Product
Folder
Order
Now
Tools &
Software
Technical
Documents
Support &
Community
DRV5056
ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019
DRV5056单
单极比例式线性霍尔效应传感器
1 特性
•
•
•
1
•
•
•
•
•
3 说明
单极线性霍尔效应传感器
由 3.3V 和 5V 电源供电
具有 0.6V 静态失调电压的模拟输出:
– 可最大限度地提高电压摆幅以实现高精度
磁性灵敏度选项(VCC = 5V 时):
– A1:200mV/mT,20mT 范围
– A2:100mV/mT,39mT 范围
– A3:50mV/mT,79mT 范围
– A4:25mV/mT,158mT 范围
– A6:100mV/mT,39mT 范围
20kHz 快速检测带宽
低噪声输出,具有 ±1mA 的驱动能力
磁体温度漂移补偿
行业标准封装:
– 表面贴装 SOT-23
– 穿孔 TO-92
此模拟输出配备特色的单极磁响应,无磁场时可驱动
0.6V 的电压,存在南磁极时电压会升高。对于感应一
个磁极 的应用, 此响应可以最大限度提高输出动态范
围。4 种灵敏度选项可以基于所需的感应范围进一步最
大限度提高输出摆幅。
该器件由 3.3V 或 5V 电源供电。它可检测垂直于封装
顶部的磁通量,两个封装选项提供不同的检测方向。
该器件使用比例式架构,当外部模数转换器 (ADC) 使
用相同的 VCC 进行参考时,可以最大限度减小 VCC 容
差产生的误差。此外,该器件 还具有 磁体温度补偿功
能,可以抵消磁体漂移,在 的宽温度范围内实现线性
性能。
A1 至 A4 选项支持 –40°C 至 +125°C 的温度范围。A6
版本支持 0°C 至 85°C 的温度范围。
2 应用
•
•
•
•
•
•
•
•
DRV5056 器件是一款线性霍尔效应传感器,可按比例
响应南磁极磁通量密度。该器件可用于进行精确的位置
检测,应用范围 广泛。
精确位置检测
工业自动化和机器人
家用电器
游戏手柄、踏板、键盘、触发器
高度找平、倾斜和重量测量
流体流速测量
医疗设备
电流检测
器件信息(1)
器件型号
DRV5056
封装
封装尺寸(标称值)
SOT-23 (3)
2.92mm × 1.30mm
TO-92 (3)
4.00mm × 3.15mm
(1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。
典型电路原理图
磁响应
VCC
OUT
VCC
DRV5056
VCC
OUT
Controller
VL (MAX)
ADC
GND
0.6 V
0 mT
B
south
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。
English Data Sheet: SBAS644
DRV5056
ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019
www.ti.com.cn
目录
1
2
3
4
5
6
7
特性 ..........................................................................
应用 ..........................................................................
说明 ..........................................................................
修订历史记录 ...........................................................
Pin Configuration and Functions .........................
Specifications.........................................................
1
1
1
2
3
3
6.1
6.2
6.3
6.4
6.5
6.6
6.7
3
4
4
4
4
5
6
Absolute Maximum Ratings ......................................
ESD Ratings..............................................................
Recommended Operating Conditions.......................
Thermal Information ..................................................
Electrical Characteristics...........................................
Magnetic Characteristics...........................................
Typical Characteristics ..............................................
Detailed Description .............................................. 9
7.1 Overview ................................................................... 9
7.2 Functional Block Diagram ......................................... 9
7.3 Feature Description................................................... 9
7.4 Device Functional Modes........................................ 13
8
Application and Implementation ........................ 14
8.1 Application Information............................................ 14
8.2 Typical Application .................................................. 15
8.3 What to Do and What Not to Do ............................. 17
9 Power Supply Recommendations...................... 19
10 Layout................................................................... 19
10.1 Layout Guidelines ................................................. 19
10.2 Layout Examples................................................... 19
11 器件和文档支持 ..................................................... 20
11.1
11.2
11.3
11.4
11.5
11.6
文档支持 ...............................................................
接收文档更新通知 .................................................
社区资源................................................................
商标 .......................................................................
静电放电警告.........................................................
术语表 ...................................................................
20
20
20
20
20
20
12 机械、封装和可订购信息 ....................................... 20
4 修订历史记录
注:之前版本的页码可能与当前版本有所不同。
Changes from Original (April 2018) to Revision A
Page
•
已添加 在数据表中添加了新的 A6 磁性灵敏度选项 ................................................................................................................ 1
2
Copyright © 2018–2019, Texas Instruments Incorporated
DRV5056
www.ti.com.cn
ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019
5 Pin Configuration and Functions
DBZ Package
3-Pin SOT-23
Top View
LPG Package
3-Pin TO-92
Top View
1
VCC
3
OUT
GND
2
1
VCC
2
3
GND OUT
Pin Functions
PIN
NAME
I/O
DESCRIPTION
SOT-23
TO-92
GND
3
2
—
Ground reference
OUT
2
3
O
Analog output
VCC
1
1
—
Power supply. TI recommends connecting this pin to a ceramic capacitor to ground
with a value of at least 0.1 µF.
6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted) (1)
MIN
MAX
Power supply voltage
VCC
–0.3
7
UNIT
V
Output voltage
OUT
–0.3
VCC + 0.3
V
Magnetic flux density, BMAX
Unlimited
Operating junction temperature, TJ
–40
150
°C
Storage temperature, Tstg
–65
150
°C
(1)
T
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
Copyright © 2018–2019, Texas Instruments Incorporated
3
DRV5056
ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019
www.ti.com.cn
6.2 ESD Ratings
VALUE
V(ESD)
(1)
(2)
Electrostatic discharge
Human-body model (HBM), per ANSI/ESDA/JEDEC JS001 (1)
±2500
Charged-device model (CDM), per JEDEC specification
JESD22-C101 (2)
±750
UNIT
V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)
VCC
Power supply voltage (1)
IO
Output continuous current
TA
A1-A4 versions operating ambient temperature (2)
TA
A6 version operating ambient temperature (2)
(1)
(2)
MIN
MAX
3
3.6
4.5
5.5
UNIT
V
–1
1
mA
–40
125
°C
0
85
°C
There are two isolated operating VCC ranges. For more information see the Operating VCC Ranges section.
