CD54HC240, CD74HC240, CD74HC241, CD54HC244
CD74HC244, CD54HCT240, CD74HCT240, CD54HCT241
CD74HCT241, CD54HCT244, CD74HCT244
SCHS167G – NOVEMBER 1998 – REVISED OCTOBER 2022
CDx4HC240, CDx4HCT240, CD74HC241, CDx4HCT241, CDx4HC244, CDx4HCT244
High-Speed CMOS Logic Octal Buffer/Line Drivers, Three-State
1 Features
2 Description
•
•
•
•
The ’HC240 and ’HCT240 are inverting three-state
buffers having two active-low output enables.
The CD74HC241, ’HCT241, ’HC244 and ’HCT244 are
non-inverting three-state buffers that differ only in
that the 241 has one active-high and one active-low
output enable, and the 244 has two active-low output
enables. All three types have identical pinouts.
•
•
•
•
•
•
•
•
•
HC/HCT240 Inverting
HC/HCT241 Non-inverting
HC/HCT244 Non-inverting
Typical propagation delay = 8ns at VCC = 5 V,
CL = 15 pF, TA = 25℃ for HC240
Three-state outputs
Buffered inputs
High-current bus driver outputs
Fanout (over temperature range)
– Standard outputs: 10 LSTTL loads
– Bus driver outputs: 15 LSTTL loads
Wide operating temperature range: –55℃ to 125℃
Balanced propagation delay and transition times
Significant power reduction compared to LSTTL
Logic ICs
HC types:
– 2 V to 6 V operation
– High noise immunity: NIL = 30%, NIH = 30% of
VCC at VCC = 5 V
HCT types:
– 4.5 V to 5.5 V operation
– Direct LSTTL input logic compatibility,
VIL = 0.8 V (max), VIH = 2 V (min)
– CMOS input compatibility, II ≤ 1μA at VOL, VOH
Package Information
PART NUMBER
CD74HC240
CD54HC240
CD74HCT240
CD54HCT240
CD74HC241
CD74HCT241
CD54HCT241
CD74HC244
CD54HC244
CD74HCT244
CD54HCT244
(1)
(1)
PACKAGE
BODY SIZE (NOM)
M (SOIC, 20)
12.80 mm × 7.50 mm
E (PDIP, 20)
25.40 mm × 6.35 mm
F (CDIP, 20)
26.92 mm × 6.92 mm
M (SOIC, 20)
12.80 mm × 7.50 mm
E (PDIP, 20)
25.40 mm × 6.35 mm
PW (TSSOP, 20)
6.50 mm × 4.40 mm
F (CDIP, 20)
26.92 mm × 6.92 mm
M (SOIC, 20)
12.80 mm × 7.50 mm
E (PDIP, 20)
25.40 mm × 6.35 mm
M (SOIC, 20)
12.80 mm × 7.50 mm
E (PDIP, 20)
25.40 mm × 6.35 mm
F (CDIP, 20)
26.92 mm × 6.92 mm
M (SOIC, 20)
12.80 mm × 7.50 mm
E (PDIP, 20)
25.40 mm × 6.35 mm
F (CDIP, 20)
26.92 mm × 6.92 mm
M (SOIC, 20)
12.80 mm × 7.50 mm
E (PDIP, 20)
25.40 mm × 6.35 mm
F (CDIP, 20)
26.92 mm × 6.92 mm
For all available packages, see the orderable addendum at
the end of the data sheet.
Pinout Diagram
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
CD54HC240, CD74HC240, CD74HC241, CD54HC244
CD74HC244, CD54HCT240, CD74HCT240, CD54HCT241
CD74HCT241, CD54HCT244, CD74HCT244
www.ti.com
SCHS167G – NOVEMBER 1998 – REVISED OCTOBER 2022
Table of Contents
1 Features............................................................................1
2 Description.......................................................................1
3 Revision History.............................................................. 2
4 Pin Configuration and Functions...................................3
5 Specifications.................................................................. 4
5.1 Absolute Maximum Ratings(1) .................................... 4
5.2 Recommended Operating Conditions.........................4
5.3 Thermal Information....................................................4
5.4 Electrical Characteristics '240..................................... 5
5.5 Electrical Characteristics '241..................................... 6
5.6 Electrical Characteristics '244..................................... 7
5.7 Switching Characteristics '240.................................... 8
5.8 Switching Characteristics '241.................................... 8
5.9 Switching Characteristics '244.................................... 9
6 Parameter Measurement Information.......................... 11
7 Detailed Description......................................................13
7.1 Overview................................................................... 13
7.2 Functional Block Diagram......................................... 13
8 Power Supply Recommendations................................15
