DRA829J, DRA829V
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
DRA829 Jacinto™ Processors
Silicon Revisions 1.0 and 1.1
1 Features
•
Processor cores:
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
Dual 64-bit Arm® Cortex®-A72 microprocessor
subsystem at up to 2.0 GHz
– 1MB shared L2 cache per dual-core Arm®
Cortex®-A72 cluster
– 32KB L1 DCache and 48KB L1 ICache per
Cortex®-A72 Core
Six Arm® Cortex®-R5F MCUs at up to 1.0 GHz
– 16K I-Cache, 16K D-Cache, 64K L2 TCM
– Two Arm® Cortex®-R5F MCUs in isolated MCU
subsystem
– Four Arm® Cortex®-R5F MCUs in general
compute partition
Deep-learning Matrix Multiply Accelerator (MMA),
up to 8 TOPS (8b) at 1.0 GHz
C7x floating point, vector DSP, up to 1.0 GHz,
80 GFLOPS, 256 GOPS
Two C66x floating point DSP, up to 1.35 GHz,
40 GFLOPS, 160 GOPS
3D GPU PowerVR® Rogue 8XE GE8430, up to
750 MHz, 96 GFLOPS, 6 Gpix/sec
Memory subsystem:
Up to 8MB of on-chip L3 RAM with ECC and
coherency
– ECC error protection
– Shared coherent cache
– Supports internal DMA engine
External Memory Interface (EMIF) module with
ECC
– Supports LPDDR4 memory types
– Supports speeds up to 4266 MT/s
– 32-bit data bus with inline ECC up to 14.9GB/s
General-Purpose Memory Controller (GPMC)
512KB on-chip SRAM in MAIN domain, protected
by ECC
Display subsystem:
One eDP/DP interface with Multi-Display Support
(MST)
– HDCP1.4/HDCP2.2 high-bandwidth digital
content protection
One DSI TX (up to 2.5K)
Up to two DPI
Video acceleration:
Ultra-HD video, one (3840 × 2160p, 60 fps), or two
(3840 × 2160p, 30 fps) H.264/H.265 decode
•
•
•
•
•
•
•
•
•
•
•
•
Full-HD video, four (1920 × 1080p, 60 fps), or eight
(1920 × 1080p, 30 fps) H.264/H.265 decode
Full-HD video, one (1920 × 1080p, 60 fps), or up to
three (1920 × 1080p, 30 fps) H.264 encode
Functional Safety:
Functional Safety-Compliant targeted (on select
part numbers)
– Developed for functional safety applications
– Documentation available to aid ISO 26262
functional safety system design up to ASIL-D/
SIL-3 targeted
– Systematic capability up to ASIL-D/SIL-3
targeted
– Hardware integrity up to ASIL-D/SIL-3 targeted
for MCU Domain
– Hardware integrity up to ASIL-B/SIL-2 targeted
for Main Domain
– Safety-related certification
• ISO 26262 planned
AEC-Q100 qualified on part number variants
ending in Q1
Device security (on select part numbers):
Secure boot with secure runtime support
Customer programmable root key, up to RSA-4K
or ECC-512
Embedded hardware security module
Crypto hardware accelerators – PKA with ECC,
AES, SHA, RNG, DES and 3DES
High speed serial interfaces:
Two CSI2.0 4L RX plus one CSI2.0 4L TX
Integrated ethernet switch supporting
(total of 8 external ports)
– Up to eight 2.5Gb SGMII
– Up to eight RMII (10/100) or RGMII
(10/100/1000)
– Up to two QSGMII
Up to four PCI-Express® (PCIe) Gen3 controllers
– Gen1 (2.5GT/s), Gen2 (5.0GT/s), and Gen3
(8.0GT/s) operation with auto-negotiation
– Up to two lanes per controller
Two USB 3.0 dual-role device (DRD) subsystem
– Two enhanced SuperSpeed Gen1 ports
– Each port supports Type-C switching
– Each port independently configurable as USB
host, USB peripheral, or USB DRD
Automotive interfaces:
Sixteen Modular Controller Area Network (MCAN)
modules with full CAN-FD support
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
•
•
•
•
•
Audio interfaces:
Twelve Multichannel Audio Serial Port (MCASP)
modules
Flash memory interfaces:
Embedded MultiMediaCard interface ( eMMC™
5.1)
Universal Flash Storage (UFS 2.1) interface with
two lanes
Two Secure Digital® 3.0/Secure Digital Input
Output 3.0 interfaces (SD3.0/SDIO3.0)
Two simultaneous flash interfaces configured as
– One OSPI and one QSPI flash interfaces
– or one HyperBus™ and one QSPI flash
interface
•
•
•
•
16-nm FinFET technology
24 mm × 24 mm, 0.8-mm pitch, 827-pin FCBGA
(ALF), enables IPC class 3 PCB routing
TPS6594-Q1 Companion Power Management
ICs (PMIC):
Functional Safety support up to ASIL-D
Flexible mapping to support different use cases
2 Applications
•
•
•
•
•
Automotive gateway
Body control module
Industrial transport
Industrial robot
High-end PLC
System-on-Chip (SoC) architecture:
3 Description
Jacinto™ 7 DRA829 processors, based on the Arm®v8 64-bit architecture, provide advanced system integration
to enable lower system costs of automotive and industrial applications. The integrated diagnostics and functional
safety features are targeted to ASIL-B/C or SIL-2 certification/requirements. The integrated microcontroller
(MCU) island eliminates the need for an external system MCU. The device features a Gigabit Ethernet switch
and a PCIe® hub which enables networking use cases that require heavy data bandwidth. Up to four Arm®
Cortex®-R5F subsystems manage low level, timing critical processing tasks leaving the Arm® Cortex®-A72’s
unencumbered for applications. A dual-core cluster configuration of Arm® Cortex®-A72 facilitates multi-OS
applications with minimal need for a software hypervisor.
Device Information
(1)
2
PART NUMBER(1)
PACKAGE
BODY SIZE
XDRA829JXXGALF
FCBGA (827)
24.0 mm × 24.0 mm
XDRA829VXXGALF
FCBGA (827)
24.0 mm × 24.0 mm
XJ721EGALF
FCBGA (827)
24.0 mm × 24.0 mm
For more information, see Section 11, Mechanical, Packaging, and Orderable Information.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
3.1 Functional Block Diagram
Figure 3-1 is functional block diagram for the device.
DRA829
Navigator Subsystem
Dual Arm®
Cortex ®-A72
4× Arm
Cortex ®-R5F
64K L2 RAM
per Core
1MB Shared L2
Cache with ECC
3D GPU PowerVR
Rogue 8XE GE8430
Memory Subsystem
Ethernet Subsystem
MSMC
8MB SRAM with ECC
ELM
GPMC
2×
C66x DSP
C7x DSP
w/ MMA
®
(Supporting up to 4
external ports)
DP/eDP
Navigator Subsystem
Security Accelerators
RNG
DES
3DES
Proxy/RA
MCRC
INTR
Mailbox
Spinlock
INTA
TIMER_MGR
PAT
SMMU
Channelized FW
System Services
Capture Subsystem
Mailboxes
UDMA
2× CSI2 4L RX
GP Timers
WWDT
CSI2 4L TX
Spinlock
SMMU
Debug
(B)
MCU Island
(H.264 Encode and
H.264/H.265 Decode)
PKA
CPTS
DSI
Video Acceleration
SHA
PVU
4K Blend
Scale Convert
512KB SRAM
AES
SecProxy
Display Subsystem
Integrated (B)
Ethernet Switch
EMIF 32-bit LPDDR4 w/ECC
UDMA
RA
UDMA
Proxy
MCRC
INTR
INTA
Channelized FW
2× Arm ®
Cortex ®-R5F
DMSC
10× GP Timers
(with optional Lockstep)
SA2UL
2× WWDT
SP RAM 512B
1 MB SRAM
Safety DTK
Interconnect
Media and Data Storage
Control Interfaces
eMMC
6× eHRPWM
2× WKUP GPIO
2× SD/SDIO
3× eCAP
8× GPIO
UFS 2L
3× eQEP
A.
B.
C.
4× PCIe® 2-Lane Ports(B)
(A)
1× OSPI or
1× HyperBus (A)(C)
Automotive Interfaces
Audio Peripherals
1× QSPI
14× CAN-FD
12× MCASP
7× I2C
2× CAN-FD (A)
High-Speed Serial Interfaces
General Connectivity
(A)(C)
8× MCSPI
3× MCSPI (A)
2× ADC
(A)
10× UART
3× I2C
(A)
2× UART
2× I3C
(A)
I3C
2× USB 3.0 DRD
(B)
(B)
Ethernet Switch
(Up to 8-ports)
QSGMII/SGMII/RGMII/RMII
10/100/1000 Ethernet (A)
(A)
intro_001
This interface is located on the MCU Island but is available for the full system to access.
DP, SGMII, USB3.0, and PCIE[3:0] share total of twelve SerDes lanes.
Two simultaneous flash interfaces configured as OSPI0 and OSPI1, or HyperBus™ and OSPI1.
Figure 3-1. Functional Block Diagram
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
3
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table of Contents
1 Features............................................................................1
2 Applications..................................................................... 2
3 Description.......................................................................2
3.1 Functional Block Diagram........................................... 3
4 Revision History.............................................................. 4
5 Device Comparison......................................................... 7
5.1 Related Products........................................................ 9
6 Terminal Configuration and Functions........................10
6.1 Pin Diagram.............................................................. 10
6.2 Pin Attributes.............................................................11
6.3 Signal Descriptions................................................... 79
6.4 Pin Multiplexing.......................................................135
6.5 Connections for Unused Pins................................. 150
7 Specifications.............................................................. 153
7.1 Absolute Maximum Ratings.................................... 153
7.2 ESD Ratings........................................................... 156
7.3 Power-On-Hour (POH) Limits................................. 156
7.4 Recommended Operating Conditions.....................156
7.5 Operating Performance Points................................159
7.6 Power Consumption Summary............................... 159
7.7 Electrical Characteristics.........................................160
7.8 VPP Specifications for One-Time Programmable
(OTP) eFuses............................................................167
7.9 Thermal Resistance Characteristics....................... 169
7.10 Timing and Switching Characteristics................... 170
8 Detailed Description....................................................287
8.1 Overview................................................................. 287
8.2 Processor Subsystems........................................... 288
8.3 Accelerators and Coprocessors..............................289
8.4 Other Subsystems.................................................. 290
9 Applications and Implementation.............................. 299
9.1 Power Supply Mapping........................................... 299
9.2 Device Connection and Layout Fundamentals....... 302
9.3 Peripheral- and Interface-Specific Design
Information................................................................ 304
10 Device and Documentation Support........................309
10.1 Device Nomenclature............................................309
10.2 Tools and Software................................................311
10.3 Documentation Support........................................ 312
10.4 Support Resources............................................... 312
10.5 Trademarks........................................................... 312
10.6 Electrostatic Discharge Caution............................312
10.7 Glossary................................................................312
11 Mechanical, Packaging, and Orderable
Information.................................................................. 313
11.1 Packaging Information.......................................... 313
4 Revision History
Changes from July 22, 2021 to August 27, 2021 (from Revision I (July 2021) to Revision J
(August 2021))
Page
• Global:: Deleted "DMIPS" references................................................................................................................ 1
• (Device Comparison): Deleted "MCU Island with Lockstep Arm Cortex-R5Fs" row, as info in Lockstep and
Safety Targeted rows. ........................................................................................................................................ 7
• (Pin Attributes): Updated Buffer Type for MCU_PORz and PORz to FS Reset................................................11
• Updated USB0/1_RCALIB footnote to specify the pin must be connected to VSS through an external resistor,
even when the pin is unused.......................................................................................................................... 103
• Updated REXT pin note to show it should always be connected through an external resistor to VSS, even
when unused.................................................................................................................................................. 103
• Added clarification notes to MMC1_SDCD and MMC2_SDCD signals about pulled down requirement....... 109
• Updated CSI0/1_RXRCALIB footnote to specify the pin must be connected to VSS through an external
resistor, even when the pin is unused.............................................................................................................125
• Updated DSI_TXRCALIB footnote to specify the pin must be connected to VSS through an external resistor,
even when the pin is unused.......................................................................................................................... 125
• Showed SERDES[4:0]_REXT balls should be connected to VSS if unused in Connections for Unused Pins.....
150
• Showed VMON balls should be connected to PWR if unused in Connections for Unused Pins. Also added
note specifying MMC1_SDCD and MMC2_SDCD should be pulled down to function properly ....................150
• Showed CSI[1:0]_RXRCALIB, DSI_TXRCALIB, USB[1:0]_RCALIB pins should be connected to VSS is
unused in Connections for Unused Pins ........................................................................................................150
• Added FS Reset Electrical Characteristics table............................................................................................ 160
• (SERDES Electrical Characteristics): Added SERDES REFCLK electrical characteristics table. The limits are
only applicable when internal termination is enabled..................................................................................... 166
• (GPMC and NOR Flash — Sync Burst Read — 4x16–bit): Updated figure for GPMC_WAIT[j] signal (F21,
F22)................................................................................................................................................................ 227
4
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
www.ti.com
•
•
•
•
•
DRA829J, DRA829V
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
(GPMC and Multiplexed NOR Flash — Sync Burst Write): Updated figure for GPMC_WAIT[j] signal (F21,
F22)................................................................................................................................................................ 227
(McSPI): Updated output load limit for SPI_CLK............................................................................................ 257
(Timing and Switching Characteristics): Updated MMC1, MMC2 SDR12, SDR25, SDR50, SDR104 switching
characteristics parameters to show data is launched off of rising edge......................................................... 271
(OSPI Switching Characteristics Table - Data Training): Updated cycle time for CLK to 6 ns (1.8 V) from 6.02
ns and 7.5 ns (3.3 V) from 7.52 ns for both SDR and DDR............................................................................277
(OSPI Switching Characteristics - No Data Training SDR Mode ): Updated 3.3 V cycle time to 7.5 ns from
7.52 ns............................................................................................................................................................ 278
Changes from July 19, 2021 to July 21, 2021 (from Revision H (July 2021) to Revision I (July
2021))
Page
• (Nomenclature Description): Added device type "P" and "R"......................................................................... 310
Changes from April 1, 2021 to July 19, 2021 (from Revision G (April 2021) to Revision H (July
2021))
Page
• (Features): Added statement to clarify device security and safety/ASIL are on select part number variants.....1
• (Device Comparison): Updated MSMC capacity for DRA829JM to 8MB. Updated Note 7 under Device
Comparison table to be generic. Added rows and footnotes clarifying certain safety and security feature are
available on select part number variants............................................................................................................ 7
• (Related Products): Updated link and description to Software Development Kit................................................9
• (Pin Attributes): Added the secondary pin multiplexing functions for the SERDES and controlled by
CTRLMMR regs................................................................................................................................................ 11
• (Signal Descriptions): Added note to clarify CPTS signal connection.............................................................110
• (Signal Descriptions): Moved MCU CPTS signals from CPSW2G to CPTS section. Moved SYNCn_OUT
signals from SYSTEM to CPTS section. Updated both sets of signal descriptions........................................ 111
• Updated description for VDDA_ADC0/1 to reference internal tie to VREFP.................................................. 131
• Added note specifying power balls must be supplied with voltage specified in Recommended Operating
Condition. .......................................................................................................................................................131
• (Pin Multiplexing): Updated PADCONFIG register address column to show actual address value and not
address offset value........................................................................................................................................135
• (Abs Max Ratings): Added Latch-Up Performance parameter values............................................................153
• Updated VDDS_DDR voltage rails min limits to 1.06 V in alignment with JEDEC spec. Updated description
for VDD_CPU AVS range. ............................................................................................................................. 156
• (MLB Electrical Characteristics table): Updated IOL/IOH=6 mA; VILSS=0.3*VDDIO; VIH=0.75*VDDIO. Added
slew rate information.......................................................................................................................................160
• (Electrical Characteristics tables): Updated eMMC PHY VILSS, VIHSS, VOL, VOH, IOL, IOH limits. ......... 160
• (Electrical Characteristics tables): Update ADC leakage for VSS to show negative current.......................... 160
• (Electrical Characteristics tables): Added Section headers to all electrical characteristics tables..................160
• Updated Power Supply Sequencing Section.................................................................................................. 171
• (Input and Output Clocks / Oscillators):Updated "Input Clocks Interface" image........................................... 192
• (WKUP_OSC0 Crystal Electrical Characteristics): Updated/Changed Cshunt, ESRxtal = 80 Ω from "24MHz" to
now "25 MHz"................................................................................................................................................. 193
• (OSC1 Crystal Electrical Characteristics): Updated/Changed Cshunt, ESRxtal = 80 Ω from "24MHz" to now "25
MHz"............................................................................................................................................................... 197
• Added WKUP_LFOSC0 startup time limi....................................................................................................... 201
• (Device Module Clock Frequencies): Renamed title and added references to TRM/DM sections describing
module clock and frequencies........................................................................................................................ 205
• (ATCLK[x] Switching Characteristics): Updated/Changed table information and associated ATCLK[x] Timing
figure...............................................................................................................................................................207
• Updated CSI-2 max freq support.................................................................................................................... 218
• (GPMC): Added IOSET information for GPMC0 signals................................................................................ 226
• (I3C): Updated parameter names from "D#" to "OD#" and updated images new names and corected/deleted
some timings...................................................................................................................................................250
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
5
DRA829J, DRA829V
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
•
•
•
•
•
•
•
•
•
•
•
6
www.ti.com
(McASP Timing Conditions): Updated td(Trace Delay) parameter limits........................................................ 253
(McSPI): Added IOSET information for MCU_SPI0 and MCU_SPI1..............................................................257
(MMC1/2 - SD/SDIO Interface): Added UHS-I SDR104 support as well as corresponding Timing Switching
Characteristics................................................................................................................................................ 267
Added note clarifying I/O timing is not applicable when OSPI is used with data training .............................. 277
(OSPI DDR Timing): Removed internal loopback and internal pad loopback mode limits from OSPI timing
tables.............................................................................................................................................................. 279
(Detailed Description): Added power supply description and described how common power supply types can
be grouped......................................................................................................................................................290
(External Oscillator): Added reference to Clock Specifications section.......................................................... 302
(20210706): Updated Reset section description.............................................................................................303
(LPDDR4 Board Design and Layout Guidelines): Updated ulink and title to be Jacinto 7 LPDDR guidelines....
304
(Device and Documentation Support): Added missing Electrostatic Discharge Caution section................... 309
(Nomenclature Description): Removed XJ721EGALF from Note 4 to make the statement generic.............. 310
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
5 Device Comparison
Table 5-1 shows the features of the SoC, highlighting the differences.
Table 5-1. Device Comparison
FEATURES(6)
REFERENCE NAME
DRA829JM
DRA829VM
Features
PROCESSORS AND ACCELERATORS
Speed Grades
T
T
Arm Cortex-A72 Microprocessor Subsystem
Arm A72
Dual Core
Dual Core
Arm Cortex-R5F
Arm R5F
Hexa Core
Hexa Core
Lockstep
Optional
(1)
Optional
Device Management Security Controller
DMSC
Yes
Yes
Security Accelerators
SA
Yes
Yes
C7x Floating Point, Vector DSP
C7x DSP
Yes
No
Deep Learning Accelerator
MMA
Yes
No
Two C66x Floating Point DSP
C66x DSP
Dual Core
No
Graphics Accelerator 3D GPU PowerVR Rogue 8XE
GE8430
GPU
Yes
No
Depth and Motion Processing Accelerators
DMPAC
No
No
Vision Processing Accelerators
VPAC
No
No
Video Encoder / Decoder
VENC/ VDEC
Yes
No
(1)
SAFETY AND SECURITY
Safety Targeted
Safety
Optional(1)
Optional(1)
Device Security
Security
Optional(2)
Optional(2)
Q1
Optional(3)
Optional(3)
512KB SRAM
512KB SRAM
1MB SRAM
1MB SRAM
AEC-Q100 Qualified
PROGRAM AND DATA STORAGE
On-Chip Shared Memory (RAM) in MAIN Domain
OCSRAM
On-Chip Shared Memory (RAM) in MCU Domain
MCU_MSRAM
Multicore Shared Memory Controller
MSMC
8MB (On-Chip SRAM
with ECC)
2MB (On-Chip SRAM with
ECC)
LPDDR4 DDR Subsystem
DDRSS
Up to 8GB (32-bit data)
with inline ECC
Up to 8GB (32-bit data)
with inline ECC
SECDED
General-Purpose Memory Controller
GPMC
7-Bit
7-Bit
Up to 1GB with ECC
Up to 1GB with ECC
PERIPHERALS
Display Subsystem
DSS
Yes
Yes
Modular Controller Area Network Interface with Full CANFD Support
MCAN
16
16
General-Purpose I/O
GPIO
Up to 226
Up to 226
Inter-Integrated Circuit Interface
I2C
10
10
Improved Inter-Integrated Circuit Interface
I3C
3
3
Analog-to-Digital Converter
ADC
2
2
Capture Subsystem with Camera Serial Interface (CSI2)
CSI2.0 4L RX
2
2
CSI2.0 4L TX
1
1
MCSPI
11
11
Multichannel Serial Peripheral Interface
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
7
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 5-1. Device Comparison (continued)
FEATURES(6)
REFERENCE NAME
Multichannel Audio Serial Port
MultiMedia Card/ Secure Digital Interface
DRA829JM
DRA829VM
MCASP0
16 Serializers
16 Serializers
MCASP1
12 Serializers
12 Serializers
MCASP2
6 Serializers
6 Serializers
MCASP3
4 Serializers
4 Serializers
MCASP4
4 Serializers
4 Serializers
MCASP5
4 Serializers
4 Serializers
MCASP6
4 Serializers
4 Serializers
MCASP7
4 Serializers
4 Serializers
MCASP8
4 Serializers
4 Serializers
MCASP9
4 Serializers
4 Serializers
MCASP10
8 Serializers
8 Serializers
MCASP11
8 Serializers
8 Serializers
MMCSD0
eMMC (8-bits)
eMMC (8-bits)
MMCSD1
SD/SDIO (4-bits)
SD/SDIO (4-bits)
MMCSD2
SD/SDIO (4-bits)
SD/SDIO (4-bits)
Yes (2 Lanes)
Yes (2 Lanes)
Universal Flash Storage
UFS 2L
Flash Subsystem (FSS)
OSPI0
8-bits
(7)
4x PCI Express Port with Integrated PHY
OSPI1
4-bits
HyperBus
Yes
8-bits
(5)
4-bits
(5)
Yes
(5)
PCIE0
Up to Two Lanes
(4)
Up to Two Lanes
(4)
PCIE1
Up to Two Lanes
(4)
Up to Two Lanes
(4)
PCIE2
Up to Two Lanes
(4)
Up to Two Lanes
(4)
PCIE3
Up to Two Lanes
(4)
Up to Two Lanes
(4)
2x Programmable Real-Time Unit Subsystem and TSN
Communication Subsystem (Ethernet Subsystem)
PRU_ICSSG0
No
No
PRU_ICSSG1
No
No
Gigabit Ethernet Interface
CPSW2G
RMII or RGMII
RMII or RGMII
CPSW9G
8 × RMII, 8 × RGMII, 8 ×
SGMII(4)
8 × RMII, 8 × RGMII, 8 ×
SGMII(4)
General-Purpose Timers
TIMER
30
30
Enhanced High Resolution Pulse-Width Modulator Module
eHRPWM
6
6
Enhanced Capture Module
eCAP
3
3
Enhanced Quadrature Encoder Pulse Module
eQEP
3
3
Universal Asynchronous Receiver and Transmitter
UART
12
12
Universal Serial Bus (USB3.1) SuperSpeed Dual-RoleDevice (DRD) Ports with SS PHY
USB0
Yes(4)
Yes(4)
USB1
Yes(4)
Yes(4)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
8
(5)
Safety features including R5F Lockstep and SIL/ASIL ratings are only applicable to select part number variants as indicated by the
Device Type (Y) identifier in the Table 10-1, Nomenclature Description table.
Device security features including Secure Boot and Customer Programmable Keys are applicable to select part number variants as
indicated by the Device Type (Y) identifier in the Table 10-1, Nomenclature Description table.
AEC-Q100 qualification is applicable to select part number variants as indicated by the Automotive Designator (Q1) identifier in the
Table 10-1, Nomenclature Description table.
DP, SGMII, USB3.0, and PCIE[3:0] share total of twelve SerDes lanes.
Two simultaneous flash interfaces configured as OSPI0 and OSPI1, or HyperBus and OSPI1.
Software should constrain the features used to match the intended production device.
OSPI1 module only pins out 4 pins and is referred to as QSPI in some contexts.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
www.ti.com
DRA829J, DRA829V
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
5.1 Related Products
Companion Products for DRA829 Review products that are frequently purchased or used in conjunction with
this product to complete your design.
Software Development Kit for DRA8x & TDA4x Jacinto™ Processors Processor SDK RTOS (PSDK RTOS)
can be used together with Processor SDK Linux (PSDK Linux) or Processor SDK QNX (PSDK QNX), to form a
multi-processor software development platform for TDA4x and DRA8x SoCs within the TI’s Jacinto™ Processors
platform. The SDK provides a comprehensive set of software tools and components to help users develop
and deploy their applications on supported J7 SoCs. PSDK RTOS and either PSDK Linux or PSDK QNX
can be used together to implement various use-cases in robotics, vision, factory and building automation, and
automotive ADAS and gateway systems.
DRA829 Evaluation Module The DRA829 evaluation module (EVM) platform is based on the Jacinto™
DRA829J, V and is designed to speed up development efforts and reduce time to market for automotive
gateway and vehicle compute systems. The integrated diagnostics and functional safety features are targeted
to ASIL-D/SIL-3 certification/requirements. The integrated microcontroller (MCU) island eliminates the need for
an external system MCU. The device features Gigabit Ethernet ports with integrated switch to meet networking
use cases that require heavy data bandwidth and also includes PCIe hub functionality. CAN-FD and up to UART
interfaces are available on the device. General purpose Arm® Cortex®-R5F subsystems can handle low level,
timing critical processing tasks and leave the Arm® Cortex®-A72’s unencumbered for advanced applications.
This EVM kit features the main CPU board and an Ethernet expansion board option for additional gigabit
Ethernet ports in order to jump start evaluation and development.
Application Notes and White Paper Gateway & vehicle compute application processor.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
9
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
6 Terminal Configuration and Functions
6.1 Pin Diagram
Note
The terms "ball", "pin", and "terminal" are used interchangeably throughout the document. An attempt
is made to use "ball" only when referring to the physical package.
Figure 6-1 shows the ball locations for the 827-ball flip chip ball grid array (FCBGA) package that are used in
conjunction with Table 6-1 through Figure 6-1 to locate signal names and ball grid numbers.
AJ
AH
AG
AF
AE
AD
AC
AB
AA
Y
W
V
U
T
R
P
N
M
L
K
J
H
G
F
E
D
C
B
A
3
1
2
7
5
4
6
9
8
11 13 15 17 19 21 23 25 27 29
10 12 14 16 18 20 22 24 26 28
Figure 6-1. ALF FCBGA-N827 Pin Diagram (Bottom View)
10
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
6.2 Pin Attributes
Note
MCU_BOOTMODE pins are latched on the rising edge of MCU_PORz_OUT. BOOTMODE pins are latched on the rising edge of PORz_OUT.
Note
Media Local Bus (MLB) is not available on this device. The following balls must be left unconnected if not used in GPIO mode: AE2, AD2, AD3,
AC3, AC1, AD1.
Note
PRU_ICSSG0 and PRU_ICSSG1 are not available on this device. The prg* signals should not be used. Those pins can be used for other
functions.
Table 6-1. Pin Attributes
BALL
NO. 1
BALL NAME 2
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
BALL
RESET
REL.
MUXMODE
I/O
VOLTAGE
VALUE 8
POWER 9
HYS 10
BUFFER
TYPE 11
U7
CAP_VDDS0
CAP_VDDS0
CAP
K23
CAP_VDDS0_MCU
CAP_VDDS0_MCU
CAP
AB21
CAP_VDDS1
CAP_VDDS1
CAP
J18
CAP_VDDS1_MCU
CAP_VDDS1_MCU
CAP
Y18
CAP_VDDS2
CAP_VDDS2
CAP
J19
CAP_VDDS2_MCU
CAP_VDDS2_MCU
CAP
W21
CAP_VDDS3
CAP_VDDS3
CAP
AA22
CAP_VDDS4
CAP_VDDS4
CAP
R22
CAP_VDDS5
CAP_VDDS5
CAP
V22
CAP_VDDS6
CAP_VDDS6
CAP
B20
CSI0_RXCLKN
CSI0_RXCLKN
I
OFF
1.8 V
VDDA_0P8_CSI
RX /
VDDA_1P8_CSI
RX
D-PHY
A21
CSI0_RXCLKP
CSI0_RXCLKP
I
OFF
1.8 V
VDDA_0P8_CSI
RX /
VDDA_1P8_CSI
RX
D-PHY
F16
csi0_rxrcalib
CSI0_RXRCALIB
A
OFF
1.8 V
VDDA_0P8_CSI
RX /
VDDA_1P8_CSI
RX
D-PHY
PULL UP/
DOWN
TYPE 12
DSIS 13
RXACTIVE/
TXDISABL
E 14
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
11
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
BALL NAME 2
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
BALL
RESET
REL.
MUXMODE
I/O
VOLTAGE
VALUE 8
POWER 9
HYS 10
BUFFER
TYPE 11
F15
csi1_rxrcalib
CSI1_RXRCALIB
A
OFF
1.8 V
VDDA_0P8_CSI
RX /
VDDA_1P8_CSI
RX
D-PHY
B17
CSI1_RXCLKN
CSI1_RXCLKN
I
OFF
1.8 V
VDDA_0P8_CSI
RX /
VDDA_1P8_CSI
RX
D-PHY
A18
CSI1_RXCLKP
CSI1_RXCLKP
I
OFF
1.8 V
VDDA_0P8_CSI
RX /
VDDA_1P8_CSI
RX
D-PHY
B19
CSI0_RXN0
CSI0_RXN0
I
OFF
1.8 V
VDDA_0P8_CSI
RX /
VDDA_1P8_CSI
RX
D-PHY
D18
CSI0_RXN1
CSI0_RXN1
I
OFF
1.8 V
VDDA_0P8_CSI
RX /
VDDA_1P8_CSI
RX
D-PHY
D17
CSI0_RXN2
CSI0_RXN2
I
OFF
1.8 V
VDDA_0P8_CSI
RX /
VDDA_1P8_CSI
RX
D-PHY
E16
CSI0_RXN3
CSI0_RXN3
I
OFF
1.8 V
VDDA_0P8_CSI
RX /
VDDA_1P8_CSI
RX
D-PHY
A20
CSI0_RXP0
CSI0_RXP0
I
OFF
1.8 V
VDDA_0P8_CSI
RX /
VDDA_1P8_CSI
RX
D-PHY
C19
CSI0_RXP1
CSI0_RXP1
I
OFF
1.8 V
VDDA_0P8_CSI
RX /
VDDA_1P8_CSI
RX
D-PHY
C18
CSI0_RXP2
CSI0_RXP2
I
OFF
1.8 V
VDDA_0P8_CSI
RX /
VDDA_1P8_CSI
RX
D-PHY
E17
CSI0_RXP3
CSI0_RXP3
I
OFF
1.8 V
VDDA_0P8_CSI
RX /
VDDA_1P8_CSI
RX
D-PHY
B16
CSI1_RXN0
CSI1_RXN0
I
OFF
1.8 V
VDDA_0P8_CSI
RX /
VDDA_1P8_CSI
RX
D-PHY
D15
CSI1_RXN1
CSI1_RXN1
I
OFF
1.8 V
VDDA_0P8_CSI
RX /
VDDA_1P8_CSI
RX
D-PHY
12
Submit Document Feedback
PULL UP/
DOWN
TYPE 12
DSIS 13
RXACTIVE/
TXDISABL
E 14
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
BALL NAME 2
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
BALL
RESET
REL.
MUXMODE
I/O
VOLTAGE
VALUE 8
POWER 9
HYS 10
BUFFER
TYPE 11
D14
CSI1_RXN2
CSI1_RXN2
I
OFF
1.8 V
VDDA_0P8_CSI
RX /
VDDA_1P8_CSI
RX
D-PHY
E13
CSI1_RXN3
CSI1_RXN3
I
OFF
1.8 V
VDDA_0P8_CSI
RX /
VDDA_1P8_CSI
RX
D-PHY
A17
CSI1_RXP0
CSI1_RXP0
I
OFF
1.8 V
VDDA_0P8_CSI
RX /
VDDA_1P8_CSI
RX
D-PHY
C16
CSI1_RXP1
CSI1_RXP1
I
OFF
1.8 V
VDDA_0P8_CSI
RX /
VDDA_1P8_CSI
RX
D-PHY
C15
CSI1_RXP2
CSI1_RXP2
I
OFF
1.8 V
VDDA_0P8_CSI
RX /
VDDA_1P8_CSI
RX
D-PHY
E14
CSI1_RXP3
CSI1_RXP3
I
OFF
1.8 V
VDDA_0P8_CSI
RX /
VDDA_1P8_CSI
RX
D-PHY
J1
ddr0_ckn
DDR0_CKN
IO
OFF
1.1 V
VDDS_DDR
DDR0
H1
ddr0_ckp
DDR0_CKP
IO
OFF
1.1 V
VDDS_DDR
DDR0
K6
ddr0_resetn
DDR0_RESETn
IO
OFF
1.1 V
VDDS_DDR
DDR0
G4
ddr0_ca0
DDR0_CA0
IO
OFF
1.1 V
VDDS_DDR
DDR0
H3
ddr0_ca1
DDR0_CA1
IO
OFF
1.1 V
VDDS_DDR
DDR0
K5
ddr0_ca2
DDR0_CA2
IO
OFF
1.1 V
VDDS_DDR
DDR0
J4
ddr0_ca3
DDR0_CA3
IO
OFF
1.1 V
VDDS_DDR
DDR0
K2
ddr0_ca4
DDR0_CA4
IO
OFF
1.1 V
VDDS_DDR
DDR0
H5
ddr0_ca5
DDR0_CA5
IO
OFF
1.1 V
VDDS_DDR
DDR0
H2
ddr0_cal0
DDR0_CAL0
A
OFF
1.1 V
VDDS_DDR
DDR0
G3
ddr0_cke0
DDR0_CKE0
IO
OFF
1.1 V
VDDS_DDR
DDR0
J3
ddr0_cke1
DDR0_CKE1
IO
OFF
1.1 V
VDDS_DDR
DDR0
J5
ddr0_csn0_0
DDR0_CSn0_0
IO
OFF
1.1 V
VDDS_DDR
DDR0
K3
ddr0_csn0_1
DDR0_CSn0_1
IO
OFF
1.1 V
VDDS_DDR
DDR0
G5
ddr0_csn1_0
DDR0_CSn1_0
IO
OFF
1.1 V
VDDS_DDR
DDR0
J2
ddr0_csn1_1
DDR0_CSn1_1
IO
OFF
1.1 V
VDDS_DDR
DDR0
A3
ddr0_dm0
DDR0_DM0
IO
OFF
1.1 V
VDDS_DDR
DDR0
E4
ddr0_dm1
DDR0_DM1
IO
OFF
1.1 V
VDDS_DDR
DDR0
N1
ddr0_dm2
DDR0_DM2
IO
OFF
1.1 V
VDDS_DDR
DDR0
R5
ddr0_dm3
DDR0_DM3
IO
OFF
1.1 V
VDDS_DDR
DDR0
PULL UP/
DOWN
TYPE 12
DSIS 13
RXACTIVE/
TXDISABL
E 14
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
13
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
BALL NAME 2
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
BALL
RESET
REL.
MUXMODE
I/O
VOLTAGE
VALUE 8
POWER 9
HYS 10
BUFFER
TYPE 11
A5
ddr0_dq0
DDR0_DQ0
IO
OFF
1.1 V
VDDS_DDR
DDR0
A6
ddr0_dq1
DDR0_DQ1
IO
OFF
1.1 V
VDDS_DDR
DDR0
B5
ddr0_dq2
DDR0_DQ2
IO
OFF
1.1 V
VDDS_DDR
DDR0
C2
ddr0_dq3
DDR0_DQ3
IO
OFF
1.1 V
VDDS_DDR
DDR0
B4
ddr0_dq4
DDR0_DQ4
IO
OFF
1.1 V
VDDS_DDR
DDR0
C3
ddr0_dq5
DDR0_DQ5
IO
OFF
1.1 V
VDDS_DDR
DDR0
A2
ddr0_dq6
DDR0_DQ6
IO
OFF
1.1 V
VDDS_DDR
DDR0
A4
ddr0_dq7
DDR0_DQ7
IO
OFF
1.1 V
VDDS_DDR
DDR0
D1
ddr0_dq8
DDR0_DQ8
IO
OFF
1.1 V
VDDS_DDR
DDR0
C4
ddr0_dq9
DDR0_DQ9
IO
OFF
1.1 V
VDDS_DDR
DDR0
F1
ddr0_dq10
DDR0_DQ10
IO
OFF
1.1 V
VDDS_DDR
DDR0
G2
ddr0_dq11
DDR0_DQ11
IO
OFF
1.1 V
VDDS_DDR
DDR0
F2
ddr0_dq12
DDR0_DQ12
IO
OFF
1.1 V
VDDS_DDR
DDR0
F3
ddr0_dq13
DDR0_DQ13
IO
OFF
1.1 V
VDDS_DDR
DDR0
D3
ddr0_dq14
DDR0_DQ14
IO
OFF
1.1 V
VDDS_DDR
DDR0
F5
ddr0_dq15
DDR0_DQ15
IO
OFF
1.1 V
VDDS_DDR
DDR0
L5
ddr0_dq16
DDR0_DQ16
IO
OFF
1.1 V
VDDS_DDR
DDR0
M5
ddr0_dq17
DDR0_DQ17
IO
OFF
1.1 V
VDDS_DDR
DDR0
N5
ddr0_dq18
DDR0_DQ18
IO
OFF
1.1 V
VDDS_DDR
DDR0
L4
ddr0_dq19
DDR0_DQ19
IO
OFF
1.1 V
VDDS_DDR
DDR0
L2
ddr0_dq20
DDR0_DQ20
IO
OFF
1.1 V
VDDS_DDR
DDR0
L1
ddr0_dq21
DDR0_DQ21
IO
OFF
1.1 V
VDDS_DDR
DDR0
N2
ddr0_dq22
DDR0_DQ22
IO
OFF
1.1 V
VDDS_DDR
DDR0
N4
ddr0_dq23
DDR0_DQ23
IO
OFF
1.1 V
VDDS_DDR
DDR0
T3
ddr0_dq24
DDR0_DQ24
IO
OFF
1.1 V
VDDS_DDR
DDR0
T2
ddr0_dq25
DDR0_DQ25
IO
OFF
1.1 V
VDDS_DDR
DDR0
P2
ddr0_dq26
DDR0_DQ26
IO
OFF
1.1 V
VDDS_DDR
DDR0
P3
ddr0_dq27
DDR0_DQ27
IO
OFF
1.1 V
VDDS_DDR
DDR0
P5
ddr0_dq28
DDR0_DQ28
IO
OFF
1.1 V
VDDS_DDR
DDR0
R4
ddr0_dq29
DDR0_DQ29
IO
OFF
1.1 V
VDDS_DDR
DDR0
T4
ddr0_dq30
DDR0_DQ30
IO
OFF
1.1 V
VDDS_DDR
DDR0
T5
ddr0_dq31
DDR0_DQ31
IO
OFF
1.1 V
VDDS_DDR
DDR0
B1
ddr0_dqs0n
DDR0_DQS0N
IO
OFF
1.1 V
VDDS_DDR
DDR0
B2
ddr0_dqs0p
DDR0_DQS0P
IO
OFF
1.1 V
VDDS_DDR
DDR0
E2
ddr0_dqs1n
DDR0_DQS1N
IO
OFF
1.1 V
VDDS_DDR
DDR0
E3
ddr0_dqs1p
DDR0_DQS1P
IO
OFF
1.1 V
VDDS_DDR
DDR0
M2
ddr0_dqs2n
DDR0_DQS2N
IO
OFF
1.1 V
VDDS_DDR
DDR0
M3
ddr0_dqs2p
DDR0_DQS2P
IO
OFF
1.1 V
VDDS_DDR
DDR0
14
Submit Document Feedback
PULL UP/
DOWN
TYPE 12
DSIS 13
RXACTIVE/
TXDISABL
E 14
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
BALL NAME 2
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
BALL
RESET
REL.
MUXMODE
I/O
VOLTAGE
VALUE 8
POWER 9
HYS 10
BUFFER
TYPE 11
R1
ddr0_dqs3n
DDR0_DQS3N
IO
OFF
1.1 V
VDDS_DDR
DDR0
R2
ddr0_dqs3p
DDR0_DQS3P
IO
OFF
1.1 V
VDDS_DDR
DDR0
P6
ddr_ret
DDR_RET
I
OFF
1.1 V
VDDS_DDR_BI
AS
DDR0
G6
dp0_auxn
DP0_AUXN
IO
OFF
0.8 V
VDDA_0P8_DP
/
VDDA_1P8_DP
AUX-PHY
F7
dp0_auxp
DP0_AUXP
IO
OFF
0.8 V
VDDA_0P8_DP
/
VDDA_1P8_DP
AUX-PHY
E10
DSI_TXCLKN
DSI_TXCLKN
O
OFF
1.8 V
VDDA_0P8_DSI
TX /
VDDA_1P8_DSI
TX
D-PHY
E11
DSI_TXCLKP
DSI_TXCLKP
O
OFF
1.8 V
VDDA_0P8_DSI
TX /
VDDA_1P8_DSI
TX
D-PHY
D11
DSI_TXN0
DSI_TXN0
IO
OFF
1.8 V
VDDA_0P8_DSI
TX /
VDDA_1P8_DSI
TX
D-PHY
D12
DSI_TXN1
DSI_TXN1
O
OFF
1.8 V
VDDA_0P8_DSI
TX /
VDDA_1P8_DSI
TX
D-PHY
B13
DSI_TXN2
DSI_TXN2
O
OFF
1.8 V
VDDA_0P8_DSI
TX /
VDDA_1P8_DSI
TX
D-PHY
B14
DSI_TXN3
DSI_TXN3
O
OFF
1.8 V
VDDA_0P8_DSI
TX /
VDDA_1P8_DSI
TX
D-PHY
C12
DSI_TXP0
DSI_TXP0
IO
OFF
1.8 V
VDDA_0P8_DSI
TX /
VDDA_1P8_DSI
TX
D-PHY
C13
DSI_TXP1
DSI_TXP1
O
OFF
1.8 V
VDDA_0P8_DSI
TX /
VDDA_1P8_DSI
TX
D-PHY
A14
DSI_TXP2
DSI_TXP2
O
OFF
1.8 V
VDDA_0P8_DSI
TX /
VDDA_1P8_DSI
TX
D-PHY
A15
DSI_TXP3
DSI_TXP3
O
OFF
1.8 V
VDDA_0P8_DSI
TX /
VDDA_1P8_DSI
TX
D-PHY
PULL UP/
DOWN
TYPE 12
DSIS 13
RXACTIVE/
TXDISABL
E 14
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
15
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
BALL NAME 2
SIGNAL NAME 3
F12
dsi_txrcalib
DSI_TXRCALIB
U2
ecap0_in_apwm_out
ECAP0_IN_APWM_OUT
SYNC0_OUT
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
BALL
RESET
REL.
MUXMODE
I/O
VOLTAGE
VALUE 8
POWER 9
VDDA_0P8_DSI
TX /
VDDA_1P8_DSI
TX
1.8 V/3.3 V
VDDSHV0
BUFFER
TYPE 11
PULL UP/
DOWN
TYPE 12
DSIS 13
A
OFF
0
IO
OFF
1
O
CPTS0_RFT_CLK
2
I
0
SPI2_CS3
4
IO
1
I3C0_SDAPULLEN
5
O
SPI7_CS0
6
IO
GPIO1_11
7
IO
7
1.8 V
HYS 10
RXACTIVE/
TXDISABL
E 14
D-PHY
Yes
LVCMOS
PU/PD
0
0/1
1
0
C26
emu0
EMU0
0
IO
PU
0
1.8 V/3.3 V
VDDSHV0_MC
U
Yes
LVCMOS
PU/PD
1/1
B29
emu1
EMU1
0
IO
PU
0
1.8 V/3.3 V
VDDSHV0_MC
U
Yes
LVCMOS
PU/PD
1/1
AC18
extintn
EXTINTn
0
I
OFF
7
1.8 V/3.3 V
VDDSHV2
Yes
I2C OD FS
GPIO0_0
7
IO
EXT_REFCLK1
0
I
SYNC1_OUT
1
O
SPI7_CLK
6
IO
GPIO1_12
7
IO
I2C0_SCL
0
IOD
GPIO1_7
7
IO
I2C0_SDA
0
IOD
GPIO1_8
7
IO
I2C1_SCL
0
IOD
CPTS0_HW1TSPUSH
1
I
GPIO1_9
7
IO
I2C1_SDA
0
IOD
CPTS0_HW2TSPUSH
1
I
GPIO1_10
7
IO
I3C0_SCL
0
IO
MMC2_SDCD
1
I
1
UART9_CTSn
2
I
1
MCAN2_RX
3
I
1
I2C6_SCL
4
IOD
1
DP0_HPD
5
I
0
PCIE0_CLKREQn
6
IO
0
GPIO1_5
7
IO
0
UART6_RXD
8
I
0
U3
AC5
AA5
Y6
AA6
W2
16
ext_refclk1
i2c0_scl
i2c0_sda
i2c1_scl
i2c1_sda
i3c0_scl
1
0/0
0
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
0
0/1
0
0
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
I2C OD FS
1
1/0
0
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
I2C OD FS
1
1/0
0
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
I2C OD FS
1
1/0
0
0
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
I2C OD FS
1
1/0
0
0
OFF
7
1.8 V/3.3 V
Submit Document Feedback
VDDSHV0
Yes
LVCMOS
PU/PD
1
0/1
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
W1
W5
W6
W3
V4
BALL NAME 2
i3c0_sda
mcan0_rx
mcan0_tx
mcan1_rx
mcan1_tx
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV0
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
I3C0_SDA
0
IO
MMC2_SDWP
1
I
1
UART9_RTSn
2
O
MCAN2_TX
3
O
I2C6_SDA
4
IOD
1
PCIE1_CLKREQn
6
IO
0
GPIO1_6
7
IO
0
UART6_TXD
8
O
MCAN0_RX
0
I
I2C2_SCL
4
IOD
GPIO1_1
7
IO
MCAN0_TX
0
O
I2C2_SDA
4
IOD
GPIO1_2
7
IO
MCAN1_RX
0
I
UART6_CTSn
1
I
1
UART9_RXD
2
I
1
USB0_DRVVBUS
3
O
USB1_DRVVBUS
4
O
GPIO1_3
7
IO
MCAN1_TX
0
O
UART6_RTSn
1
O
UART9_TXD
2
O
USB0_DRVVBUS
3
O
USB1_DRVVBUS
4
O
GPIO1_4
7
IO
RXACTIVE/
TXDISABL
E 14
0/1
1
0
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
1
0/1
1
0
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
0/1
1
0
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
1
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
0/1
0
K25
mcu_adc0_ain0
MCU_ADC0_AIN0
0
A
OFF
0
1.8 V
VDDA_ADC0
ADC12B
K26
mcu_adc0_ain1
MCU_ADC0_AIN1
0
A
OFF
0
1.8 V
VDDA_ADC0
ADC12B
K28
mcu_adc0_ain2
MCU_ADC0_AIN2
0
A
OFF
0
1.8 V
VDDA_ADC0
ADC12B
L28
mcu_adc0_ain3
MCU_ADC0_AIN3
0
A
OFF
0
1.8 V
VDDA_ADC0
ADC12B
K24
mcu_adc0_ain4
MCU_ADC0_AIN4
0
A
OFF
0
1.8 V
VDDA_ADC0
ADC12B
K27
mcu_adc0_ain5
MCU_ADC0_AIN5
0
A
OFF
0
1.8 V
VDDA_ADC0
ADC12B
K29
mcu_adc0_ain6
MCU_ADC0_AIN6
0
A
OFF
0
1.8 V
VDDA_ADC0
ADC12B
L29
mcu_adc0_ain7
MCU_ADC0_AIN7
0
A
OFF
0
1.8 V
VDDA_ADC0
ADC12B
N23
mcu_adc1_ain0
MCU_ADC1_AIN0
0
A
OFF
0
1.8 V
VDDA_ADC1
ADC12B
M25
mcu_adc1_ain1
MCU_ADC1_AIN1
0
A
OFF
0
1.8 V
VDDA_ADC1
ADC12B
L24
mcu_adc1_ain2
MCU_ADC1_AIN2
0
A
OFF
0
1.8 V
VDDA_ADC1
ADC12B
L26
mcu_adc1_ain3
MCU_ADC1_AIN3
0
A
OFF
0
1.8 V
VDDA_ADC1
ADC12B
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
17
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
BALL NAME 2
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
BALL
RESET
REL.
MUXMODE
I/O
VOLTAGE
VALUE 8
POWER 9
HYS 10
BUFFER
TYPE 11
N24
mcu_adc1_ain4
MCU_ADC1_AIN4
0
A
OFF
0
1.8 V
VDDA_ADC1
ADC12B
M24
mcu_adc1_ain5
MCU_ADC1_AIN5
0
A
OFF
0
1.8 V
VDDA_ADC1
ADC12B
L25
mcu_adc1_ain6
MCU_ADC1_AIN6
0
A
OFF
0
1.8 V
VDDA_ADC1
ADC12B
L27
mcu_adc1_ain7
MCU_ADC1_AIN7
0
A
OFF
0
1.8 V
VDDA_ADC1
J26
mcu_i2c0_scl
MCU_I2C0_SCL
0
IOD
OFF
0
1.8 V/3.3 V
Yes
WKUP_GPIO0_64
7
IO
VDDSHV0_MC
U
MCU_I2C0_SDA
0
IOD
7
IO
VDDSHV0_MC
U
Yes
WKUP_GPIO0_65
MCU_I3C0_SCL
0
IO
2
I
VDDSHV0_MC
U
Yes
MCU_UART0_CTSn
MCU_TIMER_IO8
4
IO
WKUP_GPIO0_60
7
IO
MCU_I3C0_SDA
0
IO
MCU_UART0_RTSn
2
O
MCU_TIMER_IO9
4
IO
WKUP_GPIO0_61
7
IO
MCU_MCAN0_RX
0
I
WKUP_GPIO0_59
7
IO
MCU_MCAN0_TX
0
O
WKUP_GPIO0_58
7
IO
MCU_MDIO0_MDC
0
O
WKUP_GPIO0_51
7
IO
MCU_MDIO0_MDIO
0
IO
WKUP_GPIO0_50
7
IO
MCU_OSPI0_CLK
0
O
MCU_HYPERBUS0_CK
1
O
WKUP_GPIO0_16
7
IO
MCU_OSPI0_DQS
0
I
MCU_HYPERBUS0_RWDS
1
IO
WKUP_GPIO0_18
7
IO
MCU_OSPI0_LBCLKO
0
IO
MCU_HYPERBUS0_CKn
1
O
WKUP_GPIO0_17
7
IO
MCU_OSPI1_CLK
0
O
WKUP_GPIO0_29
7
IO
H25
D26
D25
C29
D29
F23
E23
E20
D21
C21
F22
18
mcu_i2c0_sda
mcu_i3c0_scl
mcu_i3c0_sda
mcu_mcan0_rx
mcu_mcan0_tx
mcu_mdio0_mdc
mcu_mdio0_mdio
mcu_ospi0_clk
mcu_ospi0_dqs
mcu_ospi0_lbclko
mcu_ospi1_clk
OFF
OFF
0
7
1.8 V/3.3 V
1.8 V/3.3 V
PULL UP/
DOWN
TYPE 12
DSIS 13
RXACTIVE/
TXDISABL
E 14
ADC12B
I2C OD FS
1
1/0
0
I2C OD FS
1
1/0
0
LVCMOS
PU/PD
1
0/1
1
0
0
OFF
7
1.8 V/3.3 V
VDDSHV0_MC
U
Yes
LVCMOS
PU/PD
1
0/1
0
0
OFF
OFF
OFF
OFF
7
7
7
7
1.8 V/3.3 V
1.8 V/3.3 V
1.8 V/3.3 V
1.8 V/3.3 V
VDDSHV0_MC
U
Yes
VDDSHV0_MC
U
Yes
VDDSHV2_MC
U
Yes
VDDSHV2_MC
U
Yes
LVCMOS
PU/PD
0
0/1
0
LVCMOS
PU/PD
0/1
0
LVCMOS
PU/PD
0/1
0
LVCMOS
PU/PD
0
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV1_MC
U
Yes
LVCMOS
PU/PD
OFF
7
1.8 V/3.3 V
VDDSHV1_MC
U
Yes
LVCMOS
PU/PD
0/1
0
0
0/1
0
0
OFF
7
1.8 V/3.3 V
VDDSHV1_MC
U
Yes
LVCMOS
PU/PD
OFF
7
1.8 V/3.3 V
VDDSHV1_MC
U
Yes
LVCMOS
PU/PD
0
1/1
0
Submit Document Feedback
0/1
0
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
B23
A23
F19
E19
D20
G19
G20
F20
F21
E21
B22
BALL NAME 2
mcu_ospi1_dqs
mcu_ospi1_lbclko
mcu_ospi0_csn0
mcu_ospi0_csn1
mcu_ospi0_d0
mcu_ospi0_d1
mcu_ospi0_d2
mcu_ospi0_d3
mcu_ospi0_d4
mcu_ospi0_d5
mcu_ospi0_d6
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV1_MC
U
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
MCU_OSPI1_DQS
0
I
MCU_OSPI0_CSn3
1
O
0
MCU_HYPERBUS0_INTn
2
I
1
MCU_OSPI0_ECC_FAIL
6
I
1
WKUP_GPIO0_31
7
IO
MCU_OSPI1_LBCLKO
0
IO
MCU_OSPI0_CSn2
1
O
MCU_HYPERBUS0_RESETOn
2
I
MCU_OSPI0_RESET_OUT0
6
O
WKUP_GPIO0_30
7
IO
MCU_OSPI0_CSn0
0
O
MCU_HYPERBUS0_CSn0
1
O
WKUP_GPIO0_27
7
IO
MCU_OSPI0_CSn1
0
O
MCU_HYPERBUS0_RESETn
1
O
WKUP_GPIO0_28
7
IO
MCU_OSPI0_D0
0
IO
MCU_HYPERBUS0_DQ0
1
IO
WKUP_GPIO0_19
7
IO
MCU_OSPI0_D1
0
IO
MCU_HYPERBUS0_DQ1
1
IO
WKUP_GPIO0_20
7
IO
MCU_OSPI0_D2
0
IO
MCU_HYPERBUS0_DQ2
1
IO
WKUP_GPIO0_21
7
IO
MCU_OSPI0_D3
0
IO
MCU_HYPERBUS0_DQ3
1
IO
WKUP_GPIO0_22
7
IO
MCU_OSPI0_D4
0
IO
MCU_HYPERBUS0_DQ4
1
IO
WKUP_GPIO0_23
7
IO
MCU_OSPI0_D5
0
IO
MCU_HYPERBUS0_DQ5
1
IO
WKUP_GPIO0_24
7
IO
MCU_OSPI0_D6
0
IO
MCU_HYPERBUS0_DQ6
1
IO
WKUP_GPIO0_25
7
IO
RXACTIVE/
TXDISABL
E 14
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV1_MC
U
Yes
LVCMOS
PU/PD
0
1/1
1
0
OFF
7
1.8 V/3.3 V
VDDSHV1_MC
U
Yes
LVCMOS
PU/PD
OFF
7
1.8 V/3.3 V
VDDSHV1_MC
U
Yes
LVCMOS
PU/PD
OFF
7
1.8 V/3.3 V
VDDSHV1_MC
U
Yes
LVCMOS
PU/PD
VDDSHV1_MC
U
Yes
VDDSHV1_MC
U
Yes
VDDSHV1_MC
U
Yes
VDDSHV1_MC
U
Yes
VDDSHV1_MC
U
Yes
VDDSHV1_MC
U
Yes
0/1
0
0/1
0
0
0/1
0
0
OFF
7
1.8 V/3.3 V
LVCMOS
PU/PD
0
0/1
0
0
OFF
7
1.8 V/3.3 V
LVCMOS
PU/PD
0
0/1
0
0
OFF
7
1.8 V/3.3 V
LVCMOS
PU/PD
0
0/1
0
0
OFF
7
1.8 V/3.3 V
LVCMOS
PU/PD
0
0/1
0
0
OFF
7
1.8 V/3.3 V
LVCMOS
PU/PD
0
0/1
0
0
OFF
7
1.8 V/3.3 V
LVCMOS
PU/PD
0
0/1
0
0
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
19
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
G21
C22
E22
D22
G22
D23
C23
BALL NAME 2
mcu_ospi0_d7
mcu_ospi1_csn0
mcu_ospi1_csn1
mcu_ospi1_d0
mcu_ospi1_d1
mcu_ospi1_d2
mcu_ospi1_d3
SIGNAL NAME 3
TYPE 5
MCU_OSPI0_D7
0
IO
MCU_HYPERBUS0_DQ7
1
IO
WKUP_GPIO0_26
7
IO
MCU_OSPI1_CSn0
0
O
WKUP_GPIO0_36
7
IO
MCU_OSPI1_CSn1
0
O
MCU_HYPERBUS0_WPn
1
O
MCU_TIMER_IO0
2
IO
MCU_HYPERBUS0_CSn1
3
O
MCU_UART0_RTSn
4
O
MCU_SPI0_CS2
5
IO
MCU_OSPI0_RESET_OUT1
6
O
WKUP_GPIO0_37
7
IO
MCU_OSPI1_D0
0
IO
WKUP_GPIO0_32
7
IO
MCU_OSPI1_D1
0
IO
MCU_UART0_RXD
4
I
MCU_SPI1_CS1
5
IO
WKUP_GPIO0_33
7
IO
MCU_OSPI1_D2
0
IO
MCU_UART0_TXD
4
O
MCU_SPI1_CS2
5
IO
WKUP_GPIO0_34
7
IO
MCU_OSPI1_D3
0
IO
MCU_UART0_CTSn
4
I
MCU_SPI0_CS1
5
IO
WKUP_GPIO0_35
7
IO
H23
mcu_porz
MCU_PORz
B28
mcu_porz_out
MCU_PORz_OUT
C27
mcu_resetstatz
D28
C24
20
MUXMODE
4
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
HYS 10
VDDSHV1_MC
U
Yes
VDDSHV1_MC
U
Yes
VDDSHV1_MC
U
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
0
RXACTIVE/
TXDISABL
E 14
0/1
0
0
OFF
OFF
7
7
1.8 V/3.3 V
1.8 V/3.3 V
LVCMOS
PU/PD
0/1
0
LVCMOS
PU/PD
0/1
0
1
0
OFF
OFF
7
7
1.8 V/3.3 V
1.8 V/3.3 V
VDDSHV1_MC
U
Yes
VDDSHV1_MC
U
Yes
LVCMOS
PU/PD
0
0/1
0
LVCMOS
PU/PD
0
0/1
1
1
0
OFF
7
1.8 V/3.3 V
VDDSHV1_MC
U
Yes
LVCMOS
PU/PD
0
0/1
1
0
OFF
7
1.8 V/3.3 V
VDDSHV1_MC
U
Yes
LVCMOS
PU/PD
0
0/1
1
1
0
I
OFF
1.8 V
VDDA_WKUP
Yes
FS Reset
PU/PD
0
O
OFF
0
1.8 V/3.3 V
VDDSHV0_MC
U
Yes
LVCMOS
PU/PD
0/0
MCU_RESETSTATz
0
O
OFF
0
1.8 V/3.3 V
VDDSHV0_MC
U
Yes
LVCMOS
PU/PD
0/0
mcu_resetz
MCU_RESETz
0
I
PU
0
1.8 V/3.3 V
VDDSHV0_MC
U
Yes
LVCMOS
PU/PD
1/1
mcu_rgmii1_rxc
MCU_RGMII1_RXC
MCU_RMII1_REF_CLK
0
I
OFF
7
1.8 V/3.3 V
LVCMOS
PU/PD
I
VDDSHV2_MC
U
Yes
1
WKUP_GPIO0_45
7
IO
Submit Document Feedback
0
0/1
0
0
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
C25
B26
B27
B24
A24
D24
A25
B25
A26
A27
A28
D27
BALL NAME 2
mcu_rgmii1_rx_ctl
mcu_rgmii1_txc
mcu_rgmii1_tx_ctl
mcu_rgmii1_rd0
mcu_rgmii1_rd1
mcu_rgmii1_rd2
mcu_rgmii1_rd3
mcu_rgmii1_td0
mcu_rgmii1_td1
mcu_rgmii1_td2
mcu_rgmii1_td3
mcu_safety_errorn
SIGNAL NAME 3
MUXMODE
4
TYPE 5
MCU_RGMII1_RX_CTL
0
I
MCU_RMII1_RX_ER
1
I
WKUP_GPIO0_39
7
IO
MCU_RGMII1_TXC
0
O
MCU_RMII1_TX_EN
1
O
WKUP_GPIO0_44
7
IO
MCU_RGMII1_TX_CTL
0
O
MCU_RMII1_CRS_DV
1
I
WKUP_GPIO0_38
7
IO
MCU_RGMII1_RD0
0
I
MCU_RMII1_RXD0
1
I
WKUP_GPIO0_49
7
IO
MCU_RGMII1_RD1
0
I
MCU_RMII1_RXD1
1
I
WKUP_GPIO0_48
7
IO
MCU_RGMII1_RD2
0
I
MCU_TIMER_IO5
1
IO
WKUP_GPIO0_47
7
IO
MCU_RGMII1_RD3
0
I
MCU_TIMER_IO4
1
IO
WKUP_GPIO0_46
7
IO
MCU_RGMII1_TD0
0
O
MCU_RMII1_TXD0
1
O
WKUP_GPIO0_43
7
IO
MCU_RGMII1_TD1
0
O
MCU_RMII1_TXD1
1
O
WKUP_GPIO0_42
7
IO
MCU_RGMII1_TD2
0
O
MCU_TIMER_IO3
1
IO
MCU_ADC_EXT_TRIGGER1
3
I
WKUP_GPIO0_41
7
IO
MCU_RGMII1_TD3
0
O
MCU_TIMER_IO2
1
IO
MCU_ADC_EXT_TRIGGER0
3
I
WKUP_GPIO0_40
7
IO
MCU_SAFETY_ERRORn
0
IO
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
HYS 10
VDDSHV2_MC
U
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
0
RXACTIVE/
TXDISABL
E 14
0/1
0
0
OFF
7
1.8 V/3.3 V
VDDSHV2_MC
U
Yes
LVCMOS
PU/PD
OFF
7
1.8 V/3.3 V
VDDSHV2_MC
U
Yes
LVCMOS
PU/PD
VDDSHV2_MC
U
Yes
VDDSHV2_MC
U
Yes
VDDSHV2_MC
U
Yes
VDDSHV2_MC
U
Yes
0
0/1
0
0/1
0
0
OFF
7
1.8 V/3.3 V
LVCMOS
PU/PD
0
0/1
0
0
OFF
7
1.8 V/3.3 V
LVCMOS
PU/PD
0
0/1
0
0
OFF
7
1.8 V/3.3 V
LVCMOS
PU/PD
0
0/1
0
0
OFF
7
1.8 V/3.3 V
LVCMOS
PU/PD
0
0/1
0
0
OFF
7
1.8 V/3.3 V
VDDSHV2_MC
U
Yes
LVCMOS
PU/PD
OFF
7
1.8 V/3.3 V
VDDSHV2_MC
U
Yes
LVCMOS
PU/PD
OFF
7
1.8 V/3.3 V
VDDSHV2_MC
U
Yes
LVCMOS
PU/PD
0/1
0
0/1
0
0/1
0
0
0
OFF
7
1.8 V/3.3 V
VDDSHV2_MC
U
Yes
LVCMOS
PU/PD
0/1
0
0
0
PD
0
1.8 V
VDDA_WKUP
Yes
LVCMOS
PU/PD
1/0
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
21
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
E27
E25
E24
E28
V24
V26
BALL NAME 2
mcu_spi0_clk
mcu_spi0_cs0
mcu_spi0_d0
mcu_spi0_d1
mdio0_mdc
mdio0_mdio
SIGNAL NAME 3
MUXMODE
4
TYPE 5
MCU_SPI0_CLK
0
IO
WKUP_GPIO0_52
7
IO
MCU_BOOTMODE00
Bootstrap
I
MCU_SPI0_CS0
0
IO
MCU_TIMER_IO1
4
IO
WKUP_GPIO0_55
7
IO
MCU_SPI0_D0
0
IO
WKUP_GPIO0_53
7
IO
MCU_BOOTMODE01
Bootstrap
I
MCU_SPI0_D1
0
IO
MCU_TIMER_IO0
4
IO
WKUP_GPIO0_54
7
IO
MCU_BOOTMODE02
Bootstrap
I
MDIO0_MDC
0
O
TRC_DATA23
5
O
GPIO0_110
7
IO
GPMC0_WAIT2
8
I
MDIO0_MDIO
0
IO
TRC_DATA22
5
O
GPIO0_109
7
IO
GPMC0_WAIT3
8
I
MLB0_MLBCN
0
I
GPIO1_35
7
IO
MLB0_MLBCP
0
I
GPIO1_34
7
IO
MLB0_MLBDN
0
IO
GPIO1_33
7
IO
MLB0_MLBDP
0
IO
GPIO1_32
7
IO
MLB0_MLBSN
0
IO
GPIO1_31
7
IO
MLB0_MLBSP
0
IO
GPIO1_30
7
IO
AE2
mlb0_mlbcn
AD2
mlb0_mlbcp
AD3
mlb0_mlbdn
AC3
mlb0_mlbdp
AC1
mlb0_mlbsn
AD1
mlb0_mlbsp
AE1
mmc0_calpad
MMC0_CALPAD
A
AF1
mmc0_clk
MMC0_CLK
AE3
mmc0_cmd
MMC0_CMD
AE4
mmc0_ds
MMC0_DS
22
BALL
RESET
STATE 6
OFF
OFF
BALL
RESET
REL.
MUXMODE
7
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
1.8 V/3.3 V
POWER 9
HYS 10
VDDSHV0_MC
U
Yes
VDDSHV0_MC
U
Yes
VDDSHV0_MC
U
Yes
VDDSHV0_MC
U
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
0
RXACTIVE/
TXDISABL
E 14
1/1
0
LVCMOS
PU/PD
1
0/1
0
0
OFF
OFF
7
7
1.8 V/3.3 V
1.8 V/3.3 V
LVCMOS
PU/PD
0
1/1
0
LVCMOS
PU/PD
0
1/1
0
0
OFF
7
1.8 V/3.3 V
VDDSHV3
Yes
LVCMOS
PU/PD
0/1
0
0
OFF
7
1.8 V/3.3 V
VDDSHV3
Yes
LVCMOS
PU/PD
0
0/1
0
0
OFF
0
1.8 V
VDDA_1P8_ML
B
MLB_LVDS
OFF
0
1.8 V
VDDA_1P8_ML
B
MLB_LVDS
OFF
0
1.8 V
VDDA_1P8_ML
B
MLB_LVDS
OFF
0
1.8 V
VDDA_1P8_ML
B
MLB_LVDS
OFF
0
1.8 V
VDDA_1P8_ML
B
MLB_LVDS
OFF
0
1.8 V
VDDA_1P8_ML
B
MLB_LVDS
OFF
1.8 V
VDDS_MMC0
eMMCPHY
PU/PD
O
OFF
1.8 V
VDDS_MMC0
eMMCPHY
PU/PD
IO
OFF
1.8 V
VDDS_MMC0
eMMCPHY
PU/PD
1
IO
OFF
1.8 V
VDDS_MMC0
eMMCPHY
PU/PD
1
Submit Document Feedback
0
0
0
0
0
0
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
P25
R29
P23
R28
T26
BALL NAME 2
mmc1_clk
mmc1_cmd
mmc1_sdcd
mmc1_sdwp
mmc2_clk
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV5
HYS 10
Yes
BUFFER
TYPE 11
SDIO
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
MMC1_CLK
0
IO
UART8_RXD
1
I
0
1
I2C4_SCL
4
IOD
1
GPIO1_19
7
IO
MMC1_CMD
0
IO
UART8_TXD
1
O
I2C4_SDA
4
IOD
GPIO1_20
7
IO
MMC1_SDCD
0
I
UART8_CTSn
1
I
1
UART0_DCDn
2
I
1
TIMER_IO2
3
IO
0
EQEP2_I
5
IO
0
PCIE2_CLKREQn
6
IO
0
GPIO1_21
7
IO
0
PRG0_IEP0_EDC_LATCH_IN1
8
I
MMC1_SDWP
0
I
UART8_RTSn
1
O
UART0_DSRn
2
I
1
TIMER_IO3
3
IO
0
ECAP2_IN_APWM_OUT
4
IO
0
EQEP2_S
5
IO
0
PCIE3_CLKREQn
6
IO
0
GPIO1_22
7
IO
0
PRG0_IEP0_EDC_SYNC_OUT1
8
O
MMC2_CLK
0
IO
USB0_DRVVBUS
1
O
USB1_DRVVBUS
2
O
TIMER_IO6
3
IO
0
I2C3_SCL
4
IOD
1
UART3_RXD
5
I
1
GPIO1_27
7
IO
0
RXACTIVE/
TXDISABL
E 14
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV5
Yes
SDIO
PU/PD
1
0/1
1
0
OFF
7
1.8 V/3.3 V
VDDSHV3
Yes
LVCMOS
PU/PD
1
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV3
Yes
LVCMOS
PU/PD
1
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV6
Yes
SDIO
PU/PD
0
0/1
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
23
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
T25
BALL NAME 2
mmc2_cmd
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV6
HYS 10
Yes
BUFFER
TYPE 11
SDIO
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
MMC2_CMD
0
IO
USB0_DRVVBUS
1
O
1
USB1_DRVVBUS
2
O
TIMER_IO7
3
IO
0
I2C3_SDA
4
IOD
1
UART3_TXD
5
O
GPIO1_28
7
IO
mmc0_dat0
MMC0_DAT0
IO
OFF
1.8 V
VDDS_MMC0
eMMCPHY
PU/PD
1
AH1
mmc0_dat1
MMC0_DAT1
IO
OFF
1.8 V
VDDS_MMC0
eMMCPHY
PU/PD
1
AG3
mmc0_dat2
MMC0_DAT2
IO
OFF
1.8 V
VDDS_MMC0
eMMCPHY
PU/PD
1
AF4
mmc0_dat3
MMC0_DAT3
IO
OFF
1.8 V
VDDS_MMC0
eMMCPHY
PU/PD
1
AE5
mmc0_dat4
MMC0_DAT4
IO
OFF
1.8 V
VDDS_MMC0
eMMCPHY
PU/PD
1
AF3
mmc0_dat5
MMC0_DAT5
IO
OFF
1.8 V
VDDS_MMC0
eMMCPHY
PU/PD
1
AG1
mmc0_dat6
MMC0_DAT6
IO
OFF
1.8 V
VDDS_MMC0
eMMCPHY
PU/PD
1
AF2
mmc0_dat7
MMC0_DAT7
IO
OFF
1.8 V
VDDS_MMC0
eMMCPHY
R24
mmc1_dat0
MMC1_DAT0
0
IO
OFF
1.8 V/3.3 V
VDDSHV5
UART7_RTSn
1
O
ECAP1_IN_APWM_OUT
2
IO
0
TIMER_IO1
3
IO
0
UART4_TXD
5
O
GPIO1_18
7
IO
MMC1_DAT1
0
IO
UART7_CTSn
1
I
1
ECAP0_IN_APWM_OUT
2
IO
0
TIMER_IO0
3
IO
0
UART4_RXD
5
I
1
GPIO1_17
7
IO
MMC1_DAT2
0
IO
UART7_TXD
1
O
GPIO1_16
7
IO
MMC1_DAT3
0
IO
UART7_RXD
1
I
1
GPIO1_15
7
IO
0
R25
R26
24
mmc1_dat1
mmc1_dat2
mmc1_dat3
0/1
0
AG2
P24
RXACTIVE/
TXDISABL
E 14
7
Yes
SDIO
1
PU/PD
1
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV5
Yes
SDIO
PU/PD
1
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV5
Yes
SDIO
PU/PD
OFF
7
1.8 V/3.3 V
VDDSHV5
Yes
SDIO
PU/PD
1
0/1
0
Submit Document Feedback
1
0/1
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
T24
T27
T29
T28
BALL NAME 2
mmc2_dat0
mmc2_dat1
mmc2_dat2
mmc2_dat3
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV6
HYS 10
Yes
BUFFER
TYPE 11
SDIO
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
MMC2_DAT0
0
IO
UART9_RTSn
1
O
1
UART0_RIn
2
I
1
TIMER_IO5
3
IO
0
UART6_TXD
4
O
EQEP2_B
5
I
0
GPIO1_26
7
IO
0
PRG0_IEP1_EDC_SYNC_OUT1
8
O
MMC2_DAT1
0
IO
UART9_CTSn
1
I
UART0_DTRn
2
O
TIMER_IO4
3
IO
0
UART6_RXD
4
I
1
EQEP2_A
5
I
0
GPIO1_25
7
IO
0
PRG0_IEP1_EDC_LATCH_IN1
8
I
MMC2_DAT2
0
IO
UART9_TXD
1
O
CPTS0_HW2TSPUSH
2
I
0
I2C5_SDA
4
IOD
1
GPIO1_24
7
IO
MMC2_DAT3
0
IO
UART9_RXD
1
I
1
CPTS0_HW1TSPUSH
2
I
0
I2C5_SCL
4
IOD
1
GPIO1_23
7
IO
RXACTIVE/
TXDISABL
E 14
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV6
Yes
SDIO
PU/PD
1
0/1
1
0
OFF
7
1.8 V/3.3 V
VDDSHV6
Yes
SDIO
PU/PD
1
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV6
Yes
SDIO
PU/PD
1
0/1
0
P29
osc1_xi
OSC1_XI
I
OFF
1.8 V
VDDS_OSC1
HFOSC
P27
osc1_xo
OSC1_XO
O
OFF
1.8 V
VDDS_OSC1
HFOSC
AE17
pcie_refclk0n
PCIE_REFCLK0N
IO
OFF
0.8 V
VDDA_0P8_SE
RDES0_1 / VDD
A_1P8_SERDE
S0_1
2-L-PHY
AD16
pcie_refclk0p
PCIE_REFCLK0P
IO
OFF
0.8 V
VDDA_0P8_SE
RDES0_1 / VDD
A_1P8_SERDE
S0_1
2-L-PHY
AE14
pcie_refclk1n
PCIE_REFCLK1N
IO
OFF
0.8 V
VDDA_0P8_SE
RDES0_1 / VDD
A_1P8_SERDE
S0_1
2-L-PHY
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
25
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
BALL NAME 2
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
BALL
RESET
REL.
