DRV5057
ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020
DRV5057 具有 PWM 输出的线性霍尔效应传感器
1 特性
3 说明
PWM 输出线性霍尔效应磁传感器
由 3.3V 和 5V 电源供电
2kHz 时钟输出,静态占空比为 50%
磁性灵敏度选项(VCC = 5V 时):
– A1/Z1:2%D/mT,±21mT 范围
– A2/Z2:1%D/mT,±42mT 范围
– A3/Z3:0.5%D/mT,±84mT 范围
– A4/Z4:0.25%D/mT,±168mT 范围
• 开漏输出,具有 20mA 灌电流能力
• 磁体温度漂移补偿(针对 A1/A2/A3/A4 版本提供,
针对 Z1/Z2/Z3/Z4 版本不提供)
• 行业标准封装:
– 表面贴装 SOT-23
– 穿孔 TO-92
DRV5057 是一款线性霍尔效应传感器,可按比例响应
磁通量密度。该器件可用于在各种应用中进行精确的位
置检测。
•
•
•
•
2 应用
•
•
•
•
•
•
•
•
•
精确位置检测
工业自动化和机器人
家用电器
游戏手柄、踏板、键盘、触发器
高度找平、倾斜和重量测量
流体流速测量
医疗设备
绝对值角度编码
电流检测
VCC
它可检测垂直于封装顶部的磁通量,而且两个封装选项
提供不同的检测方向。
由于 PWM 信号基于边沿到边沿定时,因此当存在电压
噪声或接地电势失配时,可保持信号完整性。该信号适
合嘈杂环境中的远距离传输,始终存在的时钟使得系统
控制器能够确认具备良好的互连。此外,该器件具有磁
体温度补偿功能,可抵消磁体漂移,在 –40°C 至
+125°C 的宽温度范围内实现线性性能。还提供了无磁
体漂移温度补偿的器件选项。
器件信息
(1)
封装
器件型号
DRV5057
(1)
封装尺寸(标称值)
SOT-23 (3)
2.92mm × 1.30mm
TO-92 (3)
4.00mm × 3.15mm
如需了解所有可用封装,请参阅数据表末尾的封装选项附录。
PWM
Output
VDD
DRV5057
VCC
该器件由 3.3V 或 5V 电源供电。当不存在磁场时,输
出产生占空比为 50% 的时钟。输出占空比会随施加的
磁通量密度呈线性变化,四个灵敏度选项可以根据所需
的感应范围最大限度扩大输出动态范围。南北磁极产生
唯 一 的 输 出 。 典 型 的 脉 宽 调 制 (PWM) 载 波 频 率 为
2kHz。
Controller
Duty Cycle
8%
25%
38%
50%
69%
75%
92%
VOH
GPIO
OUT
GND
VOL
Time
North
0 mT
South
Magnetic Field
典型原理图
磁响应
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问
www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。
English Data Sheet: SBAS646
DRV5057
www.ti.com.cn
ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020
Table of Contents
1 特性................................................................................... 1
2 应用................................................................................... 1
3 说明................................................................................... 1
4 Revision History.............................................................. 2
5 Pin Configuration and Functions...................................3
Pin Functions.................................................................... 3
6 Specifications.................................................................. 3
6.1 Absolute Maximum Ratings........................................ 3
6.2 ESD Ratings............................................................... 4
6.3 Recommended Operating Conditions.........................4
6.4 Thermal Information....................................................4
6.5 Electrical Characteristics.............................................4
6.6 Magnetic Characteristics.............................................4
6.7 Typical Characteristics................................................ 6
7 Detailed Description......................................................10
7.1 Overview................................................................... 10
7.2 Functional Block Diagram......................................... 10
7.3 Feature Description...................................................10
7.4 Device Functional Modes..........................................13
8 Application and Implementation.................................. 14
8.1 Application Information............................................. 14
8.2 Typical Applications.................................................. 15
8.3 What to Do and What Not to Do............................... 23
9 Power Supply Recommendations................................24
10 Layout...........................................................................24
10.1 Layout Guidelines................................................... 24
10.2 Layout Examples ................................................... 24
11 Device and Documentation Support..........................25
11.1 Documentation Support.......................................... 25
11.2 接收文档更新通知................................................... 25
11.3 支持资源..................................................................25
11.4 Trademarks............................................................. 25
11.5 静电放电警告...........................................................25
11.6 术语表..................................................................... 25
12 Mechanical, Packaging, and Orderable
Information.................................................................... 25
4 Revision History
Changes from Revision * (November 2018) to Revision A (August 2020)
Page
•
•
•
•
更新了整个文档中的表格、图和交叉参考的编号格式.........................................................................................1
添加了零 TC 灵敏度选项.................................................................................................................................... 1
Added Zero TC information to 节 6.6 .................................................................................................................4
Fixed labels for some of the plots for graphs for DRV5057 A1/A2/A3/A4 devices and added Zero TC
characteristics plots for DRV5057 Z1/Z2/Z3/Z4 devices in 节 6.7 ..................................................................... 6
• Updated 节 7.3.4 section for Zero TC options.................................................................................................. 12
2
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: DRV5057
English Data Sheet: SBAS646
DRV5057
www.ti.com.cn
ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020
5 Pin Configuration and Functions
VCC
1
3
OUT
GND
2
Not to scale
图 5-1. DBZ Package 3-Pin SOT-23 Top View
1
2
3
VCC GND OUT
图 5-2. LPG Package 3-Pin TO-92 Top View
Pin Functions
PIN
NAME
TYPE
DESCRIPTION
SOT-23
TO-92
GND
3
2
Ground
Ground reference
OUT
2
3
Output
Analog output
VCC
1
1
Power
Power supply. Connect this pin to a ceramic capacitor to ground with a value of at least 0.01 µF.
6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)(1)
VCC
MIN
MAX
7
Power supply voltage
VCC
–0.3
Output voltage
OUT
–0.3
Output current
OUT
UNIT
V
6
V
30
mA
B
Magnetic flux density
Unlimited
TJ
Operating junction temperature
–40
150
°C
Tstg
Storage temperature
–65
150
°C
(1)
T
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device
reliability.
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
3
Product Folder Links: DRV5057
English Data Sheet: SBAS646
DRV5057
www.ti.com.cn
ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020
6.2 ESD Ratings
VALUE
V(ESD)
(1)
(2)
Human-body model (HBM), per ANSI/ESDA/JEDEC
Electrostatic discharge
JS-001(1)
±3000
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)
UNIT
V
±750
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)
MIN
MAX
3
3.63
UNIT
4.5
5.5
5.5
V
VCC
Power-supply voltage(1)
VO
Output pullup voltage
0
IO
Output continuous current
0
20
mA
TA
Operating ambient temperature(2)
–40
125
°C
(1)
(2)
V
There are two isolated operating VCC ranges. For more information see the 节 7.3.3 section.
Power dissipation and thermal limits must be observed.
