0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
AWR2243ABGABLQ1

AWR2243ABGABLQ1

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    161-LFBGA, FCBGA

  • 描述:

    AWR2243 ES1.1 TRAY

  • 数据手册
  • 价格&库存
AWR2243ABGABLQ1 数据手册
AWR2243 SWRS223C – FEBRUARY 2020 – REVISED JUNE 2022 AWR2243 Single-Chip 76- to 81-GHz FMCW Transceiver • • 1 Features • • • • FMCW transceiver – Integrated PLL, transmitter, receiver, baseband, and ADC – 76- to 81-GHz coverage with 5 GHz available bandwidth – Four receive channels – Three transmit channels – Ultra-accurate chirp engine based on Fractional-N PLL – TX power: 13 dBm – RX noise figure: 12 dB – Phase noise at 1 MHz: • –96 dBc/Hz (76 to 77 GHz) • –94 dBc/Hz (77 to 81 GHz) Built-in calibration and self-test – Built-in firmware (ROM) – Self-calibrating system across process and temperature Host interface – Control interface with external processor over SPI or I2C interface – Data interface with external processor over MIPI D-PHY and CSI2 v1.1 – Interrupts for Fault Reporting Functional Safety-Compliant – Developed for functional safety applications – Documentation available to aid ISO 26262 functional safety system design up to ASIL-D – Hardware integrity up to ASIL-B – Safety-related certification • ISO 26262 certified up to ASIL B by TUV SUD Crystal RX1 RX2 Antenna Structure RX3 RX4 • • • • AEC-Q100 qualified AWR2243 advanced features – Embedded self-monitoring with limited Host processor involvement – Complex baseband architecture – Option of cascading multiple devices to increase channel count – Embedded interference detection capability Power management – Built-in LDO Network for enhanced PSRR – I/Os support dual voltage 3.3 V/1.8 V Clock source – Supports externally driven clock (square/sine) at 40 MHz – Supports 40 MHz crystal connection with load capacitors Easy hardware design – 0.65-mm pitch, 161-pin 10.4 mm × 10.4 mm flip chip BGA package for easy assembly and low-cost PCB design – Small solution size Operating Conditions – Junction temp range: –40°C to 140°C 2 Applications • • • • Automated Highway Driving Automatic Emergency Braking Adaptive Cruise Control Imaging Radar using Cascading Configuration Power Management SPI/I2C External MCU AWR2243 CSI2 (4 Lane Data + 1 Clock lane) TX1 TX2 TX3 Automotive Interface PHY Reset Error MCU Clock Figure 2-1. Radar Sensor for Automotive Applications An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. AWR2243 www.ti.com SWRS223C – FEBRUARY 2020 – REVISED JUNE 2022 3 Description The AWR2243 device is an integrated single-chip FMCW transceiver capable of operation in the 76- to 81-GHz band. The device enables unprecedented levels of integration in an extremely small form factor. AWR2243 is an ideal solution for low power, self-monitored, ultra-accurate radar systems in the automotive space. The AWR2243 device is a self-contained FMCW transceiver single-chip solution that simplifies the implementation of Automotive Radar sensors in the band of 76 to 81 GHz. It is built on TI’s low-power 45-nm RFCMOS process, which enables a monolithic implementation of a 3TX, 4RX system with built-in PLL and ADC converters. Simple programming model changes can enable a wide variety of sensor implementation (Short, Mid, Long) with the possibility of dynamic reconfiguration for implementing a multimode sensor. Additionally, the device is provided as a complete platform solution including reference hardware design, software drivers, sample configurations, API guide, and user documentation. Device Information PART NUMBER(1) PACKAGE BODY SIZE AWR2243ABGABLQ1 (Tray) FCBGA (161) 10.4 mm × 10.4 mm AWR2243ABGABLRQ1 (Reel) FCBGA (161) 10.4 mm × 10.4 mm (1) 2 For more information, see Section 13, Mechanical Packaging and Orderable Information. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AWR2243 AWR2243 www.ti.com SWRS223C – FEBRUARY 2020 – REVISED JUNE 2022 4 Functional Block Diagram LNA IF ADC LNA IF ADC Digital Front-end (Decimation filter chain) LNA IF ADC LNA IF ADC ADC Buffer CSI2 16KB PING/PONG PA û- PA û- Phase Shifter Control (A) x4 Synth (20 GHz) Ramp Generator Synth Cycle Counter PA ADC output interface SPI/I2C Host control interface û- RF Control / BIST Multi-chip cascading (B) Osc. VMON Temp(C) GPADC RF/Analog Subsystem A. Phase Shift Control: B. C. • 0° / 180° BPM • 0° / 180° BPM and 5.625° resolution control option for AWR2243, and AWR1843 Multi-chip cascading feature is available in AWR2243 Internal temperature sensor accuracy is ± 7 °C. Digital Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AWR2243 3 AWR2243 www.ti.com SWRS223C – FEBRUARY 2020 – REVISED JUNE 2022 Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 1 3 Description.......................................................................2 4 Functional Block Diagram.............................................. 3 5 Revision History.............................................................. 4 6 Device Comparison......................................................... 