Product
Folder
Order
Now
Support &
Community
Tools &
Software
Technical
Documents
BQ35100
SLUSCM6E – JUNE 2016 – REVISED APRIL 2019
BQ35100 Lithium Primary Battery Fuel Gauge and End-Of-Service Monitor
1 Features
3 Description
•
The BQ35100 Battery Fuel Gauge and End-OfService Monitor provides highly configurable fuel
gauging for non-rechargeable (primary) lithium
batteries without requiring a forced discharge of the
battery. Built so that optimization is not necessary to
achieve accurate gauging, the BQ35100 device uses
patented TI gauging algorithms to support the option
to seamlessly replace an old battery with a new one.
1
•
•
Fuel gauge and battery diagnostics for flow meter
applications predict end-of-service or early battery
failure
– Supports lithium thionyl chloride (Li-SOCl2)
and lithium manganese dioxide (Li-MnO2)
chemistry batteries
– Accurate voltage, temperature, current, and
coulomb counter measurements that report
battery health and service life
– State-of-health (SOH) algorithm for Li-MnO2
– End-of-service (EOS algorithm for Li-SOCl2)
– Coulomb accumulation (ACC) algorithm for all
battery types
Ultra-low average power consumption to
maximize battery run time
– Gauge enabled through host-controlled
periodic updates
– State-of-health (SOH) ~0.06 µA
– End-of-service (EOS) ~0.35 µA
– Coulomb accumulation (ACC) diagnostic
updates ~0.3 µA
System interaction capabilities
– I2C host communication, providing battery
parameter and status access
– Configurable host interrupt
– Battery information data logging options for in
operation diagnostics and failure analysis
– SHA-1 authentication to help prevent
counterfeit battery use
The BQ35100 device provides accurate results with
ultra-low average power consumption where less
than 2 µA can be achieved through host control via
the GAUGE ENABLE (GE) pin. The device is only
required to be powered long enough, at a systemdetermined update frequency, to gather data and to
make calculations to support the selected algorithm.
A typical system may need to only be updated once
every 8 hours as the gauge is not required to be
powered to measure all discharge activity.
The fuel gauging functions use voltage, current, and
temperature measurements to provide state-of-health
(SOH) data and end-of-service (EOS) warning
information where the host can read the gathered
data through a 400-kHz I2C bus. An ALERT output,
based on a variety of configurable status and data
options, is also available to interrupt the host.
Device Information(1)
PART NUMBER
PACKAGE
BQ35100
TSSOP (14)
BODY SIZE (NOM)
5.00 mm × 4.40 mm
(1) For all available packages, see the orderable addendum at
the end of the data sheet.
Simplified Schematic
BAT+
2 Applications
•
•
•
Used in primary battery systems and suitable for
dynamic load and large ambient temperature
change applications
– Smart meters and flow meters
– Door access control
– Smoke and gas leak detectors
– Building automation
– IoT, including sensor nodes
– Asset tracking
Battery status reporting and diagnostics with early
failure detection for flow meter systems
Extends battery runtime with accurate battery
gauging for smoke detector, sensor node, and
asset tracker applications
REGIN
I2C CLK
10 k 10 k
I2C DATA
REG25
ALERT
1 VIN
100k
100
SDA 14
2 ALERT
SCL 13
3 NC
VEN 12
REG 25
10k NTC
4 BAT
GAUGE ENABLE
TS 11
0.1 µF
REGIN
VSUPPLY 1 M
REG25
1 µF
5 GE
SRN 10
6 REGIN
SRP 9
7 REG25
VSS 8
0.1 µF
0.1 µF
100
0.1
75 ppm
100
0.1 µF
1 µF
PACK–
Copyright © 2017, Texas Instruments Incorporated
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
BQ35100
SLUSCM6E – JUNE 2016 – REVISED APRIL 2019
www.ti.com
Table of Contents
1
2
3
4
5
6
Features ..................................................................
Applications ...........................................................
Description .............................................................
Revision History.....................................................
Pin Configuration and Functions .........................
