0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
DLPC910ZYR

DLPC910ZYR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    FCBGA676_27X27MM

  • 描述:

    IC DIGITAL CONTROLLER 676FCBGA

  • 数据手册
  • 价格&库存
DLPC910ZYR 数据手册
DLPC910 DLPC910 DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 www.ti.com DLPC910 Digital DMD Controller 1 Features • • • • • • • • • Operates the following DLP ® DMD Chips – DLP9000X DMD – DLP9000XUV DMD – DLP6500 DMD User-selectable input clock rate – 400 MHz or 480 MHz with the DLP9000X and DLP9000XUV – 400 MHz with the DLP6500 Continuous streaming input data – Up to 61 gigabits per second with the DLP9000X and DLP9000XUV – Up to 24 gigabits per second with the DLP6500 Enables high-speed pattern rates – Up to 15 kHz binary patterns per second with the DLP9000X and DLP9000XUV – Up to 11.5 kHz binary patterns per second with the DLP6500 8-Bit gray scale pattern rates – Up to 1.8 kHz with the DLP9000X and DLP9000XUV with modulated illumination – Up to 1.4 kHz with the DLP6500 with modulated illumination 64-Bit 2x LVDS data bus interface Random DMD row addressing and Load4 loading Compatible with a variety of user-defined application processors or FPGAs I2C interface for control and status queries 3 Description The DLPC910 is a digital controller for three DMDs: the DLP9000X, DLP9000XUV, and DLP6500. The DLPC910 provides customers a high-speed data and control interface for the DMD to enable binary pattern rates up to 15 kHz with the DLP9000X/DLP9000XUV DMDs, and 11.5 kHz with the DLP6500 DMD. These fast pattern rates set DLP technology apart from other spatial light modulators and offer customers a strategic advantage for equipment needing fast, accurate, and programmable light steering capability. The DLPC910 provides the required mirror clocking pulses and timing information to the DMD. The unique capability and value offered by the DLPC910 device makes it well suited to support a wide variety of lithography, industrial, and advanced display applications. In DLP-based electronics solutions, image data is 100% digital from the DLPC910 input port to the projected image. The image stays in digital form and is never converted into an analog signal. The DLPC910 processes the digital input image and converts the data into a format needed by the DMD for proper display. The DMD then steers the light to the location determined by the pixel data loaded into the DMD. For complete electrical and mechanical specifications of the DLPC910, see the Virtex®-5 product specification at www.xilinx.com. Device Information (1) 2 Applications • • • Lithography – Direct imaging – Flat panel display – Printed circuit board manufacturing Industrial – 3D printing – 3D scanners for machine vision – Quality control Displays – 3D imaging – Augmented reality and information overlay PART NUMBER DLPC910 (1) PACKAGE FCBGA (676) BODY SIZE (NOM) 27.00 mm × 27.00 mm For all available packages, see the orderable addendum at the end of the data sheet. Typical Application Diagram An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated intellectual property matters and other important disclaimers. PRODUCTION DATA. 1 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 1 3 Description.......................................................................1 4 Revision History.............................................................. 2 5 Pin Configuration and Functions...................................4 Pin Functions.................................................................... 5 6 Specifications................................................................ 15 6.1 Absolute Maximum Ratings...................................... 15 6.2 ESD Ratings............................................................. 15 6.3 Recommended Operating Conditions.......................15 6.4 Thermal Information..................................................16 6.5 Electrical Characteristics...........................................16 6.6 Timing Requirements................................................ 16 7 Detailed Description......................................................18 7.1 Overview................................................................... 18 7.2 Functional Block Diagram......................................... 18 7.3 Feature Description...................................................18 7.4 Device Functional Modes..........................................26 7.5 Register Map.............................................................40 8 Application and Implementation.................................. 47 8.1 Application Information............................................. 47 8.2 Typical Application.................................................... 47 9 Power Supply Recommendations................................52 9.1 Power Supply Distribution and Requirements.......... 52 9.2 Power Down Requirements...................................... 52 10 Layout...........................................................................53 10.1 Layout Guidelines................................................... 53 10.2 Layout Example...................................................... 57 11 Device and Documentation Support..........................59 11.1 Device Support........................................................59 11.2 Documentation Support.......................................... 59 11.3 Support Resources................................................. 59 11.4 Trademarks............................................................. 59 11.5 Electrostatic Discharge Caution.............................. 60 11.6 Glossary.................................................................. 60 12 Mechanical, Packaging, and Orderable Information.................................................................... 60 4 Revision History Changes from Revision C (March 2020) to Revision D (September 2020) Page • Updated Description section for DDC_DCLK_(A,B,C,D)_DP(N,P), DDC_DIN_(A,B,C,D)(1-15)_DP(N,P), and DVALID_(A,B,C,D)_DP(N,P) from "100-Ω internal LVDS termination." to "100-Ω external LVDS termination required...............................................................................................................................................................5 • Updated I/O Type section for LOAD4_ENZ from LVCMOS33_I to LVCMOS25_I.............................................. 5 • Updated I/O Type section for DMD_IRQ from LVCMOS33_O to LVCMOS25_O...............................................5 • Corrected HBM and CDM values. ................................................................................................................... 15 • Corrected "...during which time RST_ACTIVE is asserted." to "...during which time RST_ACTIVE is NOT asserted."..........................................................................................................................................................21 • Updated section name from "DMD Power Down" to "DMD Mirror Float". Removed outdated information about power down...................................................................................................................................................... 21 • Removed "After PWR_FLOAT is asserted, a Mirror Clocking Pulse is issued, or a mirror Float operation is requested" ........................................................................................................................................................23 • Updated I2C terminology to "primary" and "secondary" throughout section. ................................................... 24 • Updated performance plot for DLP6500 DMD (Figure 8-4) ............................................................................. 50 • Updated performance plot for DLP9000X/DLP9000XUV DMD (Figure 8-3).................................................... 50 Changes from Revision B (November 2016) to Revision C (March 2020) Page • Changed title from DLPC910 Digital Controller to DLPC910 Digital DMD Controller ........................................1 • Added new DLP9000XUV DMD as DLPC910 supported DMD (multiple places).............................................. 1 • Updated "DDC_IIC_x" signal names to "DDC_I2C_x" in multiple locations....................................................... 5 • Added missing DLPC_DOUTBUSY pin to complete the listing of all 676 pins of DLPC910.............................. 5 • Added missing unconnected pins to complete the listing of all 676 pins of DLPC910....................................... 5 • Corrected signal name RESETZ to RESET_RSTZ ......................................................................................... 18 • Deleted package code FLS from DMD callout for readability .......................................................................... 18 • Added section describing DDC_Version output pins ....................................................................................... 23 • Corrected I2C version from 1.0-1995 to 1.0-1992. ...........................................................................................24 • Combined Figure 8 and Figure 9 into new Figure 7-6 to incorporate Application Note/Tech Advisory dlpa092 (DLPC910 / DLPR910A - Continuous Row Command Operation). .................................................................34 2 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated www.ti.com • • • • • • • DLPC910 DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 Added DLP9000XUV to DMD Characteristics Table ....................................................................................... 35 Changed "Connected DMD ID" to "Connected DMD TYPE" to match nomenclature of DMD_TYPE_[3:0] input pins .................................................................................................................................................................. 40 Added explanation that DDC_VERSION_(2:0) output values are mirrored in DESTOP_VERSION register... 43 Corrected signal name RESETZ to RESET_RSTZ in DLP9000X block diagram ........................................... 47 Corrected signal name RESETZ to RESET_RSTZ in DLP6500 block diagram ..............................................47 Added DLP9000XUV to Figure 9-1 - changed previous sentence to clarify one DMD per DLPC910/DLPR910. ..........................................................................................................................................................................52 Added DLP9000XUV link to Related Documentation section ..........................................................................59 Changes from Revision A (October 2015) to Revision B (November 2016) Page • Simplified datasheet title.....................................................................................................................................1 • Added family of supported DMDs in Section 1 .................................................................................................. 1 • Updated supply current values in Section 6.5. ................................................................................................ 16 • Indicated how SPEED_SEL should be set when DLP6500 is used in Section 7.3.2 ...................................... 18 • Added reference to the Section 9.2 in Section 7.3.6.4 .................................................................................... 21 • Replaced DMD part number and row count with variable VRes in Section 7.3.6.5.1 ......................................22 • Indicated how SPEED_SEL should be set when DLP6500 is used in Section 7.3.10.3 ................................. 25 • Added cross reference to Table 7-11 in Section 7.4 ........................................................................................ 26 • Added cross reference to Table 7-11 in Section 7.4.1 ..................................................................................... 26 • Added pixel mapping tables for both DMDs in Section 7.4.1 ...........................................................................26 • Added single row write example for the DLP6500 in Section 7.4.1.1 .............................................................. 34 • Added DLP6500 to Table 7-11 .........................................................................................................................35 • Added the number of row cycles required to clear the entire DMD for the DLP6500 in Section 7.4.3 ............ 37 • Added DLP6500 to Table 7-13 .........................................................................................................................37 • Added cross reference to Table 7-11 in Section 7.4.4 ..................................................................................... 37 • Added additional description for activating buses in Section 7.5.1.9 ...............................................................45 • Added DLP6500 DMD to application details to Section 8.2 .............................................................................47 • Added cross reference to Table 7-11 in Section 8.2.1.1 .................................................................................. 49 • Replaced references to part numbers with DMD in Section 8.2.1.2 ................................................................ 49 • Associated performance plot with appropriate DMD (Figure 8-3).....................................................................50 • Added performance plot for DLP6500 DMD (Figure 8-4)................................................................................. 50 • Added power down requirements and increased the minimum 300 µs to 500 µs for maintaining power levels in Section 9.2 ................................................................................................................................................... 52 • Added Table 9-1, Figure 9-2, Figure 9-3 ..........................................................................................................52 Changes from Revision * (September 2015) to Revision A (October 2015) Page • Changed the device from: Product Preview to Production Data.........................................................................1 Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback 3 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 5 Pin Configuration and Functions Figure 5-1. ZYR Package 676-Pin FCBGA Top View 4 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 I/O Type Descriptions I/O TYPE DESCRIPTION PWR Power GND Ground LVDS_25_NI LVDS 2.5-V negative input LVDS_25_PI LVDS 2.5-V positive input LVDS_25_NO LVDS 2.5-V negative output LVDS_25_PO LVDS 2.5-V positive output LVCMOS25_I LVCMOS 2.5-V input LVCMOS25_O LVCMOS 2.5-V output LVCMOS25_B LVCMOS 2.5-V bidirectional LVCMOS33_I LVCMOS 3.3-V input LVCMOS33_O LVCMOS 3.3-V output LVCMOS33_B LVCMOS 3.3-V bidirectional LVDCI_33_O Low-voltage digitally controlled impedance 3.3-V output NC No connection Pin Functions PIN NAME CTRL_RSTZ NO. F9 I/O TYPE ACTIVE (HI OR LO) CLOCK SYSTEM LVCMOS25_I Lo = 0 - DLPC910 Reset. DESCRIPTION AA10 LVCMOS33_I Hi = 1 - DLPC910 Secondary I2C Address Lo = 0x34, Hi = 0x36. Includes Internal pull-up. DDC_I2C_SCL Y8 LVCMOS33_B - - DLPC910 Secondary I2C Clock. Requires an external 1-kΩ pull-up resistor. DDC_I2C_SDA AA8 LVCMOS33_B - DDC_I2C_SCL DLPC910 Secondary I2C Data. Requires an external 1-kΩ pull-up resistor. DDC_I2C_ADDR_SEL CLKIN_R E10 LVCMOS25_I - Reference clock 50-MHz Reference Clock RESET_ADDR0 AD18 LVDCI_33_O Hi - Connect to DMD RESET_ADDR0 RESET_ADDR1 AC18 LVDCI_33_O Hi - Connect to DMD RESET_ADDR1 RESET_ADDR2 AC17 LVDCI_33_O Hi - Connect to DMD RESET_ADDR2 RESET_ADDR3 AC16 LVDCI_33_O Hi - Connect to DMD RESET_ADDR3 RESET_MODE0 AC13 LVDCI_33_O Hi - Connect to DMD RESET_MODE0 RESET_MODE1 AD13 LVDCI_33_O Hi - Connect to DMD RESET_MODE1 RESET_SEL0 AD15 LVDCI_33_O Hi - Connect to DMD RESET_SEL0 RESET_SEL1 AC14 LVDCI_33_O Hi - Connect to DMD RESET_SEL1 RESET_STROBE AD10 LVDCI_33_O Hi - Connect to DMD RESET_STROBE RESET_OEZ AD14 LVDCI_33_O Lo - Connect to DMD RESET_OEZ RESET_IRQZ AD8 LVCMOS33_I Lo - Connect to DMD RESET_IRQZ RESET_RSTZ AB10 LVDCI_33_O Lo - Connect to DMD PWRDNZ and RESETZ inputs SCPCLK AC7 LVDCI_33_O - - Connect to DMD SCP_CLK SCPDI AC8 LVCMOS33_I - SCPCLK Connect to DMD SCP_DO SCPDO AC9 LVDCI_33_O - SCPCLK Connect to DMD SCP_DI DMD_SCPENZ AB9 LVDCI_33_O Lo SCPCLK Connect to DMD SCP_ENZ DMD_TYPE_0 G11 LVCMOS25_O Hi - Attached DMD Type bit 0 DMD_TYPE_1 G12 LVCMOS25_O Hi - Attached DMD Type bit 1 DMD_TYPE_2 H11 LVCMOS25_O Hi - Attached DMD Type bit 2 DMD_TYPE_3 H12 LVCMOS25_O Hi - Attached DMD Type bit 3 BLKAD_0 E12 LVCMOS25_I Hi DDC_DCLK_[A,B,C,D] Block Address bit 0 BLKAD_1 D13 LVCMOS25_I Hi DDC_DCLK_[A,B,C,D] Block Address bit 1 BLKAD_2 E13 LVCMOS25_I Hi DDC_DCLK_[A,B,C,D] Block Address bit 2 BLKAD_3 F13 LVCMOS25_I Hi DDC_DCLK_[A,B,C,D] Block Address bit 3 BLKMD_0 H13 LVCMOS25_I Hi DDC_DCLK_[A,B,C,D] Block Mode Bit 0 Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback 5 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 PIN 6 I/O TYPE ACTIVE (HI OR LO) CLOCK SYSTEM H14 LVCMOS25_I Hi DDC_DCLK_[A,B,C,D] Block Mode Bit 1 D14 LVCMOS25_I Hi - DMD Row Address bit 0 ROWAD_1 D15 LVCMOS25_I Hi - DMD Row Address bit 1 ROWAD_2 E15 LVCMOS25_I Hi - DMD Row Address bit 2 ROWAD_3 F14 LVCMOS25_I Hi - DMD Row Address bit 3 ROWAD_4 G14 LVCMOS25_I Hi - DMD Row Address bit 4 ROWAD_5 E16 LVCMOS25_I Hi - DMD Row Address bit 5 ROWAD_6 F15 LVCMOS25_I Hi - DMD Row Address bit 6 ROWAD_7 G15 LVCMOS25_I Hi - DMD Row Address bit 7 ROWAD_8 E17 LVCMOS25_I Hi - DMD Row Address bit 8 ROWAD_9 F17 LVCMOS25_I Hi - DMD Row Address bit 9 ROWAD_10 G16 LVCMOS25_I Hi - DMD Row Address bit 10 ROWMD_0 H17 LVCMOS25_I Hi - DMD Row Mode bit 0 ROWMD_1 H16 LVCMOS25_I Hi - DMD Row Mode bit 1 DDC_DCLK_A_DPN B21 LVDS_25_NI - - DDC_DCLK_A_DPP C21 LVDS_25_PI - - Input Bus A Clock. 