7 6.1 Related Products........................................................ 8 7 Terminal Configuration and Functions..........................9 7.1 Pin Diagram................................................................ 9 7.2 Signal Descriptions................................................... 13 8 Specifications................................................................ 17 8.1 Absolute Maximum Ratings ..................................... 17 8.2 ESD Ratings............................................................. 17 8.3 Power-On Hours (POH) ........................................... 18 8.4 Recommended Operating Conditions ......................18 8.5 Power Supply Specifications ....................................19 8.6 Power Consumption Summary ................................ 20 8.7 RF Specification........................................................21 8.8 Thermal Resistance Characteristics for FCBGA Package [ABL0161] ....................................................22 8.9 Timing and Switching Characteristics....................... 23 9 Detailed Description......................................................37 9.1 Overview................................................................... 37 9.2 Functional Block Diagram......................................... 37 9.3 Subsystems.............................................................. 38 9.4 Other Subsystems.................................................... 40 10 Monitoring and Diagnostic Mechanisms...................44 11 Applications, Implementation, and Layout............... 46 11.1 Application Information............................................46 11.2 Short-, Medium-, and Long-Range Radar...............46 11.3 Imaging Radar using Cascade Configuration......... 47 11.4 Reference Schematic..............................................48 12 Device and Documentation Support..........................49 12.1 Device Nomenclature..............................................49 12.2 Tools and Software................................................. 50 12.3 Documentation Support.......................................... 51 12.4 Support Resources................................................. 51 12.5 Trademarks............................................................. 51 12.6 Electrostatic Discharge Caution..............................51 12.7 Export Control Notice..............................................51 12.8 Glossary..................................................................51 13 Mechanical, Packaging, and Orderable Information.................................................................... 52 13.1 Packaging Information............................................ 52 5 Revision History Changes from February 11, 2020 to August 30, 2020 (from Revision * (February 2020) to Revision A (August 2020)) Page • Global: Updated the numbering format for tables, figures, and cross-references throughout the document..... 1 • Global: Added/Updated cascading feature in supported on the AWR2243P only.............................................. 1 • Global: Added/Updated Functional Safety-Compliant targeted information....................................................... 1 • Global: Updated AWR2243 Product Status from "Advance Information (AI)" to "Production Data (PD)"...........1 • (Device Information): Updated/Changed table to reflect production part numbers.............................................2 • (Functional Block Diagram): Updated/Changed footnotes to reflect AWR2243, AWR2243P, and AWR1843.... 3 • Table 6-1 (Device Features Comparison): Added AWR2243P device-specific features to table and updated associated footnotes...........................................................................................................................................7 • Table 6-1: Updated/Changed Max sampling rate FUNCTION to separate complex 1x and 2x cases............... 7 • Table 7-1 (Signal Descriptions): Updated/Changed the DEFAULT PULL STATUS and DESCRIPTION for NRESET (P12)................................................................................................................................................. 13 • Table 7-1: Added recommended connectivity for GPIO[0] (N4) during Debug................................................. 13 • Section 8.1 (Absolute Maximum Ratings): Updated/Changed the MAX value for Operating junction temperature range from "125" to "140", as Automotive.................................................................................... 17 • Section 8.3 (Power-On Hours (POH)): Updated/Changed table to reflect automotive junction temp POH percentages...................................................................................................................................................... 18 • Section 8.4 (Recommended Operating Conditions): Added TJ, Operating junction temperature range.......... 