0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AMC1301DWV

AMC1301DWV

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC-8_5.85X7.5MM

  • 描述:

    精度,±250 mV输入,3-µs延迟,增强型隔离放大器

  • 数据手册
  • 价格&库存
AMC1301DWV 数据手册
Product Folder Order Now Support & Community Tools & Software Technical Documents Reference Design AMC1301 SBAS667F – APRIL 2016 – REVISED APRIL 2020 AMC1301 Precision, ±250-mV Input, 3-µs Delay, Reinforced Isolated Amplifier 1 Features 3 Description • The AMC1301 is a precision, isolated amplifier with an output separated from the input circuitry by an isolation barrier that is highly resistant to magnetic interference. This barrier is certified to provide reinforced galvanic isolation of up to 7 kVPEAK according to VDE V 0884-11 and UL1577. Used in conjunction with isolated power supplies, this device prevents noise currents on a high common-mode voltage line from entering the local ground and interfering with or damaging sensitive circuitry. 1 • • • • • • • • ±250-mV input voltage range optimized for current measurement using shunt resistors Low offset error and drift: ±200 µV at 25°C, ± 3 µV/°C Fixed gain: 8.2 Very low gain error and drift: ±0.3% at 25°C, ± 50 ppm/°C Very low nonlinearity and drift: 0.03%, 1 ppm/°C 3.3-V operation on high-side and low-side System-level diagnostic features Safety-related certifications: – 7000-VPK reinforced isolation per DIN VDE V 0884-11: 2017-01 – 5000-VRMS isolation for 1 minute per UL1577 – CAN/CSA no. 5A-component acceptance service notice and IEC 62368-1 end equipment standard Fully specified over the extended industrial temperature range 2 Applications • • The input of the AMC1301 is optimized for direct connection to shunt resistors or other low voltagelevel signal sources. The excellent performance of the device supports accurate current control resulting in system-level power savings and, especially in motor control applications, lower torque ripple. The integrated common-mode overvoltage and missing high-side supply voltage detection features of the AMC1301 simplify system-level design and diagnostics. The AMC1301 is fully specified over the extended industrial temperature range of –40°C to +125°C and is available in a wide-body 8-pin SOIC (DWV) package. The AMC1301S is specified over the temperature range of –55°C to +125°C. Device Information(1) Shunt-resistor-based current sensing in: – Motor drives – Frequency inverters – Uninterruptible power supplies Isolated voltage sensing PART NUMBER AMC1301 PACKAGE SOIC (8) BODY SIZE (NOM) 5.85 mm × 7.50 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. Simplified Schematic Floating Power Supply Gate Driver 3.3 V or 5.0 V AMC1301 GND1 RSHUNT VDD2 VDD1 VINN To Load VINP Reinforced Isolation HV+ 3.3 V or 5.0 V GND2 VOUTP ADS7263 14-Bit ADC VOUTN Gate Driver HV- 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. AMC1301 SBAS667F – APRIL 2016 – REVISED APRIL 2020 www.ti.com Table of Contents 1 2 3 4 5 6 7 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Device Comparison Table..................................... Pin Configuration and Functions ......................... Specifications......................................................... 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 1 1 1 2 4 4 5 Absolute Maximum Ratings ...................................... 5 ESD Ratings.............................................................. 5 Recommended Operating Conditions....................... 5 Thermal Information .................................................. 5 Power Ratings........................................................... 5 Insulation Specifications............................................ 6 Safety-Related Certifications..................................... 7 Safety Limiting Values .............................................. 7 Electrical Characteristics........................................... 7 Insulation Characteristics Curves .......................... 9 Typical Characteristics .......................................... 10 8 Parameter Measurement Information ................ 17 9 Detailed Description ............................................ 18 8.1 Timing Diagrams ..................................................... 17 9.1 9.2 9.3 9.4 Overview ................................................................. Functional Block Diagram ....................................... Feature Description................................................. Device Functional Modes........................................ 18 18 18 19 10 Application and Implementation........................ 20 10.1 Application Information.......................................... 20 10.2 Typical Applications .............................................. 20 10.3 What To Do and What Not TO Do........................ 24 11 Power Supply Recommendations ..................... 25 12 Layout................................................................... 26 12.1 Layout Guidelines ................................................. 26 12.2 Layout Example .................................................... 26 13 Device and Documentation Support ................. 27 13.1 13.2 13.3 13.4 13.5 13.6 13.7 Device Support...................................................... Documentation Support ....................................... Receiving Notification of Documentation Updates Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 27 27 27 27 27 27 27 14 Mechanical, Packaging, and Orderable Information ........................................................... 27 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision E (March 2018) to Revision F Page • Changed safety-related certifications details as per ISO standard ....................................................................................... 1 • Changed IEC 60950-1 and IEC60065 to IEC 62368-1 .......................................................................................................... 1 • Changed VDE V 0884-10 to VDE V 0884-11 in Description section ..................................................................................... 1 • Changed TA parameter from specified to operating in Device Comparison Table................................................................. 4 • Changed CLR and CPG values from 9 mm to 8.5 mm.......................................................................................................... 6 • Changed Insulation Specifications table per ISO standard .................................................................................................... 