0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
CD74HC297EG4

CD74HC297EG4

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    DIP16

  • 描述:

  • 详情介绍
  • 数据手册
  • 价格&库存
CD74HC297EG4 数据手册
[ /Title (CD74 HC297 , CD74 HCT29 7) /Subject (HighSpeed CMOS Logic Digital PhaseLocked CD54HC297, CD74HC297, CD74HCT297 Data sheet acquired from Harris Semiconductor SCHS177B High-Speed CMOS Logic Digital Phase-Locked Loop November 1997 - Revised May 2003 Features Description • Digital Design Avoids Analog Compensation Errors The ’HC297 and CD74HCT297 are high-speed silicon gate CMOS devices that are pin-compatible with low power Schottky TTL (LSTTL). • Easily Cascadable for Higher Order Loops • Useful Frequency Range - K-Clock . . . . . . . . . . . . . . . . . . . . . . . . . .DC to 55MHz (Typ) - I/D-Clock . . . . . . . . . . . . . . . . . . . . DC to 35MHz (Typ) These devices are designed to provide a simple, cost-effective solution to high-accuracy, digital, phase-locked-loop applications. They contain all the necessary circuits, with the exception of the divide-by-N counter, to build first-order phase-locked-loops. • Dynamically Variable Bandwidth • Very Narrow Bandwidth Attainable Both EXCLUSIVE-OR (XORPD) and edge-controlled phase detectors (ECPD) are provided for maximum flexibility. The input signals for the EXCLUSIVE-OR phase detector must have a 50% duty factor to obtain the maximum lock-range. • Power-On Reset • Output Capability - Standard . . . . . . . . . . . . . . . . . . . . XORPDOUT, ECPDOUT - Bus Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I/DOUT Proper partitioning of the loop function, with many of the building blocks external to the package, makes it easy for the designer to incorporate ripple cancellation (see Figure 2) or to cascade to higher order phase-locked-loops. • Fanout (Over Temperature Range) - Standard Outputs . . . . . . . . . . . . . . . . . . 10 LSTTL Loads - Bus Driver Outputs . . . . . . . . . . . . . 15 LSTTL Loads The length of the up/down K-counter is digitally programmable according to the K-counter function table. With A, B, C and D all LOW, the K-counter is disabled. With A HIGH and B, C and D LOW, the K-counter is only three stages long, which widens the bandwidth or capture range and shortens the lock time of the loop. When A, B, C and D are all programmed HIGH, the K-counter becomes seventeen stages long, which narrows the bandwidth or capture range and lengthens the lock time. Real-time control of loop bandwidth by manipulating the A to D inputs can maximize the overall performance of the digital phase-locked-loop. • Balanced Propagation Delay and Transition Times • Significant Power Reduction Compared to LSTTL Logic ICs • ’HC297 Types - Operation Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 to 6V - High Noise Immunity NIL = 30%, NIH = 30% of VCC at 5V • CD74HCT297 Types - Operation Voltage . . . . . . . . . . . . . . . . . . . . . . . . 