18 • Section 8.6 (Power Consumption Summary): Added missing table reference to the paragraph......................20 • Table 8-3 (Maximum Current Ratings at Power Terminals): Added the current consumption VDDIN MAX value of "850 mA" for AWR2243................................................................................................................................ 20 • Section 8.7 (RF Specification): Updated/Changed the MAX values for IF bandwidth and A2D sampling rate for both "(real/complex 2x)" and "(complex 1x)" to reflect the AWR2243P and AWR2243 devices................. 21 • Section 8.7: Added 20GHz SYNC OUT output level max value of 10 dBm and 20GHz SYNC IN input level max value of 7 dBm with associated footnote. ................................................................................................ 21 • Section 8.7: Corrected the phase noise measurement conditions to reflect VCO1 value only......................... 21 4 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AWR2243 AWR2243 www.ti.com • • • • • • • • • • • • • SWRS223C – FEBRUARY 2020 – REVISED JUNE 2022 Section 8.7: Updated/Changed the 1-dB compression point TYP value from "-8" to "-9" dBm, and updated the corresponding footnote frequency from "50" to "10" kHz..................................................................................21 Figure 8-1 (Noise Figure, In-band P1dB vs Receiver Gain): Updated figure....................................................21 Section 8.8 (Thermal Resistance Characteristics): Deleted the 125°C junction temperature reference from footnote (3).........................................................................................................................................................22 Figure 8-2 (Device Wake-Up Sequence): Removed associated MCU_CLK_OUT footnote from image..........23 Section 8.9.3.1 (Clock Specifications): Added the External Clock Mode Specifications table .........................25 Section 8.9.4 (Multibuffered / Standard Serial Peripheral Interface (MibSPI)): Updated section..................... 27 Figure 8-6 (SPI Communication): Updated figure.............................................................................................29 Section 10 (Monitoring and Diagnostic Mechanisms): Added new section...................................................... 44 (Monitoring and Diagnostic Mechanisms) : Added a new note on Functional Safety related collateral........... 44 Figure 11-1 (Short-, Medium-, and Long-Range Radar): Updated figure......................................................... 46 Section 11.3 (Imaging Radar using Cascade Configuration): Updated figure.................................................. 47 (Reference Schematic): Updated/Changed the VBGAP decoupling capacitor value from "0.22 uF" to "47 nF".. 48 Figure 12-1 (Device Nomenclature): Updated/Changed figure........................................................................ 49 Changes from September 1, 2020 to December 5, 2021 (from Revision A (September 2020) to Revision B (December 2021)) Page • Global: Updated to reflect Functional Safety-Compliance and relevant certification collateral...........................1 • Global: Replaced "A2D" with "ADC"; Changed Masters Subsystem and Masters R4F to Main Subsystem and Main R4F; Shift to more inclusive langauge made in terms of Master/Slave terminology.................................. 1 • (Features) : Mentioned the specific operating temperature range for the mmWave Sensor.............................. 1 • (Applications) :Added application weblink for "Automatic Emergency Braking"................................................. 1 • (Device Feature Comparison): Removed a row on Functional-Safety compliance and instead added a tablenote for this; Also added a table-note for LVDS operation..................................................................................7 • (Device Feature Comparison): Updated GPADC row to reflect applicability for AWR2243 and AWR2243P devices................................................................................................................................................................7 • (Signal Descriptions): Updated/modified GPADC pin description, and CLKP/CLKM decriptions for Reference Oscillator...........................................................................................................................................................13 • (Signal Descriptions): Added a table-note for QSPI Interface usage................................................................13 • (Maximum Current Ratings at Power Terminals) : Added a table-note for 3.3V Power rail.............................. 20 • (RF Specification) : Updated the link for mmWave Radar Interface Control document in the footnotes.......... 21 • (Frame Trigger Timing) : Updated the maximum pulse width to 4us in the table. ............................................23 • (Clock Specifications): Updated/Changed "Crystal Electrical Characteristics (Oscillator Mode)" to reflect correct device operating temperature range; Revised frequency tolerance specs in "External Clock Mode Specifications" table..........................................................................................................................................25 • (Switching Characteristics for Output Timing versus Load Capacitance): Updated/Modified the table to remove Slew Rate = 1 condition; removed a footnote...................................................................................... 