6.4 Thermal Information
DRV5057
THERMAL METRIC(1)
SOT-23 (DBZ)
TO-92 (LPG)
3 PINS
3 PINS
170
121
°C/W
RθJC(top) Junction-to-case (top) thermal resistance
66
67
°C/W
RθJB
Junction-to-board thermal resistance
49
97
°C/W
ΨJT
Junction-to-top characterization parameter
1.7
7.6
°C/W
ΨJB
Junction-to-board characterization parameter
48
97
°C/W
RθJA
(1)
Junction-to-ambient thermal resistance
UNIT
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.
6.5 Electrical Characteristics
for VCC = 3 V to 3.63 V and 4.5 V to 5.5 V, over operating free-air temperature range (unless otherwise noted)
PARAMETER
ICC
TEST CONDITIONS
7-4)(2)
B(1)
tON
Power-on time (see 图
fPWM
PWM carrier frequency
DJ
Duty cycle peak-to-peak jitter
IOZ
High-impedance output leakage current VCC = 5 V
VOL
Low-level output voltage
(1)
(2)
MIN
Operating supply current
= 0 mT, no load on OUT
1.8
From change in B to change in OUT
TYP
MAX
6
10
mA
0.6
0.9
ms
2.0
2.2
0.15
kHz
%D(1)
±0.1
IOUT = 20 mA
UNIT
100
nA
0.4
V
This unit is a percentage of duty cycle.
tON is the time from when VCC goes above 3 V until the first rising edge of the first valid pulse.
6.6 Magnetic Characteristics
for VCC = 3 V to 3.63 V and 4.5 V to 5.5 V, over operating free-air temperature range (unless otherwise noted)
PARAMETER
DL
4
TEST CONDITIONS
Linear duty cycle range
MIN
8
Submit Document Feedback
TYP
MAX
UNIT
92
%D(1)
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: DRV5057
English Data Sheet: SBAS646
DRV5057
www.ti.com.cn
ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020
for VCC = 3 V to 3.63 V and 4.5 V to 5.5 V, over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
DCL
Clamped-low duty cycle
B(1) < –250 mT
DCH
Clamped-high duty cycle
B > 250 mT
DQ
Quiescent duty cycle(2)
B = 0 mT, TA = 25°C, VCC = 3.3 V or 5 V
VQΔL Quiescent duty cycle lifetime drift
TYP
MAX
5.3
6
6.7
93.3
94
94.7
46
50
54
High-temperature operating stress for
1000 hours
VCC = 5 V,
TA = 25°C
S
MIN
Sensitivity(5)
VCC = 3.3 V,
TA = 25°C
UNIT
%D
%D
< 0.5
%
DRV5057A1/Z1
1.88
2
2.12
DRV5057A2/Z2
0.94
1
1.06
DRV5057A3/Z3
0.47
0.5
0.53
DRV5057A4/Z4
0.23
0.25
0.27
DRV5057A1/Z1
1.13
1.2
1.27
DRV5057A2/Z2
0.56
0.6
0.64
DRV5057A3/Z3
0.28
0.3
0.32
DRV5057A4/Z4
0.138
0.15
0.162
DRV5057A1/Z1
±21
DRV5057A2/Z2
±42
DRV5057A3/Z3
±84
DRV5057A4/Z4
±168
%D/mT
BL
Linear magnetic flux density sensing
range(2) (3) (5)
VCC = 5 V,
TA = 25°C
STC
Sensitivity temperature compensation
for magnets(4)
DRV5057A1, DRV5057A2, DRV5057A3,
DRV5057A4
0.12
%/°C
STCz
Sensitivity temperature compensation
for magnets(4) (5)
DRV5057Z1, DRV5057Z2, DRV5057Z3,
DRV5057Z4
0
%/°C
SLE
Sensitivity linearity error(2)
Output duty cycle is within DL
±1
%
RSE
Sensitivity error over operating VCC
range
Output duty cycle is within DL
±1
%
SΔL
Quiescent error over operating VCC
range
< 0.5
%
(1)
(2)
(3)
(4)
(5)
mT
B is the applied magnetic flux density.
See the 节 7.3.2 section.
BL describes the minimum linear sensing range at 25°C taking into account the maximum VQ and sensitivity tolerances.
STC describes the rate the device increases Sensitivity with temperature. For more information, see the 节 7.3.4 section and 图 6-7 to
图 6-20.
Product Preview data only for DRV5055Z1 - DRV5055Z4 device options.
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
5
Product Folder Links: DRV5057
English Data Sheet: SBAS646
DRV5057
www.ti.com.cn
ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020
6.7 Typical Characteristics
for TA = 25°C (unless otherwise noted)
2.2
2.2
2
2
5057A1
5057A2
5057A3
5057A4
1.6
1.4
1.2
1
0.8
0.6
1.6
1.4
1.2
1
0.8
0.6
0.4
0.4
0.2
0.2
0
4.5
4.6
4.7
4.8
4.9
5
5.1
Supply (V)
5.2
5.3
5.4
5057Z1
5057Z2
5057Z3
5057Z4
1.8
Sensitivity (%D/mT)
Sensitivity (%D/mT)
1.8
0
4.5
5.5
4.6
4.7
4.8
D010
1.3
1.3
1.2
1.2
Sensitivity (%D/mT)
Sensitivity (%D/mT)
0.8
0.7
0.6
0.5
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.3
0.2
0.2
0.1
0.1
3.1
3.2
3.3
Supply (V)
3.4
3.5
3
3.6
3.1
3.2
D011
3.5
3.6
10
10
VCC = 3.3 V
VCC = 5.0 V
9
VCC = 3.3 V
VCC = 5.0 V
9
8
8
Supply Current (mA)
Supply Current (mA)
3.4
图 6-4. Sensitivity vs Supply Voltage
图 6-3. Sensitivity vs Supply Voltage
7
6
5
4
7
6
5
4
3
3
2
2
-20
0
20
40
60
80
Temperature (qC)
100
120
1
-40
140
-20
D022
0
20
40
60
80
Temperature (qC)
100
120
140
DRV5057Z1/Z2/Z3/Z4
DRV5057A1/A2/A3/A4
图 6-5. Supply Current vs Temperature
6
3.3
Supply (V)
VCC = 3.3 V
VCC = 3.3 V
1
-40
5.5
5057Z1
5057Z2
5057Z3
5057Z4
1
0.4
3
5.4
1.1
5057A1
5057A2
5057A3
5057A4
0.9
5.3
图 6-2. Sensitivity vs Supply Voltage
图 6-1. Sensitivity vs Supply Voltage
1
5.2
VCC = 5.0 V
VCC = 5.0 V
1.1
4.9
5
5.1
Supply (V)
图 6-6. Supply Current vs Temperature
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: DRV5057
English Data Sheet: SBAS646
DRV5057
www.ti.com.cn
ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020
2.5
2.5
2.25
2.25
2
Sensitivity (%D/mT)
Sensitivity (%D/mT)
2
+3STD
AVG
-3STD
1.75
1.5
1.25
1
0.75
0.5
0
-40
-20
0
20
40
60
80
Temperature (qC)
100
120
1.5
1.25
1
0.75
0.5
+3STD
AVG
-3STD
0.25
1.75
0.25
0
-40
140
-20
0
DRV5057A1, VCC = 5.0 V
100
120
140
图 6-8. Sensitivity vs Temperature
2.5
2.5
2.25
2.25
2
Sensitivity (%D/mT)
2
Sensitivity (%D/mT)
40
60
80
Temperature (qC)
DRV5057A1, VCC = 3.3 V
图 6-7. Sensitivity vs Temperature
1.75
1.5
1.25
1
0.75
0.5
0
-40
-20
0
20
40
60
80
Temperature (qC)
100
120
1.75
1.5
1.25
1
0.75
0.5
+3STD
AVG
-3STD
0.25
+3STD
AVG
-3STD
0.25
0
-40
140
-20
0