Specifications.........................................................
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
1
1
1
2
4
5
Absolute Maximum Ratings ...................................... 5
ESD Ratings.............................................................. 5
Recommended Operating Conditions....................... 5
Thermal Information .................................................. 6
Power Supply Current Static Modes ......................... 6
Digital Input and Outputs ......................................... 6
Power-On Reset........................................................ 7
LDO Regulator .......................................................... 7
Internal Temperature Sensor .................................... 7
Internal Clock Oscillators ....................................... 7
Integrating ADC (Coulomb Counter)....................... 7
ADC (Temperature and Voltage Measurements) ... 8
Data Flash Memory................................................. 8
I2C-Compatible Interface Timing Characteristics .... 8
Typical Characteristics ........................................... 9
7
Detailed Description ............................................ 10
7.1
7.2
7.3
7.4
8
Overview .................................................................
Functional Block Diagram ......................................
Feature Description.................................................
Device Functional Modes........................................
10
10
10
15
Application and Implementation ........................ 17
8.1 Application Information .......................................... 17
8.2 Typical Applications ................................................ 17
9 Power Supply Recommendations...................... 21
10 Layout................................................................... 22
10.1 Layout Guidelines ................................................. 22
10.2 Layout Example .................................................... 22
10.3 ESD Spark Gap .................................................... 24
11 Device and Documentation Support ................. 25
11.1
11.2
11.3
11.4
11.5
11.6
Documentation Support ........................................
Receiving Notification of Documentation Updates
Community Resources..........................................
Trademarks ...........................................................
Electrostatic Discharge Caution ............................
Glossary ................................................................
25
25
25
25
25
25
12 Mechanical, Packaging, and Orderable
Information ........................................................... 25
4 Revision History
Changes from Revision D (May 2018) to Revision E
•
Page
Corrected a typo in Features ................................................................................................................................................. 1
Changes from Revision C (September 2017) to Revision D
Page
•
Added further information to Features and Applications ........................................................................................................ 1
•
Changed Recommended Operating Conditions .................................................................................................................... 5
•
Added Power Supply Current Static Modes ........................................................................................................................... 6
•
Changed Basic Measurement Systems ............................................................................................................................... 10
•
Changed Device Functional Modes ..................................................................................................................................... 15
•
Added EOS Mode Load Pulse Synchronization................................................................................................................... 20
•
Added Benefits of the bq35100 Gauge Compared to Alternative Monitoring Techniques .................................................. 20
Changes from Revision B (September 2016) to Revision C
Page
•
Changed Features, Applications, and Description ................................................................................................................ 1
•
Added Preparation for Gauging ........................................................................................................................................... 18
•
Changed Detailed Design Procedure .................................................................................................................................. 18
•
Added Using the bq35100 with a Battery and Capacitor in Parallel ................................................................................... 20
2
Submit Documentation Feedback
Copyright © 2016–2019, Texas Instruments Incorporated
Product Folder Links: BQ35100
BQ35100
www.ti.com
SLUSCM6E – JUNE 2016 – REVISED APRIL 2019
Changes from Revision A (July 2016) to Revision B
Page
•
Changed Device Information ................................................................................................................................................. 1
•
Changed Specifications ......................................................................................................................................................... 5
•
Changed Application Curves ............................................................................................................................................... 21
•
Changed VCC to VREG25 in Layout Guidelines ...................................................................................................................... 22
•
Changed VCC to VREG25 in Board Offset Considerations ..................................................................................................... 23
Submit Documentation Feedback
Copyright © 2016–2019, Texas Instruments Incorporated
Product Folder Links: BQ35100
3
BQ35100
SLUSCM6E – JUNE 2016 – REVISED APRIL 2019
www.ti.com
5 Pin Configuration and Functions
TSSOP (PW) Package
14-Pin
Top View
VIN
1
14
SDA
ALERT
2
13
SCL
NC
3
12
VEN
BAT
4
11
TS
GE
5
10
SRN
REGIN
6
9
SRP
REG25
7
8
V
SS
Not to scale
Pin Functions
(1)
4
NUMBER
NAME
I/O
1
VIN
AI (1)
DESCRIPTION
2
ALERT
O
Active low interrupt open-drain output. Requires an external pullup
3
NC
—
Not used and should be connected to VSS.
