0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
DRV8301-LS12-KIT

DRV8301-LS12-KIT

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    Module

  • 描述:

    KIT EVAL FOR DRV8301-LS12

  • 数据手册
  • 价格&库存
DRV8301-LS12-KIT 数据手册
TMS570LS31x/21x 16/32-Bit RISC Flash Microcontroller Technical Reference Manual Literature Number: SPNU499C March 2018 Contents Preface....................................................................................................................................... 91 1 Introduction ....................................................................................................................... 93 1.1 1.2 1.3 2 2.2 2.3 2.4 2.5 Introduction .................................................................................................................. 99 2.1.1 Architecture Block Diagram ...................................................................................... 99 2.1.2 Definitions of Terms ............................................................................................. 100 2.1.3 Bus Master / Slave Access Privileges ........................................................................ 102 Memory Organization .................................................................................................... 103 2.2.1 Memory-Map Overview ......................................................................................... 103 2.2.2 Memory-Map Table .............................................................................................. 104 2.2.3 Flash Memory .................................................................................................... 108 2.2.4 On-Chip SRAM ................................................................................................... 110 Exceptions ................................................................................................................. 115 2.3.1 Resets ............................................................................................................. 115 2.3.2 Aborts ............................................................................................................. 115 2.3.3 System Software Interrupts ..................................................................................... 117 Clocks ...................................................................................................................... 118 2.4.1 Clock Sources .................................................................................................... 118 2.4.2 Clock Domains ................................................................................................... 119 2.4.3 Low Power Modes ............................................................................................... 121 2.4.4 Clock Test Mode ................................................................................................. 123 2.4.5 Embedded Trace Macrocell (ETM-R4)........................................................................ 124 2.4.6 Safety Considerations for Clocks .............................................................................. 125 System and Peripheral Control Registers ............................................................................. 127 2.5.1 Primary System Control Registers (SYS) .................................................................... 127 2.5.2 Secondary System Control Registers (SYS2) ............................................................... 181 2.5.3 Peripheral Central Resource (PCR) Control Registers .................................................... 189 Power Management Module (PMM) ..................................................................................... 204 3.1 3.2 3.3 2 94 94 97 97 Architecture ....................................................................................................................... 98 2.1 3 Designed for Safety Applications ......................................................................................... Family Description.......................................................................................................... Endianism Considerations ................................................................................................ 1.3.1 TMS570: Big Endian (BE32) ..................................................................................... Overview ................................................................................................................... 3.1.1 Main Features of the Power Management Module (PMM) ................................................. 3.1.2 Block Diagram .................................................................................................... Power Domains ........................................................................................................... PMM Operation ........................................................................................................... 3.3.1 Power Switch ..................................................................................................... 3.3.2 Power Domain State ............................................................................................ 3.3.3 Default Power Domain State ................................................................................... 3.3.4 Disabling a Power Domain Permanently ..................................................................... 3.3.5 Changing Power Domain State ................................................................................ 3.3.6 Reset Management .............................................................................................. 3.3.7 Diagnostic Power State Controller (PSCON) ................................................................ 3.3.8 PSCON Compare Block ........................................................................................ Contents 205 205 205 206 208 208 208 208 208 208 209 209 209 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 3.4 4 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 225 226 227 228 229 230 I/O Multiplexing and Control Module (IOMM) ........................................................................ 231 4.1 4.2 4.3 4.4 4.5 4.6 5 PMM Registers ............................................................................................................ 3.4.1 Logic Power Domain Control Register (LOGICPDPWRCTRL0) .......................................... 3.4.2 Memory Power Domain Control Register 0 (MEMPDPWRCTRL0) ....................................... 3.4.3 Power Domain Clock Disable Register (PDCLKDISREG) ................................................. 3.4.4 Power Domain Clock Disable Set Register (PDCLKDISSETREG) ...................................... 3.4.5 Power Domain Clock Disable Clear Register (PDCLKDISCLRREG) ..................................... 3.4.6 Logic Power Domain PD2 Power Status Register (LOGICPDPWRSTAT0) ............................. 3.4.7 Logic Power Domain PD3 Power Status Register (LOGICPDPWRSTAT1) ............................. 3.4.8 Logic Power Domain PD4 Power Status Register (LOGICPDPWRSTAT2) ............................. 3.4.9 Logic Power Domain PD5 Power Status Register (LOGICPDPWRSTAT3) ............................. 3.4.10 Memory Power Domain RAM_PD1 Power Status Register (MEMPDPWRSTAT0) ................... 3.4.11 Memory Power Domain RAM_PD2 Power Status Register (MEMPDPWRSTAT1) ................... 3.4.12 Memory Power Domain RAM_PD3 Power Status Register (MEMPDPWRSTAT2) ................... 3.4.13 Global Control Register 1 (GLOBALCTRL1) ................................................................ 3.4.14 Global Status Register (GLOBALSTAT) ..................................................................... 3.4.15 PSCON Diagnostic Compare Key Register (PRCKEYREG) ............................................. 3.4.16 LogicPD PSCON Diagnostic Compare Status Register 1 (LPDDCSTAT1)............................. 3.4.17 LogicPD PSCON Diagnostic Compare Status Register 2 (LPDDCSTAT2)............................. 3.4.18 Memory PD PSCON Diagnostic Compare Status Register 1 (MPDDCSTAT1) ........................ 3.4.19 Memory PD PSCON Diagnostic Compare Status Register 2 (MPDDCSTAT2) ........................ 3.4.20 Isolation Diagnostic Status Register (ISODIAGSTAT) ..................................................... Overview .................................................................................................................. Main Features of I/O Multiplexing Module (IOMM) .................................................................. Control of Multiplexed Functions ....................................................................................... 4.3.1 Control of Multiplexed Outputs ................................................................................ 4.3.2 Control of Multiplexed Inputs .................................................................................. 4.3.3 Control of Special Multiplexed Options ...................................................................... Safety Features .......................................................................................................... 4.4.1 Locking Mechanism for Memory-Mapped Registers ....................................................... 4.4.2 Error Conditions ................................................................................................. IOMM Registers ........................................................................................................... 4.5.1 REVISION_REG: Revision Register ......................................................................... 4.5.2 ENDIAN_REG: Device Endianness Register ............................................................... 4.5.3 KICK_REG0: Kicker Register 0 ............................................................................... 4.5.4 KICK_REG1: Kicker Register 1 ............................................................................... 4.5.5 ERR_RAW_STATUS_REG: Error Raw Status / Set Register ............................................ 4.5.6 ERR_ENABLED_STATUS_REG: Error Enabled Status / Clear Register ............................... 4.5.7 ERR_ENABLE_REG: Error Signaling Enable Register .................................................... 4.5.8 ERR_ENABLE_CLR_REG: Error Signaling Enable Clear Register ...................................... 4.5.9 FAULT_ADDRESS_REG: Fault Address Register .......................................................... 4.5.10 FAULT_STATUS_REG: Fault Status Register ............................................................ 4.5.11 FAULT_CLEAR_REG: Fault Clear Register ............................................................... 4.5.12 PINMMRnn: Pin Multiplexing Control Registers ........................................................... Signal Multiplexing and Control ......................................................................................... 232 232 232 232 233 235 236 236 236 237 237 238 239 239 240 241 242 243 243 244 245 245 246 F021 Flash Module Controller (FMC) ................................................................................... 250 5.1 5.2 5.3 Overview .................................................................................................................. 5.1.1 Features .......................................................................................................... 5.1.2 Definition of Terms .............................................................................................. 5.1.3 F021 Flash Tools ................................................................................................ Default Flash Configuration ............................................................................................. SECDED .................................................................................................................. 5.3.1 SECDED Initialization ........................................................................................... SPNU499C – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 251 251 251 252 252 253 253 3 www.ti.com 5.4 5.5 5.6 5.7 4 5.3.2 ECC Encoding.................................................................................................... 5.3.3 Syndrome Table: Decode to Bit in Error ...................................................................... 5.3.4 Syndrome Table: An Alternate Method ....................................................................... Memory Map .............................................................................................................. 5.4.1 Location of Flash ECC Bits ..................................................................................... 5.4.2 OTP Memory ..................................................................................................... Power On, Power Off, and Reset Considerations ................................................................... 5.5.1 Error Checking at Power On ................................................................................... 5.5.2 Flash Integrity when Reset while Programming or Erasing ................................................ 5.5.3 Flash Integrity at Power Off .................................................................................... Emulation and SIL3 Diagnostic Modes ................................................................................ 5.6.1 System Emulation ............................................................................................... 5.6.2 Diagnostic Mode ................................................................................................. 5.6.3 Diagnostic Mode Summary ..................................................................................... 5.6.4 Read Margin ...................................................................................................... Control Registers ......................................................................................................... 5.7.1 Flash Option Control Register (FRDCNTL) .................................................................. 5.7.2 Flash Error Detection and Correction Control Register 1 (FEDACCTRL1) ............................. 5.7.3 Flash Error Correction and Correction Control Register 2 (FEDACCTRL2) ............................ 5.7.4 Flash Correctable Error Count Register (FCOR_ERR_CNT) ............................................. 5.7.5 Flash Correctable Error Address Register (FCOR_ERR_ADD) .......................................... 5.7.6 Flash Correctable Error Position Register (FCOR_ERR_POS) .......................................... 5.7.7 Flash Error Detection and Correction Status Register (FEDACSTATUS) ............................... 5.7.8 Flash Uncorrectable Error Address Register (FUNC_ERR_ADD) ....................................... 5.7.9 Flash Error Detection and Correction Sector Disable Register (FEDACSDIS) ......................... 5.7.10 Primary Address Tag Register (FPRIM_ADD_TAG) ...................................................... 5.7.11 Duplicate Address Tag Register (FDUP_ADD_TAG) ..................................................... 5.7.12 Flash Bank Protection Register (FBPROT) ................................................................ 5.7.13 Flash Bank Sector Enable Register (FBSE) ................................................................ 5.7.14 Flash Bank Busy Register (FBBUSY) ....................................................................... 5.7.15 Flash Bank Access Control Register (FBAC) .............................................................. 5.7.16 Flash Bank Fallback Power Register (FBFALLBACK) .................................................... 5.7.17 Flash Bank/Pump Ready Register (FBPRDY) ............................................................. 5.7.18 Flash Pump Access Control Register 1 (FPAC1) ......................................................... 5.7.19 Flash Pump Access Control Register 2 (FPAC2) ......................................................... 5.7.20 Flash Module Access Control Register (FMAC) ........................................................... 5.7.21 Flash Module Status Register (FMSTAT) .................................................................. 5.7.22 EEPROM Emulation Data MSW Register (FEMU_DMSW) ............................................... 5.7.23 EEPROM Emulation Data LSW Register (FEMU_DLSW) ................................................ 5.7.24 EEPROM Emulation ECC Register (FEMU_ECC) ......................................................... 5.7.25 EEPROM Emulation Address Register (FEMU_ADDR) ................................................... 5.7.26 Diagnostic Control Register (FDIAGCTRL) ................................................................. 5.7.27 Uncorrected Raw Data High Register (FRAW_DATAH) .................................................. 5.7.28 Uncorrected Raw Data Low Register (FRAW_DATAL) ................................................... 5.7.29 Uncorrected Raw ECC Register (FRAW_ECC) ............................................................ 5.7.30 Parity Override Register (FPAR_OVR) ...................................................................... 5.7.31 Flash Error Detection and Correction Sector Disable Register (FEDACSDIS2) ...................... 5.7.32 FSM Register Write Enable (FSM_WR_ENA) ............................................................. 5.7.33 FSM Sector Register (FSM_SECTOR) ..................................................................... 5.7.34 EEPROM Emulation Configuration Register (EEPROM_CONFIG) ..................................... 5.7.35 EEPROM Emulation Error Detection and Correction Control Register 1 (EE_CTRL1) .............. 5.7.36 EEPROM Emulation Error Correction and Correction Control Register 2 (EE_CTRL2) ............. 5.7.37 EEPROM Emulation Correctable Error Count Register (EE_COR_ERR_CNT) ....................... Contents 254 255 256 257 257 258 260 260 260 261 261 261 261 265 267 267 269 270 272 272 273 274 275 278 279 280 280 281 281 282 283 284 285 286 287 287 288 290 290 291 292 293 295 295 296 297 298 299 299 300 301 303 303 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 5.7.38 5.7.39 5.7.40 5.7.41 5.7.42 6 304 305 306 307 308 Tightly-Coupled RAM (TCRAM) Module ............................................................................... 309 6.1 6.2 6.3 6.4 6.5 6.6 6.7 7 EEPROM Emulation Correctable Error Address Register (EE_COR_ERR_ADD) .................... EEPROM Emulation Correctable Error Position Register (EE_COR_ERR_POS) .................... EEPROM Emulation Error Status Register (EE_STATUS) .............................................. EEPROM Emulation Uncorrectable Error Address Register (EE_UNC_ERR_ADD) ................. Flash Bank Configuration Register (FCFG_BANK) ....................................................... Overview ................................................................................................................... 6.1.1 B0TCM and B1TCM Connection Diagram ................................................................... 6.1.2 Main Features .................................................................................................... RAM Memory Map ........................................................................................................ Safety Features ........................................................................................................... 6.3.1 Support for Cortex-R4F CPU's Single-Error-Correction Double-Error-Detection (SECDED) .......... 6.3.2 Support for Cortex-R4F CPU's Address and Control Bus Parity Checking .............................. 6.3.3 Redundant Address Decode ................................................................................... TCRAM Auto-Initialization ............................................................................................... Trace Module Support ................................................................................................... Emulation / Debug Mode Behavior ..................................................................................... Control and Status Registers ............................................................................................ 6.7.1 TCRAM Module Control Register (RAMCTRL) .............................................................. 6.7.2 TCRAM Module Single-Bit Error Correction Threshold Register (RAMTHRESHOLD) ................. 6.7.3 TCRAM Module Single-Bit Error Occurrences Counter Register (RAMOCCUR) ....................... 6.7.4 TCRAM Module Interrupt Control Register (RAMINTCTRL) ............................................... 6.7.5 TCRAM Module Error Status Register (RAMERRSTATUS) ............................................... 6.7.6 TCRAM Module Single-Bit Error Address Register (RAMSERRADDR).................................. 