0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AMC1350DWV

AMC1350DWV

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC8_300MIL

  • 描述:

    隔离放大器 SOIC8_300MIL 1通道 5KVrms -40℃~+125℃

  • 数据手册
  • 价格&库存
AMC1350DWV 数据手册
AMC1350 ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 具有 ±5V 输入电压的 AMC1350 精密增强型隔离放大器 1 特性 3 说明 • • • • AMC1350 是一款隔离式精密放大器,此放大器的输出 与输入电路由抗电磁干扰性能极强的隔离栅隔开。该隔 离栅经认证可提供高达 5kVRMS 的增强型电隔离,符合 VDE V 0884-11 和 UL1577 标准,并且可支持最高 1.5kVRMS 的工作电压。 • • • • • 线性输入电压范围:±5V 高输入阻抗:1.25mΩ(典型值) 固定增益:0.4 V/V 低直流误差: – 失调电压误差 ±1.5mV(最大值) – 温漂:±15µV/°C(最大值) – 增益误差:±0.2%(最大值) – 增益漂移:±35ppm/°C(最大值) – 非线性 ±0.02%(最大值) 高侧和低侧运行电压:3.3V 或 5V 高 CMTI:100kV/µs(最小值) 失效防护输出 安全相关认证: – 7070-VPK 增强型隔离,符合 DIN VDE V 0884-11:2017-01 – 符合 UL1577 标准且长达 1 分钟的 5000VRMS 隔离 可在工业级工作温度范围内正常工作:–40°C 至 +125°C 该隔离栅可将系统中以不同共模电压电平运行的各器件 隔开,并保护低压侧免受可能有害的电压冲击。 AMC1350 的高阻抗输入针对与高阻抗电阻分压器或具 有高输出电阻的其他电压信号源的连接进行了优化。出 色的精度和低温漂支持在 –40°C 至 +125°C 的工业级 工作温度范围内,在直流/直流转换器、变频器、交流 电机和伺服驱动器应用中进行精确的交流和直流电压检 测。 器件信息(1) 器件型号 AMC1350 (1) 封装 SOIC (8) 封装尺寸(标称值) 5.85mm × 7.50mm 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。 2 应用 • 可用于以下应用的隔离式交流电压检测: – 电机驱动器 – 变频器 – 保护继电器 – 电源 High-side supply (3.3 V or 5 V) Low-side supply (3.3 V or 5 V) VAC INP +5.0 V 0V –5.0 V INN AMC1350 Reinforced Isolation VDD1 VDD2 OUTP VCMout ±2 V ADC OUTN GND1 GND2 典型应用 本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。 English Data Sheet: SBASAA6 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 Table of Contents 1 特性................................................................................... 1 2 应用................................................................................... 1 3 说明................................................................................... 1 4 Revision History.............................................................. 2 5 Pin Configuration and Functions...................................3 6 Specifications.................................................................. 4 6.1 Absolute Maximum Ratings........................................ 4 6.2 ESD Ratings............................................................... 4 6.3 Recommended Operating Conditions.........................4 6.4 Thermal Information....................................................5 6.5 Power Ratings.............................................................5 6.6 Insulation Specifications............................................. 6 6.7 Safety-Related Certifications...................................... 7 6.8 Safety Limiting Values.................................................7 6.9 Electrical Characteristics.............................................8 6.10 Switching Characteristics........................................10 6.11 Timing Diagram....................................................... 10 6.12 Insulation Characteristics Curves............................11 6.13 Typical Characteristics............................................ 12 7 Detailed Description......................................................19 7.1 Overview................................................................... 19 7.2 Functional Block Diagram......................................... 19 7.3 Feature Description...................................................19 7.4 Device Functional Modes..........................................21 8 Application and Implementation.................................. 22 8.1 Application Information............................................. 22 8.2 Typical Application.................................................... 22 8.3 What To Do and What Not To Do..............................27 9 Power Supply Recommendations................................27 10 Layout...........................................................................28 10.1 Layout Guidelines................................................... 28 10.2 Layout Example...................................................... 28 11 Device and Documentation Support..........................29 11.1 Documentation Support.......................................... 29 11.2 接收文档更新通知................................................... 29 11.3 支持资源..................................................................29 11.4 Trademarks............................................................. 29 11.5 Electrostatic Discharge Caution.............................. 29 11.6 术语表..................................................................... 29 4 Revision History 注:以前版本的页码可能与当前版本的页码不同 Changes from Revision * (August 2021) to Revision A (December 2021) Page • 将文档状态从预告信息 更改为量产数据 .............................................................................................................1 2 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 5 Pin Configuration and Functions VDD1 1 8 VDD2 INP 2 7 OUTP INN 3 6 OUTN GND1 4 5 GND2 Not to scale 图 5-1. DWV Package, 8-Pin SOIC, Top View 表 5-1. Pin Functions PIN NO. NAME TYPE DESCRIPTION High-side power supply(1) 1 VDD1 High-side power 2 INP Analog input Noninverting analog input. Either INP or INN must have a DC current path to GND1 to define the common-mode input voltage.(2) 3 INN Analog input Inverting analog input. Either INP or INN must have a DC current path to GND1 to define the common-mode input voltage.(2) 4 GND1 High-side ground High-side analog ground 5 GND2 Low-side ground Low-side analog ground 6 OUTN Analog output Inverting analog output 7 OUTP Analog output Noninverting analog output 8 VDD2 Low-side power (1) (2) Low-side power supply(1) See the Power Supply Recommendations section for power-supply decoupling recommendations. See the Layout section for details. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 3 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 6 Specifications 6.1 Absolute Maximum Ratings see(1) MIN MAX High-side VDD1 to GND1 –0.3 6.5 Low-side VDD2 to GND2 –0.3 6.5 Analog input voltage INP, INN –15 15 V Analog output voltage OUTP, OUTN GND2 – 0.5 VDD2 + 0.5 V Input current Continuous, any pin except power-supply pins Power-supply voltage Temperature (1) 10 –10 Junction, TJ 150 Storage, Tstg 150 –65 UNIT V mA °C Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime 6.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 Charged-device model (CDM), per per ANSI/ESDA/JEDEC JS-002(2) ±1000 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions over operating ambient temperature range (unless otherwise noted) MIN NOM MAX UNIT POWER SUPPLY VDD1 High-side power-supply VDD1 to GND1 3 5 5.5 V VDD2 Low-side power-supply VDD2 to GND2 3 3.3 5.5 V ANALOG INPUT VClipping Input voltage before clipping output VIN = VINP – VINN VFSR Specified linear full-scale voltage VIN = VINP – VINN VCM Operating common-mode input voltage ±6.25 V –5 5 V –4 4 V ANALOG OUTPUT CLOAD Capacitive load RLOAD Resistive load On OUTP or OUTN to GND2 500 OUTP to OUTN 250 On OUTP or OUTN to GND2 10 1 pF kΩ TEMPERATURE RANGE TA 4 Operating ambient temperature –55 125 Specified ambient temperature –40 125 Submit Document Feedback °C Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 6.4 Thermal Information AMC1350 THERMAL METRIC(1) DWV (SOIC) UNIT 8 PINS RθJA 84.6 °C/W RθJC(top) Junction-to-case (top) thermal resistance 28.3 °C/W RθJB Junction-to-board thermal resistance 41.1 °C/W ψJT Junction-to-top characterization parameter 4.9 °C/W ψJB Junction-to-board characterization parameter 39.1 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance n/a °C/W (1) Junction-to-ambient thermal resistance For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 6.5 Power Ratings PARAMETER PD Maximum power dissipation (both sides) PD1 Maximum power dissipation (high-side) PD2 Maximum power dissipation (low-side) TEST CONDITIONS VALUE UNIT VDD1 = VDD2 = 5.5 V 96 mW VDD1 = 3.6 V 29 VDD1 = 5.5 V 51 VDD2 = 3.6 V 26 VDD2 = 5.5 V 45 mW mW Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 5 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 6.6 Insulation Specifications over operating ambient temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VALUE UNIT Shortest pin-to-pin distance through air ≥ 8.5 mm Shortest pin-to-pin distance across the package surface ≥ 8.5 mm ≥ 0.021 mm ≥ 600 V GENERAL CLR External clearance(1) CPG creepage(1) External DTI Distance through insulation Minimum internal gap (internal clearance) of the double insulation CTI Comparative tracking index DIN EN 60112 (VDE 0303-11); IEC 60112 Material group According to IEC 60664-1 Overvoltage category per IEC 60664-1 Rated mains voltage ≤ 600 VRMS I-IV Rated mains voltage ≤ 1000 VRMS I-III I DIN VDE V 0884-11 (VDE V 0884-11): 2017-01 VIORM Maximum repetitive peak isolation voltage VIOWM At AC voltage 2120 VPK Maximum-rated isolation working voltage At AC voltage (sine wave) 1500 VRMS At DC voltage 2120 VDC VIOTM Maximum transient isolation voltage VTEST = VIOTM, t = 60 s (qualification test) 7070 VTEST = 1.2 × VIOTM, t = 1 s (100% production test) 8480 VIOSM Maximum surge isolation voltage(2) Test method per IEC 60065, 1.2/50-µs waveform, VTEST = 1.6 × VIOSM = 12800 VPK (qualification) 8000 Method a, after input/output safety test subgroups 2 and 3, Vini = VIOTM, tini = 60 s, Vpd(m) = 1.2 × VIORM, tm = 10 s ≤5 Method a, after environmental tests subgroup 1, Vini = VIOTM, tini = 60 s, Vpd(m) = 1.6 × VIORM, tm = 10 s ≤5 Method b1, at routine test (100% production) and preconditioning (type test), Vini = VIOTM, tini = 1 s, Vpd(m) = 1.875 × VIORM, tm = 1 s ≤5 VIO = 0.5 VPP at 1 MHz ~1.5 Apparent charge(3) qpd CIO Barrier capacitance, input to output(4) RIO Insulation resistance, input to output(4) VIO = 500 V at TA = 25°C > 1012 VIO = 500 V at 100°C ≤ TA ≤ 125°C > 1011 VIO = 500 V at TS = 150°C > 109 Pollution degree 2 Climatic category 55/125/21 VPK VPK pC pF Ω UL1577 VISO (1) (2) (3) (4) 6 Withstand isolation voltage VTEST = VISO = 5000 VRMS or 7071 VDC, t = 60 s (qualification), VTEST = 1.2 × VISO = 6000 VRMS, t = 1 s (100% production test) 5000 VRMS Apply creepage and clearance requirements according to the specific equipment isolation standards of an application. Care must be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed circuit board (PCB) do not reduce this distance. Creepage and clearance on a PCB become equal in certain cases. Techniques such as inserting grooves, ribs, or both on a PCB are used to help increase these specifications. Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier. Apparent charge is electrical discharge caused by a partial discharge (pd). All pins on each side of the barrier are tied together, creating a two-pin device. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 6.7 Safety-Related Certifications VDE UL Certified according to DIN VDE V 0884-11 (VDE V 0884-11): 2017-01, DIN EN 60950-1 (VDE 0805 Teil 1): 2014-08, and DIN EN 60065 (VDE 0860): 2005-11 Recognized under 1577 component recognition Reinforced insulation Single protection Certificate number: pending File number: E181974 6.8 Safety Limiting Values Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier potentially leading to secondary system failures. PARAMETER IS Safety input, output, or supply current PS Safety input, output, or total power TS Maximum safety temperature (1) TEST CONDITIONS MIN TYP MAX RθJA = 84.6°C/W, VDDx = 5.5 V, TJ = 150°C, TA = 25°C 270 RθJA = 84.6°C/W, VDDx = 3.6 V, TJ = 150°C, TA = 25°C 410 RθJA = 84.6°C/W, TJ = 150°C, TA = 25°C UNIT mA 1480 mW 150 °C The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS and PS parameters represent the safety current and safety power, respectively. Do not exceed the maximum limits of IS and PS. These limits vary with the ambient temperature, TA. The junction-to-air thermal resistance, RθJA, in the Thermal Information table is that of a device installed on a high-K test board for leaded surface-mount packages. Use these equations to calculate the value for each parameter: TJ = TA + RθJA × P, where P is the power dissipated in the device. TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum junction temperature. PS = IS × VDDmax, where VDDmax is the maximum supply voltage for high-side and low-side. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 7 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 6.9 Electrical Characteristics minimum and maximum specifications apply from TA = –40°C to +125°C, VDD1 = 3.0 V to 5.5 V, VDD2 = 3.0 V to 5.5 V, INP = –5 V to +5 V, and INN = GND1 (unless otherwise noted); typical specifications are at TA = 25°C, VDD1 = 5 V, and VDD2 = 3.3 V PARAMETER TEST CONDITIONS MIN TYP MAX TA = 25°C, INN = INP = GND1, 4.5 V ≤ VDD1 ≤ 5.5 V(1) –1.5 ±0.3 1.5 TA = 25°C, INN = INP = GND1, 3.0 V ≤ VDD1 ≤ 5.5 V(3) –2.5 –0.8 2.5 UNIT ANALOG INPUT VOS Offset ΔVOS voltage(2) Offset voltage long-term stability drift(5) TCVOS Offset voltage thermal ΔTCVOS Offset voltage thermal drift long-term stability 0(7) 10 years at TA = 55℃ INN = INP = GND1 –15 10 years at TA = 55℃, INN = INP = GND1 Input resistance, differential RIN mV ±3 mV 15 0(7) µV/°C mV/°C 2 2.5 3 1 1.25 1.5 MΩ Input resistance, single ended INN = GND1 ΔRIN Input resistance long-term stability 10 years at TA = 55℃ 0(7) TCRIN Input resistance thermal drift –40℃ ≤ TA ≤ 85℃ 5 ppm/°C CIN Single-ended input capacitance INN = HGND, fIN = 275 kHz 4 pF CIND Differential input capacitance fIN = 275 kHz 2 pF 0.40 V/V ppm ANALOG OUTPUT Nominal gain error(1) EG Gain ΔEG Gain error long-term stability TCEG Gain error thermal drift(1) (6) ΔTCEG Gain error thermal drift long-term stability TA = 25℃ –0.2% –35 10 years at TA = 55℃ Nonlineartity(1) –0.02% Nonlinearity thermal drift Total harmonic distortion(4) THD SNR Signal-to-noise ratio Output noise PSRR VCMout 8 Common-mode rejection ratio Power-supply rejection ratio(2) 0.2% ±10 35 ppm/°C 0(7) ppm/°C ±0.003% 0.02% 0.2 VIN = 10 VPP, fIN = 10 kHz, BW = 100 kHz VIN = 10 VPP, fIN = 1 kHz, BW = 10 kHz 81 85 75 INN = INP = GND1, BW = 100 kHz 250 fIN = 10 kHz, INN = INP = 10 VPP –71 PSRR vs VDD1, DC –67 PSRR vs VDD2, DC –80 PSRR vs VDD1 with 10-kHz, 100-mV ripple –65 PSRR vs VDD2 with 10-kHz, 100-mV ripple –64 1.39 VCLIPout Clipping differential output voltage VFail-safe Fail-safe differential output voltage VDD1 undervoltage or VDD1 missing BW Output bandwidth 1.44 dB dB 1.49 2.49 –2.57 275 Submit Document Feedback µVrms –72 max VOUT = (VOUTP – VOUTN), VIN > VClipping dB dB VIN = 10 VPP, fIN = 10 kHz, BW = 100 kHz Output common-mode voltage ppm/°C –87 DC, INN = INP, VCM min ≤ VCM ≤ VCM CMRR ±0.05% 0(7) 10 years at TA = 55℃ 300 V V –2.5 V kHz Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 6.9 Electrical Characteristics (continued) minimum and maximum specifications apply from TA = –40°C to +125°C, VDD1 = 3.0 V to 5.5 V, VDD2 = 3.0 V to 5.5 V, INP = –5 V to +5 V, and INN = GND1 (unless otherwise noted); typical specifications are at TA = 25°C, VDD1 = 5 V, and VDD2 = 3.3 V PARAMETER ROUT CMTI TEST CONDITIONS Output resistance On OUTP or OUTN Output short-circuit current On OUTP or OUTN, sourcing or sinking, INN = INP = GND1, outputs shorted to either GND or VDD2 Common-mode transient immunity MIN TYP MAX UNIT < 0.2 Ω 14 mA 100 150 kV/µs POWER SUPPLY VDD1UV VDD1 undervoltage detection threshold VDD1 rising 2.5 2.7 2.9 VDD1 falling 2.4 2.6 2.8 VDD2UV VDD2 undervoltage detection threshold VDD2 rising 2.2 2.45 2.65 VDD2 falling 1.85 2.0 2.2 IDD1 High-side supply current 3.0 V < VDD1 < 3.6 V 6.0 8.1 4.5 V < VDD1 < 5.5 V 7.0 9.3 IDD2 Low-side supply current 3.0 V < VDD2 < 3.6 V 5.3 7.2 4.5 V < VDD2 < 5.5 V 5.9 8.1 (1) (2) (3) (4) (5) (6) (7) V V mA mA The typical value includes one standard deviation (sigma) at nominal operating conditions. This parameter is input referred. The typical value is at VDD1 = 3.3 V. THD is the ratio of the rms sum of the amplitues of first five higher harmonics to the amplitude of the fundamental. Offset error temperature drift is calculated using the box method, as described by the following equation: TCVOS = (VOS,MAX - VOS,MIN) / TempRange where VOS,MAX and VOS,MIN refer to the maximum and minimum VOS values measured within the temperature range (–40 to 125℃). Gain error temperature drift is calculated using the box method, as described by the following equation: TCEG (ppm) = ((EG,MAX - EG,MIN) / TempRange) x 104 where EG,MAX and EG,MIN refer to the maximum and minimum EG values (in %) measured within the temperature range (–40 to 125℃). Value is below measurement capability. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 9 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 6.10 Switching Characteristics over operating ambient temperature range (unless otherwise noted) PARAMETER tr Output signal rise time tf Output signal fall time tAS TEST CONDITIONS MIN TYP MAX 1.3 UNIT µs 1.3 µs IN to OUTx signal delay (50% – 10%) Unfiltered output 1 1.5 µs IN to OUTx signal delay (50% – 50%) Unfiltered output 1.6 2.1 µs IN to OUTx signal delay (50% – 90%) Unfiltered output 2.5 3 µs Analog settling time VDD1 step to 3.0 V with VDD2 ≥ 3.0 V, to VOUTP and VOUTN valid, 0.1% settling 500 800 µs 6.11 Timing Diagram 5V INP - INN 0 –5V tf tr OUTN VCMout OUTP 50% - 10% 50% - 50% 50% - 90% 图 6-1. Rise, Fall, and Delay Time Definition 10 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 6.12 Insulation Characteristics Curves 600 1800 VDD1 = VDD2 = 3.6 V VDD1 = VDD2 = 5.5 V 500 1600 1400 1200 PS (mW) IS (mA) 400 300 1000 800 600 200 400 100 200 0 0 0 25 50 75 TA (°C) 100 125 150 0 25 50 D069 图 6-2. Thermal Derating Curve for Safety-Limiting Current per VDE 75 TA (°C) 100 125 150 D070 图 6-3. Thermal Derating Curve for Safety-Limiting Power per VDE TA up to 150°C, stress-voltage frequency = 60 Hz, isolation working voltage = 1500 VRMS, operating lifetime = 135 years 图 6-4. Reinforced Isolation Capacitor Lifetime Projection Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 11 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 6.13 Typical Characteristics at VDD1 = 5 V, VDD2 = 3.3 V, INN = GND1, INP = –5 V to 5 V, and fIN = 10 kHz (unless otherwise noted) 3 Total Uncalibrated Output Error (%) 0.1 2.5 VOUTx(V) 2 VOUTP VOUTN 1.5 1 0.5 0 -7 -6 -5 -4 -3 -2 -1 0 1 2 (VINP - VINN) (V) 3 4 5 6 TA = -40 C TA = 25 C TA = 125 C 0.08 0.06 0.04 0.02 0 -0.02 -0.04 -0.06 -0.08 -0.1 -8 7 D006 -6 -4 -2 0 2 (VINP - VINN) (V) 4 6 8 D074 Total uncalibrated output error is defined as: (VOUT – VIN × G) / (VClipping × G) where VIN = (VINP – VINN), G is the nominal gain of the device (0.4 V/V), and VClipping is 6.25 V 图 6-6. Total Uncalibrated Output Error vs Input Voltage 图 6-5. Output Voltage vs Input Voltage 2.5 2.5 Device 1 Device 2 Device 3 2 1.5 1 1 0.5 0.5 VOS (mV) VOS (mV) 1.5 0 -0.5 -1 -1 -1.5 -2 -2 -2.5 -2.5 3.5 4 4.5 VDD1 (V) 5 3 5.5 4 4.5 VDD2 (V) 5 5.5 D027b 图 6-8. Input Offset Voltage vs Low-Side Supply Voltage 2.5 1.5 1 0.5 0 -0.5 -1 -1.5 -2 -2.5 -40 -25 -10 5 20 35 50 65 Temperature (°C) 80 95 110 125 Differential Input Impedance (M) 2.5 Device 1 Device 2 Device 3 2 VOS (mV) 3.5 D027 图 6-7. Input Offset Voltage vs High-Side Supply Voltage 2.48 2.46 2.44 2.42 2.4 -40 -25 D026 图 6-9. Input Offset Voltage vs Temperature 12 0 -0.5 -1.5 3 Device 1 Device 2 Device 3 2 -10 5 20 35 50 65 Temperature (°C) 80 95 110 125 D072 图 6-10. Differential Input Impedance vs Temperature Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 6.13 Typical Characteristics (continued) at VDD1 = 5 V, VDD2 = 3.3 V, INN = GND1, INP = –5 V to 5 V, and fIN = 10 kHz (unless otherwise noted) 0.3 1.24 0.1 1.23 1.22 0 -0.1 1.21 -0.2 1.2 -40 -25 -10 5 20 35 50 65 Temperature (°C) 80 95 -0.3 110 125 3 3.5 4.5 VDD1 (V) 5 5.5 D020 图 6-12. Gain Error vs High-Side Supply Voltage 0.3 0.3 Device 1 Device 2 Device 3 0.2 Device 1 Device 2 Device 3 0.2 0.1 EG (%) 0.1 0 0 -0.1 -0.1 -0.2 -0.2 -0.3 3 3.5 4 4.5 VDD2 (V) 5 -0.3 -40 5.5 -25 5 20 35 50 65 Temperature (°C) 80 95 110 125 D021 图 6-14. Gain Error vs Temperature 0.02 0.015 0.015 0.01 0.01 Nonlinearity (%) 0.02 0.005 0 -0.005 Device 1 Device 2 Device 3 0.005 0 -0.005 -0.01 -0.01 -0.015 -0.015 -0.02 -5 -10 D020b 图 6-13. Gain Error vs Low-Side Supply Voltage Nonlinearity (%) 4 D073 图 6-11. Single-Ended Input Impedance vs Temperature EG (%) Device 1 Device 2 Device 3 0.2 EG (%) Single-Ended Input Impedance (M) 1.25 -0.02 -4 -3 -2 -1 0 1 (VINP - VINN) (V) 2 3 4 5 3 D028 图 6-15. Nonlinearity vs Input Voltage 3.5 4 4.5 VDD1 (V) 5 5.5 D029 图 6-16. Nonlinearity vs High-Side Supply Voltage Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 13 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 6.13 Typical Characteristics (continued) at VDD1 = 5 V, VDD2 = 3.3 V, INN = GND1, INP = –5 V to 5 V, and fIN = 10 kHz (unless otherwise noted) 0.02 Device 1 Device 2 Device 3 0.015 Nonlinearity (%) 0.01 0.005 0 -0.005 -0.01 -0.015 -0.02 3 3.5 4 4.5 VDD2 (V) 5 5.5 D029b 图 6-17. Nonlinearity vs Low-Side Supply Voltage 图 6-18. Nonlinearity vs Temperature -70 -70 Device 1 Device 2 Device 3 -75 -80 -80 THD (dB) THD (dB) Device 1 Device 2 Device 3 -75 -85 -85 -90 -90 -95 -95 -100 -100 0 0.5 1 1.5 2 2.5 3 3.5 4 |VINP - VINN| (V) 4.5 5 5.5 6 6.5 3 D049 图 6-19. Total Harmonic Distortion vs Input Voltage 3.5 4 4.5 VDD1 (V) 5 5.5 D056 图 6-20. Total Harmonic Distortion vs High-Side Supply Voltage -70 Device 1 Device 2 Device 3 -75 THD (dB) -80 -85 -90 -95 -100 3 3.5 4 4.5 VDD2 (V) 5 5.5 D056b 图 6-21. Total Harmonic Distortion vs Low-Side Supply Voltage 14 图 6-22. Total Harmonic Distortion vs Temperature Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 6.13 Typical Characteristics (continued) at VDD1 = 5 V, VDD2 = 3.3 V, INN = GND1, INP = –5 V to 5 V, and fIN = 10 kHz (unless otherwise noted) 80 Device 1 Device 2 Device 3 75 SNR (dB) 70 65 60 55 50 45 40 0 0.5 1 1.5 2 2.5 3 3.5 4 |VINP - VINN| (V) 4.5 5 5.5 6 6.5 D032 图 6-24. Signal-to-Noise Ratio vs High-Side Supply Voltage 图 6-23. Signal-to-Noise Ratio vs Input Voltage 80 80 Device 1 Device 2 Device 3 79 78 77 77 76 76 SNR (dB) SNR (dB) 78 75 74 75 74 73 73 72 72 71 71 70 3 3.5 4 4.5 VDD2 (V) 5 70 -40 5.5 -25 -10 D034b 图 6-25. Signal-to-Noise Ratio vs Low-Side Supply Voltage 5 20 35 50 65 Temperature (°C) 