DRV5056A2QLPG

DRV5056A2QLPG

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    TO-92-3

  • 描述:

    霍尔效应 传感器 单路 轴 TO-92-3

  • 数据手册
  • 价格&库存
DRV5056A2QLPG 数据手册
Product Folder Order Now Tools & Software Technical Documents Support & Community DRV5056 ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019 DRV5056单 单极比例式线性霍尔效应传感器 1 特性 • • • 1 • • • • • 3 说明 单极线性霍尔效应传感器 由 3.3V 和 5V 电源供电 具有 0.6V 静态失调电压的模拟输出: – 可最大限度地提高电压摆幅以实现高精度 磁性灵敏度选项(VCC = 5V 时): – A1:200mV/mT,20mT 范围 – A2:100mV/mT,39mT 范围 – A3:50mV/mT,79mT 范围 – A4:25mV/mT,158mT 范围 – A6:100mV/mT,39mT 范围 20kHz 快速检测带宽 低噪声输出,具有 ±1mA 的驱动能力 磁体温度漂移补偿 行业标准封装: – 表面贴装 SOT-23 – 穿孔 TO-92 此模拟输出配备特色的单极磁响应,无磁场时可驱动 0.6V 的电压,存在南磁极时电压会升高。对于感应一 个磁极 的应用, 此响应可以最大限度提高输出动态范 围。4 种灵敏度选项可以基于所需的感应范围进一步最 大限度提高输出摆幅。 该器件由 3.3V 或 5V 电源供电。它可检测垂直于封装 顶部的磁通量,两个封装选项提供不同的检测方向。 该器件使用比例式架构,当外部模数转换器 (ADC) 使 用相同的 VCC 进行参考时,可以最大限度减小 VCC 容 差产生的误差。此外,该器件 还具有 磁体温度补偿功 能,可以抵消磁体漂移,在 的宽温度范围内实现线性 性能。 A1 至 A4 选项支持 –40°C 至 +125°C 的温度范围。A6 版本支持 0°C 至 85°C 的温度范围。 2 应用 • • • • • • • • DRV5056 器件是一款线性霍尔效应传感器,可按比例 响应南磁极磁通量密度。该器件可用于进行精确的位置 检测,应用范围 广泛。 精确位置检测 工业自动化和机器人 家用电器 游戏手柄、踏板、键盘、触发器 高度找平、倾斜和重量测量 流体流速测量 医疗设备 电流检测 器件信息(1) 器件型号 DRV5056 封装 封装尺寸(标称值) SOT-23 (3) 2.92mm × 1.30mm TO-92 (3) 4.00mm × 3.15mm (1) 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。 典型电路原理图 磁响应 VCC OUT VCC DRV5056 VCC OUT Controller VL (MAX) ADC GND 0.6 V 0 mT B south 1 本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确 性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。 English Data Sheet: SBAS644 DRV5056 ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019 www.ti.com.cn 目录 1 2 3 4 5 6 7 特性 .......................................................................... 应用 .......................................................................... 说明 .......................................................................... 修订历史记录 ........................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 3 6.1 6.2 6.3 6.4 6.5 6.6 6.7 3 4 4 4 4 5 6 Absolute Maximum Ratings ...................................... ESD Ratings.............................................................. Recommended Operating Conditions....................... Thermal Information .................................................. Electrical Characteristics........................................... Magnetic Characteristics........................................... Typical Characteristics .............................................. Detailed Description .............................................. 9 7.1 Overview ................................................................... 9 7.2 Functional Block Diagram ......................................... 9 7.3 Feature Description................................................... 9 7.4 Device Functional Modes........................................ 13 8 Application and Implementation ........................ 14 8.1 Application Information............................................ 14 8.2 Typical Application .................................................. 15 8.3 What to Do and What Not to Do ............................. 17 9 Power Supply Recommendations...................... 19 10 Layout................................................................... 19 10.1 Layout Guidelines ................................................. 19 10.2 Layout Examples................................................... 19 11 器件和文档支持 ..................................................... 20 11.1 11.2 11.3 11.4 11.5 11.6 文档支持 ............................................................... 接收文档更新通知 ................................................. 社区资源................................................................ 商标 ....................................................................... 静电放电警告......................................................... 术语表 ................................................................... 20 20 20 20 20 20 12 机械、封装和可订购信息 ....................................... 20 4 修订历史记录 注:之前版本的页码可能与当前版本有所不同。 Changes from Original (April 2018) to Revision A Page • 已添加 在数据表中添加了新的 A6 磁性灵敏度选项 ................................................................................................................ 1 2 Copyright © 2018–2019, Texas Instruments Incorporated DRV5056 www.ti.com.cn ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019 5 Pin Configuration and Functions DBZ Package 3-Pin SOT-23 Top View LPG Package 3-Pin TO-92 Top View 1 VCC 3 OUT GND 2 1 VCC 2 3 GND OUT Pin Functions PIN NAME I/O DESCRIPTION SOT-23 TO-92 GND 3 2 — Ground reference OUT 2 3 O Analog output VCC 1 1 — Power supply. TI recommends connecting this pin to a ceramic capacitor to ground with a value of at least 0.1 µF. 