0TXP5 AK22 O SGMII0TXN6 AL21 O SGMII0TXP6 AL20 O SGMII0TXN7 AK20 O SGMII0TXP7 AK19 O VCL V29 IOZ VCNTL0 H29 OZ VCNTL1 G33 OZ VCNTL2 H31 OZ VCNTL3 H30 OZ VCNTL4 G32 OZ VCNTL5 J31 OZ VD U30 IOZ SPI0CLK M30 OZ Down SPI0 clock SPI0DIN M31 I Down SPI0 data in SPI0DOUT N29 OZ Down SPI0 data out SPI0SCS0 L31 OZ Up SPI0 interface enable 0 SPI0SCS1 M29 OZ Up SPI0 interface enable 1 SPI0SCS2 L29 OZ Up SPI0 interface enable 2 SPI0SCS3 L32 OZ Up SPI0 interface enable 3 SPI1CLK M33 OZ Down SPI1 clock SPI1DIN R30 I Down SPI1 data in SPI1DOUT P32 OZ Down SPI1 data out Ethernet MAC SGMII0 port 1 receive data Ethernet MAC SGMII0 port 2 receive data Ethernet MAC SGMII0 port 3 receive data Ethernet MAC SGMII1 port 4 receive data Ethernet MAC SGMII1 port 5 receive data Ethernet MAC SGMII1 port 6 receive data Ethernet MAC SGMII1 port 7 receive data Ethernet MAC SGMII0 port 0 transmit data Ethernet MAC SGMII0 port 1 transmit data Ethernet MAC SGMII0 port 2 transmit data Ethernet MAC SGMII0 port 3 transmit data Ethernet MAC SGMII1 port 4 transmit data Ethernet MAC SGMII1 port 5 transmit data Ethernet MAC SGMII1 port 6 transmit data Ethernet MAC SGMII1 port 7 transmit data SmartReflex Voltage control I2C clock Voltage control outputs to variable core power supply Voltage control I2C data SPI0 SPI1 34 Terminals Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 5-2. Terminal Functions — Signals and Control by Function (continued) SIGNAL NAME BALL NO. TYPE IPD/IPU DESCRIPTION SPI1SCS0 P29 OZ Up SPI1 interface enable 0 SPI1SCS1 M32 OZ Up SPI1 interface enable 1 SPI1SCS2 N30 OZ Up SPI1 interface enable 2 SPI1SCS3 N33 OZ Up SPI1 interface enable 3 SPI2CLK L33 OZ Down SPI2 clock SPI2DIN P30 I Down SPI2 data in SPI2DOUT R31 OZ Down SPI2 data out SPI2SCS0 P31 OZ Up SPI2 interface enable 0 SPI2SCS1 R29 OZ Up SPI2 interface enable 1 SPI2SCS2 P33 OZ Up SPI2 interface enable 2 SPI2SCS3 L30 OZ Up SPI2 interface enable 3 TSCOMPOUT AF4 O Down IEEE1588 compare output TSPUSHEVT0 AG3 I Down PPS push event from GPS for IEEE1588 TSPUSHEVT1 AL1 I Down Push event from BCN for IEEE1588 TSSYNCEVT AE5 O Down IEEE1588 sync event output TIMI0 K33 I Down Timer 0 input TIMO0 K31 OZ Down Timer 0 output TIMI1 K32 I Down Timer 1 input TIMO1 K30 OZ Down Timer 1 output TSIP0CLKA AK31 I Down CLKA0 TSIP0 external clock A TSIP0CLKB AK33 I Down CLKB0 TSIP0 external clock B TSIP0FSA AJ31 I Down FSA0 TSIP0 frame sync A TSIP0FSB AK32 I Down FSB0 TSIP0 frame sync B TSIP0TR0 AM31 I Down TSIP0TR1 AL33 I Down TSIP0TX0 AL32 OZ Down TSIP0TX1 AM32 OZ Down SPI2 Sync-Ethernet / IEEE1588 Timer TSIP TR00 TR01 TSIP0 receive data TX00 TX01 TSIP0 transmit data UART0 UART0CTS R33 I Down UART0 clear to send UART0DSR W29 I Down UART0 data set ready UART0DTR U33 OZ Down UART0 data terminal ready UART0RTS R32 OZ Down UART0 request to send UART0RXD T29 I Down UART0 serial data in UART0TXD T30 OZ Down UART0 serial data out UART1CTS T31 I Down UART1 clear to send UART1RTS T33 OZ Down UART1 request to send UART1RXD U29 I Down UART1 serial data in UART1TXD T32 OZ Down UART1 serial data out USB0DM W3 IOZ USB0DP V3 IOZ USB0DRVVBUS AB1 O USB0ID0 W4 A USB0 ID USB0RESREF Y6 A Reference resistor connection for USB0 PHY (200 Ω +- 1% resistor to ground) USB0RX0M T1 I USB0RX0P U1 I UART1 USB0 (USB_3.0) USB0 DUSB0 D+ Down USB0 DRVVBUS output USB0_3.0 receive data Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Terminals 35 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 5-2. Terminal Functions — Signals and Control by Function (continued) SIGNAL NAME BALL NO. TYPE USB0TX0M U2 O IPD/IPU DESCRIPTION USB0TX0P V2 O USB0VBUS W5 A USB0 5-V analog input. Connect to VBUS pin on USB connector through protection switch USB1DM P4 IOZ USB1 D- USB1DP R4 IOZ USB1DRVVBUS AC1 O USB1ID0 W6 A USB1 ID USB1RESREF V5 A Reference resistor connection for USB1 PHY (200Ω +- 1% resistor to ground) USB1RX0M N1 I USB1RX0P P1 I USB1TX0M R2 O USB1TX0P P2 O USB1VBUS V4 A USIMCLK J33 OZ Down USIM clock USIMIO H33 IOZ Up USIM data USIMRST K29 OZ Down USIM reset XFIRXN0 AN11 I XFIRXP0 AN12 I XFIRXN1 AM10 I XFIRXP1 AM11 I XFITXN0 AL12 O XFITXP0 AL11 O XFITXN1 AK11 O XFITXP1 AK10 O XFIREFRES0 AG10 A XFI port 0 SerDes reference resistor input (3 kΩ ±1%) XFIREFRES1 AH7 A XFI port 1 SerDes reference resistor input (3 kΩ ±1%) USB0_3.0 transmit data USB1 (USB_3.0) USB1 D+ Down USB1 DRVVBUS output USB1_3.0 receive data USB1_3.0 transmit data USB1 5-V analog input. Connect to VBUS pin on USB connector through protection switch USIM XFI (AM5K2E04 only) 36 Terminals Ethernet MAC XFI port 0 receive data Ethernet MAC XFI port 1 receive data Ethernet MAC XFI port 0 transmit data Ethernet MAC XFI port 1 transmit data Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 5-2. Terminal Functions — Signals and Control by Function (continued) SIGNAL NAME BALL NO. TYPE IPD/IPU DESCRIPTION RSV000 H32 OZ Down Leave unconnected RSV001 J32 OZ Down Leave unconnected RSV002 AE2 O Leave unconnected RSV003 AF2 O Leave unconnected RSV004 G2 O Leave unconnected RSV005 G1 O Leave unconnected RSV006 AL3 O Leave unconnected RSV007 AL2 O RSV008 AG5 OZ RSV009 K8 A Connect to GND RSV010 J8 A Leave unconnected RSV011 W8 A Leave unconnected RSV012 W7 A Leave unconnected RSV013 J30 A Leave unconnected RSV014 J29 A Leave unconnected RSV015 AG8 A Leave unconnected RSV016 AJ20 A Leave unconnected RSV017 AG12 A Leave unconnected RSV018 AJ28 A Leave unconnected RSV019 AJ26 A Leave unconnected RSV020 AH9 A Leave unconnected RSV021 B19 OZ Leave unconnected RSV022 E20 OZ Leave unconnected RSV023 A14 A Leave unconnected RSV028 AG33 I Leave unconnected RSV029 AF33 I Leave unconnected RSV030 AE30 I Leave unconnected Reserved Leave unconnected Down Leave unconnected Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Terminals 37 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 5-3. Terminal Functions — Power and Ground SUPPLY BALL NO. VOLTS DESCRIPTION AVDDA1 AF7 1.8 V COREPLL supply AVDDA2 K7 1.8 V NETCPPLL supply AVDDA3 AD7 1.8 V DDRPLL supply AVDDA6 G8 1.8 V DDRA DLL supply AVDDA7 E14 1.8 V DDRA DLL supply AVDDA8 G16 1.8 V DDRA DLL supply AVDDA9 G22 1.8 V DDRA DLL supply AVDDA10 G24 1.8 V DDRA DLL supply CVDD J12, J14, J16, J18, J20, J22, J26, K11, K13, K15, K17, K19, K21, K23, K25, L10, L12, L14, L16, L18, L20, L22, M15, M17, M19, M21, M25, N10, N14, N16, N18, N20, N22, N26, P13, P15, P17, P19, P21, P23, P25, R14, R16, R18, R20, R22, R24, R26, T13, T15, T17, T19, T21, T23, T25, U12, U14, U16, U18, U20, U22, U24, U26, V13, V15, V17, V19, V21, V23, V25, W12, W14, W16, W18, W20, W22, W24, W26, Y9, Y15, Y17, Y19, Y21, Y25, AA10, AA16, AA18, AA20, AA22, AA26, AB9, AB11, AB13, AB15, AB17, AB19, AB21, AB25, AC10, AC12, AC14, AC16, AC18, AC20, AC22, AC24, AC26, AD11, AD13, AD15, AD17, AD19, AD21, AD25 AVS Smart Reflex core supply voltage CVDD1 L24, M11, M13, M23, N12, N24, Y13, Y23, AA12, AA14, AA24, AB23 0.95 V Core supply voltage for memory array CVDDCMON J10 AVS CVDD Supply Monitor CVDDTMON L26 AVS CVDD Supply Monitor DDR3VREFSSTL F15 DVDD15/2 DDR3 reference voltage DVDD15 A2, A32, B1, B33, C3, C7, C11, C17, C21, C25, C31, D5, D9, D14, D19, D23, D27, D29, F5, F7, F9, F11, F13, F17, F19, F21, F23, F25, F27, F29, G10, G14, G20, G26, G28, G30, H7, H9, H11, H13, H15, H17, H19, H21, H23, H25, H27 1.5 V/1.35 V DDR IO supply DVDD18 J2, J28, K27, L8, L28, M2, M7, M27, N8, N28, N31, P7, P27, R28, T7, T27, U28, U31, V7, V27, W28, Y7, Y27, AA3, AA8, AA28, AA31, AB7, AB27, AC8, AC28, AD4, AD27, AE8, AE26, AE28, AE31, AF27, AG26, AH27, AJ30, AM33, AN32 1.8 V 1.8-V IO supply USB0DVDD33 Y11 3.3 V 3.3-V USB0 high supply High-speed USB0VP U8 0.85 V 0.85-V USB0 PHY analog and digital Super-speed supply USB0VPH W10 3.3 V 3.3-V USB0 high supply Super-speed USB0VPTX V9 0.85 V 0.85-V USB0 PHY transmit supply USB1DVDD33 P11 3.3 V 3.3-V USB1 high supply High-speed USB1VP R8 0.85 V 0.85-V USB1 PHY analog and digital Super-speed supply USB1VPH R10 3.3 V 3.3-V USB1 high supply Super-speed USB1VPTX T9 0.85 V 0.85-V USB1 PHY transmit supply VDDAHV AH11, AH13, AH15, AH17, AH19, AH21, AH23, AH25 1.8 V 1.8-V high analog supply VDDALV AE10, AE12, AE14, AE16, AE18, AE20, AE22, AE24, AF9, AF11, AF13, AF15, AF17, AF19, AF21, AF23, AF25, AG16, AG18, AG20, AG22, AG24 0.85 V SerDes low voltage VDDUSB0 U10, V11 0.85 V USB0 PHY analog and digital High-speed supply VDDUSB1 R12, T11 0.85 V USB1 PHY analog and digital High-speed supply VNWA1 P9 0.95 V Fixed Nwell supply - connect to CVDD1 VNWA2 J24 0.95 V Fixed Nwell supply - connect to CVDD1 VNWA3 AD23 0.95 V Fixed Nwell supply - connect to CVDD1 VNWA4 AD9 0.95 V Fixed Nwell supply - connect to CVDD1 VPP0 K9 Leave unconnected VPP1 M9 Leave unconnected 38 Terminals Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 5-3. Terminal Functions — Power and Ground (continued) SUPPLY BALL NO. VSS A1, A33, C5, C9, C14, C19, C23, C27, C29, D3, D7, D11, D17, GND D21, D25, D31, F4, F6, F8, F10, F12, F14, F16, F18, F20, F22, F24, F26, F28, F30, G7, G9, G11, G13, G15, G17, G19, G21, G23, G25, G27, G29, G31, H8, H10, H12, H14, H16, H18, H20, H22, H24, H26, H28, J3, J7, J11, J13, J15, J17, J19, J21, J23, J25, J27, K10, K12, K14, K16, K18, K20, K22, K24, K28, L7, L9, L11, L13, L15, L17, L19, L21, L23, L25, L27, M1, M8, M10, M12, M14, M16, M18, M20, M22, M24, M26, M28, N2, N7, N9, N11, N13, N15, N17, N19, N21, N23, N25, N27, N32, P8, , P10, P12, P14, P16, P18, P20, P22, P24, P26, P28, R1, R7, R9, R11, R13, R15, R17, R19, R21, R23, R25, R27, T2, T8, T10, T12, T14, T16, T18, T20, T22, T24, T26, T28, U3, U7, U9, U11, U13, U15, U17, U19, U21, U23, U25, U27, U32, V1, V8, V10, V12, V14, V16, V18, V20, V22, V24, V26, V28, W2, W9, W11, W13, W15, W17, W19, W21, W23, W25, W27, Y8, Y10, Y12, Y14, Y16, Y18, Y20, Y22, Y24, Y26, Y28, AA4, AA7, AA9, AA11, AA13, AA15, AA17, AA19, AA21, AA23, AA25, AA27, AA32, AB8, AB10, AB12, AB14, AB16, AB18, AB20, AB22, AB24, AB26, AB28, AC7, AC9, AC11, AC13, AC15, AC17, AC19, AC21, AC23, AC25, AC27, AD5, AD8, AD10, AD12, AD14, AD16, AD18, AD20, AD22, AD24, AD26, AD28, AE9, AE11, AE13, AE15, AE17, AE19, AE21, AE23, AE25, AE27, AE32, AF8, AF10, AF12, AF14, AF16, AF18, AF20, AF22, AF24, AF26, AF28, AG7, AG9, AG11, AG13, AG15, AG17, AG19, AG21, AG23, AG25, AG27, AH8, AH10, AH12, AH14, AH16, AH18, AH20, AH22, AH24, AH26, AH28, AJ4, AJ6, AJ9, AJ13, AJ16, AJ19, AJ21, AJ23, AJ29, AK3, AK6, AK9, AK12, AK15, AK18, AK21, AK24, AK27, AK30, AL4, AL7, AL10, AL13, AL16, AL19, AL22, AL25, AL28, AL31, AM1, AM3, AM6, AM9, AM12, AM15, AM18, AM21, AM24, AM27, AM30, AN1, AN2, AN4, AN7, AN10, AN13, AN16, AN19, AN22, AN25, AN28, AN31, AN33 VOLTS Ground VSSCMON J9 GND GND Monitor VSSTMON K26 GND GND Monitor Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 DESCRIPTION Terminals 39 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 5-4. Terminal Functions — By Signal Name 40 Terminals Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 SIGNAL NAME BALL NUMBER SIGNAL NAME BALL NUMBER SIGNAL NAME BALL NUMBER BOOTMODE_RSVD2 Y31 DDRA02 B16 DDRD15 B3 AVDDA1 AF7 DDRA03 C16 DDRD16 D6 AVDDA2 K7 DDRA04 D16 DDRD17 E6 AVDDA3 AD7 DDRA05 E16 DDRD18 E7 AVDDA6 G8 DDRA06 A17 DDRD19 B6 AVDDA7 E14 DDRA07 E17 DDRD20 C6 AVDDA8 G16 DDRA08 A18 DDRD21 C8 AVDDA9 G22 DDRA09 B17 DDRD22 A8 AVDDA10 G24 DDRA10 A13 DDRD23 B8 AVSIFSEL[0]2 K33 DDRA11 D18 DDRD24 E10 AVSIFSEL[1]2 K32 DDRA12 E18 DDRD25 B11 BOOTCOMPLETE AF31 DDRA13 E12 DDRD26 A11 BOOTMODE002 AA29 DDRA14 C18 DDRD27 C10 2 Y29 DDRA15 E19 DDRD28 D10 2 BOOTMODE02 V33 DDRBA0 D13 DDRD29 B9 BOOTMODE032 BOOTMODE01 V32 DDRBA1 C13 DDRD30 E9 2 W30 DDRBA2 B18 DDRD31 A9 2 BOOTMODE05 W32 DDRCAS B12 DDRD32 B23 BOOTMODE062 V31 DDRCB00 A23 DDRD33 E23 BOOTMODE072 W31 DDRCB01 D22 DDRD34 D24 2 W33 DDRCB02 E22 DDRD35 C24 2 BOOTMODE09 AB29 DDRCB03 E21 DDRD36 E24 BOOTMODE102 Y30 DDRCB04 C22 DDRD37 E25 2 Y32 DDRCB05 B21 DDRD38 B25 2 BOOTMODE12 AA30 DDRCB06 A20 DDRD39 A25 BOOTMODE132 AA33 DDRCB07 A21 DDRD40 E28 2 AB32 DDRCE0 A12 DDRD41 D28 2 BOOTMODE15 AB33 DDRCE1 C12 DDRD42 C28 CORECLKN AG1 DDRCKE0 C20 DDRD43 E27 CORECLKP AF1 DDRCKE1 A19 DDRD44 B28 CVDD J12, J14, J16, J18, J20, J22, J26, K11, K13, K15, K17, K19, K21, K23, K25, L10, L12, L14, L16, L18, L20, L22, M15, M17, M19, M21, M25, N10, N14, N16, N18, N20, N22 DDRCLKN G3 DDRD45 A26 DDRCLKOUTN0 B14 DDRD46 B26 DDRCLKOUTN1 A15 DDRD47 C26 DDRCLKOUTP0 B15 DDRD48 A29 N26, P13, P15, P17, P19, P21, P23, P25, R14, R16, R18, R20, R22, R24, R26, T13, T15, T17, T19, T21, T23, T25, U12, U14, U16, U18, U20, U22, U24, U26, V13, V15 DDRCLKOUTP1 A16 DDRD49 A28 DDRCLKP G4 DDRD50 B31 DDRD00 E2 DDRD51 E29 DDRD01 D1 DDRD52 B29 V17, V19, V21, V23, V25, W12, W14, W16, W18, W20, W22, W24, W26, Y9, Y15, Y17, Y19, Y21, Y25, AA10, AA16, AA18, AA20, AA22, AA26, AB9, AB11, AB13, AB15 DDRD02 F2 DDRD53 C30 DDRD03 E1 DDRD54 E30 DDRD04 F1 DDRD55 D30 DDRD05 D2 DDRD56 F31 AB17, AB19, AB21, AB25, AC10, AC12, AC14, AC16, AC18, AC20, AC22, AC24, AC26, AD11, AD13, AD15, AD17, AD19, AD21, AD25 DDRD06 F3 DDRD57 F33 DDRD07 B2 DDRD58 F32 DDRD08 A5 DDRD59 E32 L24, M11, M13, M23, N12, N24, Y13, Y23, AA12, AA14, AA24, AB23 DDRD09 A6 DDRD60 E33 DDRD10 B5 DDRD61 C32 CVDDCMON J10 DDRD11 E5 DDRD62 D32 CVDDTMON L26 DDRD12 C4 DDRD63 B32 DDRA00 D15 DDRD13 D4 DDRDQM0 A3 DDRA01 C15 DDRD14 E4 DDRDQM1 E3 BOOTMODE04 BOOTMODE08 BOOTMODE11 BOOTMODE14 CVDD CVDD CVDD CVDD1 Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Terminals 41 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com SIGNAL NAME BALL NUMBER SIGNAL NAME BALL NUMBER SIGNAL NAME BALL NUMBER DDRDQM2 D8 EMIFA05 N6 EMU05 AD3 DDRDQM3 E8 EMIFA06 M3 EMU06 AB5 DDRDQM4 E26 EMIFA07 N4 EMU07 AC3 DDRDQM5 D26 EMIFA08 N5 EMU08 AB4 DDRDQM6 E31 EMIFA09 M5 EMU09 AH3 DDRDQM7 A31 EMIFA10 M4 EMU10 AF3 DDRDQM8 B20 EMIFA11 L1 EMU11 AG4 DDRDQS0N C2 EMIFA12 U5 EMU12 AD2 DDRDQS0P C1 EMIFA13 T5 EMU13 AC2 DDRDQS1N B4 EMIFA14 L3 EMU14 AB3 DDRDQS1P A4 EMIFA15 T3 EMU15 AA5 DDRDQS2N A7 EMIFA16 L2 EMU16 AB2 DDRDQS2P B7 EMIFA17 L5 EMU17 Y5 DDRDQS3N B10 EMIFA18 M6 EMU18 AH2 DDRDQS3P A10 EMIFA19 K2 EMU193 AB32 DDRDQS4N B24 EMIFA20 K1 EMU203 AB33 DDRDQS4P A24 EMIFA21 L4 EMU21 3 AB31 DDRDQS5N B27 EMIFA22 R3 EMU22 3 AC29 DDRDQS5P A27 EMIFA23 L6 EMU233 AC33 DDRDQS6N B30 EMIFBE0 AA2 EMU243 AD29 DDRDQS6P A30 EMIFBE1 R6 EMU25 3 AC31 DDRDQS7N D33 EMIFCE0 AA1 EMU26 3 AC32 DDRDQS7P C33 EMIFCE1 Y4 EMU273 AB30 DDRDQS8N A22 EMIFCE2 W1 EMU28 3 AC30 DDRDQS8P B22 EMIFCE3 Y1 EMU29 3 AD32 DDRODT0 D12 EMIFD00 G5 EMU303 AD33 DDRODT1 E11 EMIFD01 K3 EMU31 3 AD31 DDRRAS B13 EMIFD02 K4 EMU32 3 AE33 DDRRESET D20 EMIFD03 J1 EMU333 AD30 DDRRZQ0 E15 EMIFD04 H5 GPIO00 V30 DDRRZQ1 G12 EMIFD05 J6 GPIO01 AA29 DDRRZQ2 G18 EMIFD06 H6 GPIO02 Y29 DDRVREFSSTL F15 EMIFD07 H1 GPIO03 V33 DDRWE E13 EMIFD08 H2 GPIO04 V32 DVDD15 A2, A32, B1, B33, C3, C7, C11, C17, C21, C25, C31, D5, D9, D14, D19, D23, D27, D29, F5, F7, F9, F11, F13, F17, F19, F21 EMIFD09 G6 GPIO05 W30 EMIFD10 K5 GPIO06 W32 EMIFD11 H3 GPIO07 V31 F23, F25, F27, F29, G10, G14, G20, G26, G28, G30, H7, H9, H11, H13, H15, H17, H19, H21, H23, H25, H27 EMIFD12 J4 GPIO08 W31 EMIFD13 H4 GPIO09 W33 EMIFD14 K6 GPIO10 AB29 J2, J28, K27, L8, L28, M2, M7, M27, N8, N28, N31, P7, P27, R28, T7, T27, U28, U31, V7, V27, W28, Y7, Y27, AA3, AA8 EMIFD15 J5 GPIO11 Y30 EMIFOE Y2 GPIO12 Y32 EMIFRW Y3 GPIO13 AA30 AA28, AA31, AB7, AB27, AC8, AC28, AD4, AD27, AE8, AE26, AE28, AE31, AF27, AG26, AH27, AJ30, AM33, AN32 EMIFWAIT0 T6 GPIO14 Y33 EMIFWAIT1 N3 GPIO15 Y31 EMIFWE R5 GPIO16 AA33 EMIFA00 P3 EMU00 AC5 GPIO17 AB32 EMIFA01 P5 EMU01 AA6 GPIO18 AB33 EMIFA02 U6 EMU02 AC4 GPIO19 AB31 EMIFA03 V6 EMU03 AE6 GPIO20 AC29 EMIFA04 P6 EMU04 AD6 GPIO21 AC33 DVDD15 DVDD18 DVDD18 42 Terminals Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 SIGNAL NAME BALL NUMBER SIGNAL NAME BALL NUMBER SIGNAL NAME BALL NUMBER GPIO22 AD29 PCIE0RXP1 AM17 SDA1 AJ32 GPIO23 AC31 PCIE0TXN0 AL18 SDA2 AG29 GPIO24 AC32 PCIE0TXN1 AK17 SGMII00REFRES AJ27 GPIO25 AB30 PCIE0TXP0 AL17 SGMII01REFRES AJ22 GPIO26 AC30 PCIE0TXP1 AK16 SGMII0CLKN AJ25 GPIO27 AD32 PCIE1CLKN AJ15 SGMII0CLKP AJ24 GPIO28 AD33 PCIE1CLKP AJ14 SGMII0RXN0 AN29 GPIO29 AD31 PCIE1REFRES AJ10 SGMII0RXN1 AM28 GPIO30 AE33 PCIE1RXN0 AN14 SGMII0RXN2 AN26 GPIO31 AD30 PCIE1RXN1 AM13 SGMII0RXN3 AM25 HOUT AF30 PCIE1RXP0 AN15 SGMII0RXN4 AN23 HYPLNK0CLKN AJ8 PCIE1RXP1 AM14 SGMII0RXN5 AM22 HYPLNK0CLKP AJ7 PCIE1TXN0 AL15 SGMII0RXN6 AN20 HYPLNK0REFRES AJ5 PCIE1TXN1 AK14 SGMII0RXN7 AM19 HYPLNK0RXFLCLK AJ3 PCIE1TXP0 AL14 SGMII0RXP0 AN30 HYPLNK0RXFLDAT AE3 PCIE1TXP1 AK13 SGMII0RXP1 AM29 HYPLNK0RXN0 AN8 POR AH33 SGMII0RXP2 AN27 HYPLNK0RXN1 AM7 RESETFULL AF32 SGMII0RXP3 AM26 HYPLNK0RXN2 AN5 RESETSTAT AH29 SGMII0RXP4 AN24 HYPLNK0RXN3 AM4 RESET AE29 SGMII0RXP5 AM23 HYPLNK0RXP0 AN9 RSV000 H32 SGMII0RXP6 AN21 HYPLNK0RXP1 AM8 RSV001 J32 SGMII0RXP7 AM20 HYPLNK0RXP2 AN6 RSV002 AE2 SGMII0TXN0 AL30 HYPLNK0RXP3 AM5 RSV003 AF2 SGMII0TXN1 AK29 HYPLNK0RXPMCLK AE1 RSV004 G2 SGMII0TXN2 AL27 HYPLNK0RXPMDAT AD1 RSV005 G1 SGMII0TXN3 AK26 HYPLNK0TXFLCLK AC6 RSV006 AL3 SGMII0TXN4 AL24 HYPLNK0TXFLDAT AH4 RSV007 AL2 SGMII0TXN5 AK23 HYPLNK0TXN0 AL9 RSV008 AG5 SGMII0TXN6 AL21 HYPLNK0TXN1 AK8 RSV009 K8 SGMII0TXN7 AK20 HYPLNK0TXN2 AL6 RSV010 J8 SGMII0TXP0 AL29 HYPLNK0TXN3 AK5 RSV011 W8 SGMII0TXP1 AK28 HYPLNK0TXP0 AL8 RSV012 W7 SGMII0TXP2 AL26 HYPLNK0TXP1 AK7 RSV013 J30 SGMII0TXP3 AK25 HYPLNK0TXP2 AL5 RSV014 J29 SGMII0TXP4 AL23 HYPLNK0TXP3 AK4 RSV015 AG8 SGMII0TXP5 AK22 HYPLNK0TXPMCLK AB6 RSV016 AJ20 SGMII0TXP6 AL20 HYPLNK0TXPMDAT AF5 RSV017 AG12 SGMII0TXP7 AK19 LENDIAN2 V30 RSV018 AJ28 SPI0CLK M30 MAINPLLODSEL2 Y33 RSV019 AJ26 SPI0DIN M31 MDCLK0 AH6 RSV020 AH9 SPI0DOUT N29 MDIO0 AH5 RSV021 B19 SPI0SCS0 L31 NETCPCLKN AN3 RSV022 E20 SPI0SCS1 M29 NETCPCLKP AM2 RSV023 A14 SPI0SCS2 L29 NETCPCLKSEL AG6 RSV028 AG33 SPI0SCS3 L32 PCIE0CLKN AJ18 RSV029 AF33 SPI1CLK M33 PCIE0CLKP AJ17 RSV030 AE30 SPI1DIN R30 PCIE0REFRES AG14 SCL0 AG30 SPI1DOUT P32 PCIE0RXN0 AN17 SCL1 AH30 SPI1SCS0 P29 PCIE0RXN1 AM16 SCL2 AH31 SPI1SCS1 M32 PCIE0RXP0 AN18 SDA0 AG28 SPI1SCS2 N30 Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Terminals 43 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com SIGNAL NAME BALL NUMBER SIGNAL NAME BALL NUMBER SIGNAL NAME BALL NUMBER SPI1SCS3 N33 TSRXCLKOUT0P AJ1 USB1RESREF V5 SPI2CLK L33 TSRXCLKOUT1N AH1 USB1RX0M N1 SPI2DIN P30 TSRXCLKOUT1P AG2 USB1RX0P P1 SPI2DOUT R31 TSSYNCEVT AE5 USB1TX0M R2 SPI2SCS0 P31 UART0CTS R33 USB1TX0P P2 SPI2SCS1 R29 UART0DSR W29 USB1VBUS V4 SPI2SCS2 P33 UART0DTR U33 USB1VP R8 SPI2SCS3 L30 UART0RTS R32 USB1VPH R10 SYSCLKOUT AE4 UART0RXD T29 USB1VPTX T9 TCK AJ33 UART0TXD T30 USBCLKM T4 TDI AG31 UART1CTS T31 USBCLKP U4 TDO AF29 UART1RTS T33 USIMCLK J33 TIMI0 K33 UART1RXD U29 USIMIO H33 TIMI1 K32 UART1TXD T32 USIMRST K29 TIMO0 K31 USB0DM W3 VCL V29 TIMO1 K30 USB0DP V3 VCNTL0 H29 TMS AH32 USB0DRVVBUS AB1 VCNTL1 G33 TRST AG32 USB0DVDD33 Y11 VCNTL2 H31 TSCOMPOUT AF4 USB0ID0 W4 VCNTL3 H30 TSIP0CLKA AK31 USB0RESREF Y6 VCNTL4 G32 TSIP0CLKB AK33 USB0RX0M T1 VCNTL5 J31 TSIP0FSA AJ31 USB0RX0P U1 VD U30 TSIP0FSB AK32 USB0TX0M U2 VDDAHV TSIP0TR0 AM31 USB0TX0P V2 AH11, AH13, AH15, AH17, AH19, AH21, AH23, AH25 TSIP0TR1 AL33 USB0VBUS W5 VDDALV TSIP0TX0 AL32 USB0VP U8 TSIP0TX1 AM32 USB0VPH W10 AE10, AE12, AE14, AE16, AE18, AE20, AE22, AE24, AF9, AF11, AF13, AF15, AF17, AF19, AF21, AF23, AF25, AG16, AG18, AG20, AG22, AG24 TSPUSHEVT0 AG3 USB0VPTX V9 TSPUSHEVT1 AL1 USB1DM P4 TSREFCLKN AK1 USB1DP R4 VDDUSB0 U10, V11 TSREFCLKP AK2 USB1DRVVBUS AC1 VDDUSB1 R12, T11 TSRXCLKOUT0N AJ2 USB1DVDD33 P11 VNWA1 P9 USB1ID0 W6 VNWA2 J24 44 Terminals Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 SIGNAL NAME BALL NUMBER SIGNAL NAME BALL NUMBER SIGNAL NAME BALL NUMBER VNWA3 AD23 VSS VSS VNWA4 AD9 AN4, AN7, AN10, AN13, AN16, AN19, AN22, AN25, AN28, AN31, AN33 VPP0 K9 VPP1 M9 W11, W13, W15, W17, W19, W21, W23, W25, W27, Y8, Y10, Y12, Y14, Y16, Y18, Y20, Y22, Y24, Y26, Y28, AA4, AA7, AA9, AA11, AA13, AA15, AA17, AA19, AA21, AA23 VSSCMON J9 VSS A1, A33, C5, C9, C14, C19, C23, C27, C29, D3, D7, D11, D17, D21, D25, D31, F4, F6, F8, F10, F12, F14, F16, F18, F20, F22, F24, F26, F28, F30, G7, G9, G11, G13, G15, G17 VSS AA25, AA27, AA32, AB8, AB10, AB12, AB14, AB16, AB18, AB20, AB22, AB24, AB26, AB28, AC7, AC9, AC11, AC13, AC15, AC17, AC19, AC21, AC23, AC25 VSSTMON K26 XFICLKN AJ12 XFICLKP AJ11 XFIMDCLK AF6 G19, G21, G23, G25, G27, G29, G31, H8, H10, H12, H14, H16, H18, H20, H22, H24, H26, H28, J3, J7, J11, J13, J15, J17, J19, J21, J23, J25, J27, K10, K12, K14, K16, K18 VSS XFIMDIO AE7 XFIREFRES0 AG10 XFIREFRES1 AH7 XFIRXN0 AN11 K20, K22, K24, K28, L7, L9, L11, L13, L15, L17, L19, L21, L23, L25, L27, M1, M8, M10, M12, M14, M16, M18, M20, M22, M24, M26, M28, N2, N7, N9, N11, N13, N15, N17 VSS XFIRXN1 AM10 XFIRXP0 AN12 XFIRXP1 AM11 XFITXN0 AL12 N19, N21, N23, N25, N27, N32, P8, P10, P12, P14, P16, P18, P20, P22, P24, P26, P28, R1, R7, R9, R11, R13, R15, R17, R19, R21, R23, R25, R27, T2, T8, T10, T12, T14 VSS XFITXN1 AK11 XFITXP0 AL11 XFITXP1 AK10 T16, T18, T20, T22, T24, T26, T28, U3, U7, U9, U11, U13, U15, U17, U19, U21, U23, U25, U27, U32, V1, V8, V10, V12, V14, V16, V18, V20, V22, V24, V26, V28, W2, W9 VSS VSS VSS VSS VSS AC27, AD5, AD8, AD10, AD12, AD14, AD16, AD18, AD20, AD22, AD24, AD26, AD28, AE9, AE11, AE13, AE15, AE17, AE19, AE21, AE23, AE25, AE27, AE32 AF8, AF10, AF12, AF14, AF16, AF18, AF20, AF22, AF24, AF26, AF28, AG7, AG9, AG11, AG13, AG15, AG17, AG19, AG21, AG23, AG25, AG27, AH8, AH10 AH12, AH14, AH16, AH18, AH20, AH22, AH24, AH26, AH28, AJ4, AJ6, AJ9, AJ13, AJ16, AJ19, AJ21, AJ23, AJ29, AK3, AK6, AK9, AK12, AK15, AK18, AK21, AK24 AK27, AK30, AL4, AL7, AL10, AL13, AL16, AL19, AL22, AL25, AL28, AL31, AM1, AM3, AM6, AM9, AM12, AM15, AM18, AM21, AM24, AM27, AM30, AN1, AN2 Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Terminals 45 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 5-5. Terminal Functions — By Ball Number BALL NUMBER SIGNAL NAME BALL NUMBER SIGNAL NAME BALL NUMBER SIGNAL NAME A1 VSS B20 DDRDQM8 D6 DDRD16 A2 DVDD15 B21 DDRCB05 D7 VSS A3 DDRDQM0 B22 DDRDQS8P D8 DDRDQM2 A4 DDRDQS1P B23 DDRD32 D9 DVDD15 A5 DDRD08 B24 DDRDQS4N D10 DDRD28 A6 DDRD09 B25 DDRD38 D11 VSS A7 DDRDQS2N B26 DDRD46 D12 DDRODT0 A8 DDRD22 B27 DDRDQS5N D13 DDRBA0 A9 DDRD31 B28 DDRD44 D14 DVDD15 A10 DDRDQS3P B29 DDRD52 D15 DDRA00 A11 DDRD26 B30 DDRDQS6N D16 DDRA04 A12 DDRCE0 B31 DDRD50 D17 VSS A13 DDRA10 B32 DDRD63 D18 DDRA11 A14 RSV023 B33 DVDD15 D19 DVDD15 A15 DDRCLKOUTN1 C1 DDRDQS0P D20 DDRRESET A16 DDRCLKOUTP1 C2 DDRDQS0N D21 VSS A17 DDRA06 C3 DVDD15 D22 DDRCB01 A18 DDRA08 C4 DDRD12 D23 DVDD15 A19 DDRCKE1 C5 VSS D24 DDRD34 A20 DDRCB06 C6 DDRD20 D25 VSS A21 DDRCB07 C7 DVDD15 D26 DDRDQM5 A22 DDRDQS8N C8 DDRD21 D27 DVDD15 A23 DDRCB00 C9 VSS D28 DDRD41 A24 DDRDQS4P C10 DDRD27 D29 DVDD15 A25 DDRD39 C11 DVDD15 D30 DDRD55 A26 DDRD45 C12 DDRCE1 D31 VSS A27 DDRDQS5P C13 DDRBA1 D32 DDRD62 A28 DDRD49 C14 VSS D33 DDRDQS7N A29 DDRD48 C15 DDRA01 E1 DDRD03 A30 DDRDQS6P C16 DDRA03 E2 DDRD00 A31 DDRDQM7 C17 DVDD15 E3 DDRDQM1 A32 DVDD15 C18 DDRA14 E4 DDRD14 A33 VSS C19 VSS E5 DDRD11 B1 DVDD15 C20 DDRCKE0 E6 DDRD17 B2 DDRD07 C21 DVDD15 E7 DDRD18 B3 DDRD15 C22 DDRCB04 E8 DDRDQM3 B4 DDRDQS1N C23 VSS E9 DDRD30 B5 DDRD10 C24 DDRD35 E10 DDRD24 B6 DDRD19 C25 DVDD15 E11 DDRODT1 B7 DDRDQS2P C26 DDRD47 E12 DDRA13 B8 DDRD23 C27 VSS E13 DDRWE B9 DDRD29 C28 DDRD42 E14 AVDDA7 B10 DDRDQS3N C29 VSS E15 DDRRZQ0 B11 DDRD25 C30 DDRD53 E16 DDRA05 B12 DDRCAS C31 DVDD15 E17 DDRA07 B13 DDRRAS C32 DDRD61 E18 DDRA12 B14 DDRCLKOUTN0 C33 DDRDQS7P E19 DDRA15 B15 DDRCLKOUTP0 D1 DDRD01 E20 RSV022 B16 DDRA02 D2 DDRD05 E21 DDRCB03 B17 DDRA09 D3 VSS E22 DDRCB02 B18 DDRBA2 D4 DDRD13 E23 DDRD33 B19 RSV021 D5 DVDD15 E24 DDRD36 46 Terminals Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 5-5. Terminal Functions — By Ball Number (continued) BALL NUMBER SIGNAL NAME BALL NUMBER SIGNAL NAME BALL NUMBER SIGNAL NAME E25 DDRD37 G11 VSS H30 VCNTL3 E26 DDRDQM4 G12 DDRRZQ1 H31 VCNTL2 E27 DDRD43 G13 VSS H32 RSV000 E28 DDRD40 G14 DVDD15 H33 USIMIO E29 DDRD51 G15 VSS J1 EMIFD03 E30 DDRD54 G16 AVDDA8 J2 DVDD18 E31 DDRDQM6 G17 VSS J3 VSS E32 DDRD59 G18 DDRRZQ2 J4 EMIFD12 E33 DDRD60 G19 VSS J5 EMIFD15 F1 DDRD04 G20 DVDD15 J6 EMIFD05 F2 DDRD02 G21 VSS J7 VSS F3 DDRD06 G22 AVDDA9 J8 RSV010 F4 VSS G23 VSS J9 VSSCMON F5 DVDD15 G24 AVDDA10 J10 CVDDCMON F6 VSS G25 VSS J11 VSS F7 DVDD15 G26 DVDD15 J12 CVDD F8 VSS G27 VSS J13 VSS F9 DVDD15 G28 DVDD15 J14 CVDD F10 VSS G29 VSS J15 VSS F11 DVDD15 G30 DVDD15 J16 CVDD F12 VSS G31 VSS J17 VSS F13 DVDD15 G32 VCNTL4 J18 CVDD F14 VSS G33 VCNTL1 J19 VSS F15 DDRVREFSSTL H1 EMIFD07 J20 CVDD F16 VSS H2 EMIFD08 J21 VSS F17 DVDD15 H3 EMIFD11 J22 CVDD F18 VSS H4 EMIFD13 J23 VSS F19 DVDD15 H5 EMIFD04 J24 VNWA2 F20 VSS H6 EMIFD06 J25 VSS F21 DVDD15 H7 DVDD15 J26 CVDD F22 VSS H8 VSS J27 VSS F23 DVDD15 H9 DVDD15 J28 DVDD18 F24 VSS H10 VSS J29 RSV014 F25 DVDD15 H11 DVDD15 J30 RSV013 F26 VSS H12 VSS J31 VCNTL5 F27 DVDD15 H13 DVDD15 J32 RSV001 F28 VSS H14 VSS J33 USIMCLK F29 DVDD15 H15 DVDD15 K1 EMIFA20 F30 VSS H16 VSS K2 EMIFA19 F31 DDRD56 H17 DVDD15 K3 EMIFD01 F32 DDRD58 H18 VSS K4 EMIFD02 F33 DDRD57 H19 DVDD15 K5 EMIFD10 G1 RSV005 H20 VSS K6 EMIFD14 G2 RSV004 H21 DVDD15 K7 AVDDA2 G3 DDRCLKN H22 VSS K8 RSV009 G4 DDRCLKP H23 DVDD15 K9 VPP0 G5 EMIFD00 H24 VSS K10 VSS G6 EMIFD09 H25 DVDD15 K11 CVDD G7 VSS H26 VSS K12 VSS G8 AVDDA6 H27 DVDD15 K13 CVDD G9 VSS H28 VSS K14 VSS G10 DVDD15 H29 VCNTL0 K15 CVDD Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Terminals 47 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 5-5. Terminal Functions — By Ball Number (continued) BALL NUMBER SIGNAL NAME BALL NUMBER SIGNAL NAME BALL NUMBER SIGNAL NAME K16 VSS L33 SPI2CLK N19 VSS K17 CVDD M1 VSS N20 CVDD K18 VSS M2 DVDD18 N21 VSS K19 CVDD M3 EMIFA06 N22 CVDD K20 VSS M4 EMIFA10 N23 VSS K21 CVDD M5 EMIFA09 N24 CVDD1 K22 VSS M6 EMIFA18 N25 VSS K23 CVDD M7 DVDD18 N26 CVDD K24 VSS M8 VSS N27 VSS K25 CVDD M9 VPP1 N28 DVDD18 K26 VSSTMON M10 VSS N29 SPI0DOUT K27 DVDD18 M11 CVDD1 N30 SPI1SCS2 K28 VSS M12 VSS N31 DVDD18 K29 USIMRST M13 CVDD1 N32 VSS K30 TIMO1 M14 VSS N33 SPI1SCS3 K31 TIMO0 M15 CVDD P1 USB1RX0P K32 TIMI1 M16 VSS P2 USB1TX0P M17 CVDD P3 EMIFA00 M18 VSS P4 USB1DM M19 CVDD P5 EMIFA01 K32 AVSIFSEL[1] K33 TIMI0 2 K33 AVSIFSEL[0] L1 EMIFA11 M20 VSS P6 EMIFA04 L2 EMIFA16 M21 CVDD P7 DVDD18 L3 EMIFA14 M22 VSS P8 VSS L4 EMIFA21 M23 CVDD1 P9 VNWA1 L5 EMIFA17 M24 VSS P10 VSS L6 EMIFA23 M25 CVDD P11 USB1DVDD33 L7 VSS M26 VSS P12 VSS L8 DVDD18 M27 DVDD18 P13 CVDD L9 VSS M28 VSS P14 VSS L10 CVDD M29 SPI0SCS1 P15 CVDD L11 VSS M30 SPI0CLK P16 VSS L12 CVDD M31 SPI0DIN P17 CVDD L13 VSS M32 SPI1SCS1 P18 VSS L14 CVDD M33 SPI1CLK P19 CVDD L15 VSS N1 USB1RX0M P20 VSS L16 CVDD N2 VSS P21 CVDD L17 VSS N3 EMIFWAIT1 P22 VSS L18 CVDD N4 EMIFA07 P23 CVDD L19 VSS N5 EMIFA08 P24 VSS L20 CVDD N6 EMIFA05 P25 CVDD L21 VSS N7 VSS P26 VSS L22 CVDD N8 DVDD18 P27 DVDD18 L23 VSS N9 VSS P28 VSS L24 CVDD1 N10 CVDD P29 SPI1SCS0 L25 VSS N11 VSS P30 SPI2DIN L26 CVDDTMON N12 CVDD1 P31 SPI2SCS0 L27 VSS N13 VSS P32 SPI1DOUT L28 DVDD18 N14 CVDD P33 SPI2SCS2 L29 SPI0SCS2 N15 VSS R1 VSS L30 SPI2SCS3 N16 CVDD R2 USB1TX0M L31 SPI0SCS0 N17 VSS R3 EMIFA22 L32 SPI0SCS3 N18 CVDD R4 USB1DP 48 Terminals 2 Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 5-5. Terminal Functions — By Ball Number (continued) BALL NUMBER SIGNAL NAME BALL NUMBER SIGNAL NAME BALL NUMBER SIGNAL NAME R5 EMIFWE T24 VSS V10 VSS R6 EMIFBE1 T25 CVDD V11 VDDUSB0 R7 VSS T26 VSS V12 VSS R8 USB1VP T27 DVDD18 V13 CVDD R9 VSS T28 VSS V14 VSS R10 USB1VPH T29 UART0RXD V15 CVDD R11 VSS T30 UART0TXD V16 VSS R12 VDDUSB1 T31 UART1CTS V17 CVDD R13 VSS T32 UART1TXD V18 VSS R14 CVDD T33 UART1RTS V19 CVDD R15 VSS U1 USB0RX0P V20 VSS R16 CVDD U2 USB0TX0M V21 CVDD R17 VSS U3 VSS V22 VSS R18 CVDD U4 USBCLKP V23 CVDD R19 VSS U5 EMIFA12 V24 VSS R20 CVDD U6 EMIFA02 V25 CVDD R21 VSS U7 VSS V26 VSS R22 CVDD U8 USB0VP V27 DVDD18 R23 VSS U9 VSS V28 VSS R24 CVDD U10 VDDUSB0 V29 VCL R25 VSS U11 VSS V30 GPIO00 R26 CVDD U12 CVDD V30 LENDIAN2 R27 VSS U13 VSS V31 GPIO07 R28 DVDD18 U14 CVDD V31 BOOTMODE062 R29 SPI2SCS1 U15 VSS V32 GPIO04 R30 SPI1DIN U16 CVDD V32 BOOTMODE032 R31 SPI2DOUT U17 VSS V33 GPIO03 R32 UART0RTS U18 CVDD V33 BOOTMODE022 R33 UART0CTS U19 VSS W1 EMIFCE2 T1 USB0RX0M U20 CVDD W2 VSS T2 VSS U21 VSS W3 USB0DM T3 EMIFA15 U22 CVDD W4 USB0ID0 T4 USBCLKM U23 VSS W5 USB0VBUS T5 EMIFA13 U24 CVDD W6 USB1ID0 T6 EMIFWAIT0 U25 VSS W7 RSV012 T7 DVDD18 U26 CVDD W8 RSV011 T8 VSS U27 VSS W9 VSS T9 USB1VPTX U28 DVDD18 W10 USB0VPH T10 VSS U29 UART1RXD W11 VSS T11 VDDUSB1 U30 VD W12 CVDD T12 VSS U31 DVDD18 W13 VSS T13 CVDD U32 VSS W14 CVDD T14 VSS U33 UART0DTR W15 VSS T15 CVDD V1 VSS W16 CVDD T16 VSS V2 USB0TX0P W17 VSS T17 CVDD V3 USB0DP W18 CVDD T18 VSS V4 USB1VBUS W19 VSS T19 CVDD V5 USB1RESREF W20 CVDD T20 VSS V6 EMIFA03 W21 VSS T21 CVDD V7 DVDD18 W22 CVDD T22 VSS V8 VSS W23 VSS T23 CVDD V9 USB0VPTX W24 CVDD Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Terminals 49 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 5-5. Terminal Functions — By Ball Number (continued) BALL NUMBER SIGNAL NAME BALL NUMBER SIGNAL NAME BALL NUMBER SIGNAL NAME W25 VSS AA2 EMIFBE0 AB18 VSS W26 CVDD AA3 DVDD18 AB19 CVDD W27 VSS AA4 VSS AB20 VSS W28 DVDD18 AA5 EMU15 AB21 CVDD W29 UART0DSR AA6 EMU01 AB22 VSS W30 GPIO05 AA7 VSS AB23 CVDD1 DVDD18 AB24 VSS W30 BOOTMODE04 AA8 W31 GPIO08 AA9 VSS AB25 CVDD W31 BOOTMODE072 AA10 CVDD AB26 VSS W32 GPIO06 AA11 VSS AB27 DVDD18 W32 BOOTMODE052 AA12 CVDD1 AB28 VSS W33 GPIO09 AA13 VSS AB29 GPIO10 W33 BOOTMODE082 AA14 CVDD1 AB29 BOOTMODE092 Y1 EMIFCE3 AA15 VSS AB30 GPIO25 Y2 EMIFOE AA16 CVDD AB30 EMU273 Y3 EMIFRW AA17 VSS AB31 GPIO19 Y4 EMIFCE1 AA18 CVDD AB31 EMU213 Y5 EMU17 AA19 VSS AB32 GPIO17 Y6 USB0RESREF AA20 CVDD AB32 EMU193 Y7 DVDD18 AA21 VSS AB32 BOOTMODE142 Y8 VSS AA22 CVDD AB33 GPIO18 Y9 CVDD AA23 VSS AB33 EMU203 Y10 VSS AA24 CVDD1 AB33 BOOTMODE152 Y11 USB0DVDD33 AA25 VSS AC1 USB1DRVVBUS Y12 VSS AA26 CVDD AC2 EMU13 Y13 CVDD1 AA27 VSS AC3 EMU07 Y14 VSS AA28 DVDD18 AC4 EMU02 Y15 CVDD AA29 GPIO01 AC5 EMU00 Y16 VSS AA29 BOOTMODE002 AC6 HYPLNK0TXFLCLK Y17 CVDD AA30 GPIO13 AC7 VSS Y18 VSS AA30 BOOTMODE122 AC8 DVDD18 Y19 CVDD AA31 DVDD18 AC9 VSS Y20 VSS AA32 VSS AC10 CVDD Y21 CVDD AA33 GPIO16 AC11 VSS Y22 VSS AA33 BOOTMODE132 AC12 CVDD Y23 CVDD1 AB1 USB0DRVVBUS AC13 VSS Y24 VSS AB2 EMU16 AC14 CVDD Y25 CVDD AB3 EMU14 AC15 VSS Y26 VSS AB4 EMU08 AC16 CVDD Y27 DVDD18 AB5 EMU06 AC17 VSS Y28 VSS AB6 HYPLNK0TXPMCLK AC18 CVDD Y29 GPIO02 AB7 DVDD18 AC19 VSS Y29 BOOTMODE012 AB8 VSS AC20 CVDD Y30 GPIO11 AB9 CVDD AC21 VSS Y30 BOOTMODE102 AB10 VSS AC22 CVDD Y31 GPIO15 AB11 CVDD AC23 VSS Y31 BOOTMODE_RSVD2 AB12 VSS AC24 CVDD Y32 GPIO12 AB13 CVDD AC25 VSS Y32 BOOTMODE112 AB14 VSS AC26 CVDD Y33 GPIO14 AB15 CVDD AC27 VSS Y33 MAINPLLODSEL2 AB16 VSS AC28 DVDD18 AA1 EMIFCE0 AB17 CVDD AC29 GPIO20 50 2 Terminals Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 5-5. Terminal Functions — By Ball Number (continued) BALL NUMBER SIGNAL NAME BALL NUMBER SIGNAL NAME BALL NUMBER SIGNAL NAME AC29 EMU223 AE6 EMU03 AF24 VSS AC30 GPIO26 AE7 XFIMDIO AF25 VDDALV AC30 EMU283 AE8 DVDD18 AF26 VSS AC31 GPIO23 AE9 VSS AF27 DVDD18 AC31 EMU253 AE10 VDDALV AF28 VSS AC32 GPIO24 AE11 VSS AF29 TDO AC32 EMU263 AE12 VDDALV AF30 HOUT AC33 GPIO21 AE13 VSS AF31 BOOTCOMPLETE AC33 EMU233 AE14 VDDALV AF32 RESETFULL AD1 HYPLNK0RXPMDAT AE15 VSS AF33 RSV029 AD2 EMU12 AE16 VDDALV AG1 CORECLKN AD3 EMU05 AE17 VSS AG2 TSRXCLKOUT1P AD4 DVDD18 AE18 VDDALV AG3 TSPUSHEVT0 AD5 VSS AE19 VSS AG4 EMU11 AD6 EMU04 AE20 VDDALV AG5 RSV008 AD7 AVDDA3 AE21 VSS AG6 NETCPCLKSEL AD8 VSS AE22 VDDALV AG7 VSS AD9 VNWA4 AE23 VSS AG8 RSV015 AD10 VSS AE24 VDDALV AG9 VSS AD11 CVDD AE25 VSS AG10 XFIREFRES0 AD12 VSS AE26 DVDD18 AG11 VSS AD13 CVDD AE27 VSS AG12 RSV017 AD14 VSS AE28 DVDD18 AG13 VSS AD15 CVDD AE29 RESET AG14 PCIE0REFRES AD16 VSS AE30 RSV030 AG15 VSS AD17 CVDD AE31 DVDD18 AG16 VDDALV AD18 VSS AE32 VSS AG17 VSS AD19 CVDD AE33 GPIO30 AG18 VDDALV AD20 VSS AE33 EMU323 AG19 VSS AD21 CVDD AF1 CORECLKP AG20 VDDALV AD22 VSS AF2 RSV003 AG21 VSS AD23 VNWA3 AF3 EMU10 AG22 VDDALV AD24 VSS AF4 TSCOMPOUT AG23 VSS AD25 CVDD AF5 HYPLNK0TXPMDAT AG24 VDDALV AD26 VSS AF6 XFIMDCLK AG25 VSS AD27 DVDD18 AF7 AVDDA1 AG26 DVDD18 AD28 VSS AF8 VSS AG27 VSS AD29 GPIO22 AF9 VDDALV AG28 SDA0 AD29 EMU243 AF10 VSS AG29 SDA2 AD30 GPIO31 AF11 VDDALV AG30 SCL0 AD30 EMU333 AF12 VSS AG31 TDI AD31 GPIO29 AF13 VDDALV AG32 TRST AD31 EMU31 3 AF14 VSS AG33 RSV028 AD32 GPIO27 AF15 VDDALV AH1 TSRXCLKOUT1N AD32 EMU29 3 AF16 VSS AH2 EMU18 AD33 GPIO28 AF17 VDDALV AH3 EMU09 AD33 EMU30 3 AF18 VSS AH4 HYPLNK0TXFLDAT AE1 HYPLNK0RXPMCLK AF19 VDDALV AH5 MDIO0 AE2 RSV002 AF20 VSS AH6 MDCLK0 AE3 HYPLNK0RXFLDAT AF21 VDDALV AH7 XFIREFRES1 AE4 SYSCLKOUT AF22 VSS AH8 VSS AE5 TSSYNCEVT AF23 VDDALV AH9 RSV020 Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Terminals 51 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 5-5. Terminal Functions — By Ball Number (continued) BALL NUMBER SIGNAL NAME BALL NUMBER SIGNAL NAME BALL NUMBER SIGNAL NAME AH10 VSS AJ29 VSS AL15 PCIE1TXN0 AH11 VDDAHV AJ30 DVDD18 AL16 VSS AH12 VSS AJ31 TSIP0FSA AL17 PCIE0TXP0 AH13 VDDAHV AJ32 SDA1 AL18 PCIE0TXN0 AH14 VSS AJ33 TCK AL19 VSS AH15 VDDAHV AK1 TSREFCLKN AL20 SGMII0TXP6 AH16 VSS AK2 TSREFCLKP AL21 SGMII0TXN6 AH17 VDDAHV AK3 VSS AL22 VSS AH18 VSS AK4 HYPLNK0TXP3 AL23 SGMII0TXP4 AH19 VDDAHV AK5 HYPLNK0TXN3 AL24 SGMII0TXN4 AH20 VSS AK6 VSS AL25 VSS AH21 VDDAHV AK7 HYPLNK0TXP1 AL26 SGMII0TXP2 AH22 VSS AK8 HYPLNK0TXN1 AL27 SGMII0TXN2 AH23 VDDAHV AK9 VSS AL28 VSS AH24 VSS AK10 XFITXP1 AL29 SGMII0TXP0 AH25 VDDAHV AK11 XFITXN1 AL30 SGMII0TXN0 AH26 VSS AK12 VSS AL31 VSS AH27 DVDD18 AK13 PCIE1TXP1 AL32 TSIP0TX0 AH28 VSS AK14 PCIE1TXN1 AL33 TSIP0TR1 AH29 RESETSTAT AK15 VSS AM1 VSS AH30 SCL1 AK16 PCIE0TXP1 AM2 NETCPCLKP AH31 SCL2 AK17 PCIE0TXN1 AM3 VSS AH32 TMS AK18 VSS AM4 HYPLNK0RXN3 AH33 POR AK19 SGMII0TXP7 AM5 HYPLNK0RXP3 AJ1 TSRXCLKOUT0P AK20 SGMII0TXN7 AM6 VSS AJ2 TSRXCLKOUT0N AK21 VSS AM7 HYPLNK0RXN1 AJ3 HYPLNK0RXFLCLK AK22 SGMII0TXP5 AM8 HYPLNK0RXP1 AJ4 VSS AK23 SGMII0TXN5 AM9 VSS AJ5 HYPLNK0REFRES AK24 VSS AM10 XFIRXN1 AJ6 VSS AK25 SGMII0TXP3 AM11 XFIRXP1 AJ7 HYPLNK0CLKP AK26 SGMII0TXN3 AM12 VSS AJ8 HYPLNK0CLKN AK27 VSS AM13 PCIE1RXN1 AJ9 VSS AK28 SGMII0TXP1 AM14 PCIE1RXP1 AJ10 PCIE1REFRES AK29 SGMII0TXN1 AM15 VSS AJ11 XFICLKP AK30 VSS AM16 PCIE0RXN1 AJ12 XFICLKN AK31 TSIP0CLKA AM17 PCIE0RXP1 AJ13 VSS AK32 TSIP0FSB AM18 VSS AJ14 PCIE1CLKP AK33 TSIP0CLKB AM19 SGMII0RXN7 AJ15 PCIE1CLKN AL1 TSPUSHEVT1 AM20 SGMII0RXP7 AJ16 VSS AL2 RSV007 AM21 VSS AJ17 PCIE0CLKP AL3 RSV006 AM22 SGMII0RXN5 AJ18 PCIE0CLKN AL4 VSS AM23 SGMII0RXP5 AJ19 VSS AL5 HYPLNK0TXP2 AM24 VSS AJ20 RSV016 AL6 HYPLNK0TXN2 AM25 SGMII0RXN3 AJ21 VSS AL7 VSS AM26 SGMII0RXP3 AJ22 SGMII01REFRES AL8 HYPLNK0TXP0 AM27 VSS AJ23 VSS AL9 HYPLNK0TXN0 AM28 SGMII0RXN1 AJ24 SGMII0CLKP AL10 VSS AM29 SGMII0RXP1 AJ25 SGMII0CLKN AL11 XFITXP0 AM30 VSS AJ26 RSV019 AL12 XFITXN0 AM31 TSIP0TR0 AJ27 SGMII00REFRES AL13 VSS AM32 TSIP0TX1 AJ28 RSV018 AL14 PCIE1TXP0 AM33 DVDD18 52 Terminals Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 5-5. Terminal Functions — By Ball Number (continued) BALL NUMBER SIGNAL NAME BALL NUMBER SIGNAL NAME BALL NUMBER SIGNAL NAME AN1 VSS AN12 XFIRXP0 AN23 SGMII0RXN4 AN2 VSS AN13 VSS AN24 SGMII0RXP4 AN3 NETCPCLKN AN14 PCIE1RXN0 AN25 VSS AN4 VSS AN15 PCIE1RXP0 AN26 SGMII0RXN2 AN5 HYPLNK0RXN2 AN16 VSS AN27 SGMII0RXP2 AN6 HYPLNK0RXP2 AN17 PCIE0RXN0 AN28 VSS AN7 VSS AN18 PCIE0RXP0 AN29 SGMII0RXN0 AN8 HYPLNK0RXN0 AN19 VSS AN30 SGMII0RXP0 AN9 HYPLNK0RXP0 AN20 SGMII0RXN6 AN31 VSS AN10 VSS AN21 SGMII0RXP6 AN32 DVDD18 AN11 XFIRXN0 AN22 VSS AN33 VSS 5.4 Pullup/Pulldown Resistors Proper board design should ensure that input pins to the device always be at a valid logic level and not floating. This may be achieved via pullup/pulldown resistors. The device features internal pullup (IPU) and internal pulldown (IPD) resistors on most pins to eliminate the need, unless otherwise noted, for external pullup/pulldown resistors. An external pullup/pulldown resistor needs to be used in the following situations: • Device Configuration Pins: If the pin is both routed out and not driven (in Hi-Z state), an external pullup/pulldown resistor must be used, even if the IPU/IPD matches the desired value/state. • Other Input Pins: If the IPU/IPD does not match the desired value/state, use an external pullup/pulldown resistor to pull the signal to the opposite rail. For the device configuration pins (listed in Table 8-25), if they are both routed out and are not driven (in Hi-Z state), it is strongly recommended that an external pullup/pulldown resistor be implemented. Although, internal pullup/pulldown resistors exist on these pins and they may match the desired configuration value, providing external connectivity can help ensure that valid logic levels are latched on these device configuration pins. In addition, applying external pullup/pulldown resistors on the device configuration pins adds convenience to the user in debugging and flexibility in switching operating modes. Tips for choosing an external pullup/pulldown resistor: • Consider the total amount of current that may pass through the pullup or pulldown resistor. Be sure to include the leakage currents of all the devices connected to the net, as well as any internal pullup or pulldown resistors. • Decide a target value for the net. For a pulldown resistor, this should be below the lowest VIL level of all inputs connected to the net. For a pullup resistor, this should be above the highest VIH level of all inputs on the net. A reasonable choice would be to target the VOL or VOH levels for the logic family of the limiting device; which, by definition, have margin to the VIL and VIH levels. • Select a pullup/pulldown resistor with the largest possible value that still ensures that the net will reach the target pulled value when maximum current from all devices on the net is flowing through the resistor. The current to be considered includes leakage current plus, any other internal and external pullup/pulldown resistors on the net. • For bidirectional nets, there is an additional consideration that sets a lower limit on the resistance value of the external resistor. Verify that the resistance is small enough that the weakest output buffer can drive the net to the opposite logic level (including margin). • Remember to include tolerances when selecting the resistor value. • For pullup resistors, also remember to include tolerances on the DVDD rail. For most systems: • A 1-kΩ resistor can be used to oppose the IPU/IPD while meeting the above criteria. Users should confirm this resistor value is correct for their specific application. Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Terminals 53 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 • www.ti.com A 20-kΩ resistor can be used to compliment the IPU/IPD on the device configuration pins while meeting the above criteria. Users should confirm this resistor value is correct for their specific application. For more detailed information on input current (II), and the low-level/high-level input voltages (VIL and VIH) for the AM5K2E0x device, see Section 9.3. To determine which pins on the device include internal pullup/pulldown resistors, see Table 5-2. 54 Terminals Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 6 Memory, Interrupts, and EDMA for AM5K2E0x 6.1 Memory Map SummaryAM5K2E0x The following table shows the memory map address ranges of the device. Table 6-1. Device Memory Map Summary AM5K2E0x Physical 40-bit Address Start End Bytes ARM View SOC View 00 0000 0000 00 0003 FFFF 256K ARM ROM ARM ROM 00 0004 0000 00 007F FFFF 8M-256K Reserved Reserved 00 0080 0000 00 008F FFFF 1M Reserved Reserved 00 0090 0000 00 00DF FFFF 5M Reserved Reserved 00 00E0 0000 00 00E0 7FFF 32K Reserved Reserved 00 00E0 8000 00 00EF FFFF 1M-32K Reserved Reserved 00 00F0 0000 00 00F0 7FFF 32K Reserved Reserved 00 00F0 8000 00 00FF FFFF 1M-32K Reserved Reserved 00 0100 0000 00 0100 FFFF 64K ARM AXI2VBUSM registers Reserved 00 0101 0000 00 010F FFFF 1M-64K Reserved Reserved 00 0110 0000 00 0110 FFFF 64K ARM STM Stimulus Ports Reserved 00 0101 0000 00 01BF FFFF 11M-64K Reserved Reserved 00 01C0 0000 00 01CF FFFF 1M Reserved Reserved 00 01D0 0000 00 01D0 007F 128 Tracer CFG0 Tracer CFG0 00 01D0 0080 00 01D0 7FFF 32K-128 Reserved Reserved 00 01D0 8000 00 01D0 807F 128 Tracer CFG1 Tracer CFG1 00 01D0 8080 00 01D0 FFFF 32K-128 Reserved Reserved 00 01D1 0000 00 01D1 007F 128 Tracer CFG2 Tracer CFG2 00 01D1 0080 00 01D1 7FFF 32K-128 Reserved Reserved 00 01D1 8000 00 01D1 807F 128 Tracer CFG3 Tracer CFG3 00 01D1 8080 00 01D1 FFFF 32K-128 Reserved Reserved 00 01D2 0000 00 01D2 007F 128 Tracer CFG4 Tracer CFG4 00 01D2 0080 00 01D2 7FFF 32K-128 Reserved Reserved 00 01D2 8000 00 01D2 807F 128 Tracer CFG5 Tracer CFG5 00 01D2 8080 00 01D2 FFFF 32K-128 Reserved Reserved 00 01D3 0000 00 01D3 007F 128 Tracer CFG6 Tracer CFG6 00 01D3 0080 00 01D3 7FFF 32K-128 Reserved Reserved 00 01D3 8000 00 01D3 807F 128 Tracer CFG7 Tracer CFG7 00 01D3 8080 00 01D3 FFFF 32K-128 Reserved Reserved 00 01D4 0000 00 01D4 007F 128 Tracer CFG8 Tracer CFG8 00 01D4 0080 00 01D4 7FFF 32K-128 Reserved Reserved 00 01D4 8000 00 01D4 807F 128 Tracer CFG9 Tracer CFG9 00 01D4 8080 00 01D4 FFFF 32K-128 Reserved Reserved 00 01D5 0000 00 01D5 007F 128 Reserved Reserved 00 01D5 0080 00 01D5 7FFF 32K-128 Reserved Reserved 00 01D5 8000 00 01D5 807F 128 Reserved Reserved 00 01D5 8080 00 01D5 FFFF 32K-128 Reserved Reserved 00 01D6 0000 00 01D6 007F 128 Reserved Reserved 00 01D6 0080 00 01D6 7FFF 32K-128 Reserved Reserved 00 01D6 8000 00 01D6 807F 128 Reserved Reserved 00 01D6 8080 00 01D6 FFFF 32K-128 Reserved Reserved 00 01D7 0000 00 01D7 007F 128 Reserved Reserved 00 01D7 0080 00 01D7 7FFF 32K-128 Reserved Reserved 00 01D7 8000 00 01D7 807F 128 Reserved Reserved 00 01D7 8080 00 01D7 FFFF 32K-128 Reserved Reserved Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 55 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 6-1. Device Memory Map Summary AM5K2E0x (continued) Physical 40-bit Address Start End Bytes ARM View SOC View 00 01D8 0000 00 01D8 007F 128 Reserved Reserved 00 01D8 0080 00 01D8 7FFF 32K-128 Reserved Reserved 00 01D8 8000 00 01D8 807F 128 Reserved Reserved 00 01D8 8080 00 01D8 8FFF 32K-128 Reserved Reserved 00 01D9 0000 00 01D9 007F 128 Reserved Reserved 00 01D9 0080 00 01D9 7FFF 32K-128 Reserved Reserved 00 01D9 8000 00 01D9 807F 128 Reserved Reserved 00 01D9 8080 00 01D9 FFFF 32K-128 Reserved Reserved 00 01DA 0000 00 01DA 007F 128 Tracer CFG20 Tracer CFG20 00 01DA 0080 00 01DA 7FFF 32K-128 Reserved Reserved 00 01DA 8000 00 01DA 807F 128 Reserved Reserved 00 01DA 8080 00 01DA FFFF 32K-128 Reserved Reserved 00 01DB 0000 00 01DB 007F 128 Tracer CFG22 Tracer CFG22 00 01DB 0080 00 01DB 7FFF 32K-128 Reserved Reserved 00 01DB 8000 00 01DB 807F 128 Reserved Reserved 00 01DB 8080 00 01DB 8FFF 32K-128 Reserved Reserved 00 01DC 0000 00 01DC 007F 128 Tracer CFG24 Tracer CFG24 00 01DC 0080 00 01DC 7FFF 32K-128 Reserved Reserved 00 01DC 8000 00 01DC 807F 128 Tracer CFG25 Tracer CFG25 00 01DC 8080 00 01DC FFFF 32K-128 Reserved Reserved 00 01DD 0000 00 01DD 007F 128 Tracer CFG26 Tracer CFG26 00 01DD 0080 00 01DD 7FFF 32K-128 Reserved Reserved 00 01DD 8000 00 01DD 807F 128 Tracer CFG27 Tracer CFG27 00 01DD 8080 00 01DD FFFF 32K-128 Reserved Reserved 00 01DE 0000 00 01DE 007F 128 Tracer CFG28 Tracer CFG28 00 01DE 0080 00 01DE 03FF 1K-128 Reserved Reserved 00 01DE 0400 00 01DE 047F 128 Tracer CFG29 Tracer CFG29 00 01DD 0480 00 01DD 07FF 1K-128 Reserved Reserved 00 01DE 0800 00 01DE 087F 128 Tracer CFG30 Tracer CFG30 00 01DE 0880 00 01DE 7FFF 30K-128 Reserved Reserved 00 01DE 8000 00 01DE 807F 128 Tracer CFG31 Tracer CFG31 00 01DE 8080 00 01DF FFFF 64K-128 Reserved Reserved 00 01E0 0000 00 01E3 FFFF 256K Reserved Reserved 00 01E4 0000 00 01E7FFFF 256k TSIP_CFG TSIP_CFG 00 01E8 0000 00 01E8 3FFF 16K ARM CorePac_CFG ARM CorePac_CFG 00 01E8 4000 00 01EB FFFF 240k Reserved Reserved 00 01EC 0000 00 01EF FFFF 256K Reserved Reserved 00 01F0 0000 00 01F7 FFFF 512K Reserved Reserved 00 01F8 0000 00 01F8 FFFF 64K Reserved Reserved 00 01F9 0000 00 01F9 FFFF 64K Reserved Reserved 00 01FA 0000 00 01FB FFFF 128K Reserved Reserved 00 01FC 0000 00 01FD FFFF 128K Reserved Reserved 00 01FE 0000 00 01FF FFFF 128K Reserved Reserved 00 0200 0000 00 020F FFFF 1M Network Coprocessor 0(Packet Accelerator, 1-gigabit Ethernet switch subsystem and Security Accelerator) Network Coprocessor 0(Packet Accelerator, 1-gigabit Ethernet switch subsystem and Security Accelerator) 00 0210 0000 00 0210 FFFF 64K Reserved Reserved 00 0211 0000 00 0211 FFFF 64K Reserved Reserved 00 0212 0000 00 0213 FFFF 128K Reserved Reserved 00 0214 0000 00 0215 FFFF 128K Reserved Reserved 00 0216 0000 00 0217 FFFF 128K Reserved Reserved 56 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 6-1. Device Memory Map Summary AM5K2E0x (continued) Physical 40-bit Address Start End Bytes ARM View SOC View 00 0218 0000 00 0218 7FFF 32k Reserved Reserved 00 0218 8000 00 0218 FFFF 32k Reserved Reserved 00 0219 0000 00 0219 FFFF 64k Reserved Reserved 00 021A 0000 00 021A FFFF 64K Reserved Reserved 00 021B 0000 00 021B FFFF 64K Reserved Reserved 00 021C 0000 00 021C 03FF 1K Reserved Reserved 00 021C 0400 00 021C 3FFF 15K Reserved Reserved 00 021C 4000 00 021C 43FF 1K Reserved Reserved 00 021C 4400 00 021C 5FFF 7K Reserved Reserved 00 021C 6000 00 021C 63FF 1K Reserved Reserved 00 021C 6400 00 021C 7FFF 7K Reserved Reserved 00 021C 8000 00 021C 83FF 1K Reserved Reserved 00 021C 8400 00 021C FFFF 31K Reserved Reserved 00 021D 0000 00 021D 03FF 1K Memory protection unit (MPU) 15 Memory protection unit (MPU) 15 00 021D 0400 00 021D 047F 128 Tracer CFG32 Tracer CFG32 00 021D 0100 00 021D 3FFF 15K-128 Reserved Reserved 00 021D 4000 00 021D 40FF 256 Reserved Reserved 00 021D 4100 00 021D 7FFF 16K-256 Reserved Reserved 00 021D 8000 00 021D 80FF 256 Reserved Reserved 00 021D 8100 00 021D BFFF 16K-256 Reserved Reserved 00 021D C000 00 021D C0FF 256 Reserved Reserved 00 021D C100 00 021D EFFF 12K-256 Reserved Reserved 00 021D F000 00 021D F07F 128 USIM configuration USIM configuration 00 021D F080 00 021D FFFF 4K-128 Reserved Reserved 00 021E 0000 00 021E FFFF 64K Reserved Reserved 00 021F 0000 00 021F 07FF 2K Reserved Reserved 00 021F 0800 00 021F 0FFF 2K Reserved Reserved 00 021F 1000 00 021F 17FF 2K Reserved Reserved 00 021F 1800 00 021F 3FFF 10K Reserved Reserved 00 021F 4000 00 021F 47FF 2K Reserved Reserved 00 021F 4800 00 021F 7FFF 14K Reserved Reserved 00 021F 8000 00 021F 87FF 2K Reserved Reserved 00 021F 8800 00 021F BFFF 14K Reserved Reserved 00 021F C000 00 021F C7FF 2K Reserved Reserved 00 021F C800 00 021F FFFF 14K Reserved Reserved 00 0220 0000 00 0220 007F 128 Reserved Reserved 00 0220 0080 00 0220 FFFF 64K-128 Reserved Reserved 00 0221 0000 00 0221 007F 128 Reserved Reserved 00 0221 0080 00 0221 FFFF 64K-128 Reserved Reserved 00 0222 0000 00 0222 007F 128 Reserved Reserved 00 0222 0080 00 0222 FFFF 64K-128 Reserved Reserved 00 0223 0000 00 0223 007F 128 Reserved Reserved 00 0223 0080 00 0223 FFFF 64K-128 Reserved Reserved 00 0224 0000 00 0224 007F 128 Reserved Reserved 00 0224 0080 00 0224 FFFF 64K-128 Reserved Reserved 00 0225 0000 00 0225 007F 128 Reserved Reserved 00 0225 0080 00 0225 FFFF 64K-128 Reserved Reserved 00 0226 0000 00 0226 007F 128 Reserved Reserved 00 0226 0080 00 0226 FFFF 64K-128 Reserved Reserved 00 0227 0000 00 0227 007F 128 Reserved Reserved Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 57 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 6-1. Device Memory Map Summary AM5K2E0x (continued) Physical 40-bit Address Start End Bytes ARM View SOC View 00 0227 0080 00 0227 FFFF 64K-128 Reserved Reserved 00 0228 0000 00 0228 007F 128 Timer 8 Timer 8 00 0228 0080 00 0228 FFFF 64K-128 Reserved Reserved 00 0229 0000 00 0229 007F 128 Timer 9 Timer 9 00 0229 0080 00 0229 FFFF 64K-128 Reserved Reserved 00 022A 0000 00 022A 007F 128 Timer 10 Timer 10 00 022A 0080 00 022A FFFF 64K-128 Reserved Reserved 00 022B 0000 00 022B 007F 128 Timer 11 Timer 11 00 022B 0080 00 022B FFFF 64K-128 Reserved Reserved 00 022C 0000 00 022C 007F 128 Timer 12 Timer 12 00 022C 0080 00 022C FFFF 64K-128 Reserved Reserved 00 022D 0000 00 022D 007F 128 Timer 13 Timer 13 00 022D 0080 00 022D FFFF 64K-128 Reserved Reserved 00 022E 0000 00 022E 007F 128 Timer 14 Timer 14 00 022E 0080 00 022E FFFF 64K-128 Reserved Reserved 00 022F 0000 00 022F 007F 128 Timer 15 Timer 15 00 022F 0080 00 022F 00FF 128 Timer 16 Timer 16 00 022F 0100 00 022F 017F 128 Timer 17 Timer 17 00 022F 0180 00 022F 01FF 128 Timer 18 Timer 18 00 022F 0200 00 022F 027F 128 Timer 19 Timer 19 00 0230 0000 00 0230 FFFF 64K Reserved Reserved 00 0231 0000 00 0231 01FF 512 PLL Controller PLL Controller 00 0231 0200 00 0231 9FFF 40K-512 Reserved Reserved 00 0231 A000 00 0231 BFFF 8K HyperLink0 SerDes Config HyperLink0 SerDes Config 00 0231 C000 00 0231 DFFF 8K Reserved Reserved 00 0231 E000 00 0231 FFFF 8K 10GbE SerDes Config 10GbE SerDes Config 00 0232 0000 00 0232 3FFF 16K PCIe0 SerDes Config PCIe0 SerDes Config 00 0232 4000 00 0232 5FFF 8K SGMII 1 SerDes Config SGMII 1 SerDes Config 00 0232 6000 00 0232 7FFF 8K PCIe1SerDes Config PCIe1SerDes Config 00 0232 8000 00 0232 8FFF 4K Reserved Reserved 00 0232 9000 00 0232 9FFF 4K DDRA PHY Config DDRA PHY Config 00 0232 A000 00 0232 BFFF 8K SGMII 0 SerDes Config SGMII 0 SerDes Config 00 0232 C000 00 0232 CFFF 4K Reserved Reserved 00 0232 D000 00 0232 DFFF 4K Reserved Reserved 00 0232 E000 00 0232 EFFF 8K Reserved Reserved 00 0233 0000 00 0233 03FF 1K SmartReflex0 SmartReflex0 00 0233 0400 00 0233 07FF 1K Reserved Reserved 00 0233 0400 00 0233 FFFF 62K Reserved Reserved 00 0234 0000 00 0234 00FF 256 Reserved Reserved 00 0234 0100 00 0234 3FFF 16K Reserved Reserved 00 0234 4000 00 0234 40FF 256 Reserved Reserved 00 0234 4100 00 0234 7FFF 16K Reserved Reserved 00 0234 8000 00 0234 80FF 256 Reserved Reserved 00 0234 8100 00 0234 BFFF 16K Reserved Reserved 00 0234 C000 00 0234 C0FF 256 Reserved Reserved 00 0234 C100 00 0234 FFFF 16K Reserved Reserved 00 0235 0000 00 0235 0FFF 4K Power sleep controller (PSC) Power sleep controller (PSC) 00 0235 1000 00 0235 FFFF 64K-4K Reserved Reserved 00 0236 0000 00 0236 03FF 1K Memory protection unit (MPU) 0 Memory protection unit (MPU) 0 00 0236 0400 00 0236 7FFF 31K Reserved Reserved 58 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 6-1. Device Memory Map Summary AM5K2E0x (continued) Physical 40-bit Address Start End Bytes ARM View SOC View 00 0236 8000 00 0236 83FF 1K Memory protection unit (MPU) 1 Memory protection unit (MPU) 1 00 0236 8400 00 0236 FFFF 31K Reserved Reserved 00 0237 0000 00 0237 03FF 1K Memory protection unit (MPU) 2 Memory protection unit (MPU) 2 00 0237 0400 00 0237 7FFF 31K Reserved Reserved 00 0237 8000 00 0237 83FF 1K Reserved Reserved 00 0237 8400 00 0237 FFFF 31K Reserved Reserved 00 0238 0000 00 0238 03FF 1K Reserved Reserved 00 0238 8000 00 0238 83FF 1K Memory protection unit (MPU) 5 Memory protection unit (MPU) 5 00 0238 8400 00 0238 87FF 1K Reserved Reserved 00 0238 8800 00 0238 8BFF 1K Memory protection unit (MPU) 7 Memory protection unit (MPU) 7 00 0238 8C00 00 0238 8FFF 1K Memory protection unit (MPU) 8 Memory protection unit (MPU) 8 00 0238 9000 00 0238 93FF 1K Memory protection unit (MPU) 9 Memory protection unit (MPU) 9 00 0238 9400 00 0238 97FF 1K Memory protection unit (MPU) 10 Memory protection unit (MPU) 10 00 0238 9800 00 0238 9BFF 1K Memory protection unit (MPU) 11 Memory protection unit (MPU) 11 00 0238 9C00 00 0238 9FFF 1K Memory protection unit (MPU) 12 Memory protection unit (MPU) 12 00 0238 A000 00 0238 A3FF 1K Memory protection unit (MPU) 13 Memory protection unit (MPU) 13 00 0238 A400 00 0238 A7FF 1K Memory protection unit (MPU) 14 Memory protection unit (MPU) 14 00 0238 A800 00 023F FFFF 471K Reserved Reserved 00 0240 0000 00 0243 FFFF 256K Reserved Reserved 00 0244 0000 00 0244 3FFF 16K Reserved Reserved 00 0244 4000 00 0244 FFFF 48K Reserved Reserved 00 0245 0000 00 0245 3FFF 16K Reserved Reserved 00 0245 4000 00 0245 FFFF 48K Reserved Reserved 00 0246 0000 00 0246 3FFF 16K Reserved Reserved 00 0246 4000 00 0246 FFFF 48K Reserved Reserved 00 0247 0000 00 0247 3FFF 16K Reserved Reserved 00 0247 4000 00 0247 FFFF 48K Reserved Reserved 00 0248 0000 00 0248 3FFF 16K Reserved Reserved 00 0248 4000 00 0248 FFFF 48K Reserved Reserved 00 0249 0000 00 0249 3FFF 16K Reserved Reserved 00 0249 4000 00 0249 FFFF 48K Reserved Reserved 00 024A 0000 00 024A 3FFF 16K Reserved Reserved 00 024A 4000 00 024A FFFF 48K Reserved Reserved 00 024B 0000 00 024B 3FFF 16K Reserved Reserved 00 024B 4000 00 024B FFFF 48K Reserved Reserved 00 024C 0000 00 024C 01FF 512 Reserved Reserved 00 024C 0200 00 024C 03FF 1K-512 Reserved Reserved 00 024C 0400 00 024C 07FF 1K Reserved Reserved 00 024C 0800 00 024C FFFF 62K Reserved Reserved 00 024D 0000 00 024F FFFF 192K Reserved Reserved 00 0250 0000 00 0250 007F 128 Reserved Reserved 00 0250 0080 00 0250 7FFF 32K-128 Reserved Reserved 00 0250 8000 00 0250 FFFF 32K Reserved Reserved 00 0251 0000 00 0251 FFFF 64K Reserved Reserved 00 0252 0000 00 0252 03FF 1K Reserved Reserved 00 0252 0400 00 0252 FFFF 64K-1K Reserved Reserved 00 0253 0000 00 0253 007F 128 I C0 I2C0 00 0253 0080 00 0253 03FF 1K-128 Reserved Reserved 00 0253 0400 00 0253 047F 128 I2C1 I2C1 00 0253 0480 00 0253 07FF 1K-128 Reserved Reserved 2 Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 59 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 6-1. Device Memory Map Summary AM5K2E0x (continued) Physical 40-bit Address Start End Bytes ARM View SOC View 00 0253 0800 00 0253 087F 128 I2C2 I2C2 00 0253 0880 00 0253 0BFF 1K-128 Reserved Reserved 00 0253 0C00 00 0253 0C3F 64 UART0 UART0 00 0253 0C40 00 0253 FFFF 1K-64 Reserved Reserved 00 0253 1000 00 0253 103F 64 UART1 UART1 00 0253 1040 00 0253 FFFF 60K-64 Reserved Reserved 00 0254 0000 00 0255 FFFF 128K Reserved Reserved 00 0256 0080 00 0257 FFFF 128K ARM CorePac INTC ARM CorePac INTC 00 0258 0000 00 025F FFFF 512K Reserved Reserved 00 0260 0000 00 0260 1FFF 8K Secondary interrupt controller (CIC) 0 Secondary interrupt controller (CIC) 0 00 0260 2000 00 0260 3FFF 8K Reserved Reserved 00 0260 4000 00 0260 5FFF 8K Reserved Reserved 00 0260 6000 00 0260 7FFF 8K Reserved Reserved 00 0260 8000 00 0260 9FFF 8K Secondary interrupt controller (CIC) 2 Secondary interrupt controller (CIC) 2 00 0260 A000 00 0260 BEFF 8K-256 Reserved Reserved 00 0260 BF00 00 0260 BFFF 256 GPIO Config GPIO Config 00 0260 C000 00 0261 BFFF 64K Reserved Reserved 00 0261 C000 00 0261 FFFF 16K Reserved Reserved 00 0262 0000 00 0262 0FFF 4K BOOTCFG chip-level registers BOOTCFG chip-level registers 00 0262 1000 00 0262 FFFF 60K Reserved Reserved 00 0263 0000 00 0263 FFFF 64K USB 0 PHY CFG USB 0 PHY CFG 00 0264 0000 00 0264 07FF 2K Semaphore Config Semaphore Config 00 0264 0800 00 0264 FFFF 62K Reserved Reserved 00 0265 0000 00 0267 FFFF 192K Reserved Reserved 00 0268 0000 00 026F FFFF 512K USB 0 MMR CFG USB 0 MMR CFG 00 0270 0000 00 0270 7FFF 32K EDMA channel controller (TPCC) 0 EDMA channel controller (TPCC) 0 00 0270 8000 00 0270 FFFF 32K EDMA channel controller (TPCC) 4 EDMA channel controller (TPCC) 4 00 0271 0000 00 0271 FFFF 64K Reserved Reserved 00 0272 0000 00 0272 7FFF 32K EDMA channel controller (TPCC) 1 EDMA channel controller (TPCC) 1 00 0272 8000 00 0272 FFFF 32K EDMA channel controller (TPCC) 3 EDMA channel controller (TPCC) 3 00 0273 0000 00 0273 FFFF 64K Reserved Reserved 00 0274 0000 00 0274 7FFF 32K EDMA channel controller (TPCC) 2 EDMA channel controller (TPCC) 2 00 0274 8000 00 0275 FFFF 96K Reserved Reserved 00 0276 0000 00 0276 03FF 1K EDMA TPCC0 transfer controller (TPTC) 0 EDMA TPCC0 transfer controller (TPTC) 0 00 0276 0400 00 0276 7FFF 31K Reserved Reserved 00 0276 8000 00 0276 83FF 1K EDMA TPCC0 transfer controller (TPTC) 1 EDMA TPCC0 transfer controller (TPTC) 1 00 0276 8400 00 0276 FFFF 31K Reserved Reserved 00 0277 0000 00 0277 03FF 1K EDMA TPCC1 transfer controller (TPTC) 0 EDMA TPCC1 transfer controller (TPTC) 0 00 0277 0400 00 0277 7FFF 31K Reserved Reserved 00 0277 8000 00 0277 83FF 1K EDMA TPCC1 transfer controller (TPTC) 1 EDMA TPCC1 transfer controller (TPTC) 1 00 0278 0400 00 0277 FFFF 31K Reserved Reserved 00 0278 0000 00 0278 03FF 1K EDMA TPCC1 transfer controller (TPTC) 2 EDMA TPCC1 transfer controller (TPTC) 2 00 0278 0400 00 0278 7FFF 31K Reserved Reserved 00 0278 8000 00 0278 83FF 1K EDMA TPCC1 transfer controller (TPTC) 3 EDMA TPCC1 transfer controller (TPTC) 3 00 0278 8400 00 0278 FFFF 31K Reserved Reserved 00 0279 0000 00 0279 03FF 1K EDMA TPCC2 transfer controller (TPTC) 0 EDMA TPCC2 transfer controller (TPTC) 0 00 0279 0400 00 0279 7FFF 31K Reserved Reserved 00 0279 8000 00 0279 83FF 1K EDMA TPCC2 transfer controller (TPTC) 1 EDMA TPCC2 transfer controller (TPTC) 1 00 0279 8400 00 0279 FFFF 31K Reserved Reserved 00 027A 0000 00 027A 03FF 1K EDMA TPCC2 transfer controller (TPTC) 2 EDMA TPCC2 transfer controller (TPTC) 2 60 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 6-1. Device Memory Map Summary AM5K2E0x (continued) Physical 40-bit Address Start End Bytes ARM View SOC View 00 027A 0400 00 027A 7FFF 31K Reserved Reserved 00 027A 8000 00 027A 83FF 1K EDMA TPCC2 transfer controller (TPTC) 3 EDMA TPCC2 transfer controller (TPTC) 3 00 027A 8400 00 027A FFFF 31K Reserved Reserved 00 027B 0000 00 027B 03FF 1K EDMA TPCC3 transfer controller (TPTC) 0 EDMA TPCC3 transfer controller (TPTC) 0 00 027B 0400 00 027B 7FFF 31K Reserved Reserved 00 027B 8000 00 027B 83FF 1K EDMA TPCC3 transfer controller (TPTC) 1 EDMA TPCC3 transfer controller (TPTC) 1 00 027B 8400 00 027B 87FF 1K EDMA TPCC4 transfer controller (TPTC) 0 EDMA TPCC4 transfer controller (TPTC) 0 00 027B 8800 00 027B 8BFF 1K EEDMA TPCC4 transfer controller (TPTC) 1 EEDMA TPCC4 transfer controller (TPTC) 1 00 027B 8C00 00 027B FFFF 29K Reserved Reserved 00 027C 0000 00 027C 03FF 1K Reserved Reserved 00 027C 0400 00 027C FFFF 63K Reserved Reserved 00 027D 0000 00 027D 3FFF 16K TI embedded