80 95 110 125 D035 图 6-26. Signal-to-Noise Ratio vs Temperature -66 1000 Device 1 Device 2 Device 3 -68 100 CMRR (dB) Noise Density (V/Hz) Device 1 Device 2 Device 3 79 10 -70 -72 1 -74 0.1 0.1 1 10 Frequency (kHz) 100 1000 D017 图 6-27. Input-Referred Noise Density vs Frequency -76 3 3.5 4 4.5 VDD1 (V) 5 5.5 D037 图 6-28. Common-Mode Rejection Ratio vs Supply Voltage Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 15 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 6.13 Typical Characteristics (continued) at VDD1 = 5 V, VDD2 = 3.3 V, INN = GND1, INP = –5 V to 5 V, and fIN = 10 kHz (unless otherwise noted) -66 0 Device 1 Device 2 Device 3 -40 -68 CMRR (dB) CMRR (dB) -20 -60 Device 1 Device 2 Device 3 -80 -70 -72 -74 -100 0.01 0.1 1 10 100 fIN (kHz) -76 -40 1000 -25 -10 5 D038 20 35 50 65 Temperature (°C) 80 95 110 125 D039 fIN = 10 kHz 图 6-29. Common-Mode Rejection Ratio vs Input Frequency 图 6-30. Common-Mode Rejection Ratio vs Temperature 0 0 -20 -20 -40 -40 PSRR (dB) PSRR (dB) VDD1 VDD2 -60 -80 -60 -80 VDD1 VDD2 -100 0.01 0.1 1 10 Ripple Frequency (kHz) 100 -100 -40 1000 -25 -10 5 D041 20 35 50 65 Temperature (°C) 80 95 110 125 D042 fRipple = 10 kHz 1.49 1.49 1.48 1.48 1.47 1.47 1.46 1.46 1.45 1.45 1.44 1.43 1.44 1.43 1.42 1.42 1.41 1.41 1.4 1.4 1.39 3 3.5 4 4.5 VDD2 (V) 5 5.5 1.39 -40 -25 D009 图 6-33. Common-Mode Output Voltage vs Supply Voltage 16 图 6-32. Power-Supply Rejection Ratio vs Temperature VCMout (V) VCMout (V) 图 6-31. Power-Supply Rejection Ratio vs Ripple Frequency -10 5 20 35 50 65 Temperature (°C) 80 95 110 125 D010 图 6-34. Common-Mode Output Voltage vs Temperature Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 6.13 Typical Characteristics (continued) 5 0° 0 -45° -5 -90° -10 Output Phase Normalized Gain (dB) at VDD1 = 5 V, VDD2 = 3.3 V, INN = GND1, INP = –5 V to 5 V, and fIN = 10 kHz (unless otherwise noted) -15 -20 -25 -135° -180° -225° -270° -30 -315° -35 -360° -40 1 10 100 1 1000 fIN (kHz) 10 100 1000 fIN (kHz) D008 D007 图 6-36. Output Phase vs Input Frequency 图 6-35. Normalized Gain vs Input Frequency 320 320 Device 1 Device 2 Device 3 Device 1 Device 2 Device 3 310 BW (kHz) BW (kHz) 310 300 300 290 290 280 -40 280 3 3.5 4 4.5 VDD1 (V) 5 5.5 -25 图 6-37. Bandwidth vs Supply Voltage 5 20 35 50 65 Temperature (°C) 80 95 110 125 D012 图 6-38. Bandwidth vs Temperature 8 8 7.5 7.5 7 7 6.5 6.5 IDDx (mA) IDDx (mA) -10 D011 6 5.5 5 6 5.5 5 4.5 IDD1 vs VDD1 IDD2 vs VDD2 4 3 3.5 4 4.5 VDDx (V) 5 5.5 4.5 4 -40 IDD1 IDD2 -25 D043 图 6-39. Supply Current vs Supply Voltage -10 5 20 35 50 65 Temperature (°C) 80 95 110 125 D044 图 6-40. Supply Current vs Temperature Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 17 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 6.13 Typical Characteristics (continued) 3 3 2.5 2.5 2 2 tr/tf (s) tr / tf (s) at VDD1 = 5 V, VDD2 = 3.3 V, INN = GND1, INP = –5 V to 5 V, and fIN = 10 kHz (unless otherwise noted) 1.5 1 1 0.5 0.5 0 3 3.5 4 4.5 VDD2 (V) 5 0 -40 5.5 -10 5 20 35 50 65 Temperature (°C) 80 95 110 125 D066 图 6-42. Output Rise and Fall Time vs Temperature 3.8 3.8 50% - 90% 50% - 50% 50% - 10% 3.4 2.6 2.2 1.8 1.4 3 2.6 2.2 1.8 1.4 1 1 0.6 0.6 0.2 3 3.5 4 4.5 VDD2 (V) 5 5.5 50% - 90% 50% - 50% 50% - 10% 3.4 Signal Delay (s) 3 Signal Delay (s) -25 D065 图 6-41. Output Rise and Fall Time vs Supply Voltage 0.2 -40 -25 D067 图 6-43. Input to Output Signal Delay vs Supply Voltage 18 1.5 -10 5 20 35 50 65 Temperature (°C) 80 95 110 125 D068 图 6-44. Input to Output Signal Delay vs Temperature Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 7 Detailed Description 7.1 Overview The AMC1350 is a fully differential, precision, isolated amplifier with high input impedance. The input stage of the device consists of a fully differential amplifier that drives a second-order, delta-sigma (ΔΣ) modulator. The modulator converts the analog input signal into a digital bitstream that is transferred across the isolation barrier that separates the high-side from the low-side. On the low-side, the received bitstream is processed by a fourthorder analog filter that outputs a differential signal at the OUTP and OUTN pins proportional to the input signal. The SiO2-based, capacitive isolation barrier supports a high level of magnetic field immunity, as described in the ISO72x Digital Isolator Magnetic-Field Immunity application report. The digital modulation used in the AMC1350 to transmit data across the isolation barrier, and the isolation barrier characteristics itself, result in high reliability and common-mode transient immunity. 7.2 Functional Block Diagram VDD2 Barrier VDD1 Diagnostics Analog Filter RX / TX  Modulator OUTN AMC1350 Isolation INN GND1 OUTP TX / RX INP GND2 7.3 Feature Description 7.3.1 Analog Input The single-ended, high-impedance input stage of the AMC1350 feeds a second-order, switched-capacitor, feedforward ΔΣ modulator. The modulator converts the analog signal into a bitstream that is transferred across the isolation barrier, as described in the Isolation Channel Signal Transmission section. There are two restrictions on the analog input signals INP and INN. First, if the input voltages VINP or VINN exceed the range specified in the Absolute Maximum Ratings table, the input currents must be limited to the absolute maximum value because the electrostatic discharge (ESD) protection turns on. In addition, the linearity and parametric performance of the device are ensured only when the analog input voltage remains within the linear full-scale range (VFSR) and within the common-mode input voltage range (VCM) as specified in the Recommended Operating Conditions table. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 19 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 7.3.2 Isolation Channel Signal Transmission The AMC1350 uses an on-off keying (OOK) modulation scheme, as shown in 图 7-1, to transmit the modulator output bitstream across the SiO2-based isolation barrier. The transmit driver (TX) shown in the Functional Block Diagram transmits an internally-generated, high-frequency carrier across the isolation barrier to represent a digital one and does not send a signal to represent a digital zero. The nominal frequency of the carrier used inside the AMC1350 is 480 MHz. The receiver (RX) on the other side of the isolation barrier recovers and demodulates the signal and provides the input to the fourth-order analog filter. The AMC1350 transmission channel is optimized to achieve the highest level of common-mode transient immunity (CMTI) and lowest level of radiated emissions caused by the highfrequency carrier and RX/TX buffer switching. Internal Clock Modulator Bitstream on High-side Signal Across Isolation Barrier Recovered Sigal on Low-side 图 7-1. OOK-Based Modulation Scheme 20 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 7.3.3 Analog Output The AMC1350 offers a differential analog output on the OUTP and OUTN pins. For differential input voltages (VINP – VINN) in the range from –5 V to +5 V, the device provides a linear response with a nominal gain of 0.4 V/V. For example, for a differential input voltage of 5 V, the differential output voltage (VOUTP – VOUTN) is 2 V. At zero input (INP shorted to INN), both pins output the same common-mode output voltage VCMout, as specified in the Electrical Characteristics table. For absolute differential input voltages greater than 5 V but less than 5.75 V, the differential output voltage continues to increase in magnitude but with reduced linearity performance. The outputs saturate at a differential output voltage of VCLIPout, as shown in 图 7-2, if the differential input voltage exceeds the VClipping value. Maximum input range before clipping (VClipping) Linear input range (VFSR) VOUTN VFail-safe VCLIPout VCMout VOUTP  6.25 V 5V 0 6.25 V 5V Differential Input Voltage (VINP – VINN) 图 7-2. Output Behavior of the AMC1350 The AMC1350 output offers a fail-safe feature that simplifies diagnostics on a system level. 图 7-2 shows the failsafe condition, in which the AMC1350 outputs a negative differential output voltage that does not occur under normal operating conditions. The fail-safe output is active in two cases: • When the high-side supply VDD1 of the AMC1350 device is missing • When the high-side supply VDD1 falls below the undervoltage threshold VDD1UV Use the maximum VFail-safe voltage specified in the Electrical Characteristics table as a reference value for failsafe detection on a system level. 7.4 Device Functional Modes The AMC1350 is operational when the power supplies VDD1 and VDD2 are applied as specified in the Recommended Operating Conditions table. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 21 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 8 Application and Implementation 备注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. 8.1 Application Information The high input impedance, low input bias current, bipolar input voltage range, excellent accuracy, and low temperature drift make the AMC1350 a high-performance solution for industrial applications where isolated AC or DC voltage sensing is required. 8.2 Typical Application Isolated amplifiers are widely used for voltage measurements in high-voltage applications that must be isolated from a low-voltage domain. Typical applications are AC line voltage measurements, either line-to-neutral or lineto-line in grid-connected equipment. 图 8-1 illustrates a simplified schematic of a solar inverter application that uses three AMC1350 devices to measure the AC line voltage on each phase of a three-phase system. The AC line voltage is divided down to an approximate ±5-V level across the bottom resistor (RSNS) of a high-impedance resistive divider that is sensed by the AMC1350. The output of the AMC1350 is a differential analog output voltage proportional to the input voltage but is galvanically isolated from the high-side by a reinforced isolation barrier. A common high-side power supply (VDD1) for all three AMC1350 devices is generated from the low-side supply (VDD2) of the system by an isolated DC/DC converter circuit. A low-cost solution is based on the push-pull driver SN6501 and a transformer that supports the desired isolation voltage ratings. The high-impedance input, high input voltage range, and the high common-mode transient immunity (CMTI) of the AMC1350 ensure reliable and accurate operation even in high-noise environments. 22 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 Solar Panel Array EMI Filter Contactor SW L1 DC-Link AC + DC-Bus DC/DC SW L2 SW L3 R1 Number of unit resistors depends on design requirements. R2 RSNS SW N DC  DC-Bus N Low-side supply (3.3 V or 5 V) AMC1350 VDD1 100 nF 1 uF VDD2 INP OUTP INN OUTN GND1 GND2 ADC 1 μF 100 nF AMC1350 VDD1 VDD2 INP OUTP INN OUTN GND1 GND2 100 nF 1 uF ADC 1 μF 100 nF AMC1350 VDD1 VDD2 INP OUTP INN OUTN GND1 GND2 100 nF 1 uF ADC 1 μF 100 nF TPS76350 NC SN6501 EN D1 IN D2 100 nF 4.7 μF 10 μF GND 100 nF Barrier 10 μF OUT Isoation VOUT = 5 V GND VCC GND 图 8-1. Using the AMC1350 for AC Line-Voltage Sensing in a Solar Inverter Application Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 23 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 8.2.1 Design Requirements 表 8-1 lists the parameters for this typical application. 