MUXMODE
I/O
VOLTAGE
VALUE 8
POWER 9
HYS 10
BUFFER
TYPE 11
AD15
pcie_refclk1p
PCIE_REFCLK1P
IO
OFF
0.8 V
VDDA_0P8_SE
RDES0_1 / VDD
A_1P8_SERDE
S0_1
2-L-PHY
AE11
pcie_refclk2n
PCIE_REFCLK2N
IO
OFF
0.8 V
VDDA_0P8_SE
RDES0_1 / VDD
A_1P8_SERDE
S0_1
2-L-PHY
AD12
pcie_refclk2p
PCIE_REFCLK2P
IO
OFF
0.8 V
VDDA_0P8_SE
RDES0_1 / VDD
A_1P8_SERDE
S0_1
2-L-PHY
AE9
pcie_refclk3n
PCIE_REFCLK3N
IO
OFF
0.8 V
VDDA_0P8_SE
RDES2_3 / VDD
A_1P8_SERDE
S2_3
2-L-PHY
AD10
pcie_refclk3p
PCIE_REFCLK3P
IO
OFF
0.8 V
VDDA_0P8_SE
RDES2_3 / VDD
A_1P8_SERDE
S2_3
2-L-PHY
E26
pmic_power_en0
MCU_I3C0_SDAPULLEN
0
O
OFF
1.8 V/3.3 V
7
IO
VDDSHV0_MC
U
Yes
WKUP_GPIO0_66
PMIC_POWER_EN1
0
O
MCU_I3C1_SDAPULLEN
5
O
G23
pmic_power_en1
7
LVCMOS
PULL UP/
DOWN
TYPE 12
DSIS 13
PU/PD
0/0
0
OFF
0
1.8 V/3.3 V
VDDSHV0_MC
U
Yes
LVCMOS
PU/PD
0/0
WKUP_GPIO0_67
7
IO
J24
porz
PORz
0
I
OFF
0
1.8 V
VDDA_WKUP
Yes
FS Reset
PU/PD
U1
porz_out
PORz_OUT
0
O
OFF
0
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
AA27
prg0_mdio0_mdc
PRG0_MDIO0_MDC
0
O
OFF
7
1.8 V/3.3 V
VDDSHV1
Yes
LVCMOS
PU/PD
I2C5_SDA
2
IOD
1
MCAN13_RX
6
I
1
GPIO0_84
7
IO
0
GPMC0_A0
8
OZ
0
DSS_FSYNC2
10
O
MCASP2_ACLKR
12
IO
MCASP2_AXR5
13
IO
PRG0_MDIO0_MDIO
0
IO
I2C5_SCL
2
IOD
MCAN13_TX
6
O
GPIO0_83
7
IO
0
GPMC0_A27
8
OZ
0
DSS_FSYNC0
10
O
MCASP2_AFSR
12
IO
MCASP2_AXR4
13
IO
Y26
26
prg0_mdio0_mdio
RXACTIVE/
TXDISABL
E 14
0
0/0
0/1
0
OFF
7
1.8 V/3.3 V
Submit Document Feedback
VDDSHV1
Yes
LVCMOS
PU/PD
0
0/1
1
0
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AF28
AE28
AE27
AD26
BALL NAME 2
prg0_pru0_gpo0
prg0_pru0_gpo1
prg0_pru0_gpo2
prg0_pru0_gpo3
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
I
0
PRG0_RGMII1_RD0
2
I
0
PRG0_PWM3_A0
3
IO
0
RGMII3_RD0
4
I
0
RMII3_RXD1
5
I
0
GPIO0_43
7
IO
0
MCASP0_AXR0
12
IO
PRG0_PRU0_GPO1
0
IO
PRG0_PRU0_GPI1
1
I
0
PRG0_RGMII1_RD1
2
I
0
PRG0_PWM3_B0
3
IO
1
RGMII3_RD1
4
I
0
RMII3_RXD0
5
I
0
GPIO0_44
7
IO
0
MCASP0_AXR1
12
IO
PRG0_PRU0_GPO2
0
IO
PRG0_PRU0_GPI2
1
I
0
PRG0_RGMII1_RD2
2
I
0
PRG0_PWM2_A0
3
IO
0
RGMII3_RD2
4
I
0
RMII3_CRS_DV
5
I
0
GPIO0_45
7
IO
0
UART3_RXD
8
I
0
MCASP0_ACLKR
12
IO
PRG0_PRU0_GPO3
0
IO
PRG0_PRU0_GPI3
1
I
0
PRG0_RGMII1_RD3
2
I
0
PRG0_PWM3_A2
3
IO
0
RGMII3_RD3
4
I
0
RMII3_RX_ER
5
I
0
GPIO0_46
7
IO
0
UART3_TXD
8
O
0
MCASP0_AFSR
12
IO
OFF
OFF
7
7
1.8 V/3.3 V
1.8 V/3.3 V
VDDSHV1
VDDSHV1
Yes
Yes
LVCMOS
LVCMOS
LVCMOS
PU/PD
DSIS 13
IO
Yes
LVCMOS
PULL UP/
DOWN
TYPE 12
1
VDDSHV1
Yes
BUFFER
TYPE 11
0
1.8 V/3.3 V
VDDSHV1
HYS 10
PRG0_PRU0_GPI0
7
1.8 V/3.3 V
POWER 9
PRG0_PRU0_GPO0
OFF
7
I/O
VOLTAGE
VALUE 8
PU/PD
PU/PD
PU/PD
0
0
0
0
RXACTIVE/
TXDISABL
E 14
0/1
0/1
0/1
0/1
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
27
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AD25
AC29
AE26
AC28
28
BALL NAME 2
prg0_pru0_gpo4
prg0_pru0_gpo5
prg0_pru0_gpo6
prg0_pru0_gpo7
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV1
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
PRG0_PRU0_GPO4
0
IO
PRG0_PRU0_GPI4
1
I
0
0
PRG0_RGMII1_RX_CTL
2
I
0
PRG0_PWM2_B0
3
IO
1
RGMII3_RX_CTL
4
I
0
RMII3_TXD1
5
O
GPIO0_47
7
IO
MCASP0_AXR2
12
IO
PRG0_PRU0_GPO5
0
IO
PRG0_PRU0_GPI5
1
I
0
PRG0_PWM3_B2
3
IO
1
RMII3_TXD0
5
O
GPIO0_48
7
IO
0
GPMC0_AD0
8
IO
0
MCASP0_AXR3
12
IO
BOOTMODE2
Bootstrap
I
PRG0_PRU0_GPO6
0
IO
PRG0_PRU0_GPI6
1
I
0
PRG0_RGMII1_RXC
2
I
0
PRG0_PWM3_A1
3
IO
0
RGMII3_RXC
4
I
0
RMII3_TX_EN
5
O
GPIO0_49
7
IO
MCASP0_AXR4
12
IO
PRG0_PRU0_GPO7
0
IO
PRG0_PRU0_GPI7
1
I
0
PRG0_IEP0_EDC_LATCH_IN1
2
I
0
PRG0_PWM3_B1
3
IO
1
PRG0_ECAP0_SYNC_IN
4
I
0
MCAN9_TX
6
O
GPIO0_50
7
IO
0
GPMC0_AD1
8
IO
0
MCASP0_AXR5
12
IO
RXACTIVE/
TXDISABL
E 14
0/1
0
OFF
OFF
7
7
1.8 V/3.3 V
1.8 V/3.3 V
VDDSHV1
VDDSHV1
Yes
Yes
LVCMOS
LVCMOS
PU/PD
PU/PD
0
0
1/1
0/1
0
OFF
7
1.8 V/3.3 V
Submit Document Feedback
VDDSHV1
Yes
LVCMOS
PU/PD
0
0/1
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AC27
AB26
AB25
AJ28
BALL NAME 2
prg0_pru0_gpo8
prg0_pru0_gpo9
prg0_pru0_gpo10
prg0_pru0_gpo11
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
I
0
PRG0_PWM2_A1
3
IO
0
MCAN9_RX
6
I
1
GPIO0_51
7
IO
0
GPMC0_AD2
8
IO
0
MCASP0_AXR6
12
IO
UART6_RXD
14
I
PRG0_PRU0_GPO9
0
IO
PRG0_PRU0_GPI9
1
I
0
PRG0_UART0_CTSn
2
I
1
PRG0_PWM3_TZ_IN
3
I
0
SPI3_CS1
4
IO
1
PRG0_IEP0_EDIO_DATA_IN_OUT28
5
IO
0
MCAN10_TX
6
O
GPIO0_52
7
IO
0
GPMC0_AD3
8
IO
0
MCASP0_ACLKX
12
IO
UART6_TXD
14
O
PRG0_PRU0_GPO10
0
IO
PRG0_PRU0_GPI10
1
I
PRG0_UART0_RTSn
2
O
PRG0_PWM2_B1
3
IO
1
SPI3_CS2
4
IO
1
PRG0_IEP0_EDIO_DATA_IN_OUT29
5
IO
0
MCAN10_RX
6
I
1
GPIO0_53
7
IO
0
GPMC0_AD4
8
IO
0
MCASP0_AFSX
12
IO
PRG0_PRU0_GPO11
0
IO
PRG0_PRU0_GPI11
1
I
PRG0_RGMII1_TD0
2
O
PRG0_PWM3_TZ_OUT
3
O
RGMII3_TD0
4
O
GPIO0_54
7
IO
CLKOUT
9
OZ
MCASP0_AXR7
12
IO
OFF
7
1.8 V/3.3 V
VDDSHV1
Yes
LVCMOS
LVCMOS
PU/PD
DSIS 13
IO
Yes
LVCMOS
PULL UP/
DOWN
TYPE 12
1
VDDSHV1
Yes
BUFFER
TYPE 11
0
1.8 V/3.3 V
VDDSHV1
HYS 10
PRG0_PRU0_GPI8
7
1.8 V/3.3 V
POWER 9
PRG0_PRU0_GPO8
OFF
7
I/O
VOLTAGE
VALUE 8
PU/PD
PU/PD
0
0
0
RXACTIVE/
TXDISABL
E 14
0/1
0/1
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV1
Yes
LVCMOS
PU/PD
0
0/1
0
0
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
29
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AH27
AH29
AG28
AG27
30
BALL NAME 2
prg0_pru0_gpo12
prg0_pru0_gpo13
prg0_pru0_gpo14
prg0_pru0_gpo15
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV1
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
PRG0_PRU0_GPO12
0
IO
PRG0_PRU0_GPI12
1
I
0
PRG0_RGMII1_TD1
2
O
PRG0_PWM0_A0
3
IO
RGMII3_TD1
4
O
GPIO0_55
7
IO
DSS_FSYNC0
10
O
MCASP0_AXR8
12
IO
PRG0_PRU0_GPO13
0
IO
PRG0_PRU0_GPI13
1
I
PRG0_RGMII1_TD2
2
O
PRG0_PWM0_B0
3
IO
RGMII3_TD2
4
O
GPIO0_56
7
IO
DSS_FSYNC2
10
O
MCASP0_AXR9
12
IO
PRG0_PRU0_GPO14
0
IO
PRG0_PRU0_GPI14
1
I
PRG0_RGMII1_TD3
2
O
PRG0_PWM0_A1
3
IO
RGMII3_TD3
4
O
GPIO0_57
7
IO
0
UART4_RXD
8
I
0
MCASP0_AXR10
12
IO
PRG0_PRU0_GPO15
0
IO
PRG0_PRU0_GPI15
1
I
PRG0_RGMII1_TX_CTL
2
O
PRG0_PWM0_B1
3
IO
RGMII3_TX_CTL
4
O
GPIO0_58
7
IO
0
UART4_TXD
8
O
0
DSS_FSYNC3
10
O
MCASP0_AXR11
12
IO
RXACTIVE/
TXDISABL
E 14
0/1
0
0
0
OFF
7
1.8 V/3.3 V
VDDSHV1
Yes
LVCMOS
PU/PD
0
0/1
0
1
0
OFF
7
1.8 V/3.3 V
VDDSHV1
Yes
LVCMOS
PU/PD
0
0/1
0
0
OFF
7
1.8 V/3.3 V
Submit Document Feedback
VDDSHV1
Yes
LVCMOS
PU/PD
0
0/1
0
1
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AH28
AB24
AB29
AB28
BALL NAME 2
prg0_pru0_gpo16
prg0_pru0_gpo17
prg0_pru0_gpo18
prg0_pru0_gpo19
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
I
0
PRG0_RGMII1_TXC
2
IO
0
PRG0_PWM0_A2
3
IO
0
RGMII3_TXC
4
O
0
GPIO0_59
7
IO
0
DSS_FSYNC1
10
O
MCASP0_AXR12
12
IO
PRG0_PRU0_GPO17
0
IO
PRG0_PRU0_GPI17
1
I
PRG0_IEP0_EDC_SYNC_OUT1
2
O
PRG0_PWM0_B2
3
IO
PRG0_ECAP0_SYNC_OUT
4
O
GPIO0_60
7
IO
0
GPMC0_AD5
8
IO
0
OBSCLK1
9
O
0
MCASP0_AXR13
12
IO
BOOTMODE7
Bootstrap
I
PRG0_PRU0_GPO18
0
IO
PRG0_PRU0_GPI18
1
I
0
PRG0_IEP0_EDC_LATCH_IN0
2
I
0
PRG0_PWM0_TZ_IN
3
I
0
PRG0_ECAP0_IN_APWM_OUT
4
IO
0
GPIO0_61
7
IO
0
GPMC0_AD6
8
IO
0
MCASP0_AXR14
12
IO
PRG0_PRU0_GPO19
0
IO
PRG0_PRU0_GPI19
1
I
PRG0_IEP0_EDC_SYNC_OUT0
2
O
PRG0_PWM0_TZ_OUT
3
O
GPIO0_62
7
IO
0
GPMC0_AD7
8
IO
0
MCASP0_AXR15
12
IO
LVCMOS
PU/PD
DSIS 13
IO
Yes
LVCMOS
PULL UP/
DOWN
TYPE 12
1
VDDSHV1
Yes
BUFFER
TYPE 11
0
1.8 V/3.3 V
VDDSHV1
HYS 10
PRG0_PRU0_GPI16
7
1.8 V/3.3 V
POWER 9
PRG0_PRU0_GPO16
OFF
7
I/O
VOLTAGE
VALUE 8
PU/PD
0
0
RXACTIVE/
TXDISABL
E 14
0/1
1/1
0
1
OFF
OFF
7
7
1.8 V/3.3 V
1.8 V/3.3 V
VDDSHV1
VDDSHV1
Yes
Yes
LVCMOS
LVCMOS
PU/PD
PU/PD
0
0
0/1
0/1
0
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
31
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AE29
AD28
AD27
AC25
32
BALL NAME 2
prg0_pru1_gpo0
prg0_pru1_gpo1
prg0_pru1_gpo2
prg0_pru1_gpo3
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
I
0
PRG0_RGMII2_RD0
2
I
0
RGMII4_RD0
4
I
0
RMII4_RXD0
5
I
0
GPIO0_63
7
IO
0
UART4_CTSn
8
I
0
MCASP1_AXR0
12
IO
UART5_RXD
14
I
PRG0_PRU1_GPO1
0
IO
PRG0_PRU1_GPI1
1
I
0
PRG0_RGMII2_RD1
2
I
0
RGMII4_RD1
4
I
0
RMII4_RXD1
5
I
0
GPIO0_64
7
IO
0
UART4_RTSn
8
O
0
MCASP1_AXR1
12
IO
UART5_TXD
14
O
PRG0_PRU1_GPO2
0
IO
PRG0_PRU1_GPI2
1
I
0
PRG0_RGMII2_RD2
2
I
0
PRG0_PWM2_A2
3
IO
0
RGMII4_RD2
4
I
0
RMII4_CRS_DV
5
I
0
GPIO0_65
7
IO
0
GPMC0_A23
8
OZ
0
MCASP1_ACLKR
12
IO
MCASP1_AXR10
13
IO
PRG0_PRU1_GPO3
0
IO
PRG0_PRU1_GPI3
1
I
0
PRG0_RGMII2_RD3
2
I
0
RGMII4_RD3
4
I
0
RMII4_RX_ER
5
I
0
GPIO0_66
7
IO
0
MCASP1_AFSR
12
IO
MCASP1_AXR11
13
IO
OFF
7
1.8 V/3.3 V
VDDSHV1
Yes
LVCMOS
LVCMOS
PU/PD
DSIS 13
IO
Yes
LVCMOS
PULL UP/
DOWN
TYPE 12
1
VDDSHV1
Yes
BUFFER
TYPE 11
0
1.8 V/3.3 V
VDDSHV1
HYS 10
PRG0_PRU1_GPI0
7
1.8 V/3.3 V
POWER 9
PRG0_PRU1_GPO0
OFF
7
I/O
VOLTAGE
VALUE 8
PU/PD
PU/PD
0
0
0
RXACTIVE/
TXDISABL
E 14
0/1
0/1
0/1
0
OFF
7
1.8 V/3.3 V
Submit Document Feedback
VDDSHV1
Yes
LVCMOS
PU/PD
0
0/1
0
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AD29
AB27
AC26
AA24
BALL NAME 2
prg0_pru1_gpo4
prg0_pru1_gpo5
prg0_pru1_gpo6
prg0_pru1_gpo7
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
I
0
PRG0_RGMII2_RX_CTL
2
I
0
PRG0_PWM2_B2
3
IO
1
RGMII4_RX_CTL
4
I
0
RMII4_TXD1
5
O
GPIO0_67
7
IO
0
GPMC0_A24
8
OZ
0
MCASP1_AXR2
12
IO
PRG0_PRU1_GPO5
0
IO
PRG0_PRU1_GPI5
1
I
0
GPIO0_68
7
IO
0
GPMC0_AD8
8
IO
0
MCASP1_ACLKX
12
IO
BOOTMODE6
Bootstrap
I
PRG0_PRU1_GPO6
0
IO
PRG0_PRU1_GPI6
1
I
0
PRG0_RGMII2_RXC
2
I
0
RGMII4_RXC
4
I
0
RMII4_TXD0
5
O
GPIO0_69
7
IO
0
GPMC0_A25
8
OZ
0
MCASP1_AXR3
12
IO
PRG0_PRU1_GPO7
0
IO
PRG0_PRU1_GPI7
1
I
0
PRG0_IEP1_EDC_LATCH_IN1
2
I
0
SPI3_CS0
4
IO
1
MCAN11_TX
6
O
GPIO0_70
7
IO
0
GPMC0_AD9
8
IO
0
MCASP1_AXR4
12
IO
UART2_TXD
14
O
OFF
OFF
7
7
1.8 V/3.3 V
1.8 V/3.3 V
VDDSHV1
VDDSHV1
Yes
Yes
LVCMOS
LVCMOS
LVCMOS
PU/PD
DSIS 13
IO
Yes
LVCMOS
PULL UP/
DOWN
TYPE 12
1
VDDSHV1
Yes
BUFFER
TYPE 11
0
1.8 V/3.3 V
VDDSHV1
HYS 10
PRG0_PRU1_GPI4
7
1.8 V/3.3 V
POWER 9
PRG0_PRU1_GPO4
OFF
7
I/O
VOLTAGE
VALUE 8
PU/PD
PU/PD
PU/PD
0
0
0
0
RXACTIVE/
TXDISABL
E 14
0/1
1/1
0/1
0/1
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
33
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AA28
Y24
AA25
AG26
34
BALL NAME 2
prg0_pru1_gpo8
prg0_pru1_gpo9
prg0_pru1_gpo10
prg0_pru1_gpo11
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV1
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
PRG0_PRU1_GPO8
0
IO
PRG0_PRU1_GPI8
1
I
0
PRG0_PWM2_TZ_OUT
3
O
MCAN11_RX
6
I
1
GPIO0_71
7
IO
0
GPMC0_AD10
8
IO
0
MCASP1_AFSX
12
IO
PRG0_PRU1_GPO9
0
IO
PRG0_PRU1_GPI9
1
I
0
PRG0_UART0_RXD
2
I
1
SPI3_CS3
4
IO
1
PRG0_IEP0_EDIO_DATA_IN_OUT30
6
IO
0
GPIO0_72
7
IO
0
GPMC0_AD11
8
IO
0
DSS_FSYNC3
10
O
MCASP1_AXR5
12
IO
UART8_RXD
14
I
PRG0_PRU1_GPO10
0
IO
PRG0_PRU1_GPI10
1
I
PRG0_UART0_TXD
2
O
PRG0_PWM2_TZ_IN
3
I
0
PRG0_IEP0_EDIO_DATA_IN_OUT31
6
IO
0
GPIO0_73
7
IO
0
GPMC0_AD12
8
IO
0
CLKOUT
9
OZ
0
MCASP1_AXR6
12
IO
UART8_TXD
14
O
PRG0_PRU1_GPO11
0
IO
PRG0_PRU1_GPI11
1
I
PRG0_RGMII2_TD0
2
O
RGMII4_TD0
4
O
RMII4_TX_EN
5
O
GPIO0_74
7
IO
0
GPMC0_A26
8
OZ
0
MCASP1_AXR7
12
IO
RXACTIVE/
TXDISABL
E 14
0/1
0
OFF
OFF
7
7
1.8 V/3.3 V
1.8 V/3.3 V
VDDSHV1
VDDSHV1
Yes
Yes
LVCMOS
LVCMOS
PU/PD
PU/PD
0
0
0/1
0/1
0
OFF
7
1.8 V/3.3 V
Submit Document Feedback
VDDSHV1
Yes
LVCMOS
PU/PD
0
0/1
0
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AF27
AF26
AE25
AF29
BALL NAME 2
prg0_pru1_gpo12
prg0_pru1_gpo13
prg0_pru1_gpo14
prg0_pru1_gpo15
SIGNAL NAME 3
MUXMODE
4
TYPE 5
PRG0_PRU1_GPO12
0
IO
PRG0_PRU1_GPI12
1
I
PRG0_RGMII2_TD1
2
O
PRG0_PWM1_A0
3
IO
RGMII4_TD1
4
O
GPIO0_75
7
IO
MCASP1_AXR8
12
IO
UART8_CTSn
14
I
PRG0_PRU1_GPO13
0
IO
PRG0_PRU1_GPI13
1
I
PRG0_RGMII2_TD2
2
O
PRG0_PWM1_B0
3
IO
RGMII4_TD2
4
O
GPIO0_76
7
IO
MCASP1_AXR9
12
IO
UART8_RTSn
14
O
PRG0_PRU1_GPO14
0
IO
PRG0_PRU1_GPI14
1
I
PRG0_RGMII2_TD3
2
O
PRG0_PWM1_A1
3
IO
RGMII4_TD3
4
O
GPIO0_77
7
IO
MCASP2_AXR0
12
IO
UART2_CTSn
14
I
PRG0_PRU1_GPO15
0
IO
PRG0_PRU1_GPI15
1
I
PRG0_RGMII2_TX_CTL
2
O
PRG0_PWM1_B1
3
IO
RGMII4_TX_CTL
4
O
GPIO0_78
7
IO
MCASP2_AXR1
12
IO
UART2_RTSn
14
O
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV1
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
0
RXACTIVE/
TXDISABL
E 14
0/1
0
0
0
OFF
7
1.8 V/3.3 V
VDDSHV1
Yes
LVCMOS
PU/PD
0
0/1
0
1
0
OFF
7
1.8 V/3.3 V
VDDSHV1
Yes
LVCMOS
PU/PD
0
0/1
0
0
0
OFF
7
1.8 V/3.3 V
VDDSHV1
Yes
LVCMOS
PU/PD
0
0/1
0
1
0
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
35
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AG29
Y25
AA26
AA29
36
BALL NAME 2
prg0_pru1_gpo16
prg0_pru1_gpo17
prg0_pru1_gpo18
prg0_pru1_gpo19
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
I
0
PRG0_RGMII2_TXC
2
IO
0
PRG0_PWM1_A2
3
IO
0
RGMII4_TXC
4
O
0
GPIO0_79
7
IO
0
MCASP2_AXR2
12
IO
PRG0_PRU1_GPO17
0
IO
PRG0_PRU1_GPI17
1
I
PRG0_IEP1_EDC_SYNC_OUT1
2
O
PRG0_PWM1_B2
3
IO
1
SPI3_CLK
4
IO
0
GPIO0_80
7
IO
0
GPMC0_AD13
8
IO
0
MCASP2_AXR3
12
IO
BOOTMODE3
Bootstrap
I
PRG0_PRU1_GPO18
0
IO
PRG0_PRU1_GPI18
1
I
0
PRG0_IEP1_EDC_LATCH_IN0
2
I
0
PRG0_PWM1_TZ_IN
3
I
0
SPI3_D0
4
IO
0
MCAN12_TX
6
O
GPIO0_81
7
IO
0
GPMC0_AD14
8
IO
0
MCASP2_AFSX
12
IO
UART2_RXD
14
I
PRG0_PRU1_GPO19
0
IO
PRG0_PRU1_GPI19
1
I
PRG0_IEP1_EDC_SYNC_OUT0
2
O
PRG0_PWM1_TZ_OUT
3
O
SPI3_D1
4
IO
0
MCAN12_RX
6
I
1
GPIO0_82
7
IO
0
GPMC0_AD15
8
IO
0
MCASP2_ACLKX
12
IO
LVCMOS
PU/PD
DSIS 13
IO
Yes
LVCMOS
PULL UP/
DOWN
TYPE 12
1
VDDSHV1
Yes
BUFFER
TYPE 11
0
1.8 V/3.3 V
VDDSHV1
HYS 10
PRG0_PRU1_GPI16
7
1.8 V/3.3 V
POWER 9
PRG0_PRU1_GPO16
OFF
7
I/O
VOLTAGE
VALUE 8
PU/PD
0
0
RXACTIVE/
TXDISABL
E 14
0/1
1/1
0
OFF
OFF
7
7
1.8 V/3.3 V
1.8 V/3.3 V
Submit Document Feedback
VDDSHV1
VDDSHV1
Yes
Yes
LVCMOS
LVCMOS
PU/PD
PU/PD
0
0
0/1
0/1
0
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AD18
AD19
AC23
BALL NAME 2
prg1_mdio0_mdc
prg1_mdio0_mdio
prg1_pru0_gpo0
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV2
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
DSIS 13
PRG1_MDIO0_MDC
0
O
SPI1_CS3
1
IO
PU/PD
1
I2C4_SDA
2
IOD
1
RMII_REF_CLK
5
I
0
GPIO0_42
7
IO
0
VPFE0_DATA12
11
I
MCASP5_AXR3
12
IO
0
MCASP5_AFSR
13
IO
0
UART3_RTSn
14
O
PRG1_MDIO0_MDIO
0
IO
SPI1_CS2
1
IO
1
I2C4_SCL
2
IOD
1
GPIO0_41
7
IO
0
DSS_FSYNC1
10
O
VPFE0_DATA11
11
I
MCASP5_AXR2
12
IO
0
MCASP5_ACLKR
13
IO
0
UART3_CTSn
14
I
PRG1_PRU0_GPO0
0
IO
PRG1_PRU0_GPI0
1
I
0
PRG1_RGMII1_RD0
2
I
0
PRG1_PWM3_A0
3
IO
0
RGMII1_RD0
4
I
0
RMII1_RXD0
5
I
0
GPIO0_1
7
IO
0
GPMC0_BE1n
8
O
0
RGMII7_RD0
9
I
MCASP6_ACLKX
12
IO
UART0_RXD
14
I
RXACTIVE/
TXDISABL
E 14
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV2
Yes
LVCMOS
PU/PD
0
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV2
Yes
LVCMOS
PU/PD
0
0/1
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
37
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AG22
AF22
AJ23
38
BALL NAME 2
prg1_pru0_gpo1
prg1_pru0_gpo2
prg1_pru0_gpo3
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
I
0
PRG1_RGMII1_RD1
2
I
0
PRG1_PWM3_B0
3
IO
1
RGMII1_RD1
4
I
0
RMII1_RXD1
5
I
0
GPIO0_2
7
IO
0
GPMC0_WAIT0
8
I
0
RGMII7_RD1
9
I
0
MCASP6_AFSX
12
IO
UART0_TXD
14
O
PRG1_PRU0_GPO2
0
IO
PRG1_PRU0_GPI2
1
I
0
PRG1_RGMII1_RD2
2
I
0
PRG1_PWM2_A0
3
IO
0
RGMII1_RD2
4
I
0
RMII1_CRS_DV
5
I
0
GPIO0_3
7
IO
0
GPMC0_WAIT1
8
I
0
RGMII7_RD2
9
I
0
MCASP6_AXR0
12
IO
UART1_RXD
14
I
PRG1_PRU0_GPO3
0
IO
PRG1_PRU0_GPI3
1
I
0
PRG1_RGMII1_RD3
2
I
0
PRG1_PWM3_A2
3
IO
0
RGMII1_RD3
4
I
0
RMII1_RX_ER
5
I
0
GPIO0_4
7
IO
0
GPMC0_DIR
8
O
0
RGMII7_RD3
9
I
MCASP6_AXR1
12
IO
UART1_TXD
14
O
OFF
7
1.8 V/3.3 V
Submit Document Feedback
VDDSHV2
Yes
LVCMOS
LVCMOS
PU/PD
DSIS 13
IO
Yes
LVCMOS
PULL UP/
DOWN
TYPE 12
1
VDDSHV2
Yes
BUFFER
TYPE 11
0
1.8 V/3.3 V
VDDSHV2
HYS 10
PRG1_PRU0_GPI1
7
1.8 V/3.3 V
POWER 9
PRG1_PRU0_GPO1
OFF
7
I/O
VOLTAGE
VALUE 8
PU/PD
PU/PD
0
0
0
RXACTIVE/
TXDISABL
E 14
0/1
0/1
0/1
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AH23
AD20
AD22
BALL NAME 2
prg1_pru0_gpo4
prg1_pru0_gpo5
prg1_pru0_gpo6
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV2
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
PRG1_PRU0_GPO4
0
IO
PRG1_PRU0_GPI4
1
I
0
0
PRG1_RGMII1_RX_CTL
2
I
0
PRG1_PWM2_B0
3
IO
1
RGMII1_RX_CTL
4
I
0
RMII1_TXD0
5
O
GPIO0_5
7
IO
0
GPMC0_CSn2
8
O
0
RGMII7_RX_CTL
9
I
MCASP6_AXR2
12
IO
MCASP6_ACLKR
13
IO
UART2_RXD
14
I
PRG1_PRU0_GPO5
0
IO
PRG1_PRU0_GPI5
1
I
0
PRG1_PWM3_B2
3
IO
1
RMII1_TX_EN
5
O
GPIO0_6
7
IO
0
GPMC0_WEn
8
O
0
MCASP3_AXR0
12
IO
BOOTMODE0
Bootstrap
I
PRG1_PRU0_GPO6
0
IO
PRG1_PRU0_GPI6
1
I
0
PRG1_RGMII1_RXC
2
I
0
PRG1_PWM3_A1
3
IO
0
RGMII1_RXC
4
I
0
RMII1_TXD1
5
O
AUDIO_EXT_REFCLK0
6
IO
0
GPIO0_7
7
IO
0
GPMC0_CSn3
8
O
0
RGMII7_RXC
9
I
MCASP6_AXR3
12
IO
MCASP6_AFSR
13
IO
0
UART2_TXD
14
O
0
RXACTIVE/
TXDISABL
E 14
0/1
0
0
OFF
OFF
7
7
1.8 V/3.3 V
1.8 V/3.3 V
VDDSHV2
VDDSHV2
Yes
Yes
LVCMOS
LVCMOS
PU/PD
PU/PD
0
0
1/1
0/1
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
39
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AE20
AJ20
AG20
40
BALL NAME 2
prg1_pru0_gpo7
prg1_pru0_gpo8
prg1_pru0_gpo9
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV2
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
PRG1_PRU0_GPO7
0
IO
PRG1_PRU0_GPI7
1
I
0
0
PRG1_IEP0_EDC_LATCH_IN1
2
I
0
PRG1_PWM3_B1
3
IO
1
AUDIO_EXT_REFCLK1
5
IO
0
MCAN4_TX
6
O
GPIO0_8
7
IO
MCASP3_AXR1
12
IO
PRG1_PRU0_GPO8
0
IO
PRG1_PRU0_GPI8
1
I
0
PRG1_PWM2_A1
3
IO
0
RMII5_RXD0
5
I
0
MCAN4_RX
6
I
1
GPIO0_9
7
IO
0
GPMC0_OEn_REn
8
O
0
VOUT0_DATA22
10
O
MCASP3_AXR2
12
IO
PRG1_PRU0_GPO9
0
IO
PRG1_PRU0_GPI9
1
I
0
PRG1_UART0_CTSn
2
I
1
PRG1_PWM3_TZ_IN
3
I
0
SPI6_CS1
4
IO
1
RMII5_RXD1
5
I
0
GPIO0_10
7
IO
0
GPMC0_ADVn_ALE
8
O
0
PRG1_IEP0_EDIO_DATA_IN_OUT28
9
IO
VOUT0_DATA23
10
O
MCASP3_ACLKX
12
IO
RXACTIVE/
TXDISABL
E 14
0/1
0
OFF
OFF
7
7
1.8 V/3.3 V
1.8 V/3.3 V
Submit Document Feedback
VDDSHV2
VDDSHV2
Yes
Yes
LVCMOS
LVCMOS
PU/PD
PU/PD
0
0
0/1
0/1
0
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AD21
AF24
AJ24
BALL NAME 2
prg1_pru0_gpo10
prg1_pru0_gpo11
prg1_pru0_gpo12
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV2
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
PRG1_PRU0_GPO10
0
IO
PRG1_PRU0_GPI10
1
I
0
PRG1_UART0_RTSn
2
O
PRG1_PWM2_B1
3
IO
1
SPI6_CS2
4
IO
1
RMII5_CRS_DV
5
I
0
GPIO0_11
7
IO
0
GPMC0_BE0n_CLE
8
O
0
PRG1_IEP0_EDIO_DATA_IN_OUT29
9
IO
OBSCLK2
10
O
MCASP3_AFSX
12
IO
PRG1_PRU0_GPO11
0
IO
PRG1_PRU0_GPI11
1
I
PRG1_RGMII1_TD0
2
O
PRG1_PWM3_TZ_OUT
3
O
RGMII1_TD0
4
O
MCAN4_TX
6
O
GPIO0_12
7
IO
RGMII7_TD0
9
O
VOUT0_DATA16
10
O
VPFE0_DATA0
11
I
MCASP7_ACLKX
12
IO
PRG1_PRU0_GPO12
0
IO
PRG1_PRU0_GPI12
1
I
PRG1_RGMII1_TD1
2
O
PRG1_PWM0_A0
3
IO
RGMII1_TD1
4
O
MCAN4_RX
6
I
1
GPIO0_13
7
IO
0
RGMII7_TD1
9
O
VOUT0_DATA17
10
O
VPFE0_DATA1
11
I
MCASP7_AFSX
12
IO
RXACTIVE/
TXDISABL
E 14
0/1
0
0
OFF
7
1.8 V/3.3 V
VDDSHV2
Yes
LVCMOS
PU/PD
0
0/1
0
0
0
OFF
7
1.8 V/3.3 V
VDDSHV2
Yes
LVCMOS
PU/PD
0
0/1
0
0
0
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
41
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AG24
AD24
AC24
42
BALL NAME 2
prg1_pru0_gpo13
prg1_pru0_gpo14
prg1_pru0_gpo15
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV2
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
PRG1_PRU0_GPO13
0
IO
PRG1_PRU0_GPI13
1
I
0
PRG1_RGMII1_TD2
2
O
PRG1_PWM0_B0
3
IO
RGMII1_TD2
4
O
MCAN5_TX
6
O
GPIO0_14
7
IO
RGMII7_TD2
9
O
VOUT0_DATA18
10
O
VPFE0_DATA2
11
I
MCASP7_AXR0
12
IO
PRG1_PRU0_GPO14
0
IO
PRG1_PRU0_GPI14
1
I
PRG1_RGMII1_TD3
2
O
PRG1_PWM0_A1
3
IO
RGMII1_TD3
4
O
MCAN5_RX
6
I
1
GPIO0_15
7
IO
0
RGMII7_TD3
9
O
VOUT0_DATA19
10
O
VPFE0_DATA3
11
I
MCASP7_AXR1
12
IO
PRG1_PRU0_GPO15
0
IO
PRG1_PRU0_GPI15
1
I
PRG1_RGMII1_TX_CTL
2
O
PRG1_PWM0_B1
3
IO
RGMII1_TX_CTL
4
O
MCAN6_TX
6
O
GPIO0_16
7
IO
RGMII7_TX_CTL
9
O
VOUT0_DATA20
10
O
VPFE0_DATA4
11
I
MCASP7_AXR2
12
IO
0
MCASP7_ACLKR
13
IO
0
RXACTIVE/
TXDISABL
E 14
0/1
0
1
0
0
OFF
7
1.8 V/3.3 V
VDDSHV2
Yes
LVCMOS
PU/PD
0
0/1
0
0
0
OFF
7
1.8 V/3.3 V
Submit Document Feedback
VDDSHV2
Yes
LVCMOS
PU/PD
0
0/1
0
1
0
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AE24
AJ21
AE21
BALL NAME 2
prg1_pru0_gpo16
prg1_pru0_gpo17
prg1_pru0_gpo18
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV2
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
PRG1_PRU0_GPO16
0
IO
PRG1_PRU0_GPI16
1
I
0
0
PRG1_RGMII1_TXC
2
IO
0
PRG1_PWM0_A2
3
IO
0
RGMII1_TXC
4
O
0
MCAN6_RX
6
I
1
GPIO0_17
7
IO
0
RGMII7_TXC
9
O
VOUT0_DATA21
10
O
VPFE0_DATA5
11
I
MCASP7_AXR3
12
IO
MCASP7_AFSR
13
IO
PRG1_PRU0_GPO17
0
IO
PRG1_PRU0_GPI17
1
I
PRG1_IEP0_EDC_SYNC_OUT1
2
O
PRG1_PWM0_B2
3
IO
RMII5_TXD1
5
O
MCAN5_TX
6
O
GPIO0_18
7
IO
VPFE0_DATA6
11
I
MCASP3_AXR3
12
IO
PRG1_PRU0_GPO18
0
IO
PRG1_PRU0_GPI18
1
I
0
PRG1_IEP0_EDC_LATCH_IN0
2
I
0
PRG1_PWM0_TZ_IN
3
I
0
RMII5_RX_ER
5
I
0
MCAN5_RX
6
I
1
GPIO0_19
7
IO
0
VPFE0_DATA7
11
I
MCASP4_ACLKX
12
IO
RXACTIVE/
TXDISABL
E 14
0/1
0
0
0
OFF
7
1.8 V/3.3 V
VDDSHV2
Yes
LVCMOS
PU/PD
0
0/1
0
1
0
0
OFF
7
1.8 V/3.3 V
VDDSHV2
Yes
LVCMOS
PU/PD
0
0/1
0
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
43
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AH21
AE22
AG23
44
BALL NAME 2
prg1_pru0_gpo19
prg1_pru1_gpo0
prg1_pru1_gpo1
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV2
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
PRG1_PRU0_GPO19
0
IO
PRG1_PRU0_GPI19
1
I
0
PRG1_IEP0_EDC_SYNC_OUT0
2
O
PRG1_PWM0_TZ_OUT
3
O
RMII5_TXD0
5
O
MCAN6_TX
6
O
GPIO0_20
7
IO
VOUT0_EXTPCLKIN
10
I
VPFE0_PCLK
11
I
MCASP4_AFSX
12
IO
PRG1_PRU1_GPO0
0
IO
PRG1_PRU1_GPI0
1
I
0
PRG1_RGMII2_RD0
2
I
0
RGMII2_RD0
4
I
0
RMII2_RXD0
5
I
0
GPIO0_21
7
IO
0
RGMII8_RD0
8
I
0
VOUT0_DATA0
10
O
VPFE0_HD
11
I
MCASP8_ACLKX
12
IO
PRG1_PRU1_GPO1
0
IO
PRG1_PRU1_GPI1
1
I
0
PRG1_RGMII2_RD1
2
I
0
RGMII2_RD1
4
I
0
RMII2_RXD1
5
I
0
GPIO0_22
7
IO
0
RGMII8_RD1
8
I
0
VOUT0_DATA1
10
O
VPFE0_FIELD
11
I
MCASP8_AFSX
12
IO
RXACTIVE/
TXDISABL
E 14
0/1
0
0
0
0
OFF
7
1.8 V/3.3 V
VDDSHV2
Yes
LVCMOS
PU/PD
0
0/1
0
OFF
7
1.8 V/3.3 V
Submit Document Feedback
VDDSHV2
Yes
LVCMOS
PU/PD
0
0/1
0
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AF23
AD23
BALL NAME 2
prg1_pru1_gpo2
prg1_pru1_gpo3
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV2
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
PRG1_PRU1_GPO2
0
IO
PRG1_PRU1_GPI2
1
I
0
0
PRG1_RGMII2_RD2
2
I
0
PRG1_PWM2_A2
3
IO
0
RGMII2_RD2
4
I
0
RMII2_CRS_DV
5
I
0
GPIO0_23
7
IO
0
RGMII8_RD2
8
I
0
VOUT0_DATA2
10
O
VPFE0_VD
11
I
MCASP8_AXR0
12
IO
MCASP3_ACLKR
13
IO
PRG1_PRU1_GPO3
0
IO
PRG1_PRU1_GPI3
1
I
0
PRG1_RGMII2_RD3
2
I
0
RGMII2_RD3
4
I
0
RMII2_RX_ER
5
I
0
GPIO0_24
7
IO
0
RGMII8_RD3
8
I
0
EQEP1_A
9
I
0
VOUT0_DATA3
10
O
0
VPFE0_WEN
11
I
MCASP8_AXR1
12
IO
0
MCASP3_AFSR
13
IO
0
TIMER_IO2
14
IO
0
RXACTIVE/
TXDISABL
E 14
0/1
0
0
OFF
7
1.8 V/3.3 V
VDDSHV2
Yes
LVCMOS
PU/PD
0
0/1
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
45
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AH24
AG21
AE23
46
BALL NAME 2
prg1_pru1_gpo4
prg1_pru1_gpo5
prg1_pru1_gpo6
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV2
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
PRG1_PRU1_GPO4
0
IO
PRG1_PRU1_GPI4
1
I
0
0
PRG1_RGMII2_RX_CTL
2
I
0
PRG1_PWM2_B2
3
IO
1
RGMII2_RX_CTL
4
I
0
RMII2_TXD0
5
O
GPIO0_25
7
IO
0
RGMII8_RX_CTL
8
I
0
EQEP1_B
9
I
0
VOUT0_DATA4
10
O
0
VPFE0_DATA13
11
I
MCASP8_AXR2
12
IO
0
MCASP8_ACLKR
13
IO
0
TIMER_IO3
14
IO
PRG1_PRU1_GPO5
0
IO
PRG1_PRU1_GPI5
1
I
RMII5_TX_EN
5
O
MCAN6_RX
6
I
1
GPIO0_26
7
IO
0
GPMC0_WPn
8
O
0
EQEP1_S
9
IO
VOUT0_DATA5
10
O
MCASP4_AXR0
12
IO
TIMER_IO4
14
IO
PRG1_PRU1_GPO6
0
IO
PRG1_PRU1_GPI6
1
I
0
PRG1_RGMII2_RXC
2
I
0
RGMII2_RXC
4
I
0
RMII2_TXD1
5
O
GPIO0_27
7
IO
0
RGMII8_RXC
8
I
0
VOUT0_DATA6
10
O
VPFE0_DATA14
11
I
MCASP8_AXR3
12
IO
0
MCASP8_AFSR
13
IO
0
TIMER_IO5
14
IO
0
RXACTIVE/
TXDISABL
E 14
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV2
Yes
LVCMOS
PU/PD
0
0/1
0
0
OFF
7
1.8 V/3.3 V
Submit Document Feedback
VDDSHV2
Yes
LVCMOS
PU/PD
0
0/1
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AC21
Y23
AF21
BALL NAME 2
prg1_pru1_gpo7
prg1_pru1_gpo8
prg1_pru1_gpo9
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV2
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
PRG1_PRU1_GPO7
0
IO
PRG1_PRU1_GPI7
1
I
0
0
PRG1_IEP1_EDC_LATCH_IN1
2
I
0
SPI6_CS0
4
IO
1
RMII6_RX_ER
5
I
0
MCAN7_TX
6
O
GPIO0_28
7
IO
VOUT0_DATA7
10
O
VPFE0_DATA15
11
I
MCASP4_AXR1
12
IO
UART3_TXD
14
O
PRG1_PRU1_GPO8
0
IO
PRG1_PRU1_GPI8
1
I
PRG1_PWM2_TZ_OUT
3
O
RMII6_RXD0
5
I
0
MCAN7_RX
6
I
1
GPIO0_29
7
IO
0
GPMC0_CSn1
8
O
0
VOUT0_DATA8
10
O
MCASP4_AXR2
12
IO
UART3_RXD
14
I
PRG1_PRU1_GPO9
0
IO
PRG1_PRU1_GPI9
1
I
0
PRG1_UART0_RXD
2
I
1
SPI6_CS3
4
IO
1
RMII6_RXD1
5
I
0
MCAN8_TX
6
O
GPIO0_30
7
IO
0
GPMC0_CSn0
8
O
0
PRG1_IEP0_EDIO_DATA_IN_OUT30
9
IO
VOUT0_DATA9
10
O
MCASP4_AXR3
12
IO
RXACTIVE/
TXDISABL
E 14
0/1
0
0
OFF
7
1.8 V/3.3 V
VDDSHV2
Yes
LVCMOS
PU/PD
0
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV2
Yes
LVCMOS
PU/PD
0
0/1
0
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
47
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AB23
AJ25
AH25
48
BALL NAME 2
prg1_pru1_gpo10
prg1_pru1_gpo11
prg1_pru1_gpo12
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV2
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
PRG1_PRU1_GPO10
0
IO
PRG1_PRU1_GPI10
1
I
0
PRG1_UART0_TXD
2
O
PRG1_PWM2_TZ_IN
3
I
0
RMII6_CRS_DV
5
I
0
MCAN8_RX
6
I
1
GPIO0_31
7
IO
0
GPMC0_CLKOUT
8
O
0
PRG1_IEP0_EDIO_DATA_IN_OUT31
9
IO
VOUT0_DATA10
10
O
GPMC0_FCLK_MUX
11
O
MCASP5_ACLKX
12
IO
PRG1_PRU1_GPO11
0
IO
PRG1_PRU1_GPI11
1
I
PRG1_RGMII2_TD0
2
O
RGMII2_TD0
4
O
RMII2_TX_EN
5
O
GPIO0_32
7
IO
0
RGMII8_TD0
8
O
0
EQEP1_I
9
IO
VOUT0_DATA11
10
O
MCASP9_ACLKX
12
IO
PRG1_PRU1_GPO12
0
IO
PRG1_PRU1_GPI12
1
I
PRG1_RGMII2_TD1
2
O
PRG1_PWM1_A0
3
IO
RGMII2_TD1
4
O
MCAN7_TX
6
O
GPIO0_33
7
IO
0
RGMII8_TD1
8
O
0
VOUT0_DATA12
10
O
MCASP9_AFSX
12
IO
RXACTIVE/
TXDISABL
E 14
0/1
0
0
OFF
7
1.8 V/3.3 V
VDDSHV2
Yes
LVCMOS
PU/PD
0
0/1
0
0
OFF
7
1.8 V/3.3 V
Submit Document Feedback
VDDSHV2
Yes
LVCMOS
PU/PD
0
0/1
0
0
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AG25
AH26
AJ27
BALL NAME 2
prg1_pru1_gpo13
prg1_pru1_gpo14
prg1_pru1_gpo15
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV2
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
PRG1_PRU1_GPO13
0
IO
PRG1_PRU1_GPI13
1
I
0
PRG1_RGMII2_TD2
2
O
PRG1_PWM1_B0
3
IO
RGMII2_TD2
4
O
MCAN7_RX
6
I
1
GPIO0_34
7
IO
0
RGMII8_TD2
8
O
0
VOUT0_DATA13
10
O
VPFE0_DATA8
11
I
MCASP9_AXR0
12
IO
MCASP4_ACLKR
13
IO
PRG1_PRU1_GPO14
0
IO
PRG1_PRU1_GPI14
1
I
PRG1_RGMII2_TD3
2
O
PRG1_PWM1_A1
3
IO
RGMII2_TD3
4
O
MCAN8_TX
6
O
GPIO0_35
7
IO
0
RGMII8_TD3
8
O
0
VOUT0_DATA14
10
O
MCASP9_AXR1
12
IO
MCASP4_AFSR
13
IO
PRG1_PRU1_GPO15
0
IO
PRG1_PRU1_GPI15
1
I
PRG1_RGMII2_TX_CTL
2
O
PRG1_PWM1_B1
3
IO
RGMII2_TX_CTL
4
O
MCAN8_RX
6
I
1
GPIO0_36
7
IO
0
RGMII8_TX_CTL
8
O
0
VOUT0_DATA15
10
O
VPFE0_DATA9
11
I
MCASP9_AXR2
12
IO
0
MCASP9_ACLKR
13
IO
0
RXACTIVE/
TXDISABL
E 14
0/1
0
1
0
0
OFF
7
1.8 V/3.3 V
VDDSHV2
Yes
LVCMOS
PU/PD
0
0/1
0
0
0
OFF
7
1.8 V/3.3 V
VDDSHV2
Yes
LVCMOS
PU/PD
0
0/1
0
1
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
49
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AJ26
AC22
AJ22
50
BALL NAME 2
prg1_pru1_gpo16
prg1_pru1_gpo17
prg1_pru1_gpo18
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV2
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
PRG1_PRU1_GPO16
0
IO
PRG1_PRU1_GPI16
1
I
0
0
PRG1_RGMII2_TXC
2
IO
0
PRG1_PWM1_A2
3
IO
0
RGMII2_TXC
4
O
0
GPIO0_37
7
IO
0
RGMII8_TXC
8
O
0
VOUT0_VP2_HSYNC
9
O
0
VOUT0_HSYNC
10
O
MCASP9_AXR3
12
IO
MCASP9_AFSR
13
IO
VOUT0_VP0_HSYNC
14
O
PRG1_PRU1_GPO17
0
IO
PRG1_PRU1_GPI17
1
I
PRG1_IEP1_EDC_SYNC_OUT1
2
O
PRG1_PWM1_B2
3
IO
1
SPI6_CLK
4
IO
0
RMII6_TX_EN
5
O
PRG1_ECAP0_SYNC_OUT
6
O
GPIO0_38
7
IO
VOUT0_VP2_DE
9
O
VOUT0_DE
10
O
VPFE0_DATA10
11
I
MCASP5_AFSX
12
IO
VOUT0_VP0_DE
14
O
BOOTMODE1
Bootstrap
I
PRG1_PRU1_GPO18
0
IO
PRG1_PRU1_GPI18
1
I
0
PRG1_IEP1_EDC_LATCH_IN0
2
I
0
PRG1_PWM1_TZ_IN
3
I
0
SPI6_D0
4
IO
0
RMII6_TXD0
5
O
PRG1_ECAP0_SYNC_IN
6
I
0
GPIO0_39
7
IO
0
VOUT0_VP2_VSYNC
9
O
VOUT0_VSYNC
10
O
MCASP5_AXR0
12
IO
VOUT0_VP0_VSYNC
14
O
RXACTIVE/
TXDISABL
E 14
0/1
0
0
OFF
7
1.8 V/3.3 V
VDDSHV2
Yes
LVCMOS
PU/PD
0
1/1
0
0
0
OFF
7
1.8 V/3.3 V
Submit Document Feedback
VDDSHV2
Yes
LVCMOS
PU/PD
0
0/1
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AH22
BALL NAME 2
prg1_pru1_gpo19
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV2
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
PRG1_PRU1_GPO19
0
IO
PRG1_PRU1_GPI19
1
I
0
PRG1_IEP1_EDC_SYNC_OUT0
2
O
PRG1_PWM1_TZ_OUT
3
O
SPI6_D1
4
IO
RMII6_TXD1
5
O
PRG1_ECAP0_IN_APWM_OUT
6
IO
0
GPIO0_40
7
IO
0
VOUT0_PCLK
10
O
RXACTIVE/
TXDISABL
E 14
0/1
0
0
MCASP5_AXR1
12
IO
T6
resetstatz
RESETSTATz
0
O
OFF
0
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
0/0
C28
RESET_REQZ
RESET_REQz
0
I
PU
0
1.8 V/3.3 V
VDDSHV0_MC
U
Yes
LVCMOS
PU/PD
1/1
U25
rgmii5_rxc
RGMII5_RXC
0
I
OFF
7
1.8 V/3.3 V
VDDSHV3
Yes
LVCMOS
PU/PD
I2C6_SDA
2
IOD
VOUT1_DATA7
4
O
TRC_DATA5
5
O
EHRPWM_TZn_IN1
6
I
0
GPIO0_92
7
IO
0
GPMC0_A8
8
OZ
0
MCASP10_AXR3
12
IO
EHRPWM_SOCA
14
O
RGMII5_RX_CTL
0
I
RMII7_RX_ER
1
I
0
I2C2_SDA
2
IOD
1
VOUT1_DATA1
4
O
TRC_CTL
5
O
EHRPWM0_SYNCO
6
O
GPIO0_86
7
IO
0
GPMC0_A2
8
OZ
0
MCASP10_AFSX
12
IO
U26
rgmii5_rx_ctl
0
0/1
1
OFF
7
1.8 V/3.3 V
VDDSHV3
Yes
LVCMOS
PU/PD
0
0/1
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
51
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
U29
U23
W26
V23
52
BALL NAME 2
rgmii5_txc
rgmii5_tx_ctl
rgmii6_rxc
rgmii6_rx_ctl
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV3
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
RGMII5_TXC
0
O
RMII7_TX_EN
1
O
0
I2C6_SCL
2
IOD
VOUT1_DATA6
4
O
TRC_DATA4
5
O
EHRPWM1_B
6
IO
0
GPIO0_91
7
IO
0
GPMC0_A7
8
OZ
0
MCASP10_AXR2
12
IO
RGMII5_TX_CTL
0
O
RMII7_CRS_DV
1
I
0
I2C2_SCL
2
IOD
1
VOUT1_DATA0
4
O
TRC_CLK
5
O
EHRPWM0_SYNCI
6
I
0
GPIO0_85
7
IO
0
GPMC0_A1
8
OZ
0
MCASP10_ACLKX
12
IO
RGMII6_RXC
0
I
AUDIO_EXT_REFCLK2
3
IO
VOUT1_DE
4
O
TRC_DATA17
5
O
EHRPWM4_B
6
IO
0
GPIO0_104
7
IO
0
GPMC0_A20
8
OZ
0
VOUT1_VP0_DE
9
O
MCASP10_AXR7
12
IO
RGMII6_RX_CTL
0
I
RMII8_RX_ER
1
I
VOUT1_DATA13
4
O
TRC_DATA11
5
O
EHRPWM3_A
6
IO
0
GPIO0_98
7
IO
0
GPMC0_A14
8
OZ
0
MCASP10_AFSR
12
IO
RXACTIVE/
TXDISABL
E 14
0/1
1
OFF
OFF
7
7
1.8 V/3.3 V
1.8 V/3.3 V
VDDSHV3
VDDSHV4
Yes
Yes
LVCMOS
LVCMOS
PU/PD
PU/PD
0/1
0
0/1
0
OFF
7
1.8 V/3.3 V
Submit Document Feedback
VDDSHV4
Yes
LVCMOS
PU/PD
0
0/1
0
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
W29
Y28
T23
R23
BALL NAME 2
rgmii6_txc
rgmii6_tx_ctl
rgmii5_rd0
rgmii5_rd1
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV4
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
RGMII6_TXC
0
O
RMII8_TX_EN
1
O
0
SPI5_CLK
3
IO
VOUT1_PCLK
4
O
TRC_DATA16
5
O
EHRPWM4_A
6
IO
0
GPIO0_103
7
IO
0
GPMC0_A19
8
OZ
0
MCASP10_AXR6
12
IO
RGMII6_TX_CTL
0
O
RMII8_CRS_DV
1
I
VOUT1_DATA12
4
O
TRC_DATA10
5
O
GPIO0_97
7
IO
0
GPMC0_A13
8
OZ
0
MCASP10_ACLKR
12
IO
RGMII5_RD0
0
I
RMII7_RXD0
1
I
UART6_RTSn
3
O
VOUT1_DATA11
4
O
TRC_DATA9
5
O
GPIO0_96
7
IO
0
GPMC0_A12
8
OZ
0
MCASP11_AXR3
12
IO
RGMII5_RD1
0
I
RMII7_RXD1
1
I
0
UART6_CTSn
3
I
1
VOUT1_DATA10
4
O
TRC_DATA8
5
O
EHRPWM_TZn_IN2
6
I
0
GPIO0_95
7
IO
0
GPMC0_A11
8
OZ
0
MCASP11_AXR2
12
IO
EHRPWM_SOCB
14
O
RXACTIVE/
TXDISABL
E 14
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV4
Yes
LVCMOS
PU/PD
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV3
Yes
LVCMOS
PU/PD
0
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV3
Yes
LVCMOS
PU/PD
0
0/1
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
53
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
U24
U27
U28
V27
54
BALL NAME 2
rgmii5_rd2
rgmii5_rd3
rgmii5_td0
rgmii5_td1
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
O
UART6_TXD
3
O
VOUT1_DATA9
4
O
TRC_DATA7
5
O
EHRPWM2_B
6
IO
0
GPIO0_94
7
IO
0
GPMC0_A10
8
OZ
0
MCASP11_AXR1
12
IO
RGMII5_RD3
0
I
UART3_CTSn
1
I
1
UART6_RXD
3
I
1
VOUT1_DATA8
4
O
TRC_DATA6
5
O
EHRPWM2_A
6
IO
0
GPIO0_93
7
IO
0
GPMC0_A9
8
OZ
0
MCASP11_AXR0
12
IO
RGMII5_TD0
0
O
RMII7_TXD0
1
O
I2C3_SDA
2
IOD
VOUT1_DATA5
4
O
TRC_DATA3
5
O
EHRPWM1_A
6
IO
0
GPIO0_90
7
IO
0
GPMC0_A6
8
OZ
0
MCASP11_AFSX
12
IO
RGMII5_TD1
0
O
RMII7_TXD1
1
O
I2C3_SCL
2
IOD
VOUT1_DATA4
4
O
TRC_DATA2
5
O
EHRPWM0_B
6
IO
0
GPIO0_89
7
IO
0
GPMC0_A5
8
OZ
0
MCASP11_ACLKX
12
IO
OFF
7
1.8 V/3.3 V
VDDSHV3
Yes
LVCMOS
LVCMOS
PU/PD
DSIS 13
I
Yes
LVCMOS
PULL UP/
DOWN
TYPE 12
1
VDDSHV3
Yes
BUFFER
TYPE 11
0
1.8 V/3.3 V
VDDSHV3
HYS 10
UART3_RTSn
7
1.8 V/3.3 V
POWER 9
RGMII5_RD2
OFF
7
I/O
VOLTAGE
VALUE 8
PU/PD
0
0
PU/PD
RXACTIVE/
TXDISABL
E 14
0/1
0/1
0/1
1
OFF
7
1.8 V/3.3 V
Submit Document Feedback
VDDSHV3
Yes
LVCMOS
PU/PD
0/1
1
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
V29
V28
W25
W24
BALL NAME 2
rgmii5_td2
rgmii5_td3
rgmii6_rd0
rgmii6_rd1
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
DSIS 13
O
O
SYNC3_OUT
3
O
VOUT1_DATA3
4
O
TRC_DATA1
5
O
EHRPWM0_A
6
IO
0
GPIO0_88
7
IO
0
GPMC0_A4
8
OZ
0
MCASP10_AXR1
12
IO
RGMII5_TD3
0
O
UART3_RXD
1
I
SYNC2_OUT
3
O
VOUT1_DATA2
4
O
TRC_DATA0
5
O
EHRPWM_TZn_IN0
6
I
0
GPIO0_87
7
IO
0
GPMC0_A3
8
OZ
0
MCASP10_AXR0
12
IO
RGMII6_RD0
0
I
RMII8_RXD0
1
I
0
SPI5_CS1
3
IO
1
AUDIO_EXT_REFCLK3
4
IO
0
TRC_DATA21
5
O
EHRPWM_TZn_IN5
6
I
0
GPIO0_108
7
IO
0
GPMC0_DIR
8
O
0
MCASP11_AXR7
12
IO
RGMII6_RD1
0
I
RMII8_RXD1
1
I
0
SPI5_D1
3
IO
0
VOUT1_EXTPCLKIN
4
I
0
TRC_DATA20
5
O
EHRPWM5_B
6
IO
0
GPIO0_107
7
IO
0
GPMC0_BE1n
8
O
0
MCASP11_AXR6
12
IO
Yes
LVCMOS
PULL UP/
DOWN
TYPE 12
1
VDDSHV3
Yes
BUFFER
TYPE 11
0
1.8 V/3.3 V
VDDSHV3
HYS 10
UART3_TXD
7
1.8 V/3.3 V
POWER 9
RGMII5_TD2
OFF
7
I/O
VOLTAGE
VALUE 8
LVCMOS
PU/PD
RXACTIVE/
TXDISABL
E 14
0/1
PU/PD
0/1
1
OFF
OFF
7
7
1.8 V/3.3 V
1.8 V/3.3 V
VDDSHV4
VDDSHV4
Yes
Yes
LVCMOS
LVCMOS
PU/PD
PU/PD
0
0
0/1
0/1
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
55
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
Y27
Y29
W27
V25
56
BALL NAME 2
rgmii6_rd2
rgmii6_rd3
rgmii6_td0
rgmii6_td1
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
O
UART5_TXD
3
O
TRC_DATA19
5
O
EHRPWM5_A
6
IO
0
GPIO0_106
7
IO
0
GPMC0_A22
8
OZ
0
MCASP11_AXR5
12
IO
RGMII6_RD3
0
I
UART4_CTSn
1
I
1
UART5_RXD
3
I
1
CLKOUT
4
OZ
TRC_DATA18
5
O
EHRPWM_TZn_IN4
6
I
0
GPIO0_105
7
IO
0
GPMC0_A21
8
OZ
0
MCASP11_AXR4
12
IO
RGMII6_TD0
0
O
RMII8_TXD0
1
O
SPI5_CS0
3
IO
VOUT1_HSYNC
4
O
TRC_DATA15
5
O
EHRPWM_TZn_IN3
6
I
0
GPIO0_102
7
IO
0
GPMC0_A18
8
OZ
0
VOUT1_VP0_HSYNC
9
O
MCASP10_AXR5
12
IO
RGMII6_TD1
0
O
RMII8_TXD1
1
O
SPI5_D0
3
IO
VOUT1_VSYNC
4
O
TRC_DATA14
5
O
EHRPWM3_SYNCO
6
O
GPIO0_101
7
IO
0
GPMC0_A17
8
OZ
0
VOUT1_VP0_VSYNC
9
O
MCASP10_AXR4
12
IO
OFF
7
1.8 V/3.3 V
VDDSHV4
Yes
LVCMOS
LVCMOS
PU/PD
DSIS 13
I
Yes
LVCMOS
PULL UP/
DOWN
TYPE 12
1
VDDSHV4
Yes
BUFFER
TYPE 11
0
1.8 V/3.3 V
VDDSHV4
HYS 10
UART4_RTSn
7
1.8 V/3.3 V
POWER 9
RGMII6_RD2
OFF
7
I/O
VOLTAGE
VALUE 8
PU/PD
0
0
PU/PD
RXACTIVE/
TXDISABL
E 14
0/1
0/1
0/1
1
OFF
7
1.8 V/3.3 V
Submit Document Feedback
VDDSHV4
Yes
LVCMOS
PU/PD
0/1
0
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
W28
W23
BALL NAME 2
rgmii6_td2
rgmii6_td3
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV4
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
DSIS 13
RGMII6_TD2
0
O
UART4_TXD
1
O
PU/PD
SPI5_CS2
3
IO
VOUT1_DATA15
4
O
TRC_DATA13
5
O
EHRPWM3_SYNCI
6
I
0
GPIO0_100
7
IO
0
GPMC0_A16
8
OZ
0
MCASP11_AFSR
12
IO
RGMII6_TD3
0
O
UART4_RXD
1
I
1
SPI5_CS3
3
IO
1
VOUT1_DATA14
4
O
TRC_DATA12
5
O
EHRPWM3_B
6
IO
0
GPIO0_99
7
IO
0
GPMC0_A15
8
OZ
0
MCASP11_ACLKR
12
IO
RXACTIVE/
TXDISABL
E 14
0/1
1
OFF
7
1.8 V/3.3 V
VDDSHV4
Yes
LVCMOS
E7
SERDES4_REFCLK_N
SERDES4_REFCLK_N
IO
OFF
0.8 V
VDDA_0P8_DP
/
VDDA_1P8_DP
4-L-PHY
AE18
serdes0_rext
SERDES0_REXT
A
OFF
0.8 V
VDDA_0P8_SE
RDES0_1 / VDD
A_1P8_SERDE
S0_1
2-L-PHY
AE13
serdes1_rext
SERDES1_REXT
A
OFF
0.8 V
VDDA_0P8_SE
RDES0_1 / VDD
A_1P8_SERDE
S0_1
2-L-PHY
AD13
serdes2_rext
SERDES2_REXT
A
OFF
0.8 V
VDDA_0P8_SE
RDES2_3 / VDD
A_1P8_SERDE
S2_3
2-L-PHY
F9
serdes4_rext
SERDES4_REXT
I
OFF
0.8 V
VDDA_0P8_DP
/
VDDA_1P8_DP
4-L-PHY
E8
SERDES4_REFCLK_P
SERDES4_REFCLK_P
IO
OFF
0.8 V
VDDA_0P8_DP
/
VDDA_1P8_DP
4-L-PHY
AE8
serdes3_rext
SERDES3_REXT
A
OFF
0.8 V
VDDA_0P8_SE
RDES2_3 / VDD
A_1P8_SERDE
S2_3
2-L-PHY
PU/PD
0/1
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
57
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AH19
AJ18
AH18
AJ17
AF19
AG18
58
BALL NAME 2
SERDES0_RX0_N
SERDES0_RX0_P
SERDES0_RX1_N
SERDES0_RX1_P
SERDES0_TX0_N
SERDES0_TX0_P
SIGNAL NAME 3
MUXMODE
4
TYPE 5
SERDES0_RX0_N
I
SGMII1_RXN0
I
PCIE0_RXN0
I
USB0_SSRX2N
I
SERDES0_RX0_P
I
SGMII1_RXP0
I
PCIE0_RXP0
I
USB0_SSRX2P
I
SERDES0_RX1_N
I
SGMII2_RXN0
I
PCIE0_RXN1
I
USB0_SSRX1N
I
SERDES0_RX1_P
I
SGMII2_RXP0
I
PCIE0_RXP1
I
USB0_SSRX1P
I
SERDES0_TX0_N
O
SGMII1_TXN0
O
PCIE0_TXN0
O
USB0_SSTX2N
O
SERDES0_TX0_P
O
SGMII1_TXP0
O
PCIE0_TXP0
O
USB0_SSTX2P
O
BALL
RESET
STATE 6
BALL
RESET
REL.
MUXMODE
I/O
VOLTAGE
VALUE 8
POWER 9
HYS 10
BUFFER
TYPE 11
OFF
0.8 V
VDDA_0P8_SE
RDES0_1 / VDD
A_1P8_SERDE
S0_1
2-L-PHY
OFF
0.8 V
VDDA_0P8_SE
RDES0_1 / VDD
A_1P8_SERDE
S0_1
2-L-PHY
OFF
0.8 V
VDDA_0P8_SE
RDES0_1 / VDD
A_1P8_SERDE
S0_1
2-L-PHY
OFF
0.8 V
VDDA_0P8_SE
RDES0_1 / VDD
A_1P8_SERDE
S0_1
2-L-PHY
OFF
0.8 V
VDDA_0P8_SE
RDES0_1 / VDD
A_1P8_SERDE
S0_1
2-L-PHY
OFF
0.8 V
VDDA_0P8_SE
RDES0_1 / VDD
A_1P8_SERDE
S0_1
2-L-PHY
Submit Document Feedback
PULL UP/
DOWN
TYPE 12
DSIS 13
RXACTIVE/
TXDISABL
E 14
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AF18
AG17
AH15
AJ14
AH16
BALL NAME 2
SERDES0_TX1_N
SERDES0_TX1_P
SERDES1_RX0_N
SERDES1_RX0_P
SERDES1_RX1_N
SIGNAL NAME 3
MUXMODE
4
TYPE 5
SERDES0_TX1_N
O
SGMII2_TXN0
O
PCIE0_TXN1
O
USB0_SSTX1N
O
SERDES0_TX1_P
O
SGMII2_TXP0
O
PCIE0_TXP1
O
USB0_SSTX1P
O
SERDES1_RX0_N
I
SGMII3_RXN0
I
PCIE1_RXN0
I
USB1_SSRX2N
I
PRG1_SGMII0_RXN0
I
SERDES1_RX0_P
I
SGMII3_RXP0
I
PCIE1_RXP0
I
USB1_SSRX2P
I
PRG1_SGMII0_RXP0
I
SERDES1_RX1_N
I
SGMII4_RXN0
I
PCIE1_RXN1
I
USB1_SSRX1N
I
PRG1_SGMII1_RXN0
I
BALL
RESET
STATE 6
BALL
RESET
REL.
MUXMODE
I/O
VOLTAGE
VALUE 8
POWER 9
HYS 10
BUFFER
TYPE 11
OFF
0.8 V
VDDA_0P8_SE
RDES0_1 / VDD
A_1P8_SERDE
S0_1
2-L-PHY
OFF
0.8 V
VDDA_0P8_SE
RDES0_1 / VDD
A_1P8_SERDE
S0_1
2-L-PHY
OFF
0.8 V
VDDA_0P8_SE
RDES0_1 / VDD
A_1P8_SERDE
S0_1
2-L-PHY
OFF
0.8 V
VDDA_0P8_SE
RDES0_1 / VDD
A_1P8_SERDE
S0_1
2-L-PHY
OFF
0.8 V
VDDA_0P8_SE
RDES0_1 / VDD
A_1P8_SERDE
S0_1
2-L-PHY
PULL UP/
DOWN
TYPE 12
DSIS 13
RXACTIVE/
TXDISABL
E 14
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
59
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AJ15
AF15
AG14
AF16
AG15
60
BALL NAME 2
SERDES1_RX1_P
SERDES1_TX0_N
SERDES1_TX0_P
SERDES1_TX1_N
SERDES1_TX1_P
SIGNAL NAME 3
MUXMODE
4
TYPE 5
SERDES1_RX1_P
I
SGMII4_RXP0
I
PCIE1_RXP1
I
USB1_SSRX1P
I
PRG1_SGMII1_RXP0
I
SERDES1_TX0_N
O
SGMII3_TXN0
O
PCIE1_TXN0
O
USB1_SSTX2N
O
PRG1_SGMII0_TXN0
O
SERDES1_TX0_P
O
SGMII3_TXP0
O
PCIE1_TXP0
O
USB1_SSTX2P
O
PRG1_SGMII0_TXP0
O
SERDES1_TX1_N
O
SGMII4_TXN0
O
PCIE1_TXN1
O
USB1_SSTX1N
O
PRG1_SGMII1_TXN0
O
SERDES1_TX1_P
O
SGMII4_TXP0
O
PCIE1_TXP1
O
USB1_SSTX1P
O
PRG1_SGMII1_TXP0
O
BALL
RESET
STATE 6
BALL
RESET
REL.
MUXMODE
I/O
VOLTAGE
VALUE 8
POWER 9
HYS 10
BUFFER
TYPE 11
OFF
0.8 V
VDDA_0P8_SE
RDES0_1 / VDD
A_1P8_SERDE
S0_1
2-L-PHY
OFF
0.8 V
VDDA_0P8_SE
RDES0_1 / VDD
A_1P8_SERDE
S0_1
2-L-PHY
OFF
0.8 V
VDDA_0P8_SE
RDES0_1 / VDD
A_1P8_SERDE
S0_1
2-L-PHY
OFF
0.8 V
VDDA_0P8_SE
RDES0_1 / VDD
A_1P8_SERDE
S0_1
2-L-PHY
OFF
0.8 V
VDDA_0P8_SE
RDES0_1 / VDD
A_1P8_SERDE
S0_1
2-L-PHY
Submit Document Feedback
PULL UP/
DOWN
TYPE 12
DSIS 13
RXACTIVE/
TXDISABL
E 14
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AH13
BALL NAME 2
SERDES2_RX0_N
SIGNAL NAME 3
MUXMODE
4
TYPE 5
SERDES2_RX0_N
I
PCIE2_RXN0
I
USB1_SSRX2N
I
BALL
RESET
STATE 6
BALL
RESET
REL.
MUXMODE
I/O
VOLTAGE
VALUE 8
POWER 9
HYS 10
BUFFER
TYPE 11
OFF
0.8 V
VDDA_0P8_SE
RDES2_3 / VDD
A_1P8_SERDE
S2_3
2-L-PHY
OFF
0.8 V
VDDA_0P8_SE
RDES2_3 / VDD
A_1P8_SERDE
S2_3
2-L-PHY
OFF
0.8 V
VDDA_0P8_SE
RDES2_3 / VDD
A_1P8_SERDE
S2_3
2-L-PHY
OFF
0.8 V
VDDA_0P8_SE
RDES2_3 / VDD
A_1P8_SERDE
S2_3
2-L-PHY
OFF
0.8 V
VDDA_0P8_SE
RDES2_3 / VDD
A_1P8_SERDE
S2_3
2-L-PHY
OFF
0.8 V
VDDA_0P8_SE
RDES2_3 / VDD
A_1P8_SERDE
S2_3
2-L-PHY
PULL UP/
DOWN
TYPE 12
DSIS 13
RXACTIVE/
TXDISABL
E 14
PRG1_SGMII0_RXN0
AJ12
SERDES2_RX0_P
SERDES2_RX0_P
I
PCIE2_RXP0
I
USB1_SSRX2P
I
PRG1_SGMII0_RXP0
AH12
SERDES2_RX1_N
SERDES2_RX1_N
I
PCIE2_RXN1
I
USB1_SSRX1N
I
PRG1_SGMII1_RXN0
AJ11
SERDES2_RX1_P
SERDES2_RX1_P
I
PCIE2_RXP1
I
USB1_SSRX1P
I
PRG1_SGMII1_RXP0
AF13
SERDES2_TX0_N
SERDES2_TX0_N
O
PCIE2_TXN0
O
USB1_SSTX2N
O
PRG1_SGMII0_TXN0
AG12
SERDES2_TX0_P
SERDES2_TX0_P
O
PCIE2_TXP0
O
USB1_SSTX2P
O
PRG1_SGMII0_TXP0
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
61
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AF12
BALL NAME 2
SERDES2_TX1_N
SIGNAL NAME 3
MUXMODE
4
TYPE 5
SERDES2_TX1_N
O
PCIE2_TXN1
O
USB1_SSTX1N
O
BALL
RESET
STATE 6
BALL
RESET
REL.
MUXMODE
I/O
VOLTAGE
VALUE 8
POWER 9
HYS 10
BUFFER
TYPE 11
OFF
0.8 V
VDDA_0P8_SE
RDES2_3 / VDD
A_1P8_SERDE
S2_3
2-L-PHY
OFF
0.8 V
VDDA_0P8_SE
RDES2_3 / VDD
A_1P8_SERDE
S2_3
2-L-PHY
OFF
0.8 V
VDDA_0P8_SE
RDES2_3 / VDD
A_1P8_SERDE
S2_3
2-L-PHY
OFF
0.8 V
VDDA_0P8_SE
RDES2_3 / VDD
A_1P8_SERDE
S2_3
2-L-PHY
OFF
0.8 V
VDDA_0P8_SE
RDES2_3 / VDD
A_1P8_SERDE
S2_3
2-L-PHY
OFF
0.8 V
VDDA_0P8_SE
RDES2_3 / VDD
A_1P8_SERDE
S2_3
2-L-PHY
OFF
0.8 V
VDDA_0P8_SE
RDES2_3 / VDD
A_1P8_SERDE
S2_3
2-L-PHY
PULL UP/
DOWN
TYPE 12
DSIS 13
RXACTIVE/
TXDISABL
E 14
PRG1_SGMII1_TXN0
AG11
SERDES2_TX1_P
SERDES2_TX1_P
O
PCIE2_TXP1
O
USB1_SSTX1P
O
PRG1_SGMII1_TXP0
AH9
AJ8
AH10
AJ9
AF9
62
SERDES3_RX0_N
SERDES3_RX0_P
SERDES3_RX1_N
SERDES3_RX1_P
SERDES3_TX0_N
SERDES3_RX0_N
I
PCIE3_RXN0
I
USB0_SSRX2N
I
SERDES3_RX0_P
I
PCIE3_RXP0
I
USB0_SSRX2P
I
SERDES3_RX1_N
I
PCIE3_RXN1
I
USB0_SSRX1N
I
SERDES3_RX1_P
I
PCIE3_RXP1
I
USB0_SSRX1P
I
SERDES3_TX0_N
O
PCIE3_TXN0
O
USB0_SSTX2N
O
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AG8
AF10
AG9
BALL NAME 2
SERDES3_TX0_P
SERDES3_TX1_N
SERDES3_TX1_P
D9
SERDES4_RX0_N
C10
SERDES4_RX0_P
D8
SERDES4_RX1_N
C9
SERDES4_RX1_P
D6
SERDES4_RX2_N
C7
SERDES4_RX2_P
D5
SERDES4_RX3_N
SIGNAL NAME 3
MUXMODE
4
TYPE 5
SERDES3_TX0_P
O
PCIE3_TXP0
O
USB0_SSTX2P
O
SERDES3_TX1_N
O
PCIE3_TXN1
O
USB0_SSTX1N
O
SERDES3_TX1_P
O
PCIE3_TXP1
O
USB0_SSTX1P
O
SERDES4_RX0_N
I
SGMII5_RXN0
I
SERDES4_RX0_P
I
SGMII5_RXP0
I
SERDES4_RX1_N
I
SGMII6_RXN0
I
SERDES4_RX1_P
I
SGMII6_RXP0
I
SERDES4_RX2_N
I
SGMII7_RXN0
I
SERDES4_RX2_P
I
SGMII7_RXP0
I
SERDES4_RX3_N
I
SGMII8_RXN0
I
BALL
RESET
STATE 6
BALL
RESET
REL.
MUXMODE
I/O
VOLTAGE
VALUE 8
POWER 9
HYS 10
BUFFER
TYPE 11
OFF
0.8 V
VDDA_0P8_SE
RDES2_3 / VDD
A_1P8_SERDE
S2_3
2-L-PHY
OFF
0.8 V
VDDA_0P8_SE
RDES2_3 / VDD
A_1P8_SERDE
S2_3
2-L-PHY
OFF
0.8 V
VDDA_0P8_SE
RDES2_3 / VDD
A_1P8_SERDE
S2_3
2-L-PHY
OFF
0.8 V
VDDA_0P8_DP
/
VDDA_1P8_DP
4-L-PHY
OFF
0.8 V
VDDA_0P8_DP
/
VDDA_1P8_DP
4-L-PHY
OFF
0.8 V
VDDA_0P8_DP
/
VDDA_1P8_DP
4-L-PHY
OFF
0.8 V
VDDA_0P8_DP
/
VDDA_1P8_DP
4-L-PHY
OFF
0.8 V
VDDA_0P8_DP
/
VDDA_1P8_DP
4-L-PHY
OFF
0.8 V
VDDA_0P8_DP
/
VDDA_1P8_DP
4-L-PHY
OFF
0.8 V
VDDA_0P8_DP
/
VDDA_1P8_DP
4-L-PHY
PULL UP/
DOWN
TYPE 12
DSIS 13
RXACTIVE/
TXDISABL
E 14
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
63
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
BALL NAME 2
C6
SERDES4_RX3_P
B11
SERDES4_TX0_N
A12
B10
A11
B8
A9
B7
A8
64
SERDES4_TX0_P
SERDES4_TX1_N
SERDES4_TX1_P
SERDES4_TX2_N
SERDES4_TX2_P
SERDES4_TX3_N
SERDES4_TX3_P
SIGNAL NAME 3
MUXMODE
4
TYPE 5
SERDES4_RX3_P
I
SGMII8_RXP0
I
SERDES4_TX0_N
O
DP0_TX0_N
O
SGMII5_TXN0
O
SERDES4_TX0_P
O
DP0_TX0_P
O
SGMII5_TXP0
O
SERDES4_TX1_N
O
DP0_TX1_N
O
SGMII6_TXN0
O
SERDES4_TX1_P
O
DP0_TX1_P
O
SGMII6_TXP0
O
SERDES4_TX2_N
O
DP0_TX2_N
O
SGMII7_TXN0
O
SERDES4_TX2_P
O
DP0_TX2_P
O
SGMII7_TXP0
O
SERDES4_TX3_N
O
DP0_TX3_N
O
SGMII8_TXN0
O
SERDES4_TX3_P
O
DP0_TX3_P
O
SGMII8_TXP0
O
BALL
RESET
STATE 6
BALL
RESET
REL.
MUXMODE
I/O
VOLTAGE
VALUE 8
POWER 9
HYS 10
BUFFER
TYPE 11
OFF
0.8 V
VDDA_0P8_DP
/
VDDA_1P8_DP
4-L-PHY
OFF
0.8 V
VDDA_0P8_DP
/
VDDA_1P8_DP
4-L-PHY
OFF
0.8 V
VDDA_0P8_DP
/
VDDA_1P8_DP
4-L-PHY
OFF
0.8 V
VDDA_0P8_DP
/
VDDA_1P8_DP
4-L-PHY
OFF
0.8 V
VDDA_0P8_DP
/
VDDA_1P8_DP
4-L-PHY
OFF
0.8 V
VDDA_0P8_DP
/
VDDA_1P8_DP
4-L-PHY
OFF
0.8 V
VDDA_0P8_DP
/
VDDA_1P8_DP
4-L-PHY
OFF
0.8 V
VDDA_0P8_DP
/
VDDA_1P8_DP
4-L-PHY
OFF
0.8 V
VDDA_0P8_DP
/
VDDA_1P8_DP
4-L-PHY
Submit Document Feedback
PULL UP/
DOWN
TYPE 12
DSIS 13
RXACTIVE/
TXDISABL
E 14
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
BALL NAME 2
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
BALL
RESET
REL.
MUXMODE
I/O
VOLTAGE
VALUE 8
POWER 9
HYS 10
BUFFER
TYPE 11
PULL UP/
DOWN
TYPE 12
DSIS 13
U4
soc_safety_errorn
SOC_SAFETY_ERRORn
0
IO
PD
0
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
AA1
spi0_clk
SPI0_CLK
0
IO
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
UART1_CTSn
1
I
1
I2C2_SCL
2
IOD
1
GPIO0_113
7
IO
SPI1_CLK
0
IO
UART5_CTSn
1
I
1
I2C4_SDA
2
IOD
1
UART2_RXD
3
I
1
GPIO0_118
7
IO
0
PRG0_IEP0_EDC_SYNC_OUT0
8
O
SPI0_CS0
0
IO
UART0_RTSn
1
O
GPIO0_111
7
IO
SPI0_CS1
0
IO
CPTS0_TS_COMP
1
O
I2C3_SCL
2
IOD
1
DP0_HPD
5
I
0
PRG1_IEP0_EDIO_OUTVALID
6
O
GPIO0_112
7
IO
SPI0_D0
0
IO
UART1_RTSn
1
O
I2C2_SDA
2
IOD
GPIO0_114
7
IO
SPI0_D1
0
IO
I2C6_SCL
2
IOD
GPIO0_115
7
IO
SPI1_CS0
0
IO
UART0_CTSn
1
I
1
UART5_RXD
3
I
1
PRG0_IEP0_EDIO_OUTVALID
6
O
GPIO0_116
7
IO
PRG0_IEP0_EDC_LATCH_IN0
8
I
SPI1_CS1
0
IO
CPTS0_TS_SYNC
1
O
I2C3_SDA
2
IOD
UART5_TXD
3
O
GPIO0_117
7
IO
Y1
AA2
Y4
AB5
AA3
Y3
W4
spi1_clk
spi0_cs0
spi0_cs1
spi0_d0
spi0_d1
spi1_cs0
spi1_cs1
RXACTIVE/
TXDISABL
E 14
1/0
0
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
0
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
1
0/1
0
1
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
0
0/1
1
0
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
0
0/1
1
0
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
1
0/1
0
0
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
1
0/1
1
0
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
65
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
Y5
Y2
BALL NAME 2
spi1_d0
spi1_d1
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV0
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
SPI1_D0
0
IO
UART5_RTSn
1
O
0
I2C4_SCL
2
IOD
UART2_TXD
3
O
GPIO0_119
7
IO
PRG0_IEP1_EDC_LATCH_IN0
8
I
SPI1_D1
0
IO
I2C6_SDA
2
IOD
1
GPIO0_120
7
IO
0
PRG0_IEP1_EDC_SYNC_OUT0
8
O
RXACTIVE/
TXDISABL
E 14
0/1
1
0
0
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
0
0/1
0
E29
tck
TCK
0
I
PU
0
1.8 V/3.3 V
VDDSHV0_MC
U
Yes
LVCMOS
PU/PD
1/1
V1
tdi
TDI
0
I
PU
0
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
1/1
V3
tdo
TDO
0
OZ
PU
0
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
V6
timer_io0
TIMER_IO0
0
IO
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
ECAP1_IN_APWM_OUT
1
IO
SYSCLKOUT0
2
O
SPI7_D0
6
IO
0
GPIO1_13
7
IO
0
BOOTMODE4
Bootstrap
I
TIMER_IO1
0
IO
ECAP2_IN_APWM_OUT
1
IO
OBSCLK0
2
O
SPI7_D1
6
IO
0
GPIO1_14
7
IO
0
BOOTMODE5
Bootstrap
I
V5
timer_io1
0/0
0
1/1
0
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
0
1/1
0
V2
tms
TMS
0
I
PU
0
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
1/1
F24
trstn
TRSTn
0
I
PD
0
1.8 V/3.3 V
VDDSHV0_MC
U
Yes
LVCMOS
PU/PD
1/1
AC2
uart0_ctsn
UART0_CTSn
0
I
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
TIMER_IO6
1
IO
0
SPI0_CS2
2
IO
1
MCAN2_RX
3
I
1
SPI2_CS0
4
IO
1
EQEP0_A
5
I
0
GPIO0_123
7
IO
0
MLB0_MLBSIG
8
IO
0
66
Submit Document Feedback
1
0/1
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
AB1
AB2
AB3
AC4
AD5
AA4
AB4
AE6
BALL NAME 2
uart0_rtsn
uart0_rxd
uart0_txd
uart1_ctsn
uart1_rtsn
uart1_rxd
uart1_txd
ufs0_ref_clk
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
1.8 V/3.3 V
POWER 9
VDDSHV0
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
DSIS 13
0
O
TIMER_IO7
1
IO
0
SPI0_CS3
2
IO
1
MCAN2_TX
3
O
SPI2_CLK
4
IO
0
EQEP0_B
5
I
0
GPIO0_124
7
IO
UART0_RXD
0
I
SPI2_CS1
4
IO
GPIO0_121
7
IO
UART0_TXD
0
O
SPI2_CS2
4
IO
1
SPI7_CS1
6
IO
1
GPIO0_122
7
IO
UART1_CTSn
0
I
MCAN3_RX
1
I
1
SPI2_D0
4
IO
0
EQEP0_S
5
IO
0
GPIO0_127
7
IO
0
MLB0_MLBCLK
8
I
UART1_RTSn
0
O
MCAN3_TX
1
O
SPI2_D1
4
IO
0
EQEP0_I
5
IO
0
GPIO1_0
7
IO
0
MLB0_MLBDAT
8
IO
UART1_RXD
0
I
SPI7_CS2
6
IO
GPIO0_125
7
IO
UART1_TXD
0
O
I3C0_SDAPULLEN
5
O
SPI7_CS3
6
IO
GPIO0_126
7
IO
O
7
I/O
VOLTAGE
VALUE 8
UART0_RTSn
UFS0_REF_CLK
OFF
BALL
RESET
REL.
MUXMODE
PU/PD
RXACTIVE/
TXDISABL
E 14
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
1
0/1
1
0
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
1
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
1
0/1
1
0
OFF
7
1.8 V/3.3 V
VDDSHV0
Yes
LVCMOS
PU/PD
0/1
1
0
OFF
0.8 V
VDDA_0P8_UF
S/
VDDA_1P8_UF
S
M-PHY
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
67
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
BALL NAME 2
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
BALL
RESET
REL.
MUXMODE
I/O
VOLTAGE
VALUE 8
POWER 9
HYS 10
BUFFER
TYPE 11
AD6
ufs0_rstn
UFS0_RSTn
O
OFF
0.8 V
VDDA_0P8_UF
S/
VDDA_1P8_UF
S
M-PHY
AH3
ufs0_rx_dn0
UFS0_RX_DN0
I
OFF
0.8 V
VDDA_0P8_UF
S/
VDDA_1P8_UF
S
M-PHY
AH4
ufs0_rx_dn1
UFS0_RX_DN1
I
OFF
0.8 V
VDDA_0P8_UF
S/
VDDA_1P8_UF
S
M-PHY
AJ2
ufs0_rx_dp0
UFS0_RX_DP0
I
OFF
0.8 V
VDDA_0P8_UF
S/
VDDA_1P8_UF
S
M-PHY
AJ3
ufs0_rx_dp1
UFS0_RX_DP1
I
OFF
0.8 V
VDDA_0P8_UF
S/
VDDA_1P8_UF
S
M-PHY
AG6
ufs0_tx_dn0
UFS0_TX_DN0
O
OFF
0.8 V
VDDA_0P8_UF
S/
VDDA_1P8_UF
S
M-PHY
AG5
ufs0_tx_dn1
UFS0_TX_DN1
O
OFF
0.8 V
VDDA_0P8_UF
S/
VDDA_1P8_UF
S
M-PHY
AF7
ufs0_tx_dp0
UFS0_TX_DP0
O
OFF
0.8 V
VDDA_0P8_UF
S/
VDDA_1P8_UF
S
M-PHY
AF6
ufs0_tx_dp1
UFS0_TX_DP1
O
OFF
0.8 V
VDDA_0P8_UF
S/
VDDA_1P8_UF
S
M-PHY
AJ5
usb0_dm
USB0_DM
IO
OFF
3.3 V
VDDA_0P8_US
B/
VDDA_1P8_US
B/
VDDA_3P3_US
B
USB2PHY
AH6
usb0_dp
USB0_DP
IO
OFF
3.3 V
VDDA_0P8_US
B/
VDDA_1P8_US
B/
VDDA_3P3_US
B
USB2PHY
U6
usb0_drvvbus
USB0_DRVVBUS
0
O
PD
1.8 V/3.3 V
VDDSHV0
USB1_DRVVBUS
1
O
GPIO1_29
7
IO
68
7
Submit Document Feedback
Yes
LVCMOS
PULL UP/
DOWN
TYPE 12
DSIS 13
PU/PD
RXACTIVE/
TXDISABL
E 14
0/1
0
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
BALL NAME 2
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
BALL
RESET
REL.
MUXMODE
I/O
VOLTAGE
VALUE 8
POWER 9
HYS 10
BUFFER
TYPE 11
AC6
usb0_id
USB0_ID
A
OFF
3.3 V
VDDA_0P8_US
B/
VDDA_1P8_US
B/
VDDA_3P3_US
B
USB2PHY
AB6
usb0_rcalib
USB0_RCALIB
IO
OFF
3.3 V
VDDA_0P8_US
B/
VDDA_1P8_US
B/
VDDA_3P3_US
B
USB2PHY
AC7
usb0_vbus
USB0_VBUS
A
OFF
3.3 V
VDDA_0P8_US
B/
VDDA_1P8_US
B/
VDDA_3P3_US
B
USB2PHY
AH7
usb1_dm
USB1_DM
IO
OFF
3.3 V
VDDA_0P8_U
SB /
VDDA_1P8_US
B/
VDDA_3P3_US
B
USB2PHY
AJ6
usb1_dp
USB1_DP
IO
OFF
3.3 V
VDDA_0P8_U
SB /
VDDA_1P8_US
B/
VDDA_3P3_US
B
USB2PHY
AD7
usb1_id
USB1_ID
A
OFF
3.3 V
VDDA_0P8_U
SB /
VDDA_1P8_US
B/
VDDA_3P3_US
B
USB2PHY
AD9
usb1_rcalib
USB1_RCALIB
IO
OFF
3.3 V
VDDA_0P8_U
SB /
VDDA_1P8_US
B/
VDDA_3P3_US
B
USB2PHY
AD8
usb1_vbus
USB1_VBUS
A
OFF
3.3 V
VDDA_0P8_U
SB /
VDDA_1P8_US
B/
VDDA_3P3_US
B
USB2PHY
L14, V13, V16,
W19
VDDAR_CORE
VDDAR_CORE
PWR
L11, W12
VDDAR_CPU
VDDAR_CPU
PWR
K19, T19
vddar_mcu
vddar_mcu
PWR
H17
VDDA_0P8_CSIRX
VDDA_0P8_CSIRX
PWR
PULL UP/
DOWN
TYPE 12
DSIS 13
RXACTIVE/
TXDISABL
E 14
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
69
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
BALL NAME 2
SIGNAL NAME 3
MUXMODE
4
TYPE 5
G12, J12
VDDA_0P8_DP
VDDA_0P8_DP
PWR
G14, H13
VDDA_0P8_DP_C
VDDA_0P8_DP_C
PWR
H15
VDDA_0P8_DSITX
VDDA_0P8_DSITX
PWR
J16
VDDA_0P8_DSITX_C
VDDA_0P8_DSITX_C
PWR
AB9
VDDA_0P8_UFS
VDDA_0P8_UFS
PWR
AA10
VDDA_0P8_USB
VDDA_0P8_USB
PWR
AA15, Y14,
Y16
VDDA_0P8_SERDES0_1
VDDA_0P8_SERDES0_1
PWR
AA12, Y11,
Y13
VDDA_0P8_SERDES2_3
VDDA_0P8_SERDES2_3
PWR
AB14, AB15
VDDA_0P8_SERDES_C0_1
VDDA_0P8_SERDES_C0_1
PWR
AB12, AB13
VDDA_0P8_SERDES_C2_3
VDDA_0P8_SERDES_C2_3
PWR
G16
VDDA_1P8_CSIRX
VDDA_1P8_CSIRX
PWR
H11
VDDA_1P8_DP
VDDA_1P8_DP
PWR
J14
VDDA_1P8_DSITX
VDDA_1P8_DSITX
PWR
AC8
VDDA_1P8_UFS
VDDA_1P8_UFS
PWR
AC9
vdda_1p8_usb
vdda_1p8_usb
PWR
AC14, AC15
VDDA_1P8_SERDES0_1
VDDA_1P8_SERDES0_1
PWR
AC11, AC12
VDDA_1P8_SERDES2_3
VDDA_1P8_SERDES2_3
PWR
AB10
vdda_3p3_usb
vdda_3p3_usb
PWR
N22
VDDA_ADC0
VDDA_ADC0
PWR
M23
VDDA_ADC1
VDDA_ADC1
PWR
N9
VDDA_0P8_PLL_DDR
VDDA_0P8_PLL_DDR
PWR
G18
VDDA_MCU_PLLGRP0
VDDA_MCU_PLLGRP0
PWR
P21
VDDA_MCU_TEMP
VDDA_MCU_TEMP
PWR
W7
VDDA_1P8_MLB
VDDA_1P8_MLB
PWR
Y20
VDDA_PLLGRP0
VDDA_PLLGRP0
PWR
W17
VDDA_PLLGRP1
VDDA_PLLGRP1
PWR
M17
VDDA_PLLGRP2
VDDA_PLLGRP2
PWR
L12
VDDA_PLLGRP3
VDDA_PLLGRP3
PWR
R11
VDDA_PLLGRP4
VDDA_PLLGRP4
PWR
P9
VDDA_PLLGRP5
VDDA_PLLGRP5
PWR
W18
VDDA_PLLGRP6
VDDA_PLLGRP6
PWR
W8
VDDA_0P8_PLL_MLB
VDDA_0P8_PLL_MLB
PWR
P22
vdda_por_wkup
vdda_por_wkup
PWR
W15
VDDA_TEMP0_1
VDDA_TEMP0_1
PWR
H9
VDDA_TEMP2_3
VDDA_TEMP2_3
PWR
M26
VMON_ER_VSYS
VMON_ER_VSYS
A
70
BALL
RESET
STATE 6
BALL
RESET
REL.
MUXMODE
I/O
VOLTAGE
VALUE 8
Submit Document Feedback
POWER 9
HYS 10
BUFFER
TYPE 11
PULL UP/
DOWN
TYPE 12
DSIS 13
RXACTIVE/
TXDISABL
E 14
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
BALL NAME 2
SIGNAL NAME 3
MUXMODE
4
TYPE 5
V19
VMON_IR_VEXT
VMON_IR_VEXT
A
H22
VDDA_WKUP
VDDA_WKUP
PWR
U8, V7
VDDSHV0
VDDSHV0
PWR
L22, M22
VDDSHV0_MCU
VDDSHV0_MCU
PWR
AA19, AA20,
AC19, AC20
VDDSHV1
VDDSHV1
PWR
H19, H21, J20
VDDSHV1_MCU
VDDSHV1_MCU
PWR
AA17, AB16,
AB18, AC17
VDDSHV2
VDDSHV2
PWR
J22, K21
VDDSHV2_MCU
VDDSHV2_MCU
PWR
V21, W22
VDDSHV3
VDDSHV3
PWR
AA21, Y22
VDDSHV4
VDDSHV4
PWR
T20, T22
VDDSHV5
VDDSHV5
PWR
U20, U22
VDDSHV6
VDDSHV6
PWR
A1, G8, J8, K7, vdds_ddr
L8, M7, N8,
P7, R8, T1
vdds_ddr
PWR
H7, J6, R6, T7
vdds_ddr_bias
vdds_ddr_bias
PWR
M9
VDDS_DDR_C
VDDS_DDR_C
PWR
AA8, AB7, Y7
vdds_mmc0
vdds_mmc0
PWR
R21
VDDS_OSC1
VDDS_OSC1
PWR
J10, K11, K13, VDD_CORE
K15, K17, K9,
L10, L16, L18,
M15, N14,
N16, N18, P13,
P15, P17, R14,
R16, R18, R20,
T15, T17, T9,
U14, U16, U18,
V15, V17, V20,
W14
VDD_CORE
PWR
N10, P11, R10, VDD_CPU
R12, U10, V11,
V9, W10
VDD_CPU
PWR
Y9
VDDA_0P8_DLL_MMC0
PWR
L20, M19,
vdd_mcu
M21, N20, P19
VDDA_0P8_DLL_MMC0
vdd_mcu
PWR
AB11
vpp_core
vpp_core
PWR
F17
VPP_MCU
VPP_MCU
PWR
BALL
RESET
STATE 6
BALL
RESET
REL.
MUXMODE
I/O
VOLTAGE
VALUE 8
POWER 9
HYS 10
BUFFER
TYPE 11
PULL UP/
DOWN
TYPE 12
DSIS 13
RXACTIVE/
TXDISABL
E 14
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
71
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
BALL NAME 2
AA13, AC10,
vss
AC13, AD11,
AD14, AD17,
AE10, AE12,
AE15, AE16,
AE19, AE7,
AF20, AF25,
AF5, AG4,
AG7, AH2,
AH20, AH5,
AJ4, AJ7, B3,
B6, C1, C5,
D2, D4, E1,
E5, F4, G1,
G7, H4, H6,
K1, K4, L3, M1,
M28, M4, M6,
N27, N29, N3,
P1, P28, P4,
R3, U5
72
SIGNAL NAME 3
vss
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
BALL
RESET
REL.
MUXMODE
I/O
VOLTAGE
VALUE 8
POWER 9
HYS 10
BUFFER
TYPE 11
PULL UP/
DOWN
TYPE 12
DSIS 13
RXACTIVE/
TXDISABL
E 14
GND
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
BALL NAME 2
SIGNAL NAME 3
MUXMODE
4
TYPE 5
A10, A13, A16, VSS
A19, A22, A7,
AA11, AA14,
AA16, AA18,
AA7, AA9,
AB17, AB19,
AB20, AB22,
AB8, AC16,
AF11, AF14,
AF17, AF8,
AG10, AG13,
AG16, AG19,
AH11, AH14,
AH17, AH8,
AJ10, AJ13,
AJ16, AJ19,
B12, B15, B18,
B21, B9, C11,
C14, C17, C20,
C8, D10, D13,
D16, D19, D7,
E12, E15, E9,
F14, F8, G11,
G13, G15,
G17, H10,
H12, H14, H16,
H18, H20, H8,
J11, J13, J15,
J17, J21, J23,
J7, J9, K10,
K12, K14, K16,
K18, K20, K22,
K8, L13, L15,
L17, L19, L21,
L23, L7, L9,
M10, M14,
M16, M18,
M20, M8, N15,
N17, N19, N21,
N7, P10, P12,
P14, P16, P18,
P20, P8, R13,
R15, R17, R19,
R7, R9, T10,
T14, T16, T18,
T21, T8, U15,
U17, U19, U21,
U9, V10, V12,
V14, V18, V8,
W11, W13,
W16, W20,
W9, Y10, Y12,
Y15, Y17, Y19,
Y21, Y8
VSS
F26
MCU_SPI1_CLK
0
IO
MCU_SPI1_CLK
1
IO
WKUP_GPIO0_0
7
IO
MCU_BOOTMODE03
Bootstrap
I
wkup_gpio0_0
BALL
RESET
STATE 6
BALL
RESET
REL.
MUXMODE
I/O
VOLTAGE
VALUE 8
POWER 9
HYS 10
BUFFER
TYPE 11
PULL UP/
DOWN
TYPE 12
DSIS 13
RXACTIVE/
TXDISABL
E 14
GND
OFF
7
1.8 V/3.3 V
VDDSHV0_MC
U
Yes
LVCMOS
PU/PD
0
1/1
0
0
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
73
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
F25
F28
F27
G25
G24
F29
G28
G27
74
BALL NAME 2
wkup_gpio0_1
wkup_gpio0_2
wkup_gpio0_3
wkup_gpio0_4
wkup_gpio0_5
wkup_gpio0_6
wkup_gpio0_7
wkup_gpio0_8
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV0_MC
U
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
MCU_SPI1_D0
0
IO
MCU_SPI1_D0
1
IO
0
WKUP_GPIO0_1
7
IO
MCU_BOOTMODE04
Bootstrap
I
MCU_SPI1_D1
0
IO
MCU_SPI1_D1
1
IO
WKUP_GPIO0_2
7
IO
MCU_BOOTMODE05
Bootstrap
I
MCU_SPI1_CS0
0
IO
MCU_SPI1_CS0
1
IO
WKUP_GPIO0_3
7
IO
MCU_MCAN1_TX
0
O
MCU_MCAN1_TX
1
O
MCU_SPI0_CS3
2
IO
1
MCU_ADC_EXT_TRIGGER0
3
I
pad
WKUP_GPIO0_4
7
IO
MCU_MCAN1_RX
0
I
MCU_MCAN1_RX
1
I
MCU_SPI1_CS3
2
IO
1
MCU_ADC_EXT_TRIGGER1
3
I
pad
WKUP_GPIO0_5
7
IO
WKUP_UART0_CTSn
0
I
WKUP_UART0_CTSn
1
I
MCU_CPTS0_HW1TSPUSH
2
I
0
MCU_I2C1_SCL
3
IOD
1
WKUP_GPIO0_6
7
IO
WKUP_UART0_RTSn
0
O
WKUP_UART0_RTSn
1
O
MCU_CPTS0_HW2TSPUSH
2
I
0
MCU_I2C1_SDA
3
IOD
1
WKUP_GPIO0_7
7
IO
MCU_I2C1_SCL
0
IOD
MCU_I2C1_SCL
1
IOD
MCU_CPTS0_TS_SYNC
2
O
MCU_I3C1_SCL
3
IO
1
MCU_TIMER_IO6
4
IO
0
WKUP_GPIO0_8
7
IO
0
RXACTIVE/
TXDISABL
E 14
1/1
0
0
OFF
7
1.8 V/3.3 V
VDDSHV0_MC
U
Yes
LVCMOS
PU/PD
0
1/1
0
0
OFF
7
1.8 V/3.3 V
VDDSHV0_MC
U
Yes
VDDSHV0_MC
U
Yes
LVCMOS
PU/PD
1
0/1
1
0
OFF
7
1.8 V/3.3 V
LVCMOS
PU/PD
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV0_MC
U
Yes
LVCMOS
PU/PD
1
0/1
1
0
OFF
7
1.8 V/3.3 V
VDDSHV0_MC
U
Yes
LVCMOS
PU/PD
1
0/1
1
0
OFF
7
1.8 V/3.3 V
VDDSHV0_MC
U
Yes
LVCMOS
PU/PD
0/1
0
OFF
7
1.8 V/3.3 V
Submit Document Feedback
VDDSHV0_MC
U
Yes
LVCMOS
PU/PD
1
0/1
1
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
G26
H26
H27
G29
H28
H29
J27
BALL NAME 2
wkup_gpio0_9
wkup_gpio0_10
wkup_gpio0_11
wkup_gpio0_12
wkup_gpio0_13
wkup_gpio0_14
wkup_gpio0_15
SIGNAL NAME 3
MUXMODE
4
TYPE 5
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
7
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
POWER 9
VDDSHV0_MC
U
HYS 10
Yes
BUFFER
TYPE 11
LVCMOS
PULL UP/
DOWN
TYPE 12
PU/PD
DSIS 13
MCU_I2C1_SDA
0
IOD
MCU_I2C1_SDA
1
IOD
1
MCU_CPTS0_TS_COMP
2
O
MCU_I3C1_SDA
3
IO
1
MCU_TIMER_IO7
4
IO
0
WKUP_GPIO0_9
7
IO
MCU_EXT_REFCLK0
0
I
MCU_EXT_REFCLK0
1
I
MCU_UART0_TXD
2
O
MCU_ADC_EXT_TRIGGER0
3
I
0
MCU_CPTS0_RFT_CLK
4
I
0
MCU_SYSCLKOUT0
5
O
WKUP_GPIO0_10
7
IO
MCU_OBSCLK0
0
O
MCU_OBSCLK0
1
O
MCU_UART0_RXD
2
I
1
MCU_ADC_EXT_TRIGGER1
3
I
0
MCU_TIMER_IO1
4
IO
0
MCU_I3C1_SDAPULLEN
5
O
MCU_CLKOUT0
6
OZ
WKUP_GPIO0_11
7
IO
MCU_UART0_TXD
0
O
MCU_SPI0_CS1
1
O
WKUP_GPIO0_12
7
IO
MCU_BOOTMODE08
Bootstrap
I
MCU_UART0_RXD
0
I
MCU_SPI1_CS1
1
O
WKUP_GPIO0_13
7
IO
MCU_BOOTMODE09
Bootstrap
I
MCU_UART0_CTSn
0
I
MCU_SPI0_CS2
1
O
WKUP_GPIO0_14
7
IO
MCU_BOOTMODE06
Bootstrap
I
MCU_UART0_RTSn
0
O
MCU_SPI1_CS2
1
O
WKUP_GPIO0_15
7
IO
MCU_BOOTMODE07
Bootstrap
I
RXACTIVE/
TXDISABL
E 14
0/1
1
0
OFF
7
1.8 V/3.3 V
VDDSHV0_MC
U
Yes
LVCMOS
PU/PD
0
0/1
0
0
OFF
7
1.8 V/3.3 V
VDDSHV0_MC
U
Yes
LVCMOS
PU/PD
0/1
0
OFF
7
1.8 V/3.3 V
VDDSHV0_MC
U
Yes
LVCMOS
PU/PD
1/1
0
OFF
7
1.8 V/3.3 V
VDDSHV0_MC
U
Yes
LVCMOS
PU/PD
1
1/1
0
OFF
7
1.8 V/3.3 V
VDDSHV0_MC
U
Yes
LVCMOS
PU/PD
1
1/1
0
OFF
7
1.8 V/3.3 V
VDDSHV0_MC
U
Yes
LVCMOS
PU/PD
1/1
0
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
75
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-1. Pin Attributes (continued)
BALL
NO. 1
J25
H24
BALL NAME 2
wkup_i2c0_scl
wkup_i2c0_sda
SIGNAL NAME 3
MUXMODE
4
TYPE 5
WKUP_I2C0_SCL
0
IOD
WKUP_GPIO0_62
7
IO
WKUP_I2C0_SDA
0
IOD
WKUP_GPIO0_63
7
IO
BALL
RESET
STATE 6
OFF
BALL
RESET
REL.
MUXMODE
0
OFF
0
I/O
VOLTAGE
VALUE 8
1.8 V/3.3 V
1.8 V/3.3 V
POWER 9
HYS 10
VDDSHV0_MC
U
Yes
VDDSHV0_MC
U
Yes
I2C OD FS
WKUP_LFOSC0_XI
I
OFF
1.8 V
VDDA_WKUP
LFOSC
wkup_lfosc0_xo
WKUP_LFOSC0_XO
O
OFF
1.8 V
VDDA_WKUP
LFOSC
M29
wkup_osc0_xi
WKUP_OSC0_XI
I
OFF
1.8 V
VDDA_WKUP
HFOSC
M27
wkup_osc0_xo
WKUP_OSC0_XO
O
OFF
1.8 V
VDDA_WKUP
J29
wkup_uart0_rxd
WKUP_UART0_RXD
0
I
OFF
1.8 V/3.3 V
Yes
WKUP_GPIO0_56
7
IO
VDDSHV0_MC
U
WKUP_UART0_TXD
0
O
7
IO
VDDSHV0_MC
U
Yes
WKUP_GPIO0_57
OFF
7
1.8 V/3.3 V
RXACTIVE/
TXDISABL
E 14
1/0
1
1/0
0
wkup_lfosc0_xi
wkup_uart0_txd
1
I2C OD FS
N26
J28
DSIS 13
0
N28
7
PULL UP/
DOWN
TYPE 12
BUFFER
TYPE 11
HFOSC
LVCMOS
PU/PD
1
0/1
0
LVCMOS
PU/PD
0/1
0
The following list describes the table column headers:
1. BALL NUMBER: Ball numbers on the bottom side associated with each signal on the bottom.
2. BALL NAME: Mechanical name from package device (name is taken from muxmode 0).
3. SIGNAL NAME: Names of signals multiplexed on each ball (also notice that the name of the ball is the signal name in muxmode 0).
Note
Table 6-1, Pin Attributes, does not take into account the subsystem multiplexing signals. Subsystem multiplexing signals are described in
Section 6.3, Signal Descriptions.
4. MUXMODE: Multiplexing mode number:
a. MUXMODE 0 is the primary muxmode. The primary muxmode is not necessarily the default muxmode.
Note
The default muxmode is the mode at the release of the reset; also see the BALL RESET REL. MUXMODE column.
b. MUXMODE 1 through 7 are possible muxmodes for alternate functions. On each pin, some muxmodes are effectively used for alternate
functions, while some muxmodes are not used. Only MUXMODE values which correspond to defined functions should be used.
c. MCU_BOOTMODE pins are latched on the rising edge of MCU_PORz_OUT. BOOTMODE pins are latched on the rising edge of PORz_OUT.
d. An empty box means Not Applicable.
5. TYPE: Signal type and direction:
• I = Input
• O = Output
• IO = Input or Output
• IOD = Open drain terminal - Input or Output
76
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
6.
7.
8.
9.
10.
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
• IOZ = Input, Output or Three-state terminal
• OZ = Output or Three-state terminal
• A = Analog
• PWR = Power
• GND = Ground
• CAP = LDO Capacitor.
BALL RESET STATE: The state of the terminal at power-on reset:
• DRIVE 0 (OFF): The buffer drives VOL (pulldown or pullup resistor not activated).
• DRIVE 1 (OFF): The buffer drives VOH (pulldown or pullup resistor not activated).
• OFF: High-impedance
• PD: High-impedance with an active pulldown resistor
• PU: High-impedance with an active pullup resistor
• An empty box means Not Applicable.
BALL RESET REL. MUXMODE: This muxmode is automatically configured at the release of the rstoutn signal.
An empty box means Not Applicable.
I/O VOLTAGE VALUE: This column describes the IO voltage value (the corresponding power supply).
An empty box means Not Applicable.
POWER: The voltage supply that powers the terminal IO buffers.
An empty box means Not Applicable.
HYS: Indicates if the input buffer has hysteresis:
• Yes: With hysteresis
• No: Without hysteresis
An empty box means No.
For more information, see the hysteresis values in, Electrical Characteristics.
11. BUFFER TYPE: This column describes the associated output buffer type
An empty box means Not Applicable.
For drive strength of the associated output buffer, refer to, Electrical Characteristics.
12. PULL UP/DOWN TYPE: Indicates the presence of an internal pullup or pulldown resistor. Pullup and pulldown resistors can be enabled or disabled
via software.
• PU: Internal pullup
• PD: Internal pulldown
• PU/PD: Internal pullup and pulldown
• An empty box means No pull.
13. DSIS: The deselected input state (DSIS) indicates the state driven on the peripheral input (logic "0", logic "1", or "PIN" level) when the peripheral pin
function is not selected by any of the PINCNTLx registers.
• 0: Logic 0 driven on the input signal port of the peripheral.
• 1: Logic 1 driven on the input signal port of the peripheral.
• An empty box means Not Applicable.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
77
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
14. RXACTIVE / TXDISABLE: This column indicates the default value of the RXACTIVE / TXDISABLE bits in the PADCONFIG register.
• RXACTIVE: 0 = receiver disabled, 1 = receiver enabled.
• TXDISABLE: 0 = driver enabled, 1 = driver disabled.
• An empty box means Not Applicable.
Note
Configuring two pins to the same input signal is not supported as it can yield unexpected results. This can be easily prevented with the
proper software configuration (HiZ mode is not an input signal).
Note
When a pad is set into a multiplexing mode which is not defined by pin multiplexing, that pad’s behavior is undefined. This should be
avoided.
78
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
6.3 Signal Descriptions
Many signals are available on multiple pins, according to the software configuration of the pin multiplexing
options.
The following list describes the column headers:
1. SIGNAL NAME: The name of the signal passing through the pin.
Note
In Pin Attributes and Pin Multiplexing are not described the subsystem multiplexing signals.
2. DESCRIPTION: Description of the signal
3. PIN TYPE: Signal direction and type:
• I = Input
• O = Output
• IO = Input or Output
• IOD = Open drain terminal - Input or Output
• IOZ = Input, Output or Three-state terminal
• OZ = Output or Three-state terminal
• A = Analog
• PWR = Power
• GND = Ground
• CAP = LDO Capacitor
4. BALL: Associated balls bottom
For more information on the I/O cell configurations, see Pad Configuration Registers section of Device
Configuration chapter in the MAIN.
6.3.1 ADC
Note
The ADC can be configured to be used as a GPI. For more information, see Analog-to-Digital
Converter (ADC) section in Peripherals chapter in the device TRM.
6.3.1.1 MCU Domain
Table 6-2. ADC Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
MCU_ADC_EXT_TRIGGER0
ADC Trigger Input
I
A28, G25, H26
MCU_ADC_EXT_TRIGGER1
ADC Trigger Input
I
A27, G24, H27
PIN TYPE
[3]
BALL [4]
Table 6-3. ADC0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCU_ADC0_AIN0
ADC Analog Input 0
A
K25
MCU_ADC0_AIN1
ADC Analog Input 1
A
K26
MCU_ADC0_AIN2
ADC Analog Input 2
A
K28
MCU_ADC0_AIN3
ADC Analog Input 3
A
L28
MCU_ADC0_AIN4
ADC Analog Input 4
A
K24
MCU_ADC0_AIN5
ADC Analog Input 5
A
K27
MCU_ADC0_AIN6
ADC Analog Input 6
A
K29
MCU_ADC0_AIN7
ADC Analog Input 7
A
L29
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
79
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-4. ADC1 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
MCU_ADC1_AIN0
ADC Analog Input 0
A
N23
MCU_ADC1_AIN1
ADC Analog Input 1
A
M25
MCU_ADC1_AIN2
ADC Analog Input 2
A
L24
MCU_ADC1_AIN3
ADC Analog Input 3
A
L26
MCU_ADC1_AIN4
ADC Analog Input 4
A
N24
MCU_ADC1_AIN5
ADC Analog Input 5
A
M24
MCU_ADC1_AIN6
ADC Analog Input 6
A
L25
MCU_ADC1_AIN7
ADC Analog Input 7
A
L27
PIN TYPE
[3]
BALL [4]
I
P6
PIN TYPE
[3]
BALL [4]
6.3.2 DDRSS
6.3.2.1 MAIN Domain
Table 6-5. DDRSS Signal Descriptions
SIGNAL NAME [1]
DDR_RET
DESCRIPTION [2]
External IO Retention Enable
Table 6-6. DDRSS0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
DDR0_CKN
DDRSS Differential Clock (negative)
IO
J1
DDR0_CKP
DDRSS Differential Clock (positive)
IO
H1
DDR0_RESETn
DDRSS Reset
IO
K6
DDR0_CA0
DDRSS Command Address
IO
G4
DDR0_CA1
DDRSS Command Address
IO
H3
DDR0_CA2
DDRSS Command Address
IO
K5
DDR0_CA3
DDRSS Command Address
IO
J4
DDR0_CA4
DDRSS Command Address
IO
K2
DDRSS Command Address
IO
H5
IO Pad Calibration Resistor
A
H2
DDR0_CKE0
DDRSS Clock Enable
IO
G3
DDR0_CKE1
DDRSS Clock Enable
IO
J3
DDR0_CSn0_0
DDRSS Chip Select
IO
J5
DDR0_CSn0_1
DDRSS Chip Select
IO
K3
DDR0_CSn1_0
DDRSS Chip Select
IO
G5
DDR0_CSn1_1
DDRSS Chip Select
IO
J2
DDR0_DM0
DDRSS Data Mask
IO
A3
DDR0_DM1
DDRSS Data Mask
IO
E4
DDR0_DM2
DDRSS Data Mask
IO
N1
DDR0_DM3
DDRSS Data Mask
IO
R5
DDR0_DQ0
DDRSS Data
IO
A5
DDR0_DQ1
DDRSS Data
IO
A6
DDR0_DQ2
DDRSS Data
IO
B5
DDR0_DQ3
DDRSS Data
IO
C2
DDR0_DQ4
DDRSS Data
IO
B4
DDR0_DQ5
DDRSS Data
IO
C3
DDR0_DQ6
DDRSS Data
IO
A2
DDR0_CA5
DDR0_CAL0
80
(1)
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-6. DDRSS0 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
DDR0_DQ7
DDRSS Data
IO
A4
DDR0_DQ8
DDRSS Data
IO
D1
DDR0_DQ9
DDRSS Data
IO
C4
DDR0_DQ10
DDRSS Data
IO
F1
DDR0_DQ11
DDRSS Data
IO
G2
DDR0_DQ12
DDRSS Data
IO
F2
DDR0_DQ13
DDRSS Data
IO
F3
DDR0_DQ14
DDRSS Data
IO
D3
DDR0_DQ15
DDRSS Data
IO
F5
DDR0_DQ16
DDRSS Data
IO
L5
DDR0_DQ17
DDRSS Data
IO
M5
DDR0_DQ18
DDRSS Data
IO
N5
DDR0_DQ19
DDRSS Data
IO
L4
DDR0_DQ20
DDRSS Data
IO
L2
DDR0_DQ21
DDRSS Data
IO
L1
DDR0_DQ22
DDRSS Data
IO
N2
DDR0_DQ23
DDRSS Data
IO
N4
DDR0_DQ24
DDRSS Data
IO
T3
DDR0_DQ25
DDRSS Data
IO
T2
DDR0_DQ26
DDRSS Data
IO
P2
DDR0_DQ27
DDRSS Data
IO
P3
DDR0_DQ28
DDRSS Data
IO
P5
DDR0_DQ29
DDRSS Data
IO
R4
DDR0_DQ30
DDRSS Data
IO
T4
DDR0_DQ31
DDRSS Data
IO
T5
DDR0_DQS0N
DDRSS Complimentary Data Strobe
IO
B1
DDR0_DQS0P
DDRSS Data Strobe
IO
B2
DDR0_DQS1N
DDRSS Complimentary Data Strobe
IO
E2
DDR0_DQS1P
DDRSS Data Strobe
IO
E3
DDR0_DQS2N
DDRSS Complimentary Data Strobe
IO
M2
DDR0_DQS2P
DDRSS Data Strobe
IO
M3
DDR0_DQS3N
DDRSS Complimentary Data Strobe
IO
R1
DDR0_DQS3P
DDRSS Data Strobe
IO
R2
(1)
An external 240 Ω ±1% resistor must be connected between this pin and VSS. No external voltage should be applied to this pin.