4
BAT
P
Voltage measurement input and can be left floating or tied to VSS if not used.
5
GE
I
Gauge enable. Internal LDO is disconnected from REGIN when driven low.
6
REGIN
P
Internal integrated LDO input. Decouple with 0.1-µF ceramic capacitor to VSS.
7
REG25
P
2.5-V output voltage of the internal integrated LDO. Decouple with 1-µF ceramic capacitor
VSS.
8
VSS
P
Device ground
9
SRP
I
Analog input pin connected to the internal coulomb-counter peripheral for integrating a small
voltage between SRP and SRN where SRP is nearest the BAT– connection.
10
SRN
I
Analog input pin connected to the internal coulomb-counter peripheral for integrating a small
voltage between SRP and SRN where SRN is nearest the PACK– connection.
Optional voltage measurement input
11
TS
I
Pack thermistor voltage sense (use 103AT-type thermistor)
12
VEN
O
Optional open-drain external voltage divider control output
13
SCL
I
Slave I2C serial communication clock input. Use with a 10-K pullup resistor (typical).
14
SDA
I/O
Open-drain slave I2C serial communication data line. Use with a 10-kΩ pullup resistor
(typical).
P = Power Connection, O = Digital Output, AI = Analog Input, I = Digital Input, I/OD = Digital Input/Output
Submit Documentation Feedback
Copyright © 2016–2019, Texas Instruments Incorporated
Product Folder Links: BQ35100
BQ35100
www.ti.com
SLUSCM6E – JUNE 2016 – REVISED APRIL 2019
6 Specifications
6.1 Absolute Maximum Ratings
Over-operating free-air temperature range (unless otherwise noted) (1)
MIN
MAX
UNIT
VREGIN
Regulator Input Range
–0.3
5.5
V
VREG25
Supply Voltage Range
–0.3
2.75
V
Open-drain I/O pins (SDA, SCL, VEN)
–0.3
5.5
V
Open-drain I/O pins (ALERT)
–0.3
2.75
V
VBAT
BAT Input Pin
–0.3
5.5
V
VI
Input voltage range (SRN, SRP, TS)
–0.3
VREG25 + 0.3
V
TA
Operating free-air temperature range
–40
85
°C
TF
Functional Temperature Range
–40
100
°C
Storage temperature range
–65
150
°C
Lead temperature (soldering, 10 s)
–40
100
°C
VIOD
TSTG
(1)
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute–maximum–rated conditions for extended periods may affect device reliability.
6.2 ESD Ratings
VALUE
V(ESD)
Electrostatic
discharge
Human Body Model (HBM), per ANSI/ESDA/JEDEC JS-001 (1), BAT pin
±1500
Human Body Model (HBM), per ANSI/ESDA/JEDEC JS-001 (1), all other pins
±2000
Charged-device model (CDM), per JEDEC specification JESD22-C101
(1)
(2)
(2)
UNIT
V
±500
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
6.3 Recommended Operating Conditions
TA =–40°C to 85°C; Typical Values at TA = 25°C CLDO25 = 1.0 μF, and VREGIN = 3.6 V (unless otherwise noted)
MIN
VREGIN
CREGIN
CLDO25
Supply Voltage
No operating restrictions
No FLASH writes
External input capacitor
for internal LDO
between REGIN and
Nominal capacitor values specified.
VSS
Recommend a 10% ceramic X5R type
capacitor located close to the device.