DRV5057Z1, VCC = 5.0 V
+3STD
AVG
-3STD
-20
0
20
40
60
80
Temperature (qC)
40
60
80
Temperature (qC)
100
120
140
图 6-10. Sensitivity vs Temperature
Sensitivity (%D/mT)
1.5
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-40
20
DRV5057Z1, VCC = 3.3 V
图 6-9. Sensitivity vs Temperature
Sensitivity (%D/mT)
20
100
120
140
1.5
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-40
+3STD
AVG
-3STD
-20
DRV5057A2, VCC = 5.0 V
0
20
40
60
80
Temperature (qC)
100
120
140
DRV5057A2, VCC = 3.3 V
图 6-11. Sensitivity vs Temperature
图 6-12. Sensitivity vs Temperature
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
7
Product Folder Links: DRV5057
English Data Sheet: SBAS646
DRV5057
www.ti.com.cn
1.5
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-40
Sensitivity (%D/mT)
Sensitivity (%D/mT)
ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020
+3STD
AVG
-3STD
-20
0
20
40
60
80
Temperature (qC)
100
120
140
1.5
1.4
1.3
1.2
1.1
1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0
-40
+3STD
AVG
-3STD
-20
0
DRV5057Z2, VCC = 5.0 V
120
140
1
+3STD
AVG
-3STD
0.7
0.6
0.5
0.4
0.3
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.2
0.1
0.1
0
-40
-20
0
20
40
60
80
Temperature (qC)
100
120
+3STD
AVG
-3STD
0.9
Sensitivity (%D/mT)
0.8
Sensitivity (%D/mT)
100
图 6-14. Sensitivity vs Temperature
1
0.9
0
-40
140
-20
0
DRV5057A3, VCC = 5.0 V
20
40
60
80
Temperature (qC)
100
120
140
DRV5057A3, VCC = 3.3 V
图 6-15. Sensitivity vs Temperature
图 6-16. Sensitivity vs Temperature
1
1
+3STD
AVG
-3STD
0.9
0.7
0.6
0.5
0.4
0.3
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.2
0.1
0.1
0
-40
-20
0
20
40
60
80
Temperature (qC)
100
120
140
+3STD
AVG
-3STD
0.9
Sensitivity (%D/mT)
0.8
Sensitivity (%D/mT)
40
60
80
Temperature (qC)
DRV5057Z2, VCC = 3.3 V
图 6-13. Sensitivity vs Temperature
0
-40
-20
DRV5057Z3, VCC = 5.0 V
0
20
40
60
80
Temperature (qC)
100
120
140
DRV5057Z3, VCC = 3.3 V
图 6-17. Sensitivity vs Temperature
8
20
图 6-18. Sensitivity vs Temperature
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: DRV5057
English Data Sheet: SBAS646
DRV5057
www.ti.com.cn
ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020
0.5
0.5
+3STD
AVG
-3STD
0.45
0.4
Sensitivity (%D/mT)
Sensitivity (%D/mT)
0.4
0.35
0.3
0.25
0.2
0.15
0.35
0.3
0.25
0.2
0.15
0.1
0.1
0.05
0.05
0
-40
-20
0
20
40
60
80
Temperature (qC)
100
120
+3STD
AVG
-3STD
0.45
0
-40
140
-20
0
DRV5057A4, VCC = 5.0 V
100
120
140
图 6-20. Sensitivity vs Temperature
0.5
0.5
+3STD
AVG
-3STD
0.45
0.35
0.3
0.25
0.2
0.15
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.1
0.05
0.05
-20
0
20
40
60
80
Temperature (qC)
100
120
140
+3STD
AVG
-3STD
0.45
Sensitivity (%D/mT)
0.4
Sensitivity (%D/mT)
40
60
80
Temperature (qC)
DRV5057A4, VCC = 3.3 V
图 6-19. Sensitivity vs Temperature
0
-40
20
0
-40
DRV5057Z4, VCC = 5.0 V
-20
0
20
40
60
80
Temperature (qC)
100
120
140
DRV5057Z4, VCC = 3.3 V
图 6-21. Sensitivity vs Temperature
图 6-22. Sensitivity vs Temperature
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
9
Product Folder Links: DRV5057
English Data Sheet: SBAS646
DRV5057
www.ti.com.cn
ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020
7 Detailed Description
7.1 Overview
The DRV5057 is a 3-pin pulse-width modulation (PWM) output Hall effect sensor with fully integrated signal
conditioning, temperature compensation circuits, mechanical stress cancellation, and amplifiers. The device
operates from 3.3-V and 5-V (±10%) power supplies, measures magnetic flux density, and outputs a pulse-width
modulated, 2-kHz digital signal.
7.2 Functional Block Diagram
Element Bias
VCC
Bandgap
Reference
0 …F
Offset Cancellation
GND
Trim Registers
Temperature
Compensation
VCC
Precision
Amplifier
OUT
PWM Driver
7.3 Feature Description
7.3.1 Magnetic Flux Direction
As shown in 图 7-1, the DRV5057 is sensitive to the magnetic field component that is perpendicular to the top of
the package.
TO-92
B
B
SOT-23
PCB
图 7-1. Direction of Sensitivity
10
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: DRV5057
English Data Sheet: SBAS646
DRV5057
www.ti.com.cn
ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020
Magnetic flux that travels from the bottom to the top of the package is considered positive in this document. This
condition exists when a south magnetic pole is near the top (marked-side) of the package. Magnetic flux that
travels from the top to the bottom of the package results in negative millitesla values. 图 7-2 shows flux direction.
N
S
S
PCB
N
PCB
图 7-2. Flux Direction for Positive B
7.3.2 Sensitivity Linearity
The device produces a pulse-width modulated digital signal output. As shown in 图 7-3, the duty-cycle of the
PWM output signal is proportional to the magnetic field detected by the Hall element of the device. If there is no
magnetic field present, the duty cycle is 50%. The DRV5057 can detect both magnetic north and south poles.
The output duty cycle maintains a linear relationship with the input magnetic field from 8% to 92%.
PWM
Output
Duty Cycle
8%
25%
38%
50%
69%
75%
92%
VOH
VOL
Time
North
0 mT
South
Magnetic Field
图 7-3. Magnetic Response
7.3.3 Operating VCC Ranges
The DRV5057 has two recommended operating VCC ranges: 3 V to 3.63 V and 4.5 V to 5.5 V. When VCC is in
the middle region between 3.63 V to 4.5 V, the device continues to function but sensitivity is less known because
there is a crossover threshold near 4 V that adjusts device characteristics.
