0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
DRV5057A2QLPGM

DRV5057A2QLPGM

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    TO-92-3

  • 描述:

    DRIVER

  • 数据手册
  • 价格&库存
DRV5057A2QLPGM 数据手册
DRV5057 ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020 DRV5057 具有 PWM 输出的线性霍尔效应传感器 1 特性 3 说明 PWM 输出线性霍尔效应磁传感器 由 3.3V 和 5V 电源供电 2kHz 时钟输出,静态占空比为 50% 磁性灵敏度选项(VCC = 5V 时): – A1/Z1:2%D/mT,±21mT 范围 – A2/Z2:1%D/mT,±42mT 范围 – A3/Z3:0.5%D/mT,±84mT 范围 – A4/Z4:0.25%D/mT,±168mT 范围 • 开漏输出,具有 20mA 灌电流能力 • 磁体温度漂移补偿(针对 A1/A2/A3/A4 版本提供, 针对 Z1/Z2/Z3/Z4 版本不提供) • 行业标准封装: – 表面贴装 SOT-23 – 穿孔 TO-92 DRV5057 是一款线性霍尔效应传感器,可按比例响应 磁通量密度。该器件可用于在各种应用中进行精确的位 置检测。 • • • • 2 应用 • • • • • • • • • 精确位置检测 工业自动化和机器人 家用电器 游戏手柄、踏板、键盘、触发器 高度找平、倾斜和重量测量 流体流速测量 医疗设备 绝对值角度编码 电流检测 VCC 它可检测垂直于封装顶部的磁通量,而且两个封装选项 提供不同的检测方向。 由于 PWM 信号基于边沿到边沿定时,因此当存在电压 噪声或接地电势失配时,可保持信号完整性。该信号适 合嘈杂环境中的远距离传输,始终存在的时钟使得系统 控制器能够确认具备良好的互连。此外,该器件具有磁 体温度补偿功能,可抵消磁体漂移,在 –40°C 至 +125°C 的宽温度范围内实现线性性能。还提供了无磁 体漂移温度补偿的器件选项。 器件信息 (1) 封装 器件型号 DRV5057 (1) 封装尺寸(标称值) SOT-23 (3) 2.92mm × 1.30mm TO-92 (3) 4.00mm × 3.15mm 如需了解所有可用封装,请参阅数据表末尾的封装选项附录。 PWM Output VDD DRV5057 VCC 该器件由 3.3V 或 5V 电源供电。当不存在磁场时,输 出产生占空比为 50% 的时钟。输出占空比会随施加的 磁通量密度呈线性变化,四个灵敏度选项可以根据所需 的感应范围最大限度扩大输出动态范围。南北磁极产生 唯 一 的 输 出 。 典 型 的 脉 宽 调 制 (PWM) 载 波 频 率 为 2kHz。 Controller Duty Cycle 8% 25% 38% 50% 69% 75% 92% VOH GPIO OUT GND VOL Time North 0 mT South Magnetic Field 典型原理图 磁响应 本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。 English Data Sheet: SBAS646 DRV5057 www.ti.com.cn ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020 Table of Contents 1 特性................................................................................... 1 2 应用................................................................................... 1 3 说明................................................................................... 1 4 Revision History.............................................................. 2 5 Pin Configuration and Functions...................................3 Pin Functions.................................................................... 3 6 Specifications.................................................................. 3 6.1 Absolute Maximum Ratings........................................ 3 6.2 ESD Ratings............................................................... 4 6.3 Recommended Operating Conditions.........................4 6.4 Thermal Information....................................................4 6.5 Electrical Characteristics.............................................4 6.6 Magnetic Characteristics.............................................4 6.7 Typical Characteristics................................................ 6 7 Detailed Description......................................................10 7.1 Overview................................................................... 10 7.2 Functional Block Diagram......................................... 10 7.3 Feature Description...................................................10 7.4 Device Functional Modes..........................................13 8 Application and Implementation.................................. 14 8.1 Application Information............................................. 14 8.2 Typical Applications.................................................. 15 8.3 What to Do and What Not to Do............................... 23 9 Power Supply Recommendations................................24 10 Layout...........................................................................24 10.1 Layout Guidelines................................................... 24 10.2 Layout Examples ................................................... 24 11 Device and Documentation Support..........................25 11.1 Documentation Support.......................................... 25 11.2 接收文档更新通知................................................... 25 11.3 支持资源..................................................................25 11.4 Trademarks............................................................. 25 11.5 静电放电警告...........................................................25 11.6 术语表..................................................................... 25 12 Mechanical, Packaging, and Orderable Information.................................................................... 25 4 Revision History Changes from Revision * (November 2018) to Revision A (August 2020) Page • • • • 更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1 添加了零 TC 灵敏度选项.................................................................................................................................... 1 Added Zero TC information to 节 6.6 .................................................................................................................4 Fixed labels for some of the plots for graphs for DRV5057 A1/A2/A3/A4 devices and added Zero TC characteristics plots for DRV5057 Z1/Z2/Z3/Z4 devices in 节 6.7 ..................................................................... 6 • Updated 节 7.3.4 section for Zero TC options.................................................................................................. 12 2 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: DRV5057 English Data Sheet: SBAS646 DRV5057 www.ti.com.cn ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020 5 Pin Configuration and Functions VCC 1 3 OUT GND 2 Not to scale 图 5-1. DBZ Package 3-Pin SOT-23 Top View 1 2 3 VCC GND OUT 图 5-2. LPG Package 3-Pin TO-92 Top View Pin Functions PIN NAME TYPE DESCRIPTION SOT-23 TO-92 GND 3 2 Ground Ground reference OUT 2 3 Output Analog output VCC 1 1 Power Power supply. Connect this pin to a ceramic capacitor to ground with a value of at least 0.01 µF. 