9 Layout.............................................................................15
9.1 Layout Guidelines..................................................... 15
10 Device and Documentation Support..........................16
10.1 Receiving Notification of Documentation Updates..16
10.2 Support Resources................................................. 16
10.3 Trademarks............................................................. 16
10.4 Electrostatic Discharge Caution..............................16
10.5 Glossary..................................................................16
11 Mechanical, Packaging, and Orderable
Information.................................................................... 16
3 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision E (October 2004) to Revision F (February 2022)
Page
• Updated the numbering, formatting, tables, figures, and cross-references throughout the document to reflect
modern data sheet standards............................................................................................................................. 1
Changes from Revision F (February 2022) to Revision G (October 2022)
Page
• Increased RθJA for packages: DW (73 to 109.1); DB (82 to 122.7); N (67 to 84.6); NS (64 to 113.4); PW (108
to 131.8)..............................................................................................................................................................4
2
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: CD54HC240 CD74HC240 CD74HC241 CD54HC244 CD74HC244 CD54HCT240
CD74HCT240 CD54HCT241 CD74HCT241 CD54HCT244 CD74HCT244
CD54HC240, CD74HC240, CD74HC241, CD54HC244
CD74HC244, CD54HCT240, CD74HCT240, CD54HCT241
CD74HCT241, CD54HCT244, CD74HCT244
www.ti.com
SCHS167G – NOVEMBER 1998 – REVISED OCTOBER 2022
4 Pin Configuration and Functions
J, N, DW, or PW package
20-Pin CDIP, PDIP, SOIC, or TSSOP
Top View
Copyright © 2022 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: CD54HC240 CD74HC240 CD74HC241 CD54HC244 CD74HC244 CD54HCT240
CD74HCT240 CD54HCT241 CD74HCT241 CD54HCT244 CD74HCT244
3
CD54HC240, CD74HC240, CD74HC241, CD54HC244
CD74HC244, CD54HCT240, CD74HCT240, CD54HCT241
CD74HCT241, CD54HCT244, CD74HCT244
www.ti.com
SCHS167G – NOVEMBER 1998 – REVISED OCTOBER 2022
5 Specifications
5.1 Absolute Maximum Ratings(1)
MIN
MAX
–0.5
7
UNIT
VCC
Supply voltage
IIK
Input clamp diode current
For VI < –0.5 V or VI > VCC + 0.5 V
±20
mA
IOK
Output clamp diode current
For VO < –0.5 V or VO >VCC + 0.5 V
±20
mA
IO
Drain current, per output
For –0.5 V < VO < VCC + 0.5 V
±35
mA
IO
Output source or sink current per output pin
For VO > –0.5 V or VO < VCC + 0.5 V
±25
mA
ICC
Continuous current through VCC or GND
±70
mA
TJ
Junction temperature
150
℃
Tstg
Storage temperature range
150
℃
300
℃
–65
Lead temperature (Soldering 10s) (SOIC - lead tips only)
(1)
V
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings
only and functional operation of the device at these or any other conditions beyond those indicated under recommended operating
conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
5.2 Recommended Operating Conditions
VCC
Supply voltage range
VI, VO
Input or output voltage
tt
Input rise and fall time
TA
Temperature range
HC types
HCT types
MIN
MAX
2
6
4.5
5.5
0
VCC
2V
UNIT
V
V
1000
4.5 V
500
6V
ns
400
–55
125
℃
5.3 Thermal Information
THERMAL METRIC
DB (SSOP)
N (PDIP)
NS (SO)
PW (TSSOP)
20 PINS
20 PINS
20 PINS
20 PINS
20 PINS
UNIT
109.1
122.7
84.6
113.4
131.8
°C/W
76
81.6
72.5
78.6
72.2
°C/W
RθJA
Junction-to-ambient thermal
(1)
resistance
RθJC (top)
Junction-to-case (top) thermal
resistance
RθJB
Junction-to-board thermal
resistance
77.6
77.5
65.3
78.4
82.8
°C/W
ΨJT
Junction-to-top characterization
parameter
51.5
46.1
55.3
47.1
21.5
°C/W
ΨJB
Junction-to-board
characterization parameter
77.1
77.1
65.2
78.1
82.4
°C/W
RθJC (bot)
Junction-to-case (bottom)
thermal resistance
N/A
N/A
N/A
N/A
N/A
°C/W
(1)
4
DW (SOIC)
For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application
report.