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) MIN MAX Power supply voltage VCC –0.3 7 UNIT V Output voltage OUT –0.3 VCC + 0.3 V Magnetic flux density, BMAX Unlimited Operating junction temperature, TJ –40 150 °C Storage temperature, Tstg –65 150 °C (1) T Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Copyright © 2018–2019, Texas Instruments Incorporated 3 DRV5056 ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019 www.ti.com.cn 6.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS001 (1) ±2500 Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±750 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) VCC Power supply voltage (1) IO Output continuous current TA A1-A4 versions operating ambient temperature (2) TA A6 version operating ambient temperature (2) (1) (2) MIN MAX 3 3.6 4.5 5.5 UNIT V –1 1 mA –40 125 °C 0 85 °C There are two isolated operating VCC ranges. For more information see the Operating VCC Ranges section. Power dissipation and thermal limits must be observed. 6.4 Thermal Information DRV5056 THERMAL METRIC (1) SOT-23 (DBZ) TO-92 (LPG) 3 PINS 3 PINS UNIT RθJA Junction-to-ambient thermal resistance 170 121 °C/W RθJC(top) Junction-to-case (top) thermal resistance 66 67 °C/W RθJB Junction-to-board thermal resistance 49 97 °C/W YJT Junction-to-top characterization parameter 1.7 7.6 °C/W YJB Junction-to-board characterization parameter 48 97 °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 6.5 Electrical Characteristics for VCC = 3 V to 3.63 V and 4.5 V to 5.5 V, over operating free-air temperature range (unless otherwise noted) TEST CONDITIONS (1) PARAMETER ICC Operating supply current tON Power-on time (see 图 19) fBW Sensing bandwidth td Propagation delay time BND Input-referred RMS noise density BN Input-referred noise VN (1) (2) 4 Output-referred noise (2) B = 0 mT, no load on OUT From change in B to change in OUT MIN TYP MAX 6 10 mA 150 300 µs 20 kHz 10 µs VCC = 5 V 130 VCC = 3.3 V 215 BND × 6.6 × √20 kHz BN × S VCC = 5 V UNIT 0.12 VCC = 3.3 V 0.2 DRV5056A1 24 DRV5056A2, DRV5056A6 12 DRV5056A3 6 DRV5056A4 3 nT/√Hz mTPP mVPP B is the applied magnetic flux density. VN describes voltage noise on the device output. If the full device bandwidth is not needed, noise can be reduced with an RC filter. Copyright © 2018–2019, Texas Instruments Incorporated DRV5056 www.ti.com.cn ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019 6.6 Magnetic Characteristics for VCC = 3 V to 3.63 V and 4.5 V to 5.5 V, over operating free-air temperature range (unless otherwise noted) TEST CONDITIONS (1) PARAMETER VQ Quiescent voltage B = 0 mT, TA = 25°C VQΔT B = 0 mT, Quiescent voltage temperature drift TA = –40°C to 125°C versus 25°C VQΔL Quiescent voltage lifetime drift Sensitivity VCC = 3.3 V, TA = 25°C VCC = 5 V, TA = 25°C BL TYP MAX DRV5056A1 0.535 0.6 0.665 DRV5056A2, DRV5056A6 0.54 0.6 0.66 DRV5056A3, DRV5056A4 0.55 0.6 0.65 VCC = 5 V 0.08 VCC = 3.3 V 0.04 High-temperature operating stress for 1000 hours VCC = 5 V, TA = 25°C S MIN Linear magnetic sensing range (2) VCC = 3.3 V, TA = 25°C 190 200 210 DRV5056A2, DRV5056A6 95 100 105 DRV5056A3 47.5 50 52.5 DRV5056A4 23.8 25 26.2 DRV5056A1 114 120 126 DRV5056A2, DRV5056A6 57 60 63 DRV5056A3 28.5 30 31.5 DRV5056A4 14.3 15 15.8 DRV5056A1 20 DRV5056A2, DRV5056A6 39 DRV5056A3 79 DRV5056A4 158 DRV5056A1 19 DRV5056A2, DRV5056A6 39 DRV5056A3 78 DRV5056A4 155 STC Sensitivity temperature compensation for magnets (4) DRV5056A6 STC Sensitivity temperature compensation for magnets (4) DRV5056A1, DRV5056A2, DRV5056A3, DRV5056A4 0.12 SLE Sensitivity linearity error (3) VOUT is within VL ±1% Sensitivity ratiometry error SΔL Sensitivity lifetime drift (1) (2) (3) (4) (5) VQ High-temperature operating stress for 1000 hours 0.05 mV/mT mT Linear range of output voltage (3) SRE V DRV5056A1 TA = 25°C, with respect to VCC = 3.3 V or 5 V V < 0.5% VL (5) UNIT VCC – 0.2 0.12 -2.5% 0.19 V %/°C %/°C 2.5% < 0.5% B is the applied magnetic flux density. BL describes the minimum linear sensing range at 25°C taking into account the maximum VQ and Sensitivity tolerances. See the Sensitivity Linearity section. STC describes the rate the device increases Sensitivity with temperature. For more information, see the Sensitivity Temperature Compensation For Magnets section. See the Ratiometric Architecture section. 