34 • (Other Subsytems) : Added a new chapter for ADC channels for user service application..............................40 • (GPADC) :Additional chapter appended to describe ADC Channels for User Application............................... 42 • (Monitoring and Diagnostic Mechanisms) : Added a new note on Functional Safety related collateral........... 44 • (Reference Schematic) : Added weblinks to AWR2243 EVM documentation collateral...................................48 • (Device Nomenclature): Updated/Changed figure to reflect Functional Safety Compliance............................ 49 Changes from December 6, 2021 to June 30, 2022 (from Revision B (December 2021) to Revision C (June 2022)) Page • (Device Information): Updated/Changed table to remove unsupported production part variants.......................2 • (Functional Block Diagram): Updated/Changed footnotes to reflect cascade support in AWR2243 and removed the mention of unsupported part variants............................................................................................ 3 • (Device Feature Comparison): Removed unsupported devices from the table and updated the feature set for AWR2243 (Including Max IF Bandwidth, Sampling rates and cascade support)................................................7 • (Signal Descriptions): Added a table-note for QSPI Interface usage................................................................13 • (Maximum Current Ratings at Power Terminals) : Removed data for unsupported part variant AWR2243P...20 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AWR2243 5 AWR2243 www.ti.com SWRS223C – FEBRUARY 2020 – REVISED JUNE 2022 • 6 (RF Specification): Removed data for unsupported part variant AWR2243P and updated feature set for AWR2243 (Including Max IF Bandwidth, Sampling rates and cascade support)..............................................21 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AWR2243 AWR2243 www.ti.com SWRS223C – FEBRUARY 2020 – REVISED JUNE 2022 6 Device Comparison Table 6-1. Device Features Comparison AWR2243 (1) AWR1243 AWR1443 AWR1642 AWR1843 4 4 4 4 4 Number of transmitters 3(2) 3 3 2 3(2) On-chip memory — — 576KB 1.5MB 2MB Max I/F (Intermediate Frequency) (MHz) 20 15 5 5 10 Max real/complex 2x sampling rate (Msps) 45 37.5 12.5 12.5 25 22.5 18.75 6.25 6.25 12.5 MCU (R4F) — — Yes Yes Yes DSP (C674x) — — — Yes Yes Serial Peripheral Interface (SPI) ports 1 1 1 2 2 Quad Serial Peripheral Interface (QSPI) — — Yes Yes Yes Inter-Integrated Circuit (I2C) interface 1 — 1 1 1 Controller Area Network (DCAN) interface — — Yes Yes Yes CAN FD — — — Yes Yes Trace — — — Yes Yes PWM — — — Yes Yes FUNCTION Number of receivers Max complex 1x sampling rate (Msps) Processor Peripherals Hardware In Loop (HIL/DMM) — — — Yes Yes GPADC Yes — Yes Yes Yes LVDS/Debug(3) Yes Yes Yes Yes Yes CSI2 Yes Yes — — — Hardware accelerator — — Yes — Yes 1-V bypass mode Yes Yes Yes Yes Yes Cascade (20-GHz sync) Yes — — — — JTAG — — Yes Yes Yes Number of Tx that can be simultaneously used(2) 3(2) 2 2 2 3(2) Per chirp configurable Tx phase shifter Yes — — — Yes PD PD PD PD PD Product status(4) (1) (2) (3) (4) PRODUCT PREVIEW (PP), ADVANCE INFORMATION (AI), or PRODUCTION DATA (PD) Developed for Functional Safety applications, the device supports hardware integrity upto ASIL-B. Refer to the related documentation for more details. 3 Tx Simultaneous operation is supported only in AWR1843 and AWR2243 with 1V LDO bypass and PA LDO disable mode. In this mode 1V supply needs to be fed on the VOUT PA pin. The LVDS interface is not a production interface and is only used for debug PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AWR2243 7 AWR2243 www.ti.com SWRS223C – FEBRUARY 2020 – REVISED JUNE 2022 6.1 Related Products For information about other devices in this family of products or related products see the links that follow. mmWave Sensors TI’s mmWave sensors rapidly and accurately sense range, angle and velocity with less power using the smallest footprint mmWave sensor portfolio for automotive applications. Automotive TI’s automotive mmWave sensor portfolio offers high-performance radar front end to ultrammWave Sensors high resolution, small and low-power single-chip radar solutions. TI’s scalable sensor portfolio enables design and development of ADAS system solution for every performance, application and sensor configuration ranging from comfort functions to safety functions in all vehicles. 8 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AWR2243 AWR2243 www.ti.com SWRS223C – FEBRUARY 2020 – REVISED JUNE 2022 7 Terminal Configuration and Functions 7.1 Pin Diagram Figure 7-1 shows the pin locations for the 161-pin FCBGA package. Figure 7-2, Figure 7-3, Figure 7-4, and Figure 7-5 show the same pins, but split into four quadrants. 