6.3.3 GPIO
6.3.3.1 MAIN Domain
Table 6-7. GPIO0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
AC18
GPIO0_0
General Purpose Input/Output
IO
GPIO0_1
General Purpose Input/Output
IO
AC23
GPIO0_2
General Purpose Input/Output
IO
AG22
GPIO0_3
General Purpose Input/Output
IO
AF22
GPIO0_4
General Purpose Input/Output
IO
AJ23
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
81
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-7. GPIO0 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
GPIO0_5
General Purpose Input/Output
IO
AH23
GPIO0_6
General Purpose Input/Output
IO
AD20
GPIO0_7
General Purpose Input/Output
IO
AD22
GPIO0_8
General Purpose Input/Output
IO
AE20
GPIO0_9
General Purpose Input/Output
IO
AJ20
GPIO0_10
General Purpose Input/Output
IO
AG20
GPIO0_11
General Purpose Input/Output
IO
AD21
GPIO0_12
General Purpose Input/Output
IO
AF24
GPIO0_13
General Purpose Input/Output
IO
AJ24
GPIO0_14
General Purpose Input/Output
IO
AG24
GPIO0_15
General Purpose Input/Output
IO
AD24
GPIO0_16
General Purpose Input/Output
IO
AC24
GPIO0_17
General Purpose Input/Output
IO
AE24
GPIO0_18
General Purpose Input/Output
IO
AJ21
GPIO0_19
General Purpose Input/Output
IO
AE21
GPIO0_100
General Purpose Input/Output
IO
W28
GPIO0_101
General Purpose Input/Output
IO
V25
GPIO0_102
General Purpose Input/Output
IO
W27
GPIO0_103
General Purpose Input/Output
IO
W29
GPIO0_104
General Purpose Input/Output
IO
W26
GPIO0_105
General Purpose Input/Output
IO
Y29
GPIO0_106
General Purpose Input/Output
IO
Y27
GPIO0_107
General Purpose Input/Output
IO
W24
GPIO0_108
General Purpose Input/Output
IO
W25
GPIO0_109
General Purpose Input/Output
IO
V26
GPIO0_110
General Purpose Input/Output
IO
V24
GPIO0_111
General Purpose Input/Output
IO
AA2
GPIO0_112
General Purpose Input/Output
IO
Y4
GPIO0_113
General Purpose Input/Output
IO
AA1
GPIO0_114
General Purpose Input/Output
IO
AB5
GPIO0_115
General Purpose Input/Output
IO
AA3
GPIO0_116
General Purpose Input/Output
IO
Y3
GPIO0_117
General Purpose Input/Output
IO
W4
GPIO0_118
General Purpose Input/Output
IO
Y1
GPIO0_119
General Purpose Input/Output
IO
Y5
GPIO0_120
General Purpose Input/Output
IO
Y2
GPIO0_121
General Purpose Input/Output
IO
AB2
GPIO0_122
General Purpose Input/Output
IO
AB3
GPIO0_123
General Purpose Input/Output
IO
AC2
GPIO0_124
General Purpose Input/Output
IO
AB1
GPIO0_125
General Purpose Input/Output
IO
AA4
GPIO0_126
General Purpose Input/Output
IO
AB4
GPIO0_127
General Purpose Input/Output
IO
AC4
GPIO0_20
General Purpose Input/Output
IO
AH21
GPIO0_21
General Purpose Input/Output
IO
AE22
82
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-7. GPIO0 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
GPIO0_22
General Purpose Input/Output
IO
AG23
GPIO0_23
General Purpose Input/Output
IO
AF23
GPIO0_24
General Purpose Input/Output
IO
AD23
GPIO0_25
General Purpose Input/Output
IO
AH24
GPIO0_26
General Purpose Input/Output
IO
AG21
GPIO0_27
General Purpose Input/Output
IO
AE23
GPIO0_28
General Purpose Input/Output
IO
AC21
GPIO0_29
General Purpose Input/Output
IO
Y23
GPIO0_30
General Purpose Input/Output
IO
AF21
GPIO0_31
General Purpose Input/Output
IO
AB23
GPIO0_32
General Purpose Input/Output
IO
AJ25
GPIO0_33
General Purpose Input/Output
IO
AH25
GPIO0_34
General Purpose Input/Output
IO
AG25
GPIO0_35
General Purpose Input/Output
IO
AH26
GPIO0_36
General Purpose Input/Output
IO
AJ27
GPIO0_37
General Purpose Input/Output
IO
AJ26
GPIO0_38
General Purpose Input/Output
IO
AC22
GPIO0_39
General Purpose Input/Output
IO
AJ22
GPIO0_40
General Purpose Input/Output
IO
AH22
GPIO0_41
General Purpose Input/Output
IO
AD19
GPIO0_42
General Purpose Input/Output
IO
AD18
GPIO0_43
General Purpose Input/Output
IO
AF28
GPIO0_44
General Purpose Input/Output
IO
AE28
GPIO0_45
General Purpose Input/Output
IO
AE27
GPIO0_46
General Purpose Input/Output
IO
AD26
GPIO0_47
General Purpose Input/Output
IO
AD25
GPIO0_48
General Purpose Input/Output
IO
AC29
GPIO0_49
General Purpose Input/Output
IO
AE26
GPIO0_50
General Purpose Input/Output
IO
AC28
GPIO0_51
General Purpose Input/Output
IO
AC27
GPIO0_52
General Purpose Input/Output
IO
AB26
GPIO0_53
General Purpose Input/Output
IO
AB25
GPIO0_54
General Purpose Input/Output
IO
AJ28
GPIO0_55
General Purpose Input/Output
IO
AH27
GPIO0_56
General Purpose Input/Output
IO
AH29
GPIO0_57
General Purpose Input/Output
IO
AG28
GPIO0_58
General Purpose Input/Output
IO
AG27
GPIO0_59
General Purpose Input/Output
IO
AH28
GPIO0_60
General Purpose Input/Output
IO
AB24
GPIO0_61
General Purpose Input/Output
IO
AB29
GPIO0_62
General Purpose Input/Output
IO
AB28
GPIO0_63
General Purpose Input/Output
IO
AE29
GPIO0_64
General Purpose Input/Output
IO
AD28
GPIO0_65
General Purpose Input/Output
IO
AD27
GPIO0_66
General Purpose Input/Output
IO
AC25
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
83
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-7. GPIO0 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
GPIO0_67
General Purpose Input/Output
IO
AD29
GPIO0_68
General Purpose Input/Output
IO
AB27
GPIO0_69
General Purpose Input/Output
IO
AC26
GPIO0_70
General Purpose Input/Output
IO
AA24
GPIO0_71
General Purpose Input/Output
IO
AA28
GPIO0_72
General Purpose Input/Output
IO
Y24
GPIO0_73
General Purpose Input/Output
IO
AA25
GPIO0_74
General Purpose Input/Output
IO
AG26
GPIO0_75
General Purpose Input/Output
IO
AF27
GPIO0_76
General Purpose Input/Output
IO
AF26
GPIO0_77
General Purpose Input/Output
IO
AE25
GPIO0_78
General Purpose Input/Output
IO
AF29
GPIO0_79
General Purpose Input/Output
IO
AG29
GPIO0_80
General Purpose Input/Output
IO
Y25
GPIO0_81
General Purpose Input/Output
IO
AA26
GPIO0_82
General Purpose Input/Output
IO
AA29
GPIO0_83
General Purpose Input/Output
IO
Y26
GPIO0_84
General Purpose Input/Output
IO
AA27
GPIO0_85
General Purpose Input/Output
IO
U23
GPIO0_86
General Purpose Input/Output
IO
U26
GPIO0_87
General Purpose Input/Output
IO
V28
GPIO0_88
General Purpose Input/Output
IO
V29
GPIO0_89
General Purpose Input/Output
IO
V27
GPIO0_90
General Purpose Input/Output
IO
U28
GPIO0_91
General Purpose Input/Output
IO
U29
GPIO0_92
General Purpose Input/Output
IO
U25
GPIO0_93
General Purpose Input/Output
IO
U27
GPIO0_94
General Purpose Input/Output
IO
U24
GPIO0_95
General Purpose Input/Output
IO
R23
GPIO0_96
General Purpose Input/Output
IO
T23
GPIO0_97
General Purpose Input/Output
IO
Y28
GPIO0_98
General Purpose Input/Output
IO
V23
GPIO0_99
General Purpose Input/Output
IO
W23
PIN TYPE
[3]
BALL [4]
Table 6-8. GPIO1 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
GPIO1_0
General Purpose Input/Output
IO
AD5
GPIO1_1
General Purpose Input/Output
IO
W5
GPIO1_2
General Purpose Input/Output
IO
W6
GPIO1_3
General Purpose Input/Output
IO
W3
GPIO1_4
General Purpose Input/Output
IO
V4
GPIO1_5
General Purpose Input/Output
IO
W2
GPIO1_6
General Purpose Input/Output
IO
W1
GPIO1_7
General Purpose Input/Output
IO
AC5
84
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-8. GPIO1 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
GPIO1_8
General Purpose Input/Output
IO
AA5
GPIO1_9
General Purpose Input/Output
IO
Y6
GPIO1_10
General Purpose Input/Output
IO
AA6
GPIO1_11
General Purpose Input/Output
IO
U2
GPIO1_12
General Purpose Input/Output
IO
U3
GPIO1_13
General Purpose Input/Output
IO
V6
GPIO1_14
General Purpose Input/Output
IO
V5
GPIO1_15
General Purpose Input/Output
IO
R26
GPIO1_16
General Purpose Input/Output
IO
R25
GPIO1_17
General Purpose Input/Output
IO
P24
GPIO1_18
General Purpose Input/Output
IO
R24
GPIO1_19
General Purpose Input/Output
IO
P25
GPIO1_20
General Purpose Input/Output
IO
R29
GPIO1_21
General Purpose Input/Output
IO
P23
GPIO1_22
General Purpose Input/Output
IO
R28
GPIO1_23
General Purpose Input/Output
IO
T28
GPIO1_24
General Purpose Input/Output
IO
T29
GPIO1_25
General Purpose Input/Output
IO
T27
GPIO1_26
General Purpose Input/Output
IO
T24
GPIO1_27
General Purpose Input/Output
IO
T26
GPIO1_28
General Purpose Input/Output
IO
T25
GPIO1_29
General Purpose Input/Output
IO
U6
GPIO1_30
General Purpose Input/Output
IO
AD1
GPIO1_31
General Purpose Input/Output
IO
AC1
GPIO1_32
General Purpose Input/Output
IO
AC3
GPIO1_33
General Purpose Input/Output
IO
AD3
GPIO1_34
General Purpose Input/Output
IO
AD2
GPIO1_35
General Purpose Input/Output
IO
AE2
PIN TYPE
[3]
BALL [4]
6.3.3.2 WKUP Domain
Table 6-9. GPIO0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
WKUP_GPIO0_0
General Purpose Input/Output
IO
F26
WKUP_GPIO0_1
General Purpose Input/Output
IO
F25
WKUP_GPIO0_2
General Purpose Input/Output
IO
F28
WKUP_GPIO0_3
General Purpose Input/Output
IO
F27
WKUP_GPIO0_4
General Purpose Input/Output
IO
G25
WKUP_GPIO0_5
General Purpose Input/Output
IO
G24
WKUP_GPIO0_6
General Purpose Input/Output
IO
F29
WKUP_GPIO0_7
General Purpose Input/Output
IO
G28
WKUP_GPIO0_8
General Purpose Input/Output
IO
G27
WKUP_GPIO0_9
General Purpose Input/Output
IO
G26
WKUP_GPIO0_10
General Purpose Input/Output
IO
H26
WKUP_GPIO0_11
General Purpose Input/Output
IO
H27
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
85
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-9. GPIO0 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
WKUP_GPIO0_12
General Purpose Input/Output
IO
G29
WKUP_GPIO0_13
General Purpose Input/Output
IO
H28
WKUP_GPIO0_14
General Purpose Input/Output
IO
H29
WKUP_GPIO0_15
General Purpose Input/Output
IO
J27
WKUP_GPIO0_16
General Purpose Input/Output
IO
E20
WKUP_GPIO0_17
General Purpose Input/Output
IO
C21
WKUP_GPIO0_18
General Purpose Input/Output
IO
D21
WKUP_GPIO0_19
General Purpose Input/Output
IO
D20
WKUP_GPIO0_20
General Purpose Input/Output
IO
G19
WKUP_GPIO0_21
General Purpose Input/Output
IO
G20
WKUP_GPIO0_22
General Purpose Input/Output
IO
F20
WKUP_GPIO0_23
General Purpose Input/Output
IO
F21
WKUP_GPIO0_24
General Purpose Input/Output
IO
E21
WKUP_GPIO0_25
General Purpose Input/Output
IO
B22
WKUP_GPIO0_26
General Purpose Input/Output
IO
G21
WKUP_GPIO0_27
General Purpose Input/Output
IO
F19
WKUP_GPIO0_28
General Purpose Input/Output
IO
E19
WKUP_GPIO0_29
General Purpose Input/Output
IO
F22
WKUP_GPIO0_30
General Purpose Input/Output
IO
A23
WKUP_GPIO0_31
General Purpose Input/Output
IO
B23
WKUP_GPIO0_32
General Purpose Input/Output
IO
D22
WKUP_GPIO0_33
General Purpose Input/Output
IO
G22
WKUP_GPIO0_34
General Purpose Input/Output
IO
D23
WKUP_GPIO0_35
General Purpose Input/Output
IO
C23
WKUP_GPIO0_36
General Purpose Input/Output
IO
C22
WKUP_GPIO0_37
General Purpose Input/Output
IO
E22
WKUP_GPIO0_38
General Purpose Input/Output
IO
B27
WKUP_GPIO0_39
General Purpose Input/Output
IO
C25
WKUP_GPIO0_40
General Purpose Input/Output
IO
A28
WKUP_GPIO0_41
General Purpose Input/Output
IO
A27
WKUP_GPIO0_42
General Purpose Input/Output
IO
A26
WKUP_GPIO0_43
General Purpose Input/Output
IO
B25
WKUP_GPIO0_44
General Purpose Input/Output
IO
B26
WKUP_GPIO0_45
General Purpose Input/Output
IO
C24
WKUP_GPIO0_46
General Purpose Input/Output
IO
A25
WKUP_GPIO0_47
General Purpose Input/Output
IO
D24
WKUP_GPIO0_48
General Purpose Input/Output
IO
A24
WKUP_GPIO0_49
General Purpose Input/Output
IO
B24
WKUP_GPIO0_50
General Purpose Input/Output
IO
E23
WKUP_GPIO0_51
General Purpose Input/Output
IO
F23
WKUP_GPIO0_52
General Purpose Input/Output
IO
E27
WKUP_GPIO0_53
General Purpose Input/Output
IO
E24
WKUP_GPIO0_54
General Purpose Input/Output
IO
E28
WKUP_GPIO0_55
General Purpose Input/Output
IO
E25
WKUP_GPIO0_56
General Purpose Input/Output
IO
J29
86
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-9. GPIO0 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
WKUP_GPIO0_57
General Purpose Input/Output
IO
J28
WKUP_GPIO0_58
General Purpose Input/Output
IO
D29
WKUP_GPIO0_59
General Purpose Input/Output
IO
C29
WKUP_GPIO0_60
General Purpose Input/Output
IO
D26
WKUP_GPIO0_61
General Purpose Input/Output
IO
D25
WKUP_GPIO0_62
General Purpose Input/Output
IO
J25
WKUP_GPIO0_63
General Purpose Input/Output
IO
H24
WKUP_GPIO0_64
General Purpose Input/Output
IO
J26
WKUP_GPIO0_65
General Purpose Input/Output
IO
H25
WKUP_GPIO0_66
General Purpose Input/Output
IO
E26
WKUP_GPIO0_67
General Purpose Input/Output
IO
G23
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
87
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
6.3.4 I2C
6.3.4.1 MAIN Domain
Table 6-10. I2C0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
I2C0_SCL
I2C Clock
IOD
AC5
I2C0_SDA
I2C Data
IOD
AA5
PIN TYPE
[3]
BALL [4]
Table 6-11. I2C1 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
I2C1_SCL
I2C Clock
IOD
Y6
I2C1_SDA
I2C Data
IOD
AA6
PIN TYPE
[3]
BALL [4]
Table 6-12. I2C2 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
I2C2_SCL
I2C Clock
IOD
AA1, U23, W5
I2C2_SDA
I2C Data
IOD
AB5, U26, W6
PIN TYPE
[3]
BALL [4]
Table 6-13. I2C3 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
I2C3_SCL
I2C Clock
IOD
T26, V27, Y4
I2C3_SDA
I2C Data
IOD
T25, U28, W4
PIN TYPE
[3]
BALL [4]
Table 6-14. I2C4 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
I2C4_SCL
I2C Clock
IOD
AD19, P25, Y5
I2C4_SDA
I2C Data
IOD
AD18, R29, Y1
PIN TYPE
[3]
BALL [4]
Table 6-15. I2C5 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
I2C5_SCL
I2C Clock
IOD
T28, Y26
I2C5_SDA
I2C Data
IOD
AA27, T29
PIN TYPE
[3]
BALL [4]
Table 6-16. I2C6 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
I2C6_SCL
I2C Clock
IOD
AA3, U29, W2
I2C6_SDA
I2C Data
IOD
U25, W1, Y2
PIN TYPE
[3]
BALL [4]
6.3.4.2 MCU Domain
Table 6-17. I2C0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCU_I2C0_SCL
I2C Clock
IOD
J26
MCU_I2C0_SDA
I2C Data
IOD
H25
88
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-18. I2C1 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
MCU_I2C1_SCL
I2C Clock
IOD
F29, G27
MCU_I2C1_SDA
I2C Data
IOD
G26, G28
PIN TYPE
[3]
BALL [4]
6.3.4.3 WKUP Domain
Table 6-19. I2C0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
WKUP_I2C0_SCL
I2C Clock
IOD
J25
WKUP_I2C0_SDA
I2C Data
IOD
H24
PIN TYPE
[3]
BALL [4]
W2
6.3.5 I3C
6.3.5.1 MAIN Domain
Table 6-20. I3C0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
I3C0_SCL
I3C Clock
IO
I3C0_SDA
I3C Data
IO
W1
I3C0_SDAPULLEN
MAIN domain I3C Data Pull Enable
O
AB4, U2
PIN TYPE
[3]
BALL [4]
6.3.5.2 MCU Domain
Table 6-21. I3C0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCU_I3C0_SCL
I3C Clock
IO
D26
MCU_I3C0_SDA
I3C Data
IO
D25
MCU_I3C0_SDAPULLEN
MCU domain I3C Data Pull Enable
O
E26
PIN TYPE
[3]
BALL [4]
Table 6-22. I3C1 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCU_I3C1_SCL
I3C Clock
IO
G27
MCU_I3C1_SDA
I3C Data
IO
G26
MCU_I3C1_SDAPULLEN
MCU domain I3C Data Pull Enable
O
G23, H27
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
89
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
6.3.6 MCAN
6.3.6.1 MAIN Domain
Table 6-23. MCAN0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
MCAN0_RX
MCAN Receive Data
I
W5
MCAN0_TX
MCAN Transmit Data
O
W6
PIN TYPE
[3]
BALL [4]
Table 6-24. MCAN1 Signal Descriptions
SIGNAL NAME 1
DESCRIPTION [2]
MCAN1_RX
MCAN Receive Data
I
W3
MCAN1_TX
MCAN Transmit Data
O
V4
PIN TYPE
[3]
BALL [4]
Table 6-25. MCAN2 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCAN2_RX
MCAN Receive Data
I
AC2, W2
MCAN2_TX
MCAN Transmit Data
O
AB1, W1
PIN TYPE
[3]
BALL [4]
Table 6-26. MCAN3 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCAN3_RX
MCAN Receive Data
I
AC4
MCAN3_TX
MCAN Transmit Data
O
AD5
PIN TYPE
[3]
BALL [4]
Table 6-27. MCAN4 Signal Descriptions
SIGNAL NAME 1
DESCRIPTION [2]
MCAN4_RX
MCAN Receive Data
I
AJ20, AJ24
MCAN4_TX
MCAN Transmit Data
O
AE20, AF24
PIN TYPE
[3]
BALL [4]
Table 6-28. MCAN5 Signal Descriptions
SIGNAL NAME 1
DESCRIPTION [2]
MCAN5_RX
MCAN Receive Data
I
AD24, AE21
MCAN5_TX
MCAN Transmit Data
O
AG24, AJ21
PIN TYPE
[3]
BALL [4]
Table 6-29. MCAN6 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCAN6_RX
MCAN Receive Data
I
AE24, AG21
MCAN6_TX
MCAN Transmit Data
O
AC24, AH21
PIN TYPE
[3]
BALL [4]
Table 6-30. MCAN7 Signal Descriptions
SIGNAL NAME 1
DESCRIPTION [2]
MCAN7_RX
MCAN Receive Data
I
AG25, Y23
MCAN7_TX
MCAN Transmit Data
O
AC21, AH25
90
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-31. MCAN8 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
MCAN8_RX
MCAN Receive Data
I
AB23, AJ27
MCAN8_TX
MCAN Transmit Data
O
AF21, AH26
PIN TYPE
[3]
BALL [4]
Table 6-32. MCAN9 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCAN9_RX
MCAN Receive Data
I
AC27
MCAN9_TX
MCAN Transmit Data
O
AC28
PIN TYPE
[3]
BALL [4]
Table 6-33. MCAN10 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCAN10_RX
MCAN Receive Data
I
AB25
MCAN10_TX
MCAN Transmit Data
O
AB26
PIN TYPE
[3]
BALL [4]
Table 6-34. MCAN11 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCAN11_RX
MCAN Receive Data
I
AA28
MCAN11_TX
MCAN Transmit Data
O
AA24
PIN TYPE
[3]
BALL [4]
Table 6-35. MCAN12 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCAN12_RX
MCAN Receive Data
I
AA29
MCAN12_TX
MCAN Transmit Data
O
AA26
PIN TYPE
[3]
BALL [4]
Table 6-36. MCAN13 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCAN13_RX
MCAN Receive Data
I
AA27
MCAN13_TX
MCAN Transmit Data
O
Y26
PIN TYPE
[3]
BALL [4]
6.3.6.2 MCU Domain
Table 6-37. MCAN0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCU_MCAN0_RX
MCAN Receive Data
I
C29
MCU_MCAN0_TX
MCAN Transmit Data
O
D29
PIN TYPE
[3]
BALL [4]
Table 6-38. MCAN1 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCU_MCAN1_RX
MCAN Receive Data
I
G24
MCU_MCAN1_TX
MCAN Transmit Data
O
G25
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
91
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
6.3.7 MCSPI
6.3.7.1 MAIN Domain
Table 6-39. MCSPI0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
SPI0_CLK
SPI Clock
IO
AA1
SPI0_CS0
SPI Chip Select 0
IO
AA2
SPI0_CS1
SPI Chip Select 1
IO
Y4
SPI0_CS2
SPI Chip Select 2
IO
AC2
SPI0_CS3
SPI Chip Select 3
IO
AB1
SPI0_D0
SPI Data 0
IO
AB5
SPI0_D1
SPI Data 1
IO
AA3
PIN TYPE
[3]
BALL [4]
Y1
Table 6-40. MCSPI1 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
SPI1_CLK
SPI Clock
IO
SPI1_CS0
SPI Chip Select 0
IO
Y3
SPI1_CS1
SPI Chip Select 1
IO
W4
SPI1_CS2
SPI Chip Select 2
IO
AD19
SPI1_CS3
SPI Chip Select 3
IO
AD18
SPI1_D0
SPI Data 0
IO
Y5
SPI1_D1
SPI Data 1
IO
Y2
PIN TYPE
[3]
BALL [4]
Table 6-41. MCSPI2 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
SPI2_CLK
SPI Clock
IO
AB1
SPI2_CS0
SPI Chip Select 0
IO
AC2
SPI2_CS1
SPI Chip Select 1
IO
AB2
SPI2_CS2
SPI Chip Select 2
IO
AB3
SPI2_CS3
SPI Chip Select 3
IO
U2
SPI2_D0
SPI Data 0
IO
AC4
SPI2_D1
SPI Data 1
IO
AD5
PIN TYPE
[3]
BALL [4]
Table 6-42. MCSPI3 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
SPI3_CLK
SPI Clock
IO
Y25
SPI3_CS0
SPI Chip Select 0
IO
AA24
SPI3_CS1
SPI Chip Select 1
IO
AB26
SPI3_CS2
SPI Chip Select 2
IO
AB25
SPI3_CS3
SPI Chip Select 3
IO
Y24
SPI3_D0
SPI Data 0
IO
AA26
SPI3_D1
SPI Data 1
IO
AA29
PIN TYPE
[3]
BALL [4]
IO
W29
Table 6-43. MCSPI5 Signal Descriptions
SIGNAL NAME [1]
SPI5_CLK
92
DESCRIPTION [2]
SPI Clock
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-43. MCSPI5 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
SPI5_CS0
SPI Chip Select 0
IO
W27
SPI5_CS1
SPI Chip Select 1
IO
W25
SPI5_CS2
SPI Chip Select 2
IO
W28
SPI5_CS3
SPI Chip Select 3
IO
W23
SPI5_D0
SPI Data 0
IO
V25
SPI5_D1
SPI Data 1
IO
W24
PIN TYPE
[3]
BALL [4]
Table 6-44. MCSPI6 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
SPI6_CLK
SPI Clock
IO
AC22
SPI6_CS0
SPI Chip Select 0
IO
AC21
SPI6_CS1
SPI Chip Select 1
IO
AG20
SPI6_CS2
SPI Chip Select 2
IO
AD21
SPI6_CS3
SPI Chip Select 3
IO
AF21
SPI6_D0
SPI Data 0
IO
AJ22
SPI6_D1
SPI Data 1
IO
AH22
PIN TYPE
[3]
BALL [4]
U3
Table 6-45. MCSPI7 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
SPI7_CLK
SPI Clock
IO
SPI7_CS0
SPI Chip Select 0
IO
U2
SPI7_CS1
SPI Chip Select 1
IO
AB3
SPI7_CS2
SPI Chip Select 2
IO
AA4
SPI7_CS3
SPI Chip Select 3
IO
AB4
SPI7_D0
SPI Data 0
IO
V6
SPI7_D1
SPI Data 1
IO
V5
PIN TYPE
[3]
BALL [4]
E27
6.3.7.2 MCU Domain
Table 6-46. MCSPI0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCU_SPI0_CLK
SPI Clock
IO
MCU_SPI0_CS0
SPI Chip Select 0
IO
E25
MCU_SPI0_CS1
SPI Chip Select 1
IO
C23, G29
MCU_SPI0_CS2
SPI Chip Select 2
O
E22, H29
MCU_SPI0_CS3
SPI Chip Select 3
IO
G25
MCU_SPI0_D0
SPI Data 0
IO
E24
MCU_SPI0_D1
SPI Data 1
IO
E28
PIN TYPE
[3]
BALL [4]
Table 6-47. MCSPI1 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCU_SPI1_CLK
SPI Clock
IO
F26
MCU_SPI1_CS0
SPI Chip Select 0
IO
F27
MCU_SPI1_CS1
SPI Chip Select 1
O
G22, H28
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
93
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-47. MCSPI1 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
MCU_SPI1_CS2
SPI Chip Select 2
O
D23, J27
MCU_SPI1_CS3
SPI Chip Select 3
IO
G24
MCU_SPI1_D0
SPI Data 0
IO
F25
MCU_SPI1_D1
SPI Data 1
IO
F28
PIN TYPE
[3]
BALL [4]
6.3.8 UART
6.3.8.1 MAIN Domain
Table 6-48. UART0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
UART0_CTSn
UART Clear to Send (active low)
I
AC2, Y3
UART0_DCDn
UART Data Carrier Detect (active low)
I
P23
UART0_DSRn
UART Data Set Ready (active low)
I
R28
UART0_DTRn
UART Data Terminal Ready (active low)
O
T27
UART0_RIn
UART Ring Indicator
I
T24
UART0_RTSn
UART Request to Send (active low)
O
AA2, AB1
UART0_RXD
UART Receive Data
I
AB2, AC23
UART0_TXD
UART Transmit Data
O
AB3, AG22
PIN TYPE
[3]
BALL [4]
Table 6-49. UART1 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
UART1_CTSn
UART Clear to Send (active low)
I
AA1, AC4
UART1_RTSn
UART Request to Send (active low)
O
AB5, AD5
UART1_RXD
UART Receive Data
I
AA4, AF22
UART1_TXD
UART Transmit Data
O
AB4, AJ23
PIN TYPE
[3]
BALL [4]
AE25
Table 6-50. UART2 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
UART2_CTSn
UART Clear to Send (active low)
I
UART2_RTSn
UART Request to Send (active low)
O
AF29
UART2_RXD
UART Receive Data
I
AA26, AH23, Y1
UART2_TXD
UART Transmit Data
O
AA24, AD22, Y5
PIN TYPE
[3]
BALL [4]
AD19, U27
Table 6-51. UART3 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
UART3_CTSn
UART Clear to Send (active low)
I
UART3_RTSn
UART Request to Send (active low)
O
AD18, U24
UART3_RXD
UART Receive Data
I
AE27, T26, V28, Y23
UART3_TXD
UART Transmit Data
O
AC21, AD26, T25,
V29
PIN TYPE
[3]
BALL [4]
I
AE29, Y29
Table 6-52. UART4 Signal Descriptions
SIGNAL NAME [1]
UART4_CTSn
94
DESCRIPTION [2]
UART Clear to Send (active low)
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-52. UART4 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
UART4_RTSn
UART Request to Send (active low)
O
AD28, Y27
UART4_RXD
UART Receive Data
I
AG28, P24, W23
UART4_TXD
UART Transmit Data
O
AG27, R24, W28
PIN TYPE
[3]
BALL [4]
Y1
Table 6-53. UART5 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
UART5_CTSn
UART Clear to Send (active low)
I
UART5_RTSn
UART Request to Send (active low)
O
Y5
UART5_RXD
UART Receive Data
I
AE29, Y29, Y3
UART5_TXD
UART Transmit Data
O
AD28, W4, Y27
PIN TYPE
[3]
BALL [4]
Table 6-54. UART6 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
UART6_CTSn
UART Clear to Send (active low)
I
R23, W3
UART6_RTSn
UART Request to Send (active low)
O
T23, V4
UART6_RXD
UART Receive Data
I
AC27, T27, U27, W2
UART6_TXD
UART Transmit Data
O
AB26, T24, U24, W1
PIN TYPE
[3]
BALL [4]
Table 6-55. UART7 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
UART7_CTSn
UART Clear to Send (active low)
I
P24
UART7_RTSn
UART Request to Send (active low)
O
R24
UART7_RXD
UART Receive Data
I
R26
UART7_TXD
UART Transmit Data
O
R25
PIN TYPE
[3]
BALL [4]
Table 6-56. UART8 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
UART8_CTSn
UART Clear to Send (active low)
I
AF27, P23
UART8_RTSn
UART Request to Send (active low)
O
AF26, R28
UART8_RXD
UART Receive Data
I
P25, Y24
UART8_TXD
UART Transmit Data
O
AA25, R29
PIN TYPE
[3]
BALL [4]
Table 6-57. UART9 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
UART9_CTSn
UART Clear to Send (active low)
I
T27, W2
UART9_RTSn
UART Request to Send (active low)
O
T24, W1
UART9_RXD
UART Receive Data
I
T28, W3
UART9_TXD
UART Transmit Data
O
T29, V4
PIN TYPE
[3]
BALL [4]
I
C23, D26, H29
6.3.8.2 MCU Domain
Table 6-58. UART0 Signal Descriptions
SIGNAL NAME [1]
MCU_UART0_CTSn
DESCRIPTION [2]
UART Clear to Send (active low)
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
95
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-58. UART0 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
MCU_UART0_RTSn
UART Request to Send (active low)
O
D25, E22, J27
MCU_UART0_RXD
UART Receive Data
I
G22, H27, H28
MCU_UART0_TXD
UART Transmit Data
O
D23, G29, H26
PIN TYPE
[3]
BALL [4]
6.3.8.3 WKUP Domain
Table 6-59. UART0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
WKUP_UART0_CTSn
UART Clear to Send (active low)
I
F29
WKUP_UART0_RTSn
UART Request to Send (active low)
O
G28
WKUP_UART0_RXD
UART Receive Data
I
J29
WKUP_UART0_TXD
UART Transmit Data
O
J28
PIN TYPE
[3]
BALL [4]
6.3.9 MDIO
6.3.9.1 MCU Domain
Table 6-60. MDIO0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCU_MDIO0_MDC
MDIO Clock
O
F23
MCU_MDIO0_MDIO
MDIO Data
IO
E23
6.3.10 CPSW2G
Note
The subsystem (SS) applies to both CPSW2G and the CPTS. For more details about CPTS signal
characteristics, see the Section 6.3.21, CPTS signal descriptions.
6.3.10.1 MCU Domain
Table 6-61. CPSW2G0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
MCU_RGMII1_RXC
RGMII Receive Clock
I
C24
MCU_RGMII1_RX_CTL
RGMII Receive Control
I
C25
MCU_RGMII1_TXC
RGMII Transmit Clock
O
B26
MCU_RGMII1_TX_CTL
RGMII Transmit Control
O
B27
MCU_RGMII1_RD0
RGMII Receive Data 0
I
B24
MCU_RGMII1_RD1
RGMII Receive Data 1
I
A24
MCU_RGMII1_RD2
RGMII Receive Data 2
I
D24
MCU_RGMII1_RD3
RGMII Receive Data 3
I
A25
MCU_RGMII1_TD0
RGMII Transmit Data 0
O
B25
MCU_RGMII1_TD1
RGMII Transmit Data 1
O
A26
MCU_RGMII1_TD2
RGMII Transmit Data 2
O
A27
MCU_RGMII1_TD3
RGMII Transmit Data 3
O
A28
MCU_RMII1_CRS_DV
RMII Carrier Sense / Data Valid
I
B27
MCU_RMII1_REF_CLK
RMII Reference Clock
I
C24
MCU_RMII1_RX_ER
RMII Receive Data Error
I
C25
96
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-61. CPSW2G0 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
MCU_RMII1_TX_EN
RMII Transmit Enable
O
B26
MCU_RMII1_RXD0
RMII Receive Data 0
I
B24
MCU_RMII1_RXD1
RMII Receive Data 1
I
A24
MCU_RMII1_TXD0
RMII Transmit Data 0
O
B25
MCU_RMII1_TXD1
RMII Transmit Data 1
O
A26
PIN TYPE
[3]
BALL [4]
OZ
AA25, AJ28, Y29
6.3.11 CPSW9G
6.3.11.1 MAIN Domain
Table 6-62. CPSW9G0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
CLKOUT
RMII Clock Output (50 MHz). This pin is used for clock
source to the external PHY and must be routed back to
the RMII_REF_CLK pin for proper device operation.
MDIO0_MDC
MDIO Clock
O
V24
MDIO0_MDIO
MDIO Data
IO
V26
RGMII1_RXC
RGMII Receive Clock
I
AD22
RGMII1_RX_CTL
RGMII Receive Control
I
AH23
RGMII1_TXC
RGMII Transmit Clock
O
AE24
RGMII1_TX_CTL
RGMII Transmit Control
O
AC24
RGMII2_RXC
RGMII Receive Clock
I
AE23
RGMII2_RX_CTL
RGMII Receive Control
I
AH24
RGMII2_TXC
RGMII Transmit Clock
O
AJ26
RGMII2_TX_CTL
RGMII Transmit Control
O
AJ27
RGMII3_RXC
RGMII Receive Clock
I
AE26
RGMII3_RX_CTL
RGMII Receive Control
I
AD25
RGMII3_TXC
RGMII Transmit Clock
O
AH28
RGMII3_TX_CTL
RGMII Transmit Control
O
AG27
RGMII4_RXC
RGMII Receive Clock
I
AC26
RGMII4_RX_CTL
RGMII Receive Control
I
AD29
RGMII4_TXC
RGMII Transmit Clock
O
AG29
RGMII4_TX_CTL
RGMII Transmit Control
O
AF29
RGMII5_RXC
RGMII Receive Clock
I
U25
RGMII5_RX_CTL
RGMII Receive Control
I
U26
RGMII5_TXC
RGMII Transmit Clock
O
U29
RGMII5_TX_CTL
RGMII Transmit Control
O
U23
RGMII6_RXC
RGMII Receive Clock
I
W26
RGMII6_RX_CTL
RGMII Receive Control
I
V23
RGMII6_TXC
RGMII Transmit Clock
O
W29
RGMII6_TX_CTL
RGMII Transmit Control
O
Y28
RGMII7_RXC
RGMII Receive Clock
I
AD22
RGMII7_RX_CTL
RGMII Receive Control
I
AH23
RGMII7_TXC
RGMII Transmit Clock
O
AE24
RGMII7_TX_CTL
RGMII Transmit Control
O
AC24
RGMII8_RXC
RGMII Receive Clock
I
AE23
RGMII8_RX_CTL
RGMII Receive Control
I
AH24
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
97
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-62. CPSW9G0 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
RGMII8_TXC
RGMII Transmit Clock
O
AJ26
RGMII8_TX_CTL
RGMII Transmit Control
O
AJ27
RGMII1_RD0
RGMII Receive Data 0
I
AC23
RGMII1_RD1
RGMII Receive Data 1
I
AG22
RGMII1_RD2
RGMII Receive Data 2
I
AF22
RGMII1_RD3
RGMII Receive Data 3
I
AJ23
RGMII1_TD0
RGMII Transmit Data 0
O
AF24
RGMII1_TD1
RGMII Transmit Data 1
O
AJ24
RGMII1_TD2
RGMII Transmit Data 2
O
AG24
RGMII1_TD3
RGMII Transmit Data 3
O
AD24
RGMII2_RD0
RGMII Receive Data 0
I
AE22
RGMII2_RD1
RGMII Receive Data 1
I
AG23
RGMII2_RD2
RGMII Receive Data 2
I
AF23
RGMII2_RD3
RGMII Receive Data 3
I
AD23
RGMII2_TD0
RGMII Transmit Data 0
O
AJ25
RGMII2_TD1
RGMII Transmit Data 1
O
AH25
RGMII2_TD2
RGMII Transmit Data 2
O
AG25
RGMII2_TD3
RGMII Transmit Data 3
O
AH26
RGMII3_RD0
RGMII Receive Data 0
I
AF28
RGMII3_RD1
RGMII Receive Data 1
I
AE28
RGMII3_RD2
RGMII Receive Data 2
I
AE27
RGMII3_RD3
RGMII Receive Data 3
I
AD26
RGMII3_TD0
RGMII Transmit Data 0
O
AJ28
RGMII3_TD1
RGMII Transmit Data 1
O
AH27
RGMII3_TD2
RGMII Transmit Data 2
O
AH29
RGMII3_TD3
RGMII Transmit Data 3
O
AG28
RGMII4_RD0
RGMII Receive Data 0
I
AE29
RGMII4_RD1
RGMII Receive Data 1
I
AD28
RGMII4_RD2
RGMII Receive Data 2
I
AD27
RGMII4_RD3
RGMII Receive Data 3
I
AC25
RGMII4_TD0
RGMII Transmit Data 0
O
AG26
RGMII4_TD1
RGMII Transmit Data 1
O
AF27
RGMII4_TD2
RGMII Transmit Data 2
O
AF26
RGMII4_TD3
RGMII Transmit Data 3
O
AE25
RGMII5_RD0
RGMII Receive Data 0
I
T23
RGMII5_RD1
RGMII Receive Data 1
I
R23
RGMII5_RD2
RGMII Receive Data 2
I
U24
RGMII5_RD3
RGMII Receive Data 3
I
U27
RGMII5_TD0
RGMII Transmit Data 0
O
U28
RGMII5_TD1
RGMII Transmit Data 1
O
V27
RGMII5_TD2
RGMII Transmit Data 2
O
V29
RGMII5_TD3
RGMII Transmit Data 3
O
V28
RGMII6_RD0
RGMII Receive Data 0
I
W25
RGMII6_RD1
RGMII Receive Data 1
I
W24
RGMII6_RD2
RGMII Receive Data 2
I
Y27
98
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-62. CPSW9G0 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
RGMII6_RD3
RGMII Receive Data 3
I
Y29
RGMII6_TD0
RGMII Transmit Data 0
O
W27
RGMII6_TD1
RGMII Transmit Data 1
O
V25
RGMII6_TD2
RGMII Transmit Data 2
O
W28
RGMII6_TD3
RGMII Transmit Data 3
O
W23
RGMII7_RD0
RGMII Receive Data 0
I
AC23
RGMII7_RD1
RGMII Receive Data 1
I
AG22
RGMII7_RD2
RGMII Receive Data 2
I
AF22
RGMII7_RD3
RGMII Receive Data 3
I
AJ23
RGMII7_TD0
RGMII Transmit Data 0
O
AF24
RGMII7_TD1
RGMII Transmit Data 1
O
AJ24
RGMII7_TD2
RGMII Transmit Data 2
O
AG24
RGMII7_TD3
RGMII Transmit Data 3
O
AD24
RGMII8_RD0
RGMII Receive Data 0
I
AE22
RGMII8_RD1
RGMII Receive Data 1
I
AG23
RGMII8_RD2
RGMII Receive Data 2
I
AF23
RGMII8_RD3
RGMII Receive Data 3
I
AD23
RGMII8_TD0
RGMII Transmit Data 0
O
AJ25
RGMII8_TD1
RGMII Transmit Data 1
O
AH25
RGMII8_TD2
RGMII Transmit Data 2
O
AG25
RGMII8_TD3
RGMII Transmit Data 3
O
AH26
RMII1_CRS_DV
RMII Carrier Sense / Data Valid
I
AF22
RMII1_RX_ER
RMII Receive Data Error
I
AJ23
RMII1_TX_EN
RMII Transmit Enable
O
AD20
RMII2_CRS_DV
RMII Carrier Sense / Data Valid
I
AF23
RMII2_RX_ER
RMII Receive Data Error
I
AD23
RMII2_TX_EN
RMII Transmit Enable
O
AJ25
RMII3_CRS_DV
RMII Carrier Sense / Data Valid
I
AE27
RMII3_RX_ER
RMII Receive Data Error
I
AD26
RMII3_TX_EN
RMII Transmit Enable
O
AE26
RMII4_CRS_DV
RMII Carrier Sense / Data Valid
I
AD27
RMII4_RX_ER
RMII Receive Data Error
I
AC25
RMII4_TX_EN
RMII Transmit Enable
O
AG26
RMII5_CRS_DV
RMII Carrier Sense / Data Valid
I
AD21
RMII5_RX_ER
RMII Receive Data Error
I
AE21
RMII5_TX_EN
RMII Transmit Enable
O
AG21
RMII6_CRS_DV
RMII Carrier Sense / Data Valid
I
AB23
RMII6_RX_ER
RMII Receive Data Error
I
AC21
RMII6_TX_EN
RMII Transmit Enable
O
AC22
RMII7_CRS_DV
RMII Carrier Sense / Data Valid
I
U23
RMII7_RX_ER
RMII Receive Data Error
I
U26
RMII7_TX_EN
RMII Transmit Enable
O
U29
RMII8_CRS_DV
RMII Carrier Sense / Data Valid
I
Y28
RMII8_RX_ER
RMII Receive Data Error
I
V23
RMII8_TX_EN
RMII Transmit Enable
O
W29
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
99
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-62. CPSW9G0 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
RMII1_RXD0
RMII Receive Data 0
I
AC23
RMII1_RXD1
RMII Receive Data 1
I
AG22
RMII1_TXD0
RMII Transmit Data 0
O
AH23
RMII1_TXD1
RMII Transmit Data 1
O
AD22
RMII2_RXD0
RMII Receive Data 0
I
AE22
RMII2_RXD1
RMII Receive Data 1
I
AG23
RMII2_TXD0
RMII Transmit Data 0
O
AH24
RMII2_TXD1
RMII Transmit Data 1
O
AE23
RMII3_RXD0
RMII Receive Data 0
I
AE28
RMII3_RXD1
RMII Receive Data 1
I
AF28
RMII3_TXD0
RMII Transmit Data 0
O
AC29
RMII3_TXD1
RMII Transmit Data 1
O
AD25
RMII4_RXD0
RMII Receive Data 0
I
AE29
RMII4_RXD1
RMII Receive Data 1
I
AD28
RMII4_TXD0
RMII Transmit Data 0
O
AC26
RMII4_TXD1
RMII Transmit Data 1
O
AD29
RMII5_RXD0
RMII Receive Data 0
I
AJ20
RMII5_RXD1
RMII Receive Data 1
I
AG20
RMII5_TXD0
RMII Transmit Data 0
O
AH21
RMII5_TXD1
RMII Transmit Data 1
O
AJ21
RMII6_RXD0
RMII Receive Data 0
I
Y23
RMII6_RXD1
RMII Receive Data 1
I
AF21
RMII6_TXD0
RMII Transmit Data 0
O
AJ22
RMII6_TXD1
RMII Transmit Data 1
O
AH22
RMII7_RXD0
RMII Receive Data 0
I
T23
RMII7_RXD1
RMII Receive Data 1
I
R23
RMII7_TXD0
RMII Transmit Data 0
O
U28
RMII7_TXD1
RMII Transmit Data 1
O
V27
RMII8_RXD0
RMII Receive Data 0
I
W25
RMII8_RXD1
RMII Receive Data 1
I
W24
RMII8_TXD0
RMII Transmit Data 0
O
W27
RMII8_TXD1
RMII Transmit Data 1
O
V25
RMII_REF_CLK
RMII Reference Clock
I
AD18
100
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
6.3.12 ECAP
6.3.12.1 MAIN Domain
Table 6-63. ECAP0 Signal Descriptions
SIGNAL NAME [1]
ECAP0_IN_APWM_OUT
DESCRIPTION [2]
Enhanced Capture (ECAP) Input or Auxiliary PWM
(APWM) Ouput
PIN TYPE
[3]
BALL [4]
IO
P24, U2
PIN TYPE
[3]
BALL [4]
IO
R24, V6
PIN TYPE
[3]
BALL [4]
IO
R28, V5
PIN TYPE
[3]
BALL [4]
Table 6-64. ECAP1 Signal Descriptions
SIGNAL NAME [1]
ECAP1_IN_APWM_OUT
DESCRIPTION [2]
Enhanced Capture (ECAP) Input or Auxiliary PWM
(APWM) Ouput
Table 6-65. ECAP2 Signal Descriptions
SIGNAL NAME [1]
ECAP2_IN_APWM_OUT
DESCRIPTION [2]
Enhanced Capture (ECAP) Input or Auxiliary PWM
(APWM) Ouput
6.3.13 EQEP
6.3.13.1 MAIN Domain
Table 6-66. EQEP0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
EQEP0_A
EQEP Quadrature Input A
I
AC2
EQEP0_B
EQEP Quadrature Input B
I
AB1
EQEP0_I
EQEP Index
IO
AD5
EQEP0_S
EQEP Strobe
IO
AC4
PIN TYPE
[3]
BALL [4]
I
AD23
Table 6-67. EQEP1 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
EQEP1_A
EQEP Quadrature Input A
EQEP1_B
EQEP Quadrature Input B
I
AH24
EQEP1_I
EQEP Index
IO
AJ25
EQEP1_S
EQEP Strobe
IO
AG21
PIN TYPE
[3]
BALL [4]
I
T27
Table 6-68. EQEP2 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
EQEP2_A
EQEP Quadrature Input A
EQEP2_B
EQEP Quadrature Input B
I
T24
EQEP2_I
EQEP Index
IO
P23
EQEP2_S
EQEP Strobe
IO
R28
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
101
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
6.3.14 EHRPWM
6.3.14.1 MAIN Domain
Table 6-69. EHRPWM Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
EHRPWM_SOCA
EHRPWM Start of Conversion A
O
U25
EHRPWM_SOCB
EHRPWM Start of Conversion B
O
R23
PIN TYPE
[3]
BALL [4]
Table 6-70. EHRPWM0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
EHRPWM0_A
EHRPWM Output A
IO
V29
EHRPWM0_B
EHRPWM Output B
IO
V27
EHRPWM0_SYNCI
Sync Input to EHRPWM module from an external pin
I
U23
EHRPWM0_SYNCO
Sync Output to EHRPWM module to an external pin
O
U26
EHRPWM_TZn_IN0
EHRPWM Trip Zone Input 0 (active low)
I
V28
PIN TYPE
[3]
BALL [4]
Table 6-71. EHRPWM1 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
EHRPWM1_A
EHRPWM Output A
IO
U28
EHRPWM1_B
EHRPWM Output B
IO
U29
EHRPWM_TZn_IN1
EHRPWM Trip Zone Input 1 (active low)
I
U25
PIN TYPE
[3]
BALL [4]
Table 6-72. EHRPWM2 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
EHRPWM2_A
EHRPWM Output A
IO
U27
EHRPWM2_B
EHRPWM Output B
IO
U24
EHRPWM_TZn_IN2
EHRPWM Trip Zone Input 2 (active low)
I
R23
PIN TYPE
[3]
BALL [4]
Table 6-73. EHRPWM3 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
EHRPWM3_A
EHRPWM Output A
IO
V23
EHRPWM3_B
EHRPWM Output B
IO
W23
EHRPWM3_SYNCI
Sync Input to EHRPWM module from an external pin
I
W28
EHRPWM3_SYNCO
Sync Output to EHRPWM module to an external pin
O
V25
EHRPWM_TZn_IN3
EHRPWM Trip Zone Input 3 (active low)
I
W27
PIN TYPE
[3]
BALL [4]
Table 6-74. EHRPWM4 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
EHRPWM4_A
EHRPWM Output A
IO
W29
EHRPWM4_B
EHRPWM Output B
IO
W26
EHRPWM_TZn_IN4
EHRPWM Trip Zone Input 4 (active low)
I
Y29
PIN TYPE
[3]
BALL [4]
Table 6-75. EHRPWM5 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
EHRPWM5_A
EHRPWM Output A
IO
Y27
EHRPWM5_B
EHRPWM Output B
IO
W24
102
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-75. EHRPWM5 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
EHRPWM_TZn_IN5
EHRPWM Trip Zone Input 5 (active low)
PIN TYPE
[3]
BALL [4]
I
W25
6.3.15 USB
6.3.15.1 MAIN Domain
Note
USB3 functionality is available on the SERDES pins. For more information, refer to Section 6.3.16,
SERDES.
Table 6-76. USB0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
USB0_DM
USB 2.0 Differential Data (negative)
IO
AJ5
USB0_DP
USB 2.0 Differential Data (positive)
IO
AH6
USB0_DRVVBUS
USB VBUS control output (active high)
O
T25, T26, U6, V4, W3
USB0_ID
USB 2.0 Dual-Role Device Role Select
A
AC6
Pin to connect to calibration resistor
A
AB6
USB Level-shifted VBUS Input
A
AC7
USB0_RCALIB
USB0_VBUS
(1)
(2)
(2)
(1)
An external resistor divider is required to limit the voltage applied to the device pin. For more information, see Section 9.3.4, USB
Design Guidelines.
An external 500 Ω ±1% resistor must be connected between this pin and VSS, even when the pin is unused.
Table 6-77. USB1 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
USB1_DM
USB 2.0 Differential Data (negative)
IO
AH7
USB1_DP
USB 2.0 Differential Data (positive)
IO
AJ6
USB1_DRVVBUS
USB VBUS control output (active high)
O
T25, T26, U6, V4, W3
USB1_ID
USB 2.0 Dual-Role Device Role Select
A
AD7
Pin to connect to calibration resistor
A
AD9
USB Level-shifted VBUS Input
A
AD8
USB1_RCALIB
USB1_VBUS
(1)
(2)
(2)
(1)
An external resistor divider is required to limit the voltage applied to the device pin. For more information, see Section 9.3.4, USB
Design Guidelines.
An external 500 Ω ±1% resistor must be connected between this pin and VSS, even when the pin is unused.
6.3.16 SERDES
6.3.16.1 MAIN Domain
Table 6-78. SERDES0 Signal Descriptions
SIGNAL NAME [1]
(2)
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
PCIE0_CLKREQn
PCIE Clock Request Signal
IO
W2
PCIE_REFCLK0N
PCIE Reference Clock Input/Output (negative)
IO
AE17
PCIE_REFCLK0P
PCIE Reference Clock Input/Output (positive)
IO
AD16
External Calibration Resistor
A
AE18
SERDES0_RX0_N
SERDES Differential Receive Data (negative)
I
AH19
SERDES0_RX0_P
SERDES Differential Receive Data (positive)
I
AJ18
SERDES0_RX1_N
SERDES Differential Receive Data (negative)
I
AH18
SERDES0_RX1_P
SERDES Differential Receive Data (positive)
I
AJ17
SERDES0_REXT
(1)
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
103
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-78. SERDES0 Signal Descriptions (continued)
SIGNAL NAME [1]
(2)
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
SERDES0_TX0_N
SERDES Differential Transmit Data (negative)
O
AF19
SERDES0_TX0_P
SERDES Differential Transmit Data (positive)
O
AG18
SERDES0_TX1_N
SERDES Differential Transmit Data (negative)
O
AF18
SERDES0_TX1_P
SERDES Differential Transmit Data (positive)
O
AG17
(1)
(2)
An external 3.01 kΩ ±1% resistor must be connected between this pin and VSS, even when the pin is unused.
The functionality of these pins is controlled by SERDES0_LN[1:0]_CTRL LANE_FUNC_SEL.
Table 6-79. SERDES1 Signal Descriptions
SIGNAL NAME [1] (2)
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
W1
PCIE1_CLKREQn
PCIE Clock Request Signal
IO
PCIE_REFCLK1N
PCIE Reference Clock Input/Output (negative)
IO
AE14
PCIE_REFCLK1P
PCIE Reference Clock Input/Output (positive)
IO
AD15
SERDES1_REXT
(1)
External Calibration Resistor
A
AE13
SERDES1_RX0_N
SERDES Differential Receive Data (negative)
I
AH15
SERDES1_RX0_P
SERDES Differential Receive Data (positive)
I
AJ14
SERDES1_RX1_N
SERDES Differential Receive Data (negative)
I
AH16
SERDES1_RX1_P
SERDES Differential Receive Data (positive)
I
AJ15
SERDES1_TX0_N
SERDES Differential Transmit Data (negative)
O
AF15
SERDES1_TX0_P
SERDES Differential Transmit Data (positive)
O
AG14
SERDES1_TX1_N
SERDES Differential Transmit Data (negative)
O
AF16
SERDES1_TX1_P
SERDES Differential Transmit Data (positive)
O
AG15
(1)
(2)
The external 3.01 kΩ ±1% resistor must be connected between this pin and VSS, even when the pin is unused.
The functionality of these pins is controlled by SERDES1_LN[1:0]_CTRL LANE_FUNC_SEL.
Table 6-80. SERDES2 Signal Descriptions
SIGNAL NAME [1] (2)
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
PCIE2_CLKREQn
PCIE Clock Request Signal
IO
P23
PCIE_REFCLK2N
PCIE Reference Clock Input/Output (negative)
IO
AE11
PCIE_REFCLK2P
PCIE Reference Clock Input/Output (positive)
IO
AD12
SERDES2_REXT
(1)
External Calibration Resistor
A
AD13
SERDES2_RX0_N
SERDES Differential Receive Data (negative)
I
AH13
SERDES2_RX0_P
SERDES Differential Receive Data (positive)
I
AJ12
SERDES2_RX1_N
SERDES Differential Receive Data (negative)
I
AH12
SERDES2_RX1_P
SERDES Differential Receive Data (positive)
I
AJ11
SERDES2_TX0_N
SERDES Differential Transmit Data (negative)
O
AF13
SERDES2_TX0_P
SERDES Differential Transmit Data (positive)
O
AG12
SERDES2_TX1_N
SERDES Differential Transmit Data (negative)
O
AF12
SERDES2_TX1_P
SERDES Differential Transmit Data (positive)
O
AG11
(1)
(2)
The external 3.01 kΩ ±1% resistor must be connected between this pin and VSS, even when the pin is unused.
The functionality of these pins is controlled by SERDES2_LN[1:0]_CTRL LANE_FUNC_SEL.
Table 6-81. SERDES3 Signal Descriptions
SIGNAL NAME [1]
(2)
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
PCIE3_CLKREQn
PCIE Clock Request Signal
IO
R28
PCIE_REFCLK3N
PCIE Reference Clock Input/Output (negative)
IO
AE9
104
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-81. SERDES3 Signal Descriptions (continued)
PIN TYPE
[3]
BALL [4]
PCIE Reference Clock Input/Output (positive)
IO
AD10
External Calibration Resistor
A
AE8
SERDES3_RX0_N
SERDES Differential Receive Data (negative)
I
AH9
SERDES3_RX0_P
SERDES Differential Receive Data (positive)
I
AJ8
SERDES3_RX1_N
SERDES Differential Receive Data (negative)
I
AH10
SERDES3_RX1_P
SERDES Differential Receive Data (positive)
I
AJ9
SERDES3_TX0_N
SERDES Differential Transmit Data (negative)
O
AF9
SERDES3_TX0_P
SERDES Differential Transmit Data (positive)
O
AG8
SERDES3_TX1_N
SERDES Differential Transmit Data (negative)
O
AF10
SERDES3_TX1_P
SERDES Differential Transmit Data (positive)
O
AG9
SIGNAL NAME [1]
(2)
DESCRIPTION [2]
PCIE_REFCLK3P
SERDES3_REXT
(1)
(2)
(1)
The external 3.01 kΩ ±1% resistor must be connected between this pin and VSS, even when the pin is unused.
The functionality of these pins is controlled by SERDES3_LN[1:0]_CTRL LANE_FUNC_SEL.
Table 6-82. SERDES4 Signal Descriptions
SIGNAL NAME [1] (2)
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
SERDES4_REFCLK_N
SERDES Reference Differential Clock (negative)
IO
E7
SERDES4_REFCLK_P
SERDES Reference Differential Clock (positive)
IO
E8
External Calibration Resistor
A
F9
SERDES4_RX0_N
SERDES Differential Receive Data (negative)
I
D9
SERDES4_RX0_P
SERDES Differential Receive Data (positive)
I
C10
SERDES4_RX1_N
SERDES Differential Receive Data (negative)
I
D8
SERDES4_RX1_P
SERDES Differential Receive Data (positive)
I
C9
SERDES4_RX2_N
SERDES Differential Receive Data (negative)
I
D6
SERDES4_RX2_P
SERDES Differential Receive Data (positive)
I
C7
SERDES4_RX3_N
SERDES Differential Receive Data (negative)
I
D5
SERDES4_RX3_P
SERDES Differential Receive Data (positive)
I
C6
SERDES4_TX0_N
SERDES Differential Transmit Data (negative)
O
B11
SERDES4_TX0_P
SERDES Differential Transmit Data (positive)
O
A12
SERDES4_TX1_N
SERDES Differential Transmit Data (negative)
O
B10
SERDES4_TX1_P
SERDES Differential Transmit Data (positive)
O
A11
SERDES4_TX2_N
SERDES Differential Transmit Data (negative)
O
B8
SERDES4_TX2_P
SERDES Differential Transmit Data (positive)
O
A9
SERDES4_TX3_N
SERDES Differential Transmit Data (negative)
O
B7
SERDES4_TX3_P
SERDES Differential Transmit Data (positive)
O
A8
SERDES4_REXT
(1)
(2)
(1)
The external 3.01 kΩ ±1% resistor must be connected between this pin and VSS, even when the pin is unused.
The functionality of these pins is controlled by SERDES4_LN[4:0]_CTRL LANE_FUNC_SEL.
6.3.17 OSPI
6.3.17.1 MCU Domain
Table 6-83. OSPI0 Signal Descriptions
PIN TYPE
[3]
BALL [4]
OSPI Clock
O
E20
OSPI Data Strobe (DQS) or Loopback Clock Input
I
D21
OSPI ECC Status
I
B23
SIGNAL NAME [1]
MCU_OSPI0_CLK
MCU_OSPI0_DQS
MCU_OSPI0_ECC_FAIL
(1)
DESCRIPTION [2]
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
105
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-83. OSPI0 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
MCU_OSPI0_LBCLKO
OSPI Loopback Clock Output
IO
C21
MCU_OSPI0_CSn0
OSPI Chip Select 0 (active low)
O
F19
MCU_OSPI0_CSn1
OSPI Chip Select 1 (active low)
O
E19
MCU_OSPI0_CSn2
OSPI Chip Select 2 (active low)
O
A23
MCU_OSPI0_CSn3
OSPI Chip Select 3 (active low)
O
B23
MCU_OSPI0_D0
OSPI Data 0
IO
D20
MCU_OSPI0_D1
OSPI Data 1
IO
G19
MCU_OSPI0_D2
OSPI Data 2
IO
G20
MCU_OSPI0_D3
OSPI Data 3
IO
F20
MCU_OSPI0_D4
OSPI Data 4
IO
F21
MCU_OSPI0_D5
OSPI Data 5
IO
E21
MCU_OSPI0_D6
OSPI Data 6
IO
B22
MCU_OSPI0_D7
OSPI Data 7
IO
G21
MCU_OSPI0_RESET_OUT0
OSPI Reset
O
A23
MCU_OSPI0_RESET_OUT1
OSPI Reset
O
E22
PIN TYPE
[3]
BALL [4]
O
F22
(1)
An external pull-up resistor to corresponting power supply is recommended on this signal.
Table 6-84. OSPI1 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCU_OSPI1_CLK
OSPI Clock
MCU_OSPI1_DQS
OSPI Data Strobe (DQS) or Loopback Clock Input
I
B23
MCU_OSPI1_LBCLKO
OSPI Loopback Clock Output
IO
A23
MCU_OSPI1_CSn0
OSPI Chip Select 0 (active low)
O
C22
MCU_OSPI1_CSn1
OSPI Chip Select 1 (active low)
O
E22
MCU_OSPI1_D0
OSPI Data 0
IO
D22
MCU_OSPI1_D1
OSPI Data 1
IO
G22
MCU_OSPI1_D2
OSPI Data 2
IO
D23
MCU_OSPI1_D3
OSPI Data 3
IO
C23
PIN TYPE
[3]
BALL [4]
6.3.18 Hyperbus
6.3.18.1 MCU Domain
Table 6-85. HYPERBUS0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCU_HYPERBUS0_CK
Hyperbus Differential Clock (positive)
O
E20
MCU_HYPERBUS0_CKn
Hyperbus Differential Clock (negative)
O
C21
MCU_HYPERBUS0_INTn
Hyperbus Interrupt (active low)
I
B23
MCU_HYPERBUS0_RESETn
Hyperbus Reset (active low) Output
O
E19
MCU_HYPERBUS0_RESETOn
Hyperbus Reset Status Indicator (active low) from
Hyperbus Memory
I
A23
MCU_HYPERBUS0_RWDS
Hyperbus Read-Write Data Strobe
IO
D21
MCU_HYPERBUS0_WPn
Hyperbus Write Protect (not in use)
O
E22
MCU_HYPERBUS0_CSn0
Hyperbus Chip Select 0
O
F19
MCU_HYPERBUS0_CSn1
Hyperbus Chip Select 1
O
E22
MCU_HYPERBUS0_DQ0
Hyperbus Data 0
IO
D20
106
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-85. HYPERBUS0 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
MCU_HYPERBUS0_DQ1
Hyperbus Data 1
IO
G19
MCU_HYPERBUS0_DQ2
Hyperbus Data 2
IO
G20
MCU_HYPERBUS0_DQ3
Hyperbus Data 3
IO
F20
MCU_HYPERBUS0_DQ4
Hyperbus Data 4
IO
F21
MCU_HYPERBUS0_DQ5
Hyperbus Data 5
IO
E21
MCU_HYPERBUS0_DQ6
Hyperbus Data 6
IO
B22
MCU_HYPERBUS0_DQ7
Hyperbus Data 7
IO
G21
PIN TYPE
[3]
BALL [4]
6.3.19 GPMC
6.3.19.1 MAIN Domain
Table 6-86. GPMC0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
GPMC0_FCLK_MUX
GPMC functional clock output selected through a mux
logic
O
AB23
GPMC0_ADVn_ALE
GPMC Address Valid (active low) or Address Latch
Enable
O
AG20
GPMC0_CLKOUT
GPMC clock generated for external synchronization
O
AB23
GPMC0_DIR
GPMC Data Bus Signal Direction Control
O
AJ23, W25
GPMC0_OEn_REn
GPMC Output Enable (active low) or Read Enable
(active low)
O
AJ20
GPMC0_WEn
GPMC Write Enable (active low)
O
AD20
GPMC0_WPn
GPMC Flash Write Protect (active low)
O
AG21
GPMC0_A0
GPMC Address 0 Output. Only used to effectively
address 8-bit data non-multiplexed memories
OZ
AA27
GPMC0_A1
GPMC address 1 Output in A/D non-multiplexed mode
and Address 17 in A/D multiplexed mode
OZ
U23
GPMC0_A2
GPMC address 2 Output in A/D non-multiplexed mode
and Address 18 in A/D multiplexed mode
OZ
U26
GPMC0_A3
GPMC address 3 Output in A/D non-multiplexed mode
and Address 19 in A/D multiplexed mode
OZ
V28
GPMC0_A4
GPMC address 4 Output in A/D non-multiplexed mode
and Address 20 in A/D multiplexed mode
OZ
V29
GPMC0_A5
GPMC address 5 Output in A/D non-multiplexed mode
and Address 21 in A/D multiplexed mode
OZ
V27
GPMC0_A6
GPMC address 6 Output in A/D non-multiplexed mode
and Address 22 in A/D multiplexed mode
OZ
U28
GPMC0_A7
GPMC address 7 Output in A/D non-multiplexed mode
and Address 23 in A/D multiplexed mode
OZ
U29
GPMC0_A8
GPMC address 8 Output in A/D non-multiplexed mode
and Address 24 in A/D multiplexed mode
OZ
U25
GPMC0_A9
GPMC address 9 Output in A/D non-multiplexed mode
and Address 25 in A/D multiplexed mode
OZ
U27
GPMC0_A10
GPMC address 10 Output in A/D non-multiplexed mode
and Address 26 in A/D multiplexed mode
OZ
U24
GPMC0_A11
GPMC address 11 Output in A/D non-multiplexed mode
and unused in A/D multiplexed mode
OZ
R23
GPMC0_A12
GPMC address 12 Output in A/D non-multiplexed mode
and unused in A/D multiplexed mode
OZ
T23
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
107
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-86. GPMC0 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
GPMC0_A13
GPMC address 13 Output in A/D non-multiplexed mode
and unused in A/D multiplexed mode
OZ
Y28
GPMC0_A14
GPMC address 14 Output in A/D non-multiplexed mode
and unused in A/D multiplexed mode
OZ
V23
GPMC0_A15
GPMC address 15 Output in A/D non-multiplexed mode
and unused in A/D multiplexed mode
OZ
W23
GPMC0_A16
GPMC address 16 Output in A/D non-multiplexed mode
and unused in A/D multiplexed mode
OZ
W28
GPMC0_A17
GPMC address 17 Output in A/D non-multiplexed mode
and unused in A/D multiplexed mode
OZ
V25
GPMC0_A18
GPMC address 18 Output in A/D non-multiplexed mode
and unused in A/D multiplexed mode
OZ
W27
GPMC0_A19
GPMC address 19 Output in A/D non-multiplexed mode
and unused in A/D multiplexed mode
OZ
W29
GPMC0_A20
GPMC address 20 Output in A/D non-multiplexed mode
and unused in A/D multiplexed mode
OZ
W26
GPMC0_A21
GPMC address 21 Output in A/D non-multiplexed mode
and unused in A/D multiplexed mode
OZ
Y29
GPMC0_A22
GPMC address 22 Output in A/D non-multiplexed mode
and unused in A/D multiplexed mode
OZ
Y27
GPMC0_A23
GPMC address 23 Output in A/D non-multiplexed mode
and unused in A/D multiplexed mode
OZ
AD27
GPMC0_A24
GPMC address 24 Output in A/D non-multiplexed mode
and unused in A/D multiplexed mode
OZ
AD29
GPMC0_A25
GPMC address 25 Output in A/D non-multiplexed mode
and unused in A/D multiplexed mode
OZ
AC26
GPMC0_A26
GPMC address 26 Output in A/D non-multiplexed mode
and unused in A/D multiplexed mode
OZ
AG26
GPMC0_A27
GPMC address 27 in A/D non-multiplexed mode and
Address 27 in A/D multiplexed mode
OZ
Y26
GPMC0_AD0
GPMC Data 0 Input/Output in A/D non-multiplexed mode
and additionally Address 1 Output in A/D multiplexed
mode
IO
AC29
GPMC0_AD1
GPMC Data 1 Input/Output in A/D non-multiplexed mode
and additionally Address 2 Output in A/D multiplexed
mode
IO
AC28
GPMC0_AD2
GPMC Data 2 Input/Output in A/D non-multiplexed mode
and additionally Address 3 Output in A/D multiplexed
mode
IO
AC27
GPMC0_AD3
GPMC Data 3 Input/Output in A/D non-multiplexed mode
and additionally Address 4 Output in A/D multiplexed
mode
IO
AB26
GPMC0_AD4
GPMC Data 4 Input/Output in A/D non-multiplexed mode
and additionally Address 5 Output in A/D multiplexed
mode
IO
AB25
GPMC0_AD5
GPMC Data 5 Input/Output in A/D non-multiplexed mode
and additionally Address 6 Output in A/D multiplexed
mode
IO
AB24
GPMC0_AD6
GPMC Data 6 Input/Output in A/D non-multiplexed mode
and additionally Address 7 Output in A/D multiplexed
mode
IO
AB29
GPMC0_AD7
GPMC Data 7 Input/Output in A/D non-multiplexed mode
and additionally Address 8 Output in A/D multiplexed
mode
IO
AB28
108
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-86. GPMC0 Signal Descriptions (continued)
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
GPMC0_AD8
GPMC Data 8 Input/Output in A/D non-multiplexed mode
and additionally Address 9 Output in A/D multiplexed
mode
IO
AB27
GPMC0_AD9
GPMC Data 9 Input/Output in A/D non-multiplexed mode
and additionally Address 10 Output in A/D multiplexed
mode
IO
AA24
GPMC0_AD10
GPMC Data 10 Input/Output in A/D non-multiplexed
mode and additionally Address 11 Output in A/D
multiplexed mode
IO
AA28
GPMC0_AD11
GPMC Data 11 Input/Output in A/D non-multiplexed
mode and additionally Address 12 Output in A/D
multiplexed mode
IO
Y24
GPMC0_AD12
GPMC Data 12 Input/Output in A/D non-multiplexed
mode and additionally Address 13 Output in A/D
multiplexed mode
IO
AA25
GPMC0_AD13
GPMC Data 13 Input/Output in A/D non-multiplexed
mode and additionally Address 14 Output in A/D
multiplexed mode
IO
Y25
GPMC0_AD14
GPMC Data 14 Input/Output in A/D non-multiplexed
mode and additionally Address 15 Output in A/D
multiplexed mode
IO
AA26
GPMC0_AD15
GPMC Data 15 Input/Output in A/D non-multiplexed
mode and additionally Address 16 Output in A/D
multiplexed mode
IO
AA29
GPMC0_BE0n_CLE
GPMC Lower-Byte Enable (active low) or Command
Latch Enable
O
AD21
GPMC0_BE1n
GPMC Upper-Byte Enable (active low)
O
AC23, W24
GPMC0_CSn0
GPMC Chip Select 0 (active low)
O
AF21
GPMC0_CSn1
GPMC Chip Select 1 (active low)
O
Y23
GPMC0_CSn2
GPMC Chip Select 2 (active low)
O
AH23
GPMC0_CSn3
GPMC Chip Select 3 (active low)
O
AD22
GPMC0_WAIT0
GPMC External Indication of Wait
I
AG22
GPMC0_WAIT1
GPMC External Indication of Wait
I
AF22
GPMC0_WAIT2
GPMC External Indication of Wait
I
V24
GPMC0_WAIT3
GPMC External Indication of Wait
I
V26
PIN TYPE
[3]
BALL [4]
MMC/SD/SDIO Calibration Resistor
A
AE1
MMC/SD/SDIO Clock
O
AF1
MMC/SD/SDIO Command
IO
AE3
SIGNAL NAME [1]
6.3.20 MMC
6.3.20.1 MAIN Domain
Table 6-87. MMC0 Signal Descriptions
SIGNAL NAME [1]
MMC0_CALPAD
(1)
MMC0_CLK
MMC0_CMD
(2)
MMC0_DS
DESCRIPTION [2]
MMC Data Strobe
IO
AE4
MMC0_DAT0
(2)
MMC/SD/SDIO Data
IO
AG2
MMC0_DAT1
(2)
MMC/SD/SDIO Data
IO
AH1
MMC0_DAT2
(2)
MMC/SD/SDIO Data
IO
AG3
MMC0_DAT3
(2)
MMC/SD/SDIO Data
IO
AF4
MMC0_DAT4
(2)
MMC/SD/SDIO Data
IO
AE5
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
109
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-87. MMC0 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
MMC0_DAT5
(2)
MMC/SD/SDIO Data
IO
AF3
MMC0_DAT6
(2)
MMC/SD/SDIO Data
IO
AG1
MMC0_DAT7
(2)
MMC/SD/SDIO Data
IO
AF2
(1)
(2)
An external 10 kΩ ±1% resistor must be connected between this pin and VSS. No external voltage should be applied to this pin.
An external pull-up of 10 kΩ ~ 50 kΩ ±1% resistor, as specified in the specification, must be connected to this ball to ensure proper
operation.
Table 6-88. MMC1 Signal Descriptions
PIN TYPE
[3]
BALL [4]
MMC/SD/SDIO Clock
IO
P25
MMC1_CMD
MMC/SD/SDIO Command
IO
R29
MMC1_SDCD(2)
SD Card Detect
I
P23
MMC1_SDWP
SD Write Protect
I
R28
MMC1_DAT0
MMC/SD/SDIO Data
IO
R24
MMC1_DAT1
MMC/SD/SDIO Data
IO
P24
MMC1_DAT2
MMC/SD/SDIO Data
IO
R25
MMC1_DAT3
MMC/SD/SDIO Data
IO
R26
SIGNAL NAME [1]
MMC1_CLK
(1)
(2)
(1)
DESCRIPTION [2]
For MMC1_CLK signal to work properly, the RXACTIVE bit of the CTRLMMR_PADCONFIG171 register should be set to 0x1 because
of retiming purposes.
For ROM boot to work properly, the MMC1_SDCD pin should be pulled low externally with a resistor.
Table 6-89. MMC2 Signal Descriptions
SIGNAL NAME [1]
MMC2_CLK
(1)
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
MMC/SD/SDIO Clock
IO
T26
MMC2_CMD
MMC/SD/SDIO Command
IO
T25
MMC2_SDCD(2)
SD Card Detect
I
W2
MMC2_SDWP
SD Write Protect
I
W1
MMC2_DAT0
MMC/SD/SDIO Data
IO
T24
MMC2_DAT1
MMC/SD/SDIO Data
IO
T27
MMC2_DAT2
MMC/SD/SDIO Data
IO
T29
MMC2_DAT3
MMC/SD/SDIO Data
IO
T28
(1)
(2)
For MMC2_CLK signal to work properly, the RXACTIVE bit of the CTRLMMR_PADCONFIG172 register should be set to 0x1 because
of retiming purposes.
For MMC2 module to work properly, the MMC2_SDCD pin should be pulled low.
6.3.21 CPTS
Note
Some CPTS signals are connected directly to CPTS modules within the device. Other CPTS signals
are connected to the Time Sync Router and fanned out to peripherals linked to the router. Input
signals are sent to the peripherals while output signals are sourced from the peripherals. For more
information, see the Time Sync and Compare Events section in the Time Sync chapter in the device
TRM.