版权 © 2018–2019, Texas Instruments Incorporated 5 DRV5056 ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019 www.ti.com.cn 6.7 Typical Characteristics at TA = 25°C (unless otherwise noted) 655 640 638 650 Quiescent Voltage (mV) Quiescent Voltage (mV) 636 645 640 635 630 625 620 634 632 630 628 626 624 622 620 VCC = 3.3 V VCC = 5 V 615 610 -40 618 616 -20 0 20 40 60 80 100 Temperature (qC) 120 140 160 3 3.5 3.75 4 4.25 4.5 4.75 Supply Voltage (V) 5 5.25 5.5 D003 图 2. Quiescent Voltage vs Supply Voltage 250 200 A1 A2 A3 A4 Y Axis Title (Unit) Sensitivity (mV/MT) 图 1. Quiescent Voltage vs Temperature 140 130 120 110 100 90 80 70 60 50 40 30 20 10 3.25 D002 A1 A2 150 A3 A4 100 50 3 3.1 3.2 3.3 3.4 Supply Voltage (V) 3.5 0 4.5 3.6 4.6 4.7 4.8 4.9 5 5.1 5.2 5.3 5.4 5.5 D007 D006 VCC = 3.3 V VCC = 5 V 图 3. Sensitivity vs Supply Voltage 图 4. Sensitivity vs Supply Voltage 7 150 6.75 145 Sensitivity (mV/mT) Supply Current (mA) 140 6.5 6.25 6 5.75 135 130 125 120 115 5.5 110 5.25 5 -40 VCC = 3.3 V VCC = 5 V -20 0 20 40 60 80 100 Temperature (qC) 120 140 +3STD AVG -3STD 105 160 D001 100 -40 -20 0 20 40 60 80 100 Temperature (qC) 120 140 160 D008 DRV5056A1, VCC = 3.3 V 图 5. Supply Current vs Temperature 6 图 6. Sensitivity vs Temperature 版权 © 2018–2019, Texas Instruments Incorporated DRV5056 www.ti.com.cn ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019 Typical Characteristics (接 接下页) at TA = 25°C (unless otherwise noted) 80 260 75 Sensitivity (mV/mT) Sensitivity (mV/mT) 240 220 200 180 160 -40 +3STD AVG 3STD -20 0 20 40 60 80 100 Temperature (qC) 120 140 70 65 60 +3STD AVG 3STD 55 50 -40 160 -20 0 DRV5056A1, VCC = 5.0 V 115 37 110 105 100 95 90 +3STD AVG 3STD 85 0 20 40 60 80 100 Temperature (qC) 120 140 160 D010 图 8. Sensitivity vs Temperature 39 Sensitivity (mV/mT) Sensitivity (mV/mT) 图 7. Sensitivity vs Temperature -20 40 60 80 100 Temperature (qC) DRV5056A2, VCC = 3.3 V 120 80 -40 20 D009 120 140 35 33 31 29 +3STD AVG 3STD 27 25 -40 160 -20 0 20 D011 DRV5056A2, VCC = 5.0 V 40 60 80 100 Temperature (qC) 120 140 160 D012 DRV5056A3, VCC = 3.3 V 图 9. Sensitivity vs Temperature 图 10. Sensitivity vs Temperature 19 60 Sensitivity (mV/mT) Sensitivity (mV/mT) 18 55 50 45 +3STD AVG 3STD 40 -40 -20 0 20 40 60 80 100 Temperature (qC) 120 140 DRV5056A3, VCC = 5.0 V 图 11. Sensitivity vs Temperature 版权 © 2018–2019, Texas Instruments Incorporated 17 16 15 14 +3STD AVG 3STD 13 160 D013 12 -40 -20 0 20 40 60 80 100 Temperature (qC) 120 140 160 D014 DRV5056A4, VCC = 3.3 V 图 12. Sensitivity vs Temperature 7 DRV5056 ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019 www.ti.com.cn Typical Characteristics (接 接下页) at TA = 25°C (unless otherwise noted) 30 80 75 Sensitivity (mV/mT) Sensitivity (mV/mT) 28 26 24 22 20 -40 +3STD AVG 3STD 70 65 60 -3STD AVG +3STD 55 50 -20 0 20 40 60 80 100 Temperature (qC) 120 140 160 0 10 20 30 40 50 Temperature (C) D015 DRV5056A4, VCC = 5.0 V 60 70 80 85 D016 DRV5056A6, VCC = 3.3 V 图 13. Sensitivity vs Temperature 图 14. Sensitivity vs Temperature 120 Sensitivity (mV/mT) 115 110 105 100 95 90 -3STD AVG +3STD 85 80 0 10 20 30 40 50 Temperature (C) 60 70 80 85 D017 DRV5056A6, VCC = 5.0 V 图 15. Sensitivity vs Temperature 8 版权 © 2018–2019, Texas Instruments Incorporated DRV5056 www.ti.com.cn ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019 7 Detailed Description 7.1 Overview The DRV5056 is a 3-pin linear Hall effect sensor with fully integrated signal conditioning, temperature compensation circuits, mechanical stress cancellation, and amplifiers. The device operates from 3.3-V and 5-V (±10%) power supplies, measures magnetic flux density, and outputs a proportional analog voltage that is referenced to VCC. 7.2 Functional Block Diagram Element Bias Offset Cancellation Band-Gap Reference VCC Trim Registers GND 0.1 F Temperature Compensation VCC Optional Filter Precision Amplifier Output Driver OUT 7.3 Feature Description 7.3.1 Magnetic Flux Direction As shown in 图 16, the DRV5056 is sensitive to the magnetic field component that is perpendicular to the die inside the package. TO-92 B B SOT-23 PCB 图 16. Direction of Sensitivity 版权 © 2018–2019, Texas Instruments Incorporated 9 DRV5056 ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019 www.ti.com.cn Feature Description (接 接下页) Magnetic flux that travels from the bottom to the top of the package is considered positive. This condition exists when a south magnetic pole is near the top (marked-side) of the package. Magnetic flux that travels from the top to the bottom of the package results in negative millitesla values. N S S PCB N PCB 图 17. The Flux Direction for Positive B 7.3.2 Magnetic Response The DRV5056 outputs an analog voltage according to 公式 1 when in the presence of a magnetic field: ( ) VOUT = VQ + B × Sensitivity (25°C) × (1 + STC × (TA ± 25° C)) where • • • • • • VQ is