Power dissipation and thermal limits must be observed.
6.4 Thermal Information
DRV5056
THERMAL METRIC (1)
SOT-23 (DBZ)
TO-92 (LPG)
3 PINS
3 PINS
UNIT
RθJA
Junction-to-ambient thermal resistance
170
121
°C/W
RθJC(top)
Junction-to-case (top) thermal resistance
66
67
°C/W
RθJB
Junction-to-board thermal resistance
49
97
°C/W
YJT
Junction-to-top characterization parameter
1.7
7.6
°C/W
YJB
Junction-to-board characterization parameter
48
97
°C/W
(1)
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.
6.5 Electrical Characteristics
for VCC = 3 V to 3.63 V and 4.5 V to 5.5 V, over operating free-air temperature range (unless otherwise noted)
TEST CONDITIONS (1)
PARAMETER
ICC
Operating supply current
tON
Power-on time (see 图 19)
fBW
Sensing bandwidth
td
Propagation delay time
BND
Input-referred RMS noise density
BN
Input-referred noise
VN
(1)
(2)
4
Output-referred noise (2)
B = 0 mT, no load on OUT
From change in B to change in OUT
MIN
TYP
MAX
6
10
mA
150
300
µs
20
kHz
10
µs
VCC = 5 V
130
VCC = 3.3 V
215
BND × 6.6 × √20 kHz
BN × S
VCC = 5 V
UNIT
0.12
VCC = 3.3 V
0.2
DRV5056A1
24
DRV5056A2,
DRV5056A6
12
DRV5056A3
6
DRV5056A4
3
nT/√Hz
mTPP
mVPP
B is the applied magnetic flux density.
VN describes voltage noise on the device output. If the full device bandwidth is not needed, noise can be reduced with an RC filter.
Copyright © 2018–2019, Texas Instruments Incorporated
DRV5056
www.ti.com.cn
ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019
6.6 Magnetic Characteristics
for VCC = 3 V to 3.63 V and 4.5 V to 5.5 V, over operating free-air temperature range (unless otherwise noted)
TEST CONDITIONS (1)
PARAMETER
VQ
Quiescent voltage
B = 0 mT, TA = 25°C
VQΔT
B = 0 mT,
Quiescent voltage temperature drift TA = –40°C to 125°C
versus 25°C
VQΔL
Quiescent voltage lifetime drift
Sensitivity
VCC = 3.3 V,
TA = 25°C
VCC = 5 V,
TA = 25°C
BL
TYP
MAX
DRV5056A1
0.535
0.6
0.665
DRV5056A2,
DRV5056A6
0.54
0.6
0.66
DRV5056A3,
DRV5056A4
0.55
0.6
0.65
VCC = 5 V
0.08
VCC = 3.3 V
0.04
High-temperature operating stress for
1000 hours
VCC = 5 V,
TA = 25°C
S
MIN
Linear magnetic sensing range (2)
VCC = 3.3 V,
TA = 25°C
190
200
210
DRV5056A2,
DRV5056A6
95
100
105
DRV5056A3
47.5
50
52.5
DRV5056A4
23.8
25
26.2
DRV5056A1
114
120
126
DRV5056A2,
DRV5056A6
57
60
63
DRV5056A3
28.5
30
31.5
DRV5056A4
14.3
15
15.8
DRV5056A1
20
DRV5056A2,
DRV5056A6
39
DRV5056A3
79
DRV5056A4
158
DRV5056A1
19
DRV5056A2,
DRV5056A6
39
DRV5056A3
78
DRV5056A4
155
STC
Sensitivity temperature
compensation for magnets (4)
DRV5056A6
STC
Sensitivity temperature
compensation for magnets (4)
DRV5056A1, DRV5056A2, DRV5056A3,
DRV5056A4
0.12
SLE
Sensitivity linearity error (3)
VOUT is within VL
±1%
Sensitivity ratiometry error
SΔL
Sensitivity lifetime drift
(1)
(2)
(3)
(4)
(5)
VQ
High-temperature operating stress for
1000 hours
0.05
mV/mT
mT
Linear range of output voltage (3)
SRE
V
DRV5056A1
TA = 25°C,
with respect to VCC = 3.3 V or 5 V
V
< 0.5%
VL
(5)
UNIT
VCC – 0.2
0.12
-2.5%
0.19
V
%/°C
%/°C
2.5%
< 0.5%
B is the applied magnetic flux density.
BL describes the minimum linear sensing range at 25°C taking into account the maximum VQ and Sensitivity tolerances.
See the Sensitivity Linearity section.
STC describes the rate the device increases Sensitivity with temperature. For more information, see the Sensitivity Temperature
Compensation For Magnets section.
See the Ratiometric Architecture section.