6 • Changed Safety-Related Certification table per ISO standard............................................................................................... 7 • Changed Safety Limiting Values description as per ISO standard ........................................................................................ 7 • Changed Rise and Fall Time Test Waveforms figure........................................................................................................... 17 • Changed Delay Time Test Waveforms figure ...................................................................................................................... 17 • Changed Functional Block Diagram figure ........................................................................................................................... 18 Changes from Revision D (January 2017) to Revision E Page • Added AMC1301S device to document ................................................................................................................................ 1 • Added last sentence to Description section .......................................................................................................................... 1 • Added Device Comparison Table section .............................................................................................................................. 4 • Added AMC1301S row to TA parameter in Recommended Operating Conditions table ....................................................... 5 • Added AMC1301S row to Climatic category parameter of Insulation Specifications table ................................................... 6 • Added AMC1301S temperature range to conditions statement of Electrical Characteristics table ...................................... 7 • Added AMC1301S row to TCVOS parameter in Electrical Characteristics table..................................................................... 7 • Changed IIB parameter specification and conditions .............................................................................................................. 7 2 Submit Documentation Feedback Copyright © 2016–2020, Texas Instruments Incorporated Product Folder Links: AMC1301 AMC1301 www.ti.com SBAS667F – APRIL 2016 – REVISED APRIL 2020 • Added AMC1301S row to TCEG parameter in Electrical Characteristics table ..................................................................... 8 • Changed all temperature plots in Typical Characteristics section to cover –55°C for the AMC1301S and added respective footnote ............................................................................................................................................................... 10 • Changed Input Bias Current vs Common-Mode Input Voltage figure to align with new test condition................................ 11 • Changed Input Bias Current vs High-Side Supply Voltage figure to align with new test condition...................................... 11 • Changed Input Bias Current vs Temperature figure to align with new test condition .......................................................... 12 • Changed legend of Output Voltage vs Input Voltage figure, VOUTP is now red and VOUTN is now black .............................. 13 Changes from Revision C (September 2016) to Revision D Page • Changed VDD1 to VDD2 in test conditions of IDD2 and PDD2 parameters of Electrical Characteristics table ........................ 8 • Changed VDD2 to VDD1 in conditions of Gain Error Histogram figures ............................................................................. 12 Changes from Revision B (June 2016) to Revision C Page • Changed 12-Bit ADC to 14-Bit ADC in Simplified Schematic figure ...................................................................................... 1 • Changed maximum specification of Supply voltage row in Absolute Maximum Ratings table ............................................. 5 • Changed 12-Bit ADC to 14-Bit ADC in Zener-Diode Based, High Side Power Supply figure in Power Supply Recommendations section ................................................................................................................................................... 25 Changes from Revision A (April 2016) to Revision B Page • Changed Features bullet from "Safety and Regulatory Approvals" to "Safety-Related Certifications" .................................. 1 • Changed Simplified Schematic figure in Device Information table......................................................................................... 1 • Changed section title from "Regulatory Information" to "Safety-Related Certifications" ....................................................... 7 • Changed VCM test conditions in Electrical Characteristics table............................................................................................. 7 • Added VIN footnote to Electrical Characteristics table ........................................................................................................... 7 • Changed VIN test conditions in Electrical Characteristics table .............................................................................................. 7 • Changed VIN units in Electrical Characteristics table ............................................................................................................. 7 • Changed common-mode rejection ratio test condition in Electrical Characteristics table...................................................... 7 • Changed RIN parameter information in Electrical Characteristics table.................................................................................. 7 • Changed output noise equation in Electrical Characteristics table ........................................................................................ 8 • Deleted "Safety and" from Insulation Characteristics Curves section title ............................................................................ 9 • Changed Using the AMC1301 for Current Sensing in Frequency Inverters figure in Application Information..................... 20 • Changed Zener-Diode Based, High Side Power Supply figure in Power Supply Recommendations ................................. 25 • Added a paragraph and changed the formatting of the Related Documentation section ................................................... 27 Changes from Original (April 2016) to Revision A • Page Released to production .......................................................................................................................................................... 