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: CD54HC240 CD74HC240 CD74HC241 CD54HC244 CD74HC244 CD54HCT240
CD74HCT240 CD54HCT241 CD74HCT241 CD54HCT244 CD74HCT244
CD54HC240, CD74HC240, CD74HC241, CD54HC244
CD74HC244, CD54HCT240, CD74HCT240, CD54HCT241
CD74HCT241, CD54HCT244, CD74HCT244
www.ti.com
SCHS167G – NOVEMBER 1998 – REVISED OCTOBER 2022
5.4 Electrical Characteristics '240
PARAMETER
TEST
CONDITIONS(2)
VCC (V)
25℃
MIN
TYP
–40℃ to 85℃
MAX
MIN
MAX
–55℃ to 125℃
MIN
MAX
UNIT
HC TYPES
VIH
VIL
VOH
High level input
voltage
Low level input
voltage
High level output
voltage
High level output
voltage
VOL
Low level output
voltage
Low level output
voltage
2
1.5
1.5
1.5
4.5
3.15
3.15
3.15
6
4.2
4.2
V
4.2
2
0.5
0.5
0.5
4.5
1.35
1.35
1.35
6
1.8
1.8
1.8
IOH = – 20 μA
2
1.9
1.9
1.9
IOH = – 20 μA
4.5
4.4
4.4
4.4
IOH = – 20 μA
6
5.9
5.9
5.9
IOH = – 6 mA
4.5
3.98
3.84
3.7
IOH = – 7.8 mA
6
5.48
IOL = 20 μA
2
0.1
0.1
0.1
IOL = 20 μA
4.5
0.1
0.1
0.1
IOL = 20 μA
6
0.1
0.1
0.1
5.34
V
V
5.2
IOL = 6 mA
4.5
0.26
0.33
0.4
IOL = 7.8 mA
6
0.26
0.33
0.4
V
II
Input leakage current
VI = VCC or GND
6
±0.1
±1
±1
μA
ICC
Supply current
VI = VCC or GND
6
8
80
160
μA
IOZ
Three-state leakage
current
6
±0.5
±0.5
±10
μA
HCT TYPES
VIH
High level input
voltage
4.5 to
5.5
VIL
Low level input
voltage
4.5 to
5.5
VOH
VOL
2
2
0.8
2
0.8
V
0.8
High level output
voltage
VOH = – 20 μA
High level output
voltage
VOH = – 6 mA
4.5
Low level output
voltage
VOL = 20 μA
4.5
0.1
0.1
0.1
Low level output
voltage
VOL = 6 mA
4.5
0.26
0.33
0.4
4.5
4.4
4.4
V
4.4
V
3.98
3.84
3.7
V
II
Input leakage current
VI = VCC or GND
5.5
±0.1
±1
±1
μA
ICC
Supply current
VI = VCC or GND
5.5
8
80
160
μA
IOZ
Three-state leakage
current
5.5
±0.5
±5
±10
μA
ΔICC
(1)
(1)
(2)
Additional supply
current per input pin
nA0 - A3 inputs
held at VCC – 2.1
4.5 to
5.5
100
540
675
735
μA
1OE inputs held at
VCC – 2.1
4.5 to
5.5
100
252
315
343
μA
2OE inputs held at
VCC – 2.1
4.5 to
5.5
100
252
315
343
μA
For dual-supply systems theoretical worst case (VI = 2.4 V, VCC = 5.5 V) specification is 1.8 mA.
VI = VIH or VIL, unless otherwise noted.
Copyright © 2022 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: CD54HC240 CD74HC240 CD74HC241 CD54HC244 CD74HC244 CD54HCT240
CD74HCT240 CD54HCT241 CD74HCT241 CD54HCT244 CD74HCT244
5
CD54HC240, CD74HC240, CD74HC241, CD54HC244
CD74HC244, CD54HCT240, CD74HCT240, CD54HCT241
CD74HCT241, CD54HCT244, CD74HCT244
www.ti.com
SCHS167G – NOVEMBER 1998 – REVISED OCTOBER 2022
5.5 Electrical Characteristics '241
TEST
CONDITIONS(2)
PARAMETER
VCC (V)
25℃
MIN
TYP
–40℃ to 85℃
MAX
MIN
MAX
–55℃ to 125℃
MIN
MAX
UNIT
HC TYPES
VIH
VIL
VOH
High level input
voltage
Low level input
voltage
High level output
voltage
High level output
voltage
VOL
Low level output
voltage
Low level output
voltage
2
1.5
1.5
1.5
4.5
3.15
3.15
3.15
6
4.2
4.2
V
4.2
2
0.5
0.5
0.5
4.5
1.35
1.35
1.35
6
1.8
1.8
1.8
IOH = – 20 μA
2
1.9
1.9
1.9
IOH = – 20 μA
4.5
4.4
4.4
4.4
IOH = – 20 μA
6
5.9
5.9
5.9
IOH = – 6 mA
4.5
3.98
3.84
3.7
IOH = – 7.8 mA
6
5.48
IOL = 20 μA
2
0.1
0.1
0.1
IOL = 20 μA
4.5
0.1
0.1
0.1
IOL = 20 μA
6
0.1
0.1
0.1
5.34
V
V
5.2
IOL = 6 mA
4.5
0.26
0.33
0.4
IOL = 7.8 mA
6
0.26
0.33
0.4
V
II
Input leakage current
VI = VCC or GND
6
±0.1
±1
±1
μA
ICC
Supply current
VI = VCC or GND
6
8
80
160
μA
IOZ
Three-state leakage
current
6
±0.5
±0.5
±10
μA
HCT TYPES
VIH
High level input
voltage
4.5 to
5.5
VIL
Low level input
voltage
4.5 to
5.5
VOH
VOL
2
0.8
2
0.8
V
0.8
High level output
voltage
VOH = – 20 μA
High level output
voltage
VOH = – 6 mA
4.5
Low level output
voltage
VOL = 20 μA
4.5
0.1
0.1
0.1
Low level output
voltage
VOL = 6 mA
4.5
0.26
0.33
0.4
4.5
4.4
4.4
V
4.4
V
3.98
3.84
3.7
V
II
Input leakage current
VI = VCC or GND
5.5
±0.1
±1
±1
μA
ICC
Supply current
VI = VCC or GND
5.5
8
80
160
μA
IOZ
Three-state leakage
current
5.5
±0.5
±5
±10
μA
ΔICC
(1)
(1)
(2)
6
2
Additional supply
current per input pin
nA0 - A3 inputs
held at VCC – 2.1
4.5 to
5.5
100
252
315
343
μA
1OE inputs held at
VCC – 2.1
4.5 to
5.5
100
252
315
343
μA
2OE inputs held at
VCC – 2.1
4.5 to
5.5
100
540
675
735
μA
For dual-supply systems theoretical worst case (VI = 2.4 V, VCC = 5.5 V) specification is 1.8 mA.