版权 © 2018–2019, Texas Instruments Incorporated
5
DRV5056
ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019
www.ti.com.cn
6.7 Typical Characteristics
at TA = 25°C (unless otherwise noted)
655
640
638
650
Quiescent Voltage (mV)
Quiescent Voltage (mV)
636
645
640
635
630
625
620
634
632
630
628
626
624
622
620
VCC = 3.3 V
VCC = 5 V
615
610
-40
618
616
-20
0
20
40
60
80 100
Temperature (qC)
120
140
160
3
3.5
3.75
4 4.25 4.5 4.75
Supply Voltage (V)
5
5.25
5.5
D003
图 2. Quiescent Voltage vs Supply Voltage
250
200
A1
A2
A3
A4
Y Axis Title (Unit)
Sensitivity (mV/MT)
图 1. Quiescent Voltage vs Temperature
140
130
120
110
100
90
80
70
60
50
40
30
20
10
3.25
D002
A1
A2
150
A3
A4
100
50
3
3.1
3.2
3.3
3.4
Supply Voltage (V)
3.5
0
4.5
3.6
4.6
4.7
4.8
4.9
5
5.1
5.2
5.3
5.4
5.5
D007
D006
VCC = 3.3 V
VCC = 5 V
图 3. Sensitivity vs Supply Voltage
图 4. Sensitivity vs Supply Voltage
7
150
6.75
145
Sensitivity (mV/mT)
Supply Current (mA)
140
6.5
6.25
6
5.75
135
130
125
120
115
5.5
110
5.25
5
-40
VCC = 3.3 V
VCC = 5 V
-20
0
20
40
60
80 100
Temperature (qC)
120
140
+3STD
AVG
-3STD
105
160
D001
100
-40
-20
0
20
40
60
80 100
Temperature (qC)
120
140
160
D008
DRV5056A1, VCC = 3.3 V
图 5. Supply Current vs Temperature
6
图 6. Sensitivity vs Temperature
版权 © 2018–2019, Texas Instruments Incorporated
DRV5056
www.ti.com.cn
ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019
Typical Characteristics (接
接下页)
at TA = 25°C (unless otherwise noted)
80
260
75
Sensitivity (mV/mT)
Sensitivity (mV/mT)
240
220
200
180
160
-40
+3STD
AVG
3STD
-20
0
20
40
60
80 100
Temperature (qC)
120
140
70
65
60
+3STD
AVG
3STD
55
50
-40
160
-20
0
DRV5056A1, VCC = 5.0 V
115
37
110
105
100
95
90
+3STD
AVG
3STD
85
0
20
40
60
80 100
Temperature (qC)
120
140
160
D010
图 8. Sensitivity vs Temperature
39
Sensitivity (mV/mT)
Sensitivity (mV/mT)
图 7. Sensitivity vs Temperature
-20
40
60
80 100
Temperature (qC)
DRV5056A2, VCC = 3.3 V
120
80
-40
20
D009
120
140
35
33
31
29
+3STD
AVG
3STD
27
25
-40
160
-20
0
20
D011
DRV5056A2, VCC = 5.0 V
40
60
80 100
Temperature (qC)
120
140
160
D012
DRV5056A3, VCC = 3.3 V
图 9. Sensitivity vs Temperature
图 10. Sensitivity vs Temperature
19
60
Sensitivity (mV/mT)
Sensitivity (mV/mT)
18
55
50
45
+3STD
AVG
3STD
40
-40
-20
0
20
40
60
80 100
Temperature (qC)
120
140
DRV5056A3, VCC = 5.0 V
图 11. Sensitivity vs Temperature
版权 © 2018–2019, Texas Instruments Incorporated
17
16
15
14
+3STD
AVG
3STD
13
160
D013
12
-40
-20
0
20
40
60
80 100
Temperature (qC)
120
140
160
D014
DRV5056A4, VCC = 3.3 V
图 12. Sensitivity vs Temperature
7
DRV5056
ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019
www.ti.com.cn
Typical Characteristics (接
接下页)
at TA = 25°C (unless otherwise noted)
30
80
75
Sensitivity (mV/mT)
Sensitivity (mV/mT)
28
26
24
22
20
-40
+3STD
AVG
3STD
70
65
60
-3STD
AVG
+3STD
55
50
-20
0
20
40
60
80 100
Temperature (qC)
120
140
160
0
10
20
30
40
50
Temperature (C)
D015
DRV5056A4, VCC = 5.0 V
60
70
80 85
D016
DRV5056A6, VCC = 3.3 V
图 13. Sensitivity vs Temperature
图 14. Sensitivity vs Temperature
120
Sensitivity (mV/mT)
115
110
105
100
95
90
-3STD
AVG
+3STD
85
80
0
10
20
30
40
50
Temperature (C)
60
70
80 85
D017
DRV5056A6, VCC = 5.0 V
图 15. Sensitivity vs Temperature
8
版权 © 2018–2019, Texas Instruments Incorporated
DRV5056
www.ti.com.cn
ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019
7 Detailed Description
7.1 Overview
The DRV5056 is a 3-pin linear Hall effect sensor with fully integrated signal conditioning, temperature
compensation circuits, mechanical stress cancellation, and amplifiers. The device operates from 3.3-V and 5-V
(±10%) power supplies, measures magnetic flux density, and outputs a proportional analog voltage that is
referenced to VCC.
7.2 Functional Block Diagram
Element Bias
Offset
Cancellation
Band-Gap
Reference
VCC
Trim
Registers
GND
0.1 F
Temperature
Compensation
VCC
Optional Filter
Precision
Amplifier
Output
Driver
OUT
7.3 Feature Description
7.3.1 Magnetic Flux Direction
As shown in 图 16, the DRV5056 is sensitive to the magnetic field component that is perpendicular to the die
inside the package.
TO-92
B
B
SOT-23
PCB
图 16. Direction of Sensitivity
版权 © 2018–2019, Texas Instruments Incorporated
9
DRV5056
ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019
www.ti.com.cn
Feature Description (接
接下页)
Magnetic flux that travels from the bottom to the top of the package is considered positive. This condition exists
when a south magnetic pole is near the top (marked-side) of the package. Magnetic flux that travels from the top
to the bottom of the package results in negative millitesla values.