6.7.7 TCRAM Module Uncorrectable Error Address Register (RAMUERRADDR) ............................ 6.7.8 TCRAM Module Test Mode Control Register (RAMTEST)................................................. 6.7.9 TCRAM Module Test Mode Vector Register (RAMADDRDECVECT) .................................... 6.7.10 TCRAM Module Parity Error Address Register (RAMPERRADDR) ..................................... 6.7.11 Auto-Memory Initialization Enable Register (INIT_DOMAIN) ............................................. 310 310 310 311 312 312 313 313 313 314 314 314 315 316 317 317 318 319 320 321 322 322 323 Programmable Built-In Self-Test (PBIST) Module .................................................................. 324 7.1 7.2 7.3 7.4 7.5 7.6 Overview .................................................................................................................. 7.1.1 Features of PBIST .............................................................................................. 7.1.2 PBIST vs. Application Software-Based Testing.............................................................. 7.1.3 PBIST Block Diagram .......................................................................................... RAM Grouping and Algorithm .......................................................................................... PBIST Flow ............................................................................................................... 7.3.1 PBIST Sequence ................................................................................................ Memory Test Algorithms on the On-chip ROM ...................................................................... PBIST Control Registers ................................................................................................ 7.5.1 RAM Configuration Register (RAMT) ......................................................................... 7.5.2 Datalogger Register (DLR) ..................................................................................... 7.5.3 PBIST Activate/Clock Enable Register (PACT) .............................................................. 7.5.4 PBIST ID Register ............................................................................................... 7.5.5 Override Register (OVER) ...................................................................................... 7.5.6 Fail Status Fail Register (FSRF0) ............................................................................. 7.5.7 Fail Status Count Registers (FSRC0 and FSRC1) .......................................................... 7.5.8 Fail Status Address Registers (FSRA0 and FSRA1) ....................................................... 7.5.9 Fail Status Data Registers (FSRDL0 and FSRDL1) ........................................................ 7.5.10 ROM Mask Register (ROM) ................................................................................... 7.5.11 ROM Algorithm Mask Register (ALGO) ..................................................................... 7.5.12 RAM Info Mask Lower Register (RINFOL) .................................................................. 7.5.13 RAM Info Mask Upper Register (RINFOU) .................................................................. PBIST Configuration Example .......................................................................................... SPNU499C – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 325 325 325 325 326 327 328 329 331 332 333 334 335 336 337 338 339 340 341 341 342 343 344 5 www.ti.com 7.6.1 7.6.2 8 CPU Self-Test Controller (STC) Module ............................................................................... 346 8.1 8.2 8.3 8.4 8.5 9 9.4 347 347 347 349 349 349 349 350 351 352 353 353 354 354 355 356 357 358 359 360 361 361 Main Features ............................................................................................................. Block Diagram ............................................................................................................. Module Operation ......................................................................................................... 9.3.1 1oo1D Lock Step Mode ......................................................................................... 9.3.2 Self-Test Mode ................................................................................................... 9.3.3 Error Forcing Mode .............................................................................................. 9.3.4 Self-Test Error Forcing Mode .................................................................................. 9.3.5 Operation During CPU Debug Mode .......................................................................... CCM-R4F Control Registers ............................................................................................ 9.4.1 CCM-R4F Status Register (CCMSR) ......................................................................... 9.4.2 CCM-R4F Key Register (CCMKEYR) ......................................................................... 363 363 364 364 364 366 366 367 367 368 369 ........................................................................................................... 370 Introduction ................................................................................................................ 371 10.1.1 Features.......................................................................................................... 371 Quick Start ................................................................................................................. 372 Oscillator ................................................................................................................... 373 10.3.1 Oscillator Implementation ...................................................................................... 374 10.3.2 Oscillator Enable ................................................................................................ 374 10.3.3 Oscillator Disable ............................................................................................... 374 Low-Power Oscillator and Clock Detect (LPOCLKDET) ............................................................. 375 10.4.1 Clock Detect ..................................................................................................... 375 10.4.2 Behavior on Oscillator Failure ................................................................................. 375 10.4.3 Recovery from Oscillator Failure ............................................................................. 376 10.4.4 LPOCLKDET Enable ........................................................................................... 376 10.4.5 LPOCLKDET Disable .......................................................................................... 377 10.4.6 Trimming the HF LPO Oscillator .............................................................................. 377 PLL ......................................................................................................................... 378 Oscillator and PLL 10.1 10.2 10.3 10.4 10.5 6 General Description ...................................................................................................... 8.1.1 CPU Self-Test Controller Features ............................................................................ 8.1.2 STC Block Diagram ............................................................................................. Application Self-Test Flow ............................................................................................... 8.2.1 STC Module Configuration ..................................................................................... 8.2.2 Context Saving ................................................................................................... 8.2.3 Entering CPU Idle Mode ........................................................................................ 8.2.4 Self-Test Completion and Error Generation .................................................................. STC Test Coverage and Duration ...................................................................................... STC Control Registers ................................................................................................... 8.4.1 STC Global Control Register 0 (STCGCR0) ................................................................. 8.4.2 STC Global Control Register 1 (STCGCR1) ................................................................. 8.4.3 Self-Test Run Timeout Counter Preload Register (STCTPR) ............................................. 8.4.4 STC Current ROM Address Register (STC_CADDR) ...................................................... 8.4.5 STC Current Interval Count Register (STCCICR) ........................................................... 8.4.6 Self-Test Global Status Register (STCGSTAT).............................................................. 8.4.7 Self-Test Fail Status Register (STCFSTAT) ................................................................. 8.4.8 CPU1 Current MISR Register (CPU1_CURMISR[3:0]) ..................................................... 8.4.9 CPU2_CURMISR[3:0] (CPU2 Current MISR Register) ..................................................... 8.4.10 STCSCSCR (Signature Compare Self-Check Register) .................................................. STC Configuration Example ............................................................................................ 8.5.1 Example 1: Self-Test Run for 24 Interval .................................................................... CPU Compare Module for Cortex-R4F (CCM-R4F) ................................................................. 362 9.1 9.2 9.3 10 Example 1 : Configuration of PBIST Controller to Run Self-Test on RAM Group 3 .................... 344 Example 2 : Configuration of PBIST Controller to Run Self-Test on ALL RAM Groups ................ 345 Contents SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 10.6 10.7 10.8 11 Dual-Clock Comparator (DCC) Module 11.1 11.2 11.3 11.4 12 10.5.1 Modulation ....................................................................................................... 10.5.2 PLL Output Control ............................................................................................. 10.5.3 Behavior on PLL Fail ........................................................................................... 10.5.4 Recovery from a PLL Failure .................................................................................. 10.5.5 PLL Modulation Depth Measurement ........................................................................ 10.5.6 PLL Frequency Measurement Circuit ........................................................................ 10.5.7 PLL2 .............................................................................................................. PLL Control Registers .................................................................................................... 10.6.1 PLL Modulation Depth Measurement Control Register (SSWPLL1) ..................................... 10.6.2 SSW PLL BIST Control Register 2 (SSWPLL2) ............................................................ 10.6.3 SSW PLL BIST Control Register 3 (SSWPLL3) ............................................................ Phase-Locked Loop Theory of Operation ............................................................................. 10.7.1 Phase-Frequency Detector .................................................................................... 10.7.2 Charge Pump and Loop Filter................................................................................. 10.7.3 Voltage-Controlled Oscillator .................................................................................. 10.7.4 Frequency Modulation ......................................................................................... Programming Example ................................................................................................... 12.1 12.2 12.3 12.4 ................................................................................ 396 Introduction ................................................................................................................ 11.1.1 Main Features ................................................................................................... 11.1.2 Block Diagram ................................................................................................... Module Operation ......................................................................................................... 11.2.1 Continuous Monitoring Mode.................................................................................. 11.2.2 Single-Shot Measurement Mode ............................................................................. Clock Source Selection for Counter0 and Counter1 ................................................................. DCC Control Registers ................................................................................................... 11.4.1 DCC Global Control Register (DCCGCTRL) ............................................................... 11.4.2 DCC Revision Id Register (DCCREV) ...................................................................... 11.4.3 DCC Counter0 Seed Register (DCCCNT0SEED) ......................................................... 11.4.4 DCC Valid0 Seed Register (DCCVALID0SEED) .......................................................... 11.4.5 DCC Counter1 Seed Register (DCCCNT1SEED) ......................................................... 11.4.6 DCC Status Register (DCCSTAT) ........................................................................... 11.4.7 DCC Counter0 Value Register (DCCCNT0) ................................................................ 11.4.8 DCC Valid0 Value Register (DCCVALID0) ................................................................. 11.4.9 DCC Counter1 Value Register (DCCCNT1) ................................................................ 11.4.10 DCC Counter1 Clock Source Selection Register (DCCCNT1CLKSRC) .............................. 11.4.11 DCC Counter0 Clock Source Selection Register (DCCCNT0CLKSRC) .............................. Error Signaling Module (ESM) 380 381 384 385 386 387 387 388 389 390 391 392 392 393 393 394 394 397 397 397 398 398 401 402 403 404 405 405 406 406 407 408 409 409 410 411 ........................................................................................... 412 Overview .................................................................................................................. 12.1.1 Features.......................................................................................................... 12.1.2 Block Diagram .................................................................................................. Module Operation ........................................................................................................ 12.2.1 Reset Behavior ................................................................................................. 12.2.2 ERROR Pin Timing ............................................................................................ 12.2.3 Forcing an Error Condition .................................................................................... Recommended Programming Procedure ............................................................................. Control Registers ......................................................................................................... 12.4.1 ESM Enable ERROR Pin Action/Response Register 1 (ESMEEPAPR1) ............................... 12.4.2 ESM Disable ERROR Pin Action/Response Register 1 (ESMDEPAPR1) .............................. 12.4.3 ESM Interrupt Enable Set Register 1 (ESMIESR1) ........................................................ 12.4.4 ESM Interrupt Enable Clear Register 1 (ESMIECR1) ..................................................... 12.4.5 ESM Interrupt Level Set Register 1 (ESMILSR1) .......................................................... 12.4.6 ESM Interrupt Level Clear Register 1 (ESMILCR1) ........................................................ SPNU499C – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 413 413 413 415 415 416 418 419 420 421 421 422 422 423 423 7 www.ti.com 12.4.7 12.4.8 12.4.9 12.4.10 12.4.11 12.4.12 12.4.13 12.4.14 12.4.15 12.4.16 12.4.17 12.4.18 12.4.19 12.4.20 12.4.21 12.4.22 12.4.23 13 424 424 425 425 426 427 428 428 429 429 430 430 431 431 432 432 433 Real-Time Interrupt (RTI) Module ........................................................................................ 434 13.1 13.2 13.3 8 ESM Status Register 1 (ESMSR1) ........................................................................... ESM Status Register 2 (ESMSR2) ........................................................................... ESM Status Register 3 (ESMSR3) ........................................................................... ESM ERROR Pin Status Register (ESMEPSR) .......................................................... ESM Interrupt Offset High Register (ESMIOFFHR) ...................................................... ESM Interrupt Offset Low Register (ESMIOFFLR) ....................................................... ESM Low-Time Counter Register (ESMLTCR) ........................................................... ESM Low-Time Counter Preload Register (ESMLTCPR)................................................ ESM Error Key Register (ESMEKR) ........................................................................ ESM Status Shadow Register 2 (ESMSSR2) ............................................................. ESM Influence ERROR Pin Set Register 4 (ESMIEPSR4) ............................................. ESM Influence ERROR Pin Clear Register 4 (ESMIEPCR4) .......................................... ESM Interrupt Enable Set Register 4 (ESMIESR4) ...................................................... ESM Interrupt Enable Clear Register 4 (ESMIECR4) ................................................... ESM Interrupt Level Set Register 4 (ESMILSR4) ........................................................ ESM Interrupt Level Clear Register 4 (ESMILCR4) ..................................................... ESM Status Register 4 (ESMSR4) ......................................................................... Overview ................................................................................................................... 13.1.1 Features.......................................................................................................... 13.1.2 Industry Standard Compliance Statement ................................................................... Module Operation ......................................................................................................... 13.2.1 Counter Operation .............................................................................................. 13.2.2 Interrupt/DMA Requests ....................................................................................... 13.2.3 RTI Clocking ..................................................................................................... 13.2.4 Synchronizing Timer Events to Network Time (NTU) ...................................................... 13.2.5 Digital Watchdog (DWD) ....................................................................................... 13.2.6 Low Power Modes .............................................................................................. 13.2.7 Halting Debug Mode Behaviour............................................................................... RTI Control Registers .................................................................................................... 13.3.1 RTI Global Control Register (RTIGCTRL) ................................................................... 13.3.2 RTI Timebase Control Register (RTITBCTRL) ............................................................. 13.3.3 RTI Capture Control Register (RTICAPCTRL).............................................................. 13.3.4 RTI Compare Control Register (RTICOMPCTRL) ......................................................... 13.3.5 RTI Free Running Counter 0 Register (RTIFRC0) ......................................................... 13.3.6 RTI Up Counter 0 Register (RTIUC0) ........................................................................ 13.3.7 RTI Compare Up Counter 0 Register (RTICPUC0) ........................................................ 13.3.8 RTI Capture Free Running Counter 0 Register (RTICAFRC0) ........................................... 