1 2 3 A VSSA VOUT_PA VSSA B FM_CW _SYNCIN1 VOUT_PA VSSA TX1 VSSA TX2 VSSA C VSSA VIN _13RF2 VSSA VSSA VSSA VSSA VSSA D FM_CW _SYNCOUT VIN _13RF2 E VSSA VSSA VSSA VSS RX4 VSSA VIN_18BB VSSA VSSA VIN _13RF1 RX3 VSSA VIN _13RF1 VSSA VSSA VIN _13RF1 RX2 VSSA VIN_18BB VSSA VSSA VSS RX1 VSSA F G VSSA H J VSSA K L VSSA M 4 5 6 7 VSSA 8 9 10 VSSA VOUT _14APLL TX3 VSSA VBGAP VSSA VSSA VSSA 11 VIN _18CLK 12 VIN _18VCO 13 14 15 VOUT _14SYNTH OSC _CLKOUT VSSA VSSA VSSA FM_CW _CLKOUT ANAMUX VSENSE VSSA VIOIN _18DIFF N VSSA VSSA VSSA GPIO[0] P Analog Test 1 Analog Test 2 Analog Test 3 I2C_SCL R VSSA Analog Test 4 I2C_SDA Reserved RS232_RX VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS VSS RS232_TX VDDIN SPI_CS_1 VSSA CLKP VSS VDDIN CLKM Reserved CSI2 _TXM[0] CSI2 _TXP[0] TDI CSI2 _TXM[1] CSI2 _TXP[1] TDO CSI2_CLKM CSI2_CLKP VIOIN_18 CSI2 _TXM[2] CSI2 _TXP[2] TMS CSI2 _TXM[3] CSI2 _TXP[3] TCK HS_M _Debug1 HS_P _Debug1 VSS VSS VSS VSS GPIO[1] VSS VSS VSS VSS MISO_1 SPI_HOST_INTR_1NERROR_IN Reserved VSS VSS VSS VSS NERROR_OUTMCU_CLK_OUT FM_CW _SYNCIN2 VSSA Sync_in VDDIN WARM _RESET GPIO[2] HS_M _Debug2 HS_P _Debug2 QSPI_CS QSPI[1] QSPI[3] Sync_out NRESET PMIC_CLK_OUT VNWA VDDIN MOSI_1 SPI_CLK_1 QSPI_CLK QSPI[0] QSPI[2] VIOIN VIN_SRAM VSS Not to scale Figure 7-1. Pin Diagram Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AWR2243 9 AWR2243 www.ti.com SWRS223C – FEBRUARY 2020 – REVISED JUNE 2022 1 2 3 A VSSA VOUT_PA VSSA B FM_CW _SYNCIN1 VOUT_PA VSSA TX1 VSSA TX2 VSSA TX3 C VSSA VIN _13RF2 VSSA VSSA VSSA VSSA VSSA VSSA D FM_CW _SYNCOUT VIN _13RF2 E VSSA VSSA VSSA VSS VSS RX4 VSSA VIN_18BB VSSA VSSA VIN _13RF1 F G VSSA 4 5 6 7 VSSA 8 VSSA VSS VSS VSS VSS Not to scale 1 2 3 4 Figure 7-2. Top Left Quadrant 9 10 11 A VSSA VOUT _14APLL B VSSA VBGAP C VSSA VIN _18CLK 12 VIN _18VCO 13 14 15 VOUT _14SYNTH OSC _CLKOUT VSSA VSSA VSSA FM_CW _CLKOUT ANAMUX VSENSE VSSA VIOIN _18DIFF D E VSS F VSS G VSS FM_CW _SYNCIN2 VSS VSSA CLKP VSS VDDIN CLKM Reserved CSI2 _TXM[0] VSSA CSI2 _TXP[0] Not to scale 1 2 3 4 Figure 7-3. Top Right Quadrant 10 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AWR2243 AWR2243 www.ti.com SWRS223C – FEBRUARY 2020 – REVISED JUNE 2022 1 H J VSSA K L VSSA M 2 3 4 RX3 VSSA VIN _13RF1 VSSA VSSA VIN _13RF1 RX2 VSSA VIN_18BB VSSA VSSA VSS VSS RX1 VSSA RS232_RX RS232_TX N VSSA VSSA VSSA GPIO[0] P Analog Test 1 Analog Test 2 Analog Test 3 I2C_SCL R VSSA Analog Test 4 I2C_SDA Reserved 5 6 7 VSS VSS VSS VSS VSS VSS VSS GPIO[1] MISO_1 SPI_HOST_INTR_1NERROR_IN Reserved 8 VDDIN SPI_CS_1 NERROR_OUT QSPI_CS MOSI_1 Not to scale 1 2 3 4 Figure 7-4. Bottom Left Quadrant Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AWR2243 11 AWR2243 www.ti.com SWRS223C – FEBRUARY 2020 – REVISED JUNE 2022 9 H 10 11 VSS 12 VSS J VSS K VSS VSS L VSS VSS M 13 14 15 TDI CSI2 _TXM[1] CSI2 _TXP[1] TDO CSI2_CLKM CSI2_CLKP VIOIN_18 CSI2 _TXM[2] CSI2 _TXP[2] TMS CSI2 _TXM[3] CSI2 _TXP[3] TCK HS_M _Debug1 HS_P _Debug1 N MCU_CLK_OUT Sync_in VDDIN WARM _RESET GPIO[2] HS_M _Debug2 HS_P _Debug2 P QSPI[1] QSPI[3] Sync_out NRESET PMIC_CLK_OUT VNWA VDDIN R SPI_CLK_1 QSPI_CLK QSPI[0] QSPI[2] VIOIN VIN_SRAM VSS Not to scale 1 2 3 4 Figure 7-5. Bottom Right Quadrant 12 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AWR2243 AWR2243 www.ti.com SWRS223C – FEBRUARY 2020 – REVISED JUNE 2022 7.2 Signal Descriptions Table 7-1 lists the pins by function and describes that function. Note All IO pins of the device (except NERROR IN, NERROR_OUT, and WARM_RESET) are non-failsafe; hence, care needs to be taken that they are not driven externally without the VIO supply being present to the device. Table 7-1. Signal Descriptions FUNCTION Transmitters Receivers CSI2 TX Chip-to-chip cascading synchronization signals PIN NUMBER PIN TYPE DEFAULT PULL STATUS(1) TX1 B4 O — Single-ended transmitter1 o/p TX2 B6 O — Single-ended transmitter2 o/p TX3 B8 O — Single-ended transmitter3 o/p RX1 M2 I — Single-ended receiver1 i/p RX2 K2 I — Single-ended receiver2 i/p RX3 H2 I — Single-ended receiver3 i/p RX4 F2 I — Single-ended receiver4 i/p CSI2_TXP[0] G15 O — CSI2_TXM[0] G14 O — Differential data Out – Lane 0 (for CSI and LVDS debug interface) CSI2_CLKP J15 O — CSI2_CLKM J14 O — CSI2_TXP[1] H15 O — CSI2_TXM[1] H14 O — CSI2_TXP[2] K15 O — CSI2_TXM[2] K14 O — CSI2_TXP[3] L15 O — CSI2_TXM[3] L14 O — HS_DEBUG1_P M15 O — HS_DEBUG1_M M14 O — HS_DEBUG2_P N15 O — HS_DEBUG2_M N14 O — FM_CW_CLKOUT B15 FM_CW_SYNCOUT D1 O — 20-GHz single-ended output. Modulated waveform FM_CW_SYNCIN1 B1 FM_CW_SYNCIN2 D15 I — 20-GHz single-ended input. Only one of these pins should be used. Multiple instances for layout flexibility. A14 O — Reference clock output from clocking subsystem after cleanup PLL. Can be used by the secondary chip in multichip cascading SYNC_OUT P11 O Pull Down Low-frequency frame synchronization signal output. Can be used by the secondary chip in multichip cascading SYNC_IN N10 I Pull Down