typically 600 mV B is the applied magnetic flux density Sensitivity(25°C) depends on the device option and VCC STC is typically 0.12%/°C TA is the ambient temperature VOUT is within the VL range (1) As an example, consider the DRV5056A3 with VCC = 3.3 V, a temperature of 50°C, and 67 mT applied. Excluding tolerances, VOUT = 600 mV + 67 mT × (30 mV/mT × [1 + 0.0012/°C × (50°C – 25°C)]) = 2.67 V. The DRV5056 only responds to the flux density of a magnetic south pole. 10 版权 © 2018–2019, Texas Instruments Incorporated DRV5056 www.ti.com.cn ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019 Feature Description (接 接下页) 7.3.3 Sensitivity Linearity The device produces a linear response when the output voltage is within the specified VL range. Outside this range, sensitivity is reduced and nonlinear. 图 18 graphs the magnetic response. OUT VCC VL (MAX) 0.6 V B south 0 mT 图 18. Magnetic Response 公式 2 calculates parameter BL, the minimum linear sensing range at 25°C taking into account the maximum quiescent voltage and sensitivity tolerances. VL(MAX) ± VQ(MAX) BL(MIN) = S(MAX) (2) The parameter SLE defines linearity error as the difference in sensitivity between any two positive B values when the output is within the VL range. 7.3.4 Ratiometric Architecture The DRV5056 has a ratiometric analog architecture that scales the sensitivity linearly with the power-supply voltage. For example, the sensitivity is 5% higher when VCC = 5.25 V compared to VCC = 5 V. This behavior enables external ADCs to digitize a more consistent value regardless of the power-supply voltage tolerance, when the ADC uses VCC as its reference. 公式 3 calculates sensitivity ratiometry error: S(VCC) / S(5V) SRE = 1 t for VCC = 4.5 V to 5.5 V, VCC / 5V SRE = 1 t S(VCC) / S(3.3V) VCC / 3.3V for VCC = 3 V to 3.6 V where • • • S(VCC) is the sensitivity at the current VCC voltage S(5V) or S(3.3V) is the sensitivity when VCC = 5 V or 3.3 V VCC is the current VCC voltage 版权 © 2018–2019, Texas Instruments Incorporated (3) 11 DRV5056 ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019 www.ti.com.cn Feature Description (接 接下页) 7.3.5 Operating VCC Ranges The DRV5056 has two recommended operating VCC ranges: 3 V to 3.6 V and 4.5 V to 5.5 V. When VCC is in the middle region between 3.6 V to 4.5 V, the device continues to function, but sensitivity is less known because there is a crossover threshold near 4 V that adjusts device characteristics. 7.3.6 Sensitivity Temperature Compensation For Magnets Magnets generally produce weaker fields as temperature increases. The DRV5056 compensates by increasing sensitivity with temperature, as defined by the parameter STC. The sensitivity at TA = 125°C is typically 12% higher than at TA = 25°C. 7.3.7 Power-On Time After the VCC voltage is applied, the DRV5056 requires a short initialization time before the output is set. The parameter tON describes the time from when VCC crosses 3 V until OUT is within 5% of VQ, with 0 mT applied and no load attached to OUT. 图 19 shows this timing diagram. VCC 3V tON time Output 95% × V Q Invalid time 图 19. tON Definition 12 版权 © 2018–2019, Texas Instruments Incorporated DRV5056 www.ti.com.cn ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019 Feature Description (接 接下页) 7.3.8 Hall Element Location 图 20 shows the location of the sensing element inside each package option. SOT-23 Top View SOT-23 Side View centered 650 µm ±50 µm ±80 µm TO-92 Top View 2 mm 2 mm TO-92 Side View 1.54 mm 1.61 mm ±50 µm 1030 µm ±115 µm 图 20. Hall Element Location 7.4 Device Functional Modes The DRV5056 has one mode of operation that applies when the Recommended Operating Conditions are met. 版权 © 2018–2019, Texas Instruments Incorporated 13 DRV5056 ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019 www.ti.com.cn 8 Application and Implementation 注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 8.1 Application Information 8.1.1 Selecting the Sensitivity Option Select the highest DRV5056 sensitivity option that can measure the required range of magnetic flux density, so that the output voltage swing is maximized. Larger magnets and greater sensing distances can generally enable better positional accuracy than very small magnets at close distances, because magnetic flux density increases exponentially with the proximity to a magnet. 8.1.2 Temperature Compensation for Magnets The DRV5056 temperature compensation is designed to directly compensate the average drift of neodymium (NdFeB) magnets and partially compensate ferrite magnets. The residual flux density (Br) of a magnet typically reduces by 0.12%/°C for NdFeB, and 0.20%/°C for ferrite. When the operating temperature range of a system is reduced, temperature drift errors are also reduced. 