13.3.9 RTI Capture Up Counter 0 Register (RTICAUC0).......................................................... 13.3.10 RTI Free Running Counter 1 Register (RTIFRC1)........................................................ 13.3.11 RTI Up Counter 1 Register (RTIUC1) ...................................................................... 13.3.12 RTI Compare Up Counter 1 Register (RTICPUC1)....................................................... 13.3.13 RTI Capture Free Running Counter 1 Register (RTICAFRC1) ......................................... 13.3.14 RTI Capture Up Counter 1 Register (RTICAUC1) ........................................................ 13.3.15 RTI Compare 0 Register (RTICOMP0) ..................................................................... 13.3.16 RTI Update Compare 0 Register (RTIUDCP0) ............................................................ 13.3.17 RTI Compare 1 Register (RTICOMP1) ..................................................................... 13.3.18 RTI Update Compare 1 Register (RTIUDCP1) ............................................................ 13.3.19 RTI Compare 2 Register (RTICOMP2) ..................................................................... 13.3.20 RTI Update Compare 2 Register (RTIUDCP2) ............................................................ 13.3.21 RTI Compare 3 Register (RTICOMP3) ..................................................................... 13.3.22 RTI Update Compare 3 Register (RTIUDCP3) ............................................................ 13.3.23 RTI Timebase Low Compare Register (RTITBLCOMP) ................................................. Contents 435 435 435 436 436 438 439 439 442 445 445 446 447 448 449 450 451 451 452 452 453 453 454 455 456 456 457 457 458 458 459 459 460 460 461 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 13.3.24 13.3.25 13.3.26 13.3.27 13.3.28 13.3.29 13.3.30 13.3.31 13.3.32 13.3.33 13.3.34 13.3.35 13.3.36 13.3.37 13.3.38 13.3.39 14 RTI Timebase High Compare Register (RTITBHCOMP) ................................................ RTI Set Interrupt Enable Register (RTISETINTENA) .................................................... RTI Clear Interrupt Enable Register (RTICLEARINTENA) .............................................. RTI Interrupt Flag Register (RTIINTFLAG) ................................................................ Digital Watchdog Control Register (RTIDWDCTRL) ..................................................... Digital Watchdog Preload Register (RTIDWDPRLD) ..................................................... Watchdog Status Register (RTIWDSTATUS) ............................................................. RTI Watchdog Key Register (RTIWDKEY) ................................................................ RTI Digital Watchdog Down Counter (RTIDWDCNTR) .................................................. Digital Windowed Watchdog Reaction Control (RTIWWDRXNCTRL) ................................. Digital Windowed Watchdog Window Size Control (RTIWWDSIZECTRL) ............................ RTI Compare Interrupt Clear Enable Register (RTIINTCLRENABLE) ................................. RTI Compare 0 Clear Register (RTICMP0CLR) .......................................................... RTI Compare 1 Clear Register (RTICMP1CLR) .......................................................... RTI Compare 2 Clear Register (RTICMP2CLR) .......................................................... RTI Compare 3 Clear Register (RTICMP3CLR) .......................................................... 461 462 464 466 467 468 469 470 471 471 472 473 474 474 475 475 Cyclic Redundancy Check (CRC) Controller Module ............................................................. 476 14.1 14.2 14.3 14.4 Overview .................................................................................................................. 14.1.1 Features ......................................................................................................... 14.1.2 Block Diagram ................................................................................................... Module Operation ........................................................................................................ 14.2.1 General Operation ............................................................................................. 14.2.2 CRC Modes of Operation ...................................................................................... 14.2.3 PSA Signature Register........................................................................................ 14.2.4 PSA Sector Signature Register ............................................................................... 14.2.5 CRC Value Register ............................................................................................ 14.2.6 Raw Data Register ............................................................................................. 14.2.7 Example DMA Controller Setup............................................................................... 14.2.8 Pattern Count Register ......................................................................................... 14.2.9 Sector Count Register/Current Sector Register ............................................................ 14.2.10 Interrupt ......................................................................................................... 14.2.11 CPU Data Trace ............................................................................................... 14.2.12 Power Down Mode ............................................................................................ 14.2.13 Emulation ...................................................................................................... 14.2.14 Peripheral Bus Interface ...................................................................................... Example ................................................................................................................... 14.3.1 Example: Auto Mode Using Time Based Event Triggering ............................................... 14.3.2 Example: Auto Mode Without Using Time Based Triggering ............................................. 14.3.3 Example: Semi-CPU Mode .................................................................................... 14.3.4 Example: Full-CPU Mode ...................................................................................... CRC Control Registers ................................................................................................... 14.4.1 CRC Global Control Register 0 (CRC_CTRL0)............................................................. 14.4.2 CRC Global Control Register (CRC_CTRL1) ............................................................... 14.4.3 CRC Global Control Register 2 (CRC_CTRL2)............................................................. 14.4.4 CRC Interrupt Enable Set Register (CRC_INTS) .......................................................... 14.4.5 CRC Interrupt Enable Reset Register (CRC_INTR) ....................................................... 14.4.6 CRC Interrupt Status Register (CRC_STATUS)............................................................ 14.4.7 CRC Interrupt Offset (CRC_INT_OFFSET_REG) .......................................................... 14.4.8 CRC Busy Register (CRC_BUSY) ........................................................................... 14.4.9 CRC Pattern Counter Preload Register 1 (CRC_PCOUNT_REG1) ..................................... 14.4.10 CRC Sector Counter Preload Register 1 (CRC_SCOUNT_REG1) .................................... 14.4.11 CRC Current Sector Register 1 (CRC_CURSEC_REG1) ............................................... 14.4.12 CRC Channel 1 Watchdog Timeout Preload Register A (CRC_WDTOPLD1) ........................ SPNU499C – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 477 477 478 479 479 479 480 481 482 482 482 484 484 485 488 489 489 489 490 490 491 492 492 493 494 494 495 496 498 500 501 503 503 504 504 505 9 www.ti.com 14.4.13 14.4.14 14.4.15 14.4.16 14.4.17 14.4.18 14.4.19 14.4.20 14.4.21 14.4.22 14.4.23 14.4.24 14.4.25 14.4.26 14.4.27 14.4.28 14.4.29 14.4.30 14.4.31 14.4.32 14.4.33 14.4.34 14.4.35 15 505 506 506 506 507 507 507 508 508 508 509 509 510 510 511 511 511 512 512 512 513 513 514 Vectored Interrupt Manager (VIM) Module ............................................................................ 515 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 10 CRC Channel 1 Block Complete Timeout Preload Register B (CRC_BCTOPLD1) .................. Channel 1 PSA Signature Low Register (PSA_SIGREGL1) ............................................ Channel 1 PSA Signature High Register (PSA_SIGREGH1) ........................................... Channel 1 CRC Value Low Register (CRC_REGL1)..................................................... Channel 1 CRC Value High Register (CRC_REGH1).................................................... Channel 1 PSA Sector Signature Low Register (PSA_SECSIGREGL1) .............................. Channel 1 PSA Sector Signature High Register (PSA_SECSIGREGH1) ............................. Channel 1 Raw Data Low Register (RAW_DATAREGL1)............................................... Channel 1 Raw Data High Register (RAW_DATAREGH1).............................................. CRC Pattern Counter Preload Register 2 (CRC_PCOUNT_REG2) ................................... CRC Sector Counter Preload Register 2 (CRC_SCOUNT_REG2) .................................... CRC Current Sector Register 2 (CRC_CURSEC_REG2) ............................................... CRC Channel 2 Watchdog Timeout Preload Register A (CRC_WDTOPLD2) ........................ CRC Channel 2 Block Complete Timeout Preload Register B (CRC_BCTOPLD2) .................. Channel 2 PSA Signature Low Register (PSA_SIGREGL2) ............................................ Channel 2 PSA Signature High Register (PSA_SIGREGH2) ........................................... Channel 2 CRC Value Low Register (CRC_REGL2)..................................................... Channel 2 CRC Value High Register (CRC_REGH2).................................................... Channel 2 PSA Sector Signature Low Register (PSA_SECSIGREGL2) .............................. Channel 2 PSA Sector Signature High Register (PSA_SECSIGREGH2) ............................. Channel 2 Raw Data Low Register (RAW_DATAREGL2)............................................... Channel 2 Raw Data High Register (RAW_DATAREGH2).............................................. Data Bus Selection Register (CRC_TRACE_BUS_SEL) ................................................ Overview ................................................................................................................... Device Level Interrupt Management ................................................................................... 15.2.1 Interrupt Generation at the Peripheral ....................................................................... 15.2.2 Interrupt Handling at the CPU................................................................................. 15.2.3 Software Interrupt Handling Options ......................................................................... Interrupt Handling Inside VIM ........................................................................................... 15.3.1 VIM Interrupt Channel Mapping............................................................................... 15.3.2 VIM Input Channel Management ............................................................................. Interrupt Vector Table (VIM RAM) ...................................................................................... 15.4.1 Interrupt Vector Table Operation ............................................................................. 15.4.2 Enabling and Controlling the VIM Parity ..................................................................... 15.4.3 Interrupt Vector Table Initialization ........................................................................... 15.4.4 Interrupt Vector Table Parity Testing ......................................................................... VIM Wakeup Interrupt .................................................................................................... Capture Event Sources .................................................................................................. Examples .................................................................................................................. 15.7.1 Examples - Configure CPU To Receive Interrupts ......................................................... 15.7.2 Examples - Register Vector Interrupt and Index Interrupt Handling ..................................... VIM Control Registers .................................................................................................... 15.8.1 Interrupt Vector Table Parity Flag Register (PARFLG) ................................................... 15.8.2 Interrupt Vector Table Parity Control Register (PARCTL) ................................................. 15.8.3 Address Parity Error Register (ADDERR) ................................................................... 15.8.4 Fall-Back Address Parity Error Register (FBPARERR).................................................... 15.8.5 VIM Offset Vector Registers................................................................................... 15.8.6 IRQ Index Offset Vector Register (IRQINDEX) ............................................................. 15.8.7 FIQ Index Offset Vector Registers (FIQINDEX) ............................................................ 15.8.8 FIQ/IRQ Program Control Registers (FIRQPR[0:2]) ....................................................... 15.8.9 Pending Interrupt Read Location Registers (INTREQ[0:2]) ............................................... 15.8.10 Interrupt Enable Set Registers (REQENASET[0:2]) ...................................................... Contents 516 516 517 517 518 519 520 522 523 523 524 524 525 526 527 527 527 528 530 531 531 532 532 533 534 534 535 536 537 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 15.8.11 15.8.12 15.8.13 15.8.14 15.8.15 15.8.16 15.8.17 16 538 539 540 541 541 542 543 Direct Memory Access Controller (DMA) Module .................................................................. 545 16.1 16.2 16.3 17 Interrupt Enable Clear Registers (REQENACLR[0:2]) ................................................... Wake-Up Enable Set Registers (WAKEENASET[0:2])................................................... Wake-Up Enable Clear Registers (WAKEENACLR[0:2]) ................................................ IRQ Interrupt Vector Register (IRQVECREG) ............................................................. FIQ Interrupt Vector Register (FIQVECREG) ............................................................. Capture Event Register (CAPEVT) ......................................................................... VIM Interrupt Control Registers (CHANCTRL[0:23]) ..................................................... Overview ................................................................................................................... 16.1.1 Main Features ................................................................................................... Module Operation ......................................................................................................... 16.2.1 Memory Space .................................................................................................. 16.2.2 DMA Data Access .............................................................................................. 16.2.3 Addressing Modes .............................................................................................. 16.2.4 DMA Channel Control Packets ............................................................................... 16.2.5 Priority Queue ................................................................................................... 16.2.6 Data Packing and Unpacking ................................................................................. 16.2.7 DMA Request ................................................................................................... 16.2.8 Auto-Initiation .................................................................................................... 16.2.9 Interrupts ......................................................................................................... 16.2.10 Debugging ...................................................................................................... 16.2.11 Power Management .......................................................................................... 16.2.12 FIFO Buffer..................................................................................................... 16.2.13 Channel Chaining ............................................................................................. 16.2.14 Memory Protection ............................................................................................ 16.2.15 Parity Checking ................................................................................................ 16.2.16 Parity Testing .................................................................................................. 16.2.17 Initializing RAM with Parity ................................................................................... Control Registers and Control Packets ................................................................................ 16.3.1 Global Configuration Registers ............................................................................... 16.3.2 Channel Configuration ......................................................................................... 546 546 547 547 547 548 548 552 554 557 559 559 561 561 561 562 563 564 565 565 566 568 613 External Memory Interface (EMIF) ....................................................................................... 619 17.1 17.2 Introduction ................................................................................................................ 17.1.1 Purpose of the Peripheral ..................................................................................... 17.1.2 Features.......................................................................................................... 17.1.3 Functional Block Diagram ..................................................................................... EMIF Module Architecture ............................................................................................... 17.2.1 EMIF Clock Control ............................................................................................. 17.2.2 EMIF Requests.................................................................................................. 17.2.3 EMIF Signal Descriptions ...................................................................................... 17.2.4 EMIF Signal Multiplexing Control ............................................................................. 17.2.5 SDRAM Controller and Interface ............................................................................. 17.2.6 Asynchronous Controller and Interface ...................................................................... 17.2.7 Data Bus Parking ............................................................................................... 17.2.8 Reset and Initialization Considerations ...................................................................... 17.2.9 Interrupt Support ................................................................................................ 17.2.10 DMA Event Support ........................................................................................... 17.2.11 EMIF Signal Multiplexing ..................................................................................... 17.2.12 Memory Map ................................................................................................... 17.2.13 Priority and Arbitration ........................................................................................ 17.2.14 System Considerations ....................................................................................... 17.2.15 Power Management .......................................................................................... 17.2.16 Emulation Considerations .................................................................................... SPNU499C – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 620 620 620 621 622 622 622 622 623 624 636 648 649 649 650 650 650 651 652 653 653 11 www.ti.com 17.3 17.4 18 EMIF Registers ............................................................................................................ 