Low-frequency frame synchronization signal input. This signal could also be used as a hardware trigger for frame start SIGNAL NAME Reference clock OSC_CLKOUT System synchronization DESCRIPTION Differential clock Out (for CSI and LVDS debug interface) Differential data Out – Lane 1 (for CSI and LVDS debug interface) Differential data Out – Lane 2 (for CSI and LVDS debug interface) Differential data Out – Lane 3 (for CSI and LVDS debug interface) Differential debug port 1 (for LVDS debug interface) Differential debug port 2 (for LVDS debug interface) Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AWR2243 13 AWR2243 www.ti.com SWRS223C – FEBRUARY 2020 – REVISED JUNE 2022 Table 7-1. Signal Descriptions (continued) FUNCTION SIGNAL NAME PIN NUMBER PIN TYPE DEFAULT PULL STATUS(1) DESCRIPTION SPI control interface from external MCU (default peripheral mode) SPI_CS_1 R7 I Pull Up SPI_CLK_1 R9 I Pull Down MOSI_1 R8 I Pull Up SPI data input MISO_1 P5 O Pull Up SPI data output SPI_HOST_INTR_1 P6 O Pull Down Reserved RESERVED R4, R5 NRESET P12 I — Power on reset for chip. Active low. The NRESET needs to be pulled low for a minimum of 20 μsec to ensure proper device reset. WARM_RESET(3) N12 O Open Drain Open-drain fail-safe warm reset signal. Can be used as a status signal that the device is going through reset. SOP2 P13 I — SOP1 P11 I — SOP0 J13 I — The SOP pins are driven externally (weak drive) and the AWR device senses the state of these pins during bootup to decide the bootup mode. After boot the same pins have other functionality. [SOP2 SOP1 SOP0] = [0 0 1] -> Functional SPI mode [SOP2 SOP1 SOP0] = [1 0 1] -> Flashing mode [SOP2 SOP1 SOP0] = [0 1 1] -> debug mode [SOP2 SOP1 SOP0] = [1 1 1] -> Functional I2C mode NERROR_OUT N8 O Open Drain Open-drain fail-safe output signal. Connected to PMIC/Processor/MCU to indicate that some severe criticality fault has happened. Recovery would be through reset. NERROR_IN P7 I Open Drain Fail-safe input to the device. Error output from any other device can be concentrated in the error signaling monitor module inside the device and appropriate action can be taken by firmware TMS L13 I Pull Up TCK M13 I Pull Down TDI H13 I Pull Up TDO J13 O — CLKP E14 I — In XTAL mode: Input for reference crystal In External clock mode: Single ended input reference clock port CLKM F14 O — In XTAL mode: Feedback drive for the reference crystal In External clock mode: Connect this port to ground VBGAP B10 O — Safety Reference oscillator 14 SPI interrupt to host Reserved. For debug purposes, it is recommended to have test points on these pins. Sense on Power Band-gap voltage SPI clock — Reset JTAG SPI chip select JTAG port for TI internal development. For debug purposes, it is recommended to have test points on these pins. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AWR2243 AWR2243 www.ti.com SWRS223C – FEBRUARY 2020 – REVISED JUNE 2022 Table 7-1. Signal Descriptions (continued) FUNCTION PIN NUMBER SIGNAL NAME VDDIN PIN TYPE F13,N11,P15 POW ,R6 DEFAULT PULL STATUS(1) — 1.2-V digital power supply VIN_SRAM R14 POW — 1.2-V power rail for internal SRAM VNWA P14 POW — 1.2-V power rail for SRAM array back bias VIOIN R13 POW — I/O supply (3.3-V or 1.8-V): All CMOS I/Os would operate on this supply. VIOIN_18 K13 POW — 1.8-V supply for CMOS IO VIN_18CLK B11 POW — 1.8-V supply for clock module VIOIN_18DIFF D13 POW — 1.8-V supply for CSI2 port Reserved G13 POW — No connect VIN_13RF1 G5,J5,H5 POW — VIN_13RF2 C2,D2 POW — 1.3-V Analog and RF supply,VIN_13RF1 and VIN_13RF2 could be shorted on the board VIN_18BB K5,F5 POW — 1.8-V Analog baseband power supply B12 VIN_18VCO POW — 1.8-V RF VCO supply VSS E5,E6,E8,E1 0,E11,F9,F11 ,G6,G7,G8,G 10,H7,H9,H1 1,J6,J7,J8,J1 GND 0,K7,K8,K9, K10,K11,L5, L6,L8,L10,R 15 — Digital ground VSSA A1,A3,A5,A7 ,A9,A15,B3, B5,B7,B9,B1 3,B14,C1,C3 ,C4,C5,C6,C 7,C8,C9,C15 ,E1,E2,E3,E 13,E15,F3,G 1,G2,G3,H3, J1,J2,J3,K3, L1,L2,L3, M3,N1,N2,N 3,R1 GND — Analog ground VOUT_14APLL A10 O — VOUT_14SYNTH A13 O — Power supply A2,B2 IO — When internal PA LDO is used this pin provides the output voltage of the LDO. When the internal PA LDO is bypassed and disabled 1V supply should be fed on this pin. This is mandatory in 3TX simultaneous use case. PMIC_CLK_OUT P13 O — Dithered clock input to PMIC MCU_CLK_OUT N9 O — Programmable clock given out to external MCU or the processor Internal LDO output/inputs VOUT_PA External clock out DESCRIPTION Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AWR2243 15 AWR2243 www.ti.com SWRS223C – FEBRUARY 2020 – REVISED JUNE 2022 Table 7-1. Signal Descriptions (continued) FUNCTION PIN NUMBER PIN TYPE DEFAULT PULL STATUS(1) GPIO[0] N4 IO Pull Down GPIO[1] N7 IO Pull Down SIGNAL NAME QSPI for Serial Flash(2) Flash programming and RS232 UART GPADC General purpose ADC inputs for external voltage monitoring (1) (2) (3) (4) 16 General-purpose IOs. These pins are also used to set the I2C address incase of functional I2C mode. GPIO[2:0] -> 0x000 -> I2C address 0x28 GPIO[2:0] -> 0x001 -> I2C address 0x29 GPIO[2:0] -> 