110
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
6.3.21.1 MCU Domain
Table 6-90. MCU_CPTS0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
MCU_CPTS0_RFT_CLK
CPTS Reference Clock
I
H26
MCU_CPTS0_TS_COMP
Time Stamp Counter Compare from
MCU_CPSW0_CPTS0
O
G26
MCU_CPTS0_TS_SYNC
Time Stamp Counter Bit from MCU_CPSW0_CPTS0
O
G27
MCU_CPTS0_HW1TSPUSH
Hardware Time Stamp Push 1 input to Time Sync Router
and MCU_CPSW0_CPTS0
I
F29
MCU_CPTS0_HW2TSPUSH
Hardware Time Stamp Push 2 input to Time Sync Router
and MCU_CPSW0_CPTS0
I
G28
PIN TYPE
[3]
BALL [4]
U2
6.3.21.2 MAIN Domain
Table 6-91. CPTS0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
CPTS0_RFT_CLK
CPTS Reference Clock
I
CPTS0_TS_COMP
Time Stamp Counter Compare from NAVSS0_CPTS0
O
Y4
CPTS0_TS_SYNC
Time Stamp Counter Bit from NAVSS0_CPTS0
O
W4
CPTS0_HW1TSPUSH
Hardware Time Stamp Push input to Time Sync Router
I
T28, Y6
CPTS0_HW2TSPUSH
Hardware Time Stamp Push input to Time Sync Router
I
AA6, T29
SYNC0_OUT
Time Stamp Generator Bit 0 from Time Sync Router
O
U2
SYNC1_OUT
Time Stamp Generator Bit 1 from Time Sync Router
O
U3
SYNC2_OUT
Time Stamp Generator Bit 2 from Time Sync Router
O
V28
SYNC3_OUT
Time Stamp Generator Bit 3 from Time Sync Router
O
V29
PIN TYPE
[3]
BALL [4]
6.3.22 UFS
6.3.22.1 MAIN Domain
Table 6-92. UFS0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
UFS0_REF_CLK
UFS Reference Clock
O
AE6
UFS0_RSTn
UFS Reset Out
O
AD6
UFS0_RX_DN0
UFS Lane 0 Differential Receive Data (negative)
I
AH3
UFS0_RX_DP0
UFS Lane 0 Differential Receive Data (positive)
I
AJ2
UFS0_RX_DN1
UFS Lane 1 Differential Receive Data (negative)
I
AH4
UFS0_RX_DP1
UFS Lane 1 Differential Receive Data (positive)
I
AJ3
UFS0_TX_DN0
UFS Lane 0 Differential Transmit Data (negative)
O
AG6
UFS0_TX_DP0
UFS Lane 0 Differential Transmit Data (positive)
O
AF7
UFS0_TX_DN1
UFS Lane 1 Differential Transmit Data (negative)
O
AG5
UFS0_TX_DP1
UFS Lane 1 Differential Transmit Data (positive)
O
AF6
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
111
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
6.3.23 PRU_ICSSG [Currently Not Supported]
6.3.23.1 MAIN Domain
Table 6-93. PRU_ICSSG0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
IO
AB29
PRG0_ECAP0_IN_APWM_OUT
PRU_ICSSG Enhanced Capture (ECAP) Input or
Auxiliary PWM (APWM) Ouput
PRG0_ECAP0_SYNC_IN
PRU_ICSSG ECAP Sync Input
I
AC28
PRG0_ECAP0_SYNC_OUT
PRU_ICSSG ECAP Sync Output
O
AB24
PRG0_IEP0_EDIO_OUTVALID
PRU_ICSSG Industrial Ethernet Digital I/O Outvalid
O
Y3
PRG0_IEP0_EDC_LATCH_IN0
PRU_ICSSG Industrial Ethernet Distributed Clock Latch
Input
I
AB29, Y3
PRG0_IEP0_EDC_LATCH_IN1
PRU_ICSSG Industrial Ethernet Distributed Clock Latch
Input
I
AC28, P23
PRG0_IEP0_EDC_SYNC_OUT0
PRU_ICSSG Industrial Ethernet Distributed Clock Sync
Output
O
AB28, Y1
PRG0_IEP0_EDC_SYNC_OUT1
PRU_ICSSG Industrial Ethernet Distributed Clock Sync
Output
O
AB24, R28
PRG0_IEP0_EDIO_DATA_IN_OUT28
PRU_ICSSG Industrial Ethernet Digital I/O Data Input/
Output
IO
AB26
PRG0_IEP0_EDIO_DATA_IN_OUT29
PRU_ICSSG Industrial Ethernet Digital I/O Data Input/
Output
IO
AB25
PRG0_IEP0_EDIO_DATA_IN_OUT30
PRU_ICSSG Industrial Ethernet Digital I/O Data Input/
Output
IO
Y24
PRG0_IEP0_EDIO_DATA_IN_OUT31
PRU_ICSSG Industrial Ethernet Digital I/O Data Input/
Output
IO
AA25
PRG0_IEP1_EDC_LATCH_IN0
PRU_ICSSG Industrial Ethernet Distributed Clock Latch
Input
I
AA26, Y5
PRG0_IEP1_EDC_LATCH_IN1
PRU_ICSSG Industrial Ethernet Distributed Clock Latch
Input
I
AA24, T27
PRG0_IEP1_EDC_SYNC_OUT0
PRU_ICSSG Industrial Ethernet Distributed Clock Sync
Output
O
AA29, Y2
PRG0_IEP1_EDC_SYNC_OUT1
PRU_ICSSG Industrial Ethernet Distributed Clock Sync
Output
O
T24, Y25
PRG0_MDIO0_MDC
PRU_ICSSG MDIO Clock
O
AA27
PRG0_MDIO0_MDIO
PRU_ICSSG MDIO Data
IO
Y26
PRG0_PRU0_GPI0
PRU_ICSSG PRU Data Input
I
AF28
PRG0_PRU0_GPI1
PRU_ICSSG PRU Data Input
I
AE28
PRG0_PRU0_GPI2
PRU_ICSSG PRU Data Input
I
AE27
PRG0_PRU0_GPI3
PRU_ICSSG PRU Data Input
I
AD26
PRG0_PRU0_GPI4
PRU_ICSSG PRU Data Input
I
AD25
PRG0_PRU0_GPI5
PRU_ICSSG PRU Data Input
I
AC29
PRG0_PRU0_GPI6
PRU_ICSSG PRU Data Input
I
AE26
PRG0_PRU0_GPI7
PRU_ICSSG PRU Data Input
I
AC28
PRG0_PRU0_GPI8
PRU_ICSSG PRU Data Input
I
AC27
PRG0_PRU0_GPI9
PRU_ICSSG PRU Data Input
I
AB26
PRG0_PRU0_GPI10
PRU_ICSSG PRU Data Input
I
AB25
PRG0_PRU0_GPI11
PRU_ICSSG PRU Data Input
I
AJ28
PRG0_PRU0_GPI12
PRU_ICSSG PRU Data Input
I
AH27
PRG0_PRU0_GPI13
PRU_ICSSG PRU Data Input
I
AH29
PRG0_PRU0_GPI14
PRU_ICSSG PRU Data Input
I
AG28
112
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-93. PRU_ICSSG0 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
PRG0_PRU0_GPI15
PRU_ICSSG PRU Data Input
I
AG27
PRG0_PRU0_GPI16
PRU_ICSSG PRU Data Input
I
AH28
PRG0_PRU0_GPI17
PRU_ICSSG PRU Data Input
I
AB24
PRG0_PRU0_GPI18
PRU_ICSSG PRU Data Input
I
AB29
PRG0_PRU0_GPI19
PRU_ICSSG PRU Data Input
I
AB28
PRG0_PRU0_GPO0
PRU_ICSSG PRU Data Output
IO
AF28
PRG0_PRU0_GPO1
PRU_ICSSG PRU Data Output
IO
AE28
PRG0_PRU0_GPO2
PRU_ICSSG PRU Data Output
IO
AE27
PRG0_PRU0_GPO3
PRU_ICSSG PRU Data Output
IO
AD26
PRG0_PRU0_GPO4
PRU_ICSSG PRU Data Output
IO
AD25
PRG0_PRU0_GPO5
PRU_ICSSG PRU Data Output
IO
AC29
PRG0_PRU0_GPO6
PRU_ICSSG PRU Data Output
IO
AE26
PRG0_PRU0_GPO7
PRU_ICSSG PRU Data Output
IO
AC28
PRG0_PRU0_GPO8
PRU_ICSSG PRU Data Output
IO
AC27
PRG0_PRU0_GPO9
PRU_ICSSG PRU Data Output
IO
AB26
PRG0_PRU0_GPO10
PRU_ICSSG PRU Data Output
IO
AB25
PRG0_PRU0_GPO11
PRU_ICSSG PRU Data Output
IO
AJ28
PRG0_PRU0_GPO12
PRU_ICSSG PRU Data Output
IO
AH27
PRG0_PRU0_GPO13
PRU_ICSSG PRU Data Output
IO
AH29
PRG0_PRU0_GPO14
PRU_ICSSG PRU Data Output
IO
AG28
PRG0_PRU0_GPO15
PRU_ICSSG PRU Data Output
IO
AG27
PRG0_PRU0_GPO16
PRU_ICSSG PRU Data Output
IO
AH28
PRG0_PRU0_GPO17
PRU_ICSSG PRU Data Output
IO
AB24
PRG0_PRU0_GPO18
PRU_ICSSG PRU Data Output
IO
AB29
PRG0_PRU0_GPO19
PRU_ICSSG PRU Data Output
IO
AB28
PRG0_PRU1_GPI0
PRU_ICSSG PRU Data Input
I
AE29
PRG0_PRU1_GPI1
PRU_ICSSG PRU Data Input
I
AD28
PRG0_PRU1_GPI2
PRU_ICSSG PRU Data Input
I
AD27
PRG0_PRU1_GPI3
PRU_ICSSG PRU Data Input
I
AC25
PRG0_PRU1_GPI4
PRU_ICSSG PRU Data Input
I
AD29
PRG0_PRU1_GPI5
PRU_ICSSG PRU Data Input
I
AB27
PRG0_PRU1_GPI6
PRU_ICSSG PRU Data Input
I
AC26
PRG0_PRU1_GPI7
PRU_ICSSG PRU Data Input
I
AA24
PRG0_PRU1_GPI8
PRU_ICSSG PRU Data Input
I
AA28
PRG0_PRU1_GPI9
PRU_ICSSG PRU Data Input
I
Y24
PRG0_PRU1_GPI10
PRU_ICSSG PRU Data Input
I
AA25
PRG0_PRU1_GPI11
PRU_ICSSG PRU Data Input
I
AG26
PRG0_PRU1_GPI12
PRU_ICSSG PRU Data Input
I
AF27
PRG0_PRU1_GPI13
PRU_ICSSG PRU Data Input
I
AF26
PRG0_PRU1_GPI14
PRU_ICSSG PRU Data Input
I
AE25
PRG0_PRU1_GPI15
PRU_ICSSG PRU Data Input
I
AF29
PRG0_PRU1_GPI16
PRU_ICSSG PRU Data Input
I
AG29
PRG0_PRU1_GPI17
PRU_ICSSG PRU Data Input
I
Y25
PRG0_PRU1_GPI18
PRU_ICSSG PRU Data Input
I
AA26
PRG0_PRU1_GPI19
PRU_ICSSG PRU Data Input
I
AA29
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
113
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-93. PRU_ICSSG0 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
PRG0_PRU1_GPO0
PRU_ICSSG PRU Data Output
IO
AE29
PRG0_PRU1_GPO1
PRU_ICSSG PRU Data Output
IO
AD28
PRG0_PRU1_GPO2
PRU_ICSSG PRU Data Output
IO
AD27
PRG0_PRU1_GPO3
PRU_ICSSG PRU Data Output
IO
AC25
PRG0_PRU1_GPO4
PRU_ICSSG PRU Data Output
IO
AD29
PRG0_PRU1_GPO5
PRU_ICSSG PRU Data Output
IO
AB27
PRG0_PRU1_GPO6
PRU_ICSSG PRU Data Output
IO
AC26
PRG0_PRU1_GPO7
PRU_ICSSG PRU Data Output
IO
AA24
PRG0_PRU1_GPO8
PRU_ICSSG PRU Data Output
IO
AA28
PRG0_PRU1_GPO9
PRU_ICSSG PRU Data Output
IO
Y24
PRG0_PRU1_GPO10
PRU_ICSSG PRU Data Output
IO
AA25
PRG0_PRU1_GPO11
PRU_ICSSG PRU Data Output
IO
AG26
PRG0_PRU1_GPO12
PRU_ICSSG PRU Data Output
IO
AF27
PRG0_PRU1_GPO13
PRU_ICSSG PRU Data Output
IO
AF26
PRG0_PRU1_GPO14
PRU_ICSSG PRU Data Output
IO
AE25
PRG0_PRU1_GPO15
PRU_ICSSG PRU Data Output
IO
AF29
PRG0_PRU1_GPO16
PRU_ICSSG PRU Data Output
IO
AG29
PRG0_PRU1_GPO17
PRU_ICSSG PRU Data Output
IO
Y25
PRG0_PRU1_GPO18
PRU_ICSSG PRU Data Output
IO
AA26
PRG0_PRU1_GPO19
PRU_ICSSG PRU Data Output
IO
AA29
PRG0_PWM0_TZ_IN
PRU_ICSSG PWM Trip Zone Input
I
AB29
PRG0_PWM0_TZ_OUT
PRU_ICSSG PWM Trip Zone Output
O
AB28
PRG0_PWM1_TZ_IN
PRU_ICSSG PWM Trip Zone Input
I
AA26
PRG0_PWM1_TZ_OUT
PRU_ICSSG PWM Trip Zone Output
O
AA29
PRG0_PWM2_TZ_IN
PRU_ICSSG PWM Trip Zone Input
I
AA25
PRG0_PWM2_TZ_OUT
PRU_ICSSG PWM Trip Zone Output
O
AA28
PRG0_PWM3_TZ_IN
PRU_ICSSG PWM Trip Zone Input
I
AB26
PRG0_PWM3_TZ_OUT
PRU_ICSSG PWM Trip Zone Output
O
AJ28
PRG0_PWM0_A0
PRU_ICSSG PWM Output A
IO
AH27
PRG0_PWM0_A1
PRU_ICSSG PWM Output A
IO
AG28
PRG0_PWM0_A2
PRU_ICSSG PWM Output A
IO
AH28
PRG0_PWM0_B0
PRU_ICSSG PWM Output B
IO
AH29
PRG0_PWM0_B1
PRU_ICSSG PWM Output B
IO
AG27
PRG0_PWM0_B2
PRU_ICSSG PWM Output B
IO
AB24
PRG0_PWM1_A0
PRU_ICSSG PWM Output A
IO
AF27
PRG0_PWM1_A1
PRU_ICSSG PWM Output A
IO
AE25
PRG0_PWM1_A2
PRU_ICSSG PWM Output A
IO
AG29
PRG0_PWM1_B0
PRU_ICSSG PWM Output B
IO
AF26
PRG0_PWM1_B1
PRU_ICSSG PWM Output B
IO
AF29
PRG0_PWM1_B2
PRU_ICSSG PWM Output B
IO
Y25
PRG0_PWM2_A0
PRU_ICSSG PWM Output A
IO
AE27
PRG0_PWM2_A1
PRU_ICSSG PWM Output A
IO
AC27
PRG0_PWM2_A2
PRU_ICSSG PWM Output A
IO
AD27
PRG0_PWM2_B0
PRU_ICSSG PWM Output B
IO
AD25
PRG0_PWM2_B1
PRU_ICSSG PWM Output B
IO
AB25
114
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-93. PRU_ICSSG0 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
PRG0_PWM2_B2
PRU_ICSSG PWM Output B
IO
AD29
PRG0_PWM3_A0
PRU_ICSSG PWM Output A
IO
AF28
PRG0_PWM3_A1
PRU_ICSSG PWM Output A
IO
AE26
PRG0_PWM3_A2
PRU_ICSSG PWM Output A
IO
AD26
PRG0_PWM3_B0
PRU_ICSSG PWM Output B
IO
AE28
PRG0_PWM3_B1
PRU_ICSSG PWM Output B
IO
AC28
PRG0_PWM3_B2
PRU_ICSSG PWM Output B
IO
AC29
PRG0_RGMII1_RXC
PRU_ICSSG RGMII Receive Clock
I
AE26
PRG0_RGMII1_RX_CTL
PRU_ICSSG RGMII Receive Control
I
AD25
PRG0_RGMII1_TXC
PRU_ICSSG RGMII Transmit Clock
IO
AH28
PRG0_RGMII1_TX_CTL
PRU_ICSSG RGMII Transmit Control
O
AG27
PRG0_RGMII2_RXC
PRU_ICSSG RGMII Receive Clock
I
AC26
PRG0_RGMII2_RX_CTL
PRU_ICSSG RGMII Receive Control
I
AD29
PRG0_RGMII2_TXC
PRU_ICSSG RGMII Transmit Clock
IO
AG29
PRG0_RGMII2_TX_CTL
PRU_ICSSG RGMII Transmit Control
O
AF29
PRG0_RGMII1_RD0
PRU_ICSSG RGMII Receive Data
I
AF28
PRG0_RGMII1_RD1
PRU_ICSSG RGMII Receive Data
I
AE28
PRG0_RGMII1_RD2
PRU_ICSSG RGMII Receive Data
I
AE27
PRG0_RGMII1_RD3
PRU_ICSSG RGMII Receive Data
I
AD26
PRG0_RGMII1_TD0
PRU_ICSSG RGMII Transmit Data
O
AJ28
PRG0_RGMII1_TD1
PRU_ICSSG RGMII Transmit Data
O
AH27
PRG0_RGMII1_TD2
PRU_ICSSG RGMII Transmit Data
O
AH29
PRG0_RGMII1_TD3
PRU_ICSSG RGMII Transmit Data
O
AG28
PRG0_RGMII2_RD0
PRU_ICSSG RGMII Receive Data
I
AE29
PRG0_RGMII2_RD1
PRU_ICSSG RGMII Receive Data
I
AD28
PRG0_RGMII2_RD2
PRU_ICSSG RGMII Receive Data
I
AD27
PRG0_RGMII2_RD3
PRU_ICSSG RGMII Receive Data
I
AC25
PRG0_RGMII2_TD0
PRU_ICSSG RGMII Transmit Data
O
AG26
PRG0_RGMII2_TD1
PRU_ICSSG RGMII Transmit Data
O
AF27
PRG0_RGMII2_TD2
PRU_ICSSG RGMII Transmit Data
O
AF26
PRG0_RGMII2_TD3
PRU_ICSSG RGMII Transmit Data
O
AE25
PRG0_UART0_CTSn
PRU_ICSSG UART Clear to Send (active low)
I
AB26
PRG0_UART0_RTSn
PRU_ICSSG UART Request to Send (active low)
O
AB25
PRG0_UART0_RXD
PRU_ICSSG UART Receive Data
I
Y24
PRG0_UART0_TXD
PRU_ICSSG UART Transmit Data
O
AA25
PIN TYPE
[3]
BALL [4]
IO
AH22
Table 6-94. PRU_ICSSG1 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
PRG1_ECAP0_IN_APWM_OUT
PRU_ICSSG Enhanced Capture (ECAP) Input or
Auxiliary PWM (APWM) Ouput
PRG1_ECAP0_SYNC_IN
PRU_ICSSG ECAP Sync Input
I
AJ22
PRG1_ECAP0_SYNC_OUT
PRU_ICSSG ECAP Sync Output
O
AC22
PRG1_IEP0_EDIO_OUTVALID
PRU_ICSSG Industrial Ethernet Digital I/O Outvalid
O
Y4
PRG1_IEP0_EDC_LATCH_IN0
PRU_ICSSG Industrial Ethernet Distributed Clock Latch
Input
I
AE21
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
115
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-94. PRU_ICSSG1 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
PRG1_IEP0_EDC_LATCH_IN1
PRU_ICSSG Industrial Ethernet Distributed Clock Latch
Input
I
AE20
PRG1_IEP0_EDC_SYNC_OUT0
PRU_ICSSG Industrial Ethernet Distributed Clock Sync
Output
O
AH21
PRG1_IEP0_EDC_SYNC_OUT1
PRU_ICSSG Industrial Ethernet Distributed Clock Sync
Output
O
AJ21
PRG1_IEP0_EDIO_DATA_IN_OUT28
PRU_ICSSG Industrial Ethernet Digital I/O Data Input/
Output
IO
AG20
PRG1_IEP0_EDIO_DATA_IN_OUT29
PRU_ICSSG Industrial Ethernet Digital I/O Data Input/
Output
IO
AD21
PRG1_IEP0_EDIO_DATA_IN_OUT30
PRU_ICSSG Industrial Ethernet Digital I/O Data Input/
Output
IO
AF21
PRG1_IEP0_EDIO_DATA_IN_OUT31
PRU_ICSSG Industrial Ethernet Digital I/O Data Input/
Output
IO
AB23
PRG1_IEP1_EDC_LATCH_IN0
PRU_ICSSG Industrial Ethernet Distributed Clock Latch
Input
I
AJ22
PRG1_IEP1_EDC_LATCH_IN1
PRU_ICSSG Industrial Ethernet Distributed Clock Latch
Input
I
AC21
PRG1_IEP1_EDC_SYNC_OUT0
PRU_ICSSG Industrial Ethernet Distributed Clock Sync
Output
O
AH22
PRG1_IEP1_EDC_SYNC_OUT1
PRU_ICSSG Industrial Ethernet Distributed Clock Sync
Output
O
AC22
PRG1_MDIO0_MDC
PRU_ICSSG MDIO Clock
O
AD18
PRG1_MDIO0_MDIO
PRU_ICSSG MDIO Data
IO
AD19
PRG1_PRU0_GPI0
PRU_ICSSG PRU Data Input
I
AC23
PRG1_PRU0_GPI1
PRU_ICSSG PRU Data Input
I
AG22
PRG1_PRU0_GPI2
PRU_ICSSG PRU Data Input
I
AF22
PRG1_PRU0_GPI3
PRU_ICSSG PRU Data Input
I
AJ23
PRG1_PRU0_GPI4
PRU_ICSSG PRU Data Input
I
AH23
PRG1_PRU0_GPI5
PRU_ICSSG PRU Data Input
I
AD20
PRG1_PRU0_GPI6
PRU_ICSSG PRU Data Input
I
AD22
PRG1_PRU0_GPI7
PRU_ICSSG PRU Data Input
I
AE20
PRG1_PRU0_GPI8
PRU_ICSSG PRU Data Input
I
AJ20
PRG1_PRU0_GPI9
PRU_ICSSG PRU Data Input
I
AG20
PRG1_PRU0_GPI10
PRU_ICSSG PRU Data Input
I
AD21
PRG1_PRU0_GPI11
PRU_ICSSG PRU Data Input
I
AF24
PRG1_PRU0_GPI12
PRU_ICSSG PRU Data Input
I
AJ24
PRG1_PRU0_GPI13
PRU_ICSSG PRU Data Input
I
AG24
PRG1_PRU0_GPI14
PRU_ICSSG PRU Data Input
I
AD24
PRG1_PRU0_GPI15
PRU_ICSSG PRU Data Input
I
AC24
PRG1_PRU0_GPI16
PRU_ICSSG PRU Data Input
I
AE24
PRG1_PRU0_GPI17
PRU_ICSSG PRU Data Input
I
AJ21
PRG1_PRU0_GPI18
PRU_ICSSG PRU Data Input
I
AE21
PRG1_PRU0_GPI19
PRU_ICSSG PRU Data Input
I
AH21
PRG1_PRU0_GPO0
PRU_ICSSG PRU Data Output
IO
AC23
PRG1_PRU0_GPO1
PRU_ICSSG PRU Data Output
IO
AG22
PRG1_PRU0_GPO2
PRU_ICSSG PRU Data Output
IO
AF22
PRG1_PRU0_GPO3
PRU_ICSSG PRU Data Output
IO
AJ23
116
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-94. PRU_ICSSG1 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
PRG1_PRU0_GPO4
PRU_ICSSG PRU Data Output
IO
AH23
PRG1_PRU0_GPO5
PRU_ICSSG PRU Data Output
IO
AD20
PRG1_PRU0_GPO6
PRU_ICSSG PRU Data Output
IO
AD22
PRG1_PRU0_GPO7
PRU_ICSSG PRU Data Output
IO
AE20
PRG1_PRU0_GPO8
PRU_ICSSG PRU Data Output
IO
AJ20
PRG1_PRU0_GPO9
PRU_ICSSG PRU Data Output
IO
AG20
PRG1_PRU0_GPO10
PRU_ICSSG PRU Data Output
IO
AD21
PRG1_PRU0_GPO11
PRU_ICSSG PRU Data Output
IO
AF24
PRG1_PRU0_GPO12
PRU_ICSSG PRU Data Output
IO
AJ24
PRG1_PRU0_GPO13
PRU_ICSSG PRU Data Output
IO
AG24
PRG1_PRU0_GPO14
PRU_ICSSG PRU Data Output
IO
AD24
PRG1_PRU0_GPO15
PRU_ICSSG PRU Data Output
IO
AC24
PRG1_PRU0_GPO16
PRU_ICSSG PRU Data Output
IO
AE24
PRG1_PRU0_GPO17
PRU_ICSSG PRU Data Output
IO
AJ21
PRG1_PRU0_GPO18
PRU_ICSSG PRU Data Output
IO
AE21
PRG1_PRU0_GPO19
PRU_ICSSG PRU Data Output
IO
AH21
PRG1_PRU1_GPI0
PRU_ICSSG PRU Data Input
I
AE22
PRG1_PRU1_GPI1
PRU_ICSSG PRU Data Input
I
AG23
PRG1_PRU1_GPI2
PRU_ICSSG PRU Data Input
I
AF23
PRG1_PRU1_GPI3
PRU_ICSSG PRU Data Input
I
AD23
PRG1_PRU1_GPI4
PRU_ICSSG PRU Data Input
I
AH24
PRG1_PRU1_GPI5
PRU_ICSSG PRU Data Input
I
AG21
PRG1_PRU1_GPI6
PRU_ICSSG PRU Data Input
I
AE23
PRG1_PRU1_GPI7
PRU_ICSSG PRU Data Input
I
AC21
PRG1_PRU1_GPI8
PRU_ICSSG PRU Data Input
I
Y23
PRG1_PRU1_GPI9
PRU_ICSSG PRU Data Input
I
AF21
PRG1_PRU1_GPI10
PRU_ICSSG PRU Data Input
I
AB23
PRG1_PRU1_GPI11
PRU_ICSSG PRU Data Input
I
AJ25
PRG1_PRU1_GPI12
PRU_ICSSG PRU Data Input
I
AH25
PRG1_PRU1_GPI13
PRU_ICSSG PRU Data Input
I
AG25
PRG1_PRU1_GPI14
PRU_ICSSG PRU Data Input
I
AH26
PRG1_PRU1_GPI15
PRU_ICSSG PRU Data Input
I
AJ27
PRG1_PRU1_GPI16
PRU_ICSSG PRU Data Input
I
AJ26
PRG1_PRU1_GPI17
PRU_ICSSG PRU Data Input
I
AC22
PRG1_PRU1_GPI18
PRU_ICSSG PRU Data Input
I
AJ22
PRG1_PRU1_GPI19
PRU_ICSSG PRU Data Input
I
AH22
PRG1_PRU1_GPO0
PRU_ICSSG PRU Data Output
IO
AE22
PRG1_PRU1_GPO1
PRU_ICSSG PRU Data Output
IO
AG23
PRG1_PRU1_GPO2
PRU_ICSSG PRU Data Output
IO
AF23
PRG1_PRU1_GPO3
PRU_ICSSG PRU Data Output
IO
AD23
PRG1_PRU1_GPO4
PRU_ICSSG PRU Data Output
IO
AH24
PRG1_PRU1_GPO5
PRU_ICSSG PRU Data Output
IO
AG21
PRG1_PRU1_GPO6
PRU_ICSSG PRU Data Output
IO
AE23
PRG1_PRU1_GPO7
PRU_ICSSG PRU Data Output
IO
AC21
PRG1_PRU1_GPO8
PRU_ICSSG PRU Data Output
IO
Y23
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
117
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-94. PRU_ICSSG1 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
PRG1_PRU1_GPO9
PRU_ICSSG PRU Data Output
IO
AF21
PRG1_PRU1_GPO10
PRU_ICSSG PRU Data Output
IO
AB23
PRG1_PRU1_GPO11
PRU_ICSSG PRU Data Output
IO
AJ25
PRG1_PRU1_GPO12
PRU_ICSSG PRU Data Output
IO
AH25
PRG1_PRU1_GPO13
PRU_ICSSG PRU Data Output
IO
AG25
PRG1_PRU1_GPO14
PRU_ICSSG PRU Data Output
IO
AH26
PRG1_PRU1_GPO15
PRU_ICSSG PRU Data Output
IO
AJ27
PRG1_PRU1_GPO16
PRU_ICSSG PRU Data Output
IO
AJ26
PRG1_PRU1_GPO17
PRU_ICSSG PRU Data Output
IO
AC22
PRG1_PRU1_GPO18
PRU_ICSSG PRU Data Output
IO
AJ22
PRG1_PRU1_GPO19
PRU_ICSSG PRU Data Output
IO
AH22
PRG1_PWM0_TZ_IN
PRU_ICSSG PWM Trip Zone Input
I
AE21
PRG1_PWM0_TZ_OUT
PRU_ICSSG PWM Trip Zone Output
O
AH21
PRG1_PWM1_TZ_IN
PRU_ICSSG PWM Trip Zone Input
I
AJ22
PRG1_PWM1_TZ_OUT
PRU_ICSSG PWM Trip Zone Output
O
AH22
PRG1_PWM2_TZ_IN
PRU_ICSSG PWM Trip Zone Input
I
AB23
PRG1_PWM2_TZ_OUT
PRU_ICSSG PWM Trip Zone Output
O
Y23
PRG1_PWM3_TZ_IN
PRU_ICSSG PWM Trip Zone Input
I
AG20
PRG1_PWM3_TZ_OUT
PRU_ICSSG PWM Trip Zone Output
O
AF24
PRG1_PWM0_A0
PRU_ICSSG PWM Output A
IO
AJ24
PRG1_PWM0_A1
PRU_ICSSG PWM Output A
IO
AD24
PRG1_PWM0_A2
PRU_ICSSG PWM Output A
IO
AE24
PRG1_PWM0_B0
PRU_ICSSG PWM Output B
IO
AG24
PRG1_PWM0_B1
PRU_ICSSG PWM Output B
IO
AC24
PRG1_PWM0_B2
PRU_ICSSG PWM Output B
IO
AJ21
PRG1_PWM1_A0
PRU_ICSSG PWM Output A
IO
AH25
PRG1_PWM1_A1
PRU_ICSSG PWM Output A
IO
AH26
PRG1_PWM1_A2
PRU_ICSSG PWM Output A
IO
AJ26
PRG1_PWM1_B0
PRU_ICSSG PWM Output B
IO
AG25
PRG1_PWM1_B1
PRU_ICSSG PWM Output B
IO
AJ27
PRG1_PWM1_B2
PRU_ICSSG PWM Output B
IO
AC22
PRG1_PWM2_A0
PRU_ICSSG PWM Output A
IO
AF22
PRG1_PWM2_A1
PRU_ICSSG PWM Output A
IO
AJ20
PRG1_PWM2_A2
PRU_ICSSG PWM Output A
IO
AF23
PRG1_PWM2_B0
PRU_ICSSG PWM Output B
IO
AH23
PRG1_PWM2_B1
PRU_ICSSG PWM Output B
IO
AD21
PRG1_PWM2_B2
PRU_ICSSG PWM Output B
IO
AH24
PRG1_PWM3_A0
PRU_ICSSG PWM Output A
IO
AC23
PRG1_PWM3_A1
PRU_ICSSG PWM Output A
IO
AD22
PRG1_PWM3_A2
PRU_ICSSG PWM Output A
IO
AJ23
PRG1_PWM3_B0
PRU_ICSSG PWM Output B
IO
AG22
PRG1_PWM3_B1
PRU_ICSSG PWM Output B
IO
AE20
PRG1_PWM3_B2
PRU_ICSSG PWM Output B
IO
AD20
PRG1_RGMII1_RXC
PRU_ICSSG RGMII Receive Clock
I
AD22
PRG1_RGMII1_RX_CTL
PRU_ICSSG RGMII Receive Control
I
AH23
118
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-94. PRU_ICSSG1 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
PRG1_RGMII1_TXC
PRU_ICSSG RGMII Transmit Clock
IO
AE24
PRG1_RGMII1_TX_CTL
PRU_ICSSG RGMII Transmit Control
O
AC24
PRG1_RGMII2_RXC
PRU_ICSSG RGMII Receive Clock
I
AE23
PRG1_RGMII2_RX_CTL
PRU_ICSSG RGMII Receive Control
I
AH24
PRG1_RGMII2_TXC
PRU_ICSSG RGMII Transmit Clock
IO
AJ26
PRG1_RGMII2_TX_CTL
PRU_ICSSG RGMII Transmit Control
O
AJ27
PRG1_RGMII1_RD0
PRU_ICSSG RGMII Receive Data
I
AC23
PRG1_RGMII1_RD1
PRU_ICSSG RGMII Receive Data
I
AG22
PRG1_RGMII1_RD2
PRU_ICSSG RGMII Receive Data
I
AF22
PRG1_RGMII1_RD3
PRU_ICSSG RGMII Receive Data
I
AJ23
PRG1_RGMII1_TD0
PRU_ICSSG RGMII Transmit Data
O
AF24
PRG1_RGMII1_TD1
PRU_ICSSG RGMII Transmit Data
O
AJ24
PRG1_RGMII1_TD2
PRU_ICSSG RGMII Transmit Data
O
AG24
PRG1_RGMII1_TD3
PRU_ICSSG RGMII Transmit Data
O
AD24
PRG1_RGMII2_RD0
PRU_ICSSG RGMII Receive Data
I
AE22
PRG1_RGMII2_RD1
PRU_ICSSG RGMII Receive Data
I
AG23
PRG1_RGMII2_RD2
PRU_ICSSG RGMII Receive Data
I
AF23
PRG1_RGMII2_RD3
PRU_ICSSG RGMII Receive Data
I
AD23
PRG1_RGMII2_TD0
PRU_ICSSG RGMII Transmit Data
O
AJ25
PRG1_RGMII2_TD1
PRU_ICSSG RGMII Transmit Data
O
AH25
PRG1_RGMII2_TD2
PRU_ICSSG RGMII Transmit Data
O
AG25
PRG1_RGMII2_TD3
PRU_ICSSG RGMII Transmit Data
O
AH26
PRG1_UART0_CTSn
PRU_ICSSG UART Clear to Send (active low)
I
AG20
PRG1_UART0_RTSn
PRU_ICSSG UART Request to Send (active low)
O
AD21
PRG1_UART0_RXD
PRU_ICSSG UART Receive Data
I
AF21
PRG1_UART0_TXD
PRU_ICSSG UART Transmit Data
O
AB23
PIN TYPE
[3]
BALL [4]
6.3.24 MCASP
6.3.24.1 MAIN Domain
Table 6-95. MCASP0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCASP0_ACLKR
MCASP Receive Bit Clock
IO
AE27
MCASP0_ACLKX
MCASP Transmit Bit Clock
IO
AB26
MCASP0_AFSR
MCASP Receive Frame Sync
IO
AD26
MCASP0_AFSX
MCASP Transmit Frame Sync
IO
AB25
MCASP0_AXR0
MCASP Serial Data (Input/Output)
IO
AF28
MCASP0_AXR1
MCASP Serial Data (Input/Output)
IO
AE28
MCASP0_AXR2
MCASP Serial Data (Input/Output)
IO
AD25
MCASP0_AXR3
MCASP Serial Data (Input/Output)
IO
AC29
MCASP0_AXR4
MCASP Serial Data (Input/Output)
IO
AE26
MCASP0_AXR5
MCASP Serial Data (Input/Output)
IO
AC28
MCASP0_AXR6
MCASP Serial Data (Input/Output)
IO
AC27
MCASP0_AXR7
MCASP Serial Data (Input/Output)
IO
AJ28
MCASP0_AXR8
MCASP Serial Data (Input/Output)
IO
AH27
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
119
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-95. MCASP0 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
MCASP0_AXR9
MCASP Serial Data (Input/Output)
IO
AH29
MCASP0_AXR10
MCASP Serial Data (Input/Output)
IO
AG28
MCASP0_AXR11
MCASP Serial Data (Input/Output)
IO
AG27
MCASP0_AXR12
MCASP Serial Data (Input/Output)
IO
AH28
MCASP0_AXR13
MCASP Serial Data (Input/Output)
IO
AB24
MCASP0_AXR14
MCASP Serial Data (Input/Output)
IO
AB29
MCASP0_AXR15
MCASP Serial Data (Input/Output)
IO
AB28
PIN TYPE
[3]
BALL [4]
AD27
Table 6-96. MCASP1 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCASP1_ACLKR
MCASP Receive Bit Clock
IO
MCASP1_ACLKX
MCASP Transmit Bit Clock
IO
AB27
MCASP1_AFSR
MCASP Receive Frame Sync
IO
AC25
MCASP1_AFSX
MCASP Transmit Frame Sync
IO
AA28
MCASP1_AXR0
MCASP Serial Data (Input/Output)
IO
AE29
MCASP1_AXR1
MCASP Serial Data (Input/Output)
IO
AD28
MCASP1_AXR2
MCASP Serial Data (Input/Output)
IO
AD29
MCASP1_AXR3
MCASP Serial Data (Input/Output)
IO
AC26
MCASP1_AXR4
MCASP Serial Data (Input/Output)
IO
AA24
MCASP1_AXR5
MCASP Serial Data (Input/Output)
IO
Y24
MCASP1_AXR6
MCASP Serial Data (Input/Output)
IO
AA25
MCASP1_AXR7
MCASP Serial Data (Input/Output)
IO
AG26
MCASP1_AXR8
MCASP Serial Data (Input/Output)
IO
AF27
MCASP1_AXR9
MCASP Serial Data (Input/Output)
IO
AF26
MCASP1_AXR10
MCASP Serial Data (Input/Output)
IO
AD27
MCASP1_AXR11
MCASP Serial Data (Input/Output)
IO
AC25
PIN TYPE
[3]
BALL [4]
Table 6-97. MCASP2 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCASP2_ACLKR
MCASP Receive Bit Clock
IO
AA27
MCASP2_ACLKX
MCASP Transmit Bit Clock
IO
AA29
MCASP2_AFSR
MCASP Receive Frame Sync
IO
Y26
MCASP2_AFSX
MCASP Transmit Frame Sync
IO
AA26
MCASP2_AXR0
MCASP Serial Data (Input/Output)
IO
AE25
MCASP2_AXR1
MCASP Serial Data (Input/Output)
IO
AF29
MCASP2_AXR2
MCASP Serial Data (Input/Output)
IO
AG29
MCASP2_AXR3
MCASP Serial Data (Input/Output)
IO
Y25
MCASP2_AXR4
MCASP Serial Data (Input/Output)
IO
Y26
MCASP2_AXR5
MCASP Serial Data (Input/Output)
IO
AA27
PIN TYPE
[3]
BALL [4]
Table 6-98. MCASP3 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCASP3_ACLKR
MCASP Receive Bit Clock
IO
AF23
MCASP3_ACLKX
MCASP Transmit Bit Clock
IO
AG20
120
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-98. MCASP3 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
MCASP3_AFSR
MCASP Receive Frame Sync
IO
AD23
MCASP3_AFSX
MCASP Transmit Frame Sync
IO
AD21
MCASP3_AXR0
MCASP Serial Data (Input/Output)
IO
AD20
MCASP3_AXR1
MCASP Serial Data (Input/Output)
IO
AE20
MCASP3_AXR2
MCASP Serial Data (Input/Output)
IO
AJ20
MCASP3_AXR3
MCASP Serial Data (Input/Output)
IO
AJ21
PIN TYPE
[3]
BALL [4]
Table 6-99. MCASP4 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCASP4_ACLKR
MCASP Receive Bit Clock
IO
AG25
MCASP4_ACLKX
MCASP Transmit Bit Clock
IO
AE21
MCASP4_AFSR
MCASP Receive Frame Sync
IO
AH26
MCASP4_AFSX
MCASP Transmit Frame Sync
IO
AH21
MCASP4_AXR0
MCASP Serial Data (Input/Output)
IO
AG21
MCASP4_AXR1
MCASP Serial Data (Input/Output)
IO
AC21
MCASP4_AXR2
MCASP Serial Data (Input/Output)
IO
Y23
MCASP4_AXR3
MCASP Serial Data (Input/Output)
IO
AF21
PIN TYPE
[3]
BALL [4]
Table 6-100. MCASP5 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCASP5_ACLKR
MCASP Receive Bit Clock
IO
AD19
MCASP5_ACLKX
MCASP Transmit Bit Clock
IO
AB23
MCASP5_AFSR
MCASP Receive Frame Sync
IO
AD18
MCASP5_AFSX
MCASP Transmit Frame Sync
IO
AC22
MCASP5_AXR0
MCASP Serial Data (Input/Output)
IO
AJ22
MCASP5_AXR1
MCASP Serial Data (Input/Output)
IO
AH22
MCASP5_AXR2
MCASP Serial Data (Input/Output)
IO
AD19
MCASP5_AXR3
MCASP Serial Data (Input/Output)
IO
AD18
PIN TYPE
[3]
BALL [4]
Table 6-101. MCASP6 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCASP6_ACLKR
MCASP Receive Bit Clock
IO
AH23
MCASP6_ACLKX
MCASP Transmit Bit Clock
IO
AC23
MCASP6_AFSR
MCASP Receive Frame Sync
IO
AD22
MCASP6_AFSX
MCASP Transmit Frame Sync
IO
AG22
MCASP6_AXR0
MCASP Serial Data (Input/Output)
IO
AF22
MCASP6_AXR1
MCASP Serial Data (Input/Output)
IO
AJ23
MCASP6_AXR2
MCASP Serial Data (Input/Output)
IO
AH23
MCASP6_AXR3
MCASP Serial Data (Input/Output)
IO
AD22
PIN TYPE
[3]
BALL [4]
Table 6-102. MCASP7 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCASP7_ACLKR
MCASP Receive Bit Clock
IO
AC24
MCASP7_ACLKX
MCASP Transmit Bit Clock
IO
AF24
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
121
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-102. MCASP7 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
MCASP7_AFSR
MCASP Receive Frame Sync
IO
AE24
MCASP7_AFSX
MCASP Transmit Frame Sync
IO
AJ24
MCASP7_AXR0
MCASP Serial Data (Input/Output)
IO
AG24
MCASP7_AXR1
MCASP Serial Data (Input/Output)
IO
AD24
MCASP7_AXR2
MCASP Serial Data (Input/Output)
IO
AC24
MCASP7_AXR3
MCASP Serial Data (Input/Output)
IO
AE24
PIN TYPE
[3]
BALL [4]
Table 6-103. MCASP8 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCASP8_ACLKR
MCASP Receive Bit Clock
IO
AH24
MCASP8_ACLKX
MCASP Transmit Bit Clock
IO
AE22
MCASP8_AFSR
MCASP Receive Frame Sync
IO
AE23
MCASP8_AFSX
MCASP Transmit Frame Sync
IO
AG23
MCASP8_AXR0
MCASP Serial Data (Input/Output)
IO
AF23
MCASP8_AXR1
MCASP Serial Data (Input/Output)
IO
AD23
MCASP8_AXR2
MCASP Serial Data (Input/Output)
IO
AH24
MCASP8_AXR3
MCASP Serial Data (Input/Output)
IO
AE23
PIN TYPE
[3]
BALL [4]
Table 6-104. MCASP9 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCASP9_ACLKR
MCASP Receive Bit Clock
IO
AJ27
MCASP9_ACLKX
MCASP Transmit Bit Clock
IO
AJ25
MCASP9_AFSR
MCASP Receive Frame Sync
IO
AJ26
MCASP9_AFSX
MCASP Transmit Frame Sync
IO
AH25
MCASP9_AXR0
MCASP Serial Data (Input/Output)
IO
AG25
MCASP9_AXR1
MCASP Serial Data (Input/Output)
IO
AH26
MCASP9_AXR2
MCASP Serial Data (Input/Output)
IO
AJ27
MCASP9_AXR3
MCASP Serial Data (Input/Output)
IO
AJ26
PIN TYPE
[3]
BALL [4]
Table 6-105. MCASP10 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCASP10_ACLKR
MCASP Receive Bit Clock
IO
Y28
MCASP10_ACLKX
MCASP Transmit Bit Clock
IO
U23
MCASP10_AFSR
MCASP Receive Frame Sync
IO
V23
MCASP10_AFSX
MCASP Transmit Frame Sync
IO
U26
MCASP10_AXR0
MCASP Serial Data (Input/Output)
IO
V28
MCASP10_AXR1
MCASP Serial Data (Input/Output)
IO
V29
MCASP10_AXR2
MCASP Serial Data (Input/Output)
IO
U29
MCASP10_AXR3
MCASP Serial Data (Input/Output)
IO
U25
MCASP10_AXR4
MCASP Serial Data (Input/Output)
IO
V25
MCASP10_AXR5
MCASP Serial Data (Input/Output)
IO
W27
MCASP10_AXR6
MCASP Serial Data (Input/Output)
IO
W29
MCASP10_AXR7
MCASP Serial Data (Input/Output)
IO
W26
122
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-106. MCASP11 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
MCASP11_ACLKR
MCASP Receive Bit Clock
IO
W23
MCASP11_ACLKX
MCASP Transmit Bit Clock
IO
V27
MCASP11_AFSR
MCASP Receive Frame Sync
IO
W28
MCASP11_AFSX
MCASP Transmit Frame Sync
IO
U28
MCASP11_AXR0
MCASP Serial Data (Input/Output)
IO
U27
MCASP11_AXR1
MCASP Serial Data (Input/Output)
IO
U24
MCASP11_AXR2
MCASP Serial Data (Input/Output)
IO
R23
MCASP11_AXR3
MCASP Serial Data (Input/Output)
IO
T23
MCASP11_AXR4
MCASP Serial Data (Input/Output)
IO
Y29
MCASP11_AXR5
MCASP Serial Data (Input/Output)
IO
Y27
MCASP11_AXR6
MCASP Serial Data (Input/Output)
IO
W24
MCASP11_AXR7
MCASP Serial Data (Input/Output)
IO
W25
PIN TYPE
[3]
BALL [4]
6.3.25 DSS
6.3.25.1 MAIN Domain
Table 6-107. DSS0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
DSS_FSYNC0
Video Output Frame Sync 0
O
AH27, Y26
DSS_FSYNC1
Video Output Frame Sync 1
O
AD19, AH28
DSS_FSYNC2
Video Output Frame Sync 2
O
AA27, AH29
DSS_FSYNC3
Video Output Frame Sync 3
O
AG27, Y24
VOUT0_DE
Video Output Data Enable
O
AC22
VOUT0_EXTPCLKIN
Video Output External Pixel Clock Input
I
AH21
VOUT0_HSYNC
Video Output Horizontal Sync
O
AJ26
VOUT0_PCLK
Video Output Pixel Clock Output
O
AH22
VOUT0_VSYNC
Video Output Vertical Sync
O
AJ22
VOUT0_DATA0
Video Output Data 0
O
AE22
VOUT0_DATA1
Video Output Data 1
O
AG23
VOUT0_DATA2
Video Output Data 2
O
AF23
VOUT0_DATA3
Video Output Data 3
O
AD23
VOUT0_DATA4
Video Output Data 4
O
AH24
VOUT0_DATA5
Video Output Data 5
O
AG21
VOUT0_DATA6
Video Output Data 6
O
AE23
VOUT0_DATA7
Video Output Data 7
O
AC21
VOUT0_DATA8
Video Output Data 8
O
Y23
VOUT0_DATA9
Video Output Data 9
O
AF21
VOUT0_DATA10
Video Output Data 10
O
AB23
VOUT0_DATA11
Video Output Data 11
O
AJ25
VOUT0_DATA12
Video Output Data 12
O
AH25
VOUT0_DATA13
Video Output Data 13
O
AG25
VOUT0_DATA14
Video Output Data 14
O
AH26
VOUT0_DATA15
Video Output Data 15
O
AJ27
VOUT0_DATA16
Video Output Data 16
O
AF24
VOUT0_DATA17
Video Output Data 17
O
AJ24
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
123
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-107. DSS0 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
VOUT0_DATA18
Video Output Data 18
O
AG24
VOUT0_DATA19
Video Output Data 19
O
AD24
VOUT0_DATA20
Video Output Data 20
O
AC24
VOUT0_DATA21
Video Output Data 21
O
AE24
VOUT0_DATA22
Video Output Data 22
O
AJ20
VOUT0_DATA23
Video Output Data 23
O
AG20
VOUT0_VP0_DE
Video Output Data Enable
O
AC22
VOUT0_VP0_HSYNC
Video Output Horizontal Sync
O
AJ26
VOUT0_VP0_VSYNC
Video Output Vertical Sync
O
AJ22
VOUT0_VP2_DE
Video Output Data Enable
O
AC22
VOUT0_VP2_HSYNC
Video Output Horizontal Sync
O
AJ26
VOUT0_VP2_VSYNC
Video Output Vertical Sync
O
AJ22
VOUT1_DE
Video Output Data Enable
O
W26
VOUT1_EXTPCLKIN
Video Output External Pixel Clock Input
I
W24
VOUT1_HSYNC
Video Output Horizontal Sync
O
W27
VOUT1_PCLK
Video Output Pixel Clock Output
O
W29
VOUT1_VSYNC
Video Output Vertical Sync
O
V25
VOUT1_DATA0
Video Output Data 0
O
U23
VOUT1_DATA1
Video Output Data 1
O
U26
VOUT1_DATA2
Video Output Data 2
O
V28
VOUT1_DATA3
Video Output Data 3
O
V29
VOUT1_DATA4
Video Output Data 4
O
V27
VOUT1_DATA5
Video Output Data 5
O
U28
VOUT1_DATA6
Video Output Data 6
O
U29
VOUT1_DATA7
Video Output Data 7
O
U25
VOUT1_DATA8
Video Output Data 8
O
U27
VOUT1_DATA9
Video Output Data 9
O
U24
VOUT1_DATA10
Video Output Data 10
O
R23
VOUT1_DATA11
Video Output Data 11
O
T23
VOUT1_DATA12
Video Output Data 12
O
Y28
VOUT1_DATA13
Video Output Data 13
O
V23
VOUT1_DATA14
Video Output Data 14
O
W23
VOUT1_DATA15
Video Output Data 15
O
W28
VOUT1_VP0_DE
Video Output Data Enable
O
W26
VOUT1_VP0_HSYNC
Video Output Horizontal Sync
O
W27
VOUT1_VP0_VSYNC
Video Output Vertical Sync
O
V25
6.3.26 DP
6.3.26.1 MAIN Domain
Note
DP0_TX functionality is available on the SERDES pins. For more information, refer to Section 6.3.16,
SERDES.
124
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-108. DP0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
DP0_AUXN
Display port differential auxiliary data (negative)
IO
G6
DP0_AUXP
Display port differential auxiliary data (positive)
IO
F7
DP0_HPD
Display Port Hot Plugged Display Detect
I
W2, Y4
PIN TYPE
[3]
BALL [4]
CSI Differential Receive Clock Input (negative)
I
B20
CSI Differential Receive Clock Input (positive)
I
A21
CSI pin connected to external resistor for on-chip resistor
calibration
A
F16
CSI0_RXN0
CSI Differential Receive Input (negative)
I
B19
CSI0_RXP0
CSI Differential Receive Input (positive)
I
A20
CSI0_RXN1
CSI Differential Receive Input (negative)
I
D18
CSI0_RXP1
CSI Differential Receive Input (positive)
I
C19
CSI0_RXN2
CSI Differential Receive Input (negative)
I
D17
CSI0_RXP2
CSI Differential Receive Input (positive)
I
C18
CSI0_RXN3
CSI Differential Receive Input (negative)
I
E16
CSI0_RXP3
CSI Differential Receive Input (positive)
I
E17
6.3.27 Camera Streaming Interface Receiver (CSI_RX_IF) Subsystem
6.3.27.1 MAIN Domain
Table 6-109. CSI0 Signal Descriptions
SIGNAL NAME [1] (2)
DESCRIPTION [2]
CSI0_RXCLKN
CSI0_RXCLKP
CSI0_RXRCALIB
(1)
(2)
(1)
An external 500 Ω ±1% resistor must be connected between this pin and VSS, even when the pin is unused.
CSI TX functionally is available on the DSI pins. For more information, refer to Section 6.3.28, DSI_TX.
Table 6-110. CSI1 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
CSI1_RXCLKN
CSI Differential Receive Clock Input (negative)
I
B17
CSI1_RXCLKP
CSI Differential Receive Clock Input (positive)
I
A18
CSI pin connected to external resistor for on-chip resistor
calibration
A
F15
CSI1_RXN0
CSI Differential Receive Input (negative)
I
B16
CSI1_RXP0
CSI Differential Receive Input (positive)
I
A17
CSI1_RXN1
CSI Differential Receive Input (negative)
I
D15
CSI1_RXP1
CSI Differential Receive Input (positive)
I
C16
CSI1_RXN2
CSI Differential Receive Input (negative)
I
D14
CSI1_RXP2
CSI Differential Receive Input (positive)
I
C15
CSI1_RXN3
CSI Differential Receive Input (negative)
I
E13
CSI1_RXP3
CSI Differential Receive Input (positive)
I
E14
CSI1_RXRCALIB
(1)
(1)
An external 500 Ω ±1% resistor must be connected between this pin and VSS, even when the pin is unused.
6.3.28 DSI_TX
6.3.28.1 MAIN Domain
Table 6-111. DSI_TX0 Signal Descriptions
SIGNAL NAME [1]
(1)
DSI_TXCLKN
DESCRIPTION [2]
DSI Differential Transmit Clock Output (positive)
PIN TYPE
[3]
BALL [4]
O
E10
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
125
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-111. DSI_TX0 Signal Descriptions (continued)
SIGNAL NAME [1]
(1)
PIN TYPE
[3]
DESCRIPTION [2]
BALL [4]
DSI_TXCLKP
DSI Differential Transmit Clock Output (negative)
O
E11
DSI_TXN0
DSI Differential Transmit Output (negative)
IO
D11
DSI_TXP0
DSI Differential Transmit Output (positive)
IO
C12
DSI_TXN1
DSI Differential Transmit Output (negative)
O
D12
DSI_TXP1
DSI Differential Transmit Output (positive)
O
C13
DSI_TXN2
DSI Differential Transmit Output (negative)
O
B13
DSI_TXP2
DSI Differential Transmit Output (positive)
O
A14
DSI_TXN3
DSI Differential Transmit Output (negative)
O
B14
DSI Differential Transmit Output (positive)
O
A15
DSI pin connected to external resistor for on-chip resistor
calibration
A
F12
DSI_TXP3
DSI_TXRCALIB
(1)
(2)
(2)
The functionality of these pins is controlled by CTRLMMR_DPHY_TX0_CTRL[1:0] LANE_FUNC_SEL. 0x0 = DSI PPI, 0x1 = CSI0 TX.
An external 500 Ω ±1% resistor must be connected between this pin and VSS, even when the pin is unused.
6.3.29 VPFE
6.3.29.1 MAIN Domain
Table 6-112. VPFE0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
VPFE0_FIELD
Video Input Field Indicator
I
AG23
VPFE0_HD
Video Input Horizontal Sync
I
AE22
VPFE0_PCLK
Video Input Pixel Clock
I
AH21
VPFE0_VD
Video Input Vertical Sync
I
AF23
VPFE0_WEN
Video Input Write Enable
I
AD23
VPFE0_DATA0
Video Input Data
I
AF24
VPFE0_DATA1
Video Input Data
I
AJ24
VPFE0_DATA2
Video Input Data
I
AG24
VPFE0_DATA3
Video Input Data
I
AD24
VPFE0_DATA4
Video Input Data
I
AC24
VPFE0_DATA5
Video Input Data
I
AE24
VPFE0_DATA6
Video Input Data
I
AJ21
VPFE0_DATA7
Video Input Data
I
AE21
VPFE0_DATA8
Video Input Data
I
AG25
VPFE0_DATA9
Video Input Data
I
AJ27
VPFE0_DATA10
Video Input Data
I
AC22
VPFE0_DATA11
Video Input Data
I
AD19
VPFE0_DATA12
Video Input Data
I
AD18
VPFE0_DATA13
Video Input Data
I
AH24
VPFE0_DATA14
Video Input Data
I
AE23
VPFE0_DATA15
Video Input Data
I
AC21
126
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
6.3.30 DMTIMER
6.3.30.1 MAIN Domain
Table 6-113. DMTIMER Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
TIMER_IO0
Timer Inputs and Outputs (not tied to single timer
instance)
IO
P24, V6
TIMER_IO1
Timer Inputs and Outputs (not tied to single timer
instance)
IO
R24, V5
TIMER_IO2
Timer Inputs and Outputs (not tied to single timer
instance)
IO
AD23, P23
TIMER_IO3
Timer Inputs and Outputs (not tied to single timer
instance)
IO
AH24, R28
TIMER_IO4
Timer Inputs and Outputs (not tied to single timer
instance)
IO
AG21, T27
TIMER_IO5
Timer Inputs and Outputs (not tied to single timer
instance)
IO
AE23, T24
TIMER_IO6
Timer Inputs and Outputs (not tied to single timer
instance)
IO
AC2, T26
TIMER_IO7
Timer Inputs and Outputs (not tied to single timer
instance)
IO
AB1, T25
PIN TYPE
[3]
BALL [4]
6.3.30.2 MCU Domain
Table 6-114. DMTIMER Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCU_TIMER_IO0
Timer Inputs and Outputs (not tied to single timer
instance)
IO
E22, E28
MCU_TIMER_IO1
Timer Inputs and Outputs (not tied to single timer
instance)
IO
E25, H27
MCU_TIMER_IO2
Timer Inputs and Outputs (not tied to single timer
instance)
IO
A28
MCU_TIMER_IO3
Timer Inputs and Outputs (not tied to single timer
instance)
IO
A27
MCU_TIMER_IO4
Timer Inputs and Outputs (not tied to single timer
instance)
IO
A25
MCU_TIMER_IO5
Timer Inputs and Outputs (not tied to single timer
instance)
IO
D24
MCU_TIMER_IO6
Timer Inputs and Outputs (not tied to single timer
instance)
IO
G27
MCU_TIMER_IO7
Timer Inputs and Outputs (not tied to single timer
instance)
IO
G26
MCU_TIMER_IO8
Timer Inputs and Outputs (not tied to single timer
instance)
IO
D26
MCU_TIMER_IO9
Timer Inputs and Outputs (not tied to single timer
instance)
IO
D25
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
127
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
6.3.31 Emulation and Debug
6.3.31.1 MAIN Domain
Table 6-115. JTAG Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
EMU0
Emulation Control 0
IO
C26
EMU1
Emulation Control 1
IO
B29
TCK
JTAG Test Clock Input
I
E29
TDI
JTAG Test Data Input
I
V1
TDO
JTAG Test Data Output
OZ
V3
TMS
JTAG Test Mode Select Input
I
V2
TRSTn
JTAG Reset
I
F24
PIN TYPE
[3]
BALL [4]
Table 6-116. Trace Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
TRC_CLK
Trace Clock
O
U23
TRC_CTL
Trace Control
O
U26
TRC_DATA0
Trace Data 0
O
V28
TRC_DATA1
Trace Data 1
O
V29
TRC_DATA2
Trace Data 2
O
V27
TRC_DATA3
Trace Data 3
O
U28
TRC_DATA4
Trace Data 4
O
U29
TRC_DATA5
Trace Data 5
O
U25
TRC_DATA6
Trace Data 6
O
U27
TRC_DATA7
Trace Data 7
O
U24
TRC_DATA8
Trace Data 8
O
R23
TRC_DATA9
Trace Data 9
O
T23
TRC_DATA10
Trace Data 10
O
Y28
TRC_DATA11
Trace Data 11
O
V23
TRC_DATA12
Trace Data 12
O
W23
TRC_DATA13
Trace Data 13
O
W28
TRC_DATA14
Trace Data 14
O
V25
TRC_DATA15
Trace Data 15
O
W27
TRC_DATA16
Trace Data 16
O
W29
TRC_DATA17
Trace Data 17
O
W26
TRC_DATA18
Trace Data 18
O
Y29
TRC_DATA19
Trace Data 19
O
Y27
TRC_DATA20
Trace Data 20
O
W24
TRC_DATA21
Trace Data 21
O
W25
TRC_DATA22
Trace Data 22
O
V26
TRC_DATA23
Trace Data 23
O
V24
128
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
6.3.32 System and Miscellaneous
6.3.32.1 Boot Mode Configuration
6.3.32.1.1 MAIN Domain
Note
BOOTMODE pins are latched on the rising edge of PORz_OUT.
Table 6-117. Sysboot Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
BOOTMODE0
Bootmode pin 0
I
AD20
BOOTMODE1
Bootmode pin 1
I
AC22
BOOTMODE2
Bootmode pin 2
I
AC29
BOOTMODE3
Bootmode pin 3
I
Y25
BOOTMODE4
Bootmode pin 4
I
V6
BOOTMODE5
Bootmode pin 5
I
V5
BOOTMODE6
Bootmode pin 6
I
AB27
Bootmode pin 7
I
AB24
(1)
BOOTMODE7
(1)
These signals must be connected to VSS through a separate external pull resistor to ensure these balls are held to a valid logic low
level.
6.3.32.1.2 MCU Domain
Note
MCU_BOOTMODE pins are latched on the rising edge of MCU_PORz_OUT.
Table 6-118. Sysboot Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
MCU_BOOTMODE00
Bootmode pin 00
I
E27
MCU_BOOTMODE01
Bootmode pin 01
I
E24
MCU_BOOTMODE02
Bootmode pin 02
I
E28
MCU_BOOTMODE03
Bootmode pin 03
I
F26
MCU_BOOTMODE04
Bootmode pin 04
I
F25
MCU_BOOTMODE05
Bootmode pin 05
I
F28
MCU_BOOTMODE06
Bootmode pin 06
I
H29
MCU_BOOTMODE07
Bootmode pin 07
I
J27
MCU_BOOTMODE08
Bootmode pin 08
I
G29
MCU_BOOTMODE09
Bootmode pin 09
I
H28
PIN TYPE
[3]
BALL [4]
6.3.32.2 Clock
6.3.32.2.1 MAIN Domain
Table 6-119. Clock1 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
OSC1_XI
High frequency oscillator input
I
P29
OSC1_XO
High frequency oscillator output
O
P27
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
129
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
6.3.32.2.2 WKUP Domain
Table 6-120. Clock0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
WKUP_LFOSC0_XI
Low frequency (32.768 KHz) oscillator input
I
N28
WKUP_LFOSC0_XO
Low frequency (32.768 KHz) oscillator output
O
N26
WKUP_OSC0_XI
High frequency oscillator input
I
M29
WKUP_OSC0_XO
High frequency oscillator output
O
M27
PIN TYPE
[3]
BALL [4]
6.3.32.3 System
6.3.32.3.1 MAIN Domain
Table 6-121. System0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
AUDIO_EXT_REFCLK0
External clock routed to ATL or MCASP as one of the
selectable input clock sources, or as a output clock
output for ATL or MCASP
IO
AD22
AUDIO_EXT_REFCLK1
External clock routed to ATL or MCASP as one of the
selectable input clock sources, or as a output clock
output for ATL or MCASP
IO
AE20
AUDIO_EXT_REFCLK2
External clock routed to ATL or MCASP as one of the
selectable input clock sources, or as a output clock
output for ATL or MCASP
IO
W26
AUDIO_EXT_REFCLK3
External clock routed to ATL or MCASP as one of the
selectable input clock sources, or as a output clock
output for ATL or MCASP
IO
W25
EXTINTn
External Interrupt
I
AC18
EXT_REFCLK1
External clock input to MAIN domain, routed to Timer
clock muxes as one of the selectable input clock
sources for Timer/WDT modules, or as reference clock
to MAIN_PLL2 (PER1 PLL)
I
U3
OBSCLK0
Observation clock output for test and debug purposes
only
O
V5
OBSCLK1
Observation clock output for test and debug purposes
only
O
AB24
OBSCLK2
Observation clock output for test and debug purposes
only
O
AD21
PORz_OUT
MAIN domain POR status output
O
U1
RESETSTATz
MAIN domain warm reset status output
O
T6
SOC_SAFETY_ERRORn
Error signal output from MAIN domain ESM
IO
U4
SYSCLKOUT0
SYSCLK0 output from MAIN PLL controller (divided by 6)
for test and debug purposes only
O
V6
VMON_ER_VSYS
Voltage Monitor for System supply, requires External
Resistor divider
A
M26
VMON_IR_VEXT
Voltage Monitor for External 1.8V supply, uses Internal
Resistor divider
A
V19
PIN TYPE
[3]
BALL [4]
OZ
H27
I
H26
6.3.32.3.2 WKUP Domain
Table 6-122. System0 Signal Descriptions
SIGNAL NAME [1]
DESCRIPTION [2]
MCU_CLKOUT0
Reference clock output for Ethernet PHYs (50MHz or
25MHz)
MCU_EXT_REFCLK0
External system clock input
130
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-122. System0 Signal Descriptions (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
O
H27
MCU_OBSCLK0
Observation clock output for test and debug purposes
only
MCU_PORz
MCU Domain cold reset
I
H23
MCU_PORz_OUT
MCU Domain POR status output
O
B28
MCU_RESETSTATz
MCU Domain warm reset status output
O
C27
MCU_RESETz
MCU Domain warm reset
I
D28
MCU_SAFETY_ERRORn
Error signal output from MCU Domain ESM
IO
D27
MCU_SYSCLKOUT0
MCU Domain system clock output for test and debug
purposes only
O
H26
PORz
MAIN Domain cold reset
I
J24
RESET_REQz
MAIN Domain external warm reset request input
I
C28
PMIC_POWER_EN0
Pin name retained for legacy purposes, not used for
power enable
NA
E26
PMIC_POWER_EN1
Power enable output for MAIN Domain supplies
O
G23
PIN TYPE
[3]
BALL [4]
Programming voltage for MAIN Domain efuses
PWR
AB11
Programming voltage for MCU Domain efuses
PWR
F17
6.3.32.4 EFUSE
Table 6-123. EFUSE Signal Description
SIGNAL NAME [1]
VPP_CORE
VPP_MCU
(1)
DESCRIPTION [2]
(1)
(1)
This signal is valid only for High-Security devices. For more details, see Section 7.8, VPP Specification for One-Time Programmable
(OTP) eFUSEs. For General-Purpose devices do not connect any signal, test point, or board trace to this signal.
6.3.33 Power Supply
Note
All power balls must be supplied with the voltages specified in Section 7.4, Recommended Operating
Conditions, unless otherwise specified in Section 6.3, Signal Descriptions.
Table 6-124. Power Supply Signal Description
SIGNAL NAME [1]
CAP_VDDS0
(1)
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
External capacitor connection for
CAP
U7
External capacitor connection for
CAP
K23
External capacitor connection for
CAP
AB21
External capacitor connection for
CAP
J18
External capacitor connection for
CAP
Y18
External capacitor connection for
CAP
J19
CAP_VDDS3
(1)
External capacitor connection for
CAP
W21
CAP_VDDS4
(1)
External capacitor connection for
CAP
AA22
CAP_VDDS5
(1)
External capacitor connection for
CAP
R22
CAP_VDDS6
(1)
External capacitor connection for
CAP
V22
VDDAR_CORE
MAIN domain RAM supply
PWR
L14, V13, V16, W19
VDDAR_CPU
CPU RAM supply
PWR
L11, W12
VDDAR_MCU
MCUSS RAM supply
PWR
K19, T19
VDDA_0P8_CSIRX
CSIRX analog supply low
PWR
H17
CAP_VDDS0_MCU
CAP_VDDS1
(1)
CAP_VDDS1_MCU
CAP_VDDS2
(1)
(1)
(1)
CAP_VDDS2_MCU
(1)
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
131
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-124. Power Supply Signal Description (continued)
SIGNAL NAME [1]
PIN TYPE
[3]
DESCRIPTION [2]
BALL [4]
VDDA_0P8_DP
Displayport SERDES analog supply low
PWR
G12, J12
VDDA_0P8_DP_C
Displayport SERDES clock supply
PWR
G14, H13
VDDA_0P8_DSITX
DSITX clock supply
PWR
H15
VDDA_0P8_DSITX_C
DSITX clock supply
PWR
J16
VDDA_0P8_UFS
UFS analog supply low
PWR
AB9
VDDA_0P8_USB
USB0-1 0.8 V analog supply
PWR
AA10
VDDA_0P8_SERDES0_1
SERDES0-1 analog supply low
PWR
AA15, Y14, Y16
VDDA_0P8_SERDES2_3
SERDES2-3 analog supply low
PWR
AA12, Y11, Y13
VDDA_0P8_SERDES_C0_1
SERDES0-1 clock supply
PWR
AB14, AB15
VDDA_0P8_SERDES_C2_3
SERDES2-3 clock supply
PWR
AB12, AB13
VDDA_1P8_CSIRX
CSIRX analog supply high
PWR
G16
VDDA_1P8_DP
Displayport SERDES analog supply high
PWR
H11
VDDA_1P8_DSITX
DSITX analog supply high
PWR
J14
VDDA_1P8_UFS
UFS analog supply high
PWR
AC8
VDDA_1P8_USB
USB0-1 1.8 V analog supply
PWR
AC9
VDDA_1P8_SERDES0_1
SERDES0-1 analog supply high
PWR
AC14, AC15
VDDA_1P8_SERDES2_3
SERDES2-3 analog supply high
PWR
AC11, AC12
VDDA_3P3_USB
USB0-1 3.3 V analog supply
PWR
AB10
VDDA_ADC0
ADC analog supply and high voltage reference (VREFP)
PWR
N22
VDDA_ADC1
ADC analog supply and high voltage reference (VREFP)
PWR
M23
VDDA_0P8_PLL_DDR
DDR PLL analog supply
PWR
N9
VDDA_MCU_PLLGRP0
Analog supply for MCU PLL Group 0
PWR
G18
VDDA_MCU_TEMP
Analog supply for temperature sensor 0 in MCU domain
PWR
P21
VDDA_1P8_MLB
MLB IO supply (6-pin interface)
PWR
W7
VDDA_PLLGRP0
Analog supply for MAIN PLL Group 0
PWR
Y20
VDDA_PLLGRP1
Analog supply for MAIN PLL Group 1
PWR
W17
VDDA_PLLGRP2
Analog supply for MAIN PLL Group 2
PWR
M17
VDDA_PLLGRP3
Analog supply for MAIN PLL Group 3
PWR
L12
VDDA_PLLGRP4
Analog supply for MAIN PLL Group 4
PWR
R11
VDDA_PLLGRP5
Analog supply for MAIN PLL Group 5 (DDR)
PWR
P9
VDDA_PLLGRP6
Analog supply for MAIN PLL Group 6
PWR
W18
VDDA_0P8_PLL_MLB
MLB PLL analog supply
PWR
W8
VDDA_POR_WKUP
WKUP domain analog supply
PWR
P22
VDDA_TEMP0_1
Analog supply for temperature sensor 0 and 1
PWR
W15
VDDA_TEMP2_3
Analog supply for temperature sensor 2 and 3
PWR
H9
VDDA_WKUP
Oscillator supply for WKUP domain
PWR
H22
VDDSHV0
IO supply for MAIN domain general
PWR
U8, V7
VDDSHV0_MCU
IO supply MCUSS general IO group, and MCU and MAIN
domain warm reset pins
PWR
L22, M22
VDDSHV1
IO supply for MAIN domain IO group 1
PWR
AA19, AA20, AC19,
AC20
VDDSHV1_MCU
IO supply for MCUSS IO group 1
PWR
H19, H21, J20
AA17, AB16, AB18,
AC17
VDDSHV2
IO supply for MAIN domain IO group 2
PWR
VDDSHV2_MCU
IO supply for MCUSS IO group 2
PWR
J22, K21
VDDSHV3
IO supply for MAIN domain IO group 3
PWR
V21, W22
132
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-124. Power Supply Signal Description (continued)
SIGNAL NAME [1]
DESCRIPTION [2]
PIN TYPE
[3]
BALL [4]
VDDSHV4
IO supply for MAIN domain IO group 4
PWR
AA21, Y22
VDDSHV5
IO supply for MAIN domain IO group 5
PWR
T20, T22
VDDSHV6
IO supply for MAIN domain IO group 6
PWR
U20, U22
VDDS_DDR
DDR inteface power supply
PWR
A1, G8, J8, K7, L8,
M7, N8, P7, R8, T1
VDDS_DDR_BIAS
Bias supply for LPDDR4
PWR
H7, J6, R6, T7
VDDS_DDR_C
IO power for DDR Memory Clock Bit (MCB) macro
PWR
M9
VDDS_MMC0
MMC0 IO supply
PWR
AA8, AB7, Y7
VDDS_OSC1
HFOSC1 supply
PWR
R21
VDD_CORE
MAIN domain core supply
PWR
J10, K11, K13, K15,
K17, K9, L10, L16,
L18, M15, N14, N16,
N18, P13, P15, P17,
R14, R16, R18, R20,
T15, T17, T9, U14,
U16, U18, V15, V17,
V20, W14
VDD_CPU
CPU core supply
PWR
N10, P11, R10, R12,
U10, V11, V9, W10
VDDA_0P8_DLL_MMC0
MMC0 DLL analog supply
PWR
Y9
VDD_MCU
MCUSS core supply
PWR
L20, M19, M21, N20,
P19
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
133
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-124. Power Supply Signal Description (continued)
SIGNAL NAME [1]
VSS
(1)
134
DESCRIPTION [2]
Ground
PIN TYPE
[3]
BALL [4]
GND
AA13, AC10, AC13,
AD11, AD14, AD17,
AE10, AE12, AE15,
AE16, AE19, AE7,
AF20, AF25, AF5,
AG4, AG7, AH2,
AH20, AH5, AJ4, AJ7,
B3, B6, C1, C5, D2,
D4, E1, E5, F4, G1,
G7, H4, H6, K1, K4,
L3, M1, M28, M4,
M6, N27, N29, N3,
P1, P28, P4, R3, U5
A10, A13, A16, A19,
A22, A7, AA11, AA14,
AA16, AA18, AA7,
AA9, AB17, AB19,
AB20, AB22, AB8,
AC16, AF11, AF14,
AF17, AF8, AG10,
AG13, AG16, AG19,
AH11, AH14, AH17,
AH8, AJ10, AJ13,
AJ16, AJ19, B12,
B15, B18, B21, B9,
C11, C14, C17, C20,
C8, D10, D13, D16,
D19, D7, E12, E15,
E9, F14, F8, G11,
G13, G15, G17, H10,
H12, H14, H16, H18,
H20, H8, J11, J13,
J15, J17, J21, J23,
J7, J9, K10, K12,
K14, K16, K18, K20,
K22, K8, L13, L15,
L17, L19, L21, L23,
L7, L9, M10, M14,
M16, M18, M20, M8,
N15, N17, N19, N21,
N7, P10, P12, P14,
P16, P18, P20, P8,
R13, R15, R17, R19,
R7, R9, T10, T14,
T16, T18, T21, T8,
U15, U17, U19, U21,
U9, V10, V12, V14,
V18, V8, W11, W13,
W16, W20, W9, Y10,
Y12, Y15, Y17, Y19,
Y21, Y8
This pin must always be connected via a 1-μF capacitor to VSS.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
6.4 Pin Multiplexing
Note
Many device pins support multiple signal functions. Some signal functions are selected via a single layer of multiplexers associated with pins.
Other signal functions are selected via two or more layers of multiplexers, where one layer is associated with the pins and other layers are
associated with peripheral logic functions.
Table 6-125, Pin Multiplexing only describes signal multiplexing at the pins. For more information, related to signal multiplexing at the pins,
see Pad Configuration Registers section in Device Configuration chapter in the device TRM. Refer to the respective peripheral chapter in the
device TRM for information associated with peripheral signal multiplexing.
Note
When a pad is set into a pin multiplexing mode which is not defined, that pad’s behavior is undefined. This should be avoided.
Note
Table 6-125, Pin Multiplexing does not include SerDes signal functions. For more information, refer to the Serializer/Deserializer (SerDes)
chapter in the device TRM.
Note
Table 6-125, Pin Multiplexing does not include DPHY_TX signal functions. For more information, refer to the Shared D-PHY Transmitter
(DPHY_TX) chapter in the device TRM.
For more information on the I/O cell configurations, see Pad Configuration Registers section in Device Configuration chapter in the device TRM.
Table 6-125. Pin Multiplexing
ADDRESS
REGISTER
NAME
BALL
NUMB
ER
MUXMODE[14:0] SETTINGS
0
1
2
3
4
5
6
7
0x00011C2 PADCONFIG165
94
AD1
MLB0_ML
BSP
GPIO1_30
0x00011C2 PADCONFIG167
9C
AC3
MLB0_ML
BDP
GPIO1_32
0x00011C2 PADCONFIG164
90
U6
USB0_DR
VVBUS
0x00011C2 PADCONFIG166
98
AC1
MLB0_ML
BSN
GPIO1_31
0x00011C2 PADCONFIG168
A0
AD3
MLB0_ML
BDN
GPIO1_33
0x00011C2 PADCONFIG169
A4
AD2
MLB0_ML
BCP
GPIO1_34
USB1_DR
VVBUS
8
9
10
11
12
13
14
Bootstrap
GPIO1_29
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
135
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-125. Pin Multiplexing (continued)
ADDRESS
REGISTER
NAME
BALL
NUMB
ER
MUXMODE[14:0] SETTINGS
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0x00011C2 PADCONFIG170
A8
AE2
MLB0_ML
BCN
GPIO1_35
0x00011C0 PADCONFIG0
00
AC18
EXTINTn
GPIO0_0
0x00011C0 PADCONFIG1
04
AC23
PRG1_PR
U0_GPO0
PRG1_PR
U0_GPI0
PRG1_RG
MII1_RD0
PRG1_PW
M3_A0
RGMII1_R
D0
RMII1_RX
D0
GPIO0_1
GPMC0_B
E1n
RGMII7_R
D0
MCASP6_
ACLKX
UART0_R
XD
0x00011C0 PADCONFIG2
08
AG22
PRG1_PR
U0_GPO1
PRG1_PR
U0_GPI1
PRG1_RG
MII1_RD1
PRG1_PW
M3_B0
RGMII1_R
D1
RMII1_RX
D1
GPIO0_2
GPMC0_W RGMII7_R
AIT0
D1
MCASP6_
AFSX
UART0_TX
D
0x00011C0 PADCONFIG3
0C
AF22
PRG1_PR
U0_GPO2
PRG1_PR
U0_GPI2
PRG1_RG
MII1_RD2
PRG1_PW
M2_A0
RGMII1_R
D2
RMII1_CR
S_DV
GPIO0_3
GPMC0_W RGMII7_R
AIT1
D2
MCASP6_
AXR0
UART1_R
XD
0x00011C0 PADCONFIG4
10
AJ23
PRG1_PR
U0_GPO3
PRG1_PR
U0_GPI3
PRG1_RG
MII1_RD3
PRG1_PW
M3_A2
RGMII1_R
D3
RMII1_RX
_ER
GPIO0_4
GPMC0_DI RGMII7_R
R
D3
MCASP6_
AXR1
UART1_TX
D
0x00011C0 PADCONFIG5
14
AH23
PRG1_PR
U0_GPO4
PRG1_PR
U0_GPI4
PRG1_RG
MII1_RX_
CTL
PRG1_PW
M2_B0
RGMII1_R
X_CTL
RMII1_TX
D0
GPIO0_5
GPMC0_C
Sn2
MCASP6_
AXR2
0x00011C0 PADCONFIG6
18
AD20
PRG1_PR
U0_GPO5
PRG1_PR
U0_GPI5
RMII1_TX_
EN
GPIO0_6
GPMC0_W
En
0x00011C0 PADCONFIG7
1C
AD22
PRG1_PR
U0_GPO6
PRG1_PR
U0_GPI6
PRG1_RG
MII1_RXC
AUDIO_EX GPIO0_7
T_REFCLK
0
GPMC0_C
Sn3
0x00011C0 PADCONFIG8
20
AE20
PRG1_PR
U0_GPO7
PRG1_PR
U0_GPI7
PRG1_IEP PRG1_PW
0_EDC_LA M3_B1
TCH_IN1
0x00011C0 PADCONFIG9
24
AJ20
PRG1_PR
U0_GPO8
PRG1_PR
U0_GPI8
PRG1_PW
M2_A1
0x00011C0 PADCONFIG10
28
AG20
PRG1_PR
U0_GPO9
PRG1_PR
U0_GPI9
PRG1_UA PRG1_PW
RT0_CTSn M3_TZ_IN
SPI6_CS1
0x00011C0 PADCONFIG11
2C
AD21
PRG1_PR
U0_GPO1
0
PRG1_PR
U0_GPI10
PRG1_UA PRG1_PW
RT0_RTSn M2_B1
SPI6_CS2
0x00011C0 PADCONFIG12
30
AF24
PRG1_PR PRG1_PR
U0_GPO11 U0_GPI11
PRG1_RG
MII1_TD0
PRG1_PW
M3_TZ_O
UT
RGMII1_T
D0
MCAN4_T
X
GPIO0_12
RGMII7_T
D0
VOUT0_D
ATA16
VPFE0_DA MCASP7_
TA0
ACLKX
0x00011C0 PADCONFIG13
34
AJ24
PRG1_PR
U0_GPO1
2
PRG1_PR
U0_GPI12
PRG1_RG
MII1_TD1
PRG1_PW
M0_A0
RGMII1_T
D1
MCAN4_R
X
GPIO0_13
RGMII7_T
D1
VOUT0_D
ATA17
VPFE0_DA MCASP7_
TA1
AFSX
0x00011C0 PADCONFIG14
38
AG24
PRG1_PR
U0_GPO1
3
PRG1_PR
U0_GPI13
PRG1_RG
MII1_TD2
PRG1_PW
M0_B0
RGMII1_T
D2
MCAN5_T
X
GPIO0_14
RGMII7_T
D2
VOUT0_D
ATA18
VPFE0_DA MCASP7_
TA2
AXR0
0x00011C0 PADCONFIG15
3C
AD24
PRG1_PR
U0_GPO1
4
PRG1_PR
U0_GPI14
PRG1_RG
MII1_TD3
PRG1_PW
M0_A1
RGMII1_T
D3
MCAN5_R
X
GPIO0_15
RGMII7_T
D3
VOUT0_D
ATA19
VPFE0_DA MCASP7_
TA3
AXR1
0x00011C0 PADCONFIG16
40
AC24
PRG1_PR
U0_GPO1
5
PRG1_PR
U0_GPI15
PRG1_RG PRG1_PW
MII1_TX_C M0_B1
TL
RGMII1_T
X_CTL
MCAN6_T
X
GPIO0_16
RGMII7_T
X_CTL
VOUT0_D
ATA20
VPFE0_DA MCASP7_
TA4
AXR2
136
PRG1_PW
M3_B2
PRG1_PW
M3_A1
RGMII1_R
XC
RMII1_TX
D1
RGMII7_R
X_CTL
UART2_R
XD
MCASP3_
AXR0
RGMII7_R
XC
MCASP6_
AXR3
AUDIO_EX MCAN4_T
T_REFCLK X
1
GPIO0_8
RMII5_RX
D0
GPIO0_9
GPMC0_O
En_REn
VOUT0_D
ATA22
MCASP3_
AXR2
RMII5_RX
D1
GPIO0_10
GPMC0_A
DVn_ALE
PRG1_IEP VOUT0_D
0_EDIO_D ATA23
ATA_IN_O
UT28
MCASP3_
ACLKX
RMII5_CR
S_DV
GPIO0_11
GPMC0_B
E0n_CLE
PRG1_IEP OBSCLK2
0_EDIO_D
ATA_IN_O
UT29
MCASP3_
AFSX
MCAN4_R
X
MCASP6_
ACLKR
Bootstrap
BOOTMO
DE0
MCASP6_
AFSR
UART2_TX
D
MCASP3_
AXR1
Submit Document Feedback
MCASP7_
ACLKR
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-125. Pin Multiplexing (continued)
ADDRESS
REGISTER
NAME
BALL
NUMB
ER
MUXMODE[14:0] SETTINGS
0
1
2
3
4
PRG1_PW
M0_A2
RGMII1_T
XC
5
6
7
MCAN6_R
X
GPIO0_17
8
9
10
RGMII7_T
XC
VOUT0_D
ATA21
11
12
0x00011C0 PADCONFIG17
44
AE24
PRG1_PR
U0_GPO1
6
PRG1_PR
U0_GPI16
PRG1_RG
MII1_TXC
0x00011C0 PADCONFIG19
4C
AJ21
PRG1_PR
U0_GPO1
7
PRG1_PR
U0_GPI17
PRG1_IEP PRG1_PW
0_EDC_SY M0_B2
NC_OUT1
RMII5_TX
D1
MCAN5_T
X
GPIO0_18
VPFE0_DA MCASP3_
TA6
AXR3
0x00011C0 PADCONFIG20
50
AE21
PRG1_PR
U0_GPO1
8
PRG1_PR
U0_GPI18
PRG1_IEP PRG1_PW
0_EDC_LA M0_TZ_IN
TCH_IN0
RMII5_RX
_ER
MCAN5_R
X
GPIO0_19
VPFE0_DA MCASP4_
TA7
ACLKX
0x00011C0 PADCONFIG21
54
AH21
PRG1_PR
U0_GPO1
9
PRG1_PR
U0_GPI19
PRG1_IEP PRG1_PW
0_EDC_SY M0_TZ_O
NC_OUT0 UT
RMII5_TX
D0
MCAN6_T
X
GPIO0_20
0x00011C0 PADCONFIG22
58
AE22
PRG1_PR
U1_GPO0
PRG1_PR
U1_GPI0
PRG1_RG
MII2_RD0
RGMII2_R
D0
RMII2_RX
D0
GPIO0_21
0x00011C0 PADCONFIG23
5C
AG23
PRG1_PR
U1_GPO1
PRG1_PR
U1_GPI1
PRG1_RG
MII2_RD1
RGMII2_R
D1
RMII2_RX
D1
0x00011C0 PADCONFIG24
60
AF23
PRG1_PR
U1_GPO2
PRG1_PR
U1_GPI2
PRG1_RG
MII2_RD2
RGMII2_R
D2
0x00011C0 PADCONFIG25
64
AD23
PRG1_PR
U1_GPO3
PRG1_PR
U1_GPI3
PRG1_RG
MII2_RD3
0x00011C0 PADCONFIG26
68
AH24
PRG1_PR
U1_GPO4
PRG1_PR
U1_GPI4
PRG1_RG
MII2_RX_
CTL
0x00011C0 PADCONFIG27
6C
AG21
PRG1_PR
U1_GPO5
PRG1_PR
U1_GPI5
0x00011C0 PADCONFIG28
70
AE23
PRG1_PR
U1_GPO6
PRG1_PR
U1_GPI6
PRG1_RG
MII2_RXC
0x00011C0 PADCONFIG29
74
AC21
PRG1_PR
U1_GPO7
PRG1_PR
U1_GPI7
PRG1_IEP
1_EDC_LA
TCH_IN1
0x00011C0 PADCONFIG30
78
Y23
PRG1_PR
U1_GPO8
PRG1_PR
U1_GPI8
0x00011C0 PADCONFIG31
7C
AF21
PRG1_PR
U1_GPO9
PRG1_PR
U1_GPI9
PRG1_UA
RT0_RXD
0x00011C0 PADCONFIG32
80
AB23
PRG1_PR
U1_GPO1
0
PRG1_PR
U1_GPI10
PRG1_UA
RT0_TXD
0x00011C0 PADCONFIG33
84
AJ25
PRG1_PR PRG1_PR
U1_GPO11 U1_GPI11
PRG1_RG
MII2_TD0
0x00011C0 PADCONFIG34
88
AH25
PRG1_PR
U1_GPO1
2
PRG1_PR
U1_GPI12
PRG1_RG
MII2_TD1
PRG1_PW
M1_A0
RGMII2_T
D1
0x00011C0 PADCONFIG35
8C
AG25
PRG1_PR
U1_GPO1
3
PRG1_PR
U1_GPI13
PRG1_RG
MII2_TD2
PRG1_PW
M1_B0
RGMII2_T
D2
PRG1_PW
M2_A2
PRG1_PW
M2_B2
VPFE0_DA MCASP7_
TA5
AXR3
13
14
MCASP7_
AFSR
VOUT0_E
XTPCLKIN
VPFE0_PC MCASP4_
LK
AFSX
RGMII8_R
D0
VOUT0_D
ATA0
VPFE0_H
D
MCASP8_
ACLKX
GPIO0_22
RGMII8_R
D1
VOUT0_D
ATA1
VPFE0_FI
ELD
MCASP8_
AFSX
RMII2_CR
S_DV
GPIO0_23
RGMII8_R
D2
VOUT0_D
ATA2
VPFE0_VD MCASP8_
AXR0
MCASP3_
ACLKR
RGMII2_R
D3
RMII2_RX
_ER
GPIO0_24
RGMII8_R
D3
EQEP1_A
VOUT0_D
ATA3
VPFE0_W
EN
MCASP8_
AXR1
MCASP3_
AFSR
TIMER_IO
2
RGMII2_R
X_CTL
RMII2_TX
D0
GPIO0_25
RGMII8_R
X_CTL
EQEP1_B
VOUT0_D
ATA4
VPFE0_DA MCASP8_
TA13
AXR2
MCASP8_
ACLKR
TIMER_IO
3
RMII5_TX_ MCAN6_R
EN
X
GPIO0_26
GPMC0_W EQEP1_S
Pn
VOUT0_D
ATA5
MCASP4_
AXR0
RGMII2_R
XC
RMII2_TX
D1
GPIO0_27
RGMII8_R
XC
VOUT0_D
ATA6
VPFE0_DA MCASP8_
TA14
AXR3
SPI6_CS0
RMII6_RX
_ER
MCAN7_T
X
GPIO0_28
VOUT0_D
ATA7
VPFE0_DA MCASP4_
TA15
AXR1
RMII6_RX
D0
MCAN7_R
X
GPIO0_29
GPMC0_C
Sn1
VOUT0_D
ATA8
MCASP4_
AXR2
RMII6_RX
D1
MCAN8_T
X
GPIO0_30
GPMC0_C
Sn0
PRG1_IEP VOUT0_D
0_EDIO_D ATA9
ATA_IN_O
UT30
MCASP4_
AXR3
RMII6_CR
S_DV
MCAN8_R
X
GPIO0_31
GPMC0_C
LKOUT
PRG1_IEP VOUT0_D
0_EDIO_D ATA10
ATA_IN_O
UT31
GPIO0_32
RGMII8_T
D0
EQEP1_I
MCAN7_T
X
GPIO0_33
MCAN7_R
X
GPIO0_34
PRG1_PW
M2_TZ_O
UT
SPI6_CS3
PRG1_PW
M2_TZ_IN
RGMII2_T
D0
RMII2_TX_
EN
GPMC0_F
CLK_MUX
Bootstrap
TIMER_IO
4
MCASP8_
AFSR
TIMER_IO
5
UART3_TX
D
UART3_R
XD
MCASP5_
ACLKX
VOUT0_D
ATA11
MCASP9_
ACLKX
RGMII8_T
D1
VOUT0_D
ATA12
MCASP9_
AFSX
RGMII8_T
D2
VOUT0_D
ATA13
VPFE0_DA MCASP9_
TA8
AXR0
MCASP4_
ACLKR
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
137
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-125. Pin Multiplexing (continued)
ADDRESS
REGISTER
NAME
BALL
NUMB
ER
MUXMODE[14:0] SETTINGS
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
0x00011C0 PADCONFIG36
90
AH26
PRG1_PR
U1_GPO1
4
PRG1_PR
U1_GPI14
PRG1_RG
MII2_TD3
PRG1_PW
M1_A1
RGMII2_T
D3
MCAN8_T
X
GPIO0_35
RGMII8_T
D3
VOUT0_D
ATA14
MCASP9_
AXR1
MCASP4_
AFSR
0x00011C0 PADCONFIG37
94
AJ27
PRG1_PR
U1_GPO1
5
PRG1_PR
U1_GPI15
PRG1_RG PRG1_PW
MII2_TX_C M1_B1
TL
RGMII2_T
X_CTL
MCAN8_R
X
GPIO0_36
RGMII8_T
X_CTL
VOUT0_D
ATA15
VPFE0_DA MCASP9_
TA9
AXR2
MCASP9_
ACLKR
0x00011C0 PADCONFIG38
98
AJ26
PRG1_PR
U1_GPO1
6
PRG1_PR
U1_GPI16
PRG1_RG
MII2_TXC
PRG1_PW
M1_A2
RGMII2_T
XC
GPIO0_37
RGMII8_T
XC
VOUT0_V
P2_HSYN
C
VOUT0_H
SYNC
MCASP9_
AXR3
MCASP9_
AFSR
0x00011C0 PADCONFIG39
9C
AC22
PRG1_PR
U1_GPO1
7
PRG1_PR
U1_GPI17
PRG1_IEP PRG1_PW
1_EDC_SY M1_B2
NC_OUT1
SPI6_CLK
RMII6_TX_ PRG1_EC
EN
AP0_SYN
C_OUT
GPIO0_38
VOUT0_V
P2_DE
VOUT0_D
E
VPFE0_DA MCASP5_
TA10
AFSX
VOUT0_V
P0_DE
0x00011C0 PADCONFIG40
A0
AJ22
PRG1_PR
U1_GPO1
8
PRG1_PR
U1_GPI18
PRG1_IEP PRG1_PW
1_EDC_LA M1_TZ_IN
TCH_IN0
SPI6_D0
RMII6_TX
D0
PRG1_EC
AP0_SYN
C_IN
GPIO0_39
VOUT0_V
P2_VSYN
C
VOUT0_V
SYNC
MCASP5_
AXR0
VOUT0_V
P0_VSYN
C
0x00011C0 PADCONFIG41
A4
AH22
PRG1_PR
U1_GPO1
9
PRG1_PR
U1_GPI19
PRG1_IEP PRG1_PW
1_EDC_SY M1_TZ_O
NC_OUT0 UT
SPI6_D1
RMII6_TX
D1
PRG1_EC GPIO0_40
AP0_IN_A
PWM_OUT
VOUT0_P
CLK
MCASP5_
AXR1
0x00011C0 PADCONFIG42
A8
AD19
PRG1_MDI SPI1_CS2
O0_MDIO
I2C4_SCL
GPIO0_41
DSS_FSY
NC1
VPFE0_DA MCASP5_
TA11
AXR2
MCASP5_
ACLKR
UART3_CT
Sn
0x00011C0 PADCONFIG43
AC
AD18
PRG1_MDI SPI1_CS3
O0_MDC
I2C4_SDA
MCASP5_
AFSR
UART3_RT
Sn
0x00011C0 PADCONFIG44
B0
AF28
PRG0_PR
U0_GPO0
PRG0_PR
U0_GPI0
PRG0_RG
MII1_RD0
PRG0_PW
M3_A0
0x00011C0 PADCONFIG45
B4
AE28
PRG0_PR
U0_GPO1
PRG0_PR
U0_GPI1
PRG0_RG
MII1_RD1
0x00011C0 PADCONFIG46
B8
AE27
PRG0_PR
U0_GPO2
PRG0_PR
U0_GPI2
0x00011C0 PADCONFIG47
BC
AD26
PRG0_PR
U0_GPO3
0x00011C0 PADCONFIG48
C0
AD25
0x00011C0 PADCONFIG49
C4
RMII_REF
_CLK
GPIO0_42
VPFE0_DA MCASP5_
TA12
AXR3
RGMII3_R
D0
RMII3_RX
D1
GPIO0_43
MCASP0_
AXR0
PRG0_PW
M3_B0
RGMII3_R
D1
RMII3_RX
D0
GPIO0_44
MCASP0_
AXR1
PRG0_RG
MII1_RD2
PRG0_PW
M2_A0
RGMII3_R
D2
RMII3_CR
S_DV
GPIO0_45
UART3_R
XD
MCASP0_
ACLKR
PRG0_PR
U0_GPI3
PRG0_RG
MII1_RD3
PRG0_PW
M3_A2
RGMII3_R
D3
RMII3_RX
_ER
GPIO0_46
UART3_TX
D
MCASP0_
AFSR
PRG0_PR
U0_GPO4
PRG0_PR
U0_GPI4
PRG0_RG
MII1_RX_
CTL
PRG0_PW
M2_B0
RGMII3_R
X_CTL
RMII3_TX
D1
GPIO0_47
AC29
PRG0_PR
U0_GPO5
PRG0_PR
U0_GPI5
RMII3_TX
D0
GPIO0_48
0x00011C0 PADCONFIG50
C8
AE26
PRG0_PR
U0_GPO6
PRG0_PR
U0_GPI6
PRG0_RG
MII1_RXC
PRG0_PW
M3_A1
RGMII3_R
XC
RMII3_TX_
EN
GPIO0_49
0x00011C0 PADCONFIG51
CC
AC28
PRG0_PR
U0_GPO7
PRG0_PR
U0_GPI7
PRG0_IEP PRG0_PW
0_EDC_LA M3_B1
TCH_IN1
PRG0_EC
AP0_SYN
C_IN
0x00011C0 PADCONFIG52
D0
AC27
PRG0_PR
U0_GPO8
PRG0_PR
U0_GPI8
PRG0_PW
M2_A1
0x00011C0 PADCONFIG53
D4
AB26
PRG0_PR
U0_GPO9
PRG0_PR
U0_GPI9
PRG0_UA PRG0_PW
RT0_CTSn M3_TZ_IN
0x00011C0 PADCONFIG54
D8
AB25
PRG0_PR
U0_GPO1
0
PRG0_PR
U0_GPI10
PRG0_UA PRG0_PW
RT0_RTSn M2_B1
138
PRG0_PW
M3_B2
Bootstrap
VOUT0_V
P0_HSYN
C
BOOTMO
DE1
MCASP0_
AXR2
GPMC0_A
D0
MCASP0_
AXR3
BOOTMO
DE2
MCASP0_
AXR4
MCAN9_T
X
GPIO0_50
GPMC0_A
D1
MCASP0_
AXR5
MCAN9_R
X
GPIO0_51
GPMC0_A
D2
MCASP0_
AXR6
UART6_R
XD
SPI3_CS1
PRG0_IEP MCAN10_
0_EDIO_D TX
ATA_IN_O
UT28
GPIO0_52
GPMC0_A
D3
MCASP0_
ACLKX
UART6_TX
D
SPI3_CS2
PRG0_IEP MCAN10_
0_EDIO_D RX
ATA_IN_O
UT29
GPIO0_53
GPMC0_A
D4
MCASP0_
AFSX
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-125. Pin Multiplexing (continued)
ADDRESS
REGISTER
NAME
BALL
NUMB
ER
MUXMODE[14:0] SETTINGS
0
1
2
3
4
5
6
7
8
9
10
12
13
14
0x00011C0 PADCONFIG55
DC
AJ28
PRG0_PR PRG0_PR
U0_GPO11 U0_GPI11
PRG0_RG
MII1_TD0
PRG0_PW
M3_TZ_O
UT
RGMII3_T
D0
GPIO0_54
0x00011C0 PADCONFIG56
E0
AH27
PRG0_PR
U0_GPO1
2
PRG0_PR
U0_GPI12
PRG0_RG
MII1_TD1
PRG0_PW
M0_A0
RGMII3_T
D1
GPIO0_55
DSS_FSY
NC0
MCASP0_
AXR8
0x00011C0 PADCONFIG57
E4
AH29
PRG0_PR
U0_GPO1
3
PRG0_PR
U0_GPI13
PRG0_RG
MII1_TD2
PRG0_PW
M0_B0
RGMII3_T
D2
GPIO0_56
DSS_FSY
NC2
MCASP0_
AXR9
0x00011C0 PADCONFIG58
E8
AG28
PRG0_PR
U0_GPO1
4
PRG0_PR
U0_GPI14
PRG0_RG
MII1_TD3
PRG0_PW
M0_A1
RGMII3_T
D3
GPIO0_57
UART4_R
XD
0x00011C0 PADCONFIG59
EC
AG27
PRG0_PR
U0_GPO1
5
PRG0_PR
U0_GPI15
PRG0_RG PRG0_PW
MII1_TX_C M0_B1
TL
RGMII3_T
X_CTL
GPIO0_58
UART4_TX
D
0x00011C0 PADCONFIG60
F0
AH28
PRG0_PR
U0_GPO1
6
PRG0_PR
U0_GPI16
PRG0_RG
MII1_TXC
PRG0_PW
M0_A2
RGMII3_T
XC
GPIO0_59
0x00011C0 PADCONFIG61
F4
AB24
PRG0_PR
U0_GPO1
7
PRG0_PR
U0_GPI17
PRG0_IEP PRG0_PW
0_EDC_SY M0_B2
NC_OUT1
PRG0_EC
AP0_SYN
C_OUT
GPIO0_60
GPMC0_A
D5
0x00011C0 PADCONFIG62
F8
AB29
PRG0_PR
U0_GPO1
8
PRG0_PR
U0_GPI18
PRG0_IEP PRG0_PW
0_EDC_LA M0_TZ_IN
TCH_IN0
PRG0_EC
AP0_IN_A
PWM_OUT
GPIO0_61
GPMC0_A
D6
MCASP0_
AXR14
0x00011C0 PADCONFIG63
FC
AB28
PRG0_PR
U0_GPO1
9
PRG0_PR
U0_GPI19
PRG0_IEP PRG0_PW
0_EDC_SY M0_TZ_O
NC_OUT0 UT
GPIO0_62
GPMC0_A
D7
MCASP0_
AXR15
0x00011C1 PADCONFIG64
00
AE29
PRG0_PR
U1_GPO0
PRG0_PR
U1_GPI0
PRG0_RG
MII2_RD0
RGMII4_R
D0
RMII4_RX
D0
GPIO0_63
UART4_CT
Sn
MCASP1_
AXR0
UART5_R
XD
0x00011C1 PADCONFIG65
04
AD28
PRG0_PR
U1_GPO1
PRG0_PR
U1_GPI1
PRG0_RG
MII2_RD1
RGMII4_R
D1
RMII4_RX
D1
GPIO0_64
UART4_RT
Sn
MCASP1_
AXR1
UART5_TX
D
0x00011C1 PADCONFIG66
08
AD27
PRG0_PR
U1_GPO2
PRG0_PR
U1_GPI2
PRG0_RG
MII2_RD2
RGMII4_R
D2
RMII4_CR
S_DV
GPIO0_65
GPMC0_A
23
MCASP1_
ACLKR
MCASP1_
AXR10
0x00011C1 PADCONFIG67
0C
AC25
PRG0_PR
U1_GPO3
PRG0_PR
U1_GPI3
PRG0_RG
MII2_RD3
RGMII4_R
D3
RMII4_RX
_ER
GPIO0_66
MCASP1_
AFSR
MCASP1_
AXR11
0x00011C1 PADCONFIG68
10
AD29
PRG0_PR
U1_GPO4
PRG0_PR
U1_GPI4
PRG0_RG
MII2_RX_
CTL
RGMII4_R
X_CTL
RMII4_TX
D1
GPIO0_67
GPMC0_A
24
MCASP1_
AXR2
0x00011C1 PADCONFIG69
14
AB27
PRG0_PR
U1_GPO5
PRG0_PR
U1_GPI5
GPIO0_68
GPMC0_A
D8
MCASP1_
ACLKX
0x00011C1 PADCONFIG70
18
AC26
PRG0_PR
U1_GPO6
PRG0_PR
U1_GPI6
PRG0_RG
MII2_RXC
RGMII4_R
XC
GPIO0_69
GPMC0_A
25
MCASP1_
AXR3
0x00011C1 PADCONFIG71
1C
AA24
PRG0_PR
U1_GPO7
PRG0_PR
U1_GPI7
PRG0_IEP
1_EDC_LA
TCH_IN1
SPI3_CS0
MCAN11_T GPIO0_70
X
GPMC0_A
D9
MCASP1_
AXR4
0x00011C1 PADCONFIG72
20
AA28
PRG0_PR
U1_GPO8
PRG0_PR
U1_GPI8
MCAN11_
RX
GPMC0_A
D10
MCASP1_
AFSX
PRG0_PW
M2_A2
PRG0_PW
M2_B2
PRG0_PW
M2_TZ_O
UT
RMII4_TX
D0
GPIO0_71
CLKOUT
11
Bootstrap
MCASP0_
AXR7
MCASP0_
AXR10
OBSCLK1
DSS_FSY
NC3
MCASP0_
AXR11
DSS_FSY
NC1
MCASP0_
AXR12
MCASP0_
AXR13
BOOTMO
DE7
BOOTMO
DE6
UART2_TX
D
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
139
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-125. Pin Multiplexing (continued)
ADDRESS
REGISTER
NAME
BALL
NUMB
ER
MUXMODE[14:0] SETTINGS
0
1
2
3
4
5
7
8
PRG0_IEP GPIO0_73
0_EDIO_D
ATA_IN_O
UT31
GPMC0_A
D12
GPIO0_74
GPMC0_A
26
12
13
14
PRG0_PR
U1_GPI9
PRG0_UA
RT0_RXD
0x00011C1 PADCONFIG74
28
AA25
PRG0_PR
U1_GPO1
0
PRG0_PR
U1_GPI10
PRG0_UA
RT0_TXD
0x00011C1 PADCONFIG75
2C
AG26
PRG0_PR PRG0_PR
U1_GPO11 U1_GPI11
PRG0_RG
MII2_TD0
0x00011C1 PADCONFIG76
30
AF27
PRG0_PR
U1_GPO1
2
PRG0_PR
U1_GPI12
PRG0_RG
MII2_TD1
PRG0_PW
M1_A0
RGMII4_T
D1
GPIO0_75
MCASP1_
AXR8
UART8_CT
Sn
0x00011C1 PADCONFIG77
34
AF26
PRG0_PR
U1_GPO1
3
PRG0_PR
U1_GPI13
PRG0_RG
MII2_TD2
PRG0_PW
M1_B0
RGMII4_T
D2
GPIO0_76
MCASP1_
AXR9
UART8_RT
Sn
0x00011C1 PADCONFIG78
38
AE25
PRG0_PR
U1_GPO1
4
PRG0_PR
U1_GPI14
PRG0_RG
MII2_TD3
PRG0_PW
M1_A1
RGMII4_T
D3
GPIO0_77
MCASP2_
AXR0
UART2_CT
Sn
0x00011C1 PADCONFIG79
3C
AF29
PRG0_PR
U1_GPO1
5
PRG0_PR
U1_GPI15
PRG0_RG PRG0_PW
MII2_TX_C M1_B1
TL
RGMII4_T
X_CTL
GPIO0_78
MCASP2_
AXR1
UART2_RT
Sn
0x00011C1 PADCONFIG80
40
AG29
PRG0_PR
U1_GPO1
6
PRG0_PR
U1_GPI16
PRG0_RG
MII2_TXC
PRG0_PW
M1_A2
RGMII4_T
XC
GPIO0_79
MCASP2_
AXR2
0x00011C1 PADCONFIG81
44
Y25
PRG0_PR
U1_GPO1
7
PRG0_PR
U1_GPI17
PRG0_IEP PRG0_PW
1_EDC_SY M1_B2
NC_OUT1
SPI3_CLK
GPIO0_80
GPMC0_A
D13
MCASP2_
AXR3
0x00011C1 PADCONFIG82
48
AA26
PRG0_PR
U1_GPO1
8
PRG0_PR
U1_GPI18
PRG0_IEP PRG0_PW
1_EDC_LA M1_TZ_IN
TCH_IN0
SPI3_D0
MCAN12_
TX
GPIO0_81
GPMC0_A
D14
MCASP2_
AFSX
0x00011C1 PADCONFIG83
4C
AA29
PRG0_PR
U1_GPO1
9
PRG0_PR
U1_GPI19
PRG0_IEP PRG0_PW
1_EDC_SY M1_TZ_O
NC_OUT0 UT
SPI3_D1
MCAN12_
RX
GPIO0_82
GPMC0_A
D15
MCASP2_
ACLKX
0x00011C1 PADCONFIG84
50
Y26
PRG0_MDI
O0_MDIO
I2C5_SCL
MCAN13_
TX
GPIO0_83
GPMC0_A
27
DSS_FSY
NC0
MCASP2_
AFSR
MCASP2_
AXR4
0x00011C1 PADCONFIG85
54
AA27
PRG0_MDI
O0_MDC
I2C5_SDA
MCAN13_
RX
GPIO0_84
GPMC0_A
0
DSS_FSY
NC2
MCASP2_
ACLKR
MCASP2_
AXR5
0x00011C1 PADCONFIG86
58
U23
RGMII5_T
X_CTL
RMII7_CR
S_DV
I2C2_SCL
VOUT1_D
ATA0
TRC_CLK
EHRPWM0 GPIO0_85
_SYNCI
GPMC0_A
1
MCASP10
_ACLKX
0x00011C1 PADCONFIG87
5C
U26
RGMII5_R
X_CTL
RMII7_RX
_ER
I2C2_SDA
VOUT1_D
ATA1
TRC_CTL
EHRPWM0 GPIO0_86
_SYNCO
GPMC0_A
2
MCASP10
_AFSX
0x00011C1 PADCONFIG88
60
V28
RGMII5_T
D3
UART3_R
XD
SYNC2_O
UT
VOUT1_D
ATA2
TRC_DATA EHRPWM_ GPIO0_87
0
TZn_IN0
GPMC0_A
3
MCASP10
_AXR0
0x00011C1 PADCONFIG89
64
V29
RGMII5_T
D2
UART3_TX
D
SYNC3_O
UT
VOUT1_D
ATA3
TRC_DATA EHRPWM0 GPIO0_88
1
_A
GPMC0_A
4
MCASP10
_AXR1
0x00011C1 PADCONFIG90
68
V27
RGMII5_T
D1
RMII7_TX
D1
I2C3_SCL
VOUT1_D
ATA4
TRC_DATA EHRPWM0 GPIO0_89
2
_B
GPMC0_A
5
MCASP11_
ACLKX
0x00011C1 PADCONFIG91
6C
U28
RGMII5_T
D0
RMII7_TX
D0
I2C3_SDA
VOUT1_D
ATA5
TRC_DATA EHRPWM1 GPIO0_90
3
_A
GPMC0_A
6
MCASP11_
AFSX
RMII4_TX_
EN
Submit Document Feedback
DSS_FSY
NC3
11
PRG0_PR
U1_GPO9
RGMII4_T
D0
GPMC0_A
D11
10
Y24
PRG0_PW
M2_TZ_IN
PRG0_IEP GPIO0_72
0_EDIO_D
ATA_IN_O
UT30
9
0x00011C1 PADCONFIG73
24
140
SPI3_CS3
6
CLKOUT
MCASP1_
AXR5
UART8_R
XD
MCASP1_
AXR6
UART8_TX
D
Bootstrap
MCASP1_
AXR7
BOOTMO
DE3
UART2_R
XD
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-125. Pin Multiplexing (continued)
ADDRESS
REGISTER
NAME
BALL
NUMB
ER
MUXMODE[14:0] SETTINGS
0
1
2
3
4
5
6
7
8
9
10
11
12
0x00011C1 PADCONFIG92
70
U29
RGMII5_T
XC
RMII7_TX_ I2C6_SCL
EN
VOUT1_D
ATA6
TRC_DATA EHRPWM1 GPIO0_91
4
_B
GPMC0_A
7
MCASP10
_AXR2
0x00011C1 PADCONFIG93
74
U25
RGMII5_R
XC
I2C6_SDA
VOUT1_D
ATA7
TRC_DATA EHRPWM_ GPIO0_92
5
TZn_IN1
GPMC0_A
8
MCASP10
_AXR3
0x00011C1 PADCONFIG94
78
U27
RGMII5_R
D3
UART3_CT
Sn
UART6_R
XD
VOUT1_D
ATA8
TRC_DATA EHRPWM2 GPIO0_93
6
_A
GPMC0_A
9
MCASP11_
AXR0
0x00011C1 PADCONFIG95
7C
U24
RGMII5_R
D2
UART3_RT
Sn
UART6_TX VOUT1_D
D
ATA9
TRC_DATA EHRPWM2 GPIO0_94
7
_B
GPMC0_A
10
MCASP11_
AXR1
0x00011C1 PADCONFIG96
80
R23
RGMII5_R
D1
RMII7_RX
D1
UART6_CT VOUT1_D
Sn
ATA10
TRC_DATA EHRPWM_ GPIO0_95
8
TZn_IN2
GPMC0_A
11
MCASP11_
AXR2
0x00011C1 PADCONFIG97
84
T23
RGMII5_R
D0
RMII7_RX
D0
UART6_RT VOUT1_D
Sn
ATA11
TRC_DATA
9
GPIO0_96
GPMC0_A
12
MCASP11_
AXR3
0x00011C1 PADCONFIG98
88
Y28
RGMII6_T
X_CTL
RMII8_CR
S_DV
VOUT1_D
ATA12
TRC_DATA
10
GPIO0_97
GPMC0_A
13
MCASP10
_ACLKR
0x00011C1 PADCONFIG99
8C
V23
RGMII6_R
X_CTL
RMII8_RX
_ER
VOUT1_D
ATA13
TRC_DATA EHRPWM3 GPIO0_98
11
_A
GPMC0_A
14
MCASP10
_AFSR
0x00011C1 PADCONFIG100
90
W23
RGMII6_T
D3
UART4_R
XD
SPI5_CS3
VOUT1_D
ATA14
TRC_DATA EHRPWM3 GPIO0_99
12
_B
GPMC0_A
15
MCASP11_
ACLKR
0x00011C1 PADCONFIG101
94
W28
RGMII6_T
D2
UART4_TX
D
SPI5_CS2
VOUT1_D
ATA15
TRC_DATA EHRPWM3 GPIO0_10
13
_SYNCI
0
GPMC0_A
16
MCASP11_
AFSR
0x00011C1 PADCONFIG102
98
V25
RGMII6_T
D1
RMII8_TX
D1
SPI5_D0
VOUT1_V
SYNC
TRC_DATA EHRPWM3 GPIO0_10
14
_SYNCO
1
GPMC0_A
17
VOUT1_V
P0_VSYN
C
MCASP10
_AXR4
0x00011C1 PADCONFIG103
9C
W27
RGMII6_T
D0
RMII8_TX
D0
SPI5_CS0
VOUT1_H
SYNC
TRC_DATA EHRPWM_ GPIO0_10
15
TZn_IN3
2
GPMC0_A
18
VOUT1_V
P0_HSYN
C
MCASP10
_AXR5
0x00011C1 PADCONFIG104
A0
W29
RGMII6_T
XC
RMII8_TX_
EN
SPI5_CLK
VOUT1_P
CLK
TRC_DATA EHRPWM4 GPIO0_10
16
_A
3
GPMC0_A
19
0x00011C1 PADCONFIG105
A4
W26
RGMII6_R
XC
AUDIO_EX VOUT1_D
T_REFCLK E
2
TRC_DATA EHRPWM4 GPIO0_10
17
_B
4
GPMC0_A
20
0x00011C1 PADCONFIG106
A8
Y29
RGMII6_R
D3
UART4_CT
Sn
UART5_R
XD
TRC_DATA EHRPWM_ GPIO0_10
18
TZn_IN4
5
GPMC0_A
21
MCASP11_
AXR4
0x00011C1 PADCONFIG107
AC
Y27
RGMII6_R
D2
UART4_RT
Sn
UART5_TX
D
TRC_DATA EHRPWM5 GPIO0_10
19
_A
6
GPMC0_A
22
MCASP11_
AXR5
0x00011C1 PADCONFIG108
B0
W24
RGMII6_R
D1
RMII8_RX
D1
SPI5_D1
VOUT1_E
XTPCLKIN
TRC_DATA EHRPWM5 GPIO0_10
20
_B
7
GPMC0_B
E1n
MCASP11_
AXR6
0x00011C1 PADCONFIG109
B4
W25
RGMII6_R
D0
RMII8_RX
D0
SPI5_CS1
AUDIO_EX TRC_DATA EHRPWM_ GPIO0_10
T_REFCLK 21
TZn_IN5
8
3
GPMC0_DI
R
MCASP11_
AXR7
0x00011C1 PADCONFIG110
B8
V26
MDIO0_M
DIO
TRC_DATA
22
GPIO0_10
9
GPMC0_W
AIT3
0x00011C1 PADCONFIG111
BC
V24
MDIO0_M
DC
TRC_DATA
23
GPIO0_11
0
GPMC0_W
AIT2
0x00011C1 PADCONFIG112
C0
AA2
SPI0_CS0
UART0_RT
Sn
CLKOUT
13
14
Bootstrap
EHRPWM_
SOCA
EHRPWM_
SOCB
MCASP10
_AXR6
VOUT1_V
P0_DE
MCASP10
_AXR7
GPIO0_111
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
141
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-125. Pin Multiplexing (continued)
ADDRESS
REGISTER
NAME
BALL
NUMB
ER
MUXMODE[14:0] SETTINGS
0
1
2
3
4
5
7
8
0x00011C1 PADCONFIG113
C4
Y4
SPI0_CS1
CPTS0_TS I2C3_SCL
_COMP
0x00011C1 PADCONFIG114
C8
AA1
SPI0_CLK
UART1_CT I2C2_SCL
Sn
GPIO0_11
3
0x00011C1 PADCONFIG115
CC
AB5
SPI0_D0
UART1_RT I2C2_SDA
Sn
GPIO0_11
4
0x00011C1 PADCONFIG116
D0
AA3
SPI0_D1
I2C6_SCL
GPIO0_11
5
0x00011C1 PADCONFIG117
D4
Y3
SPI1_CS0
UART0_CT
Sn
UART5_R
XD
0x00011C1 PADCONFIG118
D8
W4
SPI1_CS1
CPTS0_TS I2C3_SDA
_SYNC
UART5_TX
D
GPIO0_11
7
0x00011C1 PADCONFIG119
DC
Y1
SPI1_CLK
UART5_CT I2C4_SDA
Sn
UART2_R
XD
GPIO0_11
8
PRG0_IEP
0_EDC_SY
NC_OUT0
0x00011C1 PADCONFIG120
E0
Y5
SPI1_D0
UART5_RT I2C4_SCL
Sn
UART2_TX
D
GPIO0_11
9
PRG0_IEP
1_EDC_LA
TCH_IN0
0x00011C1 PADCONFIG121
E4
Y2
SPI1_D1
I2C6_SDA
GPIO0_12
0
PRG0_IEP
1_EDC_SY
NC_OUT0
0x00011C1 PADCONFIG122
E8
AB2
UART0_R
XD
SPI2_CS1
0x00011C1 PADCONFIG123
EC
AB3
UART0_TX
D
SPI2_CS2
0x00011C1 PADCONFIG124
F0
AC2
UART0_CT TIMER_IO
Sn
6
SPI0_CS2
MCAN2_R
X
SPI2_CS0
EQEP0_A
GPIO0_12
3
0x00011C1 PADCONFIG125
F4
AB1
UART0_RT TIMER_IO
Sn
7
SPI0_CS3
MCAN2_T
X
SPI2_CLK
EQEP0_B
GPIO0_12
4
0x00011C1 PADCONFIG126
F8
AA4
UART1_R
XD
0x00011C1 PADCONFIG127
FC
AB4
UART1_TX
D
0x00011C2 PADCONFIG128
00
AC4
UART1_CT MCAN3_R
Sn
X
SPI2_D0
EQEP0_S
GPIO0_12
7
MLB0_ML
BCLK
0x00011C2 PADCONFIG129
04
AD5
UART1_RT MCAN3_T
Sn
X
SPI2_D1
EQEP0_I
GPIO1_0
MLB0_ML
BDAT
0x00011C2 PADCONFIG130
08
W5
MCAN0_R
X
I2C2_SCL
GPIO1_1
0x00011C2 PADCONFIG131
0C
W6
MCAN0_T
X
I2C2_SDA
GPIO1_2
0x00011C2 PADCONFIG132
10
W3
MCAN1_R
X
UART6_CT UART9_R
Sn
XD
USB0_DR
VVBUS
USB1_DR
VVBUS
GPIO1_3
0x00011C2 PADCONFIG133
14
V4
MCAN1_T
X
UART6_RT UART9_TX USB0_DR
Sn
D
VVBUS
USB1_DR
VVBUS
GPIO1_4
142
DP0_HPD
6
9
10
11
12
13
14
Bootstrap
PRG1_IEP GPIO0_11
0_EDIO_O 2
UTVALID
PRG0_IEP GPIO0_11
0_EDIO_O 6
UTVALID
PRG0_IEP
0_EDC_LA
TCH_IN0
GPIO0_12
1
SPI7_CS1
I3C0_SDA
PULLEN
GPIO0_12
2
SPI7_CS2
GPIO0_12
5
SPI7_CS3
GPIO0_12
6
MLB0_ML
BSIG
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-125. Pin Multiplexing (continued)
ADDRESS
REGISTER
NAME
BALL
NUMB
ER
MUXMODE[14:0] SETTINGS
0
1
2
3
4
5
6
7
DP0_HPD
PCIE0_CL
KREQn
GPIO1_5
UART6_R
XD
PCIE1_CL
KREQn
GPIO1_6
UART6_TX
D
0x00011C2 PADCONFIG134
18
W2
I3C0_SCL
MMC2_SD
CD
UART9_CT MCAN2_R
Sn
X
I2C6_SCL
0x00011C2 PADCONFIG135
1C
W1
I3C0_SDA
MMC2_SD
WP
UART9_RT MCAN2_T
Sn
X
I2C6_SDA
0x00011C2 PADCONFIG136
20
AC5
I2C0_SCL
GPIO1_7
0x00011C2 PADCONFIG137
24
AA5
I2C0_SDA
GPIO1_8
0x00011C2 PADCONFIG138
28
Y6
I2C1_SCL
CPTS0_H
W1TSPUS
H
GPIO1_9
0x00011C2 PADCONFIG139
2C
AA6
I2C1_SDA
CPTS0_H
W2TSPUS
H
GPIO1_10
0x00011C2 PADCONFIG140
30
U2
ECAP0_IN SYNC0_O
_APWM_O UT
UT
0x00011C2 PADCONFIG141
34
U3
EXT_REF
CLK1
0x00011C2 PADCONFIG142
38
V6
0x00011C2 PADCONFIG143
3C
CPTS0_RF
T_CLK
I3C0_SDA
PULLEN
9
10
11
12
13
14
Bootstrap
SPI7_CS0
GPIO1_11
SYNC1_O
UT
SPI7_CLK
GPIO1_12
TIMER_IO
0
ECAP1_IN SYSCLKO
_APWM_O UT0
UT
SPI7_D0
GPIO1_13
BOOTMO
DE4
V5
TIMER_IO
1
ECAP2_IN OBSCLK0
_APWM_O
UT
SPI7_D1
GPIO1_14
BOOTMO
DE5
0x00011C2 PADCONFIG144
40
R26
MMC1_DA
T3
UART7_R
XD
GPIO1_15
0x00011C2 PADCONFIG145
44
R25
MMC1_DA
T2
UART7_TX
D
GPIO1_16
0x00011C2 PADCONFIG146
48
P24
MMC1_DA
T1
UART7_CT ECAP0_IN TIMER_IO
Sn
_APWM_O 0
UT
UART4_R
XD
GPIO1_17
0x00011C2 PADCONFIG147
4C
R24
MMC1_DA
T0
UART7_RT ECAP1_IN TIMER_IO
Sn
_APWM_O 1
UT
UART4_TX
D
GPIO1_18
0x00011C2 PADCONFIG148
50
P25
MMC1_CL
K
UART8_R
XD
0x00011C2 PADCONFIG149
54
R29
MMC1_CM UART8_TX
D
D
0x00011C2 PADCONFIG150
58
P23
MMC1_SD
CD
UART8_CT UART0_D
Sn
CDn
TIMER_IO
2
0x00011C2 PADCONFIG151
5C
R28
MMC1_SD
WP
UART8_RT UART0_D
Sn
SRn
TIMER_IO
3
0x00011C2 PADCONFIG152
60
T28
MMC2_DA
T3
UART9_R
XD
CPTS0_H
W1TSPUS
H
SPI2_CS3
8
I2C4_SCL
GPIO1_19
I2C4_SDA
GPIO1_20
EQEP2_I
ECAP2_IN EQEP2_S
_APWM_O
UT
I2C5_SCL
PCIE2_CL
KREQn
GPIO1_21
PRG0_IEP
0_EDC_LA
TCH_IN1
PCIE3_CL
KREQn
GPIO1_22
PRG0_IEP
0_EDC_SY
NC_OUT1
GPIO1_23
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
143
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-125. Pin Multiplexing (continued)
ADDRESS
REGISTER
NAME
BALL
NUMB
ER
MUXMODE[14:0] SETTINGS
0
1
2
3
4
5
6
7
8
0x00011C2 PADCONFIG153
64
T29
MMC2_DA
T2
UART9_TX CPTS0_H
D
W2TSPUS
H
I2C5_SDA
0x00011C2 PADCONFIG154
68
T27
MMC2_DA
T1
UART9_CT UART0_DT TIMER_IO
Sn
Rn
4
UART6_R
XD
EQEP2_A
GPIO1_25
PRG0_IEP
1_EDC_LA
TCH_IN1
0x00011C2 PADCONFIG155
6C
T24
MMC2_DA
T0
UART9_RT UART0_RI
Sn
n
TIMER_IO
5
UART6_TX EQEP2_B
D
GPIO1_26
PRG0_IEP
1_EDC_SY
NC_OUT1
0x00011C2 PADCONFIG156
70
T26
MMC2_CL
K
USB0_DR
VVBUS
USB1_DR
VVBUS
TIMER_IO
6
I2C3_SCL
UART3_R
XD
GPIO1_27
0x00011C2 PADCONFIG157
74
T25
MMC2_CM USB0_DR
D
VVBUS
USB1_DR
VVBUS
TIMER_IO
7
I2C3_SDA
UART3_TX
D
GPIO1_28
0x00011C2 PADCONFIG158
78
T6
RESETST
ATz
0x00011C2 PADCONFIG159
7C
U1
PORz_OU
T
0x00011C2 PADCONFIG160
80
U4
SOC_SAF
ETY_ERR
ORn
0x00011C2 PADCONFIG161
84
V1
TDI
0x00011C2 PADCONFIG162
88
V3
TDO
0x00011C2 PADCONFIG163
8C
V2
TMS
0x04301C0 WKUP_PADCON
00
FIG0
E20
MCU_OSP MCU_HYP
I0_CLK
ERBUS0_
CK
WKUP_GP
IO0_16
0x04301C0 WKUP_PADCON
04
FIG1
C21
MCU_OSP MCU_HYP
I0_LBCLK ERBUS0_
O
CKn
WKUP_GP
IO0_17
0x04301C0 WKUP_PADCON
08
FIG2
D21
MCU_OSP MCU_HYP
I0_DQS
ERBUS0_
RWDS
WKUP_GP
IO0_18
0x04301C0 WKUP_PADCON
0C
FIG3
D20
MCU_OSP MCU_HYP
I0_D0
ERBUS0_
DQ0
WKUP_GP
IO0_19
0x04301C0 WKUP_PADCON
10
FIG4
G19
MCU_OSP MCU_HYP
I0_D1
ERBUS0_
DQ1
WKUP_GP
IO0_20
0x04301C0 WKUP_PADCON
14
FIG5
G20
MCU_OSP MCU_HYP
I0_D2
ERBUS0_
DQ2
WKUP_GP
IO0_21
0x04301C0 WKUP_PADCON
18
FIG6
F20
MCU_OSP MCU_HYP
I0_D3
ERBUS0_
DQ3
WKUP_GP
IO0_22
0x04301C0 WKUP_PADCON
1C
FIG7
F21
MCU_OSP MCU_HYP
I0_D4
ERBUS0_
DQ4
WKUP_GP
IO0_23
144
9
10
11
12
13
14
Bootstrap
GPIO1_24
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-125. Pin Multiplexing (continued)
ADDRESS
REGISTER
NAME
BALL
NUMB
ER
MUXMODE[14:0] SETTINGS
0
1
2
3
4
5
6
7
0x04301C0 WKUP_PADCON
20
FIG8
E21
MCU_OSP MCU_HYP
I0_D5
ERBUS0_
DQ5
WKUP_GP
IO0_24
0x04301C0 WKUP_PADCON
24
FIG9
B22
MCU_OSP MCU_HYP
I0_D6
ERBUS0_
DQ6
WKUP_GP
IO0_25
0x04301C0 WKUP_PADCON
28
FIG10
G21
MCU_OSP MCU_HYP
I0_D7
ERBUS0_
DQ7
WKUP_GP
IO0_26
0x04301C0 WKUP_PADCON
2C
FIG11
F19
MCU_OSP MCU_HYP
I0_CSn0
ERBUS0_
CSn0
WKUP_GP
IO0_27
0x04301C0 WKUP_PADCON
30
FIG12
E19
MCU_OSP MCU_HYP
I0_CSn1
ERBUS0_
RESETn
WKUP_GP
IO0_28
0x04301C0 WKUP_PADCON
34
FIG13
F22
MCU_OSP
I1_CLK
WKUP_GP
IO0_29
0x04301C0 WKUP_PADCON
38
FIG14
A23
MCU_OSP MCU_OSP MCU_HYP
I1_LBCLK I0_CSn2
ERBUS0_
O
RESETOn
MCU_OSP WKUP_GP
I0_RESET IO0_30
_OUT0
0x04301C0 WKUP_PADCON
3C
FIG15
B23
MCU_OSP MCU_OSP MCU_HYP
I1_DQS
I0_CSn3
ERBUS0_I
NTn
MCU_OSP WKUP_GP
I0_ECC_F IO0_31
AIL
0x04301C0 WKUP_PADCON
40
FIG16
D22
MCU_OSP
I1_D0
0x04301C0 WKUP_PADCON
44
FIG17
G22
MCU_OSP
I1_D1
MCU_UAR MCU_SPI1
T0_RXD
_CS1
WKUP_GP
IO0_33
0x04301C0 WKUP_PADCON
48
FIG18
D23
MCU_OSP
I1_D2
MCU_UAR MCU_SPI1
T0_TXD
_CS2
WKUP_GP
IO0_34
0x04301C0 WKUP_PADCON
4C
FIG19
C23
MCU_OSP
I1_D3
MCU_UAR MCU_SPI0
T0_CTSn
_CS1
WKUP_GP
IO0_35
0x04301C0 WKUP_PADCON
50
FIG20
C22
MCU_OSP
I1_CSn0
0x04301C0 WKUP_PADCON
54
FIG21
E22
MCU_OSP MCU_HYP
I1_CSn1
ERBUS0_
WPn
0x04301C0 WKUP_PADCON
58
FIG22
B27
MCU_RG
MCU_RMII
MII1_TX_C 1_CRS_D
TL
V
WKUP_GP
IO0_38
0x04301C0 WKUP_PADCON
5C
FIG23
C25
MCU_RG
MII1_RX_
CTL
MCU_RMII
1_RX_ER
WKUP_GP
IO0_39
0x04301C0 WKUP_PADCON
60
FIG24
A28
MCU_RG
MII1_TD3
MCU_TIM
ER_IO2
MCU_ADC
_EXT_TRI
GGER0
WKUP_GP
IO0_40
0x04301C0 WKUP_PADCON
64
FIG25
A27
MCU_RG
MII1_TD2
MCU_TIM
ER_IO3
MCU_ADC
_EXT_TRI
GGER1
WKUP_GP
IO0_41
0x04301C0 WKUP_PADCON
68
FIG26
A26
MCU_RG
MII1_TD1
MCU_RMII
1_TXD1
8
9
10
11
12
13
14
Bootstrap
WKUP_GP
IO0_32
WKUP_GP
IO0_36
MCU_TIM
ER_IO0
MCU_HYP
ERBUS0_
CSn1
MCU_UAR MCU_SPI0 MCU_OSP WKUP_GP
T0_RTSn
_CS2
I0_RESET IO0_37
_OUT1
WKUP_GP
IO0_42
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
145
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-125. Pin Multiplexing (continued)
ADDRESS
REGISTER
NAME
BALL
NUMB
ER
MUXMODE[14:0] SETTINGS
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Bootstrap
0x04301C0 WKUP_PADCON
6C
FIG27
B25
MCU_RG
MII1_TD0
MCU_RMII
1_TXD0
WKUP_GP
IO0_43
0x04301C0 WKUP_PADCON
70
FIG28
B26
MCU_RG
MII1_TXC
MCU_RMII
1_TX_EN
WKUP_GP
IO0_44
0x04301C0 WKUP_PADCON
74
FIG29
C24
MCU_RG
MII1_RXC
MCU_RMII
1_REF_CL
K
WKUP_GP
IO0_45
0x04301C0 WKUP_PADCON
78
FIG30
A25
MCU_RG
MII1_RD3
MCU_TIM
ER_IO4
WKUP_GP
IO0_46
0x04301C0 WKUP_PADCON
7C
FIG31
D24
MCU_RG
MII1_RD2
MCU_TIM
ER_IO5
WKUP_GP
IO0_47
0x04301C0 WKUP_PADCON
80
FIG32
A24
MCU_RG
MII1_RD1
MCU_RMII
1_RXD1
WKUP_GP
IO0_48
0x04301C0 WKUP_PADCON
84
FIG33
B24
MCU_RG
MII1_RD0
MCU_RMII
1_RXD0
WKUP_GP
IO0_49
0x04301C0 WKUP_PADCON
88
FIG34
E23
MCU_MDI
O0_MDIO
WKUP_GP
IO0_50
0x04301C0 WKUP_PADCON
8C
FIG35
F23
MCU_MDI
O0_MDC
WKUP_GP
IO0_51
0x04301C0 WKUP_PADCON
90
FIG36
E27
MCU_SPI0
_CLK
WKUP_GP
IO0_52
MCU_BOO
TMODE00
0x04301C0 WKUP_PADCON
94
FIG37
E24
MCU_SPI0
_D0
WKUP_GP
IO0_53
MCU_BOO
TMODE01
0x04301C0 WKUP_PADCON
98
FIG38
E28
MCU_SPI0
_D1
MCU_TIM
ER_IO0
WKUP_GP
IO0_54
MCU_BOO
TMODE02
0x04301C0 WKUP_PADCON
9C
FIG39
E25
MCU_SPI0
_CS0
MCU_TIM
ER_IO1
WKUP_GP
IO0_55
0x04301C0 WKUP_PADCON
A0
FIG40
J29
WKUP_UA
RT0_RXD
WKUP_GP
IO0_56
0x04301C0 WKUP_PADCON
A4
FIG41
J28
WKUP_UA
RT0_TXD
WKUP_GP
IO0_57
0x04301C0 WKUP_PADCON
A8
FIG42
D29
MCU_MCA
N0_TX
WKUP_GP
IO0_58
0x04301C0 WKUP_PADCON
AC
FIG43
C29
MCU_MCA
N0_RX
WKUP_GP
IO0_59
0x04301C0 WKUP_PADCON
B0
FIG44
F26
MCU_SPI1 MCU_SPI1
_CLK
_CLK
WKUP_GP
IO0_0
MCU_BOO
TMODE03
0x04301C0 WKUP_PADCON
B4
FIG45
F25
MCU_SPI1 MCU_SPI1
_D0
_D0
WKUP_GP
IO0_1
MCU_BOO
TMODE04
0x04301C0 WKUP_PADCON
B8
FIG46
F28
MCU_SPI1 MCU_SPI1
_D1
_D1
WKUP_GP
IO0_2
MCU_BOO
TMODE05
0x04301C0 WKUP_PADCON
BC
FIG47
F27
MCU_SPI1 MCU_SPI1
_CS0
_CS0
WKUP_GP
IO0_3
0x04301C0 WKUP_PADCON
C0
FIG48
G25
MCU_MCA MCU_MCA MCU_SPI0 MCU_ADC
N1_TX
N1_TX
_CS3
_EXT_TRI
GGER0
WKUP_GP
IO0_4
146
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-125. Pin Multiplexing (continued)
ADDRESS
REGISTER
NAME
BALL
NUMB
ER
MUXMODE[14:0] SETTINGS
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Bootstrap
0x04301C0 WKUP_PADCON
C4
FIG49
G24
MCU_MCA MCU_MCA MCU_SPI1 MCU_ADC
N1_RX
N1_RX
_CS3
_EXT_TRI
GGER1
WKUP_GP
IO0_5
0x04301C0 WKUP_PADCON
C8
FIG50
F29
WKUP_UA WKUP_UA MCU_CPT
RT0_CTSn RT0_CTSn S0_HW1T
SPUSH
MCU_I2C1
_SCL
WKUP_GP
IO0_6
0x04301C0 WKUP_PADCON
CC
FIG51
G28
WKUP_UA WKUP_UA MCU_CPT
RT0_RTSn RT0_RTSn S0_HW2T
SPUSH
MCU_I2C1
_SDA
WKUP_GP
IO0_7
0x04301C0 WKUP_PADCON
D0
FIG52
G27
MCU_I2C1 MCU_I2C1 MCU_CPT MCU_I3C1 MCU_TIM
_SCL
_SCL
S0_TS_SY _SCL
ER_IO6
NC
WKUP_GP
IO0_8
0x04301C0 WKUP_PADCON
D4
FIG53
G26
MCU_I2C1 MCU_I2C1 MCU_CPT MCU_I3C1 MCU_TIM
_SDA
_SDA
S0_TS_CO _SDA
ER_IO7
MP
WKUP_GP
IO0_9
0x04301C0 WKUP_PADCON
D8
FIG54
H26
MCU_EXT MCU_EXT MCU_UAR MCU_ADC MCU_CPT MCU_SYS
_REFCLK0 _REFCLK0 T0_TXD
_EXT_TRI S0_RFT_C CLKOUT0
GGER0
LK
WKUP_GP
IO0_10
0x04301C0 WKUP_PADCON
DC
FIG55
H27
MCU_OBS MCU_OBS MCU_UAR MCU_ADC MCU_TIM
CLK0
CLK0
T0_RXD
_EXT_TRI ER_IO1
GGER1
WKUP_GP
IO0_11
0x04301C0 WKUP_PADCON
E0
FIG56
G29
MCU_UAR MCU_SPI0
T0_TXD
_CS1
WKUP_GP
IO0_12
MCU_BOO
TMODE08
0x04301C0 WKUP_PADCON
E4
FIG57
H28
MCU_UAR MCU_SPI1
T0_RXD
_CS1
WKUP_GP
IO0_13
MCU_BOO
TMODE09
0x04301C0 WKUP_PADCON
E8
FIG58
H29
MCU_UAR MCU_SPI0
T0_CTSn
_CS2
WKUP_GP
IO0_14
MCU_BOO
TMODE06
0x04301C0 WKUP_PADCON
EC
FIG59
J27
MCU_UAR MCU_SPI1
T0_RTSn
_CS2
WKUP_GP
IO0_15
MCU_BOO
TMODE07
0x04301C0 WKUP_PADCON
F0
FIG60
D26
MCU_I3C0
_SCL
MCU_UAR
T0_CTSn
MCU_TIM
ER_IO8
WKUP_GP
IO0_60
0x04301C0 WKUP_PADCON
F4
FIG61
D25
MCU_I3C0
_SDA
MCU_UAR
T0_RTSn
MCU_TIM
ER_IO9
WKUP_GP
IO0_61
0x04301C0 WKUP_PADCON
F8
FIG62
J25
WKUP_I2C
0_SCL
WKUP_GP
IO0_62
0x04301C0 WKUP_PADCON
FC
FIG63
H24
WKUP_I2C
0_SDA
WKUP_GP
IO0_63
0x04301C1 WKUP_PADCON
00
FIG64
J26
MCU_I2C0
_SCL
WKUP_GP
IO0_64
0x04301C1 WKUP_PADCON
04
FIG65
H25
MCU_I2C0
_SDA
WKUP_GP
IO0_65
0x04301C1 WKUP_PADCON
08
FIG66
E26
MCU_I3C0
_SDAPULL
EN
WKUP_GP
IO0_66
0x04301C1 WKUP_PADCON
0C
FIG67
G23
PMIC_PO
WER_EN1
0x04301C1 WKUP_PADCON
10
FIG68
D27
MCU_SAF
ETY_ERR
ORn
MCU_I3C1 MCU_CLK
_SDAPULL OUT0
EN
MCU_I3C1
_SDAPULL
EN
WKUP_GP
IO0_67
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
147
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-125. Pin Multiplexing (continued)
ADDRESS
REGISTER
NAME
BALL
NUMB
ER
MUXMODE[14:0] SETTINGS
0
0x04301C1 WKUP_PADCON
14
FIG69
D28
MCU_RES
ETz
0x04301C1 WKUP_PADCON
18
FIG70
C27
MCU_RES
ETSTATz
0x04301C1 WKUP_PADCON
1C
FIG71
B28
MCU_POR
z_OUT
0x04301C1 WKUP_PADCON
20
FIG72
E29
TCK
0x04301C1 WKUP_PADCON
24
FIG73
F24
TRSTn
0x04301C1 WKUP_PADCON
28
FIG74
C26
EMU0
0x04301C1 WKUP_PADCON
2C
FIG75
B29
EMU1
0x04301C1 WKUP_PADCON
30
FIG76
K25
MCU_ADC
0_AIN0
0x04301C1 WKUP_PADCON
34
FIG77
K26
MCU_ADC
0_AIN1
0x04301C1 WKUP_PADCON
38
FIG78
K28
MCU_ADC
0_AIN2
0x04301C1 WKUP_PADCON
3C
FIG79
L28
MCU_ADC
0_AIN3
0x04301C1 WKUP_PADCON
40
FIG80
K24
MCU_ADC
0_AIN4
0x04301C1 WKUP_PADCON
44
FIG81
K27
MCU_ADC
0_AIN5
0x04301C1 WKUP_PADCON
48
FIG82
K29
MCU_ADC
0_AIN6
0x04301C1 WKUP_PADCON
4C
FIG83
L29
MCU_ADC
0_AIN7
0x04301C1 WKUP_PADCON
50
FIG84
N23
MCU_ADC
1_AIN0
0x04301C1 WKUP_PADCON
54
FIG85
M25
MCU_ADC
1_AIN1
0x04301C1 WKUP_PADCON
58
FIG86
L24
MCU_ADC
1_AIN2
0x04301C1 WKUP_PADCON
5C
FIG87
L26
MCU_ADC
1_AIN3
0x04301C1 WKUP_PADCON
60
FIG88
N24
MCU_ADC
1_AIN4
0x04301C1 WKUP_PADCON
64
FIG89
M24
MCU_ADC
1_AIN5
0x04301C1 WKUP_PADCON
68
FIG90
L25
MCU_ADC
1_AIN6
0x04301C1 WKUP_PADCON
6C
FIG91
L27
MCU_ADC
1_AIN7
148
1
2
3
4
5
6
7
8
Submit Document Feedback
9
10
11
12
13
14
Bootstrap
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-125. Pin Multiplexing (continued)
ADDRESS
REGISTER
NAME
BALL
NUMB
ER
MUXMODE[14:0] SETTINGS
0
0x04301C1 WKUP_PADCON
70
FIG92
C28
RESET_R
EQz
0x04301C1 WKUP_PADCON
74
FIG93
J24
PORz
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Bootstrap
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
149
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
6.5 Connections for Unused Pins
This section describes the Unused/Reserved balls connection requirements.