100-Ω external LVDS termination required. DDC_DCLK_B_DPN A7 LVDS_25_NI - - DDC_DCLK_B_DPP B7 LVDS_25_PI - - DDC_DCLK_C_DPN K20 LVDS_25_NI - - DDC_DCLK_C_DPP K21 LVDS_25_PI - - DDC_DCLK_D_DPN L5 LVDS_25_NI - - DDC_DCLK_D_DPP K5 LVDS_25_PI - - DDC_DCLKOUT_A_DPN N1 LVDS_25_NO - - DDC_DCLKOUT_A_DPP M1 LVDS_25_PO - - DDC_DCLKOUT_B_DPN Y5 LVDS_25_NO - - DDC_DCLKOUT_B_DPP Y6 LVDS_25_PO - - DDC_DCLKOUT_C_DPN AA22 LVDS_25_NO - - DDC_DCLKOUT_C_DPP AB22 LVDS_25_PO - - DDC_DCLKOUT_D_DPN M26 LVDS_25_NO - - DDC_DCLKOUT_D_DPP M25 LVDS_25_PO - - DDC_DIN_A0_DPN A15 LVDS_25_NI - DDC_DCLK_A DDC_DIN_A0_DPP A14 LVDS_25_PI - DDC_DCLK_A DDC_DIN_A1_DPN B14 LVDS_25_NI - DDC_DCLK_A DDC_DIN_A1_DPP C14 LVDS_25_PI - DDC_DCLK_A DDC_DIN_A2_DPN B16 LVDS_25_NI - DDC_DCLK_A NAME NO. BLKMD_1 ROWAD_0 DESCRIPTION Input Bus B Clock. 100-Ω external LVDS termination required. Input Bus C Clock. 100-Ω external LVDS termination required. Input Bus D Clock. 100-Ω external LVDS termination required. Output Bus A Clock to DMD. Output Bus B Clock to DMD. Output Bus C Clock to DMD. Output Bus D Clock to DMD. DDC_DIN_A2_DPP B15 LVDS_25_PI - DDC_DCLK_A DDC_DIN_A3_DPN C16 LVDS_25_NI - DDC_DCLK_A DDC_DIN_A3_DPP D16 LVDS_25_PI - DDC_DCLK_A DDC_DIN_A4_DPN A17 LVDS_25_NI - DDC_DCLK_A DDC_DIN_A4_DPP B17 LVDS_25_PI - DDC_DCLK_A DDC_DIN_A5_DPN C17 LVDS_25_NI - DDC_DCLK_A DDC_DIN_A5_DPP D18 LVDS_25_PI - DDC_DCLK_A DDC_DIN_A6_DPN A19 LVDS_25_NI - DDC_DCLK_A Input Bus A Data bit 0. 100-Ω external LVDS termination required. Input Bus A Data bit 1. 100-Ω external LVDS termination required. Input Bus A Data bit 2. 100-Ω external LVDS termination required. Input Bus A Data bit 3. 100-Ω external LVDS termination required. Input Bus A Data bit 4. 100-Ω external LVDS termination required. Input Bus A Data bit 5. 100-Ω external LVDS termination required. Input Bus A Data bit 6. 100-Ω external LVDS termination required. DDC_DIN_A6_DPP A18 LVDS_25_PI - DDC_DCLK_A DDC_DIN_A7_DPN C18 LVDS_25_NI - DDC_DCLK_A DDC_DIN_A7_DPP B19 LVDS_25_PI - DDC_DCLK_A DDC_DIN_A8_DPN D19 LVDS_25_NI - DDC_DCLK_A DDC_DIN_A8_DPP C19 LVDS_25_PI - DDC_DCLK_A DDC_DIN_A9_DPN B20 LVDS_25_NI - DDC_DCLK_A DDC_DIN_A9_DPP A20 LVDS_25_PI - DDC_DCLK_A DDC_DIN_A10_DPN A22 LVDS_25_NI - DDC_DCLK_A DDC_DIN_A10_DPP B22 LVDS_25_PI - DDC_DCLK_A Input Bus A Data bit 10. 100-Ω external LVDS termination required. DDC_DIN_A11_DPN A24 LVDS_25_NI - DDC_DCLK_A Input Bus A Data bit 11. Submit Document Feedback Input Bus A Data bit 7. 100-Ω external LVDS termination required. Input Bus A Data bit 8. 100-Ω external LVDS termination required. Input Bus A Data bit 9. 100-Ω external LVDS termination required. Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 PIN I/O TYPE ACTIVE (HI OR LO) CLOCK SYSTEM DESCRIPTION A23 LVDS_25_PI - DDC_DCLK_A 100-Ω external LVDS termination required. DDC_DIN_A12_DPN C23 LVDS_25_NI - DDC_DCLK_A DDC_DIN_A12_DPP B24 LVDS_25_PI - DDC_DCLK_A DDC_DIN_A13_DPN C24 LVDS_25_NI - DDC_DCLK_A DDC_DIN_A13_DPP D24 LVDS_25_PI - DDC_DCLK_A DDC_DIN_A14_DPN A25 LVDS_25_NI - DDC_DCLK_A DDC_DIN_A14_DPP B25 LVDS_25_PI - DDC_DCLK_A DDC_DIN_A15_DPN C26 LVDS_25_NI - DDC_DCLK_A DDC_DIN_A15_DPP B26 LVDS_25_PI - DDC_DCLK_A DDC_DIN_B0_DPN A12 LVDS_25_NI - DDC_DCLK_B DDC_DIN_B0_DPP A13 LVDS_25_PI - DDC_DCLK_B DDC_DIN_B1_DPN B12 LVDS_25_NI - DDC_DCLK_B DDC_DIN_B1_DPP C13 LVDS_25_PI - DDC_DCLK_B DDC_DIN_B2_DPN D10 LVDS_25_NI - DDC_DCLK_B NAME NO. DDC_DIN_A11_DPP DDC_DIN_B2_DPP D11 LVDS_25_PI - DDC_DCLK_B DDC_DIN_B3_DPN C12 LVDS_25_NI - DDC_DCLK_B DDC_DIN_B3_DPP C11 LVDS_25_PI - DDC_DCLK_B DDC_DIN_B4_DPN A10 LVDS_25_NI - DDC_DCLK_B DDC_DIN_B4_DPP B11 LVDS_25_PI - DDC_DCLK_B DDC_DIN_B5_DPN D9 LVDS_25_NI - DDC_DCLK_B DDC_DIN_B5_DPP C9 LVDS_25_PI - DDC_DCLK_B DDC_DIN_B6_DPN B10 LVDS_25_NI - DDC_DCLK_B DDC_DIN_B6_DPP B9 LVDS_25_PI - DDC_DCLK_B DDC_DIN_B7_DPN A8 LVDS_25_NI - DDC_DCLK_B DDC_DIN_B7_DPP A9 LVDS_25_PI - DDC_DCLK_B DDC_DIN_B8_DPN D6 LVDS_25_NI - DDC_DCLK_B DDC_DIN_B8_DPP D5 LVDS_25_PI - DDC_DCLK_B DDC_DIN_B9_DPN C7 LVDS_25_NI - DDC_DCLK_B DDC_DIN_B9_DPP C6 LVDS_25_PI - DDC_DCLK_B DDC_DIN_B10_DPN B6 LVDS_25_NI - DDC_DCLK_B DDC_DIN_B10_DPP B5 LVDS_25_PI - DDC_DCLK_B DDC_DIN_B11_DPN D4 LVDS_25_NI - DDC_DCLK_B DDC_DIN_B11_DPP D3 LVDS_25_PI - DDC_DCLK_B DDC_DIN_B12_DPN B4 LVDS_25_NI - DDC_DCLK_B DDC_DIN_B12_DPP C4 LVDS_25_PI - DDC_DCLK_B DDC_DIN_B13_DPN C3 LVDS_25_NI - DDC_DCLK_B DDC_DIN_B13_DPP C2 LVDS_25_PI - DDC_DCLK_B DDC_DIN_B14_DPN A3 LVDS_25_NI - DDC_DCLK_B DDC_DIN_B14_DPP A2 LVDS_25_PI - DDC_DCLK_B DDC_DIN_B15_DPN B2 LVDS_25_NI - DDC_DCLK_B DDC_DIN_B15_DPP B1 LVDS_25_PI - DDC_DCLK_B DDC_DIN_C0_DPN E20 LVDS_25_NI - DDC_DCLK_C DDC_DIN_C0_DPP E21 LVDS_25_PI - DDC_DCLK_C DDC_DIN_C1_DPN F20 LVDS_25_NI - DDC_DCLK_C DDC_DIN_C1_DPP G20 LVDS_25_PI - DDC_DCLK_C DDC_DIN_C2_DPN H19 LVDS_25_NI - DDC_DCLK_C Input Bus A Data bit 12. 100-Ω external LVDS termination required. Input Bus A Data bit 13. 100-Ω external LVDS termination required. Input Bus A Data bit 14. 100-Ω external LVDS termination required. Input Bus A Data bit 15. 100-Ω external LVDS termination required. Input Bus B Data bit 0. 100-Ω external LVDS termination required. Input Bus B Data bit 1. 100-Ω external LVDS termination required. Input Bus B Data bit 2. 100-Ω external LVDS termination required. Input Bus B Data bit 3. 100-Ω external LVDS termination required. Input Bus B Data bit 4. 100-Ω external LVDS termination required. Input Bus B Data bit 5. 100-Ω external LVDS termination required. Input Bus B Data bit 6. 100-Ω external LVDS termination required. Input Bus B Data bit 7. 100-Ω external LVDS termination required. Input Bus B Data bit 8. 100-Ω external LVDS termination required. Input Bus B Data bit 9. 100-Ω external LVDS termination required. Input Bus B Data bit 10. 100-Ω external LVDS termination required. Input Bus B Data bit 11. 100-Ω external LVDS termination required. Input Bus B Data bit 12. 100-Ω external LVDS termination required. Input Bus B Data bit 13. 100-Ω external LVDS termination required. Input Bus B Data bit 14. 100-Ω external LVDS termination required. Input Bus B Data bit 15. 100-Ω external LVDS termination required. Input Bus C Data bit 0. 100-Ω external LVDS termination required. Input Bus C Data bit 1. 100-Ω external LVDS termination required. DDC_DIN_C2_DPP J19 LVDS_25_PI - DDC_DCLK_C Input Bus C Data bit 2. 100-Ω external LVDS termination required. DDC_DIN_C3_DPN E23 LVDS_25_NI - DDC_DCLK_C Input Bus C Data bit 3. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback 7 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 PIN 8 I/O TYPE ACTIVE (HI OR LO) CLOCK SYSTEM DESCRIPTION E22 LVDS_25_PI - DDC_DCLK_C 100-Ω external LVDS termination required. DDC_DIN_C4_DPN F23 LVDS_25_NI - DDC_DCLK_C DDC_DIN_C4_DPP F22 LVDS_25_PI - DDC_DCLK_C DDC_DIN_C5_DPN G22 LVDS_25_NI - DDC_DCLK_C DDC_DIN_C5_DPP G21 LVDS_25_PI - DDC_DCLK_C DDC_DIN_C6_DPN J20 LVDS_25_NI - DDC_DCLK_C DDC_DIN_C6_DPP J21 LVDS_25_PI - DDC_DCLK_C DDC_DIN_C7_DPN H22 LVDS_25_NI - DDC_DCLK_C DDC_DIN_C7_DPP H21 LVDS_25_PI - DDC_DCLK_C DDC_DIN_C8_DPN J23 LVDS_25_NI - DDC_DCLK_C DDC_DIN_C8_DPP H23 LVDS_25_PI - DDC_DCLK_C DDC_DIN_C9_DPN K22 LVDS_25_NI - DDC_DCLK_C DDC_DIN_C9_DPP K23 LVDS_25_PI - DDC_DCLK_C DDC_DIN_C10_DPN M19 LVDS_25_NI - DDC_DCLK_C DDC_DIN_C10_DPP M20 LVDS_25_PI - DDC_DCLK_C DDC_DIN_C11_DPN M21 LVDS_25_NI - DDC_DCLK_C DDC_DIN_C11_DPP M22 LVDS_25_PI - DDC_DCLK_C DDC_DIN_C12_DPN N19 LVDS_25_NI - DDC_DCLK_C NAME NO. DDC_DIN_C3_DPP DDC_DIN_C12_DPP P19 LVDS_25_PI - DDC_DCLK_C DDC_DIN_C13_DPN N21 LVDS_25_NI - DDC_DCLK_C DDC_DIN_C13_DPP N22 LVDS_25_PI - DDC_DCLK_C DDC_DIN_C14_DPN P20 LVDS_25_NI - DDC_DCLK_C DDC_DIN_C14_DPP P21 LVDS_25_PI - DDC_DCLK_C DDC_DIN_C15_DPN N23 LVDS_25_NI - DDC_DCLK_C DDC_DIN_C15_DPP P23 LVDS_25_PI - DDC_DCLK_C DDC_DIN_D0_DPN T3 LVDS_25_NI - DDC_DCLK_D DDC_DIN_D0_DPP R3 LVDS_25_PI - DDC_DCLK_D DDC_DIN_D1_DPN R5 LVDS_25_NI - DDC_DCLK_D DDC_DIN_D1_DPP R6 LVDS_25_PI - DDC_DCLK_D DDC_DIN_D2_DPN R7 LVDS_25_NI - DDC_DCLK_D DDC_DIN_D2_DPP P6 LVDS_25_PI - DDC_DCLK_D DDC_DIN_D3_DPN N3 LVDS_25_NI - DDC_DCLK_D DDC_DIN_D3_DPP P3 LVDS_25_PI - DDC_DCLK_D DDC_DIN_D4_DPN P4 LVDS_25_NI - DDC_DCLK_D DDC_DIN_D4_DPP P5 LVDS_25_PI - DDC_DCLK_D DDC_DIN_D5_DPN N6 LVDS_25_NI - DDC_DCLK_D DDC_DIN_D5_DPP N7 LVDS_25_PI - DDC_DCLK_D DDC_DIN_D6_DPN N4 LVDS_25_NI - DDC_DCLK_D DDC_DIN_D6_DPP M4 LVDS_25_PI - DDC_DCLK_D DDC_DIN_D7_DPN M7 LVDS_25_NI - DDC_DCLK_D DDC_DIN_D7_DPP L7 LVDS_25_PI - DDC_DCLK_D DDC_DIN_D8_DPN K7 LVDS_25_NI - DDC_DCLK_D DDC_DIN_D8_DPP K6 LVDS_25_PI - DDC_DCLK_D DDC_DIN_D9_DPN J4 LVDS_25_NI - DDC_DCLK_D DDC_DIN_D9_DPP J5 LVDS_25_PI - DDC_DCLK_D DDC_DIN_D10_DPN H7 LVDS_25_NI - DDC_DCLK_D DDC_DIN_D10_DPP J6 LVDS_25_PI - DDC_DCLK_D DDC_DIN_D11_DPN G4 LVDS_25_NI - DDC_DCLK_D DDC_DIN_D11_DPP H4 LVDS_25_PI - DDC_DCLK_D Submit Document Feedback Input Bus C Data bit 4. 100-Ω external LVDS termination required. Input Bus C Data bit 5. 100-Ω external LVDS termination required. Input Bus C Data bit 6. 100-Ω external LVDS termination required. Input Bus C Data bit 7. 100-Ω external LVDS termination required. Input Bus C Data bit 8. 100-Ω external LVDS termination required. Input Bus C Data bit 9. 100-Ω external LVDS termination required. Input Bus C Data bit 10. 100-Ω external LVDS termination required. Input Bus C Data bit 11. 100-Ω external LVDS termination required. Input Bus C Data bit 12. 100-Ω external LVDS termination required. Input Bus C Data bit 13. 100-Ω external LVDS termination required. Input Bus C Data bit 14. 100-Ω external LVDS termination required. Input Bus C Data bit 15. 100-Ω external LVDS termination required. Input Bus D Data bit 0. 100-Ω external LVDS termination required. Input Bus D Data bit 1. 100-Ω external LVDS termination required. Input Bus D Data bit 2. 100-Ω external LVDS termination required. Input Bus D Data bit 3. 100-Ω external LVDS termination required. Input Bus D Data bit 4. 100-Ω external LVDS termination required. Input Bus D Data bit 5. 100-Ω external LVDS termination required. Input Bus D Data bit 6. 100-Ω external LVDS termination required. Input Bus D Data bit 7. 100-Ω external LVDS termination required. Input Bus D Data bit 8. 100-Ω external LVDS termination required. Input Bus D Data bit 9. 100-Ω external LVDS termination required. Input Bus D Data bit 10. 100-Ω external LVDS termination required. Input Bus D Data bit 11. 100-Ω external LVDS termination required. Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 PIN I/O TYPE ACTIVE (HI OR LO) CLOCK SYSTEM DESCRIPTION G5 LVDS_25_NI - DDC_DCLK_D H6 LVDS_25_PI - DDC_DCLK_D Input Bus D Data bit 12. 100-Ω external LVDS termination required. DDC_DIN_D13_DPN G7 LVDS_25_NI - DDC_DCLK_D DDC_DIN_D13_DPP G6 LVDS_25_PI - DDC_DCLK_D DDC_DIN_D14_DPN F4 LVDS_25_NI - DDC_DCLK_D DDC_DIN_D14_DPP F5 LVDS_25_PI - DDC_DCLK_D DDC_DIN_D15_DPN E5 LVDS_25_NI - DDC_DCLK_D NAME NO. DDC_DIN_D12_DPN DDC_DIN_D12_DPP DDC_DIN_D15_DPP E6 LVDS_25_PI - DDC_DCLK_D DDC_DOUT_A0_DPN AE2 LVDS_25_NO - DDC_DCLKOUT_A DDC_DOUT_A0_DPP AF2 LVDS_25_PO - DDC_DCLKOUT_A DDC_DOUT_A1_DPN AD1 LVDS_25_NO - DDC_DCLKOUT_A DDC_DOUT_A1_DPP AE1 LVDS_25_PO - DDC_DCLKOUT_A DDC_DOUT_A2_DPN AC1 LVDS_25_NO - DDC_DCLKOUT_A DDC_DOUT_A2_DPP AC2 LVDS_25_PO - DDC_DCLKOUT_A DDC_DOUT_A3_DPN AB1 LVDS_25_NO - DDC_DCLKOUT_A DDC_DOUT_A3_DPP AB2 LVDS_25_PO - DDC_DCLKOUT_A DDC_DOUT_A4_DPN Y2 LVDS_25_NO - DDC_DCLKOUT_A DDC_DOUT_A4_DPP AA2 LVDS_25_PO - DDC_DCLKOUT_A DDC_DOUT_A5_DPN W1 LVDS_25_NO - DDC_DCLKOUT_A DDC_DOUT_A5_DPP Y1 LVDS_25_PO - DDC_DCLKOUT_A DDC_DOUT_A6_DPN V1 LVDS_25_NO - DDC_DCLKOUT_A DDC_DOUT_A6_DPP V2 LVDS_25_PO - DDC_DCLKOUT_A DDC_DOUT_A7_DPN U1 LVDS_25_NO - DDC_DCLKOUT_A DDC_DOUT_A7_DPP U2 LVDS_25_PO - DDC_DCLKOUT_A DDC_DOUT_A8_DPN R2 LVDS_25_NO - DDC_DCLKOUT_A DDC_DOUT_A8_DPP T2 LVDS_25_PO - DDC_DCLKOUT_A DDC_DOUT_A9_DPN N2 LVDS_25_NO - DDC_DCLKOUT_A DDC_DOUT_A9_DPP M2 LVDS_25_PO - DDC_DCLKOUT_A DDC_DOUT_A10_DPN K1 LVDS_25_NO - DDC_DCLKOUT_A DDC_DOUT_A10_DPP L2 LVDS_25_PO - DDC_DCLKOUT_A DDC_DOUT_A11_DPN K2 LVDS_25_NO - DDC_DCLKOUT_A DDC_DOUT_A11_DPP K3 LVDS_25_PO - DDC_DCLKOUT_A DDC_DOUT_A12_DPN J3 LVDS_25_NO - DDC_DCLKOUT_A DDC_DOUT_A12_DPP H3 LVDS_25_PO - DDC_DCLKOUT_A DDC_DOUT_A13_DPN H2 LVDS_25_NO - DDC_DCLKOUT_A DDC_DOUT_A13_DPP J1 LVDS_25_PO - DDC_DCLKOUT_A DDC_DOUT_A14_DPN H1 LVDS_25_NO - DDC_DCLKOUT_A DDC_DOUT_A14_DPP G1 LVDS_25_PO - DDC_DCLKOUT_A DDC_DOUT_A15_DPN G2 LVDS_25_NO - DDC_DCLKOUT_A DDC_DOUT_A15_DPP F2 LVDS_25_PO - DDC_DCLKOUT_A DDC_DOUT_B0_DPN AE5 LVDS_25_NO - DDC_DCLKOUT_B DDC_DOUT_B0_DPP AE6 LVDS_25_PO - DDC_DCLKOUT_B DDC_DOUT_B1_DPN AD3 LVDS_25_NO - DDC_DCLKOUT_B DDC_DOUT_B1_DPP AD4 LVDS_25_PO - DDC_DCLKOUT_B DDC_DOUT_B2_DPN AD5 LVDS_25_NO - DDC_DCLKOUT_B DDC_DOUT_B2_DPP AD6 LVDS_25_PO - DDC_DCLKOUT_B DDC_DOUT_B3_DPN AC3 LVDS_25_NO - DDC_DCLKOUT_B DDC_DOUT_B3_DPP AC4 LVDS_25_PO - DDC_DCLKOUT_B DDC_DOUT_B4_DPN AB5 LVDS_25_NO - DDC_DCLKOUT_B DDC_DOUT_B4_DPP AB6 LVDS_25_PO - DDC_DCLKOUT_B DDC_DOUT_B5_DPN AB7 LVDS_25_NO - DDC_DCLKOUT_B DDC_DOUT_B5_DPP AC6 LVDS_25_PO - DDC_DCLKOUT_B DDC_DOUT_B6_DPN AA5 LVDS_25_NO - DDC_DCLKOUT_B DDC_DOUT_B6_DPP AA4 LVDS_25_PO - DDC_DCLKOUT_B Copyright © 2020 Texas Instruments Incorporated Input Bus D Data bit 13. 100-Ω external LVDS termination required. Input Bus D Data bit 14. 100-Ω external LVDS termination required. Input Bus D Data bit 15. 100-Ω external LVDS termination required. Output Bus A Data bit 0 to DMD. Output Bus A Data bit 1 to DMD. Output Bus A Data bit 2 to DMD. Output Bus A Data bit 3 to DMD. Output Bus A Data bit 4 to DMD. Output Bus A Data bit 5 to DMD. Output Bus A Data bit 6 to DMD. Output Bus A Data bit 7 to DMD. Output Bus A Data bit 8 to DMD. Output Bus A Data bit 9 to DMD. Output Bus A Data bit 10 to DMD. Output Bus A Data bit 11 to DMD. Output Bus A Data bit 12 to DMD. Output Bus A Data bit 13 to DMD. Output Bus A Data bit 14 to DMD. Output Bus A Data bit 15 to DMD. Output Bus B Data bit 0 to DMD. Output Bus B Data bit 1 to DMD. Output Bus B Data bit 2 to DMD. Output Bus B Data bit 3 to DMD. Output Bus B Data bit 4 to DMD. Output Bus B Data bit 5 to DMD. Output Bus B Data bit 6 to DMD. Submit Document Feedback 9 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 PIN I/O TYPE ACTIVE (HI OR LO) CLOCK SYSTEM AA7 LVDS_25_NO - DDC_DCLKOUT_B Y7 LVDS_25_PO - DDC_DCLKOUT_B DDC_DOUT_B8_DPN Y3 LVDS_25_NO - DDC_DCLKOUT_B DDC_DOUT_B8_DPP W3 LVDS_25_PO - DDC_DCLKOUT_B DDC_DOUT_B9_DPN W4 LVDS_25_NO - DDC_DCLKOUT_B DDC_DOUT_B9_DPP V4 LVDS_25_PO - DDC_DCLKOUT_B DDC_DOUT_B10_DPN W6 LVDS_25_NO - DDC_DCLKOUT_B DDC_DOUT_B10_DPP W5 LVDS_25_PO - DDC_DCLKOUT_B DDC_DOUT_B11_DPN V7 LVDS_25_NO - DDC_DCLKOUT_B DDC_DOUT_B11_DPP V6 LVDS_25_PO - DDC_DCLKOUT_B DDC_DOUT_B12_DPN U4 LVDS_25_NO - DDC_DCLKOUT_B DDC_DOUT_B12_DPP V3 LVDS_25_PO - DDC_DCLKOUT_B DDC_DOUT_B13_DPN T4 LVDS_25_NO - DDC_DCLKOUT_B DDC_DOUT_B13_DPP T5 LVDS_25_PO - DDC_DCLKOUT_B DDC_DOUT_B14_DPN U6 LVDS_25_NO - DDC_DCLKOUT_B DDC_DOUT_B14_DPP U5 LVDS_25_PO - DDC_DCLKOUT_B DDC_DOUT_B15_DPN U7 LVDS_25_NO - DDC_DCLKOUT_B DDC_DOUT_B15_DPP T7 LVDS_25_PO - DDC_DCLKOUT_B DDC_DOUT_C0_DPN T22 LVDS_25_NO - DDC_DCLKOUT_C DDC_DOUT_C0_DPP T23 LVDS_25_PO - DDC_DCLKOUT_C DDC_DOUT_C1_DPN R20 LVDS_25_NO - DDC_DCLKOUT_C DDC_DOUT_C1_DPP R21 LVDS_25_PO - DDC_DCLKOUT_C DDC_DOUT_C2_DPN T19 LVDS_25_NO - DDC_DCLKOUT_C DDC_DOUT_C2_DPP T20 LVDS_25_PO - DDC_DCLKOUT_C DDC_DOUT_C3_DPN U21 LVDS_25_NO - DDC_DCLKOUT_C DDC_DOUT_C3_DPP U22 LVDS_25_PO - DDC_DCLKOUT_C DDC_DOUT_C4_DPN U20 LVDS_25_NO - DDC_DCLKOUT_C DDC_DOUT_C4_DPP U19 LVDS_25_PO - DDC_DCLKOUT_C DDC_DOUT_C5_DPN V23 LVDS_25_NO - DDC_DCLKOUT_C DDC_DOUT_C5_DPP V24 LVDS_25_PO - DDC_DCLKOUT_C DDC_DOUT_C6_DPN V22 LVDS_25_NO - DDC_DCLKOUT_C DDC_DOUT_C6_DPP V21 LVDS_25_PO - DDC_DCLKOUT_C DDC_DOUT_C7_DPN W19 LVDS_25_NO - DDC_DCLKOUT_C DDC_DOUT_C7_DPP V19 LVDS_25_PO - DDC_DCLKOUT_C DDC_DOUT_C8_DPN W23 LVDS_25_NO - DDC_DCLKOUT_C DDC_DOUT_C8_DPP W24 LVDS_25_PO - DDC_DCLKOUT_C DDC_DOUT_C9_DPN Y22 LVDS_25_NO - DDC_DCLKOUT_C DDC_DOUT_C9_DPP Y23 LVDS_25_PO - DDC_DCLKOUT_C DDC_DOUT_C10_DPN Y20 LVDS_25_NO - DDC_DCLKOUT_C DDC_DOUT_C10_DPP Y21 LVDS_25_PO - DDC_DCLKOUT_C DDC_DOUT_C11_DPN AA24 LVDS_25_NO - DDC_DCLKOUT_C DDC_DOUT_C11_DPP AA23 LVDS_25_PO - DDC_DCLKOUT_C DDC_DOUT_C12_DPN AA19 LVDS_25_NO - DDC_DCLKOUT_C DDC_DOUT_C12_DPP AA20 LVDS_25_PO - DDC_DCLKOUT_C DDC_DOUT_C13_DPN AC24 LVDS_25_NO - DDC_DCLKOUT_C DDC_DOUT_C13_DPP AB24 LVDS_25_PO - DDC_DCLKOUT_C DDC_DOUT_C14_DPN AC19 LVDS_25_NO - DDC_DCLKOUT_C DDC_DOUT_C14_DPP AD19 LVDS_25_PO - DDC_DCLKOUT_C DDC_DOUT_C15_DPN AC22 LVDS_25_NO - DDC_DCLKOUT_C DDC_DOUT_C15_DPP AC23 LVDS_25_PO - DDC_DCLKOUT_C DDC_DOUT_D0_DPN AB26 LVDS_25_NO - DDC_DCLKOUT_D DDC_DOUT_D0_DPP AC26 LVDS_25_PO - DDC_DCLKOUT_D DDC_DOUT_D1_DPN AA25 LVDS_25_NO - DDC_DCLKOUT_D DDC_DOUT_D1_DPP AB25 LVDS_25_PO - DDC_DCLKOUT_D DDC_DOUT_D2_DPN Y26 LVDS_25_NO - DDC_DCLKOUT_D NAME NO. DDC_DOUT_B7_DPN DDC_DOUT_B7_DPP 10 Submit Document Feedback DESCRIPTION Output Bus B Data bit 7 to DMD. Output Bus B Data bit 8 to DMD. Output Bus B Data bit 9 to DMD. Output Bus B Data bit 10 to DMD. Output Bus B Data bit 11 to DMD. Output Bus B Data bit 12 to DMD. Output Bus B Data bit 13 to DMD. Output Bus B Data bit 14 to DMD. Output Bus B Data bit 15 to DMD. Output Bus C Data bit 0 to DMD. Output Bus C Data bit 1 to DMD. Output Bus C Data bit 2 to DMD. Output Bus C Data bit 3 to DMD. Output Bus C Data bit 4 to DMD. Output Bus C Data bit 5 to DMD. Output Bus C Data bit 6 to DMD. Output Bus C Data bit 7 to DMD. Output Bus C Data bit 8 to DMD. Output Bus C Data bit 9 to DMD. Output Bus C Data bit 10 to DMD. Output Bus C Data bit 11 to DMD. Output Bus C Data bit 12 to DMD. Output Bus C Data bit 13 to DMD. Output Bus C Data bit 14 to DMD. Output Bus C Data bit 15 to DMD. Output Bus D Data bit 0 to DMD. Output Bus D Data bit 1 to DMD. Output Bus D Data bit 2 to DMD. Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 PIN NAME NO. I/O TYPE ACTIVE (HI OR LO) CLOCK SYSTEM DDC_DOUT_D2_DPP Y25 LVDS_25_PO - DDC_DCLKOUT_D DDC_DOUT_D3_DPN W26 LVDS_25_NO - DDC_DCLKOUT_D DDC_DOUT_D3_DPP W25 LVDS_25_PO - DDC_DCLKOUT_D DDC_DOUT_D4_DPN U26 LVDS_25_NO - DDC_DCLKOUT_D DDC_DOUT_D4_DPP V26 LVDS_25_PO - DDC_DCLKOUT_D DDC_DOUT_D5_DPN U25 LVDS_25_NO - DDC_DCLKOUT_D DDC_DOUT_D5_DPP U24 LVDS_25_PO - DDC_DCLKOUT_D DDC_DOUT_D6_DPN T25 LVDS_25_NO - DDC_DCLKOUT_D DDC_DOUT_D6_DPP T24 LVDS_25_PO - DDC_DCLKOUT_D DDC_DOUT_D7_DPN R26 LVDS_25_NO - DDC_DCLKOUT_D DDC_DOUT_D7_DPP R25 LVDS_25_PO - DDC_DCLKOUT_D DDC_DOUT_D8_DPN P24 LVDS_25_NO - DDC_DCLKOUT_D DDC_DOUT_D8_DPP P25 LVDS_25_PO - DDC_DCLKOUT_D DDC_DOUT_D9_DPN N24 LVDS_25_NO - DDC_DCLKOUT_D DDC_DOUT_D9_DPP M24 LVDS_25_PO - DDC_DCLKOUT_D DDC_DOUT_D10_DPN L25 LVDS_25_NO - DDC_DCLKOUT_D DDC_DOUT_D10_DPP L24 LVDS_25_PO - DDC_DCLKOUT_D DDC_DOUT_D11_DPN K26 LVDS_25_NO - DDC_DCLKOUT_D DDC_DOUT_D11_DPP K25 LVDS_25_PO - DDC_DCLKOUT_D DDC_DOUT_D12_DPN J26 LVDS_25_NO - DDC_DCLKOUT_D DDC_DOUT_D12_DPP J25 LVDS_25_PO - DDC_DCLKOUT_D DDC_DOUT_D13_DPN J24 LVDS_25_NO - DDC_DCLKOUT_D DDC_DOUT_D13_DPP H24 LVDS_25_PO - DDC_DCLKOUT_D DDC_DOUT_D14_DPN H26 LVDS_25_NO - DDC_DCLKOUT_D DDC_DOUT_D14_DPP G26 LVDS_25_PO - DDC_DCLKOUT_D DDC_DOUT_D15_DPN G25 LVDS_25_NO - DDC_DCLKOUT_D DDC_DOUT_D15_DPP G24 LVDS_25_PO - DDC_DCLKOUT_D DDC_SCTRL_AN R1 LVDS_25_NO - DDC_DCLKOUT_A DDC_SCTRL_AP P1 LVDS_25_PO - DDC_DCLKOUT_A DDC_SCTRL_BN AA3 LVDS_25_NO - DDC_DCLKOUT_B DDC_SCTRL_BP AB4 LVDS_25_PO - DDC_DCLKOUT_B DDC_SCTRL_CN W20 LVDS_25_NO - DDC_DCLKOUT_C DDC_SCTRL_CP W21 LVDS_25_PO - DDC_DCLKOUT_C DDC_SCTRL_DN N26 LVDS_25_NO - DDC_DCLKOUT_D DDC_SCTRL_DP P26 LVDS_25_PO - DDC_DCLKOUT_D DVALID_A_DPN D20 LVDS_25_NI - DDC_DCLK_A DVALID_A_DPP D21 LVDS_25_PI - DDC_DCLK_A DVALID_B_DPN C8 LVDS_25_NI - DDC_DCLK_B DVALID_B_DPP D8 LVDS_25_PI - DDC_DCLK_B DVALID_C_DPN L19 LVDS_25_NI - DDC_DCLK_C DVALID_C_DPP L20 LVDS_25_PI - DDC_DCLK_C DVALID_D_DPN L3 LVDS_25_NI - DDC_DCLK_D DESCRIPTION Output Bus D Data bit 3 to DMD. Output Bus D Data bit 4 to DMD. Output Bus D Data bit 5 to DMD. Output Bus D Data bit 6 to DMD. Output Bus D Data bit 7 to DMD. Output Bus D Data bit 8 to DMD. Output Bus D Data bit 9 to DMD. Output Bus D Data bit 10 to DMD. Output Bus D Data bit 11 to DMD. Output Bus D Data bit 12 to DMD. Output Bus D Data bit 13 to DMD. Output Bus D Data bit 14 to DMD. Output Bus D Data bit 15 to DMD. Output Bus A Serial Control to DMD. Output Bus B Serial Control to DMD. Output Bus C Serial Control to DMD. Output Bus D Serial Control to DMD. Input Bus A Data Valid Signal. 100-Ω external LVDS termination required. Input Bus B Data Valid Signal. 100-Ω external LVDS termination required. Input Bus C Data Valid Signal. 100-Ω external LVDS termination required. L4 LVDS_25_PI - DDC_DCLK_D Input Bus D Data Valid Signal. 100-Ω external LVDS termination required. DDC_VERSION_0 F18 LVCMOS25_O Hi - DLPC910 Firmware Rev Number bit 0 DDC_VERSION_1 G17 LVCMOS25_O Hi - DLPC910 Firmware Rev Number bit 1 DDC_VERSION_2 H18 LVCMOS25_O Hi - DLPC910 Firmware Rev Number bit 2 SPEED_SEL_0 H8 LVCMOS25_I Hi - SPEED_SEL_1 H9 LVCMOS25_I Hi - SPEED_SEL[1:0] = 00 400MHz = 01 480MHz = 10, 11 Reserved Includes internal pullups. SPEED_SEL[1:0] must be set to 00 when connecting the DLPC910 with a DLP6500. VSP_ENABLE E8 LVCMOS25_I Hi - Reserved. Do not connect. Includes internal pull-up. ECP2_FINISHED E25 LVCMOS25_O Hi - DLPR910 Initialization complete. Connected to LED. DVALID_D_DPP Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback 11 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 PIN I/O TYPE ACTIVE (HI OR LO) CLOCK SYSTEM AA17 LVCMOS25_O Hi = On - Power Indicator LED Output. AB17 LVCMOS25_O Hi = On - Heartbeat Indicator LED Output. F25 LVCMOS25_I Lo - DMD Reset Pulse Watchdog Timer Enable PWR_FLOAT G9 LVCMOS25_I Hi - Park DMD mirrors. NS_FLIP F19 LVCMOS25_I Hi - Top/Bottom image flip on DMD COMP_DATA G19 LVCMOS25_I Hi DDC_DCLK_[A,B,C,D] Compliment Data (0 1) INIT_ACTIVE E26 LVCMOS25_O Hi - DLPC910 Initialization Routine Active RST_ACTIVE G10 LVCMOS25_O Hi - DMD Mirror Clocking Pulse in progress RST2BLKZ E18 LVCMOS25_I Hi - Dual and Quad Block control NAME NO. VLED0 VLED1 WDT_ENBLZ DESCRIPTION TST_PT_0 Y12 LVCMOS33_O - - No connect. For access to test point output route to test via. TST_PT_1 AA12 LVCMOS33_O - - No connect. For access to test point output route to test via. TST_PT_2 Y13 LVCMOS33_O - - No connect. For access to test point output route to test via. TST_PT_3 AA13 LVCMOS33_O - - No connect. For access to test point output route to test via. TST_PT_4 AA14 LVCMOS33_O - - No connect. For access to test point output route to test via. TST_PT_5 AB14 LVCMOS33_O - - No connect. For access to test point output route to test via. TST_PT_6 AA15 LVCMOS33_O - - No connect. For access to test point output route to test via. TST_PT_7 AB15 LVCMOS33_O - - No connect. For access to test point output route to test via. TST_PT_8 C1 LVCMOS25_O - - No connect. For access to test point output route to test via. TST_PT_9 D1 LVCMOS25_O - - No connect. For access to test point output route to test via. TST_PT_10 E1 LVCMOS25_O - - No connect. For access to test point output route to test via. TST_PT_11 E2 LVCMOS25_O - - No connect. For access to test point output route to test via. TST_PT_12 E3 LVCMOS25_O - - No connect. For access to test point output route to test via. TST_PT_13 F3 LVCMOS25_O - - No connect. For access to test point output route to test via. TST_PT_14 E7 LVCMOS25_O - - No connect. For access to test point output route to test via. TST_PT_15 F7 LVCMOS25_O - - No connect. For access to test point output route to test via. DLPC_VRN_BANK4 AB12 DCI Reference Voltage - - Requires an external 49.9-Ω pull-up resistor to 3.3 V. DLPC_VRP_BANK4 AC11 DCI Reference Voltage - - Requires an external 49.9-Ω pull-down resistor to GND. LOAD4_ENZ D25 LVCMOS25_I Lo - Signal enables the Load-4 functionality of the DMD. Includes internal pull-up. DMD_IRQ D26 LVCMOS25_O Hi - Signal indicates a DMD voltage is inactive. Includes internal pull-up DLPC_VBATT K18 LVCMOS33_I - - DLPC910 VBATT reference. Connect to GND. DLPC_DONE K10 LVCOMS33_O - - DLPC910 Initialization configuration complete. Connect to DLPR910 CEZ pin. Requires 4.7-kΩ pull-up to 3.3 V. DLPC_HSWAPEN L18 LVCMOS33_I - - DLPC910 Configuration. Requires 4.7kΩ pull-up to 3.3 V. DDC_M0 W18 LVCMOS33_I - - DLPC910 Configuration. Connect to GND DDC_M1 Y17 LVCMOS33_I - - DLPC910 Configuration. Connect to GND DDC_M2 V18 LVCMOS33_I - - DLPC910 Configuration. Connect to GND INTB_DDC J11 LVCMOS25_O Hi - DLPC910 Configuration. Connect to DLPR910 OE/RESET. Requires 4.7-kΩ pull-up to 3.3 V. PROGB_DDC J18 LVCMOS25_O Hi - DLPC910 Configuration. Connect to DLPR910 CF. Requires 4.7-kΩ pull-up to 3.3 V. 12 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 PIN I/O TYPE ACTIVE (HI OR LO) CLOCK SYSTEM DESCRIPTION J10 LVCMOS25_O - PROM_CCK_DDC Configuration PROM Clock. Connect to DLPR910 CLK. Connects to center of voltage divider (100/100-Ω 3.3 V and GND). PROM_D0_DDC K11 LVCMOS25_I - PROM_CCK_DDC Configuration PROM Data in. Connected to DLPR910 Data 0 (D0) DLPC_DOUTBUSY W11 LVCMOS25_I - - Configuration PROM Busy. Connect to test via for debug only. RDWR_B P18 LVCMOS25_I - - DLPC910 Configuration. Requires 1-kΩ pull-down to ground. TCK_JTAG U11 LVCMOS33_I - TCK_JTAG JTAG Clock. Connects to DLPC910, DLPR910, and JTAG header TCK (if user has JTAG they must build their chain accordingly) TDO_DDC W10 LVCMOS33_O - TCK_JTAG JTAG Data out of DLPC910. Connects to JTAG return TDO on JTAG header TDO_XCF16DDC V11 LVCMOS33_I - TCK_JTAG JTAG Data out of DLPR910 to DLPC910. Connects to DLPR910 TDO (DLPC910 internal signal TDI_0) TMS_JTAG V12 LVCMOS33_I Hi TCK_JTAG NAME NO. PROM_CCK_DDC JTAG. Connects to DLPC910, DLPR910, and JTAG header TMS VCCAUX J8, K17, L8, M17, N8, P17, R8, T17, U8, V17, W8, W16 PWR - - Aux Power. VCC_2P5V VCCINT H15, J12, J14, J16, K9, K13, K15, L10, L12, L14, L16, M9, M11, M15, N10, N12, N16, P9, P11, P15, R10, R12, R16, T9, T11, T13, T15, U10, U12, U14, U16, V9, V13, V15, W14, Y15 PWR - - Power. VCC_1P0V VCCO_0 Y9, W12 PWR - - VCCO_2 AA16, AD17 PWR VCCO_4 AB13, AC10 PWR - - VCCO_1 C10, F11 PWR - - VCCO_3 D17, E14 PWR - - VCCO_11 F21, H25, J22 PWR - - VCCO_12 H5, J2, L6 PWR - - VCCO_13 M23, N20, R24 PWR - - VCCO_14 R4, V5, W2 PWR - - VCCO_15 B23,C20, E24 PWR - - VCCO_16 D7, E4, G8 PWR - - VCCO_17 T21, V25, W22 PWR - - VCCO_18 AA6, AB3, AD7 PWR - - VCCO_21 AC20, AB23, AE24 PWR - - A1, A6, A11, A16, A21, A26, AA1, AA11, AA21, AA26, AB8, AB18, AC5, AC15, AC25, AD2, AD12, AD22, AE4, AE9, AE14, AE19, AF1, AF6, AF11, AF16, AF21, AF26, B3, B8, B13, B18, C5, C15, C25, D2, D12, D22, E9, E19, F1, F6, F16, F26, G3, G13, G18, G23, H10, H20, J7, J9, J13, J15, J17, K4, K8, K12, K14, K16, K19, K24, L1, L9, L11, L13, L15, L17, L21, L26, M3, M8, M10, GND - - GND Power. VCC_3P3V Power. VCC_2P5V M12, M16, M18, N5, N9, N11, N15, N17, N25, P2, P7, P8, P10, P12, P16, P22, R9, R11, R15, R17, R19, T1, T6, T8, T10, T12, T14, T16, T26, U3, U9, U13, U15, U17, U18, U23, V8, V10, V14, V16, V20, W7, W9, W13, W15, W17, Y4, Y14, Y16, Y19, Y24, M13, M14, N13, N14, P13, P14, R13, R14, N18, R18, T18 Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback 13 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 PIN NAME NO. I/O TYPE ACTIVE (HI OR LO) CLOCK SYSTEM DESCRIPTION RESERVED_AC12 AC12 LVCMOS33_O - - Route to via for access to pin output. RESERVED_AD11 AD11 LVCMOS33_O - - Route to via for access to pin output. RESERVED_AA9 AA9 LVCMOS33_I - - Includes internal pull-up RESERVED_Y10 Y10 LVCMOS33_I - - Includes internal pull-up RESERVED_Y11 Y11 LVCMOS33_I - - Includes internal pull-up AB11 LVCMOS33_I - - Includes internal pull-up RESERVED_F10 F10 LVCMOS33_I - - Includes internal pull-up RESERVED_F8 F8 LVCMOS33_I - - Includes internal pull-up A4, A5, AA18, AB16, AB19, AB20, AB21, AC21, AD9, AD16, AD20, AD21, AD23, AD24, AD25, AD26, AE3, AE7, AE8, AE10, AE11, AE12, AE13, AE15, AE16, AE17, AE18, AE20, AE21, AE22, AE23, AE25, AE26, AF3, AF4, AF5, AF7, AF8, AF9, AF10, AF12, AF13, AF14, AF15, AF17, AF18, AF19, AF20, AF22, AF23, AF24, AF25, C22, D23, E11, F12, F24, L22, L23, M5, M6, R22, R23, Y18 NC - - No Connection. Unused Pins. RESERVED_AB11 UNUSED 14 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 6 Specifications 6.1 Absolute Maximum Ratings See (1) MIN MAX UNIT ELECTRICAL VCCINT Supply voltage range (2) VCCO VCCAUX VI Input voltage range (3) VO Output voltage range (4) –0.50 1.1 –0.50 3.75 V –0.50 3.0 3.3 V –0.95 4.05 2.5 V –0.75 VCCO + 0.50 3.3 V –0.30 VCCO – 0.40 2.5 V –0.30 VCCO – 0.40 125 °C –65 150 °C V V ENVIRONMENTAL TJ Junction temperature Tstg Storage temperature (ambient) (1) (2) (3) (4) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to GND. Applies to external input and bidirectional buffers. Applies to external output and bidirectional buffers. 6.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001-2010, all pins (1) + 2000 Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2) + 400 UNIT V Level listed above is the passing level per ANSI, ESDA, and JEDEC JS-001-2010. JEDEC document JEP155 states that 500V HBM allows safe manufacturing with a standard ESD control process. Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN NOM MAX UNIT ELECTRICAL VCCINT 1-V supply voltage, core logic 0.95 1.00 1.05 V VCCO 2.5-V supply voltage, I/O for VCCO_1,3,11,12,13,14,15,16,17,18,21 1.14 2.50 3.45 V VCCO 3.3-V supply voltage, I/O for VCCO_0,2,4 VCCAUX 2.5-V supply voltage, I/O VI Input voltage Output voltage 3.30 3.45 V 2.500 2.625 V 3.3-V DCI and CMOS for VCCO_0,2,4 0 VCCO 2. 5-V CMOS for VCCO_1,3,11,12,13,14,15,16,17,18,21 0 VCCO 0.3 2.2 3.3-V DCI and CMOS for VCCO_0,2,4 0 VCCO 2.5-V CMOS for VCCO_1,3,11,12,13,14,15,16,17,18,21 0 VCCO 2.5-V LVDS VO 3.0 2.375 Copyright © 2020 Texas Instruments Incorporated V V Submit Document Feedback 15 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 over operating free-air temperature range (unless otherwise noted) MIN 2.5-V LVDS TA Operating ambient temperature NOM MAX UNIT 0.825 1.675 0 85 °C 6 W ENVIRONMENTAL PD Continuous total power dissipation 6.4 Thermal Information DLPC910 THERMAL METRIC (1) ZYR (FCBGA) UNIT 676 PINS RθJA Junction-to-ambient thermal resistance (2) 12.1 °C/W RθJC Junction-to-case thermal resistance 3.2 °C/W RθJB Junction-to-board thermal resistance 0.19 °C/W (1) (2) Refer to the XC5VLX30 product specifications at www.xilinx.com for complete thermal specifications. In still air. 6.5 Electrical Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER VIH High-level input voltage 3.3-V CMOS VIL Low-level input voltage 3.3-V CMOS VOH High-level output voltage 3.3-V DCI and CMOS VOL Low-level output voltage 3.3-V DCI and CMOS MIN TYP MAX UNIT 2.0 V 0.8 V 0.4 V 2.9 V VIH High-level input voltage 2.5-V CMOS VIL Low-level input voltage 2.5-V CMOS 1.7 V VOH High-level output voltage VOL Low-level output voltage CI Input capacitance ICCINT 1V Supply voltage range, core supply 1430 2100 mA ICCO + ICCAUX 2.5V Supply voltage range, I/O supply 1650 2300 mA ICCO 3.3V Supply voltage range, I/O supply 180 mA 0.7 2.5-V interface V VCCO – 0.4 2.5-V LVDS V 1.38 2.5-V interface 0.4 2.5-V LVDS V 1.03 2.5-V interface 8 2.5-V LVDS 8 pF 6.6 Timing Requirements (see (1)) MIN fcd Clock frequency, DCLKIN_n NOM (2) MAX UNIT 400 MHz 480 fcr Clock frequency, CLK_R tc Cycle time, DCLKIN_n tw(H) Pulse duration, high 16 Submit Document Feedback 50 50% to 50% reference points (signal) MHz fcd = 400 MHz 2.5 fcd = 480 MHz 2.083 fcd = 400 MHz 1.25 fcd = 480 MHz 1.042 ns ns Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 (see (1)) MAX UNIT tw(L) Pulse duration, low 50% to 50% reference points (signal) fcd = 400 MHz MIN 1.25 ns fcd = 480 MHz 1.042 tt Transition time, tt = tf /tr 20% to 80% reference points (signal) fcd = 400 MHz 0.6 tjp Period Jitter DCLKIN_n (3) tsk (1) (2) (3) (4) NOM fcd = 480 MHz ns 0.5 100 ps Skew, DIN_A(15-0) to DCLKIN_A -100 Skew, DIN_B(15-0) to DCLKIN_B -100 100 100 Skew, DIN_C(15-0) to DCLKIN_C -100 100 Skew, DIN_D(15-0) to DCLKIN_D -100 100 Skew, DVALID_n to DCLKIN_n↑ -100 100 Skew, BLKMD BLKAD to DCLKIN_n↑ (4) -100 100 Skew, ROWMD or ROWAD to DCLKIN_n↑ (4) -100 100 Skew, STEPVCC to DCLKIN↑ (4) -100 100 ps It is recommended that the COMP_DATA, NS_FLIP and RST2BLK flags be set to one value and not adjusted during normal system operation. Preferred DDC_DCLK _n duty cycle = 50% This is the deviation in period from ideal period due solely to high frequency jitter. First edge of DDC_DIN*, ROW*, and BLK* should be synchronous to DVALID rising edge. tsk tw(H) DCLKIN 50% tsk tt tc tw(L) 50% Cycle 1 50% 80% 20% Cycle#CLKS/ ROW 50% DVALID DDR Data Control Figure 6-1. Input Interface Timing Note Dynamic changes to RST2BLK, NS_FLIP and COMP_DATA during normal operation are not recommended. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback 17 DLPC910 DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 www.ti.com 7 Detailed Description 7.1 Overview The DLPC910 digital controller provides a reliable high speed data pipe to the DMD, where the digital input on the LVDS interface is configured for the required timing requirements of the DMD. The DMD reflects light by using 1-bit binary encoded patterns, where each mirror is a pixel-to-mirror mapping of the pattern. 7.2 Functional Block Diagram 7.3 Feature Description 7.3.1 Input LVDS Interface The data input interface consists of four input data buses: DDC_DIN_A, DDC_DIN_B, DDC_DIN_C, and DDC_DIN_D. Each bus contains 16 differential pairs which are synchronous to the rising and falling edges of its associated DDC_DCLK signal. 7.3.2 Data Clock The data clock interface consists of four differential pairs: DDC_DCLK_A, DDC_DCLK_B, DDC_DCLK_C, and DDC_DCLK_D. Each must operate continuously. All signals associated with the data clock should be synchronous to these signals. For example, DDC_DIN_A and DVALID_A should be synchronous to the rising edge of DDC_DCLK_A. This clock should be valid prior to releasing CTRL_RSTZ. DDC_DCLK is a DDR clock with data loaded on both rising and falling edges of DDC_DCLK. The jitter on this clock is specified in Timing Requirements. When connecting the DLPC910 with a DLP6500, SPEED_SEL[1:0] inputs must be set to "00". 