17.3.1 Module ID Register (MIDR) ................................................................................... 17.3.2 Asynchronous Wait Cycle Configuration Register (AWCC) ............................................... 17.3.3 SDRAM Configuration Register (SDCR) .................................................................... 17.3.4 SDRAM Refresh Control Register (SDRCR) ................................................................ 17.3.5 Asynchronous n Configuration Registers (CE2CFG-CE5CFG) .......................................... 17.3.6 SDRAM Timing Register (SDTIMR) .......................................................................... 17.3.7 SDRAM Self Refresh Exit Timing Register (SDSRETR) .................................................. 17.3.8 EMIF Interrupt Raw Register (INTRAW)..................................................................... 17.3.9 EMIF Interrupt Masked Register (INTMSK) ................................................................. 17.3.10 EMIF Interrupt Mask Set Register (INTMSKSET) ........................................................ 17.3.11 EMIF Interrupt Mask Clear Register (INTMSKCLR) ...................................................... 17.3.12 Page Mode Control Register (PMCR) ...................................................................... Example Configuration ................................................................................................... 17.4.1 Hardware Interface ............................................................................................. 17.4.2 Software Configuration ......................................................................................... 654 654 655 656 657 658 659 660 661 662 663 664 665 666 666 666 Parameter Overlay Module (POM) ....................................................................................... 675 18.1 18.2 18.3 Introduction ................................................................................................................ 18.1.1 Main Features ................................................................................................... 18.1.2 Parameter Overlay Module (POM) Considerations ........................................................ 18.1.3 Block Diagram ................................................................................................... Module Operation ......................................................................................................... 18.2.1 Decode Regions ................................................................................................ 18.2.2 Bus Errors on Accesses via POM ............................................................................ POM Control Registers .................................................................................................. 18.3.1 POM Global Control Register (POMGLBCTRL) ............................................................ 18.3.2 POM Revision ID (POMREV) ................................................................................. 18.3.3 POM Clock Gate Control Register (POMCLKCTRL) ...................................................... 18.3.4 POM Status Register (POMFLG) ............................................................................. 18.3.5 POM Program Region Start Address Register x (POMPROGSTARTx) ................................ 18.3.6 POM Overlay Region Start Address Register x (POMOVLSTARTx) .................................... 18.3.7 POM Region Size Register x (POMREGSIZEx) ............................................................ 18.3.8 POM Integration Control Register (POMITCTRL) .......................................................... 18.3.9 POM Claim Set Register (POMCLAIMSET) ................................................................ 18.3.10 POM Claim Clear Register (POMCLAIMCLR) ............................................................ 18.3.11 POM Lock Access Register (POMLOCKACCESS) ...................................................... 18.3.12 POM Lock Status Register (POMLOCKSTATUS) ........................................................ 18.3.13 POM Authentication Status Register (POMAUTHSTATUS) ............................................. 18.3.14 POM Device ID Register (POMDEVID) .................................................................... 18.3.15 POM Device Type Register (POMDEVTYPE) ............................................................ 18.3.16 POM Peripheral ID 4 Register (POMPERIPHERALID4) ................................................. 18.3.17 POM Peripheral ID 5 Register (POMPERIPHERALID5) ................................................. 18.3.18 POM Peripheral ID 6 Register (POMPERIPHERALID6) ................................................. 18.3.19 POM Peripheral ID 7 Register (POMPERIPHERALID7) ................................................. 18.3.20 POM Peripheral ID 0 Register (POMPERIPHERALID0) ................................................. 18.3.21 POM Peripheral ID 1 Register (POMPERIPHERALID1) ................................................. 18.3.22 POM Peripheral ID 2 Register (POMPERIPHERALID2) ................................................. 18.3.23 POM Peripheral ID 3 Register (POMPERIPHERALID3) ................................................. 18.3.24 POM Component ID 0 Register (POMCOMPONENTID0) ............................................... 18.3.25 POM Component ID 1 Register (POMCOMPONENTID1) ............................................... 18.3.26 POM Component ID 2 Register (POMCOMPONENTID2) ............................................... 18.3.27 POM Component ID 3 Register (POMCOMPONENTID3) ............................................... 676 676 676 677 677 678 678 679 680 681 681 682 683 683 684 684 685 686 687 687 687 688 688 689 689 690 690 691 691 692 692 693 693 694 694 19 Analog To Digital Converter (ADC) Module .......................................................................... 695 12 Contents SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com Overview ................................................................................................................... Introduction ................................................................................................................ 19.2.1 Input Multiplexor ................................................................................................ 19.2.2 Self-Test and Calibration Cell ................................................................................. 19.2.3 Analog-to-Digital Converter Core ............................................................................. 19.2.4 Sequencer ....................................................................................................... 19.2.5 Conversion Groups ............................................................................................. 19.3 Basic Features and Usage of the ADC ................................................................................ 19.3.1 How to Select Between 12-bit and 10-bit Resolution ...................................................... 19.3.2 How to Set Up the ADCLK Speed ............................................................................ 19.3.3 How to Set Up the Input Channel Acquisition Time ........................................................ 19.3.4 How to Select an Input Channel for Conversion............................................................ 19.3.5 How to Select Between Single Conversion Sequence or Continuous Conversions ................... 19.3.6 How to Start a Conversion .................................................................................... 19.3.7 How to Know When the Group Conversion is Completed ................................................ 19.3.8 How Results are Stored in the Results’ Memory ........................................................... 19.3.9 How to Read the Results from the Results’ Memory ...................................................... 19.3.10 How to Stop a Conversion ................................................................................... 19.3.11 Example Sequence for Basic Configuration of ADC Module ............................................ 19.4 Advanced Conversion Group Configuration Options................................................................. 19.4.1 Group Trigger Options ......................................................................................... 19.4.2 Single or Continuous Conversion Modes .................................................................... 19.4.3 Conversion Group Freeze Capability ........................................................................ 19.4.4 Conversion Group Memory Overrun Option ................................................................ 19.4.5 Response on Writing Non-Zero Value to Conversion Group’s Channel Select Register ............. 19.4.6 Conversion Result Size on Reading: 8-bit, 10-bit or 12-bit ............................................... 19.4.7 Option to Read Group Channel ID Along with Conversion Result ....................................... 19.5 ADC Module Basic Interrupts ........................................................................................... 19.5.1 Group Conversion End Interrupt .............................................................................. 19.5.2 Group Memory Threshold Interrupt .......................................................................... 19.5.3 Group Memory Overrun Interrupt ............................................................................. 19.6 ADC Module DMA Requests ............................................................................................ 19.6.1 DMA Request for Each Conversion Result Written to the Results’ Memory ............................ 19.6.2 DMA Request for a Fixed Number of Conversion Results ................................................ 19.7 ADC Magnitude Threshold Interrupts .................................................................................. 19.7.1 Magnitude Threshold Interrupt Configuration ............................................................... 19.7.2 Magnitude Threshold Interrupt Comparison Mask Configuration ........................................ 19.7.3 Magnitude Threshold Interrupt Enable / Disable Control .................................................. 19.7.4 Magnitude Threshold Interrupt Flags......................................................................... 19.7.5 Magnitude Threshold Interrupt Offset Register ............................................................. 19.8 ADC Special Modes ...................................................................................................... 19.8.1 ADC Error Calibration Mode .................................................................................. 19.8.2 ADC Self-Test Mode ........................................................................................... 19.8.3 ADC Power-Down Mode ....................................................................................... 19.8.4 ADC Sample Capacitor Discharge Mode .................................................................... 19.9 ADC Results’ RAM Special Features .................................................................................. 19.9.1 ADC Results’ RAM Auto-Initialization ........................................................................ 19.9.2 ADC Results’ RAM Test Mode ................................................................................ 19.9.3 ADC Results’ RAM Parity...................................................................................... 19.10 ADEVT Pin General Purpose I/O Functionality ....................................................................... 19.10.1 GPIO Functionality ............................................................................................ 19.10.2 Summary ....................................................................................................... 19.11 ADC Control Registers................................................................................................... 19.1 19.2 SPNU499C – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 696 697 698 698 698 699 699 700 700 700 700 700 700 701 701 701 702 705 705 706 707 707 708 708 708 709 709 710 710 710 710 711 711 711 712 712 712 712 712 712 713 713 717 719 720 721 721 721 721 722 722 723 724 13 www.ti.com 19.11.1 19.11.2 19.11.3 19.11.4 19.11.5 19.11.6 19.11.7 19.11.8 19.11.9 19.11.10 19.11.11 19.11.12 19.11.13 19.11.14 19.11.15 19.11.16 19.11.17 19.11.18 19.11.19 19.11.20 19.11.21 19.11.22 19.11.23 19.11.24 19.11.25 19.11.26 19.11.27 19.11.28 19.11.29 19.11.30 19.11.31 19.11.32 19.11.33 19.11.34 19.11.35 19.11.36 19.11.37 19.11.38 19.11.39 19.11.40 19.11.41 19.11.42 19.11.43 19.11.44 19.11.45 19.11.46 19.11.47 19.11.48 19.11.49 19.11.50 19.11.51 19.11.52 19.11.53 14 ADC Reset Control Register (ADRSTCR) ................................................................. ADC Operating Mode Control Register (ADOPMODECR) .............................................. ADC Clock Control Register (ADCLOCKCR).............................................................. ADC Calibration Mode Control Register (ADCALCR) .................................................... ADC Event Group Operating Mode Control Register (ADEVMODECR) .............................. ADC Group1 Operating Mode Control Register (ADG1MODECR) ..................................... ADC Group2 Operating Mode Control Register (ADG2MODECR) ..................................... ADC Event Group Trigger Source Select Register (ADEVSRC) ....................................... ADC Group1 Trigger Source Select Register (ADG1SRC) .............................................. ADC Group2 Trigger Source Select Register (ADG2SRC) ............................................ ADC Event Interrupt Enable Control Register (ADEVINTENA)........................................ ADC Group1 Interrupt Enable Control Register (ADG1INTENA) ..................................... ADC Group2 Interrupt Enable Control Register (ADG2INTENA) ..................................... ADC Event Group Interrupt Flag Register (ADEVINTFLG) ............................................ ADC Group1 Interrupt Flag Register (ADG1INTFLG) .................................................. ADC Group2 Interrupt Flag Register (ADG2INTFLG) .................................................. ADC Event Group Threshold Interrupt Control Register (ADEVTHRINTCR) ........................ ADC Group1 Threshold Interrupt Control Register (ADG1THRINTCR) .............................. ADC Group2 Threshold Interrupt Control Register (ADG2THRINTCR) .............................. ADC Event Group DMA Control Register (ADEVDMACR) ............................................ ADC Group1 DMA Control Register (ADG1DMACR) ................................................... ADC Group2 DMA Control Register (ADG2DMACR) ................................................... ADC Results Memory Configuration Register (ADBNDCR) ........................................... ADC Results Memory Size Configuration Register (ADBNDEND) .................................... ADC Event Group Sampling Time Configuration Register (ADEVSAMP) ........................... ADC Group1 Sampling Time Configuration Register (ADG1SAMP).................................. ADC Group2 Sampling Time Configuration Register (ADG2SAMP).................................. ADC Event Group Status Register (ADEVSR) .......................................................... ADC Group1 Status Register (ADG1SR) ................................................................. ADC Group2 Status Register (ADG2SR) ................................................................. ADC Event Group Channel Select Register (ADEVSEL) .............................................. ADC Group1 Channel Select Register (ADG1SEL) ..................................................... ADC Group2 Channel Select Register (ADG2SEL) ..................................................... ADC Calibration and Error Offset Correction Register (ADCALR) .................................... ADC State Machine Status Register (ADSMSTATE) ................................................... ADC Channel Last Conversion Value Register (ADLASTCONV) ..................................... ADC Event Group Results' FIFO Register (ADEVBUFFER) ........................................... ADC Group1 Results FIFO Register (ADG1BUFFER) ................................................. ADC Group2 Results FIFO Register (ADG2BUFFER) ................................................. ADC Event Group Results Emulation FIFO Register (ADEVEMUBUFFER) ........................ ADC Group1 Results Emulation FIFO Register (ADG1EMUBUFFER)............................... ADC Group2 Results Emulation FIFO Register (ADG2EMUBUFFER)............................... ADC ADEVT Pin Direction Control Register (ADEVTDIR) ............................................. ADC ADEVT Pin Output Value Control Register (ADEVTOUT) ....................................... ADC ADEVT Pin Input Value Register (ADEVTIN) ..................................................... ADC ADEVT Pin Set Register (ADEVTSET) ............................................................ ADC ADEVT Pin Clear Register (ADEVTCLR) .......................................................... ADC ADEVT Pin Open Drain Enable Register (ADEVTPDR) ......................................... ADC ADEVT Pin Pull Control Disable Register (ADEVTPDIS) ........................................ ADC ADEVT Pin Pull Control Select Register (ADEVTPSEL)......................................... ADC Event Group Sample Cap Discharge Control Register (ADEVSAMPDISEN) ................. ADC Group1 Sample Cap Discharge Control Register (ADG1SAMPDISEN) ....................... ADC Group2 Sample Cap Discharge Control Register (ADG2SAMPDISEN) ....................... Contents 726 726 728 728 730 733 736 739 740 741 742 743 744 745 746 747 748 748 749 750 752 754 756 757 758 758 759 760 761 762 763 764 765 766 766 767 768 769 770 771 772 773 774 775 775 776 776 777 777 778 778 779 780 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 19.11.54 19.11.55 19.11.56 19.11.57 19.11.58 19.11.59 19.11.60 19.11.61 19.11.62 19.11.63 19.11.64 19.11.65 19.11.66 19.11.67 19.11.68 20 ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC ADC Magnitude Compare Interrupt x Control Registers (ADMAGINTxCR) ......................... Magnitude Compare Interrupt x Mask Register (ADMAGxMASK).............................. Magnitude Compare Interrupt Enable Set Register (ADMAGINTENASET) ................... Magnitude Compare Interrupt Enable Clear Register (ADMAGINTENACLR) ................ Magnitude Compare Interrupt Flag Register (ADMAGINTFLG) ................................ Magnitude Compare Interrupt Offset Register (ADMAGINTOFF) .............................. Event Group FIFO Reset Control Register (ADEVFIFORESETCR) ........................... Group1 FIFO Reset Control Register (ADG1FIFORESETCR).................................. Group2 FIFO Reset Control Register (ADG2FIFORESETCR).................................. Event Group RAM Write Address Register (ADEVRAMWRADDR) ............................ Group1 RAM Write Address Register (ADG1RAMWRADDR) .................................. Group2 RAM Write Address Register (ADG2RAMWRADDR) .................................. Parity Control Register (ADPARCR) ................................................................ Parity Error Address Register (ADPARADDR) .................................................... Power-Up Delay Control Register (ADPWRUPDLYCTRL) ...................................... 781 783 784 784 785 785 786 786 787 787 788 788 789 790 790 High-End Timer (N2HET) Module ........................................................................................ 791 20.1 20.2 20.3 20.4 Overview ................................................................................................................... 20.1.1 Features.......................................................................................................... 20.1.2 Major Advantages .............................................................................................. 20.1.3 Block Diagram ................................................................................................... 20.1.4 Timer Module Structure and Execution ...................................................................... 20.1.5 Performance ..................................................................................................... 20.1.6 N2HET Compared to NHET ................................................................................... 20.1.7 NHET and N2HET Compared to HET ....................................................................... 