External output
capacitor for internal
LDO between VREG25
NOM
MAX
UNIT
2.7
4.5
V
2.45
2.7
V
0.47
0.1
µF
1
µF
0.05
µA
0.3
µA
ICC_GELOW (1)
Gas gauge in Disabled
mode
ICC_ACC_AVE (1)
Gas gauge in
ACCUMULATOR mode Update every 30 minutes otherwise GE = Low
average current
ICC_SOH_AVE (1)
State-of-health average
Update every 8 hours otherwise GE = Low
current
0.06
µA
ICC_EOS_AVE (1)
End-of-service average Update every 8 hours 3- s Load Pulse
current
otherwise GE = Low
0.35
µA
VA1
Input voltage range
(VIN, TS)
VSS – 0.05
1
V
VA2
Input voltage range
(BAT)
VSS – 0.125
5.0
V
(1)
GE = Low
Not production tested
Submit Documentation Feedback
Copyright © 2016–2019, Texas Instruments Incorporated
Product Folder Links: BQ35100
5
BQ35100
SLUSCM6E – JUNE 2016 – REVISED APRIL 2019
www.ti.com
Recommended Operating Conditions (continued)
TA =–40°C to 85°C; Typical Values at TA = 25°C CLDO25 = 1.0 μF, and VREGIN = 3.6 V (unless otherwise noted)
MIN
VA3
Input voltage range
(SRP, SRN)
ILKG
Input leakage current
(I/O pins)
tPUCD
Power-up
communication
NOM
VSS – 0.125
MAX
UNIT
0.125
V
0.3
µA
250
ms
6.4 Thermal Information
BQ35100
THERMAL METRIC (1)
TSSOP (PW)
UNIT
14 PINS
RθJA, High K
Junction-to-ambient thermal resistance
103.8
°C/W
RθJC(top)
Junction-to-case(top) thermal resistance
31.9
°C/W
RθJB
Junction-to-board thermal resistance
46.6
°C/W
ψJT
Junction-to-top characterization parameter
2.0
°C/W
ψJB
Junction-to-board characterization parameter
45.9
°C/W
RθJC(bottom)
Junction-to-case(bottom) thermal resistance
N/A
°C/W
(1)
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report, SPRA953.
6.5 Power Supply Current Static Modes
over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
ICC_ACCU (1)
Gas gauge in
ACCUMULATOR mode
GE = High AND GaugeStart()
received and GaugeStop() not
Received (GMSEL1,0 = 0,0)
130
µA
ICC_SOH (1)
State-of-health operating
current
GE = High AND GaugeStart()
received and GaugeStop() not
Received (GMSEL1,0 = 0,1)
40
µA
ICC_EOS_Burst (1)
End-of-service operating
current—data burst
GE = High AND GaugeStart()
received and GaugeStop() not
Received (GMSEL1,0 = 1,0)
315
µA
ICC_EOS_Gather (1)
End-of-service operating
current—data gathering
GE = High AND GaugeStart() AND
GaugeStop() Received (GMSEL1,0
= 1,0)
75
µA
ICC_GELOW (1)
Device Disabled
GE = LOW
0.05
µA
(1)
Not production tested
6.6 Digital Input and Outputs
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
VOL
Output voltage low (SDA, SCL,
VEN)
IOL = 3 mA
VOH(PP)
Output high voltage
IOH = –1 mA
VREG25 – 0.5
V
VOH(OD)
Output high voltage (SDA, SCL,
VEN, ALERT)
External pullup resistor connected to
VREG25
VREG25 – 0.5
V
VIL
Input voltage low (SDA, SCL)
–0.3
0.6
V
VIH
Input voltage high (SDA, SCL)
1.2
5.5
V
VIL(GE)
GE Low-level input voltage
VIH(GE)
GE High-level input voltage
Ilkg
Input leakage current (I/O pins)
6
VREGIN = 2.8 to 4.5 V
0.4
0.8
2.65
0.3
Submit Documentation Feedback
V
V
μA
Copyright © 2016–2019, Texas Instruments Incorporated
Product Folder Links: BQ35100
BQ35100
www.ti.com
SLUSCM6E – JUNE 2016 – REVISED APRIL 2019
6.7 Power-On Reset
TA = –40°C to 85°C; Typical Values at TA = 25°C and VREGIN = 3.6 V (unless otherwise noted)
PARAMETER
VIT+
Positive-going battery voltage
input at REG25
VHYS
Power-on reset hysteresis
TEST CONDITIONS
MIN
TYP
MAX
UNIT
2.05
2.20
2.31
V
115
mV
6.8 LDO Regulator
TA = 25°C, CLDO25 = 1.0 μF, VREGIN = 3.6 V (unless otherwise noted) (1)
PARAMETER
VREG25
ISHORT (2)
(1)
(2)
Regulator output voltage
Short circuit current limit
TEST CONDITIONS
MIN
TYP
MAX
2.7 V ≤ VREGIN ≤ 4.5 V, IOUT ≤ 16 mA TA = –40°C
to 85°C
2.3
2.5
2.7
2.45 V ≤ VREGIN < 2.7 V, IOUT ≤ 3 mA TA =
–40°C to 85°C
2.3
UNIT
V
VREG25 = 0 V
TA = –40°C to 85°C
250
mA
LDO output current, IOUT, is the sum of internal and external load currents.