1 Submit Documentation Feedback Copyright © 2016–2020, Texas Instruments Incorporated Product Folder Links: AMC1301 3 AMC1301 SBAS667F – APRIL 2016 – REVISED APRIL 2020 www.ti.com 5 Device Comparison Table PARAMETER Operating ambient temperature, TA AMC1301S AMC1301 –55°C to +125°C –40°C to +125°C ±4 µV/°C (max) ±3 µV/°C (max) ±60 ppm/°C (max) ±50 ppm/°C (max) Input offset drift, TCVOS Gain error drift, TCEG 6 Pin Configuration and Functions DWV Package 8-Pin SOIC Top View VDD1 1 8 VDD2 VINP 2 7 VOUTP VINN 3 6 VOUTN GND1 4 5 GND2 Not to scale Pin Functions PIN NAME NO. I/O DESCRIPTION GND1 4 — High-side analog ground GND2 5 — Low-side analog ground VDD1 1 — High-side power supply, 3.0 V to 5.5 V. See the Power Supply Recommendations section for decoupling recommendations. VDD2 8 — Low-side power supply, 3.0 V to 5.5 V. See the Power Supply Recommendations section for decoupling recommendations. VINN 3 I Inverting analog input VINP 2 I Noninverting analog input VOUTN 6 O Inverting analog output VOUTP 7 O Noninverting analog output 4 Submit Documentation Feedback Copyright © 2016–2020, Texas Instruments Incorporated Product Folder Links: AMC1301 AMC1301 www.ti.com SBAS667F – APRIL 2016 – REVISED APRIL 2020 7 Specifications 7.1 Absolute Maximum Ratings (1) Supply voltage, VDD1 to GND1 or VDD2 to GND2 Analog input voltage at VINP, VINN Input current to any pin except supply pins MIN MAX UNIT –0.3 7 V GND1 – 6 VDD1 + 0.5 V –10 10 mA 150 °C 150 °C Junction temperature, TJ Storage temperature, Tstg (1) –65 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 7.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±2000 Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±1000 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 7.3 Recommended Operating Conditions over operating ambient temperature range (unless otherwise noted) MIN NOM MAX UNIT VDD1 High-side supply voltage (VDD1 to GND1) 3.0 5.0 5.5 VDD2 Low-side supply voltage (VDD2 to GND2) 3.0 3.3 5.5 V TA Operating ambient temperature V AMC1301 –40 125 °C AMC1301S –55 125 °C 7.4 Thermal Information AMC1301 THERMAL METRIC (1) DWV (SOIC) UNIT 8 PINS RθJA Junction-to-ambient thermal resistance 110.1 °C/W RθJC(top) Junction-to-case (top) thermal resistance 51.7 °C/W RθJB Junction-to-board thermal resistance 66.4 °C/W ψJT Junction-to-top characterization parameter 16.0 °C/W ψJB Junction-to-board characterization parameter 64.5 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance N/A °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 7.5 Power Ratings PARAMETER TEST CONDITIONS PD Maximum power dissipation (both sides) PD1 Maximum power dissipation (high-side supply) PD2 Maximum power dissipation (low-side supply) VDD1 = VDD2 = 5.5 V VALUE UNIT 81.4 mW 45.65 mW 35.75 mW Submit Documentation Feedback Copyright © 2016–2020, Texas Instruments Incorporated Product Folder Links: AMC1301 5 AMC1301 SBAS667F – APRIL 2016 – REVISED APRIL 2020 www.ti.com 7.6 Insulation Specifications over operating ambient temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VALUE UNIT Shortest pin-to-pin distance through air ≥ 8.5 mm Shortest pin-to-pin distance across the package surface ≥ 8.5 mm ≥ 0.027 mm ≥ 600 V GENERAL CLR External clearance (1) CPG External creepage (1) DTI Distance through insulation Minimum internal gap (internal clearance) of the double insulation (2 × 0.0135 mm) CTI Comparative tracking index DIN EN 60112 (VDE 0303-11); IEC 60112 Material group According to IEC 60664-1 Overvoltage category per IEC 60664-1 DIN VDE V 0884-11: 2017-01 Maximum repetitive peak isolation voltage VIOWM Maximum-rated isolation working voltage VIOTM Maximum transient isolation voltage VIOSM Maximum surge isolation voltage (3) Apparent charge (4) Barrier capacitance, input to output (5) CIO RIO I-IV Rated mains voltage ≤ 600 VRMS I-III Rated mains voltage ≤ 1000 VRMS I-II (2) VIORM qpd I Rated mains voltage ≤ 300 VRMS Insulation resistance, input to output (5) At ac voltage (bipolar) 1500 VPK At ac voltage (sine wave) 1000 VRMS At dc voltage 1500 VDC VTEST = VIOTM, t = 60 s (qualification test) 7000 VTEST = 1.2 × VIOTM, t = 1 s (100% production test) 8400 Test method per IEC 60065, 1.2/50-μs waveform, VTEST = 1.6 × VIOSM = 10000 VPK (qualification) 6250 Method a, after input/output safety test subgroup 2 / 3, Vini = VIOTM, tini = 60 s, Vpd(m) = 1.2 × VIORM = 1800 VPK, tm = 10 s ≤5 Method a, after environmental tests subgroup 1, Vini = VIOTM, tini = 60 s, Vpd(m) = 1.6 × VIORM = 2400 VPK, tm = 10 s ≤5 Method b1, at routine test (100% production) and preconditioning (type test), Vini = VIOTM, tini = 1 s, Vpd(m) = 1.875 × VIORM = 2812.5 VPK, tm = 1 s ≤5 VIO = 0.5 VPP at 1 MHz 1.2 VIO = 500 V at TS = 150°C Climatic category VPK pC pF 9 > 10 Pollution degree VPK Ω 2 AMC1301 40/125/21 AMC1301S 55/125/21 UL1577 VISO (1) (2) (3) (4) (5) 6 Withstand isolation voltage VTEST = VISO = 5000 VRMS or 7000 VDC, t = 60 s (qualification), VTEST = 1.2 × VISO = 6000 VRMS, t = 1 s (100% production test) 5000 VRMS Apply creepage and clearance requirements according to the specific equipment isolation standards of an application. Care must be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed circuit board (PCB) do not reduce this distance. Creepage and clearance on a PCB become equal in certain cases. Techniques such as inserting grooves and ribs on the PCB are used to help increase these specifications. This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits. Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier. Apparent charge is electrical discharge caused by a partial discharge (pd). All pins on each side of the barrier are tied together, creating a two-pin device. Submit Documentation Feedback Copyright © 2016–2020, Texas Instruments Incorporated Product Folder Links: AMC1301 AMC1301 www.ti.com SBAS667F – APRIL 2016 – REVISED APRIL 2020 7.7 Safety-Related Certifications VDE UL Certified according to DIN VDE V 0884-11: 2017-01, DIN EN 623681: 2016-05, EN 62368-1: 2014, and IEC 62368-1: 2014 Recognized under 1577 component recognition and CSA component acceptance NO 5 programs Reinforced insulation Single protection Certificate number: 40040142 File number: E181974 7.8 Safety Limiting Values Safety limiting intends to prevent potential damage to the isolation barrier upon failure of input or output circuitry. PARAMETER IS Safety input, output, or supply current PS Safety input, output, or total power (1) TS Maximum safety temperature (1) TEST CONDITIONS MIN TYP MAX RθJA = 110.1°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C 206 RθJA = 110.1°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C 315 RθJA = 110.1°C/W, TJ = 150°C, TA = 25°C UNIT mA 1135 mW 150 °C The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS and PS parameters represent the safety current and safety power, respectively. Do not exceed the maximum limits of IS and PS. These limits vary with the ambient temperature, TA. The junction-to-air thermal resistance, RθJA, in the Thermal Information table is that of a device installed on a high-K test board for leaded surface-mount packages. Use these equations to calculate the value for each parameter: TJ = TA + RθJA × P, where P is the power dissipated in the device. TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum junction temperature. PS = IS × VDD1max + IS × VDD2max, where VDD1max is the maximum high-side voltage and VDD2max is the maximum low-side supply voltage. 