20.1.8 Instructions Features ........................................................................................... 20.1.9 Program Usage ................................................................................................. N2HET Functional Description .......................................................................................... 20.2.1 Specialized Timer Micromachine ............................................................................. 20.2.2 N2HET RAM Organization .................................................................................... 20.2.3 Time Base ....................................................................................................... 20.2.4 Host Interface ................................................................................................... 20.2.5 I/O Control ....................................................................................................... 20.2.6 Suppression Filters ............................................................................................. 20.2.7 Interrupts and Exceptions ..................................................................................... 20.2.8 Hardware Priority Scheme ..................................................................................... 20.2.9 N2HET Requests to DMA and HTU .......................................................................... Angle Functions ........................................................................................................... 20.3.1 Software Angle Generator ..................................................................................... 20.3.2 Hardware Angle Generator (HWAG) ......................................................................... N2HET Control Registers ................................................................................................ 20.4.1 Global Configuration Register (HETGCR) ................................................................... 20.4.2 Prescale Factor Register (HETPFR) ......................................................................... 20.4.3 N2HET Current Address Register (HETADDR) ............................................................ 20.4.4 Offset Index Priority Level 1 Register (HETOFF1) ......................................................... 20.4.5 Offset Index Priority Level 2 Register (HETOFF2) ......................................................... 20.4.6 Interrupt Enable Set Register (HETINTENAS).............................................................. 20.4.7 Interrupt Enable Clear Register (HETINTENAC) ........................................................... 20.4.8 Exception Control Register 1 (HETEXC1) ................................................................... 20.4.9 Exception Control Register 2 (HETEXC2) ................................................................... 20.4.10 Interrupt Priority Register (HETPRY) ....................................................................... 20.4.11 Interrupt Flag Register (HETFLG) .......................................................................... 20.4.12 AND Share Control Register (HETAND) .................................................................. 20.4.13 HR Share Control Register (HETHRSH) ................................................................... SPNU499C – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 792 792 792 793 794 795 795 795 796 796 796 796 801 804 807 808 824 825 826 828 828 828 833 855 856 858 859 859 860 861 861 862 863 864 864 865 866 15 www.ti.com 20.5 20.6 21 867 868 868 869 870 871 871 872 872 873 873 874 875 876 877 878 878 879 880 881 882 883 884 884 885 886 887 888 888 889 890 891 892 893 893 894 895 895 896 896 897 898 898 900 903 High-End Timer Transfer Unit (HTU) Module ........................................................................ 969 21.1 21.2 16 20.4.14 XOR Share Control Register (HETXOR) ................................................................... 20.4.15 Request Enable Set Register (HETREQENS) ............................................................ 20.4.16 Request Enable Clear Register (HETREQENC) .......................................................... 20.4.17 Request Destination Select Register (HETREQDS)...................................................... 20.4.18 NHET Direction Register (HETDIR) ........................................................................ 20.4.19 N2HET Data Input Register (HETDIN) ..................................................................... 20.4.20 N2HET Data Output Register (HETDOUT) ................................................................ 20.4.21 NHET Data Set Register (HETDSET) ...................................................................... 20.4.22 N2HET Data Clear Register (HETDCLR) .................................................................. 20.4.23 N2HET Open Drain Register (HETPDR) ................................................................... 20.4.24 N2HET Pull Disable Register (HETPULDIS) .............................................................. 20.4.25 N2HET Pull Select Register (HETPSL) .................................................................... 20.4.26 Parity Control Register (HETPCR) .......................................................................... 20.4.27 Parity Address Register (HETPAR) ......................................................................... 20.4.28 Parity Pin Register (HETPPR) ............................................................................... 20.4.29 Suppression Filter Preload Register (HETSFPRLD) ..................................................... 20.4.30 Suppression Filter Enable Register (HETSFENA) ........................................................ 20.4.31 Loop Back Pair Select Register (HETLBPSEL) ........................................................... 20.4.32 Loop Back Pair Direction Register (HETLBPDIR) ........................................................ 20.4.33 N2HET Pin Disable Register (HETPINDIS) ............................................................... HWAG Registers .......................................................................................................... 20.5.1 HWAG Pin Select Register (HWAPINSEL) ................................................................. 20.5.2 HWAG Global Control Register 0 (HWAGCR0) ............................................................ 20.5.3 HWAG Global Control Register 1 (HWAGCR1) ............................................................ 20.5.4 HWAG Global Control Register 2 (HWAGCR2) ............................................................ 20.5.5 HWAG Interrupt Enable Set Register (HWAENASET) .................................................... 20.5.6 HWAG Interrupt Enable Clear Register (HWAENACLR) .................................................. 20.5.7 HWAG Interrupt Level Set Register (HWALVLSET) ....................................................... 20.5.8 HWAG Interrupt Level Clear Register (HWALVLCLR) .................................................... 20.5.9 HWAG Interrupt Flag Register (HWAFLG) .................................................................. 20.5.10 HWAG Interrupt Offset Register 0 (HWAOFF0) .......................................................... 20.5.11 HWAG Interrupt Offset Register 1 (HWAOFF1) .......................................................... 20.5.12 HWAG Angle Value Register (HWAACNT) ................................................................ 20.5.13 HWAG Previous Tooth Period Value Register (HWAPCNT1) .......................................... 20.5.14 HWAG Current Tooth Period Value Register (HWAPCNT) ............................................. 20.5.15 HWAG Step Width Register (HWASTWD)................................................................. 20.5.16 HWAG Teeth Number Register (HWATHNB) ............................................................. 20.5.17 HWAG Current Teeth Number Register (HWATHVL) .................................................... 20.5.18 HWAG Filter Register (HWAFIL) ............................................................................ 20.5.19 HWAG Filter Register 2 (HWAFIL2) ........................................................................ 20.5.20 HWAG Angle Increment Register (HWAANGI) ........................................................... Instruction Set ............................................................................................................. 20.6.1 Instruction Summary ........................................................................................... 20.6.2 Abbreviations, Encoding Formats and Bits ................................................................. 20.6.3 Instruction Description ......................................................................................... Overview ................................................................................................................... 21.1.1 Features.......................................................................................................... Module Operation ......................................................................................................... 21.2.1 Data Transfers between Main RAM and N2HET RAM .................................................... 21.2.2 Arbitration of HTU Elements and Frames ................................................................... 21.2.3 Conditions for Frame Transfer Interruption.................................................................. 21.2.4 HTU Overload and Request Lost Detection ................................................................. Contents 970 970 971 973 977 978 978 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 21.3 21.4 21.5 21.6 22 21.2.5 Memory Protection ............................................................................................. 981 21.2.6 Control Packet RAM Parity Checking ........................................................................ 981 Use Cases ................................................................................................................. 983 21.3.1 Example: Single Element Transfer with One Trigger Request ........................................... 983 21.3.2 Example: Multiple Element Transfer with One Trigger Request.......................................... 983 21.3.3 Example: 64-Bit-Transfer of Control Field and Data Fields ............................................... 985 HTU Control Registers ................................................................................................... 986 21.4.1 Global Control Register (HTU GC) ........................................................................... 987 21.4.2 Control Packet Enable Register (HTU CPENA) ............................................................ 988 21.4.3 Control Packet (CP) Busy Register 0 (HTU BUSY0) ...................................................... 989 21.4.4 Control Packet (CP) Busy Register 1 (HTU BUSY1) ...................................................... 990 21.4.5 Control Packet (CP) Busy Register 2 (HTU BUSY2) ...................................................... 990 21.4.6 Control Packet (CP) Busy Register 3 (HTU BUSY3) ...................................................... 991 21.4.7 Active Control Packet and Error Register (HTU ACPE) ................................................... 991 21.4.8 Request Lost and Bus Error Control Register (HTU RLBECTRL) ....................................... 993 21.4.9 Buffer Full Interrupt Enable Set Register (HTU BFINTS).................................................. 994 21.4.10 Buffer Full Interrupt Enable Clear Register (HTU BFINTC) ............................................. 994 21.4.11 Interrupt Mapping Register (HTU INTMAP) ............................................................... 995 21.4.12 Interrupt Offset Register 0 (HTU INTOFF0) ............................................................... 996 21.4.13 Interrupt Offset Register 1 (HTU INTOFF1) ............................................................... 997 21.4.14 Buffer Initialization Mode Register (HTU BIM) ............................................................ 998 21.4.15 Request Lost Flag Register (HTU RLOSTFL) ........................................................... 1000 21.4.16 Buffer Full Interrupt Flag Register (HTU BFINTFL) ..................................................... 1000 21.4.17 BER Interrupt Flag Register (HTU BERINTFL) .......................................................... 1001 21.4.18 Memory Protection 1 Start Address Register (HTU MP1S) ............................................ 1002 21.4.19 Memory Protection 1 End Address Register (HTU MP1E) ............................................. 1002 21.4.20 Debug Control Register (HTU DCTRL) ................................................................... 1003 21.4.21 Watch Point Register (HTU WPR) ........................................................................ 1004 21.4.22 Watch Mask Register (HTU WMR) ........................................................................ 1004 21.4.23 Module Identification Register (HTU ID) .................................................................. 1005 21.4.24 Parity Control Register (HTU PCR) ....................................................................... 1006 21.4.25 Parity Address Register (HTU PAR) ...................................................................... 1007 21.4.26 Memory Protection Control and Status Register (HTU MPCS) ........................................ 1008 21.4.27 Memory Protection Start Address Register 0 (HTU MP0S) ............................................ 1011 21.4.28 Memory Protection End Address Register (HTU MP0E) ............................................... 1011 Double Control Packet Configuration Memory ...................................................................... 1012 21.5.1 Initial Full Address A Register (HTU IFADDRA) .......................................................... 1013 21.5.2 Initial Full Address B Register (HTU IFADDRB) .......................................................... 1013 21.5.3 Initial N2HET Address and Control Register (HTU IHADDRCT) ....................................... 1014 21.5.4 Initial Transfer Count Register (HTU ITCOUNT) .......................................................... 1015 21.5.5 Current Full Address A Register (HTU CFADDRA) ...................................................... 1016 21.5.6 Current Full Address B Register (HTU CFADDRB) ...................................................... 1017 21.5.7 Current Frame Count Register (HTU CFCOUNT) ........................................................ 1018 Examples ................................................................................................................. 1019 21.6.1 Application Examples for Setting the Transfer Modes of CP A and B of a DCP ..................... 1019 21.6.2 Software Example Sequence Assuming Circular Mode for Both CP A and B ........................ 1019 21.6.3 Example of an Interrupt Dispatch Flow for a Request Lost Interrupt ................................... 1020 General-Purpose Input/Output (GIO) Module ...................................................................... 1021 22.1 22.2 22.3 Overview.................................................................................................................. Quick Start Guide ....................................................................................................... Functional Description of GIO Module................................................................................ 22.3.1 I/O Functions................................................................................................... 22.3.2 Interrupt Function ............................................................................................. SPNU499C – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 1022 1023 1025 1025 1026 17 www.ti.com 22.4 22.5 22.6 23 1026 1028 1028 1028 1029 1030 1031 1032 1033 1035 1038 1039 1040 1041 1042 1043 1043 1044 1044 1045 1045 1046 1046 1047 FlexRay Module .............................................................................................................. 1048 23.1 23.2 23.3 23.4 23.5 23.6 23.7 23.8 23.9 18 22.3.3 GIO Block Diagram ........................................................................................... Device Modes of Operation ............................................................................................ 22.4.1 Emulation Mode ............................................................................................... 22.4.2 Power-Down Mode (Low-Power Mode) .................................................................... GIO Control Registers .................................................................................................. 22.5.1 GIO Global Control Register (GIOGCR0) .................................................................. 22.5.2 GIO Interrupt Detect Register (GIOINTDET) .............................................................. 22.5.3 GIO Interrupt Polarity Register (GIOPOL) ................................................................. 22.5.4 GIO Interrupt Enable Registers (GIOENASET and GIOENACLR) ..................................... 22.5.5 GIO Interrupt Priority Registers (GIOLVLSET and GIOLVLCLR) ....................................... 22.5.6 GIO Interrupt Flag Register (GIOFLG) ..................................................................... 22.5.7 GIO Offset Register 1 (GIOOFF1) .......................................................................... 22.5.8 GIO Offset B Register (GIOOFF2) .......................................................................... 22.5.9 GIO Emulation A Register (GIOEMU1) .................................................................... 22.5.10 GIO Emulation B Register (GIOEMU2) ................................................................... 22.5.11 GIO Data Direction Registers (GIODIR[A-B]) ............................................................ 22.5.12 GIO Data Input Registers (GIODIN[A-B])................................................................. 22.5.13 GIO Data Output Registers (GIODOUT[A-B]) ........................................................... 22.5.14 GIO Data Set Registers (GIODSET[A-B]) ................................................................ 22.5.15 GIO Data Clear Registers (GIODCLR[A-B]) ............................................................. 22.5.16 GIO Open Drain Registers (GIOPDR[A-B]) .............................................................. 22.5.17 GIO Pull Disable Registers (GIOPULDIS[A-B]) .......................................................... 22.5.18 GIO Pull Select Registers (GIOPSL[A-B]) ................................................................ I/O Control Summary ................................................................................................... Overview.................................................................................................................. 23.1.1 Feature List .................................................................................................... FlexRay Module Block Diagram ....................................................................................... FlexRay Module Block Mapping ....................................................................................... Transfer Unit Block Diagram ........................................................................................... Transfer Unit Functional Description.................................................................................. 23.5.1 Transfer Control ............................................................................................... 23.5.2 Transfer Configuration RAM ................................................................................. 23.5.3 Memory Protection Mechanism ............................................................................. Communication Cycle .................................................................................................. 23.6.1 Static Segment ................................................................................................ 23.6.2 Dynamic Segment ............................................................................................. 23.6.3 Symbol Window ............................................................................................... 23.6.4 Network Idle Time (NIT) ...................................................................................... 23.6.5 Configuration of NIT Start and Offset Correction Start ................................................... Communication Modes ................................................................................................. 