N
S
S
PCB
N
PCB
图 17. The Flux Direction for Positive B
7.3.2 Magnetic Response
The DRV5056 outputs an analog voltage according to 公式 1 when in the presence of a magnetic field:
(
)
VOUT = VQ + B × Sensitivity (25°C) × (1 + STC × (TA ± 25° C))
where
•
•
•
•
•
•
VQ is typically 600 mV
B is the applied magnetic flux density
Sensitivity(25°C) depends on the device option and VCC
STC is typically 0.12%/°C
TA is the ambient temperature
VOUT is within the VL range
(1)
As an example, consider the DRV5056A3 with VCC = 3.3 V, a temperature of 50°C, and 67 mT applied.
Excluding tolerances, VOUT = 600 mV + 67 mT × (30 mV/mT × [1 + 0.0012/°C × (50°C – 25°C)]) = 2.67 V.
The DRV5056 only responds to the flux density of a magnetic south pole.
10
版权 © 2018–2019, Texas Instruments Incorporated
DRV5056
www.ti.com.cn
ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019
Feature Description (接
接下页)
7.3.3 Sensitivity Linearity
The device produces a linear response when the output voltage is within the specified VL range. Outside this
range, sensitivity is reduced and nonlinear. 图 18 graphs the magnetic response.
OUT
VCC
VL (MAX)
0.6 V
B
south
0 mT
图 18. Magnetic Response
公式 2 calculates parameter BL, the minimum linear sensing range at 25°C taking into account the maximum
quiescent voltage and sensitivity tolerances.
VL(MAX) ± VQ(MAX)
BL(MIN) =
S(MAX)
(2)
The parameter SLE defines linearity error as the difference in sensitivity between any two positive B values when
the output is within the VL range.
7.3.4 Ratiometric Architecture
The DRV5056 has a ratiometric analog architecture that scales the sensitivity linearly with the power-supply
voltage. For example, the sensitivity is 5% higher when VCC = 5.25 V compared to VCC = 5 V. This behavior
enables external ADCs to digitize a more consistent value regardless of the power-supply voltage tolerance,
when the ADC uses VCC as its reference.
公式 3 calculates sensitivity ratiometry error:
S(VCC) / S(5V)
SRE = 1 t
for VCC = 4.5 V to 5.5 V,
VCC / 5V
SRE = 1 t
S(VCC) / S(3.3V)
VCC / 3.3V
for VCC = 3 V to 3.6 V
where
•
•
•
S(VCC) is the sensitivity at the current VCC voltage
S(5V) or S(3.3V) is the sensitivity when VCC = 5 V or 3.3 V
VCC is the current VCC voltage
版权 © 2018–2019, Texas Instruments Incorporated
(3)
11
DRV5056
ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019
www.ti.com.cn
Feature Description (接
接下页)
7.3.5 Operating VCC Ranges
The DRV5056 has two recommended operating VCC ranges: 3 V to 3.6 V and 4.5 V to 5.5 V. When VCC is in the
middle region between 3.6 V to 4.5 V, the device continues to function, but sensitivity is less known because
there is a crossover threshold near 4 V that adjusts device characteristics.
7.3.6 Sensitivity Temperature Compensation For Magnets
Magnets generally produce weaker fields as temperature increases. The DRV5056 compensates by increasing
sensitivity with temperature, as defined by the parameter STC. The sensitivity at TA = 125°C is typically 12%
higher than at TA = 25°C.
7.3.7 Power-On Time
After the VCC voltage is applied, the DRV5056 requires a short initialization time before the output is set. The
parameter tON describes the time from when VCC crosses 3 V until OUT is within 5% of VQ, with 0 mT applied
and no load attached to OUT. 图 19 shows this timing diagram.
VCC
3V
tON
time
Output
95% × V Q
Invalid
time
图 19. tON Definition
12
版权 © 2018–2019, Texas Instruments Incorporated
DRV5056
www.ti.com.cn
ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019
Feature Description (接
接下页)
7.3.8 Hall Element Location
图 20 shows the location of the sensing element inside each package option.
SOT-23
Top View
SOT-23
Side View
centered
650 µm
±50 µm
±80 µm
TO-92
Top View
2 mm
2 mm
TO-92
Side View
1.54 mm
1.61 mm
±50 µm
1030 µm
±115 µm
图 20. Hall Element Location
7.4 Device Functional Modes
The DRV5056 has one mode of operation that applies when the Recommended Operating Conditions are met.
版权 © 2018–2019, Texas Instruments Incorporated
13
DRV5056
ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019
www.ti.com.cn
8 Application and Implementation
注
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
8.1 Application Information
8.1.1 Selecting the Sensitivity Option
Select the highest DRV5056 sensitivity option that can measure the required range of magnetic flux density, so
that the output voltage swing is maximized.
Larger magnets and greater sensing distances can generally enable better positional accuracy than very small
magnets at close distances, because magnetic flux density increases exponentially with the proximity to a
magnet.
8.1.2 Temperature Compensation for Magnets
The DRV5056 temperature compensation is designed to directly compensate the average drift of neodymium
(NdFeB) magnets and partially compensate ferrite magnets. The residual flux density (Br) of a magnet typically
reduces by 0.12%/°C for NdFeB, and 0.20%/°C for ferrite. When the operating temperature range of a system is
reduced, temperature drift errors are also reduced.
8.1.3 Adding a Low-Pass Filter
As illustrated in the Functional Block Diagram, an RC low-pass filter can be added to the device output for the
purpose of minimizing voltage noise when the full 20-kHz bandwidth is not needed. This filter can improve the
signal-to-noise ratio (SNR) and overall accuracy. Do not connect a capacitor directly to the device output without
a resistor in between because doing so can make the output unstable.
8.1.4 Designing for Wire Break Detection
Some systems must detect if interconnect wires become open or shorted. The DRV5056 can support this
function.