8.1.3 Adding a Low-Pass Filter As illustrated in the Functional Block Diagram, an RC low-pass filter can be added to the device output for the purpose of minimizing voltage noise when the full 20-kHz bandwidth is not needed. This filter can improve the signal-to-noise ratio (SNR) and overall accuracy. Do not connect a capacitor directly to the device output without a resistor in between because doing so can make the output unstable. 8.1.4 Designing for Wire Break Detection Some systems must detect if interconnect wires become open or shorted. The DRV5056 can support this function. First, select a sensitivity option that causes the output voltage to stay within the VL range during normal operation. Second, add a pullup resistor between OUT and VCC. TI recommends a value between 20 kΩ to 100 kΩ, and the current through OUT must not exceed the IO specification, including current going into an external ADC. Then, if the output voltage is ever measured to be within 150 mV of VCC or GND, a fault condition exists. 图 21 shows the circuit, and 表 1 describes fault scenarios. PCB DRV5056 VCC OUT VCC Cable VOUT GND 图 21. Wire Fault Detection Circuit 14 版权 © 2018–2019, Texas Instruments Incorporated DRV5056 www.ti.com.cn ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019 表 1. Fault Scenarios and the Resulting VOUT FAULT SCENARIO VOUT VCC disconnects Close to GND GND disconnects Close to VCC VCC shorts to OUT Close to VCC GND shorts to OUT Close to GND 8.2 Typical Application Mechanical Component N S PCB 图 22. Unipolar Sensing Application 8.2.1 Design Requirements Use the parameters listed in 表 2 for this design example. 表 2. Design Parameters DESIGN PARAMETER EXAMPLE VALUE VCC 3.3 V Magnet 10-mm diameter × 6-mm long cylinder, ferrite Distance from magnet to sensor From 20 mm to 3 mm Maximum B at the sensor at 25°C 72 mT at 3 mm Device option DRV5056A3-Q1 8.2.2 Detailed Design Procedure This design example consists of a mechanical component that moves back and forth, an embedded magnet with the south pole facing the printed-circuit board, and a DRV5056. The DRV5056 outputs an analog voltage that describes the precise position of the component. The component must not contain ferromagnetic materials such as iron, nickel, and cobalt because these materials change the magnetic flux density at the sensor. 版权 © 2018–2019, Texas Instruments Incorporated 15 DRV5056 ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019 www.ti.com.cn When designing a linear magnetic sensing system, always consider these three variables: the magnet, sensing distance, and range of the sensor. Select the DRV5056 with the highest sensitivity that has a BL (linear magnetic sensing range) that is larger than the maximum magnetic flux density in the application. Magnets are made from various ferromagnetic materials that have tradeoffs in cost, drift with temperature, absolute maximum temperature ratings, remanence or residual induction (Br), and coercivity (Hc). The Br and the dimensions of a magnet determine the magnetic flux density (B) produced in 3-dimensional space. For simple magnet shapes, such as rectangular blocks and cylinders, there are simple equations that solve B at a given distance centered with the magnet. 图 23 shows diagrams for 公式 4 and 公式 5. Thickness Thickness Width Distance Length S S B N Distance N Diameter B 图 23. Rectangular Block and Cylinder Magnets Use 公式 4 for the rectangular block shown in 图 23: B= Br Œ ( ( arctan WL 2 2 2D 4D + W + L 2 ) ± arctan Use 公式 5 for the cylinder shown in 图 23: Br D+T D ± B= 2 2 2 (0.5C) + (D + T) (0.5C)2 + D2 ( ( WL 2(D + T) 4(D + T)2 + W2 + L2 )) (4) ) where • • • • • 16 W is width L is length T is thickness (the direction of magnetization) D is distance C is diameter (5) 版权 © 2018–2019, Texas Instruments Incorporated DRV5056 www.ti.com.cn ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019 8.2.3 Application Curve 图 24 shows the magnetic flux density versus distance for a 10-mm × 6-mm cylinder ferrite magnet. 80 Magnetic Flux Density (mT) 70 60 50 40 30 20 10 0 3 6 9 12 15 Distance (mm) 18 21 D001 图 24. Magnetic Profile of a 10-mm × 6-mm Cylindrical Ferrite Magnet 8.3 What to Do and What Not to Do Because the Hall element is sensitive to magnetic fields that are perpendicular to the top of the package, a correct magnet approach must be used for the sensor to detect the field. 图 25 illustrates correct and incorrect approaches. 