4.5 to 5.5V - Direct LSTTL Input Logic Compatibility VIL = 0.8V (Max), VIH = 2V (Min) - CMOS Input Compatibility II ≤ 1µA at VOL, VOH The ’HC297 and CD74HCT297 can perform the classic first order phase-locked-loop function without using analog components. The accuracy of the digital phase-locked-loop (DPLL) is not affected by VCC and temperature variations but depends solely on accuracies of the K-clock and loop propagation delays. Pinout CD54HC297 (CERDIP) CD74HC297, CD74HCT29 (PDIP) TOP VIEW Ordering Information PART NUMBER B 1 16 VCC A 2 15 C ENCTR 3 14 D KCP 4 I/DCP 5 D/U 6 I/DOUT 7 GND 8 13 φA2 TEMP. RANGE (oC) CD54HC297F3A -55 to 125 16 Ld CERDIP CD74HC297E -55 to 125 16 Ld PDIP CD74HCT297E -55 to 125 16 Ld PDIP 12 ECPDOUT 11 XORPDOUT 10 φB 9 φA 1 CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures. Copyright © 2003, Texas Instruments Incorporated 1 PACKAGE CD54HC297, CD74HC297, CD74HCT297 Functional Diagram The phase detector generates an error signal waveform that, at zero phase error, is a 50% duty factor square wave. At the limits of linear operation, the phase detector output will be either HIGH or LOW all of the time depending on the direction of the phase error (φIN - φOUT). Within these limits the phase detector output varies linearly with the input phase error according to the gain Kd, which is expressed in terms of phase detector output per cycle or phase error. The phase detector output can be defined to vary between ±1 according to the relation: D 4 KCP 6 D/U 3 C 14 15 B A 1 2 CARRY MODULO-K COUNTER 5 I/DCP 9 φA1 11 10 φB The output of the phase detector will be Kdφe, where the phase error φe = φIN - φOUT. I/DOUT I/D CKT ENCTR %HIGH - %LOW phase detector output = -------------------------------------------100 7 BORROW J 13 φA2 K F/F 12 Q XORPDOUT ECPDOUT FUNCTION TABLE EXCLUSIVE-OR PHASE DETECTOR EXCLUSIVE-OR phase detectors (XORPD) and edge-controlled phase detectors (ECPD) are commonly used digital types. The ECPD is more complex than the XORPD logic function but can be described generally as a circuit that changes states on one of the transitions of its inputs. The gain (Kd) for an XORPD is 4 because its output remains HIGH (XORPDOUT = 1) for a phase error of one quarter cycle. Similarly, Kd for the ECPD is 2 since its output remains HIGH for a phase error of one half cycle. The type of phase detector will determine the zero-phase-error point, i.e., the phase separation of the phase detector inputs for a φe defined to be zero. For the basic DPLL system of Figure 3, φe = 0 when the phase detector output is a square wave. φA1 φB XORPD OUT L L L L H H H L H H H L FUNCTION TABLE EDGE-CONTROLLED PHASE DETECTOR The XORPD inputs are one quarter cycle out-of-phase for zero phase error. For the ECPD, φe = 0 when the inputs are one half cycle out of phase. The phase detector output controls the up/down input to the K-counter. The counter is clocked by input frequency Mfc which is a multiple M of the loop center frequency fc. When the K-counter recycles up, it generates a carry pulse. Recycling while counting down generates a borrow pulse. If the carry and the borrow outputs are conceptually combined into one output that is positive for a carry and negative for a borrow, and if the K-counter is considered as a frequency divider with the ratio Mfc/K, the output of the K-counter will equal the input frequency multiplied by the division ratio. Thus the output from the K-counter is (KdφeMfc)/K. φA2 φB ECPD OUT H or L ↓ H ↓ H or L L H or L ↑ No Change ↑ H or L No Change H = Steady-State High Level, L = Steady-State Low Level, ↑ = LOW to HIGH φ Transition, ↓ = HIGH to LOW φ Transition K-COUNTER FUNCTION TABLE (DIGITAL CONTROL) The carry and borrow pulses go to the increment/decrement (I/D) circuit which, in the absence of any carry or borrow pulses has an output that is one half of the input clock (I/DCP). The input clock is