7.9 Electrical Characteristics minimum and maximum specifications apply from TA = –40°C to +125°C (for AMC1301S: TA = –55°C to +125°C), VDD1 = 3.0 V to 5.5 V, VDD2 = 3.0 V to 5.5 V, VINP = –250 mV to +250 mV, and VINN = 0 V (unless otherwise noted); typical specifications are at TA = 25°C, VDD1 = 5 V, and VDD2 = 3.3 V PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ANALOG INPUT VClipping Differential input voltage before clipping output VINP – VINN VFSR Specified linear differential full-scale VINP – VINN –250 250 VCM Specified common-mode input voltage (VINP + VINN) / 2 to GND1 –0.16 VDD1 – 2.1 V Absolute common-mode input voltage (1) (VINN + VINP) / 2 to GND1 –2 VDD1 V VCMov Common-mode overvoltage detection level VOS Input offset voltage TCVOS Input offset drift CMRR Common-mode rejection ratio CIND Differential input capacitance RIN Single-ended input resistance RIND Differential input resistance IIB Input bias current TCIIB Input bias current drift BWIN Input bandwidth ±302.7 mV VDD1 – 2 Initial, at TA = 25°C, VINP = VINN = GND1 V –200 ±50 200 AMC1301 –3 ±1 3 AMC1301S –4 ±1 4 fIN = 0 Hz, VCM min ≤ VCM ≤ VCM max –93 fIN = 10 kHz, VCM min ≤ VCM ≤ VCM max –93 VINN = GND1 VINP = VINN = GND1, IIB = (IIBP + IIBN ) / 2 –41 mV µV µV/°C dB 1 pF 18 kΩ 22 kΩ –30 –24 1 1000 µA nA/°C kHz ANALOG OUTPUT Nominal gain (1) 8.2 Steady-state voltage supported by the device in case of a system failure. See specified common-mode input voltage VCM for normal operation. Observe analog input voltage range as specified in Absolute Maximum Ratings. Submit Documentation Feedback Copyright © 2016–2020, Texas Instruments Incorporated Product Folder Links: AMC1301 7 AMC1301 SBAS667F – APRIL 2016 – REVISED APRIL 2020 www.ti.com Electrical Characteristics (continued) minimum and maximum specifications apply from TA = –40°C to +125°C (for AMC1301S: TA = –55°C to +125°C), VDD1 = 3.0 V to 5.5 V, VDD2 = 3.0 V to 5.5 V, VINP = –250 mV to +250 mV, and VINN = 0 V (unless otherwise noted); typical specifications are at TA = 25°C, VDD1 = 5 V, and VDD2 = 3.3 V PARAMETER EG Gain error TCEG Gain error drift TEST CONDITIONS MIN TYP MAX –0.3% ±0.05% 0.3% AMC1301 –50 ±15 50 AMC1301S –60 ±15 60 –0.03% ±0.01% 0.03% Initial, at TA = 25°C Nonlinearity Nonlinearity drift THD SNR 1 ppm/°C ppm/°C Total harmonic distortion fIN = 10 kHz –87 dB Output noise VINP = VINN = GND1, fIN = 0 Hz, BW = 100 kHz 220 μVRMS Signal-to-noise ratio fIN = 1 kHz, BW = 10 kHz 80 fIN = 10 kHz, BW = 100 kHz Power-supply rejection ratio 84 dB 71 vs VDD1, at dc PSRR UNIT –94 vs VDD1, 100-mV and 10-kHz ripple –90 vs VDD2, at dc dB –100 vs VDD2, 100-mV and 10-kHz ripple –94 tr Rise time See Figure 45 2.0 tf Fall time See Figure 45 2.0 VIN to VOUT signal delay (50% – 10%) See Figure 46, unfiltered output 0.7 2.0 µs VIN to VOUT signal delay (50% – 50%) See Figure 46, unfiltered output 1.6 2.6 µs 2.5 3.0 VIN to VOUT signal delay (50% – 90%) See Figure 46, unfiltered output CMTI Common-mode transient immunity |GND1 – GND2| = 1 kV VCMout Common-mode output voltage Output resistance BW Output bandwidth VFAILSAFE Failsafe differential output voltage µs 15 1.39 Output short-circuit current ROUT µs 1.44 1.49 ±13 on VOUTP or VOUTN VCM ≥ VCMov, or VDD1 missing V mA < 0.2 190 µs kV/µs Ω 210 kHz –2.563 –2.545 3.0 V ≤ VDD1 ≤ 3.6 V 5.0 6.9 4.5 V ≤ VDD1 ≤ 5.5 V 5.9 8.3 3.0 V ≤ VDD2 ≤ 3.6 V 4.4 5.6 4.5 V ≤ VDD2 ≤ 5.5 V 4.8 6.5 3.0 V ≤ VDD1 ≤ 3.6 V 16.5 24.84 4.5 V ≤ VDD1 ≤ 5.5 V 29.5 45.65 3.0 V ≤ VDD2 ≤ 3.6 V 14.52 20.16 4.5 V ≤ VDD2 ≤ 5.5 V 24 35.75 V POWER SUPPLY IDD1 High-side supply current IDD2 Low-side supply current PDD1 High-side power dissipation PDD2 Low-side power dissipation 8 Submit Documentation Feedback mA mA mW mW Copyright © 2016–2020, Texas Instruments Incorporated Product Folder Links: AMC1301 AMC1301 www.ti.com 7.10 SBAS667F – APRIL 2016 – REVISED APRIL 2020 Insulation Characteristics Curves 500 VDD1 = VDD2 = 3.6 V VDD1 = VDD2 = 5.5 V 300 PS (mW) IS (mA) 400 200 100 0 0 50 100 TA (°C) 150 200 1300 1200 1100 1000 900 800 700 600 500 400 300 200 100 0 0 50 100 TA (°C) D043 Figure 1. Thermal Derating Curve for Safety-Limiting Current per VDE 150 200 D044 Figure 2. Thermal Derating Curve for Safety-Limiting Power per VDE TA up to 150°C, stress voltage frequency = 60 Hz Figure 3. Reinforced Isolation Capacitor Lifetime Projection Submit Documentation Feedback Copyright © 2016–2020, Texas Instruments Incorporated Product Folder Links: AMC1301 9 AMC1301 SBAS667F – APRIL 2016 – REVISED APRIL 2020 www.ti.com 7.11 Typical Characteristics 3.8 3.8 3.4 3.4 3 3 VCMov (V) VCMov (V) at VDD1 = 5 V, VDD2 = 3.3 V, VINP = –250 mV to 250 mV, VINN = 0 V, and fIN = 10 kHz (unless otherwise noted) 2.6 2.2 2.6 2.2 1.8 1.8 1.4 1.4 1 -55 -40 -25 -10 1 3 3.25 3.5 3.75 4 4.25 4.5 VDD1 (V) 4.75 5 5.25 5.5 5 20 35 50 65 Temperature (°C) D001 80 95 110 125 D002 –55°C ≤ TA < 40°C valid for the AMC1301S only Figure 5. Common-Mode Overvoltage Detection Level vs Temperature 50 40 40 D003 VOS (PV) 200 175 150 125 75 50 0 25 -25 -50 100 D004 VOS (PV) VDD1 = 3.3 V VDD1 = 5 V Figure 6. Input Offset Voltage Histogram Figure 7. Input Offset Voltage Histogram 200 200 vs VDD1 vs VDD2 150 150 100 100 50 50 VOS (PV) VOS (PV) -75 -200 200 175 150 125 75 100 50 0 25 -25 -50 -75 -100 0 -125 0 -150 10 -175 10 -100 20 -125 20 30 -150 30 -175 Devices (%) 50 -200 Devices (%) Figure 4. Common-Mode Overvoltage Detection Level vs High-Side Supply Voltage 0 0 -50 -50 -100 -100 -150 -150 -200 3 3.25 3.5 3.75 4 4.25 4.5 VDDx (V) 4.75 5 5.25 5.5 Device 1 Device 2 Device 3 -200 -55 -40 -25 -10 D005 5 20 35 50 65 Temperature (°C) 80 95 110 125 D006 –55°C ≤ TA < 40°C valid for the AMC1301S only Figure 8. Input