trace buffer (TETB) - CorePac0 TI embedded trace buffer (TETB) - CorePac0 00 027D 4000 00 027D 7FFF 16K TBR_ARM CorePac - Trace buffer - ARM CorePac TBR_ARM CorePac - Trace buffer - ARM CorePac 00 027D 8000 00 027D FFFF 32K Reserved Reserved 00 027E 0000 00 027E 3FFF 16K Reserved Reserved 00 027E 4000 00 027E FFFF 48K Reserved Reserved 00 027F 0000 00 027F 3FFF 16K Reserved Reserved 00 027F 4000 00 027F FFFF 48K Reserved Reserved 00 0280 0000 00 0280 3FFF 16K Reserved Reserved 00 0280 4000 00 0280 FFFF 48K Reserved Reserved 00 0281 0000 00 0281 3FFF 16K Reserved Reserved 00 0281 4000 00 0281 FFFF 48K Reserved Reserved 00 0282 0000 00 0282 3FFF 16K Reserved Reserved 00 0282 4000 00 0282 FFFF 48K Reserved Reserved 00 0283 0000 00 0283 3FFF 16K Reserved Reserved 00 0283 4000 00 0283 FFFF 48K Reserved Reserved 00 0284 0000 00 0284 3FFF 16K Reserved Reserved 00 0284 4000 00 0284 FFFF 48K Reserved Reserved 00 0285 0000 00 0285 7FFF 32K TBR_SYS- Trace buffer - System TBR_SYS- Trace buffer - System 00 0285 8000 00 0285 FFFF 32K Reserved Reserved 00 0286 0000 00 028F FFFF 640K Reserved Reserved 00 0290 0000 00 0293 FFFF 256K Reserved Reserved 00 0294 0000 00 029F FFFF 768K Reserved Reserved 00 02A0 0000 00 02AF FFFF 1M Navigator configuration Navigator configuration 00 02B0 0000 00 02BF FFFF 1M Navigator linking RAM Navigator linking RAM 00 02C0 0000 00 02C0 FFFF 64K Reserved Reserved 00 02C1 0000 00 02C1 FFFF 64K Reserved Reserved 00 02C2 0000 00 02C3 FFFF 128K Reserved Reserved 00 02C4 0000 00 02C5 FFFF 128K Reserved Reserved 00 02C6 0000 00 02C7 FFFF 128K Reserved Reserved 00 02C8 0000 00 02C8 FFFF 64K Reserved Reserved 00 02C9 0000 00 02C9 FFFF 64K Reserved Reserved 00 02CA 0000 00 02CB FFFF 128K Reserved Reserved 00 02CC 0000 00 02CD FFFF 128K Reserved Reserved 00 02CE 0000 00 02EF FFFF 15M-896K Reserved Reserved 00 02F0 0000 00 02FF FFFF 1M 10GbE Config 10GbE Config 00 0300 0000 00 030F FFFF 1M DBG Config DBG Config 00 0310 0000 00 07FF FFFF 79M Reserved Reserved 00 0800 0000 00 0801 FFFF 128K Extended memory controller (XMC) configuration Extended memory controller (XMC) configuration Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 61 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 6-1. Device Memory Map Summary AM5K2E0x (continued) Physical 40-bit Address Start End Bytes ARM View SOC View 00 0802 0000 00 0BBF FFFF 60M-128K Reserved Reserved 00 0BC0 0000 00 0BCF FFFF 1M Multicore shared memory controller (MSMC) config Multicore shared memory controller (MSMC) config 00 0BD0 0000 00 0BFF FFFF 3M Reserved Reserved 00 0C00 0000 00 0C1F FFFF 2M Multicore shared memory (MSM) Multicore shared memory (MSM) 00 0C20 0000 00 0C5F FFFF 4M Reserved Reserved 00 0C60 0000 00 0FFF FFFF 58M Reserved Reserved 00 1000 0000 00 107F FFFF 8M Reserved Reserved 00 1080 0000 00 108F FFFF 1M Reserved Reserved 00 1090 0000 00 10DF FFFF 5M Reserved Reserved 00 10E0 0000 00 10E0 7FFF 32K Reserved Reserved 00 10E0 8000 00 10EF FFFF 1M-32K Reserved Reserved 00 10F0 0000 00 10F0 7FFF 32K Reserved Reserved 00 10F0 8000 00 117F FFFF 9M-32K Reserved Reserved 00 1180 0000 00 118F FFFF 1M Reserved Reserved 00 1190 0000 00 11DF FFFF 5M Reserved Reserved 00 11E0 0000 00 11E0 7FFF 32K Reserved Reserved 00 11E0 8000 00 11EF FFFF 1M-32K Reserved Reserved 00 11F0 0000 00 11F0 7FFF 32K Reserved Reserved 00 11F0 8000 00 127F FFFF 9M-32K Reserved Reserved 00 1280 0000 00 128F FFFF 1M Reserved Reserved 00 1290 0000 00 12DF FFFF 5M Reserved Reserved 00 12E0 0000 00 12E0 7FFF 32K Reserved Reserved 00 12E0 8000 00 12EF FFFF 1M-32K Reserved Reserved 00 12F0 0000 00 12F0 7FFF 32K Reserved Reserved 00 12F0 8000 00 137F FFFF 9M-32K Reserved Reserved 00 1380 0000 00 1388 FFFF 1M Reserved Reserved 00 1390 0000 00 13DF FFFF 5M Reserved Reserved 00 13E0 0000 00 13E0 7FFF 32K Reserved Reserved 00 13E0 8000 00 13EF FFFF 1M-32K Reserved Reserved 00 13F0 0000 00 13F0 7FFF 32K Reserved Reserved 00 13F0 8000 00 147F FFFF 9M-32K Reserved Reserved 00 1480 0000 00 148F FFFF 1M Reserved Reserved 00 1490 0000 00 14DF FFFF 5M Reserved Reserved 00 14E0 0000 00 14E0 7FFF 32K Reserved Reserved 00 14E0 8000 00 14EF FFFF 1M-32K Reserved Reserved 00 14F0 0000 00 14F0 7FFF 32K Reserved Reserved 00 14F0 8000 00 157F FFFF 9M-32K Reserved Reserved 00 1580 0000 00 158F FFFF 1M Reserved Reserved 00 1590 0000 00 15DF FFFF 5M Reserved Reserved 00 15E0 0000 00 15E0 7FFF 32K Reserved Reserved 00 15E0 8000 00 15EF FFFF 1M-32K Reserved Reserved 00 15F0 0000 00 15F0 7FFF 32K Reserved Reserved 00 15F0 8000 00 167F FFFF 9M-32K Reserved Reserved 00 1680 0000 00 168F FFFF 1M Reserved Reserved 00 1690 0000 00 16DF FFFF 5M Reserved Reserved 00 16E0 0000 00 16E0 7FFF 32K Reserved Reserved 00 16E0 8000 00 16EF FFFF 1M-32K Reserved Reserved 00 16F0 0000 00 16F0 7FFF 32K Reserved Reserved 00 16F0 8000 00 177F FFFF 9M-32K Reserved Reserved 00 1780 0000 00 178F FFFF 1M Reserved Reserved 62 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 6-1. Device Memory Map Summary AM5K2E0x (continued) Physical 40-bit Address Start End Bytes ARM View SOC View 00 1790 0000 00 17DF FFFF 5M Reserved Reserved 00 17E0 0000 00 17E0 7FFF 32K Reserved Reserved 00 17E0 8000 00 17EF FFFF 1M-32K Reserved Reserved 00 17F0 0000 00 17F0 7FFF 32K Reserved Reserved 00 17F0 8000 00 1FFF FFFF 129M-32K Reserved Reserved 00 2000 0000 00 200F FFFF 1M System trace manager (STM) configuration System trace manager (STM) configuration 00 2010 0000 00 201F FFFF 1M Reserved Reserved 00 2020 0000 00 205F FFFF 4M Reserved Reserved 00 2060 0000 00 206F FFFF 1M Reserved Reserved 00 2070 0000 00 2077 FFFF 512K Reserved Reserved 00 2078 0000 00 2078 FFFF 64K Reserved Reserved 00 2079 0000 00 207F FFFF 448K Reserved Reserved 00 2080 0000 00 208F FFFF 1M Reserved Reserved 00 2090 0000 00 209F FFFF 1M Reserved Reserved 00 20A0 0000 00 20A3 FFFF 256K Reserved Reserved 00 20A4 0000 00 20A4 FFFF 64K Reserved Reserved 00 20A5 0000 00 20AF FFFF 704K Reserved Reserved 00 20B0 0000 00 20B3 FFFF 256K Boot ROM Boot ROM 00 20B4 0000 00 20BE FFFF 704K Reserved Reserved 00 20BF 0000 00 20BF 01FF 64K Reserved Reserved 00 20C0 0000 00 20FF FFFF 4M Reserved Reserved 00 2100 0000 00 2100 03FF 1K Reserved Reserved 00 2100 0400 00 2100 05FF 512 SPI0 SPI0 00 2100 0600 00 2100 07FF 512 SPI1 SPI1 00 2100 0800 00 2100 09FF 512 SPI2 SPI2 00 2100 0A00 00 2100 0AFF 256 EMIF Config EMIF Config 00 2100 0B00 00 2100 FFFF 62K-768 Reserved Reserved 00 2101 0000 00 2101 01FF 512 DDR3 EMIF Config DDR3 EMIF Config 00 2101 0200 00 2101 07FF 2K-512 Reserved Reserved 00 2101 0800 00 2101 09FF 512 Reserved Reserved 00 2101 0A00 00 2101 0FFF 2K-512 Reserved Reserved 00 2101 1000 00 2101 FFFF 60K Reserved Reserved 00 2102 0000 00 2102 7FFF 32K PCIe 1 config PCIe 1 config 00 2102 8000 00 2103 FFFF 96K Reserved Reserved 00 2104 0000 00 217F FFFF 4M-256K Reserved Reserved 00 2140 0000 00 2140 00FF 256 HyperLink0 config HyperLink0 config 00 2140 0100 00 2140 01FF 256 Reserved Reserved 00 2140 0400 00 217F FFFF 4M-512 Reserved Reserved 00 2180 0000 00 2180 7FFF 32K PCIe 0 config PCIe 0 config 00 2180 8000 00 21BF FFFF 4M-32K Reserved Reserved 00 21C0 0000 00 21FF FFFF 4M Reserved Reserved 00 2200 0000 00 229F FFFF 10M Reserved Reserved 00 22A0 0000 00 22A0 FFFF 64K Reserved Reserved 00 22A1 0000 00 22AF FFFF 1M-64K Reserved Reserved 00 22B0 0000 00 22B0 FFFF 64K Reserved Reserved 00 22B1 0000 00 22BF FFFF 1M-64K Reserved Reserved 00 22C0 0000 00 22C0 FFFF 64K Reserved Reserved 00 22C1 0000 00 22CF FFFF 1M-64K Reserved Reserved 00 22D0 0000 00 22D0 FFFF 64K Reserved Reserved 00 22D1 0000 00 22DF FFFF 1M-64K Reserved Reserved Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 63 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 6-1. Device Memory Map Summary AM5K2E0x (continued) Physical 40-bit Address Start End Bytes ARM View SOC View 00 22E0 0000 00 22E0 FFFF 64K Reserved Reserved 00 22E1 0000 00 22EF FFFF 1M-64K Reserved Reserved 00 22F0 0000 00 22F0 FFFF 64K Reserved Reserved 00 22F1 0000 00 22FF FFFF 1M-64K Reserved Reserved 00 2300 0000 00 2300 FFFF 64K Reserved Reserved 00 2301 0000 00 230F FFFF 1M-64K Reserved Reserved 00 2310 0000 00 2310 FFFF 64K Reserved Reserved 00 2311 0000 00 231F FFFF 1M-64K Reserved Reserved 00 2320 0000 00 2324 FFFF 384K Reserved Reserved 00 2325 0000 00 239F FFFF 8M-384K Reserved Reserved 00 23A0 0000 00 23BF FFFF 2M Navigator Navigator 00 23C0 0000 00 23FF FFFF 4M Reserved Reserved 00 2400 0000 00 24FF FFFF 16M NETCP15 config NETCP15 config 00 2500 0000 00 2507 FFFF 512K USB 1 MMR config USB 1 MMR config 00 2508 0000 00 2508 FFFF 64K USB 1 PHY config USB 1 PHY config 00 2509 0000 00 27FF FFFF 48M-576K Reserved Reserved 00 2800 0000 00 2FFF FFFF 128M Reserved Reserved 00 3000 0000 00 33FF FFFF 64M EMIF16 CE0 EMIF16 CE0 00 3400 0000 00 37FF FFFF 64M EMIF16 CE1 EMIF16 CE1 00 3800 0000 00 3BFF FFFF 64M EMIF16 CE2 EMIF16 CE2 00 3C00 0000 00 3FFF FFFF 64M EMIF16 CE3 EMIF16 CE3 00 4000 0000 00 4FFF FFFF 256M HyperLink0 data HyperLink0 data 00 5000 0000 00 5FFF FFFF 256M PCIe 0 data PCIe 0 data 00 6000 0000 00 6FFF FFFF 256M PCIe 1data PCIe 1data 00 7000 0000 00 FFFF FFFF 2304M Reserved Reserved 01 0000 0000 01 20FF FFFF 528M Reserved Reserved 01 2100 0000 01 2100 01FF 512 Reserved DDR3 EMIF configuration 01 2100 0200 07 FFFF FFFF 32G-512 Reserved Reserved 08 0000 0000 09 FFFF FFFF 8G DDR3 data DDR3 data 0A 0000 0000 FF FFFF FFFF 984G Reserved Reserved 6.2 Memory Protection Unit (MPU) for AM5K2E0x CFG (configuration) space of all slave devices on the TeraNet is protected by the MPU. The AM5K2E0x contains sixteen MPUs of which thirteen MPUs are used: • MPU0 is used to protect main CORE/3 CFG TeraNet_3P_B (SCR_3P (B)). • MPU1/2/5 are used for QM_SS (one for VBUSM port and one each for the two configuration VBUSP port). • MPU3/4/6 are not used. • MPU7 is used for PCIe1. • MPU8 is used for peripherals connected to TeraNet_6P_A (SCR_6P (A)). • MPU9 is used for interrupt controllers connected to TeraNet_3P (SCR_3P). • MPU10 is used for semaphore. • MPU11 is used to protect TeraNet_6P_B (SCR_6P (B)) CPU/6 CFG TeraNet. • MPU12/13/14 are used for SPI0/1/2. • MPU15 is used for USB1. This section contains MPU register map and details of device-specific MPU registers only. For MPU features and details of generic MPU registers, see the KeyStone Architecture Memory Protection Unit (MPU) User's Guide (SPRUGW5). 64 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 The following tables show the configuration of each MPU and the memory regions protected by each MPU. Table 6-2. MPU0-MPU5 Default Configuration MPU0 MPU1 MAIN SCR_3P QM_SS DATA (B) PORT MPU2 QM_SS CFG1 PORT MPU3 MPU4 Default permission Assume allowed Assume allowed Assume allowed Reserved Reserved Number of allowed IDs supported 16 16 16 16 Number of programmable 16 ranges supported 16 16 16 1KB granularity 1KB granularity SETTING Compare width 1KB granularity 1KB granularity MPU5 QM_SS CFG2 PORT Assume allowed Table 6-3. MPU6-MPU11 Default Configuration SETTING MPU6 MPU7 PCIe1 MPU8 EMIF16 MPU9 CIC MPU10 SM MPU11 SCR_6P (B) Default permission Reserved Assume allowed Assume allowed Assume allowed Assume allowed Assume allowed Number of allowed IDs supported 16 16 16 16 16 Number of programmable ranges supported 16 8 4 2 16 Compare width 1KB granularity 1KB granularity 1KB granularity 1KB granularity 1KB granularity Table 6-4. MPU12-MPU15 Default Configuration SETTING MPU12 SPI0 MPU13 SPI1 MPU14 SPI2 MPU15 USB1 Default permission Assume allowed Assume allowed Assume allowed Assume allowed Number of allowed IDs supported 16 16 16 16 Number of programmable ranges supported 2 2 2 8 Compare width 1KB granularity 1KB granularity 1KB granularity 1KB granularity Table 6-5. MPU Memory Regions MEMORY PROTECTION START ADDRESS END ADDRESS MPU0 Main CFG SCR 0x01D0_0000 0X01E7_FFFF MPU1 QM_SS DATA PORT 0x23A0_0000 0x23BF_FFFF MPU2 QM_SS CFG1 PORT 0x02A0_0000 0x02AF_FFFF MPU3 Reserved N/A N/A MPU4 Reserved N/A N/A MPU5 QM_SS CFG2 PORT 0x02A0_4000 0x02BF_FFFF MPU6 Reserved N/A N/A MPU7 PCIe1 0x2101_0000 0xFFFF_FFFF MPU8 SPIROM/EMIF16 0x20B0_0000 0x3FFF_FFFF MPU9 CIC/AINTC 0x0264_0000 0x0264_07FF MPU10 Semaphore 0x0260_0000 0x0260_9FFF MPU11 SCR_6 and CPU/6 CFG SCR 0x0220_0000 0x03FF_FFFF MPU12 SPI0 0x2100_0400 0x2100_07FF MPU13 SPI1 0x2100_0400 0x2100_07FF MPU14 SPI2 0x2100_0800 0x2100_0AFF Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 65 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 6-5. MPU Memory Regions (continued) MPU15 MEMORY PROTECTION START ADDRESS END ADDRESS USB1 0x2400_0000 0x2508_FFFF Table 6-6 shows the unique Master ID assigned to each CorePac and peripherals on the device. Table 6-6. Master ID Settings Master ID AM5K2E0x 0 Reserved 1 Reserved 2 Reserved 3 Reserved 4 Reserved 5 Reserved 6 Reserved 7 Reserved 8 ARM CorePac 0 9 ARM CorePac1 10 ARM CorePac 2 11 ARM CorePac 3 12 Reserved 13 Reserved 14 Reserved 15 Reserved 16 Reserved 17 Reserved 18 Reserved 19 Reserved 20 Reserved 21 Reserved 22 Reserved 23 Reserved 24 Reserved 25 EDMA0_TC0 read 26 EDMA0_TC0 write 27 EDMA0_TC1 read 28 Hyperlink0 29 USB1 30 Reserved 31 PCIe0 32 EDMA0_TC1 write 33 EDMA1_TC0 read 34 EDMA1_TC0 write 35 EDMA1_TC1 read 36 EDMA1_TC1write 37 EDMA1_TC2 read 38 EDMA1_TC2 write 39 EDMA1_TC3 read 40 EDMA1_TC3 write 41 EDMA2_TC0 read 66 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 6-6. Master ID Settings (continued) Master ID AM5K2E0x 42 EDMA2_TC0 write 43 EDMA2_TC1 read 44 EDMA2_TC1 write 45 EDMA2_TC2 read 46 EDMA2_TC2 write 47 EDMA2_TC3 read 48 EDMA2_TC3 write 49 EDMA3_TC0 read 50 EDMA3_TC0 write 51 EDMA3_TC1 read 52 Reserved 53 EDMA3_TC1 write 54-55 Reserved 56 USB0 57 Reserved 58 Reserved 59 Reserved 60 Reserved 61 Reserved 62 EDMA3CC0 63 EDMA3CC1 64 EDMA3CC2 65 Reserved 66 Reserved 67 Reserved 68-71 Queue Manager 72-75 NETCP_GLOBAL1 76-79 Reserved 80 TSIP 81 Reserved 82 Reserved 83 Reserved 84-87 10GbE 88-91 Reserved 92-95 Reserved 96-99 Packet DMA MST1 100-101 Reserved 102 PCIe1 103 Reserved 104 Reserved 105 Reserved 106 Reserved 107 DBG_DAP 108-111 Reserved 112-119 NETCP_LOCAL 120-139 Reserved 140 Reserved Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 67 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 6-6. Master ID Settings (continued) Master ID AM5K2E0x 141 Reserved 142 Reserved 143 Reserved 144 Reserved 145 Reserved 146 Reserved 147 Reserved 148 CPT_MSMC0 149 CPT_MSMC1 150 CPT_MSMC2 151 CPT_MSMC3 152 CPT_DDR3 153 CPT_SM 154 CPT_QM_CFG1 155 CPT_QM_M 156 CPT_CFG 157 Reserved 158 Reserved 159 Reserved 160 CPT_QM_CFG2 161 CPT_PCIe1 162 Reserved 163 Reserved 164 CPT_EDMA3CC0_4 165 CPT_EDMA3CC1_2_3 166 CPT_CIC 167 CPT_SPI_ROM_EMIP16 168 Reserved 169 EDMA4_TC0 read 170 EDMA4_TC0 write 171 EDMA4_TC1 read 172 EDMA4_TC1 write 173 EDMA4_CC_TR 174 CPT_MSMC7 175 CPT_MSMC6 176 CPT_MSMC5 177 CPT_MSMC4 178 CPT_NETCP_CFG_MST 179 Reserved 180-183 NETCP_GLOBAL0 184-255 Reserved 68 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 6-7 shows the privilege ID of each mastering peripheral. The table also shows the privilege level (supervisor vs. user), security level (secure vs. non-secure), and access type (instruction read vs. data/DMA read or write) of each master on the device. In some cases, a particular setting depends on software being executed at the time of the access or the configuration of the master peripheral. Table 6-7. Privilege ID Settings PRIVILEGE ID MASTER PRIVILEGE LEVEL ACCESS TYPE 0 Reserved N/A N/A 1 Reserved N/A N/A 2 Reserved N/A N/A 3 Reserved N/A N/A 4 Reserved N/A N/A 5 Reserved N/A N/A 6 Reserved N/A N/A 7 Reserved N/A N/A 8 ARM CorePac User/Supervisor (S/W dependent) Instruction/Data 9 All packet DMA masters (Both NetCP, Both QM_CDMA) Both USB User Data 10 QM_SECOND User Data 11 PCIe0 User/Supervisor Data 12 DAP User/Supervisor (Emulation S/W dependent) Data 13 PCIe1 User/Supervisor Data 14 Hyperlink User/Supervisor Data 15 TSIP User Data 6.2.1 MPU Registers This section includes the offsets for MPU registers and definitions for device-specific MPU registers. For Number of Programmable Ranges supported (PROGx_MPSA, PROGxMPEA) refer to the following tables. 6.2.1.1 MPU Register Map Table 6-8. MPU Registers OFFSET NAME DESCRIPTION 0h REVID Revision ID 4h CONFIG Configuration 10h IRAWSTAT Interrupt raw status/set 14h IENSTAT Interrupt enable status/clear 18h IENSET Interrupt enable 1Ch IENCLR Interrupt enable clear 20h EOI End of interrupt 200h PROG0_MPSAR Programmable range 0, start address 204h PROG0_MPEAR Programmable range 0, end address 208h PROG0_MPPAR Programmable range 0, memory page protection attributes 210h PROG1_MPSAR Programmable range 1, start address 214h PROG1_MPEAR Programmable range 1, end address 218h PROG1_MPPAR Programmable range 1, memory page protection attributes 220h PROG2_MPSAR Programmable range 2, start address 224h PROG2_MPEAR Programmable range 2, end address 228h PROG2_MPPAR Programmable range 2, memory page protection attributes Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 69 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 6-8. MPU Registers (continued) OFFSET NAME DESCRIPTION 230h PROG3_MPSAR Programmable range 3, start address 234h PROG3_MPEAR Programmable range 3, end address 238h PROG3_MPPAR Programmable range 3, memory page protection attributes 240h PROG4_MPSAR Programmable range 4, start address 244h PROG4_MPEAR Programmable range 4, end address 248h PROG4_MPPAR Programmable range 4, memory page protection attributes 250h PROG5_MPSAR Programmable range 5, start address 254h PROG5_MPEAR Programmable range 5, end address 258h PROG5_MPPAR Programmable range 5, memory page protection attributes 260h PROG6_MPSAR Programmable range 6, start address 264h PROG6_MPEAR Programmable range 6, end address 268h PROG6_MPPAR Programmable range 6, memory page protection attributes 270h PROG7_MPSAR Programmable range 7, start address 274h PROG7_MPEAR Programmable range 7, end address 278h PROG7_MPPAR Programmable range 7, memory page protection attributes 280h PROG8_MPSAR Programmable range 8, start address 284h PROG8_MPEAR Programmable range 8, end address 288h PROG8_MPPAR Programmable range 8, memory page protection attributes 290h PROG9_MPSAR Programmable range 9, start address 294h PROG9_MPEAR Programmable range 9, end address 298h PROG9_MPPAR Programmable range 9, memory page protection attributes 2A0h PROG10_MPSAR Programmable range 10, start address 2A4h PROG10_MPEAR Programmable range 10, end address 2A8h PROG10_MPPAR Programmable range 10, memory page protection attributes 2B0h PROG11_MPSAR Programmable range 11, start address 2B4h PROG11_MPEAR Programmable range 11, end address 2B8h PROG11_MPPAR Programmable range 11, memory page protection attributes 2C0h PROG12_MPSAR Programmable range 12, start address 2C4h PROG12_MPEAR Programmable range 12, end address 2C8h PROG12_MPPAR Programmable range 12, memory page protection attributes 2D0h PROG13_MPSAR Programmable range 13, start address 2D4h PROG13_MPEAR Programmable range 13, end address 2Dh PROG13_MPPAR Programmable range 13, memory page protection attributes 2E0h PROG14_MPSAR Programmable range 14, start address 2E4h PROG14_MPEAR Programmable range 14, end address 2E8h PROG14_MPPAR Programmable range 14, memory page protection attributes 2F0h PROG15_MPSAR Programmable range 15, start address 2F4h PROG15_MPEAR Programmable range 15, end address 2F8h PROG15_MPPAR Programmable range 15, memory page protection attributes 300h FLTADDRR Fault address 304h FLTSTAT Fault status 308h FLTCLR Fault clear 6.2.1.2 Device-Specific MPU Registers 6.2.1.2.1 Configuration Register (CONFIG) The configuration register (CONFIG) contains the configuration value of the MPU. 70 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 6-9. Configuration Register Field Descriptions Bits Field Description 31-24 ADDR_WIDTH Address alignment for range checking • 0 = 1KB alignment • 6 = 64KB alignment 23-20 NUM_FIXED Number of fixed address ranges 19-16 NUM_PROG Number of programmable address ranges 15-12 NUM_AIDS Number of supported AIDs 11-1 Reserved Reserved. Always read as 0. 0 ASSUME_ALLOWED Assume allowed bit. When an address is not covered by any MPU protection range, this bit determines whether the transfer is assumed to be allowed or not. • 0 = Assume disallowed • 1 = Assume allowed 6.2.2 MPU Programmable Range Registers 6.2.2.1 Programmable Range n Start Address Register (PROGn_MPSAR) The Programmable Address Start Register holds the start address for the range. This register is writeable by a supervisor entity only. If NS = 0 (non-secure mode) in the associated MPPAR register, then the register is also writeable only by a secure entity. The start address must be aligned on a page boundary. The size of the page is 1K byte. The size of the page determines the width of the address field in MPSAR and MPEAR. Figure 6-1. Programmable Range n Start Address Register (PROGn_MPSAR) 31 10 9 0 START_ADDR Reserved R/W R Legend: R = Read only; R/W = Read/Write Table 6-10. Programmable Range n Start Address Register Field Descriptions Bit Field Description 31-10 START_ADDR Start address for range n 9-0 Reserved Reserved. Always read as 0. Table 6-11. MPU0-MPU5 Programmable Range n Start Address Register (PROGn_MPSAR) Reset Values REGISTER MPU0 MPU1 MPU2 MPU3 MPU4 MPU5 PROG0_MPSAR 0x01D0_0000 0x23A0_0000 0x02A0_0000 Reserved Reserved 0x02A0_4000 PROG1_MPSAR 0x01F0_0000 0x23A0_2000 0x02A0_2000 Reserved Reserved 0x02A0_5000 PROG2_MPSAR 0x02F0_0000 0x023A_6000 0x02A0_6000 Reserved Reserved 0x02A0_6400 PROG3_MPSAR 0x0200_0000 0x23A0_6800 0x02A0_6800 Reserved Reserved 0x02A0_7400 PROG4_MPSAR 0x020C_0000 0x23A0_7000 0x02A0_7000 Reserved Reserved 0x02A0_A000 PROG5_MPSAR 0x021C_0000 0x23A0_8000 0x02A0_8000 Reserved Reserved 0x02A0_D000 PROG6_MPSAR 0x021D_0000 0x23A0_C000 0x02A0_C000 Reserved Reserved 0x02A0_E000 PROG7_MPSAR 0x021F_0000 0x23A0_E000 0x02A0_E000 Reserved Reserved 0x02A0_F000 PROG8_MPSAR 0x0234_0000 0x23A0_F000 0x02A0_F000 Reserved Reserved 0x02A0_F800 PROG9_MPSAR 0x0254_0000 0x23A0_F800 0x02A0_F800 Reserved Reserved 0x02A1_2000 PROG10_MPSAR 0x0258_0000 0x23A1_0000 0x02A1_0000 Reserved Reserved 0x02A1_C000 PROG11_MPSAR 0x0000_0000 0x23A1_C000 0x02A2_0000 Reserved Reserved 0x02A2_8000 PROG12_MPSAR 0x0290_0000 0x23A4_0000 0x02A4_0000 Reserved Reserved 0x02A6_0000 PROG13_MPSAR 0x01E8_0000 0x23A8_0000 0x02A8_0000 Reserved Reserved 0x02AA_0000 Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 71 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 6-11. MPU0-MPU5 Programmable Range n Start Address Register (PROGn_MPSAR) Reset Values (continued) REGISTER MPU0 MPU1 MPU2 MPU3 MPU4 MPU5 PROG14_MPSAR 0x01E8_0800 0x23B0_0000 0x02AC_0000 Reserved Reserved 0x02B0_0000 PROG15_MPSAR 0x01E0_0000 0x23B8_0000 0x02AE_0000 Reserved Reserved 0x02B8_0000 Table 6-12. MPU6-MPU11 Programmable Range n Start Address Register (PROGn_MPSAR) Reset Values REGISTER MPU6 MPU7 MPU8 MPU9 MPU10 MPU11 PROG0_MPSAR Reserved 0x2101_0000 0x3000_0000 0x0260_0000 0x0264_0000 0x0220_0000 PROG1_MPSAR Reserved 0x0000_0000 0x3200_0000 0x0260_4000 0x0000_0000 0x0231_0000 PROG2_MPSAR Reserved 0x0800_0000 0x3400_0000 0x0260_8000 N/A 0x0231_A000 PROG3_MPSAR Reserved 0x1000_0000 0x3600_0000 0x0256_0000 N/A 0x0233_0000 PROG4_MPSAR Reserved 0x1800_0000 0x3800_0000 0x0000_0000 N/A 0x0235_0000 PROG5_MPSAR Reserved 0x2000_0000 0x3A00_0000 0x0000_0000 N/A 0x0263_0000 PROG6_MPSAR Reserved 0x2800_0000 0x3C00_0000 0x0000_0000 N/A 0x0244_0000 PROG7_MPSAR Reserved 0x3000_0000 0x2100_0800 0x0000_0000 N/A 0x024C_0000 PROG8_MPSAR Reserved 0x3800_0000 N/A 0x0000_0000 N/A 0x0250_0000 PROG9_MPSAR Reserved 0x4000_0000 N/A 0x0000_0000 N/A 0x0253_0000 PROG10_MPSAR Reserved 0x4800_0000 N/A 0x0000_0000 N/A 0x0253_0C00 PROG11_MPSAR Reserved 0x5000_0000 N/A 0x0000_0000 N/A 0x0260_B000 PROG12_MPSAR Reserved 0x5800_0000 N/A 0x0000_0000 N/A 0x0262_0000 PROG13_MPSAR Reserved 0x6000_0000 N/A 0x0000_0000 N/A 0x0300_0000 PROG14_MPSAR Reserved 0x6800_0000 N/A 0x0000_0000 N/A 0x021E_0000 PROG15_MPSAR Reserved 0x7000_0000 N/A 0x0000_0000 N/A 0x0268_0000 Table 6-13. MPU12-MPU15 Programmable Range n Start Address Register (PROGn_MPSAR) Reset Values REGISTER MPU12 MPU13 MPU14 MPU15 PROG0_MPSAR 0x2100_0400 0x2100_0400 0x2100_0800 0x2400_0000 PROG1_MPSAR 0x0000_0000 0x0000_0000 0x0000_0000 0x2408_0000 PROG2_MPSAR N/A N/A N/A 0x2410_0000 PROG3_MPSAR N/A N/A N/A 0x2500_0000 PROG4_MPSAR N/A N/A N/A 0x0000_0000 PROG5_MPSAR N/A N/A N/A 0x0000_0000 PROG6_MPSAR N/A N/A N/A 0x0000_0000 PROG7_MPSAR N/A N/A N/A 0x0000_0000 PROG8_MPSAR N/A N/A N/A N/A PROG9_MPSAR N/A N/A N/A N/A PROG10_MPSAR N/A N/A N/A N/A PROG11_MPSAR N/A N/A N/A N/A PROG12_MPSAR N/A N/A N/A N/A PROG13_MPSAR N/A N/A N/A N/A PROG14_MPSAR N/A N/A N/A N/A PROG15_MPSAR N/A N/A N/A N/A 6.2.2.2 Programmable Range n - End Address Register (PROGn_MPEAR) The programmable address end register holds the end address for the range. This register is writeable by a supervisor entity only. If NS = 0 (non-secure mode) in the associated MPPAR register then the register is also writeable only by a secure entity. 72 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 The end address must be aligned on a page boundary. The size of the page depends on the MPU number. The page size for MPU1 is 1K byte and for MPU2 it is 64K bytes. The size of the page determines the width of the address field in MPSAR and MPEAR. Figure 6-2. Programmable Range n End Address Register (PROGn_MPEAR) 31 10 9 0 END_ADDR Reserved R/W R Legend: R = Read only; R/W = Read/Write Table 6-14. Programmable Range n End Address Register Field Descriptions Bit Field Description 31-10 END_ADDR End address for range n 9-0 Reserved Reserved. Always read as 3FFh. Table 6-15. MPU0-MPU5 Programmable Range n End Address Register (PROGn_MPEAR) Reset Values REGISTER MPU0 MPU1 MPU2 MPU3 MPU4 MPU5 PROG0_MPEAR 0x01DF_FFFF 0x23A0_1FFF 0x02A0_00FF Reserved Reserved 0x02A0_4FFF PROG1_MPEAR 0x01F7_FFFF 0x23A0_5FFF 0x02A0_3FFF Reserved Reserved 0x02A0_5FFF PROG2_MPEAR 0x02FF_FFFF 0x23A0_67FF 0x02A0_63FF Reserved Reserved 0x02A0_67FF PROG3_MPEAR 0x020B_FFFF 0x23A0_6FFF 0x02A0_6FFF Reserved Reserved 0x02A0_7FFF PROG4_MPEAR 0x020F_FFFF 0x23A0_7FFF 0x02A0_73FF Reserved Reserved 0x02A0_BFFF PROG5_MPEAR 0x021C_83FF 0x23A0_BFFF 0x02A0_9FFF Reserved Reserved 0x02A0_DFFF PROG6_MPEAR 0x021D_C0FF 0x23A0_DFFF 0x02A0_CFFF Reserved Reserved 0x02A0_E7FF PROG7_MPEAR 0x021F_C7FF 0x23A0_EFFF 0x02A0_E7FF Reserved Reserved 0x02A0_F7FF PROG8_MPEAR 0x0234_C0FF 0x23A0_F7FF 0x02A0_F7FF Reserved Reserved 0x02A0_FFFF PROG9_MPEAR 0x0255_FFFF 0x23A0_FFFF 0x02A0_FFFF Reserved Reserved 0x02A1_7FFF PROG10_MPEAR 0x025F_FFFF 0x23A1_BFFF 0x02A1_1FFF Reserved Reserved 0x02A1_FFFF PROG11_MPEAR 0x0000_0000 0x23A3_FFFF 0x02A2_5FFF Reserved Reserved 0x02A3_FFFF PROG12_MPEAR 0x029F_FFFF 0x23A7_FFFF 0x02A5_FFFF Reserved Reserved 0x02A7_FFFF PROG13_MPEAR 0x01E8_07FF 0x23AF_FFFF 0x02A9_FFFF Reserved Reserved 0x02AB_FFFF PROG14_MPEAR 0x01E8_43FF 0x23B7_FFFF 0x02AD_FFFF Reserved Reserved 0x02B7_FFFF PROG15_MPEAR 0x01E7_FFFF 0x23BF_FFFF 0x02AF_FFFF Reserved Reserved 0x02BF_FFFF Table 6-16. MPU6-MPU11 Programmable Range n End Address Register (PROGn_MPEAR) Reset Values REGISTER MPU6 MPU7 MPU8 MPU9 MPU10 MPU11 PROG0_MPEAR Reserved 0x2103_FFFF 0x31FF_FFFF 0x0260_1FFF 0x0264_07FF 0x022F_027F PROG1_MPEAR Reserved 0x07FF_FFFF 0x33FF_FFFF 0x0260_5FFF 0x0000_0000 0x0231_01FF PROG2_MPEAR Reserved 0x0FFF_FFFF 0x35FF_FFFF 0x0260_9FFF N/A 0x0232_FFFF PROG3_MPEAR Reserved 0x17FF_FFFF 0x37FF_FFFF 0x0257_FFFF N/A 0x0233_07FF PROG4_MPEAR Reserved 0x1FFF_FFFF 0x39FF_FFFF 0x0000_0000 N/A 0x0235_0FFF PROG5_MPEAR Reserved 0x27FF_FFFF 0x3BFF_FFFF 0x0000_0000 N/A 0x0263_FFFF PROG6_MPEAR Reserved 0x2FFF_FFFF 0x3FFF_FFFF 0x0000_0000 N/A 0x024B_3FFF PROG7_MPEAR Reserved 0x37FF_FFFF 0x2100_0AFF 0x0000_0000 N/A 0x024C_0BFF PROG8_MPEAR Reserved 0x3FFF_FFFF N/A 0x0000_0000 N/A 0x0250_7FFF PROG9_MPEAR Reserved 0x47FF_FFFF N/A 0x0000_0000 N/A 0x0253_0BFF PROG10_MPEAR Reserved 0x4FFF_FFFF N/A 0x0000_0000 N/A 0x0253_FFFF PROG11_MPEAR Reserved 0x57FF_FFFF N/A 0x0000_0000 N/A 0x0260_BFFF PROG12_MPEAR Reserved 0x5FFF_FFFF N/A 0x0000_0000 N/A 0x0262_0FFF Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 73 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 6-16. MPU6-MPU11 Programmable Range n End Address Register (PROGn_MPEAR) Reset Values (continued) REGISTER MPU6 MPU7 MPU8 MPU9 MPU10 MPU11 PROG13_MPEAR Reserved 0x67FF_FFFF N/A 0x0000_0000 N/A 0x03FF_FFFF PROG14_MPEAR Reserved 0x6FFF_FFFF N/A 0x0000_0000 N/A 0x021E_1FFF PROG15_MPEAR Reserved 0x7FFF_FFFF N/A 0x0000_0000 N/A 0x026F_FFFF Table 6-17. MPU12-MPU15 Programmable Range n End Address Register (PROGn_MPEAR) Reset Values REGISTER MPU12 MPU13 MPU14 MPU15 PROG0_MPEAR 0x2100_07FF 0x2100_07FF 0x2100_0AFF 0x2407_FFFF PROG1_MPEAR 0x0000_0000 0x0000_0000 0x0000_0000 0x240F_FFFF PROG2_MPEAR N/A N/A N/A 0x24FF_FFFF PROG3_MPEAR N/A N/A N/A 0x2507_FFFF PROG4_MPEAR N/A N/A N/A 0x2508FFFF PROG5_MPEAR N/A N/A N/A 0x0000_0000 PROG6_MPEAR N/A N/A N/A 0x0000_0000 PROG7_MPEAR N/A N/A N/A 0x0000_0000 PROG8_MPEAR N/A N/A N/A N/A PROG9_MPEAR N/A N/A N/A N/A PROG10_MPEAR N/A N/A N/A N/A PROG11_MPEAR N/A N/A N/A N/A PROG12_MPEAR N/A N/A N/A N/A PROG13_MPEAR N/A N/A N/A N/A PROG14_MPEAR N/A N/A N/A N/A PROG15_MPEAR N/A N/A N/A N/A 6.2.2.3 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPAR) The programmable address memory protection page attribute register holds the permissions for the region. This register is writeable only by a non-debug supervisor entity. If NS = 0 (secure mode) then the register is also writeable only by a non-debug secure entity. The NS bit is writeable only by a non-debug secure entity. For debug accesses, the register is writeable only when NS = 1 or EMU = 1. Figure 6-3. Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPAR) 31 26 Reserved 25 24 23 22 21 20 19 18 17 16 15 AID15 AID14 AID13 AID12 AID11 AID10 AID9 AID8 AID7 AID6 AID5 R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W R/W 14 13 12 R 11 10 9 8 7 6 5 4 3 2 1 0 AID4 AID3 AID2 AID1 AID0 AIDX Reserved NS EMU SR SW SX UR UW UX R/W R/W R/W R/W R/W R/W R R/W R/W R/W R/W R/W R/W R/W R/W Legend: R = Read only; R/W = Read/Write Table 6-18. Programmable Range n Memory Protection Page Attribute Register Field Descriptions Bits Name Description 31-26 Reserved Reserved. Always read as 0. 25 AID15 Controls access from ID = 15 • 0 = Access is not checked for permissions • 1 = Access is checked for permissions 24 AID14 Controls access from ID = 14 • 0 = Access is not checked for permissions • 1 = Access is checked for permissions 74 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 6-18. Programmable Range n Memory Protection Page Attribute Register Field Descriptions (continued) Bits Name Description 23 AID13 Controls access from ID = 13 • 0 = Access is not checked for permissions • 1 = Access is checked for permissions 22 AID12 Controls access from ID = 12 • 0 = Access is not checked for permissions • 1 = Access is checked for permissions 21 AID11 Controls access from ID = 11 • 0 = Access is not checked for permissions • 1 = Access is checked for permissions 20 AID10 Controls access from ID = 10 • 0 = Access is not checked for permissions • 1 = Access is checked for permissions 19 AID9 Controls access from ID = 9 • 0 = Access is not checked for permissions • 1 = Access is checked for permissions 18 AID8 Controls access from ID = 8 • 0 = Access is not checked for permissions • 1 = Access is checked for permissions 17 AID7 Controls access from ID = 7 • 0 = Access is not checked for permissions • 1 = Access is checked for permissions 16 AID6 Controls access from ID = 6 • 0 = Access is not checked for permissions • 1 = Access is checked for permissions 15 AID5 Controls access from ID = 5 • 0 = Access is not checked for permissions • 1 = Access is checked for permissions 14 AID4 Controls access from ID = 4 • 0 = Access is not checked for permissions • 1 = Access is checked for permissions 13 AID3 Controls access from ID = 3 • 0 = Access is not checked for permissions • 1 = Access is checked for permissions 12 AID2 Controls access from ID = 2 • 0 = Access is not checked for permissions • 1 = Access is checked for permissions 11 AID1 Controls access from ID = 1 • 0 = Access is not checked for permissions • 1 = Access is checked for permissions 10 AID0 Controls access from ID = 0 • 0 = Access is not checked for permissions • 1 = Access is checked for permissions 9 AIDX Controls access from ID > 15 • 0 = Access is not checked for permissions • 1 = Access is checked for permissions 8 Reserved Reserved. Always reads as 0. 7 NS Non-secure access permission • 0 = Only secure access allowed • 1 = Non-secure access allowed Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 75 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 6-18. Programmable Range n Memory Protection Page Attribute Register Field Descriptions (continued) Bits Name Description 6 EMU Emulation (debug) access permission. This bit is ignored if NS = 1 • 0 = Debug access not allowed • 1 = Debug access allowed 5 SR Supervisor Read permission • 0 = Access not allowed • 1 = Access allowed 4 SW Supervisor Write permission • 0 = Access not allowed • 1 = Access allowed 3 SX Supervisor Execute permission • 0 = Access not allowed • 1 = Access allowed 2 UR User Read permission • 0 = Access not allowed • 1 = Access allowed 1 UW User Write permission • 0 = Access not allowed • 1 = Access allowed 0 UX User Execute permission • 0 = Access not allowed • 1 = Access allowed Table 6-19. MPU0-MPU5 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPAR) Reset Values REGISTER MPU0 MPU1 MPU2 MPU3 MPU4 MPU5 PROG0_MPPAR 0x03FF_FCB6 0x03FF_FCB6 0x03FF_FCB6 Reserved Reserved 0x03FF_FCB4 PROG1_MPPAR 0x03FF_FCB6 0x03FF_FCB4 0x03FF_FCB4 Reserved Reserved 0x03FF_FCB4 PROG2_MPPAR 0x03FF_FCB6 0x03FF_FCA4 0x03FF_FCA4 Reserved Reserved 0x03FF_FCA4 PROG3_MPPAR 0x03FF_FCB6 0x03FF_FCB4 0x03FF_FCB4 Reserved Reserved 0x03FF_FCF4 PROG4_MPPAR 0x03FF_FCB6 0x03FF_FCF4 0x03FF_FCF4 Reserved Reserved 0x03FF_FCB4 PROG5_MPPAR 0x03FF_FCB6 0x03FF_FCB4 0x03FF_FCB4 Reserved Reserved 0x03FF_FCB4 PROG6_MPPAR 0x03FF_FCB6 0x03FF_FCB4 0x03FF_FCB4 Reserved Reserved 0x03FF_FCB4 PROG7_MPPAR 0x03FF_FCB6 0x03FF_FCB4 0x03FF_FCB4 Reserved Reserved 0x03FF_FCB4 PROG8_MPPAR 0x03FF_FCB6 0x03FF_FCB4 0x03FF_FCB4 Reserved Reserved 0x03FF_FCF4 PROG9_MPPAR 0x03FF_FCB6 0x03FF_FCF4 0x03FF_FCF4 Reserved Reserved 0x03FF_FCB4 PROG10_MPPAR 0x03FF_FCB6 0x03FF_FCB4 0x03FF_FCB4 Reserved Reserved 0x03FF_FCF4 PROG11_MPPAR 0x03FF_FCB6 0x03FF_FCF4 0x03FF_FCF4 Reserved Reserved 0x03FF_FCF4 PROG12_MPPAR 0x03FF_FCB4 0x03FF_FCA4 0x03FF_FCA4 Reserved Reserved 0x03FF_FCA4 PROG13_MPPAR 0x03FF_FCB6 0x03FF_FCB6 0x03FF_FCB6 Reserved Reserved 0x03FF_FCB6 PROG14_MPPAR 0x03FF_FCB0 0x03FF_FCA4 0x03FF_FCB6 Reserved Reserved 0x03FF_FCA4 PROG15_MPPAR 0x03FF_FCB6 0x03FF_FCA4 0x03FF_FCB6 Reserved Reserved 0x03FF_FCA4 Table 6-20. MPU6-MPU11 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPAR) Reset Values REGISTER MPU6 MPU7 MPU8 MPU9 MPU10 MPU11 PROG0_MPPAR Reserved 0x03FF_FCB6 0x03FF_FCBF 0x03FF_FCB6 0x03FF_FCB6 0x03FF_FCB6 PROG1_MPPAR Reserved 0x03FF_FCBF 0x03FF_FCBF 0x03FF_FCB6 0x03FF_FCB6 0x03FF_FCB0 PROG2_MPPAR Reserved 0x03FF_FCBF 0x03FF_FCBF 0x03FF_FCB6 N/A 0x03FF_FCB6 76 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 6-20. MPU6-MPU11 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPAR) Reset Values (continued) REGISTER MPU6 MPU7 MPU8 MPU9 MPU10 MPU11 PROG3_MPPAR Reserved 0x03FF_FCBF 0x03FF_FCBF 0x03FF_FCB6 N/A 0x03FF_FCB0 PROG4_MPPAR Reserved 0x03FF_FCBF 0x03FF_FCBF 0x03FF_FCB6 N/A 0x03FF_FCB0 PROG5_MPPAR Reserved 0x03FF_FCBF 0x03FF_FCBF 0x03FF_FCB6 N/A 0x03FF_FCB6 PROG6_MPPAR Reserved 0x03FF_FCBF 0x03FF_FCBF 0x03FF_FCB6 N/A 0x03FF_FCB6 PROG7_MPPAR Reserved 0x03FF_FCBF 0x03FF_FCB6 0x03FF_FCB6 N/A 0x03FF_FCB0 PROG8_MPPAR Reserved 0x03FF_FCBF N/A 0x03FF_FCB6 N/A 0x03FF_FCB0 PROG9_MPPAR Reserved 0x03FF_FCBF N/A 0x03FF_FCB6 N/A 0x03FF_FCB6 PROG10_MPPAR Reserved 0x03FF_FCBF N/A 0x03FF_FCB6 N/A 0x03FF_FCB6 PROG11_MPPAR Reserved 0x03FF_FCBF N/A 0x03FF_FCB6 N/A 0x03FF_FCB6 PROG12_MPPAR Reserved 0x03FF_FCBF N/A 0x03FF_FCB6 N/A 0x03FF_FCB0 PROG13_MPPAR Reserved 0x03FF_FCBF N/A 0x03FF_FCB6 N/A 0x03FF_FCB6 PROG14_MPPAR Reserved 0x03FF_FCBF N/A 0x03FF_FCB6 N/A 0x03FF_FCB0 PROG15_MPPAR Reserved 0x03FF_FCBF N/A 0x03FF_FCB6 N/A 0x03FF_FCB6 Table 6-21. MPU12-MPU15 Programmable Range n Memory Protection Page Attribute Register (PROGn_MPPAR) Reset Values REGISTER MPU12 MPU13 MPU14 MPU15 PROG0_MPPAR 0x03FF_FCB6 0x03FF_FCB6 0x03FF_FCB6 0x03FF_FCB6 PROG1_MPPAR 0x03FF_FCBF 0x03FF_FCBF 0x03FF_FCBF 0x03FF_FCB6 PROG2_MPPAR N/A N/A N/A 0x03FF_FCB6 PROG3_MPPAR N/A N/A N/A 0x03FF_FCB6 PROG4_MPPAR N/A N/A N/A 0x03FF_FCB6 PROG5_MPPAR N/A N/A N/A 0x03FF_FCB6 PROG6_MPPAR N/A N/A N/A 0x03FF_FCB6 PROG7_MPPAR N/A N/A N/A 0x03FF_FCB6 PROG8_MPPAR N/A N/A N/A N/A PROG9_MPPAR N/A N/A N/A N/A PROG10_MPPAR N/A N/A N/A N/A PROG11_MPPAR N/A N/A N/A N/A PROG12_MPPAR N/A N/A N/A N/A PROG13_MPPAR N/A N/A N/A N/A PROG14_MPPAR N/A N/A N/A N/A PROG15_MPPAR N/A N/A N/A N/A 6.3 Interrupts for AM5K2E0x This section discusses the interrupt sources, controller, and topology. Also provided are tables describing the interrupt events. 6.3.1 Interrupt Sources and Interrupt Controller The ARM CorePac interrupts on the AM5K2E0x device are configured through the ARM CorePac Interrupt Controller. It allows for up to 480 system events to be programmed to any of the ARM core’s IRQ/FIQ interrupts. In addition error-class events or infrequently used events are also routed through the system event router to offload the ARM CorePac interrupt controller. This is accomplished through the CorePac Interrupt Controller block CIC2. Further, CIC2 provides 8 events each to EDMA3CC0, EDMA3CC1, EDMA3C2, EDMA3CC3, EDMA3CC4, and Hyperlink. Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 77 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Modules such as CP_MPU, BOOT_CFG, and CP_Tracer have level interrupts and EOI handshaking interface. The EOI value is 0 for CP_MPU, BOOT_CFG, and CP_Tracer. Figure 6-4 shows the AM5K2E0x interrupt topology. 448 Primary Events 32 Secondary Events † 56 Primary Events 8 Secondary Events 56 Primary Events 8 Secondary Events † 479 Events 56 Primary Events CIC2 8 Secondary Events † 56 Primary Events 8 Secondary Events † 56 Primary Events 8 Secondary Events † 56 Primary Events 8 Secondary Events † AM5K2E ARM INTC HyperLink EDMA3 CC0 EDMA3 CC1 EDMA3 CC2 EDMA3 CC3 EDMA3 CC4 † ARM shares two secondary events with every instance of EDMA. Figure 6-4. Interrupt Topology Table 6-22 lists the ARM CorePac event inputs Table 6-22. System Event Mapping — ARM CorePac Interrupts EVENT NO. EVENT NAME DESCRIPTION 0 RSTMUX_INT8 Boot config watchdog timer expiration (timer 16) event for ARM core 0 1 RSTMUX_INT9 Boot config watchdog timer expiration (timer 17) event for ARM core 1 2 RSTMUX_INT10 Boot config watchdog timer expiration (timer 18) event for ARM core 2 3 RSTMUX_INT11 Boot config watchdog timer expiration (timer 19) event for ARM core 3 4 IPC_GR8 Boot config IPCG 5 IPC_GR9 Boot config IPCG 6 IPC_GR10 Boot config IPCG 7 IPC_GR11 Boot config IPCG 8 SEM_INT8 Semaphore interrupt 9 SEM_INT9 Semaphore interrupt 10 SEM_INT10 Semaphore interrupt 11 SEM_INT11 Semaphore interrupt 12 SEM_ERR8 Semaphore error interrupt 13 SEM_ERR9 Semaphore error interrupt 14 SEM_ERR10 Semaphore error interrupt 15 SEM_ERR11 Semaphore error interrupt 16 MSMC_MPF_ERROR8 Memory protection fault indicators for system master PrivID = 8 17 MSMC_MPF_ERROR9 Memory protection fault indicators for system master PrivID = 9 18 MSMC_MPF_ERROR10 Memory protection fault indicators for system master PrivID = 10 19 MSMC_MPF_ERROR11 Memory protection fault indicators for system master PrivID = 11 78 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 6-22. System Event Mapping — ARM CorePac Interrupts (continued) EVENT NO. EVENT NAME DESCRIPTION 20 ARM_NPMUIRQ0 ARM performance monitoring unit interrupt request 21 ARM_NPMUIRQ1 ARM performance monitoring unit interrupt request 22 ARM_NPMUIRQ2 ARM performance monitoring unit interrupt request 23 ARM_NPMUIRQ3 ARM performance monitoring unit interrupt request 24 ARM_NINTERRIRQ ARM internal memory ECC error interrupt request 25 ARM_NAXIERRIRQ ARM bus error interrupt request 26 PCIE_0_INT0 PCIE0 legacy INTA interrupt 27 PCIE_0_INT1 PCIE0 legacy INTB interrupt 28 PCIE_0_INT2 PCIE0 legacy INTC interrupt 29 PCIE_0_INT3 PCIE0 legacy INTD interrupt 30 PCIE_0_INT4 PCIE0 MSI interrupt 31 PCIE_0_INT5 PCIE0 MSI interrupt 32 PCIE_0_INT6 PCIE0 MSI interrupt 33 PCIE_0_INT7 PCIE0 MSI interrupt 34 PCIE_0_INT8 PCIE0 MSI interrupt 35 PCIE_0_INT9 PCIE0 MSI interrupt 36 PCIE_0_INT10 PCIE0 MSI interrupt 37 PCIE_0_INT11 PCIE0 MSI interrupt 38 PCIE_0_INT12 PCIE0 error interrupt 39 PCIE_0_INT13 PCIE0 power management interrupt 40 QMSS_QUE_PEND_658 Navigator transmit queue pending event for indicated queue 41 QMSS_QUE_PEND_659 Navigator transmit queue pending event for indicated queue 42 QMSS_QUE_PEND_660 Navigator transmit queue pending event for indicated queue 43 QMSS_QUE_PEND_661 Navigator transmit queue pending event for indicated queue 44 QMSS_QUE_PEND_662 Navigator transmit queue pending event for indicated queue 45 QMSS_QUE_PEND_663 Navigator transmit queue pending event for indicated queue 46 QMSS_QUE_PEND_664 Navigator transmit queue pending event for indicated queue 47 QMSS_QUE_PEND_665 Navigator transmit queue pending event for indicated queue 48 QMSS_QUE_PEND_528 Navigator transmit queue pending event for indicated queue 49 QMSS_QUE_PEND_529 Navigator transmit queue pending event for indicated queue 50 QMSS_QUE_PEND_530 Navigator transmit queue pending event for indicated queue 51 QMSS_QUE_PEND_531 Navigator transmit queue pending event for indicated queue 52 QMSS_QUE_PEND_532 Navigator transmit queue pending event for indicated queue 53 QMSS_QUE_PEND_533 Navigator transmit queue pending event for indicated queue 54 QMSS_QUE_PEND_534 Navigator transmit queue pending event for indicated queue 55 QMSS_QUE_PEND_535 Navigator transmit queue pending event for indicated queue 56 QMSS_QUE_PEND_536 Navigator transmit queue pending event for indicated queue 57 QMSS_QUE_PEND_537 Navigator transmit queue pending event for indicated queue 58 QMSS_QUE_PEND_538 Navigator transmit queue pending event for indicated queue 59 QMSS_QUE_PEND_539 Navigator transmit queue pending event for indicated queue 60 QMSS_QUE_PEND_540 Navigator transmit queue pending event for indicated queue 61 QMSS_QUE_PEND_541 Navigator transmit queue pending event for indicated queue 62 QMSS_QUE_PEND_542 Navigator transmit queue pending event for indicated queue 63 QMSS_QUE_PEND_543 Navigator transmit queue pending event for indicated queue 64 QMSS_QUE_PEND_544 Navigator transmit queue pending event for indicated queue 65 QMSS_QUE_PEND_545 Navigator transmit queue pending event for indicated queue 66 QMSS_QUE_PEND_546 Navigator transmit queue pending event for indicated queue Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 79 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 6-22. System Event Mapping — ARM CorePac Interrupts (continued) EVENT NO. EVENT NAME DESCRIPTION 67 QMSS_QUE_PEND_547 Navigator transmit queue pending event for indicated queue 68 QMSS_QUE_PEND_548 Navigator transmit queue pending event for indicated queue 69 QMSS_QUE_PEND_549 Navigator transmit queue pending event for indicated queue 70 QMSS_QUE_PEND_550 Navigator transmit queue pending event for indicated queue 71 QMSS_QUE_PEND_551 Navigator transmit queue pending event for indicated queue 72 QMSS_QUE_PEND_552 Navigator transmit queue pending event for indicated queue 73 QMSS_QUE_PEND_553 Navigator transmit queue pending event for indicated queue 74 QMSS_QUE_PEND_554 Navigator transmit queue pending event for indicated queue 75 QMSS_QUE_PEND_555 Navigator transmit queue pending event for indicated queue 76 QMSS_QUE_PEND_556 Navigator transmit queue pending event for indicated queue 77 QMSS_QUE_PEND_557 Navigator transmit queue pending event for indicated queue 78 QMSS_QUE_PEND_558 Navigator transmit queue pending event for indicated queue 79 QMSS_QUE_PEND_559 Navigator transmit queue pending event for indicated queue 80 Reserved Reserved 81 Reserved Reserved 82 USIM_PONIRQ USIM interrupt 83 USIM_RREQ USIM read DMA event 84 USIM_WREQ USIM write DMA event 85 TSIP_RCV_FINT0 TSIP receive frame interrupt for channel 0 86 TSIP_XMT_FINT0 TSIP transmit frame interrupt for channel 0 87 TSIP_RCV_SFINT0 TSIP receive super frame interrupt for channel 0 88 TSIP_XMT_SFINT0 TSIP transmit super frame interrupt for channel 0 89 TSIP_EINT0 TSIP error interrupt for channel 0 90 TSIP_RCV_FINT1 TSIP receive frame interrupt for channel 1 91 TSIP_XMT_FINT1 TSIP transmit frame interrupt for channel 1 92 TSIP_RCV_SFINT1 TSIP receive super frame interrupt for channel 1 93 TSIP_XMT_SFINT1 TSIP transmit super frame interrupt for channel 1 94 TSIP_EINT1 TSIP error interrupt for channel 1 95 Reserved Reserved 96 TIMER_8_INTL Timer interrupt low 97 TIMER_8_INTH Timer interrupt high 98 TIMER_9_INTL Timer interrupt low 99 TIMER_9_INTH Timer interrupt high 100 TIMER_10_INTL Timer interrupt low 101 TIMER_10_INTH Timer interrupt high 102 TIMER_11_INTL Timer interrupt low 103 TIMER_11_INTH Timer interrupt high 104 TIMER_12_INTL Timer interrupt low 105 TIMER_12_INTH Timer interrupt high 106 TIMER_13_INTL Timer interrupt low 107 TIMER_13_INTH Timer interrupt high 108 TIMER_14_INTL Timer interrupt low 109 TIMER_14_INTH Timer interrupt high 110 TIMER_15_INTL Timer interrupt low 111 TIMER_15_INTH Timer interrupt high 112 TIMER_16_INTL Timer interrupt low 113 TIMER_16_INTH Timer interrupt high 80 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 6-22. System Event Mapping — ARM CorePac Interrupts (continued) EVENT NO. EVENT NAME DESCRIPTION 114 TIMER_17_INTL Timer interrupt low 115 TIMER_17_INTH Timer interrupt high 116 TIMER_18_INTL Timer interrupt low 117 TIMER_18_INTH Timer interrupt high 118 TIMER_19_INTL Timer interrupt low 119 TIMER_19_INTH Timer interrupt high 120 GPIO_INT0 GPIO interrupt 121 GPIO_INT1 GPIO interrupt 122 GPIO_INT2 GPIO interrupt 123 GPIO_INT3 GPIO interrupt 124 GPIO_INT4 GPIO interrupt 125 GPIO_INT5 GPIO interrupt 126 GPIO_INT6 GPIO interrupt 127 GPIO_INT7 GPIO interrupt 128 GPIO_INT8 GPIO interrupt 129 GPIO_INT9 GPIO interrupt 130 GPIO_INT10 GPIO interrupt 131 GPIO_INT11 GPIO interrupt 132 GPIO_INT12 GPIO interrupt 133 GPIO_INT13 GPIO interrupt 134 GPIO_INT14 GPIO interrupt 135 GPIO_INT15 GPIO interrupt 136 GPIO_INT16 GPIO interrupt 137 GPIO_INT17 GPIO interrupt 138 GPIO_INT18 GPIO interrupt 139 GPIO_INT19 GPIO interrupt 140 GPIO_INT20 GPIO interrupt 141 GPIO_INT21 GPIO interrupt 142 GPIO_INT22 GPIO interrupt 143 GPIO_INT23 GPIO interrupt 144 GPIO_INT24 GPIO interrupt 145 GPIO_INT25 GPIO interrupt 146 GPIO_INT26 GPIO interrupt 147 GPIO_INT27 GPIO interrupt 148 GPIO_INT28 GPIO interrupt 149 GPIO_INT29 GPIO interrupt 150 GPIO_INT30 GPIO interrupt 151 GPIO_INT31 GPIO interrupt 152 USB_0_INT00 USB 0 event ring 0 interrupt 153 USB_0_INT01 USB 0 event ring 1 interrupt 154 USB_0_INT02 USB 0 event ring 2 interrupt 155 USB_0_INT03 USB 0 event ring 3 interrupt 156 USB_0_INT04 USB 0 event ring 4 interrupt 157 USB_0_INT05 USB 0 event ring 5 interrupt 158 USB_0_INT06 USB 0 event ring 6 interrupt 159 USB_0_INT07 USB 0 event ring 7 interrupt 160 USB_0_INT08 USB 0 event ring 8 interrupt Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 81 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 6-22. System Event Mapping — ARM CorePac Interrupts (continued) EVENT NO. EVENT NAME DESCRIPTION 161 USB_0_INT09 USB 0 event ring 9 interrupt 162 USB_0_INT10 USB 0 event ring 10 interrupt 163 USB_0_INT11 USB 0 event ring 11 interrupt 164 USB_0_INT12 USB 0 event ring 12 interrupt 165 USB_0_INT13 USB 0 event ring 13 interrupt 166 USB_0_INT14 USB 0 event ring 14 interrupt 167 USB_0_INT15 USB 0 event ring 15 interrupt 168 USB_0_OABSINT USB 0 OABS interrupt 169 USB_0_MISCINT USB0_misc_int 170 MSMC_DEDC_CERROR MSMC interrupt 171 MSMC_DEDC_NC_ERROR MSMC interrupt 172 MSMC_DEDC_SCRUB_CERROR MSMC interrupt 173 MSMC_DEDC_SCRUB_NC_ERROR MSMC interrupt 174 Reserved Reserved 175 Reserved Reserved 176 QMSS1_ECC_INTR Navigator ECC error interrupt 177 QMSS_INTD_1_PKTDMA_0 Navigator interrupt for Packet DMA starvation 178 QMSS_INTD_1_PKTDMA_1 Navigator interrupt for Packet DMA starvation 179 QMSS_INTD_1_HIGH_0 Navigator hi interrupt 180 QMSS_INTD_1_HIGH_1 Navigator hi interrupt 181 QMSS_INTD_1_HIGH_2 Navigator hi interrupt 182 QMSS_INTD_1_HIGH_3 Navigator hi interrupt 183 QMSS_INTD_1_HIGH_4 Navigator hi interrupt 184 QMSS_INTD_1_HIGH_5 Navigator hi interrupt 185 QMSS_INTD_1_HIGH_6 Navigator hi interrupt 186 QMSS_INTD_1_HIGH_7 Navigator hi interrupt 187 QMSS_INTD_1_HIGH_8 Navigator hi interrupt 188 QMSS_INTD_1_HIGH_9 Navigator hi interrupt 189 QMSS_INTD_1_HIGH_10 Navigator hi interrupt 190 QMSS_INTD_1_HIGH_11 Navigator hi interrupt 191 QMSS_INTD_1_HIGH_12 Navigator hi interrupt 192 QMSS_INTD_1_HIGH_13 Navigator hi interrupt 193 QMSS_INTD_1_HIGH_14 Navigator hi interrupt 194 QMSS_INTD_1_HIGH_15 Navigator hi interrupt 195 QMSS_INTD_1_HIGH_16 Navigator hi interrupt 196 QMSS_INTD_1_HIGH_17 Navigator hi interrupt 197 QMSS_INTD_1_HIGH_18 Navigator hi interrupt 198 QMSS_INTD_1_HIGH_19 Navigator hi interrupt 199 QMSS_INTD_1_HIGH_20 Navigator hi interrupt 200 QMSS_INTD_1_HIGH_21 Navigator hi interrupt 201 QMSS_INTD_1_HIGH_22 Navigator hi interrupt 202 QMSS_INTD_1_HIGH_23 Navigator hi interrupt 203 QMSS_INTD_1_HIGH_24 Navigator hi interrupt 204 QMSS_INTD_1_HIGH_25 Navigator hi interrupt 205 QMSS_INTD_1_HIGH_26 Navigator hi interrupt 206 QMSS_INTD_1_HIGH_27 Navigator hi interrupt 207 QMSS_INTD_1_HIGH_28 Navigator hi interrupt 82 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 6-22. System Event Mapping — ARM CorePac Interrupts (continued) EVENT NO. EVENT NAME DESCRIPTION 208 QMSS_INTD_1_HIGH_29 Navigator hi interrupt 209 QMSS_INTD_1_HIGH_30 Navigator hi interrupt 210 QMSS_INTD_1_HIGH_31 Navigator hi interrupt 211 QMSS_INTD_1_LOW_0 Navigator interrupt 212 QMSS_INTD_1_LOW_1 Navigator interrupt 213 QMSS_INTD_1_LOW_2 Navigator interrupt 214 QMSS_INTD_1_LOW_3 Navigator interrupt 215 QMSS_INTD_1_LOW_4 Navigator interrupt 216 QMSS_INTD_1_LOW_5 Navigator interrupt 217 QMSS_INTD_1_LOW_6 Navigator interrupt 218 QMSS_INTD_1_LOW_7 Navigator interrupt 219 QMSS_INTD_1_LOW_8 Navigator interrupt 220 QMSS_INTD_1_LOW_9 Navigator interrupt 221 QMSS_INTD_1_LOW_10 Navigator interrupt 222 QMSS_INTD_1_LOW_11 Navigator interrupt 223 QMSS_INTD_1_LOW_12 Navigator interrupt 224 QMSS_INTD_1_LOW_13 Navigator interrupt 225 QMSS_INTD_1_LOW_14 Navigator interrupt 226 QMSS_INTD_1_LOW_15 Navigator interrupt 227 Reserved Reserved 228 Reserved Reserved 229 QMSS_INTD_2_HIGH_0 Navigator second hi interrupt 230 QMSS_INTD_2_HIGH_1 Navigator second hi interrupt 231 QMSS_INTD_2_HIGH_2 Navigator second hi interrupt 232 QMSS_INTD_2_HIGH_3 Navigator second hi interrupt 233 QMSS_INTD_2_HIGH_4 Navigator second hi interrupt 234 QMSS_INTD_2_HIGH_5 Navigator second hi interrupt 235 QMSS_INTD_2_HIGH_6 Navigator second hi interrupt 236 QMSS_INTD_2_HIGH_7 Navigator second hi interrupt 237 QMSS_INTD_2_HIGH_8 Navigator second hi interrupt 238 QMSS_INTD_2_HIGH_9 Navigator second hi interrupt 239 QMSS_INTD_2_HIGH_10 Navigator second hi interrupt 240 QMSS_INTD_2_HIGH_11 Navigator second hi interrupt 241 QMSS_INTD_2_HIGH_12 Navigator second hi interrupt 242 QMSS_INTD_2_HIGH_13 Navigator second hi interrupt 243 QMSS_INTD_2_HIGH_14 Navigator second hi interrupt 244 QMSS_INTD_2_HIGH_15 Navigator second hi interrupt 245 QMSS_INTD_2_HIGH_16 Navigator second hi interrupt 246 QMSS_INTD_2_HIGH_17 Navigator second hi interrupt 247 QMSS_INTD_2_HIGH_18 Navigator second hi interrupt 248 QMSS_INTD_2_HIGH_19 Navigator second hi interrupt 249 QMSS_INTD_2_HIGH_20 Navigator second hi interrupt 250 QMSS_INTD_2_HIGH_21 Navigator second hi interrupt 251 QMSS_INTD_2_HIGH_22 Navigator second hi interrupt 252 QMSS_INTD_2_HIGH_23 Navigator second hi interrupt 253 QMSS_INTD_2_HIGH_24 Navigator second hi interrupt 254 QMSS_INTD_2_HIGH_25 Navigator second hi interrupt Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 83 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 6-22. System Event Mapping — ARM CorePac Interrupts (continued) EVENT NO. EVENT NAME DESCRIPTION 255 QMSS_INTD_2_HIGH_26 Navigator second hi interrupt 256 QMSS_INTD_2_HIGH_27 Navigator second hi interrupt 257 QMSS_INTD_2_HIGH_28 Navigator second hi interrupt 258 QMSS_INTD_2_HIGH_29 Navigator second hi interrupt 259 QMSS_INTD_2_HIGH_30 Navigator second hi interrupt 260 QMSS_INTD_2_HIGH_31 Navigator second hi interrupt 261 QMSS_INTD_2_LOW_0 Navigator second interrupt 262 QMSS_INTD_2_LOW_1 Navigator second interrupt 263 QMSS_INTD_2_LOW_2 Navigator second interrupt 264 QMSS_INTD_2_LOW_3 Navigator second interrupt 265 QMSS_INTD_2_LOW_4 Navigator second interrupt 266 QMSS_INTD_2_LOW_5 Navigator second interrupt 267 QMSS_INTD_2_LOW_6 Navigator second interrupt 268 QMSS_INTD_2_LOW_7 Navigator second interrupt 269 QMSS_INTD_2_LOW_8 Navigator second interrupt 270 QMSS_INTD_2_LOW_9 Navigator second interrupt 271 QMSS_INTD_2_LOW_10 Navigator second interrupt 272 QMSS_INTD_2_LOW_11 Navigator second interrupt 273 QMSS_INTD_2_LOW_12 Navigator second interrupt 274 QMSS_INTD_2_LOW_13 Navigator second interrupt 275 QMSS_INTD_2_LOW_14 Navigator second interrupt 276 QMSS_INTD_2_LOW_15 Navigator second interrupt 277 UART_0_UARTINT UART0 interrupt 278 UART_0_URXEVT UART0 receive event 279 UART_0_UTXEVT UART0 transmit event 280 UART_1_UARTINT UART1 interrupt 281 UART_1_URXEVT UART1 receive event 282 UART_1_UTXEVT UART1 transmit event 283 I2C_0_INT I2C interrupt 284 I2C_0_REVT I2C receive event 285 I2C_0_XEVT I2C transmit event 286 I2C_1_INT I2C interrupt 287 I2C_1_REVT I2C receive event 288 I2C_1_XEVT I2C transmit event 289 I2C_2_INT I2C interrupt 290 I2C_2_REVT I2C receive event 291 I2C_2_XEVT I2C transmit event 292 SPI_0_INT0 SPI interrupt 293 SPI_0_INT1 SPI interrupt 294 SPI_0_XEVT SPI DMA TX event 295 SPI_0_REVT SPI DMA RX event 296 SPI_1_INT0 SPI interrupt 297 SPI_1_INT1 SPI interrupt 298 SPI_1_XEVT SPI DMA TX event 299 SPI_1_REVT SPI DMA RX event 300 SPI_2_INT0 SPI interrupt 301 SPI_2_INT1 SPI interrupt 84 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 6-22. System Event Mapping — ARM CorePac Interrupts (continued) EVENT NO. EVENT NAME DESCRIPTION 302 SPI_2_XEVT SPI DMA TX event 303 SPI_2_REVT SPI DMA RX event 304 DBGTBR_DMAINT Debug trace buffer (TBR) DMA event 305 DBGTBR_ACQCOMP Debug Trace buffer (TBR) acquisition has been completed 306 ARM_TBR_DMA ARM Trace Buffer (TBR) DMA event 307 ARM_TBR_ACQ ARM Trace Buffer (TBR) Acquisition has been completed 308 NETCP_MDIO_LINK_INT0 Packet Accelerator 1subsystem MDIO interrupt 309 NETCP_MDIO_LINK_INT1 Packet Accelerator 1subsystem MDIO interrupt 310 NETCP_MDIO_USER_INT0 Packet Accelerator 1subsystem MDIO interrupt 311 NETCP_MDIO_USER_INT1 Packet Accelerator 1subsystem MDIO interrupt 312 NETCP_MISC_INT Packet Accelerator 1subsystem MDIO interrupt 313 Reserved 314 EDMACC_0_GINT EDMA3CC0 global completion interrupt 315 EDMACC_0_TC_0_INT EDMA3CC0 individual completion interrupt 316 EDMACC_0_TC_1_INT EDMA3CC0 individual completion interrupt 317 EDMACC_0_TC_2_INT EDMA3CC0 individual completion interrupt 318 EDMACC_0_TC_3_INT EDMA3CC0 individual completion interrupt 319 EDMACC_0_TC_4_INT EDMA3CC0 individual completion interrupt 320 EDMACC_0_TC_5_INT EDMA3CC0 individual completion interrupt 321 EDMACC_0_TC_6_INT EDMA3CC0 individual completion interrupt 322 EDMACC_0_TC_7_INT EDMA3CC0 individual completion interrupt 323 EDMACC_1_GINT EDMA3CC1 global completion interrupt 324 EDMACC_1_TC_0_INT EDMA3CC1 individual completion interrupt 325 EDMACC_1_TC_1_INT EDMA3CC1 individual completion interrupt 326 EDMACC_1_TC_2_INT EDMA3CC1 individual completion interrupt 327 EDMACC_1_TC_3_INT EDMA3CC1 individual completion interrupt 328 EDMACC_1_TC_4_INT EDMA3CC1 individual completion interrupt 329 EDMACC_1_TC_5_INT EDMA3CC1 individual completion interrupt 330 EDMACC_1_TC_6_INT EDMA3CC1 individual completion interrupt 331 EDMACC_1_TC_7_INT EDMA3CC1 individual completion interrupt 332 EDMACC_2_GINT EDMA3CC2 global completion interrupt 333 EDMACC_2_TC_0_INT EDMA3CC2 individual completion interrupt 334 EDMACC_2_TC_1_INT EDMA3CC2 individual completion interrupt 335 EDMACC_2_TC_2_INT EDMA3CC2 individual completion interrupt 336 EDMACC_2_TC_3_INT EDMA3CC2 individual completion interrupt 337 EDMACC_2_TC_4_INT EDMA3CC2 individual completion interrupt 338 EDMACC_2_TC_5_INT EDMA3CC2 individual completion interrupt 339 EDMACC_2_TC_6_INT EDMA3CC2 individual completion interrupt 340 EDMACC_2_TC_7_INT EDMA3CC2 individual completion interrupt 341 EDMACC_3_GINT EDMA3CC3 global completion interrupt 342 EDMACC_3_TC_0_INT EDMA3CC3 individual completion interrupt 343 EDMACC_3_TC_1_INT EDMA3CC3 individual completion interrupt 344 EDMACC_3_TC_2_INT EDMA3CC3 individual completion interrupt 345 EDMACC_3_TC_3_INT EDMA3CC3 individual completion interrupt 346 EDMACC_3_TC_4_INT EDMA3CC3 individual completion interrupt 347 EDMACC_3_TC_5_INT EDMA3CC3 individual completion interrupt 348 EDMACC_3_TC_6_INT EDMA3CC3 individual completion interrupt Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 85 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 6-22. System Event Mapping — ARM CorePac Interrupts (continued) EVENT NO. EVENT NAME DESCRIPTION 349 EDMACC_3_TC_7_INT EDMA3CC3 individual completion interrupt 350 EDMACC_4_GINT EDMA3CC4 global completion interrupt 351 EDMACC_4_TC_0_INT EDMA3CC4 individual completion interrupt 352 EDMACC_4_TC_1_INT EDMA3CC4 individual completion interrupt 353 EDMACC_4_TC_2_INT EDMA3CC4 individual completion interrupt 