表 8-1. Design Requirements PARAMETER System input voltage 120-VRMS LINE VOLTAGE 230-VRMS LINE VOLTAGE 120 V ±10%, 60 Hz 230 V ±10%, 50 Hz High-side supply voltage 3.3 V or 5 V 3.3 V or 5 V Low-side supply voltage 3.3 V or 5 V 3.3 V or 5 V Maximum resistor operating voltage Voltage drop across the sense resistor (RSNS) for a linear response Current through the resistive divider, ICROSS 75 V 75 V ±5 V (maximum) ±5 V (maximum) 100 μA 100 μA 8.2.2 Detailed Design Procedure This discussion covers the 230-VRMS example. The procedure for calculating the resistive divider for the 120VRMS use case is identical. The 100-μA, cross-current requirement at peak input voltage (360 V) determines that the total impedance of the resistive divider is 3.6 MΩ. The impedance of the resistive divider is dominated by the top resistors (shown exemplary as R1 and R2 in 图 8-1) and the voltage drop across RSNS can be neglected for a short time. The maximum allowed voltage drop per unit resistor is specified as 75 V; therefore, the total minimum number of unit resistors in the top portion of the resistive divider is 360 V / 75 V = 5. The calculated unit value is 3.6 MΩ / 5 = 720 kΩ and the next closest value from the E96 series is 715 kΩ. The effective sense resistor value RSNSEFF is the parallel combination of the external resistor RSNS and the input impedance of the AMC1350, RIN. RSNSEFF is sized such that the voltage drop across the impedance at maximum input voltage (360 V) equals the linear full-scale input voltage (VFSR) of the AMC1350 (that is, +5 V). RSNSEFF is calculated as RSNSEFF = VFSR / (VPeak – VFSR) × RTOP where RTOP is the total value of the top resistor string (5 × 715 kΩ = 3575 kΩ). The resulting value for RSNSEFF is 9.96 kΩ. In a final step, RSNS is calculated as RSNS = RIN × RSNSEFF / (RIN – RSNSEFF). With RIN = 1.25 MΩ (typical), RSNS equals 52.47 kΩ and the next closest value from the E96 series is 52.3 kΩ. 表 8-2 summarizes the design of the resistive divider. 表 8-2. Resistor Value Examples PARAMETER Peak voltage Unit resistor value, RTOP 120-VRMS LINE VOLTAGE 230-VRMS LINE VOLTAGE 190 V 360 V 634 kΩ 715 kΩ Number of unit resistors in RTOP 3 5 53.6 kΩ 52.3 kΩ 1953.4 kΩ 3625.2 kΩ Resulting current through resistive divider, ICROSS 97.3 μA 99.3 μA Resulting full-scale voltage drop across sense resistor RSNS 4.993 V 4.982 V Sense resistor value, RSNS Total resistance value (RTOP + RSNS) Peak power dissipated in RTOP unit resistor Total peak power dissipated in resistive divider 24 6 mW 7.1 mW 18.5 mW 35.7 mW Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 8.2.2.1 Input Filter Design Placing an RC filter in front of the isolated amplifier improves signal-to-noise performance of the signal path. In practice, however, the impedance of the resistor divider is so high that adding a filter capacitor on the INN or INP pin limits the signal bandwidth to an unacceptable low limit, such that the filter capacitor is omitted. When used, design the input filter such that: • The cutoff frequency of the filter is at least one order of magnitude lower than the sampling frequency (20 MHz) of the internal ΔΣ modulator • The input bias current does not generate significant voltage drop across the DC impedance of the input filter Most voltage-sensing applications use high-impedance resistor dividers in front of the isolated amplifier to scale down the input voltage. In that case, no additional resistor is needed and a single capacitor (as shown in 图 8-2) is sufficient to filter the input signal. AMC1350 VDD1 VDD2 INP OUTP INN OUTN GND1 GND2 RSNS 1 nF 图 8-2. Input Filter 8.2.2.2 Differential to Single-Ended Output Conversion 图 8-3 shows an example of a TLV6001-based signal conversion and filter circuit for systems using single-ended input ADCs to convert the analog output voltage into digital. With R1 = R2 = R3 = R4, the output voltage equals (VOUTP – VOUTN) + VREF. Tailor the bandwidth of this filter stage to the bandwidth requirement of the system and use NP0-type capacitors for best performance. For most applications, R1 = R2 = R3 = R4 = 3.3 kΩ and C1 = C2 = 330 pF yields good performance. C1 AMC1350 VDD1 VDD2 INP OUTP R2 R1 – ADC R3 INN OUTN GND1 GND2 To MCU + TLV6001 C2 R4 VREF 图 8-3. Connecting the AMC1350 Output to a Single-Ended Input ADC For more information on the general procedure to design the filtering and driving stages of SAR ADCs, see the 18-Bit, 1MSPS Data Acquisition Block (DAQ) Optimized for Lowest Distortion and Noise and 18-Bit Data Acquisition Block (DAQ) Optimized for Lowest Power reference guides, available for download at www.ti.com. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 25 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 8.2.3 Application Curve One important aspect of system design is the effective detection of an overvoltage condition to protect switching devices and passive components from damage. To power off the system quickly in the event of an overvoltage condition, a low delay caused by the isolated amplifier is required. 