just a multiple, 2N, of the loop center frequency. In response to a carry of borrow pulse, the I/D circuit will either add or delete a pulse at I/DOUT. Thus the output of the I/D circuit will be Nfc + (KdφeMfc)/2K. The output of the N-counter (or the output of the phaselocked-loop) is thus: fo = fc + (KdφeMfc)/2KN. If this result is compared to the equation for a first-order analog phase-locked-loop, the digital equivalent of the gain of the VCO is just Mfc/2KN or fc/K for M = 2N. Thus, the simple first-order phase-locked-loop with an adjustable K-counter is the equivalent of an analog phase-lockedloop with a programmable VCO gain. 2 A MODULO (K) L L Inhibited L H 23 L H L 24 L L H H 25 L H L L 26 L H L H 27 L H H L 28 L H H H 29 H L L L 210 H L L H 211 H L H L 212 H L H H 213 H H L L 214 H H L H 215 H H H L 216 H H H H 217 D C B L L L L L CD54HC297, CD74HC297, CD74HCT297 Absolute Maximum Ratings Thermal Information DC Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 7V DC Input Diode Current, IIK For VI < -0.5V or VI > VCC + 0.5V . . . . . . . . . . . . . . . . . . . . . .±20mA DC Output Diode Current, IOK For VO < -0.5V or VO > VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±20mA DC Drain Current, per Output, IO For -0.5V < VO < VCC + 0.5V. . . . . . . . . . . . . . . . . . . . . . . . . .±25mA DC Output Source or Sink Current per Output Pin, IO For VO > -0.5V or VO < VCC + 0.5V . . . . . . . . . . . . . . . . . . . .±25mA DC VCC or Ground Current, ICC . . . . . . . . . . . . . . . . . . . . . . . . .±50mA Thermal Resistance (Typical, Note 1) θJA (oC/W) E (PDIP) Package . . . . . . . . . . . . . . . . . . . . . . . . . . 67 Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 150oC Maximum Storage Temperature Range . . . . . . . . . .-65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300oC Operating Conditions Temperature Range, TA . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC Supply Voltage Range, VCC HC Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2V to 6V HCT Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.5V to 5.5V DC Input or Output Voltage, VI, VO . . . . . . . . . . . . . . . . . 0V to VCC Input Rise and Fall Time 2V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000ns (Max) 4.5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500ns (Max) 6V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400ns (Max) CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 1. The package thermal impedance is calculated in accordance with JESD 51-7. DC Electrical Specifications TEST CONDITIONS PARAMETER SYMBOL VI (V) High Level Input Voltage VIH - Low Level Input Voltage VIL 25oC IO (mA) VCC (V) -40oC TO 85oC -55oC TO 125oC MIN TYP MAX MIN MAX MIN MAX UNITS 2 1.5 - - 1.5 - 1.5 - V 4.5 3.15 - - 3.15 - 3.15 - V 6 4.2 - - 4.2 - 4.2 - V 2 - - 0.5 - 0.5 - 0.5 V 4.5 - - 1.35 - 1.35 - 1.35 V 6 - - 1.8 - 1.8 - 1.8 V -0.02 2 1.9 - - 1.9 - 1.9 - V -0.02 4.5 4.4 - - 4.4 - 4.4 - V -0.02 6 5.9 - - 5.9 - 5.9 - V -6 (Note 2) 4.5 3.98 - - 3.84 - 3.7 - V -7.8 (Note 2) 6 5.48 - - 5.34 - 5.2 - V 0.02 2 - - 0.1 - 0.1 - 0.1 V 0.02 4.5 - - 0.1 - 0.1 - 0.1 V 0.02 6 - - 0.1 - 0.1 - 0.1 V 4 (Note 2) 4.5 - - 0.26 - 0.33 - 0.4 V 5.2 (Note 2) 6 - - 0.26 - 0.33 - 0.4 V HC TYPES High Level Output Voltage CMOS Loads VOH - VIH or VIL High Level Output Voltage TTL Loads Low Level Output Voltage CMOS Loads Low Level Output Voltage TTL Loads VOL VIH or VIL - - 3 