354 EDMACC_4_TC_3_INT EDMA3CC4 individual completion interrupt 355 EDMACC_4_TC_4_INT EDMA3CC4 individual completion interrupt 356 EDMACC_4_TC_5_INT EDMA3CC4 individual completion interrupt 357 EDMACC_4_TC_6_INT EDMA3CC4 individual completion interrupt 358 EDMACC_4_TC_7_INT EDMA3CC4 individual completion interrupt 359 SR_0_PO_VCON_SMPSERR_INT SmartReflex SMPS error interrupt 360 SR_0_SMARTREFLEX_INTREQ0 SmartReflex controller interrupt 361 SR_0_SMARTREFLEX_INTREQ1 SmartReflex controller interrupt 362 SR_0_SMARTREFLEX_INTREQ2 SmartReflex controller interrupt 363 SR_0_SMARTREFLEX_INTREQ3 SmartReflex controller interrupt 364 SR_0_VPNOSMPSACK SmartReflex VPVOLTUPDATE has been asserted, but SMPS has not been responded to in a defined time interval 365 SR_0_VPEQVALUE SmartReflex SRSINTERUPT is asserted, but the new voltage is not different from the current SMPS voltage 366 SR_0_VPMAXVDD SmartReflex. The new voltage required is equal to or greater than MaxVdd 367 SR_0_VPMINVDD SmartReflex. The new voltage required is equal to or less than MinVdd 368 SR_0_VPINIDLE SmartReflex indicating that the FSM of voltage processor is in idle 369 SR_0_VPOPPCHANGEDONE SmartReflex indicating that the average frequency error is within the desired limit 370 SR_0_VPSMPSACK SmartReflex VPVOLTUPDATE asserted and SMPS has acknowledged in a defined time interval 371 SR_0_SR_TEMPSENSOR SmartReflex temperature threshold crossing interrupt 372 SR_0_SR_TIMERINT SmartReflex internal timer expiration interrupt 373 PCIE_1_INT0 PCIE1 legacy INTA interrupt 374 PCIE_1_INT1 PCIE1 legacy INTB interrupt 375 PCIE_1_INT2 PCIE1 legacy INTC interrupt 376 PCIE_1_INT3 PCIE1 legacy INTD interrupt 377 PCIE_1_INT4 PCIE1 MSI interrupt 378 PCIE_1_INT5 PCIE1 MSI interrupt 379 PCIE_1_INT6 PCIE1 MSI interrupt 380 PCIE_1_INT7 PCIE1 MSI interrupt 381 PCIE_1_INT8 PCIE1 MSI interrupt 382 PCIE_1_INT9 PCIE1 MSI interrupt 383 PCIE_1_INT10 PCIE1 MSI interrupt 384 PCIE_1_INT11 PCIE1 MSI interrupt 385 PCIE_1_INT12 PCIE1 error interrupt 386 PCIE_1_INT13 PCIE1 power management interrupt 387 HYPERLINK_0_INT HyperLink interrupt 388 DDR3_ERR DDR3 interrupt 389 ARM_NCTIIRQ0 ARM cross trigger (CTI) IRQ interrupt 390 ARM_NCTIIRQ1 ARM cross trigger (CTI) IRQ interrupt 391 ARM_NCTIIRQ2 ARM cross trigger (CTI) IRQ interrupt 392 ARM_NCTIIRQ3 ARM cross trigger (CTI) IRQ interrupt 86 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 6-22. System Event Mapping — ARM CorePac Interrupts (continued) EVENT NO. EVENT NAME DESCRIPTION 393 Reserved Reserved 394 Reserved Reserved 395 Reserved Reserved 396 Reserved Reserved 397 Reserved Reserved 398 Reserved Reserved 399 Reserved Reserved 400 Reserved Reserved 401 Reserved Reserved 402 10GbE_LINK_INT0 10 Gigabit Ethernet subsystem MDIO interrupt 403 10GbE_USER_INT0 10 Gigabit Ethernet subsystem MDIO interrupt 404 10GbE_LINK_INT1 10 Gigabit Ethernet subsystem MDIO interrupt 405 10GbE_USER_INT1 10 Gigabit Ethernet subsystem MDIO interrupt 406 10GbE_MISC_INT 10 Gigabit Ethernet subsystem MDIO interrupt 407 10GbE_INT_PKTDMA_0 10 Gigabit Ethernet Packet DMA starvation interrupt 408 Reserved 409 Reserved 410 Reserved 411 Reserved 412 Reserved 413 Reserved 414 USB_1_INT00 USB 1 event ring 0 interrupt 415 USB_1_INT01 USB 1 event ring 1 interrupt 416 USB_1_INT02 USB 1 event ring 2 interrupt 417 USB_1_INT03 USB 1 event ring 3 interrupt 418 USB_1_INT04 USB 1 event ring 4 interrupt 419 USB_1_INT05 USB 1 event ring 5 interrupt 420 USB_1_INT06 USB 1 event ring 6 interrupt 421 USB_1_INT07 USB 1 event ring 7 interrupt 422 USB_1_INT08 USB 1 event ring 8 interrupt 423 USB_1_INT09 USB 1 event ring 9 interrupt 424 USB_1_INT10 USB 1 event ring 10 interrupt 425 USB_1_INT11 USB 1 event ring 11 interrupt 426 USB_1_INT12 USB 1 event ring 12 interrupt 427 USB_1_INT13 USB 1 event ring 13 interrupt 428 USB_1_INT14 USB 1 event ring 14 interrupt 429 USB_1_INT15 USB 1 event ring 15 interrupt 430 USB_1_OABSINT USB 1 OABS interrupt 431 USB_1_MISCINT USB 1 miscellaneous interrupt 432 NETCP_GLOBAL_STARVE NETCP GLOBAL interrupt 433 NETCP_LOCAL_STARVE NETCP LOCAL interrupt 434 NETCP_PA_ECC_INT NETCP PA ECC interrupt 435 NETCP_SA_ECC_INT NETCP SA ECC interrupt 436 NETCP_SWITCH_ECC_INT NETCP SWITCH ECC interrupt 437 NETCP_SWITCH_STAT_INT0 NETCP SWITCH STAT interrupt 438 NETCP_SWITCH_STAT_INT1 NETCP SWITCH STAT interrupt 439 NETCP_SWITCH_STAT_INT2 NETCP SWITCH STAT interrupt Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 87 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 6-22. System Event Mapping — ARM CorePac Interrupts (continued) EVENT NO. EVENT NAME DESCRIPTION 440 NETCP_SWITCH_STAT_INT3 NETCP SWITCH STAT interrupt 441 NETCP_SWITCH_STAT_INT4 NETCP SWITCH STAT interrupt 442 NETCP_SWITCH_STAT_INT5 NETCP SWITCH STAT interrupt 443 NETCP_SWITCH_STAT_INT6 NETCP SWITCH STAT interrupt 444 NETCP_SWITCH_STAT_INT7 NETCP SWITCH STAT interrupt 445 NETCP_SWITCH_INT NETCP SWITCH interrupt 446 NETCP_SWITCH_STAT_INT0 NETCP SWITCH STAT interrupt 447 Reserved Reserved 448 CIC_2_OUT29 CIC2 interrupt 449 CIC_2_OUT30 CIC2 interrupt 450 CIC_2_OUT31 CIC2 interrupt 451 CIC_2_OUT32 CIC2 interrupt 452 CIC_2_OUT33 CIC2 interrupt 453 CIC_2_OUT34 CIC2 interrupt 454 CIC_2_OUT35 CIC2 interrupt 455 CIC_2_OUT36 CIC2 interrupt 456 CIC_2_OUT37 CIC2 interrupt 457 CIC_2_OUT38 CIC2 interrupt 458 CIC_2_OUT39 CIC2 interrupt 459 CIC_2_OUT40 CIC2 interrupt 460 CIC_2_OUT41 CIC2 interrupt 461 CIC_2_OUT42 CIC2 interrupt 462 CIC_2_OUT43 CIC2 interrupt 463 CIC_2_OUT44 CIC2 interrupt 464 CIC_2_OUT45 CIC2 interrupt 465 CIC_2_OUT46 CIC2 interrupt 466 CIC_2_OUT47 CIC2 interrupt 467 CIC_2_OUT18 CIC2 interrupt 468 CIC_2_OUT19 CIC2 interrupt 469 CIC_2_OUT22 CIC2 interrupt 470 CIC_2_OUT23 CIC2 interrupt 471 CIC_2_OUT50 CIC2 interrupt 472 CIC_2_OUT51 CIC2 interrupt 473 CIC_2_OUT66 CIC2 interrupt 474 CIC_2_OUT67 CIC2 interrupt 475 CIC_2_OUT88 CIC2 interrupt 476 CIC_2_OUT89 CIC2 interrupt 477 CIC_2_OUT90 CIC2 interrupt 478 CIC_2_OUT91 CIC2 interrupt 479 CIC_2_OUT92 CIC2 interrupt Table 6-23 lists the CIC2 event inputs. Table 6-23. CIC2 Event Inputs (Secondary Events for EDMA3CC and Hyperlink) EVENT NO. EVENT NAME DESCRIPTION 0 GPIO_INT8 GPIO interrupt 1 GPIO_INT9 GPIO interrupt 2 GPIO_INT10 GPIO interrupt 88 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 6-23. CIC2 Event Inputs (Secondary Events for EDMA3CC and Hyperlink) (continued) EVENT NO. EVENT NAME DESCRIPTION 3 GPIO_INT11 GPIO interrupt 4 GPIO_INT12 GPIO interrupt 5 GPIO_INT13 GPIO interrupt 6 GPIO_INT14 GPIO interrupt 7 GPIO_INT15 GPIO interrupt 8 DBGTBR_DMAINT Debug trace buffer (TBR) DMA event 9 Reserved Reserved 10 Reserved Reserved 11 Reserved Reserved 12 Reserved Reserved 13 Reserved Reserved 14 Reserved Reserved 15 Reserved Reserved 16 Reserved Reserved 17 Reserved Reserved 18 Reserved Reserved 19 Reserved Reserved 20 Reserved Reserved 21 Reserved Reserved 22 Reserved Reserved 23 DFT_PBIST_CPU_INT Reserved 24 QMSS_INTD_1_HIGH_16 Navigator interrupt 25 QMSS_INTD_1_HIGH_17 Navigator interrupt 26 QMSS_INTD_1_HIGH_18 Navigator interrupt 27 QMSS_INTD_1_HIGH_19 Navigator interrupt 28 QMSS_INTD_1_HIGH_20 Navigator interrupt 29 QMSS_INTD_1_HIGH_21 Navigator interrupt 30 QMSS_INTD_1_HIGH_22 Navigator interrupt 31 QMSS_INTD_1_HIGH_23 Navigator interrupt 32 QMSS_INTD_1_HIGH_24 Navigator interrupt 33 QMSS_INTD_1_HIGH_25 Navigator interrupt 34 QMSS_INTD_1_HIGH_26 Navigator interrupt 35 QMSS_INTD_1_HIGH_27 Navigator interrupt 36 QMSS_INTD_1_HIGH_28 Navigator interrupt 37 QMSS_INTD_1_HIGH_29 Navigator interrupt 38 QMSS_INTD_1_HIGH_30 Navigator interrupt 39 QMSS_INTD_1_HIGH_31 Navigator interrupt 40 Reserved Reserved 41 Reserved Reserved 42 Reserved Reserved 43 Reserved Reserved 44 Reserved Reserved 45 Reserved Reserved 46 Reserved Reserved 47 Reserved Reserved 48 Reserved Reserved 49 TRACER_DDR_INT Tracer sliding time window interrupt for MSMC-DDR3 Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 89 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 6-23. CIC2 Event Inputs (Secondary Events for EDMA3CC and Hyperlink) (continued) EVENT NO. EVENT NAME DESCRIPTION 50 TRACER_MSMC_0_INT Tracer sliding time window interrupt for MSMC SRAM bank0 51 TRACER_MSMC_1_INT Tracer sliding time window interrupt for MSMC SRAM bank1 52 TRACER_MSMC_2_INT Tracer sliding time window interrupt for MSMC SRAM bank2 53 TRACER_MSMC_3_INT Tracer sliding time window interrupt for MSMC SRAM bank3 54 TRACER_CFG_INT Tracer sliding time window interrupt for TeraNet CFG 55 TRACER_QMSS_QM_CFG1_INT Tracer sliding time window interrupt for Navigator CFG1 slave port 56 TRACER_QMSS_DMA_INT Tracer sliding time window interrupt for Navigator VBUSM slave port 57 TRACER_SEM_INT Tracer sliding time window interrupt for Semaphore interrupt 58 Reserved Reserved 59 Reserved Reserved 60 Reserved Reserved 61 Reserved Reserved 62 BOOTCFG_INT BOOTCFG error interrupt 63 NETCP_0_PKTDMA_INT0 Packet Accelerator0 Packet DMA starvation interrupt 64 MPU_0_INT MPU0 interrupt 65 MSMC_SCRUB_CERROR MSMC error interrupt 66 MPU_1_INT MPU1 interrupt 67 Reserved Reserved 68 MPU_2_INT MPU2 interrupt 69 QMSS_INTD_1_PKTDMA_0 Navigator Packet DMA interrupt 70 Reserved Reserved 71 QMSS_INTD_1_PKTDMA_1 Navigator Packet DMA interrupt 72 MSMC_DEDC_CERROR MSMC error interrupt 73 MSMC_DEDC_NC_ERROR MSMC error interrupt 74 MSMC_SCRUB_NC_ERROR MSMC error interrupt 75 Reserved Reserved 76 MSMC_MPF_ERROR0 Memory protection fault indicators for system master PrivID = 0 77 Reserved Reserved 78 Reserved Reserved 79 Reserved Reserved 80 Reserved Reserved 81 Reserved Reserved 82 Reserved Reserved 83 Reserved Reserved 84 MSMC_MPF_ERROR8 Memory protection fault indicators for system master PrivID = 8 85 MSMC_MPF_ERROR9 Memory protection fault indicators for system master PrivID = 9 86 MSMC_MPF_ERROR10 Memory protection fault indicators for system master PrivID = 10 87 MSMC_MPF_ERROR11 Memory protection fault indicators for system master PrivID = 11 88 MSMC_MPF_ERROR12 Memory protection fault indicators for system master PrivID = 12 89 MSMC_MPF_ERROR13 Memory protection fault indicators for system master PrivID = 13 90 MSMC_MPF_ERROR14 Memory protection fault indicators for system master PrivID = 14 91 MSMC_MPF_ERROR15 Memory protection fault indicators for system master PrivID = 15 92 Reserved Reserved 93 GPIO_INT16 GPIO interrupt 94 GPIO_INT17 GPIO interrupt 95 GPIO_INT18 GPIO interrupt 96 GPIO_INT19 GPIO interrupt 90 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 6-23. CIC2 Event Inputs (Secondary Events for EDMA3CC and Hyperlink) (continued) EVENT NO. EVENT NAME DESCRIPTION 97 GPIO_INT20 GPIO interrupt 98 GPIO_INT21 GPIO interrupt 99 GPIO_INT22 GPIO interrupt 100 GPIO_INT23 GPIO interrupt 101 GPIO_INT24 GPIO interrupt 102 GPIO_INT25 GPIO interrupt 103 GPIO_INT26 GPIO interrupt 104 GPIO_INT27 GPIO interrupt 105 GPIO_INT28 GPIO interrupt 106 GPIO_INT29 GPIO interrupt 107 GPIO_INT30 GPIO interrupt 108 GPIO_INT31 GPIO interrupt 109 Reserved Reserved 110 Reserved Reserved 111 Reserved Reserved 112 Reserved Reserved 113 Reserved Reserved 114 Reserved Reserved 115 Reserved Reserved 116 Reserved Reserved 117 AEMIF_EASYNCERR Asynchronous EMIF16 error interrupt 118 Reserved Reserved 119 Reserved Reserved 120 Reserved Reserved 121 Reserved Reserved 122 Reserved Reserved 123 Reserved Reserved 124 Reserved Reserved 125 Reserved Reserved 126 Reserved Reserved 127 Reserved Reserved 128 Reserved Reserved 129 Reserved Reserved 130 Reserved Reserved 131 Reserved Reserved 132 Reserved Reserved 133 Reserved Reserved 134 Reserved Reserved 135 Reserved Reserved 136 Reserved Reserved 137 Reserved Reserved 138 QMSS_INTD_1_HIGH_0 Navigator hi interrupt 139 QMSS_INTD_1_HIGH_1 Navigator hi interrupt 140 QMSS_INTD_1_HIGH_2 Navigator hi interrupt 141 QMSS_INTD_1_HIGH_3 Navigator hi interrupt 142 QMSS_INTD_1_HIGH_4 Navigator hi interrupt 143 QMSS_INTD_1_HIGH_5 Navigator hi interrupt Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 91 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 6-23. CIC2 Event Inputs (Secondary Events for EDMA3CC and Hyperlink) (continued) EVENT NO. EVENT NAME DESCRIPTION 144 QMSS_INTD_1_HIGH_6 Navigator hi interrupt 145 QMSS_INTD_1_HIGH_7 Navigator hi interrupt 146 QMSS_INTD_1_HIGH_8 Navigator hi interrupt 147 QMSS_INTD_1_HIGH_9 Navigator hi interrupt 148 QMSS_INTD_1_HIGH_10 Navigator hi interrupt 149 QMSS_INTD_1_HIGH_11 Navigator hi interrupt 150 QMSS_INTD_1_HIGH_12 Navigator hi interrupt 151 QMSS_INTD_1_HIGH_13 Navigator hi interrupt 152 QMSS_INTD_1_HIGH_14 Navigator hi interrupt 153 QMSS_INTD_1_HIGH_15 Navigator hi interrupt 154 QMSS_INTD_2_HIGH_0 Navigator second hi interrupt 155 QMSS_INTD_2_HIGH_1 Navigator second hi interrupt 156 QMSS_INTD_2_HIGH_2 Navigator second hi interrupt 157 QMSS_INTD_2_HIGH_3 Navigator second hi interrupt 158 QMSS_INTD_2_HIGH_4 Navigator second hi interrupt 159 QMSS_INTD_2_HIGH_5 Navigator second hi interrupt 160 QMSS_INTD_2_HIGH_6 Navigator second hi interrupt 161 QMSS_INTD_2_HIGH_7 Navigator second hi interrupt 162 QMSS_INTD_2_HIGH_8 Navigator second hi interrupt 163 QMSS_INTD_2_HIGH_9 Navigator second hi interrupt 164 QMSS_INTD_2_HIGH_10 Navigator second hi interrupt 165 QMSS_INTD_2_HIGH_11 Navigator second hi interrupt 166 QMSS_INTD_2_HIGH_12 Navigator second hi interrupt 167 QMSS_INTD_2_HIGH_13 Navigator second hi interrupt 168 QMSS_INTD_2_HIGH_14 Navigator second hi interrupt 169 QMSS_INTD_2_HIGH_15 Navigator second hi interrupt 170 QMSS_INTD_2_HIGH_16 Navigator second hi interrupt 171 QMSS_INTD_2_HIGH_17 Navigator second hi interrupt 172 QMSS_INTD_2_HIGH_18 Navigator second hi interrupt 173 QMSS_INTD_2_HIGH_19 Navigator second hi interrupt 174 QMSS_INTD_2_HIGH_20 Navigator second hi interrupt 175 QMSS_INTD_2_HIGH_21 Navigator second hi interrupt 176 QMSS_INTD_2_HIGH_22 Navigator second hi interrupt 177 QMSS_INTD_2_HIGH_23 Navigator second hi interrupt 178 QMSS_INTD_2_HIGH_24 Navigator second hi interrupt 179 QMSS_INTD_2_HIGH_25 Navigator second hi interrupt 180 QMSS_INTD_2_HIGH_26 Navigator second hi interrupt 181 QMSS_INTD_2_HIGH_27 Navigator second hi interrupt 182 QMSS_INTD_2_HIGH_28 Navigator second hi interrupt 183 QMSS_INTD_2_HIGH_29 Navigator second hi interrupt 184 QMSS_INTD_2_HIGH_30 Navigator second hi interrupt 185 QMSS_INTD_2_HIGH_31 Navigator second hi interrupt 186 MPU_12_INT MPU12 addressing violation interrupt and protection violation interrupt 187 MPU_13_INT MPU13 addressing violation interrupt and protection violation interrupt 188 MPU_14_INT MPU14 addressing violation interrupt and protection violation interrupt 189 MPU_15_INT MPU15 addressing violation interrupt and protection violation interrupt 190 Reserved Reserved 92 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 6-23. CIC2 Event Inputs (Secondary Events for EDMA3CC and Hyperlink) (continued) EVENT NO. EVENT NAME DESCRIPTION 191 Reserved Reserved 192 Reserved Reserved 193 Reserved Reserved 194 Reserved Reserved 195 Reserved Reserved 196 Reserved Reserved 197 Reserved Reserved 198 Reserved Reserved 199 TRACER_QMSS_QM_CFG2_INT Tracer sliding time window interrupt for Navigator CFG2 slave port 200 TRACER_EDMACC_0 Tracer sliding time window interrupt foR EDMA3CC0 201 TRACER_EDMACC_123_INT Tracer sliding time window interrupt for EDMA3CC1, EDMA3CC2, and EDMA3CC3 202 TRACER_CIC_INT Tracer sliding time window interrupt for interrupt controllers (CIC) 203 Reserved Reserved 204 MPU_5_INT MPU5 addressing violation interrupt and protection violation interrupt 205 Reserved Reserved 206 MPU_7_INT MPU7 addressing violation interrupt and protection violation interrupt 207 MPU_8_INT MPU8 addressing violation interrupt and protection violation interrupt 208 Reserved Reserved 209 Reserved Reserved 210 Reserved Reserved 211 DDR3_0_ERR DDR3 error interrupt 212 HYPERLINK_0_INT HyperLink interrupt 213 EDMACC_0_ERRINT EDMA3CC0 error interrupt 214 EDMACC_0_MPINT EDMA3CC0 memory protection interrupt 215 EDMACC_0_TC_0_ERRINT EDMA3CC0 TPTC0 error interrupt 216 EDMACC_0_TC_1_ERRINT EDMA3CC0 TPTC1 error interrupt 217 EDMACC_1_ERRINT EDMA3CC1 error interrupt 218 EDMACC_1_MPINT EDMA3CC1 memory protection interrupt 219 EDMACC_1_TC_0_ERRINT EDMA3CC1 TPTC0 error interrupt 220 EDMACC_1_TC_1_ERRINT EDMA3CC1 TPTC1 error interrupt 221 EDMACC_1_TC_2_ERRINT EDMA3CC1 TPTC2 error interrupt 222 EDMACC_1_TC_3_ERRINT EDMA3CC1 TPTC3 error interrupt 223 EDMACC_2_ERRINT EDMA3CC2 error interrupt 224 EDMACC_2_MPINT EDMA3CC2 memory protection interrupt 225 EDMACC_2_TC_0_ERRINT EDMA3CC2 TPTC0 error interrupt 226 EDMACC_2_TC_1_ERRINT EDMA3CC2 TPTC1 error interrupt 227 EDMACC_2_TC_2_ERRINT EDMA3CC2 TPTC2 error interrupt 228 EDMACC_2_TC_3_ERRINT EDMA3CC2 TPTC3 error interrupt 229 EDMACC_3_ERRINT EDMA3CC3 error interrupt 230 EDMACC_3_MPINT EDMA3CC3 memory protection interrupt 231 EDMACC_3_TC_0_ERRINT EDMA3CC3 TPTC0 error interrupt 232 EDMACC_3_TC_1_ERRINT EDMA3CC3 TPTC1 error interrupt 233 EDMACC_4_ERRINT EDMA3CC4 error interrupt 234 EDMACC_4_MPINT EDMA3CC4 memory protection interrupt 235 EDMACC_4_TC_0_ERRINT EDMA3CC4 TPTC0 error interrupt 236 EDMACC_4_TC_1_ERRINT EDMA3CC4 TPTC1 error interrupt 237 QMSS_QUE_PEND_652 Navigator transmit queue pending event for indicated queue Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 93 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 6-23. CIC2 Event Inputs (Secondary Events for EDMA3CC and Hyperlink) (continued) EVENT NO. EVENT NAME DESCRIPTION 238 QMSS_QUE_PEND_653 Navigator transmit queue pending event for indicated queue 239 QMSS_QUE_PEND_654 Navigator transmit queue pending event for indicated queue 240 QMSS_QUE_PEND_655 Navigator transmit queue pending event for indicated queue 241 QMSS_QUE_PEND_656 Navigator transmit queue pending event for indicated queue 242 QMSS_QUE_PEND_657 Navigator transmit queue pending event for indicated queue 243 QMSS_QUE_PEND_658 Navigator transmit queue pending event for indicated queue 244 QMSS_QUE_PEND_659 Navigator transmit queue pending event for indicated queue 245 QMSS_QUE_PEND_660 Navigator transmit queue pending event for indicated queue 246 QMSS_QUE_PEND_661 Navigator transmit queue pending event for indicated queue 247 QMSS_QUE_PEND_662 Navigator transmit queue pending event for indicated queue 248 QMSS_QUE_PEND_663 Navigator transmit queue pending event for indicated queue 249 QMSS_QUE_PEND_664 Navigator transmit queue pending event for indicated queue 250 QMSS_QUE_PEND_665 Navigator transmit queue pending event for indicated queue 251 QMSS_QUE_PEND_666 Navigator transmit queue pending event for indicated queue 252 QMSS_QUE_PEND_667 Navigator transmit queue pending event for indicated queue 253 QMSS_QUE_PEND_668 Navigator transmit queue pending event for indicated queue 254 QMSS_QUE_PEND_669 Navigator transmit queue pending event for indicated queue 255 QMSS_QUE_PEND_670 Navigator transmit queue pending event for indicated queue 256 QMSS_QUE_PEND_671 Navigator transmit queue pending event for indicated queue 257 QMSS_QUE_PEND_672 Navigator transmit queue pending event for indicated queue 258 QMSS_QUE_PEND_673 Navigator transmit queue pending event for indicated queue 259 QMSS_QUE_PEND_674 Navigator transmit queue pending event for indicated queue 260 QMSS_QUE_PEND_675 Navigator transmit queue pending event for indicated queue 261 QMSS_QUE_PEND_676 Navigator transmit queue pending event for indicated queue 262 QMSS_QUE_PEND_677 Navigator transmit queue pending event for indicated queue 263 QMSS_QUE_PEND_678 Navigator transmit queue pending event for indicated queue 264 QMSS_QUE_PEND_679 Navigator transmit queue pending event for indicated queue 265 QMSS_QUE_PEND_680 Navigator transmit queue pending event for indicated queue 266 QMSS_QUE_PEND_681 Navigator transmit queue pending event for indicated queue 267 QMSS_QUE_PEND_682 Navigator transmit queue pending event for indicated queue 268 QMSS_QUE_PEND_683 Navigator transmit queue pending event for indicated queue 269 QMSS_QUE_PEND_684 Navigator transmit queue pending event for indicated queue 270 QMSS_QUE_PEND_685 Navigator transmit queue pending event for indicated queue 271 QMSS_QUE_PEND_686 Navigator transmit queue pending event for indicated queue 272 QMSS_QUE_PEND_687 Navigator transmit queue pending event for indicated queue 273 QMSS_QUE_PEND_688 Navigator transmit queue pending event for indicated queue 274 QMSS_QUE_PEND_689 Navigator transmit queue pending event for indicated queue 275 QMSS_QUE_PEND_690 Navigator transmit queue pending event for indicated queue 276 QMSS_QUE_PEND_691 Navigator transmit queue pending event for indicated queue 277 10GbE_LINK_INT0 10 Gigabit Ethernet subsystem MDIO interrupt 278 10GbE_LINK_INT1 10 Gigabit Ethernet subsystem MDIO interrupt 279 10GbE_USER_INT0 10 Gigabit Ethernet subsystem MDIO interrupt 280 10GbE_USER_INT1 10 Gigabit Ethernet subsystem MDIO interrupt 281 10GbE_MISC_INT 10 Gigabit Ethernet subsystem MDIO interrupt 282 10GbE_INT_PKTDMA_0 10 Gigabit Ethernet Packet DMA starvation interrupt 283 Reserved Reserved 284 Reserved Reserved 94 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 6-23. CIC2 Event Inputs (Secondary Events for EDMA3CC and Hyperlink) (continued) EVENT NO. EVENT NAME DESCRIPTION 285 Reserved Reserved 286 Reserved Reserved 287 Reserved Reserved 288 Reserved Reserved 289 Reserved Reserved 290 Reserved Reserved 291 SEM_INT8 Semaphore interrupt 292 SEM_INT9 Semaphore interrupt 293 SEM_INT10 Semaphore interrupt 294 SEM_INT11 Semaphore interrupt 295 SEM_INT12 Semaphore interrupt 296 Reserved Reserved 297 Reserved Reserved 298 Reserved Reserved 299 SEM_ERR8 Semaphore error interrupt 300 SEM_ERR9 Semaphore error interrupt 301 SEM_ERR10 Semaphore error interrupt 302 SEM_ERR11 Semaphore error interrupt 303 SEM_ERR12 Semaphore error interrupt 304 QMSS1_ECC_INTR Navigator ECC error interrupt 305 QMSS_INTD_1_LOW_0 Navigator interrupt 306 QMSS_INTD_1_LOW_1 Navigator interrupt 307 QMSS_INTD_1_LOW_2 Navigator interrupt 308 QMSS_INTD_1_LOW_3 Navigator interrupt 309 QMSS_INTD_1_LOW_4 Navigator interrupt 310 QMSS_INTD_1_LOW_5 Navigator interrupt 311 QMSS_INTD_1_LOW_6 Navigator interrupt 312 QMSS_INTD_1_LOW_7 Navigator interrupt 313 QMSS_INTD_1_LOW_8 Navigator interrupt 314 QMSS_INTD_1_LOW_9 Navigator interrupt 315 QMSS_INTD_1_LOW_10 Navigator interrupt 316 QMSS_INTD_1_LOW_11 Navigator interrupt 317 QMSS_INTD_1_LOW_12 Navigator interrupt 318 QMSS_INTD_1_LOW_13 Navigator interrupt 319 QMSS_INTD_1_LOW_14 Navigator interrupt 320 QMSS_INTD_1_LOW_15 Navigator interrupt 321 QMSS_INTD_2_LOW_0 Navigator second interrupt 322 QMSS_INTD_2_LOW_1 Navigator second interrupt 323 QMSS_INTD_2_LOW_2 Navigator second interrupt 324 QMSS_INTD_2_LOW_3 Navigator second interrupt 325 QMSS_INTD_2_LOW_4 Navigator second interrupt 326 QMSS_INTD_2_LOW_5 Navigator second interrupt 327 QMSS_INTD_2_LOW_6 Navigator second interrupt 328 QMSS_INTD_2_LOW_7 Navigator second interrupt 329 QMSS_INTD_2_LOW_8 Navigator second interrupt 330 QMSS_INTD_2_LOW_9 Navigator second interrupt 331 QMSS_INTD_2_LOW_10 Navigator second interrupt Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 95 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 6-23. CIC2 Event Inputs (Secondary Events for EDMA3CC and Hyperlink) (continued) EVENT NO. EVENT NAME DESCRIPTION 332 QMSS_INTD_2_LOW_11 Navigator second interrupt 333 QMSS_INTD_2_LOW_12 Navigator second interrupt 334 QMSS_INTD_2_LOW_13 Navigator second interrupt 335 QMSS_INTD_2_LOW_14 Navigator second interrupt 336 QMSS_INTD_2_LOW_15 Navigator interrupt 337 NETCP_MDIO_LINK_INT0 Packet Accelerator subsystem MDIO interrupt 338 NETCP_MDIO_LINK_INT1 Packet Accelerator subsystem MDIO interrupt 339 NETCP_MDIO_USER_INT0 Packet Accelerator subsystem MDIO interrupt 340 NETCP_MDIO_USER_INT1 Packet Accelerator subsystem MDIO interrupt 341 NETCP_MISC_INT Packet Accelerator subsystem MDIO interrupt 342 NETCP_GLOBAL_STARVE_INT Packet Accelerator interrupt 343 NETCP_LOCAL_STARVE_INT Packet Accelerator interrupt 344 NETCP_PA_ECC_INT Packet Accelerator interrupt 345 NETCP_SA_ECC_INT Packet Accelerator interrupt 346 NETCP_SWITCH_ECC_INT NETCP SWITCH ECC interrupt 347 NETCP_SWITCH_STAT_INT0 NETCP SWITCH STAT interrupt 348 NETCP_SWITCH_STAT_INT1 NETCP SWITCH STAT interrupt 349 NETCP_SWITCH_STAT_INT2 NETCP SWITCH STAT interrupt 350 NETCP_SWITCH_STAT_INT3 NETCP SWITCH STAT interrupt 351 NETCP_SWITCH_STAT_INT4 NETCP SWITCH STAT interrupt 352 NETCP_SWITCH_STAT_INT5 NETCP SWITCH STAT interrupt 353 NETCP_SWITCH_STAT_INT6 NETCP SWITCH STAT interrupt 354 NETCP_SWITCH_STAT_INT7 NETCP SWITCH STAT interrupt 355 NETCP_SWITCH_STAT_INT8 NETCP SWITCH STAT interrupt 356 NETCP_SWITCH_INT NETCP SWITCH interrupt 357 Reserved Reserved 358 Reserved Reserved 359 Reserved Reserved 360 Reserved Reserved 361 Reserved Reserved 362 PSC_ALLINT PSC interrupt 363 Reserved Reserved 364 Reserved Reserved 365 Reserved Reserved 366 Reserved Reserved 367 Reserved Reserved 368 Reserved Reserved 369 Reserved Reserved 370 Reserved Reserved 371 Reserved Reserved 372 MPU_9_INT MPU9 addressing violation interrupt and protection violation interrupt 373 MPU_10_INT MPU10 addressing violation interrupt and protection violation interrupt 374 MPU_11_INT MPU11 addressing violation interrupt and protection violation interrupt 375 TRACER_MSMC_4_INT Tracer sliding time window interrupt for MSMC SRAM bank 4 376 TRACER_MSMC_5_INT Tracer sliding time window interrupt for MSMC SRAM bank 4 377 TRACER_MSMC_6_INT Tracer sliding time window interrupt for MSMC SRAM bank 4 378 TRACER_MSMC_7_INT Tracer sliding time window interrupt for MSMC SRAM bank 4 96 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 6-23. CIC2 Event Inputs (Secondary Events for EDMA3CC and Hyperlink) (continued) EVENT NO. EVENT NAME DESCRIPTION 379 TRACER_PCIE1_INT Tracer sliding time window interrupt for PCIE1 380 Reserved Reserved 381 Reserved Reserved 382 Reserved Reserved 383 Reserved Reserved 384 TRACER_SPI_ROM_EMIF_INT Tracer sliding time window interrupt for SPI/ROM/EMIF16 modules 385 Reserved Reserved 386 TRACER_USB1_INT Tracer sliding time window interrupt for USB1 CFG port tracer 387 TIMER_8_INTL Timer interrupt low 388 TIMER_8_INTH Timer interrupt high 389 TIMER_9_INTL Timer interrupt low 390 TIMER_9_INTH Timer interrupt high 391 TIMER_10_INTL Timer interrupt low 392 TIMER_10_INTH Timer interrupt high 393 TIMER_11_INTL Timer interrupt low 394 TIMER_11_INTH Timer interrupt high 395 TIMER_14_INTL Timer interrupt low 396 TIMER_14_INTH Timer interrupt high 397 TIMER_15_INTL Timer interrupt low 398 TIMER_15_INTH Timer interrupt high 399 USB_0_INT00 USB 0 event ring 0 interrupt 400 USB_0_INT01 USB 0 event ring 1 interrupt 401 USB_0_INT02 USB 0 event ring 2 interrupt 402 USB_0_INT03 USB 0 event ring 3 interrupt 403 USB_0_INT04 USB 0 event ring 4 interrupt 404 USB_0_INT05 USB 0 event ring 5 interrupt 405 USB_0_INT06 USB 0 event ring 6 interrupt 406 USB_0_INT07 USB 0 event ring 7 interrupt 407 USB_0_INT08 USB 0 event ring 8 interrupt 408 USB_0_INT09 USB 0 event ring 9 interrupt 409 USB_0_INT10 USB 0 event ring 10 interrupt 410 USB_0_INT11 USB 0 event ring 11 interrupt 411 USB_0_INT12 USB 0 event ring 12 interrupt 412 USB_0_INT13 USB 0 event ring 13 interrupt 413 USB_0_INT14 USB 0 event ring 14 interrupt 414 USB_0_INT15 USB 0 event ring 15 interrupt 415 USB_0_MISCINT USB 0 Miscellaneous interrupt 416 USB_0_OABSINT USB 0 OABS interrupt 417 Reserved Reserved 418 USB_1_INT00 USB 1 event ring 0 interrupt 419 USB_1_INT01 USB 1 event ring 1 interrupt 420 USB_1_INT02 USB 1 event ring 2 interrupt 421 USB_1_INT03 USB 1 event ring 3 interrupt 422 USB_1_INT04 USB 1 event ring 4 interrupt 423 USB_1_INT05 USB 1 event ring 5 interrupt 424 USB_1_INT06 USB 1 event ring 6 interrupt 425 USB_1_INT07 USB 1 event ring 7 interrupt Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 97 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 6-23. CIC2 Event Inputs (Secondary Events for EDMA3CC and Hyperlink) (continued) EVENT NO. EVENT NAME DESCRIPTION 426 USB_1_INT08 USB 1 event ring 8 interrupt 427 USB_1_INT09 USB 1 event ring 9 interrupt 428 USB_1_INT10 USB 1 event ring 10 interrupt 429 USB_1_INT11 USB 1 event ring 11 interrupt 430 USB_1_INT12 USB 1 event ring 12 interrupt 431 USB_1_INT13 USB 1 event ring 13 interrupt 432 USB_1_INT14 USB 1 event ring 14 interrupt 433 USB_1_INT15 USB 1 event ring 15 interrupt 434 USB_1_MISCINT USB 1 miscellaneous interrupt 435 USB_1_OABSINT USB 1 OABS interrupt 436 Reserved Reserved 437 Reserved Reserved 438 Reserved Reserved 439 Reserved Reserved 440 Reserved Reserved 441 Reserved Reserved 442 Reserved Reserved 443 Reserved Reserved 444 Reserved Reserved 445 Reserved Reserved 446 TIMER_12_INTL Timer interrupt low 447 TIMER_12_INTH Timer interrupt high 448 TIMER_13_INTL Timer interrupt low 449 TIMER_13_INTH Timer interrupt high 450 TIMER_16_INTL Timer interrupt low 451 TIMER_16_INTH Timer interrupt high 452 TIMER_17_INTL Timer interrupt low 453 TIMER_17_INTH Timer interrupt high 454 TIMER_18_INTL Timer interrupt low 455 TIMER_18_INTH Timer interrupt high 456 TIMER_19_INTL Timer interrupt low 457 TIMER_19_INTH Timer interrupt high 458 Reserved Reserved 459 RSTMUX_INT8 Boot config watchdog timer expiration event for ARM Core 0 460 RSTMUX_INT9 Boot config watchdog timer expiration event for ARM Core 1 461 RSTMUX_INT10 Boot config watchdog timer expiration event for ARM Core 2 462 RSTMUX_INT11 Boot config watchdog timer expiration event for ARM Core 3 463 GPIO_INT0 GPIO interrupt 464 GPIO_INT1 GPIO interrupt 465 GPIO_INT2 GPIO interrupt 466 GPIO_INT3 GPIO interrupt 467 GPIO_INT4 GPIO interrupt 468 GPIO_INT5 GPIO interrupt 469 GPIO_INT6 GPIO interrupt 470 GPIO_INT7 GPIO interrupt 471 Reserved Reserved 472 Reserved Reserved 98 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 6-23. CIC2 Event Inputs (Secondary Events for EDMA3CC and Hyperlink) (continued) EVENT NO. EVENT NAME DESCRIPTION 473 Reserved Reserved 474 Reserved Reserved 475 Reserved Reserved 476 Reserved Reserved 477 Reserved Reserved 478 Reserved Reserved 6.3.2 CIC Registers This section includes the CIC memory map information and registers. Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 99 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 6.3.2.1 www.ti.com CIC2 Register Map Table 6-24. CIC2 Registers ADDRESS OFFSET REGISTER MNEMONIC REGISTER NAME 0x0 REVISION_REG Revision Register 0x10 GLOBAL_ENABLE_HINT_REG Global Host Int Enable Register 0x20 STATUS_SET_INDEX_REG Status Set Index Register 0x24 STATUS_CLR_INDEX_REG Status Clear Index Register 0x28 ENABLE_SET_INDEX_REG Enable Set Index Register 0x2C ENABLE_CLR_INDEX_REG Enable Clear Index Register 0x34 HINT_ENABLE_SET_INDEX_REG Host Int Enable Set Index Register 0x38 HINT_ENABLE_CLR_INDEX_REG Host Int Enable Clear Index Register 0x200 RAW_STATUS_REG0 Raw Status Register 0 0x204 RAW_STATUS_REG1 Raw Status Register 1 0x208 RAW_STATUS_REG2 Raw Status Register 2 0x20C RAW_STATUS_REG3 Raw Status Register 3 0x210 RAW_STATUS_REG4 Raw Status Register 4 0x214 RAW_STATUS_REG5 Raw Status Register 5 0x218 RAW_STATUS_REG6 Raw Status Register 6 0x21C RAW_STATUS_REG7 Raw Status Register 7 0x220 RAW_STATUS_REG8 Raw Status Register 8 0x224 RAW_STATUS_REG9 Raw Status Register 9 0x228 RAW_STATUS_REG10 Raw Status Register 10 0x22C RAW_STATUS_REG11 Raw Status Register 11 0x230 RAW_STATUS_REG12 Raw Status Register 12 0x234 RAW_STATUS_REG13 Raw Status Register 13 0x238 RAW_STATUS_REG14 Raw Status Register 14 0x23C RAW_STATUS_REG15 Raw Status Register 15 0x280 ENA_STATUS_REG0 Enabled Status Register 0 0x284 ENA_STATUS_REG1 Enabled Status Register 1 0x288 ENA_STATUS_REG2 Enabled Status Register 2 0x28C ENA_STATUS_REG3 Enabled Status Register 3 0x290 ENA_STATUS_REG4 Enabled Status Register 4 0x294 ENA_STATUS_REG5 Enabled Status Register 5 0x298 ENA_STATUS_REG6 Enabled Status Register 6 0x29C ENA_STATUS_REG7 Enabled Status Register 7 0x2A0 ENA_STATUS_REG8 Enabled Status Register 8 0x2A4 ENA_STATUS_REG9 Enabled Status Register 9 0x2A8 ENA_STATUS_REG10 Enabled Status Register10 0x2AC ENA_STATUS_REG11 Enabled Status Register 11 0x2B0 ENA_STATUS_REG12 Enabled Status Register 12 0x2B4 ENA_STATUS_REG13 Enabled Status Register 13 0x2B8 ENA_STATUS_REG14 Enabled Status Register 14 0x2BC ENA_STATUS_REG15 Enabled Status Register 15 0x300 ENABLE_REG0 Enable Register 0 0x304 ENABLE_REG1 Enable Register 1 0x308 ENABLE_REG2 Enable Register 2 0x30C ENABLE_REG3 Enable Register 3 0x310 ENABLE_REG4 Enable Register 4 100 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 6-24. CIC2 Registers (continued) ADDRESS OFFSET REGISTER MNEMONIC REGISTER NAME 0x314 ENABLE_REG5 Enable Register 5 0x318 ENABLE_REG6 Enable Register 6 0x31C ENABLE_REG7 Enable Register 7 0x320 ENABLE_REG8 Enable Register 8 0x324 ENABLE_REG9 Enable Register 9 0x328 ENABLE_REG10 Enable Register 10 0x32C ENABLE_REG11 Enable Register 11 0x330 ENABLE_REG12 Enable Register 12 0x334 ENABLE_REG13 Enable Register 13 0x338 ENABLE_REG14 Enable Register 14 0x33C ENABLE_REG15 Enable Register 15 0x380 ENABLE_CLR_REG0 Enable Clear Register 0 0x384 ENABLE_CLR_REG1 Enable Clear Register 1 0x388 ENABLE_CLR_REG2 Enable Clear Register 2 0x38C ENABLE_CLR_REG3 Enable Clear Register 3 0x390 ENABLE_CLR_REG4 Enable Clear Register 4 0x394 ENABLE_CLR_REG5 Enable Clear Register 5 0x398 ENABLE_CLR_REG6 Enable Clear Register 6 0x39C ENABLE_CLR_REG7 Enable Clear Register 7 0x3A0 ENABLE_CLR_REG8 Enable Clear Register 8 0x3A4 ENABLE_CLR_REG9 Enable Clear Register 9 0x3A8 ENABLE_CLR_REG10 Enable Clear Register 10 0x3AC ENABLE_CLR_REG11 Enable Clear Register 11 0x3B0 ENABLE_CLR_REG12 Enable Clear Register 12 0x3B4 ENABLE_CLR_REG13 Enable Clear Register 13 0x3B8 ENABLE_CLR_REG14 Enable Clear Register 14 0x38C ENABLE_CLR_REG15 Enable Clear Register 15 0x400 CH_MAP_REG0 Interrupt Channel Map Register for 0 to 0+3 0x404 CH_MAP_REG1 Interrupt Channel Map Register for 4 to 4+3 0x408 CH_MAP_REG2 Interrupt Channel Map Register for 8 to 8+3 0x40C CH_MAP_REG3 Interrupt Channel Map Register for 12 to 12+3 0x410 CH_MAP_REG4 Interrupt Channel Map Register for 16 to 16+3 0x414 CH_MAP_REG5 Interrupt Channel Map Register for 20 to 20+3 0x418 CH_MAP_REG6 Interrupt Channel Map Register for 24 to 24+3 0x41C CH_MAP_REG7 Interrupt Channel Map Register for 28 to 28+3 0x420 CH_MAP_REG8 Interrupt Channel Map Register for 32 to 32+3 0x424 CH_MAP_REG9 Interrupt Channel Map Register for 36 to 36+3 0x428 CH_MAP_REG10 Interrupt Channel Map Register for 40 to 40+3 0x42C CH_MAP_REG11 Interrupt Channel Map Register for 44 to 44+3 0x430 CH_MAP_REG12 Interrupt Channel Map Register for 48 to 48+3 0x434 CH_MAP_REG13 Interrupt Channel Map Register for 52 to 52+3 0x438 CH_MAP_REG14 Interrupt Channel Map Register for 56 to 56+3 0x43C CH_MAP_REG15 Interrupt Channel Map Register for 60 to 60+3 0x5C0 CH_MAP_REG116 Interrupt Channel Map Register for 464 to 464+3 0x5C4 CH_MAP_REG117 Interrupt Channel Map Register for 468 to 468+3 0x5C8 CH_MAP_REG118 Interrupt Channel Map Register for 472 to 472+3 0x5CC CH_MAP_REG119 Interrupt Channel Map Register for 476 to 476+3 Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 101 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 6-24. CIC2 Registers (continued) ADDRESS OFFSET REGISTER MNEMONIC REGISTER NAME 0x5D0 CH_MAP_REG120 Interrupt Channel Map Register for 480 to 480+3 0x5D4 CH_MAP_REG121 Interrupt Channel Map Register for 484 to 484+3 0x5D8 CH_MAP_REG122 Interrupt Channel Map Register for 488 to 488+3 0x5DC CH_MAP_REG123 Interrupt Channel Map Register for 482 to 492+3 0x5E0 CH_MAP_REG124 Interrupt Channel Map Register for 496 to 496+3 0x5E4 CH_MAP_REG125 Interrupt Channel Map Register for 500 to 500+3 0x5E8 CH_MAP_REG126 Interrupt Channel Map Register for 504 to 504+3 0x5EC CH_MAP_REG127 Interrupt Channel Map Register for 508 to 508+3 0x5F0 CH_MAP_REG128 Interrupt Channel Map Register for 512 to 512+3 0x5F4 CH_MAP_REG129 Interrupt Channel Map Register for 516 to 516+3 0x5F8 CH_MAP_REG130 Interrupt Channel Map Register for 520 to 520+3 0x5FC CH_MAP_REG131 Interrupt Channel Map Register for 524 to 524+3 0x600 CH_MAP_REG132 Interrupt Channel Map Register for 528 to 528+3 0x604 CH_MAP_REG133 Interrupt Channel Map Register for 532 to 532+3 0x608 CH_MAP_REG134 Interrupt Channel Map Register for 536 to 536+3 0x60C CH_MAP_REG135 Interrupt Channel Map Register for 540 to 540+3 0x610 CH_MAP_REG136 Interrupt Channel Map Register for 544 to 544+3 0x614 CH_MAP_REG137 Interrupt Channel Map Register for 548 to 548+3 0x618 CH_MAP_REG138 Interrupt Channel Map Register for 552 to 552+3 0x61C CH_MAP_REG139 Interrupt Channel Map Register for 556 to 556+3 0x620 CH_MAP_REG140 Interrupt Channel Map Register for 560 to 560+3 0x624 CH_MAP_REG141 Interrupt Channel Map Register for 564 to 564+3 0x628 CH_MAP_REG142 Interrupt Channel Map Register for 568 to 568+3 0x62C CH_MAP_REG143 Interrupt Channel Map Register for 572 to 572+3 0x630 CH_MAP_REG144 Interrupt Channel Map Register for 576 to 576+3 0x634 CH_MAP_REG145 Interrupt Channel Map Register for 580 to 580+3 0x638 CH_MAP_REG146 Interrupt Channel Map Register for 584 to 584+3 0x63C CH_MAP_REG147 Interrupt Channel Map Register for 588 to 588+3 0x640 CH_MAP_REG148 Interrupt Channel Map Register for 592 to 592+3 0x644 CH_MAP_REG149 Interrupt Channel Map Register for 596 to 596+3 0x648 CH_MAP_REG150 Interrupt Channel Map Register for 600 to 600+3 0x64C CH_MAP_REG151 Interrupt Channel Map Register for 604 to 604+3 0x650 CH_MAP_REG152 Interrupt Channel Map Register for 608 to 608+3 0x654 CH_MAP_REG153 Interrupt Channel Map Register for 612 to 612+3 0x658 CH_MAP_REG154 Interrupt Channel Map Register for 616 to 616+3 0x65C CH_MAP_REG155 Interrupt Channel Map Register for 620 to 620+3 0x660 CH_MAP_REG156 Interrupt Channel Map Register for 624 to 624+3 0x664 CH_MAP_REG157 Interrupt Channel Map Register for 628 to 628+3 0x668 CH_MAP_REG158 Interrupt Channel Map Register for 632 to 632+3 0x66C CH_MAP_REG159 Interrupt Channel Map Register for 636 to 636+3 0x670 CH_MAP_REG160 Interrupt Channel Map Register for 640 to 640+3 0x674 CH_MAP_REG161 Interrupt Channel Map Register for 644 to 644+3 0x678 CH_MAP_REG162 Interrupt Channel Map Register for 648 to 648+3 0x67C CH_MAP_REG163 Interrupt Channel Map Register for 652 to 652+3 0x680 CH_MAP_REG164 Interrupt Channel Map Register for 656 to 656+3 0x684 CH_MAP_REG165 Interrupt Channel Map Register for 660 to 660+3 0x688 CH_MAP_REG166 Interrupt Channel Map Register for 664 to 664+3 102 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 6-24. CIC2 Registers (continued) ADDRESS OFFSET REGISTER MNEMONIC REGISTER NAME 0x68C CH_MAP_REG167 Interrupt Channel Map Register for 668 to 668+3 0x690 CH_MAP_REG168 Interrupt Channel Map Register for 672 to 672+3 0x694 CH_MAP_REG169 Interrupt Channel Map Register for 676 to 676+3 0x698 CH_MAP_REG170 Interrupt Channel Map Register for 680 to 680+3 0x69C CH_MAP_REG171 Interrupt Channel Map Register for 684 to 684+3 0x800 HINT_MAP_REG0 Host Interrupt Map Register for 0 to 0+3 0x804 HINT_MAP_REG1 Host Interrupt Map Register for 4 to 4+3 0x808 HINT_MAP_REG2 Host Interrupt Map Register for 8 to 8+3 0x80C HINT_MAP_REG3 Host Interrupt Map Register for 12 to 12+3 0x810 HINT_MAP_REG4 Host Interrupt Map Register for 16 to 16+3 0x814 HINT_MAP_REG5 Host Interrupt Map Register for 20 to 20+3 0x818 HINT_MAP_REG6 Host Interrupt Map Register for 24 to 24+3 0x81C HINT_MAP_REG7 Host Interrupt Map Register for 28 to 28+3 0x820 HINT_MAP_REG8 Host Interrupt Map Register for 32 to 32+3 0x824 HINT_MAP_REG9 Host Interrupt Map Register for 36 to 36+3 0x828 HINT_MAP_REG10 Host Interrupt Map Register for 40 to 40+3 0x82C HINT_MAP_REG11 Host Interrupt Map Register for 44 to 44+3 0x830 HINT_MAP_REG12 Host Interrupt Map Register for 48 to 48+3 0x834 HINT_MAP_REG13 Host Interrupt Map Register for 52 to 52+3 0x838 HINT_MAP_REG14 Host Interrupt Map Register for 56 to 56+3 0x83C HINT_MAP_REG15 Host Interrupt Map Register for 60 to 60+3 0x840 HINT_MAP_REG16 Host Interrupt Map Register for 63 to 63+3 0x844 HINT_MAP_REG17 Host Interrupt Map Register for 66 to 66+3 0x848 HINT_MAP_REG18 Host Interrupt Map Register for 68 to 68+3 0x84C HINT_MAP_REG19 Host Interrupt Map Register for 72 to 72+3 0x850 HINT_MAP_REG20 Host Interrupt Map Register for 76 to 76+3 0x854 HINT_MAP_REG21 Host Interrupt Map Register for 80 to 80+3 0x858 HINT_MAP_REG22 Host Interrupt Map Register for 84 to 84+3 0x85C HINT_MAP_REG23 Host Interrupt Map Register for 88 to 88+3 0x860 HINT_MAP_REG24 Host Interrupt Map Register for 92 to 92+3 0x864 HINT_MAP_REG25 Host Interrupt Map Register for 94 to 94+3 0x868 HINT_MAP_REG26 Host Interrupt Map Register for 96 to 96+3 0x86C HINT_MAP_REG27 Host Interrupt Map Register for 100 to 100+3 0x1500 ENABLE_HINT_REG0 Host Int Enable Register 0 0x1504 ENABLE_HINT_REG1 Host Int Enable Register 1 0x1508 ENABLE_HINT_REG2 Host Int Enable Register 2 0x150C ENABLE_HINT_REG3 Host Int Enable Register 3 6.4 Enhanced Direct Memory Access (EDMA3) Controller The primary purpose of the EDMA3 is to service user-programmed data transfers between two memorymapped slave endpoints on the device. The EDMA3 services software-driven paging transfers (e.g., data movement between external memory and internal memory), performs sorting or subframe extraction of various data structures, services event driven peripherals, and offloads data transfers from the device ARM CorePac. There are 5 EDMA channel controllers on the device: • EDMA3CC0 has two transfer controllers: TPTC0 and TPTC1 Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 103 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 • • • • EDMA3CC1 EDMA3CC2 EDMA3CC3 EDMA3CC4 has has has has www.ti.com four transfer controllers: TPTC0, TPTC1, TPTC2, and TPTC3 four transfer controllers: TPTC0, TPTC1, TPTC2, and TPTC3 two transfer controllers: TPTC0 and TPTC1 two transfer controllers: TPTC0 and TPTC1 In the context of this document, TPTCx is associated with EDMA3CCy, and is referred to as EDMA3CCy TPTCx. Each of the transfer controllers has a direct connection to the switch fabric. Section 7.2 lists the peripherals that can be accessed by the transfer controllers. EDMA3CC0 is optimized to be used for transfers to/from/within the MSMC and DDR3 subsytems. The others are used for the remaining traffic. Each EDMA3 channel controller includes the following features: • Fully orthogonal transfer description – 3 transfer dimensions: • Array (multiple bytes) • Frame (multiple arrays) • Block (multiple frames) – Single event can trigger transfer of array, frame, or entire block – Independent indexes on source and destination • Flexible transfer definition: – Increment or FIFO transfer addressing modes – Linking mechanism allows for ping-pong buffering, circular buffering, and repetitive/continuous transfers, all with no CPU intervention – Chaining allows multiple transfers to execute with one event • 512 PaRAM entries for all EDMA3CC – Used to define transfer context for channels – Each PaRAM entry can be used as a DMA entry, QDMA entry, or link entry • 64 DMA channels for all EDMA3CC – Manually triggered (CPU writes to channel controller register) – External event triggered – Chain triggered (completion of one transfer triggers another) • 8 Quick DMA (QDMA) channels per EDMA3CCx – Used for software-driven transfers – Triggered upon writing to a single PaRAM set entry • Two transfer controllers and two event queues with programmable system-level priority for EDMA3CC0, EDMA3CC3 and EDMA3CC4 • Four transfer controllers and four event queues with programmable system-level priority for each of EDMA3CC1 and EDMA3CC2 • Interrupt generation for transfer completion and error conditions • Debug visibility – Queue watermarking/threshold allows detection of maximum usage of event queues – Error and status recording to facilitate debug 6.4.1 EDMA3 Device-Specific Information The EDMA supports two addressing modes: constant addressing and increment addressing mode. Constant addressing mode is applicable to a very limited set of use cases. For most applications increment mode can be used. For more information on these two addressing modes, see the KeyStone Architecture Enhanced Direct Memory Access 3 (EDMA3) User's Guide (SPRUGS5). 104 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 For the range of memory addresses that includes EDMA3 channel controller (EDMA3CC) control registers and EDMA3 transfer controller (TPTC) control registers, see Section Section 6.1. For memory offsets and other details on EDMA3CC and TPTC Control Register entries, see the KeyStone Architecture Enhanced Direct Memory Access 3 (EDMA3) User's Guide (SPRUGS5). 6.4.2 EDMA3 Channel Controller Configuration Table 6-25 shows the configuration for each of the EDMA3 channel controllers present on the device. Table 6-25. EDMA3 Channel Controller Configuration DESCRIPTION EDMA3 CC0 EDMA3 CC1 EDMA3 CC2 EDMA3 CC3 EDMA3 CC4 Number of DMA channels in channel controller 64 64 64 64 64 Number of QDMA channels 8 8 8 8 8 Number of interrupt channels 64 64 64 64 64 Number of PaRAM set entries 512 512 512 512 512 Number of event queues 2 4 4 2 2 Number of transfer controllers 2 4 4 2 2 Memory protection existence Yes Yes Yes Yes Yes Number of memory protection and shadow regions 8 8 8 8 8 6.4.3 EDMA3 Transfer Controller Configuration Each transfer controller on the device is designed differently based on considerations like performance requirements, system topology (like main TeraNet bus width, external memory bus width), etc. The parameters that determine the transfer controller configurations are: • FIFOSIZE: Determines the size in bytes for the data FIFO that is the temporary buffer for the in-flight data. The data FIFO is where the read return data read by the TC read controller from the source endpoint is stored and subsequently written out to the destination endpoint by the TC write controller. • BUSWIDTH: The width of the read and write data buses in bytes, for the TC read and write controller, respectively. This is typically equal to the bus width of the main TeraNet interface. • Default Burst Size (DBS): The DBS is the maximum number of bytes per read/write command issued by a transfer controller. • DSTREGDEPTH: This determines the number of destination FIFO register sets. The number of destination FIFO register sets for a transfer controller determines the maximum number of outstanding transfer requests. All four parameters listed above are fixed by the design of the device. Table 6-26 shows the configuration of each of the EDMA3 transfer controllers present on the device. Table 6-26. EDMA3 Transfer Controller Configuration EDMA3 CC0/CC4 EDMA3 CC1 EDMA3 CC2 EDMA3CC3 PARAMETER TC0 TC1 TC0 TC1 TC2 TC3 TC0 TC1 TC2 TC3 TC0 TC1 FIFOSIZE 1024 bytes 1024 bytes 1024 bytes 1024 bytes 1024 bytes 1024 bytes 1024 bytes 1024 bytes 1024 bytes 1024 bytes 1024 bytes 1024 bytes BUSWIDTH 32 bytes 32 bytes 16 bytes 16 bytes 16 bytes 16 bytes 16 bytes 16 bytes 16 bytes 16 bytes 16 bytes 16 bytes DSTREGDEPTH 4 entries 4 entries 4 entries 4 entries 4 entries 4 entries 4 entries 4 entries 4 entries 4 entries 4 entries 4 entries DBS 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 64 bytes 64 bytes 128 bytes Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 105 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 6.4.4 www.ti.com EDMA3 Channel Synchronization Events The EDMA3 supports up to 64 DMA channels for all EDMA3CC that can be used to service system peripherals and to move data between system memories. DMA channels can be triggered by synchronization events generated by system peripherals. The following tables list the source of the synchronization event associated with each of the EDMA3CC DMA channels. On the AM5K2E0x, the association of each synchronization event and DMA channel is fixed and cannot be reprogrammed. For more detailed information on the EDMA3 module and how EDMA3 events are enabled, captured, processed, prioritized, linked, chained, and cleared, etc., see the KeyStone Architecture Enhanced Direct Memory Access 3 (EDMA3) User's Guide (SPRUGS5). Table 6-27. EDMA3CC0 Events for AM5K2E0x EVENT NO. EVENT NAME DESCRIPTION 0 TIMER_8_INTL Timer interrupt low 1 TIMER_8_INTH Timer interrupt high 2 TIMER_9_INTL Timer interrupt low 3 TIMER_9_INTH Timer interrupt high 4 TIMER_10_INTL Timer interrupt low 5 TIMER_10_INTH Timer interrupt high 6 TIMER_11_INTL Timer interrupt low 7 TIMER_11_INTH Timer interrupt high 8 CIC_2_OUT66 CIC2 Interrupt Controller output 9 CIC_2_OUT67 CIC2 Interrupt Controller output 10 CIC_2_OUT68 CIC2 Interrupt Controller output 11 CIC_2_OUT69 CIC2 Interrupt Controller output 12 CIC_2_OUT70 CIC2 Interrupt Controller output 13 CIC_2_OUT71 CIC2 Interrupt Controller output 14 CIC_2_OUT72 CIC2 Interrupt Controller output 15 CIC_2_OUT73 CIC2 Interrupt Controller output 16 GPIO_INT8 GPIO interrupt 17 GPIO_INT9 GPIO interrupt 18 GPIO_INT10 GPIO interrupt 19 GPIO_INT11 GPIO interrupt 20 GPIO_INT12 GPIO interrupt 21 GPIO_INT13 GPIO interrupt 22 GPIO_INT14 GPIO interrupt 23 GPIO_INT15 GPIO interrupt 24 TIMER_16_INTL Timer interrupt low 25 TIMER_16_INTH Timer interrupt high 26 TIMER_17_INTL Timer interrupt low 27 TIMER_17_INTH Timer interrupt high 28 TIMER_18_INTL Timer interrupt low 29 TIMER_18_INTH Timer interrupt high 30 TIMER_19_INTL Timer interrupt low 31 TIMER_19_INTH Timer interrupt high 32 GPIO_INT0 GPIO interrupt 33 GPIO_INT1 GPIO interrupt 34 GPIO_INT2 GPIO interrupt 35 GPIO_INT3 GPIO interrupt 36 GPIO_INT4 GPIO interrupt 106 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 6-27. EDMA3CC0 Events for AM5K2E0x (continued) EVENT NO. EVENT NAME DESCRIPTION 37 GPIO_INT5 GPIO interrupt 38 GPIO_INT6 GPIO interrupt 39 GPIO_INT7 GPIO interrupt 40 Reserved Reserved 41 Reserved Reserved 42 TIMER_12_INTL Timer interrupt low 43 TIMER_12_INTH Timer interrupt high 44 TIMER_13_INTL Timer interrupt low 45 TIMER_13_INTH Timer interrupt high 46 Reserved Reserved 47 SEM_INT8 Semaphore interrupt 48 SEM_INT9 Semaphore interrupt 49 SEM_INT10 Semaphore interrupt 50 SEM_INT11 Semaphore interrupt 51 SEM_INT12 Semaphore interrupt 52 DBGTBR_DMAINT Debug trace buffer (TBR) DMA event 53 ARM_TBR_DMA ARM trace buffer (TBR) DMA event 54 QMSS_QUE_PEND_560 Navigator transmit queue pending event for indicated queue 55 QMSS_QUE_PEND_561 Navigator transmit queue pending event for indicated queue 56 QMSS_QUE_PEND_562 Navigator transmit queue pending event for indicated queue 57 QMSS_QUE_PEND_563 Navigator transmit queue pending event for indicated queue 58 QMSS_QUE_PEND_564 Navigator transmit queue pending event for indicated queue 59 QMSS_QUE_PEND_565 Navigator transmit queue pending event for indicated queue 60 QMSS_QUE_PEND_566 Navigator transmit queue pending event for indicated queue 61 QMSS_QUE_PEND_567 Navigator transmit queue pending event for indicated queue 62 QMSS_QUE_PEND_568 Navigator transmit queue pending event for indicated queue 63 QMSS_QUE_PEND_569 Navigator transmit queue pending event for indicated queue Table 6-28. EDMA3CC1 Events for AM5K2E0x EVENT NO. EVENT NAME DESCRIPTION 0 GPIO_INT28 GPIO interrupt 1 GPIO_INT29 GPIO interrupt 2 SPI_0_XEVT SPI0 transmit event 3 SPI_0_REVT SPI0 receive event 4 SEM_INT8 Semaphore interrupt 5 SEM_INT9 Semaphore interrupt 6 GPIO_INT0 GPIO interrupt 7 GPIO_INT1 GPIO interrupt 8 GPIO_INT2 GPIO interrupt 9 GPIO_INT3 GPIO interrupt 10 QMSS_QUE_PEND_570 Navigator transmit queue pending event for indicated queue 11 QMSS_QUE_PEND_571 Navigator transmit queue pending event for indicated queue 12 QMSS_QUE_PEND_572 Navigator transmit queue pending event for indicated queue 13 QMSS_QUE_PEND_573 Navigator transmit queue pending event for indicated queue 14 Reserved Reserved 15 QMSS_QUE_PEND_574 Navigator transmit queue pending event for indicated queue 16 QMSS_QUE_PEND_575 Navigator transmit queue pending event for indicated queue Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 107 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 6-28. EDMA3CC1 Events for AM5K2E0x (continued) EVENT NO. EVENT NAME DESCRIPTION 17 QMSS_QUE_PEND_576 Navigator transmit queue pending event for indicated queue 18 QMSS_QUE_PEND_577 Navigator transmit queue pending event for indicated queue 19 QMSS_QUE_PEND_578 Navigator transmit queue pending event for indicated queue 20 QMSS_QUE_PEND_579 Navigator transmit queue pending event for indicated queue 21 QMSS_QUE_PEND_580 Navigator transmit queue pending event for indicated queue 22 TIMER_8_INTL Timer interrupt low 23 TIMER_8_INTH Timer interrupt high 24 TIMER_9_INTL Timer interrupt low 25 TIMER_9_INTH Timer interrupt high 26 TIMER_10_INTL Timer interrupt low 27 TIMER_10_INTH Timer interrupt high 28 TIMER_11_INTL Timer interrupt low 29 TIMER_11_INTH Timer interrupt high 30 TIMER_12_INTL Timer interrupt low 31 TIMER_12_INTH Timer interrupt high 32 TIMER_13_INTL Timer interrupt low 33 TIMER_13_INTH Timer interrupt high 34 TIMER_14_INTL Timer interrupt low 35 TIMER_14_INTH Timer interrupt high 36 TIMER_15_INTL Timer interrupt low 37 TIMER_15_INTH Timer interrupt high 38 SEM_INT10 Semaphore interrupt 39 SEM_INT11 Semaphore interrupt 40 SEM_INT12 Semaphore interrupt 41 SR_0_SR_TEMPSENSOR SmartReflex temperature threshold crossing interrupt 42 TSIP_RCV_FINT0 TSIP receive frame interrupt for Channel 0 43 TSIP_XMT_FINT0 TSIP transmit frame interrupt for Channel 0 44 TSIP_RCV_SFINT0 TSIP receive super frame interrupt for Channel 0 45 TSIP_XMT_SFINT0 TSIP transmit super frame interrupt for Channel 0 46 TSIP_RCV_FINT1 TSIP receive frame interrupt for Channel 1 47 TSIP_XMT_FINT1 TSIP transmit frame interrupt for Channel 1 48 TSIP_RCV_SFINT1 TSIP receive super frame interrupt for Channel 1 49 TSIP_XMT_SFINT1 TSIP transmit super frame interrupt for Channel 1 50 CIC_2_OUT8 CIC2 Interrupt Controller output 51 GPIO_INT30 GPIO interrupt 52 GPIO_INT31 GPIO interrupt 53 I2C_0_REVT I2C0 receive 54 I2C_0_XEVT I2C0 transmit 55 CIC_2_OUT13 CIC2 Interrupt Controller output 56 CIC_2_OUT14 CIC2 Interrupt Controller output 57 CIC_2_OUT15 CIC2 Interrupt Controller output 58 CIC_2_OUT16 CIC2 Interrupt Controller output 59 CIC_2_OUT17 CIC2 Interrupt Controller output 60 CIC_2_OUT18 CIC2 Interrupt Controller output 61 CIC_2_OUT19 CIC2 Interrupt Controller output 62 Reserved Reserved 63 Reserved Reserved 108 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 6-29. EDMA3CC2 Events for AM5K2E0x EVENT NO. EVENT NAME DESCRIPTION 0 UART_1_URXEVT UART1 receive event 1 UART_1_UTXEVT UART1 transmit event 2 SPI_1_XEVT SPI1 receive event 3 SPI_1_REVT SPI1 transmit event 4 SPI_2_XEVT SPI2 receive event 5 SPI_2_REVT SPI2 transmit event 6 DBGTBR_DMAINT Debug trace buffer (TBR) DMA event 7 ARM_TBR_DMA ARM trace buffer (TBR) DMA event 8 Reserved Reserved 9 Reserved Reserved 10 I2C_1_REVT I2C1 receive 11 I2C_1_XEVT I2C1 transmit 12 I2C_2_REVT I2C2 receive 13 I2C_2_XEVT I2C2 transmit 14 GPIO_INT16 GPIO interrupt 15 GPIO_INT17 GPIO interrupt 16 GPIO_INT18 GPIO interrupt 17 GPIO_INT19 GPIO interrupt 18 GPIO_INT20 GPIO interrupt 19 GPIO_INT21 GPIO interrupt 20 GPIO_INT22 GPIO interrupt 21 GPIO_INT23 GPIO interrupt 22 GPIO_INT24 GPIO interrupt 23 GPIO_INT25 GPIO interrupt 24 GPIO_INT26 GPIO interrupt 25 GPIO_INT27 GPIO interrupt 26 GPIO_INT0 GPIO interrupt 27 GPIO_INT1 GPIO interrupt 28 GPIO_INT2 GPIO interrupt 29 GPIO_INT3 GPIO interrupt 30 GPIO_INT4 GPIO interrupt 31 GPIO_INT5 GPIO interrupt 32 GPIO_INT6 GPIO interrupt 33 GPIO_INT7 GPIO interrupt 34 ARM_NCNTVIRQ3 ARM virtual timer interrupt for core 3 35 ARM_NCNTVIRQ2 ARM virtual timer interrupt for core 2 36 ARM_NCNTVIRQ1 ARM virtual timer interrupt for core 1 37 ARM_NCNTVIRQ0 ARM virtual timer interrupt for core 0 38 CIC_2_OUT48 CIC2 Interrupt Controller output 39 Reserved Reserved 40 UART_0_URXEVT UART0 receive event 41 UART_0_UTXEVT UART0 transmit event 42 CIC_2_OUT22 CIC2 Interrupt Controller output 43 CIC_2_OUT23 CIC2 Interrupt Controller output 44 CIC_2_OUT24 CIC2 Interrupt Controller output 45 CIC_2_OUT25 CIC2 Interrupt Controller output 46 CIC_2_OUT26 CIC2 Interrupt Controller output Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 109 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 6-29. EDMA3CC2 Events for AM5K2E0x (continued) EVENT NO. EVENT NAME DESCRIPTION 47 CIC_2_OUT27 CIC2 Interrupt Controller output 48 CIC_2_OUT28 CIC2 Interrupt Controller output 49 SPI_0_XEVT SPI0 receive event 50 SPI_0_REVT SPI0 transmit event 51 Reserved Reserved 52 ARM_NCNTPNSIRQ3 ARM non secure timer interrupt for Core 3 53 ARM_NCNTPNSIRQ2 ARM non secure timer interrupt for Core 2 54 ARM_NCNTPNSIRQ1 ARM non secure timer interrupt for Core 1 55 ARM_NCNTPNSIRQ0 ARM non secure timer interrupt for Core 0 56 QMSS_QUE_PEND_581 Navigator transmit queue pending event for indicated queue 57 QMSS_QUE_PEND_582 Navigator transmit queue pending event for indicated queue 58 QMSS_QUE_PEND_583 Navigator transmit queue pending event for indicated queue 59 QMSS_QUE_PEND_584 Navigator transmit queue pending event for indicated queue 60 QMSS_QUE_PEND_585 Navigator transmit queue pending event for indicated queue 61 QMSS_QUE_PEND_586 Navigator transmit queue pending event for indicated queue 62 QMSS_QUE_PEND_587 Navigator transmit queue pending event for indicated queue 63 QMSS_QUE_PEND_588 Navigator transmit queue pending event for indicated queue Table 6-30. EDMA3CC3 Events for AM5K2E0x EVENT NO. EVENT NAME DESCRIPTION 0 Reserved Reserved 1 Reserved Reserved 2 SPI_2_XEVT SPI2 transmit event 3 SPI_2_REVT SPI2 receive event 4 I2C_2_REVT I2C2 receive 5 I2C_2_XEVT I2C2 transmit 6 UART_1_URXEVT UART1 receive event 7 UART_1_UTXEVT UART1 transmit event 8 Reserved Reserved 9 Reserved Reserved 10 SPI_1_XEVT SPI1 transmit event 11 SPI_1_REVT SPI1 receive event 12 I2C_0_REVT I2C0 receive 13 I2C_0_XEVT I2C0 transmit 14 I2C_1_REVT I2C1 receive 15 I2C_1_XEVT I2C1 transmit 16 TIMER_16_INTL Timer interrupt low 17 TIMER_16_INTH Timer interrupt high 18 TIMER_17_INTL Timer interrupt low 19 TIMER_17_INTH Timer interrupt high 20 ARM_TBR_DMA Debug trace buffer (TBR) DMA event 21 DBGTBR_DMAINT ARM trace buffer (TBR) DMA event 22 UART_0_URXEVT UART0 receive event 23 UART_0_UTXEVT UART0 transmit event 24 GPIO_INT16 GPIO interrupt 25 GPIO_INT17 GPIO interrupt 26 GPIO_INT18 GPIO interrupt 110 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 6-30. EDMA3CC3 Events for AM5K2E0x (continued) EVENT NO. EVENT NAME DESCRIPTION 27 GPIO_INT19 GPIO interrupt 28 GPIO_INT20 GPIO interrupt 29 GPIO_INT21 GPIO interrupt 30 GPIO_INT22 GPIO interrupt 31 GPIO_INT23 GPIO interrupt 32 GPIO_INT24 GPIO interrupt 33 GPIO_INT25 GPIO interrupt 34 GPIO_INT26 GPIO interrupt 35 GPIO_INT27 GPIO interrupt 36 GPIO_INT28 GPIO interrupt 37 GPIO_INT29 GPIO interrupt 38 GPIO_INT30 GPIO interrupt 39 GPIO_INT31 GPIO interrupt 40 QMSS_QUE_PEND_589 Navigator transmit queue pending event for indicated queue 41 QMSS_QUE_PEND_590 Navigator transmit queue pending event for indicated queue 42 QMSS_QUE_PEND_591 Navigator transmit queue pending event for indicated queue 43 QMSS_QUE_PEND_592 Navigator transmit queue pending event for indicated queue 44 QMSS_QUE_PEND_593 Navigator transmit queue pending event for indicated queue 45 QMSS_QUE_PEND_594 Navigator transmit queue pending event for indicated queue 46 QMSS_QUE_PEND_595 Navigator transmit queue pending event for indicated queue 47 QMSS_QUE_PEND_596 Navigator transmit queue pending event for indicated queue 48 QMSS_QUE_PEND_597 Navigator transmit queue pending event for indicated queue 49 QMSS_QUE_PEND_598 Navigator transmit queue pending event for indicated queue 50 QMSS_QUE_PEND_599 Navigator transmit queue pending event for indicated queue 51 QMSS_QUE_PEND_600 Navigator transmit queue pending event for indicated queue 52 QMSS_QUE_PEND_601 Navigator transmit queue pending event for indicated queue 53 QMSS_QUE_PEND_602 Navigator transmit queue pending event for indicated queue 54 QMSS_QUE_PEND_603 Navigator transmit queue pending event for indicated queue 55 QMSS_QUE_PEND_604 Navigator transmit queue pending event for indicated queue 56 CIC_2_OUT57 CIC2 Interrupt Controller output 57 CIC_2_OUT50 CIC2 Interrupt Controller output 58 CIC_2_OUT51 CIC2 Interrupt Controller output 59 CIC_2_OUT52 CIC2 Interrupt Controller output 60 CIC_2_OUT53 CIC2 Interrupt Controller output 61 CIC_2_OUT54 CIC2 Interrupt Controller output 62 CIC_2_OUT55 CIC2 Interrupt Controller output 63 CIC_2_OUT56 CIC2 Interrupt Controller output Table 6-31. EDMA3CC4 Events for AM5K2E0x EVENT NO. EVENT NAME DESCRIPTION 0 GPIO_INT16 GPIO interrupt 1 GPIO_INT17 GPIO interrupt 2 GPIO_INT18 GPIO interrupt 3 GPIO_INT19 GPIO interrupt 4 GPIO_INT20 GPIO interrupt 5 GPIO_INT21 GPIO interrupt 6 GPIO_INT22 GPIO interrupt Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 111 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 6-31. EDMA3CC4 Events for AM5K2E0x (continued) EVENT NO. EVENT NAME DESCRIPTION 7 GPIO_INT23 GPIO interrupt 8 GPIO_INT24 GPIO interrupt 9 GPIO_INT25 GPIO interrupt 10 GPIO_INT26 GPIO interrupt 11 GPIO_INT27 GPIO interrupt 12 GPIO_INT28 GPIO interrupt 13 GPIO_INT29 GPIO interrupt 14 GPIO_INT30 GPIO interrupt 15 GPIO_INT31 GPIO interrupt 16 Reserved Reserved 17 SEM_INT8 Semaphore interrupt 18 SEM_INT9 Semaphore interrupt 19 SEM_INT10 Semaphore interrupt 20 SEM_INT11 Semaphore interrupt 21 SEM_INT12 Semaphore interrupt 22 TIMER_12_INTL Timer interrupt low 23 TIMER_12_INTH Timer interrupt high 24 TIMER_8_INTL Timer interrupt low 25 TIMER_8_INTH Timer interrupt high 26 TIMER_14_INTL Timer interrupt low 27 TIMER_14_INTH Timer interrupt high 28 TIMER_15_INTL Timer interrupt low 29 TIMER_15_INTH Timer interrupt high 30 DBGTBR_DMAINT Debug trace buffer (TBR) DMA event 31 ARM_TBR_DMA ARM trace buffer (TBR) DMA event 32 QMSS_QUE_PEND_658 Navigator transmit queue pending event for indicated queue 33 QMSS_QUE_PEND_659 Navigator transmit queue pending event for indicated queue 34 QMSS_QUE_PEND_660 Navigator transmit queue pending event for indicated queue 35 QMSS_QUE_PEND_661 Navigator transmit queue pending event for indicated queue 36 QMSS_QUE_PEND_662 Navigator transmit queue pending event for indicated queue 37 QMSS_QUE_PEND_663 Navigator transmit queue pending event for indicated queue 38 QMSS_QUE_PEND_664 Navigator transmit queue pending event for indicated queue 39 QMSS_QUE_PEND_665 Navigator transmit queue pending event for indicated queue 40 QMSS_QUE_PEND_605 Navigator transmit queue pending event for indicated queue 41 QMSS_QUE_PEND_606 Navigator transmit queue pending event for indicated queue 42 QMSS_QUE_PEND_607 Navigator transmit queue pending event for indicated queue 43 QMSS_QUE_PEND_608 Navigator transmit queue pending event for indicated queue 44 QMSS_QUE_PEND_609 Navigator transmit queue pending event for indicated queue 45 QMSS_QUE_PEND_610 Navigator transmit queue pending event for indicated queue 46 QMSS_QUE_PEND_611 Navigator transmit queue pending event for indicated queue 47 QMSS_QUE_PEND_612 Navigator transmit queue pending event for indicated queue 48 ARM_NCNTVIRQ3 ARM virtual timer interrupt for Core 3 49 ARM_NCNTVIRQ2 ARM virtual timer interrupt for Core 2 50 ARM_NCNTVIRQ1 ARM virtual timer interrupt for Core 1 51 ARM_NCNTVIRQ0 ARM virtual timer interrupt for Core 0 52 ARM_NCNTPNSIRQ3 ARM non secure timer interrupt for Core 3 53 ARM_NCNTPNSIRQ2 ARM non secure timer interrupt for Core 2 112 Memory, Interrupts, and EDMA for AM5K2E0x Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 6-31. EDMA3CC4 Events for AM5K2E0x (continued) EVENT NO. EVENT NAME DESCRIPTION 54 ARM_NCNTPNSIRQ1 ARM non secure timer interrupt for Core 1 55 ARM_NCNTPNSIRQ0 ARM non secure timer interrupt for Core 0 56 CIC_2_OUT82 CIC2 Interrupt Controller output 57 CIC_2_OUT83 CIC2 Interrupt Controller output 58 CIC_2_OUT84 CIC2 Interrupt Controller output 59 CIC_2_OUT85 CIC2 Interrupt Controller output 60 CIC_2_OUT86 CIC2 Interrupt Controller output 61 CIC_2_OUT87 CIC2 Interrupt Controller output 62 CIC_2_OUT88 CIC2 Interrupt Controller output 63 CIC_2_OUT89 CIC2 Interrupt Controller output Memory, Interrupts, and EDMA for AM5K2E0x Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 113 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com 7 System Interconnect On the KeyStone II devices, the EDMA3 transfer controllers and the system peripherals are interconnected through the TeraNets, which are non-blocking switch fabrics enabling fast and contentionfree internal data movement. The TeraNets provide low-latency, concurrent data transfers between master peripherals and slave peripherals. The TeraNets also allow for seamless arbitration between the system masters when accessing system slaves. The ARM CorePac is connected to the MSMC and the debug subsystem directly, and to other masters via the TeraNets. Through the MSMC, the ARM CorePacs can be interconnected to DDR3 and TeraNet 3_A, which allows the ARM CorePacs to access to the peripheral buses: • TeraNet 3P_A for peripheral configuration • TeraNet 6P_A for ARM Boot ROM 7.1 Internal Buses and Switch Fabrics The the ARM CorePacs, the EDMA3 traffic controllers, and the various system peripherals can be classified into two categories: masters and slaves. • Masters are capable of initiating read and write transfers in the system and do not rely on the EDMA3 for their data transfers. • Slaves on the other hand rely on the masters to perform transfers to and from them. Examples of masters include the EDMA3 traffic controllers and network coprocessor packet DMA. Examples of slaves include the SPI, UART, and I2C. The masters and slaves in the device communicate through the TeraNet (switch fabric). The device contains two types of switch fabric: • Data TeraNet is a high-throughput interconnect mainly used to move data across the system • Configuration TeraNet is mainly used to access peripheral registers Some peripherals have both a data bus and a configuration bus interface, while others only have one type of interface. Furthermore, the bus interface width and speed varies from peripheral to peripheral. Note that the data TeraNet also connects to the configuration TeraNet. 