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
11
Product Folder Links: DRV5057
English Data Sheet: SBAS646
DRV5057
www.ti.com.cn
ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020
7.3.4 Sensitivity Temperature Compensation for Magnets
Magnets generally produce weaker fields as temperature increases. The DRV5057A1 - DRV5057A4 device
options have a temperature compensation feature that is designed to directly compensate the average drift of
neodymium (NdFeB) magnets and partially compensate ferrite magnets. The residual induction (Br) of a magnet
typically reduces by 0.12%/°C for NdFeB, and 0.20%/°C for ferrite. When the operating temperature of a system
is reduced, temperature drift errors are also reduced. The DRV5057Z1 - DRV5057Z4 devices options do not
compensate for the drift external magnets
7.3.5 Power-On Time
After the VCC voltage is applied, the DRV5057 requires a short initialization time before the output is set. The
parameter tON describes the time from when VCC crosses 3 V until OUT is within 5% of VQ, with 0 mT applied
and no load attached to OUT. 图 7-4 shows this timing diagram.
VCC
3V
tON
time
Output
95% × V Q
Invalid
time
图 7-4. tON Definition
12
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: DRV5057
English Data Sheet: SBAS646
DRV5057
www.ti.com.cn
ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020
7.3.6 Hall Element Location
图 7-5 shows the location of the sensing element inside each package option.
SOT-23
Top View
SOT-23
Side View
centered
650 µm
±50 µm
±80 µm
TO-92
Top View
2 mm
2 mm
TO-92
Side View
1.54 mm
1.61 mm
±50 µm
1030 µm
±115 µm
图 7-5. Hall Element Location
7.4 Device Functional Modes
The DRV5057 has one mode of operation that applies when the Recommended Operating Conditions are met.
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
13
Product Folder Links: DRV5057
English Data Sheet: SBAS646
DRV5057
www.ti.com.cn
ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020
8 Application and Implementation
备注
以下应用部分的信息不属于 TI 组件规范,TI 不担保其准确性和完整性。客户应负责确定 TI 组件是否适
用于其应用。客户应验证并测试其设计,以确保系统功能。
8.1 Application Information
8.1.1 Selecting the Sensitivity Option
Select the highest DRV5057 sensitivity option that can measure the required range of magnetic flux density so
that the output voltage swing is maximized.
Larger-sized magnets and farther sensing distances can generally enable better positional accuracy than very
small magnets at close distances, because magnetic flux density increases exponentially with the proximity to a
magnet. TI created an online tool to help with simple magnet calculations on the DRV5057 product folder.
8.1.2 Decoding a PWM
A PWM output helps system designers drive signals for long distances in noisy environments, with the ability to
retrieve the signal accurately. A decoder is employed at the load to retrieve the analog magnetic signal. Two
different methods of decoding are discussed in this section.
8.1.2.1 Decoding a PWM (Digital)
8.1.2.1.1 Capture and Compare Timer Interrupt
Many microcontrollers have a capture and compare timer mode that can simplify the PWM decoding process.
Use the timer in capture and compare mode with an interrupt that triggers on both the rising and falling edges of
the signal to obtain both the relative high (on) and low (off) time of the PWM. Make sure that the timer period is
significantly faster than the period of the PWM, based on the desired resolution. Calculate the percent duty cycle
(%D) of the PWM with 方程式 1 by using the relative on and off time of the signal.
%D
OnTime
u 100
OnTime OffTime
(1)
8.1.2.1.2 Oversampling and Counting With a Timer Interrupt
If a capture and compare timer is not available, a standard timer interrupt and a counter can be used. Configure
the timer interrupt to be significantly faster than the period of the PWM, based on the desired resolution. Count
how many times the timer interrupts while the signal is high (OnTime), then count how many times the timer
interrupts while the signal is low (OffTime). Then use 方程式 1 to calculate the duty cycle.
8.1.2.1.3 Accuracy and Resolution
The accuracy and resolution for the methods described in the 节 8.1.2.1.1 and 节 8.1.2.1.2 sections depends
significantly on the timer sampling frequency. 方程式 2 calculates the least significant bit of the duty cycle
(%DLSB) based on the chosen timer sampling frequency.
%D LSB
PWM frequency
TIMER frequency
u 100
(2)
For example, with a 2-kHz PWM and a 400-kHz sampling frequency, the %DLSB is:
(2 kHz / 400 kHz) × 100 = 0.5%DLSB
If the sampling frequency in increased to 2-MHz, the %DLSB is improved to be:
(2 MHz / 400 kHz) × 100 = 0.1%DLSB
However, accuracy and resolution are still subject to noise and sensitivity.
14
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: DRV5057
English Data Sheet: SBAS646
DRV5057
www.ti.com.cn
ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020
8.1.2.2 Decoding a PWM (Analog)
If an analog signal is needed at the end of a large travel distance, first use a microcontroller to digitally decode
the PWM, then use a DAC to produce the analog signal. If an analog signal is needed after a short signal travel
distance, use an analog output device, such as the DRV5055.
If an analog signal is needed at the end of a large travel distance and a microcontroller is unavailable, use a lowpass filter to convert the PWM signal into an analog voltage, as shown in 图 8-1. When using this method, note
the following:
• A ripple appears at the analog voltage output, causing a decrease in accuracy. The ripple intensity and
frequency depend on the values chosen for R and C in the filter.
• The minimum and maximum voltages of the PWM must be known to calculate the magnetic field strength
from the analog voltage. Thus, if the signal is traveling a large distance, then the minimum and maximum
values must be either measured or buffered back to a known value.
PWM Signal
Analog Signal
R
C
图 8-1. Low-Pass RC Filter
8.2 Typical Applications
The DRV557-Q1 is a very robust linear position sensor for applications such as throttle positions, brakes, and
clutch pedals. In linear position applications, depending on the mechanical placement and design limitations, two
common types of magnet orientations are selected: full-swing and half-swing.
8.2.1 Full-Swing Orientation Example
In the full-swing orientation, a magnet travels in parallel to the DRV5057-Q1 surface. In this case, the magnetic
range extends from south polarity to north polarity, and allows the DRV5057-Q1 to use the full linear magnetic
flux density sensing range.
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
15
Product Folder Links: DRV5057
English Data Sheet: SBAS646
DRV5057
www.ti.com.cn
ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020
S
N
图 8-2. Full-Swing Orientation Example
8.2.1.1 Design Requirements
Use the parameters listed in 表 8-1 for this design example.
表 8-1. Design Parameters
DESIGN PARAMETER
EXAMPLE VALUE
Device
DRV5057
VCC
5V
Magnet
Cylinder: 4.7625-mm diameter, 12.7-mm thick,
neodymium N52, Br = 1480 mT
Travel distance
10 mm
Desired accuracy
< 0.1 mm
8.2.1.2 Detailed Design Procedure
Linear Hall effect sensors provide flexibility in mechanical design because many possible magnet orientations
and movements produce a usable response from the sensor. 图 8-2 illustrates one of the most common
orientations that uses the full north to south range of the sensor and causes a close-to-linear change in magnetic
flux density as the magnet moves across the sensor. 图 8-3 illustrates the close-to-linear change in magnetic
field present at the sensor as the magnet moves a given distance across the sensor. The usable linear region is
close to but less than the length (thickness) of the magnet.