VI = VIH or VIL, unless otherwise noted.
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: CD54HC240 CD74HC240 CD74HC241 CD54HC244 CD74HC244 CD54HCT240
CD74HCT240 CD54HCT241 CD74HCT241 CD54HCT244 CD74HCT244
CD54HC240, CD74HC240, CD74HC241, CD54HC244
CD74HC244, CD54HCT240, CD74HCT240, CD54HCT241
CD74HCT241, CD54HCT244, CD74HCT244
www.ti.com
SCHS167G – NOVEMBER 1998 – REVISED OCTOBER 2022
5.6 Electrical Characteristics '244
PARAMETER
TEST
CONDITIONS(2)
VCC (V)
25℃
MIN
TYP
–40℃ to 85℃
MAX
MIN
MAX
–55℃ to 125℃
MIN
MAX
UNIT
HC TYPES
VIH
VIL
VOH
High level input
voltage
Low level input
voltage
High level output
voltage
High level output
voltage
VOL
Low level output
voltage
Low level output
voltage
2
1.5
1.5
1.5
4.5
3.15
3.15
3.15
6
4.2
4.2
V
4.2
2
0.5
0.5
0.5
4.5
1.35
1.35
1.35
6
1.8
1.8
1.8
IOH = – 20 μA
2
1.9
1.9
1.9
IOH = – 20 μA
4.5
4.4
4.4
4.4
IOH = – 20 μA
6
5.9
5.9
5.9
IOH = – 6 mA
4.5
3.98
3.84
3.7
IOH = – 7.8 mA
6
5.48
IOL = 20 μA
2
0.1
0.1
0.1
IOL = 20 μA
4.5
0.1
0.1
0.1
IOL = 20 μA
6
0.1
0.1
0.1
5.34
V
V
5.2
IOL = 6 mA
4.5
0.26
0.33
0.4
IOL = 7.8 mA
6
0.26
0.33
0.4
V
II
Input leakage current
VI = VCC or GND
6
±0.1
±1
±1
μA
ICC
Supply current
VI = VCC or GND
6
8
80
160
μA
IOZ
Three-state leakage
current
6
±0.5
±0.5
±10
μA
HCT TYPES
VIH
High level input
voltage
4.5 to
5.5
VIL
Low level input
voltage
4.5 to
5.5
VOH
VOL
2
2
0.8
2
0.8
V
0.8
High level output
voltage
VOH = – 20 μA
High level output
voltage
VOH = – 6 mA
4.5
Low level output
voltage
VOL = 20 μA
4.5
0.1
0.1
0.1
Low level output
voltage
VOL = 6 mA
4.5
0.26
0.33
0.4
4.5
4.4
4.4
V
4.4
V
3.98
3.84
3.7
V
II
Input leakage current
VI = VCC or GND
5.5
±0.1
±1
±1
μA
ICC
Supply current
VI = VCC or GND
5.5
8
80
160
μA
IOZ
Three-state leakage
current
5.5
±0.5
±5
±10
μA
ΔICC
(1)
(1)
(2)
Additional supply
current per input pin
nA0 - A3 inputs
held at VCC – 2.1
4.5 to
5.5
100
252
315
343
μA
1OE inputs held at
VCC – 2.1
4.5 to
5.5
100
252
315
343
μA
2OE inputs held at
VCC – 2.1
4.5 to
5.5
100
252
315
343
μA
For dual-supply systems theoretical worst case (VI = 2.4 V, VCC = 5.5 V) specification is 1.8 mA.
VI = VIH or VIL, unless otherwise noted.