Note
All VMON and power balls must be supplied with the voltages specified in Section 7.4, Recommended
Operating Conditions, unless otherwise specified in Section 6.3, Signal Descriptions.
Note
MMC1_SDCD and MMC2_SDCD must be pulled down for respective MMC modules to work properly.
Table 6-126. Unused Balls Specific Connection Requirements
BALL NUMBER
BALL NAME
M29
WKUP_OSC0_XI
P29
OSC1_XI
N28
WKUP_LFOSC0_XI
F24
TRSTn
K25
MCU_ADC0_AIN0
K26
MCU_ADC0_AIN1
K28
MCU_ADC0_AIN2
L28
MCU_ADC0_AIN3
K24
MCU_ADC0_AIN4
K27
MCU_ADC0_AIN5
K29
MCU_ADC0_AIN6
L29
MCU_ADC0_AIN7
N23
MCU_ADC1_AIN0
M25
MCU_ADC1_AIN1
L24
MCU_ADC1_AIN2
L26
MCU_ADC1_AIN3
N24
MCU_ADC1_AIN4
M24
MCU_ADC1_AIN5
L25
MCU_ADC1_AIN6
L27
MCU_ADC1_AIN7
B2
DDR0_DQS0P
E3
DDR0_DQS1P
M3
DDR0_DQS2P
R2
DDR0_DQS3P
AE18
SERDES0_REXT
AE13
SERDES1_REXT
AD13
SERDES2_REXT
AE8
SERDES3_REXT
F9
SERDES4_REXT
F16
CSI0_RXRCALIB
F15
CSI1_RXRCALIB
AB6
USB0_RCALIB
AD9
USB1_RCALIB
F12
DSI_TXRCALIB
150
CONNECTION REQUIREMENTS
Each of these balls must be connected to VSS through a
separate external pull resistor to ensure these balls are held
to a valid logic low level if unused.
Each of these balls must be connected to VSS through
appropriate external pull resistor to ensure these balls are
held to a valid logic low level if unused. The resistor value
for the SERDES[4:0]_REXT pins is 3.01 kΩ ±1%, for the
CSI[1:0]_RXRCALIB, USB[1:0]_RCALIB, and DSI_TXRCALIB
pins is 500 Ω ±1%. This is the same connection as during
functional mode.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 6-126. Unused Balls Specific Connection Requirements (continued)
BALL NUMBER
BALL NAME
D28
MCU_RESETz
H23
MCU_PORz
J24
PORz
E29
TCK
V2
TMS
J25
WKUP_I2C0_SCL
H24
WKUP_I20_SDA
H25
MCU_I2C0_SDA
J26
MCU_I2C0_SCL
Y6
I2C1_SCL
AA6
I2C1_SDA
AA5
I2C0_SDA
AC5
I2C0_SCL
AC18
EXTINTn
V1
TDI
V3
TDO
B29
EMU1
C26
EMU0
B1
DDR0_DQS0N
E2
DDR0_DQS1N
M2
DDR0_DQS2N
R1
DDR0_DQS3N
AB11
VPP_CORE
F17
VPP_MCU
AE1
MMC0_CALPAD
AE2
MLB0_MLBCN
AD2
MLB0_MLBCP
AD3
MLB0_MLBDN
AC3
MLB0_MLBDP
AC1
MLB0_MLBSN
AD1
MLB0_MLBSP
(1)
CONNECTION REQUIREMENTS
Each of these balls must be connected to the corresponding
power supply through a separate external pull resistor to
ensure these balls are held to a valid logic high level if unused.
(1)
Each of these balls must be left unconnected if unused.
To determine which power supply is associated with any IO refer to Table 6-1, Pin Attributes.
Table 6-127. Reserved Balls Specific Connection Requirements
BALLS
CONNECTION REQUIREMENTS
A29 / AJ1 / U11 / U12 / U13 / T11 / T12 / T13 / M11 / M12 / M13 / N11 / N12 /
N13
These balls do not exist on the package.
N25 / AJ29 / P26 / R27 / AD4 / E18 / F18 / G10 / F11 / N6 / L6 / F6 / E6 / G9 /
F10 / AA23 / F13
These balls must be left unconnected.
Note
All other unused signal balls without Pad Configuration Register can be left unconnected.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
151
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Note
All other unused signal balls with a Pad Configuration Register can be left unconnected with their
multiplexing mode set to GPIO input and internal pulldown resistor enabled.
Unused balls are defined as those which only connect to a PCB solder pad. This is the only use case
where internal pull resistors are allowed as the only source/sink to hold a valid logic level.
Any balls connected to a via, test point, or PCB trace are considered used and must not depend on
the internal pull resistor to hold a valid logic level.
Internal pull resistors are weak and may not source enough current to maintain a valid logic level for
some operating conditions. This may be the case when connected to components with leakage to the
opposite logic level, or when external noise sources couple to signal traces attached to balls which
are only pulled to a valid logic level by the internal resistor. Therefore, external pull resistors may be
required to hold a valid logic level on balls with external connections.
If balls are allowed to float between valid logic levels, the input buffer may enter a high-current state
which could damage the IO cell.
152
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7 Specifications
7.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted) (1) (2)
PARAMETER
MIN
MAX
UNIT
VDD_CORE
MAIN domain core supply
-0.3
1.05
V
VDD_MCU
MCUSS core supply
-0.3
1.05
V
VDD_CPU
CPU core supply
-0.3
1.05
V
VDDA_0P8_DLL_MMC0
MMC0 DLL analog supply
-0.3
1.05
V
VDDAR_CORE
MAIN domain RAM supply
-0.3
1.05
V
VDDAR_MCU
MCUSS RAM supply
-0.3
1.05
V
VDDAR_CPU
CPU RAM supply
-0.3
1.05
V
VDDA_0P8_DP
Displayport SERDES analog supply low
-0.3
1.05
V
VDDA_0P8_DP_C
Displayport SERDES clock supply
-0.3
1.05
V
VDDA_0P8_DSITX
DSITX clock supply
-0.3
1.05
V
VDDA_0P8_DSITX_C
DSITX clock supply
-0.3
1.05
V
VDDA_0P8_CSIRX
CSIRX analog supply low
-0.3
1.05
V
VDDA_0P8_SERDES0_1
SERDES0-1 analog supply low
-0.3
1.05
V
VDDA_0P8_SERDES2_3
SERDES2-3 analog supply low
-0.3
1.05
V
VDDA_0P8_SERDES_C0_1
SERDES0-1 clock supply
-0.3
1.05
V
VDDA_0P8_SERDES_C2_3
SERDES2-3 clock supply
-0.3
1.05
V
VDDA_0P8_USB
USB0-1 0.8 V analog supply
-0.3
1.05
V
VDDA_0P8_UFS
UFS analog supply low
-0.3
1.05
V
VDDA_0P8_PLL_MLB
MLB PLL analog supply
-0.3
1.05
V
VDDA_0P8_PLL_DDR
DDR PLL analog supply
-0.3
1.05
V
VDDA_1P8_USB
USB0-1 1.8 V analog supply
-0.3
2.2
V
VDDA_1P8_UFS
UFS analog supply high
-0.3
2.2
V
VDDA_1P8_DP
Displayport SERDES analog supply high
-0.3
2.2
V
VDDA_1P8_DSITX
DSITX analog supply high
-0.3
2.2
V
VDDA_1P8_CSIRX
CSIRX analog supply high
-0.3
2.2
V
VDDA_1P8_SERDES0_1
SERDES0-1 analog supply high
-0.3
2.2
V
VDDA_1P8_SERDES2_3
SERDES2-3 analog supply high
-0.3
2.2
V
VDDA_3P3_USB
USB0-1 3.3 V analog supply
-0.3
3.8
V
VDDA_MCU_PLLGRP0
Analog supply for MCU PLL Group 0
-0.3
2.2
V
VDDA_PLLGRP0
Analog supply for Main PLL Group 0
-0.3
2.2
V
VDDA_PLLGRP1
Analog supply for Main PLL Group 1
-0.3
2.2
V
VDDA_PLLGRP2
Analog supply for Main PLL Group 2
-0.3
2.2
V
VDDA_PLLGRP3
Analog supply for Main PLL Group 3
-0.3
2.2
V
VDDA_PLLGRP4
Analog supply for Main PLL Group 4
-0.3
2.2
V
VDDA_PLLGRP5
Analog supply for MAIN PLL Group 5 (DDR)
-0.3
2.2
V
VDDA_PLLGRP6
Analog supply for MAIN PLL Group 6
-0.3
2.2
V
VDDA_WKUP
Oscillator supply for WKUP domain
-0.3
2.2
V
VDDA_ADC0
ADC analog supply
-0.3
2.2
V
VDDA_ADC1
ADC analog supply
-0.3
2.2
V
VDDA_MCU_TEMP
Analog supply for temperature sensor 0 in MCU domain
-0.3
2.2
V
VDDA_POR_WKUP
WKUP domain analog supply
-0.3
2.2
V
VDDA_1P8_MLB
MLB IO supply (6-pin interface)
-0.3
2.2
V
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
153
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.1 Absolute Maximum Ratings (continued)
over operating free-air temperature range (unless otherwise noted) (1) (2)
MIN
MAX
VDDA_TEMP_0_1
Analog supply for temperature sensor 0
PARAMETER
-0.3
2.2
V
VDDA_TEMP_2_3
Analog supply for temperature sensor 2
-0.3
2.2
V
VDDS_DDR
DDR inteface power supply
-0.3
1.2
V
VDDS_DDR_BIAS
Bias supply for LPDDR4
-0.3
1.2
V
VDDS_DDR_C
IO power for DDR Memory Clock Bit (MCB) macro
-0.3
1.2
V
VDDS_MMC0
MMC0 IO supply
-0.3
2.2
V
VDDS_OSC1
HFOSC1 supply
-0.3
2.2
V
VDDSHV0_MCU
IO supply MCUSS general IO
group, and MCU and MAIN
domain warm reset pins
1.8 V
-0.3
2.2
V
3.3 V
-0.3
3.8
VDDSHV0
IO supply for MAIN domain
general
1.8 V
-0.3
2.2
3.3 V
-0.3
3.8
VDDSHV1_MCU
IO supply for MCUSS IO group 1
1.8 V
-0.3
2.2
3.3 V
-0.3
3.8
VDDSHV1
IO supply for MAIN domain IO
group 1
1.8 V
-0.3
2.2
3.3 V
-0.3
3.8
IO supply for MCUSS IO group 2
1.8 V
-0.3
2.2
3.3 V
-0.3
3.8
IO supply for MAIN domain IO
group 2
1.8 V
-0.3
2.2
3.3 V
-0.3
3.8
IO supply for MAIN domain IO
group 3
1.8 V
-0.3
2.2
3.3 V
-0.3
3.8
IO supply for MAIN domain IO
group 4
1.8 V
-0.3
2.2
3.3 V
-0.3
3.8
IO supply for MAIN domain IO
group 5
1.8 V
-0.3
2.2
3.3 V
-0.3
3.8
IO supply for MAIN domain IO
group 6
1.8 V
-0.3
2.2
3.3 V
-0.3
3.8
VDDSHV2_MCU
VDDSHV2
VDDSHV3
VDDSHV4
VDDSHV5
VDDSHV6
UNIT
V
V
V
V
V
V
V
V
V
VPP_CORE
Supply voltage range for CORE EFUSE domain
-0.3
1.89
V
VPP_MCU
Supply voltage range for MCU EFUSE domain
-0.3
1.89
V
USB0_VBUS(9)
Voltage range for USB VBUS comparator input
-0.3
3.6
V
USB1_VBUS(9)
Voltage range for USB VBUS comparator input
-0.3
3.6
V
I2C0_SCL,
I2C0_SDA,
I2C1_SCL,
I2C1_SDA,
WKUP_I2C0_SCL,
WKUP_I2C0_SDA,
MCU_I2C0_SCL,
MCU_I2C0_SDA,
EXTINTn
–0.3
3.8
V
MCU_PORz, PORz
-0.3
3.8
V
VMON_IR_VEXT
-0.3
2.2
V
VMON_ER_VSYS(7)
-0.3
1.05
V
All other IO pins
–0.3 IO supply voltage + 0.3
V
Steady State Max. Voltage at all fail-safe IO pins
Steady State Max. Voltage at all other IO
pins(3)
(8)
154
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.1 Absolute Maximum Ratings (continued)
over operating free-air temperature range (unless otherwise noted) (1) (2)
PARAMETER
MIN
Transient Overshoot and Undershoot specification at IO pin
20% of IO supply
voltage for up to
20% of signal period
(see Figure 7-1,
IO Transient Voltage
Ranges)
Latch-up Performance, Class II (125°C)(4)
I-Test
TSTG (5)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
MAX
0.2 × VDD(6)
UNIT
V
-100
100
mA
Over-Voltage (OV)
Test
NA
1.5 × VDD(6)
mV
Storage temperature
-55
+150
°C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Section 7.4, Recommended
Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values are with respect to their associated VSS or VSSA_x, unless otherwise noted.
This parameter applies to all IO pins which are not fail-safe and the requirement applies to all values of IO supply voltage. For
example, if the voltage applied to a specific IO supply is 0 volts the valid input voltage range for any IO powered by that supply will be
–0.3 to +0.3 volts. Special attention should be applied anytime peripheral devices are not powered from the same power sources used
to power the respective IO supply. It is important the attached peripheral never sources a voltage outside the valid input voltage range,
including power supply ramp-up and ramp-down sequences.
For current pulse injection:
Pins stressed per JEDEC JESD78E (Class II) and passed with specified I/O pin injection current and clamp voltage of 1.5 times
maximum recommended I/O voltage and negative 0.5 times maximum recommended I/O voltage.
For overvoltage performance:
Supplies stressed per JEDEC JESD78E (Class II) and passed specified voltage injection.
For tape and reel the storage temperature range is [–10°C; +50°C] with a maximum relative humidity of 70%. TI recommends returning
to ambient room temperature before usage.
VDD is the voltage on the corresponding power-supply pin(s) for the IO.
An external resistor divider is required to create the VMON input value that triggers with VTH = 0.45 when the VSYS level reaches the
minimum allowed threshold. A series resistor R2 (VMON_ER_VSYS = VSYS × R1 / (R1 + R2)) of at least 10kΩ is recommended to limit
current.
The VMON_ER_VSYS pin provides a way to monitor the system power supply. For more information, see Section 9.3.5 System Power
Supply Monitor Design Guidelines.
An external resistor divider is required to limit the voltage applied to this device pin. For more information, see Section 9.3.4, USB
VBUS Design Guidelines.
Fail-safe IO terminals are designed such they do not have dependencies on the respective IO power supply
voltage. This allows external voltage sources to be connected to these IO terminals when the respective IO
power supplies are turned off. The I2C0_SCL, I2C0_SDA, I2C1_SCL, I2C1_SDA, DDR_FS_RESETn, and NMIn
are the only fail-safe IO terminals. All other IO terminals are not fail-safe and the voltage applied to them should
be limited to the value defined by the Steady State Max. Voltage at all IO pins parameter in Section 7.1.
Overshoot = 20% of nominal
IO supply voltage
Tovershoot
Tperiod
Tundershoot
Undershoot = 20% of nominal
IO supply voltage
A.
Tovershoot + Tundershoot < 20% of Tperiod
Figure 7-1. IO Transient Voltage Ranges
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
155
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.2 ESD Ratings
VALUE
Human-body model (HBM), per AEC
V(ESD)
(1)
Electrostatic discharge
Q100-002(1)
Charged-device model (CDM), per AEC Q100-011
UNIT
±1000
All pins
±250
Corner pins (A1,
AJ29)
±750
V
AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.
7.3 Power-On-Hour (POH) Limits
IP(1) (2) (3)
(1)
(2)
(3)
(4)
VOLTAGE (V)
(MAX)
VOLTAGE DOMAIN
FREQUENCY
(MHz) (MAX)
Tj(°C)
POH
(4)
All
100%
All
All Supported OPPs
Automotive -40°C to 125°C
All
100%
All
All Supported OPPs
Extended -40°C to 105°C
100000
20000
All
100%
All
All Supported OPPs
Commercial 0°C to 90°C
100000
This information is provided solely for your convenience and does not extend or modify the warranty provided under TI's standard
terms and conditions for TI semiconductor products.
Unless specified in the table above, all voltage domains and operating conditions are supported in the device at the noted
temperatures.
POH is a function of voltage, temperature and time. Usage at higher voltages and temperatures will result in a reduction in POH.
Automotive profile is defined as 20000 power on hours with a junction temperature as follows: 5%@-40°C, 65%@70°C, 20%@110°C,
and 10%@125°C.
7.4 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)
SUPPLY NAME
(2)
DESCRIPTION
(1)
NOM
MIN
(1)
UNIT
MAX
VDD_CORE
Boot/Active voltage for MAIN domain core supply
0.76
0.8
0.84
V
VDD_MCU
Boot/Active voltage for MCUSS core supply
0.76
0.8
0.89
V
VDD_CPU
Boot voltage for CPU core supply, applied at cold
power up event
0.76
0.8
0.84
V
(5)
AVS +5%
V
0.9
V
Active voltage for CPU core supply, after AVS mode
enabled in software
(5)
AVS -5%
AVS
VDD_CPU AVS Range
AVS valid voltage range for VDD_CPU
VDDA_0P8_DLL_MMC0
MMC PLL analog supply
0.76
0.8
0.84
V
VDDAR_CORE
Main domain RAM supply
0.81
0.85
0.89
V
VDDAR_MCU
MCUSS RAM supply
0.81
0.85
0.89
V
VDDAR_CPU
CPU RAM supply
0.81
0.85
0.89
V
VDDA_0P8_DP
Displayport SERDES clock supply
0.76
0.8
0.84
V
VDDA_0P8_DP_C
Displayport SERDES clock supply
0.76
0.8
0.84
V
VDDA_0P8_DSITX
DSITX clock supply
0.76
0.8
0.84
V
VDDA_0P8_DSITX_C
DSITX clock supply
0.76
0.8
0.84
V
VDDA_0P8_CSIRX
CSIRX analog supply low
0.76
0.8
0.84
V
VDDA_0P8_SERDES0_1
SERDES0-1 analog supply low
0.76
0.8
0.84
V
VDDA_0P8_SERDES2_3
SERDES2-3 analog supply low
0.76
0.8
0.84
V
VDDA_0P8_SERDES_C0_1
SERDES0-1 clock supply
0.76
0.8
0.84
V
VDDA_0P8_SERDES_C2_3
SERDES2-3 clock supply
0.76
0.8
0.84
V
VDDA_0P8_USB
USB0-1 0.8v analog supply
0.76
0.8
0.84
V
VDDA_0P8_UFS
UFS analog supply low
0.76
0.8
0.84
V
VDDA_1P8_USB
USB0-1 1.8v analog supply
1.71
1.8
1.89
V
VDDA_1P8_UFS
UFS analog supply high
1.71
1.8
1.89
V
156
Submit Document Feedback
0.6
(5)
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.4 Recommended Operating Conditions (continued)
over operating free-air temperature range (unless otherwise noted)
SUPPLY NAME
(2)
DESCRIPTION
(1)
NOM
MIN
(1)
UNIT
MAX
VDDA_1P8_DP
Displayport SERDES analog supply high
1.71
1.8
1.89
V
VDDA_1P8_DSITX
DSITX analog supply high
1.71
1.8
1.89
V
VDDA_1P8_CSIRX
CSIRX analog supply high
1.71
1.8
1.89
V
VDDA_1P8_SERDES0_1
SERDES0-1 analog supply high
1.71
1.8
1.89
V
VDDA_1P8_SERDES2_3
SERDES2-3 analog supply high
1.71
1.8
1.89
V
VDDA_3P3_USB
USB0-1 3.3v analog supply
3.14
3.3
3.46
V
VDDA_MCU_PLLGRP0
Analog supply for MCU PLL Group 0
1.71
1.8
1.89
V
VDDA_PLLGRP0
Analog supply for Main PLL Group 0
1.71
1.8
1.89
V
VDDA_PLLGRP1
Analog supply for MAIN PLL Group 1
1.71
1.8
1.89
V
VDDA_PLLGRP2
Analog supply for MAIN PLL Group 2
1.71
1.8
1.89
V
VDDA_PLLGRP3
Analog supply for MAIN PLL Group 3
1.71
1.8
1.89
V
VDDA_PLLGRP4
Analog supply for MAIN PLL Group 4
1.71
1.8
1.89
V
VDDA_PLLGRP5
Analog supply for MAIN PLL Group 5 (DDR)
1.71
1.8
1.89
V
VDDA_PLLGRP6
Analog supply for MAIN PLL Group 6
1.71
1.8
1.89
V
VDDA_0P8_PLL_MLB
MLB PLL analog supply
0.76
0.8
0.84
V
VDDA_WKUP
Oscillator supply for wkup domain
1.71
1.8
1.89
V
VDDA_ADC0
ADC analog supply
1.71
1.8
1.89
V
VDDA_ADC1
ADC analog supply
1.71
1.8
1.89
V
VDDA_0P8_PLL_DDR
DDR PLL analog supply
0.76
0.8
0.84
V
VDDA_MCU_TEMP
Analog supply for temperature sensor 0 in MCU
domain
1.71
1.8
1.89
V
VDDA_POR_WKUP
WKUP domain analog supply
1.71
1.8
1.89
V
VDDA_1P8_MLB
MLB IO supply (6-pin interface)
1.71
1.8
1.89
V
VDDA_TEMP0_1
Analog supply for temperature sensor 0 and 1
1.71
1.8
1.89
V
VDDA_TEMP2_3
Analog supply for temperature sensor 2 and 3
1.71
1.8
1.89
V
DDR inteface power supply
1.06
1.1
1.15
V
VDDS_DDR_BIAS
Bias supply for LPDDR4x
1.06
1.1
1.15
V
VDDS_DDR_C
IO power for DDR Memory Clock Bit (MCB) macro
1.06
1.1
1.15
V
VDDS_MMC0
MMC0 IO supply
1.71
1.8
1.89
V
VDDS_OSC1
HFOSC1 supply
1.71
1.8
1.89
V
VDDSHV0
IO supply for main domain
general
1.8-V operation
1.71
1.8
1.89
V
3.3-V operation
3.14
3.3
3.46
V
IO supply MCUSS general IO
group, and MCU and Main
domain warm reset pins
1.8-V operation
1.71
1.8
1.89
V
3.3-V operation
3.14
3.3
3.46
V
VDDSHV1
IO supply for main domain IO
group 1
1.8-V operation
1.71
1.8
1.89
V
3.3-V operation
3.14
3.3
3.46
V
VDDSHV1_MCU
IO supply for MCUSS IO group 1 1.8-V operation
1.71
1.8
1.89
V
3.3-V operation
3.14
3.3
3.46
V
VDDSHV2
IO supply for main domain IO
group 2
1.8-V operation
1.71
1.8
1.89
V
3.3-V operation
3.14
3.3
3.46
V
VDDSHV2_MCU
IO supply for MCUSS IO group 2 1.8-V operation
1.71
1.8
1.89
V
3.3-V operation
3.14
3.3
3.46
V
VDDSHV3
IO supply for main domain IO
group 3
1.8-V operation
1.71
1.8
1.89
V
3.3-V operation
3.14
3.3
3.46
V
VDDS_DDR
(3)
VDDSHV0_MCU
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
157
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.4 Recommended Operating Conditions (continued)
over operating free-air temperature range (unless otherwise noted)
SUPPLY NAME
(2)
DESCRIPTION
(1)
NOM
MIN
(1)
UNIT
MAX
VDDSHV4
IO supply for main domain IO
group 4
1.8-V operation
1.71
1.8
1.89
V
3.3-V operation
3.14
3.3
3.46
V
VDDSHV5
IO supply for main domain IO
group 5
1.8-V operation
1.71
1.8
1.89
V
3.3-V operation
3.14
3.3
3.46
V
VDDSHV6
IO supply for main domain IO
group 6
1.8-V operation
1.71
1.8
1.89
V
3.3-V operation
3.14
3.3
3.46
V
USB0_VBUS
Voltage range for USB VBUS comparator input
0
See (6)
3.46
V
0
(6)
3.46
V
USB1_VBUS
Voltage range for USB VBUS comparator input
USB0_ID
Voltage range for the USB ID input
See (4)
V
USB1_ID
Voltage range for the USB ID input
(4)
V
VSS
Ground
0
V
TJ
Operating junction temperature
range
See
Automotive
-40
125
°C
Extended
-40
105
°C
0
90
°C
Commercial
(1)
(2)
(3)
(4)
(5)
(6)
158
See
The voltage at the device ball must never be below the MIN voltage or above the MAX voltage for any amount of time. This
requirement includes dynamic voltage events such as AC ripple, voltage transients, voltage dips, and so forth.
Refer to Power-On-Hour (POH) Limits for limitations.
VDDS_DDR is required to still be powered with LPDDR4 voltage ranges, even If DDR interface is unused.
This terminal is connected to analog circuits in the respective USB PHY. The circuit sources a known current while measuring the
voltage to determine if the terminal is connected to VSS with a resistance less than 10 Ω or greater than 100 kΩ. The terminal should
be connected to ground for USB host operation or open-circuit for USB peripheral operation, and should never be connected to any
external voltage source.
The AVS Voltages are device-dependent, voltage domain-dependent, and OPP-dependent. They must be read from the
VTM_DEVINFO_VDn. For information about VTM_DEVINFO_VDn Registers address, please refer to Voltage and Thermal Manager
section in the device TRM. The power supply should be adjustable over the ranges shown in the VDD_CPU AVS Range entry.
An external resistor divider is required to limit the voltage applied to this device pin. For more information, see Section 9.3.4, USB
VBUS Design Guidelines.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.5 Operating Performance Points
This section describes the operating conditions of the device. This section also contains the description of each
Operating Performance Point (OPP) for processor clocks and device core clocks.
Table 7-1 describes the maximum supported frequency per speed grade for the device.
Table 7-1. Speed Grade Maximum Frequency
MAXIMUM FREQUENCY (MHz)
DEVICE
DRA829xT
(1)
A72SS0
C66SS0
C71SS0
R5SS0/1
MCU_
R5SS0
GPU
CBASS0
DMSC
LPDDR4
2000
1350
1000
1000
1000
750
500
333
4266 MT/s(1)
Maximum DDR Frequency will be limited based on the specific memory type (vendor) used in a system and by PCB implementation.
7.6 Power Consumption Summary
For information on the device power consumption, contact your TI Sales Representative.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
159
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.7 Electrical Characteristics
Note
The interfaces or signals described in Section 7.7.1 through Section 7.7.9 correspond to the interfaces
or signals available in multiplexing mode 0 (Primary Function).
All interfaces or signals multiplexed on the balls described in these tables have the same DC electrical
characteristics, unless multiplexing involves a PHY and GPIO combination, in which case different DC
electrical characteristics are specified for the different multiplexing modes (Functions).
7.7.1 I2C, Open-Drain, Fail-Safe (I2C OD FS) Electrical Characteristics
Over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
BALL NAMES in Mode 0: WKUP_I2C0_SDA, WKUP_I2C0_SCL, MCU_I2C0_SDA, MCU_I2C0_SCL, I2C0_SDA, I2C0_SCL, I2C1_SDA,
I2C1_SCL, EXTINTN
BALL NUMBERS:H24 / J25 / H25 / J26 / AA5 / AC5 / AA6 / Y6 / AC18 H24/ J25 / H25 / J26 / AA5 / AC5 / AA6 / Y6 / AC18
1.8-V MODE
VIL
Input low-level threshold
0.3 ×
VDDSHV(1)
V
VILSS
Input low-level threshold steady state
0.3 ×
VDDSHV(1)
V
VIH
Input high-level threshold
0.7 ×
VDDSHV(1)
V
VIHSS
Input high-level threshold steady state
0.7 ×
VDDSHV(1)
V
VHYS
Input Hysteresis Voltage
0.1 ×
VDDSHV(1)
mV
IIN
Input Leakage Current
VOL
Output low-level voltage
IOL
Low Level Output Current
VI = 1.8 V or 0 V
VOL(MAX)
±10
µA
0.2 ×
VDDSHV(1)
V
6
mA
3.3-V MODE
VIL
Input low-level threshold
0.3 ×
VDDSHV(1)
V
VILSS
Input low-level threshold steady state
0.25 ×
VDDSHV(1)
V
VIH
Input high-level threshold
0.7 ×
VDDSHV(1)
V
VIHSS
Input high-level threshold steady state
0.7 ×
VDDSHV(1)
V
VHYS
Input Hysteresis Voltage
0.05 ×
VDDSHV(1)
mV
IIN
Input Leakage Current
VOL
Output low-level voltage
IOL
Low Level Output Current
(1)
VI = 3.3 V or 0 V
VOL(MAX)
±10
µA
0.4 ×
VDDSHV(1)
V
6
mA
VDDSHV stands for corresponding power supply. For more information on the power supply name and the corresponding ball, see
Section 6.2, Pin Attributes, POWER column.
7.7.2 Fail-Safe Reset (FS Reset) Electrical Characteristics
Over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
BALL NAMES in Mode 0: MCU_PORz, PORz
160
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
BALL NUMBERS:H23 / J24
VIL
Input low-level threshold
0.3 ×
VDDSHV(1)
V
VILSS
Input low-level threshold steady state
0.3 ×
VDDSHV(1)
V
VIH
Input high-level threshold
0.7 ×
VDDSHV(1)
V
VIHSS
Input high-level threshold steady state
0.7 ×
VDDSHV(1)
V
VHYS
Input Hysteresis Voltage
IIN
Input Leakage Current
(1)
200
mV
VI = 1.8 V or 0 V
±10
µA
VDDSHV stands for corresponding power supply. For more information on the power supply name and the corresponding ball, see
Section 6.2, Pin Attributes, POWER column.
7.7.3 HFOSC/LFOSC Electrical Characteristics
Over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
HIGH FREQUENCY OSCILLATOR
BALL NAMES: WKUP_OSC0_XO, WKUP_OSC0_XI, OSC1_XO, OSC1_XI
BALL NUMBERS:M27 / M29 / P27 / P29
VIH
Input high-level threshold
VIL
Input low-level threshold
VHYS
Input Hysteresis Voltage
0.65 ×
VDDSHV(1)
V
0.35 ×
VDDSHV(1)
49
V
mV
LOW FREQUENCY OSCILLATOR
BALL NAMES: WKUP_LFOSC0_XO, WKUP_LFOSC0_XI
BALL NUMBERS:N26 / N28
VIH
Input high-level threshold
0.65 ×
VDDA_WKUP
V
(1)
VIL
Input low-level threshold
0.35 ×
VDDA_WKUP
V
(1)
VHYS
(1)
Input Hysteresis Voltage
Active Mode
85
mV
Bypass Mode
324
mV
VDDSHV stands for corresponding power supply. For WKUP_OSC0, the corresponding power supply is VDDA_WKUP. For OSC1_XI,
the corresponding power supply is VDDS_OSC1.
7.7.4 eMMCPHY Electrical Characteristics
Over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
NOM
MAX
UNIT
BALL NAMES in Mode 0: MMC0_DAT[7:0], MMC0_CALPAD, MMC0_CMD, MMC0_DS, MMC0_CLK
BALL NUMBERS:AG2 / AH1 / AG3 / AF4 / AE5 / AF3 / AG1 / AF2 / AE1 / AE3 / AE4 / AF1
VIL
Input low-level threshold
VILSS
Input low-level threshold steady state
VIH
Input high-level threshold
VIHSS
Input high-level threshold steady state
0.35 ×
VDDSHV(1)
V
0.20
V
0.65 ×
VDDSHV(1)
V
1.4
V
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
161
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
NOM
IIN
Input Leakage Current
VI = 1.8 V or 0 V
IOZ
Tri-state Output Leakage Current
VO = 1.8 V or 0 V
RPU
Pull-up Resistor
15
20
RPD
Pull-down Resistor
15
20
VOL
Output low-level voltage
VOH
Output high-level voltage
IOL
Low Level Output Current
VOL(MAX)
IOH
High Level Output Current
VOH(MAX)
SRI
Input Slew Rate
(1)
MAX
UNIT
±10
µA
±10
µA
25
kΩ
25
kΩ
0.30
VDDSHV 0.30(1)
V
V
2
mA
2
mA
5E +8
V/s
VDDSHV stands for corresponding power supply (vddshv8). For more information on the power supply name and the corresponding
ball, see Section 6.2, Pin Attributes, POWER column.
7.7.5 SDIO Electrical Characteristics
Over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
NOM
MAX
UNIT
BALL NAMES in Mode 0: MMC1_CLK, MMC1_CMD, MMC1_DAT[3:0], MMC2_CLK, MMC2_CMD, MMC2_DAT[3:0]
BALL NUMBERS:P25 / R29 / R24 / P24 / R25 / R26 / T26 / T25 / T24 / T27 / T29 / T28
1.8-V MODE
VIL
Input low-level threshold
0.58
V
VILSS
Input low-level threshold steady state
0.58
V
VIH
Input high-level threshold
VIHSS
Input high-level threshold steady state
VHYS
Input Hysteresis Voltage
IIN
Input Leakage Current
RPU
Pull-up Resistor
40
RPD
Pull-down Resistor
40
VOL
Output low-level voltage
VOH
Output high-level voltage
IOL
Low Level Output Current
VOL(MAX)
4
mA
IOH
High Level Output Current
VOH(MAX)
4
mA
1.27
V
1.7
V
150
mV
VI = 1.8 V or 0 V
±10
µA
50
60
kΩ
50
60
kΩ
0.45
VDDSHV0.45(1)
V
V
3.3-V Mode
VIL
Input low-level threshold
0.25 ×
VDDSHV(1)
V
VILSS
Input low-level threshold steady state
0.15 ×
VDDSHV(1)
V
VIH
Input high-level threshold
0.625 ×
VDDSHV(1)
V
VIHSS
Input high-level threshold steady state
0.625 ×
VDDSHV(1)
V
VHYS
Input Hysteresis Voltage
IIN
Input Leakage Current
RPU
Pull-up Resistor
40
RPD
Pull-down Resistor
40
VOL
Output low-level voltage
162
150
mV
VI = 1.8 V or 0 V
±10
µA
50
60
kΩ
50
60
kΩ
0.125 ×
VDDSHV(1)
Submit Document Feedback
V
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
NOM
MAX
Output high-level voltage
IOL
Low Level Output Current
VOL(MAX)
6
mA
IOH
High Level Output Current
VOH(MAX)
10
mA
(1)
0.75 ×
VDDSHV(1)
UNIT
VOH
V
VDDSHV stands for corresponding power supply (vddshv8). For more information on the power supply name and the corresponding
ball, see Section 6.2, Pin Attributes , POWER column.
7.7.6 CSI2/DSI D-PHY Electrical Characteristics
Over operating free-air temperature range (unless otherwise noted)
PARAMETER
MIN
NOM
MAX
UNIT
BALL NAMES in Mode 0: CSI0_RXCLKN, CSI0_RXCLKP, CSI0_RXRCALIB, CSI0_RXN[3:0], CSI0_RXP[3:0], CSI1_RXCLKN,
CSI1_RXCLKP, CSI1_RXRCALIB, CSI1_RXN[3:0], CSI1_RXP[3:0], DSI_TXCLKN, DSI_TXCLKP, DSI_TXN[3:0], DSI_TXP [3:0],
DSI_TXRCALIB
BALL NUMBERS: A14 / A15 / A17 / A18 / A20 / A21 / B13 / B14 / B16 / B17 / B19 / B20 / C12 / C13 / C15 / C16 / C18 / C19 / D11 / D12 /
D14 / D15 / D17 / D18 / E10 / E11 / E13 / E14 / E16 / E17 / F12 / F15 / F16
Low-Power Receiver (LP-RX)
VIH
Input high-level threshold
VIL
Input low-level threshold
VHYS
Hysteresis
740
mV
550
mV
25
mV
Ultra-Low Power Receiver (ULP-RX)
VITH
Input high-level threshold
VITL-ULPM
Input low-level threshold
VHYS
Hysteresis
740
mV
300
mV
25
mV
High Speed Receiver (HS-RX)
VIDTH
Differential input high-level threshold
VIDTL
Differential input low-level threshold
VIDMAX
Maximum differential input voltage
VILHS
Single-ended input low-level threshold
VIHHS
Single-ended input high-level threshold
VCMRXDC
Common-mode voltage
40
mV
-40
mV
270
mV
-40
mV
70
460
mV
330
mV
7.7.7 ADC12B Electrical Characteristics
Over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
BALL NAMES in Mode 0: MCU_ADC0_AIN[7:0], MCU_ADC1_AIN[7:0]
BALL NUMBERS:K24 / K25 / K26 / K27 / K28 / K29 / L24 / L25 / L26 / L27 / L28 / L29 / M24 / M25 / N23 / N24
Analog Input
VMCU_ADC Full-scale Input Range
VSS
VDDA_ADC0/
1
0/1_AIN[7:0]
-1
V
DNL
Differential Non-Linearity
0.5
4
LSB
INL
Integral Non-Linearity
±1
±4
LSB
LSBGAIN-
Gain Error
±2
LSB
±2
LSB
ERROR
LSBOFFSE Offset Error
T-ERROR
CIN
Input Sampling Capacitance
SNR
Signal-to-Noise Ratio
Input Signal: 200
kHz sine wave at
-0.5 dB Full Scale
5.5
pF
70
dB
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
163
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
THD
Total Harmonic Distortion
Input Signal: 200
kHz sine wave at
-0.5 dB Full Scale
73
dB
SFDR
Spurious Free Dynamic Range
Input Signal: 200
kHz sine wave at
-0.5 dB Full Scale
76
dB
SNR(PLUS) Signal-to-Noise Plus Distortion
Input Signal: 200
kHz sine wave at
-0.5 dB Full Scale
69
dB
[1/((65.97 ×
10–-12) ×
fSMPL_CLK)]
Ω
RMCU_ADC Input Impedance of MCU_ADC0/1_AIN[7:0] f = input frequency
0/1_AIN[0:7]
IIN
Input Leakage
MCU_ADC0/1_AIN[7
:0] = VSS
-10
μA
MCU_ADC0/1_AIN[7
:0] = VDDA_ADC0/1
24
μA
Sampling Dynamics
FSMPL_CLK SMPL_CLK Frequency
60
MHz
tC
Conversion Time
13
ADC0/1
SMPL_CL
K Cycles
tACQ
Acquisition time
TR
Sampling Rate
CCISO
Channel to Channel Isolation
General Purpose Input
2
257
ADC0/1 SMPL_CLK
= 60 MHz
4
ADC0/1
SMPL_CL
K Cycles
MSPS
100
dB
Mode(1)
VIL
Input low-level threshold
0.35 ×
VDDA_ADC0/
1
V
VILSS
Input high-level threshold steady state
0.35 ×
VDDA_ADC0/
1
V
VIH
Input high-level threshold
0.65 ×
VDDA_ADC0/
1
V
VIHSS
Input high-level threshold steady state
0.65 ×
VDDA_ADC0/
1
V
VHYS
Input Hysteresis Voltage
IIN
Input Leakage Current
(1)
200
mV
VI = 1.8 V or 0 V
6
µA
MCU_ADC0/1 can be configured to operate in General Purpose Input mode, where all MCU_ADC0/1_AIN[7:0] inputs are globally
enabled to operate as digital inputs via the ADC0/1_CTRL register (gpi_mode_en = 1).
7.7.8 MLB LVCMOS Electrical Characteristics
Only GPIO mode supported. Over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST
CONDITIONS
MIN
TYP
MAX
UNIT
BALL NAMES in Mode 0: MLB0_MLBSN, MLB0_MLBDP, MLB0_MLBSP, MLB0_MLBCP, MLB0_MLBDN, MLB0_MLBCN
BALL NUMBERS:AC1 / AC3 / AD1 / AD2 / AD3 / AE2
VIL
Input Low Voltage
0.3 × VDD(1) V
VILSS
Input Low Voltage Steady State
0.3 × VDD(1) V
164
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Only GPIO mode supported. Over operating free-air temperature range (unless otherwise noted)
PARAMETER
VIH
TEST
CONDITIONS
Input High Voltage
MIN
TYP
MAX
UNIT
0.7 × VDD(1)
V
VDD(1)
V
VIHSS
Input High Voltage Steady State
VHYS
Input Hysteresis Voltage
IIN
Input Leakage Current
RPD
Pull-down Resistor
VOL
Output Low Voltage
VOH
Output High Voltage
IOL
Low Level Output Current
VOL(MAX)
6
mA
IOH
High Level Output Current
VOH(MIN)
6
mA
SRI
Input Slew Rate(2)
1
V/ns
10
V/ns
(1)
(2)
0.75 ×
80
mV
VI = 1.8 V or 0 V
±10 µA
20
53
130 kΩ
0.2 V
VDD(1) - 0.2
fop > 100 MHz
fop < 1 MHz
V
VDD stands for corresponding power supply. For more information on the power supply name and the corresponding ball, see Section
6.2, Pin Attributes , POWER column.
Slew rate may be further limited, reference Section 7.10for actual slew rate during operation
7.7.9 LVCMOS Electrical Characteristics
Over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
BALL NAMES: ALL other IOs
BALL NUMBERS: ALL other IOs
1.8-V MODE
VIL
Input Low Voltage
VILSS
Input Low Voltage Steady State
0.35 × VDD(1)
V
0.3 × VDD(1)
V
VDD(1)
V
V
VIH
Input High Voltage
0.65 ×
VIHSS
Input High Voltage Steady State
0.85 × VDD(1)
VHYS
Input Hysteresis Voltage
IIN
Input Leakage Current.
RPU
Pull-up Resistor
15
RPD
Pull-down Resistor
15
VOL
Output Low Voltage
VOH
Output High Voltage
IOL
Low Level Output Current
VOL(MAX)
3
mA
IOH
High Level Output Current
VOH(MIN)
3
mA
150
mV
VI = 1.8 V or 0 V
±10
µA
22
30
kΩ
22
30
kΩ
0.45
VDD(1) - 0.45
V
V
3.3-V MODE
VIL
Input Low Voltage
0.8
V
VILSS
Input Low Voltage Steady State
VIH
Input High Voltage
0.6
V
VIHSS
Input High Voltage Steady State
2.0
V
VHYS
Input Hysteresis Voltage
150
mV
IIN
Input Leakage Current.
RPD
Pull-down Resistor
VOL
Output Low Voltage
VOH
Output High Voltage
IOL
Low Level Output Current
2.0
V
VI = 3.3 V or 0 V
15
2.4
VOL(MAX)
5
22
±10
µA
30
kΩ
0.4
V
V
mA
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
165
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Over recommended operating conditions (unless otherwise noted)
PARAMETER
IOH
(1)
TEST CONDITIONS
High Level Output Current
MIN
VOH(MIN)
TYP
MAX
UNIT
6
mA
VDD stands for corresponding power supply. For more information on the power supply name and the corresponding ball, see Section
6.2, Pin Attributes , POWER column.
7.7.10 USB2PHY Electrical Characteristics
Note
USB0 and USB1 Electrical Characteristics are compliant with Universal Serial Bus Revision 2.0
Specification dated April 27, 2000 including ECNs and Errata as applicable.
7.7.11 SerDes 2-L-PHY/4-L-PHY Electrical Characteristics
Note
The PCIe interfaces are compliant with the electrical parameters specified in PCI Express® Base
Specification Revision 4.0, September 27, 2017.
This Device imposes an additional limit on SERDES REFCLK when used in Input mode with internal
termination enabled, as described by parameter VREFCLK_TERM in Table 7-2, 4-L-PHY SERDES
REFCLK Electrical Characteristics. Internal termination is enabled by default and must be disabled
before applying a reference clock signal that exceeds the limits defined by VREFCLK_TERM. External
termination should always be enabled on the source side.
Table 7-2. 4-L-PHY SERDES REFCLK Electrical Characteristics
Only applies when internal termination is enabled. Over recommended operating conditions (unless otherwise noted)
PARAMETER
MIN
TYP
MAX
UNIT
400
mV
62.5
Ω
BALL NAMES in Mode 0: SERDES4_REFCLK_P, SERDES4_REFCLK_N
BALL NUMBERS:E8 / E7
VREFCLK_TER
M
Single ended voltage threshold at the reference clock
pin when internal termination is enabled
RTERM
Internal termination
40
50
Note
The SerDes USB interfaces are compliant with the USB3.1 SuperSpeed Transmitter and Receiver
Normative Electrical Parameters as defined in the Universal Serial Bus 3.1 Specification, Revision
1.0 , July 26, 2013.
Note
The SGMII interfaces electrical characteristics are compliant with 1000BASE-KX per IEEE802.3
Clause 70.
Note
The SGMII 2.5G / XAUI interfaces electrical characteristics are compliant with IEEE802.3 Clause 47.
Note
The QSGMII interface electrical characteristics are compliant with QSGMII Specification revision 1.2.
166
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Note
The UFS interface electrical characteristics are compliant with MIPI M-PHY Specification v3.1,
February 17, 2014.
Note
The DP interface electrical characteristics are compliant with the VESA DisplayPort (DP) Standard v
1.4 February 23, 2016.
Note
The eDP interface electrical characteristics are compliant with the VESA Embedded DisplayPort
(eDP) Standard v1.4b October 23, 2015.
7.7.14 DDR0 Electrical Characteristics
Note
The DDR interface is compatible with JESD209-4B standard compliant LPDDR4 SDRAM devices.
7.8 VPP Specifications for One-Time Programmable (OTP) eFuses
This section specifies the operating conditions required for programming the OTP eFuses and is applicable only
for High-Security Devices.
7.8.1 Recommended Operating Conditions for OTP eFuse Programming
over operating free-air temperature range (unless otherwise noted)
PARAMETER
DESCRIPTION
MIN
NOM
MAX
UNIT
VDD_CORE
Supply voltage range for the core domain
during OTP operation; OPP NOM (BOOT)
See Section 7.4
V
VDD_MCU
Supply voltage range for the core domain
during OTP operation; OPP NOM (BOOT)
See Section 7.4
V
VPP_CORE
Supply voltage range for the eFuse ROM
domain during normal operation
N/A(2)
Supply voltage range for the eFuse ROM
domain during OTP programming(1)
VPP_MCU
Supply voltage range for the eFuse ROM
domain during normal operation
Supply voltage range for the eFuse ROM
domain during OTP programming(1)
(1)
(2)
1.71
1.8
1.89
V
1.8
1.89
V
N/A(2)
1.71
Supply voltage range includes DC errors and peak-to-peak noise. TI power management solutions TLV70018-Q1 from the TLV707x
family meet the supply voltage range needed for VPP_CORE and VPP_MCU.
N/A stands for Not Applicable.
7.8.2 Hardware Requirements
The following hardware requirements must be met when programming keys in the OTP eFuses:
• The VPP_CORE and VPP_MCU power supplies must be disabled when not programming OTP registers.
• The VPP_CORE and VPP_MCU power supplies must be ramped up after the proper device power-up
sequence (for more details, see Section 7.10.2).
7.8.3 Programming Sequence
Programming sequence for OTP eFuses:
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
167
DRA829J, DRA829V
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
•
•
•
•
•
www.ti.com
Power on the board per the power-up sequencing. No voltage should be applied on the VPP_CORE and
VPP_MCU terminals during power up and normal operation.
Load the OTP write software required to program the eFuse (contact your local TI representative for the OTP
software package).
Apply the voltage on the VPP_CORE and VPP_MCU terminals according to the specification in Section
7.8.1.
Run the software that programs the OTP registers.
After validating the content of the OTP registers, remove the voltage from the VPP_CORE and VPP_MCU
terminals.
7.8.4 Impact to Your Hardware Warranty
You recognize and accept at your own risk that your use of eFuse permanently alters the TI device. You
acknowledge that eFuse can fail due to incorrect operating conditions or programming sequence. Such a failure
may render the TI device inoperable and TI will be unable to confirm the TI device conformed to TI device
specifications prior to the attempted eFuse. CONSEQUENTLY, TI WILL HAVE NO LIABILITY FOR ANY TI
DEVICES THAT HAVE BEEN eFUSED.
168
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.9 Thermal Resistance Characteristics
This section provides the thermal resistance characteristics used on this device.
For reliability and operability concerns, the maximum junction temperature of the device has to be at or below
the TJ value identified in Section 7.4, Recommended Operating Conditions.
7.9.1 Thermal Resistance Characteristics for ALF Package
It is recommended to perform thermal simulations at the system level with the worst case device power consumption.
ALF PACKAGE
NO.
PARAMETER
DESCRIPTION
(1)(3)
°C/W
AIR FLOW
(2)
(m/s)
T1
RΘJC
Junction-to-case
0.25
N/A
T2
RΘJB
Junction-to-board
2.1
N/A
Junction-to-free air
11.5
0
7.4
1
T3
T4
T5
RΘJA
6.5
2
T6
6
3
T7
0.1
0
T8
0.1
1
T9
ΨJT
Junction-to-moving air
Junction-to-package top
0.1
2
T10
0.1
3
T11
1.6
0
T12
1.7
1
1.6
2
1.5
3
T13
ΨJB
Junction-to-board
T14
(1)
(2)
(3)
These values are based on a JEDEC defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on
a JEDEC defined 1S0P system) and will change based on environment as well as application. For more information, see these
EIA/JEDEC standards:
• JESD51-2, Integrated Circuits Thermal Test Method Environment Conditions - Natural Convection (Still Air)
• JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions - Forced Convection (Moving Air)
• JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-9, Test Boards for Area Array Surface Mount Packages
m/s = meters per second.
°C/W = degrees Celsius per watt.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
169
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10 Timing and Switching Characteristics
Note
The default SLEWRATE settings in each pad configuration register must be used to ensure timings,
unless specific instructions are given otherwise.
7.10.1 Timing Parameters and Information
The timing parameter symbols used in Section 7.10 are created in accordance with JEDEC Standard 100. To
shorten the symbols, some pin names and other related terminologies have been abbreviated in Table 7-3:
Table 7-3. Timing Parameters Subscripts
170
SYMBOL
PARAMETER
c
Cycle time (period)
d
Delay time
dis
Disable time
en
Enable time
h
Hold time
su
Setup time
START
Start bit
t
Transition time
v
Valid time
w
Pulse duration (width)
X
Unknown, changing, or don't care level
F
Fall time
H
High
L
Low
R
Rise time
V
Valid
IV
Invalid
AE
Active Edge
FE
First Edge
LE
Last Edge
Z
High impedance
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.2 Power Supply Sequencing
This section describes power supply sequencing required to ensure proper device operation. The device can be
operated using either an isolated or combined MCU & Main power distribution network (PDN). Two different
primary power sequences are recommended based upon isolated and combined MCU & Main PDNs. In
addition, the device can be operated in either MCU Only or DDR Retention low power modes. Two different
desired device power supply sequences for entry and exit of low power modes are shown.
The power supply names used in this section are specific to this device and align to names given in the Signal
Descriptions section. Common power supply names may be used across different devices within the Jacinto 7TM
processor family. These common supply names will have very similar if not identical functions across devices.
All power sequencing timing diagrams shown will use the following terminology:
• Primary = Essential power sequences of all voltage domains between off and full active states.
• VOPR MIN = Minimum operational voltage level that ensures functionality as specified in Recommended
Operating Conditions
• Ramp-up = start of a voltage supply transition time from off condition to Vopr min.
• Ramp-down = start of a voltage supply transition time from Vopr to off condition
• Supply_“n” = multiple instances of similar power supplies (i.e. VDDSHVn = VDDSHV0, VDDSHV1,
VDDSHV2 … VDDSHV6)
• Supply_“xxx” = multiple instances of similar power supplies used for different signal types (i.e.
VDDA_1P8_xxx = VDDA_1P8_DSITX, VDDA_1P8_USB, VDDA_0P8_DSITX, VDDA_0P8_USB, etc.)
• Time stamps = “T#” markers with descriptions and approximate elapsed times for general reference. Specific
timing transitions are dependent upon PDN design (see PDN User Guide for details).
7.10.2.1 Power Supply Slew Rate Requirement
To maintain the safe operating range of the internal ESD protection devices, TI recommends limiting the
maximum slew rate of supplies to be less than 100 mV/us, as shown in Figure 7-2. For instance, a 1.8V supply
should have a ramp time > 18 μs to ensure the slew rate < 100mV/us.
Figure 7-2 describes the Power Supply Slew Rate Requirement in the device.
Supply value
t
Slew Rate = ∆V / ∆T
Max Slew Rate < 100 mV / µs or 0.1 V / 1E(-6)s = 1E(+5) V / s
∆Tmin > ∆V / Max Slew Rate or 1.8 V / 1E(+5) V / s
∆Tmin > 18 µs
SPRSP08_ELCH_06
Figure 7-2. Power Supply Slew and Slew Rate
7.10.2.2 Combined MCU and Main Domains Power-Up Sequencing
Figure 7-3 describes the primary power-up sequencing when similar MCU and Main voltage domains are
combined into common power rails. Combining MCU and Main voltage domains simplifies PDN design by
reducing total number of power rails and sources while making MCU and Main processor sub-systems
operational dependent on common power rails. Table 9-1 in Section 9.1, Power Supply Mapping captures
recommended device power supply groups to power rail mapping summary.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
171
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
T1
T0
(VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2_MCU,
VDDSHV0, VDDSHV1, VDDSHV2, VDDSHV3,
(4)
(2)
(5)
VDDSHV4, VDDSHV5 , VDDSHV6) , VDDA_3P3_USB
T2
T3
T4
Note 2
(VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2_MCU,
VDDSHV0, VDDSHV1, VDDSHV2,
(4)
(3)
(7)
VDDSHV3, VDDSHV4, VDDSHV5 , VDDSHV6) ,VDDS_MMC0
(VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2_MCU,
VDDSHV0, VDDSHV1, VDDSHV2,
(4)
(3)
(7)
VDDSHV3, VDDSHV4, VDDSHV5 , VDDSHV6) ,VDDS_MMC0
(VDDA_1P8_CSIRX, VDDA_1P8_UFS, VDDA_1P8_USB,
VDDA_1P8_DP, VDDA_1P8_DSITX, VDDA_1P8_MLB,
(6)
VDDA_1P8_SERDES0_1, VDDA_1P8_SERDES2_3)
VDDA_MCU_PLLGRP0, VDDA_MCU_TEMP, VDDA_ADC0,
VDDA_ADC1, VDDA_POR_WKUP, VDDA_WKUP,
VDDS_OSC1, VDDA_PLLGRP0, VDDA_PLLGRP1,
VDDA_PLLGRP2, VDDA_PLLGRP3, VDDA_PLLGRP4, VDDA_PLLGRP5,
VDDA_PLLGRP6, VDDA_TEMP0_1, VDDA_TEMP2_3
VDD_CPU
VDDA_0P8_PLL_DDR, VDDA_0P8_DLL_MMC0, VDDA_0P8_PLL_MLB
(10)
(8)
VDD_MCU , VDD_CORE, (VDDA_0P8_SERDES0_1,
VDDA_0P8_SERDES2_3, VDDA_0P8_SERDES_C0_1,
VDDA_0P8_SERDES_C2_3, VDDA_0P8_DP, VDDA_0P8_DP_C,
VDDA_0P8_CSIRX, VDDA_0P8_UFS, VDDA_0P8_USB,
(9)
VDDA_0P8_DSITX, VDDA_0P8_DSITX_C)
(8)
VDD_MCU , VDDAR_CORE, VDDAR_CPU, VDDAR_MCU
VDDS_DDR, VDDS_DDR_C, VDDS_DDR_BIAS
WKUP_OSC0_XI, WKUP_OSC1_XO
WKUP_LFOSC0_XI, WKUP_LFOSC0_XO
(optional)
OSC1_XI, OSC1_XO
(optional)
(11)
MCU_BOOTMODE[9:0], BOOTMODE[7:0]
PORz, MCU_PORz
Valid Configuration
(11)(12)
J7ES_ELCH_01
Figure 7-3. Combined MCU and Main Domains, Primary Power-Up Sequence
1. Time Stamp Markers
T0 – 3.3V voltages start ramp-up to VOPR MIN. (0ms)
T1 – 1.8V voltages start ramp-up to VOPR MIN. (2ms)
T2 – Low voltage core supplies start ramp-up to VOPR MIN. (3ms)
T3 – Low voltage RAM array voltages start ramp-up to VOPR MIN. (4ms)
T4 – OSC1 is stable and PORz/MCU_PORz are de-asserted to release processor from reset. (13ms)
2. Any MCU or Main dual voltage IO supplies (VDDSHVn_MCU or VDDSHVn) being supplied by 3.3V to
support 3.3V digital interfaces. A few supplies could have varying start times between T0 to T1 due to PDN
designs using different power resources with varying turn-on & ramp-up time delays.
3. Any MCU or Main dual voltage IO supplies (VDDSHVn_MCU or VDDSHVn) being supplied by 1.8V to
support 1.8V digital interfaces. When eMMC memories are used, Main 1.8V supplies could have a ramp-up
aligned to T3 due to PDN designs grouping supplies with VDD_MMC0.
4. VDDSHV5 supports MMC1 signaling for SD memory cards. If compliant high-speed SD card operation is
needed, then an independent, dual voltage (3.3V/1.8V) power source and rail are required. The start of
ramp-up to 3.3V will be same as other 3.3V domains as shown. If SD card is not needed or standard data
172
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
5.
6.
7.
8.
9.
10.
11.
12.
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
rates with fixed 3.3V operation is acceptable, then domain can be grouped with digital IO 3.3V power rail. If a
SD card is capable of operating with fixed 1.8V, then domain can be grouped with digital IO 1.8V power rail.
VDDA_3P3_USB is 3.3V analog domain used for USB 2.0 differential interface signaling. A low noise,
analog supply is recommended to provide best signal integrity for USB data eye mask compliance. The start
of ramp-up to 3.3V will be same as other 3.3V domains as shown. If USB interface is not needed or data bit
errors can be tolerated, then domain can be grouped with 3.3V digital IO power rail either directly or through
a supply filter.
VDDA_1P8_ are 1.8V analog domains supporting multiple serial PHY interfaces. A low noise, analog
supply is recommended to provide best signal integrity, interface performance and spec compliance. If any of
these interfaces are not needed, data bit errors or non-compliant operation can be tolerated, then domains
can be grouped with digital IO 1.8V power rail either directly or through an in-line supply filter is allowed.
VDD_MMC0 is 1.8V digital supply supporting MMC0 signaling for eMMC interface. If MMC0 or eMMC0
interface is not needed, then domain can be grouped with digital IO 1.8V power rail with power up time
stamp at T1. However, if MMC0 interface is needed, then VDD_MMC0 must not start ramp-up until time
stamp T3 after VDD_CORE has reached VOPR MIN. Any MCU or Main dual voltage IO operating at 1.8V can
be grouped with VDD_MMC0 into a common power rail with power up time stamp T3.
VDD_MCU is a digital voltage supply with a wide operational voltage range and power sequencing flexibility,
enabling it to be grouped and ramped-up with either 0.8V VDD_CORE at time stamp T2 or 0.85V RAM array
domains (VDDAR_xxx) at time stamp T3.
VDDA_1P8_ are 1.8V analog domains supporting clock oscillator, PLL and analog circuitry
needing a low noise supply for optimal performance. It is not recommended to combine analog
VDDA_1P8_ domains or digital VDDSHVn_MCU and VDDSHVn IO domains since high frequency
switching noise could negatively impact jitter performance of clock, PLL and DLL signals.
VDDA_0P8_ are 0.8V analog domains supporting PLL and DLL circuitry needing a low noise supply
for optimal performance. It is not recommended to combine these domains with any other 0.8V domains
since high frequency switching noise could negatively impact jitter performance of PLL and DLL signals.
Minimum set-up and hold times shown with respect to MCU_PORz and PORz asserting high to latch
MCU_BOOTMODEn (referenced to MCU_VDDSHV0) and BOOTMODEn (reference to VDDSHV2) settings
into registers during power up sequence.
Minimum elapsed time from crystal oscillator circuitry being energized (VDDS_OSC1 at T1) until stable clock
frequency is reached depends upon on crystal oscillator, capacitor parameters and PCB parasitic values.
A conservative 10ms elapsed time defined by (T4 – T1) time stamps is shown. This could be reduced
depending upon customer’s clock circuit (that is, crystal oscillator or clock generator) and PCB designs.
7.10.2.3 Combined MCU and Main Domains Power- Down Sequencing
Figure 7-4 describes the device power-down sequencing.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
173
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
T0
T1
T2
T3
T4
(VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2_MCU,
VDDSHV0, VDDSHV1, VDDSHV2, VDDSHV3,
(2)
(5)
VDDSHV4, VDDSHV5, VDDSHV6) , VDDA_3P3_USB
(VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2_MCU,
VDDSHV0, VDDSHV1, VDDSHV2,
(4)
(3)
(7)
VDDSHV3, VDDSHV4, VDDSHV5 , VDDSHV6) ,VDDS_MMC0
(VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2_MCU,
VDDSHV0, VDDSHV1, VDDSHV2,
(4)
(3)
(7)
VDDSHV3, VDDSHV4, VDDSHV5 , VDDSHV6) ,VDDS_MMC0
(VDDA_1P8_CSIRX, VDDA_1P8_UFS, VDDA_1P8_USB,
VDDA_1P8_DP, VDDA_1P8_DSITX, VDDA_1P8_MLB,
(6)
VDDA_1P8_SERDES0_1, VDDA_1P8_SERDES2_3)
VDDA_MCU_PLLGRP0, VDDA_MCU_TEMP, VDDA_ADC0,
VDDA_ADC1, VDDA_POR_WKUP, VDDA_WKUP,
VDDS_OSC1, VDDA_PLLGRP0, VDDA_PLLGRP1,
VDDA_PLLGRP2, VDDA_PLLGRP3, VDDA_PLLGRP4, VDDA_PLLGRP5,
VDDA_PLLGRP6, VDDA_TEMP0_1, VDDA_TEMP2_3
VDD_CPU
VDDA_0P8_PLL_DDR, VDDA_0P8_DLL_MMC0, VDDA_0P8_PLL_MLB
(8)
VDD_MCU , VDD_CORE, (VDDA_0P8_SERDES0_1,
VDDA_0P8_SERDES2_3, VDDA_0P8_SERDES_C0_1,
VDDA_0P8_SERDES_C2_3, VDDA_0P8_DP, VDDA_0P8_DP_C,
VDDA_0P8_CSIRX, VDDA_0P8_UFS, VDDA_0P8_USB,
(9)
VDDA_0P8_DSITX, VDDA_0P8_DSITX_C)
(8)
VDD_MCU ,VDDAR_CORE, VDDAR_MCU, VDDAR_CPU
VDDS_DDR, VDDS_DDR_C, VDDS_DDR_BIAS
OSC1_XI, OSC1_XO
WKUP_OSC0_XI, WKUP_OSC0_XO
(optional)
WKUP_LFOSC0_XI, WKUP_LFOSC0_XO
(optional)
MCU_BOOTMODE[9:0], BOOTMODE[7:0]
PORz, MCU_PORz
(10)
TΔ1
J7ES_ELCH_02
Figure 7-4. Combined MCU and Main Domains, Primary Power-Down Sequence
1. Time Stamp Markers
T0 – MCU_PORz & PORz assert low to put all processor resources in safe state. (0ms)
T1 – Main DDR, SRAM Core & SRAM CPU power supplies start ramp-down. (0.5ms)
T2 – Low voltage core supplies start supply ramp-down. (2.5ms)
T3 - 1.8V voltages start supply ramp-down. (3.0ms)
T4 – 3.3V voltages start supply ramp-down. (3.5ms)
2. Any MCU or Main dual voltage IO supplies (VDDSHVn_MCU or VDDSHVn) being supplied by 3.3V to
support 3.3V digital interfaces
3. Any MCU or Main dual voltage IO supplies (VDDSHVn_MCU or VDDSHVn) being supplied by 1.8V to
support 1.8V digital interfaces. When eMMC memories are used, Main 1.8V supplies could have a rampdown aligned to T1 due to PDN designs grouping supplies with VDD_MMC0.
174
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
4. VDDSHV5 supports MMC1 signaling for SD memory cards. A dual voltage (3.3V/1.8V) power rail is required
for compliant, high-speed SD card operations. If compliant highspeed SD card operation is needed, then
an independent, dual voltage (3.3V/1.8V) power source and rail are required. The start of ramp-down from
3.3V/1.8V will be same as other 3.3V domains as shown. If SD card is not needed or standard data rates
with fixed 3.3V operation is acceptable, then domain can be grouped with digital IO 3.3V power rail. If a SD
card is capable of operating with fixed 1.8V, then domain can be grouped with digital IO 1.8V power rail.
5. VDDA_3P3_USB is 3.3V analog domain used for USB 2.0 differential interface signaling. A low noise,
analog supply is recommended to provide best signal integrity for USB data eye mask compliance. The start
of ramp-down from 3.3V will be same as other 3.3V domains as shown. If USB interface is not needed or
data bit errors can be tolerated, then domain can be grouped with 3.3V digital IO power rail either directly or
through a supply filter.
6. VDDA_1P8_ are 1.8V analog domains supporting multiple serial PHY interfaces. A low noise, analog
supply is recommended to provide best signal integrity, interface performance and spec compliance. If any of
these interfaces are not needed, data bit errors or non-compliant operation can be tolerated, then domains
can be grouped with digital IO 1.8V power rail either directly or through an in-line supply filter is allowed.
7. VDD_MMC0 is 1.8V digital supply supporting MMC0 signaling for eMMC interface and must ramp-down at
time stamp T1 before VDD_CORE starts ramp-down. Any MCU or Main dual voltage IO operating at 1.8V
can be grouped with VDD_MMC0 into a common power rail with power down time stamp T1. If MMC0 or
eMMC0 interface is not needed, then domain can be grouped with digital IO 1.8V power rail and ramp-down
at time stamp T3.
8. VDD_MCU is a digital voltage supply with a wide operational voltage range and power sequencing flexibility,
enabling it to be grouped and ramped-down with either 0.8V VDD_CORE at time stamp T2 or 0.85V RAM
array domains (VDDAR_xxx) at time stamp T1.
9. VDDA_1P8_ are 1.8V analog domains supporting clock oscillator, PLL and analog circuitry
needing a low noise supply for optimal performance. It is not recommended to combine analog
VDDA_1P8_ domains or digital VDDSHVn_MCU and VDDSHVn IO domains since high frequency
switching noise could negatively impact jitter performance of clock, PLL and DLL signals.
10. MCU_PORz and PORz must be asserted low for TΔ1 = 200us min to ensure SoC resources enter into safe
state before any voltage begins to ramp down.
7.10.2.4 Isolated MCU and Main Domains Power- Up Sequencing
Isolated MCU and Main voltage domains enable an SoC’s MCU and Main processor sub-systems to operate
independently. There are 2 reasons an SoC’s PDN design may need to support independent MCU and Main
processor functionality. First is to provide flexibility to enable SoC low power modes that can significant reduce
SoC power dissipation when processor operations are not needed. Second is to enable robustness to gain
freedom from interference (FFI) of a single fault impacting both MCU and Main processor sub-systems which
is especially beneficial if using the SoC’s MCU as the system safety monitoring processor. The number of
additional PDN power rails needed is dependent upon number of different MCU IO signaling voltage levels.
If only 1.8V IO signaling is used, the only 2 additional power rails could be required. If both 1.8 and 3.3V IO
signaling is desired, then 4 additional power rails could be needed. Table 9-2 in Section 9.1, Power Supply
Mapping captures recommended device power supplies to power rail mapping summary.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
175
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
T1
T0
T2
T3
T4
Note 2
(VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2_MCU)
(2)
Note 2
(VDDSHV0, VDDSHV1, VDDSHV2, VDDSHV3,
(4)
(2)
(5)
VDDSHV4, VDDSHV5 , VDDSHV6) ,VDDA_3P3_USB
(VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2_MCU)
(3)
(VDDSHV0, VDDSHV1, VDDSHV2, VDDSHV3,
(4)
(3)
(7)
VDDSHV4, VDDSHV5 , VDDSHV6) , VDDS_MMC0
(VDDSHV0, VDDSHV1, VDDSHV2, VDDSHV3,
(4)
(3)
(7)
VDDSHV4, VDDSHV5 , VDDSHV6) , VDDS_MMC0
VDDA_MCU_PLLGRP0, VDDA_MCU_TEMP, VDDA_ADC0,
VDDA_ADC1, VDDA_POR_WKUP, VDDA_WKUP
VDDS_OSC1, VDDA_PLLGRP0,
VDDA_PLLGRP1, VDDA_PLLGRP2,
VDDA_PLLGRP3, VDDA_PLLGRP4, VDDA_PLLGRP5,
VDDA_PLLGRP6, VDDA_TEMP0_1, VDDA_TEMP2_3,
(VDDA_1P8_CSIRX, VDDA_1P8_UFS, VDDA_1P8_USB,
VDDA_1P8_DP, VDDA_1P8_DSITX, VDDA_1P8_MLB,
(6)
VDDA_1P8_SERDES0_1, VDDA_1P8_SERDES2_3)
(8)
VDD_MCU , VDDAR_MCU
VDD_CPU
VDDA_0P8_PLL_DDR, VDDA_0P8_DLL_MMC0, VDDA_0P8_PLL_MLB
(10)
VDD_CORE, (VDD_MCU, VDDA_0P8_SERDES0_1,
VDDA_0P8_SERDES2_3, VDDA_0P8_SERDES_C0_1,
VDDA_0P8_SERDES_C2_3, VDDA_0P8_DP, VDDA_0P8_DP_C,
VDDA_0P8_CSIRX, VDDA_0P8_UFS, VDDA_0P8_USB,
(9)
VDDA_0P8_DSITX, VDDA_0P8_DSITX_C)
VDDAR_CORE, VDDAR_CPU
VDDS_DDR, VDDS_DDR_C, VDDS_DDR_BIAS
OSC1_XI, OSC1_XO
WKUP_OSC0_XI, WKUP_OSC0_XO
(optional)
WKUP_LFOSC0_XI, WKUP_LFOSC0_XO
(optional)
(10)
MCU_BOOTMODE[9:0],BOOTMODE[7:0]
MCU_PORz
Valid Configuration
(11)(12)
(11)(12)
PORz
J7ES_ELCH_03
Figure 7-5. Isolated MCU and Main Domains, Primary Power-Up Sequence
1. Time Stamp Markers
T0 – 3.3V voltages start ramp-up to VOPR MIN. (0ms)
T1 – 1.8V voltages startramp-up to VOPR MIN. (2ms)
T2 – Low voltage core supplies start ramp-up to VOPR MIN. (3ms)
T3 – Low voltage RAM array voltages start ramp-up to VOPR MIN. (4ms)
T4 – OSC1 is stable and PORz/MCU_PORz are de-asserted to release processor from reset. (13ms)
2. Any MCU or Main dual voltage IO supplies (VDDSHVn_MCU or VDDSHVn) being supplied by 3.3V to
support 3.3V digital interfaces. A few supplies could have varying start times between T0 to T1 due to PDN
designs using different power resources with varying turn-on & ramp-up time delays.
176
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
3. Any MCU or Main dual voltage IO supplies (VDDSHVn_MCU or VDDSHVn) being supplied by 1.8V to
support 1.8V digital interfaces. When eMMC memories are used, Main 1.8V supplies could have delayed
start times that aligns to T3 due to PDN designs grouping supplies with VDD_MMC0.
4. VDDSHV5 supports MMC1 signaling for SD memory cards. If compliant UHS-I SD card operation is needed,
then an independent, dual voltage (3.3V/1.8V) power source and rail are required. The start of ramp-up to
3.3V will be same as other 3.3V domains as shown. If SD card is not needed or standard data rates with
fixed 3.3V operation is acceptable, then supply can be grouped with digital IO 3.3V power rail. If a SD card is
capable of operating with fixed 1.8V, then supply can be grouped with digital IO 1.8V power rail.
5. VDDA_3P3_USB is 3.3V analog supply used for USB 2.0 differential interface signaling. A low noise, analog
supply is recommended to provide best signal integrity for USB data eye mask compliance. The start of
ramp-up to 3.3V will be same as other 3.3V domains as shown. If USB interface is not needed or data bit
errors can be tolerated, then supply can be grouped with 3.3V digital IO power rail either directly or through a
supply filter.
6. VDDA_1P8_ are 1.8V analog supplies supporting multiple serial PHY interfaces. A low noise, analog
supply is recommended to provide best signal integrity, interface performance and spec compliance. If any
of these interfaces are not needed, data bit errors or non-compliant operation can be tolerated, then supplies
can be grouped with digital IO 1.8V power rail either directly or through an in-line supply filter is allowed.
7. VDD_MMC0 is 1.8V digital supply supporting MMC0 signaling for eMMC interface and must ramp up at
time stamp T3. Any MCU or Main dual voltage IO operating at 1.8V can be grouped with VDD_MMC0 into
a common power rail with a ramp-up at time stamp T3. If MMC0 or eMMC0 interface is not needed, then
domain can be grouped with digital IO 1.8V power rail with ramp-up at time stamp T1.
8. VDD_MCU is a digital voltage supply with a wide operational voltage range and power sequencing flexibility,
enabling it to be grouped and ramped-up with either 0.8V VDD_CORE at time stamp T2 or 0.85V RAM array
domains (VDDAR_xxx) at time stamp T3.
9. VDDA_1P8_ are 1.8V analog supplies supporting clock oscillator, PLL and analog circuitry
needing a low noise supply for optimal performance. It is not recommended to combine analog
VDDA_1P8_ domains or digital VDDSHVn_MCU and VDDSHVn IO domains since high frequency
switching noise could negatively impact jitter performance of clock, PLL and DLL signals.
10. VDDA_0P8_ are 0.8V analog supplies supporting PLL and DLL circuitry needing a low noise supply
for optimal performance. It is not recommended to combine these domains with any other 0.8V domains
since high frequency switching noise could negatively impact jitter performance of PLL and DLL signals.
11. Minimum set-up and hold times shown with respect to MCU_PORz and PORz asserting high to latch
MCU_BOOTMODEn (referenced to MCU_VDDSHV0) and BOOTMODEn (reference to VDDSHV2) settings
into registers during power up sequence.
12. Minimum elapsed time from crystal oscillator circuitry being energized (VDDS_OSC1 at T1) until stable clock
frequency is reached depends upon on crystal oscillator, capacitor parameters and PCB parasitic values.
A conservative 10ms elapsed time defined by (T4 – T1) time stamps is shown. This could be reduced
depending upon customer’s clock circuit (that is, crystal oscillator or clock generator) and PCB designs.
7.10.2.5 Isolated MCU and Main Domains, Primary Power- Down Sequencing
Figure 7-6 describes the device power-down sequencing.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
177
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
T0
(VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2_MCU)
T1
T2
T3
T4
(2)
(VDDSHV0, VDDSHV1, VDDSHV2, VDDSHV3,
(4)
(2)
(5)
VDDSHV4, VDDSHV5 , VDDSHV6) ,VDDA_3P3_USB
(VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2_MCU)
(3)
(VDDSHV0, VDDSHV1, VDDSHV2, VDDSHV3,
(4)
(3)
(7)
VDDSHV4, VDDSHV5 , VDDSHV6) , VDDS_MMC0
(VDDSHV0, VDDSHV1, VDDSHV2, VDDSHV3,
(4)
(3)
(7)
VDDSHV4, VDDSHV5 , VDDSHV6) , VDDS_MMC0
VDDA_MCU_PLLGRP0, VDDA_MCU_TEMP, VDDA_ADC0,
VDDA_ADC1, VDDA_POR_WKUP, VDDA_WKUP
VDDS_OSC1, VDDA_PLLGRP0,
VDDA_PLLGRP1, VDDA_PLLGRP2,
VDDA_PLLGRP3, VDDA_PLLGRP4, VDDA_PLLGRP5,
VDDA_PLLGRP6, VDDA_TEMP0_1, VDDA_TEMP2_3,
(VDDA_1P8_CSIRX, VDDA_1P8_UFS, VDDA_1P8_USB,
VDDA_1P8_DP, VDDA_1P8_DSITX, VDDA_1P8_MLB,
(6)
VDDA_1P8_SERDES0_1, VDDA_1P8_SERDES2_3)
(8)
(VDD_MCU , VDDAR_MCU)
VDD_CPU
VDDA_0P8_PLL_DDR, VDDA_0P8_DLL_MMC0, VDDA_0P8_PLL_MLB
VDD_CORE, (VDD_MCU, VDDA_0P8_SERDES0_1,
VDDA_0P8_SERDES2_3, VDDA_0P8_SERDES_C0_1,
VDDA_0P8_SERDES_C2_3, VDDA_0P8_DP, VDDA_0P8_DP_C,
VDDA_0P8_CSIRX, VDDA_0P8_UFS, VDDA_0P8_USB,
(9)
VDDA_0P8_DSITX, VDDA_0P8_DSITX_C)
VDDAR_CORE, VDDAR_CPU
VDDS_DDR, VDDS_DDR_C, VDDS_DDR_BIAS
OSC1_XI, OSC1_XO
WKUP_OSC0_XI, WKUP_OSC0_XO
(optional)
WKUP_LFOSC0_XI, WKUP_LFOSC0_XO
(optional)
BOOTMODE[9:0],BOOTMODE[7:0]
MCU_PORz
(10)
PORz
TΔ1
(10)
J7ES_ELCH_04
Figure 7-6. Isolated MCU and Main Domains, Primary Power- Down Sequencing
1. Time Stamp Markers
T0 – MCU_PORz & PORz assert low to put all processor resources in safe state. (0ms)
T1 – Main DDR, SRAM Core & SRAM CPU power supplies start ramp-down. (0.5ms)
T2 – Low voltage core supplies start supply ramp-down. (2.5ms)
T3 - 1.8V voltages start supply ramp-down. (3.0ms)
T4 – 3.3V voltages start supply ramp-down. (3.5ms)
2. Any MCU or Main dual voltage IO supplies (VDDSHVn_MCU or VDDSHVn) being supplied by 3.3V to
support 3.3V digital interfaces
178
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
3. Any MCU or Main dual voltage IO supplies (VDDSHVn_MCU or VDDSHVn) being supplied by 1.8V to
support 1.8V digital interfaces. When eMMC memories are used, Main 1.8V supplies could have a rampdown aligned to T1 due to PDN designs grouping supplies with VDD_MMC0.