版权 © 2018–2019, Texas Instruments Incorporated 17 DRV5056 ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019 www.ti.com.cn What to Do and What Not to Do (接 接下页) CORRECT N S S N N S INCORRECT N S 图 25. Correct and Incorrect Magnet Approaches 18 版权 © 2018–2019, Texas Instruments Incorporated DRV5056 www.ti.com.cn ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019 9 Power Supply Recommendations A decoupling capacitor close to the device must be used to provide local energy with minimal inductance. TI recommends using a ceramic capacitor with a value of at least 0.01 µF. 10 Layout 10.1 Layout Guidelines Magnetic fields pass through most nonferromagnetic materials with no significant disturbance. Embedding Hall effect sensors within plastic or aluminum enclosures and sensing magnets on the outside is common practice. Magnetic fields also easily pass through most printed-circuit boards, which makes placing the magnet on the opposite side possible. 10.2 Layout Examples VCC GND VCC GND OUT OUT 图 26. Layout Examples 版权 © 2018–2019, Texas Instruments Incorporated 19 DRV5056 ZHCSI41A – APRIL 2018 – REVISED FEBRUARY 2019 www.ti.com.cn 11 器件和文档支持 11.1 文档支持 11.1.1 相关文档 请参阅如下相关文档: • 德州仪器 (TI),《增量旋转编码器设计注意事项》应用手册 • 德州仪器 (TI),《利用线性霍尔效应传感器测量角度》应用手册 • 德州仪器 (TI),《使用线性霍尔效应传感器的角度测量》 11.2 接收文档更新通知 要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产 品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 11.3 社区资源 下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商“按照原样”提供。这些内容并不构成 TI 技术规范, 并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。 TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. 11.4 商标 E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 11.5 静电放电警告 ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可 能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可 能会导致器件与其发布的规格不相符。 11.6 术语表 SLYZ022 — TI 术语表。 这份术语表列出并解释术语、缩写和定义。 12 机械、封装和可订购信息 以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且 不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。 20 版权 © 2018–2019, Texas Instruments Incorporated PACKAGE OPTION ADDENDUM www.ti.com 23-May-2025 PACKAGING INFORMATION Orderable part number Status Material type (1) (2) Package | Pins Package qty | Carrier RoHS (3) Lead finish/ Ball material MSL rating/ Peak reflow (4) (5) Op temp (°C) Part marking (6) DRV5056A1QDBZR Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 56A1 DRV5056A1QDBZR.A Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 56A1 DRV5056A1QDBZR.B Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 56A1 DRV5056A1QDBZT Obsolete Production SOT-23 (DBZ) | 3 - - Call TI Call TI -40 to 125 56A1 DRV5056A1QLPG Active Production TO-92 (LPG) | 3 1000 | BULK Yes SN N/A for Pkg Type -40 to 125 56A1 DRV5056A1QLPG.B Active Production TO-92 (LPG) | 3 1000 | BULK Yes SN N/A for Pkg Type -40 to 125 56A1 DRV5056A1QLPGM Active Production TO-92 (LPG) | 3 3000 | AMMO Yes SN N/A for Pkg Type -40 to 125 56A1 DRV5056A1QLPGM.A Active Production TO-92 (LPG) | 3 3000 | AMMO Yes SN N/A for Pkg Type -40 to 125 56A1 DRV5056A1QLPGM.B Active Production TO-92 (LPG) | 3 3000 | AMMO Yes SN N/A for Pkg Type -40 to 125 56A1 DRV5056A2QDBZR Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 56A2 DRV5056A2QDBZR.A Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 56A2 DRV5056A2QDBZR.B Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 56A2 DRV5056A2QDBZT Obsolete Production SOT-23 (DBZ) | 3 - - Call TI Call TI -40 to 125 56A2 DRV5056A2QLPG Active Production TO-92 (LPG) | 3 1000 | BULK Yes SN N/A for Pkg Type -40 to 125 56A2 DRV5056A2QLPG.B Active Production TO-92 (LPG) | 3 1000 | BULK Yes SN N/A for Pkg Type -40 to 125 56A2 DRV5056A2QLPGM Active Production TO-92 (LPG) | 3 3000 | AMMO Yes SN N/A for Pkg Type -40 to 125 56A2 DRV5056A2QLPGM.A Active Production TO-92 (LPG) | 3 3000 | AMMO Yes SN N/A for Pkg Type -40 to 125 56A2 DRV5056A2QLPGM.B Active Production TO-92 (LPG) | 3 3000 | AMMO Yes SN N/A for Pkg Type -40 to 125 56A2 DRV5056A3QDBZR Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 56A3 DRV5056A3QDBZR.A Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 56A3 DRV5056A3QDBZR.B Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 56A3 DRV5056A3QDBZT Obsolete Production SOT-23 (DBZ) | 3 - - Call TI Call TI -40 to 125 56A3 DRV5056A3QLPG Active Production TO-92 (LPG) | 3 1000 | BULK Yes SN N/A for Pkg Type -40 to 125 56A3 DRV5056A3QLPG.B Active Production TO-92 (LPG) | 3 1000 | BULK Yes SN N/A for Pkg Type -40 to 125 56A3 DRV5056A3QLPGM Active Production TO-92 (LPG) | 3 3000 | AMMO Yes SN N/A for Pkg Type -40 to 125 56A3 DRV5056A3QLPGM.A Active Production TO-92 (LPG) | 3 3000 | AMMO Yes SN N/A for Pkg Type -40 to 125 56A3 DRV5056A3QLPGM.B Active Production