Copyright © 2022 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: CD54HC240 CD74HC240 CD74HC241 CD54HC244 CD74HC244 CD54HCT240
CD74HCT240 CD54HCT241 CD74HCT241 CD54HCT244 CD74HCT244
7
CD54HC240, CD74HC240, CD74HC241, CD54HC244
CD74HC244, CD54HCT240, CD74HCT240, CD54HCT241
CD74HCT241, CD54HCT244, CD74HCT244
www.ti.com
SCHS167G – NOVEMBER 1998 – REVISED OCTOBER 2022
5.7 Switching Characteristics '240
CL = 50 pF, Input tr, tf = 6 ns
PARAMETER
VCC (V)
Propagation delay
Data to outputs
4.5
25℃
MIN
–40℃ to 85℃
TYP
MAX
MIN
TYP
–55℃ to 125℃
MAX
MIN
TYP
MAX
UNIT
HC TYPES
tPLH,
tPHL
tTHL,
tTLH
Output enable and disable
time
tTLH,
tTHL
Output transition time
CI
Input capacitance
CO
Three-state output
capacitance
CPD
Power dissipation
capacitance(1) (2)
2
8
(3)
100
125
150
20
25
30
ns
6
17
21
26
2
150
190
225
30
38
45
6
26
33
38
2
60
75
90
4.5
12
15
18
10
13
15
10
10
10
pF
20
20
20
pF
4.5
5
12
6
10
5
38
(3)
9
(3)
ns
ns
pF
HCT TYPES
tPHL,
tPLH
Data to outputs
4.5
tTLH,
tTHL
Output enable and disable
times
tTHL,
tTLH
Output transition time
CI
Input capacitance
CPD
Power dissipation
capacitance(1) (2)
(1)
(2)
(3)
8
22
28
33
ns
4.5
30
38
45
ns
4.5
12
15
18
ns
10
10
10
pF
10
5
40
pF
CPD is used to determine the dynamic power consumption, per channel.
PD = VCC 2fi (CPD + CL) where fi = input frequency, fO = output frequency, CL = output load capacitance, VCC = supply voltage.
CL = 15 pF and VCC = 5 V.
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: CD54HC240 CD74HC240 CD74HC241 CD54HC244 CD74HC244 CD54HCT240
CD74HCT240 CD54HCT241 CD74HCT241 CD54HCT244 CD74HCT244
CD54HC240, CD74HC240, CD74HC241, CD54HC244
CD74HC244, CD54HCT240, CD74HCT240, CD54HCT241
CD74HCT241, CD54HCT244, CD74HCT244
www.ti.com
SCHS167G – NOVEMBER 1998 – REVISED OCTOBER 2022
5.8 Switching Characteristics '241
CL = 50 pF, Input tr, tf = 6 ns
PARAMETER
VCC (V)
25℃
MIN
–40℃ to 85℃
TYP
MAX
MIN
TYP
–55℃ to 125℃
MAX
MIN
TYP
MAX
UNIT
HC TYPES
2
tPLH,
tPHL
tTHL,
tTLH
Propagation delay
Data to outputs
Output enable and disable
time
tTLH,
tTHL
Output transition time
CI
Input capacitance
CO
Three-state output
capacitance
CPD
Power dissipation
capacitance(1) (2)
4.5
9
(3)
110
140
165
22
28
33
6
19
24
28
2
150
190
225
4.5
30
38
45
6
26
33
38
2
60
75
90
4.5
12
15
18
10
13
15
10
10
10
pF
20
20
20
pF
5
12
6
10
5
34
(3)
10
(3)
ns
ns
ns
pF
HCT TYPES
tPHL,
tPLH
Data to outputs
4.5
tTLH,
tTHL
Output enable and disable
times
tTHL,
tTLH
Output transition time
CI
Input capacitance
CPD
Power dissipation
capacitance(1) (2)
(1)
(2)
(3)
25
31
38
ns
4.5
30
38
45
ns
4.5
12
15
18
ns
10
10
10
pF
10
5
38
pF
CPD is used to determine the dynamic power consumption, per channel.
PD = VCC 2fi (CPD + CL) where fi = input frequency, fO = output frequency, CL = output load capacitance, VCC = supply voltage.
CL = 15 pF and VCC = 5 V.