CD54HC297, CD74HC297, CD74HCT297 DC Electrical Specifications (Continued) TEST CONDITIONS SYMBOL VI (V) II VCC or GND - ICC VCC or GND High Level Input Voltage VIH Low Level Input Voltage High Level Output Voltage CMOS Loads PARAMETER Input Leakage Current Quiescent Device Current 25oC IO (mA) VCC (V) -40oC TO 85oC -55oC TO 125oC MIN TYP MAX MIN MAX MIN MAX UNITS 6 - - ±0.1 - ±1 - ±1 µA 0 6 - - 8 - 80 - 160 µA - - 4.5 to 5.5 2 - - 2 - 2 - V VIL - - 4.5 to 5.5 - - 0.8 - 0.8 - 0.8 V VOH VIH or VIL -0.02 4.5 4.4 - - 4.4 - 4.4 - V -4 4.5 3.98 - - 3.84 - 3.7 - V 0.02 4.5 - - 0.1 - 0.1 - 0.1 V 4 4.5 - - 0.26 - 0.33 - 0.4 V HCT TYPES High Level Output Voltage TTL Loads Low Level Output Voltage CMOS Loads VOL VIH or VIL Low Level Output Voltage TTL Loads II VCC to GND 0 5.5 - - ±0.1 - ±1 - ±1 µA ICC VCC or GND 0 5.5 - - 8 - 80 - 160 µA ∆ICC (Note 2) VCC -2.1 - 4.5 to 5.5 - 100 360 - 450 - 490 µA Input Leakage Current Quiescent Device Current Additional Quiescent Device Current Per Input Pin: 1 Unit Load NOTE: 2. For dual-supply systems theoretical worst case (VI = 2.4V, VCC = 5.5V) specification is 1.8mA. HCT Input Loading Table INPUT UNIT LOADS ENCTR, D/U 0.3 A, B, C, D, KCP, φA2 0.6 I/DCP, φA1, φB 1.5 NOTE: Unit Load is ∆ICC limit specified in DC Electrical Specifications table, e.g., 360µA max at 25oC. 4 CD54HC297, CD74HC297, CD74HCT297 Prerequisite For Switching Function 25oC PARAMETER -40oC TO 85oC -55oC TO 125oC SYMBOL VCC (V) MIN MAX MIN MAX MIN MAX UNITS Maximum Clock Frequency KCP fMAX 2 6 - 5 - 4 - MHz 4.5 30 - 24 - 20 - MHz 6 35 - 28 - 24 - MHz Maximum Clock Frequency I/DCP fMAX 2 4 - 3 - 2 - MHz 4.5 20 - 16 - 13 - MHz 6 24 - 19 - 15 - MHz 2 80 - 100 - 120 - ns 4.5 16 - 20 - 24 - ns 6 14 - 17 - 20 - ns 2 125 - 155 - 190 - ns 4.5 25 - 31 - 38 - ns 6 21 - 26 - 32 - ns 2 100 - 125 - 150 - ns 4.5 20 - 25 - 30 - ns 6 17 - 21 - 26 - ns 2 0 - 0 - 0 - ns 4.5 0 - 0 - 0 - ns 6 0 - 0 - 0 - ns HC TYPES Clock Pulse Width KCP tw Clock Pulse Width I/DCP tW Set-up Time D/U, ENCTR to KCP tSU Hold Time D/U, ENCTR to KCP tH HCT TYPES Maximum Clock Frequency KCP fMAX 4.5 30 - 24 - 20 - MHz Maximum Clock Frequency I/DCP fMAX 4.5 20 - 16 - 13 - MHz Clock Pulse Width KCP tw 4.5 16 - 20 - 24 - ns Clock Pulse Width I/DCP tw 4.5 25 - 31 - 38 - ns Set-up Time D/U, ENCTR to KCP tSU 4.5 20 - 25 - 30 - ns Hold Time D/U, ENCTR to KCP tH 4.5 0 - 0 - 0 - ns Switching Specifications PARAMETER Input tr, tf = 6ns SYMBOL TEST CONDITIONS tPLH, tPHL CL = 50pF 25oC -40oC TO 85oC -55oC TO 125oC VCC (V) TYP MAX MAX MAX UNITS 2 - 175 220 265 ns 4.5 - 35 44 53 ns 6 - 30 34 43 ns HC TYPES Propagation Delay, I/DCP to I/DOUT 5 CD54HC297, CD74HC297, CD74HCT297 Switching Specifications PARAMETER Propagation Delay, φA1, φB to XORPDOUT Propagation Delay, φB, φA2 to ECPDOUT Output Transition Time XORPDOUT ECPDOUT Output Transition Time I/DOUT Input Capacitance Input tr, tf = 6ns (Continued) SYMBOL TEST CONDITIONS tPLH, tPHL CL = 50pF tPHL, tPHL tTLH tTLH CI CL = 50pF CL = 50pF CL = 50pF - 25oC -40oC TO 85oC -55oC TO 125oC VCC (V) TYP MAX MAX MAX UNITS 2 - 150 190 225 ns 4.5 - 30 38 45 ns 6 - 26 33 38 ns 2 - 200 250 300 ns 4.5 - 40 50 60 ns 6 - 34 43 51 ns 2 - 75 95 110 ns 4.5 - 15 19 22 ns 6 - 13 16 19 ns 2 - 60 75 90 ns 4.5 - 12 15 18 ns 6 - 10 13 15 ns - - 10 10 10 pF HCT TYPES Propagation Delay, I/DCP to I/DOUT tPLH, tPHL CL = 50pF 4.5 - 35 44 53 ns Propagation Delay, φA1, φB to XORPDOUT tPLH, tPHL CL = 50pF 4.5 - 30 