4. VDDSHV5 supports MMC1 signaling for SD memory cards. A dual voltage (3.3V/1.8V) power rail is required
for compliant, high-speed SD card operations. If compliant highspeed SD card operation is needed, then
an independent, dual voltage (3.3V/1.8V) power source and rail are required. The start of ramp-down from
3.3V/1.8V will be same as other 3.3V domains as shown. If SD card is not needed or standard data rates
with fixed 3.3V operation is acceptable, then domain can be grouped with digital IO 3.3V power rail. If a SD
card is capable of operating with fixed 1.8V, then domain can be grouped with digital IO 1.8V power rail.
5. VDDA_3P3_USB is 3.3V analog domain used for USB 2.0 differential interface signaling. A low noise,
analog supply is recommended to provide best signal integrity for USB data eye mask compliance. The start
of ramp-down from 3.3V will be same as other 3.3V domains as shown. If USB interface is not needed or
data bit errors can be tolerated, then domain can be grouped with 3.3V digital IO power rail either directly or
through a supply filter.
6. VDDA_1P8_ are 1.8V analog domains supporting multiple serial PHY interfaces. A low noise, analog
supply is recommended to provide best signal integrity, interface performance and spec compliance. If any of
these interfaces are not needed, data bit errors or non-compliant operation can be tolerated, then domains
can be grouped with digital IO 1.8V power rail either directly or through an in-line supply filter is allowed.
7. VDD_MMC0 is 1.8V digital supply supporting MMC0 signaling for eMMC interface and must ramp-down at
time stamp T1 before VDD_CORE starts ramp-down. Any MCU or Main dual voltage IO operating at 1.8V
can be grouped with VDD_MMC0 into a common power rail with power down time stamp T1. If MMC0 or
eMMC0 interface is not needed, then domain can be grouped with digital IO 1.8V power rail and ramp-down
at time stamp T3.
8. VDD_MCU is a digital voltage supply with a wide operating voltage range and power sequencing flexibility,
enabling it to be grouped and ramped-down with either 0.8V VDD_CORE at time stamp T2 or 0.85V RAM
array domains (VDDAR_xxx) at time stamp T1.
9. VDDA_1P8_ are 1.8V analog domains supporting clock oscillator, PLL & analog circuitry
needing a low noise supply for optimal performance. It is not recommended to combine analog
VDDA_1P8_ domains or digital VDDSHVn_MCU and VDDSHVn IO domains since high frequency
switching noise could negatively impact jitter performance of clock, PLL and DLL signals.
10. MCU_PORz and PORz must be asserted low for TΔ1 = 200us min to ensure SoC resources enter into safe
state before any voltage begins to ramp down.
7.10.2.6 Entry and Exit of MCU Only State
Entry into MCU Only lower power state is accomplished by executing a power down sequence except
for the 4 MCU supply groups (VDDSHVx_MCU at 3.3V, VDDSHVx_MCU at 1.8V, VDDA_MCU_PLLGRP0/
VDDA_MCU_TEMP analog supplies at 1.8V, VDD_MCU/VDDAR_MCU at 0.85V) that remain energized. Exit
from MCU Only state is accomplished by executing a power up sequence with the 4 MCU supply groups
remaining energized throughout the sequence. The example diagram shown is for an Isolated MCU & Main PDN
type with eMMC support.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
179
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Entry into MCU only
Active
T0
VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2_MCU
T1
T2
T3
MCU only
T4
Exit from MCU only
T0
T1
T2
T3
Active
T4
(3)(5a)
VDDSHV0, VDDSHV1, VDDSHV2, VDDSHV3,
(3)(5b)
VDDSHV4, VDDSHV5, VDDSHV6
,VDDA_3P3_USB
VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2_MCU
(4)
VDDSHV0, VDDSHV1, VDDSHV2, VDDSHV3,
(4)
VDDSHV4, VDDSHV5, VDDSHV6
VDDS_MMC0
VDDA_MCU_PLLGRP0, VDDA_MCU_TEMP, VDDA_ADC0,
VDDA_ADC1, VDDA_POR_WKUP, VDDA_WKUP
VDDS_OSC1, VDDA_PLLGRP0,
VDDA_PLLGRP1, VDDA_PLLGRP2,
VDDA_PLLGRP3, VDDA_PLLGRP4, VDDA_PLLGRP5,
VDDA_PLLGRP6, VDDA_TEMP0_1, VDDA_TEMP2_3,
VDDA_1P8_CSIRX, VDDA_1P8_UFS, VDDA_1P8_USB,
VDDA_1P8_DP, VDDA_1P8_DSITX, VDDA_1P8_MLB,
(6)
VDDA_1P8_SERDES0_1, VDDA_1P8_SERDES2_3
VDD_MCU, VDDAR_MCU
(7)
VDD_CPU
VDDA_0P8_PLL_DDR, VDDA_0P8_DLL_MMC0, VDDA_0P8_PLL_MLB
VDD_CORE, VDD_MCU, VDDA_0P8_SERDES0_1,
VDDA_0P8_SERDES2_3, VDDA_0P8_SERDES_C0_1,
VDDA_0P8_SERDES_C2_3, VDDA_0P8_DP, VDDA_0P8_DP_C,
VDDA_0P8_CSIRX, VDDA_0P8_UFS, VDDA_0P8_USB,
VDDA_0P8_DSITX, VDDA_0P8_DSITX_C
VDDAR_CORE, VDDAR_CPU, VDDAR_MCU
(7)
VDDS_DDR, VDDS_DDR_C, VDDS_DDR_BIAS
OSC1_XI, OSC1_XO
WKUP_OSC0_XI, WKUP_OSC0_XO
(optional)
WKUP_LFOSC0_XI, WKUP_LFOSC0_XO
(optional)
(9)
Valid Configuration
SYSBOOT[17:0]
MCU_PORz
(9)(10)
PORz
(9)(10)
J7ES_ELCH_03
Figure 7-7. Entry and Exit of MCU Only Sequencing
7.10.2.7 Entry and Exit of DDR Retention State
Entry into DDR Retention (Suspend-to-RAM or S2R) state is accomplished by executing a power down
sequence except for the 1 device DDR supply group (VDDS_DDR_BIAS, VDDS_DDR, and VDDS_DDR_C
at 1.1V), and 1 additional discrete SDRAM supply (VDD_LPDDR4_1V8 at 1.8V; not shown in diagram below)
that remain energized. Exit from DDR Retention state is accomplished by executing a power up sequence with
these 2 DDR supply groups remaining energized throughout the sequence. The example diagram shown is for
an Isolated MCU & Main PDN type with eMMC support.
180
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Entry into MCU only
Active
T0
VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2_MCU
T1
T2
T3
DDR Retention
T4
Exit from MCU only
T0
T1
T2
T3
Active
T4
(3)(5a)
VDDSHV0, VDDSHV1, VDDSHV2, VDDSHV3,
(3)(5b)
VDDSHV4, VDDSHV5, VDDSHV6
,VDDA_3P3_USB
VDDSHV0_MCU, VDDSHV1_MCU, VDDSHV2_MCU
(4)
VDDSHV0, VDDSHV1, VDDSHV2, VDDSHV3,
(4)
VDDSHV4, VDDSHV5, VDDSHV6
VDDS_MMC0
VDDA_MCU_PLLGRP0, VDDA_MCU_TEMP, VDDA_ADC0,
VDDA_ADC1, VDDA_POR_WKUP, VDDA_WKUP
VDDS_OSC1, VDDA_PLLGRP0,
VDDA_PLLGRP1, VDDA_PLLGRP2,
VDDA_PLLGRP3, VDDA_PLLGRP4, VDDA_PLLGRP5,
VDDA_PLLGRP6, VDDA_TEMP0_1, VDDA_TEMP2_3,
VDDA_1P8_CSIRX, VDDA_1P8_UFS, VDDA_1P8_USB,
VDDA_1P8_DP, VDDA_1P8_DSITX, VDDA_1P8_MLB,
(6)
VDDA_1P8_SERDES0_1, VDDA_1P8_SERDES2_3
VDD_MCU, VDDAR_MCU
(7)
VDD_CPU
VDDA_0P8_PLL_DDR, VDDA_0P8_DLL_MMC0, VDDA_0P8_PLL_MLB
VDD_CORE, VDD_MCU, VDDA_0P8_SERDES0_1,
VDDA_0P8_SERDES2_3, VDDA_0P8_SERDES_C0_1,
VDDA_0P8_SERDES_C2_3, VDDA_0P8_DP, VDDA_0P8_DP_C,
VDDA_0P8_CSIRX, VDDA_0P8_UFS, VDDA_0P8_USB,
VDDA_0P8_DSITX, VDDA_0P8_DSITX_C
VDDAR_CORE, VDDAR_CPU, VDDAR_MCU
(7)
VDDS_DDR, VDDS_DDR_C, VDDS_DDR_BIAS
OSC1_XI, OSC1_XO
WKUP_OSC0_XI, WKUP_OSC0_XO
(optional)
WKUP_LFOSC0_XI, WKUP_LFOSC0_XO
(optional)
(9)
Valid Configuration
SYSBOOT[17:0]
MCU_PORz
(9)(10)
(9)(10)
PORz
J7ES_ELCH_03
Figure 7-8. Entry and Exit of DDR Retention Sequencing
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
181
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.3 System Timing
For more details about features and additional description information on the subsystem multiplexing signals,
see the corresponding sections within Section 6.3, Signal Descriptions and Section 8, Detailed Description.
Table 7-4. System Timing Conditions
PARAMETER
MIN
MAX
UNIT
0.5
2
V/ns
3
30
pF
INPUT CONDITIONS
SRI
Input slew rate
OUTPUT CONDITIONS
CL
Output load capacitance
7.10.3.1 Reset Timing
Tables and figures provided in this section define timing requirements and switching characteristics for reset
related signals.
Table 7-5. MCU_PORz Timing Requirements
see Figure 7-9
NO.
MIN
TYP
Hold time, MCU_PORz active (low) at Powerup after all MCU DOMAIN supplies valid (using
external crystal)
N+
1200(2)
9500000
RST2
Hold time, MCU_PORz active (low) at Powerup after all MCU DOMAIN supplies(1) valid and
external clock stable (using external LVCMOS
oscillator)
1200
ns
RST3 tw(MCU_PORzL)
Pulse Width minimum, MCU_PORz low after
Power-up (without removal of Power or system
reference clock MCU_OSC0_XI/XO)
1200
ns
RST1
th(MCUD_SUPPLIES_VALID - MCU_PORz)
(1)
(2)
MAX UNIT
ns
For definition of the MCU DOMAIN supplies, see the Combined MCU and Main Domains Power-Up sequence.
N = oscillator start-up time
RST1
RST2
RST3
MCU_PORz
MCU DOMAIN
SUPPLIES VALID
MCU_OSC0_XI,
MCU_OSC0_XO
Figure 7-9. MCU_PORz Timing Requirements
182
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 7-6. PORz Timing Requirements
see Figure 7-10
NO.
MIN
MAX
UNIT
RST4 th(MAIND_SUPPLIES_VALID - PORz)
Hold time, PORz active (low) at Power-up after all MAIN
DOMAIN supplies1 valid
1200
ns
RST5 tw(PORzL)
Pulse Width minimum, PORz low after Power-up
1200
ns
1. For definition of the MAIN DOMAIN supplies, see the Combined MCU and Main Domains Power-Up
sequence.
RST4
RST5
PORz
MAIN DOMAIN
SUPPLIES VALID
Figure 7-10. PORz Timing Requirements
Table 7-7. MCU_PORz initiates; MCU_PORz_OUT, PORz_OUT, MCU_RESETSTATz, and RESETSTATz
Switching Characteristics
see Figure 7-11
NO.
PARAMETER
MODE
MIN
MAX UNIT
RST6
td(MCU_PORzL-MCU_PORz_OUTL)
Delay time, MCU_PORz active (low) to
MCU_PORz_OUT active (low)
0
ns
RST7
td(MCU_PORzH-MCU_PORz_OUTH)
Delay time, MCU_PORz inactive (high) to
MCU_PORz_OUT inactive (high)
0
ns
RST8
td(MCU_PORzL-PORz_OUTL)
Delay time, MCU_PORz active (low) to
PORz_OUT active (low)
0
ns
RST9
td(MCU_PORzH-PORz_OUTH)
Delay time, MCU_PORz inactive (high) to
PORz_OUT inactive (high)
1500
ns
RST10
td(MCU_PORzL-MCU_RESETSTATzL)
Delay time, MCU_PORz active (low) to
MCU_RESETSTATz active (low)
0
ns
RST11
td(MCU_PORzH-MCU_RESETSTATzH)
Delay time, MCU_PORz inactive (high) to
MCU_RESETSTATz inactive (high)
12000*S(1)
ns
RST12
td(MCU_PORzL-RESETSTATzL)
Delay time, MCU_PORz active (low) to
RESETSTATz active (low)
0
ns
RST13
td(MCU_PORzH-RESETSTATzH)
Delay time, MCU_PORz inactive (high) to
RESETSTATz inactive (high)
14500*S(1)
ns
RST14
tw(MCU_PORz_OUTL)
Pulse width minimum, MCU_PORz_OUT
active (low)
1200
ns
RST15
tw(PORz_OUTL)
Pulse Width Minimum PORz_OUT low
2550
ns
RST16
tw(MCU_RESETSTATzL)
Pulse Width Minimum MCU_RESETSTATz
low
3900*S(1)
ns
RST17
tw(RESETSTATzL)
Pulse Width Minimum RESETSTATz low
2650*S(1)
ns
(1)
POST
bypass
S = MCU_OSC0_XI/XO clock period.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
183
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
RST12
RST13
MCU_PORz
RST6
RST7
RST14
MCU_PORz_OUT
RST10
RST11
RST16
MCU_RESETSTATz
RST8
RST9
RST15
PORz_OUT
RST17
RESETSTATz
Figure 7-11. MCU_PORz initiates; MCU_PORz_OUT, PORz_OUT, MCU_RESETSTATz, and RESETSTATz
Switching Characteristics
184
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 7-8. PORz Initiates; PORz_OUT and RESETSTATz Switching Characteristics
see Figure 7-12
NO.
PARAMETER
RST18 td(PORzL-PORz_OUTL)
RST19 td(PORzH-PORz_OUTH)
MODE
Delay time, PORz active (low) toPORz_OUT
active (low)
MIN
software control of
POR_RST_ISO_DONE_Z
MAX UNIT
T(1)
CTRLMMR_WKUP_POR_RST
_CTRL[0].POR_RST_ISO_
DONE_Z = 0
Delay time, PORz active (high) toPORz_OUT
active (high)
0
ns
1300
ns
T(1)
RST20
RST21
(1)
(2)
td(PORzLRESETSTATzL)
td(PORzHRESETSTATzH)
Delay time, PORz active (low) to RESETSTATz
active (low)
CTRLMMR_WKUP_POR_RST
_CTRL[0].POR_RST_ISO_
DONE_Z = 0
Delay time, PORz active (high) to RESETSTATz
active (high)
0
14500*S
(2)
ns
ns
T = Reset Isolation Time (Software Dependent).
S = MCU_OSC0_XI/XO clock period.
RST18
RST19
PORz
PORz_OUT
RST20
RST21
RESETSTATz
Figure 7-12. PORz initiates; PORz_OUT and RESETSTATz Switching Characteristics
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
185
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 7-9. MCU_RESETz Timing Requirements
see Figure 7-13
NO.
RST22
(1)
MIN
tw(MCU_RESETzL) (1)
Pulse Width minimum, MCU_RESETz active (low)
MAX UNIT
1200
ns
Timing for MCU_RESETz is valid only after all supplies are valid and MCU_PORz has been asserted for the specified time.
Table 7-10. MCU_RESETz initiates; MCU_RESETSTATz, and RESETSTATz Switching Characteristics
see Figure 7-13
NO.
PARAMETER
MIN
RST23
td(MCU_RESETzL-MCU_RESETSTATzL)
Delay time, MCU_RESETz active (low) to
MCU_RESETSTATz active (low)
RST24
td(MCU_RESETzH-MCU_RESETSTATzH)
Delay time, MCU_RESETz inactive (high) to
MCU_RESETSTATz inactive (high)
RST25
td(MCU_RESETzL-RESETSTATzL)
Delay time, MCU_RESETz active (low) to RESETSTATz
active (low)
RST26
td(MCU_RESETzH-RESETSTATzH)
Delay time, MCU_RESETz inactive (high) to
RESETSTATz inactive (high)
(1)
MAX UNIT
800
ns
3900*S(1)
ns
800
ns
3900*S(1)
ns
S = MCU_OSC0_XI/XO clock period.
RST23
RST24
MCU_RESETz
RST22
MCU_RESETSTATz
RST25
RST26
RESETSTATz
Figure 7-13. MCU_RESETz initiates; MCU_RESETSTATz, and RESETSTATz Timing Requirements and
Switching Characteristics
186
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 7-11. RESET_REQz Timing Requirements
see Figure 7-14
NO.
MIN
RST27 tw(RESET_REQzL) (1)
(1)
Pulse Width minimum, RESET_REQz active (low)
MAX UNIT
1200
ns
Timing for RESET_REQz is valid only after all supplies are valid and MCU_PORz has been asserted for the specified time.
Table 7-12. RESET_REQz initiates; RESETSTATz Switching Characteristics
see Figure 7-14
NO.
PARAMETER
RST28 td(RESET_REQzL-RESETSTATzL)
RST29 td(RESET_REQzH-RESETSTATzH)
(1)
(2)
Delay time, RESET_REQz active (low)
to RESETSTATz active (low)
MODE
MIN
software control of
SOC_WARMRST_ISO_DONE
_Z
T(1)
CTRLMMR_WKUP_MAIN_WA
RM
_RST_CTRL[0].SOC_
WARMRST_ISO_DONE_Z = 0
740
Delay time, RESET_REQz inactive
(high) to RESETSTATz inactive (high)
2650*S
(2)
MAX UNIT
ns
ns
T = Reset Isolation Time (Software Dependent).
S = MCU_OSC0_XI/XO clock period.
RST27
RESET_REQz
RST28
RST29
RESETSTATz
Figure 7-14. RESET_REQz initiates; RESETSTATz Timing Requirements and Switching Characteristics
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
187
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 7-13. EMUx Timing Requirements
see Figure 7-15
NO.
RST30
tsu(EMUx-MCU_PORz)
Setup time, EMU[1:0] before MCU_PORz inactive (high)
RST31
th(MCU_PORz - EMUx)
Hold time, EMU[1:0] after MCU_PORz inactive (high)
(1)
MIN
MAX UNIT
3*S(1)
ns
10
ns
S = MCU_OSC0_XI/XO clock period.
RST30
MCU_PORz
RST31
EMU[1:0]
Figure 7-15. EMUx Timing Requirements
Table 7-14. MCU_BOOTMODE Timing Requirements
see Figure 7-16
NO.
MIN
RST32
tsu(MCU_BOOTMODE-MCU_PORz_OUT)
Setup time, MCU_BOOTMODE[09:00] before
MCU_PORz_OUT high
RST33
th(MCU_PORz_OUT - MCU_BOOTMODE)
Hold time, MCU_BOOTMODE[09:00] after MCU_
PORz_OUT high
(1)
MAX UNIT
3*S(1)
ns
0
ns
S = MCU_OSC0_XI/XO clock period.
RST32
MCU_PORz_OUT
MCU_BOOTMODE[09:00]
RST33
Figure 7-16. MCU_BOOTMODE Timing Requirements
188
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 7-15. BOOTMODE Timing Requirements
see Figure 7-17
NO.
MIN
RST34 tsu(BOOTMODE-PORz_OUT)
Setup time, BOOTMODE[7:0] before PORz_OUT high
RST35 th(PORz_OUT - BOOTMODE)
Hold time, BOOTMODE[7:0] after PORz_OUT high
(1)
MAX
UNIT
3*S(1)
ns
0
ns
S = MCU_OSC0_XI/XO clock period.
RST34
PORz_OUT
BOOTMODE[7:0]
RST35
Figure 7-17. BOOTMODE Timing Requirements
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
189
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.3.2 Safety Signal Timing
Tables and figures provided in this section define switching characteristics for MCU_SAFETY_ERRORn and
SOC_SAFETY_ERRORn.
Table 7-16. MCU_SAFETY_ERRORn Switching Characteristics
see Figure 7-18
NO.
PARAMETER
MIN
SFTY1 tw(MCU_SAFETY_ERRORn)
Pulse width minimum, MCU_SAFETY_ERRORn active
(PWM mode disabled)
SFTY2 td (ERROR_CONDITION-MCU_SAFETY_ERRORnL)
Delay time, ERROR CONDITION to
MCU_SAFETY_ERRORn
active
(1)
(2)
MAX
UNIT
P*R(1) (2)
ns
50*P(1)
ns
P = ESM functional clock (MCU_SYSCLK0 /6).
R = Error Pin Counter Pre-Load Register count value.
Internal Error Condition
(Active High)
SFTY1
SFTY2
MCU_SAFETY_ERRORn
(PWM Mode Disabled)
Figure 7-18. MCU_SAFETY_ERRORn Switching Characteristics
Table 7-17. SOC_SAFETY_ERRORn Switching Characteristics
see Figure 7-19
NO.
PARAMETER
MIN
SFTY3 tw(SOC_SAFETY_ERRORn)
Pulse width minimum,SOC_SAFETY_ERRORn active
(PWM mode disabled)
SFTY4 td (ERROR_CONDITION-SOC_SAFETY_ERRORnL)
Delay time, ERROR CONDITION to
SOC_SAFETY_ERRORn
active
MAX
UNIT
P*R(1) (2)
ns
50*P(1)
ns
Internal Error Condition
(Active High)
SFTY3
SFTY4
SOC_SAFETY_ERRORn
(PWM Mode Disabled)
Figure 7-19. SOC_SAFETY_ERRORn Switching Characteristics
190
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.3.3 Clock Timing
Tables and figures provided in this section define timing requirements and switching characteristics for clock
signals.
Table 7-18. Clock Timng Requiements
see Figure 7-20
NO.
MIN
MAX
CLK1
tc(EXT_REFCLK1)
Cycle time minimum, EXT_REFCLK1
CLK2
tw(EXT_REFCLK1H)
Pulse Duration minimum, EXT_REFCLK1 high
E*0.45(1)
E*0.55(1)
ns
Pulse Duration minimum, EXT_REFCLK1 low
E*0.45(1)
E*0.55(1)
ns
MIN
MAX
CLK3
(1)
tw(EXT_REFCLK1L)
10
UNIT
ns
E = EXT_REFCLK1 cycle time.
Figure 7-20. Clock Timing Requirements
Table 7-19. Clock Switching Characteristics
see Figure 7-21
NO.
PARAMETER
CLK4
tc(SYSCLKOUT0)
Cycle time minimum,SYSCLKOUT0
CLK5
tw(SYSCLKOUT0H)
Pulse Duration minimum, SYSCLKOUT0 high
A*0.4(1)
A*0.6(1)
ns
A*0.4(1)
A*0.6(1)
ns
CLK6
tw(SYSCLKOUT0L)
Pulse Duration minimum, SYSCLKOUT0 low
CLK7
tc(OBSCLK0)
Cycle time minimum, OBSCLK0
8
UNIT
ns
5
CLK8
tw(OBSCLK0H)
Pulse Duration minimum, OBSCLK0 high
B*0.4(2)
CLK9
tw(OBSCLK0L)
Pulse Duration minimum,OBSCLK0 low
B*0.4(2)
ns
B*0.6(2)
ns
B*0.6(2)
ns
CLK10 tc(CLKOUT0)
Cycle time minimum, CLKOUT0
CLK11 tw(CLKOUT0H)
Pulse Duration minimum, CLKOUT0 high
C*0.4(3)
C*0.6(3)
ns
Pulse Duration minimum,CLKOUT0 low
C*0.4(3)
C*0.6(3)
ns
CLK12 tw(CLKOUT0L)
(1)
(2)
(3)
20
ns
A = SYSCLKOUT0 cycle time.
B = OBSCLK0 cycle time.
C = CLKOUT0 cycle time.
Figure 7-21. Clock Switching Characteristics
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
191
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.4 Clock Specifications
7.10.4.1 Input and Output Clocks / Oscillators
Various external clock inputs/outputs are needed to drive the device. Summary of these input clock signals is as
follows:
•
•
•
•
•
•
•
OSC1_XO/OSC1_XI — Еxternal main crystal interface pins connected to internal oscillator which sources
reference clock and provides reference clock to PLLs within MAIN domain. Also, for audio applications,
high-frequency oscillator 0 is used to provide audio clock frequencies to MCASPs.
High frequency oscillators inputs
– OSC1_XO/OSC1_XI — external main crystal interface pins connected to internal oscillator which sources
reference clock. Provides reference clock to PLLs within MCU domain and MAIN domain. This highfrequency oscillator is used to provide audio clock frequencies to MCASPs.
– WKUP_OSC0_XO/WKUP_OSC0_XI — external main crystal interface pins connected to internal
oscillator which sources reference clock. Provides reference clock to PLLs within WKUP and MAIN
domain.
Low frequency oscillator input
– WKUP_LFOSC_XO/WKUP_LFOSC_XI — external main crystal interface pins connected to internal
oscillator which sources reference clock provides a clock for low power operation in deeper sleep modes.
General purpose clock inputs
– MCU_EXT_REFCLK0 — optional external. Provides system clock input (MCU domain).
– EXT_REFCLK1 — optional external System clock input (MAIN domain). Optionally PLL2 (PER1) and
MCASP can be sourced by EXT_REFCLK1 (sourced externally).
– SERDES4_REFCLK_P/N — SerDes reference clock input for PCIe or Optional USB3 and SGMII
interfaces.
– PCIE_REFCLK[3:0]N/P — There are 4 differential clock input/output pins to support PCIe devices.
External video pixel clock inputs
– VOUT0_EXTPCLKIN — optional for the DPI0 port of DSS.
– VOUT1_EXTPCLKIN — optional for the DPI1 port of DSS.
External CPTS reference clock inputs
– MCU_CPTS_RFT_CLK — CPTS reference clock inputs for MCU_CPTS_RFT_CLK.
– CPTS_RFT_CLK — CPTS reference clock inputs for CPTS_RFT_CLK.
External audio reference clock input/output pins
– AUDIO_EXT_REFCLK0
– AUDIO_EXT_REFCLK1
– AUDIO_EXT_REFCLK2
– AUDIO_EXT_REFCLK3
Figure 7-22 shows the external input clock sources and the output clocks to peripherals.
192
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
DEVICE
CLKOUT
MCU_CLKOUT0
SYSCLKOUT0
MCU_SYSCLKOUT0
Reference clock output
Reference clock output for Ethernet PHYs (50MHz or 25MHz)
Selects Main PLL output divide-by-6
Optional pins to provide reference clock input to the PLLs.
WKUP_OSC0_XI
External Wake-up crystal interface pins connected to internal oscillator
which provides reference clock to PLLs within MAIN domain, and
audio clock frequencies to MCASPs.
WKUP_OSC0_XO
WKUP_LFOSC0_XI
External Low frequency crystal interface pins connected to internal oscillator
which provides a 32.768 KHz clock for low power operation
in deeper sleep modes.
WKUP_LFOSC0_XO
OSC1_XI
External main crystal interface pins connected to internal oscillator
which provides reference clock to PLLs within MCU domain
and MAIN domain.
OSC1_XO
TCK
MCU_RESETz/ RESET_REQz
MCU_PORz / PORz
BOOTMODE[7:0]
MCU_BOOTMODE[09:00]
DDR0_CKP/DDR0_CKN
PCIE_REFCLK[3:0]N/P
SERDES4_REFCLK_P/N
MCU_OBSCLK0 / OBSCLK[2:0]
AUDIO_EXT_REFCLK[3:0]
MCU_EXT_REFCLK0 / EXT_REFCLK1
VOUT[1:0]_EXTPCLKIN
MCU_CPTS0_RFT_CLK / CPTS0_RFT_CLK
JTAG Clock Input
MCU Warm Reset Input / Device Warm Reset Input
MCU Power ON Reset / Device Power ON Reset
Boot Mode Configuration / devices select
MCU Boot Mode system clock speed and fail-safe boot device
DDR Differential Clock outputs
There are 4 differential clock input/output pins to support PCIe devices
SerDes reference clock input for PCIe or Optional USB3 and SGMII interfaces
Observation clock outputs for MCU Domain clock / MAIN Domain clocks
External audio reference clock input/output pins
Optional external System clock inputs - (MCU domain) / (MAIN domain)
Optional for the DPI0/1 Ports of DSS
CPTS reference clock input for CPTS_RFT_CLK / MCU_CPTS_RFT_CLK
J7ES_CLOCK_01
Figure 7-22. Input Clocks Interface
For more information about Input clock interfaces, see Clocking section in Device Configuration chapter in the
device TRM.
7.10.4.1.1 WKUP_OSC0 Internal Oscillator Clock Source
Figure 7-23 shows the recommended crystal circuit. All discrete components used to implement the oscillator
circuit should be placed as close as possible to the WKUP_OSC0_XI and WKUP_OSC0_XO pins.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
193
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Device
WKUP_OSC0_XO
WKUP_OSC0_XI
Rd
(Optional)
Crystal
(Optional) Rbias
Cf2
Cf1
PCB Ground
J7ES_WKUP_OSC_INT_02
Figure 7-23. WKUP_OSC0 Crystal Implementation
The crystal must be in the fundamental mode of operation and parallel resonant. Table 7-20 summarizes the
required electrical constraints.
Table 7-20. WKUP_OSC0 Crystal Electrical Characteristics
PARAMETER
MIN
Fxtal
Crystal Parallel Resonance Frequency
Fxtal
Crystal Frequency Stability and Tolerance
TYP
MAX
19.2, 20, 24, 25, 26, 27
UNIT
MHz
Ethernet RGMII and RMII
not used
±100
Ethernet RGMII and RMII
using derived clock
±50
ppm
CL1+PCBXI
Capacitance of CL1 + CPCBXI
12
24
pF
CL2+PCBXO
Capacitance of CL2 + CPCBXO
12
24
pF
CL
Crystal Load Capacitance
6
12
pF
Cshunt
Crystal Circuit Shunt Capacitance
ESRxtal = 30 Ω
19.2 MHz, 20 MHz,
24 MHz, 25 MHz, 26 MHz,
27 MHz
7
pF
ESRxtal = 40 Ω
19.2 MHz, 20 MHz,
24 MHz, 25 MHz, 26 MHz,
27 MHz
5
ESRxtal = 50 Ω
19.2 MHz, 20 MHz,
24 MHz, 25 MHz, 26 MHz,
27 MHz
5
ESRxtal = 60 Ω
19.2 MHz, 20 MHz, 24 MHz
5
pF
ESRxtal = 80 Ω
19.2 MHz, 20 MHz
5
pF
25 MHz
3
pF
3
pF
100
Ω
pF
pF
ESRxtal = 100 Ω 19.2 MHz, 20 MHz
ESRxtal
Crystal Effective Series Resistance
When selecting a crystal, the system design must consider the temperature and aging characteristics of a based
on the worst case environment and expected life expectancy of the system.
Table 7-21 details the switching characteristics of the oscillator and the requirements of the input clock.
194
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 7-21. WKUP_OSC0 Switching Characteristics – Crystal Mode
PARAMETER
MIN
TYP
MAX UNIT
CXI
XI Capacitance
1.55
pF
CXO
XO Capacitance
1.35
pF
CXIXO
XI to XO Mutual Capacitance
0.9
fF
ts
(1)
9.5(1)
Maximum Start-up Time
ms
TI strongly encourages each customer to submit samples of the device to the resonator/crystal vendors for validation. The
vendors are equipped to determine what load capacitors will best tune their resonator/crystal to the microcontroller device
for optimum startup and operation over temperature/voltage extremes.
VDD_WKUP (min.)
VDD_WKUP
Voltage
VSS
VDDA_WKUP (min.)
VDDA_WKUP
WKUP_OSC0_XO
VSS
tsX
Time
J7ES_WKUP_OSC_STARTUP_04
Figure 7-24. WKUP_OSC0 Start-up Time
7.10.4.1.1.1 Load Capacitance
The crystal circuit must be designed such that it applies the appropriate capacitive load to the crystal, as defined
by the crystal manufacturer. The capacitive load, CL, of this circuit is a combination of discrete capacitors
CL1, CL2, and several parasitic contributions. PCB signal traces which connect crystal circuit components to
WKUP_OSC0_XI and WKUP_OSC0_XO have parasitic capacitance to ground, CPCBXI and CPCBXO, where the
PCB designer should be able to extract parasitic capacitance for each signal trace. The WKUP_OSC0 circuits
and device package have combined parasitic capacitance to ground, CPCBXI and CPCBXO, where these parasitic
capacitance values are defined in Table 7-21.
Crystal Circuit
Components
PCB
Signal Traces
Device
WKUP_OSC0_XI
CL1
CPCBXI
CXI
CL2
CPCBXO
CXO
WKUP_OSC0_XO
J7ES_WKUP_OSC_CC_05
Figure 7-25. Load Capacitance
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
195
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Load capacitors, CL1 and CL2 in Figure 7-23, should be chosen such that the below equation is satisfied. CL in
the equation is the load specified by the crystal manufacturer.
CL = [(CL1 + CPCBXI + CXI) × (CL2 + CPCBXO + CXO)] / [(CL1 + CPCBXI + CXI) + (CL2 + CPCBXO + CXO)]
To determine the value of CL1 and CL2, multiply the capacitive load value CL by 2. Using this result, subtract the
combined values of CPCBXI + CXI to determine the value of CL1 and the combined values of CPCBXO + CXO to
determine the value of CL2. For example, if CL = 10 pF, CPCBXI = 2.9 pF, CXI = 0.5 pF, CPCBXO = 3.7 pF, CXO =
0.5 pF, the value of CL1 = [(2CL) - (CPCBXI + CXI)] = [(2 × 10 pF) - 2.9 pF - 0.5 pF)] = 16.6 pF and CL2 = [(2CL) (CPCBXO + CXO)] = [(2 × 10 pF) - 3.7 pF - 0.5 pF)] = 15.8 pF
7.10.4.1.1.2 Shunt Capacitance
The crystal circuit must also be designed such that it does not exceed the maximum shunt capacitance for
WKUP_OSC0 operating conditions defined in Table 7-20. Shunt capacitance, Cshunt, of the crystal circuit is a
combination of crystal shunt capacitance and parasitic contributions. PCB signal traces which connect crystal
circuit components to WKUP_OSC0 have mutual parasitic capacitance to each other, CPCBXIXO, where the
PCB designer should be able to extract mutual parasitic capacitance between these signal traces. The device
package also has mutual parasitic capacitance, CXIXO, where this mutual parasitic capacitance value is defined
in Table 7-21.
PCB routing should be designed to minimize mutual capacitance between XI and XO signal traces. This is
typically done by keeping signal traces short and not routing them in close proximity. Mutual capacitance can
also be minimized by placing a ground trace between these signals when the layout requires them to be routed
in close proximity. It is important to minimize the mutual capacitance on the PCB to provide as much margin as
possible when selecting a crystal.
Crystal Circuit
Components
PCB
Signal Traces
Device
WKUP_OSC0_XI
CPCBXIXO
CO
CXIXO
WKUP_OSC0_XO
J7ES_WKUP_OSC_SC_06
Figure 7-26. Shunt Capacitance
A crystal should be chosen such that the below equation is satisfied. CO in the equation is the maximum shunt
capacitance specified by the crystal manufacturer.
Cshunt ≥ CO + CPCBXIXO + CXIXO
For example, the equation would be satisfied when the crystal being used is 25 MHz with an ESR = 30 Ω,
CPCBXIXO = 0.04 pF, CXIXO = 0.01 pF, and shunt capacitance of the crystal is less than or equal to 6.95 pF.
7.10.4.1.2 WKUP_OSC0 LVCMOS Digital Clock Source
Figure 7-27 shows the recommended oscillator connections when WKUP_OSC0_XI is connected to a 1.8-V
LVCMOS square-wave digital clock source.
196
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Note
A DC steady-state condition is not allowed on WKUP_OSC0_XI when the oscillator is powered up.
This is not allowed because WKUP_OSC0_XI is internally AC coupled to a comparator that may enter
a unknown state when DC is applied to the input. Therefore, application software should power down
WKUP_OSC0 any time WKUP_OSC0_XI is not toggling between logic states.
Device
WKUP_OSC0_XO
WKUP_OSC0_XI
PCB Ground
J7ES_WKUP_OSC_EXT_CLK_05
Figure 7-27. 1.8-V LVCMOS-Compatible Clock Input
7.10.4.1.3 Auxiliary OSC1 Internal Oscillator Clock Source
Figure 7-28 shows the recommended crystal circuit. All discrete components used to implement the oscillator
circuit should be placed as close as possible to the OSC1_XI and OSC1_XO pins.
Device
OSC1_XO
OSC1_XI
Rd
(Optional)
Crystal
(Optional) Rbias
Cf1
Cf2
PCB Ground
J7ES_AUX_OSC_INT_07
Figure 7-28. OSC1 Crystal Implementation
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
197
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
The crystal must be in the fundamental mode of operation and parallel resonant. Table 7-22 summarizes the
required electrical constraints.
Table 7-22. OSC1 Crystal Electrical Characteristics
PARAMETER
Fxtal
Crystal Parallel Resonance Frequency
Fxtal
Crystal Frequency Stability and Tolerance
MIN
19.2
TYP
MAX
UNIT
27
MHz
Ethernet RGMII and RMII
not used
±100
ppm
Ethernet RGMII and RMII
using derived clock
±50
CL1+PCBXI
Capacitance of CL1 + CPCBXI
12
24
pF
CL2+PCBXO
Capacitance of CL2 + CPCBXO
12
24
pF
CL
Crystal Load Capacitance
6
12
pF
Cshunt
Crystal Circuit Shunt Capacitance
ESRxtal = 30 Ω
19.2 MHz, 20 MHz,
24 MHz, 25 MHz, 26 MHz,
27 MHz
7
pF
ESRxtal = 40 Ω
19.2 MHz, 20 MHz,
24 MHz, 25 MHz, 26 MHz,
27 MHz
5
pF
ESRxtal = 50 Ω
19.2 MHz, 20 MHz,
24 MHz, 25 MHz, 26 MHz,
27 MHz
5
pF
ESRxtal = 60 Ω
19.2 MHz, 20 MHz, 24 MHz
5
pF
ESRxtal = 80 Ω
19.2 MHz, 20 MHz
5
pF
25 MHz
3
pF
3
pF
100
Ω
ESRxtal = 100 Ω 19.2 MHz, 20 MHz
ESRxtal
Crystal Effective Series Resistance
When selecting a crystal, the system design must consider the temperature and aging characteristics of a based
on the worst case environment and expected life expectancy of the system.
Table 7-23 details the switching characteristics of the oscillator and the requirements of the input clock.
Table 7-23. OSC1 Switching Characteristics – Crystal Mode
MAX
UNIT
CXI
XI Capacitance
PARAMETER
1.55
pF
CXO
XO Capacitance
1.35
pF
CXIXO
XI to XO Mutual Capacitance
0.9
fF
ts
(1)
198
MIN
TYP
9.5(1)
Maximum Start-up Time
ms
TI strongly encourages each customer to submit samples of the device to the resonator/crystal vendors for validation. The
vendors are equipped to determine what load capacitors will best tune their resonator/crystal to the microcontroller device
for optimum startup and operation over temperature/voltage extremes.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
VDD_CORE (min.)
VDD_CORE
Voltage
VSS
VDDS_OSC1 (min.)
VDDS_OSC1
OSC1_XO
VSS
tsX
Time
J7ES_AUX_OSC_STARTUP_08
Figure 7-29. OSC1 Start-up Time
7.10.4.1.3.1 Load Capacitance
The crystal circuit must be designed such that it applies the appropriate capacitive load to the crystal, as defined
by the crystal manufacturer. The capacitive load, CL, of this circuit is a combination of discrete capacitors CL1,
CL2, and several parasitic contributions. PCB signal traces which connect crystal circuit components to OSC1_XI
and OSC1_XO have parasitic capacitance to ground, CPCBXI and CPCBXO, where the PCB designer should
be able to extract parasitic capacitance for each signal trace. The OSC1 circuits and device package have
combined parasitic capacitance to ground, CPCBXI and CPCBXO, where these parasitic capacitance values are
defined in Table 7-23.
Crystal Circuit
Components
PCB
Signal Traces
Device
OSC1_XI
CL1
CPCBXI
CXI
CL2
CPCBXO
CXO
OSC1_XO
J7ES_AUX_OSC_CC_05
Figure 7-30. Load Capacitance
Load capacitors, CL1 and CL2 in Figure 7-28, should be chosen such that the below equation is satisfied. CL in
the equation is the load specified by the crystal manufacturer.
CL = [(CL1 + CPCBXI + CXI) × (CL2 + CPCBXO + CXO)] / [(CL1 + CPCBXI + CXI) + (CL2 + CPCBXO + CXO)]
To determine the value of CL1 and CL2, multiply the capacitive load value CL by 2. Using this result, subtract the
combined values of CPCBXI + CXI to determine the value of CL1 and the combined values of CPCBXO + CXO to
determine the value of CL2. For example, if CL = 10 pF, CPCBXI = 2.9 pF, CXI = 0.5 pF, CPCBXO = 3.7 pF, CXO =
0.5 pF, the value of CL1 = [(2CL) - (CPCBXI + CXI)] = [(2 × 10 pF) - 2.9 pF - 0.5 pF)] = 16.6 pF and CL2 = [(2CL) (CPCBXO + CXO)] = [(2 × 10 pF) - 3.7 pF - 0.5 pF)] = 15.8 pF
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
199
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.4.1.3.2 Shunt Capacitance
The crystal circuit must also be designed such that it does not exceed the maximum shunt capacitance
for OSC1 operating conditions defined in Table 7-22. Shunt capacitance, Cshunt, of the crystal circuit is a
combination of crystal shunt capacitance and parasitic contributions. PCB signal traces which connect crystal
circuit components to OSC1 have mutual parasitic capacitance to each other, CPCBXIXO, where the PCB designer
should be able to extract mutual parasitic capacitance between these signal traces. The device package also
has mutual parasitic capacitance, CXIXO, where this mutual parasitic capacitance value is defined in Table 7-23.
PCB routing should be designed to minimize mutual capacitance between XI and XO signal traces. This is
typically done by keeping signal traces short and not routing them in close proximity. Mutual capacitance can
also be minimized by placing a ground trace between these signals when the layout requires them to be routed
in close proximity. It is important to minimize the mutual capacitance on the PCB to provide as much margin as
possible when selecting a crystal.
Crystal Circuit
Components
PCB
Signal Traces
CPCBXIXO
CO
Device
OSC1_XI
CXIXO
OSC1_XO
J7ES_AUX_OSC_SC_06
Figure 7-31. Shunt Capacitance
A crystal should be chosen such that the below equation is satisfied. CO in the equation is the maximum shunt
capacitance specified by the crystal manufacturer.
Cshunt ≥ CO + CPCBXIXO + CXIXO
For example, the equation would be satisfied when the crystal being used is 25 MHz with an ESR = 30 Ω,
CPCBXIXO = 0.04 pF, CXIXO = 0.01 pF, and shunt capacitance of the crystal is less than or equal to 6.95 pF.
7.10.4.1.4 Auxiliary OSC1 LVCMOS Digital Clock Source
Figure 7-32 shows the recommended oscillator connections when OSC1 is connected to a 1.8-V LVCMOS
square-wave digital clock source.
Note
A DC steady-state condition is not allowed on OSC1_XI when the oscillator is powered up. This is not
allowed because OSC1_XI is internally AC coupled to a comparator that may enter a unknown state
when DC is applied to the input. Therefore, application software should power down OSC1 any time
OSC1_XI is not toggling between logic states.
200
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Device
OSC1_XO
OSC1_XI
PCB Ground
J7ES_AUX_OSC_EXT_09
Figure 7-32. 1.8-V LVCMOS-Compatible Clock Input
7.10.4.1.5 Auxiliary OSC1 Not Used
Figure 7-33 shows the recommended oscillator connections when OSC1 is not used. OSC1_XI must be
connected to VSS through an external pull resistor (Rpd) to ensure this input is held to a valid low level when
unused since the internal pull-down resistor is disabled by default.
Device
OSC1_XI
Rpd
PCB Ground
OSC1_XO
NC
J7ES_AUX_OSC_NOT_USED_11
Figure 7-33. OSC1 Not Used
7.10.4.1.6 WKUP_LFOSC0 Internal Oscillator Clock Source
Figure 7-34 shows the recommended crystal circuit. It is recommended that preproduction printed-circuit board
(PCB) designs include the two optional resistors Rbias and Rd in case they are required for proper oscillator
operation when combined with production crystal circuit components. In most cases, Rbias is not required and
Rd is a 0-Ω resistor. These resistors may be removed from production PCB designs after evaluating oscillator
performance with production crystal circuit components installed on preproduction PCBs.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
201
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Device
WKUP_LFOSC0_XO
WKUP_LFOSC0_XI
Rd
(Optional)
Crystal
(Optional) Rbias
Cf2
Cf1
PCB Ground
J7ES_LF_OSC_INT_12
Figure 7-34. WKUP_LFOSC0 Crystal Implementation
Table 7-24 presents LFXOSC modes of operation.
Table 7-24. LFXOSC Modes of Operation
CLK_O
UT
MODE
BP_C
PD_C
XI
XO
DESCRIPTION
ACTIVE
0
0
XTAL
XTAL
PWRDN
0
1
X
PD
LOW
Output will be pulled down to LOW. PAD to be tri-stated. Active mode disabled
BYPASS
1
X
CLK
PD
CLK
XI is driven by external clock source. XO is pulled down to LOW. Due to ESD
diode to supply, XI should not be driven unless oscillator supply is present.
CLK_OU
Active oscillator mode providing 32kHz
T
Note
User should set CTRLMMR_WKUP_LFXOSC_TRIM[18:16] i_mult = 3b’001 for CL in the range 6pf to
9.5pf. CTRLMMR_WKUP_LFXOSC_TRIM [18:16] i_mult = 3b’010 for CL in the range 8.5pf to 12pf.
Default setting is 3b’010.
Note
The load capacitors, Cf1 and Cf2 in Figure 7-35, should be chosen such that the below equation is
satisfied. CL in the equation is the load specified by the crystal manufacturer. All discrete components
used to implement the oscillator circuit should be placed as close as possible to the associated
oscillator WKUP_LFOSC0_XI, WKUP_LFOSC0_XO, and VSS pins.
CL=
Cf1Cf2
(Cf1+Cf2)
J7ES_CL_MATH_03
Figure 7-35. Load Capacitance Equation
202
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
The crystal must be in the fundamental mode of operation and parallel resonant. Table 7-25 summarizes the
required electrical constraints.
Table 7-25. WKUP_LFOSC0 Crystal Electrical Characteristics
NAME
DESCRIPTION
MIN
fp
Parallel resonance crystal frequency
Cf1
Cf1 load capacitance for crystal parallel resonance with Cf1 = Cf2
Cf2
Cf2 load capacitance for crystal parallel resonance with Cf1 = Cf2
Cshunt
Shunt capacitance
ESR
Crystal effective series resistance
TYP
MAX
UNIT
32768
Hz
12
24
pF
12
24
pF
ESRxtal – 40 Ω
4
pF
ESRxtal – 60 Ω
3
pF
ESRxtal – 80 Ω
2
pF
1
pF
100
Ω
ESRxtal – 100 Ω
When selecting a crystal, the system design must consider the temperature and aging characteristics of a based
on the worst case environment and expected life expectancy of the system.
Table 7-26 details the switching characteristics of the oscillator and the requirements of the input clock.
Table 7-26. WKUP_LFOSC0 Switching Characteristics – Crystal Mode
NAME
DESCRIPTION
fxtal
Oscillation frequency
tsX
Start-up time
MIN
TYP
MAX
32768
Hz
96.5
VDD_WKUP (min.)
UNIT
ms
VDD_WKUP
Voltage
VSS
VDDA_WKUP (min.)
VSS
VDDA_WKUP
WKUP_LFOSC0_XO
tsX
Time
J7ES_LF_OSC_STARTUP_13
Figure 7-36. WKUP_LFOSC0 Start-up Time
7.10.4.1.6.1 WKUP_LFOSC0 Not Used
Figure 7-37 shows the recommended oscillator connections when WKUP_LFOSC0 is not used.
WKUP_LFOSC0 may be a no-connect while the oscillator remains disabled since the internal pull-down resistor
is enabled by default.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
203
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Device
WKUP_LFOSC0_XI
WKUP_LFOSC0_XO
NC
NC
J7ES_LF_OSC_NOT_USED_14
Figure 7-37. WKUP_LFOSC0 Not Used
7.10.4.2 Output Clocks
The device provides several system clock outputs. Summary of these output clocks are as follows:
•
•
•
•
•
•
204
MCU_CLKOUT0
– Reference clock output for Ethernet PHYs (50 MHz or 25 MHz)
MCU_SYSCLKOUT0
– SYSCLK0 of WKUP_PLLCTRL0 is divided by 6 and then sent out of the device as a LVCMOS clock signal
(MCU_SYSCLKOUT0). This signal can be used to test if the main chip clock is functioning or not.
MCU_OBSCLK0
– On the clock output MCU_OBSCLK0, oscillators and PLLs clocks can be observed for tests and debug.
SYSCLKOUT0
– SYSCLK0 from the MAIN_PLL controller is divided by 6 and then sent out of the device as a LVCMOS
clock signal (SYSCLKOUT0). This signal can be used to test if the main chip clock is functioning or not.
CLKOUT
– Reference clock output
OBSCLK[2:0]
– On the clock output OBSCLK0, oscillators and PLLs clocks can be observed for tests and debug.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.4.3 PLLs
Power is supplied to the Phase-Locked Loop circuitries (PLLs) by internal regulators that derive power from the
off-chip power-supply.
There are total of three PLLs in the device in WKUP and MCU domains:
• MCU_PLL0 (MCU R5FSS PLL) with WKUP_PLLCTRL0
• MCU_PLL1 (MCU PERIPHERAL PLL)
• MCU_PLL2 (MCU CPSW PLL)
There are total of twenty PLLs in the device in MAIN domain:
• PLL0 (MAIN PLL) with PLLCTRL0
• PLL1 (PER0 PLL)
• PLL2 (PER1 PLL)
• PLL3 (CPSW9G PLL)
• PLL4 (AUDIO0 PLL)
• PLL5 (VIDEO PLL)
• PLL6 (GPU PLL)
• PLL7 (C7x PLL)
• PLL8 (ARM0 PLL)
• PLL12 (DDR PLL)
• PLL13 (C66 PLL)
• PLL14 (R5F PLL)
• PLL15 (AUDIO1 PLL)
• PLL16 (DSS PLL0)
• PLL17 (DSS PLL1)
• PLL18 (DSS PLL2)
• PLL19 (DSS PLL3)
• PLL23 (DSS PLL7)
• PLL24 (MLB PLL)
• PLL25 (VISION PLL)
Note
For more information, see:
• Device Configuration / Clocking / PLLs section in the device TRM.
• Peripherals / Display Subsystem Overview section in the device TRM.
Note
The input reference clock (OSC1_XI/OSC1_XO) is specified and the lock time is ensured by the PLL
controller, as documented in the Device Configuration chapter in the device TRM.
7.10.4.4 Module and Peripheral Clocks Frequencies
Section 7.10.5, Peripherals section documents the maximum frequency associated with the peripheral clocks of
the device.
For more details on the clocking structure of each module, reference Device Configurations chapter in the device
TRM.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
205
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5 Peripherals
7.10.5.1 ATL
The device contains ATL module that can be used for asynchronous sample rate conversion of audio. The ATL
calculates the error between two time bases, such as audio syncs, and optionally generates an averaged clock
using cycle stealing via software.
Note
For more information about ATL, see Audio Tracking Logic (ATL) section in Peripherals chapter in the
device TRM.
Table 7-27 represents ATL timing conditions.
Table 7-27. ATL Timing Conditions
PARAMETER
MODE
MIN
MAX
UNIT
0.5
5
V/ns
1
10
pF
INPUT CONDITIONS
SRI
Input slew rate
External reference CLK
OUTPUT CONDITIONS
CL
Output load capacitance
Internal reference CLK
Section 7.10.5.1.1, Section 7.10.5.1.2, Section 7.10.5.1.3, and Section 7.10.5.1.4 present timing requirements
and switching characteristics for ATL.
7.10.5.1.1 ATL_PCLK Timing Requirements
NO.
PARAMETER
MODE
MIN
MAX UNIT
D1
tc(pclk)
Cycle time, ATL_PCLK
External reference
CLK
5
ns
D2
tw(pclkL)
Pulse Duration, ATL_PCLK low
External reference
CLK
0.45 × M + 2.5
(1)
ns
D3
tw(pclkH)
Pulse Duration, ATL_PCLK high
External reference
CLK
0.45 × M + 2.5
(1)
ns
(1)
M = ATL_CLK[x] period
7.10.5.1.2 ATL_AWS[x] Timing Requirements
NO.
MODE
D4
tc(aws)
Cycle Time, ATL_AWS[x](3)
External reference
CLK
2 × M(1)
ns
D5
tw(awsL)
Pulse Duration, ATL_AWS[x](3) low
External reference
CLK
0.45 × A(2) + 2.5
ns
D6
tw(awsH)
Pulse Duration, ATL_AWS[x](3) high
External reference
CLK
0.45 × A(2) + 2.5
ns
(1)
(2)
(3)
MIN
MAX UNIT
M = ATL_CLK[x] period
A = ATL_AWS[x] period
x = 0 to 3
7.10.5.1.3 ATL_BWS[x] Timing Requirements
NO.
MODE
D7
tc(bws)
Cycle Time, ATL_BWS[x](3)
External reference
clock
2 × M(1)
ns
D8
tw(bwsL)
Pulse Duration, ATL_BWS[x] low(3)
External reference
clock
0.45 × B(2) + 2.5
ns
206
Submit Document Feedback
MIN
MAX UNIT
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
NO.
MODE
D9
External reference
clock
(1)
(2)
(3)
tw(bwsH)
Pulse Duration, ATL_BWS[x] high(3)
MIN
0.45 × B(2) + 2.5
MAX UNIT
ns
M = ATL_CLK[x] period
B = ATL_BWS[x] period
x = 0 to 3
7.10.5.1.4 ATCLK[x] Switching Characteristics
NO.
PARAMETER
MODE
MIN
MAX UNIT
D10 tc(atclk)
Cycle time, ATCLK[x](3)
Internal reference
CLK
20
ns
D11 tw(atclkL)
Pulse Duration, ATCLK[x] low(3)
Internal reference
CLK
0.45 × P(2) - M(1) - 0.3
ns
D12 tw(atclkH)
Pulse Duration, ATCLK[x] high(3)
Internal reference
CLK
0.45 × P(2) - M(1) - 0.3
ns
(1)
(2)
(3)
M = ATL_CLK[x] period
P = ATCLK[x] period
x = 0 to 3
D10
D12
ATCLK[x]
D11
atl_01
Figure 7-38. ATCLK[x] Timing
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
207
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.2 VPFE
Table 7-28 represents VPFE timnig conditions.
Table 7-28. VPFE Timing Conditions
PARAMETER
MIN
MAX
UNIT
Input slew rate
1.3
2.64
V/ns
INPUT CONDITIONS
SRI
PCB CONNECTIVITY REQUIREMENTS
td(Trace Mismatch Delay)
Propagation delay mismatch across
all traces
50
ps
Table 7-29, Figure 7-39, and Figure 7-40 represent timing requirements for VPFE0.
Table 7-29. Timing Requirements for VPFE0
NO.(1)
V1
(1)
(2)
MIN
tc(pclk)
Cycle time, VPFE0_PCLK
MAX
UNIT
6.06(1)
ns
P(2)
ns
V2
tw(pclkH)
Pulse duration, VPFE0_PCLK high
0.45 ×
V3
tw(pclkL)
Pulse duration, VPFE0_PCLK low
0.45 × P(2)
ns
V4
tsu(ctrlV-pclkV)
Setup time, control signals (VPFE0_HD, VPFE0_VD,
VPFE0_WEN, VPFE0_FIELD) valid before VPFE0_PCLK
transition
2.12
ns
V5
tsu(dataV-pclkV)
Setup time, VPFE0_DATA[15:0] valid before VPFE0_PCLK
transition
2.38
ns
V6
th(pclkV-ctrlV/dataV)
Hold time, control signals (VPFE0_HD, VPFE0_VD, VPFE0_WEN,
VPFE0_FIELD) and VPFE0_DATA[15:0] valid after VPFE0_PCLK
transition
-0.05
ns
For maximum frequency of 165 MHz.
P = VPFE0_PCLK period.
V1
V2
V3
VPFE0_PCLK
VPFE0_TIMING_01
Figure 7-39. VPFE0 Clock Signal Requirement
VPFE0_PCLK
(Positive-edge clocking)
VPFE0_PCLK
(Negative-edge clocking)
V4
V6
V5
V6
VPFE0_HD, VPFE0_VD,
VPFE0_WEN, VPFE0_FIELD
VPFE0_DATA[15:0]
VPFE0_TIMING_02
Figure 7-40. VPFE0 Timing Requirements
For more information, see Video Processing Front End (VPFE) section in Peripherals chapter in the device TRM.
208
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.3 CPSW2G
For more details about features and additional description information on the device Gigabit Ethernet MAC, see
the corresponding sections within , Section 6.3, Signal Descriptions and Section 8, Detailed Description.
7.10.5.3.1 CPSW2G MDIO Interface Timings
Table 7-30 represents CPSW2G timing conditions.
Table 7-30. CPSW2G MDIO Timing Conditions
PARAMETER
DESCRIPTION
MIN
MAX
UNIT
0.9
3.6
V/ns
10
470
pF
INPUT CONDITIONS
SRI
Input signal slew rate
OUTPUT CONDITIONS
CL
Output load capacitance
Table 7-31, Table 7-32, and Figure 7-41 present timing requirements for MDIO.
Table 7-31. CPSW2G MDIO Timing Requirements
NO.
MIN
MDIO1 tsu(mdioV-mdcH)
Setup time, MDIO[x]_MDIO valid before MDIO[x]_MDC high
MDIO2 th(mdcH-mdioV)
Hold time, MDIO[x]_MDIO valid after MDIO[x]_MDC high
MAX
UNIT
90
ns
0
ns
Table 7-32. CPSW2G MDIO Switching Characteristics
NO.
PARAMETER
MIN
MAX
UNIT
MDIO3 tc(mdc)
Cycle time, MDIO[x]_MDC
400
ns
MDIO4 tw(mdcH)
Pulse Duration, MDIO[x]_MDC high
160
ns
MDIO5 tw(mdcL)
Pulse Duration, MDIO[x]_MDC low
160
ns
MDIO7 td(mdcL-mdioV)
Delay time, MDIO[x]_MDC low to MDIO[x]_MDIO valid
-150
150
ns
MDIO3
MDIO4
MDIO5
MDIO[x]_MDC
MDIO1
MDIO2
MDIO[x]_MDIO
(input)
MDIO7
MDIO[x]_MDIO
(output)
CPSW2G_MDIO_TIMING_01
Figure 7-41. CPSW2G MDIO Timing Requirements and Switching Characteristics
Note
x = 0 in MCU domain
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
209
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.3.2 CPSW2G RMII Timings
Table 7-33, Section 7.10.5.3.2.1, Section 7.10.5.3.2.2, and Section 7.10.5.3.2.3 present timing conditions,
requirements, and switching characteristics for CPSW2G RMII.
Table 7-33. CPSW2G RMII Timing Conditions
PARAMETER
MIN
MAX
UNIT
VDDSHVx(1) = 1.8V
0.2
0.54
V/ns
VDDSHVx(1)
0.8
1.2
V/ns
3
25
pF
INPUT CONDITIONS
SRI
Input signal slew rate
= 3.3V
OUTPUT CONDITIONS
CL
Output load capacitance
(1)
x = 0 - 5, where x indicates the respective IO power rail. Refer to Pin Attributes for more information
on IO power rail assinments.
7.10.5.3.2.1 CPSW2G RMII[x]_REF_CLK Timing Requirements – RMII Mode
see Figure 7-42
NO.
MIN
MAX
19.999
20.001
ns
Pulse Duration, RMII[x]_REF_CLK high
7
13
ns
Pulse Duration, RMII[x]_REF_CLK low
7
13
ns
RMII1
tc(ref_clk)
Cycle time, RMII[x]_REF_CLK
RMII2
tw(ref_clkH)
RMII3
tw(ref_clkL)
UNIT
RMII1
RMII2
RMII[x]_REF_CLK
RMII3
A.
x = 1 in MCU domain.
Figure 7-42. CPSW2G RMII[x]_REFCLK Timing Requirements – RMII Mode
7.10.5.3.2.2 CPSW2G RMII[x]_RXD[1:0], RMII[x]_CRS_DV, and RMII[x]_RX_ER Timing Requirements – RMII Mode
NO.
RMII4
RMII5
210
MIN
MAX
UNIT
tsu(rxdV-ref_clkH)
Setup time, RMII[x]_RXD[1:0] valid before RMII[x]_REF_CLK rising
edge
4
ns
tsu(crs_dvV-ref_clkH)
Setup time, RMII[x]_CRS_DV valid before RMII[x]_REF_CLK rising
edge
4
ns
tsu(rx_erV-ref_clkH)
Setup time, RMII[x]_RX_ER valid before RMII[x]_REF_CLK rising
edge
4
ns
th(ref_clkH-rxdV)
Hold time, RMII[x]_RXD[1:0] valid after RMII[x]_REF_CLK rising
edge
2
ns
th(ref_clkH-crs_dvV)
Hold time, RMII[x]_CRS_DV valid after RMII[x]_REF_CLK rising
edge
2
ns
th(ref_clkH-rx_erV)
Hold time, RMII[x]_RX_ER valid after RMII[x]_REF_CLK rising edge
2
ns
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
RMII4
RMII5
RMII[x]_REF_CLK
RMII[x]_RXD[1:0], RMII[x]_CRS_DV,
RMII[x]_RX_ER
Figure 7-43. CPSW2G RMII[x]_RXD[1:0], RMII[x]_CRS_DV, RMII[x]_RX_ER Timing Requirements – RMII
Mode
Section 7.10.5.3.2.3, and Figure 7-44 present switching characteristics for CPSW2G RMII Transmit.
7.10.5.3.2.3 CPSW2G RMII[x]_TXD[1:0], and RMII[x]_TX_EN Switching Characteristics – RMII Mode
see Figure 7-44
NO.
RMII6
PARAMETER
MIN
MAX
UNIT
td(ref_clkH-txdV)
Delay time, RMII[x]_REF_CLK rising edge to RMII[x]_TXD[1:0] valid
2
13
ns
td(ref_clkH-tx_enV)
Delay time, RMII[x]_REF_CLK rising edge to RMII[x]_TX_EN valid
2
13
ns
RMII6
RMII[x]_REF_CLK
RMII[x]_TXD[1:0], RMII[x]_TX_EN
Figure 7-44. RMII[x]_TXD[1:0], and RMII[x]_TX_EN Switching Characteristics – RMII Mode
7.10.5.3.3 CPSW2G RGMII Timings
Section 7.10.5.3.3.1, Section 7.10.5.3.3.2, and Figure 7-46 present timing requirements for receive RGMII
operation.
For more information, see Gigabit Ethernet MAC (MCU_CPSW0) section in Peripherals chapter in the device
TRM.
Table 7-34. CPSW2G RGMII Timing Conditions
PARAMETER
MIN
MAX
UNIT
2.64
5
V/ns
2
20
pF
RGMII[x]_RXC,
RGMII[x]_RD[3:0],
RGMII[x]_RX_CTL
50
ps
RGMII[x]_TXC,
RGMII[x]_TD[3:0],
RGMII[x]_TX_CTL
50
ps
INPUT CONDITIONS
SRI
Input slew rate
OUTPUT CONDITIONS
CL
Output load capacitance
PCB CONNECTIVITY REQUIREMENTS
td(Trace Mismatch
Delay)
Propagation delay mismatch across all traces
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
211
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.3.3.1 RGMII[x]_RXC Timing Requirements – RGMII Mode
see Figure 7-45
NO.
RGMII1 tc(rxc)
Cycle time, RGMII[x]_RXC
RGMII2 tw(rxcH)
Pulse duration, RGMII[x]_RXC high
RGMII3 tw(rxcL)
Pulse duration, RGMII[x]_RXC low
MODE
MIN
MAX
UNIT
10Mbps
360
440
ns
100Mbps
36
44
ns
1000Mbps
7.2
8.8
ns
10Mbps
160
240
ns
100Mbps
16
24
ns
1000Mbps
3.6
4.4
ns
10Mbps
160
240
ns
100Mbps
16
24
ns
1000Mbps
3.6
4.4
ns
7.10.5.3.3.2 CPSW2G Timing Requirements for RGMII[x]_RD[3:0], and RGMII[x]_RCTL – RGMII Mode
see Figure 7-45
NO.
Setup time, RGMII[x]_RD[3:0] valid before RGMII[x]_RXC
transition
tsu(rdV-rxcV)
RGMII4
Setup time, RGMII[x]_RX_CTL valid before RGMII[x]_RXC
transition
tsu(rx_ctlV-rxcV)
Hold time, RGMII[x]_RD[3:0] valid after RGMII[x]_RXC
transition
th(rxcV-rdV)
RGMII5
Hold time, RGMII[x]_RX_CTL valid after RGMII[x]_RXC
transition
th(rxcV-rx_ctlV)
MODE
MIN
MAX
UNIT
10Mbps
1
ns
100Mbps
1
ns
1000Mbps
1
ns
10Mbps
1
ns
100Mbps
1
ns
1000Mbps
1
ns
10Mbps
1
ns
100Mbps
1
ns
1000Mbps
1
ns
10Mbps
1
ns
100Mbps
1
ns
1000Mbps
1
ns
RGMII1
RGMII2
RGMII[x]_RXC
RGMII3
(A)
RGMII4
RGMII5
(B)
RGMII[x]_RD[3:0]
RGMII[x]_RX_CTL
A.
B.
(B)
1st Half-byte
2nd Half-byte
RXDV
RXERR
RGMII_RXC must be externally delayed relative to the data and control pins.
Data and control information is received using both edges of the clocks. RGMII_RXD[3:0] carries data bits 3-0 on the rising edge of
RGMII_RXC and data bits 7-4 on the falling edge of RGMII_RXC. Similarly, RGMII_RXCTL carries RXDV on rising edge of RGMII_RXC
and RXERR on falling edge of RGMII_RXC.
Figure 7-45. CPSW2G Receive Interface Timing, RGMII Operation
Section 7.10.5.3.3.3, Section 7.10.5.3.3.4 present switching characteristics for transmit - RGMII for 10 Mbps, 100
Mbps, and 1000 Mbps.
212
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.3.3.3 CPSW2G RGMII[x]_TXC Switching Characteristics – RGMII Mode
NO.
PARAMETER
tc(txc)
Cycle time, RGMII[x]_TXC
RGMII6
tw(txcH)
Pulse duration, RGMII[x]_TXC high
RGMII7
tw(txcL)
Pulse duration, RGMII[x]_TXC low
RGMII8
MODE
MIN
MAX
UNIT
10Mbps
360
440
ns
100Mbps
36
44
ns
1000Mbps
7.2
8.8
ns
10Mbps
160
240
ns
100Mbps
16
24
ns
1000Mbps
3.6
4.4
ns
10Mbps
160
240
ns
100Mbps
16
24
ns
1000Mbps
3.6
4.4
ns
MODE
MIN
MAX
10Mbps
1.2
ns
7.10.5.3.3.4 RGMII[x]_TD[3:0], and RGMII[x]_TX_CTL Switching Characteristics – RGMII Mode
see Figure 7-46
NO.
PARAMETER
Output setup time, RGMII[x]_TD[3:0] valid to RGMII[x]_TXC
transition
tosu(tdV-txcV)
RGMII9
Output setup time, RGMII[x]_TX_CTL valid to RGMII[x]_TXC
transition
tosu(tx_ctlV-txcV)
Output hold time, RGMII[x]_TD[3:0] valid after RGMII[x]_TXC
transition
toh(tdV-txcV)
RGMII10
Output hold time, RGMII[x]_TX_CTL valid after
RGMII[x]_TXC transition
toh(tx_ctlV-txcV)
UNIT
100Mbps
1.2
ns
1000Mbps
1.05
ns
10Mbps
1.2
ns
100Mbps
1.2
ns
1000Mbps
1.05
ns
10Mbps
1.2
ns
100Mbps
1.2
ns
1000Mbps
1.05
ns
10Mbps
1.2
ns
100Mbps
1.2
ns
1000Mbps
1.05
ns
RGMII6
RGMII7
RGMII8
(A)
RGMII[x]_TXC
RGMII9
(B)
1st Half-byte
RGMII[x]_TD[3:0]
2nd Half-byte
RGMII10
RGMII[x]_TX_CTL
A.
B.
(B)
TXEN
TXERR
TXC is delayed internally before being driven to the RGMII[x]_TXC pin. This internal delay is always enabled.
Data and control information is received using both edges of the clocks. RGMII_TD[3:0] carries data bits 3-0 on the rising edge of
RGMII_TXC and data bits 7-4 on the falling edge of RGMII_TXC. Similarly, RGMII_TX_CTL carries TXDV on rising edge of RGMII_TXC
and RTXERR on falling edge of RGMII_TXC.
Figure 7-46. CPSW2G Transmit Interface Timing RGMII Mode
7.10.5.4 CPSW9G
For more details about features and additional description information on the device Gigabit Ethernet MAC, see
the corresponding sections within , Section 6.3, Signal Descriptions and Section 8, Detailed Description.
Table 7-35 represents CPSW9G timing conditions.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
213
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 7-35. CPSW9G Timing Conditions
PARAMETER
MIN
MAX
UNIT
0.9
3.6
V/ns
10
470
pF
INPUT CONDITIONS
SRI
Input signal slew rate
OUTPUT CONDITIONS
CL
Output load capacitance
7.10.5.4.1 CPSW9G MDIO Interface Timings
Table 7-36, Table 7-37, and Figure 7-47 present timing requirements and switching characteristics for MDIO.
Table 7-36. CPSW9G MDIO Timing Requirements
PARAMETER(1)
NO.
MIN
MDIO1 tsu(mdioV-mdcH)
Setup time, MDIO[x]_MDIO valid before MDIO[x]_MDC high
MDIO2 th(mdcH-mdioV)
Hold time, MDIO[x]_MDIO valid after MDIO[x]_MDC high
MAX
UNIT
90
ns
0
ns
Table 7-37. CPSW9G MDIO Switching Characteristics
PARAMETER(1)
NO.
MIN
MAX
UNIT
MDIO3 tc(mdc)
Cycle time, MDIO[x]_MDC
400
ns
MDIO4 tw(mdcH)
Pulse Duration, MDIO[x]_MDC high
160
ns
MDIO5 tw(mdcL)
Pulse Duration, MDIO[x]_MDC low
MDIO7 td(mdcL-mdioV)
Delay time, MDIO[x]_MDC falling edge to MDIO[x]_MDIO valid
(1)
160
-150
ns
150
ns
x=0
MDIO3
MDIO4
MDIO5
MDIO[x]_MDC
MDIO1
MDIO2
MDIO[x]_MDIO
(input)
MDIO7
MDIO[x]_MDIO
(output)
CPSW2G_MDIO_TIMING_01
Figure 7-47. CPSW9G MDIO Diagrams Receive and Transmit
7.10.5.4.2 CPSW9G RMII Timings
Table 7-38, Section 7.10.5.4.2.1, Section 7.10.5.4.2.2, and Figure 7-48 present timing requirements for
CPSW9G RMII receive.
Table 7-38. CPSW9G RMII Timing Conditions
PARAMETER
MIN
MAX
UNIT
0.108
0.54
V/ns
0.4
1.2
V/ns
3
25
pF
INPUT CONDITIONS
SRI
Input slew rate
VDDSHVx(1) = 1.8V
VDDSHVx(1)
= 3.3V
OUTPUT CONDITIONS
CL
(1)
214
Output load capacitance
x = 0 - 5, where x indicates the respective IO power rail. Refer to Pin Attributes for more information on IO power rail assinments.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.4.2.1 RMII[x]_REF_CLK Timing Requirements – RMII Mode
see Figure 7-48
NO.
MIN
RMII1
tc(ref_clk)
Cycle time, RMII[x]_REF_CLK
RMII2
tw(ref_clkH)
RMII3
tw(ref_clkL)
TYP
MAX
UNIT
19.999
20.001
ns
Pulse Duration, RMII[x]_REF_CLK high
7
13
ns
Pulse Duration, RMII[x]_REF_CLK low
7
13
ns
MAX
UNIT
RMII1
RMII2
RMII[x]_REF_CLK
RMII3
Figure 7-48. RMII[x]_REF_CLK Timing Requirements – RMII Mode
7.10.5.4.2.2 RMII[x]_RXD[1:0], RMII[x]_CRS_DV, and RMII[x]_RX_ER Timing Requirements – RMII Mode
NO.
RMII4
RMII5
PARAMETER
DESCRIPTION
MIN
TYP
tsu(rxdV-ref_clkH)
Setup time, RMII[x]_RXD[1:0] valid before RMII[x]_REF_CLK rising
edge
4
ns
tsu(crs_dvV-ref_clkH)
Setup time, RMII[x]_CRS_DV valid before RMII[x]_REF_CLK rising
edge
4
ns
tsu(rx_erV-ref_clkH)
Setup time, RMII[x]_RX_ER valid before RMII[x]_REF_CLK rising
edge
4
ns
th(ref_clkH-rxdV)
Hold time, RMII[x]_RXD[1:0] valid after RMII[x]_REF_CLK rising
edge
2
ns
th(ref_clkH-crs_dvV)
Hold time, RMII[x]_CRS_DV valid after RMII[x]_REF_CLK rising
edge
2
ns
th(ref_clkH-rx_erV)
Hold time, RMII[x]_RX_ER valid after RMII[x]_REF_CLK rising edge
2
ns
RMII4
RMII5
RMII[x]_REF_CLK
RMII[x]_RXD[1:0], RMII[x]_CRS_DV,
RMII[x]_RX_ER
Figure 7-49. CPSW9G RMII[x]_RXD[1:0], RMII[x]_CRS_DV, RMII[x]_RXER Timing Requirements – RMII
Mode
Section 7.10.5.4.2.3 and present switching characteristics for CPSW9G RMII transmit.
7.10.5.4.2.3 RMII[x]_TXD[1:0], and RMII[x]_TXEN Switching Characteristics – RMII Mode
NO.
PARAMETER
RMII6 td(ref_clkH-txdV)
td(ref_clkH-tx_enV)
MIN
TYP
MAX UNIT
Delay time, RMII[x]_REF_CLK rising edge to RMII[x]_TXD[1:0]
valid
2
13
ns
Delay time, RMII[x]_REF_CLK rising edge to RMII[x]_TX_EN
valid
2
13
ns
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
215
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
RMII6
RMII[x]_REF_CLK
RMII[x]_TXD[1:0], RMII[x]_TX_EN
Figure 7-50. RMII[x]_TXD[1:0], and RMII[x]_TX_EN Switching Characteristics – RMII Mode
7.10.5.4.3 CPSW9G RGMII Timings
Table 7-39, Section 7.10.5.4.3.1, Section 7.10.5.4.3.2, and Figure 7-51 present timing requirements for receive
RGMII operation.
For more information, see Gigabit Ethernet Switch (CPSW0) section in Peripherals chapter in the device TRM.
Table 7-39. CPSW9G RGMII Timing Conditions
PARAMETER
MIN
MAX
UNIT
2.64
5
V/ns
2
20
pF
RGMII[x]_RXC,
RGMII[x]_RD[3:0],
RGMII[x]_RX_CTL
50
ps
RGMII[x]_TXC,
RGMII[x]_TD[3:0],
RGMII[x]_TX_CTL
50
ps
INPUT CONDITIONS
SRI
Input slew rate
OUTPUT CONDITIONS
CL
Output load capacitance
PCB CONNECTIVITY REQUIREMENTS
td(Trace Mismatch
Delay)
Propagation delay mismatch across all traces
7.10.5.4.3.1 RGMII[x]_RXC Timing Requirements – RGMII Mode
NO.
RGMII1
RGMII2
RGMII3
PARAMETER
tc(rxc)
tw(rxcH)
tw(rxcL)
DESCRIPTION
Cycle time, RGMII[x]_RXC
Pulse duration, RGMII[x]_RXC high
Pulse duration, RGMII[x]_RXC low
MODE
MIN
MAX
UNIT
10Mbps
360
440
ns
100Mbps
36
44
ns
1000Mbps
7.2
8.8
ns
10Mbps
160
240
ns
100Mbps
16
24
ns
1000Mbps
3.6
4.4
ns
10Mbps
160
240
ns
100Mbps
16
24
ns
1000Mbps
3.6
4.4
ns
7.10.5.4.3.2 RGMII[x]_RD[3:0] and RGMII[x]_RCTL Timing Requirements – RGMII Mode
see Figure 7-51
NO.
tsu(rdV-rxcV)
Setup time, RGMII[x]_RD[3:0] valid before RGMII[x]_RXC
transition
RGMII4
tsu(rx_ctlV-rxcV)
216
Setup time, RGMII[x]_RX_CTL valid before RGMII[x]_RXC
transition
Submit Document Feedback
MODE
MIN
10Mbps
1
MAX UNIT
ns
100Mbps
1
ns
1000Mbps
1
ns
10Mbps
1
ns
100Mbps
1
ns
1000Mbps
1
ns
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
see Figure 7-51
NO.
Hold time, RGMII[x]_RD[3:0] valid after RGMII[x]_RXC
transition
th(rxcV-rdV)
RGMII5
MIN
1
MAX UNIT
ns
100Mbps
1
ns
1000Mbps
1
ns
10Mbps
1
ns
100Mbps
1
ns
1000Mbps
1
ns
Hold time, RGMII[x]_RX_CTL valid after RGMII[x]_RXC
transition
th(rxcV-rx_ctlV)
MODE
10Mbps
RGMII1
RGMII2
RGMII[x]_RXC
RGMII3
(A)
RGMII4
RGMII5
(B)
RGMII[x]_RD[3:0]
RGMII[x]_RX_CTL
A.
B.
(B)
1st Half-byte
2nd Half-byte
RXDV
RXERR
RGMII_RXC must be externally delayed relative to the data and control pins.
Data and control information is received using both edges of the clocks. RGMII_RXD[3:0] carries data bits 3-0 on the rising edge of
RGMII_RXC and data bits 7-4 on the falling edge of RGMII_RXC. Similarly, RGMII_RXCTL carries RXDV on rising edge of RGMII_RXC
and RXERR on falling edge of RGMII_RXC.
Figure 7-51. CPSW9G RGMII[x]_RXC, RGMII[x]_RD[3:0] and RGMII[x]_RCTL Timing Requirements –
RGMII Mode
Section 7.10.5.4.3.3, Section 7.10.5.4.3.4, and Figure 7-52 present switching characteristics for transmit - RGMII
for 10 Mbps, 100 Mbps, and 1000 Mbps.
7.10.5.4.3.3 RGMII[x]_TXC Switching Characteristics – RGMII Mode
see Figure 7-52
NO.
RGMII6 tc(txc)
RGMII7 tw(txcH)
RGMII8 tw(txcL)
PARAMETER
Cycle time, RGMII[x]_TXC
Pulse duration, RGMII[x]_TXC high
Pulse duration, RGMII[x]_TXC low
MODE
MIN
10Mbps
360
TYP
MAX
UNIT
440
ns
100Mbps
36
44
ns
1000Mbps
7.2
8.8
ns
10Mbps
160
240
ns
100Mbps
16
24
ns
1000Mbps
3.6
4.4
ns
10Mbps
160
240
ns
100Mbps
16
24
ns
1000Mbps
3.6
4.4
ns
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
217
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.4.3.4 RGMII[x]_TD[3:0] and RGMII[x]_TX_CTL Switching Characteristics – RGMII Mode
see Figure 7-52
NO.
PARAMETER
MODE
MIN
10Mbps
ns
1.2
ns
1.05
ns
1.2
ns
100Mbps
1.2
ns
1000Mbps
1.05
ns
10Mbps
1.2
ns
100Mbps
1.2
ns
1000Mbps
1.05
ns
1.2
ns
100Mbps
1.2
ns
1000Mbps
1.05
ns
Output setup time, RGMII[x]_TD[3:0] valid to RGMII[x]_TXC
100Mbps
transition
1000Mbps
tosu(tdV-txcV)
RGMII9
10Mbps
Output setup time, RGMII[x]_TX_CTL valid to
RGMII[x]_TXC transition
tosu(tx_ctlV-txcV)
Output hold time, RGMII[x]_TD[3:0] valid after
RGMII[x]_TXC transition
toh(tdV-txcV)
RGMII1
0
10Mbps
Output hold time, RGMII[x]_TX_CTL valid after
RGMII[x]_TXC transition
toh(tx_ctlV-txcV)
MAX UNIT
1.2
RGMII6
RGMII7
RGMII8
(A)
RGMII[x]_TXC
RGMII9
(B)
RGMII[x]_TD[3:0]
1st Half-byte
2nd Half-byte
RGMII10
RGMII[x]_TX_CTL
A.
B.
(B)
TXEN
TXERR
TXC is delayed internally before being driven to the RGMII[x]_TXC pin. This internal delay is always enabled.
Data and control information is received using both edges of the clocks. RGMII_TD[3:0] carries data bits 3-0 on the rising edge of
RGMII_TXC and data bits 7-4 on the falling edge of RGMII_TXC. Similarly, RGMII_TX_CTL carries TXDV on rising edge of RGMII_TXC
and RTXERR on falling edge of RGMII_TXC.
Figure 7-52. CPSW9G RGMII[x]_TXC, RGMII[x]_TD[3:0], and RGMII[x]_TX_CTL Switching Characteristics
- RGMII Mode
7.10.5.5 CSI-2
Note
For more information, see the Camera Streaming Interface Receiver (CSI_RX_IF) chapter in the
device TRM.
The CSI_RX_IF deals with the processing of the pixel data coming from an external image sensor and data from
memory. It is a key component for the following multimedia applications: camera viewfinder, video record, and
still image capture.
The CSI_RX_IF has a primary serial interface (CSI-2 port) compliant with the MIPI D-PHY RX specification v1.2
and the MIPI CSI-2 specification v1.3, with 4 differential data lanes plus 1 differential clock lane in synchronous
mode, double data rate. Refer to the specification for timing details.
• 2.5 Gbps (1.25 GHz) for each lane.
218
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.6 DDRSS
For more details about features and additional description information on the device LPDDR4 Memory
Interfaces, see the corresponding sections within Section 6.3, Signal Descriptions and Section 8, Detailed
Description.
The device has dedicated interface to LPDDR4. It supports JEDEC JESD209-4B standard compliant LPDDR4
SDRAM devices with the following features:
• 32-bit data path to external SDRAM memory
• Memory device capacity: Up to 8GB address space available over two chip selects (4GB per rank).
Table 7-40 and Figure 7-53 present switching characteristics for DDRSS.
Table 7-40. Switching Characteristics for DDRSS
NO.
1
PARAMETER
tc(DDR_CKP/DDR_CKN)
DDR TYPE
Cycle time, DDR0_CKP and DDR0_CKN
LPDDR4
MIN
MAX
UNIT
0.536
3.003
ns
1
DDR0_CKP
DDR0_CKN
Figure 7-53. DDRSS Memory Interface Clock Timing
For more information, see DDR Subsystem (DDRSS) section in Memory Controllers chapter in the device TRM.
7.10.5.7 DSS
For more details about features and additional description information on the device Display Subsystem – Video
Output Ports, see the corresponding sections within Section 6.3, Signal Descriptions and Section 8, Detailed
Description.
Table 7-41 represents DPI timing conditions.
Table 7-41. DPI Timing Conditions
PARAMETER
MIN
MAX
UNIT
1.44
26.4
V/ns
1.5
5
INPUT CONDITIONS
SRI
Input slew rate
OUTPUT CONDITIONS
CL
Output load capacitance
pF
PCB CONNECTIVITY REQUIREMENTS
td(Trace Mismatch Delay)
Propagation delay mismatch
across all traces
100
ps
Table 7-42, Table 7-43, Figure 7-54 and Figure 7-55 assume testing over the recommended operating conditions
and electrical characteristic conditions.
Table 7-42. DPI Video Output Switching Characteristics
NO.(2)
PARAMETER
MIN
MAX
UNIT
D1
tc(pclk)
Cycle time, VOUT(x)_PCLK
6.06
ns
D2
tw(pclkL)
Pulse duration, VOUT(x)_PCLK low
0.475×P(1)
ns
0.475×P(1)
D3
tw(pclkH)
Pulse duration, VOUT(x)_PCLK high
D4
td(pclkV-dataV)
Delay time, VOUT(x)_PCLK transition to VOUT(x)_DATA[23:0]
transition
-0.68
ns
1.78
ns
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
219
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 7-42. DPI Video Output Switching Characteristics (continued)
NO.(2)
D5
(1)
(2)
PARAMETER
td(pclkV-ctrlL)
Delay time, VOUT(x)_PCLK transition to control signals
VOUT(x)_VSYNC, VOUT(x)_HSYNC, VOUT(x)_DE falling edge
MIN
MAX
UNIT
-0.68
1.78
ns
P = output VOUT(x)_PCLK period in ns.
x in VOUT(x) = 1 or 2
D2
D1
D3
Falling-edge Clock Reference
VOUT(x)_PCLK
Rising-edge Clock Reference
VOUT(x)_PCLK
D5
VOUT(x)_VSYNC
D5
VOUT(x)_HSYNC
D4
VOUT(x)_DATA[23:0]
data_1 data_2
data_n
D5
VOUT(x)_DE
DPI_TIMING_01
A.
B.
C.
D.
The configuration of assertion of the data can be programmed on the falling or rising edge of the pixel clock.
The polarity and the pulse width of VOUT(x)_HSYNC and VOUT(x)_VSYNC are programmable, refer to Display Subsystem (DSS)
section in Peripherals chapter in the device TRM.
The VOUT(x)_PCLK frequency can be configured, refer to Display Subsystem section in Peripherals chapter in the device TRM.
x in VOUT(x) = 1 or 2.
Figure 7-54. DPI Video Output
220
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 7-43. DPI External Pixel Clock Timing Requirements
NO.(2)
D6
MIN
tc(extpclkin)
Cycle time, VOUT(x)_EXTPCLKIN
UNIT
ns
ns
ns
D7
tw(extpclkinL)
Pulse duration, VOUT(x)_EXTPCLKIN low
0.45×P
(1)
D8
tw(extpclkinH)
Pulse duration, VOUT(x)_EXTPCLKIN high
0.45×P
(1)
(1)
(2)
MAX
6.06
P = output VOUT(x)_PCLK period in ns.
x in VOUT(x) = 1 or 2
D7
D6
D8
Falling-edge Clock Reference
VOUT(x)_EXTPCLKIN
Rising-edge Clock Reference
VOUT(x)_EXTPCLKIN
DPI_TIMING_02
Figure 7-55. DPI External Pixel Clock Input
For more information, see Display Subsystem (DSS) and Peripherals section in Peripherals chapter in the device
TRM.
7.10.5.8 eCAP
The supported features by the device ECAP are:
•
•
•
•
•
•
32-bit time base counter
4-event time-stamp registers (each 32 bits)
Independent edge polarity selection for up to four sequenced time-stamp capture events
Interrupt capabilities on any of the four capture events
Input capture signal pre-scaling (from 1 to 16)
Support of different capture modes (single shot capture, continuous mode capture, absolute timestamp
capture or difference mode time-stamp capture)
Table 7-44 represents ECAP timing conditions.
Table 7-44. ECAP Timing Conditions
PARAMETER
MIN
MAX
UNIT
Input slew rate
1
4
V/ns
Output load capacitance
2
7
pF
INPUT CONDITIONS
SRI
OUTPUT CONDITIONS
CL
Section 7.10.5.8.1 and Section 7.10.5.8.2 present timing and switching characteristics for eCAP (see Figure 7-56
and Figure 7-57).
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
221
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.8.1 Timing Requirements for eCAP
NO.
CAP1
(1)
PARAMETER
DESCRIPTION
tw(cap)
MIN
MAX
UNIT
(1)
Pulse duration, CAP (asynchronous)
2 + 2P
ns
P = sysclk
CAP1
CAP
EPERIPHERALS_TIMNG_01
Figure 7-56. eCAP Input Timings
7.10.5.8.2 Switching Characteristics for eCAP
NO.
CAP2
(1)
PARAMETER
DESCRIPTION
tw(apwm)
MIN
MAX
UNIT
(1)
Pulse duration, APWM
-2 + 2P
ns
P = sysclk
CAP2
APWM
EPERIPHERALS_TIMNG_02
Figure 7-57. eCAP Output Timings
For more information, see Enhanced Capture (ECAP) Module section in Peripherals chapter in the device TRM.
7.10.5.9 EPWM
The supported features by the device EPWM are:
•
•
•
•
•
•
•
Dedicated 16-bit time-base counter with period and frequency control
Two independent PWM outputs which can be used in different configurations (with single-edge operation,
with dual-edge symmetric operation or one independent PWM output with dual-edge asymmetric operation)
Asynchronous override control of PWM signals during fault conditions
Programmable phase-control support for lag or lead operation relative to other EPWM modules
Dead-band generation with independent rising and falling edge delay control
Programmable trip zone allocation of both latched and un-latched fault conditions
Events enabling to trigger both CPU interrupts and start of ADC conversions
Table 7-45 represents EPWM timing conditions.
Table 7-45. EPWM Timing Conditions
PARAMETER
DESCRIPTION
MIN
MAX
UNIT
Input slew rate
1
4
V/ns
Output load capacitance
2
7
pF
INPUT CONDITIONS
SRI
OUTPUT CONDITIONS
CL
Section 7.10.5.9.2, Section 7.10.5.9.1 and present timing and switching characteristics for eHRPWM (see Figure
7-59, Figure 7-60, Figure 7-61, and Figure 7-58).
222
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.9.1 Timing Requirements for eHRPWM
NO.
PWM6
PWM7
(1)
PARAMETER
tw(synci)
DESCRIPTION
Pulse duration, EHRPWM_SYNCI
tw(tz)
Pulse duration, EHRPWM_TZn_IN low
MIN
MAX
UNIT
(1)
ns
(1)
ns
2 + 2P
2 + 3P
P = sysclk
PWM6
EHRPWM_SYNCI
PWM7
EHRPWM_TZn_IN
EPERIPHERALS_TIMNG_07
Figure 7-58. ePWM_SYNCI and ePWM_TZn_IN Output Timings
For more information, see Camera Subsystem section in Peripherals chapter in the device TRM.
7.10.5.9.2 Switching Characteristics for eHRPWM
NO.
PARAMETER
DESCRIPTION
MIN
MAX
UNIT
(1)
ns
(1)
ns
PWM1
tw(pwm)
Pulse duration, EHRPWM_A/B, high or low
P-3
PWM2
tw(syncout)
Pulse duration, EHRPWM_SYNCO
P-3
PWM3
td(tzL-pwmV)
Delay time, EHRPWM_TZn_IN falling edge to EHRPWM_A/B valid
11
ns
PWM4
td(tzL-pwmZ)
Delay time, EHRPWM_TZn_IN falling edge to EHRPWM_A/B Hi-Z
11
ns
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
223
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
NO.
PWM5
(1)
PARAMETER
DESCRIPTION
tw(soc)
MIN
MAX
(1)
Pulse duration, EHRPWM_SOCA/B
P-3
UNIT
ns
P = sysclk
PWM1
EHRPWM_A/B
PWM1
PWM2
EHRPWM_SYNCO
PWM5
EHRPWM_SOCA/B
EPERIPHERALS_TIMNG_04
Figure 7-59. EPWM_A/B_out, ePWM_SYNCO, and ePWM_SOCA/B Input Timings
PWM3
EPWM_A/B
EPQM_TZn_IN
EPERIPHERALS_TIMING_05
Figure 7-60. EPWM_A/B and ePWM_TZn_IN Forced High/Low Input Timings
PWM4
EPWM_A/B
EPQM_TZn_IN
EPERIPHERALS_TIMING_06
Figure 7-61. EPWM_A/B and ePWM_TZn_IN Hi–Z Input Timings
7.10.5.10 eQEP
The supported features by the device eQEP are:
•
•
•
•
•
•
•
Input Synchronization
Three Stage/Six Stage Digital Noise Filter
Quadrature Decoder Unit
Position Counter and Control unit for position measurement
Quadrature Edge Capture unit for low speed measurement
Unit Time base for speed/frequency measurement
Watchdog Timer for detecting stalls
Table 7-46 represents EQEP timing conditions.
224
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 7-46. EQEP Timing Conditions
PARAMETER
MIN
MAX
UNIT
Input slew rate
1
4
V/ns
Output load capacitance
2
7
pF
INPUT CONDITIONS
SRI
OUTPUT CONDITIONS
CL
Section 7.10.5.10.1 and Section 7.10.5.10.2 present timing requirements and switching characteristics for eQEP
(see Figure 7-62).
7.10.5.10.1 Timing Requirements for eQEP
NO.
QEP1
(1)
MIN
tw(qep)
Pulse duration, QEP_A/B
MAX
UNIT
2 + 2P(1)
ns
2P(1)
ns
QEP2
tw(qepiH)
Pulse duration, QEP_I high
2+
QEP3
tw(qepiL)
Pulse duration, QEP_I low
2 + 2P(1)
ns
2P(1)
ns
ns
QEP4
tw(qepsH)
Pulse duration, QEP_S high
2+
QEP5
tw(qepsL)
Pulse duration, QEP_S low
2 + 2P(1)
P = sysclk
QEP1
QEP_A/B
QEP2
QEP_I
QEP3
QEP4
QEP_S
QEP5
EPERIPHERALS_TIMNG_03
Figure 7-62. eQEP Input Timings
7.10.5.10.2 Switching Characteristics for eQEP
NO.
QEP6
PARAMETER
td(QEP-CNTR)
MIN
Delay time, external clock to counter increment
MAX
24
UNIT
ns
For more information, see Enhanced Quadrature Encoder Pulse (EQEP) Module section in Peripherals chapter
in the device TRM.
7.10.5.11 GPIO
The device has ten instances of GPIO modules. The GPIO modules are integrated in three groups.
• Group one: WKUP_GPIO0 and WKUP_GPIO1
• Group two: GPIO0, GPIO2, GPIO4, and GPIO6
• Group three: GPIO1, GPIO3, GPIO5, and GPIO7
Within each group, exactly one module is selected to control the corresponding I/O pins and pin interrupts.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
225
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
The GPIO pins are grouped into banks (16 pins per bank), which means that each GPIO module provides up
to 144 dedicated general-purpose pins with input and output capabilities; thus, the general-purpose interface
supports up to 432 (3 instances × (9 banks × 16 pins)) pins. Since WKUP_GPIOu_[84:143] (u = 0, 1),
GPIOn_[128:143] (n = 0, 2, 4, 6), and GPIOm_[36:143] (m = 1, 3, 5 ,7) are reserved in this device, general
purpose interface supports up to 248 I/O pins.
For more details about features and additional description information on the device General-Purpose Interface,
see the corresponding sections within Section 6.3, Signal Descriptions and Section 8, Detailed Description.
Note
The general-purpose input/output i (i = 0 to 1) is also referred to as GPIOi.
Table 7-47 represents GPIO timing conditions.
Table 7-47. GPIO Timing Conditions
PARAMETER
BUFFER TYPE
MIN
MAX
UNIT
6.6
V/ns
INPUT CONDITIONS
SRI
Input slew rate
LVCMOS
0.75
CL
Output load capacitance
LVCMOS
3
10
pF
CL
Output load capacitance
I2C Open Drain
3
100
pF
OUTPUT CONDITIONS
Section 7.10.5.11.1 and Section 7.10.5.11.2 present timings and switching characteristics of the GPIO Interface.
7.10.5.11.1 GPIO Timing Requirements
NO.
GPIO1
(1)
BUFFER TYPE
tw(gpio_in)
Pulse width, GPIOn_x
MIN
MAX UNIT
LVCMOS
2P +
2.6(1)
ns
I2C Open Drain
2P + 2.6(1)
ns
P = functional clock period in ns.
7.10.5.11.2 GPIO Switching Characteristics
NO.
GPIO2 tw(gpio_outL)
GPIO3 tw(gpio_outH)
(1)
PARAMETER
BUFFER TYPE
LVCMOS
Pulse width, GPIOn_x low
I2C Open Drain
LVCMOS
Pulse width, GPIOn_x high
I2C Open Drain
MIN
MAX
UNIT
0.975P - 3.6 (1)
ns
160
ns
0.975P - 3.6 (1)
60
ns
P = functional clock period in ns.
For more information, see General-Purpose Interface (GPIO) section in Peripherals chapter in the device TRM.
7.10.5.12 GPMC
For more details about features and additional description information on the device General-Purpose Memory
Controller, see the corresponding sections within Section 6.3, Signal Descriptions and Section 8, Detailed
Description.
Table 7-48 represents GPMC timing conditions.
Note
The IO timings provided in this section are applicable for all combinations of signals for GPMC0.
However, the timings are only valid for GPMC0 if signals within a single IOSET are used. The IOSETs
are defined in the Section 7.10.5.12.4 , GPMC0_IOSET,table.
226
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 7-48. GPMC Timing Conditions
PARAMETER
DESCRIPTION
MIN
MAX
UNIT
1.65
4
V/ns
5
20
pF
Input Conditions
tSR
Input slew rate
Output Conditions
CLOAD
Output load capacitance
7.10.5.12.1 GPMC and NOR Flash — Synchronous Mode
Section 7.10.5.12.1.1 and Section 7.10.5.12.1.2 assume testing over the recommended operating conditions
and electrical characteristic conditions below (see Figure 7-63 through Figure 7-67).
7.10.5.12.1.1 GPMC and NOR Flash Timing Requirements — Synchronous Mode
NO.
PARAMETER
F12 tsu(dV-clkH)
F13 th(clkH-dV)
F21 tsu(waitV-clkH)
F22 th(clkH-waitV)
(1)
(2)
(3)
Setup time, input data
GPMC_AD[15:0] valid before
output clock GPMC_CLK high
Hold time, input data
GPMC_AD[15:0] valid after
output clock GPMC_CLK high
Setup time, input wait
GPMC_WAIT[j] valid before
(1)
output clock GPMC_CLK high
Hold time, input wait
GPMC_WAIT[j] valid after output
(1)
clock GPMC_CLK high
MIN
(3)
MODE
MAX
100 MHz
div_by_1_mode;
1.81
not_div_by_1_mode;
1.06
div_by_1_mode;
1.78
not_div_by_1_mode;
1.78
div_by_1_mode;
1.81
not_div_by_1_mode;
1.06
div_by_1_mode;
1.78
not_div_by_1_mode;
1.78
(4)
MIN
MAX
133 MHz
(4)
UNIT
1.11
ns
ns
2.28
ns
ns
1.11
ns
ns
2.28
ns
ns
In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.