TO-92 (LPG) | 3 3000 | AMMO Yes SN N/A for Pkg Type -40 to 125 56A3 DRV5056A4QDBZR Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 56A4 DRV5056A4QDBZR.A Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 56A4 Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com Orderable part number (1) 23-May-2025 Status Material type (1) (2) Package | Pins Package qty | Carrier RoHS Lead finish/ Ball material MSL rating/ Peak reflow (4) (5) Yes SN Level-2-260C-1 YEAR -40 to 125 56A4 (3) 3000 | LARGE T&R Op temp (°C) Part marking (6) DRV5056A4QDBZR.B Active Production SOT-23 (DBZ) | 3 DRV5056A4QDBZT Obsolete Production SOT-23 (DBZ) | 3 - - Call TI Call TI -40 to 125 56A4 DRV5056A4QLPG Active Production TO-92 (LPG) | 3 1000 | BULK Yes SN N/A for Pkg Type -40 to 125 56A4 DRV5056A4QLPG.B Active Production TO-92 (LPG) | 3 1000 | BULK Yes SN N/A for Pkg Type -40 to 125 56A4 DRV5056A4QLPGM Active Production TO-92 (LPG) | 3 3000 | AMMO Yes SN N/A for Pkg Type -40 to 125 56A4 DRV5056A4QLPGM.A Active Production TO-92 (LPG) | 3 3000 | AMMO Yes SN N/A for Pkg Type -40 to 125 56A4 DRV5056A4QLPGM.B Active Production TO-92 (LPG) | 3 3000 | AMMO Yes SN N/A for Pkg Type -40 to 125 56A4 DRV5056A6QDBZR Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 56A6 DRV5056A6QDBZR.A Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 56A6 DRV5056A6QDBZR.B Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 56A6 DRV5056A6QDBZT Obsolete Production SOT-23 (DBZ) | 3 - - Call TI Call TI -40 to 125 56A6 DRV5056Z1QDBZR Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 56Z1 DRV5056Z1QDBZR.A Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 56Z1 DRV5056Z1QDBZR.B Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 56Z1 DRV5056Z1QDBZT Obsolete Production SOT-23 (DBZ) | 3 - - Call TI Call TI -40 to 125 56Z1 DRV5056Z2QDBZR Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 56Z2 DRV5056Z2QDBZR.A Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 56Z2 DRV5056Z2QDBZR.B Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 56Z2 DRV5056Z2QDBZT Obsolete Production SOT-23 (DBZ) | 3 - - Call TI Call TI -40 to 125 56Z2 DRV5056Z3QDBZR Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 56Z3 DRV5056Z3QDBZR.A Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 56Z3 DRV5056Z3QDBZR.B Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 56Z3 DRV5056Z3QDBZT Obsolete Production SOT-23 (DBZ) | 3 - - Call TI Call TI -40 to 125 56Z3 DRV5056Z4QDBZR Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 56Z4 DRV5056Z4QDBZR.A Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 56Z4 DRV5056Z4QDBZR.B Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 56Z4 DRV5056Z4QDBZT Obsolete Production SOT-23 (DBZ) | 3 - - Call TI Call TI -40 to 125 56Z4 Status: For more details on status, see our product life cycle. Addendum-Page 2 PACKAGE OPTION ADDENDUM www.ti.com 23-May-2025 (2) Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF DRV5056 : • Automotive : DRV5056-Q1 NOTE: Qualified Version Definitions: • Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects Addendum-Page 3 PACKAGE MATERIALS INFORMATION www.ti.com 4-Jun-2025 TAPE AND REEL INFORMATION REEL DIMENSIONS TAPE DIMENSIONS K0 P1 B0 W Reel Diameter Cavity A0 B0 K0 W P1 A0 Dimension designed to accommodate the component width Dimension designed to accommodate the component length Dimension designed to accommodate the component thickness Overall width of the carrier tape Pitch between successive cavity centers Reel Width (W1) QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE Sprocket Holes Q1 Q2 Q1 Q2 Q3 Q4 Q3 Q4 User Direction of Feed Pocket Quadrants *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) DRV5056A1QDBZR SOT-23 DBZ 3 3000 180.0 8.4 DRV5056A1QDBZR SOT-23 DBZ 3 3000 180.0 DRV5056A2QDBZR SOT-23 DBZ 3 3000 180.0 DRV5056A2QDBZR SOT-23 DBZ 3 3000 DRV5056A2QDBZR SOT-23 DBZ 3 3000 DRV5056A3QDBZR SOT-23 DBZ 3 DRV5056A3QDBZR SOT-23 DBZ DRV5056A4QDBZR SOT-23 DBZ DRV5056A4QDBZR SOT-23 DRV5056A6QDBZR DRV5056Z1QDBZR 3.15 2.77 1.22 4.0 8.0 Q3 8.4 3.2 2.85 1.3 4.0 8.0 Q3 8.4 3.15 2.77 1.22 4.0 8.0 Q3 180.0 8.4 3.2 2.85 1.3 4.0 8.0 Q3 180.0 8.4 3.2 2.85 1.3 4.0 8.0 Q3 3000 180.0 8.4 3.2 2.85 1.3 4.0 8.0 Q3 3 3000 180.0 8.4 3.2 2.85 1.3 4.0 8.0 Q3 3 3000 180.0 8.4 3.2 2.85 1.3 4.0 8.0 Q3 DBZ 3 3000 180.0 8.4 3.2 2.85 1.3 4.0 8.0 Q3 SOT-23 DBZ 3 3000 180.0 8.4 3.2 2.85 1.3 4.0 8.0 Q3 SOT-23 DBZ 3 3000 180.0 8.4 3.2 2.85 1.3 4.0 8.0 Q3 DRV5056Z1QDBZR SOT-23 DBZ 3 3000 180.0 8.4 3.2 2.85 1.3 4.0 8.0 Q3 DRV5056Z2QDBZR SOT-23 DBZ 3 3000 180.0 8.4 3.15 2.77 1.22 4.0 8.0 Q3 DRV5056Z2QDBZR SOT-23 DBZ 3 3000 180.0 8.4 3.2 2.85 1.3 4.0 8.0 Q3 