7.3.3 Data Valid The data valid interface consists of four differential pairs: DVALID_A, DVALID _B, DVALID _C, and DVALID _D. The DVALID signal should be asserted synchronous to the data it is meant to frame. DVALID can be asserted as: 18 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com • • • DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 Framing individual row loads with breaks between rows, or Framing block loads - for example, the DLP9000X/DLP9000XUV with 16 blocks allows framing 100 contiguous row loads, or Framing the entire DMD load where the DVALID stays active for all DMD row loads with zero invalid data between rows. If the DVALID frames DMD blocks or the entire DMD, assure that the block and row control signals are adjusted at the proper locations in the data stream. Refer to Block Mode Operation for further information. 7.3.4 Interface Training The DLPC910 detects the phase differences between the ½ speed clock (used in the device driving the LVDS data) and the internally generated ½ speed data clocks to select a clock phase for data capture. This is done by supplying a simple repeating pattern on all of the data inputs while the INIT_ACTIVE output of the DLPC910 is high/active. The details of the training pattern are described below. Figure 7-1 shows a simple block diagram of the training pattern insertion logic. Sys Clk IO Clk System Data 0 4:1 Serdes Dout Training Data (0100) 1 Din 3:0 INIT_ACTIVE Figure 7-1. Block Diagram of Training Pattern Logic The expected training pattern is 0100. In Figure 7-2, the data input to the 4:1 SERDES cells is captured on the rising edge of the ½ speed system clock. The output latency shown is based on the documentation for the Xilinx SERDES cells. Individual implementation may vary depending on the type of cells, technology, and design technique used. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback 19 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 ½ Speed System CLK Full Speed IO CLK 4:1 SERDES Data (at the interface) 0100 0100 0100 0100 0100 Output Data Figure 7-2. Training Pattern Alignment Note In Xilinx FPGAs (due to the construction of the ISERDES and OSERDES cells) a pattern of 0010 needs to be applied to the output/transmitting SERDES cells data pins (D1 = 0, D2 = 0, D3 = 1, D4 = 0) in order to receive a result of 0100 (Q1 = 0, Q2 = 1, Q3 = 0, Q4 = 0) at the input/receiving SERDES cell. The patterns should be applied on all of the data and DVALID pins. In this respect, the interface is treated as a 17 bit interface with DVALID being the 17th data bit. The receiving logic in the DLPC910 adjusts the clock phase until the correct pattern is seen at the inputs. This allows DLPC910 to correctly select a clock phase for data capture and will contribute to a more robust interface. It is important that the training pattern is applied to the DVALID and data inputs of the DLPC910 before reset to the device is de-asserted, as training commences immediately on the de-assertion of reset. The INIT_ACTIVE signal is asserted while the device is held in reset in order to help facilitate this behavior. 7.3.5 Row and Block Interface 7.3.5.1 Row Mode The DMD incorporates single row write operations using a row address counter that is randomly addressable. ROWMD(1:0) determines the single row write count mode and ROWAD(10:0) determines the single row write address. ROWMD and ROWAD must be asserted and de-asserted synchronously with DVALID. Row address orientation depends on the North or South Flip Flag (NS_FLIP) input to the DLPC910. Refer to Related Documentation for the DMD datasheet regarding orientation of rows, columns, and Mirror Clocking Pulse (MCP) blocks. The row address counter does not automatically wrap-around when using the increment row address pointer instruction. After the final row is addressed, the row address pointer must be cleared to 0. 7.3.5.2 Block Mode The signals RST2BLKZ, BLKMD and BLKAD are used to designate which mirror block(s) is to be issued a MCP or a Block Clear. 7.3.6 Control Interface 7.3.6.1 Complement Data By setting the COMP_DATA input high (logic 1), the user is able to command the DMD to internally complement its data inputs prior to loading the data into the mirror array. At least 0.6 ms is needed for the signal to be loaded. 20 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 This signal should not be used to invert data on a row basis. When used with the Clear command, the mirrors are still set to zero regardless of the COMP_DATA bit. The COMP_DATA signal should be kept low during initialization to ensure proper setup of the system. 7.3.6.2 North South Flip The NS_FLIP signal allows the user to specify the loading direction of rows in the DMD when used with ROWMD = 01. This control has no effect if ROWMD = 10. Table 7-1 and Table 7-2 describe the effect of N/S flip. If NS_FLIP is set, this does not reverse the direction of MCP groups. For example, the normal case is to MCP blocks 0 – 15 in order. When NS_FLIP is set, the order of block MCPs must be reversed to 15 – 0. The NS_FLIP signal should be kept low during initialization to ensure proper setup of the system. Table 7-1. Row Write Modes - N/S Flip Flag = 0 ROWM D ROWAD 9 8 7 6 5 4 ACTION 1 0 10 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 None 0 1 0 0 0 0 0 0 0 0 0 0 0 Increment row address pointer and write the concurrent data into that row 1 0 R R R R R R R R R R R Set row address pointer to R and write the concurrent data into that row. 1 1 0 0 0 0 0 0 0 0 0 0 0 Clear row address pointer to 0 and write concurrent data into first row (that is, row 0). Table 7-2. Row Write Modes - N/S Flip Flag = 1 ROWM D ROWAD 9 8 7 6 5 4 ACTION 1 0 10 3 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 None 0 1 0 0 0 0 0 0 0 0 0 0 0 Decrement the row address pointer and write the concurrent data into that row 1 0 R R R R R R R R R R R Set the row address pointer to R and write the concurrent data into that row. 1 1 0 0 0 0 0 0 0 0 0 0 0 Set row address pointer to row = last row and write concurrent data into last row (that is, the last row = 1599 or 1079). 7.3.6.3 Watchdog The DLPC910 contains a watchdog timer that initiates a global DMD MCP in the event that any DMD reset block has not received a MCP within 10 seconds. This auto-MCP function can be disabled by asserting WDT_ENBLZ high. Disabling the watchdog is not recommended unless the user ensures that a MCP to the entire DMD occurs within 10 seconds. During the time when the DLPC910 is in idle mode or is not operating, it is recommended to exercise the DMD mirrors by continuously loading alternating all-on/all-off patterns. 7.3.6.4 DMD Mirror Float To avoid leaving a static image on the DMD without removing power, a mirror FLOAT operation can be issued to the DMD. A mirror FLOAT sequence begins by asserting the proper BLKMD and BLKAD as described in Table 7-12. During the following row cycle, the DMD releases the tension under each mirror so that all mirrors are in a relatively flat position. The FLOAT operation takes approximately 500 μs to complete, during which time RST_ACTIVE is NOT asserted. Normal operation may then continue without resetting or cycling power to the DLPC910 or the DMD. 7.3.6.5 Load4 Load4 functionality provides improved global binary pattern rates for applications that can trade diminished vertical resolution for higher pattern rates. Examples of these types of applications are shutter or chopper Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback 21 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 applications and vertical structured light patterns. Asserting LOAD4_ENZ causes the attached DMD to load 4 rows for every row of data sent, reducing the pattern load time to ¼ of a full DMD load. It does not reduce the MCP timing. 7.3.6.5.1 Load4 Row Addressing In Load4 mode, automatic increment mode and row address mode can still be used as before, however the largest addressable row is (VRes/4) - 1, where VRes = the vertical resolution of the DMD. The addressable vertical resolution is reduced by four, although the physical resolution is unchanged. Automatic increment address mode will automatically increment the row address input by one (or decrement by one for N/S flip). The row address input will be re-mapped as shown in Table 7-3. Table 7-3. Load4 Row Address Mapping ROW ADDRESS INPUT PHYSICAL ROWS LOADED ON DMD 0 0, 1, 2, 3 1 4, 5, 6, 7 2 8, 9, 10, 11 3 12, 13, 14, 15 N 4N, 4N+1, 4N+2, 4N+3 (VRes/4) -1 VRes-4, VRes-3, VRes-2, VRes-1 Data Sent Data Loaded 0 1 2 3 4 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 Figure 7-3. Example Load4 Row Address Mapping 7.3.6.5.2 Load4 Block Clears While Load4 is enabled, Block Clear requests will be ignored. To load using Load4 followed by Block Clear request(s), simply de-assert LOAD4_ENZ at the beginning of the MCP request(s) preceding the Block Clear request(s). Re-assert LOAD4_ENZ at the beginning of the MCP request(s) preceding the next desired Load4 operation. This will ensure that the DLPC910 controller has sufficient time to disable or enable LOAD4_ENZ before data is loaded or Block Clear(s) are requested. Refer to Block Clear regarding block clear operation. 7.3.7 Status Interface 7.3.7.1 ECP2 Finished When power is applied, the ECP2_FINISHED signal goes high to indicate the DLPC910 has completed loading the configuration from the DLPR910 PROM. 7.3.7.2 Initialization Active The initialization active signal INIT_ACTIVE indicates that the DMD and the DLPC910 digital controller are in an initialization state after power is applied. During this initialization period, the DLPC910 is calibrating the data 22 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 interface, and initializing the DMD by setting all internal registers to their correct states. Monitoring the INIT_ACTIVE signal should not begin until ECP2_FINISHED goes high. When this signal goes low, the system has completed initialization. System initialization takes approximately 4 ms to complete. Data and command write cycles must not be asserted during the initialization. This signal is driven by a CLK_R register and should be considered an asynchronous signal. Standard synchronization techniques should be applied if monitoring this signal with a synchronous circuit clocked by a clock other than CLK_R. After initialization is complete, a delay of at least 64 clocks should be observed before the first DVALID is asserted (to ensure a clean start up process). Note The RST2BLKZ, COMP_DATA, and NS_FLIP signals should be kept low during initialization to ensure proper setup of the system. 7.3.7.3 Reset Active The reset active signal RST_ACTIVE goes high for approximately 4 µs, indicating a MCP operation is in progress. During this time, no additional MCPs will be accepted by the DLPC910 until RST_ACTIVE returns low. RST_ACTIVE does not return to low unless continuous no-op or data loading row cycles are issued. RST_ACTIVE is asserted to indicate that the operation is in progress. Each RST_ACTIVE pulse applies to one or more MCPs depending on the reset block operation chosen from Table 7-12. RST_ACTIVE is synchronized to an internal version of DDC_DCLK. As such, circuits in the application FPGA should consider this signal asynchronous and use standard synchronization techniques to assure reliable registering of this signal. 7.3.7.4 DMD_TYPE During initialization, the DLPC910 queries the attached DMD for its DMD Type information. This information can then be monitored by an external processor via the status output pins DMD_TYPE_[3:0], or can be read via software over the I2C interface from the Section 7.5.1.4. The DMD types supported by the DLPC910 are listed in Table 7-4. Table 7-4. DMD Type Information DMD_TYPE_[3:0] output pins DESTOP_DMD_ID_REG value Type of DMD identified by DLPC410 '0000' 0x00000000 Value upon reset condition. Once read = unsupported DMD or DMD not connected '1110' 0x0000000E DLP6500 '1111' 0x0000000F DLP9000X or DLP9000XUV all other values invalid invalid Note If the DMD type is unsupported by the DLPC910 or the DMD type is unable to be read from the DMD, then the DLPC910 will not allow bit plane images to be displayed on the DMD. 7.3.7.5 DDC_Version(2:0) These three output pins of the DLPC910 identify the version of the DLPC910 firmware as determined by the contents of DLPR910 PROM. If a problem is encountered which encourages you to contact a Texas Instruments representative, please provide the version number along with the detailed information of the issue. The current state of these output pins can also be acquired over the I2C bus by reading the DESTOP_VERSION Register. See the DLPR910 datasheet link located in Section 11.2.1 for the expected version numbers related to DLPR910 revisions. 7.3.7.6 DMD_IRQ The DMD_IRQ signal indicates a DMD power fault of one of the bias, offset, or reset power supplies. If the customer interface wishes to monitor this signal, it must first be enabled in the DESTOP_INTERRUPT Register. The cause of the fault should be determined and resolved prior to a system reset to continue operation. The Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback 23 DLPC910 DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 www.ti.com customer interface can also monitor this event by polling the DESTOP_INTERRUPT Register via the I2C interface. 7.3.7.7 LED Indicators 7.3.7.7.1 VLED0 The VLED0 signal is typically connected to an LED to show that the DLPC910 is operating normally. The signal is 1 Hz with 50% duty cycle, otherwise known as the heartbeat. 7.3.7.7.2 VLED1 The VLED1 signal is typically connected to an LED indicator to show the status of system initialization and the status of the clock circuits. The VLED1 signal is asserted only when system initialization is complete and clock circuits are initialized. Logically, these signals are ANDed together to show an indication of the health of the system. If the Phase Locked Loop (PLL) connected to the data clock and the DMD clock are functioning correctly after system initialization, the LED will be illuminated. 7.3.8 Reset and System Clock 7.3.8.1 Controller Reset The controller reset input CTRL_RSTZ is an active low, asynchronous reset. This reset can be sourced from a voltage supervisor or from the customer interface. Users should note that the chipset will not operate correctly if all DLPC910 power supplies are not in range at the time this reset is released. 7.3.8.2 Main Oscillator Clock The reference clock, CLKIN_R, supplied from an oscillator must be 50 MHz. This is required for the precise timing used to perform the DMD MCP. This clock should be valid prior to releasing CTRL_RSTZ. 7.3.9 I2C Interface The I2C interface is compliant to I2C specification version 1.0 – 1992, and operates between 100 kHz and 400 kHz clock rate. The interface allows the user to set controller configuration and provides status information such as: • Controller and DMD identification • DMD Type • Versions • Controller operating status • Controller operating modes Each I2C clock and data I/O requires an external 1K-Ω pull-up resistor to 3.3 V. Depending on the speed that is selected and the loading of the interface, a different pull-up resistor may be required. 7.3.9.1 Configuration Pins The DDC_I2C_ADDR_SEL input signal allows the user to select the DLPC910 I2C slave address. When this pin is low, the slave address is 0x34 and when high the slave address is 0x36. If pin is left unconnected, the default slave address is 0x36. The DDC_I2C_SCL is the master controller input clock. The DDC_I2C_SDA is the bidirectional data signal. Both these signals require a 1-kΩ pull-up resistor. 7.3.9.2 Communications Interface Communications is performed over the I2C interface where the DLPC910 is the slave device. The DLPC910 slave address consists of a 7-bit address plus 1 R/W bit. Communicating with the DLPC910 involves writing to or reading from the registers listed in Register Map. 7.3.9.2.1 Command Format All register addresses are 32-bit in size, where each register contains a 32-bit value. The actual valid bits are shown in each respective register. Most registers contain spare or unused bits. These bits should be treated as don't-care during a read operation unless otherwise specified. When writing to spare or unused bits, these bits 24 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 MUST be set to 0. Both the register address and the data require the least-significant byte to be first and mostsignificant byte last. A SUB CMD must precede the register address to indicate the type of operation, where a 0xF1 indicates a write operation and a 0xF2 indicates a read operation. The following figures show examples of writing and reading to the DESTOP_BUS_SWAP register. Figure 7-4 shows an I2C master writing data to the DLPC910, where 0xF1 is required as the SUB CMD followed by the register address and finally the register data. Figure 7-4. Example I2C Master Writing DLPC910 Register Data Figure 7-5 shows an I2C master reading data from the DLPC910, where 0xF2 is required as the SUB CMD followed by the register address. Then the master performs STOP followed by a START to read the register data. Figure 7-5. Example I2C Master Reading DLPC910 Register Data 7.3.10 DMD Interface Refer to Table 7-11 to obtain the required LVDS buses needed for each supported DMD. 7.3.10.1 DDC_DOUT The controller provides four (A, B, C, D) 16-bit wide 2x LVDS output data buses to the DMD with a user selectable bus frequency of 400 or 480 MHz. 7.3.10.2 DDC_SCTRL The controller provides four (A, B, C, D) control output buses to the DMD. Each bus provides the necessary control data for the different operating modes of the DMD. 7.3.10.3 DDC_DCLKOUT The controller provides four (A, B, C, D) clock outputs to the DMD with a clock frequency of 400 or 480 MHz (user selectable). Both DDC_DOUT and DDC_SCTRL are clocked into the DMD on both the rising and falling edges of the DDC_DCLKOUT. When connecting the DLPC910 with a DLP6500, SPEED_SEL[1:0] inputs must be set to "00". 