0x111 -> I2C address 0x2F Generalpurpose I/Os I2C interface from external MCU (Target mode) DESCRIPTION GPIO[2] N13 IO Pull Down I2C_SDA R3 IO Open Drain I2C_SCL P4 I Open Drain QSPI_CS P8 O Pull Up QSPI_CLK R10 O Pull Down Clock output from the device. Device is a controller connected to serial flash peripheral. QSPI[0] R11 IO Pull Down Data IN/OUT QSPI[1] P9 IO Pull Down Data IN/OUT QSPI[2] R12 IO Pull Up Data IN/OUT QSPI[3] P10 IO Pull Up Data IN/OUT RS232_TX N6 O Pull Down RS232_RX N5 I Pull Up Analog Test1 / ADC1 P1 IO — ADC channel 1(4) Analog Test2 / ADC2 P2 IO — ADC channel 2(4) Analog Test3 / ADC3 P3 IO — ADC channel 3(4) Analog Test4 / ADC4 R2 IO — ADC channel 4(4) ANAMUX / ADC5 C13 IO — ADC channel 5(4) VSENSE / ADC6 C14 IO — ADC channel 6(4) It is recommended that the GPIO[0] signal is connected to the host processor digital pin for debug. For proper operations, the host processor needs to be able to drive a pulse on this pin. I2C data I2C clock The host interface of I2C is selected by booting the device in SOP mode 7 [111]. The I2C address is selected using the GPIO[2:0] pins. Chip-select output from the device. Device is a controller connected to serial flash peripheral. UART pins for programming external flash For debug purposes, it is recommended to have test points on these pins. Status of PULL structures associated with the IO after device POWER UP. This option is for development/debug in preproduction phase only. In the production version, the Functional Firmware will execute from ROM. For the AWR2243, WARM_RESET can be used as an output only pin for status indication. For details, see Section 9.4.2 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AWR2243 AWR2243 www.ti.com SWRS223C – FEBRUARY 2020 – REVISED JUNE 2022 8 Specifications 8.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) (2) MIN MAX VDDIN 1.2 V digital power supply PARAMETERS –0.5 1.4 V VIN_SRAM 1.2 V power rail for internal SRAM –0.5 1.4 V VNWA 1.2 V power rail for SRAM array back bias –0.5 1.4 V VIOIN I/O supply (3.3 V or 1.8 V): All CMOS I/Os would operate on this supply. –0.5 3.8 V VIOIN_18 1.8 V supply for CMOS IO –0.5 2 V VIN_18CLK 1.8 V supply for clock module –0.5 2 V VIOIN_18DIFF 1.8 V supply for CSI2 port –0.5 2 V VIN_13RF1 1.3 V Analog and RF supply, VIN_13RF1 and VIN_13RF2 could be shorted on the board. –0.5 1.45 V 1-V Internal LDO bypass mode. Device supports mode where external Power Management block can supply 1 V on VIN_13RF1 and VIN_13RF2 rails. In this configuration, the internal LDO of the device would be kept bypassed. –0.5 1.4 V VIN_18BB 1.8-V Analog baseband power supply –0.5 2 V VIN_18VCO supply 1.8-V RF VCO supply –0.5 2 V RX1-4 Externally applied power on RF inputs 10 dBm TX1-4 Externally applied power on RF outputs(3) 10 dBm VIN_13RF2 VIN_13RF1 VIN_13RF2 Input and output voltage range Dual-voltage LVCMOS inputs, 3.3 V or 1.8 V (Steady State) –0.3V Dual-voltage LVCMOS inputs, operated at 3.3 V/1.8 V (Transient Overshoot/Undershoot) or external oscillator input UNIT VIOIN + 0.3 VIOIN + 20% up to 20% of signal period V CLKP, CLKM Input ports for reference crystal –0.5 2 V Clamp current Input or Output Voltages 0.3 V above or below their respective power rails. Limit clamp current that flows through the internal diode protection cells of the I/O. –20 20 mA TJ Operating junction temperature range –40 140 °C TSTG Storage temperature range after soldered onto PC board –55 150 °C (1) (2) (3) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to VSS, unless otherwise noted. This value is for an externally applied signal level on the TX. Additionally, a reflection coefficient up to Gamma= 1 can be applied on the TX output. 8.2 ESD Ratings VALUE Human-body model (HBM), per AEC Q100-002(1) V(ESD) (1) Electrostatic discharge Charged-device model (CDM), per AEC Q100-011 All pins ±2000 All pins ±500 Corner pins (A1, A15, R1, R15) ±750 UNIT V AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AWR2243 17 AWR2243 www.ti.com SWRS223C – FEBRUARY 2020 – REVISED JUNE 2022 8.3 Power-On Hours (POH) JUNCTION TEMPERATURE (Tj) OPERATING CONDITION NOMINAL CVDD VOLTAGE (V) POWER-ON HOURS [POH] (HOURS)(1) (2) –40°C 600 (6%) 75°C 95°C (1) (2) 2000 (20%) 100% duty cycle 1.2 6500 (65%) 130°C 800 (8%) 140°C 100 (1%) This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard terms and conditions for TI semiconductor products. The specified POH are applicable with max Tx output power settings using the default firmware gain tables. The specified POH would not be applicable, if the Tx gain table is overwritten using an API. 8.4 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN NOM MAX UNIT VDDIN 1.2 V digital power supply 1.14 1.2 1.32 V VIN_SRAM 1.2 V power rail for internal SRAM 1.14 1.2 1.32 V VNWA 1.2 V power rail for SRAM array back bias 1.14 1.2 1.32 V VIOIN I/O supply (3.3 V or 1.8 V): All CMOS I/Os would operate on this supply. 