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) VCC MIN MAX 7 Power supply voltage VCC –0.3 Output voltage OUT –0.3 Output current OUT UNIT V 6 V 30 mA B Magnetic flux density Unlimited TJ Operating junction temperature –40 150 °C Tstg Storage temperature –65 150 °C (1) T Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated 3 Product Folder Links: DRV5057 English Data Sheet: SBAS646 DRV5057 www.ti.com.cn ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020 6.2 ESD Ratings VALUE V(ESD) (1) (2) Human-body model (HBM), per ANSI/ESDA/JEDEC Electrostatic discharge JS-001(1) ±3000 Charged-device model (CDM), per JEDEC specification JESD22-C101(2) UNIT V ±750 JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN MAX 3 3.63 UNIT 4.5 5.5 5.5 V VCC Power-supply voltage(1) VO Output pullup voltage 0 IO Output continuous current 0 20 mA TA Operating ambient temperature(2) –40 125 °C (1) (2) V There are two isolated operating VCC ranges. For more information see the 节 7.3.3 section. Power dissipation and thermal limits must be observed. 6.4 Thermal Information DRV5057 THERMAL METRIC(1) SOT-23 (DBZ) TO-92 (LPG) 3 PINS 3 PINS 170 121 °C/W RθJC(top) Junction-to-case (top) thermal resistance 66 67 °C/W RθJB Junction-to-board thermal resistance 49 97 °C/W ΨJT Junction-to-top characterization parameter 1.7 7.6 °C/W ΨJB Junction-to-board characterization parameter 48 97 °C/W RθJA (1) Junction-to-ambient thermal resistance UNIT For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 6.5 Electrical Characteristics for VCC = 3 V to 3.63 V and 4.5 V to 5.5 V, over operating free-air temperature range (unless otherwise noted) PARAMETER ICC TEST CONDITIONS 7-4)(2) B(1) tON Power-on time (see 图 fPWM PWM carrier frequency DJ Duty cycle peak-to-peak jitter IOZ High-impedance output leakage current VCC = 5 V VOL Low-level output voltage (1) (2) MIN Operating supply current = 0 mT, no load on OUT 1.8 From change in B to change in OUT TYP MAX 6 10 mA 0.6 0.9 ms 2.0 2.2 0.15 kHz %D(1) ±0.1 IOUT = 20 mA UNIT 100 nA 0.4 V This unit is a percentage of duty cycle. tON is the time from when VCC goes above 3 V until the first rising edge of the first valid pulse. 6.6 Magnetic Characteristics for VCC = 3 V to 3.63 V and 4.5 V to 5.5 V, over operating free-air temperature range (unless otherwise noted) PARAMETER DL 4 TEST CONDITIONS Linear duty cycle range MIN 8 Submit Document Feedback TYP MAX UNIT 92 %D(1) Copyright © 2023 Texas Instruments Incorporated Product Folder Links: DRV5057 English Data Sheet: SBAS646 DRV5057 www.ti.com.cn ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020 for VCC = 3 V to 3.63 V and 4.5 V to 5.5 V, over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS DCL Clamped-low duty cycle B(1) < –250 mT DCH Clamped-high duty cycle B > 250 mT DQ Quiescent duty cycle(2) B = 0 mT, TA = 25°C, VCC = 3.3 V or 5 V VQΔL Quiescent duty cycle lifetime drift TYP MAX 5.3 6 6.7 93.3 94 94.7 46 50 54 High-temperature operating stress for 1000 hours VCC = 5 V, TA = 25°C S MIN Sensitivity(5) VCC = 3.3 V, TA = 25°C UNIT %D %D < 0.5 % DRV5057A1/Z1 1.88 2 2.12 DRV5057A2/Z2 0.94 1 1.06 DRV5057A3/Z3 0.47 0.5 0.53 DRV5057A4/Z4 0.23 0.25 0.27 DRV5057A1/Z1 1.13 1.2 1.27 DRV5057A2/Z2 0.56 0.6 0.64 DRV5057A3/Z3 0.28 0.3 0.32 DRV5057A4/Z4 0.138 0.15 0.162 DRV5057A1/Z1 ±21 DRV5057A2/Z2 ±42 DRV5057A3/Z3 ±84 DRV5057A4/Z4 ±168 %D/mT BL Linear magnetic flux density sensing range(2) (3) (5) VCC = 5 V, TA = 25°C STC Sensitivity temperature compensation for magnets(4) DRV5057A1, DRV5057A2, DRV5057A3, DRV5057A4 0.12 %/°C STCz Sensitivity temperature compensation for magnets(4) (5) DRV5057Z1, DRV5057Z2, DRV5057Z3, DRV5057Z4 0 %/°C SLE Sensitivity linearity error(2) Output duty cycle is within DL ±1 % RSE Sensitivity error over operating VCC range Output duty cycle is within DL ±1 % SΔL Quiescent error over operating VCC range < 0.5 % (1) (2) (3) (4) (5) mT B is the applied magnetic flux density. See the 节 7.3.2 section. BL describes the minimum linear sensing range at 25°C taking into account the maximum VQ and sensitivity tolerances. STC describes the rate the device increases Sensitivity with temperature. For more information, see the 节 7.3.4 section and 图 6-7 to 图 6-20. Product Preview data only for DRV5055Z1 - DRV5055Z4 device options. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated 5 Product Folder Links: DRV5057 English Data Sheet: SBAS646 DRV5057 www.ti.com.cn ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020 6.7 Typical Characteristics for TA = 25°C (unless otherwise noted) 2.2 2.2 2 2 5057A1 5057A2 5057A3 5057A4 1.6 1.4 1.2 1 0.8 0.6 1.6 1.4 1.2 1 0.8 0.6 0.4 0.4 0.2 0.2 0 4.5 4.6 4.7 4.8 4.9 5 5.1 Supply (V) 5.2 5.3 5.4 5057Z1 5057Z2 5057Z3 5057Z4 1.8 Sensitivity (%D/mT) Sensitivity (%D/mT) 1.8 0 4.5 5.5 4.6 4.7 4.8 D010 1.3 1.3 1.2 1.2 Sensitivity (%D/mT) Sensitivity (%D/mT) 0.8 0.7 0.6 0.5 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.3 0.2 0.2 0.1 0.1 3.1 3.2 3.3 Supply (V) 3.4 3.5 3 3.6 3.1 3.2 D011 3.5 3.6 10 10 VCC = 3.3 V VCC = 5.0 V 9 VCC = 3.3 V VCC = 5.0 V 9 8 8 Supply Current (mA) Supply Current (mA) 3.4 图 6-4. Sensitivity vs Supply Voltage 图 6-3. Sensitivity vs Supply Voltage 7 6 5 4 7 6 5 4 3 3 2 2 -20 0 20 40 60 80 Temperature (qC) 100 120 1 -40 140 -20 D022 0 20 40 60 80 Temperature (qC) 100 120 140 DRV5057Z1/Z2/Z3/Z4 DRV5057A1/A2/A3/A4 图 6-5. Supply Current vs Temperature 6 3.3 Supply (V) VCC = 3.3 V VCC = 3.3 V 1 -40 5.5 5057Z1 5057Z2 5057Z3 5057Z4 1 0.4 3 5.4 1.1 5057A1 5057A2 5057A3 5057A4 0.9 5.3 图 6-2. Sensitivity vs Supply Voltage 图 6-1. Sensitivity vs Supply Voltage 1 5.2 VCC = 5.0 V VCC = 5.0 V 1.1 4.9 5 5.1 Supply (V) 图 6-6. Supply Current vs Temperature Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: DRV5057 English Data Sheet: SBAS646 DRV5057 www.ti.com.cn ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020 2.5 2.5 2.25 2.25 2 Sensitivity (%D/mT) Sensitivity (%D/mT) 2 +3STD AVG -3STD 1.75 1.5 1.25 1 0.75 0.5 0 -40 -20 0 20 40 60 80 Temperature (qC) 100 120 1.5 1.25 1 0.75 0.5 +3STD AVG -3STD 0.25 1.75 0.25 0 -40 140 -20 0 DRV5057A1, VCC = 5.0 V 100 120 140 图 6-8. Sensitivity vs Temperature 2.5 2.5 2.25 2.25 2 Sensitivity (%D/mT) 2 Sensitivity (%D/mT) 40 60 80 Temperature (qC) DRV5057A1, VCC = 3.3 V 图 6-7. Sensitivity vs Temperature 1.75 1.5 1.25 1 0.75 0.5 0 -40 -20 0 20 40 60 80 Temperature (qC) 100 120 1.75 1.5 1.25 1 0.75 0.5 +3STD AVG -3STD 0.25 +3STD AVG -3STD 0.25 0 -40 140 -20 0 DRV5057Z1, VCC = 5.0 V +3STD AVG -3STD -20 0 20 40 60 80 Temperature (qC) 40 60 80 Temperature (qC) 100 120 140 图 6-10. Sensitivity vs Temperature Sensitivity (%D/mT) 1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -40 20 DRV5057Z1, VCC = 3.3 V 图 6-9. Sensitivity vs Temperature Sensitivity (%D/mT) 20 100 120 140 1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -40 +3STD AVG -3STD -20 DRV5057A2, VCC = 5.0 V 0 20 40 60 80 Temperature (qC) 100 120 140 DRV5057A2, VCC = 3.3 V 图 6-11. Sensitivity vs Temperature 图 6-12. Sensitivity vs Temperature Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated 7 Product Folder Links: DRV5057 English Data Sheet: SBAS646 DRV5057 www.ti.com.cn 1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -40 Sensitivity (%D/mT) Sensitivity (%D/mT) ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020 +3STD AVG -3STD -20 0 20 40 60 80 Temperature (qC) 100 120 140 1.5 1.4 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 -40 +3STD AVG -3STD -20 0 DRV5057Z2, VCC = 5.0 V 120 140 1 +3STD AVG -3STD 0.7 0.6 0.5 0.4 0.3 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.2 0.1 0.1 0 -40 -20 0 20 40 60 80 Temperature (qC) 100 120 +3STD AVG -3STD 0.9 Sensitivity (%D/mT) 0.8 Sensitivity (%D/mT) 100 图 6-14. Sensitivity vs Temperature 1 0.9 0 -40 140 -20 0 DRV5057A3, VCC = 5.0 V 20 40 60 80 Temperature (qC) 100 120 140 DRV5057A3, VCC = 3.3 V 图 6-15. Sensitivity vs Temperature 图 6-16. Sensitivity vs Temperature 1 1 +3STD AVG -3STD 0.9 0.7 0.6 0.5 0.4 0.3 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.2 0.1 0.1 0 -40 -20 0 20 40 60 80 Temperature (qC) 100 120 140 +3STD AVG -3STD 0.9 Sensitivity (%D/mT) 0.8 Sensitivity (%D/mT) 40 60 80 Temperature (qC) DRV5057Z2, VCC = 3.3 V 图 6-13. Sensitivity vs Temperature 0 -40 -20 DRV5057Z3, VCC = 5.0 V 0 20 40 60 80 Temperature (qC) 100 120 140 DRV5057Z3, VCC = 3.3 V 图 6-17. Sensitivity vs Temperature 8 20 图 6-18. Sensitivity vs Temperature Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: DRV5057 English Data Sheet: SBAS646 DRV5057 www.ti.com.cn ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020 0.5 0.5 +3STD AVG -3STD 0.45 0.4 Sensitivity (%D/mT) Sensitivity (%D/mT) 0.4 0.35 0.3 0.25 0.2 0.15 0.35 0.3 0.25 0.2 0.15 0.1 0.1 0.05 0.05 0 -40 -20 0 20 40 60 80 Temperature (qC) 100 120 +3STD AVG -3STD 0.45 0 -40 140 -20 0 DRV5057A4, VCC = 5.0 V 100 120 140 图 6-20. Sensitivity vs Temperature 0.5 0.5 +3STD AVG -3STD 0.45 0.35 0.3 0.25 0.2 0.15 0.4 0.35 0.3 0.25 0.2 0.15 0.1 0.1 0.05 0.05 -20 0 20 40 60 80 Temperature (qC) 100 120 140 +3STD AVG -3STD 0.45 Sensitivity (%D/mT) 0.4 Sensitivity (%D/mT) 40 60 80 Temperature (qC) DRV5057A4, VCC = 3.3 V 图 6-19. Sensitivity vs Temperature 0 -40 20 0 -40 DRV5057Z4, VCC = 5.0 V -20 0 20 40 60 80 Temperature (qC) 100 120 140 DRV5057Z4, VCC = 3.3 V 图 6-21. Sensitivity vs Temperature 图 6-22. Sensitivity vs Temperature Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated 9 Product Folder Links: DRV5057 English Data Sheet: SBAS646 DRV5057 www.ti.com.cn ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020 7 Detailed Description 7.1 Overview The DRV5057 is a 3-pin pulse-width modulation (PWM) output Hall effect sensor with fully integrated signal conditioning, temperature compensation circuits, mechanical stress cancellation, and amplifiers. The device operates from 3.3-V and 5-V (±10%) power supplies, measures magnetic flux density, and outputs a pulse-width modulated, 2-kHz digital signal. 7.2 Functional Block Diagram Element Bias VCC Bandgap Reference 0 …F Offset Cancellation GND Trim Registers Temperature Compensation VCC Precision Amplifier OUT PWM Driver 7.3 Feature Description 7.3.1 Magnetic Flux Direction As shown in 图 7-1, the DRV5057 is sensitive to the magnetic field component that is perpendicular to the top of the package. TO-92 B B SOT-23 PCB 图 7-1. Direction of Sensitivity 10 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: DRV5057 English Data Sheet: SBAS646 DRV5057 www.ti.com.cn ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020 Magnetic flux that travels from the bottom to the top of the package is considered positive in this document. This condition exists when a south magnetic pole is near the top (marked-side) of the package. Magnetic flux that travels from the top to the bottom of the package results in negative millitesla values. 图 7-2 shows flux direction. N S S PCB N PCB 图 7-2. Flux Direction for Positive B 7.3.2 Sensitivity Linearity The device produces a pulse-width modulated digital signal output. As shown in 图 7-3, the duty-cycle of the PWM output signal is proportional to the magnetic field detected by the Hall element of the device. If there is no magnetic field present, the duty cycle is 50%. The DRV5057 can detect both magnetic north and south poles. The output duty cycle maintains a linear relationship with the input magnetic field from 8% to 92%. PWM Output Duty Cycle 8% 25% 38% 50% 69% 75% 92% VOH VOL Time North 0 mT South Magnetic Field 图 7-3. Magnetic Response 7.3.3 Operating VCC Ranges The DRV5057 has two recommended operating VCC ranges: 3 V to 3.63 V and 4.5 V to 5.5 V. When VCC is in the middle region between 3.63 V to 4.5 V, the device continues to function but sensitivity is less known because there is a crossover threshold near 4 V that adjusts device characteristics. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated 11 Product Folder Links: DRV5057 English Data Sheet: SBAS646 DRV5057 www.ti.com.cn ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020 7.3.4 Sensitivity Temperature Compensation for Magnets Magnets generally produce weaker fields as temperature increases. The DRV5057A1 - DRV5057A4 device options have a temperature compensation feature that is designed to directly compensate the average drift of neodymium (NdFeB) magnets and partially compensate ferrite magnets. The residual induction (Br) of a magnet typically reduces by 0.12%/°C for NdFeB, and 0.20%/°C for ferrite. When the operating temperature of a system is reduced, temperature drift errors are also reduced. The DRV5057Z1 - DRV5057Z4 devices options do not compensate for the drift external magnets 7.3.5 Power-On Time After the VCC voltage is applied, the DRV5057 requires a short initialization time before the output is set. The parameter tON describes the time from when VCC crosses 3 V until OUT is within 5% of VQ, with 0 mT applied and no load attached to OUT. 图 7-4 shows this timing diagram. VCC 3V tON time Output 95% × V Q Invalid time 图 7-4. tON Definition 12 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: DRV5057 English Data Sheet: SBAS646 DRV5057 www.ti.com.cn ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020 7.3.6 Hall Element Location 图 7-5 shows the location of the sensing element inside each package option. SOT-23 Top View SOT-23 Side View centered 650 µm ±50 µm ±80 µm TO-92 Top View 2 mm 2 mm TO-92 Side View 1.54 mm 1.61 mm ±50 µm 1030 µm ±115 µm 图 7-5. Hall Element Location 7.4 Device Functional Modes The DRV5057 has one mode of operation that applies when the Recommended Operating Conditions are met. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated 13 Product Folder Links: DRV5057 English Data Sheet: SBAS646 DRV5057 www.ti.com.cn ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020 8 Application and Implementation 备注 以下应用部分的信息不属于 TI 组件规范,TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适 用于其应用。客户应验证并测试其设计,以确保系统功能。 8.1 Application Information 8.1.1 Selecting the Sensitivity Option Select the highest DRV5057 sensitivity option that can measure the required range of magnetic flux density so that the output voltage swing is maximized. Larger-sized magnets and farther sensing distances can generally enable better positional accuracy than very small magnets at close distances, because magnetic flux density increases exponentially with the proximity to a magnet. TI created an online tool to help with simple magnet calculations on the DRV5057 product folder. 8.1.2 Decoding a PWM A PWM output helps system designers drive signals for long distances in noisy environments, with the ability to retrieve the signal accurately. A decoder is employed at the load to retrieve the analog magnetic signal. Two different methods of decoding are discussed in this section. 8.1.2.1 Decoding a PWM (Digital) 8.1.2.1.1 Capture and Compare Timer Interrupt Many microcontrollers have a capture and compare timer mode that can simplify the PWM decoding process. Use the timer in capture and compare mode with an interrupt that triggers on both the rising and falling edges of the signal to obtain both the relative high (on) and low (off) time of the PWM. Make sure that the timer period is significantly faster than the period of the PWM, based on the desired resolution. Calculate the percent duty cycle (%D) of the PWM with 方程式 1 by using the relative on and off time of the signal. %D OnTime u 100 OnTime OffTime (1) 8.1.2.1.2 Oversampling and Counting With a Timer Interrupt If a capture and compare timer is not available, a standard timer interrupt and a counter can be used. Configure the timer interrupt to be significantly faster than the period of the PWM, based on the desired resolution. Count how many times the timer interrupts while the signal is high (OnTime), then count how many times the timer interrupts while the signal is low (OffTime). Then use 方程式 1 to calculate the duty cycle. 8.1.2.1.3 Accuracy and Resolution The accuracy and resolution for the methods described in the 节 8.1.2.1.1 and 节 8.1.2.1.2 sections depends significantly on the timer sampling frequency. 方程式 2 calculates the least significant bit of the duty cycle (%DLSB) based on the chosen timer sampling frequency. %D LSB PWM frequency TIMER frequency u 100 (2) For example, with a 2-kHz PWM and a 400-kHz sampling frequency, the %DLSB is: (2 kHz / 400 kHz) × 100 = 0.5%DLSB If the sampling frequency in increased to 2-MHz, the %DLSB is improved to be: (2 MHz / 400 kHz) × 100 = 0.1%DLSB However, accuracy and resolution are still subject to noise and sensitivity. 14 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: DRV5057 English Data Sheet: SBAS646 DRV5057 www.ti.com.cn ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020 8.1.2.2 Decoding a PWM (Analog) If an analog signal is needed at the end of a large travel distance, first use a microcontroller to digitally decode the PWM, then use a DAC to produce the analog signal. If an analog signal is needed after a short signal travel distance, use an analog output device, such as the DRV5055. If an analog signal is needed at the end of a large travel distance and a microcontroller is unavailable, use a lowpass filter to convert the PWM signal into an analog voltage, as shown in 图 8-1. When using this method, note the following: • A ripple appears at the analog voltage output, causing a decrease in accuracy. The ripple intensity and frequency depend on the values chosen for R and C in the filter. • The minimum and maximum voltages of the PWM must be known to calculate the magnetic field strength from the analog voltage. Thus, if the signal is traveling a large distance, then the minimum and maximum values must be either measured or buffered back to a known value. PWM Signal Analog Signal R C 图 8-1. Low-Pass RC Filter 8.2 Typical Applications The DRV557-Q1 is a very robust linear position sensor for applications such as throttle positions, brakes, and clutch pedals. In linear position applications, depending on the mechanical placement and design limitations, two common types of magnet orientations are selected: full-swing and half-swing. 