7.3.10.4 DMD Reset Interface 7.3.10.4.1 Mirror Reset Control The controller provides the necessary mirror reset control signals to the DMD, which are: Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback 25 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 • • • • RESET_ADDR(3:0) – Reset Driver Address Select. RESET_MODE(3:0) – Reset Driver Mode Select. RESET_SEL(1:0) – Reset Driver Level Select. RESET_STRB – Reset Address, Mode, and Level Select latched on rising-edge. 7.3.10.5 Enable and Interrupt Signals The controller provides the necessary outputs for DMD enables and an input interrupt from the DMD, which are: • RESET_RSTZ – Active-low reset output to the DMD PWRDNZ and RESETZ inputs. • RESET_OEZ – Active-low output enable for the DMD reset driver circuits. • RESET_IRQZ – Active-low input interrupt from the DMD. 7.3.10.6 Serial Control Port The DLPC910 communicates with the DMD over the SCP bus to perform initialization, set configuration, and retrieve identification information. 7.3.11 Flash PROM Interface 7.3.11.1 JTAG Interface The JTAG interface has multiple purposes that can be used in the following manner: • Program the configuration bit stream directly into the DLPC910 • Perform boundary test and debug of the DLPC910 • Program the configuration bit stream directly into the DLPR910 Flash PROM (not user configurable) 7.3.11.2 PGM Interface The PGM(4:0) interface is used by the DLPC910 to read in the configuration bit stream from the attached DLPR910 PROM. 7.4 Device Functional Modes The following section focuses on the operation of the DLP9000X/DLP9000XUV DMDs. The DLP6500 operates similar to the DLP9000X/DLP9000XUV. Refer to Table 7-11 for the differences between the supported DMDs. 7.4.1 DMD Row Operation The DMD data is loaded one row at a time with the LVDS buses into the DMD SRAM array. All DMD data buses are required for correct operation. Refer to Table 7-11 to obtain the required LVDS buses for each DMD supported. Each bus consists of a differential clock (DDC_DCLKOUT), a differential control signal (DDC_SCTRL), and 16 differential pairs of LVDS signals (DDC_DOUT[15:0]) that are output from the DLPC910. Data and control are clocked into the DMD on both the rising and falling edges of the DDC_DCLKOUT clocks. Data loading does not cause mirror switching until a MCP operation is completed. The number of clocks to load a row can be calculated as: C = P / (D × E) (1) where • • • • C = number of clocks per row P = number of pixels per row D = data bus bit width E = 2. (Data is clocked on both the rising and falling edge of DCLK.) Example: C = 2560 / (64 × 2) = 20 clocks per row Row address orientation depends on the North or South Flip Flag (NS_FLIP) input to the DLPC910. Refer to Related Documentation for the DMD datasheet regarding orientation of rows, columns, and MCP blocks. The row address counter does not automatically wrap-around when using the increment row address pointer instruction. After the final row is addressed, the row address pointer must be cleared to 0. 26 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 Note The pin names in the following Pixel Mapping tables have been shortened to allow the tables to fit on the page. For example: D_A(0) = DDC_DIN_A0, D_A(1) = DDC_DIN_A1, and so on. Table 7-5. DLP9000X/DLP9000XUV Pixel Mapping for D_A(x) DCLK EDGE D_A(0) D_A(1) D_A(2) D_A(3) D_A(6) D_A(7) D_A(8) D_A(9) D_A(10) D_A(11) D_A(14) D_A(15) 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 2 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 3 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 4 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 5 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 6 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 7 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 8 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 9 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 10 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 11 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 12 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 13 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 14 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 15 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 16 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 17 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 18 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 19 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 20 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 21 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 22 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 23 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 24 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 25 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 26 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 27 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 28 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 29 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 30 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 31 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 32 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 33 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 34 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 35 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 36 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 37 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 38 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 39 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 DCLK EDGE D_B(0) D_B(1) D_B(2) D_B(3) D_B(14) D_B(15) 0 16 17 18 19 20 1 48 49 50 51 52 2 80 81 82 83 3 112 113 114 4 144 145 5 176 177 D_A(4) D_A(5) D_A(12) D_A(12) Table 7-6. DLP9000X/DLP9000XUV Pixel Mapping for D_B(x) D_B(4) D_B(6) D_B(7) D_B(8) D_B(9) 21 22 23 24 53 54 55 56 84 85 86 87 115 116 117 118 146 147 148 149 178 179 180 181 Copyright © 2020 Texas Instruments Incorporated D_B(5) D_B(10) D_B(11) D_B(12) D_B(12) 25 26 27 28 29 30 31 57 58 59 60 61 62 63 88 89 90 91 92 93 94 95 119 120 121 122 123 124 125 126 127 150 151 152 153 154 155 156 157 158 159 182 183 184 185 186 187 188 189 190 191 Submit Document Feedback 27 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 Table 7-6. DLP9000X/DLP9000XUV Pixel Mapping for D_B(x) (continued) DCLK EDGE D_B(0) 6 7 28 D_B(1) D_B(2) D_B(3) D_B(6) D_B(7) D_B(8) D_B(9) D_B(10) D_B(11) D_B(14) D_B(15) 208 209 210 211 212 240 241 242 243 244 213 214 215 216 245 246 247 248 217 218 219 220 249 250 251 252 221 222 223 253 254 8 272 273 274 275 276 277 278 279 280 281 282 283 255 284 285 286 9 304 305 306 307 308 309 310 311 312 313 314 287 315 316 317 318 10 336 337 338 339 340 341 342 343 344 345 319 346 347 348 349 350 11 368 369 370 371 372 373 374 375 376 351 377 378 379 380 381 382 12 400 401 402 403 404 405 406 407 383 408 409 410 411 412 413 414 13 432 433 434 435 436 437 438 415 439 440 441 442 443 444 445 446 14 464 465 466 467 468 469 447 470 471 472 473 474 475 476 477 478 15 496 497 498 499 500 479 501 502 503 504 505 506 507 508 509 510 16 528 529 530 531 511 532 533 534 535 536 537 538 539 540 541 542 17 560 561 562 543 563 564 565 566 567 568 569 570 571 572 573 574 18 592 593 575 594 595 596 597 598 599 600 601 602 603 604 605 606 19 624 607 625 626 627 628 629 630 631 632 633 634 635 636 637 638 20 639 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 21 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 22 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 23 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 24 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 25 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 26 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 27 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 28 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 29 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 30 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 31 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 32 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 33 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 34 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 35 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 36 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 37 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 38 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 39 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 Submit Document Feedback D_B(4) D_B(5) D_B(12) D_B(12) Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 Table 7-7. DLP9000X/DLP9000XUV Pixel Mapping for D_C(x) DCLK EDGE D_C(0) 0 1 D_C(1) D_C(2) D_C(3) D_C(4) 1280 1281 1282 1283 1284 1312 1313 1314 1315 1316 2 1344 1345 1346 1347 3 1376 1377 1378 4 1408 1409 5 1440 6 D_C(6) D_C(7) D_C(8) D_C(9) D_C(10) D_C(11) D_C(14) D_C(15) 1285 1286 1287 1288 1317 1318 1319 1320 1289 1290 1291 1292 1321 1322 1323 1324 1293 1294 1295 1325 1326 1348 1349 1350 1351 1352 1353 1354 1355 1327 1356 1357 1358 1379 1380 1381 1382 1383 1384 1385 1386 1359 1387 1388 1389 1390 1410 1411 1412 1413 1414 1415 1416 1417 1391 1418 1419 1420 1421 1422 1441 1442 1443 1444 1445 1446 1447 1448 1423 1449 1450 1451 1452 1453 1454 1472 1473 1474 1475 1476 1477 1478 1479 1455 1480 1481 1482 1483 1484 1485 1486 7 1504 1505 1506 1507 1508 1509 1510 1487 1511 1512 1513 1514 1515 1516 1517 1518 8 1536 1537 1538 1539 1540 1541 1519 1542 1543 1544 1545 1546 1547 1548 1549 1550 9 1568 1569 1570 1571 1572 1551 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 10 1600 1601 1602 1603 1583 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 11 1632 1633 1634 1615 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 12 1664 1665 1647 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 13 1696 1679 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 14 1711 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 15 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 16 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 17 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 18 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 19 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 20 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 21 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 22 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 23 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 24 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 25 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 26 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 27 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 28 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 29 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 30 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 31 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 32 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 33 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 34 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 35 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 36 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 37 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 38 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 39 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 Copyright © 2020 Texas Instruments Incorporated D_C(5) D_C(12) D_C(12) Submit Document Feedback 29 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 Table 7-8. DLP9000X/DLP9000XUV Pixel Mapping for D_D(x) DCLK EDGE D_D(0) 0 1 30 D_D(1) D_D(2) D_D(3) D_D(6) D_D(7) D_D(8) D_D(9) D_D(10) D_D(11) D_D(14) D_D(15) 1296 1297 1298 1299 1300 1328 1329 1330 1331 1332 1301 1302 1303 1304 1333 1334 1335 1336 1305 1306 1307 1308 1337 1338 1339 1340 1309 1310 1311 1341 1342 2 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1343 1372 1373 1374 3 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1375 1403 1404 1405 1406 4 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1407 1434 1435 1436 1437 1438 5 1456 1457 1458 1459 1460 1461 1462 1463 1464 1439 1465 1466 1467 1468 1469 1470 6 1488 1489 1490 1491 1492 1493 1494 1495 1471 1496 1497 1498 1499 1500 1501 1502 7 1520 1521 1522 1523 1524 1525 1526 1503 1527 1528 1529 1530 1531 1532 1533 1534 8 1552 1553 1554 1555 1556 1557 1535 1558 1559 1560 1561 1562 1563 1564 1565 1566 9 1584 1585 1586 1587 1588 1567 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 10 1616 1617 1618 1619 1599 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 11 1648 1649 1650 1631 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 12 1680 1681 1663 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 13 1712 1695 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 14 1727 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 15 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 16 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 17 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 18 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 19 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 20 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 21 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 22 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 23 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 24 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 25 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 26 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 27 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 28 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 29 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 30 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 31 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 32 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 33 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 34 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 35 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 36 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 37 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 38 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 39 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 Submit Document Feedback D_D(4) D_D(5) D_D(12) D_D(12) Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 Table 7-9. DLP6500 Pixel Mapping for D_A(x) DCLK EDGE D_A(0) D_A(1) D_A(2) D_A(3) D_A(4) D_A(5) D_A(6) D_A(7) 0 D_A(8) D_A(9) D_A(10) D_A(11) D_A(12) D_A(12) D_A(14) D_A(15) Not visible 1 2 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 3 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 4 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 5 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 6 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 7 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 8 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 9 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 10 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 11 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 12 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 13 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 14 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 15 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 16 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 17 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 18 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 19 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 20 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 21 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 22 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 23 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 24 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 25 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 26 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 27 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 28 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 29 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 30 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 31 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 32 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 33 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 34 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 35 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 36 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 37 