Copyright © 2022 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: CD54HC240 CD74HC240 CD74HC241 CD54HC244 CD74HC244 CD54HCT240
CD74HCT240 CD54HCT241 CD74HCT241 CD54HCT244 CD74HCT244
9
CD54HC240, CD74HC240, CD74HC241, CD54HC244
CD74HC244, CD54HCT240, CD74HCT240, CD54HCT241
CD74HCT241, CD54HCT244, CD74HCT244
www.ti.com
SCHS167G – NOVEMBER 1998 – REVISED OCTOBER 2022
5.9 Switching Characteristics '244
CL = 50 pF, Input tr, tf = 6 ns
PARAMETER
VCC (V)
25℃
MIN
–40℃ to 85℃
TYP
MAX
MIN
TYP
–55℃ to 125℃
MAX
MIN
TYP
MAX
UNIT
HC TYPES
2
tPLH,
tPHL
tTHL,
tTLH
Propagation delay
Data to outputs
Output enable and disable
time
tTLH,
tTHL
Output transition time
CI
Input capacitance
CO
Three-state output
capacitance
CPD
Power dissipation
capacitance(1) (2)
4.5
9
(3)
110
140
165
22
28
33
6
19
24
28
2
150
190
225
4.5
30
38
45
6
26
33
38
2
60
75
90
4.5
12
15
18
10
13
15
10
10
10
pF
20
20
20
pF
5
12
6
10
5
46
(3)
10
(3)
ns
ns
ns
pF
HCT TYPES
tPHL,
tPLH
Data to outputs
4.5
tTLH,
tTHL
Output enable and disable
times
tTHL,
tTLH
Output transition time
CI
Input capacitance
CPD
Power dissipation
capacitance(1) (2)
(1)
(2)
(3)
10
25
31
38
ns
4.5
30
38
45
ns
4.5
12
15
18
ns
10
10
10
pF
10
5
40
pF
CPD is used to determine the dynamic power consumption, per channel.
PD = VCC 2fi (CPD + CL) where fi = input frequency, fO = output frequency, CL = output load capacitance, VCC = supply voltage.
CL = 15 pF and VCC = 5 V.
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: CD54HC240 CD74HC240 CD74HC241 CD54HC244 CD74HC244 CD54HCT240
CD74HCT240 CD54HCT241 CD74HCT241 CD54HCT244 CD74HCT244
CD54HC240, CD74HC240, CD74HC241, CD54HC244
CD74HC244, CD54HCT240, CD74HCT240, CD54HCT241
CD74HCT241, CD54HCT244, CD74HCT244
www.ti.com
SCHS167G – NOVEMBER 1998 – REVISED OCTOBER 2022
6 Parameter Measurement Information
Phase relationships between waveforms were chosen arbitrarily. All input pulses are supplied by generators
having the following characteristics: PRR ≤ 1 MHz, ZO = 50 Ω, tt < 6 ns.
For clock inputs, fmax is measured when the input duty cycle is 50%.
The outputs are measured one at a time with one input transition per measurement.
VCC
Test
Point
S1
RL
From Output
Under Test
CL(1)
S2
(1) CL includes probe and test-fixture capacitance.
Figure 6-1. Load Circuit for 3-State Outputs
VCC
Input
50%
VCC
Output
Control
50%
50%
50%
0V
0V
tPHL(1)
tPLH(1)
tPZL(3)
VOH
Output
50%
VOL
tPHL
(1)
tPLH
50%
50%
10%
VOL
(1)
tPZH
VOH
Output
§ 9CC
Output
Waveform 1
S1 at VLOAD(1)
50%
Output
Waveform 2
S1 at GND(2)
50%
VOL
(1) The greater between tPLH and tPHL is the same as tpd.
tPLZ(4)
(3)
tPHZ
(4)
90%
VOH
50%
§0V
(1) S1 = CLOSED; S2 = OPEN.
(2) S1 = OPEN; s2 = CLOSED.
(3) tPLZ and tPHZ are the same as tdis.
(4) tPZL and tPZH are the same as ten.
Figure 6-2. Voltage Waveforms, Propagation
Delays for Standard CMOS Inputs
Figure 6-3. Voltage Waveforms, Standard CMOS
Inputs Propagation Delays
90%
VCC
90%
Input
10%
10%
tr(1)
0V
tf(1)
90%
VOH
90%
Output
10%
10%
tr(1)
tf(1)
VOL
(1) The greater between tr and tf is the same as tt.
Figure 6-4. Voltage Waveforms, Input and Output Transition Times for Standard CMOS Inputs
Copyright © 2022 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: CD54HC240 CD74HC240 CD74HC241 CD54HC244 CD74HC244 CD54HCT240
CD74HCT240 CD54HCT241 CD74HCT241 CD54HCT244 CD74HCT244
11
CD54HC240, CD74HC240, CD74HC241, CD54HC244
CD74HC244, CD54HCT240, CD74HCT240, CD54HCT241
CD74HCT241, CD54HCT244, CD74HCT244
www.ti.com
SCHS167G – NOVEMBER 1998 – REVISED OCTOBER 2022
3V
Input
1.3V
1.3V
3V
Input
1.3V
1.3V
0V
tPLH(1)
VOH
Output
Waveform 1
50%
50%
VOL
50%
VOL
(1) The greater between tPLH and tPHL is the same as tpd.
Figure 6-5. Voltage Waveforms, Propagation
Delays for TTL-Compatible Inputs
12
Submit Document Feedback
Output
Waveform 2
S1 OPEN,
S2 CLOSED
tPLZ(2)
VCC
50%
10%
VOL
tPZH(1)
VOH
50%
Output
Waveform 1
S1 CLOSED,
S2 OPEN
tPLH(1)
tPHL(1)
Output
Waveform 2
0V
tPZL(1)
tPHL(1)
tPHZ(2)
90%
VOH
50%
0V
(1) tPLZ and tPHZ are the same as tdis.