Wait monitoring support is limited to a WaitMonitoringTime value > 0. For a full description of wait monitoring feature, see GeneralPurpose Memory Controller (GPMC) section in the device TRM.
For div_by_1_mode:
•
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 0h:
–
•
GPMC_CLK frequency = GPMC_FCLK frequency
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 1h to 3h:
–
(4)
(2)
DESCRIPTION
GPMC_CLK frequency = GPMC_FCLK frequency / (2 to 4)
•
For 100 MHz:
•
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 01 = MAIN_PLL2_HSDIV1_CLKOUT / 3
For 133 MHz:
•
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 00 = MAIN_PLL0_HSDIV3_CLKOUT
7.10.5.12.1.2 GPMC and NOR Flash Switching Characteristics – Synchronous Mode
NO.(2) PARAMETER
DESCRIPTION
MODE(19)
MIN
100
MAX
MHz(20)
MIN
133
MAX UNI
T
MHz(20)
F0
tc(clk)
Period, output clock GPMC_CLK(18)
div_by_1_mode;
10
7.52
ns
F1
tw(clkH)
Typical pulse duration, output clock
GPMC_CLK high
div_by_1_mode
0.475*P
(15)- 0.3
0.475*P
(15)- 0.3
ns
F1
tw(clkL)
Typical pulse duration, output clock
GPMC_CLK low
div_by_1_mode
0.475*P
(15)- 0.3
0.475*P
(15)- 0.3
ns
F2
td(clkH-csnV)
Delay time, output clock GPMC_CLK rising
edge to output chip select GPMC_CSn[i]
transition(14)
div_by_1_mode
no extra_delay
F(6)-2.2
F+3.75
F(6)-2.2 F(6)+3.75
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
ns
227
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
NO.(2) PARAMETER
DESCRIPTION
MODE(19)
MIN
MAX
100 MHz(20)
MIN
MAX UNI
T
133 MHz(20)
F3
td(clkH-CSn[i]V)
Delay time, output clock GPMC_CLK rising
edge to output chip select GPMC_CSn[i]
invalid(14)
div_by_1_mode
no extra_delay
E(5)-2.2 E(5)+3.75
E(5)-2.2
F4
td(aV-clk)
Delay time, output address GPMC_A[27:1]
valid to output clock GPMC_CLK first edge
div_by_1_mode
B(2)-2.3
B(2)+4.5
F5
td(clkH-aIV)
Delay time, output clock GPMC_CLK rising
edge to output address GPMC_A[27:1]
invalid
div_by_1_mode;
-2.3
F6
td(be[x]nV-clk)
Delay time, output lower byte enable and
command latch enable GPMC_BE0n_CLE,
output upper byte enable GPMC_BE1n
valid to output clock GPMC_CLK first edge
div_by_1_mode
F7
td(clkH-be[x]nIV)
Delay time, output clock GPMC_CLK rising
edge to output lower byte enable and
command latch enable GPMC_BE0n_CLE,
output upper byte enable GPMC_BE1n
invalid(11)
F7
td(clkL-be[x]nIV)
F7
E
ns
B(2)-2.3
B(2)+4.5
ns
4.5
-2.3
4.5
ns
B(2)-2.3
B(2)+1.9
B(2)-2.3
B(2)+1.9
ns
div_by_1_mode
D(4)-2.3
D(4)+1.9
D(4)-2.3 D(4)+1.9
ns
Delay time, GPMC_CLK falling edge
to GPMC_BE0n_CLE, GPMC_BE1n
invalid(12)
div_by_1_mode
D(4)-2.3
D(4)+1.9
D(4)-2.3 D(4)+1.9
ns
td(clkL-be[x]nIV).
Delay time, GPMC_CLK falling edge
to GPMC_BE0n_CLE, GPMC_BE1n
invalid(13)
div_by_1_mode
D(4)-2.3
D(4)+1.9
D(4)-2.3 D(4)+1.9
ns
F8
td(clkH-advn)
Delay time, output clock GPMC_CLK rising
edge to output address valid and address
latch enable GPMC_ADVn_ALE transition
div_by_1_mode
no extra_delay
G(7)-2.3 G(7)+4.5
G(7)-2.3 G(7)+4.5
ns
F9
td(clkH-advnIV)
Delay time, output clock GPMC_CLK rising
edge to output address valid and address
latch enable GPMC_ADVn_ALE invalid
div_by_1_mode;
no extra_delay
D(4)-2.3
D(4)+4.5
D(4)-2.3 D(4)+4.5
ns
F10
td(clkH-oen)
Delay time, output clock GPMC_CLK rising
edge to output enable GPMC_OEn_REn
transition
div_by_1_mode
no extra_delay
H(8)-2.3
H(8)+3.5
H(8)-2.3 H(8)+3.5
ns
F11
td(clkH-oenIV)
Delay time, output clock GPMC_CLK rising
edge to output enable GPMC_OEn_REn
invalid
div_by_1_mode
no extra_delay
E(8)-2.3
E(8)+3.5
E(8)-2.3 E(8)+ 3.5
ns
F14
td(clkH-wen)
Delay time, output clock GPMC_CLK rising
edge to output write enable GPMC_WEn
transition
div_by_1_mode
no extra_delay
I(9)- 2.3
I(9)+4.5
I(9)- 2.3
I(9)+4.5
ns
F15
td(clkH-do)
Delay time, output clock GPMC_CLK
rising edge to output data GPMC_AD[15:0]
transition(11)
div_by_1_mode
J(10)-2.3 J(10)+2.7
J(10)-2.3 J(10)+2.7
ns
F15
td(clkL-do)
Delay time, GPMC_CLK falling edge to
GPMC_AD[15:0] data bus transition(12)
div_by_1_mode
J(10)-2.3 J(10)+2.7
J(10)-2.3 J(10)+2.7
ns
F15
td(clkL-do).
Delay time, GPMC_CLK falling edge to
GPMC_AD[15:0] data bus transition(13)
div_by_1_mode
J(10)-2.3 J(10)+2.7
J(10)-2.3 J(10)+2.7
ns
F17
td(clkH-be[x]n)
Delay time, output clock GPMC_CLK rising
edge to output lower byte enable and
command latch enable GPMC_BE0n_CLE
transition(11)
div_by_1_mode
J(10)-2.3 J(10)+1.9
J(10)-2.3 J(10)+1.9
ns
F17
td(clkL-be[x]n)
Delay time, GPMC_CLK falling edge
to GPMC_BE0n_CLE, GPMC_BE1n
transition(12)
div_by_1_mode
J(10)-2.3 J(10)+1.9
J(10)-2.3 J(10)+1.9
ns
F17
td(clkL-be[x]n).
Delay time, GPMC_CLK falling edge
to GPMC_BE0n_CLE, GPMC_BE1n
transition(13)
div_by_1_mode
J(10)-2.3 J(10)+1.9
J(10)-2.3 J(10)+1.9
ns
F18
tw(csnV)
Pulse duration, output chip select
GPMC_CSn[i] low(14)
228
(5)+3.75
Read
A(1)
A(1)
ns
Write
A(1)
A(1)
ns
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
NO.(2) PARAMETER
F19
tw(be[x]nV)
F20
(1)
(2)
(3)
(4)
(5)
(6)
tw(advnV)
DESCRIPTION
MODE(19)
MIN
MAX
100 MHz(20)
MIN
MAX UNI
T
133 MHz(20)
Pulse duration, output lower byte
enable and command latch enable
GPMC_BE0n_CLE, output upper byte
enable GPMC_BE1n low
Read
C(3)
C(3)
ns
Write
C(3)
C(3)
ns
Pulse duration, output address valid and
address latch enable GPMC_ADVn_ALE
low
Read
K(16)
K(16)
ns
Write
K(16)
K(16)
ns
For single read: A = (CSRdOffTime - CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)
For burst read: A = (CSRdOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)
For burst write: A = (CSWrOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)
With n being the page burst access number.
B = ClkActivationTime × GPMC_FCLK(17)
For single read: C = RdCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK(17)
For burst read: C = (RdCycleTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)
For burst write: C = (WrCycleTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)
With n being the page burst access number.
For single read: D = (RdCycleTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)
For burst read: D = (RdCycleTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)
For burst write: D = (WrCycleTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)
For single read: E = (CSRdOffTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)
For burst read: E = (CSRdOffTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)
For burst write: E = (CSWrOffTime - AccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)
For csn falling edge (CS activated):
•
Case GPMCFCLKDIVIDER = 0:
•
– F = 0.5 × CSExtraDelay × GPMC_FCLK(17)
Case GPMCFCLKDIVIDER = 1:
F = 0.5 × CSExtraDelay × GPMC_FCLK(17) if (ClkActivationTime and CSOnTime are odd) or (ClkActivationTime and
CSOnTime are even)
– F = (1 + 0.5 × CSExtraDelay) × GPMC_FCLK(17) otherwise
Case GPMCFCLKDIVIDER = 2:
–
•
(7)
– F = 0.5 × CSExtraDelay × GPMC_FCLK(17) if ((CSOnTime - ClkActivationTime) is a multiple of 3)
– F = (1 + 0.5 × CSExtraDelay) × GPMC_FCLK(17) if ((CSOnTime - ClkActivationTime - 1) is a multiple of 3)
– F = (2 + 0.5 × CSExtraDelay) × GPMC_FCLK(17) if ((CSOnTime - ClkActivationTime - 2) is a multiple of 3)
For ADV falling edge (ADV activated):
•
Case GPMCFCLKDIVIDER = 0:
•
– G = 0.5 × ADVExtraDelay × GPMC_FCLK(17)
Case GPMCFCLKDIVIDER = 1:
G = 0.5 × ADVExtraDelay × GPMC_FCLK(17) if (ClkActivationTime and ADVOnTime are odd) or (ClkActivationTime and
ADVOnTime are even)
– G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) otherwise
Case GPMCFCLKDIVIDER = 2:
–
•
–
–
–
G = 0.5 × ADVExtraDelay × GPMC_FCLK(17) if ((ADVOnTime - ClkActivationTime) is a multiple of 3)
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) if ((ADVOnTime - ClkActivationTime - 1) is a multiple of 3)
G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) if ((ADVOnTime - ClkActivationTime - 2) is a multiple of 3)
For ADV rising edge (ADV deactivated) in Reading mode:
•
Case GPMCFCLKDIVIDER = 0:
•
– G = 0.5 × ADVExtraDelay × GPMC_FCLK(17)
Case GPMCFCLKDIVIDER = 1:
•
G = 0.5 × ADVExtraDelay × GPMC_FCLK(17) if (ClkActivationTime and ADVRdOffTime are odd) or (ClkActivationTime and
ADVRdOffTime are even)
– G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) otherwise
Case GPMCFCLKDIVIDER = 2:
–
–
–
G = 0.5 × ADVExtraDelay × GPMC_FCLK(17) if ((ADVRdOffTime - ClkActivationTime) is a multiple of 3)
G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) if ((ADVRdOffTime - ClkActivationTime - 1) is a multiple of 3)
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
229
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
–
G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) if ((ADVRdOffTime - ClkActivationTime - 2) is a multiple of 3)
For ADV rising edge (ADV deactivated) in Writing mode:
•
Case GPMCFCLKDIVIDER = 0:
•
– G = 0.5 × ADVExtraDelay × GPMC_FCLK(17)
Case GPMCFCLKDIVIDER = 1:
•
G = 0.5 × ADVExtraDelay × GPMC_FCLK(17) if (ClkActivationTime and ADVWrOffTime are odd) or (ClkActivationTime and
ADVWrOffTime are even)
– G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) otherwise
Case GPMCFCLKDIVIDER = 2:
–
(8)
– G = 0.5 × ADVExtraDelay × GPMC_FCLK(17) if ((ADVWrOffTime - ClkActivationTime) is a multiple of 3)
– G = (1 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) if ((ADVWrOffTime - ClkActivationTime - 1) is a multiple of 3)
– G = (2 + 0.5 × ADVExtraDelay) × GPMC_FCLK(17) if ((ADVWrOffTime - ClkActivationTime - 2) is a multiple of 3)
For OE falling edge (OE activated) and IO DIR rising edge (Data Bus input direction):
•
Case GPMCFCLKDIVIDER = 0:
•
– H = 0.5 × OEExtraDelay × GPMC_FCLK(17)
Case GPMCFCLKDIVIDER = 1:
•
H = 0.5 × OEExtraDelay × GPMC_FCLK(17) if (ClkActivationTime and OEOnTime are odd) or (ClkActivationTime and
OEOnTime are even)
– H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(17) otherwise
Case GPMCFCLKDIVIDER = 2:
–
–
–
–
H = 0.5 × OEExtraDelay × GPMC_FCLK(17) if ((OEOnTime - ClkActivationTime) is a multiple of 3)
H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(17) if ((OEOnTime - ClkActivationTime - 1) is a multiple of 3)
H = (2 + 0.5 × OEExtraDelay) × GPMC_FCLK(17) if ((OEOnTime - ClkActivationTime - 2) is a multiple of 3)
For OE rising edge (OE deactivated):
•
Case GPMCFCLKDIVIDER = 0:
•
– H = 0.5 × OEExtraDelay × GPMC_FCLK(17)
Case GPMCFCLKDIVIDER = 1:
•
H = 0.5 × OEExtraDelay × GPMC_FCLK(17) if (ClkActivationTime and OEOffTime are odd) or (ClkActivationTime and
OEOffTime are even)
– H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(17) otherwise
Case GPMCFCLKDIVIDER = 2:
–
(9)
– H = 0.5 × OEExtraDelay × GPMC_FCLK(17) if ((OEOffTime - ClkActivationTime) is a multiple of 3)
– H = (1 + 0.5 × OEExtraDelay) × GPMC_FCLK(17) if ((OEOffTime - ClkActivationTime - 1) is a multiple of 3)
– H = (2 + 0.5 × OEExtraDelay) × GPMC_FCLK(17) if ((OEOffTime - ClkActivationTime - 2) is a multiple of 3)
For WE falling edge (WE activated):
•
Case GPMCFCLKDIVIDER = 0:
•
– I = 0.5 × WEExtraDelay × GPMC_FCLK(17)
Case GPMCFCLKDIVIDER = 1:
–
•
I = 0.5 × WEExtraDelay × GPMC_FCLK(17) if (ClkActivationTime and WEOnTime are odd) or (ClkActivationTime and
WEOnTime are even)
– I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(17) otherwise
Case GPMCFCLKDIVIDER = 2:
–
–
–
I = 0.5 × WEExtraDelay × GPMC_FCLK(17) if ((WEOnTime - ClkActivationTime) is a multiple of 3)
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(17) if ((WEOnTime - ClkActivationTime - 1) is a multiple of 3)
I = (2 + 0.5 × WEExtraDelay) × GPMC_FCLK(17) if ((WEOnTime - ClkActivationTime - 2) is a multiple of 3)
For WE rising edge (WE deactivated):
•
Case GPMCFCLKDIVIDER = 0:
•
– I = 0.5 × WEExtraDelay × GPMC_FCLK (17)
Case GPMCFCLKDIVIDER = 1:
–
–
230
I = 0.5 × WEExtraDelay × GPMC_FCLK(17) if (ClkActivationTime and WEOffTime are odd) or (ClkActivationTime and
WEOffTime are even)
I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(17) otherwise
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
•
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Case GPMCFCLKDIVIDER = 2:
– I = 0.5 × WEExtraDelay × GPMC_FCLK(17) if ((WEOffTime - ClkActivationTime) is a multiple of 3)
– I = (1 + 0.5 × WEExtraDelay) × GPMC_FCLK(17) if ((WEOffTime - ClkActivationTime - 1) is a multiple of 3)
– I = (2 + 0.5 × WEExtraDelay) × GPMC_FCLK(17) if ((WEOffTime - ClkActivationTime - 2) is a multiple of 3)
J = GPMC_FCLK(17)
First transfer only for CLK DIV 1 mode.
Half cycle; for all data after initial transfer for CLK DIV 1 mode.
Half cycle of GPMC_CLKOUT; for all data for modes other than CLK DIV 1 mode. GPMC_CLKOUT divide down from GPMC_FCLK.
In GPMC_CSn[i], i is equal to 0, 1, 2, or 3. In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.
P = GPMC_CLK period in ns
For read: K = (ADVRdOffTime - ADVOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)
For write: K = (ADVWrOffTime - ADVOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(17)
GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.
Related to the GPMC_CLK output clock maximum and minimum frequencies programmable in the GPMC module by setting the
GPMC_CONFIG1_i configuration register bit field GPMCFCLKDIVIDER.
For div_by_1_mode:
•
GPMC_CONFIG1_i register: GPMCFCLKDIVIDER = 0h:
–
GPMC_CLK frequency = GPMC_FCLK frequency
For no extra_delay:
• GPMC_CONFIG2_i Register: CSEXTRADELAY = 0h = CSn Timing control signal is not delayed
• GPMC_CONFIG4_i Register: WEEXTRADELAY = 0h = nWE timing control signal is not delayed
• GPMC_CONFIG4_i Register: OEEXTRADELAY = 0h = nOE timing control signal is not delayed
• GPMC_CONFIG3_i Register: ADVEXTRADELAY = 0h = nADV timing control signal is not delayed
(20) For 100 MHz:
•
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 01 = MAIN_PLL2_HSDIV1_CLKOUT / 3
For 133 MHz:
•
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 00 = MAIN_PLL0_HSDIV3_CLKOUT
F1
F0
F1
GPMC_CLK
F2
F3
F18
GPMC_CSn[i]
F4
GPMC_A[MSB:1]
Valid Address
F6
F7
F19
GPMC_BE0n_CLE
F19
GPMC_BE1n
F6
F8
F8
F20
F9
GPMC_ADVn_ALE
F10
F11
GPMC_OEn_REn
F13
F12
GPMC_AD[15:0]
D0
GPMC_WAIT[j]
GPMC_01
A.
In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
231
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
B.
In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.
Figure 7-63. GPMC and NOR Flash — Synchronous Single Read (GPMCFCLKDIVIDER = 0)
F1
F0
F1
GPMC_CLK
F2
F3
GPMC_CSn[i]
F4
Valid Address
GPMCA[MSB:1]
F6
F7
GPMC_BE0n_CLE
F7
GPMC_BE1n
F6
F8
F8
F9
GPMC_ADVn_ALE
F10
F11
GPMC_OEn_REn
F13
F13
F12
D0
GPMC_AD[15:0]
F22
F21
F22
F12
D1
D2
D3
F21
GPMC_WAIT[j]
GPMC_02
A.
B.
In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.
In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.
Figure 7-64. GPMC and NOR Flash — Synchronous Burst Read — 4x16–bit (GPMCFCLKDIVIDER = 0)
232
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
F1
F1
F0
GPMC_CLK
F2
F3
GPMC_CSn[i]
F4
Valid Address
GPMC_A[MSB:1]
F17
F6
F17
F17
GPMC_BE0n_CLE
F17
F17
F17
GPMC_BE1n
F6
F8
F8
F9
GPMC_ADVn_ALE
F14
F14
GPMC_WEn
F15
GPMC_AD[15:0]
D0
F15
D1
F15
D2
D3
GPMC_WAIT[j]
GPMC_03
A.
B.
In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.
In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.
Figure 7-65. GPMC and NOR Flash—Synchronous Burst Write (GPMCFCLKDIVIDER = 0)
F1
F0
F1
GPMC_CLK
F2
F3
GPMC_CSn[i]
F6
F7
GMPC_BE0n_CLE
Valid
F6
F7
Valid
GPMC_BE1n
F4
GPMC_A[27:17]
Address (MSB)
F12
F4
GPMC_AD[15:0]
F5
Address (LSB)
F13
D0
F8
F8
D1
F12
D2
D3
F9
GPMC_ADVn_ALE
F10
F11
GPMC_OEn_REn
GPMC_WAIT[j]
GPMC_04
A.
In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
233
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
B.
In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.
Figure 7-66. GPMC and Multiplexed NOR Flash — Synchronous Burst Read
F1
F1
F0
GPMC_CLK
F2
F3
F18
GPMC_CSn[i]
F4
GPMC_A[27:17]
Address (MSB)
F17
F6
F17
F6
F17
F17
GPMC_BE1n
F17
F17
BPMC_BE0n_CLE
F8
F8
F20
F9
GPMC_ADVn_ALE
F14
F14
GPMC_WEn
F15
GPMC_AD[15:0]
Address (LSB)
D0
F21
F22
D1
F15
D2
F15
D3
F22
F21
GPMC_WAIT[j]
GPMC_05
A.
B.
In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.
In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.
Figure 7-67. GPMC and Multiplexed NOR Flash — Synchronous Burst Write
7.10.5.12.2 GPMC and NOR Flash — Asynchronous Mode
Section 7.10.5.12.2.1 and Section 7.10.5.12.2.2 assume testing over the recommended operating conditions
and electrical characteristic conditions below (see Figure 7-68 through Figure 7-73).
7.10.5.12.2.1 GPMC and NOR Flash Timing Requirements – Asynchronous Mode
MODE(7)
NO.
FA5(1)
FA20(2)
tacc(d)
tacc1-pgmode(d)
FA21(3) tacc2-pgmode(d)
(1)
(2)
(3)
(4)
(5)
(6)
234
MIN
MAX UNIT
div_by_1_mode
H(5)
ns
Page mode successive data access time
div_by_1_mode
P(4)
ns
Page mode first data access time
div_by_1_mode
H(5)
ns
Data access time
The FA5 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC
functional clock cycles. From start of read cycle and after FA5 functional clock cycles, input data is internally sampled by active
functional clock edge. FA5 value must be stored inside the AccessTime register bit field.
The FA20 prameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of
GPMC functional clock cycles. After each access to input page data, next input page data is internally sampled by active functional
clock edge after FA20 functional clock cycles. The FA20 value must be stored in the PageBurstAccessTime register bit field.
The FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in number of GPMC
functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data is internally sampled by
active functional clock edge. FA21 value must be stored inside the AccessTime register bit field.
P = PageBurstAccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(6)
H = AccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(6)
GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
(7)
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
For div_by_1_mode:
•
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 0h:
–
GPMC_CLK frequency = GPMC_FCLK frequency
7.10.5.12.2.2 GPMC and NOR Flash Switching Characteristics – Asynchronous Mode
NO.
FA0
FA1
FA3
PARAMETER
tw(be[x]nV)
tw(csnV)
td(csnV-advnIV)
DESCRIPTION
(15)
MODE
MIN
MAX
133 MHz
(16)
Pulse duration, output lower-byte enable and
command latch enable GPMC_BE0n_CLE, output
upper-byte enable GPMC_BE1n valid time
Read
N(12)
Write
N(12)
Pulse duration, output chip select GPMC_CSn[i](13)
low
Read
A(1)
Write
A(1)
Delay time, output chip select GPMC_CSn[i](13)
valid to output address valid and address latch
enable GPMC_ADVn_ALE invalid
Read
B(2)-2.55 B(2)+2.65
Write
B(2)-2.55 B(2)+2.65
UNIT
ns
ns
ns
FA4
td(csnV-oenIV)
Delay time, output chip select GPMC_CSn[i](13)
valid to output enable GPMC_OEn_REn invalid
(Single read)
div_by_1_mode;
FA9
td(aV-csnV)
Delay time, output address GPMC_A[27:1] valid to
output chip select GPMC_CSn[i](13) valid
div_by_1_mode;
Delay time, output lower-byte enable and
command latch enable GPMC_BE0n_CLE, output
upper-byte enable GPMC_BE1n valid to output
chip select GPMC_CSn[i](13) valid
div_by_1_mode;
Delay time, output chip select GPMC_CSn[i](13)
valid to output address valid and address latch
enable GPMC_ADVn_ALE valid
div_by_1_mode;
FA13 td(csnV-oenV)
Delay time, output chip select GPMC_CSn[i](13)
valid to output enable GPMC_OEn_REn valid
div_by_1_mode;
FA16 tw(aIV)
Pulse duration output address GPMC_A[26:1]
invalid between 2 successive read and write
accesses
div_by_1_mode;
FA18 td(csnV-oenIV)
Delay time, output chip select GPMC_CSn[i](13)
valid to output enable GPMC_OEn_REn invalid
(Burst read)
div_by_1_mode;
FA20 tw(aV)
Pulse duration, output address GPMC_A[27:1]
valid - 2nd, 3rd, and 4th accesses
div_by_1_mode;
FA25 td(csnV-wenV)
Delay time, output chip select GPMC_CSn[i](13)
valid to output write enable GPMC_WEn valid
div_by_1_mode;
E(5)-2.55 E(5)+2.65
ns
FA27 td(csnV-wenIV)
Delay time, output chip select GPMC_CSn[i](13)
valid to output write enable GPMC_WEn invalid
div_by_1_mode;
F(6)-2.55 F(6)+2.65
ns
FA28 td(wenV-dV)
Delay time, output write enable GPMC_WEn valid
to output data GPMC_AD[15:0] valid
div_by_1_mode;
FA29 td(dV-csnV)
Delay time, output data GPMC_AD[15:0] valid to
output chip select GPMC_CSn[i](13) valid
div_by_1_mode;
FA37 td(oenV-aIV)
Delay time, output enable GPMC_OEn_REn valid
to output address GPMC_AD[15:0] phase end
div_by_1_mode;
FA10 td(be[x]nV-csnV)
FA12 td(csnV-advnV)
(1)
(2)
(3)
(4)
C(3)-2.55 C(3)+2.65
J(9)-2.55
J(9)+2.65
J(9)-2.55
J(9)+2.65
ns
ns
ns
K(10)-2.55
K
L(11)-2.55 L(11)+2.65
I(8)+2.65
ns
ns
D(4)
2.65
J(9)-2.55
ns
ns
G(7)
I(8)-2.55
ns
(10)+2.65
J(9)+2.65
2.65
ns
ns
ns
For single read: A = (CSRdOffTime - CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)
For single write: A = (CSWrOffTime - CSOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)
For burst read: A = (CSRdOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)
For burst write: A = (CSWrOffTime - CSOnTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)
with n being the page burst access number
For reading: B = ((ADVRdOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - CSExtraDelay)) ×
GPMC_FCLK(14)
For writing: B = ((ADVWrOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - CSExtraDelay)) ×
GPMC_FCLK(14)
C = ((OEOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)
D = PageBurstAccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(14)
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
235
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
E = ((WEOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)
F = ((WEOffTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)
G = Cycle2CycleDelay × GPMC_FCLK(14)
I = ((OEOffTime + (n - 1) × PageBurstAccessTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay - CSExtraDelay))
× GPMC_FCLK(14)
J = (CSOnTime × (TimeParaGranularity + 1) + 0.5 × CSExtraDelay) × GPMC_FCLK(14)
K = ((ADVOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)
L = ((OEOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)
For single read: N = RdCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK(14)
For single write: N = WrCycleTime × (TimeParaGranularity + 1) × GPMC_FCLK(14)
For burst read: N = (RdCycleTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)
For burst write: N = (WrCycleTime + (n - 1) × PageBurstAccessTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)
In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.
GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.
For div_by_1_mode:
•
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 0h:
– GPMC_CLK frequency = GPMC_FCLK frequency
(16) For 133 MHz:
•
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 00 = MAIN_PLL0_HSDIV3_CLKOUT
GPMC_FCLK
GPMC_CLK
FA5
FA1
GPMC_CSn[i]
FA9
Valid Address
GPMC_A[MSB:1]
FA0
FA10
Valid
GPMC_BE0n_CLE
FA0
Valid
GPMC_BE1n
FA10
FA3
FA12
GPMC_ADVn_ALE
FA4
FA13
GPMC_OEn_REn
Data IN 0
GPMC_AD[15:0]
Data IN 0
GPMC_WAIT[j]
GPMC_06
A.
B.
C.
In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.
FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock
cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock
edge. FA5 value must be stored inside AccessTime register bits field.
GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
Figure 7-68. GPMC and NOR Flash — Asynchronous Read — Single Word
236
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
GPMC_FCLK
GPMC_CLK
FA5
FA5
FA1
FA1
GPMC_CSn[i]
FA16
FA9
FA9
GPMC_A[MSB:1]
Address 0
Address 1
FA0
FA10
FA0
FA10
Valid
GPMC_BE0n_CLE
Valid
FA0
GPMC_BE1n
FA0
Valid
FA10
Valid
FA10
FA3
FA3
FA12
FA12
GPMC_ADCn_ALE
FA4
FA13
FA4
FA13
GPMC_OEn_REn
GPMC_AD[15:0]
Data Upper
GPMC_WAIT[j]
GPMC_07
A.
B.
C.
In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.
FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock
cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock
edge. FA5 value must be stored inside AccessTime register bits field.
GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
Figure 7-69. GPMC and NOR Flash — Asynchronous Read — 32–Bit
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
237
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
GPMC_FCLK
GPMC_CLK
FA21
FA20
FA20
FA20
Add1
Add2
Add3
D0
D1
D2
FA1
GPMC_CSn[i]
FA9
Add0
GPMC_A[MSB:1]
Add4
FA0
FA10
GPMC_BE0n_CLE
FA0
FA10
GPMC_BE1n
FA12
GPMC_ADVn_ALE
FA18
FA13
GPMC_OEn_REn
GPMC_AD[15:0]
D3
D3
GPMC_WAIT[j]
GPMC_08
A.
B.
C.
D.
In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.
FA21 parameter illustrates amount of time required to internally sample first input page data. It is expressed in number of GPMC
functional clock cycles. From start of read cycle and after FA21 functional clock cycles, first input page data will be internally sampled by
active functional clock edge. FA21 calculation must be stored inside AccessTime register bits field.
FA20 parameter illustrates amount of time required to internally sample successive input page data. It is expressed in number of GPMC
functional clock cycles. After each access to input page data, next input page data will be internally sampled by active functional clock
edge after FA20 functional clock cycles. FA20 is also the duration of address phases for successive input page data (excluding first
input page data). FA20 value must be stored in PageBurstAccessTime register bits field.
GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
Figure 7-70. GPMC and NOR Flash — Asynchronous Read — Page Mode 4x16–Bit
238
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
GPMC_FCLK
GPMC_CLK
FA1
GPMC_CSn[i]
FA9
GPMC_A[MSB:1]
Valid Address
FA0
FA10
GPMC_BE0n_CLE
FA0
FA10
GPMC_BE1n
FA3
FA12
GPMC_ADVn_ALE
FA27
FA25
GPMC_WEn
FA29
GPMC_AD[15:0]
Data OUT
GPMC_WAIT[j]
GPMC_09
A.
In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.
Figure 7-71. GPMC and NOR Flash — Asynchronous Write — Single Word
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
239
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
GPMC_FCLK
GPMC_CLK
FA1
FA5
GPMC_CSn[i]
FA9
GPMC_A[27:17]
Address (MSB)
FA0
FA10
GPMC_BE0n_CLE
Valid
FA0
FA10
GPMC_BE1n
Valid
FA3
FA12
GPMC_ADVn_ALE
FA4
FA13
GPMC_OEn_REn
FA29
GPMC_AD[15:0]
FA37
Address (LSB)
Data IN
Data IN
GPMC_WAIT[j]
GPMC_10
A.
B.
C.
In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.
FA5 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional clock
cycles. From start of read cycle and after FA5 functional clock cycles, input data will be internally sampled by active functional clock
edge. FA5 value must be stored inside AccessTime register bits field.
GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
Figure 7-72. GPMC and Multiplexed NOR Flash — Asynchronous Read — Single Word
240
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
GPMC_FCLK
GPMC_CLK
FA1
GPMC_CSn[i]
FA9
GPMC_A[27:17]
Address (MSB)
FA0
FA10
GPMC_BE0n_CLE
FA0
FA10
GPMC_BE1n
FA3
FA12
GPMC_ADVn_ALE
FA27
FA25
GPMC_WEn
FA29
GPMC_AD[15:0]
FA28
Valid Address (LSB)
Data OUT
GPMC_WAIT[j]
GPMC_11
A.
In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.
Figure 7-73. GPMC and Multiplexed NOR Flash — Asynchronous Write — Single Word
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
241
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.12.3 GPMC and NAND Flash — Asynchronous Mode
Section 7.10.5.12.3.1 and Section 7.10.5.12.3.2 assume testing over the recommended operating conditions
and electrical characteristic conditions below (see Figure 7-74 through Figure 7-77).
7.10.5.12.3.1 GPMC and NAND Flash Timing Requirements – Asynchronous Mode
GNF12(1)
(1)
(2)
(3)
(4)
tacc(d)
133
MAX
MHz(5)
Access time, input data GPMC_AD[15:0](3) div_by_1_mode;
UNIT
J(2)
ns
The GNF12 parameter illustrates the amount of time required to internally sample input data. It is expressed in number of GPMC
functional clock cycles. From start of the read cycle and after GNF12 functional clock cycles, input data is internally sampled by the
active functional clock edge. The GNF12 value must be stored inside AccessTime register bit field.
J = AccessTime × (TimeParaGranularity + 1) × GPMC_FCLK(3)
GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.
For div_by_1_mode:
•
(5)
MIN
MODE(4)
NO.
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 0h:
– GPMC_CLK frequency = GPMC_FCLK frequency
For 133 MHz:
•
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 00 = MAIN_PLL0_HSDIV3_CLKOUT
7.10.5.12.3.2 GPMC and NAND Flash Switching Characteristics – Asynchronous Mode
NO.
MIN
(15)
PARAMETER
MODE
MAX
133 MHz
(16)
A(1)
UNIT
GNF0 tw(wenV)
Pulse duration, output write enable GPMC_WEn
valid
div_by_1_mode;
GNF1 td(csnV-wenV)
Delay time, output chip select GPMC_CSn[i](13)
valid to output write enable GPMC_WEn valid
div_by_1_mode;
B(2)-2.55 B(2)+2.65
ns
GNF2 tw(cleH-wenV)
Delay time, output lower-byte enable and
command latch enable GPMC_BE0n_CLE high to
output write enable GPMC_WEn valid
div_by_1_mode;
C(3)-2.55 C(3)+2.65
ns
GNF3 tw(wenV-dV)
Delay time, output data GPMC_AD[15:0] valid to
output write enable GPMC_WEn valid
div_by_1_mode;
D(4)-2.55 D(4)+2.65
ns
GNF4 tw(wenIV-dIV)
Delay time, output write enable GPMC_WEn
invalid to output data GPMC_AD[15:0] invalid
div_by_1_mode;
E(5)-2.55 E(5)+2.65
ns
GNF5 tw(wenIV-cleIV)
Delay time, output write enable GPMC_WEn
invalid to output lower-byte enable and command
latch enable GPMC_BE0n_CLE invalid
div_by_1_mode;
F(6)-2.55 F(6)+2.65
ns
GNF6 tw(wenIV-CSn[i]V)
Delay time, output write enable GPMC_WEn
invalid to output chip select GPMC_CSn[i](13)
invalid
div_by_1_mode;
G(7)-2.55 G(7)+2.65
ns
GNF7 tw(aleH-wenV)
Delay time, output address valid and address latch
enable GPMC_ADVn_ALE high to output write
enable GPMC_WEn valid
div_by_1_mode;
C(3)-2.55 C(3)+2.65
ns
GNF8 tw(wenIV-aleIV)
Delay time, output write enable GPMC_WEn
invalid to output address valid and address latch
enable GPMC_ADVn_ALE invalid
div_by_1_mode;
F(6)-2.55 F(6)+2.65
ns
GNF9 tc(wen)
Cycle time, write
div_by_1_mode;
H(8)
ns
GNF10 td(csnV-oenV)
Delay time, output chip select GPMC_CSn[i](13)
valid to output enable GPMC_OEn_REn valid
div_by_1_mode;
I(9)+2.65
ns
GNF13 tw(oenV)
Pulse duration, output enable GPMC_OEn_REn
valid
div_by_1_mode;
K(10)
ns
GNF14 tc(oen)
Cycle time, read
div_by_1_mode;
L(11)
div_by_1_mode;
M(12)-2.55
GNF15 tw(oenIV-CSn[i]V)
(1)
242
Delay time, output enable GPMC_OEn_REn
invalid to output chip select GPMC_CSn[i](13)
invalid
I(9)-2.55
ns
ns
M
(12)+2.65
ns
A = (WEOffTime - WEOnTime) × (TimeParaGranularity + 1) × GPMC_FCLK(14)
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
B = ((WEOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)
C = ((WEOnTime - ADVOnTime) × (TimeParaGranularity + 1) + 0.5 × (WEExtraDelay - ADVExtraDelay)) × GPMC_FCLK(14)
D = (WEOnTime × (TimeParaGranularity + 1) + 0.5 × WEExtraDelay) × GPMC_FCLK(14)
E = ((WrCycleTime - WEOffTime) × (TimeParaGranularity + 1) - 0.5 × WEExtraDelay) × GPMC_FCLK(14)
F = ((ADVWrOffTime - WEOffTime) × (TimeParaGranularity + 1) + 0.5 × (ADVExtraDelay - WEExtraDelay)) × GPMC_FCLK(14)
G = ((CSWrOffTime - WEOffTime) × (TimeParaGranularity + 1) + 0.5 × (CSExtraDelay - WEExtraDelay)) × GPMC_FCLK(14)
H = WrCycleTime × (1 + TimeParaGranularity) × GPMC_FCLK(14)
I = ((OEOnTime - CSOnTime) × (TimeParaGranularity + 1) + 0.5 × (OEExtraDelay - CSExtraDelay)) × GPMC_FCLK(14)
K = (OEOffTime - OEOnTime) × (1 + TimeParaGranularity) × GPMC_FCLK(14)
L = RdCycleTime × (1 + TimeParaGranularity) × GPMC_FCLK(14)
M = ((CSRdOffTime - OEOffTime) × (TimeParaGranularity + 1) + 0.5 × (CSExtraDelay - OEExtraDelay)) × GPMC_FCLK(14)
In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.
GPMC_FCLK is general-purpose memory controller internal functional clock period in ns.
For div_by_1_mode:
•
GPMC_CONFIG1_i Register: GPMCFCLKDIVIDER = 0h:
– GPMC_CLK frequency = GPMC_FCLK frequency
(16) For 133 MHz:
•
CTRLMMR_GPMC_CLKSEL[1-0] CLK_SEL = 00 = MAIN_PLL0_HSDIV3_CLKOUT
GPMC_FCLK
GNF1
GNF6
GNF2
GNF5
GPMC_CSn[i]
GPMC_BE0n_CLE
GPMC_ADCn_ALE
GPMC_OEn_REn
GNF0
GPMC_WEn
GNF3
GPMC_AD[15:0]
GNF4
Command
GPMC_12
A.
In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.
Figure 7-74. GPMC and NAND Flash — Command Latch Cycle
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
243
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
GPMC_FCLK
GNF1
GNF6
GNF7
GNF8
GPMC_CSn[i]
GPMC_BE0n_CLE
GPMC_ADVn_ALE
GPMC_OEn_REn
GNF9
GNF0
GPMC_WEn
GNF3
GNF4
GPMC_AD[15:0]
Address
GPMC_13
A.
In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.
Figure 7-75. GPMC and NAND Flash — Address Latch Cycle
GPMC_FCLK
GNF12
GNF10
GNF15
GPMC_CSn[i]
GPMC_BE0n_CLE
GPMC_ADVn_ALE
GNF14
GNF13
GPMC_OEn_REn
GPMC_AD[15:0]
DATA
GPMC_WAIT[j]
GPMC_14
A.
B.
C.
GNF12 parameter illustrates amount of time required to internally sample input data. It is expressed in number of GPMC functional
clock cycles. From start of read cycle and after GNF12 functional clock cycles, input data will be internally sampled by active functional
clock edge. GNF12 value must be stored inside AccessTime register bits field.
GPMC_FCLK is an internal clock (GPMC functional clock) not provided externally.
In GPMC_CSn[i], i is equal to 0, 1, 2 or 3. In GPMC_WAIT[j], j is equal to 0, 1, 2, or 3.
Figure 7-76. GPMC and NAND Flash — Data Read Cycle
244
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
GPMC_FCLK
GNF1
GNF6
GPMC_CSn[i]
GPMC_BE0n_CLE
GPMC_ADVn_ALE
GPMC_OEn_REn
GNF9
GNF0
GPMC_WEn
GNF3
GNF4
GPMC_AD[15:0]
DATA
GPMC_15
A.
`In GPMC_CSn[i], i is equal to 0, 1, 2 or 3.
Figure 7-77. GPMC and NAND Flash — Data Write Cycle
For more information, see Enhanced Pulse Width Modulation (EPWM) Module section in Peripherals chapter in
the device TRM.
7.10.5.12.4 GPMC0 IOSET
Table 7-49 present the specific groupings of signals (IOSET) for use with GPMC0.
Table 7-49. GPMC0 IOSET
Signals
IOSET1
IOSET2
BALL NAME
MUX
BALL NAME
MUX
GPMC0_WAIT2
MDIO0_MDC
GPMC0_BE1n
PRG1_PRU0_GPO0
8
MDIO0_MDC
8
8
RGMII6_RD1
8
GPMC0_WAIT0
GPMC0_WAIT1
PRG1_PRU0_GPO1
8
PRG1_PRU0_GPO1
8
PRG1_PRU0_GPO2
8
PRG1_PRU0_GPO2
8
GPMC0_DIR
PRG1_PRU0_GPO3
8
PRG1_PRU0_GPO3
8
GPMC0_CSn2
PRG1_PRU0_GPO4
8
PRG1_PRU0_GPO4
8
GPMC0_WEn
PRG1_PRU0_GPO5
8
PRG1_PRU0_GPO5
8
GPMC0_CSn3
PRG1_PRU0_GPO6
8
PRG1_PRU0_GPO6
8
GPMC0_OEn_REn
PRG1_PRU0_GPO8
8
PRG1_PRU0_GPO8
8
GPMC0_ADVn_ALE
PRG1_PRU0_GPO9
8
PRG1_PRU0_GPO9
8
GPMC0_BE0n_CLE
PRG1_PRU0_GPO10
8
PRG1_PRU0_GPO10
8
GPMC0_WPn
PRG1_PRU1_GPO5
8
PRG1_PRU1_GPO5
8
GPMC0_CSn1
PRG1_PRU1_GPO8
8
PRG1_PRU1_GPO8
8
GPMC0_CSn0
PRG1_PRU1_GPO9
8
PRG1_PRU1_GPO9
8
GPMC0_CLKOUT
PRG1_PRU1_GPO10
8
PRG1_PRU1_GPO10
8
GPMC0_AD0
PRG0_PRU0_GPO5
8
PRG0_PRU0_GPO5
8
GPMC0_AD1
PRG0_PRU0_GPO7
8
PRG0_PRU0_GPO7
8
GPMC0_AD2
PRG0_PRU0_GPO8
8
PRG0_PRU0_GPO8
8
GPMC0_AD3
PRG0_PRU0_GPO9
8
PRG0_PRU0_GPO9
8
GPMC0_AD4
PRG0_PRU0_GPO10
8
PRG0_PRU0_GPO10
8
GPMC0_AD5
PRG0_PRU0_GPO17
8
PRG0_PRU0_GPO17
8
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
245
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 7-49. GPMC0 IOSET (continued)
Signals
IOSET1
IOSET2
BALL NAME
MUX
BALL NAME
MUX
GPMC0_AD6
PRG0_PRU0_GPO18
8
PRG0_PRU0_GPO18
8
GPMC0_AD7
PRG0_PRU0_GPO19
8
PRG0_PRU0_GPO19
8
GPMC0_AD8
PRG0_PRU1_GPO5
8
PRG0_PRU1_GPO5
8
GPMC0_AD9
PRG0_PRU1_GPO7
8
PRG0_PRU1_GPO7
8
GPMC0_AD10
PRG0_PRU1_GPO8
8
PRG0_PRU1_GPO8
8
GPMC0_AD11
PRG0_PRU1_GPO9
8
PRG0_PRU1_GPO9
8
GPMC0_AD12
PRG0_PRU1_GPO10
8
PRG0_PRU1_GPO10
8
GPMC0_AD13
PRG0_PRU1_GPO17
8
PRG0_PRU1_GPO17
8
GPMC0_AD14
PRG0_PRU1_GPO18
8
PRG0_PRU1_GPO18
8
GPMC0_AD15
PRG0_PRU1_GPO19
8
PRG0_PRU1_GPO19
8
GPMC0_A0
PRG0_MDIO0_MDC
8
PRG0_MDIO0_MDC
8
GPMC0_A1
RGMII5_TX_CTL
8
RGMII5_TX_CTL
8
GPMC0_A2
RGMII5_RX_CTL
8
RGMII5_RX_CTL
8
GPMC0_A3
RGMII5_TD3
8
RGMII5_TD3
8
GPMC0_A4
RGMII5_TD2
8
RGMII5_TD2
8
GPMC0_A5
RGMII5_TD1
8
RGMII5_TD1
8
GPMC0_A6
RGMII5_TD0
8
RGMII5_TD0
8
GPMC0_A7
RGMII5_TXC
8
RGMII5_TXC
8
GPMC0_A8
RGMII5_RXC
8
RGMII5_RXC
8
GPMC0_A9
RGMII5_RD3
8
RGMII5_RD3
8
GPMC0_A10
RGMII5_RD2
8
RGMII5_RD2
8
GPMC0_A11
RGMII5_RD1
8
RGMII5_RD1
8
GPMC0_A12
RGMII5_RD0
8
RGMII5_RD0
8
GPMC0_A13
RGMII6_TX_CTL
8
RGMII6_TX_CTL
8
GPMC0_A14
RGMII6_RX_CTL
8
RGMII6_RX_CTL
8
GPMC0_A15
RGMII6_TD3
8
RGMII6_TD3
8
GPMC0_A16
RGMII6_TD2
8
RGMII6_TD2
8
GPMC0_A17
RGMII6_TD1
8
RGMII6_TD1
8
GPMC0_A18
RGMII6_TD0
8
RGMII6_TD0
8
GPMC0_A19
RGMII6_TXC
8
RGMII6_TXC
8
GPMC0_A20
RGMII6_RXC
8
RGMII6_RXC
8
GPMC0_A21
RGMII6_RD3
8
RGMII6_RD3
8
GPMC0_A22
RGMII6_RD2
8
RGMII6_RD2
8
GPMC0_A23
PRG0_PRU1_GPO2
8
PRG0_PRU1_GPO2
8
GPMC0_A24
PRG0_PRU1_GPO4
8
PRG0_PRU1_GPO4
8
GPMC0_A25
PRG0_PRU1_GPO6
8
PRG0_PRU1_GPO6
8
GPMC0_A26
PRG0_PRU1_GPO11
8
PRG0_PRU1_GPO11
8
GPMC0_A27
PRG0_MDIO0_MDIO
8
PRG0_MDIO0_MDIO
8
GPMC0_WAIT3
MDIO0_MDIO
8
MDIO0_MDIO
8
7.10.5.13 HyperBus
For more details about features and additional description information on the device HyperBus, see the
corresponding sections within Section 6.3, Signal Descriptions and Section 8, Detailed Description.
246
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Section 7.10.5.13.1, Section 7.10.5.13.2, and Section 7.10.5.13.3 assume testing over the recommended
operating conditions and electrical characteristic conditions (see Figure 7-78, Figure 7-79, and Figure 7-80).
Table 7-50 represents HyperBus timing conditions.
Table 7-50. HyperBus Timing Conditions
PARAMETER
DESCRIPTION
MIN
MAX
UNIT
2
5
V/ns
1.5
10
pF
INPUT CONDITIONS
SRI
Input slew rate
OUTPUT CONDITIONS
CL
Output load capacitance
PCB CONNECTIVITY REQUIREMENTS
td(Trace Mismatch
Propagation delay mismatch between
traces
Delay)
CK and CKn;
RWDS and DQ[7:0]
10
CK/CKn and RWDS;
CK/CKn and CSn
200
CK/CKn and DQ[7:0]
RESETn and CSn[1:0]
ps
ps
35
ps
340
ps
7.10.5.13.1 Timing Requirements for HyperBus
NO.
PARAMETER
DESCRIPTION
MODE
MIN
MAX
tw(resetnL)
Pulse duration, HYPERBUS0_RESETn low
D2
tw(csnL)
Pulse duration, HYPERBUS0_CSn[1:0] low
D3
td(resetnH-csnL)
Delay time, HYPERBUS0_RESETn rising edge to
HYPERBUS0_CSn[1:0] falling edge
td(csnL-rwdsL)
Delay time, HYPERBUS0_CSn[1:0] falling edge to
HYPERBUS0_RWDS falling edge
166 MHz
tskn(rwdsV-dV)
Input skew, HYPERBUS0_RWDS transition to
HYPERBUS0_DQ[7:0] valid
166 MHz
-0.46
100 MHz
-0.81
0.81
ns
D4
D5
LFD5
200
UNIT
D1
ns
1000
200.34
100 MHz
ns
ns
186
ns
182
ns
0.46
ns
7.10.5.13.2 HyperBus 166 MHz Switching Characteristics
NO.
PARAMETER
DESCRIPTION
MIN
MAX
UNIT
D6
tc(ck/ckn)
Cycle time, HYPERBUS0_CK/CKn
D7
tw(ck/ckn)
Pulse duration, HYPERBUS0_CK/CKn high or low
6
ns
2.85
ns
D8
tw(csnH)
Pulse duration, HYPERBUS0_CSn[1:0] invalid between operations
D9
td(csnL-ckH/cknL)
Delay time, HYPERBUS0_CSn[1:0] falling edge to first
HYPERBUS0_CK rising (HYPERBUS0_CKn falling) edge
D10
td(ckL/cknH-csnH)
Delay time, last falling HYPERBUS0_CK (rising HYPERBUS0_Ckn)
edge to HYPERBUS0_CSn[1:0] rising
0.28
D11
td(ckV/cknV-rwdsV)
Delay time, HYPERBUS0_CK/CKn transition to
HYPERBUS0_RWDS valid
0.68
2.14
ns
D12
td(ckV-dV)
Delay time, HYPERBUS0_CK/CKn transition to
HYPERBUS0_DQ[7:0] valid
0.71
2.3
ns
MIN
MAX
6
ns
-3.28
ns
ns
7.10.5.13.3 HyperBus 100 MHz Switching Characteristics
NO.
PARAMETER
DESCRIPTION
LFD6
tc(ck/ckn)
Cycle time, HYPERBUS0_CK/CKn
LFD7
tw(ck/ckn)
Pulse duration, HYPERBUS0_CK/CKn high or low
LFD8
tw(csnH)
Pulse duration, HYPERBUS0_CSn[1:0] invalid between operations
LFD9
td(csnL-ckH/cknL)
Delay time, HYPERBUS0_CSn[1:0] falling edge to first
HYPERBUS0_CK rising (HYPERBUS0_CKn falling) edge
UNIT
10
ns
4.88
ns
10
ns
-3.33
ns
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
247
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
NO.
PARAMETER
DESCRIPTION
MIN
MAX
UNIT
LFD10
td(ckL/cknH-csnH)
Delay time, last falling HYPERBUS0_CK (rising HYPERBUS0_Ckn)
edge to HYPERBUS0_CSn[1:0] rising
0.33
LFD11
td(ckV/cknV-rwdsV)
Delay time, HYPERBUS0_CK/CKn transition to
HYPERBUS0_RWDS valid
1.13
3.68
ns
LFD12
td(ckV/cknV-dV)
Delay time, HYPERBUS0_CK/CKn transition to
HYPERBUS0_DQ[7:0] valid
1.16
3.84
ns
D8/LFD8
ns
D2
CSn
D9/LFD9
D10/LFD10
CK, CKn
D7/LFD7
D6/LFD6
D4
D11/LFD11
RWDS
D12/LFD12
D12/LFD12
DQ[7:0]
47:40
39:32
31:24
23:16
15:8
7:0
Dn
Dn
A
B
Dn+1 Dn+1
A
B
CK and Data are center aligned
Command-Address
Host drives DQ[7:0] and RWDS
Host drives DQ[7:0] and Memory drives RWDS
HYPERBUS_TIMING_01
Figure 7-78. HyperBus Timing Diagrams – Transmitter Mode
D8/LFD8
D2
CSn
D9/LFD9
D10/LFD10
CK, CKn
D7/LFD7
D4
D6/LFD6
RWDS
D5/LFD5
D12/LFD12
D5/LFD5
DQ[7:0]
47:40
39:32
31:24
23:16
15:8
7:0
Dn
Dn
A
B
Dn+1 Dn+1
A
B
CK and Data are center aligned
Command-Address
Host drives DQ[7:0] and RWDS
Host drives DQ[7:0] and Memory drives RWDS
HYPERBUS_TIMING_02
Figure 7-79. HyperBus Timing Diagrams – Receiver Mode
D1
RESETn
D3
CSn
HYPERBUS_TIMING_03
Figure 7-80. HyperBus Timing Diagrams – Reset
For more information, see HyperBus Interface section in Peripherals chapter in the device TRM.
248
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
www.ti.com
DRA829J, DRA829V
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.14 I2C
The Inter-IC module is compliant with the Philips I2C Bus Specification, revision 2.1. Refer to the specification for
timing details for all but rise/fall time parameters.
Philips I2C specification rise/fall timings apply only to MCU_I2C0, WKUP_I2C0, and I2C[0-1]. All other instances
of I2C use standard LVCMOS buffers to emulate open-drain buffers, and their rise/fall times should be
referenced using the device IBIS model.
For more details about features and additional description information on the device Inter-Integrated Circuit, see
the corresponding sections within Section 6.3, Signal Descriptions and Section 8, Detailed Description.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
249
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.15 I3C
For more details about features and additional description information on the device Inter-Integrated Circuit, see
the corresponding sections within Section 6.3, Signal Descriptions and Section 8, Detailed Description.
Table 7-51, Table 7-52 , Table 7-53, Figure 7-81, Table 7-55, Figure 7-82, and Figure 7-83 assume testing over
the recommended operating conditions and electrical characteristic conditions.
Table 7-51. I3C Timing Conditions
PARAMETER
MIN
MAX UNIT
INPUT CONDITIONS
SRI
Input slew rate
0.2276
5
V/ns
50
pF
OUTPUT CONDITIONS
CL
Output load capacitance
Table 7-52. I3C Open Drain Timing Requirements
see Figure 7-81
NO.
OD4
MODE
tsu(sdaV-sclH)
Setup time, SDA valid before SCL rising edge
MIN
Master
MAX
3
UNIT
ns
Table 7-53. I3C Open Drain Switching Characteristics
see Figure 7-81
NO.
PARAMETER
MODE
tw(sclL_od)
OD1
tw(sclL_od_dig)
Pulse duration, SCL low
Master
MIN
ns
tw(sclL_od) +
ns
tf(sda_od), min
tw(sclH_od)
OD2
OD3
tw(sclH_od_dig)
tf(sda_od)
MAX UNIT
200
Pulse duration, SCL high
Master
Fall time, SDA
Master
Master, ENTAS0
Master, ENTAS1
Master, ENTAS2
41
ns
tw(sclH_od) +
tf(scl)
ns
tf(scl)
12
ns
38.4
1000
ns
38.4
100000
ns
38.4
2000000
ns
38.4
50000000
ns
OD5
td(sclL-START)
Delay time, SCL low after START (S) condition
OD6
td(sclH-STOP)
Delay time, SCL high before STOP (P) condition
Master
td(sclV), min / 2
ns
OD7
tw(mmoverlap)
Pulse duration, current master to secondary master
overlap time during handoff
Master
tw(sclL_od_dig)
ns
OD8
tw(aval)
Pulse duration, Bus Available condition
Master
1000
ns
OD9
tw(idle)
Pulse duration, Bus Idle condition
Master
1000000
ns
OD10
tw(mmlock)
Pulse duration, new master not driving SDA low
Master
tw(aval)
ns
Master, ENTAS3
250
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
OD3
OD4
OD6
0.7xVDD
SDA
0.3xVDD
OD5
OD2
OD1
0.7xVDD
SCL
0.3xVDD
Stop
Repeated
Start
Start
- Open drain with weak pull-up
Stop
- Open drain with weak pull-up
Figure 7-81. I3C Open Drain Timing Requirements
Table 7-54. I3C Push-Pull Timing Requirements - SDR and HDR-DDR Modes
Figure 7-82 and Figure 7-83
NO.
MODE
MIN
MAX
UNIT
D8
th(sclV-sdaV)
Hold time, SDA valid after SCL transition
Master
tr(scl) + 3 and tf(scl) + 3
ns
D9
tsu(sdaV-sclV)
Seutp time, SDA valid before SCL transition
Master
3
ns
Table 7-55. I3C Push-Pull Switching Characteristics - SDR and HDR-DDR Modes
see Figure 7-83, Figure 7-82
NO.
PARAMETER
D1
tc(scl)
Cycle time, SCL
tw(sclL)
D2
tw(sclL_dig)
tw(sclH)
D4
tw(sclH_dig)
MODE
MIN
Master
Pulse duration, SCL low
80
Master
Pulse duration, SCL high
Master
D6
tr(scl)
Rise time, SCL
Master
MAX UNIT
100000
ns
24
ns
32
ns
24
ns
32
ns
150 × 1 / tc(scl)
60
ns
60
ns
D7
tf(scl)
Fall time, SCL
Master
150 × 1 / tc(scl)
D10
td(Sr-sclV)
Delay time, SCL valid after Repeated START (Sr) Master
td(sclV-START), min
ns
D11
td(sclV-Sr)
Delay time, Repeated START (Sr) after SCL valid Master
td(sclV-START),
min / 2
ns
0.7xVDD
SDA
0.3xVDD
D11
D1
D2
D8
D8
D9
D8
D10
D9
0.7xVDD
SCL
0.3xVDD
Stop
Start
D4
Repeated
Start
Stop
Figure 7-82. I3C Push-Pull Timing Requirements - HDR-DDR Mode
0.7xVDD
SDA
0.3xVDD
D11
D1
D2
D8
D10
D9
0.7xVDD
SCL
0.3xVDD
Stop
Start
D4
Repeated
Start
Stop
Figure 7-83. I3C Push-Pull Timing Requirements - SDR Mode
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
251
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.16 MCAN
For more details about features and additional description information on the device Controller Area Network
Interface, see the corresponding sections within Section 6.3, Signal Descriptions and Section 8, Detailed
Description.
Note
The device has multiple MCAN modules. MCANn is a generic prefix applied to MCAN signal names,
where n represents the specific MCAN module.
Table 7-56. MCAN Timing Conditions
PARAMETER
MIN
MAX
UNIT
Input slew rate
2
15
V/ns
Output load capacitance
5
INPUT CONDITIONS
SRI
OUTPUT CONDITIONS
CL
20
pF
Table 7-57. MCAN Switching Characteristics
NO.
M1
M2
(1)
PARAMETER
MIN
MAX
UNIT
td(MCAN_TX)
Delay time, transmit shift register to MCANn_TX pin(1)
10
ns
td(MCAN_RX)
register(1)
10
ns
Delay time, MCANn_RX pin to receive shift
n is [0:13] in MCANn_* or [0:1] in MCU_MCANn_*
For more information, see Controller Area Network (MCAN) section in Peripherals chapter in the device TRM.
252
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.17 MCASP
For more details about features and additional description information on the device Multichannel Audio Serial
Port, see the corresponding sections within Section 6.3, Signal Descriptions and Section 8, Detailed Description.
Table 7-59 and Figure 7-84 present timing requirements for MCASP0 to MCASP11.
Table 7-58 represents MCASP timing conditions.
Table 7-58. MCASP Timing Conditions
PARAMETER
MIN
MAX
UNIT
0.7
5
V/ns
1
10
pF
100
1100
ps
100
ps
INPUT CONDITIONS
SRI
Input slew rate
OUTPUT CONDITIONS
CL
Output load capacitance
PCB CONNECTIVITY REQUIREMENTS
td(Trace Delay)
Propagation delay of each trace
td(Trace Mismatch Delay)
Propagation delay mismatch across all traces
Table 7-59. MCASP Timing Requirements
MODE(1)
NO.
ASP1
tc(AHCLKRX)
Cycle time, MCASP[x]_AHCLKR/X
ASP2
tw(AHCLKRX)
Pulse duration, MCASP[x]_AHCLKR/X high or low
ASP3
tc(ACLKRX)
Cycle time, MCASP[x]_ACLKR/X
ASP4
tw(ACLKRX)
Pulse duration, MCASP[x]_ACLKR/X high or low
ASP5
tsu(AFSRX-ACLKRX)
Setup time, MCASP[x]_AFSR/X input valid before
MCASP[x]_ACLKR/X
ACLKR/X int
Hold time, MCASP[x]_AFSR/X input valid after
MCASP[x]_ACLKR/X
ACLKR/X int
Setup time, MCASP[x]_AXR input valid before
MCASP[x]_ACLKR/X
ACLKR/X int
Hold time, MCASP[x]_AXR input valid after
MCASP[x]_ACLKR/X
ACLKR/X int
ASP6
ASP7
ASP8
(1)
(2)
(3)
th(ACLKRX-AFSRX)
tsu(AXR-ACLKRX)
th(ACLKRX-AXR)
ACLKR/X ext in/out
ACLKR/X ext in/out
ACLKR/X ext in/out
ACLKR/X ext in/out
MIN
MAX UNIT
15.26
ns
0.5P(2) 1.53
ns
15.26
ns
0.5R(3) 1.53
ns
12.3
ns
4
-1
ns
1.6
12.3
ns
4
-1
ns
1.6
ACLKR internal: ACLKRCTL.CLKRM=1, PDIR.ACLKR = 1
ACLKR external input: ACLKRCTL.CLKRM=0, PDIR.ACLKR=0
ACLKR external output: ACLKRCTL.CLKRM=0, PDIR.ACLKR=1
ACLKX internal: ACLKXCTL.CLKXM=1, PDIR.ACLKX = 1
ACLKX external input: ACLKXCTL.CLKXM=0, PDIR.ACLKX=0
ACLKX external output: ACLKXCTL.CLKXM=0, PDIR.ACLKX=1
P = AHCLKR/X period in ns.
R = ACLKR/X period in ns.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
253
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
ASP2
ASP1
ASP2
MCASP[x]_ACLKR/X (Falling Edge Polarity)
MCASP[x]_AHCLKR/X (Rising Edge Polarity)
ASP4
ASP3
MCASP[x]_ACLKR/X (CLKRP = CLKXP = 0)
MCASP[x]_ACLKR/X (CLKRP = CLKXP = 1)
ASP4
(A)
(B)
ASP6
ASP5
MCASP[x]_AFSR/X (Bit Width, 0 Bit Delay)
MCASP[x]_AFSR/X (Bit Width, 1 Bit Delay)
MCASP[x]_AFSR/X (Bit Width, 2 Bit Delay)
MCASP[x]_AFSR/X (Slot Width, 0 Bit Delay)
MCASP[x]_AFSR/X (Slot Width, 1 Bit Delay)
MCASP[x]_AFSR/X (Slot Width, 2 Bit Delay)
ASP8
ASP7
MCASP[x]_AXR[x] (Data In/Receive)
A0
A.
B.
A1
A30 A31 B0 B1
B30 B31 C0 C1 C2 C3
C31
For CLKRP = CLKXP = 0, the MCASP transmitter is configured for rising edge (to shift data out) and the MCASP receiver is configured
for falling edge (to shift data in).
For CLKRP = CLKXP = 1, the MCASP transmitter is configured for falling edge (to shift data out) and the MCASP receiver is configured
for rising edge (to shift data in).
Figure 7-84. MCASP Input Timing
254
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 7-60 and Figure 7-85 present switching characteristics over recommended operating conditions for
MCASP0 to MCASP11.
Table 7-60. MCASP Switching Characteristics
NO.
ASP9
PARAMETER
tc(AHCLKRX)
DESCRIPTION
MODE(1)
Cycle time, MCASP[x]_AHCLKR/X
ASP10 tw(AHCLKRX)
Pulse duration, MCASP[x]_AHCLKR/X high or low
ASP11 tc(ACLKRX)
Cycle time, MCASP[x]_ACLKR/X
ASP12 tw(ACLKRX)
Pulse duration, MCASP[x]_ACLKR/X high or low
ASP13 td(ACLKRX-AFSRX)
Delay time, MCASP[x]_ACLKR/X transmit edge to
MCASP[x]_AFSR/X output valid
ACLKR/X int
Delay time, MCASP[x]_ACLKX transmit edge to
MCASP[x]_AXR output valid
ACLKR/X int
Disable time, MCASP[x]_ACLKX transmit edge to
MCASP[x]_AXR output high impedance
ACLKR/X int
ASP14 td(ACLKX-AXR)
ASP15 tdis(ACLKX-AXR)
(1)
(2)
(3)
ACLKR/X ext in/out
ACLKR/X ext in/out
ACLKR/X ext in/out
MIN
MAX
UNIT
20
ns
0.5P(2) - 2
ns
20
ns
0.5R(3) - 2
ns
0
7.25
-15.28
12.84
0
7.25
-15.28
12.84
0
7.25
-14.9
14
ns
ns
ns
ACLKR internal: ACLKRCTL.CLKRM=1, PDIR.ACLKR = 1
ACLKR external input: ACLKRCTL.CLKRM=0, PDIR.ACLKR=0
ACLKR external output: ACLKRCTL.CLKRM=0, PDIR.ACLKR=1
ACLKX internal: ACLKXCTL.CLKXM=1, PDIR.ACLKX = 1
ACLKX external input: ACLKXCTL.CLKXM=0, PDIR.ACLKX=0
ACLKX external output: ACLKXCTL.CLKXM=0, PDIR.ACLKX=1
P = AHCLKR/X period in ns.
R = ACLKR/X period in ns.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
255
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
ASP9
ASP10
ASP10
MCASP[x]_ACLKR/X (Falling Edge Polarity)
MCASP[x]_AHCLKR/X (Rising Edge Polarity)
ASP12
ASP11
MCASP[x]_ACLKR/X (CLKRP = CLKXP = 1)
MCASP[x]_ACLKR/X (CLKRP = CLKXP = 0)
ASP12
(A)
(B)
ASP13
ASP13
ASP13
ASP13
MCASP[x]_AFSR/X (Bit Width, 0 Bit Delay)
MCASP[x]_AFSR/X (Bit Width, 1 Bit Delay)
MCASP[x]_AFSR/X (Bit Width, 2 Bit Delay)
MCASP[x]_AFSR/X (Slot Width, 0 Bit Delay)
ASP13
ASP13
ASP13
MCASP[x]_AFSR/X (Slot Width, 1 Bit Delay)
MCASP[x]_AFSR/X (Slot Width, 2 Bit Delay)
MCASP[x]_AXR[x] (Data Out/Transmit)
ASP14
ASP15
A0
A.
B.
A1
A30 A31 B0
B1
B30 B31 C0
C1 C2 C3
C31
For CLKRP = CLKXP = 1, the MCASP transmitter is configured for falling edge (to shift data out) and the MCASP receiver is configured
for rising edge (to shift data in).
For CLKRP = CLKXP = 0, the MCASP transmitter is configured for rising edge (to shift data out) and the MCASP receiver is configured
for falling edge (to shift data in).
Figure 7-85. MCASP Output Timing
For more information, see Multichannel Audio Serial Port (MCASP) section in Peripherals chapter in the device
TRM.
256
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.18 MCSPI
For more details about features and additional description information on the device Serial Port Interface, see
the corresponding sections within Section 6.3, Signal Descriptions and Section 8, Detailed Description.
For more information, see Multichannel Serial Peripheral Interface (MCSPI) section in Peripherals chapter in the
device TRM.
Table 7-61 represents MCSPI timing conditions.
Note
The IO timings provided in this section are applicable for all combinations of signals for MCU_SPI0
and MCU_SPI1. However, the timings are only valid for MCU_SPI0 and MCU_SPI1 if signals within a
single IOSET are used. The IOSETs are defined in the Table 7-66 and Table 7-67 tables.
Table 7-61. MCSPI Timing Conditions
PARAMETER
MIN
MAX
UNIT
Input slew rate
2
8.5
V/ns
CLK
6
24
pF
D[x], CSi
6
12
pF
INPUT CONDITIONS
SRI
OUTPUT CONDITIONS
CL
Output load capacitance
7.10.5.18.1 MCSPI — Master Mode
Table 7-62, Figure 7-86, Table 7-63, and Figure 7-87 present timing requirements and switching characteristics
for MCSPI – Master Mode.
Table 7-62. MCSPI Timing Requirements - Master Mode
see Figure 7-86
NO.
MIN
SM4
tsu(misoV-
SM5
th(spiclkV-
spiclkV)
misoV)
Setup time, SPI_D[x] valid before SPI_CLK active edge
Hold time, SPI_D[x] valid after SPI_CLK active edge
MAX
UNIT
2.8
ns
3
ns
Table 7-63. MCSPI Switching Characteristics - Master Mode
see Figure 7-87
NO.
PARAMETER
SM1
tc(spiclk)
Cycle time, SPI_CLK
SM2
tw(spiclkL)
SM3
MODE
MIN
MAX
UNIT
20.8
ns
Pulse duration, SPI_CLK low
0.5P 1(1)
ns
tw(spiclkH)
Pulse duration, SPI_CLK high
0.5P 1(1)
ns
SM6
td(spiclkV-simoV)
Delay time, SPI_CLK active edge to SPI_D[x]
transition
SM7
td(csV-simoV)
Delay time, SPI_CSi active edge to SPI_D[x] transition
SM8
SM9
(1)
(2)
(3)
(4)
td(csV-spiclk)
td(spiclkV-csV)
Delay time, SPI_CSi active to SPI_CLK first edge
Delay time, SPI_CLK last edge to SPI_CSi inactive
-3
PHA =
ns
5
ns
4(3)
ns
(2)
A - 4(4)
ns
0(2)
4(4)
ns
B - 4(3)
ns
0(2)
PHA = 1
PHA =
2.5
PHA = 1(2)
BA-
P = SPI_CLK period in ns
SPI_CLK phase is programmable with the PHA bit of the MCSPI_CHCONF_0/1/2/3 register
B = (TCS + .5) * TSPICLKREF, where TCSns a bit field of the MCSPI_CHCONF_0/1/2/3 register and Fratio = Even >= 2.
When P = 20.8 ns, A = (TCS + 1) * TSPICLKREF, where TCSns a bit field of the MCSPI_CHCONF_0/1/2/3 register.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
257
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
When P > 20.8 ns, A = (TCS + 0.5) * Fratio * TSPICLKREF, where TCSns a bit field of the MCSPI_CHCONF_0/1/2/3 register.
PHA=0
EPOL=1
SPI_CS[i] (OUT)
SM1
SM3
SM8
SPI_SCLK (OUT)
SM2
SM9
POL=0
SM1
SM3
SM2
POL=1
SPI_SCLK (OUT)
SM5
SM5
SPI_D[x] (IN)
SM4
SM4
Bit n-1
Bit n-2
Bit n-3
Bit n-4
Bit 0
PHA=1
EPOL=1
SPI_CS[i] (OUT)
SM2
SM1
SM8
SPI_SCLK (OUT)
SM3
SM9
POL=0
SM1
SM2
SM3
POL=1
SPI_SCLK (OUT)
SM5
SM4
SM4
SPI_D[x] (IN)
Bit n-1
SM5
Bit n-2
Bit n-3
Bit 1
Bit 0
SPRSP08_TIMING_McSPI_02
Figure 7-86. SPI Master Mode Receive Timing
258
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
PHA=0
EPOL=1
SPI_CS[i] (OUT)
SM1
SM3
SM8
SPI_SCLK (OUT)
SM2
SM9
POL=0
SM1
SM3
SM2
POL=1
SPI_SCLK (OUT)
SM7
SM6
Bit n-1
SPI_D[x] (OUT)
SM6
Bit n-2
Bit n-3
Bit n-4
Bit 0
PHA=1
EPOL=1
SPI_CS[i] (OUT)
SM1
SM2
SM8
SPI_SCLK (OUT)
SM3
SM9
POL=0
SM1
SM2
SM3
POL=1
SPI_SCLK (OUT)
SM6
Bit n-1
SPI_D[x] (OUT)
SM6
Bit n-2
SM6
SM6
Bit n-3
Bit 1
Bit0
SPRSP08_TIMING_McSPI_01
Figure 7-87. MCSPI Master Mode Transmit Timing
7.10.5.18.2 MCSPI — Slave Mode
Table 7-64, Table 7-65, Figure 7-88, and Figure 7-89 present timing requirements and switching characteristics
for MCSPI – Slave Mode.
Table 7-64. MCSPI Timing Requirements - Slave Mode
NO.
SS1
PARAMETER
tc(spiclk)
DESCRIPTION
MODE
MIN
Cycle time, SPI_CLK
MAX
UNIT
20.8
ns
(1)
ns
(1)
ns
SS2
tw(spiclkL)
Pulse duration, SPI_CLK low
0.45P
SS3
tw(spiclkH)
Pulse duration, SPI_CLK high
0.45P
SS4
tsu(simoV-spiclkV)
Setup time, SPI_D[x] valid before SPI_CLK active edge
5
ns
SS5
th(spiclkV-simoV)
Hold time, SPI_D[x] valid after SPI_CLK active edge
5
ns
SS8
tsu(csV-spiclkV)
Setup time, SPI_CSi valid before SPI_CLK first edge
5
ns
SS9
th(spiclkV-csV)
Hold time, SPI_CSi valid after SPI_CLK last edge
5
ns
Table 7-65. MCSPI Switching Characteristics - Slave Mode
NO.
SS6
PARAMET DESCRIPTION
ER
MIN
MAX
UNIT
td(spiclkV-
2
17.12
ns
Delay time, SPI_CLK active edge to SPI_D[x] transition
somiV)
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
259
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 7-65. MCSPI Switching Characteristics - Slave Mode (continued)
NO.
PARAMET DESCRIPTION
ER
MIN
SS7
tsk(csV-somiV) Delay time, SPI_CSi active edge to SPI_D[x] transition
20.95
(1)
MAX
UNIT
ns
P = SPI_CLK period in ns.
PHA=0
EPOL=1
SPI_CS[i] (IN)
SS1
SS2
SS8
SPI_SCLK (IN)
SS3
SS9
POL=0
SS1
SS2
SS3
POL=1
SPI_SCLK (IN)
SS5
SS4
SS4
SS5
Bit n-1
SPI_D[x] (IN)
Bit n-2
Bit n-3
Bit n-4
Bit 0
PHA=1
EPOL=1
SPI_CS[i] (IN)
SS1
SS2
SS8
SPI_SCLK (IN)
SS3
SS9
POL=0
SS1
SS3
SS2
POL=1
SPI_SCLK (IN)
SS4
SS5
SPI_D[x] (IN)
SS4
SS5
Bit n-1
Bit n-2
Bit n-3
Bit 1
Bit 0
SPRSP08_TIMING_McSPI_04
Figure 7-88. SPI Slave Mode Receive Timing
260
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
PHA=0
EPOL=1
SPI_CS[i] (IN)
SS1
SS2
SS8
SPI_SCLK (IN)
SS3
SS9
POL=0
SS1
SS2
SS3
POL=1
SPI_SCLK (IN)
SS7
SS6
Bit n-1
SPI_D[x] (OUT)
SS6
Bit n-2
Bit n-3
Bit n-4
Bit 0
PHA=1
EPOL=1
SPI_CS[i] (IN)
SS1
SS2
SS8
SPI_SCLK (IN)
SS3
SS9
POL=0
SS1
SS3
SS2
POL=1
SPI_SCLK (IN)
SS6
Bit n-1
SPI_D[x] (OUT)
SS6
SS6
Bit n-2
SS6
Bit n-3
Bit 1
Bit 0
SPRSP08_TIMING_McSPI_03
Figure 7-89. MCSPI Slave Mode Transmit Timing
Table 7-66 and Table 7-67 present the specific groupings of signals (IOSET) for use with MCU_SPI0 and
MCU_SPI1.
Table 7-66. MCU_SPI0 IOSETs
Signals
IOSET1
IOSET2
BALL NAME
MUX
BALL NAME
MUX
MCU_SPI0_CLK
MCU_SPI0_CLK
0
MCU_SPI0_CLK
0
MCU_SPI0_D0
MCU_SPI0_D0
0
MCU_SPI0_D0
0
MCU_SPI0_D1
MCU_SPI0_D1
0
MCU_SPI0_D1
0
MCU_SPI0_CS0
MCU_SPI0_CS0
0
MCU_SPI0_CS0
0
MCU_SPI0_CS1
MCU_OSPI1_D3
5
WKUP_GPIO0_12
1
MCU_SPI0_CS2
MCU_OSPI1_CSn1
5
WKUP_GPIO0_14
1
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
261
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 7-67. MCU_SPI1 IOSET
Signals
IOSET1
IOSET2
BALL NAME
MUX
BALL NAME
MUX
MCU_SPI1_CLK
MCU_SPI1_CLK
0
MCU_SPI1_CLK
0
MCU_SPI1_D0
MCU_SPI1_D0
0
MCU_SPI1_D0
0
MCU_SPI1_D1
MCU_SPI1_D1
0
MCU_SPI1_D1
0
MCU_SPI1_CS0
MCU_SPI1_CS0
0
MCU_SPI1_CS0
0
MCU_SPI1_CS1
MCU_OSPI1_D1
5
WKUP_GPIO0_13
1
MCU_SPI1_CS2
MCU_OSPI1_D2
5
WKUP_GPIO0_15
1
For more information, see Multichannel Serial Peripheral Interface (MCSPI) section in Peripherals chapter in the
device TRM.
7.10.5.19 MMCSD
The MMCSD Host Controller provides an interface to embedded Multi-Media Card (MMC), Secure Digital (SD),
and Secure Digital IO (SDIO) devices. The MMCSD Host Controller deals with MMC/SD/SDIO protocol at
transmission level, data packing, adding cyclic redundancy checks (CRCs), start/end bit insertion, and checking
for syntactical correctness.
For more details about MMCSD interfaces, see the corresponding MMC0, MMC1, and MMC2 sections within
Section 6.3, Signal Descriptions and Section 8, Detailed Description.
Note
Some operating modes require software configuration of the MMC DLL delay settings, as shown in
Table 7-68 and Table 7-77.
For more information, see Multi-Media Card/Secure Digital (MMCSD) Interface section in Peripherals chapter in
the device TRM.
7.10.5.19.1 MMC0 - eMMC Interface
MMC0 interface is compliant with the JEDEC eMMC electrical standard v5.1 (JESD84-B51) and it supports the
following eMMC applications:
• Legacy speed
• High speed SDR
• High speed DDR
• HS200
Table 7-68 presents the required DLL software configuration settings for MMC0 timing modes.
Table 7-68. MMC0 DLL Delay Mapping for All Timing Modes
REGISTER NAME
MMCSD0_SS_PHY_CTRL_4_REG
MMCSD0_SS_PHY_CTRL_5_REG
BIT FIELD
[31:24]
[20]
[15:12]
[8]
[4:0]
[17:16]
[10:8]
[2:0]
BIT FIELD NAME
STRBSEL
OTAPDLYENA
OTAPDLYSEL
ITAPDLYENA
ITAPDLYSEL
SELDLYTXCLK
SELDLYRXCLK
FRQSEL
CLKBUFSEL
MODE
DESCRIPTION
STROBE
DELAY
OUTPUT
DELAY
ENABLE
OUTPUT
DELAY
VALUE
INPUT
DELAY
ENABLE
INPUT
DELAY
VALUE
DLL/
DELAY CHAIN
SELECT
DLL REF
FREQUENCY
DELAY
BUFFER
DURATION
Legacy
SDR
8-bit PHY
operating 1.8 V,
25 MHz
0x0
0x0
NA
0x1
0x10
0x1
0x0
0x7
High
Speed
SDR
8-bit PHY
operating 1.8 V,
50 MHz
0x0
0x0
NA
0x1
0xA
0x1
0x0
0x7
High
Speed
DDR
8-bit PHY
operating 1.8 V,
50 MHz
0x0
0x1
0x5
0x1
0x3
0x0
0x4
0x7
262
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 7-68. MMC0 DLL Delay Mapping for All Timing Modes (continued)
REGISTER NAME
MMCSD0_SS_PHY_CTRL_4_REG
BIT FIELD
[31:24]
BIT FIELD NAME
[20]
[15:12]
MMCSD0_SS_PHY_CTRL_5_REG
[8]
[4:0]
[17:16]
[10:8]
[2:0]
FRQSEL
CLKBUFSEL
STRBSEL
OTAPDLYENA
OTAPDLYSEL
ITAPDLYENA
ITAPDLYSEL
SELDLYTXCLK
SELDLYRXCLK
MODE
DESCRIPTION
STROBE
DELAY
OUTPUT
DELAY
ENABLE
OUTPUT
DELAY
VALUE
INPUT
DELAY
ENABLE
INPUT
DELAY
VALUE
DLL/
DELAY CHAIN
SELECT
DLL REF
FREQUENCY
DELAY
BUFFER
DURATION
HS200
8-bit PHY
operating 1.8 V,
200 MHz
0x0
0x1
0x6
0x1
Tuning
0x0
0x0
0x7
Table 7-69 presents timing conditions for MMC0.
Table 7-69. MMC0 Timing Conditions
PARAMETER
MIN
MAX
UNIT
0.14
1.44
V/ns
0.3
0.9
V/ns
0.3
0.9
V/ns
0.45
0.9
V/ns
INPUT CONDITIONS
Legacy SDR
SRI
High Speed SDR
Input slew rate
High Speed DDR (CMD)
High Speed DDR (DAT[7:0])
OUTPUT CONDITIONS
CL
Output load capacitance
HS200
1
6
pF
All other modes
1
12
pF
126
756
ps
100
ps
8
ps
PCB CONNECTIVITY REQUIREMENTS
td(Trace Delay)
Propagation delay of each trace
td(Trace Mismatch
Propagation delay mismatch across all
traces
Delay)
All modes
Legacy SDR, High Speed SDR,
High Speed DDR
HS200
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
263
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.19.1.1 Legacy SDR Mode
Table 7-70, Figure 7-90, Table 7-71, and Figure 7-91 present timing requirements and switching characteristics
for MMC0 – Legacy SDR Mode.
Table 7-70. MMC0 Timing Requirements – Legacy SDR Mode
see Figure 7-90
NO.
MIN
MAX
UNIT
LSDR1
tsu(cmdV-clkH)
Setup time, MMC0_CMD valid before MMC0_CLK rising edge
9.69
ns
LSDR2
th(clkH-cmdV)
Hold time, MMC0_CMD valid after MMC0_CLK rising edge
9.65
ns
LSDR3
tsu(dV-clkH)
Setup time, MMC0_DAT[7:0] valid before MMC0_CLK rising edge
9.69
ns
LSDR4
th(clkH-dV)
Hold time, MMC0_DAT[7:0] valid after MMC0_CLK rising edge
9.65
ns
Figure 7-90. MMC0 – Legacy SDR – Receive Mode
Table 7-71. MMC0 Switching Characteristics – Legacy SDR Mode
see Figure 7-91
NO.
PARAMETER
MIN
MAX
UNIT
25
MHz
fop(clk)
Operating frequency, MMC0_CLK
LSDR5
tc(clk)
Cycle time, MMC0_CLK
LSDR6
tw(clkH)
LSDR7
tw(clkL)
LSDR8
td(clkL-cmdV)
Delay time, MMC0_CLK falling edge to MMC0_CMD transition
-2.74
5.07
ns
LSDR9
td(clkL-dV)
Delay time, MMC0_CLK falling edge to MMC0_DAT[7:0] transition
-2.74
5.07
ns
40
ns
Pulse duration, MMC0_CLK high
18.7
ns
Pulse duration, MMC0_CLK low
18.7
ns
Figure 7-91. MMC0 – Legacy SDR – Transmit Mode
264
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.19.1.2 High Speed SDR Mode
Table 7-72, Figure 7-92, Table 7-73, and Figure 7-93 present timing requirements and switching characteristics
for MMC0 – High Speed SDR Mode.
Table 7-72. MMC0 Timing Requirements – High Speed SDR Mode
see Figure 7-92
NO.
MIN
MAX
UNIT
HSSDR1
tsu(cmdV-clkH)
Setup time, MMC0_CMD valid before MMC0_CLK rising edge
2.99
ns
HSSDR2
th(clkH-cmdV)
Hold time, MMC0_CMD valid after MMC0_CLK rising edge
2.67
ns
HSSDR3
tsu(dV-clkH)
Setup time, MMC0_DAT[7:0] valid before MMC0_CLK rising edge
2.99
ns
HSSDR4
th(clkH-dV)
Hold time, MMC0_DAT[7:0] valid after MMC0_CLK rising edge
2.67
ns
Figure 7-92. MMC0 – High Speed SDR Mode – Receive Mode
Table 7-73. MMC0 Switching Characteristics – High Speed SDR Mode
see Figure 7-93
NO.
PARAMETER
MIN
MAX
UNIT
50
MHz
fop(clk)
Operating frequency, MMC0_CLK
HSSDR5
tc(clk)
Cycle time, MMC0_CLK
20
ns
HSSDR6
tw(clkH)
Pulse duration, MMC0_CLK high
9.2
ns
HSSDR7
tw(clkL)
Pulse duration, MMC0_CLK low
9.2
ns
HSSDR8
td(clkL-cmdV)
Delay time, MMC0_CLK falling edge to MMC0_CMD transition
-0.84
3.65
ns
HSSDR9
td(clkL-dV)
Delay time, MMC0_CLK falling edge to MMC0_DAT[7:0] transition
-0.84
3.65
ns
Figure 7-93. MMC0 – High Speed SDR Mode – Transmit Mode
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
265
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.19.1.3 High Speed DDR Mode
Table 7-74, Figure 7-94, Table 7-75, and Figure 7-95 present timing requirements and switching characteristics
for MMC0 – High Speed DDR Mode.
Table 7-74. MMC0 Timing Requirements – High Speed DDR Mode
see Figure 7-94
NO.
MIN
HSDDR1
tsu(cmdV-clkH)
Setup time, MMC0_CMD valid before MMC0_CLK rising edge
HSDDR2
th(clkH-cmdV)
Hold time, MMC0_CMD valid after MMC0_CLK rising edge
HSDDR3
tsu(dV-clkV)
HSDDR4
th(clkV-dV)
MAX
UNIT
2
ns
2.5
ns
Setup time, MMC0_DAT[7:0] valid before MMC0_CLK transition
0.74
ns
Hold time, MMC0_DAT[7:0] valid after MMC0_CLK transition
1.67
ns
Figure 7-94. MMC0 – High Speed DDR Mode – Receive Mode
Table 7-75. MMC0 Switching Characteristics – High Speed DDR Mode
see Figure 7-95
NO.
PARAMETER
MIN
MAX
UNIT
50
MHz
fop(clk)
Operating frequency, MMC0_CLK
HSDDR5
tc(clk)
Cycle time, MMC0_CLK
20
ns
HSDDR6
tw(clkH)
Pulse duration, MMC0_CLK high
9.2
ns
HSDDR7
tw(clkL)
Pulse duration, MMC0_CLK low
9.2
HSDDR8
td(clkH-cmdV)
Delay time, MMC0_CLK rising edge to MMC0_CMD transition
3.4
9.72
ns
HSDDR9
td(clkV-dV)
Delay time, MMC0_CLK transition to MMC0_DAT[7:0] transition
2.9
6.6
ns
ns
Figure 7-95. MMC0 – High Speed DDR Mode – Transmit Mode
266
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.19.1.4 HS200 Mode
Table 7-76 and Figure 7-96 present switching characteristics for MMC0 – HS200 Mode.
Table 7-76. MMC0 Switching Characteristics – HS200 Mode
see Figure 7-96
NO.
PARAMETER
MIN
fop(clk)
Operating frequency, MMC0_CLK
HS2005
tc(clk)
Cycle time, MMC0_CLK
HS2006
tw(clkH)
HS2007
HS2008
HS2009
MAX
UNIT
200
MHz
5
ns
Pulse duration, MMC0_CLK high
2.08
ns
tw(clkL)
Pulse duration, MMC0_CLK low
2.08
td(clkL-cmdV)
Delay time, MMC0_CLK rising edge to MMC0_CMD transition
1.12
3.16
ns
td(clkL-dV)
Delay time, MMC0_CLK rising edge to MMC0_DAT[7:0] transition
1.12
3.16
ns
ns
Figure 7-96. MMC0 – HS200 Mode – Transmit Mode
7.10.5.19.2 MMC1/2 - SD/SDIO Interface
MMC1 and MMC2 interfaces are compliant with the SD Host Controller Standard Specification 4.10 and SD
Physical Layer Specification v3.01 as well as SDIO Specification v3.00 and they support the following SD Card
applications:
• Default speed
• High speed
• UHS–I SDR12
• UHS–I SDR25
• UHS–I SDR50
• UHS–I SDR104
• UHS–I DDR50
Table 7-77 presents the required DLL software configuration settings for MMC1 timing modes.
Table 7-77. MMC1/2 DLL Delay Mapping for All Timing Modes
REGISTER NAME
BIT FIELD
BIT FIELD NAME
MMCSD12_SS_PHY_CTRL_4_REG
[20]
[15:12]
OTAPDLYENA OTAPDLYSEL
MMCSD12_SS_PHY_CTRL_5_REG
[8]
[4:0]
[2:0]
ITAPDLYENA
ITAPDLYSEL
CLKBUFSEL
MODE
DESCRIPTION
DELAY
ENABLE
DELAY
VALUE
INPUT
DELAY
ENABLE
INPUT
DELAY
VALUE
DELAY
BUFFER
DURATION
Default
Speed
4-bit PHY operating
3.3 V, 25 MHz
0x0
0x0
0x0
0x0
0x7
High
Speed
4-bit PHY operating
3.3 V, 50 MHz
0x0
0x0
0x0
0x0
0x7
UHS-I
SDR12
4-bit PHY operating
1.8 V, 25 MHz
0x1
0xF
0x0
0x0
0x7
UHS-I
SDR25
4-bit PHY operating
1.8 V, 50 MHz
0x1
0xF
0x0
0x0
0x7
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
267
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 7-77. MMC1/2 DLL Delay Mapping for All Timing Modes (continued)
REGISTER NAME
MMCSD12_SS_PHY_CTRL_4_REG
BIT FIELD
BIT FIELD NAME
[20]
[15:12]
OTAPDLYENA OTAPDLYSEL
MMCSD12_SS_PHY_CTRL_5_REG
[8]
[4:0]
[2:0]
ITAPDLYENA
ITAPDLYSEL
CLKBUFSEL
INPUT
DELAY
VALUE
DELAY
BUFFER
DURATION
MODE
DESCRIPTION
DELAY
ENABLE
DELAY
VALUE
INPUT
DELAY
ENABLE
UHS-I
SDR50
4-bit PHY operating
1.8 V, 100 MHz
0x1
0xC
0x1
Tuning
0x7
UHS-I
DR50
4-bit PHY operating
1.8 V, 50 MHz
0x1
0xC
0x1
0x2
0x7
UHS-I
SDR104
4-bit PHY operating
1.8, V 200 MHz
0x1
0x5
0x1
Tuning
0x7
Table 7-78 presents timing conditions for MMC1.
Table 7-78. MMC1/2 Timing Conditions
PARAMETER
MIN
MAX
UNIT
Default Speed, High Speed
0.69
2.06
V/ns
UHS–I SDR12, UHS–I SDR25
0.34
1.34
V/ns
1
10
pF
INPUT CONDITIONS
SRI
Input slew rate
OUTPUT CONDITIONS
CL
Output load capacitance
All modes
PCB CONNECTIVITY REQUIREMENTS
td(Trace Delay)
Propagation delay of each trace
td(Trace Mismatch
Propagation delay mismatch across all
traces
Delay)
268
UHS–I DDR50
240
1134
ps
All other modes
126
1386
ps
20
ps
100
ps
UHS–I DDR50, UHS–I SDR104
All other modes
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.19.2.1 Default Speed Mode
Table 7-79, Figure 7-97, Table 7-80, and Figure 7-98 present timing requirements and switching characteristics
for MMC1/2 – Default Speed Mode.
Table 7-79. MMC1/2 Timing Requirements – Default Speed Mode
see Figure 7-97
NO.
A.
B.
MIN
MAX
UNIT
DS1
tsu(cmdV-clkH)
Setup time, MMC[x]_CMD valid before MMC[x]_CLK rising edge
2.55
ns
DS2
th(clkH-cmdV)
Hold time, MMC[x]_CMD valid after MMC[x]_CLK rising edge
4.65
ns
DS3
tsu(dV-clkH)
Setup time, MMC[x]_DAT[3:0] valid before MMC[x]_CLK rising edge
2.55
ns
DS4
th(clkH-dV)
Hold time, MMC[x]_DAT[3:0] valid after MMC[x]_CLK rising edge
4.65
ns
x = 1, 2 for MMC1 and MMC2
x = 1, 2 for MMC1 and MMC2
MMC[x]_CLK
DS1
DS2
DS3
DS4
MMC[x]_CMD
MMC[x]_DAT[3:0]
Figure 7-97. MMC1/2 – Default Speed – Receive Mode
Table 7-80. MMC1/2 Switching Characteristics – Default Speed Mode
see Figure 7-98
NO.
PARAMETER
MIN
MAX
UNIT
25
MHz
fop(clk)
Operating frequency, MMC[x]_CLK
DS5
tc(clk)
Cycle time, MMC[x]_CLK
DS6
tw(clkH)
DS7
tw(clkL)
DS8
td(clkL-cmdV)
Delay time, MMC[x]_CLK falling edge to MMC[x]_CMD transition
-2.93
3.63
ns
DS9
td(clkL-dV)
Delay time, MMC[x]_CLK falling edge to MMC[x]_DAT[3:0] transition
-2.93
3.63
ns
40
ns
Pulse duration, MMC[x]_CLK high
18.7
ns
Pulse duration, MMC[x]_CLK low
18.7
ns
DS5
DS6
DS7
MMC[x]_CLK
D S8
MMC[x]_CMD
D S9
MMC[x]_DAT[3:0]
Figure 7-98. MMC1/2 – Default Speed – Transmit Mode
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
269
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.19.2.2 High Speed Mode
Table 7-81, Figure 7-99, Table 7-82, and Figure 7-100 present timing requirements and switching characteristics
for MMC1/2 – High Speed Mode.
Table 7-81. MMC1/2 Timing Requirements – High Speed Mode
see Figure 7-99
NO.
A.
B.
MIN
MAX
UNIT
HS1
tsu(cmdV-clkH)
Setup time, MMC[x]_CMD valid before MMC[x]_CLK rising edge
2.55
ns
HS2
th(clkH-cmdV)
Hold time, MMC[x]_CMD valid after MMC[x]_CLK rising edge
2.67
ns
HS3
tsu(dV-clkH)
Setup time, MMC[x]_DAT[3:0] valid before MMC[x]_CLK rising edge
2.55
ns
HS4
th(clkH-dV)
Hold time, MMC[x]_DAT[3:0] valid after MMC[x]_CLK rising edge
2.67
ns
x = 1, 2 for MMC1 and MMC2
x = 1, 2 for MMC1 and MMC2
MMC[x]_CLK
HS1
H S2
HS3
H S4
MMC[x]_CMD
MMC[x]_DAT[3:0]
Figure 7-99. MMC1 /2– High Speed – Receive Mode
Table 7-82. MMC1/2 Switching Characteristics – High Speed Mode
see Figure 7-100
NO.
PARAMETER
MIN
MAX
UNIT
50
MHz
fop(clk)
Operating frequency, MMC[x]_CLK
HS5
tc(clk)
Cycle time. MMC[x]_CLK
20
ns
HS6
tw(clkH)
Pulse duration, MMC[x]_CLK high
9.2
ns
HS7
tw(clkL)
Pulse duration, MMC[x]_CLK low
9.2
HS8
td(clkL-cmdV)
Delay time, MMC[x]_CLK falling edge to MMC[x]_CMD transition
-1.77
2.35
ns
HS9
td(clkL-dV)
Delay time, MMC[x]_CLK falling edge to MMC[x]_DAT[3:0]
transition
-1.77
2.35
ns
ns
HS5
HS6
HS7
MMC[x]_CLK
H S8
MMC[x]_CMD
H S9
MMC[x]_DAT[3:0]
Figure 7-100. MMC1/2 – High Speed – Transmit Mode
270
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.19.2.3 UHS–I SDR12 Mode
Table 7-83, Figure 7-101, Table 7-84, and Figure 7-102 present timing requirements and switching
characteristics for MMC1/2 – UHS-I SDR12 Mode.
Table 7-83. MMC1/2 Timing Requirements – UHS-I SDR12 Mode
see Figure 7-101
NO.
A.
B.
MIN
SDR121
tsu(cmdV-clkH)
Setup time, MMC[x]_CMD valid before MMC[x]_CLK rising edge
SDR122
th(clkH-cmdV)
Hold time, MMC[x]_CMD valid after MMC[x]_CLK rising edge
SDR123
tsu(dV-clkH)
Setup time, MMC[x]_DAT[3:0] valid before MMC[x]_CLK rising edge
SDR124
th(clkH-dV)
Hold time, MMC[x]_DAT[3:0] valid after MMC[x]_CLK rising edge
MAX
UNIT
21.65
ns
1.67
ns
21.65
ns
1.67
ns
x = 1, 2 for MMC1 and MMC2
x = 1, 2 for MMC1 and MMC2
MMC[x]_CLK
SDR121
SDR122
SDR123
SDR124
MMC[x]_CMD
MMC[x]_DAT[3:0]
Figure 7-101. MMC1/2 – UHS-I SDR12 – Receive Mode
Table 7-84. MMC1/2 Switching Characteristics – UHS-I SDR12 Mode
see Figure 7-102
NO.
PARAMETER
MIN
MAX
UNIT
25
MHz
fop(clk)
Operating frequency, MMC[x]_CLK
SDR125
tc(clk)
Cycle time, MMC[x]_CLK
SDR126
tw(clkH)
SDR127
tw(clkL)
SDR128
td(clkH-cmdV)
Delay time, MMC[x]_CLK rising edge to MMC[x]_CMD transition
1.2
13.69
ns
SDR129
td(clkH-dV)
Delay time, MMC[x]_CLK rising edge to MMC[x]_DAT[3:0] transition
1.2
13.69
ns
40
ns
Pulse duration, MMC[x]_CLK high
18.7
ns
Pulse duration, MMC[x]_CLK low
18.7
ns
SDR125
SDR126
SDR127
MMC[x]_CLK
SDR128
SDR128
SDR129
SDR129
MMC[x]_CMD
MMC[x]_DAT[3:0]
Figure 7-102. MMC1/2 – UHS-I SDR12 – Transmit Mode
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
271
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.19.2.4 UHS–I SDR25 Mode
Table 7-85, Figure 7-103, Table 7-86, and Figure 7-104 present timing requirements and switching
characteristics for MMC1/2 – UHS-I SDR25 Mode.