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 38 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 39 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 40 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 41 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 42 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 43 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 44 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 45 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 46 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 47 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 48 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 49 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 50 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 51 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 52 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 53 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback 31 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 Table 7-9. DLP6500 Pixel Mapping for D_A(x) (continued) DCLK EDGE D_A(0) 54 55 D_A(1) D_A(2) D_A(3) D_A(6) D_A(7) D_A(8) D_A(9) 1664 1665 1666 1667 1668 1696 1697 1698 1699 1700 1669 1670 1671 1672 1701 1702 1703 1704 56 1728 1729 1730 1731 1732 1733 1734 1735 57 1760 1761 1762 1763 1764 1765 1766 58 1792 1793 1794 1795 1796 1797 59 1824 1825 1826 1827 1828 60 1856 1857 1858 1859 61 1888 1889 1890 1891 62 D_A(5) D_A(10) D_A(11) D_A(12) D_A(12) D_A(14) D_A(15) 1673 1674 1675 1676 1705 1706 1707 1708 1677 1678 1679 1709 1710 1736 1737 1738 1739 1711 1740 1741 1742 1767 1768 1769 1770 1743 1771 1772 1773 1774 1798 1799 1800 1801 1775 1802 1803 1804 1805 1806 1829 1830 1831 1832 1807 1833 1834 1835 1836 1837 1838 1860 1861 1862 1863 1839 1864 1865 1866 1867 1868 1869 1870 1892 1893 1894 1895 1871 1896 1897 1898 1899 1900 1901 1902 1903 Not visible 63 32 D_A(4) Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 Table 7-10. DLP6500 Pixel Mapping for D_B(x) DCLK EDGE D_B(0) D_B(1) D_B(2) D_B(3) D_B(4) D_B(5) D_B(6) D_B(7) 0 D_B(8) D_B(9) D_B(10) D_B(11) D_B(12) D_B(12) D_B(14) D_B(15) Not visible 1 2 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 3 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 4 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 5 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 6 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 7 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 8 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 9 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 10 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 11 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 12 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 13 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 14 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 15 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 16 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 17 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 18 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 19 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 20 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 21 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 22 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 23 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 24 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 25 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 26 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 27 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 28 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 29 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 30 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 31 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 32 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 33 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 34 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 35 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 36 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 37 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 38 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 39 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 40 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 41 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 42 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 43 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 44 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 45 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 46 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 47 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 48 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 49 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 50 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 51 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 52 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 53 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback 33 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 Table 7-10. DLP6500 Pixel Mapping for D_B(x) (continued) DCLK EDGE D_B(0) 54 55 D_B(1) D_B(2) D_B(3) D_B(4) 1680 1681 1682 1683 1684 1712 1713 1714 1715 1716 56 1744 1745 1746 1747 57 1776 1777 1778 58 1808 1809 59 1840 60 61 D_B(5) D_B(6) D_B(7) D_B(8) D_B(9) D_B(10) D_B(11) 1685 1686 1687 1688 1717 1718 1719 1720 1748 1749 1750 1751 1779 1780 1781 1782 1810 1811 1812 1813 1841 1842 1843 1844 1872 1873 1874 1875 1904 1905 1906 1907 1689 1690 1691 1692 1721 1722 1723 1724 1752 1753 1754 1755 1783 1784 1785 1786 1814 1815 1816 1817 1845 1846 1847 1848 1876 1877 1878 1879 1908 1909 1910 1911 62 D_B(12) D_B(12) D_B(14) D_B(15) 1693 1694 1695 1725 1726 1727 1756 1757 1758 1759 1787 1788 1789 1790 1791 1818 1819 1820 1821 1822 1823 1849 1850 1851 1852 1853 1854 1855 1880 1881 1882 1883 1884 1885 1886 1887 1912 1913 1914 1915 1916 1917 1918 1919 Not visible 63 7.4.1.1 Data and Command Write Cycle Once initialization completes (INIT_ACTIVE = 0), the user is free to send bit plane data and control information to the DLPC910. The row write cycle begins with the assertion of DVALID. DVALID, all bit plane data, and all DMD control information must be presented to the DLPC910 synchronous to the input clock DCLKIN. When the user asserts a DVALID signal, the DLPC910 begins sampling the LVDS data inputs and control inputs and synchronously sends this information to the DMD along with row address control information. The DMD incorporates single row write operations using a row address counter that is randomly addressable. The Row Mode and Row address must be presented synchronous to the DCLKIN at this beginning of each row cycle. As shown in Table 7-1 and Table 7-2, ROWMD(1:0) determines the single row write count mode and ROWAD(10:0) determines the single row write address. ROWMD and ROWAD must be asserted synchronously with DVALID and must be valid synchronous to the beginning of the bit plane data as shown in Figure 7-6. Figure 7-6 shows an example of data written to the DLPC910 for two consecutive row cycles. This diagram applies to the DLPC910 for all compatible DMDs with a difference between DMD bus widths and number of clock cycles per row. For the DLP9000X/DLP9000XUV DMDs, data is written to the DLPC910 64 bits on each clock edge (16 Bus A bits + 16 Bus B bits + 16 Bus C bits + 16 Bus D bits) for 20 clock cycles (N=40) to complete one row cycle. For the DLP6500 DMD, only Bus A and Bus B are used (32 bits total) for 32 clock cycles (N=64) to complete one row cycle. An entire row of data must be written for data to be properly latched into the DMD memory. To complete the first row cycle (k), DVALID should be de-asserted (logic '0') two full clock cycles prior to the completion of the row cycle. The assertion of DVALID back high ('1') indicates the beginning of the next row cycle (k+1). For non-consecutive row cycles, keep DVALID low until the next row cycles is to begin, at which point DVALID should be taken high to start the next row cycle. This is for all row cycle operations including No-Op row cycles. Note Setting DVALID to LOW for the last clock cycle does not affect data read in the last two clock transitions. The firmware will finish the correct number data reads from DIN_(A/B/C/D) for the specific DMD, started by the rising edge of DVALID at the beginning of the row cycle. 34 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 Row cycle k+1 Row cycle k DCLKIN Low for last two full clocks in row DVALID ROWMD/ROWAD BLK_MD/BLK_AD NS_FLIP/COMP_DATA 0 DIN_A/B/C/D 1 2 3 4 N-6 N-5 N-4 N-3 N-2 N-1 0 1 Figure 7-6. DLPC910 Input Consecutive Single Row Write Cycles 7.4.2 Block Mode Operation The DMD mirrors and corresponding SRAM pixels are organized into blocks and each block is broken into rows per BLK as described in Table 7-11. Mirror blocks are addressed for either the Mirror Clocking Pulse or Block Clear functions by asserting block control signals at the start of each row data load. RST2BLKZ, BLKMD and BLKAD are used as shown in Table 7-12 to designate which mirror block(s) is to be issued a MCP or a Block Clear. Refer to Related Documentation for the DMD datasheet regarding block location information. • The clear operation sets all of the SRAM pixels in the designated block to logic zero during the current row cycle. • It is possible to issue a MCP to a block while loading a different block. • It is not possible to clear a block while writing to a different block. • It is not necessary to clear a block if it is going to be reloaded with new data (just like a normal memory cell). • It is recommended that RST2BLKZ, COMP, and NS_FLIP be set to one value and not adjusted during normal system operation. • A change in RST2BLKZ is not immediately effective and will require more than one row load cycle to complete. Note RST2BLK needs to be kept low during initialization for proper setup of the system. Dynamic changes to RST2BLK during normal operation are not recommended. Table 7-11. DMD Characteristics TYPE COLS ROWS BLKS ROWS PER BLK CLKS PER ROW #DATA IN Required Output LVDS Buses Required Input LVDS Buses DLP9000X - 0.9 WQXGA Type A 2560 1600 16 100 20 64 A, B, C, and D A, B, C, and D DLP9000XUV - 0.9 WQXGA Type A 2560 1600 16 100 20 64 A, B, C, and D A, B, C, and D Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback 35 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 Table 7-11. DMD Characteristics (continued) TYPE COLS ROWS DLP6500 - 0.65 1080p Type A and S600 (1) 1920 1080 BLKS ROWS PER BLK CLKS PER ROW #DATA IN 15 72 32 32 Required Output LVDS Buses Required Input LVDS Buses A and B(1) or C and D A and B By default data and serial control outputs are active on buses A and B. Refer to Section 7.5.1.9 to activate data and serial control outputs on buses C and D. Table 7-12. Block Operations 36 RST2BKLZ BLKMD_1 BLKMD_2 BLKAD_3 BLKAD_2 BLKAD_1 BLKAD_0 X 0 0 X X X X None OPERATION X 0 1 0 0 0 0 Clear block 00 X 0 1 0 0 0 1 Clear block 01 X 0 1 0 0 1 0 Clear block 02 X 0 1 0 0 1 1 Clear block 03 X 0 1 0 1 0 0 Clear block 04 X 0 1 0 1 0 1 Clear block 05 X 0 1 0 1 1 0 Clear block 06 X 0 1 0 1 1 1 Clear block 07 X 0 1 1 0 0 0 Clear block 08 X 0 1 1 0 0 1 Clear block 09 X 0 1 1 0 1 0 Clear block 10 X 0 1 1 0 1 1 Clear block 11 X 0 1 1 1 0 0 Clear block 12 X 0 1 1 1 0 1 Clear block 13 X 0 1 1 1 1 0 Clear block 14 X 0 1 1 1 1 1 Clear block 15 (1) X 1 0 0 0 0 0 Reset block 00 X 1 0 0 0 0 1 Reset block 01 X 1 0 0 0 1 0 Reset block 02 X 1 0 0 0 1 1 Reset block 03 X 1 0 0 1 0 0 Reset block 04 X 1 0 0 1 0 1 Reset block 05 X 1 0 0 1 1 0 Reset block 06 X 1 0 0 1 1 1 Reset block 07 X 1 0 1 0 0 0 Reset block 08 X 1 0 1 0 0 1 Reset block 09 X 1 0 1 0 1 0 Reset block 10 X 1 0 1 0 1 1 Reset block 11 X 1 0 1 1 0 0 Reset block 12 X 1 0 1 1 0 1 Reset block 13 X 1 0 1 1 1 0 Reset block 14 X 1 0 1 1 1 1 Reset block 15 (1) 0 1 1 0 0 0 0 Reset blocks 00-01 0 1 1 0 0 0 1 Reset blocks 02-03 0 1 1 0 0 1 0 Reset blocks 04-05 0 1 1 0 0 1 1 Reset blocks 06-07 0 1 1 0 1 0 0 Reset blocks 08-09 0 1 1 0 1 0 1 Reset blocks 10-11 0 1 1 0 1 1 0 Reset blocks 12-13 0 1 1 0 1 1 1 Reset blocks 14-15 1 1 1 0 0 0 X Reset blocks 00-03 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 Table 7-12. Block Operations (continued) RST2BKLZ (1) BLKMD_1 BLKMD_2 BLKAD_3 BLKAD_2 BLKAD_1 BLKAD_0 OPERATION Reset blocks 04-07 1 1 1 0 0 1 X 1 1 1 0 1 0 X Reset blocks 08-11 1 1 1 0 1 1 X Reset blocks 12-15 X 1 1 1 0 X X Reset blocks 00-15 X 1 1 1 1 X X Float blocks 00-15 Not applicable on DLP6500. 7.4.3 Block Clear The DMD incorporates block clear operations using the BLKMD and BLKAD signals as shown in Table 7-12. The block address does not automatically increment and must be set to the desired block to be cleared. The Block clear operation writes logic zero data to all the SRAM cells in one DMD block regardless of the COMP_DATA input state. It is not possible to clear a DMD block while writing to a different block. BLKMD and BLKAD are asserted to perform a MCP on the block(s) that have been cleared. The customer interface should introduce a delay on the last block(s) that were issued a MCP to allow the mirrors to become stable. Each Block Clear operation must be followed by two no-op row load cycles. For the DLP9000X/DLP9000XUV there are 16 total Block Clear commands and 32 total no-op row cycles that are required to clear the entire DMD array. For the DLP6500 there are 15 total Block Clear commands and 30 total no-op row cycles that are required to clear the entire DMD array. 7.4.4 Mirror Clocking Pulse A Mirror Clocking Pulse (MCP) sequence begins by asserting BLKMD and BLKAD for a single, dual, quad, or global block operation as defined in Table 7-12. A MCP causes a reset on the block(s), and the data stored in the block(s) takes effect on the mirrors of the DMD. Shortly after a MCP has been issued, RST_ACTIVE goes high for approximately 4 μs, indicating a MCP operation is in progress. During this time, no additional MCPs may be initiated until RST_ACTIVE returns low. RST_ACTIVE does not return to low unless continuous no-op or data loading row cycles are issued. A typical single block load phased sequence in which consecutive DMD blocks are loaded is illustrated in Figure 7-8. A MCP time is identical for single, dual, quad or global block operations. Note that it may take longer to complete a MCP on a block than it does to load a block. The block load time may be calculated as: Block Load Time = Clock Period × number CLKS per ROW × number ROWS per BLK Table 7-13. DMD Block Load Time DMD MINIMUM BLOCK LOAD TIME DCLKIN (MHz) DLP9000X 4.167 µsec 480 DLP9000XUV 4.167 µsec 480 DLP6500 5.76 µsec 400 For any case which involves sending a MCP or a Block Clear without data loading, the customer interface must send no-op row cycles. This can be accomplished by asserting DVALID, while holding ROWMD at 00 and BLKMD at 00 for the number of clocks per row in the DMD, as in Figure 7-7. Refer to Table 7-11 to obtain the number of clocks per row. Following the loading of all rows in a block or the entire DMD, at least one no-op row cycle must be completed to initiate the MCP. If the MCP is asserted prior to loading all rows in a block or the entire DMD, rows which were not updated will show old data. Additional MCP operations may not be initiated until RST_ACTIVE is low. Block Clear operations for the DMD must be followed by two consecutive no-op row cycle commands. To obtain full utilization of the DMD bandwidth, load four blocks and then issue a MCP to the four blocks concurrently by setting RST2BLKZ to 1 and BLKMD to 11 with the appropriate address in BLKAD. This is illustrated in Figure 7-10. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback 37 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 It is possible to load other blocks while the block(s) previously issued a MCP is settling. This is illustrated in Figure 7-9 and Figure 7-10, where blocks are reloaded while the mirror setting time is occurring. It is also possible to load other blocks while previously loaded block(s) have an outstanding RST_ACTIVE. This is illustrated in Figure 7-10, where block 0 is loaded while RST_ACTIVE is asserted for blocks 12-15. Note While RST_ACTIVE is high for 4 μs, the data for the block(s) being issued a MCP should not be changed to allow the mirrors to become stable. The RST_ACTIVE does not include the mirror settling period. A short delay of 6 μs should be introduced during the last block(s) that is issued a MCP. The mirror settling time is illustrated in Figure 7-8, Figure 7-9, Figure 7-10, and Figure 7-11, where the customer interface introduces a delay on the last block(s) that were issued a MCP to allow the mirrors to become stable. Figure 7-8, Figure 7-9, Figure 7-10, and Figure 7-11 all show an exposure period. Once the customer interface has issued all required MCPs and the proper mirror settling time has been applied, the customer interface may pulse an illumination source onto the DMD during this period. The exposure period is user adjustable; however, increasing the exposure period decreases the pattern rate. Refer to Application Curves regarding exposure period. Figure 7-7, Figure 7-8, Figure 7-9, Figure 7-10, and Figure 7-11 show timing for the DLP9000X/DLP9000XUV. Refer to Table 7-11 to obtain the number of reset blocks and clocks per row for the DLP6500 DMD. DCLKIN 0 1 37 38 39 DVALID ROWMD 00 00 BLK_MD 00 00 BLK_AD XXXX XXXX Figure 7-7. DMD No-op Row Cycle Mirror Settling Time for Block 15 DIN_A/B/C/D Block 13 Load Block 14 Load Block 15 BLK_MD/BLK_AD Block 12 Reset Block 13 Reset Block 14 Exposure Period Load Block 0 Reset Block 15 Load Block 1 Reset Block 0 RST_ACTIVE Figure 7-8. Single Block Load Phased Sequence 38 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 DIN_A/B/C/D Load Block 15 BLK_MD/BLK_AD Mirror Settling Time for Blocks 14 and 15 Exposure Period Load Block 0 Load Block 1 Load Block 2 Reset Blocks 0-1 Reset Blocks 14-15 RST_ACTIVE Figure 7-9. Dual Block Load Phased Sequence Mirror Settling Time for Blocks 12 - 15 DIN_A/B/C/D Load Block 15 Load Block 0 Load Block 1 Exposure Period Load Block 2 Load Block 3 Reset Blocks 12-15 BLK_MD/BLK_AD Load Block 4 Reset Blocks 0-3 RST_ACTIVE Figure 7-10. Quad Block Load Phased Sequence Mirror Settling Time for All Blocks DIN_A/B/C/D Load Block 0 {{ Load Block 1 Load Block 15 Exposure Period Load Block 0 {{ Load Block 1 {{ Load Block 15 {{ BLK_MD/BLK_AD Reset All Reset All RST_ACTIVE Figure 7-11. Full DMD Global Load Sequence Note: After a MCP or Block Clear command is given, RST_ACTIVE may not be asserted until up to 60 ns (depending on the clock frequency) after the command. While RST_ACTIVE is asserted, no other command should be given. 