38 45 ns Propagation Delay, φB, φA2 to ECPDOUT tPHL, tPHL CL = 50pF 4.5 - 40 50 60 ns Output Transition Time XORPDOUT tTLH CL = 50pF 4.5 - 15 19 22 ns Output Transition Time ECPDOUT tTLH CL = 50pF 4.5 - 12 15 18 ns - - 10 10 10 pF Input Capacitance CI - 6 CD54HC297, CD74HC297, CD74HCT297 Logic Diagram MODULO-K COUNTER 2 1 A B 1 2 4 8 15 C D 14 CONTROL CIRCUIT 14 13 12 11 10 0 9 8 7 6 5 4 3 2 1 TO MODE CONTROLS 12-2 (11 STAGES NOT SHOWN) KCP 4 6 D/U RD D CP FF Q T RD FF Q T FF R Q T FF Q R D D T FF14 R D DQ T FF13 Q M R D DQ T FF1 M M RD T Q FF T Q FF 3 ENCTR D M T CP FF Q D FF R Q D T M FF14 Q T FF1 M Q T FF13 DR D DR Q D DR RD D POWER ON RESET 1=1 1 BORROW CARRY INCREMENT/DECREMENT CIRCUIT 5 I/DCP 7 I/DOUT D D Q CP FF Q Q CP FF Q D D Q CP FF CP FF Q Q CP FF J K D Q CP FF Q φA1 D Q CP FF Q D Q D Q CP FF CP FF Q 9 EXCLUSIVE-OR PHASE DETECTOR 11 XORPDOUT 10 φB EDGE-CONTROLLED PHASE DETECTOR φA2 13 SD Q FF Q RD 12 SD Q FF Q RD ECPDOUT 7 CD54HC297, CD74HC297, CD74HCT297 CARRY KCP MfC D/U DIVIDE-BY-K COUNTER ENCTR BORROW XORPDOUT φA1 φB fOUT φOUT I/D CIRCUIT ECPDOUT φA2 fIN φIN J I/DCP 2NfC J ECPD K FF I/DOUT DIVIDE-BY-N COUNTER FIGURE 1. DPLL USING BOTH PHASE DETECTORS IN A RIPPLE-CANCELLATION SCHEME KCP MfC D/U CARRY DIVIDE-BY-K COUNTER BORROW XORPDOUT φA 1 φB fOUT φIN I/D CIRCUIT I/DCP I/DOUT fOUT DIVIDE-BY-N COUNTER φOUT FIGURE 2. DPLL USING EXCLUSIVE-OR PHASE DETECTION CARRY PULSE (INTERNAL SIGNAL) BORROW PULSE (INTERNAL SIGNAL) I/DCP INPUT I/DOUT OUTPUT FIGURE 3. TIMING DIAGRAM: I/DOUT IN-LOCK CONDITION 8 2NfC CD54HC297, CD74HC297, CD74HCT297 øB INPUT øA2 INPUT ECPDOUT OUTPUT FIGURE 4. TIMING DIAGRAM: EDGE CONTROLLED PHASE COMPARATOR WAVEFORMS øB INPUT øA1 INPUT XORPDOUT OUTPUT FIGURE 5. TIMING DIAGRAM: EXCLUSIVE OR PHASE DETECTOR WAVEFORMS I/fMAX tW I/DCP VS tPHL tPLH VS I/DOUT tTLH tTHL FIGURE 6. WAVEFORMS SHOWING THE CLOCK (I/DCP) TO OUTPUT (I/DOUT) PROPAGATION DELAYS, CLOCK PULSE WIDTH, OUTPUT TRANSITION TIMES AND MAXIMUM CLOCK PULSE FREQUENCY VS øB INPUT VS øA1 INPUT tTLH XORPDOUT VS OUTPUT tPLH tPLH tPLH tTHL tPHL FIGURE 7. WAVEFORMS SHOWING THE PHASE INPUT (øB, øA1) TO OUTPUT (XORPDOUT) PROPAGATION DELAYS AND OUTPUT TRANSITION TIMES 9 CD54HC297, CD74HC297, CD74HCT297 øB INPUT VS øA2 INPUT VS ECPDOUT OUTPUT tPHL VS tPLH tTLH tTHL FIGURE 8. WAVEFORMS SHOWING THE PHASE INPUT (øB, øA2) TO OUTPUT (ECPDOUT) PROPAGATION DELAYS AND OUTPUT TRANSITION TIMES tH D/U, ENCTR INPUT tH VS tSU tSU VS KCP INPUT tW 1/fMAX NOTE: The shaded areas indicate when the input is permitted to change for predictable output performance. FIGURE 9. WAVEFORMS SHOWING THE CLOCK (KCP) PULSE WIDTH AND MAXIMUM CLOCK PULSE FREQUENCY, AND THE INPUT (D/U, ENCTR) TO CLOCK (KCP) SETUP AND HOLD TIMES 10 PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2022 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) (3) Device Marking Samples (4/5) (6) 5962-8999001EA ACTIVE CDIP J 16 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 5962-8999001EA CD54HC297F3A Samples CD54HC297F3A ACTIVE CDIP J 16 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 5962-8999001EA CD54HC297F3A Samples CD74HC297E ACTIVE PDIP N 16 25 RoHS & Green NIPDAU N / A for Pkg Type -55 to 125 CD74HC297E Samples CD74HCT297E ACTIVE PDIP N 16 25 RoHS & Green NIPDAU N / A for Pkg Type -55 to 125 CD74HCT297E Samples (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
CD74HC297EG4
物料型号: - CD54HC297F3A - CD74HC297E - CD74HCT297E