8.2.1 Full-Swing Orientation Example In the full-swing orientation, a magnet travels in parallel to the DRV5057-Q1 surface. In this case, the magnetic range extends from south polarity to north polarity, and allows the DRV5057-Q1 to use the full linear magnetic flux density sensing range. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated 15 Product Folder Links: DRV5057 English Data Sheet: SBAS646 DRV5057 www.ti.com.cn ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020 S N 图 8-2. Full-Swing Orientation Example 8.2.1.1 Design Requirements Use the parameters listed in 表 8-1 for this design example. 表 8-1. Design Parameters DESIGN PARAMETER EXAMPLE VALUE Device DRV5057 VCC 5V Magnet Cylinder: 4.7625-mm diameter, 12.7-mm thick, neodymium N52, Br = 1480 mT Travel distance 10 mm Desired accuracy < 0.1 mm 8.2.1.2 Detailed Design Procedure Linear Hall effect sensors provide flexibility in mechanical design because many possible magnet orientations and movements produce a usable response from the sensor. 图 8-2 illustrates one of the most common orientations that uses the full north to south range of the sensor and causes a close-to-linear change in magnetic flux density as the magnet moves across the sensor. 图 8-3 illustrates the close-to-linear change in magnetic field present at the sensor as the magnet moves a given distance across the sensor. The usable linear region is close to but less than the length (thickness) of the magnet. When designing a linear magnetic sensing system, always consider these three variables: the magnet, sensing distance, and the range of the sensor. Select the DRV5057 with the highest sensitivity possible based on the system distance requirements without railing the sensor PWM output. To determine the magnetic flux density the sensor receives at the various positions of the magnet, use a magnetic field calculator or simulation software, referring to magnet specifications, and testing. Determine if the desired accuracy is met by comparing the maximum allowed duty cycle least significant bit (%DLSBmax) with the noise level (PWM jitter) of the device. 方程式 3 calculates the %DLSBmax by taking into account the used length of the linear region (travel distance), the desired resolution, and the output PWM swing (within the linear duty cycle range). 16 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: DRV5057 English Data Sheet: SBAS646 DRV5057 www.ti.com.cn %D LSBmax ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020 %D swing Travel Dis tance u Re solution (3) Thus, with this example (and a linear duty cycle range of 8%D to 92%D), using 方程式 3 gives (92 – 8) / (10) × 0.1 = 0.84%DLSBmax. This value is larger than the 0.1%D jitter, and therefore the desired accuracy can be achieved by using 方程式 2 to select a %DLSB that is equal to or less than 0.84. Then, simply calibrate the magnet position to align the sensor output along the movement path. 8.2.1.3 Application Curve 图 8-3 shows the magnetic field present at the sensor as the magnet passes by as described in 图 8-2. The change in distance from the trough to the peak is approximately the length (thickness) of the magnet. B changes based on the strength of the magnet and how close the magnet is to the sensor. B 5 -9 9 Distance D015 图 8-3. Magnetic Field vs Distance Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated 17 Product Folder Links: DRV5057 English Data Sheet: SBAS646 DRV5057 www.ti.com.cn ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020 8.2.2 Half-Swing Orientation Example In the half-swing orientation, a magnet travels perpendicular to the DRV5057-Q1 surface. In this case, the magnetic range extends only to either the south or north pole, using only half of the DRV5057-Q1 linear magnetic flux density sensing range. Mechanical Component N S PCB 图 8-4. Half-Swing Orientation Example 8.2.2.1 Design Requirements Use the parameters listed in 表 8-2 for this design example. 表 8-2. Design Parameters DESIGN PARAMETER EXAMPLE VALUE Device DRV5057 VCC 5V Magnet Cylinder: 4.7625 mm diameter, 12.7 mm thick, Neodymium N52, Br = 1480 mT Travel distance 5 mm Desired accuracy < 0.1 mm 8.2.2.2 Detailed Design Procedure As illustrated in 图 8-4, this design example consists of a mechanical component that moves back and forth, an embedded magnet with the south pole facing the printed-circuit board, and a DRV5057. The DRV5057 outputs a PWM that describes the precise position of the component. The component must not contain ferromagnetic materials such as iron, nickel, and cobalt because these materials change the magnetic flux density at the sensor. When designing a linear magnetic sensing system, always consider these three variables: the magnet, sensing distance, and the range of the sensor. Select the DRV5057 with the highest sensitivity possible based on the system distance requirements without railing the sensor PWM output. To determine the magnetic flux density the sensor receives at the various positions of the magnet, use a magnetic field calculator or simulation software, referring to magnet specifications, and testing. Magnets are made from various ferromagnetic materials that have tradeoffs in cost, drift with temperature, absolute maximum temperature ratings, remanence or residual induction (Br), and coercivity (Hc). The Br and the 18 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: DRV5057 English Data Sheet: SBAS646 DRV5057 www.ti.com.cn ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020 dimensions of a magnet determine the magnetic flux density (B) produced in 3-dimensional space. For simple magnet shapes, such as rectangular blocks and cylinders, there are simple equations that solve B at a given distance centered with the magnet. 