First, select a sensitivity option that causes the output voltage to stay within the VL range during normal
operation. Second, add a pullup resistor between OUT and VCC. TI recommends a value between 20 kΩ to
100 kΩ, and the current through OUT must not exceed the IO specification, including current going into an
external ADC. Then, if the output voltage is ever measured to be within 150 mV of VCC or GND, a fault condition
exists. 图 21 shows the circuit, and 表 1 describes fault scenarios.
PCB
DRV5056
VCC
OUT
VCC
Cable
VOUT
GND
图 21. Wire Fault Detection Circuit
14
版权 © 2018–2019, Texas Instruments Incorporated
DRV5056
www.ti.com.cn
ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019
表 1. Fault Scenarios and the Resulting VOUT
FAULT SCENARIO
VOUT
VCC disconnects
Close to GND
GND disconnects
Close to VCC
VCC shorts to OUT
Close to VCC
GND shorts to OUT
Close to GND
8.2 Typical Application
Mechanical Component
N
S
PCB
图 22. Unipolar Sensing Application
8.2.1 Design Requirements
Use the parameters listed in 表 2 for this design example.
表 2. Design Parameters
DESIGN PARAMETER
EXAMPLE VALUE
VCC
3.3 V
Magnet
10-mm diameter × 6-mm long cylinder,
ferrite
Distance from magnet to sensor
From 20 mm to 3 mm
Maximum B at the sensor at 25°C
72 mT at 3 mm
Device option
DRV5056A3-Q1
8.2.2 Detailed Design Procedure
This design example consists of a mechanical component that moves back and forth, an embedded magnet with
the south pole facing the printed-circuit board, and a DRV5056. The DRV5056 outputs an analog voltage that
describes the precise position of the component. The component must not contain ferromagnetic materials such
as iron, nickel, and cobalt because these materials change the magnetic flux density at the sensor.
版权 © 2018–2019, Texas Instruments Incorporated
15
DRV5056
ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019
www.ti.com.cn
When designing a linear magnetic sensing system, always consider these three variables: the magnet, sensing
distance, and range of the sensor. Select the DRV5056 with the highest sensitivity that has a BL (linear magnetic
sensing range) that is larger than the maximum magnetic flux density in the application.
Magnets are made from various ferromagnetic materials that have tradeoffs in cost, drift with temperature,
absolute maximum temperature ratings, remanence or residual induction (Br), and coercivity (Hc). The Br and the
dimensions of a magnet determine the magnetic flux density (B) produced in 3-dimensional space. For simple
magnet shapes, such as rectangular blocks and cylinders, there are simple equations that solve B at a given
distance centered with the magnet. 图 23 shows diagrams for 公式 4 and 公式 5.
Thickness
Thickness
Width
Distance
Length
S
S
B
N
Distance
N
Diameter
B
图 23. Rectangular Block and Cylinder Magnets
Use 公式 4 for the rectangular block shown in 图 23:
B=
Br
Œ
( (
arctan
WL
2
2
2D 4D + W + L
2
)
± arctan
Use 公式 5 for the cylinder shown in 图 23:
Br
D+T
D
±
B=
2
2
2
(0.5C) + (D + T)
(0.5C)2 + D2
(
(
WL
2(D + T) 4(D + T)2 + W2 + L2
))
(4)
)
where
•
•
•
•
•
16
W is width
L is length
T is thickness (the direction of magnetization)
D is distance
C is diameter
(5)
版权 © 2018–2019, Texas Instruments Incorporated
DRV5056
www.ti.com.cn
ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019
8.2.3 Application Curve
图 24 shows the magnetic flux density versus distance for a 10-mm × 6-mm cylinder ferrite magnet.
80
Magnetic Flux Density (mT)
70
60
50
40
30
20
10
0
3
6
9
12
15
Distance (mm)
18
21
D001
图 24. Magnetic Profile of a 10-mm × 6-mm Cylindrical Ferrite Magnet
8.3 What to Do and What Not to Do
Because the Hall element is sensitive to magnetic fields that are perpendicular to the top of the package, a
correct magnet approach must be used for the sensor to detect the field. 图 25 illustrates correct and incorrect
approaches.
版权 © 2018–2019, Texas Instruments Incorporated
17
DRV5056
ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019
www.ti.com.cn
What to Do and What Not to Do (接
接下页)
CORRECT
N
S
S
N
N
S
INCORRECT
N
S
图 25. Correct and Incorrect Magnet Approaches
18
版权 © 2018–2019, Texas Instruments Incorporated
DRV5056
www.ti.com.cn
ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019
9 Power Supply Recommendations
A decoupling capacitor close to the device must be used to provide local energy with minimal inductance. TI
recommends using a ceramic capacitor with a value of at least 0.01 µF.
10 Layout
10.1 Layout Guidelines
Magnetic fields pass through most nonferromagnetic materials with no significant disturbance. Embedding Hall
effect sensors within plastic or aluminum enclosures and sensing magnets on the outside is common practice.
Magnetic fields also easily pass through most printed-circuit boards, which makes placing the magnet on the
opposite side possible.
10.2 Layout Examples
VCC
GND
VCC
GND
OUT
OUT
图 26. Layout Examples
版权 © 2018–2019, Texas Instruments Incorporated
19
DRV5056
ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019
www.ti.com.cn
11 器件和文档支持
11.1 文档支持
11.1.1 相关文档
请参阅如下相关文档:
• 德州仪器 (TI),《增量旋转编码器设计注意事项》应用手册
• 德州仪器 (TI),《利用线性霍尔效应传感器测量角度》应用手册
• 德州仪器 (TI),《使用线性霍尔效应传感器的角度测量》
11.2 接收文档更新通知
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。
11.3 社区资源
下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商“按照原样”提供。这些内容并不构成 TI 技术规范,
并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help
solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and
contact information for technical support.