When designing a linear magnetic sensing system, always consider these three variables: the magnet, sensing
distance, and the range of the sensor. Select the DRV5057 with the highest sensitivity possible based on the
system distance requirements without railing the sensor PWM output. To determine the magnetic flux density the
sensor receives at the various positions of the magnet, use a magnetic field calculator or simulation software,
referring to magnet specifications, and testing.
Determine if the desired accuracy is met by comparing the maximum allowed duty cycle least significant bit
(%DLSBmax) with the noise level (PWM jitter) of the device. 方程式 3 calculates the %DLSBmax by taking into
account the used length of the linear region (travel distance), the desired resolution, and the output PWM swing
(within the linear duty cycle range).
16
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: DRV5057
English Data Sheet: SBAS646
DRV5057
www.ti.com.cn
%D LSBmax
ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020
%D swing
Travel Dis tance
u Re solution
(3)
Thus, with this example (and a linear duty cycle range of 8%D to 92%D), using 方程式 3 gives (92 – 8) / (10) ×
0.1 = 0.84%DLSBmax. This value is larger than the 0.1%D jitter, and therefore the desired accuracy can be
achieved by using 方程式 2 to select a %DLSB that is equal to or less than 0.84. Then, simply calibrate the
magnet position to align the sensor output along the movement path.
8.2.1.3 Application Curve
图 8-3 shows the magnetic field present at the sensor as the magnet passes by as described in 图 8-2. The
change in distance from the trough to the peak is approximately the length (thickness) of the magnet. B changes
based on the strength of the magnet and how close the magnet is to the sensor.
B
5
-9
9
Distance
D015
图 8-3. Magnetic Field vs Distance
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
17
Product Folder Links: DRV5057
English Data Sheet: SBAS646
DRV5057
www.ti.com.cn
ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020
8.2.2 Half-Swing Orientation Example
In the half-swing orientation, a magnet travels perpendicular to the DRV5057-Q1 surface. In this case, the
magnetic range extends only to either the south or north pole, using only half of the DRV5057-Q1 linear
magnetic flux density sensing range.
Mechanical Component
N
S
PCB
图 8-4. Half-Swing Orientation Example
8.2.2.1 Design Requirements
Use the parameters listed in 表 8-2 for this design example.
表 8-2. Design Parameters
DESIGN PARAMETER
EXAMPLE VALUE
Device
DRV5057
VCC
5V
Magnet
Cylinder: 4.7625 mm diameter, 12.7 mm thick,
Neodymium N52, Br = 1480 mT
Travel distance
5 mm
Desired accuracy
< 0.1 mm
8.2.2.2 Detailed Design Procedure
As illustrated in 图 8-4, this design example consists of a mechanical component that moves back and forth, an
embedded magnet with the south pole facing the printed-circuit board, and a DRV5057. The DRV5057 outputs a
PWM that describes the precise position of the component. The component must not contain ferromagnetic
materials such as iron, nickel, and cobalt because these materials change the magnetic flux density at the
sensor.
When designing a linear magnetic sensing system, always consider these three variables: the magnet, sensing
distance, and the range of the sensor. Select the DRV5057 with the highest sensitivity possible based on the
system distance requirements without railing the sensor PWM output. To determine the magnetic flux density the
sensor receives at the various positions of the magnet, use a magnetic field calculator or simulation software,
referring to magnet specifications, and testing.
Magnets are made from various ferromagnetic materials that have tradeoffs in cost, drift with temperature,
absolute maximum temperature ratings, remanence or residual induction (Br), and coercivity (Hc). The Br and the
18
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: DRV5057
English Data Sheet: SBAS646
DRV5057
www.ti.com.cn
ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020
dimensions of a magnet determine the magnetic flux density (B) produced in 3-dimensional space. For simple
magnet shapes, such as rectangular blocks and cylinders, there are simple equations that solve B at a given
distance centered with the magnet. 图 8-5 shows diagrams for 方程式 4 and 方程式 5.
Thickness
Thickness
Width
Distance
Length
S
S
Distance
N
B
N
B
Diameter
图 8-5. Rectangular Block and Cylinder Magnets
Use 方程式 4 for the rectangular block shown in 图 8-5:
B=
Br
Œ
( (
WL
arctan
2
2
2D 4D + W + L
2
)
± arctan
(
WL
2(D + T) 4(D + T)2 + W2 + L2
))
(4)
Use 方程式 5 for the cylinder illustrated in 图 8-5:
B=
Br
2
(
D+T
2
(0.5C) + (D + T)
2
±
D
(0.5C)2 + D2
)
(5)
where:
•
•
•
•
•
W is width
L is length
T is thickness (the direction of magnetization)
D is distance
C is diameter
This example uses a cylinder magnet; therefore, 方程式 5 can be used to create a lookup table for the distances
from a specific magnet based on a magnetic field strength. 图 8-6 shows a magnetic field from 0 mm to 16 mm
with the magnet defined in 表 8-2 as C = 4.7625 mm, T = 12.7 mm, and Br = 1480 mT.
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
19
Product Folder Links: DRV5057
English Data Sheet: SBAS646
DRV5057
www.ti.com.cn
ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020
200
180
160
B (mT)
140
120
100
80
60
40
20
0
0
1
2
3
4
5
6 7 8 9 10 11 12 13 14 15 16
Distance (mm)
D009
图 8-6. Magnetic Field vs Distance
In this setup, each gain version of the sensor produces the corresponding duty cycle shown in 图 8-7 for 0 mm to
16 mm.
100
DRV5057A1
DRV5057A2
DRV5057A3
DRV5057A4
95
Duty Cycle (%)
90
85
80
75
70
65
60
55
50
0
1
2
3
4
5
6 7 8 9 10 11 12 13 14 15 16
Distance (mm)
D008
图 8-7. %D vs South Pole Distance (All Gains)
With a desired 5-mm movement swing, select the DRV5057 with the largest possible sensitivity that fits the
system requirements for the magnet distance to the sensor. Assume that for this example, because of
mechanical restrictions, the magnet at the nearest point to the sensor must be selected to be within 5 mm to
8 mm. The largest sensitivity option (A1) does not work in this situation because the device output is railed at the
farthest allowed distance of 8 mm. The A2 version is not railed at this point, and is therefore the sensor selected
for this example. Choose the closest point of the magnet to the sensor to be a distance that allows the magnet to
get as close to the sensor as possible without railing but stays within the selectable 5-mm to 8-mm allowed
range. Because the A2 version rails at approximately 6 mm, choose a closest distance of 6.5 mm to allow for a
little bit of margin. With this choice, 图 8-8 shows the %D response at the sensor across the full movement
range.