Offset Voltage vs Supply Voltage 10 Figure 9. Input Offset Voltage vs Temperature Submit Documentation Feedback Copyright © 2016–2020, Texas Instruments Incorporated Product Folder Links: AMC1301 AMC1301 www.ti.com SBAS667F – APRIL 2016 – REVISED APRIL 2020 Typical Characteristics (continued) 70 60 60 50 50 D007 TCVOS (PV/qC) 3 2.5 2 1.5 1 0 0.5 -1 -3 3 2.5 2 1.5 1 -2 0 0 0.5 0 -1 10 -0.5 10 -1.5 20 -2.5 20 -0.5 30 -1.5 30 40 -2 40 -2.5 Devices (%) 70 -3 Devices (%) at VDD1 = 5 V, VDD2 = 3.3 V, VINP = –250 mV to 250 mV, VINN = 0 V, and fIN = 10 kHz (unless otherwise noted) D008 TCVOS (PV/qC) VDD1 = 3.3 V VDD1 = 5 V Figure 10. Input Offset Drift Histogram Figure 11. Input Offset Drift Histogram 0 -60 -65 -20 -70 -75 CMRR (dB) CMRR (dB) -40 -60 -80 -80 -85 -90 -95 -100 -100 -105 -120 0.001 0.01 0.1 0.5 2 3 5 10 20 fIN (kHz) 100 -110 -55 -40 -25 -10 1000 5 D009 20 35 50 65 Temperature (°C) 80 95 110 125 D011 –55°C ≤ TA < 40°C valid for the AMC1301S only Figure 12. Common-Mode Rejection Ratio vs Input Frequency Figure 13. Common-Mode Rejection Ratio vs Temperature 60 -23 -25 40 -27 -29 0 IIB (PA) IIB (PA) 20 -20 -31 -33 -35 -40 -37 -60 -80 -0.5 -39 -41 0 0.5 1 1.5 VCM (V) 2 2.5 3 3 3.25 D012 Figure 14. Input Bias Current vs Common-Mode Input Voltage 3.5 3.75 4 4.25 4.5 VDD1 (V) 4.75 5 5.25 Product Folder Links: AMC1301 D013 Figure 15. Input Bias Current vs High-Side Supply Voltage Submit Documentation Feedback Copyright © 2016–2020, Texas Instruments Incorporated 5.5 11 AMC1301 SBAS667F – APRIL 2016 – REVISED APRIL 2020 www.ti.com Typical Characteristics (continued) at VDD1 = 5 V, VDD2 = 3.3 V, VINP = –250 mV to 250 mV, VINN = 0 V, and fIN = 10 kHz (unless otherwise noted) -23 0 -25 -10 Normalized Gain (dB) -27 IIB (PA) -29 -31 -33 -35 -37 -20 -30 -40 -50 -60 -70 -39 -41 -55 -40 -25 -10 5 20 35 50 65 Temperature (°C) 80 -80 0.01 95 110 125 0.1 D014 1 10 100 Input Signal Frequency (kHz) 1000 D015 –55°C ≤ TA < 40°C valid for the AMC1301S only Figure 17. Normalized Gain vs Input Frequency 40 40 EG (%) 0.3 0.25 0.2 0.15 0.1 0 EG (%) D017 VDD1 = 5 V Figure 18. Gain Error Histogram Figure 19. Gain Error Histogram 0.3 0.3 vs VDD1 vs VDD2 0.25 0.2 Device 1 Device 2 Device 3 0.25 0.2 0.15 0.15 0.1 0.1 0.05 0.05 EG (%) EG (%) 0.05 D016 VDD1 = 3.3 V -0.1 -0.3 0.3 0.25 0.2 0.15 0.1 0 0.05 -0.1 -0.05 0 -0.15 0 -0.2 10 -0.25 10 -0.05 20 -0.15 20 30 -0.2 30 -0.25 Devices (%) 50 50 -0.3 Devices (%) Figure 16. Input Bias Current vs Temperature 0 -0.05 0 -0.05 -0.1 -0.1 -0.15 -0.15 -0.2 -0.2 -0.25 -0.25 -0.3 3 3.25 3.5 3.75 4 4.25 4.5 VDDx (V) 4.75 5 5.25 5.5 -0.3 -55 -40 -25 -10 D018 5 20 35 50 65 Temperature (°C) 80 95 110 125 D019 –55°C ≤ TA < 40°C valid for the AMC1301S only Figure 20. Gain Error vs Supply Voltage 12 Submit Documentation Feedback Figure 21. Gain Error vs Temperature Copyright © 2016–2020, Texas Instruments Incorporated Product Folder Links: AMC1301 AMC1301 www.ti.com SBAS667F – APRIL 2016 – REVISED APRIL 2020 Typical Characteristics (continued) 90 80 80 70 70 60 60 Devices (%) 90 50 40 50 40 30 20 20 10 10 0 0 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 30 -50 -45 -40 -35 -30 -25 -20 -15 -10 -5 0 5 10 15 20 25 30 35 40 45 50 Devices (%) at VDD1 = 5 V, VDD2 = 3.3 V, VINP = –250 mV to 250 mV, VINN = 0 V, and fIN = 10 kHz (unless otherwise noted) D020 TCEG (ppm/qC) VDD1 = 5 V Figure 22. Gain Error Drift Histogram Figure 23. Gain Error Drift Histogram 5 0.03 VOUTN VOUTP 4.5 0.025 0.02 4 0.015 Nonlinearity (%) VOUT (V) 3.5 3 2.5 2 1.5 0.01 0.005 0 -0.005 -0.01 -0.015 1 -0.02 0.5 -0.025 0 -350 -250 -150 -50 50 150 Differential Input Voltage (mV) 250 -0.03 -250 -200 -150 -100 -50 0 50 100 150 Differential Input Voltage (mV) 350 D022 Figure 24. Output Voltage vs Input Voltage 200 250 D024 Figure 25. Nonlinearity vs Input Voltage 0.03 0.03 vs VDD1 vs VDD2 0.025 0.02 0.025 0.02 0.015 0.015 0.01 Nonlinearity (%) Nonlinearity (%) D021 TCEG (ppm/qC) VDD1 = 3.3 V 0.005 0 -0.005 -0.01 -0.015 0.01 0.005 0 -0.005 -0.01 -0.015 -0.02 -0.02 -0.025 -0.025 -0.03 3 3.25 3.5 3.75 4 4.25 4.5 VDDx (V) 4.75 5 5.25 5.5 Device 1 Device 2 Device 3 -0.03 -55 -40 -25 -10 D025 5 20 35 50 65 Temperature (°C) 80 95 110 125 D026 –55°C ≤ TA < 40°C valid for the AMC1301S only Figure 26. Nonlinearity vs Supply Voltage Figure 27. Nonlinearity vs Temperature Submit Documentation Feedback Copyright © 2016–2020, Texas Instruments Incorporated Product Folder Links: AMC1301 13 AMC1301 SBAS667F – APRIL 2016 – REVISED APRIL 2020 www.ti.com Typical Characteristics (continued) at VDD1 = 5 V, VDD2 = 3.3 V, VINP = –250 mV to 250 mV, VINN = 0 V, and fIN = 10 kHz (unless otherwise noted) -60 -60 vs VDD1 vs VDD2 -65 -70 -70 -75 -75 -80 -80 THD (dB) THD (dB) -65 -85 -90 -85 -90 -95 -95 -100 -100 -105 -105 -110 -55 -40 -25 -10 -110 3 3.25 3.5 3.75 4 4.25 4.5 VDDx (V) 4.75 5 5.25 Device 1 Device 2 Device 3 5.5 5 D027 20 35 50 65 Temperature (°C) 80 95 110 125 D028 –55°C ≤ TA < 40°C valid for the AMC1301S only Figure 29. Total Harmonic Distortion vs Temperature 80 80 75 77.5 70 75 65 72.5 SNR (dB) SNR (dB) Figure 28. Total Harmonic Distortion vs Supply Voltage 60 55 70 67.5 50 65 45 62.5 60 40 0 50 100 150 200 |VINP - VINN| (mV) 250 3 300 3.25 3.5 D029 Figure 30. Signal-to-Noise Ratio vs Input Voltage 3.75 4 4.25 4.5 VDDx (V) 4.75 5 5.25 5.5 D030 Figure 31. Signal-to-Noise Ratio vs Supply Voltage 10000 Input Referred Noise Density (nV/—Hz) 80 77.5 75 SNR (dB) vs VDD1 vs VDD2 72.5 70 67.5 65 Device 1 Device 2 Device 3 62.5 60 -55 -40 -25 -10 5 20 35 50 65 Temperature (°C) 80 95 110 125 1000 100 10 0.01 D031 0.1 1 10 Frequency (kHz) 100 1000 D032 –55°C ≤ TA < 40°C valid for the AMC1301S only Figure 32. Signal-to-Noise Ratio vs Temperature 14 Figure 33. Input-Referred Noise Density vs Frequency Submit Documentation Feedback Copyright © 2016–2020, Texas Instruments Incorporated Product Folder Links: AMC1301 AMC1301 www.ti.com SBAS667F – APRIL 2016 – REVISED APRIL 2020 Typical Characteristics (continued) 0 0 -20 -20 -40 -40 PSRR (dB) PSRR (dB) at VDD1 = 5 V, VDD2 = 3.3 V, VINP = –250 mV to 250 mV, VINN = 0 V, and fIN = 10 kHz (unless otherwise noted) -60 -60 -80 -80 -100 -100 -120 0.001 0.01 0.1 1 10 Ripple Frequency (kHz) 100 -120 0.001 1000 0.01 D033 0.1 1 10 Ripple Frequency (kHz) vs VDD1 1000 D042 vs VDD2 Figure 34. Power-Supply Rejection Ratio vs Ripple Frequency Figure 35. Power-Supply Rejection Ratio vs Ripple Frequency 4 3.8 3.5 3.4 50% - 10% 50% - 50% 50% - 90% 3 Signal Delay (Ps) 3 Rise/Fall Time (Ps) 100 2.5 2 1.5 1 2.6 2.2 1.8 1.4 1 0.5 0.6 0 -55 -40 -25 -10 0.2 5 20 35 50 65 Temperature (°C) 80 95 110 125 3 3.25 3.5 