图 8-5 shows diagrams for 方程式 4 and 方程式 5. Thickness Thickness Width Distance Length S S Distance N B N B Diameter 图 8-5. Rectangular Block and Cylinder Magnets Use 方程式 4 for the rectangular block shown in 图 8-5: B= Br Œ ( ( WL arctan 2 2 2D 4D + W + L 2 ) ± arctan ( WL 2(D + T) 4(D + T)2 + W2 + L2 )) (4) Use 方程式 5 for the cylinder illustrated in 图 8-5: B= Br 2 ( D+T 2 (0.5C) + (D + T) 2 ± D (0.5C)2 + D2 ) (5) where: • • • • • W is width L is length T is thickness (the direction of magnetization) D is distance C is diameter This example uses a cylinder magnet; therefore, 方程式 5 can be used to create a lookup table for the distances from a specific magnet based on a magnetic field strength. 图 8-6 shows a magnetic field from 0 mm to 16 mm with the magnet defined in 表 8-2 as C = 4.7625 mm, T = 12.7 mm, and Br = 1480 mT. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated 19 Product Folder Links: DRV5057 English Data Sheet: SBAS646 DRV5057 www.ti.com.cn ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020 200 180 160 B (mT) 140 120 100 80 60 40 20 0 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Distance (mm) D009 图 8-6. Magnetic Field vs Distance In this setup, each gain version of the sensor produces the corresponding duty cycle shown in 图 8-7 for 0 mm to 16 mm. 100 DRV5057A1 DRV5057A2 DRV5057A3 DRV5057A4 95 Duty Cycle (%) 90 85 80 75 70 65 60 55 50 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Distance (mm) D008 图 8-7. %D vs South Pole Distance (All Gains) With a desired 5-mm movement swing, select the DRV5057 with the largest possible sensitivity that fits the system requirements for the magnet distance to the sensor. Assume that for this example, because of mechanical restrictions, the magnet at the nearest point to the sensor must be selected to be within 5 mm to 8 mm. The largest sensitivity option (A1) does not work in this situation because the device output is railed at the farthest allowed distance of 8 mm. The A2 version is not railed at this point, and is therefore the sensor selected for this example. Choose the closest point of the magnet to the sensor to be a distance that allows the magnet to get as close to the sensor as possible without railing but stays within the selectable 5-mm to 8-mm allowed range. Because the A2 version rails at approximately 6 mm, choose a closest distance of 6.5 mm to allow for a little bit of margin. With this choice, 图 8-8 shows the %D response at the sensor across the full movement range. 20 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: DRV5057 English Data Sheet: SBAS646 DRV5057 www.ti.com.cn ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020 100 DRV5057A2 95 Duty Cycle (%) 90 85 80 75 70 65 60 55 50 6.5 7 7.5 8 8.5 9 9.5 Distance (mm) 10 10.5 11 11.5 D007 图 8-8. %D vs South Pole Distance (Gain A2) Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated 21 Product Folder Links: DRV5057 English Data Sheet: SBAS646 DRV5057 www.ti.com.cn ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020 The magnetic field strength is calculated using 方程式 6, where a negative number represents the opposite pole (in this example a south pole is over the sensor, causing the results to be a positive number). %D 50 B (6) Gain For example, if the A2 version of the DRV5057 measured a duty cycle of %D = 74.6% using 方程式 1, then the magnetic field strength present at the sensor is (74.6 – 50) / 1 = 24.6 mT. Using the lookup table that was used to create the plot in 图 8-6, the distance from the magnet at 24.6 mT is D ≈ 8.2 mm. For more accurate results, the lookup table can be calibrated along the movement path of the magnet. Additionally, instead of using the calibrated lookup table for each measurement, consider using a best-fit polynomial equation from the curve for the desired movement range to calculate D in terms of B. The curve in 图 8-8 is not linear; therefore, the achievable accuracy varies for each position along the movement path. The location with the worst accuracy is where there is the smallest change in output for a given amount of movement, which in this example is where the magnet is farthest from the sensor (at 11.5 mm). Determine if the desired accuracy is met by checking if the needed %DLSB at this location for the specified accuracy is greater than the noise level (PWM jitter) of 0.1%D. Thus, with a desired accuracy of 0.1 mm, the needed %DLSB is the change in %D between 11.4 mm and 11.5 mm. Using the lookup table to find B and then solving for %D in 方程 式 6, at 11.5 mm, B = 11.815 mT (which equates to 61.815%D), and at 11.4 mm B = 12.048 mT (which equates to 62.048%D). The difference in %D between these two points is 62.048 – 61.815 = 0.223%DLSB. This value is larger than the 0.1%D jitter, so the desired accuracy can be met as long as a %DLSB is selected that is equal to or less than 0.223 using 方程式 2. 22 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: DRV5057 English Data Sheet: SBAS646 DRV5057 www.ti.com.cn ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020 8.3 What to Do and What Not to Do The Hall element is sensitive to magnetic fields that are perpendicular to the top of the package. Therefore, to correctly detect the magnetic field, make sure to use the correct magnet orientation for the sensor. 图 8-9 shows correct and incorrect orientation. CORRECT N S S N N S INCORRECT N S 图 8-9. Correct and Incorrect Magnet Orientation Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated 23 Product Folder Links: DRV5057 English Data Sheet: SBAS646 DRV5057 www.ti.com.cn ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020 9 Power Supply Recommendations Use a decoupling capacitor placed close to the device to provide local energy with minimal inductance. Use a ceramic capacitor with a value of at least 0.01 µF. 10 Layout 10.1 Layout Guidelines Magnetic fields pass through most nonferromagnetic materials with no significant disturbance. Embedding Hall effect sensors within plastic or aluminum enclosures and sensing magnets on the outside is common practice. Magnetic fields also easily pass through most printed-circuit boards, which makes placing the magnet on the opposite side possible. 