23.7.1 Time-Triggered Distributed (TT-D) .......................................................................... Clock Synchronization .................................................................................................. 23.8.1 Global Time .................................................................................................... 23.8.2 Local Time ..................................................................................................... 23.8.3 Synchronization Process ..................................................................................... 23.8.4 Sync Frame Transmission ................................................................................... 23.8.5 External Clock Synchronization ............................................................................. Error Handling ........................................................................................................... 23.9.1 Clock Correction Failed Counter ............................................................................ 23.9.2 Passive to Active Counter .................................................................................... 23.9.3 HALT Command............................................................................................... 23.9.4 FREEZE Command ........................................................................................... Contents 1049 1049 1050 1053 1054 1055 1057 1063 1063 1064 1064 1064 1064 1065 1065 1065 1065 1066 1066 1066 1066 1067 1067 1067 1068 1068 1068 1068 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 23.10 Communication Controller States ..................................................................................... 23.10.1 Communication Controller State Diagram ................................................................ 23.10.2 DEFAULT_CONFIG State .................................................................................. 23.10.3 CONFIG State ................................................................................................ 23.10.4 MONITOR_MODE ........................................................................................... 23.10.5 READY State ................................................................................................. 23.10.6 WAKEUP State .............................................................................................. 23.10.7 STARTUP State ............................................................................................. 23.10.8 NORMAL_ACTIVE State ................................................................................... 23.10.9 NORMAL_PASSIVE State ................................................................................. 23.10.10 HALT State .................................................................................................. 23.11 Network Management .................................................................................................. 23.12 Filtering and Masking ................................................................................................... 23.12.1 Slot Counter Filtering ........................................................................................ 23.12.2 Cycle Counter Filtering ...................................................................................... 23.12.3 Channel ID Filtering ......................................................................................... 23.12.4 FIFO Filtering ................................................................................................. 23.13 Transmit Process ....................................................................................................... 23.13.1 Static Segment ............................................................................................... 23.13.2 Dynamic Segment ........................................................................................... 23.13.3 Transmit Buffers ............................................................................................. 23.13.4 Frame Transmission......................................................................................... 23.13.5 Null Frame Transmission ................................................................................... 23.14 Receive Process ........................................................................................................ 23.14.1 Dedicated Receive Buffers ................................................................................. 23.14.2 Frame Reception ............................................................................................ 23.14.3 Null Frame Reception ....................................................................................... 23.15 FIFO Function ........................................................................................................... 23.15.1 Description .................................................................................................... 23.15.2 Configuration of the FIFO................................................................................... 23.15.3 Access to the FIFO .......................................................................................... 23.16 Message Handling ...................................................................................................... 23.16.1 Reconfiguration of Message Buffers ...................................................................... 23.16.2 Host Access to Message RAM............................................................................. 23.16.3 FlexRay Protocol Controller Access to Message RAM ................................................. 23.17 Module RAMs ........................................................................................................... 23.17.1 Message RAM ............................................................................................... 23.17.2 Parity Check .................................................................................................. 23.18 Interrupts ................................................................................................................. 23.18.1 Transfer Unit Interrupts ..................................................................................... 23.18.2 Communication Controller Interrupts ...................................................................... 23.19 FlexRay Module Registers ............................................................................................. 23.19.1 Transfer Unit Registers ..................................................................................... 23.19.2 Communication Controller Registers ...................................................................... 23.20 Minimum Peripheral Clock Frequency .............................................................................. 23.21 Assignment of FlexRay Configuration Parameters ................................................................ 23.22 Emulation/Debug Support ............................................................................................. 24 1069 1069 1070 1070 1071 1071 1072 1075 1080 1080 1080 1081 1081 1082 1082 1083 1083 1083 1083 1083 1084 1085 1085 1085 1085 1086 1086 1086 1086 1088 1088 1088 1088 1089 1094 1095 1096 1099 1103 1103 1105 1108 1108 1155 1242 1243 1244 Controller Area Network (DCAN) Module............................................................................ 1245 24.1 24.2 Overview.................................................................................................................. 24.1.1 Features ........................................................................................................ 24.1.2 Functional Description ........................................................................................ CAN Blocks .............................................................................................................. 24.2.1 CAN Core ...................................................................................................... SPNU499C – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 1246 1246 1246 1247 1247 19 www.ti.com 24.2.2 Message RAM ................................................................................................. 24.2.3 Message Handler ............................................................................................. 24.2.4 Message RAM Interface ...................................................................................... 24.2.5 Register and Message Object Access ..................................................................... 24.2.6 Dual Clock Source ............................................................................................ 24.3 CAN Bit Timing .......................................................................................................... 24.3.1 Bit Time and Bit Rate ......................................................................................... 24.3.2 DCAN Bit Timing Registers .................................................................................. 24.4 CAN Module Configuration............................................................................................. 24.4.1 DCAN RAM Initialization through Hardware ............................................................... 24.4.2 CAN Module Initialization .................................................................................... 24.5 Message RAM ........................................................................................................... 24.5.1 Structure of Message Objects ............................................................................... 24.5.2 Addressing Message Objects in RAM ...................................................................... 24.5.3 Message RAM Representation in Debug/Suspend Mode ............................................... 24.5.4 Message RAM Representation in Direct Access Mode .................................................. 24.6 Message Interface Register Sets ..................................................................................... 24.6.1 Message Interface Register Sets 1 and 2 ................................................................. 24.6.2 Using Message Interface Register Sets 1 and 2 .......................................................... 24.6.3 Message Interface Register 3 ............................................................................... 24.7 Message Object Configurations ....................................................................................... 24.7.1 Configuration of a Transmit Object for Data Frames ..................................................... 24.7.2 Configuration of a Transmit Object for Remote Frames ................................................. 24.7.3 Configuration of a Single Receive Object for Data Frames ............................................. 24.7.4 Configuration of a Single Receive Object for Remote Frames .......................................... 24.7.5 Configuration of a FIFO Buffer .............................................................................. 24.7.6 Reconfiguration of Message Objects for the Reception of Frames..................................... 24.7.7 Reconfiguration of Message Objects for the Transmission of Frames ................................. 24.8 Message Handling ...................................................................................................... 24.8.1 Message Handler Overview ................................................................................. 24.8.2 Receive/Transmit Priority..................................................................................... 24.8.3 Transmission of Messages in Event Driven CAN Communication ..................................... 24.8.4 Updating a Transmit Object .................................................................................. 24.8.5 Changing a Transmit Object ................................................................................. 24.8.6 Acceptance Filtering of Received Messages .............................................................. 24.8.7 Reception of Data Frames ................................................................................... 24.8.8 Reception of Remote Frames ............................................................................... 24.8.9 Reading Received Messages ............................................................................... 24.8.10 Requesting New Data for a Receive Object ............................................................. 24.8.11 Storing Received Messages in FIFO Buffers ............................................................ 24.8.12 Reading from a FIFO Buffer ............................................................................... 24.9 CAN Message Transfer ................................................................................................ 24.9.1 Automatic Retransmission ................................................................................... 24.9.2 Auto-Bus-On ................................................................................................... 24.10 Interrupt Functionality .................................................................................................. 24.10.1 Message Object Interrupts ................................................................................. 24.10.2 Status Change Interrupts ................................................................................... 24.10.3 Error Interrupts ............................................................................................... 24.11 Global Power-Down Mode ............................................................................................. 24.11.1 Entering Global Power-Down Mode ....................................................................... 24.11.2 Wakeup From Global Power-Down Mode ................................................................ 24.12 Local Power-Down Mode .............................................................................................. 24.12.1 Entering Local Power-Down Mode ........................................................................ 20 Contents 1247 1247 1248 1248 1248 1249 1249 1251 1253 1253 1253 1255 1255 1257 1258 1258 1259 1259 1260 1261 1262 1262 1262 1262 1263 1263 1263 1263 1264 1264 1264 1265 1265 1265 1266 1266 1266 1266 1267 1267 1267 1269 1269 1270 1270 1270 1271 1271 1272 1272 1272 1273 1273 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 24.12.2 Wakeup From Local Power-Down Mode ................................................................. 24.13 GIO Support ............................................................................................................. 24.14 Test Modes .............................................................................................................. 24.14.1 Silent Mode ................................................................................................... 24.14.2 Loop Back Mode ............................................................................................. 24.14.3 External Loop Back Mode .................................................................................. 24.14.4 Loop Back Combined with Silent Mode................................................................... 24.14.5 Software Control of CAN_TX Pin .......................................................................... 24.15 Parity Check Mechanism .............................................................................................. 24.15.1 Behavior on Parity Error .................................................................................... 24.15.2 Parity Testing ................................................................................................. 24.16 Debug/Suspend Mode.................................................................................................. 24.17 DCAN Control Registers ............................................................................................... 24.17.1 CAN Control Register (DCAN CTL) ....................................................................... 24.17.2 Error and Status Register (DCAN ES) .................................................................... 24.17.3 Error Counter Register (DCAN ERRC) ................................................................... 24.17.4 Bit Timing Register (DCAN BTR) .......................................................................... 24.17.5 Interrupt Register (DCAN INT) ............................................................................. 24.17.6 Test Register (DCAN TEST) ............................................................................... 24.17.7 Parity Error Code Register (DCAN PERR) ............................................................... 24.17.8 Core Release Register (DCAN REL) ..................................................................... 24.17.9 Auto-Bus-On Time Register (DCAN ABOTR)............................................................ 24.17.10 Transmission Request X Register (DCAN TXRQ X) .................................................. 24.17.11 Transmission Request Registers (DCAN TXRQ12 to DCAN TXRQ78) ............................ 24.17.12 New Data X Register (DCAN NWDAT X) ............................................................... 24.17.13 New Data Registers (DCAN NWDAT12 to DCAN NWDAT78) ...................................... 24.17.14 Interrupt Pending X Register (DCAN INTPND X) ...................................................... 24.17.15 Interrupt Pending Registers (DCAN INTPND12 to DCAN INTPND78) ............................. 24.17.16 Message Valid X Register (DCAN MSGVAL X)........................................................ 24.17.17 Message Valid Registers (DCAN MSGVAL12 to DCAN MSGVAL78) .............................. 24.17.18 Interrupt Multiplexer Registers (DCAN INTMUX12 to DCAN INTMUX78).......................... 24.17.19 IF1/IF2 Command Registers (DCAN IF1CMD, DCAN IF2CMD)..................................... 24.17.20 IF1/IF2 Mask Registers (DCAN IF1MSK, DCAN IF2MSK) ........................................... 24.17.21 IF1/IF2 Arbitration Registers (DCAN IF1ARB, DCAN IF2ARB) ...................................... 24.17.22 IF1/IF2 Message Control Registers (DCAN IF1MCTL, DCAN IF2MCTL) .......................... 24.17.23 IF1/IF2 Data A and Data B Registers (DCAN IF1DATA/DATB, DCAN IF2DATA/DATB) ........ 24.17.24 IF3 Observation Register (DCAN IF3OBS) ............................................................. 24.17.25 IF3 Mask Register (DCAN IF3MSK) ..................................................................... 24.17.26 IF3 Arbitration Register (DCAN IF3ARB) ............................................................... 24.17.27 IF3 Message Control Register (DCAN IF3MCTL) ..................................................... 24.17.28 IF3 Data A and Data B Registers (DCAN IF3DATA/DATB) .......................................... 24.17.29 IF3 Update Enable Registers (DCAN IF3UPD12 to IF3UPD78) ..................................... 24.17.30 CAN TX IO Control Register (DCAN TIOC) ............................................................ 24.17.31 CAN RX IO Control Register (DCAN RIOC) ............................................................ 25 1273 1274 1275 1275 1276 1277 1278 1278 1279 1279 1279 1280 1280 1282 1284 1286 1287 1288 1289 1290 1290 1291 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1303 1304 1305 1307 1308 1310 1311 1312 1313 1314 1315 1316 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) . 1318 25.1 25.2 Overview.................................................................................................................. 25.1.1 Word Format Options ......................................................................................... 25.1.2 Multi-buffering (Mib) Support ................................................................................ 25.1.3 Transmission Lock (Multi-Buffer Mode Master Only) ..................................................... Operating Modes ........................................................................................................ 25.2.1 Pin Configurations ............................................................................................. 25.2.2 Data Handling.................................................................................................. 25.2.3 Operation with SPICS ........................................................................................ SPNU499C – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 1319 1319 1319 1320 1320 1321 1321 1324 21 www.ti.com 25.3 25.4 25.5 25.6 25.7 25.8 25.9 22 25.2.4 Operation with SPIENA....................................................................................... 