7.2 Switch Fabric Connections Matrix - Data Space The figures below show the connections between masters and slaves through various sections of the TeraNet. 114 System Interconnect Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 AM5K2E Bridge_11 Bridge_1 Tracer_SPI_ ROM_EMIF16 Bridge_2 From TeraNet_3_C QM Packet DMA M QM_2 Packet DMA M Debug_SS M TSIP M USB_0_MST TNet_6P_A CPU/6 TeraNet 3_A-1 CPU/3 Bridge_3 TNet_3_D CPU/3 TNet_3_G CPU/3 M MPU_8 S EMIF16 MPU_12 S SPI_0 MPU_13 S SPI_1 MPU_14 S SPI_2 S Boot_ROM ARM Bridge_5 Bridge_6 Bridge_7 To TeraNet_3_C Bridge_8 Bridge_9 Bridge_10 Bridge_12 To TeraNet_3P_A Bridge_13 Bridge_14 Figure 7-1. TeraNet 3_A-1 Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 System Interconnect 115 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 M 10GbE M TC_1 TC_2 TC_3 TC_0 EDMA CC2 TC_1 TC_2 TC_3 EDMA CC3 TC_0 TC_1 CPU/3 NETCP_ Global_1 TC_0 EDMA CC1 M M M M M M M M M M M PCIe_0 M PCIe_1 M TNet_3_L CPU/3 MPU_1 Tracer_QM_M S QM_SS Tracer_SPI_ ROM_EMIF16 S PCIe TeraNet 3_A-2 NETCP_ Global_0 www.ti.com AM5K2E Figure 7-2. TeraNet 3_A-2 116 System Interconnect Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 AM5K2E M USB_1 M M TeraNet 3P_Z HyperLink_0 TeraNet 3_B CPU/3 NETCP_LOCAL TeraNet 3P_Y ARM CorePac MPU_15 S USB_1 MMR CFG S USB_1 PHY CFG S NetCP Tracer_NETCP_ USB_CFG S SES S SMS S Tracer_ MSMC0-8 MSMC M M DDR3 BR_SES_0 CPU/3 Bridge_5 Bridge_6 Bridge_7 From TeraNet_3_A Bridge_8 Bridge_9 BR_SES_1 TNet_SES CPU/1 BR_SES_2 BR_SMS_0 BR_SMS_1 TNet_SMS CPU/1 BR_SMS_2 QM_Second M EDMA CC0 TC_0 TC_1 M M EDMA CC4 TC_0 M M TC_1 TeraNet 3_C Bridge_10 TNet_msmc_sys CPU/1 To TeraNet_3_A To TeraNet_3P_A CPU Port TNet_3_U CPU/3 Sys Port MPU_7 PCIe_1 Tracer_PCIe1 Bridge_1 To TeraNet_3_A Bridge_2 Bridge_3 Figure 7-3. TeraNet 3_C Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 System Interconnect 117 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com The following table lists the master and slave end-point connections. Intersecting cells may contain one of the following: • Y — There is a connection between this master and that slave. • - — There is NO connection between this master and that slave. • n — A numeric value indicates that the path between this master and that slave goes through bridge n. Table 7-1. AM5K2E04/02 Data Space Interconnect AEMIF16 BootROM_ARM DBG_STM HyperLink0 MSMC_SES MSMC_SMS PCIE0 PCIE1 QM SPI(0-2) Slaves 10GbE - - - - SES_2 SMS_2 Y Y Y - CPT_CFG - - Y - - - - - - - CPT_DDR3 - - Y - - - - - - - CPT_INTC - - Y - - - - - - - CPT_MSMC(0-7) - - Y - - - - - - - CPT_QM_CFG1 - - Y - - - - - - - CPT_QM_CFG2 - - Y - - - - - - - CPT_QM_M - - Y - - - - - - - CPT_SPI_ROM_EMIF16 - - Y - - - - - - - CPT_TPCC(0_4)T - - Y - - - - - - - CPT_TPCC(1_2_3)T - - Y - - - - - - - DBG_DAP Y Y Y Y Y Y Y Y Y Y TSIP_DMA Y Y Y Y Y Y Y Y Y Y MASTERS EDMA0_CC_TR - - - - - - - - - - EDMA0_TC0_RD 2, 11 2, 11 - Y SES_0 SMS_0 Y Y Y 2, 11 EDMA0_TC0_WR 2, 11 - - Y SES_0 SMS_0 Y Y Y 2,11 EDMA0_TC1_RD 3, 11 3, 11 - Y SES_1 SMS_1 Y Y - 3, 11 EDMA0_TC1_WR 3, 11 - - Y SES_1 SMS_1 Y Y - 3, 11 EDMA1_CC_TR - - - - - - - - - - EDMA1_TC0_RD 11 11 - Y SES_0 SMS_0 Y Y Y 11 EDMA1_TC0_WR 11 - Y Y SES_0 SMS_0 Y Y Y 11 EDMA1_TC1_RD 11 Y - Y SES_1 SMS_1 Y Y Y 11 EDMA1_TC1_WR 11 - - Y SES_1 SMS_1 Y Y Y 11 EDMA1_TC2_RD 11 Y - Y SES_1 SMS_1 Y Y - 11 EDMA1_TC2_WR 11 - - Y SES_1 SMS_1 Y Y - 11 EDMA1_TC3_RD 11 Y - Y SES_1 SMS_1 Y Y - 11 EDMA1_TC3_WR 11 11 - Y Y SES_1 SMS_1 Y Y - EDMA2_CC_TR - - - - - - - - - - EDMA2_TC0_RD 11 Y - Y SES_2 SMS_2 Y Y Y 11 EDMA2_TC0_WR 11 - Y Y SES_2 SMS_2 Y Y Y 11 EDMA2_TC1_RD 11 Y - Y SES_2 SMS_2 Y Y Y 11 EDMA2_TC1_WR 11 - - Y SES_2 SMS_2 Y Y Y 11 EDMA2_TC2_RD 11 Y - Y SES_0 SMS_0 Y Y - 11 EDMA2_TC2_WR 11 - Y Y SES_0 SMS_0 Y Y - 11 EDMA2_TC3_RD 11 Y - Y SES_0 SMS_0 Y Y - 11 EDMA2_TC3_WR 11 - - Y SES_0 SMS_0 Y Y - 11 118 System Interconnect Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 7-1. AM5K2E04/02 Data Space Interconnect (continued) DBG_STM HyperLink0 MSMC_SES MSMC_SMS PCIE0 PCIE1 EDMA3_CC_TR - - - - - - - - - - EDMA3_TC0_RD 11 Y - Y SES_1 SMS_1 Y Y Y 11 EDMA3_TC0_WR 11 - Y Y SES_1 SMS_1 Y Y Y 11 EDMA3_TC1_RD 11 Y - Y SES_1 SMS_1 Y Y - 11 EDMA3_TC1_WR 11 - - Y SES_1 SMS_1 Y Y - 11 MASTERS QM SPI(0-2) AEMIF16 BootROM_ARM Slaves EDMA4_CC_TR - - - - - - - - - - EDMA4_TC0_RD 2, 11 2, 11 - Y SES_1 SMS_1 Y Y Y 2, 11 EDMA4_TC0_WR 2, 11 - - Y SES_1 SMS_1 Y Y Y 2, 11 EDMA4_TC1_RD 3, 11 3, 11 - Y SES_1 SMS_1 Y Y - 3, 11 EDMA4_TC1_WR 3, 11 - - Y SES_1 SMS_1 Y Y - 3, 11 HyperLink0_Master 11 1, 11 - - Y Y Y Y Y Y MSMC_SYS 11 11 Y Y - - Y Y Y 11 NETCP - - - - SES_1 SMS_1 Y Y Y - PCIE0 11 - Y 10 SES_2 SMS_2 - - Y 11 PCIE1 11 - Y 10 SES_2 SMS_2 - - Y 11 QM_Master1 - - - Y SES_0 SMS_0 - - Y - QM_Master2 - - - Y SES_1 SMS_1 - - Y - QM_SEC - - Y Y SES_2 SMS_2 - - - - USB0 - - Y Y SES_0 SMS_0 - - Y - USB1 - - Y Y SES_0 SMS_0 - - Y - Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 System Interconnect 119 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 7.3 www.ti.com Switch Fabric Connections Matrix - Configuration Space The figures below show the connections between masters and slaves through various sections of the TeraNet. S MPU (´ 15) MPU_2 M QM_SS_ CFG1 MPU_6 M QM_SS_ CFG2 MPU_10 S Semaphore S S CC0 TC (´ 2) S S CC4 TC (´ 2) S S CC1 TC (´ 4) S S CC2 TC (´ 4) S S CC3 TC (´ 2) S ARM INTC S CP_INTC02 Bridge_12 Bridge_13 From TeraNet_3_A Tracer_QM_CFG1 Bridge_14 Tracer_QM_CFG2 TeraNet 3P_A CPU/3 From TeraNet_3_C Tracer_SM Tracer _EDMA CC0 & CC4 Tracer _EDMA CC1 - CC3 MPU_9 TNet_3P_M CPU/3 TNet_3P_C CPU/3 TNet_3P_L CPU/3 Tracer_INTC DBG_TBR_SYS (Debug_SS) TBR_SYS_ ARM_CorePac MPU_0 To TeraNet_3P_B Tracer_CFG To TeraNet_3P_Tracer AM5K2E Figure 7-4. TeraNet 3P_A 120 System Interconnect Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 TeraNet 3P_B CPU/3 From TeraNet_3P_A TNet_3P_N CPU/3 S CP_T0-T8 (MSMC) TNet_3P_D CPU/3 S CP_T (´ 12) S NetCP S TSIP S 10GbE CFG AM5K2E04 Only MPU_11 Bridge 20 To TeraNet_6P_B AM5K2E Figure 7-5. TeraNet 3P_B Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 System Interconnect 121 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com S Timer (´ 12) From TeraNet_3P_B S USIM S OTP S Debug SS S PLL_CTL S GPSC S BOOT_CFG S UART (´ 2) S I C (´ 3) S GPIO TeraNet 6P_B CPU/6 Bridge 20 2 S USB PHY CFG 0-1 S PCIe SerDes CFG 0-1 S HyperLink SerDes CFG 0-1 S XGE SerDes CFG AM5K2E04 Only S NetCP SerDes CFG S DDR3 PHY CFG S USB MMR CFG 0-1 S SmartReflex AM5K2E Figure 7-6. TeraNet 6P_B 122 System Interconnect Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Tracer_MSMC_1 M Tracer_MSMC_2 M Tracer_MSMC_3 M Tracer_MSMC_4 M Tracer_MSMC_5 M Tracer_MSMC_6 M Tracer_MSMC_7 M Tracer_MSMC_8 M AM5K2E TeraNet 3P_P CPU/3 M TeraNet 3P_Tracer CPU/3 Tracer_MSMC_0 From TeraNet_3P_A Tracer_SM M Tracer_CIC M Tracer_QM_CFG1 M Tracer_QM_CFG2 M Tracer_QM_M M Tracer_CFG M Tracer_EDMA3CC0_4 M Tracer_EDMA3CC1_2_3 M Tracer_SPI_ ROM_EMIF16 M S Debug_SS STM Figure 7-7. TeraNet 3P_Tracer The following tables list the master and slave end point connections. Intersecting cells may contain one of the following: • Y — There is a connection between this master and that slave. • - — There is NO connection between this master and that slave. • n — A numeric value indicates that the path between this master and that slave goes through bridge n. Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 System Interconnect 123 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 7-2. Configuration Space Interconnect - Section 1 MASTERS ADTF(0-7)_CFG ARM_CFG BOOTCFG_CFG CP_INTC_CFG CPT_CFG_CFG CPT_DDR3_CFG CPT_INTC(0-2)_CFG CPT_MSMC(0-7)_CFG CPT_QM_CFG1_CFG CPT_QM_CFG2_CFG CPT_QM_M_CFG CPT_SPI_ROM_EMIF16_CFG CPT_TPCC0_4_CFG CPT_TPCC1_2_3_CFG SLAVES DBG_DAP Y Y Y Y Y Y Y Y Y Y Y Y Y Y TSIP_DMA Y Y Y Y Y Y Y Y Y Y Y Y Y Y EDMA0_CC_TR - - - - - - - - - - - - - - EDMA0_TC0_RD - - - - - - - - - - - - - - EDMA0_TC0_WR - - - - - - - - - - - - - - EDMA0_TC1_RD - - - - - - - - - - - - - - EDMA0_TC1_WR - - - - - - - - - - - - - - EDMA1_CC_TR - - - - - - - - - - - - - - EDMA1_TC0_RD 12 12 12 12 12 12 12 12 12 12 12 12 12 12 EDMA1_TC0_WR 12 12 12 12 12 12 12 12 12 12 12 12 12 12 EDMA1_TC1_RD - - - - - - - - - - - - - - EDMA1_TC1_WR - - - - - - - - - - - - - - EDMA1_TC2_RD - - - - - - - - - - - - - - EDMA1_TC2_WR - - - - - - - - - - - - - - EDMA1_TC3_RD 12 12 12 12 12 12 12 12 12 12 12 12 12 12 EDMA1_TC3_WR 12 12 12 12 12 12 12 12 12 12 12 12 12 12 EDMA2_CC_TR - - - - - - - - - - - - - - EDMA2_TC0_RD 12 12 12 12 12 12 12 12 12 12 12 12 12 12 EDMA2_TC0_WR 12 12 12 12 12 12 12 12 12 12 12 12 12 12 EDMA2_TC1_RD - - - - - - - - - - - - - - EDMA2_TC1_WR - - - - - - - - - - - - - - EDMA2_TC2_RD 12 12 12 12 12 12 12 12 12 12 12 12 12 12 EDMA2_TC2_WR 12 12 12 12 12 12 12 12 12 12 12 12 12 12 EDMA2_TC3_RD - - - - - - - - - - - - - - EDMA2_TC3_WR - - - - - - - - - - - - - - EDMA3_CC_TR - - - - - - - - - - - - - - EDMA3_TC0_RD 13 13 13 13 13 13 13 13 13 13 13 13 13 13 EDMA3_TC0_WR 13 13 13 13 13 13 13 13 13 13 13 13 13 13 EDMA3_TC1_RD - - - - - - - - - - - - - - EDMA3_TC1_WR - - - - - - - - - - - - - - EDMA4_CC_TR - - - - - - - - - - - - - - EDMA4_TC0_RD - - - - - - - - - - - - - - EDMA4_TC0_WR - - - - - - - - - - - - - - EDMA4_TC1_RD - - - - - - - - - - - - - - EDMA4_TC1_WR - - - - - - - - - - - - - - HyperLink0 12 12 12 12 12 12 12 12 12 12 12 12 12 12 MSMC_SYS Y Y Y Y Y Y Y Y Y Y Y Y Y Y NETCP - - - - - - - - - - - - - - 124 System Interconnect Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 7-2. Configuration Space Interconnect - Section 1 (continued) MASTERS ADTF(0-7)_CFG ARM_CFG BOOTCFG_CFG CP_INTC_CFG CPT_CFG_CFG CPT_DDR3_CFG CPT_INTC(0-2)_CFG CPT_MSMC(0-7)_CFG CPT_QM_CFG1_CFG CPT_QM_CFG2_CFG CPT_QM_M_CFG CPT_SPI_ROM_EMIF16_CFG CPT_TPCC0_4_CFG CPT_TPCC1_2_3_CFG SLAVES PCIE0 12 12 12 12 12 12 12 12 12 12 12 12 12 12 PCIE1 12 12 12 12 12 12 12 12 12 12 12 12 12 12 QM_Master1 - - - - - - - - - - - - - - QM_Master2 - - - - - - - - - - - - - - QM_SEC - 12 - - - - - - - - - - - - USB0 - - - - - - - - - - - - - - USB1 - - - - - - - - - - - - - - Table 7-3. Configuration Space Interconnect - Section 2 MASTERS DBG_CFG DBG_TBR_SYS DDR3_PHY_CFG EDMA0_CC_CFG EDMA0_TC(0-1)_CFG EDMA1_CC_CFG EDMA1_TC(0-3)_CFG EDMA2_CC_CFG EDMA2_TC(0-3)_CFG EDMA3_CC_CFG EDMA3_TC(0-1)_CFG EDMA4_CC_CFG EDMA4_TC(0-1)_CFG GIC_CFG GPIO_CFG HYPERLINK0_SERDES_CFG I2C(0-2)_CFG MPU(0-14)_CFG NETCP_CFG NETCP_SERDES_CFG OTP_CFG PCIE0_SERDES_CFG PCIE1_SERDES_CFG PLL_CTL_CFG PSC_CFG QM_CFG1 SLAVES DBG_DAP Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y TSIP_DMA Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y EDMA0_CC_TR - - - - Y - - - - - - - - - - - - - - - - - - - - - EDMA0_TC0_RD - 12 - 12 12 12 12 12 12 12 12 12 12 - - - - - - - - - - - - - EDMA0_TC0_WR - - - 12 12 12 12 12 12 12 12 12 12 - - - - - - - - - - - - - EDMA0_TC1_RD - 12 - 12 12 12 12 12 12 12 12 12 12 - - - - - - - - - - - - - EDMA0_TC1_WR - - - 12 12 12 12 12 12 12 12 12 12 - - - - - - - - - - - - - EDMA1_CC_TR - - - - - - - - - - - - - - - - - - - Y - - - - - - EDMA1_TC0_RD 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 EDMA1_TC0_WR 12 - EDMA1_TC1_RD - - - 13 13 13 13 13 13 13 13 13 13 - - - - - - - - - - - - - EDMA1_TC1_WR - - - 13 13 13 13 13 13 13 13 13 13 - - - - - - - - - - - - - EDMA1_TC2_RD - - - 14 14 14 14 14 14 14 14 14 14 - - - - - - - - - - - - - EDMA1_TC2_WR - - - 14 14 14 14 14 14 14 14 14 14 - - - - - - - - - - - - - 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 EDMA1_TC3_RD 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 EDMA1_TC3_WR 12 - - - EDMA2_CC_TR 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 - - - - - - Y - - - - - - - - - - - - - - - - - EDMA2_TC0_RD 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 EDMA2_TC0_WR 12 - 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 System Interconnect 125 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 7-3. Configuration Space Interconnect - Section 2 (continued) GIC_CFG GPIO_CFG HYPERLINK0_SERDES_CFG I2C(0-2)_CFG MPU(0-14)_CFG NETCP_CFG NETCP_SERDES_CFG OTP_CFG PCIE0_SERDES_CFG PCIE1_SERDES_CFG PLL_CTL_CFG PSC_CFG QM_CFG1 - - - - - - - - - - - - - - - - - - - - - - - - - EDMA4_CC_CFG EDMA2_CC_CFG EDMA4_TC(0-1)_CFG - 13 13 13 13 13 13 13 13 13 13 EDMA3_TC(0-1)_CFG 13 13 13 13 13 13 13 13 13 13 - EDMA3_CC_CFG - - EDMA2_TC(0-3)_CFG EDMA0_CC_CFG - - EDMA1_TC(0-3)_CFG DDR3_PHY_CFG - EDMA2_TC1_WR EDMA1_CC_CFG DBG_TBR_SYS EDMA2_TC1_RD EDMA0_TC(0-1)_CFG MASTERS DBG_CFG SLAVES EDMA2_TC2_RD 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 EDMA2_TC2_WR 12 - EDMA2_TC3_RD - - - 14 14 14 14 14 14 14 14 14 14 - - - - - - - - - - - - - EDMA2_TC3_WR - - - 14 14 14 14 14 14 14 14 14 14 - - - - - - - - - - - - - EDMA3_CC_TR - - - - - - - - - - - - - - - - 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 - - - - - - - - - - EDMA3_TC0_RD 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 EDMA3_TC0_WR 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 EDMA3_TC1_RD - 14 - 14 14 14 14 14 14 14 14 14 14 - - - - - - - - - - - - - EDMA3_TC1_WR - - - 14 14 14 14 14 14 14 14 14 14 - - - - - - - - - - - - - EDMA4_CC_TR - - - - - - - - - - - - - - - - EDMA4_TC0_RD - 12 - 12 12 12 12 12 12 12 12 12 12 - - - - - - - - - - - - - EDMA4_TC0_WR - - - 12 12 12 12 12 12 12 12 12 12 - - - - - - - - - - - - - EDMA4_TC1_RD - 12 - 12 12 12 12 12 12 12 12 12 12 - - - - - - - - - - - - - EDMA4_TC1_WR - - - 12 12 12 12 12 12 12 12 12 12 - - - - - - - - - - - - - HyperLink0_Master 12 - 12 12 12 12 12 12 12 12 12 12 12 - 12 12 12 12 12 12 12 12 12 12 12 12 MSMC_SYS Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y NETCP - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - PCIE0 12 12 12 12 12 12 12 12 12 12 12 12 12 - 12 12 12 12 12 12 12 12 12 12 12 12 PCIE1 12 12 12 12 12 12 12 12 12 12 12 12 12 - 12 12 12 12 12 12 12 12 12 12 12 12 QM_Master1 - - - 12 - 12 - 12 - 12 - 12 - - - - - - - - - - - - - - QM_Master2 - - - 12 - 12 - 12 - 12 - 12 - - - - - - - - - - - - - - QM_SEC - - - - - - - - - - - - - - - - - - 12 - - - - - - - USB0 - 12 - - - - - - - - - - - - - - - - - - - - - - - - USB1 - 12 - - - - - - - - - - - - - - - - - - - - - - - - Table 7-4. Configuration Space Interconnect - Section 3 MASTERS QM_CFG2 SR_CFG(0-1) TBR_SYS_ARM TETB0_CFG TETB1_CFG TETB2_CFG TETB3_CFG TETB4_CFG TETB5_CFG TETB6_CFG TETB7_CFG TIMER(0-19)_CFG UART(0-1)_CFG USB0_MMR_CFG USB0_PHY_CFG USB1_MMR_CFG USB1_PHY_CFG USIM_CFG SLAVES DBG_DAP Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y TSIP_DMA Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y EDMA0_CC_TR - - - - - - - - - - - - - - - - - - 126 System Interconnect Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 7-4. Configuration Space Interconnect - Section 3 (continued) MASTERS QM_CFG2 SR_CFG(0-1) TBR_SYS_ARM TETB0_CFG TETB1_CFG TETB2_CFG TETB3_CFG TETB4_CFG TETB5_CFG TETB6_CFG TETB7_CFG TIMER(0-19)_CFG UART(0-1)_CFG USB0_MMR_CFG USB0_PHY_CFG USB1_MMR_CFG USB1_PHY_CFG USIM_CFG SLAVES EDMA0_TC0_RD - - - - - - - 12 12 - - - - - - - - - EDMA0_TC0_WR - - - - - - - - - - - - - - - - - - EDMA0_TC1_RD - - - - - - - 12 12 - - - - - - - - - EDMA0_TC1_WR - - - - - - - - - - - - - - - - - - EDMA1_CC_TR - - - - - - - - - - - - - - - - - - EDMA1_TC0_RD 12 12 12 - - - - 12 12 - - 12 12 12 12 12 12 12 EDMA1_TC0_WR 12 12 12 - - - - - - - - 12 12 12 12 12 12 12 EDMA1_TC1_RD - - - 13 13 - - - - 13 - - - - - - - - EDMA1_TC1_WR - - - - - - - - - - - - - - - - - - EDMA1_TC2_RD - - - - - 14 14 - - - 14 - - - - - - - EDMA1_TC2_WR - - - - - - - - - - - - - - - - - - EDMA1_TC3_RD 12 12 12 - - - - 12 12 - - 12 12 12 12 12 12 12 EDMA1_TC3_WR 12 12 12 12 - - - - - - - - 12 12 12 12 12 12 EDMA2_CC_TR - - - - - - - - - - - - - - - - - - EDMA2_TC0_RD 12 12 12 - - - - Y Y - - 12 12 12 12 12 12 12 EDMA2_TC0_WR 12 12 12 - - - - - - - - 12 12 12 12 12 12 12 EDMA2_TC1_RD - - - 13 13 - - - - 13 - - - - - - - - EDMA2_TC1_WR - - - - - - - - - - - - - - - - - - EDMA2_TC2_RD 12 12 12 - - - - 12 12 - - 12 12 12 12 12 12 12 EDMA2_TC2_WR 12 12 12 - - - - - - - - 12 12 12 12 12 12 12 EDMA2_TC3_RD - - - - - 14 14 - - - 14 - - - - - - - EDMA2_TC3_WR - - - - - - - - - - - - - - - - - - EDMA3_CC_TR - - - - - - - - - - - - - - - - - - EDMA3_TC0_RD 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 EDMA3_TC0_WR 13 13 13 - - - - - - - - 13 13 13 13 13 13 13 EDMA3_TC1_RD - - - 14 14 14 14 14 14 14 14 - - - - - - - EDMA3_TC1_WR - - - - - - - - - - - - - - - - - - EDMA4_CC_TR - - - - - - - - - - - - - - - - - - EDMA4_TC0_RD - - 12 - - - - 12 12 - - - - - - - - - EDMA4_TC0_WR - - 12 - - - - - - - - - - - - - - - EDMA4_TC1_RD - - 12 - - - - 12 12 - - - - - - - - - EDMA4_TC1_WR - - 12 - - - - - - - - - - - - - - - HyperLink0_Master 12 12 12 - - - - - - - - 12 12 12 12 12 12 12 MSMC_SYS Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y NETCP - - - - - - - - - - - - - - - - - - PCIE0 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 PCIE1 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 QM_Master1 - - - - - - - - - - - - - - - - - - QM_Master2 - - - - - - - - - - - - - - - - - - QM_SEC - - 12 - - - - - - - - - - 12 - 12 - - USB0 - - 12 12 12 12 12 12 12 12 12 - - - - - - - USB1 - - 12 12 12 12 12 12 12 12 12 - - - - - - - Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 System Interconnect 127 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 7.4 www.ti.com Bus Priorities The priority level of all master peripheral traffic is defined at the TeraNet boundary. User-programmable priority registers allow software configuration of the data traffic through the TeraNet. Note that a lower number means higher priority — PRI = 000b = urgent, PRI = 111b = low. All other masters provide their priority directly and do not need a default priority setting. All the Packet DMA-based peripherals also have internal registers to define the priority level of their initiated transactions. The Packet DMA secondary port is one master port that does not have priority allocation register inside the Multicore Navigator. The priority level for transaction from this master port is described by the QM_PRIORITY bit field in the CHIP_MISC_CTL0 register shown in and Table 8-48. For all other modules, see the respective User's Guides listed in Section 3.4 for programmable priority registers. 128 System Interconnect Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 8 Device Boot and Configuration 8.1 8.1.1 Device Boot Boot Sequence The boot sequence is a process by which the internal memory is loaded with program and data sections. The boot sequence is started automatically after each power-on reset or warm reset. The AM5K2E0x supports several boot processes that begins execution at the ROM base address, which contains the bootloader code necessary to support various device boot modes. The boot processes are software-driven and use the BOOTMODE[15:0] device configuration inputs to determine the software configuration that must be completed. For more details on boot sequence see the KeyStone II Architecture ARM Bootloader User's Guide (SPRUHJ3). For AM5K2E0x non-secure devices, there is only one type of booting: the ARM CorePac as the boot master.The ARM CorePac does not support no-boot mode. The ARM CorePac needs to read the bootmode register to determine how to proceed with the boot. Table 8-1 shows addresses reserved for boot by the ARM CorePac. Table 8-1. ARM Boot RAM Memory Map START ADDRESS SIZE DESCRIPTION 0xc17_e000 0xc00 Context RAM not Scrubbed on Secure boot 0xc18_6f80 0x80 Global Level 0 Non-secure Translation table 0xc18_7000 0x5000 Global Non-secure Page Table for memory Covering ROM 0xc18_c000 0x1000 Core 0 Non-secure Level 1 Translation table 0xc18_d000 0x1000 Core 1 Non-secure Level 1 Translation table 0xc18_e000 0x1000 Core 2 Non-secure Level 1 Translation table 0xc18_f000 0x1000 Core 3 Non-secure Level 1 Translation table 0xc19_0000 0x7e80 Packet Memory Buffer 0xc19_7e80 080 PCIE Block 0xc19_7f00 4 Host Data Address (boot magic address for secure boot through master peripherals) 0xc1a_6e00 0x200 DDR3 Configuration Structure 0xc1a_7000 0x3000 Boot Data 0xc1a_a000 0x3000 Supervisor Stack, Each Core Gets 0xc000 Bytes 0xc1a_d000 4 ARM Boot Magic Address, Core 0 0xc1a_d004 4 ARM Boot Magic Address, Core 1 0xc1a_d008 4 ARM Boot Magic Address, Core 2 0xc1a_d00c 4 ARM Boot Magic Address, Core 3 0xc1a_e000 0x400 Abort Stack, Core 0 0xc1a_e400 0x400 Abort Stack, Core 1 0xc1a_e800 0x400 Abort Stack, Core 2 0xc1a_ec00 0x400 Abort Stack, Core 3 0xc1a_f000 0x400 Unknown Mode Stack, Core 0 0xc1a_f400 0x400 Unknown mOde Stack, Core 1 0xc1a_f800 0x400 Unknown Mode Stack, Core 2 0xc1a_fc00 0x400 Unknown Mode Stack, Core 3 0xc1b_0000 0x180 Boot Version String, Core 0 0xc1b_0180 0x80 Boot Status Stack, Core 0 0xc1b_0200 0x100 Boot Stats, Core 0 0xc1b_0300 0x100 Boot Log, Core 0 Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Device Boot and Configuration 129 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 8-1. ARM Boot RAM Memory Map (continued) START ADDRESS SIZE DESCRIPTION 0xc1b_0400 0x100 Boot RAM Call Table, Core 0 0xc1b_0500 0x100 Boot Parameter Tables, Core 0 0xc1b_0600 0x19e0 Boot Data, Core 0 0xc1b_1fe0 0x1010 Boot Trace, Core 0 0xc1b_4000 0x180 Boot Version String, Core 1 0xc1b_4180 0x80 Boot Status Stack, Core 1 0xc1b_4200 0x100 Boot Stats, Core 1 0xc1b_4300 0x100 Boot Log, Core 1 0xc1b_4400 0x100 Boot RAM Call Table, Core 1 0xc1b_4500 0x100 Boot Parameter Tables, Core 1 0xc1b_4600 0x19e0 Boot Data, Core 1 0xc1b_5fe0 0x1010 Boot Trace, Core 1 0xc1b_6000 0x180 Boot Version String, Core 2 0xc1b_6180 0x80 Boot Status Stack, Core 2 0xc1b_6200 0x100 Boot Stats, Core 2 0xc1b_6300 0x100 Boot Log, Core 2 0xc1b_6400 0x100 Boot RAM Call Table, Core 2 0xc1b_6500 0x100 Boot Parameter Tables, Core 2 0xc1b_6600 0x19e0 Boot Data, Core 2 0xc1b_7fe0 0x1010 Boot Trace, Core 2 0xc1b_8000 0x180 Boot Version String, Core 3 0xc1b_8180 0x80 Boot Status Stack, Core 3 0xc1b_8200 0x100 Boot Stats, Core 3 0xc1b_8300 0x100 Boot Log, Core 3 0xc1b_8400 0x100 Boot RAM Call Table, Core 3 0xc1b_8500 0x100 Boot Parameter Tables, Core 3 0xc1b_8600 0x19e0 Boot Data, Core 3 0xc1b_9fe0 0x1010 Boot Trace, Core 3 0xc1c_0000 0x4_0000 Secure MSMC 8.1.2 Boot Modes Supported The device supports several boot processes, which leverage the internal boot ROM. Most boot processes are software-driven, using the BOOTMODE[15:0] device configuration inputs to determine the software configuration that must be completed. From a hardware perspective, there are two possible boot modes: • Public ROM Boot when the ARM CorePac Core0 is the boot master — In this boot mode, the ARM CorePac performs the boot process. When the ARM CorePac Core0 finishes the boot process, it may send Cortex-A15 processor cores through IPC registers. • Secure ROM Boot when the ARM CorePac0 is the boot master — The ARM CorePac Core0 are released from reset simultaneously and begin executing from secure ROM. The ARM CorePac Core0 initiates the boot process. For more information, refer to the Secure device Addendum. The boot process performed by the ARM CorePac Core0 in public ROM boot and secure ROM boot are determined by the BOOTMODE[15:0] value in the DEVSTAT register. The ARM CorePac Core0 read this value, and then execute the associated boot process in software. The figure below shows the bits associated with BOOTMODE[15:0] pins (DEVSTAT[16:1] register bits) when the ARM CorePac is the boot master. Note that Figure 8-1 does not include bit 0 of the DEVSTAT contents. Bit 0 is used to select overall system endianess that is independent of the boot mode. 130 Device Boot and Configuration Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 The boot ROM will continue attempting to boot in this mode until successful or an unrecoverable error occurs. The PLL settings are shown at the end of this section, and the PLL set-up details can be found in Section 10.5. NOTE It is important to keep in mind that BOOTMODE[15:0] pins map to DEVSTAT[16:1] bits of the DEVSTAT register. Figure 8-1. DEVSTAT Boot Mode Pins ROM Mapping DEVSTAT Boot Mode Pins ROM Mapping 16 15 14 13 12 11 10 9 8 7 6 5 X X 0 X PLLEN SYS PLL X CONFIG SlaveAddr 1 Port X Bus Addr Param ldx X Port Width Csel Mode Port Param ldx 0 Base Addr Width Wait Chip Sel 0 (ARM Boot 1 First Block Clear Master) X NETC Ref clk Ext Con Lane Setup SYS PLL P clk CONFIG X Bar Config Port X Port Ref clk Data Rate X X Port 8.1.2.1 4 Min 0 Min 0 1 Min 3 0 0 0 0 0 0 2 0 0 0 1 1 1 1 0 0 1 0 1 1 Mode SLEEP I2C SLAVE 2 I C MASTER SPI EMIF NAND 1 0 1 Ethernet 1 1 1 1 1 1 0 0 1 PCIe HyperLink UART Boot Device Field The Boot Device field DEVSTAT[16-14-4-3-2-1] defines the boot device that is chosen. Table 8-2 shows the supported boot modes. Table 8-2. Boot Mode Pins: Boot Device Values Bit Field Description 16, 14, 4, 3, 2, 1 Boot Device Device boot mode - ARM is a boot master when BOOTMODE[8]=0 • Sleep = X0[Min]000b • I2C Slave = [Slave Addr1]1[Min]000 b • I2C Master = XX[Min]001b • SPI = [Width][Csel0][Min]010b • EMIF = 0X0011b • NAND = 1X[Min]011b • Ethernet (SGMII) = [Pa clk][Ref Clk0][Min]101b • PCI = XBar Config2]0110b • Hyperlink = [Port][Ref Clk0]1110b • UART = XX[Min]111b 8.1.2.2 Device Configuration Field The device configuration fields DEVSTAT[16:1] are used to configure the boot peripheral and, therefore, the bit definitions depend on the boot mode. 8.1.2.2.1 Sleep Boot Mode Configuration Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Device Boot and Configuration 131 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Figure 8-2. Sleep Boot Mode Configuration Fields Description 16 15 14 13 12 11 X X 0 X PLLEN DEVSTAT Boot Mode Pins ROM Mapping 10 9 8 7 6 5 Boot X Sys PLL Config Master 4 3 2 Min 1 000 0 Lendian Table 8-3. Sleep Boot Configuration Field Descriptions Bit Field Description 16-15 Reserved Reserved 14 Boot Devices Boot Device- used in conjunction with Boot Devices [Used in conjunction with bits 3-1] • 0 = Sleep (default) • Others = Other boot modes 13 Reserved 12 PLLEN Enable the System PLL • 0 = PLL disabled (default) • 1 = PLL enabled 11-9 Reserved Reserved 8 Boot Master This pin must be pulled down to GND 7-5 SYS PLL Setting The PLL default settings are determined by the [7:5] bits. This will set the PLL to the maximum clock setting for the device. Table 8-24 shows settings for various input clock frequencies. 4 Min Minimum boot configuration select bit. • 0 = Minimum boot pin select disabled • 1 = Minimum boot pin select enabled. When Min = 1, a predetermined set of values is configured (see the Device Configuration Field Descriptions table for configuration bits with a "(default)" tag added in the description column). When Min = 0, all fields must be independently configured. 3-1 Boot Devices Boot Devices[3:1] used in conjunction with Boot Device [14] • 000 = Sleep • Others = Other boot modes 0 Lendian Endianess (device) • 0 = Big endian • 1 = Little endian 8.1.2.2.2 I2C Boot Device Configuration 8.1.2.2.2.1 I2C Passive Mode In passive mode, the device does not drive the clock, but simply acks data received on the specified address. Figure 8-3. I2C Passive Mode Device Configuration Fields 16 15 14 Slave Addr 1 13 12 Port 11 DEVSTAT Boot Mode Pins ROM Mapping 10 9 8 7 6 5 Boot X Sys PLL Config Master 4 Min 3 2 1 000 0 Lendian Table 8-4. I2C Passive Mode Device Configuration Field Descriptions Bit Field Description 16-15 Slave Addr I2C • • • • 132 Slave boot bus address 0 = I2C slave boot bus address 1 = I2C slave boot bus address 2 = I2C slave boot bus address 3 = I2C slave boot bus address Device Boot and Configuration is is is is 0x00 0x10 (default) 0x20 0x30 Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 8-4. I2C Passive Mode Device Configuration Field Descriptions (continued) Bit Field Description 14 Boot Devices Boot Device[14] used in conjunction with Boot Devices [Use din conjunction with bits 3-1] • 0 = Other boot modes • 1= I2C Slave boot mode 13-12 Port I2C • • • • 11-9 Reserved Reserved 8 Boot Master This pin must be pulled down to GND 7-5 SYS PLL Setting The PLL default settings are determined by the [7:5] bits. This will set the PLL to the maximum clock setting for the device. Table 8-24 shows settings for various input clock frequencies. 4 Min Minimum boot configuration select bit. • 0 = Minimum boot pin select disabled • 1 = Minimum boot pin select enabled. port number 0 = I2C0 1 = I2C1 2 = I2C2 3 = Reserved When Min = 1, a predetermined set of values is configured (see the Device Configuration Field Descriptions table for configuration bits with a "(default)" tag added in the description column). When Min = 0, all fields must be independently configured. 3-1 Boot Devices Boot Devices[3:1] used in conjunction with Boot Device [14] • 000 = I2C Slave • Others = Other boot modes 0 Lendian Endianess • 0 = Big endian • 1 = Little endian 8.1.2.2.2.2 I2C Master Mode In master mode, the I2C device configuration uses ten bits of device configuration instead of seven as used in other boot modes. In this mode, the device makes the initial read of the I2C EEPROM while the PLL is in bypass mode. The initial read contains the desired clock multiplier, which must be set up prior to any subsequent reads. Figure 8-4. I2C Master Mode Device Configuration Fields 16 15 14 Reserved 13 12 Bus Addr DEVSTAT Boot Mode Pins ROM Mapping 11 10 9 8 7 Param ldx/Offset Boot Master Reserved 6 5 Port 4 Min 3 2 1 001 0 Lendian Table 8-5. I2C Master Mode Device Configuration Field Descriptions Bit Field Description 16-14 Reserved Reserved 13-12 Bus Addr I2C • • • • bus address slave device 0 = I2C slave boot bus address 1 = I2C slave boot bus address 2 = I2C slave boot bus address 3 = I2C slave boot bus address is is is is 0x50 (default) 0x51 0x52 0x53 11-9 Param Idx Parameter Table Index • 0-7 = This value specifies the parameter table index (default = 0) 8 Boot Master This pin must be pulled down to GND 7 Reserved Reserved Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Device Boot and Configuration 133 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 8-5. I2C Master Mode Device Configuration Field Descriptions (continued) Bit Field Description 6-5 Port I2C • • • • 4 Min Minimum boot configuration select bit. • 0 = Minimum boot pin select disabled • 1 = Minimum boot pin select enabled. port number 0 = I2C0 (default) 1 = I2C1 2 = I2C2 3 = Reserved When Min = 1, a predetermined set of values is configured (see the Device Configuration Field Descriptions table for configuration bits with a "(default)" tag added in the description column). When Min = 0, all fields must be independently configured. 3-1 Boot Devices Boot Devices[3:1] • 001 = I2C Master • Others = Other boot modes 0 Lendian Endianess • 0 = Big endian • 1 = Little endian 134 Device Boot and Configuration Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 8.1.2.2.3 SPI Boot Device Configuration Figure 8-5. SPI Device Configuration Fields 16 15 Width 14 13 Csel 12 DEVSTAT Boot Mode Pins ROM Mapping 10 9 8 7 6 5 Port Boot Master Param Ind 11 Mode 4 Min 3 2 1 010 0 Lendian Table 8-6. SPI Device Configuration Field Descriptions Bit Field Description 16-15 Width SPI address width configuration • 0 = 16-bit address values are used • 1 = 24-bit address values are used (default) 14-13 Csel The chip select field value 0-3 (default = 0) 12-11 Mode Clk Polarity/ Phase • 0 = Data is output on the rising edge of SPICLK. Input data is latched on the falling edge. • 1 = Data is output one half-cycle before the first rising edge of SPICLK and on subsequent falling edges. Input data is latched on the rising edge of SPICLK. • 2 = Data is output on the falling edge of SPICLK. Input data is latched on the rising edge (default). • 3 = Data is output one half-cycle before the first falling edge of SPICLK and on subsequent rising edges. Input data is latched on the falling edge of SPICLK. 10-9 Port Specify SPI port • 0 = SPI0 used (default) • 1 = SPI1 used • 2 = SPI2 used • 3 = Reserved 8 Boot Master This pin must be pulled down to GND 7-5 Param Idx Parameter Table Index • 0-7 = This value specifies the parameter table index (default = 0) 4 Min Minimum boot configuration select bit. • 0 = Minimum boot pin select disabled • 1 = Minimum boot pin select enabled. When Min = 1, a predetermined set of values is configured (see the Device Configuration Field Descriptions table for configuration bits with a "(default)" tag added in the description column). When Min = 0, all fields must be independently configured. 3-1 Boot Devices Boot Devices[3:1] • 010 = SPI boot mode • Others = Other boot modes 0 Lendian Endianess • 0 = Big endian • 1 = Little endian 8.1.2.2.4 EMIF Boot Device Configuration Figure 8-6. EMIF Boot Device Configuration Fields 16 0 15 14 Base Addr 13 Wait 12 Width DEVSTAT Boot Mode Pins ROM Mapping 11 10 9 8 X Chip Sel Boot Master Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 7 6 5 Sys PLL Cfg 4 0 3 2 1 011 0 Lendian Device Boot and Configuration 135 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 8-7. EMIF Boot Device Configuration Field Descriptions Bit Field Description 16 Boot Devices Boot Devices[16] used conjunction with Boot Devices[4] and Boot Devices [Used in conjunction with bits 3-1] • 0 = EMIF boot mode • 1 = Other boot modes 15-14 Base Addr Base address (0-3) used to calculate the branch address. Branch address is the chip select plus Base Address *16MB 13 Wait Extended Wait • 0 = Extended Wait disabled • 1 = Extended Wait enabled 12 Width EMIF Width • 0 = 8-bit EMIF Width • 1 = 16-bit EMIF Width 11 Reserved Reserved 10-9 Chip Sel Chip Sel that specifies the chip select region, EMIF16 CS2-EMIF16 CS5. • 00 = EMIF16 CS2(EMIFCE0) • 01 = EMIF16 CS3 (EMIFCE1) • 10 = EMIF16 CS4 (EMIFCE2) • 11 = EMIF16 CS5 (EMIFCE3) 8 Boot Master This pin must be pulled down to GND 7-5 SYS PLL Setting The PLL default settings are determined by the [7:5] bits. This will set the PLL to the maximum clock setting for the device. Table 8-24 shows settings for various input clock frequencies. 4-1 Boot Devices Boot Devices[4] used conjunction with Boot Devices[16] • 0011 = EMIF boot mode • 1XXX = Other boot modes 0 Lendian Endianess • 0 = Big endian • 1 = Little endian 8.1.2.2.5 NAND Boot Device Configuration Figure 8-7. NAND Boot Device Configuration Fields 16 1 15 14 13 First Block 12 Clear 11 X DEVSTAT Boot Mode Pins ROM Mapping 10 9 8 7 6 5 Chip Sel Boot Master Sys PLL Cfg 4 Min 3 2 011 1 0 Lendian Table 8-8. NAND Boot Device Configuration Field Descriptions Bit Field Description 16 Boot Devices Boot Devices[16] used conjunction with Boot Devices [3-1] • 0 = Other boot modes • 1 = NAND boot mode 15-13 First Block First Block. This value is used to calculate the first block read. The first block read is the first block value *16. 12 Clear ClearNAND • 0 = Device is not a ClearNAND (default) • 1 = Device is a ClearNAND 11-9 Chip Sel Chip Sel that specifies the chip select region, EMIF16 CS2-EMIF16 CS5. • 00 = EMIF16 CS2(EMIFCE0) • 01 = EMIF16 CS3 (EMIFCE1) • 10 = EMIF16 CS4 (EMIFCE2) • 11 = EMIF16 CS5 (EMIFCE3) 8 Boot Master This pin must be pulled down to GND 136 Device Boot and Configuration Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 8-8. NAND Boot Device Configuration Field Descriptions (continued) Bit Field Description 7-5 SYS PLL Setting The PLL default settings are determined by the [7:5] bits. This will set the PLL to the maximum clock setting for the device. Table 8-24 shows settings for various input clock frequencies. 4 Min Minimum boot pin select. When Min is 1, it means that the BOOTMODE [15:3] pins are don't cares. Only BOOTMODE [2:0] pins (DEVSTAT[3:1]) will determine boot. Default values are assigned to values that would normally be set by the other BOOTMODE pins when Min is 0. • 0 = Minimum boot pin select disabled • 1 = Minimum boot pin select enabled. 3-1 Boot Devices Boot Devices • 011 = NAND boot mode • Others = Other boot modes 0 Lendian Endianess • 0 = Big endian • 1 = Little endian 8.1.2.3 Ethernet (SGMII) Boot Device Configuration Figure 8-8. Ethernet (SGMII) Boot Device Configuration Fields 16 NETCP clk 15 14 13 Ref Clock 12 Ext Con DEVSTAT Boot Mode Pins ROM Mapping 10 9 8 7 6 5 Lane X Boot Master Sys PLL Cfg Setup 11 4 Min 3 2 101 1 0 Lendian Table 8-9. Ethernet (SGMII) Boot Device Configuration Field Descriptions Bit Field Description 16 NETCP clk NETCP clock reference • 0 = NETCP clocked at the same reference as the core reference • 1 = NETCP clocked at the same reference as the SerDes reference (default) 15-14 Ref Clock Reference clock frequency • 0 = 125MHz • 1 = 156.25MHz (default) • 2 = Reserved • 3 = Reserved 13-12 Ext Con External connection mode • 0 = MAC to MAC connection, master with auto negotiation • 1 = MAC to MAC connection, slave with auto negotiation (default) • 2 = MAC to MAC, forced link, maximum speed • 3 = MAC to fiber connection 11-9 Lane Setup Lane Setup. • 0 = All SGMII ports enabled (default) • 1 = Only SGMII port 0 enabled • 2 = SGMII port 0 and 1 enabled • 3 = SGMII port 0, 1 and 2 enabled • 4-5 = Reserved 8 Boot Master This pin must be pulled down to GND 7-5 SYS PLL Setting The PLL default settings are determined by the [7:5] bits. This will set the PLL to the maximum clock setting for the device. Default system reference clock is 156.25 MHz. Table 8-24 shows settings for various input clock frequencies. (default = 4) Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Device Boot and Configuration 137 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 8-9. Ethernet (SGMII) Boot Device Configuration Field Descriptions (continued) Bit Field Description 4 Min Minimum boot configuration select bit. • 0 = Minimum boot pin select disabled • 1 = Minimum boot pin select enabled. When Min = 1, a predetermined set of values is configured (see the Device Configuration Field Descriptions table for configuration bits with a "(default)" tag added in the description column). When Min = 0, all fields must be independently configured. 3-1 Boot Devices Boot Devices • 101 = Ethernet boot mode • Others = Other boot modes 0 Lendian Endianess • 0 = Big endian • 1 = Little endian 8.1.2.3.1 PCIe Boot Device Configuration Figure 8-9. PCIe Boot Device Configuration Fields 16 Ref clk 15 14 13 Bar Config 12 DEVSTAT Boot Mode Pins ROM Mapping 10 9 8 7 6 5 X Boot Master Sys PLL Cfg 11 Port 4 3 2 0110 1 0 Lendian Table 8-10. PCIe Boot Device Configuration Field Descriptions Bit Field Description 16 Ref clk PCIe Reference clock frequency • 0 = 100MHz • 1 = Reserved 15-12 Bar Config PCIe BAR registers configuration 11 Port 10-9 Reserved 8 Boot Master This pin must be pulled down to GND 7-5 SYS PLL Setting The PLL default settings are determined by the [7:5] bits.This will set the PLL to the maximum clock setting for the device. Default system reference clock is 156.25 MHz. Table 8-24 shows settings for various input clock frequencies. 4-1 Boot Devices Boot Devices[4:1] • 0110 = PCIe boot mode • Others = Other boot modes 0 Lendian Endianess • 0 = Big endian • 1 = Little endian This value can range from 0 to 0xf. See Table 8-11. 138 PCIe Port number (0-1) Device Boot and Configuration Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 8-11. BAR Config / PCIe Window Sizes 64-BIT ADDRESS TRANSLATION 32-BIT ADDRESS TRANSLATION BAR CFG BAR0 BAR1 BAR2 BAR3 BAR4 0b0000 PCIe MMRs 32 32 32 32 0b0001 16 16 32 64 0b0010 16 32 32 64 0b0011 32 32 32 64 0b0100 16 16 64 64 0b0101 16 32 64 64 0b0110 32 32 64 64 0b0111 32 32 64 128 0b1000 64 64 128 256 0b1001 4 128 128 128 0b1010 4 128 128 256 0b1011 4 128 256 256 BAR5 BAR2/3 BAR4/5 0b1100 256 256 0b1101 512 512 0b1110 1024 1024 0b1111 2048 2048 Clone of BAR4 8.1.2.3.2 HyperLink Boot Device Configuration Figure 8-10. HyperLink Boot Device Configuration Fields 16 X 15 14 RefClk 13 12 Data Rate DEVSTAT Boot Mode Pins ROM Mapping 10 9 8 7 6 5 X Boot Master Sys PLL Cfg 11 4 3 2 1110 1 0 Lendian Table 8-12. HyperLink Boot Device Configuration Field Descriptions Bit Field 16 Reserve Description 15-14 Ref Clocks HyperLink reference clock configuration • 0 = 125 MHz • 1 = 156.25 MHz • 2-3 = Reserved 13-12 Data Rate HyperLink data rate configuration • 0 = 1.25 GBs • 1 = 3.125 GBs • 2 = 6.25 GBs • 3 = 12.5GBs 11-9 Reserved 8 Boot Master This pin must be pulled down to GND 7-5 SYS PLL Setting The PLL default settings are determined by the [7:5] bits. This will set the PLL to the maximum clock setting for the device. Default system reference clock is 156.25 MHz. Table 8-24 shows settings for various input clock frequencies. 4-1 Boot Devices Boot Devices[4:1] • 1110 = HyperLink boot mode • Others = Other boot modes 0 Lendian Endianess • 0 = Big endian • 1 = Little endian Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Device Boot and Configuration 139 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com 8.1.2.3.3 UART Boot Device Configuration Figure 8-11. UART Boot Mode Configuration Field Description 16 X 15 X 14 X 13 X 12 Port 11 X DEVSTAT Boot Mode Pins ROM Mapping 10 9 8 7 6 5 X X Boot Master Sys PLL Config 4 Min 3 2 1 111 0 Lendian Table 8-13. UART Boot Configuration Field Descriptions Bit Field Description 16-13 Reserved Not Used 12 Port UART Port number • 0 = UART0 • 1 = UART1 11-9 Reserved Not Used 8 Boot Master This pin must be pulled down to GND 7-5 SYS PLL Setting The PLL default settings are determined by the [7:5] bits. This will set the PLL to the maximum clock setting for the device. Table 8-24 shows settings for various input clock frequencies. (default = 4) 4 Min Minimum boot configuration select bit. • 0 = Minimum boot pin select disabled • 1 = Minimum boot pin select enabled. When Min = 1, a predetermined set of values is configured (see the Device Configuration Field Descriptions table for configuration bits with a "(default)" tag added in the description column). When Min = 0, all fields must be independently configured. 3-1 Boot Devices Boot Devices[3:1] • 111 = UART boot mode • Others = Other boot modes 0 Lendian Endianess • 0 = Big endian • 1 = Little endian 8.1.2.4 Boot Parameter Table The ROM Bootloader (RBL) uses a set of tables to carry out the boot process. The boot parameter table is the most common format the RBL employs to determine the boot flow. These boot parameter tables have certain parameters common across all the boot modes, while the rest of the parameters are unique to the boot modes. The common entries in the boot parameter table are shown in Table 8-14. Table 8-14. Boot Parameter Table Common Parameters BYTE OFFSET NAME DESCRIPTION 0 Length The length of the table, including the length field, in bytes. 2 Checksum The 16 bits ones complement of the ones complement of the entire table. A value of 0 will disable checksum verification of the table by the boot ROM. 4 Boot Mode Internal values used by RBL for different boot modes. 