20
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: DRV5057
English Data Sheet: SBAS646
DRV5057
www.ti.com.cn
ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020
100
DRV5057A2
95
Duty Cycle (%)
90
85
80
75
70
65
60
55
50
6.5
7
7.5
8
8.5
9
9.5
Distance (mm)
10
10.5
11
11.5
D007
图 8-8. %D vs South Pole Distance (Gain A2)
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
21
Product Folder Links: DRV5057
English Data Sheet: SBAS646
DRV5057
www.ti.com.cn
ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020
The magnetic field strength is calculated using 方程式 6, where a negative number represents the opposite pole
(in this example a south pole is over the sensor, causing the results to be a positive number).
%D 50
B
(6)
Gain
For example, if the A2 version of the DRV5057 measured a duty cycle of %D = 74.6% using 方程式 1, then the
magnetic field strength present at the sensor is (74.6 – 50) / 1 = 24.6 mT.
Using the lookup table that was used to create the plot in 图 8-6, the distance from the magnet at 24.6 mT is D
≈ 8.2 mm.
For more accurate results, the lookup table can be calibrated along the movement path of the magnet.
Additionally, instead of using the calibrated lookup table for each measurement, consider using a best-fit
polynomial equation from the curve for the desired movement range to calculate D in terms of B.
The curve in 图 8-8 is not linear; therefore, the achievable accuracy varies for each position along the movement
path. The location with the worst accuracy is where there is the smallest change in output for a given amount of
movement, which in this example is where the magnet is farthest from the sensor (at 11.5 mm). Determine if the
desired accuracy is met by checking if the needed %DLSB at this location for the specified accuracy is greater
than the noise level (PWM jitter) of 0.1%D. Thus, with a desired accuracy of 0.1 mm, the needed %DLSB is the
change in %D between 11.4 mm and 11.5 mm. Using the lookup table to find B and then solving for %D in 方程
式 6, at 11.5 mm, B = 11.815 mT (which equates to 61.815%D), and at 11.4 mm B = 12.048 mT (which equates
to 62.048%D). The difference in %D between these two points is 62.048 – 61.815 = 0.223%DLSB. This value is
larger than the 0.1%D jitter, so the desired accuracy can be met as long as a %DLSB is selected that is equal to
or less than 0.223 using 方程式 2.
22
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: DRV5057
English Data Sheet: SBAS646
DRV5057
www.ti.com.cn
ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020
8.3 What to Do and What Not to Do
The Hall element is sensitive to magnetic fields that are perpendicular to the top of the package. Therefore, to
correctly detect the magnetic field, make sure to use the correct magnet orientation for the sensor. 图 8-9 shows
correct and incorrect orientation.
CORRECT
N
S
S
N
N
S
INCORRECT
N
S
图 8-9. Correct and Incorrect Magnet Orientation
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
23
Product Folder Links: DRV5057
English Data Sheet: SBAS646
DRV5057
www.ti.com.cn
ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020
9 Power Supply Recommendations
Use a decoupling capacitor placed close to the device to provide local energy with minimal inductance. Use a
ceramic capacitor with a value of at least 0.01 µF.
10 Layout
10.1 Layout Guidelines
Magnetic fields pass through most nonferromagnetic materials with no significant disturbance. Embedding Hall
effect sensors within plastic or aluminum enclosures and sensing magnets on the outside is common practice.
Magnetic fields also easily pass through most printed-circuit boards, which makes placing the magnet on the
opposite side possible.
10.2 Layout Examples
VCC
GND
VCC
GND
OUT
OUT
图 10-1. Layout Examples
24
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: DRV5057
English Data Sheet: SBAS646
DRV5057
www.ti.com.cn
ZHCSJ02A – NOVEMBER 2018 – REVISED AUGUST 2020
11 Device and Documentation Support
11.1 Documentation Support
11.1.1 Related Documentation
For related documentation see the following:
• Texas Instruments, Using Linear Hall Effect Sensors to Measure Angle tech note
• Texas Instruments, Incremental Rotary Encoder Design Considerations tech note
• Texas Instruments, DRV5055 Ratiometric Linear Hall Effect Sensor data sheet
11.2 接收文档更新通知
要接收文档更新通知,请导航至 ti.com 上的器件产品文件夹。点击订阅更新 进行注册,即可每周接收产品信息更
改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。
11.3 支持资源
TI E2E™ 中文支持论坛是工程师的重要参考资料,可直接从专家处获得快速、经过验证的解答和设计帮助。搜索
现有解答或提出自己的问题,获得所需的快速设计帮助。
链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅
TI 的使用条款。
11.4 Trademarks
TI E2E™ is a trademark of Texas Instruments.
所有商标均为其各自所有者的财产。
11.5 静电放电警告
静电放电 (ESD) 会损坏这个集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理
和安装程序,可能会损坏集成电路。
ESD 的损坏小至导致微小的性能降级,大至整个器件故障。精密的集成电路可能更容易受到损坏,这是因为非常细微的参
数更改都可能会导致器件与其发布的规格不相符。
11.6 术语表
TI 术语表
本术语表列出并解释了术语、首字母缩略词和定义。
12 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
25
Product Folder Links: DRV5057
English Data Sheet: SBAS646
PACKAGE OPTION ADDENDUM
www.ti.com
23-May-2025
PACKAGING INFORMATION
Orderable part number
Status
Material type
(1)
(2)
Package | Pins
Package qty | Carrier
RoHS
(3)
Lead finish/
Ball material
MSL rating/
Peak reflow
(4)
(5)
Op temp (°C)
Part marking
(6)
DRV5057A1QDBZR
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
57A1
DRV5057A1QDBZR.B
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
57A1
DRV5057A1QDBZT
Obsolete