3.75 4 D034 4.25 4.5 VDD2 (V) 4.75 5 5.25 5.5 D035 –55°C ≤ TA < 40°C valid for the AMC1301S only Figure 36. Output Rise and Fall Time vs Temperature Figure 37. VIN to VOUT Signal Delay vs Low-Side Supply Voltage 3.8 1.49 Signal Delay (Ps) 3 Output Common-Mode Voltage (V) 50% - 10% 50% - 50% 50% - 90% 3.4 2.6 2.2 1.8 1.4 1 0.6 0.2 -55 -40 -25 -10 1.48 1.47 1.46 1.45 1.44 1.43 1.42 1.41 1.4 1.39 5 20 35 50 65 Temperature (°C) 80 95 110 125 3 3.25 D036 3.5 3.75 4 4.25 4.5 VDD2 (V) 4.75 5 5.25 5.5 D010 –55°C ≤ TA < 40°C valid for the AMC1301S only Figure 38. VIN to VOUT Signal Delay vs Temperature Figure 39. Output Common-Mode Voltage vs Low-Side Supply Voltage Submit Documentation Feedback Copyright © 2016–2020, Texas Instruments Incorporated Product Folder Links: AMC1301 15 AMC1301 SBAS667F – APRIL 2016 – REVISED APRIL 2020 www.ti.com Typical Characteristics (continued) at VDD1 = 5 V, VDD2 = 3.3 V, VINP = –250 mV to 250 mV, VINN = 0 V, and fIN = 10 kHz (unless otherwise noted) 240 1.49 1.48 1.47 220 1.45 BW (kHz) VCMout (V) 1.46 1.44 1.43 1.42 200 180 1.41 1.4 1.39 -55 -40 -25 -10 160 5 20 35 50 65 Temperature (°C) 80 95 110 125 3 3.25 3.5 3.75 4 D037 4.25 4.5 VDD2 (V) 4.75 5 5.25 5.5 D038 –55°C ≤ TA < 40°C valid for the AMC1301S only Figure 40. Output Common-Mode Voltage vs Temperature Figure 41. Output Bandwidth vs Low-Side Supply Voltage 190 8.5 IDD1 vs VDD1 IDD2 vs VDD2 8 200 7.5 7 IDDx (mA) BW (kHz) 210 220 230 6.5 6 5.5 5 4.5 240 4 250 -55 -40 -25 -10 3.5 5 20 35 50 65 Temperature (°C) 80 95 110 125 3 3.25 3.5 3.75 D039 4 4.25 4.5 VDDx (V) 4.75 5 5.25 5.5 D040 –55°C ≤ TA < 40°C valid for the AMC1301S only Figure 42. Output Bandwidth vs Temperature Figure 43. Supply Current vs Supply Voltage 8.5 IDD1 IDD2 8 7.5 IDDx (mA) 7 6.5 6 5.5 5 4.5 4 3.5 -55 -40 -25 -10 5 20 35 50 65 Temperature (°C) 80 95 110 125 D041 –55°C ≤ TA < 40°C valid for the AMC1301S only Figure 44. Supply Current vs Temperature 16 Submit Documentation Feedback Copyright © 2016–2020, Texas Instruments Incorporated Product Folder Links: AMC1301 AMC1301 www.ti.com SBAS667F – APRIL 2016 – REVISED APRIL 2020 8 Parameter Measurement Information 8.1 Timing Diagrams 0.25 V VINP - VINN -0.25 V VOUTN 90% 10% VOUTP tr tf Figure 45. Rise and Fall Time Test Waveforms 0.25 V VINP - VINN 50% -0.25 V 50% - 50% 50% - 90% 50% - 10% VOUTN 90% 50% 10% VOUTP Figure 46. Delay Time Test Waveforms Submit Documentation Feedback Copyright © 2016–2020, Texas Instruments Incorporated Product Folder Links: AMC1301 17 AMC1301 SBAS667F – APRIL 2016 – REVISED APRIL 2020 www.ti.com 9 Detailed Description 9.1 Overview The AMC1301 is a fully-differential, precision, isolated amplifier. The input stage of the device consists of a fullydifferential amplifier that drives a second-order, delta-sigma (ΔΣ) modulator. The modulator uses the internal voltage reference and clock generator to convert the analog input signal to a digital bitstream. The drivers (called TX in the Functional Block Diagram) transfer the output of the modulator across the isolation barrier that separates the high-side and low-side voltage domains. The received bitstream and clock are synchronized and processed by a fourth-order analog filter on the low-side and presented as a differential output of the device, as shown in the Functional Block Diagram. The SiO2-based, double-capacitive isolation barrier supports a high level of magnetic field immunity, as described in ISO72x Digital Isolator Magnetic-Field Immunity. The digital modulation used in the AMC1301 and the isolation barrier characteristics result in high reliability and common-mode transient immunity. 9.2 Functional Block Diagram VDD2 VDD1 Reinforced Isolation Barrier AMC1301 VDD1 Detection Bandgap Reference Bandgap Reference VINP VOUTP û -Modulator Data TX RX Retiming and 4th order active low-pass filter VOUTN VINN VCM Diagnostic CLK RX GND1 TX Oscillator GND2 9.3 Feature Description 9.3.1 Analog Input The AMC1301 incorporates front-end circuitry that contains a fully-differential amplifier followed by a ΔΣ modulator sampling stage. The gain of the differential amplifier is set by internal precision resistors to a factor of 4 with a differential input impedance of 22 kΩ. Consider the input impedance of the AMC1301 in designs with high-impedance signal sources that may cause degradation of gain and offset specifications. The importance of this effect, however, depends on the desired system performance. Additionally, the input bias current caused by the internal common-mode voltage at the output of the differential amplifier causes an offset that is dependent on the actual amplitude of the input signal. See the Isolated Voltage Sensing section for more details on reducing this effect. There are two restrictions on the analog input signals (VINP and VINN). First, if the input voltage exceeds the range GND1 – 6 V to VDD1 + 0.5 V, then the input current must be limited to 10 mA because the device input electrostatic discharge (ESD) protection turns on. In addition, the linearity and noise performance of the device are ensured only when the analog input voltage remains within the specified linear full-scale range (FSR) and within the specified common-mode input voltage range. 18 Submit Documentation Feedback Copyright © 2016–2020, Texas Instruments Incorporated Product Folder Links: AMC1301 AMC1301 www.ti.com SBAS667F – APRIL 2016 – REVISED APRIL 2020 Feature Description (continued) 9.3.2 Fail-Safe Output The AMC1301 offers a fail-safe output that simplifies diagnostics on system level. The fail-safe output is active in two cases: • When the high-side supply VDD1 of the AMC1301 is missing, or • When the common-mode input voltage, that is VCM = (VINP + VINN) / 2, exceeds the minimum commonmode over-voltage detection level VCMov of VDD1 – 2 V. The fail-safe output of the AMC1301 is a negative differential output voltage value that differs from the negative clipping output voltage, as shown in Figure 47 and Figure 48. As a reference value for the fail-safe detection on a system level, use the VFAILSAFE maximum value of –2.545 V. Figure 47. Typical Negative Clipping Output of the AMC1301 Figure 48. Typical Failsafe Output of the AMC1301 9.4 Device Functional Modes The AMC1301 is operational when the power supplies VDD1 and VDD2 are applied, as specified in Recommended Operating Conditions. Submit Documentation Feedback Copyright © 2016–2020, Texas Instruments Incorporated Product Folder Links: AMC1301 19 AMC1301 SBAS667F – APRIL 2016 – REVISED APRIL 2020 www.ti.com 10 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 10.1 Application Information The AMC1301 offers unique linearity, high input common-mode and power-supply rejection, low ac and dc errors, and low temperature drift. These features make the AMC1301 a robust, high-performance, isolated amplifier for industrial applications where high voltage isolation is required. 