Specified by design. Not production tested.
6.9 Internal Temperature Sensor
TA = –40°C to 85°C, 2.4 V < REG25 < 2.6 V; Typical Values at TA = 25°C and REG25 = 2.5 V (unless otherwise noted)
PARAMETER
GTEMP
TEST CONDITIONS
MIN
Internal temperature sensor
voltage gain
TYP
MAX
–2
UNIT
mV/°C
6.10 Internal Clock Oscillators
TA = –40°C to 85°C, 2.4 V < REG25 < 2.6 V; Typical Values at TA = 25°C and REG25 = 2.5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
f(LOSC)
Operating frequency
32.768
kHz
f(OSC)
Operating frequency
2.097
MHz
t(SXO)
Start-up time (1)
(1)
2.5
5
ms
The startup time is defined as the time it takes for the oscillator output frequency to be ±3%.
6.11 Integrating ADC (Coulomb Counter)
TA = –40°C to 85°C, 2.4 V < REG25 < 2.6 V; Typical Values at TA = 25°C and REG25 = 2.5 V (unless otherwise noted)
PARAMETER
V(SR)
tSR_CONV
Input voltage range,
V(SRN) and V(SRP)
V(SR) = V(SRN) – V(SRP)
Conversion time
Single conversion
Resolution
VOS(SR)
Input offset
INL
Integral nonlinearity
error
ZIN(SR)
Effective input
resistance (2)
ILKG(SR)
Input leakage
current (2)
(1)
(2)
TEST CONDITIONS
MIN
TYP
–0.125
MAX
UNIT
0.125
V
1
14
s
15
10
bits
µV
FSR (1)
±0.007%
2.5
MΩ
0.3
µA
Full-scale reference
Specified by design. Not tested in production.
Submit Documentation Feedback
Copyright © 2016–2019, Texas Instruments Incorporated
Product Folder Links: BQ35100
7
BQ35100
SLUSCM6E – JUNE 2016 – REVISED APRIL 2019
www.ti.com
6.12 ADC (Temperature and Voltage Measurements)
TA = –40°C to 85°C, 2.4 V < REG25 < 2.6 V; Typical Values at TA = 25°C and REG25 = 2.5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
VIN(BAT)
BAT Input range
VSS – 0.125
5
VIN(TSAT)
TS Input range
VSS – 0.125
VREG25
tSR_CONV
Conversion time
Resolution
Input offset
ZADC1
Effective input
resistance(TS) (1)
ZADC2
Effective input
resistance(BAT) (1)
ILKG(ADC)
Input leakage
current (1)
V
V
125
14
VOS(SR)
(1)
Single conversion
UNIT
ms
15
bits
1
With internal pull-down activated
5
When not measuring
8
During measurement
µV
kΩ
MΩ
100
kΩ
0.3
µA
Specified by design. Not tested in production.