Production
SOT-23 (DBZ) | 3
-
-
Call TI
Call TI
-40 to 125
57A1
DRV5057A1QLPG
Active
Production
TO-92 (LPG) | 3
1000 | BULK
Yes
SN
N/A for Pkg Type
-40 to 125
57A1
DRV5057A1QLPG.B
Active
Production
TO-92 (LPG) | 3
1000 | BULK
Yes
SN
N/A for Pkg Type
-40 to 125
57A1
DRV5057A1QLPGM
Active
Production
TO-92 (LPG) | 3
3000 | AMMO
Yes
SN
N/A for Pkg Type
-40 to 125
57A1
DRV5057A1QLPGM.B
Active
Production
TO-92 (LPG) | 3
3000 | AMMO
Yes
SN
N/A for Pkg Type
-40 to 125
57A1
DRV5057A2QDBZR
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
57A2
DRV5057A2QDBZR.B
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
57A2
DRV5057A2QLPG
Active
Production
TO-92 (LPG) | 3
1000 | BULK
Yes
SN
N/A for Pkg Type
-40 to 125
57A2
DRV5057A2QLPG.B
Active
Production
TO-92 (LPG) | 3
1000 | BULK
Yes
SN
N/A for Pkg Type
-40 to 125
57A2
DRV5057A2QLPGM
Active
Production
TO-92 (LPG) | 3
3000 | AMMO
Yes
SN
N/A for Pkg Type
-40 to 125
57A2
DRV5057A2QLPGM.B
Active
Production
TO-92 (LPG) | 3
3000 | AMMO
Yes
SN
N/A for Pkg Type
-40 to 125
57A2
DRV5057A3QDBZR
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
57A3
DRV5057A3QDBZR.B
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
57A3
DRV5057A3QDBZT
Obsolete
Production
SOT-23 (DBZ) | 3
-
-
Call TI
Call TI
-40 to 125
57A3
DRV5057A3QLPG
Active
Production
TO-92 (LPG) | 3
1000 | BULK
Yes
SN
N/A for Pkg Type
-40 to 125
57A3
DRV5057A3QLPG.B
Active
Production
TO-92 (LPG) | 3
1000 | BULK
Yes
SN
N/A for Pkg Type
-40 to 125
57A3
DRV5057A3QLPGM
Active
Production
TO-92 (LPG) | 3
3000 | AMMO
Yes
SN
N/A for Pkg Type
-40 to 125
57A3
DRV5057A3QLPGM.B
Active
Production
TO-92 (LPG) | 3
3000 | AMMO
Yes
SN
N/A for Pkg Type
-40 to 125
57A3
DRV5057A4QDBZR
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
57A4
DRV5057A4QDBZR.B
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
57A4
DRV5057A4QDBZT
Obsolete
Production
SOT-23 (DBZ) | 3
-
-
Call TI
Call TI
-40 to 125
57A4
DRV5057A4QLPG
Active
Production
TO-92 (LPG) | 3
1000 | BULK
Yes
SN
N/A for Pkg Type
-40 to 125
57A4
DRV5057A4QLPG.B
Active
Production
TO-92 (LPG) | 3
1000 | BULK
Yes
SN
N/A for Pkg Type
-40 to 125
57A4
DRV5057A4QLPGM
Active
Production
TO-92 (LPG) | 3
3000 | AMMO
Yes
SN
N/A for Pkg Type
-40 to 125
57A4
DRV5057A4QLPGM.B
Active
Production
TO-92 (LPG) | 3
3000 | AMMO
Yes
SN
N/A for Pkg Type
-40 to 125
57A4
DRV5057Z1QDBZR
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
57Z1
DRV5057Z1QDBZR.B
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
57Z1
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable part number
DRV5057Z2QDBZR
(1)
23-May-2025
Status
Material type
(1)
(2)
Package | Pins
Package qty | Carrier
RoHS
(3)
Lead finish/
Ball material
MSL rating/
Peak reflow
Op temp (°C)
Part marking
(4)
(5)
SN
Level-2-260C-1 YEAR
-40 to 125
57Z2
(6)
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
DRV5057Z2QDBZR.B
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
57Z2
DRV5057Z2QDBZT
Obsolete
Production
SOT-23 (DBZ) | 3
-
-
Call TI
Call TI
-40 to 125
57Z2
DRV5057Z3QDBZR
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
57Z3
DRV5057Z3QDBZR.B
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
57Z3
DRV5057Z3QDBZT
Obsolete
Production
SOT-23 (DBZ) | 3
-
-
Call TI
Call TI
-40 to 125
57Z3
DRV5057Z4QDBZR
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
57Z4
DRV5057Z4QDBZR.B
Active
Production
SOT-23 (DBZ) | 3
3000 | LARGE T&R
Yes
SN
Level-2-260C-1 YEAR
-40 to 125
57Z4
DRV5057Z4QDBZT
Obsolete
Production
SOT-23 (DBZ) | 3
-
-
Call TI
Call TI
-40 to 125
57Z4
Status: For more details on status, see our product life cycle.
(2)
Material type: When designated, preproduction parts are prototypes/experimental devices, and are not yet approved or released for full production. Testing and final process, including without limitation quality assurance,
reliability performance testing, and/or process qualification, may not yet be complete, and this item is subject to further changes or possible discontinuation. If available for ordering, purchases will be subject to an additional
waiver at checkout, and are intended for early internal evaluation purposes only. These items are sold without warranties of any kind.
(3)
RoHS values: Yes, No, RoHS Exempt. See the TI RoHS Statement for additional information and value definition.
(4)
Lead finish/Ball material: Parts may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum
column width.
(5)
MSL rating/Peak reflow: The moisture sensitivity level ratings and peak solder (reflow) temperatures. In the event that a part has multiple moisture sensitivity ratings, only the lowest level per JEDEC standards is shown.
Refer to the shipping label for the actual reflow temperature that will be used to mount the part to the printed circuit board.
(6)
Part marking: There may be an additional marking, which relates to the logo, the lot trace code information, or the environmental category of the part.
Multiple part markings will be inside parentheses. Only one part marking contained in parentheses and separated by a "~" will appear on a part. If a line is indented then it is a continuation of the previous line and the two
combined represent the entire part marking for that device.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and
makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative
and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers
and other limited information may not be available for release.