(2) tPZL and tPZH are the same as ten.
Figure 6-6. Voltage Waveforms, TTL-Compatible
CMOS Inputs Propagation Delays
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: CD54HC240 CD74HC240 CD74HC241 CD54HC244 CD74HC244 CD54HCT240
CD74HCT240 CD54HCT241 CD74HCT241 CD54HCT244 CD74HCT244
CD54HC240, CD74HC240, CD74HC241, CD54HC244
CD74HC244, CD54HCT240, CD74HCT240, CD54HCT241
CD74HCT241, CD54HCT244, CD74HCT244
www.ti.com
SCHS167G – NOVEMBER 1998 – REVISED OCTOBER 2022
7 Detailed Description
7.1 Overview
The ’HC240 and ’HCT240 are inverting three-state buffers having two active-low output enables. The
CD74HC241, ’HCT241, ’HC244 and ’HCT244 are non-inverting threestate buffers that differ only in that the 241
has one activehigh and one active-low output enable, and the 244 has two active-low output enables. All three
types have identical pinouts.
7.2 Functional Block Diagram
xOE
xA1
xY1
xA2
xY2
xA3
xY3
xA4
xY4
Figure 7-1. Functional Block Diagram '240
1OE
1A1
1Y1
1A2
1Y2
1A3
1Y3
1A4
1Y4
2OE
2A1
2Y1
2A2
2Y2
2A3
2Y3
2A4
2Y4
Figure 7-2. Functional Block Diagram '241
Copyright © 2022 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: CD54HC240 CD74HC240 CD74HC241 CD54HC244 CD74HC244 CD54HCT240
CD74HCT240 CD54HCT241 CD74HCT241 CD54HCT244 CD74HCT244
13
CD54HC240, CD74HC240, CD74HC241, CD54HC244
CD74HC244, CD54HCT240, CD74HCT240, CD54HCT241
CD74HCT241, CD54HCT244, CD74HCT244
www.ti.com
SCHS167G – NOVEMBER 1998 – REVISED OCTOBER 2022
Figure 7-3. Functional Block Diagram '244
14
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: CD54HC240 CD74HC240 CD74HC241 CD54HC244 CD74HC244 CD54HCT240
CD74HCT240 CD54HCT241 CD74HCT241 CD54HCT244 CD74HCT244
CD54HC240, CD74HC240, CD74HC241, CD54HC244
CD74HC244, CD54HCT240, CD74HCT240, CD54HCT241
CD74HCT241, CD54HCT244, CD74HCT244
www.ti.com
SCHS167G – NOVEMBER 1998 – REVISED OCTOBER 2022
8 Power Supply Recommendations
The power supply can be any voltage between the minimum and maximum supply voltage rating located in
the Recommended Operating Conditions. Each VCC terminal should have a good bypass capacitor to prevent
power disturbance. A 0.1-μF capacitor is recommended for this device. It is acceptable to parallel multiple
bypass capacitors to reject different frequencies of noise. The 0.1-μF and 1-μF capacitors are commonly used in
parallel. The bypass capacitor should be installed as close to the power terminal as possible for best results.
9 Layout
9.1 Layout Guidelines
When using multiple-input and multiple-channel logic devices, inputs must not ever be left floating. In many
cases, functions or parts of functions of digital logic devices are unused; for example, when only two inputs of a
triple-input AND gate are used or only 3 of the 4 buffer gates are used. Such unused input pins must not be left
unconnected because the undefined voltages at the outside connections result in undefined operational states.
All unused inputs of digital logic devices must be connected to a logic high or logic low voltage, as defined by the
input voltage specifications, to prevent them from floating. The logic level that must be applied to any particular
unused input depends on the function of the device. Generally, the inputs are tied to GND or VCC, whichever
makes more sense for the logic function or is more convenient.
Copyright © 2022 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: CD54HC240 CD74HC240 CD74HC241 CD54HC244 CD74HC244 CD54HCT240
CD74HCT240 CD54HCT241 CD74HCT241 CD54HCT244 CD74HCT244
15
CD54HC240, CD74HC240, CD74HC241, CD54HC244
CD74HC244, CD54HCT240, CD74HCT240, CD54HCT241
CD74HCT241, CD54HCT244, CD74HCT244
www.ti.com
SCHS167G – NOVEMBER 1998 – REVISED OCTOBER 2022
10 Device and Documentation Support
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,
generate code, and develop solutions are listed below.
10.1 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For
change details, review the revision history included in any revised document.
10.2 Support Resources
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight
from the experts. Search existing answers or ask your own question to get the quick design help you need.
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do
not necessarily reflect TI's views; see TI's Terms of Use.
10.3 Trademarks
TI E2E™ is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.