3.135 3.3 3.465 1.71 1.8 1.89 VIOIN_18 1.8 V supply for CMOS IO 1.71 1.8 1.9 V VIN_18CLK 1.8 V supply for clock module 1.71 1.8 1.9 V VIOIN_18DIFF 1.8 V supply for CSI2 port 1.71 1.8 1.9 V VIN_13RF1 1.3 V Analog and RF supply. VIN_13RF1 and VIN_13RF2 could be shorted on the board 1.23 1.3 1.36 V 0.95 1 1.05 V VIN_13RF2 VIN_13RF1 (1-V Internal LDO bypass mode) VIN_13RF2 (1-V Internal LDO bypass mode) V VIN18BB 1.8-V Analog baseband power supply 1.71 1.8 1.9 V VIN_18VCO 1.8V RF VCO supply 1.71 1.8 1.9 V Voltage Input High (1.8 V mode) 1.17 Voltage Input High (3.3 V mode) 2.25 VIH VIL V Voltage Input Low (1.8 V mode) 0.3*VIOIN Voltage Input Low (3.3 V mode) 0.62 VOH High-level output threshold (IOH = 6 mA) VOL Low-level output threshold (IOL = 6 mA) 450 VIL (1.8V Mode) 0.45 NRESET SOP[2:0] VIOIN – 450 VIH (1.8V Mode) 0.65 VIH (3.3V Mode) TJ 18 mV 0.96 VIL (3.3V Mode) V mV V 1.57 Operating junction temperature range Submit Document Feedback -40 140 ℃ Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AWR2243 AWR2243 www.ti.com SWRS223C – FEBRUARY 2020 – REVISED JUNE 2022 8.5 Power Supply Specifications Table 8-1 describes the four rails from an external power supply block of the AWR2243 device. Table 8-1. Power Supply Rails Characteristics SUPPLY DEVICE BLOCKS POWERED FROM THE SUPPLY RELEVANT IOS IN THE DEVICE 1.8 V Synthesizer and APLL VCOs, crystal oscillator, IF Amplifier stages, ADC, CSI2 Input: VIN_18VCO, VIN18CLK, VIN_18BB, VIOIN_18DIFF, VIOIN_18IO LDO Output: VOUT_14SYNTH, VOUT_14APLL 1.3 V (or 1 V in internal LDO bypass mode)(1) Power Amplifier, Low Noise Amplifier, Mixers and LO Distribution Input: VIN_13RF2, VIN_13RF1 LDO Output: VOUT_PA 3.3 V (or 1.8 V for 1.8 V I/O mode) Digital I/Os Input VIOIN 1.2 V Core Digital and SRAMs Input: VDDIN, VIN_SRAM (1) Three simultaneous transmitter operation is supported only in 1-V LDO bypass and PA LDO disable mode. In this mode 1V supply needs to be fed on the VOUT PA pin. The 1.3V (1.0V) and 1.8V power supply ripple specifications mentioned in Table 8-2 are defined to meet a target spur level of –105dBc (RF Pin = –15dBm) at the RX. The spur and ripple levels have a dB to dB relationship, for example, a 1dB increase in supply ripple leads to a ~1dB increase in spur level. Values quoted are rms levels for a sinusoidal input applied at the specified frequency. Table 8-2. Ripple Specifications RF RAIL VCO/IF RAIL FREQUENCY (kHz) 1.0 V (INTERNAL LDO BYPASS) (µVRMS) 1.3 V (µVRMS) 1.8 V (µVRMS) 137.5 7 648 83 275 5 76 21 550 3 22 11 1100 2 4 6 2200 11 82 13 4400 13 93 19 6600 22 117 29 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AWR2243 19 AWR2243 www.ti.com SWRS223C – FEBRUARY 2020 – REVISED JUNE 2022 8.6 Power Consumption Summary Table 8-3 and Table 8-4 summarize the power consumption at the power terminals. Table 8-3. Maximum Current Ratings at Power Terminals PARAMETER(1) SUPPLY NAME VDDIN, VIN_SRAM, VNWA VIN_13RF1, VIN_13RF2 Current consumption (1) (2) (3) DESCRIPTION MIN TYP Total current drawn by all nodes driven by 1.2V rail MAX 850 Total current drawn by all nodes driven by 1.3V (or 1V in LDO Bypass mode) rail when 3 transmitters are used 2500 mA (2) VIOIN_18, VIN_18CLK, VIOIN_18DIFF, VIN_18BB, VIN_18VCO Total current drawn by all nodes driven by 1.8V rail VIOIN Total current drawn by all nodes driven by 3.3V rail(3) UNIT 850 50 The specified current values are at typical supply voltage level. Three transmitters can simultaneously be deployed in the AWR2243 device with 1V / LDO bypass and PA LDO disable mode. In this mode 1V supply needs to be fed on the VOUT PA pin. For a 2Tx use case, the peak 1V supply current goes up to 2000 mA. The exact VIOIN current depends on the peripherals used and their frequency of operation. Table 8-4. Average Power Consumption at Power Terminals PARAMETER CONDITION Average power 1.0-V internal LDO consumption in single chip bypass mode mode. DESCRIPTION 1TX, 4RX 2TX, 4RX 3TX, 4RX MIN The frame is set to 50% duty cycle. 4lane CSI interface is enabled at 600Mbps for ADC data transfer TYP MAX UNIT 1.42 1.62 W 1.82 Average power consumption in Cascade mode for Primary Sensor 1.0-V internal LDO bypass mode 3TX, 4RX The frame is set to 50% duty cycle. 4lane CSI interface is enabled at 600Mbps for ADC data transfer 1.97 W Average power consumption in Cascade mode for Secondary Sensor 1.0-V internal LDO bypass mode 3TX, 4RX The frame is set to 50% duty cycle. 4lane CSI interface is enabled at 600Mbps for ADC data transfer 1.85 W 20 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: AWR2243 AWR2243 www.ti.com SWRS223C – FEBRUARY 2020 – REVISED JUNE 2022 8.7 RF Specification over recommended operating conditions and with run time calibrations enabled (unless otherwise noted) PARAMETER MIN TYP 13 dB 1-dB compression point (Out Of Band)(1) –9 dBm Maximum gain 52 dB Gain range 20 dB 2 dB 30 dB Image Rejection Ratio (IMRR) IF bandwidth(2) A2D sampling rate (Real/ Complex 2x) A2D sampling rate (Complex 1x) A2D resolution Return loss (S11) Gain mismatch variation (over temperature) Phase mismatch variation (over temperature) Msps 12 Bits
AWR2243ABGABLQ1 价格&库存

很抱歉,暂时无法提供与“AWR2243ABGABLQ1”相匹配的价格&库存,您可以联系我们找货

免费人工找货