Addendum-Page 2
PACKAGE OPTION ADDENDUM
www.ti.com
23-May-2025
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF DRV5057 :
• Automotive : DRV5057-Q1
NOTE: Qualified Version Definitions:
• Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
Addendum-Page 3
PACKAGE MATERIALS INFORMATION
www.ti.com
23-May-2025
TAPE AND REEL INFORMATION
REEL DIMENSIONS
TAPE DIMENSIONS
K0
P1
B0 W
Reel
Diameter
Cavity
A0
B0
K0
W
P1
A0
Dimension designed to accommodate the component width
Dimension designed to accommodate the component length
Dimension designed to accommodate the component thickness
Overall width of the carrier tape
Pitch between successive cavity centers
Reel Width (W1)
QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE
Sprocket Holes
Q1
Q2
Q1
Q2
Q3
Q4
Q3
Q4
User Direction of Feed
Pocket Quadrants
*All dimensions are nominal
Device
Package Package Pins
Type Drawing
SPQ
Reel
Reel
A0
Diameter Width (mm)
(mm) W1 (mm)
B0
(mm)
K0
(mm)
P1
(mm)
DRV5057A1QDBZR
SOT-23
DBZ
3
3000
180.0
8.4
DRV5057A2QDBZR
SOT-23
DBZ
3
3000
180.0
DRV5057A3QDBZR
SOT-23
DBZ
3
3000
180.0
DRV5057A3QDBZR
SOT-23
DBZ
3
3000
DRV5057A4QDBZR
SOT-23
DBZ
3
3000
DRV5057Z1QDBZR
SOT-23
DBZ
3
DRV5057Z2QDBZR
SOT-23
DBZ
DRV5057Z3QDBZR
SOT-23
DBZ
DRV5057Z4QDBZR
SOT-23
DBZ
3.2
2.85
1.3
4.0
8.0
Q3
8.4
3.2
2.85
1.3
4.0
8.0
Q3
8.4
3.15
2.77
1.22
4.0
8.0
Q3
180.0
8.4
3.2
2.85
1.3
4.0
8.0
Q3
180.0
8.4
3.2
2.85
1.3
4.0
8.0
Q3
3000
180.0
8.4
3.2
2.85
1.3
4.0
8.0
Q3
3
3000
180.0
8.4
3.2
2.85
1.3
4.0
8.0
Q3
3
3000
180.0
8.4
3.2
2.85
1.3
4.0
8.0
Q3
3
3000
180.0
8.4
3.2
2.85
1.3
4.0
8.0
Q3
Pack Materials-Page 1
W
Pin1
(mm) Quadrant
PACKAGE MATERIALS INFORMATION
www.ti.com
23-May-2025
TAPE AND REEL BOX DIMENSIONS
Width (mm)
W
L
H
*All dimensions are nominal
Device
Package Type
Package Drawing
Pins
SPQ
Length (mm)
Width (mm)
Height (mm)
DRV5057A1QDBZR
SOT-23
DBZ
3
3000
210.0
185.0
35.0
DRV5057A2QDBZR
SOT-23
DBZ
3
3000
210.0
185.0
35.0
DRV5057A3QDBZR
SOT-23
DBZ
3
3000
213.0
191.0
35.0
DRV5057A3QDBZR
SOT-23
DBZ
3
3000
210.0
185.0
35.0
DRV5057A4QDBZR
SOT-23
DBZ
3
3000
210.0
185.0
35.0
DRV5057Z1QDBZR
SOT-23
DBZ
3
3000
210.0
185.0
35.0
DRV5057Z2QDBZR
SOT-23
DBZ
3
3000
210.0
185.0
35.0
DRV5057Z3QDBZR
SOT-23
DBZ
3
3000
210.0
185.0
35.0
DRV5057Z4QDBZR
SOT-23
DBZ
3
3000
210.0
185.0
35.0
Pack Materials-Page 2
PACKAGE OUTLINE
DBZ0003A
SOT-23 - 1.12 mm max height
SCALE 4.000
SMALL OUTLINE TRANSISTOR
C
2.64
2.10
1.4
1.2
PIN 1
INDEX AREA
1.12 MAX
B
A
0.1 C
1
0.95
(0.125)
3.04
2.80
1.9
3
(0.15)
NOTE 4
3X
0.5
0.3
0.2
2
C A B
4X 0 -15
(0.95)
0.10
TYP
0.01
4X 4 -15
0.25
GAGE PLANE
0 -8 TYP
0.20
TYP
0.08
0.6
TYP
0.2
SEATING PLANE
4214838/F 08/2024
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. Reference JEDEC registration TO-236, except minimum foot length.
4. Support pin may differ or may not be present.
5. Body dimensions do not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed
0.25mm per side
www.ti.com
EXAMPLE BOARD LAYOUT
DBZ0003A
SOT-23 - 1.12 mm max height
SMALL OUTLINE TRANSISTOR
PKG
3X (1.3)
1
3X (0.6)
SYMM
3
2X (0.95)
2
(R0.05) TYP
(2.1)
LAND PATTERN EXAMPLE
SCALE:15X
SOLDER MASK
OPENING
METAL
SOLDER MASK
OPENING
METAL UNDER
SOLDER MASK
0.07 MIN
ALL AROUND
0.07 MAX
ALL AROUND
NON SOLDER MASK
DEFINED
(PREFERRED)
SOLDER MASK
DEFINED
SOLDER MASK DETAILS
4214838/F 08/2024
NOTES: (continued)
5. Publication IPC-7351 may have alternate designs.
6. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
www.ti.com
EXAMPLE STENCIL DESIGN
DBZ0003A
SOT-23 - 1.12 mm max height
SMALL OUTLINE TRANSISTOR
PKG
3X (1.3)
1
3X (0.6)
SYMM
3
2X(0.95)
2
(R0.05) TYP
(2.1)
SOLDER PASTE EXAMPLE
BASED ON 0.125 THICK STENCIL
SCALE:15X
4214838/F 08/2024
NOTES: (continued)
7. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
8. Board assembly site may have different recommendations for stencil design.
www.ti.com
PACKAGE OUTLINE
LPG0003A
TO-92 - 5.05 mm max height
SCALE 1.300
TRANSISTOR OUTLINE
4.1
3.9
3.25
3.05
3X
0.55
0.40
5.05
MAX
3
1
3X (0.8)
3X
15.5
15.1
3X
0.48
0.35
3X
2X 1.27 0.05
0.51
0.36
2.64
2.44
2.68
2.28
1.62
1.42
2X (45 )
1
(0.5425)
2
3
0.86
0.66
4221343/C 01/2018
NOTES:
1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing
per ASME Y14.5M.
2. This drawing is subject to change without notice.
www.ti.com
EXAMPLE BOARD LAYOUT
LPG0003A
TO-92 - 5.05 mm max height
TRANSISTOR OUTLINE
0.05 MAX
ALL AROUND
TYP
FULL R
TYP
METAL
TYP
(1.07)
3X ( 0.75) VIA
2X
METAL
(1.7)
2X (1.7)
2
1
2X
SOLDER MASK
OPENING
3
2X (1.07)
(R0.05) TYP
(1.27)
SOLDER MASK
OPENING
(2.54)
LAND PATTERN EXAMPLE
NON-SOLDER MASK DEFINED
SCALE:20X
4221343/C 01/2018
www.ti.com
TAPE SPECIFICATIONS
LPG0003A
TO-92 - 5.05 mm max height
TRANSISTOR OUTLINE
0
13.0
12.4
1
0
1
1 MAX
21
18
2.5 MIN
6.5
5.5
9.5
8.5
0.25
0.15
19.0
17.5
3.8-4.2 TYP
6.55
6.15
12.9
12.5
0.45
0.35
4221343/C 01/2018
www.ti.com
重要通知和免责声明
TI“按原样”提供技术和可靠性数据(包括数据表)、设计资源(包括参考设计)、应用或其他设计建议、网络工具、安全信息和其他资源,
不保证没有瑕疵且不做出任何明示或暗示的担保,包括但不限于对适销性、某特定用途方面的适用性或不侵犯任何第三方知识产权的暗示担
保。
这些资源可供使用 TI 产品进行设计的熟练开发人员使用。您将自行承担以下全部责任:(1) 针对您的应用选择合适的 TI 产品,(2) 设计、验
证并测试您的应用,(3) 确保您的应用满足相应标准以及任何其他功能安全、信息安全、监管或其他要求。
这些资源如有变更,恕不另行通知。TI 授权您仅可将这些资源用于研发本资源所述的 TI 产品的相关应用。 严禁以其他方式对这些资源进行
复制或展示。您无权使用任何其他 TI 知识产权或任何第三方知识产权。您应全额赔偿因在这些资源的使用中对 TI 及其代表造成的任何索
赔、损害、成本、损失和债务,TI 对此概不负责。
TI 提供的产品受 TI 的销售条款或 ti.com 上其他适用条款/TI 产品随附的其他适用条款的约束。TI 提供这些资源并不会扩展或以其他方式更改
TI 针对 TI 产品发布的适用的担保或担保免责声明。
TI 反对并拒绝您可能提出的任何其他或不同的条款。IMPORTANT NOTICE
邮寄地址:Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
版权所有 © 2025,德州仪器 (TI) 公司