Table 7-85. MMC1/2 Timing Requirements – UHS-I SDR25 Mode
see Figure 7-103
NO.
MIN
MAX
UNIT
SDR251
tsu(cmdV-clkH)
Setup time, MMC[x]_CMD valid before MMC[x]_CLK rising edge
2.15
ns
SDR252
th(clkH-cmdV)
Hold time, MMC[x]_CMD valid after MMC[x]_CLK rising edge
1.67
ns
SDR253
tsu(dV-clkH)
Setup time, MMC[x]_DAT[3:0] valid before MMC[x]_CLK rising edge
2.15
ns
SDR254
th(clkH-dV)
Hold time, MMC[x]_DAT[3:0] valid after MMC[x]_CLK rising edge
1.67
ns
A.
B.
x = 1, 2 for MMC1 and MMC2
x = 1, 2 for MMC1 and MMC2
MMC[x]_CLK
SDR251
SDR252
SDR253
SDR254
MMC[x]_CMD
MMC[x]_DAT[3:0]
Figure 7-103. MMC1/2 – UHS-I SDR25 – Receive Mode
Table 7-86. MMC1/2 Switching Characteristics – UHS-I SDR25 Mode
see Figure 7-104
NO.
PARAMETER
MIN
MAX
UNIT
50
MHz
fop(clk)
Operating frequency, MMC[x]_CLK
SDR255
tc(clk)
Cycle time, MMC[x]_CLK
20
ns
SDR256
tw(clkH)
Pulse duration, MMC[x]_CLK high
9.2
ns
SDR257
tw(clkL)
Pulse duration, MMC[x]_CLK low
9.2
SDR258
td(clkH-cmdV)
Delay time, MMC[x]_CLK rising edge to MMC[x]_CMD transition
2.4
9.8
ns
SDR259
td(clkH-dV)
Delay time, MMC[x]_CLK rising edge to MMC[x]_DAT[3:0] transition
2.4
9.8
ns
ns
SDR255
SDR256
SDR257
MMC[x]_CLK
SDR258
SDR258
SDR259
SDR259
MMC[x]_CMD
MMC[x]_DAT[3:0]
Figure 7-104. MMC1/2 – UHS-I SDR25 – Transmit Mode
272
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.19.2.5 UHS–I SDR50 Mode
Table 7-87, and Figure 7-105 presents switching characteristics for MMC1/2 – UHS-I SDR50 Mode.
Table 7-87. MMC1/2 Switching Characteristics – UHS-I SDR50 Mode
see Figure 7-105
NO.
A.
PARAMETER
MIN
fop(clk)
Operating frequency, MMC[x]_CLK
SDR505
tc(clk)
Cycle time, MMC[x]_CLK
SDR506
tw(clkH)
SDR507
SDR508
SDR509
MAX
UNIT
100
MHz
10
ns
Pulse duration, MMC[x]_CLK high
4.45
ns
tw(clkL)
Pulse duration, MMC[x]_CLK low
4.45
td(clkH-cmdV)
Delay time, MMC[x]_CLK rising edge to MMC[x]_CMD transition
1.2
6.35
ns
td(clkH-dV)
Delay time, MMC[x]_CLK rising edge to MMC[x]_DAT[3:0] transition
1.2
6.35
ns
ns
x = 1, 2 for MMC1 and MMC2
SDR505
SDR506
SDR507
MMC[x]_CLK
SDR508
SDR508
SDR509
SDR509
MMC[x]_CMD
MMC[x]_DAT[3:0]
Figure 7-105. MMC1/2 – UHS-I SDR50 – Transmit Mode
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
273
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.19.2.6 UHS–I DDR50 Mode
Table 7-88 and Figure 7-106 present switching characteristics for MMC1/2 – UHS-I DDR50 Mode.
Table 7-88. MMC1/2 Switching Characteristics – UHS-I DDR50 Mode
see Figure 7-106
NO.
A.
PARAMETER
MIN
MAX
UNIT
50
MHz
fop(clk)
Operating frequency, MMC[x]_CLK
DDR505
tc(clk)
Cycle time, MMC[x]_CLK
20
ns
DDR506
tw(clkH)
Pulse duration, MMC[x]_CLK high
9.2
ns
DDR507
tw(clkL)
Pulse duration, MMC[x]_CLK low
9.2
DDR508
td(clkH-cmdV)
Delay time, MMC[x]_CLK rising edge to MMC[x]_CMD transition
1.2
9.8
ns
DDR509
td(clk-dV)
Delay time, MMC[x]_CLK transition to MMC[x]_DAT[3:0] transition
1.2
6.35
ns
ns
x = 1, 2 for MMC1 and MMC2
DDR505
DDR506
DDR507
MMC[x]_CLK
DDR508
MMC[x]_CMD
DDR509
DDR509
MMC[x]_DAT[3:0]
Figure 7-106. MMC1/2 – UHS-I DDR50 – Transmit Mode
274
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.19.2.7 UHS–I SDR104 Mode
Table 7-89, and Figure 7-107 present switching characteristics for MMC1/2 – UHS-I SDR104 Mode.
Table 7-89. MMC1/2 Switching Characteristics – UHS-I SDR104 Mode
see Figure 7-107
NO.
PARAMETER
MIN
fop(clk)
Operating frequency, MMC[x]_CLK
SDR1045
tc(clk)
Cycle time, MMC[x]_CLK
SDR1046
tw(clkH)
SDR1047
SDR1048
SDR1049
A.
MAX
UNIT
200
MHz
5
ns
Pulse duration, MMC[x]_CLK high
2.08
ns
tw(clkL)
Pulse duration, MMC[x]_CLK low
2.08
td(clkH-cmdV)
Delay time, MMC[x]_CLK rising edge to MMC[x]_CMD transition
1.12
3.16
ns
td(clkH-dV)
Delay time, MMC[x]_CLK rising edge to MMC[x]_DAT[3:0] transition
1.12
3.16
ns
ns
x = 1, 2 for MMC1 and MMC2
SDR1045
SDR1046
SDR1047
MMC[x]_CLK
SDR1048
SDR1048
SDR1049
SDR1049
MMC[x]_CMD
MMC[x]_DAT[3:0]
Figure 7-107. MMC1/2 – UHS-I SDR104 – Transmit Mode
7.10.5.20 CPTS
Table 7-90 represents CPTS timing conditions.
Table 7-90. CPTS Timing Conditions
PARAMETER
DESCRIPTION
MIN
MAX
UNIT
Input slew rate
0.5
5
V/ns
2
10
pF
INPUT CONDITIONS
SRI
OUTPUT CONDITIONS
CL
Output load capacitance
Section 7.10.5.20.1, Section 7.10.5.20.2, Figure 7-108, and Figure 7-109 present timing requirements and
switching characteristics of the CPTS interface.
7.10.5.20.1 CPTS Timing Requirements
see Figure 7-108
NO.
T1
(1)
(2)
(3)
MIN
tw(HWnTSPUSHH)
Pulse duration, HWnTSPUSH(2) high
HWnTSPUSH(2)
T2
tw(HWnTSPUSHL)
Pulse duration,
T3
tc(RFT_CLK)
Cycle time, RFT_CLK
low
MAX
12P + 2(1)
12P +
ns
2(1)
5
UNIT
ns
8
ns
T(3)
ns
ns
T4
tw(RFT_CLKH)
Pulse duration, RFT_CLK high
0.45 *
T5
tw(RFT_CLKL)
Pulse duration, RFT_CLK low
0.45 * T(3)
P = functional clock period in ns.
In HWnTSPUSH, n = 1 to 2.
T = RFT_CLK period in ns.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
275
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
T1
T2
HWn_TSPUSH
T3
RFT_CLK
T4
T5
Figure 7-108. CPTS Timing Requirements
7.10.5.20.2 CPTS Switching Characteristics
see Figure 7-109
NO.
T6
PARAMETER
tw(TS_COMPH)
SOURCE
Pulse duration, TS_COMP high
MIN
MAX UNIT
36P - 2(1)
ns
2(1)
ns
T7
tw(TS_COMPL)
Pulse duration, TS_COMP low
36P -
T8
tw(TS_SYNCH)
Pulse duration, TS_SYNC high
36P - 2(1)
ns
2(1)
ns
TS_SYNC
36P - 2(1)
ns
TS_GENF
2(1)
ns
TS_SYNC
36P - 2(1)
ns
TS_GENF
2(1)
ns
T9
T10
T11
(1)
(2)
tw(TS_SYNCL)
tw(SYNC_OUTH)
tw(SYNC_OUTL)
Pulse duration, TS_SYNC low
36P -
Pulse duration, SYNCn_OUT(2) high
Pulse duration, SYNCn_OUT(2) low
5P 5P -
P = functional clock period in ns.
n = 0 to 3 in SYNCn_OUT
T6
T7
T8
T9
T10
T11
TS_COMP
TS_SYNC
SYNCn_OUT
Figure 7-109. CPTS Switching Characteristics
For more information, see Navigator Subsystem (NAVSS) section in Data Movement Architecture (DMA) chapter
in the device TRM.
7.10.5.21 OSPI
For more details about features and additional description information on the device Octal Serial Peripheral
Interface, see the corresponding sections within Section 6.3, Signal Descriptions and Section 8, Detailed
Description.
Table 7-91 represents OSPI timing conditions.
Table 7-91. OSPI Timing Conditions
PARAMETER
MIN
MAX
UNIT
3.3 V
2
6
V/ns
All other modes
1
6
V/ns
INPUT CONDITIONS
SRI
Input slew rate
OUTPUT CONDITIONS
276
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 7-91. OSPI Timing Conditions (continued)
PARAMETER
CL
Output load capacitance
MIN
MAX
3
10
All modes
UNIT
pF
PCB CONNECTIVITY REQUIREMENTS
td(Trace Delay)
td(Trace Mismatch Delay)
(1)
(2)
Propagation delay
OSPI_CLK trace
No Loopback;
Internal Pad
Loopback
Propagation delay
OSPI_LBCLKO trace
External Board
Loopback
Propagation delay
OSPI_DQS trace
DQS
Propagation delay mismatch
OSPI_D[i:0](1), OSPI_CSn
relative to OSPI_CLK
All modes
ps
450
2*L-30(2)
2*L+30(2)
ps
L-30(2)
L+30(2)
ps
ps
60
i in D[i:0] = 0 to 7 for OSPI0; i in [i:0] = 3 for OSPI1
L = Propagation delay of OSPI_CLK trace
7.10.5.21.1 OSPI With Data Training
Note
I/O timing requirements and switching characteristics are not applicable when OSPI is used with data
training. Follow the Section 9.3.2, OSPI and QSPI Board Design and Layout Guidelines section to
ensure proper operation.
7.10.5.21.1.1 OSPI Switching Characteristics – Data Training
PARAMETER
DESCRIPTION
tc(CLK)
Cycle time, CLK
tc(CLK)
Cycle time, CLK
MODE
MIN
DDR, 1.8V
6
MAX
UNIT
ns
DDR, 3.3V
7.5
ns
SDR, 1.8V
6
ns
SDR, 3.3V
7.5
ns
7.10.5.21.2 OSPI Without Data Training
Note
The I/O Timings provided in this section are only applicable when data training is not implemented.
Additionally, the I/O Timings are valid only for some OSPI usage modes when the corresponding DLL
Delays are configured as described in Table 7-92 found in this section.
Section 7.10.5.21.2.4, Section 7.10.5.21.2.2, Section 7.10.5.21.2, and Section 7.10.5.21.2 present switching
characteristics for OSPI DDR and SDR Mode.
7.10.5.21.2.1 OSPI Timing Requirements – SDR Mode
Table 7-92. OSPI DLL Delay Mapping - SDR Timing Modes
MODE
OSPI_PHY_CONFIGURATION_REG BIT FIELD
All modes
PHY_CONFIG_TX_DLL_DELAY_FLD
0x0
PHY_CONFIG_RX_DLL_DELAY_FLD
0x0
NO.
PARAMETER
DESCRIPTION
DELAY VALUE
MODE
MIN
O19
tsu(D-CLK)
Setup time, D[i:0] valid before active CLK
edge(1)
1.8V, Internal Loopback
-2.19
MAX
UNIT
ns
3.3V, Internal Loopback
-1.71
ns
O20
th(CLK-D)
Hold time, D[i:0] valid after active CLK
edge(1)
1.8V, Internal Loopback
7.62
ns
3.3V, Internal Loopbacl
8.1
ns
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
277
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
DESCRIPTION
MODE
MIN
O21
NO.
tsu(D-LBCLK)
Setup time, D[i:0] valid before active LBCLK
input (DQS) edge(1)
1.8V, External Board Loopback
-3.1
ns
3.3V, External Board Loopback
-2.72
ns
O22
th(LBCLK-D)
Hold time, D[i:0] valid after active LBCLK
input (DQS) edge(1)
1.8V, External Board Loopback
3.81
ns
3.3V, External Board Loopback
4.33
ns
(1)
PARAMETER
MAX
UNIT
i in [i:0] = 7 for OSPI0, i in [i:0] = 3 for OSPI1
OSPI_CLK
O19
O20
OSPI_D[i:0]
OSPI_TIMING_05
Figure 7-110. OSPI Timing Requirements – SDR, Internal Clock and Internal Pad Loopback Clock
OSPI_DQS
O21
O22
OSPI_D[i:0]
OSPI_TIMING_06
Figure 7-111. OSPI Timing Requirements – SDR, External Loopback Clock
7.10.5.21.2.2 OSPI Switching Characteristics – SDR Mode
NO.
PARAMETER
O7
tc(CLK)
Cycle time, CLK
DESCRIPTION
MODE
MIN
1.8V
7
ns
O8
tw(CLKL)
Pulse duration, CLK low
7.5
ns
-0.3+0.475*P
ns
O9
tw(CLKH)
Pulse duration, CLK high
-0.3+0.475*P
ns
O10
td(CLK-CSn)
Delay time, CLK rising edge to CSn active edge
3.3V
(2)
(2)
1.8V
0.475 * P +
0.975 * N * R
+ 1 (3) (3) (5)
ns
0.475 * P +
0.975 * N * R
0.475 * P +
0.975 * N * R
+ 1 (2) (3) (5)
ns
1.8V
0.475 * P +
0.975 * N * R
- 1 (2) (4) (5)
0.475 * P +
0.975 * N * R
+ 1 (2) (4) (5)
ns
3.3V
-1+0.475 * P 1+0.475 * P +
+ 0.975 * N * 0.975 * N * R
(2) (4) (5)
R (2) (4) (5)
ns
3.3V
(2) (3) (5)
td(CLK-CSn)
O12
(1)
(2)
(3)
(4)
(5)
278
td(CLK-D)
Delay time, CLK rising edge to CSn inactive
edge
Delay time, CLK active edge to D[i:0]
transition(1)
UNIT
0.475 * P +
0.975 * N * R
(2) (3) (5)
O11
MAX
1.8V
-1.16
1.25
ns
3.3V
-1.33
1.51
ns
i in [i:0] = 7 for OSPI0, i in [i:0] = 3 for OSPI1
P = CLK cycle time = SCLK period
N = OSPI_DEV_DELAY_REG[D_INIT_FLD]
N = OSPI_DEV_DELAY_REG[D_AFTER_FLD]
R = refclk
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
OSPI_CSn
O10
O11
O7
O9
OSPI_CLK
O8
O12
OSPI_D[i:0]
OSPI_TIMING_02
Figure 7-112. OSPI Switching Characteristics – SDR
Section 7.10.5.21.2.3, Section 7.10.5.21.2.1, Section 7.10.5.21.2.2, Section 7.10.5.21.2.2, and Figure 7-111
presents timing requirements for OSPI DDR and SDR Mode.
7.10.5.21.2.3 OSPI Timing Requirements – DDR Mode
Table 7-93. OSPI DLL Delay Mapping - DDR Timing Modes
OSPI Instance
OSPI0
OSPI1
NO.
PARAMETER
O15 tsu(D-LBCLK)
O16 th(LBCLK-D)
O17 tsu(D-DQS)
O18 th(DQS-D)
(1)
(2)
MODE
OSPI_PHY_CONFIGURATION_REG BIT
FIELD
1.8V
PHY_CONFIG_TX_DLL_DELAY_FLD
0x41
3.3V
PHY_CONFIG_TX_DLL_DELAY_FLD
0x3D
1.8V DQS
PHY_CONFIG_RX_DLL_DELAY_FLD
0x14
3.3V DQS
PHY_CONFIG_RX_DLL_DELAY_FLD
0x1F
All other modes
PHY_CONFIG_TX_DLL_DELAY_FLD
PHY_CONFIG_RX_DLL_DELAY_FLD
0x0
1.8V
PHY_CONFIG_TX_DLL_DELAY_FLD
0x42
3.3V
PHY_CONFIG_TX_DLL_DELAY_FLD
0x3F
1.8V DQS
PHY_CONFIG_RX_DLL_DELAY_FLD
0x16
3.3V DQS
PHY_CONFIG_RX_DLL_DELAY_FLD
0x1F
All other modes
PHY_CONFIG_TX_DLL_DELAY_FLD
PHY_CONFIG_RX_DLL_DELAY_FLD
0x0
DELAY VALUE
DESCRIPTION
MODE
MIN
Setup time, D[i:0] valid before active LBCLK (DQS)
edge(1)
1.8V, External Board Loopback
0.52
ns
3.3V, External Board Loopback
1.97
ns
Hold time, D[i:0] valid after active LBCLK (DQS)
edge(1)
Setup time, DQS edge to D[i:0]
Hold time, DQS edge to D[i:0]
transition(1)
transition(1)
MAX
UNIT
1.8V, External Board Loopback
1.24
(2)
ns
3.3V, External Board Loopback
1.44 (2)
ns
1.8V, DQS
-0.46
ns
3.3V, DQS
-0.66
ns
1.8V, DQS
3.59
ns
3.3V, DQS
8.89
ns
i in [i:0] = 7 for OSPI0, i in [i:0] = 3 for OSPI1
This Hold time requirement is larger than the Hold time provided by a typical flash device. Therefore, the trace length between the
SoC and flash device must be sufficiently long enough to ensure that the Hold time is met at the SoC. Refer to Section 9.3.2 for more
details.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
279
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
OSPI_DQS
O15
O16
OSPI_D[i:0]
OSPI_TIMING_04
Figure 7-113. OSPI Timing Requirements – DDR, External Loopback Clock and DQS
7.10.5.21.2.4 OSPI Switching Characteristics – DDR Mode
NO.
PARAMETER
O1
tc(CLK)
DESCRIPTION
Cycle time, CLK
MODE
MIN
MAX
UNIT
1.8V
19
ns
3.3V
19
ns
O2
tw(CLKL)
Pulse duration, CLK low
0.475*P - 0.3
ns
O3
tw(CLKH)
Pulse duration, CLK high
0.475*P - 0.3
ns
O4
td(CLK-CSn)
Delay time, CSn active edge to CLK rising edge
(2)
(2)
1.8V
0.475 * P +
0.975 * N * R
0.475 * P +
0.975 * N * R
+ 1 (2) (3) (5)
ns
0.475 * P +
0.975 * N * R
0.475 * P +
0.975 * N * R
+ 1(2) (3) (5)
ns
0.475 * P +
0.975 * N * R
- 7(2) (4) (5)
0.475 * P +
0.975 * N * R
ns
3.3V, OSPI0 DDR TX;
3.3V, OSPI1 DDR TX
0.475 * P +
0.975 * N * R
- 7(2) (4) (5)
0.475 * P +
0.975 * N * R
ns
1.8V, OSPI0 DDR TX;
1.8V, OSPI1 DDR TX
-7.71
-1.56
ns
3.3V, OSPI0 DDR TX;
3.3V, OSPI1 DDR TX
-7.71
-1.56
ns
(2) (3) (5)
3.3V
(2) (3) (5)
O5
O6
(1)
(2)
(3)
(4)
(5)
td(CLK-CSn)
td(CLK-D)
Delay time, CLK rising edge to CSn inactive
edge
Delay time, CLK active edge to D[i:0]
transition(1)
1.8V
(2) (4) (5)
(2) (4) (5)
i in [i:0] = 7 for OSPI0, i in [i:0] = 3 for OSPI1
P = CLK cycle time = SCLK period
N = OSPI_DEV_DELAY_REG[D_INIT_FLD]
N = OSPI_DEV_DELAY_REG[D_AFTER_FLD]
R = refclk
OSPI_CSn
O4
O5
O3
OSPI_CLK
O6
O6
O2
O1
OSPI_D[i:0]
OSPI_TIMING_01
Figure 7-114. OSPI Switching Characteristics – DDR
280
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
7.10.5.22 OLDI
7.10.5.22.1 OLDI Switching Characteristics
NO.
PARAMETER
MODE
MIN
MAX
O1
LVDS Low-to-High Transition Time max
IOSET1
0.18
0.5
ns
O2
LVDS high-to-low Transition Time max
IOSET1
0.18
0.5
ns
O3
Transmitter Output Bit Width min
IOSET1
1
1
UI
O4
Transmitter Pulse Positions – Normalized
IOSET1
0.25
0.75
ns
O5
Variation in transmitter pulse position across Bit 7:0 pulse positions
IOSET1
-0.06
0.06
ns
O6
TxOut Channel to Channel Skew
IOSET1
110
ns
O7
Transmitter Jitter Cycle-to-Cycle
IOSET1
0.035
ns
O8
Input Total Jitter Tolerance (Includes data to clock skew, pulse position
variation.)
IOSET1
0.25
ns
0.028
UNIT
T
OLDI_CLK
tTPP1
tTPP2
tTPP3
tTPP4
tTPP5
tTPP6
tTPP7
bit 6
bit 0
bit 1
OLDI_DATA[3:0]
bit 5
bit 4
bit 3
bit 2
bit 1
bit 0
1UI
2UI
3UI
ΔtTPP
4UI
5UI
6UI
7UI
Figure 7-115. OLDI Transmitter Pulse Positions
Ideal Data
Bit Beginning
Ideal Data
Bit End
Sampling
Window
VTH
OLDI_DATA[3:0]
0V
DATA_TOL
DATA_TOL
Left
VTL
Right
Ideal Center Position (tBIT/2)
tBIT (1UI)
Figure 7-116. OLDI Data Output Jitter
80%
+VOD
80%
VSS=2|VOD|
OLDI_CLK
0V
20%
20%
LLHT
LLHT
-VOD
Figure 7-117. LVDS Output Transition Times
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
281
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
For more information, see Display Subsystem (DSS) and Peripherals section in Peripherals chapter in the device
TRM.
7.10.5.23 PCIE
The PCI-Express Subsystem is compliant with the PCIe® Base Specification, Revision 4.0. Refer to the
specification for timing details.
For more details about features and additional description information on the device Peripheral Component
Interconnect Express, see the corresponding sections within , Section 6.3, Signal Descriptions and Section 8,
Detailed Description.
For more information, see Peripheral Component Interconnect Express (PCIe) Subsystem section in Peripherals
chapter in the device TRM.
7.10.5.24 Timers
For more details about features and additional description information on the device Timers, see the
corresponding sections within , Section 6.3, Signal Descriptions and Section 8, Detailed Description.
Table 7-94 represents Timers timing conditions.
Table 7-94. Timers Timing Conditions
PARAMETER
DESCRIPTION
MODE
MIN
MAX
UNIT
CAPTURE
0.5
5
V/ns
PWM
2
10
pF
INPUT CONDITIONS
SRI
Input slew rate
OUTPUT CONDITIONS
CL
Output load capacitance
Section 7.10.5.24.1, Section 7.10.5.24.2 and Figure 7-118 present timings and switching characteristics of the
Timers.
7.10.5.24.1 Timing Requirements for Timers
NO.
(1)
MODE
MIN
T1
tw(TINPH)
PARAMETER
Pulse duration, high
DESCRIPTION
CAPTURE
2.5 +
(1)
4P
MAX
UNIT
ns
T2
tw(TINPL)
Pulse duration, low
CAPTURE
2.5 +
(1)
4P
ns
P = functional clock period in ns.
7.10.5.24.2 Switching Characteristics for Timers
NO.
(1)
282
PARAMETER
DESCRIPTION
MODE
MIN
MAX
UNIT
T3
tw(TOUTH)
Pulse duration, high
PWM
-2.5 +
(1)
4P
ns
T4
tw(TOUTL)
Pulse duration, low
PWM
-2.5 +
(1)
4P
ns
P = functional clock period in ns.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
T1
T2
TIMER_IOx (inputs)
T3
T4
TIMER_IOx (outputs)
TIMER_01
Figure 7-118. Timer Timing
For more information, see Timers section in Peripherals chapter in the device TRM.
7.10.5.25 UART
For more details about features and additional description information on the device Universal Asynchronous
Receiver Transmitter, see the corresponding sections within , Section 6.3, Signal Descriptions and Section 8,
Detailed Description.
Table 7-95 represents UART timing conditions.
Table 7-95. UART Timing Conditions
PARAMETER
DESCRIPTION
MIN
MAX
UNIT
Input slew rate
0.5
5
V/ns
1
30
pF
100
ps
INPUT CONDITIONS
SRI
OUTPUT CONDITIONS
CL
Output load capacitance
PCB CONNECTIVITY REQUIREMENTS
td(Trace Mismatch Delay)
Propagation delay mismatch across all traces
Section 7.10.5.25.1, Section 7.10.5.25.2, and Figure 7-119 present timing requirements and switching
characteristics for UART interface.
7.10.5.25.1 Timing Requirements for UART
NO.
(1)
PARAMETER
DESCRIPTION
MODE
MIN
MAX
(1)
(1)
4
tw(rxd)
Pulse width, receive data bit, high or low
0.95U
5
tw(rxdS)
Pulse width, receive start bit, low
0.95U
1.05U
(1)
UNIT
ns
ns
U = UART baud time = 1/Programmed baud rate
7.10.5.25.2 UART Switching Characteristics
NO.
PARAMETER
fop(baud)
Maximum programmable baud rate
1
td(ctsnL-txdV)
Delay time, receive CTSn bit to transmit data
2
tw(txd)
Pulse width, transmit data bit, high or low
3
(1)
DESCRIPTION
tw(txdS)
Pulse width, transmit start bit, low
MODE
MIN
MAX
UNIT
15 pF
12
MHz
30 pF
0.115
30
(1)
U-2
(1)
U-2
ns
(1)
U+2
ns
ns
U = UART baud time = 1/Programmed baud rate
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
283
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Figure 7-119. UART Timing
For more information, see Universal Asynchronous Receiver/Transmitter (UART) section in Peripherals chapter
in the device TRM.
7.10.5.26 USB
The USB 2.0 subsystem is compliant with the Universal Serial Bus (USB) Specification, revision 2.0. Refer to the
specification for timing details.
The USB 3.1 GEN1 Dual-Role Device Subsystem is compliant with the Universal Serial Bus (USB) 3.1
Specification, revision 1.0. Refer to the specification for timing details.
For more details about features and additional description information on the device Universal Serial Bus
Subsystem (USB), see the corresponding sections within Section 6.3, Signal Descriptions and Section 8,
Detailed Description.
7.10.6 Emulation and Debug
7.10.6.1 Trace
Table 7-96. Trace Timing Conditions
PARAMETER
MIN
MAX
UNIT
2
5
pF
200
ps
OUTPUT CONDITIONS
CL
Output load capacitance
PCB CONNECTIVITY REQUIREMENTS
td(Trace Mismatch)
Propagation delay mismatch across
all traces
Table 7-97 and Figure 7-120 assume testing over the recommended operating conditions and electrical
characteristic conditions.
Table 7-97. Trace Switching Characteristics
NO.
PARAMETER
MIN
MAX
UNIT
1.8 V Mode
DBTR1
tc(TRC_CLK)
Cycle time, TRC_CLK
6.50
ns
DBTR2
tw(TRC_CLKH)
Pulse width, TRC_CLK high
2.50
ns
DBTR3
tw(TRC_CLKL)
Pulse width, TRC_CLK low
2.50
ns
DBTR4
tosu(TRC_DATAV-TRC_CLK)
Output setup time, TRC_DATA valid to TRC_CLK edge
0.81
ns
DBTR5
toh(TRC_CLK-TRC_DATAI)
Output hold time, TRC_CLK edge to TRC_DATA invalid
0.81
ns
284
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 7-97. Trace Switching Characteristics (continued)
NO.
PARAMETER
MIN
MAX
UNIT
DBTR6
tosu(TRC_CTLV-TRC_CLK)
Output setup time, TRC_CTL valid to TRC_CLK edge
0.81
ns
DBTR7
toh(TRC_CLK-TRC_CTLI)
Output hold time, TRC_CLK edge to TRC_CTL invalid
0.81
ns
3.3 V Mode
DBTR1
tc(TRC_CLK)
Cycle time, TRC_CLK
9.75
ns
DBTR2
tw(TRC_CLKH)
Pulse width, TRC_CLK high
4.13
ns
DBTR3
tw(TRC_CLKL)
Pulse width, TRC_CLK low
4.13
ns
DBTR4
tosu(TRC_DATAV-TRC_CLK)
Output setup time, TRC_DATA valid to TRC_CLK edge
1.22
ns
DBTR5
toh(TRC_CLK-TRC_DATAI)
Output hold time, TRC_CLK edge to TRC_DATA invalid
1.22
ns
DBTR6
tosu(TRC_CTLV-TRC_CLK)
Output setup time, TRC_CTL valid to TRC_CLK edge
1.22
ns
DBTR7
toh(TRC_CLK-TRC_CTLI)
Output hold time, TRC_CLK edge to TRC_CTL invalid
1.22
ns
DBTR1
DBTR2
DBTR3
TRC_CLK
(Worst Case 1)
(Ideal)
(Worst Case 2)
DBTR4
DBTR5
DBTR4
DBTR5
DBTR6
DBTR7
DBTR6
DBTR7
TRC_DATA
TRC_CTL
SPRSP08_Debug_01
Figure 7-120. Trace Switching Characteristics
7.10.6.2 JTAG
For more details about features and additional description information on the device IEEE 1149.1 Standard–
Test–Access Port, see the corresponding sections within Section 6.3, Signal Descriptions and Section 8,
Detailed Description.
Table 7-98. JTAG Timing Conditions
PARAMETER
MIN
MAX
UNIT
0.25
2.00
V/ns
5
15
Input Conditions
SRI
Input slew rate
Output Conditions
CL
Output load capacitance
pF
7.10.6.2.1 JTAG Electrical Data and Timing
Section 7.10.6.2.1.1, Section 7.10.6.2.1.2, and Figure 7-121 assume testing over the recommended operating
conditions and electrical characteristic conditions.
7.10.6.2.1.1 JTAG Timing Requirements
See Figure 7-121
NO.
MIN
J1
tc(TCK)
Cycle time minimum, TCK
J2
tw(TCKH)
J3
tw(TCKL)
J4
MAX
UNIT
100
ns
Pulse width minimum, TCK high
40
ns
Pulse width minimum, TCK low
40
ns
tsu(TDI-TCK)
Input setup time minimum, TDI valid to TCK high
13
ns
tsu(TMS-TCK)
Input setup time minimum, TMS valid to TCK high
13
ns
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
285
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
See Figure 7-121
NO.
J5
MIN
MAX
UNIT
th(TCK-TDI)
Input hold time minimum, TDI valid from TCK high
7.7
ns
th(TCK-TMS)
Input hold time minimum, TMS valid from TCK high
7.7
ns
1. The JTAG signals are split across two IO power domains on the device. Timings parameters defined in
this table only apply when the two IO power domains are operating at the same voltage. Values for these
timing parameters are not defined when operating the two IO power domains at different voltages since
propagation delay through the device IO buffers differ when some are operating at 1.8V while others are
operating at 3.3V. This effectively reduces timing margin beyond the values defined in this table. The JTAG
interface is still expected to function when the two IO power domains are operated at different voltages,
assuming the system designer has implemented appropriate level shifters and the operating frequency is
reduced to accommodate additional delay inserted by the level-shifters and IO buffers operating at different
voltages.
7.10.6.2.1.2 JTAG Switching Characteristics
See Figure 7-121
NO.
PARAMETER
MIN
J6
td(TCKL-TDOI)
Delay time minimum, TCK low to TDO invalid
J7
td(TCKL-TDOV)
Delay time maximum, TCK low to TDO valid
MAX
0
UNIT
ns
37.75
ns
1. The JTAG signals are split across two IO power domains on the device. Timings parameters defined in
this table only apply when the two IO power domains are operating at the same voltage. Values for these
timing parameters are not defined when operating the two IO power domains at different voltages since
propagation delay through the device IO buffers differ when some are operating at 1.8V while others are
operating at 3.3V. This effectively reduces timing margin beyond the values defined in this table. The JTAG
interface is still expected to function when the two IO power domains are operated at different voltages,
assuming the system designer has implemented appropriate level shifters and the operating frequency is
reduced to accommodate additional delay inserted by the level-shifters and IO buffers operating at different
voltages.
J1
J3
J2
TCK
J4
J5
J4
J5
TDI / TMS
J6
J7
TDO
Figure 7-121. JTAG Timing Requirements and Switching Characteristics
286
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
8 Detailed Description
8.1 Overview
DRA829 Jacinto™ 7 processors, based on the Arm®v8 64-bit architecture, provide advanced system integration
to enable lower system costs of applications such as Infotainment, Cluster, Premium Audio, and Gateway . The
integrated diagnostics and functional safety features are targeted to ASIL-B/C certification/requirements. The
integrated microcontroller (MCU) island eliminates the need for an external system MCU. The device features a
Gigabit Ethernet switch and a PCIe hub which enables networking use cases that require heavy data bandwidth.
The hardware accelerators allow for vision pre-processing, distance and motion processing with minimal impact
on system performance. Up to six Arm® Cortex®-R5F subsystems manage low level, timing critical processing
tasks leaving the Arm® Cortex®-A72’s unencumbered for applications. A dual-core cluster configuration of
Arm® Cortex®-A72 facilitates multi-OS applications with minimal need for a software hypervisor.
Note
For more information on features, subsystems, and architecture of superset device System on Chip
(SoC), see the device TRM.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
287
DRA829J, DRA829V
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
www.ti.com
8.2 Processor Subsystems
8.2.1 Arm Cortex-A72
The device implements one dual-core Arm® Cortex®-A72 MPU, which is integrated inside the Compute Cluster,
along with other modules. The Cortex-A72 cores are general-purpose processors that can be used for running
customer applications.
The A72SS is built around the Arm Cortex-A72 MPCore (A72 cluster), which is provided by Arm and configured
by TI. It is based on the symmetric multiprocessor (SMP) architecture, and thus it delivers high performance and
optimal power management and debug capabilities.
The A72 processor is a multi-issue out-of-order superscalar execution engine with integrated L1 instruction and
data caches, compatible with Armv8-A architecture. The Armv8-A architecture brings a number of new features.
These include 64-bit data processing, extended virtual addressing and 64-bit general purpose registers.
For more information, see Dual-A72 MPU Subsystem section in Processors and Accelerators chapter in the
device TRM.
8.2.2 Arm Cortex-R5F
The MCU_ARMSS is a dual-core implementation of the Arm® Cortex®-R5F processor configured for split/lock
operation. It also includes accompanying memories (L1 caches and tightly-coupled memories), standard Arm®
CoreSight™ debug and trace architecture, integrated Vectored Interrupt Manager (VIM), ECC Aggregators, and
various wrappers for protocol conversion and address translation for easy integration into the SoC.
For more information, see Dual-R5F MCU Subsystem section in Processors and Accelerators chapter in the
device TRM.
8.2.3 DSP C71x
The TMS320C71x is the next-generation fixed and floating-point DSP platform. The C71x DSP is a new core in
the Texas Instruments' DSP family. The C71x DSP supports vector signal processing, providing significant lift in
DSP processing power over a broad range of general signal processing tasks in comparison to the C6x DSP
family. In addition, the C71x provides several specialized functions which accelerate targeted functions by more
than 30 times. Besides expanding vector processing capabilities, the new C71x core also incorporates advanced
techniques to improve control code efficiency and ease of programming such as branch prediction, protected
pipeline, precise exception and virtual memory management.
For more information, see C71x DSP Subsystem section in Processors and Accelerators chapter in the device
TRM.
8.2.4 DSP C66x
The C66x subsystem is based on the TI's standard TMS320C66x™ DSP CorePac module. It includes
subsystem logic to ease the C66x CorePac integration into the SoC, while maximizing software reuse from
previous devices.
The C66x DSP extends the performance of the C64x+ and C674x DSPs through enhancements and new
features. Many of the new features target increased performance for vector processing. The C64x+ and C674x
DSPs support 2-way SIMD operations for 16-bit data and 4-way SIMD operations for 8-bit data. On C66x DSP,
the vector processing capability is improved by extending the width of the SIMD instructions.
The C66x DSP can execute instructions that operate on 128-bit vectors. For example, the QMPY32 instruction
is able to perform the element-to-element multiplication between two vectors of four 32-bit data each. The
C66x DSP also supports SIMD for floating-point operations. Improved vector processing capability (each
instruction can process multiple data in parallel) combined with the natural instruction level parallelism of C6000
architecture (for example, execution of up to eight instructions per cycle) results in a very high level of parallelism
that can be exploited by DSP programmers through the use of TI's optimized C/C++ compiler.
For more information, see C66x DSP Subsystem section in Processors and Accelerators chapter in the device
TRM.
288
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
8.3 Accelerators and Coprocessors
8.3.1 GPU
The Graphics Processing Unit (GPU) accelerates 3-dimensional (3D) and 2-dimensional (2D) graphics and
compute applications.
The GPU module is a scalable architecture which efficiently processes a number of different workload
concurrently:
• 3D Graphic Workload, which involves vertex data and pixel data processing for rendering of 3D scenes.
• 2D Graphic Workload, which involves pixel data processing for rendering 2D objects.
• Compute Applications Workload, which involves general purpose data processing.
For more information, see Graphics Accelerator (GPU) section in Processors and Accelerators chapter in the
device TRM.
8.3.2 D5520MP2
The DECODER module is a D5520MP2 dual-core PowerVR® VPU (video processor unit).
The D5520MP2 is capable of supporting:
• 1x 4kp60 decode or
• 2x 4kp30 decodes or
• 4x 1080p60 decodes or
• 8x 1080p30 decodes
For more information, see Multi-Standard HD Video Decoder (D5520MP2) section in Processors and
Accelerators chapter in the device TRM.
8.3.3 VXE384MP2
The ENCODER module is a VXE384MP2 core PowerVR® VPU (video processor unit).
The VXE384MP2 is capable of supporting:
• 1x 1080p60 video stream encoding or
• 2x or 3x 1080p30 video stream encodings
For more information, see Multi-Standard HD Video Encoder (VXE384MP2) section in Processors and
Accelerators chapter in the device TRM.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
289
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
8.4 Other Subsystems
8.4.1 MSMC
The Multicore Shared Memory Controller (MSMC) forms the heart of the compute cluster
(COMPUTE_CLUSTER0) providing high-bandwidth resource access both to and from all of the connected
processing elements and the rest of the system. MSMC serves as the data-movement backbone of the compute
cluster.
For more information, see Multicore Shared Memory Controller (MSMC) section in Device Configuration chapter
in the device TRM.
8.4.2 NAVSS
8.4.2.1 NAVSS0
Main SoC Navigator Subsystem (NAVSS0) consists of DMA/Queue Management components – UDMA and
Ring Accelerator (UDMASS), Peripherals (Module subsystem [MODSS]), Virtualization translation (VirtSS), and
a North Bridge (NBSS).
8.4.2.2 MCU_NAVSS
MCU Navigator Subsystem (MCU NAVSS) has a subset of the modules of the main NAVSS and is instantiated
in the MCU domain.
MCU Navigator Subsystem consists of DMA/Queue Management components – UDMA and Ring Accelerator
(UDMASS), and Peripherals (Module subsystem [MODSS]).
For more information, see Main Navigator Subsystem (NAVSS) and MCU Navigator Subsystem (MCU NAVSS)
sections in Data Movement Architecture (DMA) chapter in the device TRM.
8.4.3 PDMA Controller
The Peripheral DMA is a simple DMA which has been architected to specifically meet the data transfer
needs of peripherals, which perform data transfers using memory mapped registers accessed via a standard
non-coherent bus fabric. The PDMA module is intended to be located close to one or more peripherals which
require an external DMA for data movement and is architected to reduce cost by using VBUSP interfaces and
supporting only statically configured Transfer Request (TR) operations.
The PDMA is only responsible for performing the data movement transactions which interact with the peripherals
themselves. Data which is read from a given peripheral is packed by a PDMA source channel into a PSI-L data
stream which is then sent to a remote peer UDMA-P destination channel which then performs the movement of
the data into memory. Likewise, a remote UDMA-P source channel fetches data from memory and transfers it to
a peer PDMA destination channel over PSI-L which then performs the writes to the peripheral.
The PDMA architecture is intentionally heterogeneous (UDMA-P + PDMA) to right size the data transfer
complexity at each point in the system to match the requirements of whatever is being transferred to or
from. Peripherals are typically FIFO based and do not require multi-dimensional transfers beyond their FIFO
dimensioning requirements, so the PDMA transfer engines are kept simple with only a few dimensions (typically
for sample size and FIFO depth), hardcoded address maps, and simple triggering capabilities.
Multiple source and destination channels are provided within the PDMA which allow multiple simultaneous
transfer operations to be ongoing. The DMA controller maintains state information for each of the channels and
employs round-robin scheduling between channels in order to share the underlying DMA hardware.
For more information, see PDMA Controller section in DMA Controllers chapter in the device TRM.
8.4.4 Power Supply
The device requires 6 power supply types and 1 internal LDO connection type, see Power Supply Signal
Descriptions:
• Digital IO Voltages
• Digital Low Voltages
• Digital AVS Voltage
290
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
•
•
•
•
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Analog PHY & CLK Voltages
Analog Low Voltages
Efuse Programming Voltages
LDO Bulk Filter Capacitors
Common device power supply input types can be grouped together into power rails. All power rails must be
supplied by power resources designed to support the most strigent power supply voltage specification and total
load current demands. Two recommended Power Distribution Networks (PDNs) have been defined that either
combine or isolate MCU and Main domains, (refer to Section 9.1, Power Supply Mapping).
It is possible that a few power supply inputs may not be needed in some systems. In such cases, all unused
supply inputs, other than VPP_CORE & VPP_MCU, must be connected to a valid power rail with a proper
voltage level in order to ensure device reliability (refer to Section 7.4, Recommended Operating Conditions). The
following examples are given for reference:
1. If MCU Island safety monitor or MCU Only low power processing are not used, then VDD_MCU supply can
be combined with the VDD_CORE supply with compatible operating voltage specification.
2. If UHS-I SD Card or USB2.0 interface is not needed, then VDDSHV5 (MMC1 interface) and
VDDA_USB_3P3 (USB PHY interface) can be combined with VDD_IO_3V3 digital IO power rail.
3. If General Purpose device type is used, then Efuse programming voltages VPP_CORE & VPP_MCU are not
needed and should be left unconnected.
8.4.5 Peripherals
8.4.5.1 ADC
The Analog-to-Digital Converter (ADC) module contains a single 12-bit ADC which can be multiplexed to any 1
of 8 analog inputs (channels).
For more information, see Analog-to-Digital Converter (ADC) section in Peripherals chapter in the device TRM.
8.4.5.2 ATL
The Audio Tracking Logic (ATL) is used by HD Radio™ applications to synchronize the digital audio output to
the baseband clock. This same IP can also be used generically to track errors between two reference signals
(such as frame syncs) and generate a modulated clock output (using software-controlled cycle stealing) which
averages to some desired frequency. This process can be used as a hardware assist for asynchronous sample
rate conversion algorithms.
For more information, see Audio Tracking Logic (ATL) section in Peripherals chapter in the device TRM.
8.4.5.3 CSI
8.4.5.3.1 Camera Streaming Interface Receiver (CSI_RX_IF) and MIPI DPHY Receiver (DPHY_RX)
The integration of the CSI_RX_IF module allows the device to stream video inputs from multiple cameras to
internal memory. The video input may also be retransmitted via the transmitter CSI (CSI_TX_IF) for debug and
test purposes.
For more information, see Camera Streaming Interface (CSI) section in Peripherals chapter in the device TRM.
8.4.5.3.2 Camera Streaming Interface Transmitter (CSI_TX_IF)
The integration of the CSI_TX_IF module allows the device to stream out video data from memory, or retransmit
from the CSI receivers as an optional loopback output for diagnostics, debug, and test purposes.
For more information, see Camera Streaming Interface (CSI) section in Peripherals chapter in the device TRM.
8.4.5.4 CPSW2G
The two-port Gigabit Ethernet MAC (MCU_CPSW0) subsystem provides Ethernet packet communication for the
device and is configured in a similar manner as an Ethernet switch. MCU_CPSW0 features the Reduced Gigabit
Media Independent Interface (RGMII), Reduced Media Independent Interface (RMII), and the Management Data
Input/Output (MDIO) interface for physical layer device (PHY) management.
For more information, see Gigabit Ethernet Switch (CPSW0) section in Peripherals chapter in the device TRM.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
291
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
8.4.5.5 CPSW9G
The 9-port Gigabit Ethernet Switch (CPSW0) subsystem provides Ethernet packet communication for the device
and can be configured as an Ethernet switch. CPSW0 features the Serial Gigabit Media Independent Interface
(SGMII), Reduced Gigabit Media Independent Interface (RGMII), Reduced Media Independent Interface (RMII)
and the Management Data Input/Output (MDIO) interface for physical layer device (PHY) management.
For more information, see Gigabit Ethernet Switch (MCU_CPSW0) section in Peripherals chapter in the device
TRM.
8.4.5.6 DCC
The Dual Clock Comparator (DCC) is used to determine the accuracy of a clock signal during the time
execution of an application. Specifically, the DCC is designed to detect drifts from the expected clock frequency.
The desired accuracy can be programed based on calculation for each application. The DCC measures the
frequency of a selectable clock source using another input clock as a reference.
For more information, see Dual Clock Comparator (DCC) section in Peripherals chapter in the device TRM.
8.4.5.7 DDRSS
The DDR subsystem in this device comprises DDR controller, DDR PHY and wrapper logic to integrate these
blocks in the device. The DDR subsystem is referred to as DDRSS0 and is used to provide an interface to
external SDRAM devices which can be utilized for storing program or data. DDRSS0 is accessed via MSMC,
and not directly through the system interconnect.
For more information, see DDR Subsystem (DDRSS) section in Peripherals chapter in the device TRM.
8.4.5.8 DSS
The DSS is a flexible composition-enabled display subsystem, that supports multiple high resolution display
outputs. It consists of one Display Controller (DISPC) and one Frame Buffer Decompression Core (FBDC).
The DISPC supports a multi-layer blending and transparency for each of its display outputs. The DISPC also
supports a write-back pipeline with scaling to enable memory-to-memory composition and/or to capture a display
output for Ethernet video encoding.
For more information, see Display Subsystem (DSS) section in Peripherals chapter in the device TRM.
8.4.5.8.1 DSI
The MIPI DSI v1.3.1 Controller (DSITX) implements the stream arbitration and low-level protocol layer
functionalities required by MIPI DSI 1.3 standard. It supports up to 4 x 2.5 Gbps D-PHY data lanes in a singlelink configuration and handles the byte lane mapping per use case (1, 2, 3, or 4-lanes). The accompaning DSI
(Physical Layer) D-PHY module (DPHYTX) provides the video output interfacing by implementing a four-lane
MIPI D-PHY transmitter.
For more information, see Display Subsystem (DSS) and Display Peripherals section in Peripherals chapter in
the device TRM.
8.4.5.8.2 eDP
The VESA DP1.4/eDP1.4 Compliant Transmitter Host Controller (EDP) can output up to 4 video streams
(through Multiple Stream Transport / MST) and one audio stream through the 4-lane accompaning SerDes
module. It provides up to 25.92 Gbps of application bandwidth. An additional eDP (Physical Layer) auxiliary PHY
(AUXPHY) module implements a doubly-terminated differential pair required for 1 Mbps data rates over a long
(15m) cable.
For more information, see Display Subsystem (DSS) and Display Peripherals section in Peripherals chapter in
the device TRM.
292
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
www.ti.com
DRA829J, DRA829V
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
8.4.5.9 VPFE
The Video Processing Front End (VPFE) is an input interface module that receives raw (unprocessed) image/
video data or YUV digital video data from external imaging peripherals (such as image sensors, video decoders,
etc) and performs DMA transfers to store the captured data in the system DDR memory.
For more information, see Video Processing Front End (VPFE) section in Peripherals chapter in the device TRM.
8.4.5.10 eCAP
The enhanced Capture (ECAP) module can be used for:
• Sample rate measurements of audio inputs
• Speed measurements of rotating machinery (for example, toothed sprockets sensed via Hall sensors)
• Elapsed time measurements between position sensor pulses
• Period and duty cycle measurements of pulse train signals
• Decoding current or voltage amplitude derived from duty cycle encoded current/voltage sensors.
For more information, see Enhanced Capture (ECAP) Module section in Peripherals chapter in the device TRM.
8.4.5.11 EPWM
An effective PWM peripheral must be able to generate complex pulse width waveforms with minimal CPU
overhead or intervention. It needs to be highly programmable and very flexible while being easy to understand
and use. The EPWM unit described here addresses these requirements by allocating all needed timing and
control resources on a per PWM channel basis. Cross coupling or sharing of resources has been avoided;
instead, the EPWM is built up from smaller single channel modules with separate resources and that can
operate together as required to form a system. This modular approach results in an orthogonal architecture and
provides a more transparent view of the peripheral structure, helping users to understand its operation quickly.
In the further description the letter x within a signal or module name is used to indicate a generic EPWM instance
on a device. For example, output signals EPWMxA and EPWMxB refer to the output signals from the EPWM_x
instance. Thus, EPWM1A and EPWM1B belong to EPWM1, EPWM2A and EPWM2B belong to EPWM2, and so
forth.
Additionally, the EPWM integration allows this synchronization scheme to be extended to the capture peripheral
modules (ECAP). The number of modules is device-dependent and based on target application needs. Modules
can also operate stand-alone.
For more information, see Enhanced Pulse Width Modulation (EPWM) Module section in Peripherals chapter in
the device TRM.
8.4.5.12 ELM
The Error Location Module (ELM) is used with the GPMC. Syndrome polynomials generated on-the-fly when
reading a NAND flash page and stored in GPMC registers are passed to the ELM. A host processor can then
correct the data block by flipping the bits to which the ELM error-location outputs point.
When reading from NAND flash memories, some level of error-correction is required. In the case of NAND
modules with no internal correction capability, sometimes referred to as bare NANDs, the correction process is
delegated to the memory controller. ELM can be also used to support parallel NOR flash or NAND flash.
For more information, see Error Location Module (ELM) section in Peripherals chapter in the device TRM.
8.4.5.13 ESM
The Error Signaling Module (ESM) aggregates safety-related events and/or errors from throughout the device
into one location. It can signal both low and high priority interrupts to a processor to deal with a safety event
and/or manipulate an I/O error pin to signal an external hardware that an error has occurred. Therefore an
external controller is able to reset the device or keep the system in safe, known state.
For more information, see Error Signaling Module (ESM) section in Peripherals chapter in the device TRM.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
293
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
8.4.5.14 eQEP
The Enhnanced Quadrature Encoder Pulse (EQEP) peripheral is used for direct interface with a linear or rotary
incremental encoder to get position, direction and speed information from a rotating machine for use in high
performance motion and position control system. The disk of an incremental encoder is patterned with a single
track of slots patterns. These slots create an alternating pattern of dark and light lines. The disk count is
defined as the number of dark/light line pairs that occur per revolution (lines per revolution). As a rule, a second
track is added to generate a signal that occurs once per revolution (index signal: QEPI), which can be used
to indicate an absolute position. Encoder manufacturers identify the index pulse using different terms such as
index, marker, home position and zero reference.
For more information, see Enhanced Quadrature Encoder Pulse (EQEP) Module section in Peripherals chapter
in the device TRM.
8.4.5.15 GPIO
The General-Purpose Input/Output (GPIO) peripheral provides dedicated general-purpose pins that can be
configured as either inputs or outputs. When configured as an output, the user can write to an internal register to
control the state driven on the output pin. When configured as an input, user can obtain the state of the input by
reading the state of an internal register.
In addition, the GPIO peripheral can produce host CPU interrupts and DMA synchronization events in different
interrupt/event generation modes.
For more information, see General-Purpose Interface (GPIO) section in Peripherals chapter in the device TRM.
8.4.5.16 GPMC
The General-Purpose Memory Controller is a unified memory controller dedicated for interfacing with external
memory devices like:
• Asynchronous SRAM-like memories and application-specific integrated circuit (ASIC) devices
• Asynchronous, synchronous, and page mode (available only in non-multiplexed mode) burst NOR flash
devices
• NAND flash
• Pseudo-SRAM devices
For more information, see General-Purpose Memory Controller (GPMC) section in Peripherals chapter in the
device TRM.
8.4.5.17 Hyperbus
The Hyperbus module is a part of the device Flash Subsystem (FSS).
The Hyperbus module is low pin count memory interface that provides high read/write performance. The
Hyperbus module connects to hyperbus memory (HyperFlash or HyperRAM) and uses simple hyperbus protocol
for read and write transactions.
There is one Hyperbus™ module inside the device. The Hyperbus module includes one Hyperbus Memory
Controller (HBMC).
For more information, see Hyperbus Interface section in Peripherals chapter in the device TRM.
8.4.5.18 I2C
The device contains ten multimaster Inter-Integrated Circuit (I2C) controllers each of which provides an interface
between a local host (LH), such as an Arm or a Digital Signal Processor (DSP), and any I2C-bus-compatible
device that connects via the I2C serial bus. External components attached to the I2C bus can serially transmit
and receive up to 8 bits of data to and from the LH device through the 2-wire I2C interface.
Each multimaster I2C module can be configured to act like a slave or master I2C-compatible device.
The WKUP_I2C0, MCU_I2C0, I2C0, and I2C1 controllers have dedicated I2C compliant open drain buffers, and
support high speed mode (up to 3.4 Mbps in 1.8 V mode and up to 400 kbps in 3.3 V mode). The MCU_I2C1,
I2C2, I2C3, I2C4, I2C5, and I2C6 controllers are multiplexed with standard LVCMOS I/O, connected to emulate
294
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
open drain, and support fast mode (up to 400 kbps in 1.8 V/3.3 V mode). The I2C emulation is achieved by
configuring the LVCMOS buffers to output Hi-Z instead of driving high when transmitting logic 1.
For more information, see Inter-Integrated Circuit (I2C) Interface section in Peripherals chapter in the device
TRM.
8.4.5.19 I3C
The device contains three Improved Inter-Integrated Circuit (I3C) controllers each of which provides an interface
between a local host (LH), such as an Arm, and any I3C-bus-compatible device that connects via the I3C serial
bus.
For more information, see Improved Inter-Integrated Circuit (I3C) Interface section in Peripherals chapter in the
device TRM.
8.4.5.20 MCAN
The Controller Area Network (CAN) is a serial communications protocol which efficiently supports distributed
real-time control. CAN has high immunity to electrical interference. In a CAN network, many short messages are
broadcast to the entire network, which provides for data consistency in every node of the system.
The MCAN module supports both classic CAN and CAN FD (CAN with Flexible Data-Rate) specifications. CAN
FD feature allows high throughput and increased payload per data frame. The classic CAN and CAN FD devices
can coexist on the same network without any conflict.
For more information, see Modular Controller Area Network (MCAN) section in Peripherals chapter in the device
TRM.
8.4.5.21 MCASP
The MCASP functions as a general-purpose audio serial port are optimized to the requirements of various audio
applications. The MCASP module can operate in both transmit and receive modes. The MCASP is useful for
time-division multiplexed (TDM) stream, Inter-IC Sound (I2S) protocols reception and transmission as well as
for an inter-component digital audio interface transmission (DIT). The MCASP has the flexibility to gluelessly
connect to a Sony/Philips digital interface (S/PDIF) transmit physical layer component.
Although inter-component digital audio interface reception (DIR) mode (this is, S/PDIF stream receiving) is not
natively supported by the MCASP module, a specific TDM mode implementation for the MCASP receivers allows
an easy connection to external DIR components (for example, S/PDIF to I2S format converters).
For more information, see Multichannel Audio Serial Port (MCASP) section in Peripherals chapter in the device
TRM.
8.4.5.22 MCRC Controller
VBUSM CRC controller is a module which is used to perform CRC (Cyclic Redundancy Check) to verify the
integrity of a memory system. A signature representing the contents of the memory is obtained when the
contents of the memory are read into MCRC Controller. The responsibility of MCRC controller is to calculate
the signature for a set of data and then compare the calculated signature value against a predetermined good
signature value. MCRC controller provides four channels to perform CRC calculation on multiple memories in
parallel and can be used on any memory system. Channel 1 can also be put into data trace mode, where MCRC
controller compresses each data being read through CPU read data bus.
For more information, see MCRC Controller section in Interprocessor Communication chapter in the device
TRM.
8.4.5.23 MCSPI
The MCSPI module is a multichannel transmit/receive, master/slave synchronous serial bus.
There are total of eleven MCSPI modules in the device.
For more information, see Multichannel Serial Peripheral Interface (MCSPI) section in Peripherals chapter in the
device TRM.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
295
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
8.4.5.24 MMC/SD
The MMCSD Host Controller provides an interface to eMMC 5.1 (embedded MultiMedia Card), SD 4.10 (Secure
Digital), and SDIO 4.0 (Secure Digital IO) devices. The MMCSD Host Controller deals with MMC/SD/SDIO
protocol at transmission level, data packing, adding cyclic redundancy checks (CRCs), start/end bit insertion,
and checking for syntactical correctness.
For more information, see Multimedia Card/Secure Digital (MMC/SD) Interface section in Peripherals chapter in
the device TRM.
8.4.5.25 OSPI
The Octal Serial Peripheral Interface (OSPI™) module is a kind of Serial Peripheral Interface (SPI) module
which allows single, dual, quad or octal read and write access to external flash devices.
The OSPI module is used to transfer data, either in a memory mapped direct mode (for example a processor
wishing to execute code directly from external flash memory), or in an indirect mode where the module is set-up
to silently perform some requested operation, signaling its completion via interrupts or status registers.
For more information, see Octal Serial Peripheral Interface (OSPI) section in Peripherals chapter in the device
TRM.
8.4.5.26 PCIE
The Peripheral Component Interconnect Express (PCIe) subsystem is built around a multi-lane dual-mode PCIe
controller that provides low pin-count, high reliability, and high-speed data transfers at rates of up to 8.0 Gbps
per lane for serial links on backplanes and printed wiring boards.
For more information, see Peripheral Component Interconnect Express (PCIe) Subsystem section in Peripherals
chapter in the device TRM.
8.4.5.27 SerDes
SerDes'es goal is to convert device (SoC) parallel data into serialized data that can be output over a highspeed
electrical interface. In the opposite direction, SerDes converts high-speed serial data into parallel data that can
be processed by the device. To this end, the SerDes contains a variety of functional blocks to handle both the
external analog interface as well as the internal digital logic.
For more information, see Serializer/Deserializer (SerDes) section in Peripherals chapter in the device TRM.
8.4.5.28 WWDT
The Windowed Watchdog Timer provides timer functionality for operating systems and for benchmarking code.
The module incorporates several counters, which define the timebases needed for scheduling in the operating
system. The module is implemented with an RTI module, but only WWDT is supported.
This module is specifically designed to fulfill the requirements for OSEK (“Offene Systeme und deren
Schnittstellen für die Elektronik im Kraftfahrzeug”; “Open Systems and the Corresponding Interfaces for
Automotive Electronics”) as well as OSEK/Time compliant operating systems.
For more information, see Real Time Interrupt (RTI) Module section in Peripherals chapter in the device TRM.
8.4.5.29 Timers
All timers include specific functions to generate accurate tick interrupts to the operating system.
Each timer can be clocked from several different independent clocks. The selection of clock source is made from
registers in the MCU_CTRL_MMR0/CTRL_MMR0.
In the MCU domain the device provides 10 timer pins to be used as MCU Timer Capture inputs or as MCU Timer
PWM outputs. In order to provide maximum flexibility, these 10 pins may be used with any of MCU_TIMER0
through MCU_TIMER9 instances. System level muxes are used to control the capture source pin for each
MCU_TIMER[9-0] and the MCU_TIMER[9-0] source for each MCU_TIMER_IO[1-0] PWM output.
296
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
In the MAIN domain the device provides 8 timer pins to be used as Timer Capture inputs or as Timer PWM
outputs. For maximum flexibility, these 8 pins may be used with any of TIMER0 through TIMER19 instances.
System level muxes are used to control the capture source pin for each TIMER[19-0] and the TIMER[19-0]
source for each TIMER_IO[7-0] PWM output.
Each odd numbered timer instance from each of the domains may be optionally cascaded with the previous
even numbered timer instance from the same domain to form up to a 64-bit timer. For example, TIMER1 may be
cascaded to TIMER0, MCU_TIMER1 may be cascaded to MCU_TIMER0, etc.
When cascaded, TIMERi acts as a 32-bit prescaler to TIMERi+1, as well as MCU_TIMERn acts as a 32-bit
prescaler to MCU_TIMERn+1. TIMERi / MCU_TIMERn must be configured to generate a PWM output edge at
the desired rate to increment the TIMERi+1/ MCU_TIMERn+1 counter.
For more information, see Timers section in Peripherals chapter in the device TRM.
8.4.5.30 UART
The UART is a slave peripheral that utilizes the DMA for data transfer or interrupt polling via host CPU. There
are twelve UART modules in the device. All UART modules support IrDA and CIR modes when 48 MHz function
clock is used. Each UART can be used for configuration and data exchange with a number of external peripheral
devices or interprocessor communication between devices.
For more information, see Universal Synchronous/Asynchronous Receiver/Transmitter (UART) section in
Peripherals chapter in the device TRM.
8.4.5.31 USB
Similar to earlier versions of USB bus, USB 3.0 is a general-purpose cable bus, supporting data exchange
between a host device and a wide range of simultaneously accessible peripherals.
The device supports two identical USB subsystems:
• USB3SS0 is SuperSpeed (SS) USB 3.0 Dual-Role-Device (DRD) subsystem with on-chip SS (USB3.0) PHY
and HS/FS/LS (1) (USB2.0) PHY
• USB3SS1 is SuperSpeed (SS) USB 3.0 Dual-Role-Device (DRD) subsystem with on-chip SS (USB3.0) PHY
and HS/FS/LS (USB2.0) PHY
For more information, see Universal Serial Bus (USB) Subsystem section in Peripherals chapter in the device
TRM.
8.4.5.32 UFS
The Universal Flash Storage (UFS) interface is a standard-based serial interface engine.
There is one UFS module inside the device - UFS0. The UFS module includes one UFS 2.1 host controller (HC)
with an integrated M-PHY.
The UFS module complies with the standards as listed in Table 8-1.
Table 8-1. UFS Standards
DOCUMENT
VERSION
DESCRIPTION
JESD220-1A
v1.1
Universal Flash Storage (UFS) Unified Memory Extension
JESD220-2
v1.0
Universal Flash Storage (UFS) Card Extension
JESD220C
v2.1, March 2016
Universal Flash Storage (UFS)
JESD223-1B
v1.1A
Universal Flash Storage Host Controller Interface (UFSHCI) Unified Memory
Extension
JESD223C
v2.1, March 2016
Universal Flash Storage Host Controller Interface (UFSHCI)
JESD224
March 2013
Universal Flash Storage (UFS) Test
November, 2001
Federal Information Processing Standards (FIPS) 197 Advanced Encryption Standard
(AES)
v3.1, 2014
MIPI® Alliance Specification for M-PHY
v1.60, 2013
MIPI Alliance Specification for Unified Protocol (UniProSM)
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
297
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 8-1. UFS Standards (continued)
DOCUMENT
VERSION
DESCRIPTION
Revision 24, August 2010
Small Computer System Interface (SCSI) Block Commands - 3
Revision 27, October 2010
SCSI Primary Commands - 4
For more information, see Universal Flash Storage (UFS) Interface section in Peripherals chapter in the device
TRM.
298
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
9 Applications and Implementation
Note
Information in the following applications sections is not part of the TI component specification,
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for
determining suitability of components for their purposes, as well as validating and testing their design
implementation to confirm system functionality.
9.1 Power Supply Mapping
This Jacinto 7TM processor device can be operated in several different modes of operation depending upon the
number of power resources, power supply groups (i.e. power rails) and control signals available:
• Full Active
• MCU Only low power mode
• DDR Retention (Suspend-to-RAM or S2R) low power mode
• MCU Island safety monitor
• Extended MCU safety monitor
Two power distribution networks (PDNs) that support these different operational modes are recommended and
provide optional end product features. To name a few:
• Dual Voltage (1.8V & 3.3V) IO Interfaces
• Compliant UHS-I SD Card
• Compliant USB2.0
• High Security device type Efuse programming on-board for in-field updates
An Isolated PDN provides independent MCU & Main power resources & rails (see Table 9-2) to support power
rail Freedom From Interference (FFI) as desired to reach end product system functional safety targets. An
isolated PDN is needed to support MCU Only lower power mode or MCU Island safety monitoring. MCU ONLY
can significantly reduce device power by disabling all Main processing while only keeping MCU processor
resources active. A Combined PDN reduces total number of power resources & rails by grouping MCU & Main
supplies into common power rails (see Table 9-1). This PDN can be used for Extended MCU safety processing
but does not allow for MCU Island safety monitor or MCU Only low power modes. The DDR Retention low power
mode can be supported with either an Isolated or Combined PDN scheme.
The TPS6594x & LP8764x Power Management ICs (PMICs) are key power components in the two
recommended PDNs. Additional discrete power components may be added as desired to support optional
system features. TI has optimized recommended PDNs using these PMICs for the following reasons:
• Full device performance entitlement as validated on TI Evalution boards
• Enable all system functional safety features and analysis captured in device safety manual
• Support power rail load steps, supply voltage accuracies and maximum load currents with margins
• Meet device primary & low power mode supply sequencing requirements (refer to Section 7.10.2, Power
Supply Sequencing)
• Provide Adaptive Voltage Scaling (AVS) Class 0 device requirements with TI validated software
For full PDN design and operational details, refer to either
1. “Dual TPS6594-Q1 PMIC User Guide for Jacinto 7TM DRA829 and TDA4VM Automotived PDN-0B
(SLVUC32)” for legacy designs aligned to original EVM PDN-0A wishing to minimize SCH & PCB updates
2. “Dual TPS6594-Q1 PMIC User Guide for Jacinto 7TM DRA829 and TDA4VM Automotived PDN-0C
(SLVUC99)" for all new designs
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
299
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 9-1. Combined MCU and Main Voltage Domain Power Rail Mapping
TYPES
Digital IO
VOLTAGE [V]
3.3
DOMAIN NAMES
DOMAIN
GROUPS
(VDDSHV0_MCU,
VDDSHV1_MCU,
VDDSHVn_MC
VDDSHV2_MCU,
U,VDDSHVn,
VDDSHV0,VDDSHV1,
VDDA_3P3_US
VDDSHV2, VDDSHV3,
B4
VDDSHV4, VDDSHV53,
1
4
VDDSHV6) , VDDA_3P3_USB
POWER RAILS
#
VDD_IO_3V3
1
Digital IO
1.8
(VDDSHV0_MCU,
VDDSHV1_MCU,
VDDSHV2_MCU, VDDSHV0,
VDDSHV1, VDDSHV2,
VDDSHV, VDDSHV4,
VDDSHV53, VDDSHV6)2
Digital IO
1.8
VDDS_MMC06
VDDS_MMC06
VDDS_MMC0_1V86
3
1.8
(VDDA_1P8_CSIRX,
VDDA_1P8_USB,
VDDA_1P8_UFS,
VDDA_1P8_DP,
VDDA_1P8_DSITX,
VDDA_1P8_MLB,
VDDA_1P8_SERDES)
VDDA_1P8_5
VDD_PHY_1V85
4
Analog Clk,
Meas
1.8
VDDA_MCU_PLLGRP0,
VDDA_MCU_TEMP,
VDDA_ADC_MCU,
VDDA_POR_WKUP,
VDDA_WKUP VDDS_OSC1,
VDDA_PLLGRP6:0,
VDDA_TEMP3:0
VDDA_1P8_
VDA_LN_1V8
5
Analog, low
voltage
0.80
VDDA_0P8_PLL_MLB,
VDDA_0P8_PLL_DDR,
VDDA_0P8_DLL_MMC0
VDDA_0P8_DP
LL
VDA_DPLL_0V8
6
Digital, AVS low
voltage
0.77 – 0.84
VDD_CPU
VDD_CPU
VDD_CPU_AVS
7
Digital, low
voltage
0.80
VDD_MCU7, VDD_CORE,
(VDDA_0P8_SERDES,
VDDA_0P8_SERDES_C,
VDDA_0P8_DP,
VDDA_0P8_DP_C,
VDDA_0P8_DSITX,
VDDA_0P8_DSITX_C,
VDDA_0P8_CSIRX,
VDDA_0P8_UFS,
VDDA_0P8_USB) 8
VDD_MCU
VDD_CORE
VDDA_0P8_8
VDD_PROC_0V8
8
Digital, low
voltage
0.85
VDDAR_MCU,
VDDAR_CORE,
VDDAR_CPU
VDDAR
VDD_RAM_0V85
9
Digital, low
voltage
1.1
VDDS_DDR_BIAS,
VDDS_DDR,
VDDS_DDR_C
VDDS_DDR
VDD_DDR_1V1
10
Analog PHY
VDDSHVn_MC
U2 VDDSHVn3 2
VDD_IO_1V8
2
1. Any MCU or Main dual voltage IO supplies (VDDSHVn_MCU or VDDSHVn) being supplied by 3.3V to
support 3.3V digital interfaces
2. Any MCU or Main dual voltage IO supplies (VDDSHVn_MCU or VDDSHVn) being supplied by 1.8V to
support 1.8V digital interfaces
3. VDDSHV5 supports MMC1 signaling for SD memory cards. A dual voltage (3.3/1.8V) power rail is required
for compliant, high-speed SD card operations. If SD card is not needed or standard data rates with fixed
3.3V operation is acceptable, then domain can be grouped with digital IO 3.3V power rail. If a SD card is
capable of operating with fixed 1.8V, then domain can be grouped with digital IO 1.8V power rail.
300
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
4. VDDA_3P3_USB is 3.3V analog domain used for USB 2.0 differential interface signaling. A low noise,
analog supply is recommended to provide best signal integrity for USB data eye mask compliance. If USB
interface is not needed or data bit errors can be tolerated, then domain can be grouped with 3.3V digital IO
power rail either directly or through a supply filter.
5. VDDA_1P8_ are 1.8V analog domains supporting multiple serial PHY interfaces. A low noise, analog
supply is recommended to provide best signal integrity, interface performance and spec compliance. If any of
these interfaces are not needed, data bit errors or non-compliant operation can be tolerated, then domains
can be grouped with digital IO 1.8V power rail either directly or through an in-line supply filter is allowed.
6. VDD_MMC0 is 1.8V digital supply supporting MMC0 signaling for eMMC interface. If MMC0 or eMMC0
interface is not needed, then domain can be grouped with digital IO 1.8V power rail. However, if MMC0
interface is needed, then VDD_MMC0 must not start ramp-up until VDD_CORE has reached Vopr min.
7. VDD_MCU is a digital voltage supply with a wide operational voltage range and power sequencing flexibility,
enabling it to be grouped and ramped-up with either 0.8V VDD_CORE or 0.85V RAM array domains
(VDDAR_xxx).
8. VDDA_1P8_ are 1.8V analog domains supporting clock oscillator, PLL and analog circuitry
needing a low noise supply for optimal performance.
Table 9-2. Isolated MCU and Main Voltage Domain Power Rail Mapping
TYPES
VOLTAGE [V]
DOMAIN NAMES
DOMAIN
GROUPS
Digital IO
3.3
(VDDSHV0_MCU,
VDDSHV1_MCU,
VDDSHV2_MCU)1
VDDSHVn_MC
U
Digital IO
3.3
Digital IO
1.8
(VDDSHV0_MCU,
VDDSHV1_MCU,
VDDSHV2_MCU)2
Digital IO
1.8
Digital IO
POWER RAILS
#
VDD_MCUIO_3V3
1
VDD_IO_3V3
2
VDDSHVn_MC
U2
VDD_MCUIO_1V8
3
(VDDSHV0, VDDSHV1,
VDDSHV2, VDDSHV3,
VDDSHV4, VDDSHV53,
VDDSHV6)2
VDDSHVn2 3
VDD_IO_1V8
4
1.8
VDDS_MMC06
VDDS_MMC06
VDDS_MMC0_1V86
5
Analog Clk,
Meas
1.8
VDDA_MCU_PLLGRP0,
VDDA_MCU_TEMP,
VDDA_ADC_MCU,
VDDA_POR_WKUP,
VDDA_WKUP
VDDA_MCU1P
8_
VDA_MCU_1V8
6
Analog Clk,
Meas
1.8
VDDS_OSC1,
VDDA_PLLGRP6:0,
VDDA_TEMP3:0
VDDA_1P8_
VDA_DPLL_1V8
7
Analog PHY
1.8
(VDDA_1P8_CSIRX,
VDDA_1P8_USB,
VDDA_1P8_UFS,
VDDA_1P8_DP,
VDDA_1P8_DSITX,
VDDA_1P8_MLB,
VDDA_1P8_SERDES)5
VDDA_1P8_5
VDA_PHY_1V85
8
Analog, low
voltage
0.80
VDDA_0P8_PLL_MLB,
VDDA_0P8_PLL_DDR,
VDDA_0P8_DLL_MMC0
VDDA_0P8_DP
LL
VDA_DPLL_0V8
9
Digital, low
voltage
0.80
VDD_MCU, VDDAR_MCU
VDD_MCU,
VDDAR_MCU
VDD_MCU_0V85
10
0.77 – 0.84
vdd_cpu
VDD_CPU
VDD_CPU_AVS
11
Digital, AVS low
voltage
(VDDSHV0, VDDSHV1,
VDDSHVn,
VDDSHV2, VDDSHV3,
VDDA_3P3_US
VDDSHV4, VDDSHV53,
B4
VDDSHV6)1, VDDA_3P3_USB4
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
301
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 9-2. Isolated MCU and Main Voltage Domain Power Rail Mapping (continued)
TYPES
VOLTAGE [V]
DOMAIN NAMES
Digital, low
voltage
0.80
VDD_CORE,
(VDDA_0P8_SERDES,
VDDA_0P8_SERDES_C,
VDDA_0P8_DP,
VDDA_0P8_DP_C,
VDDA_0P8_DSITX,
VDDA_0P8_DSITX_C,
VDDA_0P8_CSIRX,
VDDA_0P8_UFS,
VDDA_0P8_USB)8
Digital, low
voltage
0.85
Digital, low
voltage
1.1
DOMAIN
GROUPS
POWER RAILS
#
VDD_CORE,
VDDA_0P8_8
VDD_CORE_0V8
12
VDDAR_CORE, VDDAR_CPU
VDDAR
VDD_RAM_0V85
13
VDDS_DDR_BIAS,VDDS_DDR,
VDDS_DDR_C
VDDS_DDR
VDD_DDR_1V1
14
1. Any MCU or Main dual voltage IO supplies (VDDSHVn_MCU or VDDSHVn) being supplied by 3.3V to
support 3.3V digital interfaces
2. Any MCU or Main dual voltage IO supplies (VDDSHVn_MCU or VDDSHVn) being supplied by 1.8V to
support 1.8V digital interfaces
3. VDDSHV5 supports MMC1 signaling for SD memory cards. A dual voltage (3.3/1.8V) power rail is required
for compliant, high-speed SD card operations. If SD card is not needed or standard data rates with fixed
3.3V operation is acceptable, then domain can be grouped with digital IO 3.3V power rail. If a SD card is
capable of operating with fixed 1.8V, then domain can be grouped with digital IO 1.8V power rail.
4. VDDA_3P3_USB is 3.3V analog domain used for USB 2.0 differential interface signaling. A low noise,
analog supply is recommended to provide best signal integrity for USB data eye mask compliance. If USB
interface is not needed or data bit errors can be tolerated, then domain can be grouped with 3.3V digital IO
power rail either directly or through a supply filter.
5. VDDA_1P8_ are 1.8V analog domains supporting multiple serial PHY interfaces. A low noise, analog
supply is recommended to provide best signal integrity, interface performance and spec compliance. If any of
these interfaces are not needed, data bit errors or non-compliant operation can be tolerated, then domains
can be grouped with digital IO 1.8V power rail either directly or through an in-line supply filter is allowed.
6. VDD_MMC0 is 1.8V digital supply supporting MMC0 signaling for eMMC interface. If MMC0 or eMMC0
interface is not needed, then domain can be grouped with digital IO 1.8V power rail. However, if MMC0
interface is needed, then VDD_MMC0 must not start ramp-up until VDD_CORE has reached VOPR MIN.
7. VDD_MCU is a digital voltage supply with a wide operational voltage range and power sequencing flexibility,
enabling it to be grouped and ramped-up with either 0.8V VDD_CORE or 0.85V RAM array domains
(VDDAR_xxx).
8. VDDA_1P8_ are 1.8V analog domains supporting clock oscillator, PLL and analog circuitry
needing a low noise supply for optimal performance.
9.2 Device Connection and Layout Fundamentals
9.2.1 Power Supply Decoupling and Bulk Capacitors
9.2.1.1 Power Distribution Network Implementation Guidance
The Jacinto 7 Processor Power Distribution Networks: Implementation and Analysis (SPRACN5) provides
guidance for successful implementation of the power distribution network. This includes PCB stackup guidance
as well as guidance for optimizing the selection and placement of the decoupling capacitors. TI supports only
designs that follow the board design guidelines contained in the application report.
9.2.2 External Oscillator
For more information, see Section 7.10.4.1, Input and output Clocks/Oscillators.
302
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
9.2.3 JTAG and EMU
Texas Instruments supports a variety of eXtended Development System (XDS) JTAG controllers with various
debug capabilities beyond only JTAG support. A summary of this information is available in the XDS Target
Connection Guide.
For more recommendations on EMU routing, see Emulation and Trace Headers Technical Reference Manual
9.2.4 Reset
The device incorporates four external reset pins (MCU_PORz, MCU_RESETz, PORz, and RESET_REQz) and
four reset status pins (MCU_PORz_OUT, MCU_RESETSTATz, PORz_OUT, and RESETSTATz). These pins can
be driven by an external power good circuitry or Power Management IC (PMIC). MCU_PORz and Main PORz
pins should be held active low during the entire power-up phase, and until all power supplies as well as the
HFOSC0 clock are stable.
All MCU domain resets act as master resets to the whole device, whereas Main domain resets only reset Main
domain (MCU domain is reset isolated from all Main domain resets).
9.2.5 Unused Pins
For more information about Unused Pins, see Connections for Unused Pins
9.2.6 Hardware Design Guide for JacintoTM 7 Devices
The Hardware Design Guide for JacintoTM 7 Devices document describes hardware system design
considerations for the JacintoTM 7 family of processors.This design guide is intended to be used as an aid
during the development of application hardware.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
303
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
9.3 Peripheral- and Interface-Specific Design Information
9.3.1 LPDDR4 Board Design and Layout Guidelines
The goal of the Jacinto 7 LPDDR4 Board Design and Layout Guidelines is to make the LPDDR4 system
implementation straightforward for all designers. Requirements have been distilled down to a set of layout and
routing rules that allow designers to successfully implement a robust design for the topologies that TI supports.
TI only supports board designs using LPDDR4 memories that follow the guidelines in this document.
9.3.2 OSPI and QSPI Board Design and Layout Guidelines
The following section details the routing guidelines that must be observed when routing the OSPI and QSPI
interfaces.
9.3.2.1 No Loopback and Internal Pad Loopback
•
•
•
•
The MCU_OSPI[x]_CLK output signal must be connected to the CLK pin of the flash device
The signal propagation delay from the MCU_OSPI[x]_CLK signal to the flash device must be < 450 ps (~7cm
as stripline or ~8cm as microstrip)
50 Ω PCB routing is recommended along with series terminations, as shown in Figure 9-1
Propagation delays and matching:
– A to B < 450 ps
– Matching skew: < 60 ps
A
B
R1
0 Ω*
MCU_OSPI[x]_CLK
OSPI/QSPI/SPI
device clock input
MCU_OSPI[x]_D[y],
MCU_OSPI[x]_CSn[z]
OSPI/QSPI/SPI
device IOy, CS#
OSPI_Board_01
* 0 Ω resistor (R1), located as close as possible to the MCU_OSPI[x]_CLK pin, is placeholder for fine tuning, if needed.
Figure 9-1. OSPI Interface High Level Schematic
9.3.2.2 External Board Loopback
•
•
•
•
•
•
304
The MCU_OSPI[x]_CLK output signal must be connected to the CLK pin of the flash device
The MCU_OSPI[x]_LBCLKO output signal must be looped back into the MCU_OSPI[x]_DQS input
The signal propagation delay from the MCU_OSPI[x]_CLK pin to the flash device CLK input pin (A to B)
should be approximately equal to half of the signal propagation delay from the MCU_OPSI[x]_LBCLKO pin to
the MCU_OSPI[x]_DQS pin ((C to D)/2). See the note below.
The signal propagation delay from the MCU_OSPI[x]_CLK pin to the flash device CLK input pin (A to B) must
be approximately equal to the signal propagation delay of the control and data signals between the flash
device and the SoC device (E to F, or F to E)
50 Ω PCB routing is recommended along with series terminations, as shown in Figure 9-2
Propagation delays and matching:
– A to B = E to F = (C to D) / 2
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
– Matching skew: < 60 ps
Note
The OSPI Board Loopback Hold time requirement (described in Section 7.10.5.21, OSPI) is larger
than the Hold time provided by a typical flash device. Therefore, the length of MCU_OPSI[x]_LBCLKO
pin to the MCU_OSPI[x]_DQS pin (C to D) can be shortened to compensate.
A
B
R1
0 Ω*
OSPI/QSPI/SPI
device clock input
MCU_OSPI[x]_CLK
C
R1
0 Ω*
MCU_OSPI[x]_LBCLKO
D
MCU_OSPI[x]_DQS
E
F
MCU_OSPI[x]_D[y],
MCU_OSPI[x]_CSn[z]
OSPI/QSPI/SPI
device IOy, CS#
OSPI_Board_02
* 0 Ω resistor (R1), located as close as possible to the MCU_OSPI[x]_CLK and MCU_OSPI[x]_LBCLKO pins, is a placeholder for fine
tuning, if needed.
Figure 9-2. OSPI Interface High Level Schematic
9.3.2.3 DQS (only available in Octal Flash devices)
•
•
•
•
•
The MCU_OSPI[x]_CLK output signal must be connected to the CLK pin of the flash device
The DQS pin of the flash devices must be connected to MCU_OSPI[x]_DQS signal
The signal propagation delay from the MCU_OSPI[x]_CLK pin to the flash device CLK input pin (A to B)
should be approximately equal to the signal propagation delay from the MCU_OSPI[x]_DQS pin to the DQS
output pin (C to D)
50 Ω PCB routing is recommended along with series terminations, as shown in Figure 9-3
Propagation delays and matching:
– A to B = C to D
– Matching skew: < 60 ps
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
305
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
A
B
R1
0 Ω*
OSPI/QSPI/SPI
device clock input
MCU_OSPI[x]_CLK
C
D
OSPI device DQS
MCU_OSPI[x]_DQS
E
F
MCU_OSPI[x]_D[y],
MCU_OSPI[x]_CSn[z]
OSPI/QSPI/SPI
device IOy, CS#
J7ES_OSPI_Board_03
* 0 Ω resistor (R1), located as close as possible to the MCU_OSPI[x]_CLK pin, is a placeholder for fine tuning, if needed.
Figure 9-3. OSPI Interface High Level Schematic
9.3.3 SERDES REFCLK Design Guidelines
The following section details the routing guidelines that must be observed when terminating the SERDES
REFCLK and is applicable only when SERDES REFCLK is configured to input mode.
1. 50 Ω to GND is recommended on each leg.
2. Internal AC coupling is always enabled, so external biasing is not needed.
9.3.4 USB VBUS Design Guidelines
The USB 3.1 specification allows the VBUS voltage to be as high as 5.5 V for normal operation, and as high as
20 V when the Power Delivery addendum is supported. Some applications require a max voltage to be 30 V.
The device requires the VBUS signal voltage be scaled down using an external resistor divider (as shown in the
Figure 9-4), which limits the voltage applied to the actual device pin (USB0_VBUS, USB1_VBUS). The tolerance
of these external resistors should be equal to or less than 1%, and the leakage current of zener diode at 5 V
should be less than 100 nA.
306
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Device
USBn_VBUS
16.6 kΩ
±1%
3.4 kΩ
±1%
10 kΩ
±1%
VBUS signal
6.8V
(BZX84C6V8 or equivalent)
VSS
VSS
J7ES_USB_VBUS_01
A.
USBn_VBUS, where n = 0 or 1.
Figure 9-4. USB VBUS Detect Voltage Divider / Clamp Circuit
The USB0_VBUS and USB1_VBUS pins can be considered to be fail-safe because the external circuit in Figure
9-4 limits the input current to the actual device pin in a case where VBUS is applied while the device is powered
off.
9.3.5 System Power Supply Monitor Design Guidelines
The VMON_ER_VSYS pin provides a way to monitor a system power supply. This system power supply is
typically a single pre-regulated power source for the entire system. This supply is monitored by comparing
the output of an external voltage divider circuit sourced by this supply with an internal voltage reference, with
a power fail event being triggered when the voltage applied to VMON_ER_VSYS drops below the internal
reference voltage. The actual system power supply voltage trip point is determined by the system designer when
selecting component values used to implement the external resistor voltage divider circuit. When designing the
resistor divider circuit it is important to understand various factors which contribute to variability in the system
power supply monitor trip point. The first thing to consider is the initial accuracy of the VMON_ER_VSYS input
threshold which has a nominal value of 0.45 V, with a variation of ±3%. Precision 1% resistors with similar
thermal coefficient are recommended for implementing the resistor voltage divider. This minimizes variability
contributed by resistor value tolerances. Input leakage current associated with VMON_ER_VSYS must also be
considered since any current flowing into the pin creates a loading error on the voltage divider output. The
VMON_ER_VSYS input leakage current may be in the range of 10 nA to 2.5 μA when applying 0.45 V.
Note
The resistor voltage divider shall be designed such that its output voltage never exceeds themaximum
value defined in Section 7.4 , Recommended Operating Conditions during normal operating
conditions.
Figure 9-5 presents an example, where the system power supply is nominally 5 V and the maximum trigger
threshold is 5 V - 10%, or 4.5 V.
For this example, it is important to understand which variables effect the maximum trigger threshold when
selecting resistor values. It is obvious a device which has a VMON_ER_VSYS input threshold of 0.45 V + 3%
needs to be considered when trying to design a voltage divider that doesn’t trip until the system supply drops
10%. The effect of resistor tolerance and input leakage also needs to be considered, but how these contributions
effect the maximum trigger point may not be obvious. When selecting component values which produce a
maximum trigger voltage, the system designer must consider a condition where the value of R1 is 1% low and
the value of R2 is 1% high combined with a condition where input leakage current for the VMON_ER_VSYS pin
is 2.5 μA. When implementing a resistor divider where R1 = 4.81 KΩ and R2 = 40.2 KΩ, the result is a maximum
trigger threshold of 4.523 V.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
307
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Once component values have been selected to satisfy the maximum trigger voltage as described above, the
system designer can determine the minimum trigger voltage by calculating the applied voltage that produces an
output voltage of 0.45 V - 3% when the value of R1 is 1% high and the value of R2 is 1% low, and the input
leakage current is 10 nA, or zero. Using an input leakage of zero with the resistor values given above, the result
is a minimum trigger threshold of 4.008 V.
This example demonstrates a system power supply voltage trip point that ranges from 4.008 V to 4.523 V.
Approximately 250 mV of this range is introduced by VMON_ER_VSYS input threshold accuracy of ±3%,
approximately 150 mV of this range is introduced by resistor tolerance of ±1%, and approximately 100 mV of this
range is introduced by loading error when VMON_ER_VSYS input leakage current is 2.5 μA.
The resistor values selected in this example produces approximately 100 μA of bias current through the resistor
divider when the system supply is 4.5 V. The 100 mV of loading error mentioned above could be reduced to
about 10 mV by increasing the bias current through the resistor divider to approximately 1 mA. So resistor
divider bias current vs loading error is something the system designer needs to consider when selecting
component values.
The system designer should also consider implementing a noise filter on the voltage divider output since
VMON_ER_VSYS has minimum hysteresis and a high-bandwidth response to transients. This could be done
by installing a capacitor across R1 as shown in Figure 9-5. However, the system designer must determine the
response time of this filter based on system supply noise and expected response to transient events.
Figure 9-5 presents an example, when the system power supply voltage is nominally 5 V and the desired trigger
threshold is -10% or 4.5 V.
Device
VMON_VSYS
R2
40.2 kΩ ±1%
R1
4.81 kΩ
±1%
VSYS
(System Power Supply)
C1
Value = Determined by system designer
VSS
SPRSP56_VMON_ER_MON_01
Figure 9-5. System Supply Monitor Voltage Divider Circuit
9.3.6 High Speed Differential Signal Routing Guidance
The High Speed Interface Layout Guidelines provides guidance for successful routing of the high speed
differential signals. This includes PCB stackup and materials guidance as well as routing skew, length and
spacing limits. TI supports only designs that follow the board design guidelines contained in the application
report.
9.3.7 Thermal Solution Guidance
The Thermal Design Guide for DSP and ARM Application Processors provides guidance for successful
implementation of a thermal solution for system designs containing this device. This document provides
background information on common terms and methods related to thermal solutions. TI only supports designs
that follow system design guidelines contained in the application report.
308
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
10 Device and Documentation Support
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,
generate code, and develop solutions are listed below.
10.1 Device Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all
microprocessors (MPUs) and support tools. Each device has one of three prefixes: X, P, or null (no prefix)
(for example, DRA829). Texas Instruments recommends two of three possible prefix designators for its support
tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering
prototypes (TMDX) through fully qualified production devices and tools (TMDS).
Device development evolutionary flow:
X
Experimental device that is not necessarily representative of the final device's electrical specifications and
may not use production assembly flow.
P
Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical
specifications.
null Production version of the silicon die that is fully qualified.
Support tool development evolutionary flow:
TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.
TMDS Fully-qualified development-support product.
X and P devices and TMDX development-support tools are shipped against the following disclaimer:
"Developmental product is intended for internal evaluation purposes."
Production devices and TMDS development-support tools have been characterized fully, and the quality and
reliability of the device have been demonstrated fully. TI's standard warranty applies.
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production
devices. Texas Instruments recommends that these devices not be used in any production system because their
expected end-use failure rate still is undefined. Only qualified production devices are to be used.
For orderable part numbers of DRA829 devices in the ALF package type, see the Package Option Addendum of
this document, the TI website (ti.com), or contact your TI sales representative.
10.1.1 Standard Package Symbolization
Note
Some devices may have a cosmetic circular marking visible on the top of the device package which
results from the production test process. In addition, some devices may also show a color variation in
the package substrate which results from the substrate manufacturer. These differences are cosmetic
only with no reliability impact.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
309
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
xBBBBBBBBzYrPPPcQ1
XXXXXXX
ZZZ G1
YYY
PIN ONE INDICATOR
O
J7ES_SPRSP35_PACK_01
Figure 10-1. Printed Device Reference
10.1.2 Device Naming Convention
Table 10-1. Nomenclature Description
FIELD
PARAMETER
x
FIELD
DESCRIPTION
VALUES
MARKING
Device evolution stage
X
Prototype
P
Preproduction (production test flow, no reliability data)
BLANK
BBBBBBBB(1)
z
Base production part
number
Device Speed
Production
DRA829VM
See Table 5-1, Device Comparison
DRA829JM
See Table 5-1, Device Comparison
T
See Table 7-1, Speed Grade Maximum Frequency)
OTHER
Y
r
PPP
c
310
Device Type
Device revision
Package Designator
Carrier Designator
DESCRIPTION
ORDERABLE
Alternate speed grade
G
General purpose (Prototype and Production)
C
General purpose, R5F Lockstep capable
0
High Security capable
5
High Security capable, R5F Lockstep capable
R
High Security Prime capable, R5F Lockstep capable
D
High Security capable, R5F Lockstep capable,
Customer Dev Keys
P
High Security Prime capable, R5F Lockstep capable,
Customer Dev Keys
A or BLANK
SR 1.0
B
SR 1.1
ALF
ALF FCBGA-N827 (24 mm × 24 mm) Package
N/A
BLANK
N/A
R
Tray
Tape and Reel
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
Table 10-1. Nomenclature Description (continued)
FIELD
PARAMETER
Q1
FIELD
DESCRIPTION
Automotive Designator
VALUES
MARKING
Not automotive qualified.
Supports TJ = –40°C to 105°C
BLANK
Meet AEC-Q100 qualification requirements, with
exceptions as specified in this document (data sheet).
Supports TJ = –40°C to 125°C
Q1
(1)
DESCRIPTION
ORDERABLE
XXXXXXX
Lot Trace Code
As Marked
N/A
Lot Trace Code (LTC)
YYY
Production Code
As Marked
N/A
Production Code, for TI use only
ZZZ
Production Code
As Marked
N/A
Production Code, for TI use only
O
Pin One
As Marked
N/A
Pin one designator
G1
ECAT
As Marked
N/A
ECAT—Green package designator
Software should constrain the features used to match the intended production device.
Note
BLANK in the symbol or part number is collapsed so there are no gaps between characters.
10.2 Tools and Software
The following products support development for DRA829 platforms:
Development Tools
Clock Tree Tool for Sitara, Jacinto, Vision Analytics, and Digital Signal Processors The Clock Tree
Tool (CTT) for Sitara™ Arm®, Jacinto, and Digital Signal Processors is an interactive clock tree configuration
software that provides information about the clocks and modules in these TI devices. It allows the user to:
• Visualize the device clock tree
• Interact with clock tree elements and view the effect on PRCM registers
• Interact with the PRCM registers and view the effect on the device clock tree
• View a trace of all the device registers affected by the user interaction with clock tree
Code Composer Studio™ Integrated Development Environment Code Composer Studio (CCS) Integrated
Development Environment (IDE) is a development environment that supports TI's Microcontroller and Embedded
Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug embedded
applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger,
profiler, and many other features. The intuitive IDE provides a single user interface taking you through each
step of the application development flow. Familiar tools and interfaces allow users to get started faster than ever
before. Code Composer Studio combines the advantages of the Eclipse software framework with advanced
embedded debug capabilities from TI resulting in a compelling feature-rich development environment for
embedded developers.
Pin mux tool The Pin MUX Utility is a software tool which provides a Graphical User Interface for configuring
pin multiplexing settings, resolving conflicts and specifying I/O cell characteristics for TI MPUs. Results are
output as C header/code files that can be imported into software development kits (SDKs) or used to configure
customer's custom software. Version 4 of the Pin Mux utility adds the capability of automatically selecting a mux
configuration that satisfies the entered requirements.
Power Estimation Tool (PET) Power Estimation Tool (PET) provides users the ability to gain insight in to
the power consumption of select TI processors. The tool includes the ability for the user to choose multiple
application scenarios and understand the power consumption as well as how advanced power saving techniques
can be applied to further reduce overall power consumption.
For a complete listing of development-support tools for the processor platform, visit the Texas Instruments
website at ti.com. For information on pricing and availability, contact the nearest TI field sales office or authorized
distributor.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
311
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
10.3 Documentation Support
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper
right corner, click on Alert me to register and receive a weekly digest of any product information that has
changed. For change details, review the revision history included in any revised document.
The following documents describe the DRA829 devices.
Technical Reference Manual
J721E DRA829/TDA4VM/AM752x Processors Silicon Revision 1.0 Technical Reference Manual Details the
integration, the environment, the functional description, and the programming models for each peripheral and
subsystem in the DRA829 family of devices.
Errata
J721E DRA829/TDA4VM/AM752x Processors Silicon Revision 1.0 Silicon Errata Describes the known
exceptions to the functional specifications for the device.
10.4 Support Resources
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight
from the experts. Search existing answers or ask your own question to get the quick design help you need.
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do
not necessarily reflect TI's views; see TI's Terms of Use.
10.5 Trademarks
eMMC™ is a trademark of MultiMediaCard Association.
Jacinto™ and Code Composer Studio™ are trademarks of TI.
HyperBus™ is a trademark of Mobiveil Inc.
CoreSight™ is a trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
TI E2E™ is a trademark of Texas Instruments.
Arm®, Cortex®, are registered trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
PowerVR® is a registered trademark of Imagination Technologies Limited.
PCI-Express® and PCIe® are registered trademarks of PCI-SIG.
Secure Digital® is a registered trademark of SD Card Association.
MIPI® is a registered trademark of MIPI Alliance, Inc.
All trademarks are the property of their respective owners.
10.6 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may
be more susceptible to damage because very small parametric changes could cause the device not to meet its published
specifications.
10.7 Glossary
TI Glossary
312
This glossary lists and explains terms, acronyms, and definitions.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
DRA829J, DRA829V
www.ti.com
SPRSP35J – FEBRUARY 2019 – REVISED AUGUST 2021
11 Mechanical, Packaging, and Orderable Information
11.1 Packaging Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
Product Folder Links: DRA829J DRA829V
313
PACKAGE OPTION ADDENDUM
www.ti.com
9-Feb-2022
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
(3)
Device Marking
(4/5)
(6)
DRA829JMTGBALFR
ACTIVE
FCBGA
ALF
827
250
RoHS & Green
Call TI
Level-3-250C-168 HR
-40 to 105
DRA829JMTGBALF
942
DRA829JMTGBALFRQ1
ACTIVE
FCBGA
ALF
827
250
RoHS & Green
Call TI
Level-3-250C-168 HR
-40 to 125
DRA829JMTGBALFQ1
942
DRA829VMTGBALFR
ACTIVE
FCBGA
ALF
827
250
RoHS & Green
Call TI
Level-3-250C-168 HR
-40 to 105
DRA829VMTGBALF
942
DRA829VMTGBALFRQ1
ACTIVE
FCBGA
ALF
827
250
RoHS & Green
Call TI
Level-3-250C-168 HR
-40 to 125
DRA829VMTGBALFQ1
942
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of