11.4 商标
E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
11.5 静电放电警告
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可
能会损坏集成电路。
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可
能会导致器件与其发布的规格不相符。
11.6 术语表
SLYZ022 — TI 术语表。
这份术语表列出并解释术语、缩写和定义。
12 机械、封装和可订购信息
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。
20
版权 © 2018–2019, Texas Instruments Incorporated
PACKAGE OPTION ADDENDUM
www.ti.com
23-May-2025
PACKAGING INFORMATION
Orderable part number
Status
Material type
(1)
(2)
Package | Pins
Package qty | Carrier
RoHS
(3)
Lead finish/
Ball material
MSL rating/
Peak reflow
(4)
(5)
Op temp (°C)
Part marking
(6)
DRV5056A1QDBZR
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56A1
DRV5056A1QDBZR.A
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56A1
DRV5056A1QDBZR.B
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56A1
DRV5056A1QDBZT
Obsolete
Production
SOT-23 (DBZ) | 3
-
-
Call TI
Call TI
-40 to 125
56A1
DRV5056A1QLPG
Active
Production
TO-92 (LPG) | 3
1000 | BULK
Yes
SN
N/A for Pkg Type
-40 to 125
56A1
DRV5056A1QLPG.B
Active
Production
TO-92 (LPG) | 3
1000 | BULK
Yes
SN
N/A for Pkg Type
-40 to 125
56A1
DRV5056A1QLPGM
Active
Production
TO-92 (LPG) | 3
3000 | AMMO
Yes
SN
N/A for Pkg Type
-40 to 125
56A1
DRV5056A1QLPGM.A
Active
Production
TO-92 (LPG) | 3
3000 | AMMO
Yes
SN
N/A for Pkg Type
-40 to 125
56A1
DRV5056A1QLPGM.B
Active
Production
TO-92 (LPG) | 3
3000 | AMMO
Yes
SN
N/A for Pkg Type
-40 to 125
56A1
DRV5056A2QDBZR
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56A2
DRV5056A2QDBZR.A
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56A2
DRV5056A2QDBZR.B
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56A2
DRV5056A2QDBZT
Obsolete
Production
SOT-23 (DBZ) | 3
-
-
Call TI
Call TI
-40 to 125
56A2
DRV5056A2QLPG
Active
Production
TO-92 (LPG) | 3
1000 | BULK
Yes
SN
N/A for Pkg Type
-40 to 125
56A2
DRV5056A2QLPG.B
Active
Production
TO-92 (LPG) | 3
1000 | BULK
Yes
SN
N/A for Pkg Type
-40 to 125
56A2
DRV5056A2QLPGM
Active
Production
TO-92 (LPG) | 3
3000 | AMMO
Yes
SN
N/A for Pkg Type
-40 to 125
56A2
DRV5056A2QLPGM.A
Active
Production
TO-92 (LPG) | 3
3000 | AMMO
Yes
SN
N/A for Pkg Type
-40 to 125
56A2
DRV5056A2QLPGM.B
Active
Production
TO-92 (LPG) | 3
3000 | AMMO
Yes
SN
N/A for Pkg Type
-40 to 125
56A2
DRV5056A3QDBZR
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56A3
DRV5056A3QDBZR.A
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56A3
DRV5056A3QDBZR.B
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56A3
DRV5056A3QDBZT
Obsolete
Production
SOT-23 (DBZ) | 3
-
-
Call TI
Call TI
-40 to 125
56A3
DRV5056A3QLPG
Active
Production
TO-92 (LPG) | 3
1000 | BULK
Yes
SN
N/A for Pkg Type
-40 to 125
56A3
DRV5056A3QLPG.B
Active
Production
TO-92 (LPG) | 3
1000 | BULK
Yes
SN
N/A for Pkg Type
-40 to 125
56A3
DRV5056A3QLPGM
Active
Production
TO-92 (LPG) | 3
3000 | AMMO
Yes
SN
N/A for Pkg Type
-40 to 125
56A3
DRV5056A3QLPGM.A
Active
Production
TO-92 (LPG) | 3
3000 | AMMO
Yes
SN
N/A for Pkg Type
-40 to 125
56A3
DRV5056A3QLPGM.B
Active
Production
TO-92 (LPG) | 3
3000 | AMMO
Yes
SN
N/A for Pkg Type
-40 to 125
56A3
DRV5056A4QDBZR
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56A4
DRV5056A4QDBZR.A
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56A4
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable part number
(1)
23-May-2025
Status
Material type
(1)
(2)
Package | Pins
Package qty | Carrier
RoHS
Lead finish/
Ball material
MSL rating/
Peak reflow
(4)
(5)
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56A4
(3)
3000 | LARGE T&R
Op temp (°C)
Part marking
(6)
DRV5056A4QDBZR.B
Active
Production
SOT-23 (DBZ) | 3
DRV5056A4QDBZT
Obsolete
Production
SOT-23 (DBZ) | 3
-
-
Call TI
Call TI
-40 to 125
56A4
DRV5056A4QLPG
Active
Production
TO-92 (LPG) | 3
1000 | BULK
Yes
SN
N/A for Pkg Type
-40 to 125
56A4
DRV5056A4QLPG.B
Active
Production
TO-92 (LPG) | 3
1000 | BULK
Yes
SN
N/A for Pkg Type
-40 to 125
56A4
DRV5056A4QLPGM
Active
Production
TO-92 (LPG) | 3
3000 | AMMO
Yes
SN
N/A for Pkg Type
-40 to 125
56A4
DRV5056A4QLPGM.A
Active
Production
TO-92 (LPG) | 3
3000 | AMMO
Yes
SN
N/A for Pkg Type
-40 to 125
56A4
DRV5056A4QLPGM.B
Active
Production
TO-92 (LPG) | 3
3000 | AMMO
Yes
SN
N/A for Pkg Type
-40 to 125
56A4
DRV5056A6QDBZR
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56A6
DRV5056A6QDBZR.A
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56A6
DRV5056A6QDBZR.B
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56A6
DRV5056A6QDBZT
Obsolete
Production
SOT-23 (DBZ) | 3
-
-
Call TI
Call TI
-40 to 125
56A6
DRV5056Z1QDBZR
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56Z1
DRV5056Z1QDBZR.A
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56Z1
DRV5056Z1QDBZR.B
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56Z1
DRV5056Z1QDBZT
Obsolete
Production
SOT-23 (DBZ) | 3
-
-
Call TI
Call TI
-40 to 125
56Z1
DRV5056Z2QDBZR
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56Z2
DRV5056Z2QDBZR.A
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56Z2
DRV5056Z2QDBZR.B
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56Z2
DRV5056Z2QDBZT
Obsolete
Production
SOT-23 (DBZ) | 3
-
-
Call TI
Call TI
-40 to 125
56Z2
DRV5056Z3QDBZR
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56Z3
DRV5056Z3QDBZR.A
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56Z3
DRV5056Z3QDBZR.B
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56Z3
DRV5056Z3QDBZT
Obsolete
Production
SOT-23 (DBZ) | 3
-
-
Call TI
Call TI
-40 to 125
56Z3
DRV5056Z4QDBZR
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56Z4
DRV5056Z4QDBZR.A
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56Z4
DRV5056Z4QDBZR.B
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
56Z4
DRV5056Z4QDBZT
Obsolete
Production
SOT-23 (DBZ) | 3
-
-
Call TI
Call TI
-40 to 125
56Z4
Status: For more details on status, see our product life cycle.