10.2 Typical Applications 10.2.1 Frequency Inverter Application Isolated amplifiers are widely used in frequency inverters that are critical parts of industrial motor drives, photovoltaic inverters, uninterruptible power supplies, electrical and hybrid electrical vehicles, and other industrial applications. The input structure of the AMC1301 is optimized for use with low-value shunt resistors and is therefore tailored for isolated current sensing using shunts. Figure 49 shows a typical operation of the AMC1301 for current sensing in a frequency inverter application. Phase current measurement is done through the shunt resistor, RSHUNT (in this case, a two-pin shunt). The differential input and the high common-mode transient immunity of the AMC1301 ensure reliable and accurate operation even in high-noise environments (such as the power stage of the motor drive). Additionally, the AMC1301 may also be used for isolated voltage measurement of the dc-link, as described in the Isolated Voltage Sensing section. AMC1301 R1 Gate Driver 5.1 V D1 C1 10 F GND1 RSHUNT VINN To Load VDD2 VDD1 C2 0.1 F VINP Reinforced Isolation HV+ Floating Power Supply 15 V 3.3 V C4 0.1 F C5 2.2 F GND2 VOUTP TMS320 C/F28x R2 C3 ADC VOUTN R3 Gate Driver HV- Figure 49. Using the AMC1301 for Current Sensing in Frequency Inverters 20 Submit Documentation Feedback Copyright © 2016–2020, Texas Instruments Incorporated Product Folder Links: AMC1301 AMC1301 www.ti.com SBAS667F – APRIL 2016 – REVISED APRIL 2020 Typical Applications (continued) 10.2.1.1 Design Requirements Table 1 lists the parameters for the typical application in Figure 49. Table 1. Design Requirements PARAMETER VALUE High-side supply voltage 3.3 V or 5 V Low-side supply voltage 3.3 V or 5 V Voltage drop across the shunt for a linear response ± 250 mV (maximum) 10.2.1.2 Detailed Design Procedure The high-side power supply (VDD1) for the AMC1301 is derived from the power supply of the upper gate driver. Further details are provided in the Power Supply Recommendations section. The floating ground reference (GND1) is derived from one of the ends of the shunt resistor that is connected to the negative input of the AMC1301 (VINN). If a four-pin shunt is used, the inputs of the AMC1301 are connected to the inner leads and GND1 is connected to one of the outer shunt leads. Use Ohm's Law to calculate the voltage drop across the shunt resistor (VSHUNT) for the desired measured current: VSHUNT = I × RSHUNT. Consider the following two restrictions to choose the proper value of the shunt resistor RSHUNT: • The voltage drop caused by the nominal current range must not exceed the recommended differential input voltage range: VSHUNT ≤ ± 250 mV • The voltage drop caused by the maximum allowed overcurrent must not exceed the input voltage that causes a clipping output: VSHUNT ≤ VClipping For best performance, use an RC filter (components R2, R3, and C3 in Figure 49) to minimize the noise of the differential output signal. Tailor the bandwidth of this RC filter to the bandwidth requirement of the system. TI recommends an NP0-type capacitor to be used for C3. For more information on the general procedure to design the filtering and driving stages of SAR ADCs, consult the TI Precision Designs 18-Bit, 1MSPS Data Acquisition Block (DAQ) Optimized for Lowest Distortion and Noise and 18-Bit Data Acquisition Block (DAQ) Optimized for Lowest Power, available for download at www.ti.com. Submit Documentation Feedback Copyright © 2016–2020, Texas Instruments Incorporated Product Folder Links: AMC1301 21 AMC1301 SBAS667F – APRIL 2016 – REVISED APRIL 2020 www.ti.com 10.2.1.3 Application Curves In frequency inverter applications, the power switches must be protected in case of an overcurrent condition. To allow for fast powering off of the system, a low delay caused by the isolated amplifier is required. Figure 50 shows the typical full-scale step response of the AMC1301. Consider the delay of the required window comparator and the MCU to calculate the overall response time of the system. VIN VOUTP VOUTN Figure 50. Step Response of the AMC1301 The high linearity and low temperature drift of offset and gain errors of the AMC1301, as shown in Figure 51, allows design of motor drives with low torque ripple. 0.03 0.025 0.02 Nonlinearity (%) 0.015 0.01 0.005 0 -0.005 -0.01 -0.015 -0.02 -0.025 -0.03 -250 -200 -150 -100 -50 0 50 100 150 Differential Input Voltage (mV) 200 250 D024 Figure 51. Typical Nonlinearity of the AMC1301 22 Submit Documentation Feedback Copyright © 2016–2020, Texas Instruments Incorporated Product Folder Links: AMC1301 AMC1301 www.ti.com SBAS667F – APRIL 2016 – REVISED APRIL 2020 10.2.2 Isolated Voltage Sensing The AMC1301 is optimized for usage in current-sensing applications using low-impedance shunts. However, the device may also be used in isolated voltage-sensing applications if the effect of the (usually higher) impedance of the resistor divider used in this case is considered. High Voltage Potential 3.3 V or 5 V R1 AMC1301 Front-End VDD1 R2 R4 VINP IIB R5 + RIN R3 û -Modulator ± VINN R3' R4' R5' GND1 VCM = 2 V Figure 52. Using the AMC1301 for Isolated Voltage Sensing 10.2.2.1 Design Requirements Figure 52 shows a simplified circuit typically used in high-voltage sensing applications. The high-impedance resistors (R1 and R2) dominate the current value that flows through the resistive divider. The resistance of the sensing resistor R3 is chosen to meet the input voltage range of the AMC1301. This resistor and the input impedance of the device (RIN = 18 kΩ) also create a voltage divider that results in an additional gain error. With the assumption of R1 and R2 having a considerably higher value than R3 and omitting R3' for the moment, the resulting total gain error is estimated using Equation 1, with EG being the initial gain error of the AMC1301. R3 EGtot EG RIN (1) This gain error may be easily minimized during the initial system-level gain calibration procedure. 