6 Port Num Identifies the device port number to boot from, if applicable 8 SW PLL, MSW PLL configuration, MSW 10 SW PLL, LSW PLL configuration, LSW 12 Reserved Reserved 14 Reserved Reserved 16 System Freq The Frequency of the system clock in MHz 18 Core Freq The frequency of the core clock in MHz 20 Boot Master Set to FALSE if ARM is the master core. 140 Device Boot and Configuration Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 8.1.2.4.1 EMIF16 Boot Parameter Table Table 8-15. EMIF16 Boot Parameter Table CONFIGURED THROUGH BOOT CONFIGURATION PINS BYTE OFFSET NAME DESCRIPTION 22 Options Async Config Parameters are used. • 0 = Value in the async config paramters are not used to program async config registers. • 1 = Value in the async config paramters are used to program async config registers. NO 24 Type Set to 0 for EMIF16 (NOR) boot NO 26 Branch Address MSW Most significant bit for Branch address (depends on chip select) YES 28 Branch Address LSW Least significant bit for Branch address (depends on chip select) YES 30 Chip Select Chip Select for the NOR flash YES 32 Memory Width Memory width of the EMIF16 bus (16 bits) YES 34 Wait Enable Extended wait mode enabled • 0 = Wait enable is disabled • 1 = Wait enable is enabled YES 36 Async Config MSW Async Config Register MSW NO 38 Async Config LSW Async Config Register LSW NO 8.1.2.4.2 Ethernet Boot Parameter Table Table 8-16. Ethernet Boot Parameter Table BYTE OFFSET NAME DESCRIPTION 22 Options Bits 02 - 00 Interface • 000 - 100 = Reserved • 101 = SGMII • 110 = Reserved • 111 = Reserved Bits 03 HD • 0 = Half Duplex • 1 = Full Duplex Bit 4 Skip TX • 0 = Send Ethernet Ready Frame every 3 seconds • 1 = Don't send Ethernet Ready Frame CONFIGURED THROUGH BOOT CONFIGURATION PINS NO Bits 06 - 05 Initialize Config • 00 = Switch, SerDes, SGMII and NETCP are configured • 01 = Initialization is not done for the peripherals that are already enabled and running. • 10 = Reserved • 11 = None of the Ethernet system is configured. Bits 15 - 07 Reserved 24 MAC High The 16 MSBs of the MAC address to receive during boot NO 26 MAC Med The 16 middle bits of the MAC address to receive during boot NO 28 MAC Low The 16 LSBs of the MAC address to receive during boot NO 30 Multi MAC High The 16 MSBs of the multi-cast MAC address to receive during boot NO 32 Multi MAC Med The 16 middle bits of the multi-cast MAC address to receive during boot NO 34 Multi MAC Low The 16 LSBs of the multi-cast MAC address to receive during boot NO Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Device Boot and Configuration 141 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 8-16. Ethernet Boot Parameter Table (continued) CONFIGURED THROUGH BOOT CONFIGURATION PINS BYTE OFFSET NAME DESCRIPTION 36 Source Port The source UDP port to accept boot packets from. A value of 0 will accept packets from any UDP port NO 38 Dest Port The destination port to accept boot packets on. NO 40 Device ID 12 The first two bytes of the device ID. This is typically a string value, and is sent in the Ethernet ready frame NO 42 Device ID 34 The 2nd two bytes of the device ID. NO 44 Dest MAC High The 16 MSBs of the MAC destination address used for the Ethernet ready frame. Default is broadcast. NO 46 Dest MAC Med The 16 middle bits of the MAC destination address NO 48 Dest MAC Low The 16 LSBs of the MAC destination address NO 50 Lane Enable One bit per lane. • 0 - Lane disabled • 1 - Lane enabled 52 SGMII Config Bits 0-3 are the config index, bit 4 set if direct config used, bit 5 set if NO no configuration done 54 SGMII Control The SGMII control register value NO 56 SGMII Adv Ability The SGMII ADV Ability register value NO 58 SGMII TX Cfg High The 16 MSBs of the SGMII Tx config register NO 60 SGMII TX Cfg Low The 16 LSBs of the SGMII Tx config register NO 62 SGMII RX Cfg High The 16 MSBs of the SGMII Rx config register NO 64 SGMII RX Cfg Low The 16 LSBs of the SGMII Rx config register NO 66 SGMII Aux Cfg High The 16 MSBs of the SGMII Aux config register NO 68 SGMII Aux Cfg Low The 16 LSBs of the SGMII Aux config register NO 70 PKT PLL Cfg MSW The packet subsystem PLL configuration, MSW NO 72 PKT PLL CFG LSW The packet subsystem PLL configuration, LSW NO 8.1.2.4.3 PCIe Boot Parameter Table Table 8-17. PCIe Boot Parameter Table BYTE OFFSET NAME DESCRIPTION 22 Options Bits 00 Mode • 0 = Host Mode (Direct boot mode) • 1 = Boot Table Boot Mode Bits 01 Configuration of PCIe • 0 = PCIe is configured by RBL • 1 = PCIe is not configured by RBL Bit 03-02 Reserved CONFIGURED THROUGH BOOT CONFIGURATION PINS NO Bits 04 Multiplier • 0 = SERDES PLL configuration is done based on SERDES register values • 1 = SERDES PLL configuration based on the reference clock values Bits 05-15 Reserved 24 Address Width PCI address width, can be 32 or 64 YES with in conjunction with BAR sizes 26 Link Rate SerDes frequency, in Mbps. Can be 2500 or 5000 NO 142 Device Boot and Configuration Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 8-17. PCIe Boot Parameter Table (continued) CONFIGURED THROUGH BOOT CONFIGURATION PINS BYTE OFFSET NAME DESCRIPTION 28 Reference clock Reference clock frequency, in units of 10 kHz. Value values are 10000 NO (100 MHz), 12500 (125 MHz), 15625 (156.25 MHz), 25000 (250 MHz) and 31250 (312.5 MHz). A value of 0 means that value is already in the SerDes cfg parameters and will not be computed by the boot ROM. 30 Window 1 Size Window 1size. YES 32 Window 2 Size Window 2 size. YES 34 Window 3 Size Window 3 size. Valid only if address width is 32. YES 36 Window 4 Size Window 4 Size. Valid only if the address width is 32. YES 38 Vendor ID Vendor ID NO 40 Device ID Device ID NO 42 Class code Rev ID MSW Class code revision ID MSW NO 44 Class code Rev ID LSW Class code revision ID LSW NO 46 SerDes cfg msw PCIe SerDes config word, MSW NO 48 SerDes cfg lsw PCIe SerDes config word, LSW NO 50 SerDes lane 0 cfg msw SerDes lane config word, msw lane 0 NO 52 SerDes lane 0 cfg lsw NO 54 SerDes lane 1 cfg msw SerDes lane config word, msw, lane 1 NO 56 SerDes lane 1 cfg lsw SerDes lane config word, lsw, lane 1 NO 58 Timeout period (Secs) The timeout period. Values 0 disables the time out SerDes lane config word, lsw, lane 0 8.1.2.4.4 I2C Boot Parameter Table Table 8-18. I2C Boot Parameter Table CONFIGURED THROUGH BOOT CONFIGURATION PINS OFFSET FIELD VALUE 22 Option Bits 02 - 00 Mode • 000 = Boot Parameter Table Mode • 001 = Boot Table Mode • 010 = Boot Config Mode • 011 = Load GP header format data • 100 = Slave Receive Boot Config Bits 15 - 03= Reserved NO 24 Boot Dev Addr The I2C device address to boot from YES 26 Boot Dev Addr Ext Extended boot device address 2 YES 2 28 Broadcast Addr I C address used to send data in the I C master broadcast mode. NO 30 Local Address The I2C address of this device NO 34 Bus Frequency The desired I2C data rate (kHz) NO 36 Next Dev Addr The next device address to boot (Used only if boot config option is selected) NO 38 Next Dev Addr Ext The extended next device address to boot (Used only if boot config option is selected) NO 40 Address Delay The number of CPU cycles to delay between writing the address to an I2C EEPROM and reading data. NO Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Device Boot and Configuration 143 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com 8.1.2.4.5 SPI Boot Parameter Table Table 8-19. SPI Boot Parameter Table CONFIGURED THROUGH BOOT CONFIGURATION PINS BYTE OFFSET NAME DESCRIPTION 22 Options Bits 01 & 00 Modes • 00 = Load a boot parameter table from the SPI (Default mode) • 01 = Load boot records from the SPI (boot tables) • 10 = Load boot config records from the SPI (boot config tables) • 11 = Load GP header blob Bits 15- 02= Reserved NO 24 Address Width The number of bytes in the SPI device address. Can be 16 or 24 bit YES 26 NPin The operational mode, 4 or 5 pin YES 28 Chipsel The chip select used (valid in 4 pin mode only). Can be 0-3. YES 30 Mode Standard SPI mode (0-3) YES 32 C2Delay Setup time between chip assert and transaction NO 34 Bus Freq, 100kHz The SPI bus frequency in kHz. NO 36 Read Addr MSW The first address to read from, MSW (valid for 24 bit address width only) YES 38 Read Addr LSW The first address to read from, LSW YES 40 Next Chip Select Next Chip Select to be used (Used only in boot Config mode) NO 42 Next Read Addr MSW The Next read address (used in boot config mode only) NO 44 Next Read Addr LSW NO The Next read address (used in boot config mode only) 8.1.2.4.6 HyperLink Boot Parameter Table Table 8-20. HyperLink Boot Parameter Table BYTE OFFSET NAME DESCRIPTION CONFIGURED THROUGH BOOT CONFIGURATION PINS 12 Options Bits 00 Reserved NO Bits 01 Configuration of Hyperlink • 0 = HyperLink is configured by RBL • 1 = HyperLink is not configured by RBL Bits 15-02 = Reserved 14 Number of Lanes Number of Lanes to be configured NO 16 SerDes cfg msw PCIe SerDes config word, MSW NO 18 SerDes cfg lsw PCIe SerDes config word, LSW NO 20 SerDes CFG RX lane 0 cfg msw SerDes RX lane config word, msw lane 0 NO 22 SerDes CFG RXlane 0 cfg lsw SerDes RX lane config word, lsw, lane 0 NO 24 SerDes CFG TX lane 0 cfg msw SerDes TX lane config word, msw lane 0 NO 26 SerDes CFG TXlane 0 cfg lsw SerDes TX lane config word, lsw, lane 0 NO 28 SerDes CFG RX lane 1 cfg msw SerDes RX lane config word, msw lane 1 NO 30 SerDes CFG RXlane 1 cfg lsw SerDes RX lane config word, lsw, lane 1 NO 32 SerDes CFG TX lane 1 cfg msw SerDes TX lane config word, msw lane 1 NO 34 SerDes CFG TXlane 1 cfg lsw SerDes TX lane config word, lsw, lane 1 NO 36 SerDes CFG RX lane 2 cfg msw SerDes RX lane config word, msw lane 2 NO 38 SerDes CFG RXlane 2 cfg lsw SerDes RX lane config word, lsw, lane 2 NO 40 SerDes CFG TX lane 2 cfg msw SerDes TX lane config word, msw lane 2 NO 42 SerDes CFG TXlane 2 cfg lsw SerDes TX lane config word, lsw, lane 2 NO 44 SerDes CFG RX lane 3 cfg msw SerDes RX lane config word, msw lane 3 NO 46 SerDes CFG RXlane 3 cfg lsw SerDes RX lane config word, lsw, lane 3 NO 144 Device Boot and Configuration Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 8-20. HyperLink Boot Parameter Table (continued) BYTE OFFSET NAME DESCRIPTION CONFIGURED THROUGH BOOT CONFIGURATION PINS 48 SerDes CFG TX lane 3 cfg msw SerDes TX lane config word, msw lane 3 NO 50 SerDes CFG TXlane 3 cfg lsw SerDes TX lane config word, lsw, lane 3 NO 8.1.2.4.7 UART Boot Parameter Table Table 8-21. UART Boot Parameter Table BYTE OFFSET NAME DESCRIPTION CONFIGURED THROUGH BOOT CONFIGURATION PINS 22 Reserved None NA 24 Data Format Bits 00 Data Format • 0 = Data Format is BLOB • 1 = Data Format is Boot Table Bits 15 - 01 Reserved NO 26 Protocol Bits 00 Protocol • 0 = Xmodem Protocol • 1 = Reserved Bits 15 - 01 Reserved NO 28 Initial NACK Count Number of NACK pings to be sent before giving up NO 30 Max Err Count Maximum number of consecutive receive errors acceptable. NO 32 NACK Timeout Time (msecs) waiting for NACK/ACK. NO 34 Character Timeout Time Period between characters NO 36 nDatabits Number of bits supported for data. Only 8 bits is supported. NO 38 Parity Bits 01 - 00 Parity • 00 = No Parity • 01 = Odd parity • 10 = Even Parity Bits 15 - 02 Reserved NO 40 nStopBitsx2 Number of stop bits times two. Valid values are 2 (stop bits = 1), 3 (Stop Bits = 1.5), 4 (Stop Bits = 2) NO 42 Over sample factor The over sample factor. Only 13 and 16 are valid. NO 44 Flow Control Bits 00 Flow Control • 0 = No Flow Control • 1 = RTS_CTS flow control Bits 15 - 01 Reserved NO 46 Data Rate MSW Baud Rate, MSW NO 48 Data Rate LSW Baud Rate, LSW NO 8.1.2.4.8 NAND Boot Parameter Table Table 8-22. NAND Boot Parameter Table CONFIGURED THROUGH BOOT CONFIGURATION PINS BYTE OFFSET NAME DESCRIPTION 22 Options Bits 00 Geometry • 0 = Geometry is taken from this table • 1 = Geometry is queried from NAND device. Bits 01 Clear NAND • 0 = NAND Device is a non clear NAND and requires ECC • 1 = NAND is a clear NAND and doesn.t need ECC. Bits 15 - 02 Reserved Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 NO Device Boot and Configuration 145 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 8-22. NAND Boot Parameter Table (continued) BYTE OFFSET NAME DESCRIPTION CONFIGURED THROUGH BOOT CONFIGURATION PINS 24 numColumnAddrBytes Number of bytes used to specify column address NO 26 numRowAddrBytes Number of bytes used to specify row address. NO 28 numofDataBytesperPage_msw Number of data bytes in each page, MSW NO 30 numofDataBytesperPage_lsw Number of data bytes in each page, LSW NO 32 numPagesperBlock Number of Pages per Block NO 34 busWidth EMIF bus width. Only 8 or 16 bits is supported. NO 36 numSpareBytesperPage Number of spare bytes allocated per page. NO 38 csel Chip Select number (valid chip selects are 2-5) YES 40 First Block First block for RBL to try to read. YES 8.1.2.4.9 DDR3 Configuration Table The RBL also provides an option to configure the DDR table before loading the image into the external memory. More information on how to configure the DDR3, refer to the Bootloader User Guide. The configuration table for DDR3 is shown in Table 8-23 Table 8-23. DDR3 Boot Parameter Table CONFIGURED THROUGH BOOT CONFIGURATION PINS BYTE OFFSET NAME DESCRIPTION 0 configselect msw Selecting the configuration register below that to be set. Each filed below is represented by one bit each. NO 4 configselect slsw Selecting the configuration register below that to be set. Each filed below is represented by one bit each. NO 8 configselect lsw Selecting the configuration register below that to be set. Each filed below is represented by one bit each. NO 12 pllprediv PLL pre divider value (Should be the exact value not value -1) NO 16 pllMult PLL Multiplier value (Should be the exact value not value -1) NO 20 pllPostDiv PLL post divider value (Should be the exact value not value -1) NO 24 sdRamConfig SDRAM config register NO 28 sdRamConfig2 SDRAM Config register NO 32 sdRamRefreshctl SDRAM Refresh Control Register NO 36 sdRamTiming1 SDRAM Timing 1 Register NO 40 sdRamTiming2 SDRAM Timing 2 Register NO 44 sdRamTiming3 SDRAM Timing 3 Register NO 48 IpDfrNvmTiming LP DDR2 NVM Timing Register NO 52 powerMngCtl Power management Control Register NO 56 iODFTTestLogic IODFT Test Logic Global Control Register NO 60 performcountCfg Performance Counter Config Register NO 64 performCountMstRegSel Performance Counter Master Region Select Register NO 68 readIdleCtl Read IDLE counter Register NO 72 sysVbusmIntEnSet System Interrupt Enable Set Register NO 76 sdRamOutImpdedCalcfg SDRAM Output Impedence Calibration Config Register NO 80 tempAlertCfg Temperature Alert Configuration Register NO 84 ddrPhyCtl1 DDR PHY Control Register 1 NO 88 ddrPhyCtl2 DDR PHY Control Register 1 NO 92 proClassSvceMap Priority to Class of Service mapping Register NO 96 mstId2ClsSvce1Map Master ID to Class of Service Mapping 1 Register NO 100 mstId2ClsSvce2Map Master ID to Class of Service Mapping 2Register NO 146 Device Boot and Configuration Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 8-23. DDR3 Boot Parameter Table (continued) BYTE OFFSET NAME DESCRIPTION CONFIGURED THROUGH BOOT CONFIGURATION PINS 104 eccCtl ECC Control Register NO 108 eccRange1 ECC Address Range1 Register NO 112 eccRange2 ECC Address Range2 Register NO 116 rdWrtExcThresh Read Write Execution Threshold Register NO 120 - 376 Chip Config Chip Specific PHY configuration NO 8.1.2.5 Second-Level Bootloaders Any of the boot modes can be used to download a second-level bootloader. A second-level bootloader allows for: • Any level of customization to current boot methods • Definition of a completely customized boot 8.1.3 SoC Security The TI SoC contains security architecture that allows the ARM CorePac to perform secure accesses within the device. For more information, contact a TI sales office for additional information available with the purchase of a secure device. 8.1.4 System PLL Settings The PLL default settings are determined by the BOOTMODE[7:5] bits. Table 8-24 shows the settings for various input clock frequencies. This will set the PLL to the maximum clock setting for the device. CLK = CLKIN × ((PLLM+1) ÷ ((OUTPUT_DIVIDE+1) × (PLLD+1))) Where OUTPUT_DIVIDE is the value of the field of SECCTL[22:19] NOTE Other frequencies are supported, but require a boot in a pre-configured mode. The configuration for the NETCP PLL is also shown. The NETCP PLL is configured with these values only if the Ethernet boot mode is selected with the input clock set to match the main PLL clock (not the SGMII SerDes clock). See Table 8-9 for details on configuring Ethernet boot mode. The output from the NETCP PLL goes through an on-chip divider to reduce the frequency before reaching the NETCP. The NETCP PLL generates 1050 MHz, and after the chip divider (/3), applies 350 MHz to the NETCP. The Main PLL is controlled using a PLL controller and a chip-level MMR. DDR3 PLL and NETCP PLL are controlled by chip level MMRs. For details on how to set up the PLL see Section 10.5. For details on the operation of the PLL controller module, see the KeyStone Architecture Phase Locked Loop (PLL) Controller User's Guide (SPRUGV2). Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Device Boot and Configuration 147 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 8-24. System PLL Configuration BOOTMODE [7:5] PLLD PLLM SoC ƒ PLLD PLLM SoC ƒ PLLD PLLM SoC ƒ PLLD PLLM SoC ƒ PLLD PLLM SoC ƒ (2) 0b000 50.00 0 31 800 0 39 1000 0 47 1200 0 55 1400 0 41 1050 0b001 66.67 0 23 800.04 0 29 1000.05 0 35 1200.06 0 41 1400.1 1 62 1050.053 0b010 80.00 0 19 800 0 24 1000 0 29 1200 0 34 1400 3 104 1050 0b011 100.00 0 15 800 0 19 1000 0 23 1200 0 27 1400 0 20 1050 0b100 156.25 3 40 800.78 4 63 1000 2 45 1197.92 0 17 1406.3 24 335 1050 0b101 250.00 4 31 800 0 7 1000 4 47 1200 4 55 1400 4 41 1050 0b110 312.50 7 40 800.78 4 31 1000 2 22 1197.92 0 8 1406.3 24 167 1050 0b111 122.88 0 12 798.72 3 64 999.989 0 19 1228.80 0 22 1413.1 11 204 1049.6 (1) (2) 800 MHz DEVICE 1000 MHz DEVICE 1200 MHz DEVICE NETCP = 350 MHz (1) INPUT CLOCK FREQ (MHz) 1400 MHz DEVICE The NETCP PLL generates 1050 MHz and is internally divided by 3 to feed 350 MHz to the packet accelerator. ƒ represents frequency in MHz. 8.2 Device Configuration Certain device configurations like boot mode and endianess are selected at device power-on reset. The status of the peripherals (enabled/disabled) is determined after device power-on reset. By default, the peripherals on the device are disabled and need to be enabled by software before being used. 8.2.1 Device Configuration at Device Reset The logic level present on each device configuration pin is latched at power-on reset to determine the device configuration. The logic level on the device configuration pins can be set by using external pullup/pulldown resistors or by using some control device (e.g., FPGA/CPLD) to intelligently drive these pins. When using a control device, care should be taken to ensure there is no contention on the lines when the device is out of reset. The device configuration pins are sampled during power-on reset and are driven after the reset is removed. To avoid contention, the control device must stop driving the device configuration pins of the SoC. Table 8-25 describes the device configuration pins. NOTE If a configuration pin must be routed out from the device and it is not driven (Hi-Z state), the internal pullup/pulldown (IPU/IPD) resistor should not be relied upon. TI recommends the use of an external pullup/pulldown resistor. For more detailed information on pullup/pulldown resistors and situations in which external pullup/pulldown resistors are required, see Section 5.4. 148 Device Boot and Configuration Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 8-25. Device Configuration Pins PIN NO. IPD/IPU (1) DESCRIPTION V30 IPU Device endian mode (LENDIAN) • 0 = Device operates in big endian mode • 1 = Device operates in little endian mode BOOTMODE[15:0] (1) (2) AB33, AB32, AA33, AA30, Y32, Y30, AB29, W33, W31, V31, W32, W30, V32, V33, Y29, AA29 IPD Method of boot • See Section 8.1.2 for more details. AVSIFSEL[1:0] (1) (2) K32, K33 IPD AVS interface selection • 00 = AVS 4-pin 6-bit Dual-Phase VCNTL[5:2] (Default) • 01 = AVS 4-pin 4-bit Single-Phase VCNTL[5:2] • 10 = AVS 6-pin 6-bit Single-Phase VCNTL[5:0] • 11 = I2C MAINPLLODSEL (1) (2) Y33 IPD Main PLL Output divider select • 0 = Main PLL output divider needs to be set to 2 by BOOTROM • 1 = Reserved BOOTMODE_RSVD (1) Y31 IPD Boot Mode Reserved. Secondary function for GPIO15. Pulldown resistor required on pin. CONFIGURATION PIN LENDIAN (1) (2) (1) (2) Internal 100-μA pulldown or pullup is provided for this terminal. In most systems, a 1-kΩ resistor can be used to oppose the IPD/IPU. For more detailed information on pulldown/pullup resistors and situations in which external pulldown/pullup resistors are required, see Section 5.4. These signal names are the secondary functions of these pins. 8.2.2 Peripheral Selection After Device Reset Several of the peripherals on the AM5K2E0x are controlled by the Power Sleep Controller (PSC). By default, the PCIe and HyperLink are held in reset and clock-gated. The memories in these modules are also in a low-leakage sleep mode. Software is required to turn these memories on. Then, the software enables the modules (turns on clocks and de-asserts reset) before these modules can be used. If one of the above modules is used in the selected ROM boot mode, the ROM code automatically enables the module. All other modules come up enabled by default and there is no special software sequence to enable. For more detailed information on the PSC usage, see the KeyStone Architecture Power Sleep Controller (PSC) User's Guide (SPRUGV4). 8.2.3 Device State Control Registers The AM5K2E0x device has a set of registers that are used to control the status of its peripherals. These registers are shown in Table 8-26. Table 8-26. Device State Control Registers ADDRESS START ADDRESS END SIZE ACRONYM 0x02620000 0x02620007 8B Reserved 0x02620008 0x02620017 16B Reserved 0x02620018 0x0262001B 4B JTAGID 0x0262001C 0x0262001F 4B Reserved 0x02620020 0x02620023 4B DEVSTAT 0x02620024 0x02620037 20B Reserved 0x02620038 0x0262003B 4B KICK0 0x0262003C 0x0262003F 4B KICK1 0x02620040 0x02620043 4B Reserved DESCRIPTION See Section 8.2.3.3 See Section 8.2.3.1 See Section 8.2.3.4 Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Device Boot and Configuration 149 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 8-26. Device State Control Registers (continued) ADDRESS START ADDRESS END SIZE ACRONYM 0x02620044 0x02620047 4B Reserved 0x02620048 0x0262004B 4B Reserved 0x0262004C 0x0262004F 4B Reserved 0x02620050 0x02620053 4B Reserved 0x02620054 0x02620057 4B Reserved 0x02620058 0x0262005B 4B Reserved 0x0262005C 0x0262005F 4B Reserved 0x02620060 0x026200DF 128B Reserved 0x026200E0 0x0262010F 48B Reserved 0x02620110 0x02620117 8B MACID 0x02620118 0x0262012F 24B Reserved 0x02620130 0x02620133 4B Reserved 0x02620134 0x02620137 4B RESET_STAT_CLR 0x02620138 0x0262013B 4B Reserved 0x0262013C 0x0262013F 4B BOOTCOMPLETE 0x02620140 0x02620143 4B Reserved 0x02620144 0x02620147 4B RESET_STAT 0x02620148 0x0262014B 4B Reserved 0x0262014C 0x0262014F 4B DEVCFG See Section 8.2.3.2 0x02620150 0x02620153 4B PWRSTATECTL See Section 8.2.3.8 0x02620154 0x02620157 4B Reserved 0x02620158 0x0262015B 4B Reserved 0x0262015C 0x0262015F 4B Reserved 0x02620160 0x02620160 4B Reserved 0x02620164 0x02620167 4B Reserved 0x02620168 0x0262016B 4B Reserved 0x0262016C 0x0262017F 20B Reserved 0x02620180 0x02620183 4B SmartReflex Class0 0x02620184 0x0262018F 12B Reserved 0x02620190 0x02620193 4B Reserved 0x02620194 0x02620197 4B Reserved 0x02620198 0x0262019B 4B Reserved 0x0262019C 0x0262019F 4B Reserved 0x026201A0 0x026201A3 4B Reserved 0x026201A4 0x026201A7 4B Reserved 0x026201A8 0x026201AB 4B Reserved 0x026201AC 0x026201AF 4B Reserved 0x026201B0 0x026201B3 4B Reserved 0x026201B4 0x026201B7 4B Reserved 0x026201B8 0x026201BB 4B Reserved 0x026201BC 0x026201BF 4B Reserved 0x026201C0 0x026201C3 4B Reserved 0x026201C4 0x026201C7 4B Reserved 0x026201C8 0x026201CB 4B Reserved 0x026201CC 0x026201CF 4B Reserved 0x026201D0 0x026201FF 48B Reserved 0x02620200 0x02620203 4B Reserved 150 Device Boot and Configuration DESCRIPTION See Section 10.16 See Section 8.2.3.6 See Section 8.2.3.7 See Section 8.2.3.5 See Section 10.2.4 Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 8-26. Device State Control Registers (continued) ADDRESS START ADDRESS END SIZE ACRONYM 0x02620204 0x02620207 4B Reserved 0x02620208 0x0262020B 4B Reserved 0x0262020C 0x0262020F 4B Reserved 0x02620210 0x02620213 4B Reserved 0x02620214 0x02620217 4B Reserved 0x02620218 0x0262021B 4B Reserved 0x0262021C 0x0262021F 4B Reserved 0x02620220 0x0262023F 32B Reserved 0x02620240 0x02620243 4B Reserved 0x02620244 0x02620247 4B Reserved 0x02620248 0x0262024B 4B Reserved 0x0262024C 0x0262024F 4B Reserved 0x02620250 0x02620253 4B Reserved 0x02620254 0x02620257 4B Reserved 0x02620258 0x0262025B 4B Reserved 0x0262025C 0x0262025F 4B Reserved 0x02620260 0x02620263 4B IPCGR8 0x02620264 0x02620267 4B IPCGR9 0x02620268 0x0262026B 4B IPCGR10 0x0262026C 0x0262026F 4B IPCGR11 0x02620270 0x0262027B 12B Reserved 0x0262027C 0x0262027F 4B IPCGRH See Section 8.2.3.11 0x02620280 0x02620283 4B Reserved See Section 8.2.3.10 0x02620284 0x02620287 4B Reserved 0x02620288 0x0262028B 4B Reserved 0x0262028C 0x0262028F 4B Reserved 0x02620290 0x02620293 4B Reserved 0x02620294 0x02620297 4B Reserved 0x02620298 0x0262029B 4B Reserved 0x0262029C 0x0262029F 4B Reserved 0x026202A0 0x026202A3 4B IPCAR8 0x026202A4 0x026202A7 4B IPCAR9 0x026202A8 0x026202AB 4B IPCAR10 0x026202AC 0x026202AF 4B IPCAR11 0x026202B0 0x026202BB 12B Reserved 0x026202BC 0x026202BF 4B IPCARH 0x026202C0 0x026202FF 64B Reserved 0x02620300 0x02620303 4B TINPSEL See Section 8.2.3.13 0x02620304 0x02620307 4B TOUTPSEL See Section 8.2.3.14 DESCRIPTION See Section 8.2.3.11 See Section 8.2.3.12 Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Device Boot and Configuration 151 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 8-26. Device State Control Registers (continued) ADDRESS START ADDRESS END SIZE ACRONYM DESCRIPTION 0x02620308 0x0262030B 4B Reserved See Section 8.2.3.15 0x0262030C 0x0262030F 4B Reserved 0x02620310 0x02620313 4B Reserved 0x02620314 0x02620317 4B Reserved 0x02620318 0x0262031B 4B Reserved 0x0262031C 0x0262031F 4B Reserved 0x02620320 0x02620323 4B Reserved 0x02620324 0x02620327 4B Reserved 0x02620328 0x0262032B 4B RSTMUX8 0x0262032C 0x0262032F 4B RSTMUX9 0x02620330 0x02620333 4B RSTMUX10 0x02620334 0x02620337 4B RSTMUX11 0x02620338 0x0262034F 4B Reserved 0x02620350 0x02620353 4B CorePLLCTL0 0x02620354 0x02620357 4B CorePLLCTL1 0x02620358 0x0262035B 4B PASSPLLCTL0 0x0262035C 0x0262035F 4B PASSPLLCTL1 0x02620360 0x02620363 4B DDR3PLLCTL0 0x02620364 0x02620367 4B DDR3PLLCTL1 0x02620368 0x0262036B 4B Reserved 0x0262036C 0x0262036F 4B Reserved 0x02620370 0x02620373 4B Reserved 0x02620374 0x02620377 4B Reserved 0x02620378 0x0262039B 132B Reserved 0x0262039C 0x0262039F 4B Reserved 0x02620400 0x02620403 4B ARMENDIAN_CFG0_0 0x02620404 0x02620407 4B ARMENDIAN_CFG0_1 0x02620408 0x0262040B 4B ARMENDIAN_CFG0_2 0x0262040C 0x026205FF 62B Reserved 0x02620600 0x026206FF 256B Reserved 0x02620700 0x02620703 4B CHIP_MISC_CTL0 0x02620704 0x0262070F 12B Reserved 0x02620710 0x02620713 4B SYSENDSTAT 0x02620714 0x02620717 4B Reserved 0x02620718 0x0262071B 4B Reserved 0x0262071C 0x0262071F 4B Reserved 0x02620720 0x0262072F 16B Reserved 0x02620730 0x02620733 4B SYNECLK_PINCTL 0x02620734 0x02620737 4B Reserved 0x02620738 0x0262074F 24B USB_PHY_CTL 0x02620750 0x026207FF 176B Reserved 0x02620800 0x02620C7B 1148B Reserved 0x02620C7C 0x02620C7F 4B CHIP_MISC_CTL1 0x02620C80 0x02620C97 24B Reserved 0x02620C98 0x02620C9B 4B DEVSPEED 0x02620C9C 0x02620FFF 868B Reserved 152 Device Boot and Configuration See Section 10.5 See Section 10.7 See Section 10.6 See Section 8.2.3.17 See Section 8.2.3.20 See Section 8.2.3.22 See Section 8.2.3.23 See Section 8.2.3.24 See Section 8.2.3.21 See Section 8.2.3.16 Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com 8.2.3.1 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Device Status (DEVSTAT) Register The Device Status Register depicts device configuration selected upon a power-on reset by the POR or RESETFULL pin. Once set, these bits remain set until a power-on reset. The Device Status Register is shown in the figure below. Figure 8-12. Device Status Register 31 22 21 20 19 18 17 16 1 0 Reserved Reserved MAINPLLODSEL AVSIFSEL BOOTMODE LENDIAN R-0 R/W-00 R/W-x R/W-xx R/W-x xxxx xxxx xxxx xxx R-x (1) LEGEND: R/W = Read/Write; R = Read only; -n = value after reset (1) x indicates the bootstrap value latched via the external pin Table 8-27. Device Status Register Field Descriptions Bit Field Description 31-22 Reserved Reserved 21-20 Reserved Reserved 19 MAINPLLODSEL Main PLL Output divider select • 0 = Main PLL output divider needs to be set to 2 by BOOTROM • 1 = Reserved 18-17 AVSIFSEL AVS interface selection • 00 = AVS 4-pin 6-bit Dual-Phase VCNTL[5:2] (Default) • 01 = AVS 4-pin 4-bit Single-Phase VCNTL[5:2] • 10 = AVS 6-pin 6-bit Single-Phase VCNTL[5:0] • 11 = Reserved 16-1 BOOTMODE Determines the bootmode configured for the device. For more information on bootmode, see Section 8.1.2. 0 LENDIAN See the KeyStone II Architecture ARM Bootloader User's Guide (SPRUHJ3). 8.2.3.2 Device endian mode (LENDIAN) — shows the status of whether the system is operating in big endian mode or little endian mode (default). • 0 = System is operating in big endian mode • 1 = System is operating in little endian mode (default) Device Configuration Register The Device Configuration Register is one-time writeable through software. The register is reset on all hard resets and is locked after the first write. The Device Configuration Register is shown in Figure 8-13 and described in Table 8-28. Figure 8-13. Device Configuration Register (DEVCFG) 31 5 4 3 2 1 0 Reserved PCIE1SSMODE PCIE0SSMODE SYSCLKOUTEN R-0 R/W-00 R/W-00 R/W-1 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 8-28. Device Configuration Register Field Descriptions Bit Field Description 31-5 Reserved Reserved. Read only, writes have no effect. 4-3 PCIE1SSMODE Device Type Input of PCIe1SS • 00 = Endpoint • 01 = Legacy Endpoint • 10 = Rootcomplex • 11 = Reserved Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Device Boot and Configuration 153 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 8-28. Device Configuration Register Field Descriptions (continued) Bit Field Description 2-1 PCIE0SSMODE Device Type Input of PCIe0SS • 00 = Endpoint • 01 = Legacy Endpoint • 10 = Rootcomplex • 11 = Reserved 0 SYSCLKOUTEN SYSCLKOUT enable • 0 = No clock output • 1 = Clock output enabled (default) 8.2.3.3 JTAG ID (JTAGID) Register Description The JTAG ID register is a read-only register that identifies to the customer the JTAG/Device ID. For the device, the JTAG ID register resides at address location 0x02620018. The JTAG ID Register is shown below. Figure 8-14. JTAG ID (JTAGID) Register 31 28 27 12 11 1 0 VARIANT PART NUMBER MANUFACTURER LSB R-xxxx R-1011 1001 1010 0110 R-0000 0010 111 R-1 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 8-29. JTAG ID Register Field Descriptions Bit Field Value Description 31-28 VARIANT xxxx Variant value 27-12 PART NUMBER 1011 1001 1010 0110 Part Number for boundary scan 11-1 MANUFACTURER 0000 0010 111 Manufacturer 0 LSB 1 This bit is read as a 1 NOTE The value of the VARIANT and PART NUMBER fields depends on the silicon revision being used. See the Silicon Errata for details. 8.2.3.4 Kicker Mechanism (KICK0 and KICK1) Register The Bootcfg module contains a kicker mechanism to prevent spurious writes from changing any of the Bootcfg MMR (memory mapped registers) values. When the kicker is locked (which it is initially after power on reset), none of the Bootcfg MMRs are writable (they are only readable). This mechanism requires an MMR write to each of the KICK0 and KICK1 registers with exact data values before the kicker lock mechanism is unlocked. See Table 8-26 for the address location. Once released, all the Bootcfg MMRs having write permissions are writable (the read only MMRs are still read only). The KICK0 data is 0x83e70b13. The KICK1 data is 0x95a4f1e0. Writing any other data value to either of these kick MMRs locks the kicker mechanism and blocks writes to Bootcfg MMRs. To ensure protection to all Bootcfg MMRs, software must always re-lock the kicker mechanism after completing the MMR writes. 8.2.3.5 Reset Status (RESET_STAT) Register The Reset Status Register (RESET_STAT) captures the status of global device reset (GR). Software can use this information to take different device initialization steps. The GR bit is written as 1 only when a global reset is asserted. The Reset Status Register is shown in the figure and table below. 154 Device Boot and Configuration Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Figure 8-15. Reset Status Register (RESET_STAT) 31 30 0 GR Reserved R-1 R- 0 Legend: R = Read only; -n = value after reset Table 8-30. Reset Status Register Field Descriptions Bit 31 30-0 Field Description GR Global reset status • 0 = Device has not received a global reset. • 1 = Device received a global reset. Reserved Reserved. Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Device Boot and Configuration 155 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 8.2.3.6 www.ti.com Reset Status Clear (RESET_STAT_CLR) Register The RESET_STAT bits can be cleared by writing 1 to the corresponding bit in the RESET_STAT_CLR register. The Reset Status Clear Register is shown in the figure and table below. Figure 8-16. Reset Status Clear Register (RESET_STAT_CLR) 31 30 1 GR Reserved RW-0 R- 0 0 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 8-31. Reset Status Clear Register Field Descriptions Bit Field Description 31 GR Global reset clear bit • 0 = Writing a 0 has no effect. • 1 = Writing a 1 to the GR bit clears the corresponding bit in the RESET_STAT register. 30-0 Reserved Reserved. 8.2.3.7 Boot Complete (BOOTCOMPLETE) Register The BOOTCOMPLETE register controls the BOOTCOMPLETE pin status to indicate the completion of the ROM booting process. The Boot Complete register is shown in the figure and table below. Figure 8-17. Boot Complete Register (BOOTCOMPLETE) 31 11 10 9 8 Reserved 12 BC11 BC10 BC9 BC8 7 6 5 4 Reserved 3 R-0 RW-0 RW-0 RW-0 RW-0 R-0 2 1 0 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 8-32. Boot Complete Register Field Descriptions Bit Field 31-12 Reserved Description 11 BC11 ARM CorePac 3 boot status (AM5K2E04 only) • 0 = ARM CorePac 3 boot NOT complete • 1 = ARM CorePac 3 boot complete 10 BC10 ARM CorePac 2 boot status (AM5K2E04 only) • 0 = ARM CorePac 2 boot NOT complete • 1 = ARM CorePac 2 boot complete 9 BC9 ARM CorePac 1 boot status (AM5K2Ex) • 0 = ARM CorePac 1 boot NOT complete • 1 = ARM CorePac 1 boot complete 8 BC8 ARM CorePac 0 boot status • 0 = ARM CorePac 0 boot NOT complete • 1 = ARM CorePac 0 boot complete 7-0 Reserved The BCx bit indicates the boot complete status of the corresponding ARM CorePac. All BCx bits are sticky bits — that is, they can be set only once by the software after device reset and they will be cleared to 0 on all device resets (warm reset and power-on reset). Boot ROM code is implemented such that each ARM CorePac sets its corresponding BCx bit immediately before branching to the predefined location in memory. 156 Device Boot and Configuration Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com 8.2.3.8 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Power State Control (PWRSTATECTL) Register The Power State Control Register (PWRSTATECTL) is controlled by the software to indicate the powersaving mode. Under ROM code, the CorePac reads this register to differentiate between the various power saving modes. This register is cleared only by POR and is not changed by any other device reset. See the Hardware Design Guide for KeyStone II Devices application report (SPRABV0) for more information. The PWRSTATECTL register is shown in Figure 8-18 and described in Table 8-33. Figure 8-18. Power State Control Register (PWRSTATECTL) 31 2 1 0 Hibernation Recovery Branch Address 3 Hibernation Mode Hibernation Standby RW-0000 0000 0000 0000 0 RW-0 RW-0 RW-0 Legend: R = Read Only, RW = Read/Write; -n = value after reset Table 8-33. Power State Control Register Field Descriptions Bit Field Description 31-3 Hibernation Recovery Branch Address Used to provide a start address for execution out of the hibernation modes. 2 Hibernation Mode Indicates whether the device is in hibernation mode 1 or mode 2. • 0 = Hibernation mode 1 • 1 = Hibernation mode 2 1 Hibernation Indicates whether the device is in hibernation mode or not. • 0 = Not in hibernation mode • 1 = Hibernation mode 0 Standby Indicates whether the device is in standby mode or not. • 0 = Not in standby mode • 1 = standby mode 8.2.3.9 IPC Generation (IPCGRx) Registers The IPCGRx Registers facilitate inter-C66x CorePac interrupts. The AM5K2E device has four IPCGRx registers (IPCGR8-IPCGR11) and the 66AK2E02 has two IPCGRx registers (IPCGR8 and IPCGR9). These registers can be used by external hosts or CorePacs to generate interrupts to other CorePacs. A write of 1 to the IPCG field of the IPCGRx register generates an interrupt pulse to the ARM CorePac. These registers also provide a Source ID facility identifying up to 28 different sources of interrupts. Allocation of source bits to source processor and meaning is entirely based on software convention. The register field descriptions are given in the following tables. There can be numerous sources for these registers as this is completely controlled by software. Any master that has access to BOOTCFG module space can write to these registers. The IPC Generation Register is shown in Figure 8-19 and described in Table 8-34. Figure 8-19. IPC Generation Registers (IPCGRx) 31 4 3 1 0 SRCS27 - SRCS0 Reserved IPCG RW +0 (per bit field) R-000 RW-0 Legend: R = Read only; RW = Read/Write; -n = value after reset Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Device Boot and Configuration 157 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 8-34. IPC Generation Registers Field Descriptions Bit Field Description 31-4 SRCSx Reads return current value of internal register bit. Writes: • 0 = No effect • 1 = Sets both SRCSx and the corresponding SRCCx. 3-1 Reserved Reserved 0 IPCG Reads return 0. Writes: • 0 = No effect • 1 = Creates an inter-ARM interrupt. 8.2.3.10 IPC Acknowledgment (IPCARx) Registers The IPCARx registers facilitate inter-CorePac interrupt acknowledgment. The AM5K2E04 device has four IPCARx registers and the AM5K02 has two IPCARx registers. These registers also provide a Source ID facility by which up to 28 different sources of interrupts can be identified. Allocation of source bits to source processor and meaning is entirely based on software convention. The register field descriptions are given in the following tables. Virtually anything can be a source for these registers as this is completely controlled by software. Any master that has access to BOOTCFG module space can write to these registers. The IPC Acknowledgment Register is shown in the following figure and table. Figure 8-20. IPC Acknowledgment Registers (IPCARx) 31 4 3 0 SRCC27 - SRCC0 Reserved RW +0 (per bit field) R-0000 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 8-35. IPC Acknowledgment Registers Field Descriptions Bit Field Description 31-4 SRCCx Reads return current value of internal register bit. Writes: • 0 = No effect • 1 = Clears both SRCCx and the corresponding SRCSx 3-0 Reserved Reserved 8.2.3.11 IPC Generation Host (IPCGRH) Register The IPCGRH register facilitates interrupts to external hosts. Operation and use of the IPCGRH register is the same as for other IPCGR registers. The interrupt output pulse created by the IPCGRH register appears on device pin HOUT. The host interrupt output pulse is stretched so that it is asserted for four bootcfg clock cycles (SYSCLK1/6) followed by a deassertion of four bootcfg clock cycles. Generating the pulse results in a pulse-blocking window that is eight SYSCLK1/6-cycles long. Back-to-back writes to the IPCRGH register with the IPCG bit (bit 0) set, generates only one pulse if the back-to-back writes to IPCGRH are less than the eight SYSCLK1/6 cycle window — the pulse blocking window. To generate back-to-back pulses, the back-toback writes to the IPCGRH register must be written after the eight SYSCLK1/6 cycle pulse-blocking window has elapsed. The IPC Generation Host Register is shown in Figure 8-21 and described in Table 836. 158 Device Boot and Configuration Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Figure 8-21. IPC Generation Registers (IPCGRH) 31 4 3 1 0 SRCS27 - SRCS0 Reserved IPCG RW +0 (per bit field) R-000 RW +0 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 8-36. IPC Generation Registers Field Descriptions Bit Field Description 31-4 SRCSx Reads return current value of internal register bit. Writes: • 0 = No effect • 1 = Sets both SRCSx and the corresponding SRCCx. 3-1 Reserved Reserved 0 IPCG Reads return 0. Writes: • 0 = No effect • 1 = Creates an interrupt pulse on device pin (host interrupt/event output in HOUT pin) 8.2.3.12 IPC Acknowledgment Host (IPCARH) Register The IPCARH register facilitates external host interrupts. Operation and use of the IPCARH register is the same as for other IPCAR registers. The IPC Acknowledgment Host Register is shown in Figure 8-22 and described in Table 8-37. Figure 8-22. Acknowledgment Register (IPCARH) 31 4 3 0 SRCC27 - SRCC0 Reserved RW +0 (per bit field) R-0000 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 8-37. IPC Acknowledgment Register Field Descriptions Bit Field Description 31-4 SRCCx Reads the return current value of the internal register bit. Writes: • 0 = No effect • 1 = Clears both SRCCx and the corresponding SRCSx 3-0 Reserved Reserved 8.2.3.13 Timer Input Selection Register (TINPSEL) The Timer Input Selection Register selects timer inputs and is shown in Figure 8-23 and described in Table 8-38. Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Device Boot and Configuration 159 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Figure 8-23. Timer Input Selection Register (TINPSEL) 31 30 29 28 27 26 25 24 TINPHSEL15 TINPLSEL15 TINPHSEL14 TINPLSEL14 TINPHSEL13 TINPLSEL13 TINPHSEL12 TINPLSEL12 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 23 22 21 20 19 18 17 16 TINPHSEL11 TINPLSEL11 TINPHSEL10 TINPLSEL10 TINPHSEL9 TINPLSEL9 TINPHSEL8 TINPLSEL8 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 RW-0 15 0 Reserved R-0 LEGEND: R = Read only; RW = Read/Write; -n = value after reset Table 8-38. Timer Input Selection Field Description Bit Field 31 TINPHSEL15 Input select for TIMER15 high. • 0 = TIMI0 • 1 = TIMI1 30 TINPLSEL15 29 TINPHSEL14 Input select for TIMER14 high. • 0 = TIMI0 • 1 = TIMI1 28 TINPLSE14 27 TINPHSEL13 Input select for TIMER13 high. • 0 = TIMI0 • 1 = TIMI1 26 TINPLSEL13 25 TINPHSEL12 Input select for TIMER12 high. • 0 = TIMI0 • 1 = TIMI1 24 TINPLSEL12 23 TINPHSEL11 Input select for TIMER11 high. • 0 = TIMI0 • 1 = TIMI1 22 TINPLSEL11 21 TINPHSEL10 Input select for TIMER10 high. • 0 = TIMI0 • 1 = TIMI1 20 TINPLSEL10 160 Description Input select for TIMER15 low. • 0 = TIMI0 • 1 = TIMI1 Input select for TIMER14 low. • 0 = TIMI0 • 1 = TIMI1 Input select for TIMER13 low. • 0 = TIMI0 • 1 = TIMI1 Input select for TIMER12low. • 0 = TIMI0 • 1 = TIMI1 Input select for TIMER11 low. • 0 = TIMI0 • 1 = TIMI1 Input select for TIMER10 low. • 0 = TIMI0 • 1 = TIMI1 Device Boot and Configuration Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 8-38. Timer Input Selection Field Description (continued) Bit Field Description 19 TINPHSEL9 Input select for TIMER9 high. • 0 = TIMI0 • 1 = TIMI1 18 TINPLSEL9 Input select for TIMER9 low. • 0 = TIMI0 • 1 = TIMI1 17 TINPHSEL8 Input select for TIMER8 high. • 0 = TIMI0 • 1 = TIMI1 16 TINPLSEL8 Input select for TIMER8 low. • 0 = TIMI0 • 1 = TIMI1 15-0 Reserved 8.2.3.14 Timer Output Selection Register (TOUTPSEL) The control register TOUTSEL handles the timer output selection and is shown in Figure 8-24 and described in Table 8-39. Figure 8-24. Timer Output Selection Register (TOUTPSEL) 31 10 9 5 4 0 Reserved TOUTPSEL1 TOUTPSEL0 R-0000000000000000000000 RW-00001 RW-00000 Legend: R = Read only; RW = Read/Write; -n = value after reset Table 8-39. Timer Output Selection Field Description Bit Field Description 31-10 Reserved Reserved 9-5 TOUTPSEL1 Output select for TIMO1 • • • • • • • • • • • • • • • • 00000: Reserved 00001: Reserved 00010: Reserved 00011: Reserved 00100: Reserved 00101: Reserved 00110: Reserved 00111: Reserved 01000: Reserved 01001: Reserved 01010: Reserved 01011: Reserved 01100: Reserved 01101: Reserved 01110: Reserved 01111: Reserved • • • • • • • • • • • • • • • • 10000: 10001: 10010: 10011: 10100: 10101: 10110: 10111: 11000: 11001: 11010: 11011: 11100: 11101: 11110: 11111: TOUTL8 TOUTH8 TOUTL9 TOUTH9 TOUTL10 TOUTH10 TOUTL11 TOUTH11 TOUTL12 TOUTH12 TOUTL13 TOUTH13 TOUTL14 TOUTH14 TOUTL15 TOUTH15 Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Device Boot and Configuration 161 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 8-39. Timer Output Selection Field Description (continued) Bit Field Description 4-0 TOUTPSEL0 Output select for TIMO0 • • • • • • • • • • • • • • • • 00000: Reserved 00001: Reserved 00010: Reserved 00011: Reserved 00100: Reserved 00101: Reserved 00110: Reserved 00111: Reserved 01000: Reserved 01001: Reserved 01010: Reserved 01011: Reserved 01100: Reserved 01101: Reserved 01110: Reserved 01111: Reserved • • • • • • • • • • • • • • • • 10000: 10001: 10010: 10011: 10100: 10101: 10110: 10111: 11000: 11001: 11010: 11011: 11100: 11101: 11110: 11111: TOUTL8 TOUTH8 TOUTL9 TOUTH9 TOUTL10 TOUTH10 TOUTL11 TOUTH11 TOUTL12 TOUTH12 TOUTL13 TOUTH13 TOUTL14 TOUTH14 TOUTL15 TOUTH15 8.2.3.15 Reset Mux (RSTMUXx) Register Software controls the Reset Mux block through the reset multiplex registers using RSTMUX8-RSTMUX11 for the ARM CorePac (AM5K2E04) or RSTMUX8_RSTMUX9 for the ARM CorePac (AM5K2E02) on the device. These registers are located in Bootcfg memory space. The Reset Mux Register is shown in Figure 8-25 and Table 8-40 below. Figure 8-25. Reset Mux Register 31 9 8 Reserved 10 EVTSTATCLR Reserved 7 DELAY 5 EVTSTAT 4 3 OMODE 1 LOCK 0 R-0000 0000 0000 0000 0000 00 RC-0 R-0 RW-100 R-0 RW-000 RW-0 Legend: R = Read only; RW = Read/Write; -n = value after reset; RC = Read only and write 1 to clear Table 8-40. Reset Mux Register 8..11(RSTMUX8-RSTMUX11) Field Descriptions Bit Field Description 31-10 Reserved Reserved 9 EVTSTATCLR Clear event status • 0 = Writing 0 has no effect • 1 = Writing 1 to this bit clears the EVTSTAT bit 8 Reserved Reserved 7-5 DELAY Delay cycles between interrupt and device reset • 000b = 256 SYSCLK1/6 cycles delay between interrupt and device reset, when OMODE = 100b • 001b = 512 SYSCLK1/6 cycles delay between interrupt and device reset, when OMODE = 100b • 010b = 1024 SYSCLK1/6 cycles delay between interrupt and device reset, when OMODE = 100b • 011b = 2048 SYSCLK1/6 cycles delay between interrupt and device reset, when OMODE = 100b • 100b = 4096 SYSCLK1/6 cycles delay between interrupt and device reset, when OMODE = 100b (default) • 101b = 8192 SYSCLK1/6 cycles delay between interrupt and device reset, when OMODE = 100b • 110b = 16384 SYSCLK1/6 cycles delay between interrupt and device reset, when OMODE = 100b • 111b = 32768 SYSCLK1/6 cycles delay between interrupt and device reset, when OMODE = 100b 4 EVTSTAT Event status • 0 = No event received (Default) • 1 = WD timer event received by Reset Mux block 162 Device Boot and Configuration Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 8-40. Reset Mux Register 8..11(RSTMUX8-RSTMUX11) Field Descriptions (continued) Bit Field Description 3-1 OMODE Timer event operation mode • 000b = WD timer event input to the Reset Mux block does not cause any output event (default) • 001b = Reserved • 010b = Cortex-A15 processor watchdog timers, the Local Reset output event of the RSTMUX logic generates reset to PLL Controller. • 011b = WD Timer Event input to the Reset Mux block causes Local Reset output event of the RSTMUX logic to generate reset to PLL Controller. • 100b = WD Timer Event input to the Reset Mux block causes an interrupt to be sent to the GIC. • 101b = WD timer event input to the Reset Mux block causes device reset to AM5K2E0x. Note that for Cortex-A15 processor watchdog timers, the Local Reset output event of the RSTMUX logic is connected to the Device Reset generation to generate reset to PLL Controller. • 110b = Reserved • 111b = Reserved 0 LOCK Lock register fields • 0 = Register fields are not locked (default) • 1 = Register fields are locked until the next timer reset 8.2.3.16 Device Speed (DEVSPEED) Register The Device Speed Register shows the device speed grade and is shown below. Figure 8-26. Device Speed Register (DEVSPEED) 31 28 27 Reserved 16 DEVSPEED 15 12 11 Reserved 0 ARMSPEED R-n R-n Legend: R = Read only; -n = value after reset Table 8-41. Device Speed Register Field Descriptions Bit Field Description 31-28 Reserved Reserved. Read only 27-16 DEVSPEED Indicates the speed of the device (read only) • 0b0000 0000 0000 = 800 MHz • 0b0000 0000 0001 = 1000 MHz • 0b0000 0000 001x = 1200 MHz • 0b0000 0000 01xx = 1350 MHz • 0b0000 0000 1xxx = 1400 MHz • 0b0000 0001 xxxx = 1500 MHz • 0b0000 001x xxxx = 1400 MHz • 0b0000 01xx xxxx = 1350.8 MHz • 0b0000 1xxx xxxx = 1200 MHz • 0b0001 xxxx xxxx= 1000 MHz • 0b001x xxxx xxxx = 800 MHz 15-12 Reserved Reserved. Read only Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Device Boot and Configuration 163 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 8-41. Device Speed Register Field Descriptions (continued) Bit Field Description 11-0 ARMSPEED Indicates the speed of the ARM (read only) • 0b0000 0000 0000 = 800 MHz • 0b0000 0000 0001 = 1000 MHz • 0b0000 0000 001x = 1200 MHz • 0b0000 0000 01xx = 1350 MHz • 0b0000 0000 1xxx = 1400 MHz • 0b0000 0001 xxxx = 1500 MHz • 0b0000 001x xxxx = 1400 MHz • 0b0000 01xx xxxx = 1350.8 MHz • 0b0000 1xxx xxxx = 1200 MHz • 0b0001 xxxx xxxx= 1000 MHz • 0b001x xxxx xxxx = 800 MHz 8.2.3.17 ARM Endian Configuration Register 0 (ARMENDIAN_CFGr_0), r=0..7 The registers defined in ARM Configuration Register 0 (ARMENDIAN_CFGr_0) and ARM Configuration Register 1 (ARMENDIAN_CFGr_1) control the way Cortex-A15 processor core access to peripheral MMRs shows up in the Cortex-A15 processor registers. The purpose is to provide an endian-invariant view of the peripheral MMRs when performing a 32-bit access. (Only one of the eight register sets is shown.) Figure 8-27. ARM Endian Configuration Register 0 (ARMENDIAN_CFGr_0), r=0..7 31 8 7 0 BASEADDR Reserved RW R-0000 0000 Legend: RW = Read/Write; R = Read only Table 8-42. ARM Endian Configuration Register 0 Default Values ARM ENDIAN CONFIGURATION REGISTER 0 DEFAULT VALUES ARMENDIAN_CFG0_0 0x0001C000 ARMENDIAN_CFG1_0 0x00020000 ARMENDIAN_CFG2_0 0x000BC000 ARMENDIAN_CFG3_0 0x00210000 ARMENDIAN_CFG4_0 0x00023A00 ARMENDIAN_CFG5_0 0x00240000 ARMENDIAN_CFG6_0 0x01000000 ARMENDIAN_CFG7_0 0xFFFFFF00 Table 8-43. ARM Endian Configuration Register 0 Field Descriptions Bit Field Description 31-8 BASEADDR 24-bit Base Address of Configuration Region R This base address defines the start of a contiguous block of Memory Mapped Register space for which a word swap is done by the ARM CorePac bridge. 7-0 164 Reserved Reserved Device Boot and Configuration Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 8.2.3.18 ARM Endian Configuration Register 1 (ARMENDIAN_CFGr_1), r=0..7 Figure 8-28. ARM Endian Configuration Register 1 (ARMENDIAN_CFGr_1), r=0..7 31 4 3 0 Reserved SIZE R-0000 0000 0000 0000 0000 0000 0000 RW Legend: RW = Read/Write; R = Read only Table 8-44. ARM Endian Configuration Register 1 Default Values ARM ENDIAN CONFIGURATION REGISTER 1 DEFAULT VALUES ARMENDIAN_CFG0_1 0x00000006 ARMENDIAN_CFG1_1 0x00000009 ARMENDIAN_CFG2_1 0x00000004 ARMENDIAN_CFG3_1 0x00000008 ARMENDIAN_CFG4_1 0x00000005 ARMENDIAN_CFG5_1 0x00000006 ARMENDIAN_CFG6_1 0x00000000 ARMENDIAN_CFG7_1 0x00000000 Table 8-45. ARM Endian Configuration Register 1 Field Descriptions Bit Field Description 31-4 Reserved Reserved 3-0 SIZE 4-bit encoded size of Configuration Region R The value in the SIZE field defines the size of the contiguous block of Memory Mapped Register space for which a word swap is done by the ARM CorePac bridge (starting from ARMENDIAN_CFGr_0.BASEADDR). • 0000 : 64KB • 0001 : 128KB • 0010 : 256KB • 0011 : 512KB • 0100 : 1MB • 0101 : 2MB • 0110 : 4MB • 0111 : 8MB • 1000 : 16MB • 1001 : 32MB • 1010 : 64MB • 1011 : 128MB • Others : Reserved 8.2.3.19 ARM Endian Configuration Register 2 (ARMENDIAN_CFGr_2), r=0..7 The registers defined in ARM Configuration Register 2 (ARMENDIAN_CFGr_2) enable the word swapping of a region. Figure 8-29. ARM Endian Configuration Register 2 (ARMENDIAN_CFGr_2), r=0..7 31 1 0 Reserved DIS R-0000 0000 0000 0000 0000 0000 0000 000 RW-0 Legend: RW = Read/Write Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Device Boot and Configuration 165 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 8-46. ARM Endian Configuration Register 2 Default Values ARM ENDIAN CONFIGURATION REGISTER 2 DEFAULT VALUES ARMENDIAN_CFG0_2 0x00000001 ARMENDIAN_CFG1_2 0x00000001 ARMENDIAN_CFG2_2 0x00000001 ARMENDIAN_CFG3_2 0x00000001 ARMENDIAN_CFG4_2 0x00000001 ARMENDIAN_CFG5_2 0x00000001 ARMENDIAN_CFG6_2 0x00000001 ARMENDIAN_CFG7_2 0x00000001 Table 8-47. ARM Endian Configuration Register 2 Field Descriptions Bit Field Description 31-1 Reserved Reserved 0 DIS Disabling the word swap of a region • 0 : Enable word swap for region • 1 : Disable word swap for region 8.2.3.20 Chip Miscellaneous Control (CHIP_MISC_CTL0) Register Figure 8-30. Chip Miscellaneous Control Register (CHIP_MISC_CTL0) 31 19 18 Reserved USB_PME_EN R-0 RW-0 17 13 Reserved 12 11 3 2 0 MSMC_BLOCK_PARITY_RST Reserved QM_PRIORITY RW-0 RW-0 RW-0 RW -0 Legend: R = Read only; W = Write only; -n = value after reset Table 8-48. Chip Miscellaneous Control Register (CHIP_MISC_CTL0) Field Descriptions Bit Field Description 31-19 Reserved Reserved. 18 USB_PME_EN Enables wakeup event generation from USB • 0 = Disable PME event generation • 1 = Enable PME event generation 17-13 Reserved 12 MSMC_BLOCK_PARITY_RST Controls MSMC parity RAM reset. When set to ‘1’ means the MSMC parity RAM will not be reset. 11-3 Reserved Reserved 2-0 QM_PRIORITY Control the priority level for the transactions from QM Master port, which access the external linking RAM. 8.2.3.21 Chip Miscellaneous Control (CHIP_MISC_CTL1) Register Figure 8-31. Chip Miscellaneous Control Register (CHIP_MISC_CTL1) 31 15 14 13 0 Reserved IO_TRACE_SEL Reserved R- 0000 0000 00000000 RW-0 RW-0 Legend: R = Read only; RW = Read/Write; -n = value after reset 166 Device Boot and Configuration Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 8-49. Chip Miscellaneous Control Register (CHIP_MISC_CTL1) Field Descriptions Bit Field Description 31-15 Reserved Reserved. 14 IO_TRACE_SEL This bit controls the pin muxing of GPIO[31:17] and EMU[33:19] pin • 0 = GPIO[31:17] is selected • 1 = EMU[33:19] pins is selected 13-0 Reserved 8.2.3.22 System Endian Status Register (SYSENDSTAT) This register provides a way for reading the system endianness in an endian-neutral way. A zero value indicates big endian and a non-zero value indicates little endian. The SYSENDSTAT register captures the LENDIAN bootmode pin and is used by the BOOTROM to guide the bootflow. The value is latched on the rising edge of POR or RESETFULL . Figure 8-32. System Endian Status Register 31 1 0 Reserved SYSENDSTAT R-0000 0000 0000 0000 0000 0000 0000 000 R-0 Legend: RW = Read/Write; -n = value after reset Table 8-50. System Endian Status Register Descriptions Bit Field Description 31-1 Reserved Reserved 0 SYSENDSTAT Reflects the same value as the LENDIAN bit in the DEVSTAT register. • 0 - SoC is in Big Endian • 1 - SoC is in Little Endian 8.2.3.23 SYNECLK_PINCTL Register This register controls the routing of recovered clock signals from any Ethernet port (SGMII/XFI of the multiport switches) to the clock output TSRXCLKOUT0/TSRXCLKOUT1. Figure 8-33. SYNECLK_PINCTL Register 31 7 6 4 Reserved TSRXCLKOUT1SEL R-0000 0000 0000 0000 0000 0000 0 RW-0 3 2 Reserved 0 TSRXCLKOUT0SEL RW-0 Legend: RW = Read/Write; - n = value after reset Table 8-51. SYNECLK_PINCTL Register Descriptions Bit Field Description 31-7 Reserved Reserved 6-4 TSRXCLKOUT1SEL • • • • • • • • 3 Reserved 000 - SGMII Lane 0 rxbclk 001 - SGMII Lane 1 rxbclk 010 - SGMII Lane 2 rxbclk 011 - SGMII Lane 3 rxbclk 100 - XFI Lane 0 rxbclk 101 - XFI Lane 1 rxbclk 110 - XFI Lane 2 rxbclk 111 - XFI Lane 3 rxbclk Reserved Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Device Boot and Configuration 167 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 8-51. SYNECLK_PINCTL Register Descriptions (continued) Bit Field 2-0 TSRXCLKOUT0SEL • • • • • • • • Description 000 - SGMII Lane 0 rxbclk 001 - SGMII Lane 1 rxbclk 010 - SGMII Lane 2 rxbclk 011 - SGMII Lane 3 rxbclk 100 - XFI Lane 0 rxbclk 101 - XFI Lane 1 rxbclk 110 - XFI Lane 2 rxbclk 111 - XFI Lane 3 rxbclk 8.2.3.24 USB PHY Control (USB_PHY_CTLx) Registers The following registers control the USB PHY. Figure 8-34. USB_PHY_CTL0 Register 31 12 11 Reserved PHY_RTUNE_ACK R-0 10 9 8 PHY_RTUNE_REQ Reserved R/W-0 R-0 R-0 7 6 5 PHY_TC_VATESTENB PHY_TC_TEST_POWERDOWN _SSP PHY_TC_TEST_POWERDOWN _HSP R/W-00 R/W-0 R/W-0 4 3 2 1 0 PHY_TC_LOOPBACKENB Reserved UTMI_VBAUSVLDEXT UTMI_TXBITSTUFFENH UTMI_TXBITSTUFFEN R/W-0 R-0 R/W-0 R/W-0 R/W-0 Legend: R = Read only; W = Write only; -n = value after reset Table 8-52. USB_PHY_CTL0 Register Field Descriptions Bit Field Description 31-12 Reserved Reserved 11 PHY_RTUNE_ACK The PHY uses an external resistor to calibrate the termination impedances of the PHY's highspeed inputs and outputs. The resistor is shared between the USB2.0 high-speed outputs and the Super-speed I/O. Each time the PHY is taken out of a reset, a termination calibration is performed. For SS link, the calibration can also be requested externally by asserting the PHY_RTUNE_REQ. When the calibration is complete, the PHY_RTUNE_ACK transitions low. A resistor calibration on the SS link cannot be performed while the link is operational 10 PHY_RTUNE_REQ See PHY_RTUNE_ACK. 9 Reserved Reserved 8-7 PHY_TC_VATESTENB Analog Test Pin Select. Enables analog test voltages to be placed on the ID pin. • 11 = Invalid setting. • 10 = Invalid setting. • 01 = Analog test voltages can be viewed or applied on ID. • 00 = Analog test voltages cannot be viewed or applied on ID. 6 PHY_TC_TEST_POWERDOWN _SSP SS Function Circuits Power-Down Control. 5 PHY_TC_TEST_POWERDOWN _HSP HS Function Circuits Power-Down Control 168 Device Boot and Configuration Powers down all SS function circuitry in the PHY for IDDQ testing. Powers down all HS function circuitry in the PHY for IDDQ testing. Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 8-52. USB_PHY_CTL0 Register Field Descriptions (continued) Bit Field Description 4 PHY_TC_LOOPBACKENB Loop-back Test Enable Places the USB3.0 PHY in HS Loop-back mode, which concurrently enables the HS receive and transmit logic. • 1 = During HS data transmission, the HS receive logic is enabled. • 0 = During HS data transmission, the HS receive logic is disabled. 3 Reserved • 2 UTMI_VBAUSVLDEXT External VBUS Valid Indicator Reserved Function: Valid in Device mode and only when the VBUSVLDEXTSEL signal is set to 1'b1. VBUSVLDEXT indicates whether the VBUS signal on the USB cable is valid. In addition, VBUSVLDEXT enables the pull-up resistor on the D+ line. • 1 = VBUS signal is valid, and the pull-up resistor on D+ is enabled. • 0 = VBUS signal is not valid, and the pull-up resistor on D+ is disabled. 1 UTMI_TXBITSTUFFENH High-byte Transmit Bit-Stuffing Enable Function: controls bit stuffing on DATAINH[7:0] when OPMODE[1:0]=11b. • 1 = Bit stuffing is enabled. • 0 = Bit stuffing is disabled. 0 UTMI_TXBITSTUFFEN Low-byte Transmit Bit-Stuffing Enable Function: controls bit stuffing on DATAIN[7:0] when OPMODE[1:0]=11b. • 1 = Bit stuffing is enabled. • 0 = Bit stuffing is disabled. Figure 8-35. USB_PHY_CTL1 Register 31 6 5 Reserved PIPE_REF_CLKREQ_N R-0 R-0 4 3 2 1 0 PIPE_TX2RX_LOOPBK PIPE_EXT_PCLK_REQ PIPE_ALT_CLK_SEL PIPE_ALT_CLK_REQ PIPE_ALT_CLK_EN R/W-0 R/W-0 R/W-0 R-0 R/W-0 Legend: R = Read only; R/W = Read/Write, -n = value after reset Table 8-53. USB_PHY_CTL1 Register Field Descriptions Bit Field Description 31-6 Reserved Reserved 5 PIPE_REF_CLKREQ_N Reference Clock Removal Acknowledge. When the pipeP_power-down control into the PHY turns off the MPLL in the P3 state, PIPE_REF_CLKREQ_N is asserted after the PLL is stable and the reference clock can be removed. 4 PIPE_TX2RX_LOOPBK Loop-back. When this signal is asserted, data from the transmit predriver is looped back to the receiver slicers. LOS is bypassed and based on the tx_en input so that rx_los=!tx_data_en. 3 PIPE_EXT_PCLK_REQ External PIPE Clock Enable Request. When asserted, this signal enables the pipeP_pclk output regardless of power state (along with the associated increase in power consumption). 2 PIPE_ALT_CLK_SEL Alternate Clock Source Select. Selects the alternate clock sources instead of the internal MPLL outputs for the PCS clocks. • 1 = Uses alternate clocks. • 0 = Users internal MPLL clocks. Change only during a reset. Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Device Boot and Configuration 169 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 8-53. USB_PHY_CTL1 Register Field Descriptions (continued) Bit Field Description 1 PIPE_ALT_CLK_REQ Alternate Clock Source Request. Indicates that the alternate clocks are needed by the slave PCS (that is, to boot the master MPLL). Connect to the alt_clk_en on the master. 0 PIPE_ALT_CLK_EN Alternate Clock Enable. Enables the ref_pcs_clk and ref_pipe_pclk output clocks (if necessary, powers up the MPLL). Figure 8-36. USB_PHY_CTL2 Register 31 30 29 Reserved 27 R-0 23 19 PHY_PC_TXRESTUNE 16 15 PHY_PC_TXPREEMPAMPTUNE R/W-0 9 R/W-01 17 PHY_PC_ TXPREEMPPULSETUNE 10 21 PHY_PC_TXRISETUNE R/W-1000 18 R/W-01 22 PHY_PC_TXVREFTUNE R/W-101 20 13 26 PHY_PC_LOS_BIAS R/W-00 7 6 14 PHY_PC_ TXHSXVTUNE R/W-11 4 3 2 0 PHY_PC_TXFSLSTUNE PHY_PC_SQRXTUNE PHY_PC_OTGTUNE Reserved PHY_PC_ COMPDISTUNE R/W-0011 R/W-011 R/W-100 R-0 R/W-100 Legend: R = Read only; R/W = Read/Write, -n = value after reset Table 8-54. USB_PHY_CTL2 Register Field Descriptions Bit Field Description 31-30 Reserved Reserved 29-27 PHY_PC_LOS_BIAS Loss-of-Signal Detector Threshold Level Control. Sets the LOS detection threshold level. • +1 = results in a +15 mVp incremental change in the LOS threshold. • -1 = results in a -15 mVp incremental change in the LOS threshold. Note: the 000b setting is reserved and must not be used. 26-23 PHY_PC_TXVREFTUNE HS DC Voltage Level Adjustment. Adjusts the high-speed DC level voltage. • +1 = results in a +1.25% incremental change in high-speed DC voltage level. • -1 = results in a -1.25% incremental change in high-speed DC voltage level. 22-21 PHY_PC_TXRISETUNE HS Transmitter Rise/Fall TIme Adjustment. Adjusts the rise/fall times of the high-speed waveform. • +1 = results in a -4% incremental change in the HS rise/fall time. • -1 = results in a +4% incremental change in the HS rise/fall time. 20-19 PHY_PC_TXRESTUNE USB Source Impedance Adjustment. Some applications require additional devices to be added on the USB, such as a series switch, which can add significant series resistance. This bus adjusts the driver source impedance to compensate for added series resistance on the USB. 18 170 PHY_PC_ TXPREEMPPULSETUNE Device Boot and Configuration HS Transmitter Pre-Emphasis Duration Control. Controls the duration for which the HS pre-emphasis current is sourced onto DP or DM. It is defined in terms of unit amounts. One unit of pre-emphasis duration is approximately 580 ps and is defined as 1x pre-emphasis duration. This signal valid only if either txpreempamptune[1] or txpreempamptune[0] is set to 1. • 1 = 1x, short pre-emphasis current duration. • 0 = 2x, long pre-emphasis current duration. Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 8-54. USB_PHY_CTL2 Register Field Descriptions (continued) Bit Field 17-16 PHY_PC_TXPREEMPAMPTUNE HS Transmitter Pre-Emphasis Current Control. Description Controls the amount of current sourced to DP and DM after a J-to-K or K-to-J transition. The HS Transmitter pre-emphasis current is defined in terms of unit amounts. One unit amount is approximately 600 µ;A and is defined as 1x pre-emphasis current. • 11 = 3x pre-emphasis current. • 10 = 2x pre-emphasis current. • 01 = 1x pre-emphasis current. • 00 = HS Transmitter pre-emphasis is disabled. 15-14 PHY_PC_TXHSXVTUNE Transmitter High-Speed Crossover Adjustment. Adjusts the voltage at which the DP and DM signals cross while transmitting in HS mode. • 11 = Default setting. • 10 = +15 mV • 01 = -15 mV • 00 = Reserved 13-10 PHY_PC_TXFSLSTUNE FS/LS Source Impedance Adjustment. Adjusts the low- and full-speed single-ended source impedance while driving high. This parameter control is encoded in thermometer code. • +1 = results in a -2.5% incremental change in threshold voltage level. • -1 = results in a +2.5% incremental change in threshold voltage level. Any non-thermometer code setting (that is 1001) is not supported and reserved. 9-7 PHY_PC_SQRXTUNE Squelch Threshold Adjustment. Adjusts the voltage level for the threshold used to detect valid high-speed data. • +1 = results in a -5% incremental change in threshold voltage level. • -1 = results in a +5% incremental change in threshold voltage level. 6-4 PHY_PC_OTGTUNE VBUS Valid Threshold Adjustment. Adjusts the voltage level for the VBUS valid threshold. • +1 = results in a +1.5% incremental change in threshold voltage level. • -1 = results in a -1.5% incremental change in threshold voltage level. 3 Reserved Reserved 2-0 PHY_PC_COMPDISTUNE Disconnect Threshold Adjustment. Adjusts the voltage level for the threshold used to detect a disconnect event at the host. • +1 = results in a +1.5% incremental change in the threshold voltage level. • -1 = results in a -1.5% incremental change in the threshold voltage level. Figure 8-37. USB_PHY_CTL3 Register 31 30 Reserved 29 23 PHY_PC_PCS_TX_SWING_FULL R-0 22 17 R/W-1111000 16 11 10 5 4 0 PHY_PC_PCS_TX_DEEMPH_6DB Reserved PHY_PC_PCS_TX_DEEMPH_3P5DB PHY_PC_LOS_LEVEL R/W-100000 R-0 R/W-010101 R/W-01001 Legend: R = Read only; R/W = Read/Write, -n = value after reset Table 8-55. USB_PHY_CTL3 Register Field Descriptions Bit Field Description 31-30 Reserved Reserved 29-23 PHY_PC_PCS_TX_SWING_ FULL Tx Amplitude (Full Swing Mode). Sets the launch amplitude of the transmitter. It can be used to tune Rx eye for compliance. Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Device Boot and Configuration 171 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 8-55. USB_PHY_CTL3 Register Field Descriptions (continued) Bit Field Description 22-17 PHY_PC_PCS_TX_DEEMPH_ 6DB Tx De-Emphasis at 6 dB. 16-11 Reserved Reserved 10-5 PHY_PC_PCS_TX_DEEMPH_ 3P5DB Tx De-Emphasis at 3.5 dB. PHY_PC_LOS_LEVEL Loss-of-Signal Detector Sensitivity Level Control. 4-0 Sets the Tx driver de-emphasis value when pipeP_tx_deemph[1:0] is set to 10b (according to the PIPE3 specification). This bus is provided for completeness and as a second potential launch amplitude. Sets the Tx driver de-emphasis value when pipeP_tx_deemph[1:0] is set to 10b (according to the PIPE3 specification). Can be used for Rx eye compliance. Sets the LOS detection threshold level. This signal must be set to 0x9. Figure 8-38. USB_PHY_CTL4 Register 31 30 29 28 PHY_SSC_EN PHY_REF_USE_PAD PHY_REF_SSP_EN PHY_MPLL_REFSSC_CLK_EN R/W-1 R/W-0 R/W-0 27 22 21 20 R/W-0 19 PHY_REFCLKSEL 18 17 PHY_COMMONONN Reserved PHY_FSEL PHY_RETENABLEN R/W-100111 R/W-1 16 15 PHY_OTG_VBUSVLDEXTSEL PHY_OTG_ OTGDISABLE PHY_PC_TX_VBOOST _LVL PHY_PC_LANE0_TX_TERM_ OFFSET Reserved R/W-0 R/W-1 R/W-100 R/W-00000 R-0 R/W-10 14 R/W-0 12 11 R-0 7 6 0 Legend: R = Read only; R/W = Read/Write, -n = value after reset Table 8-56. USB_PHY_CTL4 Register Field Descriptions Bit Field Description 31 PHY_SSC_EN Spread Spectrum Enable. Enables spread spectrum clock production (0.5% down-spread at ~31.5 KHz) in the USB3.0 PHY. If the reference clock already has spread spectrum applied, ssc_en must be de-asserted. 30 PHY_REF_USE_PAD Select Reference Clock Connected to ref_pad_clk_{p,m}. When asserted, selects the external ref_pad_clk_{p,m} inputs as the reference clock source. When de-asserted, ref_alt_clk_{p,m} are selected for an on-chip reference clock source. 29 PHY_REF_SSP_EN Reference Clock Enables for SS function. Enables the reference clock to the prescaler. The ref_ssp_en signal must remain de asserted until the reference clock is running at the appropriate frequency, at which point ref_ssp_en can be asserted. For lower power states, ref_ssp_en can also be de asserted. 28 PHY_MPLL_REFSSC_CLK_EN Double-Word Clock Enable. Enables/disables the mpll_refssc_clk signal. To prevent clock glitch, it must be changed when the PHY is inactive. 27-22 PHY_FSEL Frequency Selection. Selects the reference clock frequency used for both SS and HS operations. The value for fsel combined with the other clock and enable signals will determine the clock frequency used for SS and HS operations and if a shared or separate reference clock will be used. 21 PHY_RETENABLEN Lowered Digital Supply Indicator. Indicates that the vp digital power supply has been lowered in Suspend mode. This signal must be de-asserted before the digital power supply is lowered. • 1 = Normal operating mode. • 0 = The analog blocks are powered down. 172 Device Boot and Configuration Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 8-56. USB_PHY_CTL4 Register Field Descriptions (continued) Bit Field Description 20-19 PHY_REFCLKSEL Reference Clock Select for PLL Block. Selects reference clock source for the HS PLL block. • 11 = HS PLL uses EXTREFCLK as reference. • 10 = HS PLL uses either ref_pad_clk_{p,m} or ref_alt_clk_{p,m} as reference. • x0 = Reserved. 18 PHY_COMMONONN Common Block Power-Down Control. Controls the power-down signals in the HS Bias and PLL blocks when the USB3.0 PHY is in Suspend or Sleep mode. • 1 = In Suspend or Sleep mode, the HS Bias and PLL blocks are powered down. • 0 = In Suspend or Sleep mode, the HS Bias and PLL blocks remain powered and continue to draw current. 17 Reserved Reserved 16 PHY_OTG_VBUSVLDEXTSEL External VBUS Valid Select. Selects the VBUSVLDEXT input or the internal Session Valid comparator to indicate when the VBUS signal on the USB cable is valid. • 1 = VBUSVLDEXT input is used. • 0 = Internal Session Valid comparator is used. 15 PHY_OTG_OTGDISABLE OTG Block Disable. Powers down the OTG block, which disables the VBUS Valid and Session End comparators. The Session Valid comparator (the output of which is used to enable the pull-up resistor on DP in Device mode) is always on irrespective of the state of otgdisable. If the application does not use the OTG function, setting this signal to high to save power. • 1 = OTG block is powered down. • 0 = OTG block is powered up. 14-12 PHY_PC_TX_VBOOST_LVL Tx Voltage Boost Level. Sets the boosted transmit launch amplitude (mVppd). The default setting is intended to set the launch amplitude to approximately 1,008mVppd. • +1 = results in a +156 mVppd change in the Tx launch amplitude. • -1 = results in a -156 mVppd change in the Tx launch amplitude. 11-7 6-0 PHY_PC_LANE0_TX_TERM_ OFFSET Transmitter Termination Offset. Reserved Reserved Enables adjusting the transmitter termination value from the default value of 60 Ω. Figure 8-39. USB_PHY_CTL5 Register 31 21 20 Reserved 19 PHY_REF_CLKDIV2 R-0 13 PHY_MPLL_MULTIPLIER[6:0] R/W-0 12 4 R/W +0011001 3 2 0 PHY_SSC_REF_CLK_SEL Reserved PHY_SSC_RANGE R/W-000000000 R-0 R/W-000 Legend: R = Read only; R/W = Read/Write, -n = value after reset Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Device Boot and Configuration 173 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 8-57. USB_PHY_CTL5 Register Field Descriptions Bit Field Description 31-21 Reserved Reserved 20 PHY_REF_CLKDIV2 Input Reference Clock Divider Control. If the input reference clock frequency is greater than 100 MHz, this signal must be asserted. The reference clock frequency is then divided by 2 to keep it in the range required by the MPLL. When this input is asserted, the ref_ana_usb2_clk (if used) frequency will be the reference clock frequency divided by 4. 19-13 PHY_MPLL_MULTIPLIER[6:0] 12-4 PHY_SSC_REF_CLK_SEL MPLL Frequency Multiplier Control. Multiplies the reference clock to a frequency suitable for intended operating speed. Spread Spectrum Reference Clock Shifting. Enables non-standard oscillator frequencies to generate targeted MPLL output rates. Input corresponds to frequency-synthesis coefficient. • . ssc_ref_clk_sel[8:6] = modulous - 1 • . ssc_ref_clk_sel[5:0] = 2's complement push amount. 3 Reserved Reserved 2-0 PHY_SSC_RANGE Spread Spectrum Clock Range. Selects the range of spread spectrum modulation when ssc_en is asserted and the PHY is spreading the high-speed transmit clocks. Applies a fixed offset to the phase accumulator. 174 Device Boot and Configuration Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 9 Device Operating Conditions 9.1 Absolute Maximum Ratings (1) Over Operating Case Temperature Range (Unless Otherwise Noted) CVDD -0.3 V to 1.3 V CVDD1 -0.3 V to 1.3 V DVDD15 -0.3 V to 1.98 V DVDD18 DDR3VREFSSTL VDDAHV -0.3 V to 1.98 V VDDALV -0.3 V to 0.935 V USB0DVDD33, USB0DVDD33 Supply voltage range (2): -0.3 V to 2.45 V 0.49 × DVDD15 to 0.51 × DVDD15 -0.3V to 3.63 V VDDUSB0, VDDUSB1 -0.3V to 0.935 V USB0VP, USB1VP -0.3V to 0.935 V USB0VPH, USB1VPH -0.3V to 3.63 V USB0VPTX, USB1VPTX -0.3V to 0.935 V AVDDA1, AVDDA2, AVDDA3 -0.3 V to 1.98 V AVDDA6, AVDDA7 -0.3 V to 1.98 V AVDDA8, AVDDA9, AVDDA10 VSS Ground LVCMOS (1.8 V) DDR3 I2C Input voltage (VI) range (3): LJCB -0.3 V to 1.3 V DDR3 2 I C SerDes Commercial Extended HBM (human body model) (5) ESD stress voltage, VESD (4) -0.3 V to 2.45 V -0.3 V to DVDD18+0.3 V LVCMOS (1.8 V) Operating case temperature range, TC: -0.3 V to 1.98 V LVDS SerDes Output voltage (VO) range (3): 0V -0.3 V to DVDD18+0.3 V -0.3 V to VDDAHV1+0.3 V -0.3 V to DVDD18+0.3 V -0.3 V to 1.98 V -0.3 V to 2.45 V -0.3 V to VDDAHV+0.3 V 0°C to 85°C -40°C to 100°C ±1000 V CDM (charged device model) (6) ±250 V LVCMOS (1.8 V) Overshoot/undershoot (7) DDR3 2 20% overshoot/undershoot for 20% of signal duty cycle I C Storage temperature range, Tstg: (1) (2) (3) (4) (5) (6) (7) -65°C to 150°C Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to VSS. For USB High-Speed, Full-Speed, and Low -Speed modes, USB I/Os adhere to Universal Serial Bus, revision 2.0 standard. For USB Super-Speed mode, USB I/Os adhere to Universal Serial Bus, revision 3.1 specification, revision 1.0 standard. Electrostatic discharge (ESD) to measure device sensitivity/immunity to damage caused by electrostatic discharges into the device. Level listed above is the passing level per ANSI/ESDA/JEDEC JS-001-2010. JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process, and manufacturing with less than 500 V HBM is possible if necessary precautions are taken. Pins listed as 1000 V may actually have higher performance. Level listed above is the passing level per EIA-JEDEC JESD22-C101E. JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process. Pins listed as 250 V may actually have higher performance. Overshoot/Undershoot percentage relative to I/O operating values - for example the maximum overshoot value for 1.8 V LVCMOS signals is DVDD18 + 0.20 × DVDD18 and maximum undershoot value would be VSS - 0.20 × DVDD18 Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Device Operating Conditions 175 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Recommended Operating Conditions (1) (2) 9.2 Initial (3) MIN NOM MAX UNIT 1.0 1.05 1.10 V SRVnom*0.95 (4) SRVnom SRVnom*1.05 CVDD SR core supply CVDD1 Core supply 0.95 1.0 1.05 V DVDD18 1.8-V supply I/O voltage 1.71 1.8 1.89 V DDR3 1.425 1.5 1.575 V DDR3L @ 1.5 V 1.425 1.5 1.575 1250MHz and 1400MHz Device V DVDD15 DDR3 I/O voltage 1.283 1.35 1.45 DDR3VREFSSTL DDR3 reference voltage 0.49 × DVDD15 0.5 × DVDD15 0.51 × DVDD15 V VDDAHV SerDes regulator supply 1.71 1.8 1.89 V VDDALH SerDes termination supply 0.807 0.85 0.892 V AVDDx (5) PLL analog, DDR DLL supply 1.71 1.8 1.89 V USB0VP, USB1VP 0.85-V USB PHY supply 0.807 0.85 0.892 V USB0VPH, USB1VPH 3.3-V USB 3.135 3.3 3.465 V USB0VPTX, USB1VPTX USBPHY Transmit supply 0.807 0.85 0.892 V VDDUSB0, VDDUSB1 USB PHY supply 0.807 0.85 0.892 V USB0DVDD33, USB1DVDD33 USB 3.3-V high supply 3.135 3.3 3.465 V VSS Ground 0 0 0 V DDR3L @ 1.35 V LVCMOS (1.8 V) VIH (6) High-level input voltage I2C DDR3 EMIF 0.65 × DVDD18 V 0.7 × DVDD18 V VREFSSTL + 0.1 V LVCMOS (1.8 V) VIL (6) Low-level input voltage DDR3 EMIF 0.35 × DVDD18 V VREFSSTL - 0.1 V 0.3 × DVDD18 V 0 85 °C -40 100 °C -0.3 2 IC TC (1) (2) (3) (4) (5) (6) 176 Operating case temperature Commercial Extended All differential clock inputs comply with the LVDS Electrical Specification, IEEE 1596.3-1996 and all SerDes I/Os comply with the XAUI Electrical Specification, IEEE 802.3ae-2002. All SerDes I/Os comply with the XAUI Electrical Specification, IEEE 802.3ae-2002. Users are required to program their board CVDD supply initial value to 1.0 V on the device. The initial CVDD voltage at power-on will be 1.0V nominal and it must transition to VID set value, immediately after being presented on the VCNTL pins. This is required to maintain full power functionality and reliability targets guaranteed by TI. SRVnom refers to the unique SmartReflex core supply voltage that has a potential range of 0.8 V and 1.1 V which preset from the factory for each individual device. Your device may never be programmed to operate at the upper range but has been designed accordingly should it be determined to be acceptable or necessary. Power supplies intended to support the variable SRV function shall be capable of providing a 0.8V-1.1V dynamic range using a 4- or 6-bit binary input value which as provided by the SOC SmartReflex output. Where x=1,2,3,4... to indicate all supplies of the same kind. For USB High-Speed, Full-Speed, and Low -Speed modes, USB I/Os adhere to Universal Serial Bus, revision 2.0 standard. For USB Super-Speed mode, USB I/Os adhere to Universal Serial Bus, revision 3.1 specification, revision 1.0 standard. Device Operating Conditions Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com 9.3 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Electrical Characteristics Over Recommended Ranges of Supply Voltage and Operating Case Temperature (Unless Otherwise Noted) TEST CONDITIONS (1) PARAMETER LVCMOS (1.8 V) VOH (2) High-level output voltage IO = IOH DDR3 MIN DVDD15 - 0.4 Low-level output voltage V IO = IOL 0.45 DDR3 0.4 IO = 3 mA, pulled up to 1.8 V I2C No IPD/IPU LVCMOS (1.8 V) II (4) Input current [DC] Internal pullup Internal pulldown 0.1 × DVDD18 V < VI < 0.9 × DVDD18 V I2C IOH -10 10 50 100 170 -170 -100 -50 -10 10 DDR3 -8 I2C (5) 8 I C -10 10 DDR3 -10 10 -10 10 I C (3) (4) (5) (6) mA 3 LVCMOS (1.8 V) 2 (1) (2) mA 6 2 Off-state output current [DC] µA (5) Low-level output current [DC] DDR3 IOZ (6) µA -6 LVCMOS (1.8 V) IOL V 0.4 LVCMOS (1.8 V) High-level output current [DC] UNIT (3) LVCMOS (1.8 V) VOL MAX DVDD18 - 0.45 I2C (3) (2) TYP µA For test conditions shown as MIN, MAX, or TYP, use the appropriate value specified in the recommended operating conditions table. For USB High-Speed, Full-Speed, and Low -Speed modes, USB I/Os adhere to Universal Serial Bus, revision 2.0 standard. For USB Super-Speed mode, USB I/Os adhere to Universal Serial Bus, revision 3.1 specification, revision 1.0 standard. I2C uses open collector IOs and does not have a VOH Minimum. II applies to input-only pins and bidirectional pins. For input-only pins, II indicates the input leakage current. For bidirectional pins, II includes input leakage current and off-state (Hi-Z) output leakage current. I2C uses open collector IOs and does not have a IOH Maximum. IOZ applies to output-only pins, indicating off-state (Hi-Z) output leakage current. Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Device Operating Conditions 177 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 9.4 www.ti.com Power Supply to Peripheral I/O Mapping Table 9-1. Power Supply to Peripheral I/O Mapping (1) (2) Over Recommended Ranges of Supply Voltage and Operating Case Temperature (Unless Otherwise Noted) POWER SUPPLY I/O BUFFER TYPE ASSOCIATED PERIPHERAL CORECLK(P|N) PLL input buffer DDR3CLK(P|N) PLL input buffer CVDD Supply core AVS voltage LJCB NETCPCLK(P|N) PLL input buffer USBCLK(P|M) PLL input buffer SGMII0CLK(P|N) PLL input buffer VDDALV SerDes/CML SERDES low voltage PCIECLK(P|N) SerDes Clock Reference VDDAHV SerDes IO voltage SerDes/CML HYPCLK(P|N) SerDes Clock Reference XFICLK(P|N) SerDes Clock Reference (3) DVDD15 DDR3 memory I/O voltage DDR3 (1.5/1.35 V) All DDR3 memory controller peripheral I/O buffer All GPIO peripheral I/O buffer All JTAG and EMU peripheral I/O buffer All TIMER peripheral I/O buffer All SPI peripheral I/O buffer LVCMOS (1.8 V) DVDD18 1.8-V supply I/O voltage All TSIP peripheral I/O buffer All RESETs, control peripheral I/O buffer All SmartReflex peripheral I/O buffer All Hyperlink sideband peripheral I/O buffer All MDIO peripheral I/O buffer All UART peripheral I/O buffer (1) (2) (3) 178 Open-drain (1.8 V) All I2C peripheral I/O buffer LVDS TSREFCLK SerDes Clock Reference Please note that this table does not attempt to describe all functions of all power supply terminals but only those whose purpose it is to power peripheral I/O buffers and clock input buffers. Please see the Hardware Design Guide for KeyStone II Devices application report (SPRABV0) for more information about individual peripheral I/O. 10 GbE supported in AM5K2E04 only. Device Operating Conditions Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 10 AM5K2E0x Peripheral Information and Electrical Specifications This chapter covers the various peripherals on the AM5K2E0x device. Peripheral-specific information, timing diagrams, electrical specifications, and register memory maps are described in this chapter. 10.1 Recommended Clock and Control Signal Transition Behavior All clocks and control signals must transition between VIH and VIL (or between VIL and VIH) in a monotonic manner. 10.2 Power Supplies The following sections describe the proper power-supply sequencing and timing needed to properly power on the AM5K2E0x. The various power supply rails and their primary functions are listed in Table 10-1. Table 10-1. Power Supply Rails on the AM5K2E0x NAME PRIMARY FUNCTION VOLTAGE NOTES AVDDAx Core PLL, DDR3 DLL supply voltage 1.8 V Core PLL, DDR3 DLL supply DVDD15 DDR3 I/O power supply voltage 1.5/1.35 V DDR3 I/O power supply DVDD18 1.8-V I/O power supply voltage 1.8 V 1.8-V I/O power supply USB0DVDD33, USB1DVDD33 USB 3.3-V IO supply 3.3 V USB high voltage supply VDDAHV SerDes I/O power supply voltage 1.8 V SerDes I/O power supply VDDALV SerDes analog power supply voltage 0.85 V SerDes analog supply VDDUSB0, VDDUSB1 USB LV PHY power supply voltage 0.85 V USB LV PHY supply USB0VP, USB0VPTX, USB0VP, USB0VPTX Filtered 0.85-V supply voltage 0.85 V Filtered 0.85-V USB supply VSS Ground GND Ground 10.2.1 Power-Up Sequencing This section defines the requirements for a power-up sequencing from a power-on reset condition. There are two acceptable power sequences for the device. The first sequence stipulates the core voltages starting before the IO voltages as shown below. 1. CVDD 2. CVDD1, VDDAHV, AVDDAx, DVDD18 3. DVDD15 4. VDDALV, VDDUSBx, USBxVP, USBxVPTX 5. USBxDVDD33 The second sequence provides compatibility with other TI processors with the IO voltage starting before the core voltages as shown below. 1. VDDAHV, AVDDAx, DVDD18 2. CVDD 3. CVDD1 4. DVDD15 5. VDDALV, VDDUSBx, USBxVP, USBxVPTX 6. USBxDVDD33 AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 179 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com The clock input buffers for CORECLK, DDRCLK, NETCPCLK, and SGMIICLK use CVDD as a supply voltage. These clock inputs are not failsafe and must be held in a high-impedance state until CVDD is at a valid voltage level. Driving these clock inputs high before CVDD is valid could cause damage to the device. Once CVDD is valid, it is acceptable that the P and N legs of these clocks may be held in a static state (either high and low or low and high) until a valid clock frequency is needed at that input. To avoid internal oscillation, the clock inputs should be removed from the high impedance state shortly after CVDD is present. If a clock input is not used, it must be held in a static state. To accomplish this, the N leg should be pulled to ground through a 1-kΩ resistor. The P leg should be tied to CVDD to ensure it will not have any voltage present until CVDD is active. Connections to the IO cells powered by DVDD18 and DVDD15 are not failsafe and should not be driven high before these voltages are active. Driving these IO cells high before DVDD18 or DVDD15 are valid could cause damage to the device. The device initialization is divided into two phases. The first phase consists of the time period from the activation of the first power supply until the point at which all supplies are active and at a valid voltage level. Either of the sequencing scenarios described above can be implemented during this phase. The figures below show both the core-before-IO voltage sequence and the IO-before-core voltage sequence. POR must be held low for the entire power stabilization phase. This is followed by the device initialization phase. The rising edge of POR followed by the rising edge of RESETFULL triggers the end of the initialization phase, but both must be inactive for the initialization to complete. POR must always go inactive before RESETFULL goes inactive as described below. SYSCLK1 in the following section refers to the clock that is used by the CorePacs. See Figure 10-7 for more details. 10.2.1.1 Core-Before-IO Power Sequencing The details of the Core-before-IO power sequencing are defined in Table 10-2. Figure 10-1 shows power sequencing and reset control of the AM5K2E0x. POR may be removed after the power has been stable for the required 100 µsec. RESETFULL must be held low for a period (see item 9 in Figure 10-1) after the rising edge of POR, but may be held low for longer periods if necessary. The configuration bits shared with the GPIO pins will be latched on the rising edge of RESETFULL and must meet the setup and hold times specified. SYSCLK1 must always be active before POR can be removed. NOTE TI recommends a maximum of 80 ms between one power rail being valid and the next power rail in the sequence starting to ramp. Table 10-2. Core-Before-IO Power Sequencing ITEM SYSTEM STATE 1 Begin Power Stabilization Phase • CVDD (core AVS) ramps up. • POR must be held low through the power stabilization phase. Because POR is low, all the core logic that has asynchronous reset (created from POR) is put into the reset state. • Each supply must ramp monotonically and must reach a stable valid level in 20 ms or less. 2a • • • • 180 CVDD1 (core constant) ramps at the same time or within 80 ms of CVDD. Although ramping CVDD1 simultaneously with CVDD is permitted, the voltage for CVDD1 must never exceed CVDD until after CVDD has reached a valid voltage. The purpose of ramping up the core supplies close to each other is to reduce crowbar current. CVDD1 should trail CVDD as this will ensure that the Word Lines (WLs) in the memories are turned off and there is no current through the memory bit cells. If, however, CVDD1 (core constant) ramps up before CVDD (core AVS), then the worst-case current could be on the order of twice the specified draw of CVDD1. Each supply must ramp monotonically and must reach a stable valid level in 20 ms or less. The timing for CVDD1 is based on CVDD valid. CVDD1 and DVDD18/ADDAVH/AVDDAx may be enabled at the same time but do not need to ramp simultaneously. CVDD1 may be valid before or after DVDD18/ADDAVH/AVDDAx are valid, as long as the timing above is met. AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 10-2. Core-Before-IO Power Sequencing (continued) ITEM SYSTEM STATE 2b • • • VDDAHV, AVDDAx and DVDD18 ramp at the same time or shortly following CVDD. DVDD18 must be enabled within 80 ms of CVDD valid and must ramp monotonically and reach a stable level in 20ms or less. This results in no more than 100 ms from the time when CVDD is valid to the time when DVDD18 is valid. Each supply must ramp monotonically and must reach a stable valid level in 20 ms or less. The timing for DVDD18/ADDAVH/AVDDAx is based on CVDD valid. DVDD18/ADDAVH/AVDDAx and CVDD1 may be enabled at the same time but do not need to ramp simultaneously. DVDD18/ADDAVH/AVDDAx may be valid before or after CVDD1 is valid, as long as the timing above is met. 2c • Once CVDD is valid, the clock drivers can be enabled. Although the clock inputs are not necessary at this time, they should either be driven with a valid clock or be held in a static state with one leg high and one leg low. 2d • The DDRCLK and SYSCLK1 may begin to toggle anytime between when CVDD is at a valid level and the setup time before POR goes high specified by item 7. 3 • • • • DVDD15 can ramp up within 80ms of when DVDD18 is valid. RESETSTAT is driven low once the DVDD18 supply is available. All LVCMOS input and bidirectional pins must not be driven or pulled high until DVDD18 is present. Driving an input or bidirectional pin before DVDD18 is valid could cause damage to the device. Each supply must ramp monotonically and must reach a stable valid level in 20 ms or less. 3a • RESET may be driven high any time after DVDD18 is at a valid level. RESET must be high before POR is driven high. 4 • • VDDALV, VDDUSBx, USBxVP and USBxVPTX ramp up within 80ms of when DVDD15 is valid. Each supply must ramp monotonically and must reach a stable valid level in 20 ms or less. 5 • • USBxDVDD33 supply is ramped up within 80 ms of when VDDALV, VDDUSBx, USBxVP and USBxVPTX are valid. Each supply must ramp monotonically and must reach a stable valid level in 20 ms or less. 6 • POR must continue to remain low for at least 100 μs after all power rails have stabilized. End power stabilization phase 7 • Device initialization requires 500 SYSCLK1 periods after the Power Stabilization Phase. The maximum clock period is 33.33 nsec, so a delay of an additional 16 μs is required before a rising edge of POR. The clock must be active during the entire 16 μs. 8 • RESETFULL must be held low for at least 24 transitions of the SYSCLK1 after POR has stabilized at a high level. 9 • • 10 • GPIO configuration bits must be valid for at least 12 transitions of the SYSCLK1 before the rising edge of RESETFULL. 11 • GPIO configuration bits must be held valid for at least 12 transitions of the SYSCLK1 after the rising edge of RESETFULL. The rising edge of the RESETFULL will remove the reset to the eFuse farm allowing the scan to begin. Once device initialization and the eFuse farm scan are complete, the RESETSTAT signal is driven high. This delay will be 10000 to 50000 clock cycles. End device initialization phase AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 181 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Power Stabilization Phase Device Initialization Phase POR 8 RESETFULL 9 Configuration Inputs 10 11 RESET 2d 1 1 CVDD 2a CVDD1 2 VDDAHV AVDDAx DVDD18 2b 3a 3 3 DVDD15 4 VDDALV USBxVP USBxVPTX 4 6 5 5 USBxDVDD33 7 SYSCLK1 2c DDRCLKOUT RESETSTAT Figure 10-1. Core-Before-IO Power Sequencing 182 AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 10.2.1.2 IO-Before-Core Power Sequencing The timing diagram for IO-before-core power sequencing is shown in Figure 10-2 and defined in Table 103. NOTE TI recommends a maximum of 100 ms between one power rail being valid, and the next power rail in the sequence starting to ramp. Table 10-3. IO-Before-Core Power Sequencing ITEM SYSTEM STATE 1 Begin Power Stabilization Phase • VDDAHV, AVDDAx and DVDD18 ramp up. • POR must be held low through the power stabilization phase. Because POR is low, all the core logic that has asynchronous reset (created from POR ) is put into the reset state. • Each supply must ramp monotonically and must reach a stable valid level in 20 ms or less. 2 • • CVDD (core AVS) ramps within 80 ms from the time ADDAHV, AVDDAx and DVDD18 are valid. Each supply must ramp monotonically and must reach a stable valid level in 20 ms or less. 2a • RESET may be driven high any time after DVDD18 is at a valid level. must be high before POR is driven high. 3 • CVDD1 (core constant) ramp at the same time or within 80 ms following CVDD. Although ramping CVDD1 simultaneously with CVDD is permitted, the voltage for CVDD1 must never exceed CVDD until after CVDD has reached a valid voltage. The purpose of ramping up the core supplies close to each other is to reduce crowbar current. CVDD1 should trail CVDD as this will ensure that the Word Lines (WLs) in the memories are turned off and there is no current through the memory bit cells. If, however, CVDD1 (core constant) ramp up before CVDD (core AVS), then the worst-case current could be on the order of twice the specified draw of CVDD1. Each supply must ramp monotonically and must reach a stable valid level in 20 ms or less. • • 3a • Once CVDD is valid, the clock drivers can be enabled. Although the clock inputs are not necessary at this time, they should either be driven with a valid clock or held in a static state. 3b • The DDRCLK and SYSCLK1 may begin to toggle anytime between when CVDD is at a valid level and the setup time before POR goes high specified by item 8. 4 • • • • DVDD15 can ramp up within 80 ms of when CVDD1 is valid. RESETSTAT is driven low once the DVDD18 supply is available. All LVCMOS input and bidirectional pins must not be driven or pulled high until DVDD18 is present. Driving an input or bidirectional pin before DVDD18 is valid could cause damage to the device. Each supply must ramp monotonically and must reach a stable valid level in 20 ms or less. 5 • • VDDALV, VDDUSBx, USBxVP and USBxVPTX should ramp up within 80 ms of when DVDD15 is valid. Each supply must ramp monotonically and must reach a stable valid level in 20 ms or less. 6 • • USBxDVDD33 supply is ramped up within 80 ms of when VDDALV, VDDUSBx, USBxVP and USBxVPTX are valid. Each supply must ramp monotonically and must reach a stable valid level in 20 ms or less. 7 • POR must continue to remain low for at least 100 μs after all power rails have stabilized. End power stabilization phase 8 • Device initialization requires 500 SYSCLK1 periods after the Power Stabilization Phase. The maximum clock period is 33.33 nsec, so a delay of an additional 16 μs is required before a rising edge of POR. The clock must be active during the entire 16 μs. 9 • RESETFULL must be held low for at least 24 transitions of the SYSCLK1 after POR has stabilized at a high level. 10 • • 11 • GPIO configuration bits must be valid for at least 12 transitions of the SYSCLK1 before the rising edge of RESETFULL. 12 • GPIO configuration bits must be held valid for at least 12 transitions of the SYSCLK1 after the rising edge of RESETFULL. The rising edge of the RESETFULL will remove the reset to the efuse farm allowing the scan to begin. Once device initialization and the efuse farm scan are complete, the RESETSTAT signal is driven high. This delay will be 10000 to 50000 clock cycles. End device initialization phase AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 183 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Power Stabilization Phase Device Initialization Phase POR 9 RESETFULL 10 Configuration Inputs 2a 11 12 RESET 1 VDDAHV AVDDAx DVDD18 1 3b 2 2 CVDD 3 3 CVDD1 4 4 DVDD15 5 VDDALV USBxVP USBxVPTX 5 7 6 6 USBxDVDD33 8 3a SYSCLK1 DDRCLKOUT RESETSTAT Figure 10-2. IO-Before-Core Power Sequencing 184 AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 10.2.1.3 Prolonged Resets Holding the device in POR, RESETFULL, or RESET for long periods of time may affect the long-term reliability of the part (due to an elevated voltage condition that can stress the part). The device should not be held in a reset for times exceeding one hour at a time and no more than 5% of the total lifetime for which the device is powered-up. Exceeding these limits will cause a gradual reduction in the reliability of the part. This can be avoided by allowing the device to boot and then configuring it to enter a hibernation state soon after power is applied. This will satisfy the reset requirement while limiting the power consumption of the device. 10.2.1.4 Clocking During Power Sequencing Some of the clock inputs are required to be present for the device to initialize correctly, but behavior of many of the clocks is contingent on the state of the boot configuration pins. Table 10-4 describes the clock sequencing and the conditions that affect clock operation. Note that all clock drivers should be in a highimpedance state until CVDD is at a valid level and that all clock inputs be either active or in a static state with one leg pulled to ground and the other connected to CVDD. Table 10-4. Clock Sequencing CLOCK CONDITION SEQUENCING DDRCLK None Must be present 16 µsec before POR transitions high. None CORECLK is used to clock the core PLL. It must be present 16 µsec before POR transitions high. NETCPCLKSEL = 0 NETCPCLK is not used and should be tied to a static state. NETCPCLKSEL = 1 NETCPCLK is used as a source for the NETCP PLL. It must be present before the NETCP PLL is removed from reset and programmed. PCIE will be used as a boot device. PCIECLK must be present 16 µsec before POR transitions high. PCIE will be used after boot. PCIECLK is used as a source to the PCIE SerDes PLL. It must be present before the PCIe is removed from reset and programmed. PCIE will not be used. PCIECLK is not used and should be tied to a static state. HyperLink will be used as a boot device. HYPLNK0CLK must be present 16 µsec before POR transitions high. HyperLink will be used after boot. HYPLNK0CLK is used as a source to the HyperLink SerDes PLL. It must be present before the HyperLink is removed from reset and programmed. HyperLink will not be used. HYPLNK0CLK is not used and should be tied to a static state. CORECLK NETCPCLK PCIECLK HYPLNK0CLK 10.2.2 Power-Down Sequence The power down sequence is the exact reverse of the power-up sequence described above. The goal is to prevent an excessive amount of static current and to prevent overstress of the device. A power-good circuit that monitors all the supplies for the device should be used in all designs. If a catastrophic power supply failure occurs on any voltage rail, POR should transition to low to prevent over-current conditions that could possibly impact device reliability. A system power monitoring solution is needed to shut down power to the board if a power supply fails. Long-term exposure to an environment in which one of the power supply voltages is no longer present will affect the reliability of the device. Holding the device in reset is not an acceptable solution because prolonged periods of time with an active reset can affect long term reliability. 10.2.3 Power Supply Decoupling and Bulk Capacitor To properly decouple the supply planes on the PCB from system noise, decoupling and bulk capacitors are required. Bulk capacitors are used to minimize the effects of low-frequency current transients and decoupling or bypass capacitors are used to minimize higher frequency noise. For recommendations on selection of power supply decoupling and bulk capacitors see the Hardware Design Guide for KeyStone II Devices application report (SPRABV0). AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 185 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com 10.2.4 SmartReflex Increasing the device complexity increases its power consumption. With higher clock rates and increased performance comes an inevitable penalty: increasing leakage currents. Leakage currents are present in any powered circuit, independent of clock rates and usage scenarios. This static power consumption is mainly determined by transistor type and process technology. Higher clock rates also increase dynamic power, which is the power used when transistors switch. The dynamic power depends mainly on a specific usage scenario, clock rates, and I/O activity. Texas Instruments SmartReflex technology is used to decrease both static and dynamic power consumption while maintaining the device performance. SmartReflex in the AM5K2E0x device is a feature that allows the core voltage to be optimized based on the process corner of the device. This requires a voltage regulator for each AM5K2E0x device. To help maximize performance and minimize power consumption of the device, SmartReflex is required to be implemented. The voltage selection can be accomplished using 4 VCNTL pins or 6 VCNTL pins (depending on power supply device being used), which are used to select the output voltage of the core voltage regulator. For information on implementation of SmartReflex see the Power Consumption Summary for KeyStone TCI66x Devices application report (SPRABL4) and the Hardware Design Guide for KeyStone II Devices application report (SPRABV0). Table 10-5. SmartReflex 4-Pin 6-bit VID Interface Switching Characteristics (see Figure 10-3) NO. PARAMETER 1 td(VCNTL[4:2]-VCNTL[5]) Delay time - VCNTL[4:2] valid after VCNTL[5] low 2 toh(VCNTL[5]-VCNTL[4:2]) Output hold time - VCNTL[4:2] valid after VCNTL[5] 3 td(VCNTL[4:2]-VCNTL[5]) Delay time - VCNTL[4:2] valid after VCNTL[5] high 4 toh(VCNTL[5]-VCNTL[2:0) Output hold time - VCNTL[4:2] valid after VCNTL[5] high (1) MIN MAX UNIT 300.00 ns 0.07 172020C (1) ms 300.00 ns 0.07 172020C ms C = 1/SYSCLK1 frequency, in ms (see Figure 10-9) 4 VCNTL[5] 1 3 VCNTL[4:2] LSB VID[2:0] MSB VID[5:3] 2 Figure 10-3. SmartReflex 4-Pin 6-Bit VID Interface Timing 10.2.5 Monitor Points Two pairs of monitor points for the CVDD voltage level are provided. Both CVDDCMON and CVDDTMON are connected directly to the CVDD supply plane on the die itself. VSSCMON and VSSTMON are connected to the ground plane on the die. These pairs provide the best measurement points for the voltage at the silicon. They also provide the best point to connect the remote sense lines for the CVDD power supply. The use of a power supply with a differential remote sense input is highly desirable. The positive remote sense line should be connected to CVDDCMON and the negative remote sense line should be connected to VSSCMON. CVDDTMON and VSSTMON can be used as an alternative but always use either the CMON pair or the TMON pair. If the power supply remote sense is not differential CVDDCMON or CVDDTMON can be connected to the sense line. 186 AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 10.3 Power Sleep Controller (PSC) The Power Sleep Controller (PSC) includes a Global Power Sleep Controller (GPSC) and a number of Local Power Sleep Controllers (LPSC) that control overall device power by turning off unused power domains and gating off clocks to individual peripherals and modules. The PSC provides the user with an interface to control several important power and clock operations. For information on the Power Sleep Controller, see the KeyStone Architecture Power Sleep Controller (PSC) User's Guide (SPRUGV4). 10.3.1 Power Domains The device has several power domains that can be turned on for operation or off to minimize power dissipation. The Global Power Sleep Controller (GPSC) is used to control the power gating of various power domains. The following table shows the AM5K2E0x power domains. Table 10-6. AM66K2Ex Power Domains DOMAI N BLOCK(S) NOTE POWER CONNECTION 0 Most peripheral logic (BOOTCFG, EMIF16, I2C, INTC, GPIO, USB) Cannot be disabled Always on 1 Per-core TETB and system TETB RAMs can be powered down Software control 2 Network Coprocessor Logic can be powered down Software control 3 PCIe0 Logic can be powered down Software control 4 Reserved 5 HyperLink Logic can be powered down Software control 6 SmartReflex Cannot be disabled Always on 7 MSMC RAM MSMC RAM can be powered down Software control 8 Reserved 9 Reserved 10 Reserved 11 Reserved 12 Reserved 13 Reserved 14 Reserved 15 Reserved 16 EMIF(DDR3) Logic can be powered down Software control 17 Reserved 18 PCIe1 Logic can be powered down Software control 19 Reserved 20 Reserved 21 Reserved 22 Reserved 23 Reserved 24 Reserved 25 Reserved 26 Reserved 27 Reserved 28 Reserved 29 10GbE Logic can be powered down Software control 30 ARM Smart Reflex Logic can be powered down Software control AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 187 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 10-6. AM66K2Ex Power Domains (continued) DOMAI N BLOCK(S) NOTE POWER CONNECTION 31 ARM CorePac Logic can be powered down Software control 10.3.2 Clock Domains Clock gating to each logic block is managed by the Local Power Sleep Controllers (LPSCs) of each module. For modules with a dedicated clock or multiple clocks, the LPSC communicates with the PLL controller to enable and disable that module's clock(s) at the source. For modules that share a clock with other modules, the LPSC controls the clock gating logic for each module. Table 10-7 shows the AM5K2E0x clock domains. Table 10-7. Clock Domains LPSC NUMBER MODULE(S) NOTES 0 Shared LPSC for all peripherals other than those listed in this table Always on 1 USB_1 2 USB_0 Software control 3 EMIF16 and SPI Software control 4 TSIP Software control 5 Debug subsystem and tracers Software control 6 Reserved Always on 7 Packet Accelerator Software control 8 Ethernet SGMIIs Software control 9 Security Accelerator Software control 10 PCIe_0 Software control 11 Reserved 12 HyperLink Software control 13 SmartReflex Always on 14 MSMC RAM Software control 15 Reserved 16 Reserved 17 Reserved 18 Reserved 19 Reserved 20 Reserved 21 Reserved 22 Reserved 23 DDR3 EMIF 24 Reserved 25 Reserved Reserved 26 Reserved Reserved 27 PCIe_1 Reserved 28 Reserved Reserved 29 Reserved Reserved 30 Reserved Reserved 31 Reserved Reserved 32 Reserved Reserved 33 Reserved Reserved 34 Reserved Reserved 188 Software control AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 10-7. Clock Domains (continued) LPSC NUMBER MODULE(S) NOTES 35 Reserved Reserved 36 Reserved Reserved 37 Reserved Reserved 38 Reserved Reserved 39 Reserved Reserved 40 Reserved Reserved 41 Reserved Reserved 42 Reserved Reserved 43 Reserved Reserved 44 Reserved Reserved 45 Reserved Reserved 46 Reserved Reserved 47 Reserved Reserved 48 Reserved Reserved 49 Reserved Reserved 50 10GbE Software control 51 ARM Smart Reflex Software control 52 ARM CorePac Software control No LPSC Bootcfg, PSC, and PLL Controller These modules do not use LPSC 10.3.3 PSC Register Memory Map Table 10-8 shows the PSC Register memory map. Table 10-8. PSC Register Memory Map OFFSET REGISTER DESCRIPTION 0x000 PID Peripheral Identification Register 0x004 - 0x010 Reserved Reserved 0x014 VCNTLID Voltage Control Identification Register 0x018 - 0x11C Reserved Reserved 0x120 PTCMD Power Domain Transition Command Register 0x124 Reserved Reserved 0x128 PTSTAT Power Domain Transition Status Register 0x12C - 0x1FC Reserved Reserved 0x200 PDSTAT0 Power Domain Status Register 0 0x204 PDSTAT1 Power Domain Status Register 1 0x208 PDSTAT2 Power Domain Status Register 2 0x20C PDSTAT3 Power Domain Status Register 3 0x210 PDSTAT4 Power Domain Status Register 4 0x214 PDSTAT5 Power Domain Status Register 5 0x218 PDSTAT6 Power Domain Status Register 6 0x21C PDSTAT7 Power Domain Status Register 7 0x220 PDSTAT8 Power Domain Status Register 8 0x224 PDSTAT9 Power Domain Status Register 9 0x228 PDSTAT10 Power Domain Status Register 10 0x22C PDSTAT11 Power Domain Status Register 11 0x230 PDSTAT12 Power Domain Status Register 12 0x234 PDSTAT13 Power Domain Status Register 13 AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 189 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 10-8. PSC Register Memory Map (continued) OFFSET REGISTER DESCRIPTION 0x238 PDSTAT14 Power Domain Status Register 14 0x23C PDSTAT15 Power Domain Status Register 15 0x240 PDSTAT16 Power Domain Status Register 16 0x244 PDSTAT17 Power Domain Status Register 17 0x248 PDSTAT18 Power Domain Status Register 18 0x24C PDSTAT19 Power Domain Status Register 19 0x250 PDSTAT20 Power Domain Status Register 20 0x254 PDSTAT21 Power Domain Status Register 21 0x258 PDSTAT22 Power Domain Status Register 22 0x25C PDSTAT23 Power Domain Status Register 23 0x260 PDSTAT24 Power Domain Status Register 24 0x264 PDSTAT25 Power Domain Status Register 25 0x268 PDSTAT26 Power Domain Status Register 26 0x26C PDSTAT27 Power Domain Status Register 27 0x270 PDSTAT28 Power Domain Status Register 28 0x274 PDSTAT29 Power Domain Status Register 29 0x278 PDSTAT30 Power Domain Status Register 30 0x27C PDSTAT31 Power Domain Status Register 31 0x27C - 0x2FC Reserved Reserved 0x300 PDCTL0 Power Domain Control Register 0 0x304 PDCTL1 Power Domain Control Register 1 0x308 PDCTL2 Power Domain Control Register 2 0x30C PDCTL3 Power Domain Control Register 3 0x310 PDCTL4 Power Domain Control Register 4 0x314 PDCTL5 Power Domain Control Register 5 0x318 PDCTL6 Power Domain Control Register 6 0x31C PDCTL7 Power Domain Control Register 7 0x320 PDCTL8 Power Domain Control Register 8 0x324 PDCTL9 Power Domain Control Register 9 0x328 PDCTL10 Power Domain Control Register 10 0x32C PDCTL11 Power Domain Control Register 11 0x330 PDCTL12 Power Domain Control Register 12 0x334 PDCTL13 Power Domain Control Register 13 0x338 PDCTL14 Power Domain Control Register 14 0x33C PDCTL15 Power Domain Control Register 15 0x340 PDCTL16 Power Domain Control Register 16 0x344 PDCTL17 Power Domain Control Register 17 0x348 PDCTL18 Power Domain Control Register 18 0x34C PDCTL19 Power Domain Control Register 19 0x350 PDCTL20 Power Domain Control Register 20 0x354 PDCTL21 Power Domain Control Register 21 0x358 PDCTL22 Power Domain Control Register 22 0x35c PDCTL23 Power Domain Control Register 23 0x360 PDCTL24 Power Domain Control Register 24 0x364 PDCTL25 Power Domain Control Register 25 0x368 PDCTL26 Power Domain Control Register 26 0x36C PDCTL27 Power Domain Control Register 27 190 AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 10-8. PSC Register Memory Map (continued) OFFSET REGISTER DESCRIPTION 0x370 PDCTL28 Power Domain Control Register 28 0x374 PDCTL29 Power Domain Control Register 29 0x378 PDCTL30 Power Domain Control Register 30 0x37C PDCTL31 Power Domain Control Register 31 0x380 - 0x7FC Reserved Reserved 0x800 MDSTAT0 Module Status Register 0 (never gated) 0x804 MDSTAT1 Module Status Register 1 0x808 MDSTAT2 Module Status Register 2 0x80C MDSTAT3 Module Status Register 3 0x810 MDSTAT4 Module Status Register 4 0x814 MDSTAT5 Module Status Register 5 0x818 MDSTAT6 Module Status Register 6 0x81C MDSTAT7 Module Status Register 7 0x820 MDSTAT8 Module Status Register 8 0x824 MDSTAT9 Module Status Register 9 0x828 MDSTAT10 Module Status Register 10 0x82C MDSTAT11 Module Status Register 11 0x830 MDSTAT12 Module Status Register 12 0x834 MDSTAT13 Module Status Register 13 0x838 MDSTAT14 Module Status Register 14 0x83C MDSTAT15 Module Status Register 15 0x840 MDSTAT16 Module Status Register 16 0x844 MDSTAT17 Module Status Register 17 0x848 MDSTAT18 Module Status Register 18 0x84C MDSTAT19 Module Status Register 19 0x850 MDSTAT20 Module Status Register 20 0x854 MDSTAT21 Module Status Register 21 0x858 MDSTAT22 Module Status Register 22 0x85C MDSTAT23 Module Status Register 23 0x860 MDSTAT24 Module Status Register 24 0x864 MDSTAT25 Module Status Register 25 0x868 MDSTAT26 Module Status Register 26 0x86C MDSTAT27 Module Status Register 27 0x870 MDSTAT28 Module Status Register 28 0x874 MDSTAT29 Module Status Register 29 0x878 MDSTAT30 Module Status Register 30 0x87C MDSTAT31 Module Status Register31 0x880 MDSTAT32 Module Status Register 32 0x884 MDSTAT33 Module Status Register 33 0x888 MDSTAT34 Module Status Register 34 0x88C MDSTAT35 Module Status Register 35 0x890 MDSTAT36 Module Status Register 36 0x894 MDSTAT37 Module Status Register 37 0x898 MDSTAT38 Module Status Register 38 0x89C MDSTAT39 Module Status Register 39 0x8A0 MDSTAT40 Module Status Register 40 0x8A4 MDSTAT41 Module Status Register 41 AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 191 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 10-8. PSC Register Memory Map (continued) OFFSET REGISTER DESCRIPTION 0x8A8 MDSTAT42 Module Status Register 42 0x8AC MDSTAT43 Module Status Register 43 0x8B0 MDSTAT44 Module Status Register 44 0x8B4 MDSTAT45 Module Status Register 45 0x8B8 MDSTAT46 Module Status Register 46 0x8BC MDSTAT47 Module Status Register 47 0x8C0 MDSTAT48 Module Status Register 48 0x8C4 MDSTAT49 Module Status Register 49 0x8C8 MDSTAT50 Module Status Register 50 0x8CC MDSTAT51 Module Status Register 51 0x8D0 MDSTAT52 Module Status Register 52 0x8D4 - 0x9FC Reserved Reserved 0xA00 MDCTL0 Module Control Register 0 (never gated) 0xA04 MDCTL1 Module Control Register 1 0xA08 MDCTL2 Module Control Register 2 0xA0C MDCTL3 Module Control Register 3 0xA10 MDCTL4 Module Control Register 4 0xA14 MDCTL5 Module Control Register 5 0xA18 MDCTL6 Module Control Register 6 0xA1C MDCTL7 Module Control Register 7 0xA20 MDCTL8 Module Control Register 8 0xA24 MDCTL9 Module Control Register 9 0xA28 MDCTL10 Module Control Register 10 0xA2C MDCTL11 Module Control Register 11 0xA30 MDCTL12 Module Control Register 12 0xA34 MDCTL13 Module Control Register 13 0xA38 MDCTL14 Module Control Register 14 0xA3C MDCTL15 Module Control Register 15 0xA40 MDCTL16 Module Control Register 16 0xA44 MDCTL17 Module Control Register 17 0xA48 MDCTL18 Module Control Register 18 0xA4C MDCTL19 Module Control Register 19 0xA50 MDCTL20 Module Control Register 20 0xA54 MDCTL21 Module Control Register 21 0xA58 MDCTL22 Module Control Register 22 0xA5C MDCTL23 Module Control Register 23 0xA60 MDCTL24 Module Control Register 24 0xA64 MDCTL25 Module Control Register 25 0xA68 MDCTL26 Module Control Register 26 0xA6C MDCTL27 Module Control Register 27 0xA70 MDCTL28 Module Control Register 28 0xA74 MDCTL29 Module Control Register 29 0xA78 MDCTL30 Module Control Register 30 0xA7C MDCTL31 Module Control Register31 0xA80 MDCTL32 Module Control Register 32 0xA84 MDCTL33 Module Control Register 33 0xA88 MDCTL34 Module Control Register 34 192 AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 10-8. PSC Register Memory Map (continued) OFFSET REGISTER DESCRIPTION 0xA8C MDCTL35 Module Control Register 35 0xA90 MDCTL36 Module Control Register 36 0xA94 MDCTL37 Module Control Register 37 0xA98 MDCTL38 Module Control Register 38 0xA9C MDCTL39 Module Control Register 39 0xAA0 MDCTL40 Module Control Register 40 0xAA4 MDCTL41 Module Control Register 41 0xAA8 MDCTL42 Module Control Register 42 0xAAC MDCTL43 Module Control Register 43 0xAB0 MDCTL44 Module Control Register 44 0xAB4 MDCTL45 Module Control Register 45 0xAB8 MDCTL46 Module Control Register 46 0xABC MDCTL47 Module Control Register 47 0xAC0 MDCTL48 Module Control Register 48 0xAC4 MDCTL49 Module Control Register 49 0xAC8 MDCTL50 Module Control Register 50 0xACC MDCTL51 Module Control Register 51 0xAD0 MDCTL52 Module Control Register 52 0xAD4 - 0xFFC Reserved Reserved 10.4 Reset Controller The reset controller detects the different type of resets supported on the AM5K2E0x device and manages the distribution of those resets throughout the device. The device has the following types of resets: • Power-on reset • Hard reset • Soft reset • Local reset Table 10-9 explains further the types of reset, the reset initiator, and the effects of each reset on the device. For more information on the effects of each reset on the PLL controllers and their clocks, see Section 10.4.8. Table 10-9. Reset Types TYPE INITIATOR EFFECT(S) Power-on reset POR pin RESETFULL pin Resets the entire chip including the test and emulation logic. The device configuration pins are latched only during power-on reset. Hard reset (1) RESET pin PLLCTL Register (RSCTRL) (1) Watchdog timers Emulation Hard reset resets everything except for test, emulation logic, and reset isolation modules. This reset is different from power-on reset in that the PLL Controller assumes power and clocks are stable when a hard reset is asserted. The device configurations pins are not relatched. Emulation-initiated reset is always a hard reset. By default, these initiators are configured as hard reset, but can be configured (except emulation) as a soft reset in the RSCFG Register of the PLL Controller. Contents of the DDR3 SDRAM memory can be retained during a hard reset if the SDRAM is placed in selfrefresh mode. All masters in the device have access to the PLL Control Registers. AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 193 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 10-9. Reset Types (continued) TYPE INITIATOR Soft reset RESET pin PLLCTL Register (RSCTRL) Watchdog timers Local reset LRESET pin Watchdog timer timeout LPSC MMRs EFFECT(S) Soft reset behaves like hard reset except that PCIe MMRs (memory-mapped registers) and DDR3 EMIF MMRs contents are retained. By default, these initiators are configured as hard reset, but can be configured as soft reset in the RSCFG Register of the PLL Controller. Contents of the DDR3 SDRAM memory can be retained during a soft reset if the SDRAM is placed in self-refresh mode. Resets the C66x CorePac, without disturbing clock alignment or memory contents. The device configuration pins are not relatched. 10.4.1 Power-on Reset Power-on reset is used to reset the entire device, including the test and emulation logic. Power-on reset is initiated by the following: 1. POR pin 2. RESETFULL pin During power-up, the POR pin must be asserted (driven low) until the power supplies have reached their normal operating conditions. Also a RESETFULL pin is provided to allow reset of the entire device, including the reset-isolated logic, when the device is already powered up. For this reason, the RESETFULL pin, unlike POR, should be driven by the on-board host control other than the power good circuitry. For power-on reset, the Core PLL Controller comes up in bypass mode and the PLL is not enabled. Other resets do not affect the state of the PLL or the dividers in the PLL Controller. The following sequence must be followed during a power-on reset: 1. Wait for all power supplies to reach normal operating conditions while keeping the POR and RESETFULL pins asserted (driven low). While POR is asserted, all pins except RESETSTAT will be set to high-impedance. After the POR pin is deasserted (driven high), all Z group pins, low group pins, and high group pins are set to their reset state and remain in their reset state until otherwise configured by their respective peripheral. All peripherals that are power-managed are disabled after a power-on reset and must be enabled through the Device State Control Registers (for more details, see Section 8.2.3). 2. Clocks are reset, and they are propagated throughout the chip to reset any logic that was using reset synchronously. All logic is now reset and RESETSTAT is driven low, indicating that the device is in reset. 3. POR and RESETFULL must be held active until all supplies on the board are stable, and then for at least an additional period of time (as specified in Section 10.2.1) for the chip-level PLLs to lock. 4. The POR pin can now be de-asserted. 5. After the appropriate delay, the RESETFULL pin can now be de-asserted. Reset-sampled pin values are latched at this point. Then, all chip-level PLLs are taken out of reset, locking sequences begin, and all power-on device initialization processes begin. 6. After device initialization is complete, the RESETSTAT pin is de-asserted (driven high). By this time, the DDR3 PLL has completed its locking sequences and are supplying a valid clock. The system clocks of the PLL controllers are allowed to finish their current cycles and then are paused for 10 cycles of their respective system reference clocks. After the pause, the system clocks are restarted at their default divide-by settings. 7. The device is now out of reset and code execution begins as dictated by the selected boot mode. 194 AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 NOTE To most of the device, reset is de-asserted only when the POR and RESET pins are both de-asserted (driven high). Therefore, in the sequence described above, if the RESET pin is held low past the low period of the POR pin, most of the device will remain in reset. The RESET pin should not be tied to the POR pin. 10.4.2 Hard Reset A hard reset will reset everything on the device except the PLLs, test logic, emulation logic, and resetisolated modules. POR should also remain de-asserted during this time. Hard reset is initiated by the following: • RESET pin • RSCTRL Register in the PLL Controller • Watchdog timer • Emulation By default, all the initiators listed above are configured to generate a hard reset. Except for emulation, all of the other three initiators can be configured in the RSCFG Register in the PLL Controller to generate soft resets. The following sequence must be followed during a hard reset: 1. The RESET pin is asserted (driven low) for a minimum of 24 CLKIN1 cycles. During this time, the RESET signal propagates to all modules (except those specifically mentioned above). To prevent offchip contention during the warm reset, all I/O must be Hi-Z for modules affected by RESET. 2. Once all logic is reset, RESETSTAT is asserted (driven low) to denote that the device is in reset. 3. The RESET pin can now be released. A minimal device initialization begins to occur. Note that configuration pins are not re-latched and clocking is unaffected within the device. 