图 8-4 shows the typical full-scale step response of the AMC1350. VOUTP VOUTN VIN 图 8-4. Step Response of the AMC1350 26 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 8.3 What To Do and What Not To Do Do not leave the inputs of the AMC1350 unconnected (floating) when the device is powered up. If the device inputs are left floating, the input bias current may drive the inputs to a positive or negative value that exceeds the operating common-mode input voltage and the device output is undetermined. Connect the high-side ground (GND1) to INN, either by a hard short or through a resistive path. A DC current path between INN and GND1 is required to define the input common-mode voltage. Take care not to exceed the input common-mode range as specified in the Recommended Operating Conditions table. For best accuracy, route the ground connection as a separate trace that connects directly to the sense resistor rather than shorting GND1 to INN directly at the input to the device. See the Layout section for more details. Do not connect protection diodes to the inputs (INP or INN) of the AMC1350. Diode leakage current can introduce significant measurement error especially at high temperatures. The input pin is protected against high voltages by its ESD protection circuit and the high impedance of the external restive divider. 9 Power Supply Recommendations In a typical application, the high-side power supply (VDD1) for the AMC1350 is generated from the low-side supply (VDD2) by an isolated DC/DC converter. A low-cost solution is based on the push-pull driver SN6501 and a transformer that supports the desired isolation voltage ratings. The AMC1350 does not require any specific power-up sequencing. The high-side power supply (VDD1) is decoupled with a low-ESR, 100-nF capacitor (C1) parallel to a low-ESR, 1-μF capacitor (C2). The low-side power supply (VDD2) is equally decoupled with a low-ESR, 100-nF capacitor (C3) parallel to a low-ESR, 1-μF capacitor (C4). Place all four capacitors (C1, C2, C3, and C4) as close to the device as possible. 图 9-1 shows a decoupling diagram for the AMC1350. VAC R1 VDD1 VDD2 C2 1 µF C4 1 µF AMC1350 R2 C1 100 nF C3 100 nF VDD1 VDD2 INP OUTP to RC filter / ADC INN OUTN to RC filter / ADC GND1 GND2 RSNS 图 9-1. Decoupling of the AMC1350 Capacitors must provide adequate effective capacitance under the applicable DC bias conditions they experience in the application. Multilayer ceramic capacitors (MLCC) typically exhibit only a fraction of their nominal capacitance under real-world conditions and this factor must be taken into consideration when selecting these capacitors. This problem is especially acute in low-profile capacitors, in which the dielectric field strength is higher than in taller components. Reputable capacitor manufacturers provide capacitance versus DC bias curves that greatly simplify component selection. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 27 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 10 Layout 10.1 Layout Guidelines 图 10-1 shows a layout recommendation with the critical placement of the decoupling capacitors (as close as possible to the AMC1350 supply pins) and placement of the other components required by the device. For best performance, place the sense resistor close to the device input pin (IN). R2 Clearance area, to be kept free of any conductive materials. C2 C4 C1 C3 RSNS INP GND1 VDD2 VDD1 R1 VAC 10.2 Layout Example AMC1350 INN OUTP to RC filter / ADC OUTN to RC filter / ADC GND2 Top Metal Inner or Bottom Layer Metal Via 图 10-1. Recommended Layout of the AMC1350 28 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 AMC1350 www.ti.com.cn ZHCSN82A – AUGUST 2021 – REVISED DECEMBER 2021 11 Device and Documentation Support 11.1 Documentation Support 11.1.1 Related Documentation For related documentation, see the following: • • • • • • • • • • Texas Instruments, Isolation Glossary application report Texas Instruments, Semiconductor and IC Package Thermal Metrics application report Texas Instruments, ISO72x Digital Isolator Magnetic-Field Immunity application report Texas Instruments, TLV600x Low-Power, Rail-to-Rail In/Out, 1-MHz Operational Amplifier for Cost-Sensitive Systems data sheet Texas Instruments, TPS763 Low-Power, 150-mA, Low-Dropout Linear Regulator data sheet Texas Instrument, SN6501 Transformer Driver for Isolated Power Supplies data sheet Texas Instruments, 18-Bit, 1-MSPS Data Acquisition Block (DAQ) Optimized for Lowest Distortion and Noise reference guide Texas Instruments, 18-Bit, 1-MSPS Data Acquisition Block (DAQ) Optimized for Lowest Power reference guide Texas Instruments, Isolated Amplifier Voltage Sensing Excel Calculator design tool Texas Instruments, Best in Class Radiated Emissions EMI Performance with the AMC1300B-Q1 Isolated Amplifier technical white paper 11.2 接收文档更新通知 要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更 改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 11.3 支持资源 TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解 答或提出自己的问题可获得所需的快速设计帮助。 链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。 11.4 Trademarks TI E2E™ is a trademark of Texas Instruments. 所有商标均为其各自所有者的财产。 11.5 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 11.6 术语表 TI 术语表 本术语表列出并解释了术语、首字母缩略词和定义。 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: AMC1350 29 PACKAGE OPTION ADDENDUM www.ti.com 13-Dec-2021 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) AMC1350DWV ACTIVE SOIC DWV 8 64 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 AMC1350 AMC1350DWVR ACTIVE SOIC DWV 8 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 AMC1350 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
AMC1350DWV 价格&库存

很抱歉,暂时无法提供与“AMC1350DWV”相匹配的价格&库存,您可以联系我们找货

免费人工找货