Addendum-Page 2
PACKAGE OPTION ADDENDUM
www.ti.com
23-May-2025
(2)
Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance,
reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional
waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.
(3)
RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
(4)
Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum
column width.
(5)
MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown.
Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
(6)
Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two
combined represent the entire part marking for that device.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and
makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative
and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers
and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF DRV5056 :
• Automotive : DRV5056-Q1
NOTE: Qualified Version Definitions:
• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
Addendum-Page 3
PACKAGE MATERIALS INFORMATION
www.ti.com
4-Jun-2025
TAPE AND REEL INFORMATION
REEL DIMENSIONS
TAPE DIMENSIONS
K0
P1
B0 W
Reel
Diameter
Cavity
A0
B0
K0
W
P1
A0
Dimension designed to accommodate the component width
Dimension designed to accommodate the component length
Dimension designed to accommodate the component thickness
Overall width of the carrier tape
Pitch between successive cavity centers
Reel Width (W1)
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE
Sprocket Holes
Q1
Q2
Q1
Q2
Q3
Q4
Q3
Q4
User Direction of Feed
Pocket Quadrants
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
DRV5056A1QDBZR
SOT-23
DBZ
3
3000
180.0
8.4
DRV5056A1QDBZR
SOT-23
DBZ
3
3000
180.0
DRV5056A2QDBZR
SOT-23
DBZ
3
3000
180.0
DRV5056A2QDBZR
SOT-23
DBZ
3
3000
DRV5056A2QDBZR
SOT-23
DBZ
3
3000
DRV5056A3QDBZR
SOT-23
DBZ
3
DRV5056A3QDBZR
SOT-23
DBZ
DRV5056A4QDBZR
SOT-23
DBZ
DRV5056A4QDBZR
SOT-23
DRV5056A6QDBZR
DRV5056Z1QDBZR
3.15
2.77
1.22
4.0
8.0
Q3
8.4
3.2
2.85
1.3
4.0
8.0
Q3
8.4
3.15
2.77
1.22
4.0
8.0
Q3
180.0
8.4
3.2
2.85
1.3
4.0
8.0
Q3
180.0
8.4
3.2
2.85
1.3
4.0
8.0
Q3
3000
180.0
8.4
3.2
2.85
1.3
4.0
8.0
Q3
3
3000
180.0
8.4
3.2
2.85
1.3
4.0
8.0
Q3
3
3000
180.0
8.4
3.2
2.85
1.3
4.0
8.0
Q3
DBZ
3
3000
180.0
8.4
3.2
2.85
1.3
4.0
8.0
Q3
SOT-23
DBZ
3
3000
180.0
8.4
3.2
2.85
1.3
4.0
8.0
Q3
SOT-23
DBZ
3
3000
180.0
8.4
3.2
2.85
1.3
4.0
8.0
Q3
DRV5056Z1QDBZR
SOT-23
DBZ
3
3000
180.0
8.4
3.2
2.85
1.3
4.0
8.0
Q3
DRV5056Z2QDBZR
SOT-23
DBZ
3
3000
180.0
8.4
3.15
2.77
1.22
4.0
8.0
Q3
DRV5056Z2QDBZR
SOT-23
DBZ
3
3000
180.0
8.4
3.2
2.85
1.3
4.0
8.0
Q3
DRV5056Z3QDBZR
SOT-23
DBZ
3
3000
180.0
8.4
3.2
2.85
1.3
4.0
8.0
Q3
DRV5056Z4QDBZR
SOT-23
DBZ
3
3000
180.0
8.4
3.2
2.85
1.3
4.0
8.0
Q3
Pack Materials-Page 1
W
Pin1
(mm) Quadrant
PACKAGE MATERIALS INFORMATION
www.ti.com
4-Jun-2025
Device
DRV5056Z4QDBZR
Package Package Pins
Type Drawing
SPQ
SOT-23
3000
DBZ
3
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
180.0
8.4
Pack Materials-Page 2
3.2
B0
(mm)
K0
(mm)
P1
(mm)
2.85
1.3
4.0
W
Pin1
(mm) Quadrant
8.0
Q3
PACKAGE MATERIALS INFORMATION
www.ti.com
4-Jun-2025
TAPE AND REEL BOX DIMENSIONS
Width (mm)
W
L
H
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
DRV5056A1QDBZR
SOT-23
DBZ
3
3000
213.0
191.0
35.0
DRV5056A1QDBZR
SOT-23
DBZ
3
3000
210.0
185.0
35.0
DRV5056A2QDBZR
SOT-23
DBZ
3
3000
213.0
191.0
35.0
DRV5056A2QDBZR
SOT-23
DBZ
3
3000
210.0
185.0
35.0
DRV5056A2QDBZR