4. After device initialization is complete, the RESETSTAT pin is de-asserted (driven high). NOTE The POR pin should be held inactive (high) throughout the warm reset sequence. Otherwise, if POR is activated (brought low), the minimum POR pulse width must be met. The RESET pin should not be tied to the POR pin. 10.4.3 Soft Reset A soft reset behaves like a hard reset except that the EMIF16 MMRs, DDR3 EMIF MMRs, PCIe MMRs sticky bits, and external memory content are retained. POR should also remain de-asserted during this time. Soft reset is initiated by the following: • RESET pin • RSCTRL Register in the PLL Controller • Watchdog timer In the case of a soft reset, the clock logic and the power control logic of the peripherals are not affected and, therefore, the enabled/disabled state of the peripherals is not affected. On a soft reset, the DDR3 memory controller registers are not reset. If the user places the DDR3 SDRAM in self-refresh mode before invoking the soft reset, the DDR3 SDRAM memory content is retained. During a soft reset, the following occurs: 1. The RESETSTAT pin goes low to indicate an internal reset is being generated. The reset propagates through the system. Internal system clocks are not affected. PLLs remain locked. AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 195 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com 2. After device initialization is complete, the RESETSTAT pin is deasserted (driven high). In addition, the PLL Controller pauses system clocks for approximately 8 cycles. At this point: – The peripherals remain in the state they were in before the soft reset. – The states of the Boot Mode configuration pins are preserved as controlled by the DEVSTAT Register. – The DDR3 MMRs and PCIe MMRs retain their previous values. Only the DDR3 memory controller and PCIe state machines are reset by the soft reset. – The PLL Controller remains in the mode it was in prior to the soft reset. – System clocks are unaffected. The boot sequence is started after the system clocks are restarted. Because the Boot Mode configuration pins are not latched with a soft reset, the previous values (as shown in the DEVSTAT Register), are used to select the boot mode. 10.4.4 Local Reset The local reset can be used to reset a particular C66x CorePac without resetting any other device components. Local reset is initiated by the following: • LRESET pin • Watchdog timer should cause one of the below and RSTCFG registers in the PLL Controller. (See Section 10.5.2.8 and Section 6.3.2.) – Local reset – NMI – NMI followed by a time delay and then a local reset for the C66x CorePac selected – Hard reset by requesting reset via the PLL Controller • LPSC MMRs (memory-mapped registers) For more details see the KeyStone Architecture Phase Locked Loop (PLL) Controller User's Guide (SPRUGV2). 10.4.5 ARM CorePac Reset The ARM CorePac uses a combination of power-on-reset and module-reset to reset its components, such as the Cortex-A15 processor, memory subsystem, debug logic, etc. The ARM CorePac incorporates the PSC to generate resets for its internal modules. Details of reset generation and distribution inside the ARM CorePac can be found in the KeyStone II Architecture ARM CorePac User's Guide (SPRUHJ4). 10.4.6 Reset Priority If any of the above reset sources occur simultaneously, the PLL Controller processes only the highest priority reset request. The reset request priorities are as follows (high to low): • Power-on reset • Hard/soft reset 10.4.7 Reset Controller Register The reset controller registers are part of the PLL Controller MMRs. All AM5K2E0x device-specific MMRs are covered in Section 10.5.2. For more details on these registers and how to program them, see the KeyStone Architecture Phase Locked Loop (PLL) Controller User's Guide (SPRUGV2). 10.4.8 Reset Electrical Data/Timing 196 AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 10-10. Reset Timing Requirements (1) (see Figure 10-4 and Figure 10-5) NO. MIN MAX UNIT RESETFULL Pin Reset 1 tw(RESETFULL) Pulse width - pulse width RESETFULL low 500C ns 500C ns Soft/Hard-Reset 2 (1) tw(RESET) Pulse width - pulse width RESET low C = 1/SYSCLK1 clock frequency in ns Table 10-11. Reset Switching Characteristics (1) (see Figure 10-4 and Figure 10-5) NO. PARAMETER MIN MAX UNIT RESETFULL Pin Reset 3 td(RESETFULLHRESETSTATH) Delay time - RESETSTAT high after RESETFULL high 50000C ns 50000C ns Soft/Hard Reset 4 (1) td(RESETH-RESETSTATH) Delay time - RESETSTAT high after RESET high C = 1/SYSCLK1 clock frequency in ns POR 1 RESETFULL RESET 3 RESETSTAT Figure 10-4. RESETFULL Reset Timing POR RESETFULL 2 RESET 4 RESETSTAT Figure 10-5. Soft/Hard Reset Timing Table 10-12. Boot Configuration Timing Requirements (1) (see Figure 10-6) NO. MIN MAX UNIT 1 tsu(GPIOn-RESETFULL) Setup time - GPIO valid before RESETFULL asserted 12C ns 2 th(RESETFULL-GPIOn) Hold time - GPIO valid after RESETFULL asserted 12C ns (1) C = 1/SYSCLK1 clock frequency in ns. AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 197 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com POR 1 RESETFULL GPIO[15:0] 2 Figure 10-6. Boot Configuration Timing 10.5 Core PLL (Main PLL), DDR3 PLL, NETCP PLL and the PLL Controllers This section provides a description of the Core PLL, DDR3 PLL, NETCP PLL, and the PLL Controller. For details on the operation of the PLL Controller module, see the KeyStone Architecture Phase Locked Loop (PLL) Controller User's Guide (SPRUGV2). The Core PLL is controlled by the standard PLL Controller. The PLL Controller manages the clock ratios, alignment, and gating for the system clocks to the device. By default, the device powers up with the Core PLL bypassed. Figure 10-7 shows a block diagram of the Core PLL and the PLL Controller. The DDR3 PLL and NETCP PLL are used to provide dedicated clock to the DDR3 and NETCP respectively. These chip level PLLs support a wide range of multiplier and divider values, which can be programmed through the chip level registers located in the Device Control Register block. The Boot ROM will program the multiplier values for Core PLL and NETCP PLL based on boot mode. (See Section 8 for more details.) The DDR3 PLL is used to supply clocks to DDR3 EMIF logic. This PLL can also be used without programming the PLL Controller. Instead, they can be controlled using the chip-level registers (DDR3PLLCTL0, DDR3PLLCTL1) located in the Device Control Register block. To write to these registers, software must go through an unlocking sequence using the KICK0/KICK1 registers. The multiplier values for all chip-level PLLs can be reprogrammed later based on the input parameter table. This feature provides flexibility in that these PLLs may be able to reuse other clock sources instead of having its own clock source. 198 AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 PLLM PLL CLKOD PLLD VCO CORECLK(P|N) 0 PLLOUT 1 BYPASS PLL Controller /1 PLLDIV1 SYSCLK1 To Peripherals, HyperLink, etc. /1 PLLDIV2 SYSCLK2 /x PLLDIV3 SYSCLK3 To Switch Fabric, Accelerators, SmartReflex, etc. /x PLLDIV4 SYSCLK4 Figure 10-7. Core PLL and PLL Controller Note that the Core PLL Controller registers can be accessed by any master in the device. The PLLM[5:0] bits of the multiplier are controlled by the PLLM Register inside the PLL Controller and the PLLM[12:6] bits are controlled by the chip-level COREPLLCTL0 Register. The output divide and bypass logic of the PLL are controlled by fields in the SECCTL Register in the PLL Controller. Only PLLDIV3, and PLLDIV4 are programmable on the device. See the KeyStone Architecture Phase Locked Loop (PLL) Controller User's Guide (SPRUGV2) for more details on how to program the PLL controller. The multiplication and division ratios within the PLL and the post-division for each of the chip-level clocks are determined by a combination of this PLL and the Core PLL Controller. The Core PLL Controller also controls reset propagation through the chip, clock alignment, and test points. The Core PLL Controller monitors the PLL status and provides an output signal indicating when the PLL is locked. Core PLL power is supplied externally via the Core PLL power-supply pin (AVDDA1). An external EMI filter circuit must be added to all PLL supplies. See the Hardware Design Guide for KeyStone II Devices application report (SPRABV0) for detailed recommendations. For the best performance, TI recommends that all the PLL external components be on a single side of the board without jumpers, switches, or components other than those shown. For reduced PLL jitter, maximize the spacing between switching signal traces and the PLL external components (C1, C2, and the EMI Filter). The minimum CORECLK rise and fall times should also be observed. For the input clock timing requirements, see Section 10.5.4. It should be assumed that any registers not included in these sections are not supported by the device. Furthermore, only the bits within the registers described here are supported. Avoid writing to any reserved memory location or changing the value of reserved bits. The PLL Controller module as described in the KeyStone Architecture Phase Locked Loop (PLL) Controller User's Guide (SPRUGV2) includes a superset of features, some of which are not supported on the device. The following sections describe the registers that are supported. AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 199 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com 10.5.1 Core PLL Controller Device-Specific Information 10.5.1.1 Internal Clocks and Maximum Operating Frequencies The Core PLL, used to drive the SoC, the switch fabric, and a majority of the peripheral clocks (all but the ARM CorePacs, DDR3, and the NETCP modules) requires a PLL Controller to manage the various clock divisions, gating, and synchronization. PLLM[5:0] input of the Core PLL is controlled by the PLL controller PLLM register. The Core PLL Controller has four SYSCLK outputs that are listed below along with the clock descriptions. Each SYSCLK has a corresponding divider that divides down the output clock of the PLL. Note that dividers are not programmable unless explicitly mentioned in the description below. • SYSCLK1: Using local dividers, SYSCLK1 is used to derive clocks required for the majority of peripherals that do not need reset isolation. The system peripherals and modules driven by SYSCLK1 are as follows; however, not all peripherals are supported in every part. See the Features chapter for the complete list of peripherals supported in your part. EMIF16, USB 3.0, XFI, HyperLink, PCIe, SGMII, GPIO, Timer64, I2C, SPI, TSIP, TeraNet, UART, ROM, CIC, Security Manager, BootCFG, PSC, Queue Manager, Semaphore, MPUs, EDMA, MSMC, DDR3, EMIF. • SYSCLK2:Full-rate, reset-isolated clock used to generate various other clocks required by peripherals that need reset isolation: e.g., SmartReflex. • SYSCLK3: The default rate for this clock is 1/3. This clock is programmable from /1 to /32, where this clock does not violate the maximum of 350 MHz. SYSCLK3 can be turned off by software. • SYSCLK4: 1/z-rate clock for the system trace module only. The default rate for this clock is 1/5. This clock is configurable: the maximum configurable clock is 210 MHz and the minimum configuration clock is 32 MHz. SYSCLK4 can be turned off by software. Only SYSCLK3 and SYSCLK4 are programmable. 10.5.1.2 Local Clock Dividers The clock signals from the Core PLL Controller are routed to various modules and peripherals on the device. Some modules and peripherals have one or more internal clock dividers. Other modules and peripherals have no internal clock dividers, but are grouped together and receive clock signals from a shared local clock divider. Internal and shared local clock dividers have fixed division ratios. See table Table 10-13. 200 AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 10-13. Core PLL Controller Module Clock Domains Internal and Shared Local Clock Dividers CLOCK INTERNAL CLOCK DIVIDER(S) MODULE SHARED LOCAL CLOCK DIVIDER SYSCLK1 Internal Clock Dividers SYSCLK1 ARM CorePac /1, /3, /3, /6, /6 -- Chip Interrupt Controllers (CICx) /6 -- DDR3 Memory Controller A (also receives clocks from the DDR3_PLL) /2 -- EMIF16 /6 -- HyperLink /2, /3, /6 -- MultiCore Shared Memory Controller (MSMC) /1 -- PCI express (PCIe) /2, /3, /4, /6 -- ROM /6 -- Serial Gigabit Media Independent Interface (SGMII) /2, /3, /6, /8 -- Universal Asynchronous Receiver/Transmitter (UART) /6 -- Universal Serial Bus 3.0 (USB 3.0) /3, /6 -- SYSCLK1 Shared Local Clock Dividers Power/Sleep Controller (PSC) -- /12, /24 -- /3 -- /6 EDMA SYSCLK1 Memory Protection Units (MPUx) Semaphore TeraNet (SYSCLK1/3 domain) Boot Config General-Purpose Input/Output (GPIO) I2C SYSCLK1 Security Manager Telecom Serial Interface Port (TSIP) Serial Peripheral Interconnect (SPI) TeraNet (CPU /6 domain) Timers 10.5.1.3 Module Clock Input Table 10-7 lists various clock domains in the device and their distribution in each peripheral. The table also shows the distributed clock division in modules and their mapping with source clocks of the device PLLs. 10.5.1.4 Core PLL Controller Operating Modes The Core PLL Controller has two modes of operation: bypass mode and PLL mode. The mode of operation is determined by the BYPASS bit of the PLL Secondary Control Register (SECCTL). • In bypass mode, PLL input is fed directly out as SYSCLK1. • In PLL mode, SYSCLK1 is generated from the PLL output using the values set in the PLLM and PLLD fields in the COREPLLCTL0 Register. External hosts must avoid access attempts to the SoC while the frequency of its internal clocks is changing. User software must implement a mechanism that causes the SoC to notify the host when the PLL configuration has completed. 10.5.1.5 Core PLL Stabilization, Lock, and Reset Times The PLL stabilization time is the amount of time that must be allotted for the internal PLL regulators to become stable after device power-up. The device should not be taken out of reset until this stabilization time has elapsed. AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 201 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com The PLL reset time is the amount of wait time needed when resetting the PLL (writing PLLRST = 1), in order for the PLL to properly reset, before bringing the PLL out of reset (writing PLLRST = 0). For the Core PLL reset time value, see Table 10-14. The PLL lock time is the amount of time needed from when the PLL is taken out of reset to when the PLL Controller can be switched to PLL mode. The Core PLL lock time is given in Table 10-14. Table 10-14. Core PLL Stabilization, Lock, and Reset Times PARAMETER MIN PLL stabilization time TYP 100 UNIT µs 2000 × C (1) PLL lock time PLL reset time (1) MAX 1000 ns C = SYSCLK1(N|P) cycle time in ns. 10.5.2 PLL Controller Memory Map The memory map of the Core PLL Controller is shown in Table 10-15. AM5K2Exx-specific Core PLL Controller Register definitions can be found in the sections following Table 10-15. For other registers in the table, see the KeyStone Architecture Phase Locked Loop (PLL) Controller User's Guide (SPRUGV2). It is recommended to use read-modify-write sequence to make any changes to the valid bits in the Core PLL Controller registers. Note that only registers documented here are accessible on the AM5K2Exx. Other addresses in the Core PLL Controller memory map including the Reserved registers must not be modified. Furthermore, only the bits within the registers described here are supported. Table 10-15. PLL Controller Registers (Including Reset Controller) HEX ADDRESS RANGE ACRONYM REGISTER NAME 00 0231 0000 - 00 0231 00E3 - Reserved 00 0231 00E4 RSTYPE Reset Type Status Register (Reset Core PLL Controller) 00 0231 00E8 RSTCTRL Software Reset Control Register (Reset Core PLL Controller) 00 0231 00EC RSTCFG Reset Configuration Register (Reset Core PLL Controller) 00 0231 00F0 RSISO Reset Isolation Register (Reset Core PLL Controller) 00 0231 00F0 - 00 0231 00FF - Reserved 00 0231 0100 PLLCTL PLL Control Register 00 0231 0104 - Reserved 00 0231 0108 SECCTL PLL Secondary Control Register 00 0231 010C - Reserved 00 0231 0110 PLLM PLL Multiplier Control Register 00 0231 0114 - Reserved 00 0231 0118 PLLDIV1 PLL Controller Divider 1Register 00 0231 011C PLLDIV2 PLL Controller Divider 2 Register 00 0231 0120 PLLDIV3 PLL Controller Divider 3Register 00 0231 0124 - Reserved 00 0231 0128 - Reserved 00 0231 012C - 00 0231 0134 - Reserved 00 0231 0138 PLLCMD PLL Controller Command Register 00 0231 013C PLLSTAT PLL Controller Status Register 00 0231 0140 ALNCTL PLL Controller Clock Align Control Register 00 0231 0144 DCHANGE PLLDIV Ratio Change Status Register 00 0231 0148 CKEN Reserved 00 0231 014C CKSTAT Reserved 202 AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 10-15. PLL Controller Registers (Including Reset Controller) (continued) HEX ADDRESS RANGE ACRONYM REGISTER NAME 00 0231 0150 SYSTAT SYSCLK Status Register 00 0231 0154 - 00 0231 015C - Reserved 00 0231 0160 PLLDIV4 PLL Controller Divider 4Register 00 0231 0164 PLLDIV5 Reserved 00 0231 0168 PLLDIV6 Reserved 00 0231 016C PLLDIV7 Reserved 00 0231 0170 PLLDIV8 Reserved 00 0231 0174 - 00 0231 0193 PLLDIV9 - PLLDIV16 Reserved 00 0231 0194 - 00 0231 01FF - Reserved 10.5.2.1 PLL Secondary Control Register (SECCTL) The PLL Secondary Control Register contains extra fields to control the Core PLL and is shown in Figure 10-8 and described in Table 10-16. Figure 10-8. PLL Secondary Control Register (SECCTL) 31 24 23 22 19 18 0 Reserved BYPASS OUTPUT DIVIDE Reserved R-0000 0000 RW-1 RW-0001 RW-001 0000 0000 0000 0000 Legend: R/W = Read/Write; R = Read only; -n = value after reset Table 10-16. PLL Secondary Control Register Field Descriptions Bit Field Description 31-24 Reserved Reserved 23 BYPASS Core PLL bypass enable • 0 - Core PLL bypass disabled • 1 - Core PLL bypass enabled 22-19 OUTPUT DIVIDE Output divider ratio bits • 0h - ÷1. Divide frequency by 1 • 1h - ÷2. Divide frequency by 2 • 2h - invalid entry • 3h - ÷4. Divide frequency by 4 • 4h - invalid entry • 5h - ÷6. Divide frequency by 6 • 6h - invalid entry • 7h - ÷8. Divide frequency by 8 • 8h - invalid entry • 9h - ÷10. Divide frequency by 10 • Ah - invalid entry • Bh - ÷12. Divide frequency by 12 • Ch - invalid entry • Dh - ÷14. Divide frequency by 14 • Eh - invalid entry • Fh - ÷16. Divide frequency by 16 18-0 Reserved Reserved 10.5.2.2 PLL Controller Divider Register (PLLDIV3, and PLLDIV4) The PLL Controller Divider Registers (PLLDIV3 and PLLDIV4) are shown in Figure 10-9 and described in Table 10-17. The default values of the RATIO field on a reset for PLLDIV3, and PLLDIV4 are different as mentioned in the footnote of Figure 10-9. AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 203 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Figure 10-9. PLL Controller Divider Register (PLLDIVn) 31 16 15 14 8 7 0 Reserved Dn (1)EN Reserved RATIO R-0 R/W-1 R-0 R/W-n (2) Legend: R/W = Read/Write; R = Read only; -n = value after reset (1) (2) D3EN for PLLDIV3; D4EN for PLLDIV4 n=02h for PLLDIV3; n=03h for PLLDIV4 Table 10-17. PLL Controller Divider Register Field Descriptions Bit Field Description 31-16 Reserved Reserved 15 DnEN Divider Dn enable bit (See footnote of Figure 10-9) • 0 = Divider n is disabled • 1 = No clock output. Divider n is enabled. 14-8 Reserved Reserved. The reserved bit location is always read as 0. A value written to this field has no effect. 7-0 RATIO Divider ratio bits (See footnote of Figure 10-9) • 0h = ÷1. Divide frequency by 1 • 1h = ÷2. Divide frequency by 2 • 2h = ÷3. Divide frequency by 3 • 3h = ÷4. Divide frequency by 4 • 4h - 4Fh = ÷5 to ÷80. Divide frequency range: divide frequency by 5 to divide frequency by 80. 10.5.2.3 PLL Controller Clock Align Control Register (ALNCTL) The PLL Controller Clock Align Control Register (ALNCTL) is shown in Figure 10-10 and described in Table 10-18. Figure 10-10. PLL Controller Clock Align Control Register (ALNCTL) 31 5 4 3 2 0 Reserved ALN4 ALN3 Reserved R-0 R/W-1 R/W-1 R-0 Legend: R/W = Read/Write; R = Read only; -n = value after reset, for reset value Table 10-18. PLL Controller Clock Align Control Register Field Descriptions Bit Field Description Reserved Reserved. This location is always read as 0. A value written to this field has no effect. 4 ALN4 3 ALN3 SYSCLKn alignment. Do not change the default values of these fields. • 0 = Do not align SYSCLKn to other SYSCLKs during GO operation. If SYSn in DCHANGE is set, SYSCLKn switches to the new ratio immediately after the GOSET bit in PLLCMD is set. • 1 = Align SYSCLKn to other SYSCLKs selected in ALNCTL when the GOSET bit in PLLCMD is set and SYSn in DCHANGE is 1. The SYSCLKn rate is set to the ratio programmed in the RATIO bit in PLLDIVn. 31-5 2-0 10.5.2.4 PLLDIV Divider Ratio Change Status Register (DCHANGE) Whenever a different ratio is written to the PLLDIVn registers, the PLL CTL flags the change in the DCHANGE Status Register. During the GO operation, the PLL controller changes only the divide ratio of the SYSCLKs with the bit set in DCHANGE. Note that the ALNCTL Register determines if that clock also needs to be aligned to other clocks. The PLLDIV Divider Ratio Change Status Register is shown in Figure 10-11 and described in Table 10-19. 204 AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Figure 10-11. PLLDIV Divider Ratio Change Status Register (DCHANGE) 31 4 3 Reserved 5 SYS4 SYS3 2 Reserved 0 R-0 R/W-1 R/W-1 R-0 Legend: R/W = Read/Write; R = Read only; -n = value after reset, for reset value Table 10-19. PLLDIV Divider Ratio Change Status Register Field Descriptions Bit Field Description Reserved Reserved. This bit location is always read as 0. A value written to this field has no effect. 4 SYS4 3 SYS3 Identifies when the SYSCLKn divide ratio has been modified. • 0 = SYSCLKn ratio has not been modified. When GOSET is set, SYSCLKn will not be affected. • 1 = SYSCLKn ratio has been modified. When GOSET is set, SYSCLKn will change to the new ratio. 31-5 2-0 10.5.2.5 SYSCLK Status Register (SYSTAT) The SYSCLK Status Register (SYSTAT) shows the status of SYSCLK[4:1]. SYSTAT is shown in Figure 10-12 and described in Table 10-20. Figure 10-12. SYSCLK Status Register (SYSTAT) 31 4 Reserved 3 2 1 0 SYS4ON SYS3ON SYS2ON SYS1ON R-n R-1 R-1 R-1 R-1 Legend: R/W = Read/Write; R = Read only; -n = value after reset Table 10-20. SYSCLK Status Register Field Descriptions Bit Field Description 31-4 Reserved Reserved. This location is always read as 0. A value written to this field has no effect. 3-0 SYS[N (1)]ON SYSCLK[N] on status • 0 = SYSCLK[N] is gated • 1 = SYSCLK[N] is on (1) Where N = 1, 2, 3, or 4 10.5.2.6 Reset Type Status Register (RSTYPE) The Reset Type Status (RSTYPE) Register latches the cause of the last reset. If multiple reset sources occur simultaneously, this register latches the highest priority reset source. The Reset Type Status Register is shown in Figure 10-13 and described in Table 10-21. Figure 10-13. Reset Type Status Register (RSTYPE) 31 2 1 0 Reserved 29 EMU-RST 28 27 Reserved 12 11 WDRST[N] 8 7 Reserved 3 PLLCTRLRST RESET POR R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 10-21. Reset Type Status Register Field Descriptions Bit Field Description 31-29 Reserved Reserved. Always reads as 0. Writes have no effect. 28 EMU-RST Reset initiated by emulation • 0 = Not the last reset to occur • 1 = The last reset to occur 27-12 Reserved Reserved. Always reads as 0. Writes have no effect. AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 205 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 10-21. Reset Type Status Register Field Descriptions (continued) Bit Field Description 11 WDRST3 10 WDRST2 9 WDRST1 Reset initiated by Watchdog Timer[N] • 0 = Not the last reset to occur • 1 = The last reset to occur 8 WDRST0 7-3 Reserved Reserved. Always reads as 0. Writes have no effect. 2 PLLCTLRST Reset initiated by PLLCTL • 0 = Not the last reset to occur • 1 = The last reset to occur 1 RESET RESET reset • 0 = RESET was not the last reset to occur • 1 = RESET was the last reset to occur 0 POR Power-on reset • 0 = Power-on reset was not the last reset to occur • 1 = Power-on reset was the last reset to occur 10.5.2.7 Reset Control Register (RSTCTRL) This register contains a key that enables writes to the MSB of this register and the RSTCFG register. The key value is 0x5A69. A valid key will be stored as 0x000C. Any other key value is invalid. When the RSTCTRL or the RSTCFG is written, the key is invalidated. Every write must be set up with a valid key. The Software Reset Control Register (RSTCTRL) is shown in Figure 10-14 and described in Table 10-22. Figure 10-14. Reset Control Register (RSTCTRL) 31 17 16 15 0 Reserved SWRST KEY R-0x0000 R/W-0x (1) R/W-0x0003 Legend: R = Read only; -n = value after reset; (1) Writes are conditional based on valid key. Table 10-22. Reset Control Register Field Descriptions Bit Field Description 31-17 Reserved Reserved 16 SWRST Software reset • 0 = Reset • 1 = Not reset 15-0 KEY Key used to enable writes to RSTCTRL and RSTCFG. 10.5.2.8 Reset Configuration Register (RSTCFG) This register is used to configure the type of reset (a hard reset or a soft reset) initiated by RESET, the watchdog timer, and the Core PLL Controller’s RSTCTRL Register. By default, these resets are hard resets. The Reset Configuration Register (RSTCFG) is shown in Figure 10-15 and described in Table 1023. Figure 10-15. Reset Configuration Register (RSTCFG) 31 13 12 Reserved 14 PLLCTLRSTTYPE RESETTYPE 11 Reserved 4 3 WDTYPE[N (1)] 0 R-0x000000 R/W-0 (2) R/W-0 (2) R-0x0 R/W-0x00 (2) Legend: R = Read only; R/W = Read/Write; -n = value after reset (1) (2) 206 Where N = 1, 2, 3,....N (Not all these outputs may be used on a specific device.) Writes are conditional based on valid key. For details, see Section 10.5.2.7. AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 10-23. Reset Configuration Register Field Descriptions Bit Field Description 31-14 Reserved Reserved 13 PLLCTLRSTTYPE PLL controller initiates a software-driven reset of type: • 0 = Hard reset (default) • 1 = Soft reset 12 RESETTYPE RESET initiates a reset of type: • 0 = Hard reset (default) • 1 = Soft reset 11-4 Reserved Reserved 3 2 1 0 WDTYPE3 WDTYPE2 WDTYPE1 WDTYPE0 Watchdog timer [N] initiates a reset of type: • 0 = Hard reset (default) • 1 = Soft reset 10.5.2.9 Reset Isolation Register (RSISO) This register is used to select the module clocks that must maintain their clocking without pausing through non-power-on reset. Setting any of these bits effectively blocks reset to all Core PLL Control Registers in order to maintain current values of PLL multiplier, divide ratios, and other settings. Along with setting the module-specific bit in RSISO, the corresponding MDCTLx[12] bit also needs to be set in the PSC to resetisolate a particular module. For more information on the MDCTLx Register, see the KeyStone Architecture Power Sleep Controller (PSC) User's Guide (SPRUGV4). The Reset Isolation Register (RSISO) is shown in Figure 10-16 and described in Table 10-24. Figure 10-16. Reset Isolation Register (RSISO) 31 9 8 7 0 Reserved SRISO Reserved R-0 R/W-0 R-0 Legend: R = Read only; R/W = Read/Write; -n = value after reset Table 10-24. Reset Isolation Register Field Descriptions Bit Field Description 31-9 Reserved Reserved. 8 SRISO Isolate SmartReflex control • 0 = Not reset isolated • 1 = Reset isolated 7-0 Reserved Reserved 10.5.3 Core PLL Control Registers The Core PLL uses two chip-level registers (COREPLLCTL0 and COREPLLCTL1) along with the Core PLL Controller for its configuration. These MMRs (memory-mapped registers) exist inside the Bootcfg space. To write to these registers, software should go through an unlocking sequence using the KICK0 and KICK1 registers. These registers reset only on a POR reset. For valid configurable values of the COREPLLCTL registers, see Section 8.1.4. See Section 8.2.3.4 for the address location of the KICK registers and their locking and unlocking sequences. See Figure 10-17 and Table 10-25 for COREPLLCTL0 details and Figure 10-18 and Table 10-26 for COREPLLCTL1 details. AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 207 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Figure 10-17. Core PLL Control Register 0 (COREPLLCTL0) 31 24 23 19 18 12 11 6 5 0 BWADJ[7:0] Reserved PLLM[12:6] Reserved PLLD RW,+0000 0101 RW - 0000 0 RW,+0000000 RW, +000000 RW,+000000 Legend: RW = Read/Write; -n = value after reset Table 10-25. Core PLL Control Register 0 (COREPLLCTL0) Field Descriptions Bit Field Description 31-24 BWADJ[7:0] BWADJ[11:8] and BWADJ[7:0] are located in COREPLLCTL0 and COREPLLCTL1 registers. BWADJ[11:0] should be programmed to a value related to PLLM[12:0] value based on the equation: BWADJ = ((PLLM+1)>>1) - 1. 23-19 Reserved Reserved 18-12 PLLM[12:6] 7 bits of a 13-bit field PLLM that selects the values for the multiplication factor. PLLM field is loaded with the multiply factor minus 1. The PLLM[5:0] bits of the multiplier are controlled by the PLLM register inside the PLL Controller and the PLLM[12:6] bits are controlled by the above chip-level register. COREPLLCTL0 register PLLM[12:6] bits should be written just before writing to PLLM register PLLM[5:0] bits in the controller to have the complete 13 bit value latched when the GO operation is initiated in the PLL controller. See the KeyStone Architecture Phase Locked Loop (PLL) Controller User's Guide (SPRUGV2) for the recommended programming sequence. Output Divide ratio and Bypass enable/disable of the Core PLL is also controlled by the SECCTL register in the PLL Controller. See the Section 10.5.2.1for more details. 11-6 Reserved Reserved 5-0 PLLD A 6-bit field that selects the values for the reference divider. PLLD field is loaded with reference divide value minus 1. Figure 10-18. Core PLL Control Register 1 (COREPLLCTL1) 31 7 6 5 4 3 0 Reserved ENSAT Reserved BWADJ[11:8] RW - 0000000000000000000000000 RW-0 R-00 RW- 0000 Legend: RW = Read/Write; -n = value after reset Table 10-26. Core PLL Control Register 1 (COREPLLCTL1) Field Descriptions Bit Field Description 31-7 Reserved Reserved 6 ENSAT Needs to be set to 1 for proper PLL operation 5-4 Reserved Reserved 3-0 BWADJ[11:8] BWADJ[11:8] and BWADJ[7:0] are located in COREPLLCTL0 and COREPLLCTL1 registers. BWADJ[11:0] should be programmed to a value related to PLLM[12:0] value based on the equation: BWADJ = ((PLLM+1)>>1) - 1. 208 AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 10.5.4 Core PLL Controller/SGMII/XFI/TSREF/HyperLink/PCIe/USB Clock Input Electrical Data/Timing Table 10-27. Core PLL Controller/SGMII/XFI/TSREF/HyperLink/PCIe/USB Clock Input Timing Requirements (1) (see Figure 10-19 through Figure 10-21) NO. MIN MAX UNIT 3.2 25 ns CORECLK[P:N] 1 tc(CORECLKN) Cycle time CORECLKN cycle time 1 tc(CORECLKP) Cycle time CORECLKP cycle time 3.2 25 ns 3 tw(CORECLKN) Pulse width CORECLKN high 0.45*tc 0.55*tc ns 2 tw(CORECLKN) Pulse width CORECLKN low 0.45*tc 0.55*tc ns 2 tw(CORECLKP) Pulse width CORECLKP high 0.45*tc 0.55*tc ns 3 tw(CORECLKP) Pulse width CORECLKP low 0.45*tc 0.55*tc ns 4 tr(CORECLK_200 mV) Transition time CORECLK differential rise time (200 mV) 50 350 ps 4 tf(CORECLK_200 mV) Transition time CORECLK differential fall time (200 mV) 50 350 ps 5 tj(CORECLKN) Jitter, peak_to_peak _ periodic CORECLKN 0.02*tc(CORECLKN) ps 5 tj(CORECLKP) Jitter, peak_to_peak _ periodic CORECLKP 0.02*tc(CORECLKP) ps SGMII0CLK[P:N] 1 tc(SGMII0CLKN) Cycle time SGMII0CLKN cycle time 3.2 or 6.4 or 8 ns 1 tc(SGMII0CLKP) Cycle time SGMII0CLKP cycle time 3.2 or 6.4 or 8 ns 3 tw(SGMII0CLKN) Pulse width SGMII0CLKN high 0.45*tc(SGMII0CLKN) 0.55*tc(SGMII0CLKN) ns 2 tw(SGMII0CLKN) Pulse width SGMII0CLKN low 0.45*tc(SGMII0CLKN) 0.55*tc(SGMII0CLKN) ns 2 tw(SGMII0CLKP) Pulse width SGMII0CLKP high 0.45*tc(SGMII0CLKP) 0.55*tc(SGMII0CLKP) ns 3 tw(SGMII0CLKP) Pulse width SGMII0CLKP low 0.45*tc(SGMII0CLKP) 0.55*tc(SGMII0CLKP) ns 4 tr(SGMII0CLK_200mV) Transition time SGMII0CLK differential rise time (200 mV) 50 350 ps 4 tf(SGMII0CLK_200mV) Transition time SGMII0CLK differential fall time (200 mV) 50 350 ps 5 tj(SGMII0CLKN) Jitter, RMS SGMII0CLKN 5 tj(SGMII0CLKP) Jitter, RMS SGMII0CLKP 1 tc(XFICLKN) Cycle time XFICLKN cycle time 3.2 or 6.4 ns 1 tc(XFICLKP) Cycle time XFICLKP cycle time 3.2 or 6.4 ns 3 tw(XFICLKN) Pulse width XFICLKN high 0.45*tc(XFICLKN) 0.55*tc(XFICLKN) ns 2 tw(XFICLKN) Pulse width XFICLKN low 0.45*tc(XFICLKN) 0.55*tc(XFICLKN) ns 2 tw(XFICLKP) Pulse width XFICLKP high 0.45*tc(XFICLKP) 0.55*tc(XFICLKP) ns 3 tw(XFICLKP) Pulse width XFICLKP low 0.45*tc(XFICLKP) 0.55*tc(XFICLKP) ns 4 tr(XFICLK_200mV) Transition time XFICLK differential rise time (200 mV) 50 350 ps 4 tf(XFICLK_200mV) Transition time XFICLK differential fall time (200 mV) 50 350 ps 5 tj(XFICLKN) Jitter, RMS XFICLKN 5 tj(XFICLKP) Jitter, RMS XFICLKP 4 ps, RMS 4 ps, RMS XFICLK[P:N] 4 ps, RMS 4 ps, RMS HYPLNK0CLK[P:N] (1) See the Hardware Design Guide for KeyStone II Devices application report (SPRABV0) for detailed recommendations. AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 209 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 10-27. Core PLL Controller/SGMII/XFI/TSREF/HyperLink/PCIe/USB Clock Input Timing Requirements(1) (continued) (see Figure 10-19 through Figure 10-21) NO. MIN MAX UNIT 1 tc(HYPLNK0CLKN) Cycle time HYPLNK0CLKN cycle time 3.2 or 6.4 ns 1 tc(HYPLNK0CLKP) Cycle time HYPLNK0CLKP cycle time 3.2 or 6.4 ns 3 tw(HYPLNK0CLKN) Pulse width HYPLNK0CLKN high 0.45*tc(HYPLNK0CLKN) 0.55*tc(HYPLNK0CLKN) ns 2 tw(HYPLNK0CLKN) Pulse width HYPLNK0CLKN low 0.45*tc(HYPLNK0CLKN) 0.55*tc(HYPLNK0CLKN) ns 2 tw(HYPLNK0CLKP) Pulse width HYPLNK0CLKP high 0.45*tc(HYPLNK0CLKP) 0.55*tc(HYPLNK0CLKP) ns 3 tw(HYPLNK0CLKP) Pulse width HYPLNK0CLKP low 0.45*tc(HYPLNK0CLKP) 0.55*tc(HYPLNK0CLKP) ns 4 tr(HYPLNK0CLK) Rise time HYPLNK0CLK differential rise time (10% to 90%) 0.2*tc(HYPLNK0CLKP) ps 4 tf(HYPLNK0CLK) Fall time HYPLNK0CLK differential fall time (10% to 90%) 0.2*tc(HYPLNK0CLKP) ps 5 tj(HYPLNK0CLKN) Jitter, RMS HYPLNK0CLKN 5 tj(HYPLNK0CLKP) Jitter, RMS HYPLNK0CLKP 1 tc(PCIECLKN) Cycle time PCIECLKN cycle time 1 tc(PCIECLKP) Cycle time PCIECLKP cycle time 3 tw(PCIECLKN) 2 tw(PCIECLKN) 2 4 ps, RMS 4 ps, RMS 10 10 ns 10 10 ns Pulse width PCIECLKN high 0.45*tc(PCIECLKN) 0.55*tc(PCIECLKN) ns Pulse width PCIECLKN low 0.45*tc(PCIECLKN) 0.55*tc(PCIECLKN) ns tw(PCIECLKP) Pulse width PCIECLKP high 0.45*tc(PCIECLKP) 0.55*tc(PCIECLKP) ns 3 tw(PCIECLKP) Pulse width PCIECLKP low 0.45*tc(PCIECLKP) 0.55*tc(PCIECLKP) ns 4 tr(PCIECLK) Rise time PCIECLK differential rise time (10% to 90%) 0.2*tc(PCIECLKP) ps 4 tf(PCIECLK) Fall time PCIECLK differential fall time (10% to 90%) 0.2*tc(PCIECLKP) ps 5 tj(PCIECLKN) Jitter, RMS PCIECLKN 5 tj(PCIECLKP) Jitter, RMS PCIECLKP 1 tc(USBCLKN) Cycle time USBCLKM cycle time 1 tc(USBCLKP) Cycle time USBCLKP cycle time 3 tw(USBCLKN) Pulse width USBCLKM high 2 tw(USBCLKN) Pulse width USBCLKM low 2 tw(USBCLKP) 3 tw(USBCLKP) 4 tr(USBCLK) 4 PCIECLK[P:N] 4 ps, RMS 4 ps, RMS 10 ns 10 10 ns 0.45*tc(USBCLKN) 0.55*tc(USBCLKN) ns 0.45*tc(USBCLKN) 0.55*tc(USBCLKN) ns Pulse width USBCLKP high 0.45*tc(USBCLKP) 0.55*tc(USBCLKP) ns Pulse width USBCLKP low 0.45*tc(USBCLKP) 0.55*tc(USBCLKP) ns Rise time USBCLK differential rise time (10% to 90%) 50 350 ps tf(USBCLK) Fall time USBCLK differential fall time (10% to 90%) 50 350 ps 5 tj(USBCLKN) Jitter, RMS USBCLKM 5 tj(USBCLKP) Jitter, RMS USBCLKP USBCLK[P:M] 10 4 ps, RMS 4 ps, RMS TSREFCLK[P:N] (2) 1 tc(TSREFCLKN) Cycle time TSREFCLKN cycle time 3.25 32.55 ns 1 tc(TSREFCLKP) Cycle time TSREFCLKP cycle time 3.25 32.55 ns 3 tw(TSREFCLKN) Pulse width TSREFCLKN high 0.45*tc(TSREFCLKN) 0.55*tc(TSREFCLKN) ns (2) 210 TSREFCLK clock input is LVDS compliant. AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 10-27. Core PLL Controller/SGMII/XFI/TSREF/HyperLink/PCIe/USB Clock Input Timing Requirements(1) (continued) (see Figure 10-19 through Figure 10-21) NO. MIN MAX 2 tw(TSREFCLKN) Pulse width TSREFCLKN low 0.45*tc(TSREFCLKN) 0.55*tc(TSREFCLKN) UNIT ns 2 tw(TSREFCLKP) Pulse width TSREFCLKP high 0.45*tc(TSREFCLKP) 0.55*tc(TSREFCLKP) ns 3 tw(TSREFCLKP) Pulse width TSREFCLKP low 0.45*tc(TSREFCLKP) 0.55*tc(TSREFCLKP) ns 4 tr(TSREFCLK_200mV) Transition time TSREFCLK differential rise time (200 mV) 50 350 ps 4 tf(TSREFCLK_200mV) Transition time TSREFCLK differential fall time (200 mV) 50 350 ps 5 tj(TSREFCLKN) Jitter, RMS TSREFCLKN 5.8 ps, RMS 5 tj(TSREFCLKP) Jitter, RMS TSREFCLKP 5.8 ps, RMS 1 2 3 CLKN CLKP 5 4 Figure 10-19. Clock Input Timing peak-to-peak Differential Input Voltage (250 mV to 2 V) 200 mV Transition Voltage Range 0 TR = 50 ps Min to 350 ps Max for the 200-mV Transition Voltage Range Figure 10-20. CORECLK, SGMII0CLK and USBCLK Clock Transition Time TC Reference Clock Period peak-to-peak Differential Input Voltage (400 mV to 1100 mV) 10% to 90% of peak-to-peak Voltage 0 Max TR = 0.2 × TC from 10% to 90% of the peak-to-peak Differential Voltage Max TF = 0.2 × TC from 90% to 10% of the peak-to-peak Differential Voltage Figure 10-21. HYPLNK0CLK, XFICLK, and PCIECLK Rise and Fall Times 10.6 DDR3 PLL AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 211 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com The DDR3 PLL generates interface clocks for the DDR3 memory controller. When coming out of power-on reset, DDR3 PLL is programmed to a valid frequency during the boot configuration process before being enabled and used. DDR3 PLL power is supplied via the DDR3 PLL power-supply pin (AVDDA2). An external EMI filter circuit must be added to all PLL supplies. See the Hardware Design Guide for KeyStone II Devices application report (SPRABV0) for detailed recommendations. PLLM DDR3 PLL VCO DDRCLK(N|P) 0 PLLOUT CLKOD PLLD ´2 1 DDR3CLKOUT DDR3 PHY BYPASS Figure 10-22. DDR3 PLL Block Diagram 10.6.1 DDR3 PLL Control Registers The DDR3 PLL, which is used to drive the DDR3 PHY for the EMIF, does not use a PLL controller. DDR3 PLL can be controlled using the DDR3PLLCTL0 and DDR3PLLCTL1 registers located in the Bootcfg module. These MMRs (memory-mapped registers) exist inside the Bootcfg space. To write to these registers, software must go through an unlocking sequence using the KICK0 and KICK1 registers. For suggested configurable values, see Section 8.1.4. See Section 8.2.3.4 for the address location of the registers and locking and unlocking sequences for accessing the registers. These registers are reset on POR only. Figure 10-23. DDR3 PLL Control Register 0 (DDR3PLLCTL0) 31 24 23 22 19 18 6 5 0 BWADJ[7:0] BYPASS CLKOD PLLM PLLD RW,+0000 1001 RW,+0 RW,+0001 RW,+0000000010011 RW,+000000 Legend: RW = Read/Write; -n = value after reset Table 10-28. DDR3 PLL Control Register 0 Field Descriptions Bit Field Description 31-24 BWADJ[7:0] BWADJ[11:8] and BWADJ[7:0] are located in DDR3PLLCTL0 and DDR3PLLCTL1 registers. BWADJ[11:0] should be programmed to a value related to PLLM[12:0] value based on the equation: BWADJ = ((PLLM+1)>>1) - 1. 23 BYPASS Enable bypass mode • 0 = Bypass disabled • 1 = Bypass enabled 22-19 CLKOD A 4-bit field that selects the values for the PLL post divider. Valid post divider values are 1 and even values from 2 to 16. CLKOD field is loaded with output divide value minus 1 18-6 PLLM A 13-bit field that selects the values for the PLL multiplication factor. PLLM field is loaded with the multiply factor minus 1 5-0 PLLD A 6-bit field that selects the values for the reference (input) divider. PLLD field is loaded with reference divide value minus 1 212 AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Figure 10-24. DDR3 PLL Control Register 1 (DDR3PLLCTL1) 31 15 14 13 7 6 5 4 3 0 Reserved PLLRST Reserved ENSAT Reserved BWADJ[11:8] RW - 00000000000000000 RW-0 RW-0000000 RW-0 R-00 RW- 0000 Legend: RW = Read/Write; -n = value after reset Table 10-29. DDR3 PLL Control Register 1 Field Descriptions Bit Field Description 31-15 Reserved Reserved 14 PLLRST PLL Reset bit • 0 = PLL Reset is released • 1 = PLL Reset is asserted 13-7 Reserved Reserved 6 ENSAT Needs to be set to 1 for proper PLL operation 5-4 Reserved Reserved 3-0 BWADJ[11:8] BWADJ[11:8] and BWADJ[7:0] are located in the DDR3PLLCTL0 and the DDR3PLLCTL1 registers. BWADJ[11:0] should be programmed to a value related to PLLM[12:0] value based on the equation: BWADJ = ((PLLM+1)>>1) - 1. 10.6.2 DDR3 PLL Device-Specific Information As shown in Figure 10-22, the output of DDR3 PLL (PLLOUT) is divided by 2 and directly fed to the DDR3 memory controller. During power-on resets, the internal clocks of the DDR3 PLL are affected as described in Section Section 10.4. The DDR3 PLL is unlocked only during the power-up sequence and is locked by the time the RESETSTAT pin goes high. It does not lose lock during any of the other resets. 10.6.3 DDR3 PLL Input Clock Electrical Data/Timing Table 10-30 applies to DDR3 memory interface. Table 10-30. DDR3 PLL DDRCLK(N|P) Timing Requirements (see Figure 10-25 and Figure 10-20) No. Min Max Unit DDRCLK[P:N] 1 tc(DDRCLKN) Cycle time _ DDRCLKN cycle time 3.2 25 ns 1 tc(DDRCLKP) Cycle time _ DDRCLKP cycle time 3.2 25 ns 3 tw(DDRCLKN) Pulse width _ DDRCLKN high 0.45*tc(DDRCLKN) 0.55*tc(DDRCLKN) ns 2 tw(DDRCLKN) Pulse width _ DDRCLKN low 0.45*tc(DDRCLKN) 0.55*tc(DDRCLKN) ns 2 tw(DDRCLKP) Pulse width _ DDRCLKP high 0.45*tc(DDRCLKP) 0.55*tc(DDRCLKP) ns 3 tw(DDRCLKP) Pulse width _ DDRCLKP low 0.45*tc(DDRCLKP) 0.55*tc(DDRCLKP) ns 4 tr(DDRCLK_200 mV) Transition time _ DDRCLK differential rise time (200 mV) 50 350 ps 4 tf(DDRCLK_200 mV) Transition time _ DDRCLK differential fall time (200 mV) 50 350 ps 5 tj(DDRCLKN) Jitter, peak_to_peak _ periodic DDRCLKN 0.02*tc(DDRCLKN) ps 5 tj(DDRCLKP) Jitter, peak_to_peak _ periodic DDRCLKP 0.02*tc(DDRCLKP) ps 1 2 3 DDRCLKN DDRCLKP 4 5 Figure 10-25. DDR3 PLL DDRCLK Timing AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 213 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com 10.7 NETCP PLL The NETCP PLL generates interface clocks for the Network Coprocessor. Using the NETCPCLKSEL pin the user can select the input source of the NETCP PLL as either the output of the Core PLL mux or the NETCPCLK clock reference source. When coming out of power-on reset, NETCP PLL comes out in a bypass mode and needs to be programmed to a valid frequency before being enabled and used. NETCP PLL power is supplied via the NETCP PLL power-supply pin (AVDDA3). An external EMI filter circuit must be added to all PLL supplies. See the Hardware Design Guide for KeyStone II Devices application report (SPRABV0) for detailed recommendations. PLLM NETCP Clock Source MUX NETCP PLL SYSCLK0 CORECLK(P|N) 0 NETCPCLK(P|N) 1 CLKOD PLLD VCO 0 /3 NETCP Sub-system 0 1 1 BYPASS NETCPCLKSEL NETCPPLLCTL1.PAPLL (bit13) Figure 10-26. NETCP PLL Block Diagram 10.7.1 NETCP PLL Local Clock Dividers The clock signal from the NETCP PLL Controller is routed to the Network Coprocessor. The NETCP module has two internal dividers with fixed division ratios. See table Table 10-31. 10.7.2 NETCP PLL Control Registers The NETCP PLL, which is used to drive the Network Coprocessor, does not use a PLL controller. NETCP PLL can be controlled using the NETCPPLLCTL0 and NETCPPLLCTL1 registers located in the Bootcfg module. These MMRs (memory-mapped registers) exist inside the Bootcfg space. To write to these registers, software must go through an unlocking sequence using the KICK0 and KICK1 registers. For suggested configuration values, see Section 8.1.4. See Section 8.2.3.4 for the address location of the registers and locking and unlocking sequences for accessing these registers. These registers are reset on POR only. Figure 10-27. NETCP PLL Control Register 0 (NETCPPLLCTL0) 31 24 23 22 19 18 6 5 0 BWADJ[7:0] BYPASS CLKOD PLLM PLLD RW,+0000 1001 RW,+0 RW,+0001 RW,+0000000010011 RW,+000000 Legend: RW = Read/Write; -n = value after reset Table 10-31. NETCP PLL Control Register 0 Field Descriptions (NETCPPLLCTL0) Bit Field Description 31-24 BWADJ[7:0] BWADJ[11:8] and BWADJ[7:0] are located in NETCPPLLCTL0 and NETCPPLLCTL1 registers. BWADJ[11:0] should be programmed to a value related to PLLM[12:0] value based on the equation: BWADJ = ((PLLM+1)>>1) - 1. 23 BYPASS Enable bypass mode • 0 = Bypass disabled • 1 = Bypass enabled 22-19 CLKOD A 4-bit field that selects the values for the PLL post divider. Valid post divider values are 1 and even values from 2 to 16. CLKOD field is loaded with output divide value minus 1 214 AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 10-31. NETCP PLL Control Register 0 Field Descriptions (NETCPPLLCTL0) (continued) Bit Field Description 18-6 PLLM A 13-bit field that selects the values for the multiplication factor. PLLM field is loaded with the multiply factor minus 1. 5-0 PLLD A 6-bit field that selects the values for the reference divider. PLLD field is loaded with reference divide value minus 1. Figure 10-28. NETCP PLL Control Register 1 (NETCPPLLCTL1) 31 14 13 Reserved 15 PLLRST PAPLL 12 Reserved 7 ENSAT 6 5 Reserved 4 3 BWADJ[11:8] 0 RW - 00000000000000000 RW-0 RW-0 RW-000000 RW-0 R-00 RW-0000 Legend: RW = Read/Write; -n = value after reset Table 10-32. NETCP PLL Control Register 1 Field Descriptions (NETCPPLLCTL1) Bit Field Description 31-15 Reserved Reserved 14 PLLRST PLL Reset bit • 0 = PLL Reset is released • 1 = PLL Reset is asserted 13 PAPLL NETCP Clock Source MUX Control • 0 = SYSCLK0 • 1 = NETCP PLL 12-7 Reserved Reserved 6 ENSAT Needs to be set to 1 for proper PLL operation 5-4 Reserved Reserved 3-0 BWADJ[11:8] BWADJ[11:8] and BWADJ[7:0] are located in NETCPPLLCTL0 and NETCPPLLCTL1 registers. BWADJ[11:0] should be programmed to a value related to PLLM[12:0] value based on the equation: BWADJ = ((PLLM+1)>>1) - 1. 10.7.3 NETCP PLL Device-Specific Information As shown in Figure 10-26, the output of NETCP PLL (PLLOUT) is divided by 3 and directly fed to the Network Coprocessor. During power-on resets, the internal clocks of the NETCP PLL are affected as described in Section 10.4. The NETCP PLL is unlocked only during the power-up sequence and is locked by the time the RESETSTAT pin goes high. It does not lose lock during any other resets. 10.7.4 NETCP PLL Input Clock Electrical Data/Timing Table 10-33. NETCP PLL Timing Requirements (see Figure 10-29 and Figure 10-20) NO. MIN MAX UNIT NETCPCLK[P:N] 1 tc(NETCPCLKN) Cycle time _ NETCPCLKN cycle time 3.2 25 ns 1 tc(NETCPCLKP) Cycle time _ NETCPCLKP cycle time 3.2 25 ns 3 tw(NETCPCLKN) Pulse width _ NETCPCLKN high 0.45*tc(NETCPCLKN) 0.55*tc(NETCPCLKN) ns 2 tw(NETCPCLKN) Pulse width _ NETCPCLKN low 0.45*tc(NETCPCLKN) 0.55*tc(NETCPCLKN) ns 2 tw(NETCPCLKP) Pulse width _ NETCPCLKP high 0.45*tc(NETCPCLKP) 0.55*tc(NETCPCLKP) ns 3 tw(NETCPCLKP) Pulse width _ NETCPCLKP low 0.45*tc(NETCPCLKP) 0.55*tc(NETCPCLKP) ns tr(NETCPCLK_250mV) Transition time _ NETCPCLK differential rise time (250 mV) 50 350 tf(NETCPCLK_250mV) Transition time _ NETCPCLK differential fall time (250 mV) 50 350 5 tj(NETCPCLKN) Jitter, peak_to_peak _ periodic NETCPCLKN 100 ps, pk-pk 5 tj(NETCPCLKP) Jitter, peak_to_peak _ periodic NETCPCLKP 100 ps, pk-pk 4 4 ps ps AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 215 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com 1 2 3 NETCPCLKN NETCPCLKP 4 5 Figure 10-29. NETCP PLL Timing 10.8 DDR3 Memory Controller The 72-bit DDR3 Memory Controller bus of the AM5K2E0x is used to interface to JEDEC standardcompliant DDR3 SDRAM devices. The DDR3 external bus interfaces only to DDR3 SDRAM devices and does not share the bus with any other type of peripheral. 10.8.1 DDR3 Memory Controller Device-Specific Information The AM5K2E0x includes one 64-bit wide, 1.5-V DDR3 SDRAM EMIF interface. The DDR3 interface can operate at 800 mega transfers per second (MTS), 1033 MTS, 1333 MTS, and 1600 MTS. Due to the complicated nature of the interface, a limited number of topologies are supported to provide a 16-bit, 32-bit, or 64-bit interface. The DDR3 electrical requirements are fully specified in the DDR JEDEC Specification JESD79-3C. Standard DDR3 SDRAMs are available in 8-bit and 16-bit versions allowing for the following bank topologies to be supported by the interface: • 72-bit: Five 16-bit SDRAMs (including 8 bits of ECC) • 72-bit: Nine 8-bit SDRAMs (including 8 bits of ECC) • 36-bit: Three 16-bit SDRAMs (including 4 bits of ECC) • 36-bit:Five 8-bit SDRAMs (including 4 bits of ECC) • 64-bit:Four 16-bit SDRAMs • 64-bit:Eight 8-bit SDRAMs • 32-bit:Two 16-bit SDRAMs • 32-bit: Four 8-bit SDRAMs • 16-bit:One 16-bit SDRAM • 16-bit:Two 8-bit SDRAMs The approach to specifying interface timing for the DDR3 memory bus is different than on other interfaces such as I2C or SPI. For these other interfaces, the device timing was specified in terms of data manual specifications and I/O buffer information specification (IBIS) models. For the DDR3 memory bus, the approach is to specify compatible DDR3 devices and provide the printed circuit board (PCB) solution and guidelines directly to the user. A race condition may exist when certain masters write data to the DDR3 memory controller. For example, if master A passes a software message via a buffer in external memory and does not wait for an indication that the write completes before signaling to master B that the message is ready, when master B attempts to read the software message, the master B read may bypass the master A write. Thus, master B may read stale data and receive an incorrect message. Some master peripherals (e.g., EDMA3 transfer controllers with TCCMOD=0) always wait for the write to complete before signaling an interrupt to the system, thus avoiding this race condition. For masters that do not have a hardware specification of write-read ordering, it may be necessary to specify data ordering in the software. If master A does not wait for an indication that a write is complete, it must perform the following workaround: 1. Perform the required write to DDR3 memory space. 2. Perform a dummy write to the DDR3 memory controller module ID and revision register. 216 AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 3. Perform a dummy read to the DDR3 memory controller module ID and revision register. 4. Indicate to master B that the data is ready to be read after completion of the read in step 3. The completion of the read in step 3 ensures that the previous write was done. 10.8.2 DDR3 Slew Rate Control The DDR3 slew rate is controlled by use of the PHY registers. See theKeyStone Architecture DDR3 Memory Controller User's Guide SPRUGV8 for details. 10.8.3 DDR3 Memory Controller Electrical Data/Timing The DDR3 Design Requirements for KeyStone Devices application report SPRABI1 specifies a complete DDR3 interface solution as well as a list of compatible DDR3 devices. The DDR3 electrical requirements are fully specified in the DDR3 JEDEC Specification JESD79-3C. TI has performed the simulation and system characterization to ensure all DDR3 interface timings in this solution are met. Therefore, no electrical data/timing information is supplied here for this interface. NOTE TI supports only designs that follow the board design guidelines outlined in the application report. 10.9 I2C Peripheral The Inter-Integrated Circuit (I2C) module provides an interface between SoC and other devices compliant with Philips Semiconductors (now NXP Semiconductors) Inter-Integrated Circuit bus specification version 2.1. External components attached to this 2-wire serial bus can transmit/receive up to 8-bit data to/from the device through the I2C module. 10.9.1 I2C Device-Specific Information The device includes multiple I2C peripheral modules. NOTE When using the I2C module, ensure there are external pullup resistors on the SDA and SCL pins. The I2C modules on the AM5K2E0x may be used by the SoC to control local peripheral ICs (DACs, ADCs, etc.), communicate with other controllers in a system, or to implement a user interface. The I2C port supports: • Compatibility with Philips I2C specification revision 2.1 (January 2000) • Fast mode up to 400 kbps (no fail-safe I/O buffers) • Noise filter to remove noise of 50 ns or less • 7-bit and 10-bit device addressing modes • Multi-master (transmit/receive) and slave (transmit/receive) functionality • Events: DMA, interrupt, or polling • Slew-rate limited open-drain output buffers Figure 10-30 shows a block diagram of the I2C module. AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 217 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com 2 I C Module Clock Prescale Peripheral Clock (CPU/6) 2 I CPSC Control Bit Clock Generator SCL Noise Filter 2 I C Clock 2 Own Address 2 Slave Address I COAR 2 I CCLKH I CSAR 2 I CCLKL 2 I CMDR 2 I CCNT Transmit 2 I CXSR 2 I CDXR Transmit Shift 2 I CEMDR Data Count Extended Mode Transmit Buffer SDA Interrupt/DMA Noise Filter 2 I C Data Mode 2 I CDRR 2 I CRSR 2 Interrupt Mask/Status 2 Interrupt Status I CIMR Receive Receive Buffer I CSTR Receive Shift I CIVR 2 Interrupt Vector Shading denotes control/status registers. Figure 10-30. I2C Module Block Diagram 10.9.2 I2C Peripheral Register Description Table 10-34. I2C Registers HEX ADDRESS OFFSETS ACRONYM REGISTER NAME 0x0000 ICOAR I2C Own Address Register 0x0004 ICIMR I2C Interrupt Mask/status Register 0x0008 ICSTR I2C Interrupt Status Register 0x000C ICCLKL I2C Clock Low-time Divider Register 0x0010 ICCLKH I2C Clock High-time Divider Register 0x0014 ICCNT I2C Data Count Register 0x0018 ICDRR I2C Data Receive Register 0x001C ICSAR I2C Slave Address Register 0x0020 ICDXR I2C Data Transmit Register 0x0024 ICMDR I2C Mode Register 0x0028 ICIVR I2C Interrupt Vector Register 0x002C ICEMDR I2C Extended Mode Register 0x0030 ICPSC I2C Prescaler Register 0x0034 ICPID1 I2C Peripheral Identification Register 1 [value: 0x0000 0105] 0x0038 ICPID2 I2C Peripheral Identification Register 2 [value: 0x0000 0005] 218 AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 10-34. I2C Registers (continued) HEX ADDRESS OFFSETS ACRONYM REGISTER NAME 0x003C -0x007F - Reserved 10.9.3 I2C Electrical Data/Timing 10.9.3.1 Inter-Integrated Circuits (I2C) Timing Table 10-35. I2C Timing Requirements (1) (see Figure 10-31) STANDARD MODE NO. 1 MIN MAX FAST MODE MIN MAX UNIT tc(SCL) Cycle time, SCL 10 2.5 µs tsu(SCLH-SDAL) Setup time, SCL high before SDA low (for a repeated START condition) 4.7 0.6 µs th(SDAL-SCLL) Hold time, SCL low after SDA low (for a START and a repeated START condition) 4 0.6 µs 4 tw(SCLL) Pulse duration, SCL low 4.7 1.3 µs 5 tw(SCLH) Pulse duration, SCL high 4 0.6 µs 6 tsu(SDAV-SCLH) Setup time, SDA valid before SCL high 250 100 (2) (3) (3) 2 3 7 2 th(SCLL-SDAV) Hold time, SDA valid after SCL low (for I C bus devices) 0 tw(SDAH) Pulse duration, SDA high between STOP and START conditions 4.7 9 tr(SDA) Rise time, SDA 1000 20 + 0.1Cb (5) 300 ns 10 tr(SCL) Rise time, SCL 1000 20 + 0.1Cb (5) 300 ns 11 tf(SDA) Fall time, SDA 300 20 + 0.1Cb (5) 300 ns 300 (5) 300 8 12 tf(SCL) 13 tsu(SCLH-SDAH) Setup time, SCL high before SDA high (for STOP condition) 14 tw(SP) Cb (1) (2) (3) (4) (5) (5) Fall time, SCL 3.45 0.9 1.3 4 20 + 0.1Cb 0 400 µs µs 0.6 Pulse duration, spike (must be suppressed) Capacitive load for each bus line 0 ns (4) ns µs 50 ns 400 pF The I2C pins SDA and SCL do not feature fail-safe I/O buffers. These pins could potentially draw current when the device is powered down. A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement tsu(SDA-SCLH) ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the LOW period of the SCL signal. If such a device does stretch the LOW period of the SCL signal, it must output the next data bit to the SDA line tr max + tsu(SDA-SCLH) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-Bus Specification) before the SCL line is released. A device must internally provide a hold time of at least 300 ns for the SDA signal (referred to the VIHmin of the SCL signal) to bridge the undefined region of the falling edge of SCL. The maximum th(SDA-SCLL) has to be met only if the device does not stretch the low period [tw(SCLL)] of the SCL signal. Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed. AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 219 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com 11 9 SDA 8 6 4 14 13 5 10 SCL 1 3 12 7 2 3 Stop Start Repeated Start Stop Figure 10-31. I2C Receive Timings Table 10-36. I2C Switching Characteristics (1) (see Figure 10-32) STANDARD MODE NO. 16 PARAMETER MIN FAST MODE MAX MIN MAX UNIT tc(SCL) Cycle time, SCL 10 2.5 µs tsu(SCLH-SDAL) Setup time, SCL high to SDA low (for a repeated START condition) 4.7 0.6 µs th(SDAL-SCLL) Hold time, SDA low after SCL low (for a START and a repeated START condition) 4 0.6 µs 19 tw(SCLL) Pulse duration, SCL low 4.7 1.3 µs 20 tw(SCLH) Pulse duration, SCL high 4 0.6 µs 21 td(SDAV-SDLH) Delay time, SDA valid to SCL high 250 100 22 tv(SDLL-SDAV) Valid time, SDA valid after SCL low (for I2C bus devices) 0 0 tw(SDAH) Pulse duration, SDA high between STOP and START conditions 4.7 1.3 24 tr(SDA) Rise time, SDA 1000 20 + 0.1Cb (1) 300 ns 25 tr(SCL) Rise time, SCL 1000 20 + 0.1Cb (1) 300 ns 26 tf(SDA) Fall time, SDA 300 20 + 0.1Cb (1) 300 ns 300 (1) 300 17 18 23 27 tf(SCL) Fall time, SCL 28 td(SCLH-SDAH) Delay time, SCL high to SDA high (for STOP condition) Cp Capacitance for each I2C pin (1) 220 4 20 + 0.1Cb ns 0.9 µs 0.6 10 µs ns µs 10 pF Cb = total capacitance of one bus line in pF. If mixed with HS-mode devices, faster fall-times are allowed. AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 26 24 SDA 23 21 19 28 20 25 SCL 16 18 27 22 17 18 Stop Start Repeated Start Stop Figure 10-32. I2C Transmit Timings 10.10 SPI Peripheral The Serial Peripheral Interconnect (SPI) module provides an interface between the SoC and other SPIcompliant devices. The primary intent of this interface is to allow for connection to an SPI ROM for boot. The SPI module on AM5K2E0x is supported only in master mode. Additional chip-level components can also be included, such as temperature sensors or an I/O expander. 