10.4 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may
be more susceptible to damage because very small parametric changes could cause the device not to meet its published
specifications.
10.5 Glossary
TI Glossary
This glossary lists and explains terms, acronyms, and definitions.
11 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
16
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: CD54HC240 CD74HC240 CD74HC241 CD54HC244 CD74HC244 CD54HCT240
CD74HCT240 CD54HCT241 CD74HCT241 CD54HCT244 CD74HCT244
PACKAGE OPTION ADDENDUM
www.ti.com
14-Oct-2022
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
CD54HC240F3A
ACTIVE
CDIP
J
20
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
8407401RA
CD54HC240F3A
Samples
CD54HC244F
ACTIVE
CDIP
J
20
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
CD54HC244F
Samples
CD54HC244F3A
ACTIVE
CDIP
J
20
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
8409601RA
CD54HC244F3A
Samples
CD54HCT240F3A
ACTIVE
CDIP
J
20
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
8550501RA
CD54HCT240F3A
Samples
CD54HCT241F3A
ACTIVE
CDIP
J
20
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
CD54HCT241F3A
Samples
CD54HCT244F
ACTIVE
CDIP
J
20
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
CD54HCT244F
Samples
CD54HCT244F3A
ACTIVE
CDIP
J
20
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
8513001RA
CD54HCT244F3A
Samples
CD74HC240E
ACTIVE
PDIP
N
20
20
RoHS &
Non-Green
NIPDAU
N / A for Pkg Type
-55 to 125
CD74HC240E
Samples
CD74HC240M
ACTIVE
SOIC
DW
20
25
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-55 to 125
HC240M
Samples
CD74HC240M96
ACTIVE
SOIC
DW
20
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-55 to 125
HC240M
Samples
CD74HC241E
ACTIVE
PDIP
N
20
20
RoHS &
Non-Green
NIPDAU
N / A for Pkg Type
-55 to 125
CD74HC241E
Samples
CD74HC241M
ACTIVE
SOIC
DW
20
25
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-55 to 125
HC241M
Samples
CD74HC241M96
ACTIVE
SOIC
DW
20
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-55 to 125
HC241M
Samples
CD74HC244E
ACTIVE
PDIP
N
20
20
RoHS &
Non-Green
NIPDAU
N / A for Pkg Type
-55 to 125
CD74HC244E
Samples
CD74HC244EE4
ACTIVE
PDIP
N
20
20
RoHS &
Non-Green
NIPDAU
N / A for Pkg Type
-55 to 125
CD74HC244E
Samples
CD74HC244M
ACTIVE
SOIC
DW
20
25
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-55 to 125
HC244M
Samples
CD74HC244M96
ACTIVE
SOIC
DW
20
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-55 to 125
HC244M
Samples
CD74HC244M96E4
ACTIVE
SOIC
DW
20
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-55 to 125
HC244M
Samples
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
14-Oct-2022
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
CD74HC244M96G4
ACTIVE
SOIC
DW
20
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-55 to 125
HC244M
Samples
CD74HCT240E
ACTIVE
PDIP
N
20
20
RoHS &
Non-Green
NIPDAU
N / A for Pkg Type
-55 to 125
CD74HCT240E
Samples
CD74HCT240EE4
ACTIVE
PDIP
N
20
20
RoHS &
Non-Green
NIPDAU
N / A for Pkg Type
-55 to 125
CD74HCT240E
Samples
CD74HCT240M
ACTIVE
SOIC
DW
20
25
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-55 to 125
HCT240M
Samples
CD74HCT240M96
ACTIVE
SOIC
DW
20
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-55 to 125
HCT240M
Samples
CD74HCT240PW
ACTIVE
TSSOP
PW
20
70
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-55 to 125
HK240
Samples
CD74HCT240PWR
ACTIVE
TSSOP
PW
20
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-55 to 125
HK240
Samples
CD74HCT240PWT
ACTIVE
TSSOP
PW
20
250
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-55 to 125
HK240
Samples
CD74HCT241E
ACTIVE
PDIP
N
20
20
RoHS &
Non-Green
NIPDAU
N / A for Pkg Type
-55 to 125
CD74HCT241E
Samples
CD74HCT241M
ACTIVE
SOIC
DW
20
25
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-55 to 125
HCT241M
Samples
CD74HCT241M96
ACTIVE
SOIC
DW
20
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-55 to 125
HCT241M
Samples
CD74HCT244E
ACTIVE
PDIP
N
20
20
RoHS &
Non-Green
NIPDAU
N / A for Pkg Type
-55 to 125
CD74HCT244E
Samples
CD74HCT244M
ACTIVE
SOIC
DW
20
25
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-55 to 125
HCT244M
Samples
CD74HCT244M96
ACTIVE
SOIC
DW
20
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-55 to 125
HCT244M
Samples
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Addendum-Page 2
PACKAGE OPTION ADDENDUM
www.ti.com
14-Oct-2022
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of