25.2.5 Five-Pin Operation (Hardware Handshaking) ............................................................. 25.2.6 Data Formats .................................................................................................. 25.2.7 Clocking Modes ............................................................................................... 25.2.8 Data Transfer Example ....................................................................................... 25.2.9 Decoded and Encoded Chip Select (Master Only) ....................................................... 25.2.10 Variable Chip Select Setup and Hold Timing (Master Only) ........................................... 25.2.11 Hold Chip-Select Active ..................................................................................... 25.2.12 Detection of Slave Desynchronization (Master Only) ................................................... 25.2.13 ENA Signal Time-Out (Master Only) ...................................................................... 25.2.14 Data-Length Error............................................................................................ 25.2.15 Parallel Mode (Multiple SIMO/SOMI Support, not available on all devices) ......................... 25.2.16 Continuous Self-Test (Master/Slave) ...................................................................... 25.2.17 Half Duplex Mode ............................................................................................ Test Features ............................................................................................................ 25.3.1 Internal Loop-Back Test Mode (Master Only) ............................................................. 25.3.2 Input/Output Loopback Test Mode .......................................................................... General-Purpose I/O .................................................................................................... Low-Power Mode ........................................................................................................ Interrupts ................................................................................................................. 25.6.1 Interrupts in Multi-Buffer Mode .............................................................................. DMA Interface ........................................................................................................... 25.7.1 DMA in Multi-Buffer Mode .................................................................................... Module Configuration ................................................................................................... 25.8.1 Compatibility (SPI) Mode Configuration .................................................................... 25.8.2 MibSPI Mode Configuration.................................................................................. Control Registers ........................................................................................................ 25.9.1 SPI Global Control Register 0 (SPIGCR0) ................................................................. 25.9.2 SPI Global Control Register 1 (SPIGCR1) ................................................................. 25.9.3 SPI Interrupt Register (SPIINT0) ............................................................................ 25.9.4 SPI Interrupt Level Register (SPILVL) ...................................................................... 25.9.5 SPI Flag Register (SPIFLG) ................................................................................. 25.9.6 SPI Pin Control Register 0 (SPIPC0) ....................................................................... 25.9.7 SPI Pin Control Register 1 (SPIPC1) ....................................................................... 25.9.8 SPI Pin Control Register 2 (SPIPC2) ....................................................................... 25.9.9 SPI Pin Control Register 3 (SPIPC3) ....................................................................... 25.9.10 SPI Pin Control Register 4 (SPIPC4) ..................................................................... 25.9.11 SPI Pin Control Register 5 (SPIPC5) ..................................................................... 25.9.12 SPI Pin Control Register 6 (SPIPC6) ..................................................................... 25.9.13 SPI Pin Control Register 7 (SPIPC7) ..................................................................... 25.9.14 SPI Pin Control Register 8 (SPIPC8) ..................................................................... 25.9.15 SPI Transmit Data Register 0 (SPIDAT0) ................................................................ 25.9.16 SPI Transmit Data Register 1 (SPIDAT1) ................................................................ 25.9.17 SPI Receive Buffer Register (SPIBUF) ................................................................... 25.9.18 SPI Emulation Register (SPIEMU) ........................................................................ 25.9.19 SPI Delay Register (SPIDELAY) .......................................................................... 25.9.20 SPI Default Chip Select Register (SPIDEF) .............................................................. 25.9.21 SPI Data Format Registers (SPIFMT) .................................................................... 25.9.22 Interrupt Vector 0 (INTVECT0)............................................................................. 25.9.23 Interrupt Vector 1 (INTVECT1)............................................................................. 25.9.24 SPI Pin Control Register 9 (SPIPC9) ..................................................................... 25.9.25 Parallel/Modulo Mode Control Register (SPIPMCTRL) ................................................. 25.9.26 Multi-buffer Mode Enable Register (MIBSPIE)........................................................... Contents 1325 1326 1327 1328 1330 1331 1331 1331 1332 1333 1333 1333 1341 1341 1341 1341 1342 1343 1343 1344 1344 1346 1346 1347 1347 1348 1349 1350 1351 1352 1354 1355 1358 1359 1361 1362 1363 1365 1366 1368 1369 1370 1372 1375 1377 1377 1380 1381 1383 1384 1386 1387 1390 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 25.9.27 TG Interrupt Enable Set Register (TGITENST) .......................................................... 25.9.28 TG Interrupt Enable Clear Register (TGITENCR) ....................................................... 25.9.29 Transfer Group Interrupt Level Set Register (TGITLVST).............................................. 25.9.30 Transfer Group Interrupt Level Clear Register (TGITLVCR) ........................................... 25.9.31 Transfer Group Interrupt Flag Register (TGINTFLG) ................................................... 25.9.32 Tick Count Register (TICKCNT) ........................................................................... 25.9.33 Last TG End Pointer (LTGPEND) ......................................................................... 25.9.34 TGx Control Registers (TGxCTRL) ........................................................................ 25.9.35 DMA Channel Control Register (DMAxCTRL) ........................................................... 25.9.36 DMAxCOUNT Register (ICOUNT) ........................................................................ 25.9.37 DMA Large Count (DMACNTLEN) ........................................................................ 25.9.38 Multi-buffer RAM Uncorrectable Parity Error Control Register (UERRCTRL) ....................... 25.9.39 Multi-buffer RAM Uncorrectable Parity Error Status Register (UERRSTAT) ........................ 25.9.40 RXRAM Uncorrectable Parity Error Address Register (UERRADDR1) .............................. 25.9.41 TXRAM Uncorrectable Parity Error Address Register (UERRADDR0) ............................... 25.9.42 RXRAM Overrun Buffer Address Register (RXOVRN_BUF_ADDR) ................................. 25.9.43 I/O-Loopback Test Control Register (IOLPBKTSTCR) ................................................. 25.9.44 SPI Extended Prescale Register 1 (EXTENDED_PRESCALE1 for SPIFMT0 and SPIFMT1) .... 25.9.45 SPI Extended Prescale Register 2 (EXTENDED_PRESCALE2 for SPIFMT2 and SPIFMT3) .... 25.10 Multi-Buffer RAM ........................................................................................................ 25.10.1 Multi-Buffer RAM Auto Initialization ....................................................................... 25.10.2 Multi-Buffer RAM Register Summary ..................................................................... 25.10.3 Multi-Buffer RAM Transmit Data Register (TXRAM) .................................................... 25.10.4 Multi-Buffer RAM Receive Buffer Register (RXRAM) ................................................... 25.11 Parity Memory ........................................................................................................... 25.11.1 Example of Parity Memory Organization ................................................................. 25.12 MibSPI Pin Timing Parameters ....................................................................................... 25.12.1 Master Mode Timings for SPI/MibSPI..................................................................... 25.12.2 Slave Mode Timings for SPI/MibSPI ...................................................................... 25.12.3 Master Mode Timing Parameter Details .................................................................. 25.12.4 Slave Mode Timing Parameter Details.................................................................... 26 1391 1392 1393 1394 1395 1396 1397 1398 1401 1403 1404 1404 1405 1406 1407 1408 1409 1411 1413 1415 1416 1416 1417 1420 1422 1424 1425 1425 1427 1428 1428 Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module .................... 1429 26.1 26.2 26.3 26.4 26.5 Introduction and Features .............................................................................................. 26.1.1 SCI Features ................................................................................................... 26.1.2 LIN Features ................................................................................................... 26.1.3 Block Diagram ................................................................................................. SCI Communication Formats .......................................................................................... 26.2.1 SCI Frame Formats ........................................................................................... 26.2.2 SCI Timing Mode .............................................................................................. 26.2.3 SCI Baud Rate................................................................................................. 26.2.4 SCI Multiprocessor Communication Modes ............................................................... 26.2.5 SCI Multi-Buffered Mode ..................................................................................... SCI Interrupts ............................................................................................................ 26.3.1 Transmit Interrupt ............................................................................................. 26.3.2 Receive Interrupt .............................................................................................. 26.3.3 WakeUp Interrupt ............................................................................................. 26.3.4 Error Interrupts ................................................................................................ SCI DMA Interface ...................................................................................................... 26.4.1 Receive DMA Requests ...................................................................................... 26.4.2 Transmit DMA Requests ..................................................................................... SCI Configurations ...................................................................................................... 26.5.1 Receiving Data ................................................................................................ 26.5.2 Transmitting Data ............................................................................................. SPNU499C – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 1430 1430 1431 1432 1435 1435 1436 1436 1439 1441 1443 1444 1444 1444 1445 1446 1446 1446 1447 1447 1448 23 www.ti.com 26.6 26.7 26.8 26.9 26.10 26.11 26.12 26.13 24 SCI Low-Power Mode .................................................................................................. 26.6.1 Sleep Mode for Multiprocessor Communication .......................................................... LIN Communication Formats .......................................................................................... 26.7.1 LIN Standards ................................................................................................. 26.7.2 Message Frame ............................................................................................... 26.7.3 Synchronizer ................................................................................................... 26.7.4 Baud Rate ...................................................................................................... 26.7.5 Header Generation ............................................................................................ 26.7.6 Extended Frames Handling .................................................................................. 26.7.7 Timeout Control ............................................................................................... 26.7.8 TXRX Error Detector (TED) .................................................................................. 26.7.9 Message Filtering and Validation ........................................................................... 26.7.10 Receive Buffers .............................................................................................. 26.7.11 Transmit Buffers............................................................................................. LIN Interrupts ............................................................................................................ LIN DMA Interface ...................................................................................................... 26.9.1 LIN Receive DMA Requests ................................................................................. 26.9.2 LIN Transmit DMA Requests ................................................................................ LIN Configurations ...................................................................................................... 26.10.1 Receiving Data ............................................................................................... 26.10.2 Transmitting Data ............................................................................................ Low-Power Mode ....................................................................................................... 26.11.1 Entering Sleep Mode ........................................................................................ 26.11.2 Wakeup ....................................................................................................... 26.11.3 Wakeup Timeouts ........................................................................................... Emulation Mode ......................................................................................................... SCI/LIN Control Registers ............................................................................................. 26.13.1 SCI Global Control Register 0 (SCIGCR0) ............................................................... 26.13.2 SCI Global Control Register 1 (SCIGCR1) ............................................................... 26.13.3 SCI Global Control Register 2 (SCIGCR2) ............................................................... 26.13.4 SCI Set Interrupt Register (SCISETINT) ................................................................. 26.13.5 SCI Clear Interrupt Register (SCICLEARINT) ........................................................... 26.13.6 SCI Set Interrupt Level Register (SCISETINTLVL) ..................................................... 26.13.7 SCI Clear Interrupt Level Register (SCICLEARINTLVL) ............................................... 26.13.8 SCI Flags Register (SCIFLR) .............................................................................. 26.13.9 SCI Interrupt Vector Offset 0 (SCIINTVECT0) ........................................................... 26.13.10 SCI Interrupt Vector Offset 1 (SCIINTVECT1) ......................................................... 26.13.11 SCI Format Control Register (SCIFORMAT) ........................................................... 26.13.12 Baud Rate Selection Register (BRS) .................................................................... 26.13.13 SCI Data Buffers (SCIED, SCIRD, SCITD) ............................................................. 26.13.14 SCI Pin I/O Control Register 0 (SCIPIO0) ............................................................. 26.13.15 SCI Pin I/O Control Register 1 (SCIPIO1) ............................................................. 26.13.16 SCI Pin I/O Control Register 2 (SCIPIO2) ............................................................. 26.13.17 SCI Pin I/O Control Register 3 (SCIPIO3) ............................................................. 26.13.18 SCI Pin I/O Control Register 4 (SCIPIO4) ............................................................. 26.13.19 SCI Pin I/O Control Register 5 (SCIPIO5) ............................................................. 26.13.20 SCI Pin I/O Control Register 6 (SCIPIO6) ............................................................. 26.13.21 SCI Pin I/O Control Register 7 (SCIPIO7) ............................................................. 26.13.22 SCI Pin I/O Control Register 8 (SCIPIO8) ............................................................. 26.13.23 LIN Compare Register (LINCOMPARE) ................................................................ 26.13.24 LIN Receive Buffer 0 Register (LINRD0)................................................................ 26.13.25 LIN Receive Buffer 1 Register (LINRD1)................................................................ 26.13.26 LIN Mask Register (LINMASK) ........................................................................... Contents 1449 1449 1450 1450 1451 1453 1453 1455 1459 1460 1461 1464 1466 1467 1468 1468 1468 1468 1469 1469 1470 1471 1471 1472 1473 1473 1474 1475 1476 1480 1482 1485 1489 1492 1495 1502 1502 1503 1504 1505 1507 1508 1509 1510 1511 1512 1513 1514 1514 1515 1516 1516 1517 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 26.13.27 LIN Identification Register (LINID) ....................................................................... 26.13.28 LIN Transmit Buffer 0 Register (LINTD0) ............................................................... 26.13.29 LIN Transmit Buffer 1 Register (LINTD1) ............................................................... 26.13.30 Maximum Baud Rate Selection Register (MBRS) ..................................................... 26.13.31 Input/Output Error Enable (IODFTCTRL) Register .................................................... 26.14 GPIO Functionality ...................................................................................................... 26.14.1 GPIO Functionality .......................................................................................... 26.14.2 Under Reset .................................................................................................. 26.14.3 Out of Reset .................................................................................................. 26.14.4 Open-Drain Feature Enabled on a Pin .................................................................... 26.14.5 Summary ...................................................................................................... 27 1518 1519 1519 1520 1521 1523 1523 1523 1524 1524 1524 Serial Communication Interface (SCI) Module ..................................................................... 1525 27.1 27.2 27.3 27.4 27.5 27.6 27.7 Introduction ............................................................................................................... 27.1.1 SCI Features ................................................................................................... 