器件简介: 这些高速硅门CMOS设备与低功耗肖特基TTL (LSTTL) 引脚兼容,设计用于提供一种简单、成本效益高的高准确度数字锁相环应用解决方案。它们包含构建一阶锁相环所需的所有必要电路,除了分频N计数器。

引脚分配: - CD54HC297 (CERDIP) - CD74HC297, CD74HCT29 (PDIP)

参数特性: - 数字设计避免了模拟补偿误差 - 可轻松级联以实现更高阶的环路 - 动态可变带宽 - 可实现非常窄的带宽 - 电源启动复位 - 输出能力:标准、总线驱动器 - 与LSTTL逻辑IC相比,显著降低功耗 - HC297类型:操作电压2至6V,高噪声免疫 - HCT297类型:操作电压4.5至5.5V,直接LSTTL输入逻辑兼容

功能详解: - 提供了两种相位检测器:EXCLUSIVE-OR (XORPD) 和边缘控制相位检测器 (ECPD),以实现最大的灵活性。 - K计数器的长度可以数字编程,以实现实时控制环路带宽。

应用信息: - 设计用于高准确度的数字锁相环应用。

封装信息: - CD54HC297F3A: 16 Ld CERDIP - CD74HC297E: 16 Ld PDIP - CD74HCT297E: 16 Ld PDIP

订购信息: - 包括温度范围、封装类型和设备标记。

注意事项: - 这些设备对静电放电敏感,用户应遵循适当的IC处理程序。

版权信息: - 版权所有 © 2003,Texas Instruments Incorporated
CD74HC297EG4 价格&库存

很抱歉,暂时无法提供与“CD74HC297EG4”相匹配的价格&库存,您可以联系我们找货

免费人工找货
CD74HC297EG4
  •  国内价格
  • 1+17.30520
  • 200+14.42100
  • 500+11.53680
  • 1000+9.61400

库存:0