10.10.1 SPI Electrical Data/Timing Table 10-37. SPI Timing Requirements (see Figure 10-33) NO. MIN MAX UNIT Master Mode Timing Diagrams — Base Timings for 3 Pin Mode 7 tsu(SPIDIN-SPC) Input setup time, SPIDIN valid before receive edge of SPICLK. Polarity = 0 Phase = 0 2 ns 7 tsu(SPIDIN-SPC) Input setup time, SPIDIN valid before receive edge of SPICLK. Polarity = 0 Phase = 1 2 ns 7 tsu(SPIDIN-SPC) Input setup time, SPIDIN valid before receive edge of SPICLK. Polarity = 1 Phase = 0 2 ns 7 tsu(SPIDIN-SPC) Input setup time, SPIDIN valid before receive edge of SPICLK. Polarity = 1 Phase = 1 2 ns 8 th(SPC-SPIDIN) Input hold time, SPIDIN valid after receive edge of SPICLK. Polarity = 0 Phase = 0 5 ns 8 th(SPC-SPIDIN) Input hold time, SPIDIN valid after receive edge of SPICLK. Polarity = 0 Phase = 1 5 ns 8 th(SPC-SPIDIN) Input hold time, SPIDIN valid after receive edge of SPICLK. Polarity = 1 Phase = 0 5 ns 8 th(SPC-SPIDIN) Input hold time, SPIDIN valid after receive edge of SPICLK. Polarity = 1 Phase = 1 5 ns Table 10-38. SPI Switching Characteristics (see Figure 10-33 and Figure 10-34) NO. PARAMETER MIN MAX UNIT Master Mode Timing Diagrams — Base Timings for 3 Pin Mode 3*P2 (1) ns Pulse width high, SPICLK, all master modes 0.5*(3*P2) - 1 ns tw(SPCL) Pulse width low, SPICLK, all master modes 0.5*(3*P2) - 1 ns td(SPIDOUT-SPC) Setup (Delay), initial data bit valid on SPIDOUT to initial edge on SPICLK. Polarity = 0, Phase = 0. 5 4 td(SPIDOUT-SPC) Setup (Delay), initial data bit valid on SPIDOUT to initial edge on SPICLK. Polarity = 0, Phase = 1. 5 4 td(SPIDOUT-SPC) Setup (Delay), initial data bit valid on SPIDOUT to initial edge on SPICLK Polarity = 1, Phase = 0 5 1 tc(SPC) Cycle time, SPICLK, all master modes 2 tw(SPCH) 3 4 (1) ns ns ns P2=1/(SYSCLK1/6) AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 221 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 10-38. SPI Switching Characteristics (continued) (see Figure 10-33 and Figure 10-34) NO. PARAMETER MIN MAX UNIT 4 td(SPIDOUT-SPC) Setup (Delay), initial data bit valid on SPIDOUT to initial edge on SPICLK Polarity = 1, Phase = 1 5 5 td(SPC-SPIDOUT) Setup (Delay), subsequent data bits valid on SPIDOUT to initial edge on SPICLK. Polarity = 0 Phase = 0 2 5 td(SPC-SPIDOUT) Setup (Delay), subsequent data bits valid on SPIDOUT to initial edge on SPICLK Polarity = 0 Phase = 1 2 5 td(SPC-SPIDOUT) Setup (Delay), subsequent data bits valid on SPIDOUT to initial edge on SPICLK Polarity = 1 Phase = 0 2 5 td(SPC-SPIDOUT) Setup (Delay), subsequent data bits valid on SPIDOUT to initial edge on SPICLK Polarity = 1 Phase = 1 2 6 toh(SPCSPIDOUT) Output hold time, SPIDOUT valid after receive edge of SPICLK except for final bit. Polarity = 0 Phase = 0 0.5*tc - 2 6 toh(SPCSPIDOUT) Output hold time, SPIDOUT valid after receive edge of SPICLK except for final bit. Polarity = 0 Phase = 1 0.5*tc - 2 6 toh(SPCSPIDOUT) Output hold time, SPIDOUT valid after receive edge of SPICLK except for final bit. Polarity = 1 Phase = 0 0.5*tc - 2 6 toh(SPCSPIDOUT) Output hold time, SPIDOUT valid after receive edge of SPICLK except for final bit. Polarity = 1 Phase = 1 0.5*tc - 2 19 td(SCS-SPC) Delay from SPISCSx\ active to first SPICLK. Polarity = 0 Phase = 0 2*P2 - 5 2*P2 + 5 19 td(SCS-SPC) Delay from SPISCSx\ active to first SPICLK. Polarity = 0 Phase = 1 0.5*tc + (2*P2) - 5 0.5*tc + (2*P2) + 5 19 td(SCS-SPC) Delay from SPISCSx\ active to first SPICLK. Polarity = 1 Phase = 0 2*P2 - 5 2*P2 + 5 19 td(SCS-SPC) Delay from SPISCSx\ active to first SPICLK. Polarity = 1 Phase = 1 0.5*tc + (2*P2) - 5 0.5*tc + (2*P2) + 5 20 td(SPC-SCS) Delay from final SPICLK edge to master deasserting SPISCSx\. Polarity = 0 Phase = 0 1*P2 - 5 1*P2 + 5 20 td(SPC-SCS) Delay from final SPICLK edge to master deasserting SPISCSx\. Polarity = 0 Phase = 1 0.5*tc + (1*P2) - 5 0.5*tc + (1*P2) + 5 20 td(SPC-SCS) Delay from final SPICLK edge to master deasserting SPISCSx\. Polarity = 1 Phase = 0 1*P2 - 5 1*P2 + 5 20 td(SPC-SCS) Delay from final SPICLK edge to master deasserting SPISCSx\. Polarity = 1 Phase = 1 0.5*tc + (1*P2) - 5 0.5*tc + (1*P2) + 5 tw(SCSH) Minimum inactive time on SPISCSx\ pin between two transfers when SPISCSx\ is not held using the CSHOLD feature. ns ns ns ns ns ns ns ns ns Additional SPI Master Timings — 4 Pin Mode with Chip Select Option 222 2*P2 - 5 ns ns ns ns ns ns ns ns ns AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 1 2 MASTER MODE POLARITY = 0 PHASE = 0 3 SPICLK 5 4 SPIDOUT MO(0) 7 SPIDIN 6 MO(1) MO(n−1) MO(n) MI(n−1) MI(n) 8 MI(0) MI(1) MASTER MODE POLARITY = 0 PHASE = 1 4 SPICLK 6 5 MO(0) SPIDOUT 7 MO(n−1) MO(n) MI(1) MI(n−1) 8 MI(0) SPIDIN MO(1) 4 MI(n) MASTER MODE POLARITY = 1 PHASE = 0 SPICLK 5 SPIDOUT 6 MO(0) 7 MO(1) MO(n) 8 MI(0) SPIDIN MO(n−1) MI(1) MI(n−1) MI(n) MASTER MODE POLARITY = 1 PHASE = 1 SPICLK 5 4 SPIDOUT MO(0) 7 SPIDIN 6 MO(1) MO(n−1) MI(1) MI(n−1) MO(n) 8 MI(0) MI(n) Figure 10-33. SPI Master Mode Timing Diagrams — Base Timings for 3-Pin Mode MASTER MODE 4 PIN WITH CHIP SELECT 19 20 SPICLK SPIDOUT MO(0) SPIDIN MI(0) MO(1) MO(n−1) MO(n) MI(1) MI(n−1) MI(n) SPISCSx Figure 10-34. SPI Additional Timings for 4-Pin Master Mode with Chip Select Option AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 223 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com 10.11 HyperLink Peripheral The AM5K2E0x includes HyperLink for companion device interfaces. This is a four-lane SerDes interface designed to operate at up to 10 Gbps per lane from pin-to-pin. The interface is used to connect with external accelerators that are manufactured using TI libraries. The HyperLink lines must be connected with DC coupling. The interface includes the serial station management interfaces used to send power management and flow messages between devices. Each HyperLink interface consists of four LVCMOS inputs and four LVCMOS outputs configured as two 2-wire input buses and two 2-wire output buses. Each 2-wire bus includes a data signal and a clock signal. Table 10-39. HyperLink Peripheral Timing Requirements (see Figure 10-35, Figure 10-36 and Figure 10-37) NO. MIN MAX UNIT FL Interface 1 tc(HYPTXFLCLK) Clock period - HYPTXFLCLK (C1) 2 tw(HYPTXFLCLKH) High pulse width - HYPTXFLCLK 0.4*C1 0.6*C1 ns 3 tw(HYPTXFLCLKL) Low pulse width - HYPTXFLCLK 0.4*C1 0.6*C1 ns tsu(HYPTXFLDAT-HYPTXFLCLKH) Setup time - HYPTXFLDAT valid before HYPTXFLCLK high 1 th(HYPTXFLCLKH-HYPTXFLDAT) Hold time - HYPTXFLDAT valid after HYPTXFLCLK high 1 tsu(HYPTXFLDAT-HYPTXFLCLKL) Setup time - HYPTXFLDAT valid before HYPTXFLCLK low 1 th(HYPTXFLCLKL-HYPTXFLDAT) Hold time - HYPTXFLDAT valid after HYPTXFLCLK low 1 6 7 6 7 5.75 ns ns ns ns ns PM Interface 1 tc(HYPRXPMCLK) Clock period - HYPRXPMCLK (C3) 2 tw(HYPRXPMCLK) High pulse width - HYPRXPMCLK 0.4*C3 0.6*C3 ns 3 tw(HYPRXPMCLK) Low pulse width - HYPRXPMCLK 0.4*C3 0.6*C3 ns 6 tsu(HYPRXPMDATHYPRXPMCLKH) Setup time - HYPRXPMDAT valid before HYPRXPMCLK high 1 th(HYPRXPMCLKH-HYPRXPMDAT) Hold time - HYPRXPMDAT valid after HYPRXPMCLK high 1 tsu(HYPRXPMDATHYPRXPMCLKL) Setup time - HYPRXPMDAT valid before HYPRXPMCLK low 1 th(HYPRXPMCLKL-HYPRXPMDAT) Hold time - HYPRXPMDAT valid after HYPRXPMCLK low 1 7 6 7 5.75 ns ns ns ns ns Table 10-40. HyperLink Peripheral Switching Characteristics (see Figure 10-35, Figure 10-36 and Figure 10-37) NO. PARAMETER MIN MAX UNIT FL Interface 1 tc(HYPRXFLCLK) Clock period - HYPRXFLCLK (C2) 2 tw(HYPRXFLCLKH) High pulse width - HYPRXFLCLK 0.4*C2 0.6*C2 ns 3 tw(HYPRXFLCLKL) Low pulse width - HYPRXFLCLK 0.4*C2 0.6*C2 ns 4 tosu(HYPRXFLDATHYPRXFLCLKH) Setup time - HYPRXFLDAT valid before HYPRXFLCLK high 0.25*C2-0.4 toh(HYPRXFLCLKH-HYPRXFLDAT) Hold time - HYPRXFLDAT valid after HYPRXFLCLK high 0.25*C2-0.4 4 tosu(HYPRXFLDATHYPRXFLCLKL) Setup time - HYPRXFLDAT valid before HYPRXFLCLK low 0.25*C2-0.4 5 toh(HYPRXFLCLKL-HYPRXFLDAT) Hold time - HYPRXFLDAT valid after HYPRXFLCLK low 0.25*C2-0.4 5 6.4 ns ns ns ns ns PM Interface 1 tc(HYPTXPMCLK) Clock period - HYPTXPMCLK (C4) 2 tw(HYPTXPMCLK) High pulse width - HYPTXPMCLK 0.4*C4 0.6*C4 ns 3 tw(HYPTXPMCLK) Low pulse width - HYPTXPMCLK 0.4*C4 0.6*C4 ns 4 tosu(HYPTXPMDATHYPTXPMCLKH) Setup time - HYPTXPMDAT valid before HYPTXPMCLK high 224 6.4 0.25*C2-0.4 ns ns AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 10-40. HyperLink Peripheral Switching Characteristics (continued) (see Figure 10-35, Figure 10-36 and Figure 10-37) NO. PARAMETER MIN 5 toh(HYPTXPMCLKHHYPTXPMDAT) Hold time - HYPTXPMDAT valid after HYPTXPMCLK high 0.25*C2-0.4 4 tosu(HYPTXPMDATHYPTXPMCLKL) Setup time - HYPTXPMDAT valid before HYPTXPMCLK low 0.25*C2-0.4 toh(HYPTXPMCLKL-HYPTXPMDAT) Hold time - HYPTXPMDAT valid after HYPTXPMCLK low 0.25*C2-0.4 5 MAX UNIT ns ns ns 1 2 3 Figure 10-35. HyperLink Station Management Clock Timing 4 5 4 5 HYPTXCLK HYPTXDAT represents the interface that is being used: PM or FL Figure 10-36. HyperLink Station Management Transmit Timing 6 7 6 7 HYPRXCLK HYPRXDAT represents the interface that is being used: PM or FL Figure 10-37. HyperLink Station Management Receive Timing AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 225 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com 10.12 UART Peripheral The universal asynchronous receiver/transmitter (UART) module provides an interface between the device and a UART terminal interface or other UART-based peripheral. The UART is based on the industry standard TL16C550 asynchronous communications element which, in turn, is a functional upgrade of the TL16C450. Functionally similar to the TL16C450 on power up (single character or TL16C450 mode), the UART can be placed in an alternate FIFO (TL16C550) mode. This relieves the SoC of excessive software overhead by buffering received and transmitted characters. The receiver and transmitter FIFOs store up to 16 bytes including three additional bits of error status per byte for the receiver FIFO. The UART performs serial-to-parallel conversions on data received from a peripheral device and parallelto-serial conversion on data received from the SoC to be sent to the peripheral device. The SoC can read the UART status at any time. The UART includes control capability and a processor interrupt system that can be tailored to minimize software management of the communications link. For more information on UART, see the KeyStone Architecture Universal Asynchronous Receiver/Transmitter (UART) User's Guide (SPRUGP1). Table 10-41. UART Timing Requirements (see Figure 10-38 and Figure 10-39) NO. MIN MAX UNIT 0.96U (1) 1.05U ns Receive Timing 4 tw(RXSTART) Pulse width, receive start bit 5 tw(RXH) Pulse width, receive data/parity bit high 0.96U 1.05U ns 5 tw(RXL) Pulse width, receive data/parity bit low 0.96U 1.05U ns 6 tw(RXSTOP1) Pulse width, receive stop bit 1 0.96U 1.05U ns 6 tw(RXSTOP15) Pulse width, receive stop bit 1.5 0.96U 1.05U ns 6 tw(RXSTOP2) Pulse width, receive stop bit 2 0.96U 1.05U ns P (2) 5P ns Autoflow Timing Requirements 8 td(CTSL-TX) (1) (2) Delay time, CTS asserted to START bit transmit U = UART baud time = 1/programmed baud rate P = 1/(SYSCLK1/6) 5 4 RXD Stop/Idle Start 5 Bit 1 Bit 0 Bit N-1 Bit N 6 Parity Stop Idle Start Figure 10-38. UART Receive Timing Waveform 8 TXD Bit N-1 Bit N Stop Start Bit 0 CTS Figure 10-39. UART CTS (Clear-to-Send Input) — Autoflow Timing Waveform 226 AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 10-42. UART Switching Characteristics (see Figure 10-40 and Figure 10-41) NO. PARAMETER MIN MAX UNIT U (1)- 2 Transmit Timing 1 tw(TXSTART) Pulse width, transmit start bit U+2 ns 2 tw(TXH) Pulse width, transmit data/parity bit high U-2 U+2 ns 2 tw(TXL) Pulse width, transmit data/parity bit low U-2 U+2 ns 3 tw(TXSTOP1) Pulse width, transmit stop bit 1 U-2 U+2 ns 3 tw(TXSTOP15) Pulse width, transmit stop bit 1.5 1.5 * (U - 2) 1.5 * ('U + 2) ns 3 tw(TXSTOP2) Pulse width, transmit stop bit 2 2 * (U - 2) 2 * ('U + 2) ns P (2) 5P ns Autoflow Timing Requirements 7 td(RX-RTSH) (1) (2) Delay time, STOP bit received to RTS deasserted U = UART baud time = 1/programmed baud rate P = 1/(SYSCLK1/6) 1 TXD Start Stop/Idle 2 Bit 0 2 Bit 1 Bit N-1 Bit N Parity 3 Stop Idle Start Figure 10-40. UART Transmit Timing Waveform 7 RXD Bit N-1 Bit N Stop Start CTS Figure 10-41. UART RTS (Request-to-Send Output) – Autoflow Timing Waveform 10.13 PCIe Peripheral The two-lane PCI express (PCIe) module on AM5K2E0x provides an interface between the device and other PCIe-compliant devices. The PCIe module provides low pin-count, high-reliability, and high-speed data transfer at rates up to 5.0 Gbps per lane on the serial links. For more information, see the KeyStone Architecture Peripheral Component Interconnect Express (PCIe) User's Guide (SPRUGS6). 10.14 Packet Accelerator The Packet Accelerator (PA) provides L2 to L4 classification functionalities and supports classification for Ethernet, VLAN, MPLS over Ethernet, IPv4/6, GRE over IP, and other session identification over IP such as UDP ports. It maintains 8k multiple-in, multiple-out hardware queues and also provides checksum capability as well as some QoS capabilities. The PA enables a single IP address to be used for a multicore device and can process up to 1.5 Mpps. The Packet Accelerator is coupled with the Network Coprocessor. For more information, see the KeyStone II Architecture Packet Accelerator 2 (PA2) for K2E and K2L Devices User's Guide (SPRUHZ2). AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 227 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com 10.15 Security Accelerator The Security Accelerator (SA) provides wire-speed processing on 1 Gbps Ethernet traffic on IPSec, SRTP, and 3GPP Air interface security protocols. It functions on the packet level with the packet and the associated security context being one of the above three types. The Security Accelerator is coupled with the Network Coprocessor, and receives the packet descriptor containing the security context in the buffer descriptor and the data to be encrypted/decrypted in the linked buffer descriptor. For more information, see the KeyStone II Architecture Security Accelerator 2 (SA2) for K2E and K2L Devices User's Guide (SPRUHZ1). 10.16 Network Coprocessor Gigabit Ethernet (GbE) Switch Subsystem The gigabit Ethernet (GbE) switch subsystem provides an efficient interface between the device and the networked community. The Ethernet Media Access Controller (EMAC) supports 10Base-T (10 Mbits/second), and 100BaseTX (100 Mbps), in half- or full-duplex mode, and 1000BaseT (1000 Mbps) in full-duplex mode, with hardware flow control and quality-of-service (QOS) support. The GbE switch subsystem is coupled with the Network Coprocessor. For more information, see the Gigabit Ethernet (GbE) Switch Subsystem (1 GB) User's Guide (SPRUGV9). An address range is assigned to the AM5K2E0x. Each individual device has a 48-bit MAC address and consumes only one unique MAC address out of the range. There are two registers to hold these values, MACID1[31:0] (32 bits) and MACID2[15:0] (16 bits) . The bits of these registers are defined as follows: Figure 10-42. MACID1 Register (MMR Address 0x02620110) 31 0 MACID R,+xxxx xxxx xxxx xxxx xxxx xxxx xxxx xxxx Legend: R = Read only; -x, value is indeterminate Table 10-43. MACID1 Register Field Descriptions Bit Field Description 31-0 MAC ID MAC ID. Lower 32 bits. Figure 10-43. MACID2 Register (MMR Address 0x02620114) 31 17 16 CRC 24 23 Reserved 18 FLOW BCAST 15 MACID 0 R+,cccc cccc R,+rr rrrr R,+z R,+y R,+xxxx xxxx xxxx xxxx LEGEND: R = Read only; -x = value is indeterminate Table 10-44. MACID2 Register Field Descriptions Bit Field Description 31-24 Reserved Variable 23-18 Reserved 000000 17 FLOW MAC Flow Control • 0 = Off • 1 = On 16 BCAST Default m/b-cast reception • 0 = Broadcast • 1 = Disabled 15-0 MAC ID MAC ID. Upper 16 bits. 228 AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 There is a central processor time synchronization (CPTS) submodule in the Ethernet switch module that can be used for time synchronization. Programming this register selects the clock source for the CPTS_RCLK. See the Gigabit Ethernet (GbE) Switch Subsystem (1 GB) User's Guide (SPRUGV9) for the register address and other details about the time synchronization submodule. The register CPTS_RFTCLK_SEL for reference clock selection of the time synchronization submodule is shown in Figure 10-44. CPTS also allows 8 HW signal inputs for timestamping. Two of these signals are connected to TSPUSHEVT0 and TSPUSHEVT1. The other 6 are connected to internal SyncE and timer signals. See Table 10-45 for interconnectivity. Regarding the SyncE signal, see Section 8.2.3.23 for more details on how to control this input. Furthermore, see the Gigabit Ethernet (GbE) Switch Subsystem (1 GB) User's Guide (SPRUGV9) for details on how to enable HW timestamping on CPTS. Table 10-45. CPTS Hardware Push Events EVENT NUMBER CONNECTION 1 syncE 2 XGE sync 3 Tspushevt1 4 Tspushevt0 5 Timi1 6 Timi0 7 Reserved 8 Reserved Figure 10-44. RFTCLK Select Register (CPTS_RFTCLK_SEL) 31 4 3 0 Reserved CPTS_RFTCLK_SEL R-0 RW - 0 Legend: R = Read only; -x, value is indeterminate Table 10-46. RFTCLK Select Register Field Descriptions Bit Field Description 31-4 Reserved Reserved. Read as 0. 3-0 CPTS_RFTCLK_SE L Reference clock select. This signal is used to control an external multiplexer that selects one of 8 clocks for time sync reference (RFTCLK). This CPTS_RFTCLK_SEL value can be written only when the CPTS_EN bit is cleared to 0 in the TS_CTL register. • 0000 = SYSCLK2 • 0001 = SYSCLK3 • 0010 = TIMI0 • 0011 = TIMI1 • 0100 = TSIPCLKA • 1000 = TSREFCLK • 1100 = TSIPCLKB • Others = Reserved AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 229 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com 10.17 SGMII/XFI Management Data Input/Output (MDIO) The management data input/output (MDIO) module implements the 802.3 serial management interface to interrogate and control up to 32 Ethernet PHY(s) connected to the device, using a shared two-wire bus. Application software uses the MDIO module to configure the auto-negotiation parameters of each PHY attached to the EMAC, retrieve the negotiation results, and configure required parameters in the gigabit Ethernet (GbE) and 10-gigabit Ethernet (10GbE) switch subsystems for correct operation. The module allows almost transparent operation of the MDIO interface, with very little attention from the SoC. For more information, see the Gigabit Ethernet (GbE) Switch Subsystem (1 GB) User's Guide (SPRUGV9) and the KeyStone II Architecture 10 Gigabit Ethernet Subsystem User's Guide (SPRUHJ5). Table 10-47. MDIO Timing Requirements (see Figure 10-45) NO. MIN MAX UNIT 1 tc(MDCLK) Cycle time, MDCLK 400 ns 2 tw(MDCLKH) Pulse duration, MDCLK high 180 ns 3 tw(MDCLKL) Pulse duration, MDCLK low 180 ns 4 tsu(MDIO-MDCLKH) Setup time, MDIO data input valid before MDCLK high 10 ns 5 th(MDCLKH-MDIO) Hold time, MDIO data input valid after MDCLK high 10 tt(MDCLK) Transition time, MDCLK ns 5 ns 1 MDCLK 2 3 4 5 MDIO (Input) Figure 10-45. MDIO Input Timing Table 10-48. MDIO Switching Characteristics (see Figure 10-46) NO. PARAMETER MIN MAX UNIT 300 ns 6 td(MDCLKH-MDIO) Delay time, MDCLK high to MDIO data output valid 10 7 th(MDCLKH-MDIO) Hold time, MDIO data output valid after MDCLK high 10 8 td(MDCLKH-MDIO) Delay time, MDCLK high to MDIO Hi-Z 10 ns 300 ns 1 MDCLK 7 7 6 8 MDIO (Ouput) Figure 10-46. MDIO Output Timing 230 AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 10.18 Ten-Gigabit Ethernet (10GbE) Switch Subsystem The 3-port Ten Gigabit Ethernet Switch Subsystem (different from the Network Coprocessor integrated switch) includes a standalone EMAC switch subsystem and a 2-lane SerDes macro. The 2-lane macro enables only 2 external ports. It does not include any packet acceleration or security acceleration engine. 10.18.1 10GbE Supported Features The key features of the 10GbE module are listed below: • 10 Gbps EMAC switch subsystem – MDIO: Media-dependent input/output module – SGMII Interface for 10/100/1000 and 10GBASE-KR for 10G – Ethernet switch with wire-rate switching (only two external ports are supported by the SerDes) – CPTS module that supports time-stamping for IEEE1588v2 with support for eight hardware push events and generation of compare output pulses – Supports XFI electrical interface • CPDMA The CPDMA component provides CPPI 4.2 compatible functionality, and provides a 128-bit wide data path to the TeraNet, enabling: • Support for 8 transmit channel and 16 receive channels • Support for reset isolation option For more information, see the KeyStone II Architecture 10 Gigabit Ethernet Subsystem User's Guide (SPRUHJ5). 10.19 Timers The timers can be used to time events, count events, generate pulses, interrupt the ARM CorePac and send synchronization events to the EDMA3 channel controller. 10.19.1 Timers Device-Specific Information The AM5K2E0x device has up to twenty 64-bit timers in total, but only 12 timers are used in AM5K2E04 and 10 timers are used in AM5K2E02, of which Timer16 and Timer17 (AM5K2E02) and Timer16 through Timer19 (AM5K2E04) are dedicated to each of the Cortex-A15 processor cores as a watchdog timer and can also be used as general-purpose timers. The Timer8 through Timer15 can be configured as generalpurpose timers only, with each timer programmed as a 64-bit timer or as two separate 32-bit timers. When operating in 64-bit mode, the timer counts either module clock cycles or input (TINPLx) pulses (rising edge) and generates an output pulse/waveform (TOUTLx) plus an internal event (TINTLx) on a software-programmable period. When operating in 32-bit mode, the timer is split into two independent 32bit timers. Each timer is made up of two 32-bit counters: a high counter and a low counter. The timer pins, TINPLx and TOUTLx are connected to the low counter. The timer pins, TINPHx and TOUTHx are connected to the high counter. When operating in watchdog mode, the timer counts down to 0 and generates an event. It is a requirement that software writes to the timer before the count expires, after which the count begins again. If the count ever reaches 0, the timer event output is asserted. Reset initiated by a watchdog timer can be set by programming the Reset Type Status Register (RSTYPE) (see Section 10.5.2.6) and the type of reset initiated can set by programming the Reset Configuration Register (RSTCFG) (see Section 10.5.2.8). For more information, see the KeyStone Architecture Timer 64P User's Guide SPRUGV5. 10.19.2 Timers Electrical Timing The tables and figures below describe the timing requirements and switching characteristics of the timers. AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 231 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com Table 10-49. Timer Input Timing Requirements (1) (see Figure 10-47) NO. 1 2 (1) MIN MAX UNIT tw(TINPH) Pulse duration, high 12C ns tw(TINPL) Pulse duration, low 12C ns C = 1/SYSCLK1 clock frequency in ns Table 10-50. Timer Output Switching Characteristics (1) (see Figure 10-47) NO. PARAMETER MIN MAX UNIT 3 tw(TOUTH) Pulse duration, high 12C - 3 ns 4 tw(TOUTL) Pulse duration, low 12C - 3 ns (1) C = 1/SYSCLK1 clock frequency in ns. 1 2 TIMIx 3 4 TIMOx Figure 10-47. Timer Timing 10.20 General-Purpose Input/Output (GPIO) 10.20.1 GPIO Device-Specific Information The GPIO peripheral pins are used for general purpose input/output for the device. These pins are also used to configure the device at boot time. For more detailed information on device/peripheral configuration and the AM5K2E0x device pin muxing, see Section 8.2. These GPIO pins can also be used to generate individual core interrupts (no support of bank interrupt) and EDMA events. 10.20.2 GPIO Peripheral Register Description Table 10-51. GPIO Registers Hex Address Offsets Acronym Register Name 0x0008 BINTEN GPIO interrupt per bank enable register 0x000C - Reserved 0x0010 DIR GPIO Direction Register 0x0014 OUT_DATA GPIO Output Data Register 0x0018 SET_DATA GPIO Set Data Register 0x001C CLR_DATA GPIO Clear Data Register 0x0020 IN_DATA GPIO Input Data Register 0x0024 SET_RIS_TRIG GPIO Set Rising Edge Interrupt Register 0x0028 CLR_RIS_TRIG GPIO Clear Rising Edge Interrupt Register 0x002C SET_FAL_TRIG GPIO Set Falling Edge Interrupt Register 0x0030 CLR_FAL_TRIG GPIO Clear Falling Edge Interrupt Register 0x008C - Reserved 232 AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 10-51. GPIO Registers (continued) Hex Address Offsets Acronym Register Name 0x0090 - 0x03FF - Reserved 10.20.3 GPIO Electrical Data/Timing Table 10-52. GPIO Input Timing Requirements (1) (see Figure 10-48) NO. MIN MAX UNIT 1 tw(GPOH) Pulse duration, GPOx high 12C ns 2 tw(GPOL) Pulse duration, GPOx low 12C ns (1) C = 1/SYSCLK1 clock frequency in ns Table 10-53. GPIO Output Switching Characteristics (1) (see Figure 10-48) NO. 3 4 (1) PARAMETER MIN MAX UNIT tw(GPOH) Pulse duration, GPOx high 36C - 8 ns tw(GPOL) Pulse duration, GPOx low 36C - 8 ns C = 1/SYSCLK1 clock frequency in ns 1 2 GPIx 3 4 GPOx Figure 10-48. GPIO Timing 10.21 Semaphore2 The device contains an enhanced Semaphore module for the management of shared resources of the SoC. The Semaphore enforces atomic accesses to shared chip-level resources so that the read-modifywrite sequence is not broken. The Semaphore module has unique interrupts to each of the CorePacs to identify when that CorePac has acquired the resource. Semaphore resources within the module are not tied to specific hardware resources. It is a software requirement to allocate semaphore resources to the hardware resource(s) to be arbitrated. The Semaphore module supports three masters and contains 64 semaphores that can be shared within the system. There are two methods of accessing a semaphore resource: • Direct Access: A CorePac directly accesses a semaphore resource. If free, the semaphore is granted. If not free, the semaphore is not granted. • Indirect Access: A CorePac indirectly accesses a semaphore resource by writing to it. Once the resource is free, an interrupt notifies the CorePac that the resource is available. 10.22 Universal Serial Bus 3.0 (USB 3.0) The device includes a USB 3.0 controller providing the following capabilities: AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 233 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 • • • • www.ti.com Support of USB 3.0 peripheral (or device) mode at the following speeds: – Super Speed (SS) (5 Gbps) – High Speed (HS) (480 Mbps) – Full Speed (FS) (12 Mbps) Support of USB 3.0 host mode at the following speeds: – Super Speed (SS) (5 Gbps) – High Speed (HS) (480 Mbps) – Full Speed (FS) (12 Mbps) – Low Speed (LS) (1.5 Mbps) Integrated DMA controller with extensible Host Controller Interface (xHCI) support Support for 14 transmit and 14 receive endpoints plus control EP0 For more information, see the KeyStone II Architecture Universal Serial Bus 3.0 (USB 3.0) User's Guide (SPRUHJ7). 10.23 TSIP Peripheral The Telecom Serial Interface Port (TSIP) module provides a glueless interface to common telecom serial data streams. For more information, see the KeyStone Architecture Telecom Serial Interface Port (TSIP) User Guide (SPRUGY4). 10.23.1 TSIP Electrical Data/Timing Table 10-54. Timing Requirements for TSIP 2x Mode (1) (see Figure 10-49) NO. MIN UNIT ns ns 1 tc(CLK) Cycle time, CLK rising edge to next CLK rising edge 2 tw(CLKL) Pulse duration, CLK low 0.4×tc(CLK) 3 tw(CLKH) Pulse duration, CLK high 0.4×tc(CLK) 4 tt(CLK) Transition time, CLK high to low or CLK low to high 5 tsu(FS-CLK) Setup time, FS valid before rising CLK 5 ns 6 th(CLK-FS) Hold time, FS valid after rising CLK 5 ns 7 tsu(TR-CLK) Setup time, TR valid before rising CLK 5 ns 8 th(CLK-TR) Hold time, TR valid after rising CLK 5 9 td(CLKL-TX) Delay time, CLK low to TX valid 1 12 ns 10 tdis(CLKH-TXZ) Disable time, CLK low to TX Hi-Z 2 10 ns (1) (2) 234 61 MAX (2) ns 2 ns ns Polarities of XMTFSYNCP = 0b, XMTFCLKP = 0, XMTDCLKP = 1b, RCVFSYNCP = 0, RCVFCLKP = 0, RCVDCLKP = 0. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted. Timing shown is for 8.192 Mbps links. Timing for 16.384 Mbps and 32.768 Mbps links is 30.5 ns and 15.2 ns, respectively. AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 1 2 3 CLKA/B 6 5 FSA/B 8 7 TR[n] ts127-3 ts127-2 ts127-1 ts127-0 ts000-7 ts000-6 ts000-5 ts000-4 ts000-3 ts000-2 ts000-1 ts000-0 9 TX[n] A. ts127-3 ts127-2 ts127-1 ts127-0 ts000-7 ts000-6 ts000-5 ts000-4 ts000-3 ts000-2 ts000-1 ts000-0 Example timeslot numbering shown is for 8.192 Mbps links; 16.384 Mbps links have timeslots numbered 0 through 255 and 32.768 Mbps links have timeslots numbered 0 through 511. The data timing shown relative to the clock and frame sync signals would require a RCVDATD=1 and a XMTDATD=1 Figure 10-49. TSIP 2x Timing Diagram(A) Table 10-55. Timing Requirements for TSIP 1x Mode (1) (see Figure 10-50) NO. MIN UNIT ns ns 11 tc(CLK) Cycle time, CLK rising edge to next CLK rising edge 12 tw(CLKL) Pulse duration, CLK low 0.4×tc(CLK) 13 tw(CLKH) Pulse duration, CLK high 0.4×tc(CLK) 14 tt(CLK) Transition time, CLK high to low or CLK low to high 15 tsu(FS-CLK) Setup time, FS valid before rising CLK 5 ns 16 th(CLK-FS) Hold time, FS valid after rising CLK 5 ns 17 tsu(TR-CLK) Setup time, TR valid before rising CLK 5 ns 18 th(CLK-TR) Hold time, TR valid after rising CLK 5 19 td(CLKL-TX) Delay time, CLK low to TX valid 1 12 ns 20 tdis(CLKH-TXZ) Disable time, CLK low to TX Hi-Z 2 10 ns (1) (2) 122.1 MAX (2) ns 2 ns ns Polarities of XMTFSYNCP = 0b, XMTFCLKP = 0, XMTDCLKP = 0b, RCVFSYNCP = 0, RCVFCLKP = 0, RCVDCLKP = 1. If the polarity of any of the signals is inverted, then the timing references of that signal are also inverted. Timing shown is for 8.192 Mbps links. Timing for 16.384 Mbps and 32.768 Mbps links is 61 ns and 30.5 ns, respectively. AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 235 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com 11 12 13 CLKA/B 16 15 FSA/B 17 TR[n] ts127-3 ts127-2 ts127-1 ts127-0 18 ts000-7 ts000-6 ts000-5 ts000-4 ts000-3 ts000-2 ts000-1 ts000-0 19 TX[n] A. ts127-3 ts127-2 ts127-1 ts127-0 ts000-7 ts000-6 ts000-5 ts000-4 ts000-3 ts000-2 ts000-1 ts000-0 Example timeslot numbering shown is for 8.192 Mbps links; 16.384 Mbps links have timeslots numbered 0 through 255 and 32.768 Mbps links have timeslots numbered 0 through 511. The data timing shown relative to the clock and frame sync signals would require a RCVDATD=1023 and a XMTDATD=1023. Figure 10-50. TSIP 1x Timing Diagram(A) 10.24 Universal Subscriber Identity Module (USIM) The AM5K2E0x is equipped with a Universal Subscriber Identity Module (USIM) for user authentication. The USIM is compatible with ISO, ETSI/GSM, and 3GPP standards. The USIM is implemented for support of secure devices only. Contact your local technical sales representative for further details. 10.25 EMIF16 Peripheral The EMIF16 module provides an interface between the device and external memories such as NAND and NOR flash. For more information, see the KeyStone Architecture External Memory Interface (EMIF16) User's Guide (SPRUGZ3). 10.25.1 EMIF16 Electrical Data/Timing Table 10-56. EMIF16 Asynchronous Memory Timing Requirements (1) (see Figure 10-51 through Figure 10-54) NO. MIN MAX UNIT General Timing 2 tw(WAIT) Pulse duration, WAIT assertion and deassertion minimum time 2E ns 28 td(WAIT-WEH) Setup time, WAIT asserted before WE high 4E + 3 ns 14 td(WAIT-OEH) Setup time, WAIT asserted before OE high 4E + 3 ns Read Timing 3 3 4 5 4 5 6 (1) 236 tC(CEL) EMIF read cycle time when ew = 0, meaning not in extended wait mode (RS+RST+RH+3) (RS+RST+RH+3) *E-3 *E+3 ns tC(CEL) EMIF read cycle time when ew =1, meaning extended wait mode enabled (RS+RST+RH+3) (RS+RST+RH+3) *E-3 *E+3 ns tosu(CEL-OEL) Output setup time from CE low to OE low. SS = 0, not in select strobe mode (RS+1) * E - 3 (RS+1) * E + 3 toh(OEH-CEH) Output hold time from OE high to CE high. SS = 0, not in select strobe mode (RH+1) * E - 3 (RH+1) * E + 3 tosu(CEL-OEL) Output setup time from CE low to OE low in select strobe mode, SS = 1 (RS+1) * E - 3 (RS+1) * E + 3 toh(OEH-CEH) Output hold time from OE high to CE high in select strobe mode, SS = 1 (RH+1) * E - 3 (RH+1) * E + 3 tosu(BAV-OEL) Output setup time from BA valid to OE low (RS+1) * E - 3 (RS+1) * E + 3 ns ns ns ns ns E = 1/(SYSCLK1/6) AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 10-56. EMIF16 Asynchronous Memory Timing Requirements(1) (continued) (see Figure 10-51 through Figure 10-54) NO. MIN MAX UNIT 7 toh(OEH-BAIV) Output hold time from OE high to BA invalid (RH+1) * E - 3 (RH+1) * E + 3 ns 8 tosu(AV-OEL) Output setup time from A valid to OE low (RS+1) * E - 3 (RS+1) * E + 3 ns 9 toh(OEH-AIV) Output hold time from OE high to A invalid (RH+1) * E - 3 (RH+1) * E + 3 ns 10 tw(OEL) OE active time low, when ew = 0. Extended wait mode is disabled. (RST+1) * E - 3 (RST+1) * E + 3 ns 10 tw(OEL) OE active time low, when ew = 1. Extended wait mode is enabled. (RST+1) * E - 3 (RST+1) * E + 3 ns 11 td(WAITH-OEH) Delay time from WAIT deasserted to OE# high 4E + 3 ns 12 tsu(D-OEH) Input setup time from D valid to OE high 3 ns 13 th(OEH-D) Input hold time from OE high to D invalid 0.5 ns Write Timing 15 tc(CEL) EMIF write cycle time when ew = 0, meaning not in extended wait mode (WS+WST+WH+ 3)*E-3 (WS+WST+WH+ 3)*E+3 ns tc(CEL) EMIF write cycle time when ew =1., meaning extended wait mode is enabled (WS+WST+WH+ 3)*E-3 (WS+WST+WH+ 3)*E+3 ns tosuCEL-WEL) Output setup time from CE low to WE low. SS = 0, not in select strobe mode (WS+1) * E - 3 toh(WEH-CEH) Output hold time from WE high to CE high. SS = 0, not in select strobe mode (WH+1) * E - 3 tosuCEL-WEL) Output setup time from CE low to WE low in select strobe mode, SS = 1 (WS+1) * E - 3 toh(WEH-CEH) Output hold time from WE high to CE high in select strobe mode, SS = 1 (WH+1) * E - 3 18 tosu(RNW-WEL) Output setup time from RNW valid to WE low (WS+1) * E - 3 ns 19 toh(WEH-RNW) Output hold time from WE high to RNW invalid (WH+1) * E - 3 ns 20 tosu(BAV-WEL) Output setup time from BA valid to WE low (WS+1) * E - 3 ns 21 toh(WEH-BAIV) Output hold time from WE high to BA invalid (WH+1) * E - 3 ns 22 tosu(AV-WEL) Output setup time from A valid to WE low (WS+1) * E - 3 ns 23 toh(WEH-AIV) Output hold time from WE high to A invalid (WH+1) * E - 3 ns 24 tw(WEL) WE active time low, when ew = 0. Extended wait mode is disabled. (WST+1) * E - 3 ns 24 tw(WEL) WE active time low, when ew = 1. Extended wait mode is enabled. (WST+1) * E - 3 ns 26 tosu(DV-WEL) Output setup time from D valid to WE low (WS+1) * E - 3 ns 27 toh(WEH-DIV) Output hold time from WE high to D invalid (WH+1) * E - 3 25 td(WAITH-WEH) Delay time from WAIT deasserted to WE# high 15 16 17 16 17 ns ns ns ns ns 4E + 3 ns 3 EM_CE[3:0] EM_R/W EM_BA[1:0] EM_A[21:0] 5 7 9 4 6 8 10 EM_OE 12 13 EM_D[15:0] EM_WE Figure 10-51. EMIF16 Asynchronous Memory Read Timing Diagram AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 237 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com 15 EM_CE[3:0] EM_R/W EM_BA[1:0] EM_A[21:0] 17 19 21 23 16 18 20 22 24 EM_WE 26 27 EM_D[15:0] EM_OE Figure 10-52. EMIF16 Asynchronous Memory Write Timing Diagram Setup Extended Due to EM_WAIT Strobe Strobe Hold EM_CE[3:0] EM_BA[1:0] EM_A[21:0] EM_D[15:0] EM_OE 14 11 EM_WAIT 2 2 Asserted Deasserted Figure 10-53. EMIF16 EM_WAIT Read Timing Diagram Setup Extended Due to EM_WAIT Strobe Strobe Hold EM_CE[3:0] EM_BA[1:0] EM_A[21:0] EM_D[15:0] EM_WE 28 25 EM_WAIT 2 2 Asserted Deasserted Figure 10-54. EMIF16 EM_WAIT Write Timing Diagram 10.26 Emulation Features and Capability 238 AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 The debug capabilities of KeyStone II devices include the Debug subsystem module (DEBUGSS). The DEBUGSS module contains the ICEPick module which handles the external JTAG Test Access Port (TAP) and multiple secondary TAPs for the various processing cores of the device. It also provides Debug Access Port (DAP) for system wide memory access from debugger, Cross triggering, System trace, Peripheral suspend generation, Debug port (EMUx) pin management etc. The DEBUGSS module works in conjunction with the debug capability integrated in the processing cores to provide a comprehensive hardware platform for a rich debug and development experience. 10.26.1 Chip Level Features • • • • • • • • • • • Support for 1149.1(JTAG and Boundary scan) and 1149.6 (Boundary scan extensions). Trace sources to DEBUG SubSystem System Trace Module (DEBUGSS STM) – Provides a way for hardware instrumentation and software messaging to supplement the processor core trace mechanisms. – Hardware instrumentation support of CPTracers to support logging of bus transactions for critical endpoints – Software messaging/instrumentation support for SoC and QMSS PDSP cores through DEBUGSS STM. Trace Sinks – Support for trace export (from all processor cores and DEBUGSS STM) through emulation pins. Concurrent trace of ARM and STM traces via EMU pins is possible. – Support for 32KB DEBUGSS TBR (Trace Buffer and Router) to hold system trace. The data can be drained using EDMA to on-chip or DDR memory buffers. These intermediate buffers can subsequently be drained through the device high speed interfaces. The DEBUGSS TBR is dedicated to the DEBUGSS STM module. The trace draining interface used in KeyStone II for DEBUGSS and ARMSS are based on the new CT-TBR. Cross triggering: Provides a way to propagate debug (trigger) events from one processor/subsystem/module to another – Cross triggering between multiple devices via EMU0/EMU1 pins – Cross triggering between multiple processing cores within the device like ARM Cores and nonprocessor entities like ARM STM (input only), CPTracers, CT-TBRs and DEBUGSS STM (input only) Synchronized starting and stopping of processing cores – Global start of all ARM cores – Global stopping of all ARM cores Emulation mode aware peripherals (suspend features and debug access features) Support system memory access via the DAP port (natively support 32-bit address, and it can support 36-bit address through configuration of MPAX inside MSMC). Debug access to any invalid memory location (reserved/clock-gated/power-down) does not cause system hang. Scan access to secondary TAPs of DEBUGSS is disabled in Secure devices by default. Security override sequence is supported (requires software override sequence) to enable debug in secure devices. In addition, Debug features of the ARM cores are blockable through the ARM debug authentication interface in secure devices. Support WIR (wait-in-reset) debug boot mode for Non-secure devices. Debug functionality survives all pin resets except power-on resets (POR/RESETFULL) and test reset (TRST). PDSP Debug features like access/control through DAP, Halt mode debug and software instrumentation. 10.26.1.1 ARM Subsystem Features • Support for invasive debug like halt mode debugging (breakpoint, watchpoints) and monitor mode debugging AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 239 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 • • • • • • • • • • www.ti.com Support for non-invasive debugging (program trace, performance monitoring) Support for A15 Performance Monitoring Unit (cycle counters) Support for per core CoreSight™ Program Trace Module (CS-PTM) with timing Support for an integrated CoreSight System Trace Module (CS-STM) for hardware event and software instrumentation A shared timestamp counter for all ARM cores and STM is integrated in ARMSS for trace data correlation Support for a 16KB Trace Buffer and Router (TBR) to hold PTM/STM trace. The trace data is copied by EDMA to external memory for draining by device high speed serial interfaces. Support for simultaneous draining of trace stream through EMUn pins and TBR (to achieve higher aggregate trace throughput) Support for debug authentication interface to disable debug accesses in secure devices Support for cross triggering between MPU cores, CS-STM and CT-TBR Support for debug through warm reset 10.26.2 ICEPick Module The debugger is connected to the device through its external JTAG interface. The first level of debug interface seen by the debugger is connected to the ICEPick module embedded in the DEBUGSS. ICEPick is the chip-level TAP, responsible for providing access to the IEEE 1149.1 and IEEE1149.6 boundary scan capabilities of the device. ICEPick manages the TAPs as well as the power/reset/clock controls for the logic associated with the TAPs as well as the logic associated with the APB ports. ICEPick provides the following debug capabilities: • Debug connect logic for enabling or disabling most ICEPick instructions • Dynamic TAP insertion – Serially linking up to 32 TAP controllers – Individually selecting one or more of the TAPS for scan without disrupting the instruction register (IR) state of other TAPs • Power, reset and clock management – Provides the power and clock status of the domain to the debugger – Provides debugger control of the power domain of a processor. • Force the domain power and clocks on • Prohibit the domain from being clock-gated or powered down – Applies system reset – Provides wait-in-reset (WIR) boot mode – Provides global and local WIR release – Provides global and local reset block The ICEPick module implements a connect register, which must be configured with a predefined key to enable the full set of JTAG instructions. Once the debug connect key has been properly programmed, ICEPick signals and subsystems emulation logic should be turned on. 10.26.2.1 ICEPick Dynamic Tap Insertion To include more or fewer secondary TAPS in the scan chain, the debugger must use the ICEPick TAP router to program the TAPs. At its root, ICEPick is a scan-path linker that lets the debugger selectively choose which subsystem TAPs are accessible through the device-level debug interface. Each secondary TAP can be dynamically included in or excluded from the scan path. From external JTAG interface point of view, secondary TAPS that are not selected appear not to exist. 240 AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 The CoreSight components are interfaced with ICEPick through the CS_DAP module. The CS_DAP is attached to the ICEPick secondary TAP and translates JTAG transactions into APBv3 transactions. Table 10-57 shows the ICEPick secondary taps in the system. For more details on the test related P1500 TAPs, see the DFTSS specification. Table 10-57. ICEPick Debug Secondary TAPs TAP # TYPE NAME ACCESS IN IR SCAN SECURE LENGTH DEVICE 0 n/a n/a n/a 1 JTAG Reserved 2 JTAG Reserved 3 JTAG Reserved 4 JTAG Reserved 5 JTAG Reserved 6 JTAG Reserved 7 JTAG Reserved 8 JTAG Reserved 9..13 JTAG Reserved NA No Spare ports for future expansion 14 CS CS_DAP (APB-AP) 4 No ARM A15 Cores (This is an internal TAP and not exposed at the DEBUGSS boundary) No CS_DAP (AHB-AP) DESCRIPTION Reserved (This is an internal TAP and not exposed at the DEBUGSS boundary) PDSP Cores (This is an internal TAP and not exposed at the DEBUGSS boundary) For more information on ICEPick, see the KeyStone II Architecture Debug and Trace User’s Guide (SPRUHM4). 10.27 Debug Port (EMUx) The device also supports 34 emulation pins — EMU[33:0], which includes 19 dedicated EMU pins and 15 pins multiplexed with GPIO. These pins are shared by SoC STM trace, cross triggering, and debug boot modes as shown in Table 10-60. The 34-pin dedicated emulation interface is also defined in the following table. NOTE Note that if EMU[1:0] signals are shared for cross-triggering purposes in the board level, they SHOULD NOT be used for trace purposes. AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 241 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com 10.27.1 Concurrent Use of Debug Port The following combinations are possible concurrently: • Trigger 0/1 • Trigger 0/1 and STM Trace (up to 4 data pins) • Trigger 0/1 and STM Trace (up to 4 data pins) • Trigger 0/1 and STM Trace (1-4 data pins) and ARM Trace (27-24 data pins) • STM Trace (1-4 data pins) and ARM Trace (29-26 data pins) • Trigger 0/1 and ARM Trace (up to 29 data pins) • ARM Trace (up to 32 data pins) 10.27.2 Master ID for HW and SW Messages Table 10-58 describes the master ID for the various hardware and software masters of the STM. Table 10-58. MSTID Mapping for Hardware Instrumentation (CPTRACERS) CPTRACER NAME MSTID [7:0] CLOCK DOMAIN SID[4:0] DESCRIPTION CPT_MSMCx_MST, where x = 0..3 0x94-0x97 SYSCLK1/1 0x0..3 MSMC SRAM Bank 0 to MSMC SRAM Bank 3 monitors CPT_MSMC4_MST 0xB1 SYSCLK1/1 0x4 MSMC SRAM Bank 4 CPT_MSMCx_MST, where x = 5..7 0xAE - 0xB0 SYSCLK1/1 0x5..7 MSMC SRAM Bank 5to MSMC SRAM Bank 7 monitors CPT_DDR3_MST 0x98 SYSCLK1/1 0x8 MSMC DDR3 port monitor CPT_L2_x_MST, where x = 0..7 0x8C - 0x93 SYSCLK1/3 0x9..0x10 Reserved CPT_TPCC0_4_MST 0xA4 SYSCLK1/3 0x11 EDMA 0 and EDMA 4 CFG port monitor CPT_TPCC1_2_3_MST 0xA5 SYSCLK1/3 0x12 EDMA 1, EDMA2 and EDMA3 CFG port monitor CPT_INTC_MST 0xA6 SYSCLK1/3 0x13 INTC port monitor (for INTC 0/1/2 and GIC400) CPT_SM_MST 0x99 SYSCLK1/3 0x14 Semaphore CFG port monitors CPT_QM_CFG1_MST 0x9A SYSCLK1/3 0x15 QMSS CFG1 port monitor CPT_QM_CFG2_MST 0xA0 SYSCLK1/3 0x16 QMSS CFG2 port monitor CPT_QM_M_MST 0x9B SYSCLK1/3 0x17 QM_M CFG/DMA port monitor CPT_SPI_ROM_EMIF16_MST 0xA7 SYSCLK1/3 0x18 SPI ROM EMIF16 CFG port monitor CPT_CFG_MST 0x9C SYSCLK1/3 0x19 SCR_3P_B and SCR_6P_B CFG peripheral port monitors Reserved 0x1A Reserved Reserved 0x1B Reserved Reserved 0x1C Reserved Reserved 0x1D Reserved Reserved 0x1E Reserved Reserved 0x1F DDR 3B port monitor (on SCR 3C) Table 10-59. MSTID Mapping for Software Messages CORE NAME MSTID [7:0] Reserved 0x0 Reserved 0x1 Reserved 0x2 Reserved 0x3 Reserved 0x4 Reserved 0x5 Reserved 0x6 242 DESCRIPTION AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 10-59. MSTID Mapping for Software Messages (continued) CORE NAME MSTID [7:0] Reserved 0x7 DESCRIPTION A15 Core0 0x8 ARM Master IDs A15 Core1 0x9 ARM Master ID (AM5K2E04 only) A15 Core2 0xA ARM Master ID(AM5K2E04 only) A15 Core3 0xB ARM Master ID(AM5K2E04 only) QMSS PDSPs 0x46 All QMSS PDSPs share the same master ID. Differentiating between the 8 PDSPs is done through the channel number used TSIP 0x80 TSIP Master ID 10.27.3 SoC Cross-Triggering Connection The cross-trigger lines are shared by all the subsystems implementing cross-triggering. An MPU subsystem trigger event can therefore be propagated to any application subsystem or system trace component. The remote subsystem or system trace component can be programmed to be sensitive to the global SOC trigger lines to either: • Generate a processor debug request • Generate an interrupt request • Start/Stop processor trace • Start/Stop CBA transaction tracing through CPTracers • Start external logic analyzer trace • Stop external logic analyzer trace Table 10-60. Cross-Triggering Connection NAME SOURCE TRIGGERS SINK TRIGGERS Device-to-device trigger via EMU0/1 pins YES YES This is fixed (not affected by configuration) MIPI-STM NO YES Trigger input only for MIPI-STM in DebugSS CT-TBR YES YES DEBUGSS CT-TBR CS-TPIU NO YES DEBUGSS CS-TPIU COMMENTS Inside DEBUGSS Outside DEBUGSS CP_Tracers YES YES ARM YES YES ARM Cores, ARM CS-STM and ARM CTTBR The following table describes the crosstrigger connection between various cross trigger sources and TI XTRIG module. Table 10-61. TI XTRIG Assignment NAME ASSIGNED XTRIG CHANNEL NUMBER CPTracer 0..31 (The CPTracer number refers to the SID[4:0] as shown in Table 10-58 XTRIG 8 .. 39 AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 243 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com 10.27.4 Peripherals-Related Debug Requirement Table 10-62 lists all the peripherals on this device, and the status of whether or not it supports emulation suspend or emulation request events. The DEBUGSS supports upto 32 debug suspend sources (processor cores) and 64 debug suspend sinks (peripherals). The assignment of processor cores is shown in and the assignment of peripherals is shown in Table 10-62. By default the logical AND of all the processor cores is routed to the peripherals. It is possible to select an individual core to be routed to the peripheral (For example: used in tightly coupled peripherals like timers), a logical AND of all cores (Global peripherals) or a logical OR of all cores by programming the DEBUGSS.DRM module. The SOFT bit should be programmed based on whether or not an immediate pause of the peripheral function is required or if the peripheral suspend should occur only after a particular completion point is reached in the normal peripheral operation. The FREE bit should be programmed to enable or disable the emulation suspend functionality. Table 10-62. Peripherals Emulation Support EMULATION SUSPEND SUPPORT PERIPHERAL STOPMODE REAL-TIME MODE FREE BIT STOP BIT EMULATION REQUEST SUPPORT (cemudbg/emudbg) DEBUG PERIPHERAL ASSIGNMENT Infrastructure Peripherals EDMA_x, where X=0/1/2/3/4 N N N N Y NA Y (CPDMA only) Y (CPDMA only) Y (CPDMA only) Y (CPDMA only) Y 20 CP_Tracers_X, where X = 0..32 N N N N N NA MPU_X, where X = 0..11 N N N N Y NA CP_INTC N N N N Y NA BOOT_CFG N N N N Y NA SEC_MGR N N N N Y NA PSC N N N N N NA PLL N N N N N NA TIMERx, x=0, 1..7, 8..19 Y N Y Y N 0, 1..7, 8..19 Semaphore N N N N Y NA GPIO N N N N N NA QM_SS Memory Controller Peripherals DDR3 N N N N Y NA MSMC N N N N Y NA EMIF16 N N N N Y NA I2C_X, where X = 0/1/2 Y N Y Y Y 21/22/23 SPI_X, where X = 0/1/2 N N N N Y NA UART_X, where X = 0/1 Y N Y Y Y 24/25 USIM Y N Y N N 28 Serial Interfaces High Speed Serial Interfaces Hyperlink N N N N Y PCIeSS 0..1 N N N N N Y Y Y Y N Reserved NetCP (ethernet switch) 244 26 27 AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 Table 10-62. Peripherals Emulation Support (continued) EMULATION SUSPEND SUPPORT STOPMODE REAL-TIME MODE FREE BIT STOP BIT EMULATION REQUEST SUPPORT (cemudbg/emudbg) 10GbE (ethernet switch) (1) Y N Y Y N 29 USBSS N N N N N NA PERIPHERAL (1) DEBUG PERIPHERAL ASSIGNMENT 10 GbE supported by AM5K2E04 only. Based on the above table the number of suspend interfaces in Keystone II devices is listed below. Table 10-63. EMUSUSP Peripheral Summary (for EMUSUSP handshake from DEBUGSS) INTERFACES NUM_SUSPEND_PERIPHERALS EMUSUSP Interfaces 54 EMUSUSP Realtime Interfaces 15 Table 10-64 summarizes the DEBUG core assignment. Emulation suspend output of all the cores are synchronized to SYSCLK1/6 which is frequency of the slowest peripheral that uses these signals. Table 10-64. EMUSUSP Core Summary(for EMUSUSP handshake to DEBUGSS) Core # Assignment 8..11 ARM CorePac0-3 12..29 Reserved 30 Logical OR of Core #0..11 31 Logical AND of Core #0..11 10.27.5 Advanced Event Triggering (AET) The device supports advanced event triggering (AET). This capability can be used to debug complex problems as well as understand performance characteristics of user applications. AET provides the following capabilities: • Hardware program breakpoints: specify addresses or address ranges that can generate events such as halting the processor or triggering the trace capture. • Data watchpoints: specify data variable addresses, address ranges, or data values that can generate events such as halting the processor or triggering the trace capture. • Counters: count the occurrence of an event or cycles for performance monitoring. • State sequencing: allows combinations of hardware program breakpoints and data watchpoints to precisely generate events for complex sequences. AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 245 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com For more information on the AET, see the following documents: • Using Advanced Event Triggering to Find and Fix Intermittent Real-Time Bugs application report (SPRA753) • Using Advanced Event Triggering to Debug Real-Time Problems in High Speed Embedded Microprocessor Systems application report (SPRA387) 10.27.6 Trace The device supports trace. Trace is a debug technology that provides a detailed, historical account of application code execution, timing, and data accesses. Trace collects, compresses, and exports debug information for analysis. Trace works in real-time and does not impact the execution of the system. For more information on board design guidelines for trace advanced emulation, see the Emulation and Trace Headers Technical Reference Manual (SPRU655). 10.27.6.1 Trace Electrical Data/Timing Table 10-65. Trace Switching Characteristics (see Figure 10-55) NO. PARAMETER MIN Pulse duration, DPn/EMUn high MAX UNIT 1 tw(DPnH) 2.4 ns 1 tw(DPnH)90% Pulse duration, DPn/EMUn high detected at 90% Voh 1.5 ns 2 tw(DPnL) 2.4 ns 2 tw(DPnL)10% Pulse duration, DPn/EMUn low detected at 10% Voh 1.5 ns 3 tsko(DPn) Output skew time, time delay difference between DPn/EMUn pins configured as trace tskp(DPn) Pulse skew, magnitude of difference between high-to-low (tphl) and low-tohigh (tplh) propagation delays. tsldp_o(DPn) Output slew rate DPn/EMUn Pulse duration, DPn/EMUn low -1 3.3 1 ns 600 ps V/ns A TPLH Buffer Inputs Buffers DP[n] / EMU[n] Pins B TPLH 1 2 B A 3 C C Figure 10-55. Trace Timing 10.27.7 IEEE 1149.1 JTAG The Joint Test Action Group (JTAG) interface is used to support boundary scan and emulation of the device. The boundary scan supported allows for an asynchronous test reset (TRST) and only the five baseline JTAG signals (e.g., no EMU[1:0]) required for boundary scan. Most interfaces on the device follow the Boundary Scan Test Specification (IEEE1149.1), while all of the SerDes (SGMII) support the AC-coupled net test defined in AC-Coupled Net Test Specification (IEEE1149.6). It is expected that all compliant devices are connected through the same JTAG interface, in daisy-chain fashion, in accordance with the specification. The JTAG interface uses 1.8-V LVCMOS buffers, compliant with the Power Supply Voltage and Interface Standard for Nonterminated Digital Integrated Circuit Specification (EAI/JESD8-5). 246 AM5K2E0x Peripheral Information and Electrical Specifications Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 AM5K2E04, AM5K2E02 www.ti.com SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 10.27.7.1 IEEE 1149.1 JTAG Compatibility Statement For maximum reliability, the AM5K2E0x device includes an internal pulldown (IPD) on the TRST pin to ensure that TRST will always be asserted upon power up and the device’s internal emulation logic will always be properly initialized when this pin is not routed out. JTAG controllers from Texas Instruments actively drive TRST high. However, some third-party JTAG controllers may not drive TRST high, but expect the use of an external pullup resistor on TRST. When using this type of JTAG controller, assert TRST to initialize the device after powerup and externally drive TRST high before attempting any emulation or boundary scan operations. 10.27.7.2 JTAG Electrical Data/Timing Table 10-66. JTAG Test Port Timing Requirements (see Figure 10-56) NO. MIN MAX UNIT 1 tc(TCK) Cycle time, TCK 23 ns 1a tw(TCKH) Pulse duration, TCK high (40% of tc) 9.2 ns 1b tw(TCKL) Pulse duration, TCK low(40% of tc) 9.2 ns 3 tsu(TDI-TCK) Input setup time, TDI valid to TCK high 2 ns 3 tsu(TMS-TCK) Input setup time, TMS valid to TCK high 2 ns 4 th(TCK-TDI) Input hold time, TDI valid from TCK high 10 ns 4 th(TCK-TMS) Input hold time, TMS valid from TCK high 10 ns Table 10-67. JTAG Test Port Switching Characteristics (see Figure 10-56) NO. 2 PARAMETER td(TCKL-TDOV) MIN Delay time, TCK low to TDO valid MAX UNIT 8.24 ns 1 1b 1a TCK 2 TDO 4 3 TDI / TMS Figure 10-56. JTAG Test-Port Timing AM5K2E0x Peripheral Information and Electrical Specifications Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 Copyright © 2012–2015, Texas Instruments Incorporated 247 AM5K2E04, AM5K2E02 SPRS864D – NOVEMBER 2012 – REVISED MARCH 2015 www.ti.com 11 Mechanical Data 11.1 Thermal Data Table 11-1 shows the thermal resistance characteristics for the PBGA - ABD 1089-pin mechanical package. Table 11-1. Thermal Resistance Characteristics (PBGA Package) ABD NO. °C/W 1 RθJC Junction-to-case 0.34 2 RθJB Junction-to-board 3.14 11.2 Packaging Information The following packaging information reflects the most current released data available for the designated device(s). This data is subject to change without notice and without revision of this document. 248 Mechanical Data Copyright © 2012–2015, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: AM5K2E04 AM5K2E02 PACKAGE OPTION ADDENDUM www.ti.com 7-Oct-2021 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) (3) Device Marking (4/5) (6) AM5K2E02ABD25 ACTIVE FCBGA ABD 1089 40 RoHS & Green Call TI Level-4-245C-72HR 0 to 85 AM5K2E02ABD @2012 TI AM5K2E02ABD4 ACTIVE FCBGA ABD 1089 40 RoHS & Green Call TI Level-4-245C-72HR 0 to 85 AM5K2E02ABD @2012 TI 1.4GHZ AM5K2E02ABDA25 ACTIVE FCBGA ABD 1089 40 RoHS & Green Call TI Level-4-245C-72HR -40 to 100 AM5K2E02ABD A1.25GHZ AM5K2E02ABDA4 ACTIVE FCBGA ABD 1089 40 RoHS & Green Call TI Level-4-245C-72HR -40 to 100 AM5K2E02ABD @2012 TI A1.4GHZ AM5K2E02XABD25 ACTIVE FCBGA ABD 1089 40 RoHS & Green Call TI Level-4-245C-72HR 0 to 85 AM5K2E02XABD AM5K2E04XABD25 ACTIVE FCBGA ABD 1089 40 RoHS & Green Call TI Level-4-245C-72HR 0 to 85 AM5K2E04XABD @2012 TI AM5K2E04XABD4 ACTIVE FCBGA ABD 1089 40 RoHS & Green Call TI Level-4-245C-72HR 0 to 85 AM5K2E04XABD @2012 TI 1.4GHZ AM5K2E04XABDA25 ACTIVE FCBGA ABD 1089 40 RoHS & Green Call TI Level-4-245C-72HR -40 to 100 AM5K2E04XABD A1.25GHZ AM5K2E04XABDA4 ACTIVE FCBGA ABD 1089 40 RoHS & Green Call TI Level-4-245C-72HR -40 to 100 AM5K2E04XABD @2012 TI A1.4GHZ (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
AM5K2E04XABD25 价格&库存

很抱歉,暂时无法提供与“AM5K2E04XABD25”相匹配的价格&库存,您可以联系我们找货

免费人工找货