DRV5056Z3QDBZR SOT-23 DBZ 3 3000 180.0 8.4 3.2 2.85 1.3 4.0 8.0 Q3 DRV5056Z4QDBZR SOT-23 DBZ 3 3000 180.0 8.4 3.2 2.85 1.3 4.0 8.0 Q3 Pack Materials-Page 1 W Pin1 (mm) Quadrant PACKAGE MATERIALS INFORMATION www.ti.com 4-Jun-2025 Device DRV5056Z4QDBZR Package Package Pins Type Drawing SPQ SOT-23 3000 DBZ 3 Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) 180.0 8.4 Pack Materials-Page 2 3.2 B0 (mm) K0 (mm) P1 (mm) 2.85 1.3 4.0 W Pin1 (mm) Quadrant 8.0 Q3 PACKAGE MATERIALS INFORMATION www.ti.com 4-Jun-2025 TAPE AND REEL BOX DIMENSIONS Width (mm) W L H *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) DRV5056A1QDBZR SOT-23 DBZ 3 3000 213.0 191.0 35.0 DRV5056A1QDBZR SOT-23 DBZ 3 3000 210.0 185.0 35.0 DRV5056A2QDBZR SOT-23 DBZ 3 3000 213.0 191.0 35.0 DRV5056A2QDBZR SOT-23 DBZ 3 3000 210.0 185.0 35.0 DRV5056A2QDBZR SOT-23 DBZ 3 3000 210.0 185.0 35.0 DRV5056A3QDBZR SOT-23 DBZ 3 3000 210.0 185.0 35.0 DRV5056A3QDBZR SOT-23 DBZ 3 3000 210.0 185.0 35.0 DRV5056A4QDBZR SOT-23 DBZ 3 3000 210.0 185.0 35.0 DRV5056A4QDBZR SOT-23 DBZ 3 3000 210.0 185.0 35.0 DRV5056A6QDBZR SOT-23 DBZ 3 3000 210.0 185.0 35.0 DRV5056Z1QDBZR SOT-23 DBZ 3 3000 210.0 185.0 35.0 DRV5056Z1QDBZR SOT-23 DBZ 3 3000 210.0 185.0 35.0 DRV5056Z2QDBZR SOT-23 DBZ 3 3000 213.0 191.0 35.0 DRV5056Z2QDBZR SOT-23 DBZ 3 3000 210.0 185.0 35.0 DRV5056Z3QDBZR SOT-23 DBZ 3 3000 210.0 185.0 35.0 DRV5056Z4QDBZR SOT-23 DBZ 3 3000 210.0 185.0 35.0 DRV5056Z4QDBZR SOT-23 DBZ 3 3000 210.0 185.0 35.0 Pack Materials-Page 3 PACKAGE OUTLINE DBZ0003A SOT-23 - 1.12 mm max height SCALE 4.000 SMALL OUTLINE TRANSISTOR C 2.64 2.10 1.4 1.2 PIN 1 INDEX AREA 1.12 MAX B A 0.1 C 1 0.95 (0.125) 3.04 2.80 1.9 3 (0.15) NOTE 4 3X 0.5 0.3 0.2 2 C A B 4X 0 -15 (0.95) 0.10 TYP 0.01 4X 4 -15 0.25 GAGE PLANE 0 -8 TYP 0.20 TYP 0.08 0.6 TYP 0.2 SEATING PLANE 4214838/F 08/2024 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Reference JEDEC registration TO-236, except minimum foot length. 4. Support pin may differ or may not be present. 5. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25mm per side www.ti.com EXAMPLE BOARD LAYOUT DBZ0003A SOT-23 - 1.12 mm max height SMALL OUTLINE TRANSISTOR PKG 3X (1.3) 1 3X (0.6) SYMM 3 2X (0.95) 2 (R0.05) TYP (2.1) LAND PATTERN EXAMPLE SCALE:15X SOLDER MASK OPENING METAL SOLDER MASK OPENING METAL UNDER SOLDER MASK 0.07 MIN ALL AROUND 0.07 MAX ALL AROUND NON SOLDER MASK DEFINED (PREFERRED) SOLDER MASK DEFINED SOLDER MASK DETAILS 4214838/F 08/2024 NOTES: (continued) 5. Publication IPC-7351 may have alternate designs. 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com EXAMPLE STENCIL DESIGN DBZ0003A SOT-23 - 1.12 mm max height SMALL OUTLINE TRANSISTOR PKG 3X (1.3) 1 3X (0.6) SYMM 3 2X(0.95) 2 (R0.05) TYP (2.1) SOLDER PASTE EXAMPLE BASED ON 0.125 THICK STENCIL SCALE:15X 4214838/F 08/2024 NOTES: (continued) 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 8. Board assembly site may have different recommendations for stencil design. www.ti.com PACKAGE OUTLINE LPG0003A TO-92 - 5.05 mm max height SCALE 1.300 TRANSISTOR OUTLINE 4.1 3.9 3.25 3.05 3X 0.55 0.40 5.05 MAX 3 1 3X (0.8) 3X 15.5 15.1 3X 0.48 0.35 3X 2X 1.27 0.05 0.51 0.36 2.64 2.44 2.68 2.28 1.62 1.42 2X (45 ) 1 (0.5425) 2 3 0.86 0.66 4221343/C 01/2018 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. www.ti.com EXAMPLE BOARD LAYOUT LPG0003A TO-92 - 5.05 mm max height TRANSISTOR OUTLINE 0.05 MAX ALL AROUND TYP FULL R TYP METAL TYP (1.07) 3X ( 0.75) VIA 2X METAL (1.7) 2X (1.7) 2 1 2X SOLDER MASK OPENING 3 2X (1.07) (R0.05) TYP (1.27) SOLDER MASK OPENING (2.54) LAND PATTERN EXAMPLE NON-SOLDER MASK DEFINED SCALE:20X 4221343/C 01/2018 www.ti.com TAPE SPECIFICATIONS LPG0003A TO-92 - 5.05 mm max height TRANSISTOR OUTLINE 0 13.0 12.4 1 0 1 1 MAX 21 18 2.5 MIN 6.5 5.5 9.5 8.5 0.25 0.15 19.0 17.5 3.8-4.2 TYP 6.55 6.15 12.9 12.5 0.45 0.35 4221343/C 01/2018 www.ti.com 重要通知和免责声明 TI“按原样”提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。 这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行 复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索 赔、损害、成本、损失和债务,TI 对此概不负责。 TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE 邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司
DRV5056A2QLPG 价格&库存

很抱歉,暂时无法提供与“DRV5056A2QLPG”相匹配的价格&库存,您可以联系我们找货

免费人工找货
DRV5056A2QLPG
  •  国内价格
  • 1+25.58520
  • 200+21.32100
  • 500+17.05680
  • 1000+14.21400

库存:0

DRV5056A2QLPG
  •  国内价格 香港价格
  • 1+16.299021+2.04376
  • 5+14.442335+1.81094
  • 10+13.7587910+1.72523
  • 25+12.9421425+1.62283
  • 50+12.3864050+1.55315
  • 100+11.87645100+1.48921
  • 500+10.85387500+1.36098
  • 1000+10.473191000+1.31325
  • 5000+9.706745000+1.21714

库存:162