10.2.2.2 Detailed Design Procedure As indicated in Figure 52, the output of the integrated differential amplifier is internally biased to a common-mode voltage of 2 V. This voltage results in a bias current IIB through the resistive network R4 and R5 (or R4' and R5') used for setting the gain of the amplifier. The value of this current is specified in the Pin Configuration and Functions section. This bias current generates additional offset and gain errors that depend on the value of the resistor R3. Because the value of this bias current depends on the actual common-mode amplitude of the input signal (as shown in Figure 53), the initial system offset calibration eliminates the offset but not the gain error component. Therefore, in systems with high accuracy requirements, a series resistor is recommended to be used at the negative input (VINN) of the AMC1301 with a value equal to the shunt resistor R3 (that is, R3' = R3 in Figure 52) to eliminate the effect of the bias current. This additional series resistor (R3') influences the gain error of the circuit. The effect is calculated using Equation 2 with R4 = R4' = 12.5 kΩ. The effect of the internal resistors R5 = R5' cancels in this calculation. R4 · § EG (%) ¨1 ¸ * 100 % R 4 ' R 3' ¹ © (2) Submit Documentation Feedback Copyright © 2016–2020, Texas Instruments Incorporated Product Folder Links: AMC1301 23 AMC1301 SBAS667F – APRIL 2016 – REVISED APRIL 2020 www.ti.com 10.2.2.3 Application Curve Figure 53 shows the dependency of the input bias current on the common-mode voltage at the input of the AMC1301. 60 40 IIB (PA) 20 0 -20 -40 -60 -80 -0.5 0 0.5 1 1.5 VCM (V) 2 2.5 3 D012 Figure 53. Input Current vs Input Common-Mode Voltage 10.3 What To Do and What Not TO Do Do not leave the inputs of the AMC1301 unconnected (floating) when the device is powered up. If both device inputs are left floating, the input bias current drives them to the output common-mode of the analog front-end of approximately 2 V. If the high-side supply voltage VDD1 is below 4 V, the internal common-mode overvoltage detector turns on and the output functions as described in the Fail-Safe Output section, which may lead to an undesired reaction on the system level. 24 Submit Documentation Feedback Copyright © 2016–2020, Texas Instruments Incorporated Product Folder Links: AMC1301 AMC1301 www.ti.com SBAS667F – APRIL 2016 – REVISED APRIL 2020 11 Power Supply Recommendations In a typical frequency inverter application, the high-side power supply (VDD1) for the device is derived from the floating power supply of the upper gate driver. For lowest cost, a Zener diode may be used to limit the voltage to 5 V (or 3.3 V, depending on the design) ± 10%. Alternatively a low-cost, low-dropout (LDO) regulator (for example, the LM317-N) may be used to minimize noise on the power supply. TI recommends a low-ESR decoupling capacitor of 0.1 µF to filter this power-supply path. Place this capacitor (C2 in Figure 54) as close as possible to the VDD1 pin of the AMC1301 for best performance. If better filtering is required, an additional 10-µF capacitor may be used. The floating ground reference (GND1) is derived from the end of the shunt resistor, which is connected to the negative input (VINN) of the device. If a four-pin shunt is used, the device inputs are connected to the inner leads, and GND1 is connected to one of the outer leads of the shunt. To decouple the digital power supply on the controller side, use a 0.1-µF capacitor placed as close to the VDD2 pin of the AMC1301 as possible, followed by an additional capacitor from 1 µF to 10 µF. R1 800 Gate Driver Z1 1N751A C1 10 F AMC1301 5.1 V C2 0.1 F GND1 RSHUNT VINN To Load VDD2 VDD1 VINP Reinforced Isolation HV+ Floating Power Supply 20 V C4 0.1 F C5 2.2 F 3.3 V or 5.0 V GND2 VOUTP VOUTN ADS7263 14-Bit ADC Gate Driver HV- Figure 54. Zener-Diode-Based, High-Side Power Supply Submit Documentation Feedback Copyright © 2016–2020, Texas Instruments Incorporated Product Folder Links: AMC1301 25 AMC1301 SBAS667F – APRIL 2016 – REVISED APRIL 2020 www.ti.com 12 Layout 12.1 Layout Guidelines A layout recommendation showing the critical placement of the decoupling capacitors (as close as possible to the AMC1301) and placement of the other components required by the device is shown in Figure 55. For best performance, place the shunt resistor close to the VINP and VINN inputs of the AMC1301 and keep the layout of both connections symmetrical. 12.2 Layout Example Clearance area, to be kept free of any conductive materials. Shunt Resistor To Floating Power Supply 0.1 µF 0.1 µF 2.2 µF SMD 0603 SMD 0603 SMD 0603 VDD1 VDD2 VINP VOUTP To Filter or ADC AMC1301 VINN VOUTN GND1 GND2 LEGEND Copper Pour and Traces High-Side Area Low-Side Area Via to Ground Plane Via to Supply Plane Figure 55. Recommended Layout of the AMC1301 26 Submit Documentation Feedback Copyright © 2016–2020, Texas Instruments Incorporated Product Folder Links: AMC1301 AMC1301 www.ti.com SBAS667F – APRIL 2016 – REVISED APRIL 2020 13 Device and Documentation Support 13.1 Device Support 13.1.1 Device Nomenclature Texas Instruments, Isolation Glossary 13.2 Documentation Support 13.2.1 Related Documentation For related documentation, see the following: • Texas Instruments, Dual, 1MSPS, 16-/14-/12-Bit, 4×2 or 2×2 Channel, Simultaneous Sampling Analog-toDigital Converter data sheet • Texas Instruments, LM117, LM317-N Wide Temperature Three-Pin Adjustable Regulator data sheet • Texas Instruments, ISO72x Digital Isolator Magnetic-Field Immunity application report • Texas Instruments, 18-Bit, 1-MSPS Data Acquisition Block (DAQ) Optimized for Lowest Distortion and Noise reference guide • Texas Instruments, 18-Bit, 1-MSPS Data Acquisition Block (DAQ) Optimized for Lowest Power reference guide 13.3 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. 13.4 Community Resources TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 13.5 Trademarks E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 13.6 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 13.7 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 14 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Submit Documentation Feedback Copyright © 2016–2020, Texas Instruments Incorporated Product Folder Links: AMC1301 27 PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) AMC1301DWV ACTIVE SOIC DWV 8 64 Green (RoHS & no Sb/Br) NIPDAU Level-3-260C-168 HR -40 to 125 AMC1301 AMC1301DWVR ACTIVE SOIC DWV 8 1000 Green (RoHS & no Sb/Br) NIPDAU Level-3-260C-168 HR -40 to 125 AMC1301 AMC1301SDWV ACTIVE SOIC DWV 8 64 Green (RoHS & no Sb/Br) NIPDAU Level-3-260C-168 HR -55 to 125 AMC1301S AMC1301SDWVR ACTIVE SOIC DWV 8 1000 Green (RoHS & no Sb/Br) NIPDAU Level-3-260C-168 HR -55 to 125 AMC1301S (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
AMC1301DWV 价格&库存

很抱歉,暂时无法提供与“AMC1301DWV”相匹配的价格&库存,您可以联系我们找货

免费人工找货