6.13 Data Flash Memory
TA = –40°C to 85°C, 2.4 V < REG25 < 2.6 V; Typical Values at TA = 25°C and REG25 = 2.5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
Data retention
tDR
(1)
Flash-programming write cycles (1)
tWORDPROG
Word programming time (1)
ICCPROG
Flash-write supply current (1)
(1)
MIN
TYP
MAX
UNIT
10
Years
20,000
Cycles
5
2
ms
10
mA
Specified by design. Not tested in production.
6.14 I2C-Compatible Interface Timing Characteristics
TA = –40°C to 85°C, 2.45 V < VREGIN = VBAT < 5.5 V; Typical Values at TA = 25°C and VBAT = 3.6 V (unless otherwise noted)
MIN
NOM
MAX
UNIT
tR
SCL/SDA rise time
300
ns
tF
SCL/SDA fall time
300
ns
tW(H)
SCL pulse width (high)
600
ns
tW(L)
SCL pulse width (low)
1.3
µs
tSU(STA)
Setup for repeated start
600
ns
td(STA)
Start to first falling edge of SCL
600
ns
tSU(DAT)
Data setup time
100
ns
th(DAT)
Data hold time
tSU(STOP)
Setup time for stop
tBUF
Bus free time between stop and start
fSCL
Clock frequency
8
0
ns
600
ns
66
µs
400
Submit Documentation Feedback
kHz
Copyright © 2016–2019, Texas Instruments Incorporated
Product Folder Links: BQ35100
BQ35100
www.ti.com
SLUSCM6E – JUNE 2016 – REVISED APRIL 2019
tSU(STA)
tw(H)
tf
tw(L)
tr
t(BUF)
SCL
SDA
td(STA)
tsu(STOP)
tf
tr
th(DAT)
tsu(DAT)
REPEATED
START
STOP
START
Figure 1. I2C-Compatible Interface Timing Diagrams
6.15 Typical Characteristics
15
25
20
10
Current Error (mA)
Voltage Error (mV)
15
5
0
-5
-10
10
5
0
-5
-10
-15
-15
-20
2800
-40qC
-20qC
3000
3200
25qC
65qC
85qC
-40qC
-20qC
-20
3400 3600 3800
Battery Voltage (mV)
4000
4200
4400
-25
-3000
-2000
25qC
65qC
-1000
D001
Figure 2. V(Err) Across VIN (0 mA)
85qC
0
1000
Current (mA)
2000
3000
D003
Figure 3. I(Err)
2
1
Temperature Error (qC)
0
-1
-2
-3
-4
-5
-6
-7
-8
-9
-40
-20
0
20
40
Temperature (qC)
60
80
100
D004
Figure 4. T(Err)
Submit Documentation Feedback
Copyright © 2016–2019, Texas Instruments Incorporated
Product Folder Links: BQ35100
9
BQ35100
SLUSCM6E – JUNE 2016 – REVISED APRIL 2019
www.ti.com
7 Detailed Description
7.1 Overview
The BQ35100 Battery Fuel Gauge and End-Of-Service Monitor provides gas gauging for lithium thionyl
chloride (Li-SOCl2) and lithium manganese dioxide (Li-MnO2) primary batteries without requiring any forced
discharge of the battery. The lithium primary gas gauging function uses voltage, current, and temperature
data to provide state-of-health (SOH) and end-of-service (EOS) data.
7.2 Functional Block Diagram
REGIN
GE
2.5-V LDO
+
Power Mgmt
REG25
Oscillator
System Clock
Divider
BAT
VIN
ADC
TS
Temp
Sensor
SDA
SCL
I2C
Communications
Gauging
Algorithm
Coulomb
Counter
SRP
SRN
VEN
Peripherals
ALERT
Data
Memory
NC
VSS
Program
Memory
Copyright © 2017 , Texas Instruments Incorporated
7.3 Feature Description
7.3.1 Basic Measurement Systems
7.3.1.1 Voltage
The device measures the BAT input using the integrated delta-sigma ADC, which is scaled by the internal
translation network, through the ADC. The translation gain function is determined by a calibration process.
In systems where the battery voltage is greater than VIN(BAT) MAX (for example, 2-series cell or more), then an
external voltage scaling circuit is required. The firmware then scales this