SOT-23
DBZ
3
3000
210.0
185.0
35.0
DRV5056A3QDBZR
SOT-23
DBZ
3
3000
210.0
185.0
35.0
DRV5056A3QDBZR
SOT-23
DBZ
3
3000
210.0
185.0
35.0
DRV5056A4QDBZR
SOT-23
DBZ
3
3000
210.0
185.0
35.0
DRV5056A4QDBZR
SOT-23
DBZ
3
3000
210.0
185.0
35.0
DRV5056A6QDBZR
SOT-23
DBZ
3
3000
210.0
185.0
35.0
DRV5056Z1QDBZR
SOT-23
DBZ
3
3000
210.0
185.0
35.0
DRV5056Z1QDBZR
SOT-23
DBZ
3
3000
210.0
185.0
35.0
DRV5056Z2QDBZR
SOT-23
DBZ
3
3000
213.0
191.0
35.0
DRV5056Z2QDBZR
SOT-23
DBZ
3
3000
210.0
185.0
35.0
DRV5056Z3QDBZR
SOT-23
DBZ
3
3000
210.0
185.0
35.0
DRV5056Z4QDBZR
SOT-23
DBZ
3
3000
210.0
185.0
35.0
DRV5056Z4QDBZR
SOT-23
DBZ
3
3000
210.0
185.0
35.0
Pack Materials-Page 3
PACKAGE OUTLINE
DBZ0003A
SOT-23 - 1.12 mm max height
SCALE 4.000
SMALL OUTLINE TRANSISTOR
C
2.64
2.10
1.4
1.2
PIN 1
INDEX AREA
1.12 MAX
B
A
0.1 C
1
0.95
(0.125)
3.04
2.80
1.9
3
(0.15)
NOTE 4
3X
0.5
0.3
0.2
2
C A B
4X 0 -15
(0.95)
0.10
TYP
0.01
4X 4 -15
0.25
GAGE PLANE
0 -8 TYP
0.20
TYP
0.08
0.6
TYP
0.2
SEATING PLANE
4214838/F 08/2024
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Reference JEDEC registration TO-236, except minimum foot length.
4. Support pin may differ or may not be present.
5. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed
0.25mm per side
www.ti.com
EXAMPLE BOARD LAYOUT
DBZ0003A
SOT-23 - 1.12 mm max height
SMALL OUTLINE TRANSISTOR
PKG
3X (1.3)
1
3X (0.6)
SYMM
3
2X (0.95)
2
(R0.05) TYP
(2.1)
LAND PATTERN EXAMPLE
SCALE:15X
SOLDER MASK
OPENING
METAL
SOLDER MASK
OPENING
METAL UNDER
SOLDER MASK
0.07 MIN
ALL AROUND
0.07 MAX
ALL AROUND
NON SOLDER MASK
DEFINED
(PREFERRED)
SOLDER MASK
DEFINED
SOLDER MASK DETAILS
4214838/F 08/2024
NOTES: (continued)
5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
www.ti.com
EXAMPLE STENCIL DESIGN
DBZ0003A
SOT-23 - 1.12 mm max height
SMALL OUTLINE TRANSISTOR
PKG
3X (1.3)
1
3X (0.6)
SYMM
3
2X(0.95)
2
(R0.05) TYP
(2.1)
SOLDER PASTE EXAMPLE
BASED ON 0.125 THICK STENCIL
SCALE:15X
4214838/F 08/2024
NOTES: (continued)
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
8. Board assembly site may have different recommendations for stencil design.
www.ti.com
PACKAGE OUTLINE
LPG0003A
TO-92 - 5.05 mm max height
SCALE 1.300
TRANSISTOR OUTLINE
4.1
3.9
3.25
3.05
3X
0.55
0.40
5.05
MAX
3
1
3X (0.8)
3X
15.5
15.1
3X
0.48
0.35
3X
2X 1.27 0.05
0.51
0.36
2.64
2.44
2.68
2.28
1.62
1.42
2X (45 )
1
(0.5425)
2
3
0.86
0.66
4221343/C 01/2018
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
www.ti.com
EXAMPLE BOARD LAYOUT
LPG0003A
TO-92 - 5.05 mm max height
TRANSISTOR OUTLINE
0.05 MAX
ALL AROUND
TYP
FULL R
TYP
METAL
TYP
(1.07)
3X ( 0.75) VIA
2X
METAL
(1.7)
2X (1.7)
2
1
2X
SOLDER MASK
OPENING
3
2X (1.07)
(R0.05) TYP
(1.27)
SOLDER MASK
OPENING
(2.54)
LAND PATTERN EXAMPLE
NON-SOLDER MASK DEFINED
SCALE:20X
4221343/C 01/2018
www.ti.com
TAPE SPECIFICATIONS
LPG0003A
TO-92 - 5.05 mm max height
TRANSISTOR OUTLINE
0
13.0
12.4
1
0
1
1 MAX
21
18
2.5 MIN
6.5
5.5
9.5
8.5
0.25
0.15
19.0
17.5
3.8-4.2 TYP
6.55
6.15
12.9
12.5
0.45
0.35
4221343/C 01/2018
www.ti.com
重要通知和免责声明
TI“按原样”提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担
保。
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行
复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索
赔、损害、成本、损失和债务,TI 对此概不负责。
TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改
TI 针对 TI 产品发布的适用的担保或担保免责声明。
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
版权所有 © 2025,德州仪器 (TI) 公司