7.4.5 DMD Array Subset It is possible to use a subset of the DMD array including individual MCP blocks. The driving software/hardware MUST ensure that the MCP rate for the number of blocks in the subset plus the mirror settling time does not exceed 50 kHz. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback 39 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 Load4 functionality is primarily intended to be used with global MCPs. However, it is possible to use a subset of the DMD array including individual MCP blocks. The driving software/hardware MUST ensure that the MCP rate for the number of blocks in the Load4 subset plus the mirror settling time does not exceed 50 kHz. 7.4.6 Global Mirror Clocking Pulse Consideration A Global MCP (BLKMD = 11 and BLKAD = 10XX), takes the same amount of time as the single, dual, and quad block MCP. In addition to requiring a no-op row cycle to initiate a global MCP, a row cycle (either no-op or data loading) is also required to complete the operation. If the customer interface is monitoring RST_ACTIVE to determine when to send a subsequent row cycle, it will never see RST_ACTIVE transition low. One method of operation would be to continue sending no-op row cycles until RST_ACTIVE goes low then continue loading data with real row cycles. Another method of operation is to delay greater than 10 μs, then start loading new data to DMD. 7.5 Register Map 7.5.1 Register Table Overview Table 7-14 lists the I2C accessible memory mapped registers for the DLPC910. Access to the I2C registers should not begin until INIT_ACTIVE has transitioned low (logic 0). Table 7-14. Communication Registers ADDRESS REGISTER NAME DESCRIPTION SIZE DESTOP_INTERRUPT DESTOP Interrupt Status 32 0x0000 0x0004 0x0008 40 0x000C MAIN_STATUS Main Status 32 0x0010 DESTOP_CAL DESTOP input calibration status 32 0x0014 DESTOP_DMD_ID_REG Connected DMD Type 32 0x0018 DESTOP_CATBITS_REG Connected DMD fuse catalog bits 32 0x001C DESTOP_910VERSION_REG DLPC910 Version Number 32 0x0020 DESTOP_RESET_REG Reset status signals 32 0x0024 DESTOP_INFIFO_STATUS Input interface FIFO status 32 0x0028 DESTOP_BUS_SWAP Output bus swap 32 0x002C DESTOP_DMDCTRL DMD Control Register 32 0x0030 DESTOP_BIT_FLIP Output data bus bit reversal/flip 32 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 7.5.1.1 DESTOP_INTERRUPT Register The DESTOP_INTERRUPT register is used for controlling the interrupt source. Interrupts can be enabled, disabled, cleared and read independently. Table 7-15. DESTOP_INTERRUPT Register ADDRESS (1) (2) (3) (4) 0x0000 0x0004 0x0008 BITS RESET TYPE 0 SPARE 0x0 R/W 1 SPARE 0x0 R 2 A DMD IRQZ event occurred. The only existing source for this event is a DMD power fault indicating bias, offset, or reset power supplies have become inactive. The cause of the fault should be determined and resolved prior to a system reset to continue operation. (5) 0x0 R/W 3 SPARE 0x0 R UNUSED 0x0 R 31:4 (1) (2) (3) (4) (5) DESCRIPTION Interrupt status can be obtained by reading 0x0000 or 0x0004 address. Interrupt bits are asserted either by the corresponding H/W events or by S/W writing a 1 to the target bit of 0x0004 address. Interrupt bits are cleared by S/W writing a 1 to the target bit in 0x0000 address. Interrupts are enabled by setting the appropriate bits in register 0x0008. This bit must be cleared after a power cycle or a reset to the DLPC910. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback 41 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 7.5.1.2 MAIN_STATUS Register The MAIN_STATUS register is used for reading the status of the DLPC910. The register can be polled during operation to obtain the current state of the DLPC910. Table 7-16. MAIN_STATUS Register ADDRESS BITS DESCRIPTION RESET TYPE 0x0 R 0x0 R 0x0 R 0x0 R 0x0 R 0x0 R 0x0 R 0x0 R 0x0 R 0x0 R 0x0 R 0x0 R 0x0 R DMD initialization in progress flag 0 0 - No DMD initialization activity 1 - DMD initialization in progress DMD initialization in progress flag 1 1 0 - No DMD stage 1 initialization activity 1 - DMD stage 1 initialization activity in progress DMD initialization in progress flag 2 2 0 - No DMD stage 2 initialization activity 1 - DMD stage 2 initialization activity in progress DMD supports AB channels 3 0 - Operation of DMD AB buses not enabled 1 - Operation of DMD AB buses enabled DMD supports CD channels 4 0 - Operation of DMD CD buses not enabled 1 - Operation of DMD CD buses enabled Input interface calibration in progress 5 0 - Input interface calibration inactive 1 - Input interface calibration in progress DVALID alignment on interface A ok 0x000C 6 0 - DVALID alignment invalid on channel A 1 - DVALID alignment correct on channel A DVALID alignment on interface B ok 7 0 - DVALID alignment invalid on channel B 1 - DVALID alignment correct on channel B DVALID alignment on interface C ok 8 0 - DVALID alignment invalid on channel C 1 - DVALID alignment correct on channel C DVALID alignment on interface D ok 9 0 - DVALID alignment invalid on channel D 1 - DVALID alignment correct on channel D System PLL locked flag 10 0 - PLL not locked 1 - PLL locked Reference PLL locked flag 11 0 - PLL not locked 1 - PLL locked 31:12 42 Submit Document Feedback UNUSED Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 7.5.1.3 DESTOP_CAL Register The DESTOP_CAL register is used for reading the calibration state of the LVDS input buses of the DLPC910. The calibration occurs during the initialization after power is applied to the DLPC910. Table 7-17. DESTOP_CAL Register ADDRESS BITS DESCRIPTION RESET TYPE 0x0 R 0x0 R 0x0 R 0x0 R 0x0 R Input Channel A Calibration complete: 0 0 - Channel A Calibration in progress 1 - Channel A Calibration complete Input Channel B Calibration complete: 0 - Channel B Calibration in progress 1 1 - Channel B Calibration complete 0x0010 Input Channel C Calibration complete: 0 - Channel C Calibration in progress 2 1 - Channel C Calibration complete Input Channel D Calibration complete: 0 - Channel D Calibration in progress 3 1 - Channel D Calibration complete 31:04:00 UNUSED 7.5.1.4 DESTOP_DMD_ID_REG Register The DESTOP_DMD_ID_REG register is used for reading the identification of the DMD Type connected to the DLPC910. If the DLPC910 determines the DMD is not supported, the DLPC910 will halt all operations. See Table 7-4 for more information on valid DMD types. Table 7-18. DESTOP_DMD_ID_REG Register ADDRESS 0x0014 BITS DESCRIPTION RESET TYPE 3:0 Read-only register containing the DMD Type as provided on input pins DMD_TYPE_[3:0] 0x0 R 31:4 UNUSED 0x0 R 7.5.1.5 DESTOP_CATBITS_REG Register The DESTOP_CATBITS_REG register is used for reading the remainder of identification of the DMD connected to the DLPC910. If the DLPC910 determines the DMD is not supported, the DLPC910 will halt all operations. Table 7-19. DESTOP_CATBITS_REG Register ADDRESS 0x0018 BITS DESCRIPTION RESET TYPE 3:0 Read-only register containing the 4 remaining ID bits of the connected DMD. 0x0 R 31:4 UNUSED 0x0 R 7.5.1.6 DESTOP_VERSION Register The DESTOP_VERSION is used for obtaining the DLPR910 PROM configuration program version. Table 7-20. DESTOP_VERSION Register ADDRESS 0x001C BITS DESCRIPTION (Read-only register of the DLPC910 version number) RESET TYPE 3:0 Major 0x1 R 7:4 Minor 0x0 R 15:8 Revision 0x0 R Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback 43 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 Table 7-20. DESTOP_VERSION Register (continued) ADDRESS BITS 31:16 DESCRIPTION (Read-only register of the DLPC910 version number) UNUSED RESET TYPE 0x0 R The Major version identifier bits "DESTOP_VERSION(2:0)" are also mirrored on the hardware output bits DDC_Version(2:0). Since the DLPC910 firmware is configured by the binary data from the DLPR910 PROM at power up/initialization, the version identifiers for each revision are found in the DLPR910 datasheet. See the DLPR910 datasheet for more information on the DDC_VERSION and DESTOP_VERSION expected values. 44 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 7.5.1.7 DESTOP_RESET_REG Register The DESTOP_RESET_REG register is used for reading the current state of the MCP. Reading this register while the DLPC910 is loading data to the DMD may always indicate a “1”. It is best to monitor the actual RST_ACTIVE output signal of the DLPC910 to obtain the real state of the MCP. Table 7-21. DESTOP_RESET_REG Register ADDRESS 0x0020 BITS 0 31:1 DESCRIPTION RESET TYPE RESET Operation in progress bit: (Mirror clocking pulse) 0 - Reset inactive 1 - Reset active 0x0 R UNUSED 0x0 R 7.5.1.8 DESTOP_INFIFO_STATUS Register The DESTOP_INFIFO_STATUS register is used for validating there is data in the input bus FIFO buffers. An empty FIFO buffer may indicate that the DVALID is not properly set for the data on the input data bus. Table 7-22. DESTOP_INFIFO_STATUS Register ADDRESS BITS RESET TYPE 0 Channel A input FIFO status: 0 - Channel A FIFO has data 1 - Channel A FIFO is empty 0x0 R 1 Channel B input FIFO status: 0 - Channel B FIFO has data 1 - Channel B FIFO is empty 0x0 R 2 Channel C input FIFO status: 0 - Channel C FIFO has data 1 - Channel C FIFO is empty 0x0 R 3 Channel D input FIFO status: 0 - Channel D FIFO has data 1 - Channel D FIFO Is empty 0x0 R UNUSED 0x0 R 0x0024 31:4 DESCRIPTION 7.5.1.9 DESTOP_BUS_SWAP Register The DESTOP_BUS_SWAP register is used for configuring the DLPC910 output LVDS buses to the DMD. To simplify board layout design, swapping the buses may reduce routing constraints. If the buses are swapped in hardware, then the appropriate setting that matches the hardware must be set after a power cycle or a reset to the DLPC910. Table 7-23. DESTOP_BUS_SWAP Register ADDRESS 0x0028 BITS DESCRIPTION RESET TYPE 0 Enables Bus swap for A and B output DMD buses. SCTRLs for A and B output buses are also swapped. 0 = un-swapped (default) 1 = swapped 0x0 R/W 1 Enables Bus swap for C and D output DMD buses. SCTRLs for C and D output buses are also swapped. 0 = un-swapped (default) 1 = swapped 0x0 R/W 3:2 UNUSED 0x0 R 7-4 UNUSED 0x0 R Enable data and serial control output on buses. Valid only when DLPC910 is connected to a DLP6500 DMD. 0 = A and B active (default). C and D are deactivated. 1 = C and D active. A and B are deactivated. 0x0 R/W UNUSED 0x0 R 8 31:9 Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback 45 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 7.5.1.10 DESTOP_DMDCTRL Register The DESTOP_DMDCTRL register can be used in place of the external DLPC910 control inputs to control the functions described. Bit-0 must be set to “1” to gain control of the functions. Bit-5 is available regardless of the state of bit-0. Table 7-24. DESTOP_DMDCTRL Register ADDRESS DESCRIPTION (1) BITS Enables DMD control of the functions that are normally controlled on external pins. 0 0 = Controlled from external pins (default) RESET TYPE 0x0 R/W 0x0 R/W 0x0 R/W 0x1 R/W 0x1 R/W 1 = Controlled from the I2C interface NS_FLIP. Sets the orientation of the top and bottom of the DMD. 1 0 = Un-flipped (default) 1 = Flipped DATA_COMP. Sets a DMD mode that inverts all of the incoming data. 0x002C 2 0 = Normal (default) 1 = Data is inverted at the DMD LOAD_FOUR. Activates the Load4 function of the DMD. Each row written is loaded to 4 consecutive locations. 3 0 = Load4 mode is active 1 = Normal (default) RST2BLKZ. Activates the RST2BLKZ function of the DMD. Refer to Table 7-12 for setting RST2BLKZ. 4 (1) When bit 0 is set to 1, bits 1, 2, 3, and 4 override their respective external control inputs. 7.5.1.11 DESTOP_BIT_FLIP Register The DESTOP_BIT_FLIP register is used for configuring the DLPC910 output LVDS buses to the DMD. To simplify board layout design, flipping individual buses may reduce routing constraints. If the buses are flipped in hardware, then the appropriate setting that matches the hardware must be set after a power cycle or a reset to the DLPC910. Table 7-25. DESTOP_BIT_FLIP Register ADDRESS BITS DESCRIPTION RESET TYPE 0x0 R/W 0x0 R/W 0x0 R/W 0x0 R/W 0x0 R Reverses the Data bits for bus A (b'15 = b'0, b'0 = b'15) 0 0 = un-flipped (default) 1 = flipped Reverses the Data bits for bus B (b'15 = b'0, b'0 = b'15) 1 0 = un-flipped (default) 1 = flipped 0x0030 Reverses the Data bits for bus C (b'15 = b'0, b'0 = b'15) 2 0 = un-flipped (default) 1 = flipped Reverses the Data bits for bus D (b'15 = b'0, b'0 = b'15) 3 0 = un-flipped (default) 1 = flipped 31:4 46 Submit Document Feedback UNUSED Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 8 Application and Implementation Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 8.1 Application Information The DLPC910 controller verifies the DMD connected in the application system, uses that information to select appropriate configuration data for the DMD, and then initializes the DMD to ready it for operation. The DLPC910 controller receives streaming parallel input data and associated syncs from an external applications processor and passes the data on to the DMD with the appropriate DMD timing and control information. It also receives embedded instructions from the applications processor to assist in determination of which DMD rows to load and which DMD mirror blocks to activate at any given moment in time. 8.2 Typical Application Direct-write digital imaging is regularly used in high-end lithography printing. This mask-less technology offers continuous run of printing by changing the digitally created patterns without stopping the imaging head. The DLPR910 PROM configures the DLPC910 digital controller to reliably operate with the DLP9000X, the DLP9000XUV, or the DLP6500 DMD. These chipset combinations provide an ideal back-end imager that takes in digital images at [2560 × 1600] or [1920 x 1080] resolution to achieve speeds greater than 61 Gigabits per second (Gbps) and 24 Gbps respectively. 8.2.1 High Speed Lithography Application As high-end lithography pushes the high speed printing envelope, providing a higher resolution imager is a must to achieve the demanding through-put of present and future printing technology. Figure 8-1 and Figure 8-2 show two systems that offer both a speed boost and a four million and two million pixel DMDs. The main chipset components that make up these systems are the DLPC910ZYR, the DLPR910, and one of the DLP9000X, DLP9000XUV, or DLP6500 DMDs. With a few additional discrete components for power regulation and clock circuitry, a compact, and yet high performance design can be achieved. Figure 8-1. Typical DLP9000X/DLP9000XUV High Speed Application Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback 47 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 Figure 8-2. Typical DLP6500 High Speed Application 48 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated www.ti.com DLPC910 DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 8.2.1.1 Design Requirements The DLPC910 interface is made up of several buses and controls signals as shown in the following list. The LVDS input buses provide the means of loading data to the DLPC910. The LVDS output buses provide the data to the DMD. Each input and output LVDS bus has an associated clock which clocks the data into the DLPC910 or into the DMD. Row and Block control signals define the type of mirror clock pulse to use after all the data is loaded into the DMD. Refer to Table 7-11 to obtain the required LVDS buses for each DMD supported. • LVDS differential inputs – DDC_DCLK 4 buses – DVALID 4 buses – DDC_DIN 4 buses • LVDS differential outputs. Refer to LVDS Output Bus Skew for recommendations on trace lengths. – DDC_DOUT 4 buses – DDC_DCLKOUT 4 buses – DDC_SCTRL 4 buses • Control output signals – DMD RESET – DMD SCP • Row and Block control input signals – ROWMD – ROWAD – BLKMD – BLKAD – RST2BLKZ • Control input signals – COMP_DATA – NS_FLIP – WDT_ENBLZ – PWR_FLOAT – LOAD4_ENZ • Status output signals – RST_ACTIVE – INIT_ACTIVE – ECP2_FINISHED – DMD_IRQ • Controller reset – CTRL_RSTZ • DLPR910 interface – PGM(4:0) – JTAG(3:0) 8.2.1.2 Detailed Design Procedure After power is applied to the DLPC910, the APPS FPGA should monitor the ECP2_FINISHED signal to determine when the DLPC910 has completed loading the configuration from the DLPR910. The APPS FPGA next monitors the INIT_ACTIVE signal to determine when the DLPC910 has completed its internal initialization routines and has configured the DMD for normal operation. An alternate method is to request the initialization status using the I2C interface. Information regarding initialization, versions, and IDs can be requested through this interface. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback 49 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 Prior to activating the DVALID signals to the DLPC910, the ROWMD, ROWAD, BLKMD, BLKAD, and RST2BLKZ control input signals must be in the desired state for the desired operation to take effect on the DMD. Once the control signals are set, the Apps FPGA activates DVALID and starts loading data using the DDC_DIN and DDC_DCLK buses. After all data is loaded for the desired DMD operation, the DVALID signal is deasserted, and the BLKMD, BLKAD, and RST2BLKZ control signals are set prior to the assertion of the next DVALID. When DVALID is activated, the MCP causes the prior data to take effect on the mirrors of the DMD. The Apps FPGA should then monitor the RST_ACTIVE pin to determine when the mirror clock pulse has completed in order to perform the next MCP. During the time that the RST_ACTIVE is asserted, the Apps FPGA could be loading data into DMD rows that do not belong to the same block of rows that currently has an outstanding MCP. 8.2.1.3 Application Curves In these particular applications, the performance plots shown in Figure 8-3 and Figure 8-4 show the maximum loaded and displayed pixels per second when the exposure period is set to its minimum for the different reset modes. When the exposure period is increased, the pixels per second will decrease. Refer to Mirror Clocking Pulse for more information regarding exposure period. Figure 8-3. DLP9000X/DLP9000XUV Performance Plot at 480 MHz DDC_DCLK 50 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 Figure 8-4. DLP6500 Performance Plot at 400 MHz DDC_DCLK Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback 51 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 9 Power Supply Recommendations 9.1 Power Supply Distribution and Requirements The DLPC910, the DLPR910, and one of the DLP9000X, DLP9000XUV, or DLP6500 DMDs are powered by a power distribution method as shown in Figure 9-1. The DMD power inputs will depend on which DMD is being used in the application. Power Management 12V AC/DC 3.3V 3.45V 2.5V 1.0V 3.3V 1.8V DLP6500 DLP9000X DLP9000XUV VCCO VCC_AUX VCCINT VCC VCC0 DLPR910 DLPC910 Figure 9-1. Power Distribution 9.2 Power Down Requirements For correct power down operation of the DMD, the following power down procedure must be executed. Prior to an anticipated power removal, assert PWR_FLOAT for a minimum of 500 μs to allow the DLPC910 to complete the power down procedure. This procedure will assure the DMD mirrors are in a flat state. Following this 500 μs time delay, power can be safely removed from the DLP chipset as shown in Figure 9-2. In the event of an unanticipated power loss, the power management system must detect the input power loss, assert PWR_FLOAT to the DLPC910, and maintain all operating power levels to the DLPC910 and the DMD for a minimum of 500 μs to allow the DLPC910 to complete the power down procedure. To restart after assertion of PWR_FLOAT without removing power, the DLPC910 must be reset by setting CTRL_RSTZ low (logic 0) for 50 ms, and then back to high (logic 1) as shown in Figure 9-3, or power to the DLPC910 must be cycled. Table 9-1. Power Down Timing Requirements PARAMETER tpf MIN MAX UNIT PWR_FLOAT high time. 500 µs tcr CTRL_RSTZ low time. 50 ms tpc Minimum delay from PWR_FLOAT inactive to CTRL_RSTZ active. 0 ms 52 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 tpf PWR_FLOAT ¸¸ ¸¸ CTRL_RSTZ ¸¸ DC Power Supplies Figure 9-2. Removing Power After Asserting PWR_FLOAT tpf tpc PWR_FLOAT CTRL_RSTZ DC Power Supplies ¸¸ ¸¸ ¸¸ ¸¸ ¸¸ ¸¸ tcr Figure 9-3. Restart Without Removing Power 10 Layout 10.1 Layout Guidelines One of the most important factors to gain good performance is designing the PCB with the highest quality signal integrity possible. The following PCB design guidelines provide a reference of an interconnect system. 10.1.1 PCB Design Standards PCBs should be designed and built in accordance with the industry specifications shown in Table 10-1. Table 10-1. Industry Design Specifications INDUSTRY SPECIFICATION APPLICABLE TO IPC-2221 and IPC2222, Type 3, Class X, at Level B producibility Board design IPC-6011 and IPC-6012, Class 2 PWB fabrication IPC-SM-840, Class 3, Color Green Finished PWB solder mask UL94V-0 Flammability Rating and Marking Finished PWB UL796 Rating and Marking Finished PWB PCB Fabrication: • Configuration: Asymmetric dual strip-line • Etch thickness : 1.0-oz copper (1.2 mil) • Flex etch thickness: 0.5-oz copper (0.6 mil) • Single-ended signal impedance: 50 Ω (±10%) • Differential signal impedance: 100 Ω (±10%) PCB Stack-up: Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback 53 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 • • • Ground planes for proper return path. Power planes for proper supply to circuits. Dielectric material with a low Loss-Tangent, for example: Hitachi 679gs or equivalent, (Er): 3.8 (nominal). 10.1.2 Signal Layers The PCB signal layers should follow typical good practice guidelines including: • Layer changes should be minimized for single-ended signals. • Individual differential pairs can be routed on different layers, but the signals of a given pair should not change layers. • Stubs should be avoided. • Low-frequency signals should be routed on the outer layers. • Differential pair signals should be routed first. • Pin swapping on components is not allowed. • Polarized capacitors should have the same orientation. The PCB should have a solder mask on the top and bottom layers. • The mask should not cover the vias. • Except for fine pitch devices (pitch ≤ 0.032 inches). The copper pads and the solder mask cutout should be of the same size. • Solder mask between pads of fine pitch devices should be removed. • In the BGA package, the copper pads and the solder mask cutout should be of the same size. High-speed connectors that meet the following requirements should be used: • Differential crosstalk: < 5% • Differential impedance: 90 to 110 Ω for all LVDS signal pairs Routing requirements for right-angle connectors: • When using right-angle connectors, LVDS signal P-N pairs should be routed in the same row to minimize delay mismatch. • When using right-angle connectors, propagation delay difference for each row should be accounted for on associated PCB etch lengths. 10.1.3 General PCB Routing Fiducials for automatic component insertion should be 0.05-inch copper with a 0.1-inch cutout (antipad). Fiducials for optical auto insertion are placed on three corners of both sides of the PCB. 10.1.3.1 Trace Minimum Spacing BGA escape routing can be routed with 3.7-mils width and 4.3-mils spacing, as long as the escape nets are less than 1-inch long, to allow two traces to fit between vias. After signals escape the BGA field, trace width should be widened to achieve the desired impedance and spacing. All single-ended 50-Ω signals must have a minimum spacing of 10 mils relative to other signals. Other special trace spacing requirements are listed in Table 10-2. Table 10-2. Trace Minimum Spending SIGNAL PWR GND SINGLE-ENDED (1) DIFFERENTIAL PAIRS UNIT Pair-to-Pair (2) PWR 20 (3) GND 10 10 15 15 mils 5 5 mils CLKIN_R 15 5 30 30 mils DDC_DCLK_[A,B,C,D]_DP[N,P] 15 5 30 30 mils DDC_DCLKOUT_[A,B,C,D]_DP[N ,P] 15 5 30 30 mils 54 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 Table 10-2. Trace Minimum Spending (continued) PWR GND SINGLE-ENDED (1) DIFFERENTIAL PAIRS UNIT DDC_DIN_[A,B,C,D] [0:15]_DP[N,P] 15 5 30 30 mils DDC_DOUT_[A,B,C,D] [0:15]_DP[N,P] 15 5 30 30 mils DDC_SCTRL_[A,B,C,D][N,P] 15 5 30 30 mils SIGNAL DVALID_[A,B,C,D]_DP[N,P] 15 5 30 30 mils Escape routing in ball field 15 5 4.3 4.3 mils All other signals 15 5 30 30 mils (1) (2) (3) Signal spacing relative to other single-end signals. Signal spacing relative to other differential pairs. PWR relative to other power sources. Not same power source. 10.1.3.2 Trace Widths and Lengths Table 10-3. Trace Widths and Lengths SIGNAL PWR MIN WIDTHS MAX LENGTHS (2) MAXIMUM TRACE MISMATCH N-to-P Pair-to-pair 25 GND 15 CLKIN_R mils (1) 7 mils 350 mils DDC_DCLK_[A,B,C,D]_DP[N,P] 10 DDC_DIN_[A,B,C,D][0:15]_DP[N,P] 10 50 (3) 10 (3) DVALID_[A,B,C,D]_DP[N,P] DDC_DCLKOUT_[A,B,C,D]_DP[N,P] Layout specific (4) UNIT Layout specific (5) mils 50 10 mils mils mils DDC_DOUT_[A,B,C,D][0:15]_DP[N,P] 10 50 (3) mils DDC_SCTRL_[A,B,C,D][N,P] 10 50 (3) mils All other signals (1) (2) (3) (4) (5) 7 mils Make width of GND trace as wide as the pin it is connected to, when possible. Signal routing length includes escape routing. Relative to its clock system. Refer to the Pin Functions Table to identify the clock system associated with the signals. Minimum widths to achieve impedance matching. Keep lengths as short as possible. 10.1.3.2.1 LVDS Output Bus Skew To minimize instantaneous AC current switching in the DMD, the LVDS output bus trace lengths should differ to produce a recommended 100-200 ps skew from one bus to another. Table 10-4shows two examples how buses can be skewed assuming 180-200 ps per 1000 mils. Keep in mind the total skew from one bus to another should be kept below the maximum skew for the DMD. Refer to Related Documentation for the DMD datasheet regarding maximum DMD LVDS input bus skew. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback 55 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 Table 10-4. Example LVDS Output Bus Skew Example 1 Bus Group Trace Lengths Example 2 Bus Group Trace Lengths UNIT DDC_DCLKOUT_A DDC_DOUT_A DDC_SCTRL_A 7454 7454 mils DDC_DCLKOUT_B DDC_DOUT_B DDC_SCTRL_B 5257 7454 mils DDC_DCLKOUT_C DDC_DOUT_C DDC_SCTRL_C 6936 5257 mils DDC_DCLKOUT_D DDC_DOUT_D DDC_SCTRL_D 5886 5257 mils Bus Group 10.1.3.3 Trace Impedance and Routing Priority For best performance, it is recommended that the trace impedance for differential signals as in Table 10-5. All signals should be 50-Ω controlled impedance unless otherwise noted in Table 10-5. Table 10-5. Trace Impedance SIGNALS DIFFERENTIAL IMPEDANCE DDC_DCLK_[A,B,C,D]_DP[N,P] 100 Ω ± 10% DDC_DCLKOUT_[A,B,C,D]_DP[N,P] 100 Ω ± 10% DDC_DIN_[A,B,C,D][0:15]_DP[N,P] 100 Ω ± 10% DDC_DOUT_[A,B,C,D][0:15]_DP[N,P] 100 Ω ± 10% DDC_SCTRL_[A,B,C,D][N,P] 100 Ω ± 10% DVALID_[A,B,C,D]_DP[N,P] 100 Ω ± 10% Table 10-6 lists the routing priority and layer assignments of the signals. Table 10-6. Routing Priority SIGNALS DDC_DCLKOUT_[A,B,C,D]_DP[N,P] PRIORITY 1 DDC_DOUT_[A,B,C,D][0:15]_DP[N,P] 1 DDC_SCTRL_[A,B,C,D][N,P] 2 DDC_DCLK_[A,B,C,D]_DP[N,P] 2 DDC_DIN_[A,B,C,D][0:15]_DP[N,P] 3 DVALID_[A,B,C,D]_DP[N,P] 3 BLKAD_[0:3], BLKMD_[0:1], ROWAD_[0:10], ROWMD_[0:1] 4 RESET_ADDR[0:3], RESET_MODE[0:1], RESET_SEL[0:1], RESET_STROBE, RESET_OEZ, RESET_IRQZ, RESET_RSTZ 5 SCPCLK, SCPDI, SCPDO, DMD_SCPENZ 6 CLKIN_R 7 All other single-ended signals 8 10.1.4 Power and Ground Planes The following are recommendations for best performance: • Solid ground planes between each signal routing layer. • Solid power planes for voltages. • Power and ground pins should be connected to these planes through a via for each pin. • Trace lengths for the component power and ground pins should be minimized to 0.100 inches or less. 56 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com • • • DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 Vias should be spaced out to avoid forming slots on the power planes. High speed signals should not cross over a slot in the adjacent power planes. Placing extra vias is not required if there are sufficient ground vias due to normal ground connections of devices. 10.1.5 Power Vias Power and Ground pins of each component shall be connected to the power and ground planes with a via for each pin. Avoid sharing vias to the power plane among multiple power pins, where possible. Trace lengths for component power and ground pins should be minimized (ideally, less than 0.100 inch). Unused or spare device pins that are connected to power or ground may be connected together with a single via to power or ground. The minimum spacing between vias shall be 0.050 inch to prevent slots from being developed on the ground plane. 10.1.6 Decoupling Decoupling capacitors must be located as near as possible to the DLPC910 voltage supply pins. Capacitors should not share vias. The DLPC910 power pins can be connected directly to the decoupling capacitor (no via) if the trace is less than 0.03 inches. Otherwise the component should be tied to the voltage or ground plane through a separate via. All capacitors should be connected to the power planes with trace lengths less than 0.05 inches. 10.1.7 Flex Connector Plating For designs using the Texas Instruments designed reference flex cable, plate all the pad area on the top layer of flex connection with a minimum of 35 and maximum 50 micro-inches of electrolytic hard gold over a minimum of 100 micro-inches of electrolytic nickel. 10.2 Layout Example The PCB layer design may vary depending on system design. However, careful attention is required to meet design considerations. Table 10-7 shows a layer signal definition and Figure 10-1 shows a PCB stack-up. The PCB stack-up uses Hitachi 679gs as the dielectric material to improve the signal slew rate. Although the material shown is Rogers Theta, it is the same material as the Hitachi 679gs. Table 10-7. Layer Definition Top: Signal 2: GND 3: Signal 4: GND 5: Signal 6: GND 7: Signal 8: GND 9: Split Power 10: Split Power 11: GND 12: Signal 13: GND 14: Signal 15: GND 16: Signal 17: GND Bottom: Signal Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback 57 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 Layer Calc Thickness Primary Stack Layer - 1 0.0005 0.0020 0.0030 1078 Layer - 2 0.0006 0.0050 0.0050 (2-1080) Layer - 3 0.0006 0.0057 Description Taiyo 4000-BN ½ oz Sig (std Plt) Theta ½ oz P/G Theta 3.90 / 0.0097 3.97 / 0.0095 3.90 / 0.097 0.0050 (2-1080) ½ oz P/G Theta 3.97 / 0.0095 1078 1078 ½ oz P/G Theta 3.90 / 0.0097 0.0006 0.0050 0.0006 0.0050 (2-1080) ½ oz P/G Theta 3.97 / 0.0095 0.0057 1078 ½ oz P/G Theta 3.90 / 0.0097 0.0035 (1-3313) ½ oz P/G Theta 3.98 / 0.0094 1037 ½ oz P/G Theta 3.85 / 0.0100 Layer - 4 0.0006 0.0050 Layer - 5 0.0006 0.0057 Layer - 7 2.70 / 0.0330 ½ oz P/G Theta 1078 1078 Layer - 6 Dk / Df 1078 Layer - 8 Layer - 9 0.0006 0.0035 0.0006 0.0039 Layer - 10 Layer - 11 0.0006 0.0035 0.0006 1037 1078 ½ oz P/G Theta ½ oz P/G Theta 3.90 / 0.0097 0.0050 (2-1080) ½ oz P/G Theta 3.97 / 0.0095 1078 ½ oz P/G Theta 3.90 / 0.0097 0.0035 (1-3313) 1078 0.0057 Layer - 12 0.0006 0.0050 Layer - 13 0.0006 0.0057 Layer - 14 0.0006 0.0050 Layer - 15 0.0006 1078 0.0050 (2-1080) 1078 0.0057 Layer - 16 Layer - 17 Layer - 18 0.0006 0.0050 0.0006 0.0030 0.0020 0.0005 ½ oz P/G Theta ½ oz P/G Theta 1078 0.0050 (2-1080) 1078 ½ oz P/G Theta ½ oz P/G Theta ½ oz Sig (std Plt) Taiyo 4000-BN 3.98 / 0.0094 3.97 / 0.0095 3.90 / 0.0097 3.97 / 0.0095 3.90 / 0.0097 2.70 / 0.0330 Figure 10-1. PCB Stack-Up 58 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 11 Device and Documentation Support 11.1 Device Support 11.1.1 Device Nomenclature Table 11-1. Part Number Description TI PART NUMBER DESCRIPTION DLPC910ZYR DLPC910 digital controller 11.1.2 Device Markings Device markings are controlled by TI's supplier. TI packaging includes TI part number designation. Pin 1 Logo Family Brand Device Type Package Type Data Code Lot Code Speed Grade Operating Range Figure 11-1. DLPC910 Device Markings 11.2 Documentation Support 11.2.1 Related Documentation The following documents contain additional information related to the chipset components used with the DLPC910: • • • • • DLPR910 PROM Data Sheet (DLPS065) DLP9000(X) DMD Data Sheet (DLPS036) DLP9000XUV DMD Data Sheet (DLPS036) DLP6500 Type A DMD Data Sheet (DLPS040) DLP6500 S600 DMD Data Sheet (DLPS053) 11.3 Support Resources TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 11.4 Trademarks TI E2E™ is a trademark of Texas Instruments. is a registered trademark of Texas Instruments. ® Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback 59 DLPC910 www.ti.com DLPS064D – SEPTEMBER 2015 – REVISED SEPTEMBER 2020 Virtex® is a registered trademark of Xilinx, Inc. All other trademarks are the property of their respective owners. 11.5 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 11.6 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 60 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated PACKAGE OPTION ADDENDUM www.ti.com 20-Aug-2021 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) (3) Device Marking (4/5) (6) DLPC910ZYR ACTIVE FCBGA ZYR 676 1 TBD Call TI Call TI 0 to 85 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
DLPC910ZYR 价格&库存

很抱歉,暂时无法提供与“DLPC910ZYR”相匹配的价格&库存,您可以联系我们找货

免费人工找货