10.2 Layout Examples VCC GND VCC GND OUT OUT 图 10-1. Layout Examples 24 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: DRV5057 English Data Sheet: SBAS646 DRV5057 www.ti.com.cn ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020 11 Device and Documentation Support 11.1 Documentation Support 11.1.1 Related Documentation For related documentation see the following: • Texas Instruments, Using Linear Hall Effect Sensors to Measure Angle tech note • Texas Instruments, Incremental Rotary Encoder Design Considerations tech note • Texas Instruments, DRV5055 Ratiometric Linear Hall Effect Sensor data sheet 11.2 接收文档更新通知 要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更 改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 11.3 支持资源 TI E2E™ 中文支持论坛是工程师的重要参考资料,可直接从专家处获得快速、经过验证的解答和设计帮助。搜索 现有解答或提出自己的问题,获得所需的快速设计帮助。 链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的使用条款。 11.4 Trademarks TI E2E™ is a trademark of Texas Instruments. 所有商标均为其各自所有者的财产。 11.5 静电放电警告 静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理 和安装程序,可能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参 数更改都可能会导致器件与其发布的规格不相符。 11.6 术语表 TI 术语表 本术语表列出并解释了术语、首字母缩略词和定义。 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated 25 Product Folder Links: DRV5057 English Data Sheet: SBAS646 PACKAGE OPTION ADDENDUM www.ti.com 23-May-2025 PACKAGING INFORMATION Orderable part number Status Material type (1) (2) Package | Pins Package qty | Carrier RoHS (3) Lead finish/ Ball material MSL rating/ Peak reflow (4) (5) Op temp (°C) Part marking (6) DRV5057A1QDBZR Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 57A1 DRV5057A1QDBZR.B Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 57A1 DRV5057A1QDBZT Obsolete Production SOT-23 (DBZ) | 3 - - Call TI Call TI -40 to 125 57A1 DRV5057A1QLPG Active Production TO-92 (LPG) | 3 1000 | BULK Yes SN N/A for Pkg Type -40 to 125 57A1 DRV5057A1QLPG.B Active Production TO-92 (LPG) | 3 1000 | BULK Yes SN N/A for Pkg Type -40 to 125 57A1 DRV5057A1QLPGM Active Production TO-92 (LPG) | 3 3000 | AMMO Yes SN N/A for Pkg Type -40 to 125 57A1 DRV5057A1QLPGM.B Active Production TO-92 (LPG) | 3 3000 | AMMO Yes SN N/A for Pkg Type -40 to 125 57A1 DRV5057A2QDBZR Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 57A2 DRV5057A2QDBZR.B Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 57A2 DRV5057A2QLPG Active Production TO-92 (LPG) | 3 1000 | BULK Yes SN N/A for Pkg Type -40 to 125 57A2 DRV5057A2QLPG.B Active Production TO-92 (LPG) | 3 1000 | BULK Yes SN N/A for Pkg Type -40 to 125 57A2 DRV5057A2QLPGM Active Production TO-92 (LPG) | 3 3000 | AMMO Yes SN N/A for Pkg Type -40 to 125 57A2 DRV5057A2QLPGM.B Active Production TO-92 (LPG) | 3 3000 | AMMO Yes SN N/A for Pkg Type -40 to 125 57A2 DRV5057A3QDBZR Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 57A3 DRV5057A3QDBZR.B Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 57A3 DRV5057A3QDBZT Obsolete Production SOT-23 (DBZ) | 3 - - Call TI Call TI -40 to 125 57A3 DRV5057A3QLPG Active Production TO-92 (LPG) | 3 1000 | BULK Yes SN N/A for Pkg Type -40 to 125 57A3 DRV5057A3QLPG.B Active Production TO-92 (LPG) | 3 1000 | BULK Yes SN N/A for Pkg Type -40 to 125 57A3 DRV5057A3QLPGM Active Production TO-92 (LPG) | 3 3000 | AMMO Yes SN N/A for Pkg Type -40 to 125 57A3 DRV5057A3QLPGM.B Active Production TO-92 (LPG) | 3 3000 | AMMO Yes SN N/A for Pkg Type -40 to 125 57A3 DRV5057A4QDBZR Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 57A4 DRV5057A4QDBZR.B Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 57A4 DRV5057A4QDBZT Obsolete Production SOT-23 (DBZ) | 3 - - Call TI Call TI -40 to 125 57A4 DRV5057A4QLPG Active Production TO-92 (LPG) | 3 1000 | BULK Yes SN N/A for Pkg Type -40 to 125 57A4 DRV5057A4QLPG.B Active Production TO-92 (LPG) | 3 1000 | BULK Yes SN N/A for Pkg Type -40 to 125 57A4 DRV5057A4QLPGM Active Production TO-92 (LPG) | 3 3000 | AMMO Yes SN N/A for Pkg Type -40 to 125 57A4 DRV5057A4QLPGM.B Active Production TO-92 (LPG) | 3 3000 | AMMO Yes SN N/A for Pkg Type -40 to 125 57A4 DRV5057Z1QDBZR Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 57Z1 DRV5057Z1QDBZR.B Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 57Z1 Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com Orderable part number DRV5057Z2QDBZR (1) 23-May-2025 Status Material type (1) (2) Package | Pins Package qty | Carrier RoHS (3) Lead finish/ Ball material MSL rating/ Peak reflow Op temp (°C) Part marking (4) (5) SN Level-2-260C-1 YEAR -40 to 125 57Z2 (6) Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes DRV5057Z2QDBZR.B Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 57Z2 DRV5057Z2QDBZT Obsolete Production SOT-23 (DBZ) | 3 - - Call TI Call TI -40 to 125 57Z2 DRV5057Z3QDBZR Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 57Z3 DRV5057Z3QDBZR.B Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 57Z3 DRV5057Z3QDBZT Obsolete Production SOT-23 (DBZ) | 3 - - Call TI Call TI -40 to 125 57Z3 DRV5057Z4QDBZR Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 57Z4 DRV5057Z4QDBZR.B Active Production SOT-23 (DBZ) | 3 3000 | LARGE T&R Yes SN Level-2-260C-1 YEAR -40 to 125 57Z4 DRV5057Z4QDBZT Obsolete Production SOT-23 (DBZ) | 3 - - Call TI Call TI -40 to 125 57Z4 Status: For more details on status, see our product life cycle. (2) Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance, reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind. (3) RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition. (4) Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width. (5) MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown. Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board. (6) Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part. Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two combined represent the entire part marking for that device. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. Addendum-Page 2 PACKAGE OPTION ADDENDUM www.ti.com 23-May-2025 In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. OTHER QUALIFIED VERSIONS OF DRV5057 : • Automotive : DRV5057-Q1 NOTE: Qualified Version Definitions: • Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects Addendum-Page 3 PACKAGE MATERIALS INFORMATION www.ti.com 23-May-2025 TAPE AND REEL INFORMATION REEL DIMENSIONS TAPE DIMENSIONS K0 P1 B0 W Reel Diameter Cavity A0 B0 K0 W P1 A0 Dimension designed to accommodate the component width Dimension designed to accommodate the component length Dimension designed to accommodate the component thickness Overall width of the carrier tape Pitch between successive cavity centers Reel Width (W1) QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE Sprocket Holes Q1 Q2 Q1 Q2 Q3 Q4 Q3 Q4 User Direction of Feed Pocket Quadrants *All dimensions are nominal Device Package Package Pins Type Drawing SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) B0 (mm) K0 (mm) P1 (mm) DRV5057A1QDBZR SOT-23 DBZ 3 3000 180.0 8.4 DRV5057A2QDBZR SOT-23 DBZ 3 3000 180.0 DRV5057A3QDBZR SOT-23 DBZ 3 3000 180.0 DRV5057A3QDBZR SOT-23 DBZ 3 3000 DRV5057A4QDBZR SOT-23 DBZ 3 3000 DRV5057Z1QDBZR SOT-23 DBZ 3 DRV5057Z2QDBZR SOT-23 DBZ DRV5057Z3QDBZR SOT-23 DBZ DRV5057Z4QDBZR SOT-23 DBZ 3.2 2.85 1.3 4.0 8.0 Q3 8.4 3.2 2.85 1.3 4.0 8.0 Q3 8.4 3.15 2.77 1.22 4.0 8.0 Q3 180.0 8.4 3.2 2.85 1.3 4.0 8.0 Q3 180.0 8.4 3.2 2.85 1.3 4.0 8.0 Q3 3000 180.0 8.4 3.2 2.85 1.3 4.0 8.0 Q3 3 3000 180.0 8.4 3.2 2.85 1.3 4.0 8.0 Q3 3 3000 180.0 8.4 3.2 2.85 1.3 4.0 8.0 Q3 3 3000 180.0 8.4 3.2 2.85 1.3 4.0 8.0 Q3 Pack Materials-Page 1 W Pin1 (mm) Quadrant PACKAGE MATERIALS INFORMATION www.ti.com 23-May-2025 TAPE AND REEL BOX DIMENSIONS Width (mm) W L H *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) DRV5057A1QDBZR SOT-23 DBZ 3 3000 210.0 185.0 35.0 DRV5057A2QDBZR SOT-23 DBZ 3 3000 210.0 185.0 35.0 DRV5057A3QDBZR SOT-23 DBZ 3 3000 213.0 191.0 35.0 DRV5057A3QDBZR SOT-23 DBZ 3 3000 210.0 185.0 35.0 DRV5057A4QDBZR SOT-23 DBZ 3 3000 210.0 185.0 35.0 DRV5057Z1QDBZR SOT-23 DBZ 3 3000 210.0 185.0 35.0 DRV5057Z2QDBZR SOT-23 DBZ 3 3000 210.0 185.0 35.0 DRV5057Z3QDBZR SOT-23 DBZ 3 3000 210.0 185.0 35.0 DRV5057Z4QDBZR SOT-23 DBZ 3 3000 210.0 185.0 35.0 Pack Materials-Page 2 PACKAGE OUTLINE DBZ0003A SOT-23 - 1.12 mm max height SCALE 4.000 SMALL OUTLINE TRANSISTOR C 2.64 2.10 1.4 1.2 PIN 1 INDEX AREA 1.12 MAX B A 0.1 C 1 0.95 (0.125) 3.04 2.80 1.9 3 (0.15) NOTE 4 3X 0.5 0.3 0.2 2 C A B 4X 0 -15 (0.95) 0.10 TYP 0.01 4X 4 -15 0.25 GAGE PLANE 0 -8 TYP 0.20 TYP 0.08 0.6 TYP 0.2 SEATING PLANE 4214838/F 08/2024 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. Reference JEDEC registration TO-236, except minimum foot length. 4. Support pin may differ or may not be present. 5. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.25mm per side www.ti.com EXAMPLE BOARD LAYOUT DBZ0003A SOT-23 - 1.12 mm max height SMALL OUTLINE TRANSISTOR PKG 3X (1.3) 1 3X (0.6) SYMM 3 2X (0.95) 2 (R0.05) TYP (2.1) LAND PATTERN EXAMPLE SCALE:15X SOLDER MASK OPENING METAL SOLDER MASK OPENING METAL UNDER SOLDER MASK 0.07 MIN ALL AROUND 0.07 MAX ALL AROUND NON SOLDER MASK DEFINED (PREFERRED) SOLDER MASK DEFINED SOLDER MASK DETAILS 4214838/F 08/2024 NOTES: (continued) 5. Publication IPC-7351 may have alternate designs. 6. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com EXAMPLE STENCIL DESIGN DBZ0003A SOT-23 - 1.12 mm max height SMALL OUTLINE TRANSISTOR PKG 3X (1.3) 1 3X (0.6) SYMM 3 2X(0.95) 2 (R0.05) TYP (2.1) SOLDER PASTE EXAMPLE BASED ON 0.125 THICK STENCIL SCALE:15X 4214838/F 08/2024 NOTES: (continued) 7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 8. Board assembly site may have different recommendations for stencil design. www.ti.com PACKAGE OUTLINE LPG0003A TO-92 - 5.05 mm max height SCALE 1.300 TRANSISTOR OUTLINE 4.1 3.9 3.25 3.05 3X 0.55 0.40 5.05 MAX 3 1 3X (0.8) 3X 15.5 15.1 3X 0.48 0.35 3X 2X 1.27 0.05 0.51 0.36 2.64 2.44 2.68 2.28 1.62 1.42 2X (45 ) 1 (0.5425) 2 3 0.86 0.66 4221343/C 01/2018 NOTES: 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. www.ti.com EXAMPLE BOARD LAYOUT LPG0003A TO-92 - 5.05 mm max height TRANSISTOR OUTLINE 0.05 MAX ALL AROUND TYP FULL R TYP METAL TYP (1.07) 3X ( 0.75) VIA 2X METAL (1.7) 2X (1.7) 2 1 2X SOLDER MASK OPENING 3 2X (1.07) (R0.05) TYP (1.27) SOLDER MASK OPENING (2.54) LAND PATTERN EXAMPLE NON-SOLDER MASK DEFINED SCALE:20X 4221343/C 01/2018 www.ti.com TAPE SPECIFICATIONS LPG0003A TO-92 - 5.05 mm max height TRANSISTOR OUTLINE 0 13.0 12.4 1 0 1 1 MAX 21 18 2.5 MIN 6.5 5.5 9.5 8.5 0.25 0.15 19.0 17.5 3.8-4.2 TYP 6.55 6.15 12.9 12.5 0.45 0.35 4221343/C 01/2018 www.ti.com 重要通知和免责声明 TI“按原样”提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源, 不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担 保。 这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验 证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。 这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行 复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索 赔、损害、成本、损失和债务,TI 对此概不负责。 TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改 TI 针对 TI 产品发布的适用的担保或担保免责声明。 TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE 邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 版权所有 © 2025,德州仪器 (TI) 公司
DRV5057A2QLPGM 价格&库存

很抱歉,暂时无法提供与“DRV5057A2QLPGM”相匹配的价格&库存,您可以联系我们找货

免费人工找货
DRV5057A2QLPGM
  •  国内价格
  • 1+8.66650
  • 200+7.22210
  • 500+5.77760
  • 1000+4.81470

库存:0

DRV5057A2QLPGM
  •  国内价格
  • 1+3.44300
  • 10+2.55100
  • 100+1.62130

库存:415

DRV5057A2QLPGM
  •  国内价格 香港价格
  • 3000+3.693033000+0.46054

库存:0