27.1.2 Block Diagram ................................................................................................. SCI Communication Formats .......................................................................................... 27.2.1 SCI Frame Formats ........................................................................................... 27.2.2 SCI Timing Mode .............................................................................................. 27.2.3 SCI Baud Rate................................................................................................. 27.2.4 SCI Multiprocessor Communication Modes ............................................................... SCI Interrupts ............................................................................................................ 27.3.1 Transmit Interrupt ............................................................................................. 27.3.2 Receive Interrupt .............................................................................................. 27.3.3 WakeUp Interrupt ............................................................................................. 27.3.4 Error Interrupts ................................................................................................ SCI DMA Interface ...................................................................................................... 27.4.1 Receive DMA Requests ...................................................................................... 27.4.2 Transmit DMA Requests ..................................................................................... SCI Configurations ...................................................................................................... 27.5.1 Receiving Data ................................................................................................ 27.5.2 Transmitting Data ............................................................................................. SCI Low-Power Mode .................................................................................................. 27.6.1 Sleep Mode for Multiprocessor Communication .......................................................... SCI Control Registers .................................................................................................. 27.7.1 SCI Global Control Register 0 (SCIGCR0) ................................................................ 27.7.2 SCI Global Control Register 1 (SCIGCR1) ................................................................ 27.7.3 SCI Set Interrupt Register (SCISETINT) .................................................................. 27.7.4 SCI Clear Interrupt Register (SCICLEARINT) ............................................................ 27.7.5 SCI Set Interrupt Level Register (SCISETINTLVL) ...................................................... 27.7.6 SCI Clear Interrupt Level Register (SCICLEARINTLVL) ................................................ 27.7.7 SCI Flags Register (SCIFLR) ............................................................................... 27.7.8 SCI Interrupt Vector Offset 0 (SCIINTVECT0) ........................................................... 27.7.9 SCI Interrupt Vector Offset 1 (SCIINTVECT1) ........................................................... 27.7.10 SCI Format Control Register (SCIFORMAT) ............................................................ 27.7.11 Baud Rate Selection Register (BRS) ..................................................................... 27.7.12 SCI Data Buffers (SCIED, SCIRD, SCITD) .............................................................. 27.7.13 SCI Pin I/O Control Register 0 (SCIPIO0) ............................................................... 27.7.14 SCI Pin I/O Control Register 1 (SCIPIO1) ............................................................... 27.7.15 SCI Pin I/O Control Register 2 (SCIPIO2) ............................................................... 27.7.16 SCI Pin I/O Control Register 3 (SCIPIO3) ............................................................... 27.7.17 SCI Pin I/O Control Register 4 (SCIPIO4) ............................................................... 27.7.18 SCI Pin I/O Control Register 5 (SCIPIO5) ............................................................... 27.7.19 SCI Pin I/O Control Register 6 (SCIPIO6) ............................................................... SPNU499C – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 1526 1526 1526 1528 1528 1528 1530 1530 1533 1534 1534 1534 1535 1536 1536 1536 1537 1537 1538 1538 1539 1540 1541 1542 1545 1547 1549 1550 1552 1556 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 25 www.ti.com 27.8 28 1567 1567 1568 1570 1570 1570 1571 1571 1571 Inter-Integrated Circuit (I2C) Module .................................................................................. 1572 28.1 28.2 28.3 28.4 28.5 28.6 26 27.7.20 SCI Pin I/O Control Register 7 (SCIPIO7) ............................................................... 27.7.21 SCI Pin I/O Control Register 8 (SCIPIO8) ............................................................... 27.7.22 Input/Output Error Enable (IODFTCTRL) Register ..................................................... GPIO Functionality ...................................................................................................... 27.8.1 GPIO Functionality ............................................................................................ 27.8.2 Under Reset ................................................................................................... 27.8.3 Out of Reset ................................................................................................... 27.8.4 Open-Drain Feature Enabled on a Pin ..................................................................... 27.8.5 Summary ....................................................................................................... Overview.................................................................................................................. 28.1.1 Introduction to the I2C Module .............................................................................. 28.1.2 Functional Overview .......................................................................................... 28.1.3 Clock Generation .............................................................................................. I2C Module Operation .................................................................................................. 28.2.1 Input and Output Voltage Levels ............................................................................ 28.2.2 I2C Module Reset Conditions ............................................................................... 28.2.3 I2C Module Data Validity .................................................................................... 28.2.4 I2C Module Start and Stop Conditions ..................................................................... 28.2.5 Serial Data Formats........................................................................................... 28.2.6 NACK Bit Generation ......................................................................................... I2C Operation Modes ................................................................................................... 28.3.1 Master Transmitter Mode .................................................................................... 28.3.2 Master Receiver Mode ....................................................................................... 28.3.3 Slave Transmitter Mode ...................................................................................... 28.3.4 Slave Receiver Mode ........................................................................................ 28.3.5 Low Power Mode .............................................................................................. 28.3.6 Free Run Mode ................................................................................................ 28.3.7 Ignore NACK Mode .......................................................................................... I2C Module Integrity..................................................................................................... 28.4.1 Arbitration ...................................................................................................... 28.4.2 I2C Clock Generation and Synchronization ............................................................... 28.4.3 Prescaler ....................................................................................................... 28.4.4 Noise Filter ..................................................................................................... Operational Information................................................................................................. 28.5.1 I2C Module Interrupts ......................................................................................... 28.5.2 DMA Controller Events ....................................................................................... 28.5.3 I2C Enable/Disable............................................................................................ 28.5.4 General Purpose I/O .......................................................................................... 28.5.5 Pull Up/Pull Down Function .................................................................................. 28.5.6 Open Drain Function .......................................................................................... I2C Control Registers ................................................................................................... 28.6.1 I2C Own Address Manager (I2COAR) ..................................................................... 28.6.2 I2C Interrupt Mask Register (I2CIMR) ...................................................................... 28.6.3 I2C Status Register (I2CSTR) ............................................................................... 28.6.4 I2C Clock Divider Low Register (I2CCKL) ................................................................. 28.6.5 I2C Clock Control High Register (I2CCKH) ................................................................ 28.6.6 I2C Data Count Register (I2CCNT) ......................................................................... 28.6.7 I2C Data Receive Register (I2CDRR) ...................................................................... 28.6.8 I2C Slave Address Register (I2CSAR) ..................................................................... 28.6.9 I2C Data Transmit Register (I2CDXR) ..................................................................... 28.6.10 I2C Mode Register (I2CMDR) .............................................................................. 28.6.11 I2C Interrupt Vector Register (I2CIVR) ................................................................... Contents 1573 1573 1574 1576 1577 1577 1577 1577 1578 1578 1580 1581 1581 1581 1581 1581 1582 1582 1582 1583 1583 1584 1584 1584 1585 1585 1586 1586 1586 1587 1587 1588 1589 1590 1591 1594 1594 1595 1595 1596 1596 1597 1600 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 28.7 29 28.6.12 I2C Extended Mode Register (I2CEMDR) ................................................................ 28.6.13 I2C Prescale Register (I2CPSC) .......................................................................... 28.6.14 I2C Peripheral ID Register 1 (I2CPID1) .................................................................. 28.6.15 I2C Peripheral ID Register 2 (I2CPID2) .................................................................. 28.6.16 I2C DMA Control Register (I2CDMACR) ................................................................. 28.6.17 I2C Pin Function Register (I2CPFNC) .................................................................... 28.6.18 I2C Pin Direction Register (I2CPDIR) ..................................................................... 28.6.19 I2C Data Input Register (I2CDIN) ......................................................................... 28.6.20 I2C Data Output Register (I2CDOUT) .................................................................... 28.6.21 I2C Data Set Register (I2CDSET) ......................................................................... 28.6.22 I2C Data Clear Register (I2CDCLR) ...................................................................... 28.6.23 I2C Pin Open Drain Register (I2CPDR) .................................................................. 28.6.24 I2C Pull Disable Register (I2CPDIS) ...................................................................... 28.6.25 I2C Pull Select Register (I2CPSEL) ....................................................................... 28.6.26 I2C Pins Slew Rate Select Register (I2CSRS) .......................................................... Sample Waveforms ..................................................................................................... 1601 1601 1602 1602 1603 1603 1604 1604 1605 1605 1606 1606 1607 1607 1608 1609 EMAC/MDIO Module ........................................................................................................ 1610 29.1 29.2 29.3 Introduction ............................................................................................................... 29.1.1 Purpose of the Peripheral .................................................................................... 29.1.2 Features ........................................................................................................ 29.1.3 Functional Block Diagram .................................................................................... 29.1.4 Industry Standard(s) Compliance Statement .............................................................. Architecture .............................................................................................................. 29.2.1 Clock Control .................................................................................................. 29.2.2 Memory Map ................................................................................................... 29.2.3 Signal Descriptions............................................................................................ 29.2.4 MII / RMII Signal Multiplexing Control ...................................................................... 29.2.5 Ethernet Protocol Overview .................................................................................. 29.2.6 Programming Interface ....................................................................................... 29.2.7 EMAC Control Module ........................................................................................ 29.2.8 MDIO Module .................................................................................................. 29.2.9 EMAC Module ................................................................................................. 29.2.10 MAC Interface ................................................................................................ 29.2.11 Packet Receive Operation .................................................................................. 29.2.12 Packet Transmit Operation ................................................................................. 29.2.13 Receive and Transmit Latency............................................................................. 29.2.14 Transfer Node Priority ....................................................................................... 29.2.15 Reset Considerations ....................................................................................... 29.2.16 Initialization ................................................................................................... 29.2.17 Interrupt Support ............................................................................................. 29.2.18 Power Management ......................................................................................... 29.2.19 Emulation Considerations .................................................................................. EMAC Control Module Registers ...................................................................................... 29.3.1 EMAC Control Module Revision ID Register (REVID) ................................................... 29.3.2 EMAC Control Module Software Reset Register (SOFTRESET) ....................................... 29.3.3 EMAC Control Module Interrupt Control Register (INTCONTROL) .................................... 29.3.4 EMAC Control Module Receive Threshold Interrupt Enable Registers (C0RXTHRESHEN) ....... 29.3.5 EMAC Control Module Receive Interrupt Enable Registers (C0RXEN) ............................... 29.3.6 EMAC Control Module Transmit Interrupt Enable Registers (C0TXEN) ............................... 29.3.7 EMAC Control Module Miscellaneous Interrupt Enable Registers (C0MISCEN) ..................... 29.3.8 EMAC Control Module Receive Threshold Interrupt Status Registers (C0RXTHRESHSTAT) ..... 29.3.9 EMAC Control Module Receive Interrupt Status Registers (C0RXSTAT) ............................. 29.3.10 EMAC Control Module Transmit Interrupt Status Registers (C0TXSTAT) ........................... SPNU499C – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 1611 1611 1611 1612 1613 1613 1613 1613 1614 1617 1618 1619 1633 1634 1639 1641 1645 1650 1651 1651 1652 1653 1655 1659 1659 1660 1661 1661 1662 1663 1664 1665 1666 1667 1668 1669 27 www.ti.com 29.4 29.5 28 29.3.11 EMAC Control Module Miscellaneous Interrupt Status Registers (C0MISCSTAT) ................. 29.3.12 EMAC Control Module Receive Interrupts Per Millisecond Registers (C0RXIMAX) ................ 29.3.13 EMAC Control Module Transmit Interrupts Per Millisecond Registers (C0TXIMAX) ............... MDIO Registers.......................................................................................................... 29.4.1 MDIO Revision ID Register (REVID) ....................................................................... 29.4.2 MDIO Control Register (CONTROL) ....................................................................... 29.4.3 PHY Acknowledge Status Register (ALIVE) ............................................................... 29.4.4 PHY Link Status Register (LINK) ........................................................................... 29.4.5 MDIO Link Status Change Interrupt (Unmasked) Register (LINKINTRAW) ........................... 29.4.6 MDIO Link Status Change Interrupt (Masked) Register (LINKINTMASKED) ......................... 29.4.7 MDIO User Command Complete Interrupt (Unmasked) Register (USERINTRAW).................. 29.4.8 MDIO User Command Complete Interrupt (Masked) Register (USERINTMASKED) ................ 29.4.9 MDIO User Command Complete Interrupt Mask Set Register (USERINTMASKSET) .............. 29.4.10 MDIO User Command Complete Interrupt Mask Clear Register (USERINTMASKCLEAR) ....... 29.4.11 MDIO User Access Register 0 (USERACCESS0) ...................................................... 29.4.12 MDIO User PHY Select Register 0 (USERPHYSEL0).................................................. 29.4.13 MDIO User Access Register 1 (USERACCESS1) ...................................................... 29.4.14 MDIO User PHY Select Register 1 (USERPHYSEL1).................................................. EMAC Module Registers ............................................................................................... 29.5.1 Transmit Revision ID Register (TXREVID) ................................................................ 29.5.2 Transmit Control Register (TXCONTROL) ................................................................. 29.5.3 Transmit Teardown Register (TXTEARDOWN) ........................................................... 29.5.4 Receive Revision ID Register (RXREVID) ................................................................. 29.5.5 Receive Control Register (RXCONTROL) ................................................................. 29.5.6 Receive Teardown Register (RXTEARDOWN) ........................................................... 29.5.7 Transmit Interrupt Status (Unmasked) Register (TXINTSTATRAW) ................................... 29.5.8 Transmit Interrupt Status (Masked) Register (TXINTSTATMASKED) ................................. 29.5.9 Transmit Interrupt Mask Set Register (TXINTMASKSET) ............................................... 29.5.10 Transmit Interrupt Mask Clear Register (TXINTMASKCLEAR) ....................................... 29.5.11 MAC Input Vector Register (MACINVECTOR) .......................................................... 29.5.12 MAC End Of Interrupt Vector Register (MACEOIVECTOR) ........................................... 29.5.13 Receive Interrupt Status (Unmasked) Register (RXINTSTATRAW) .................................. 29.5.14 Receive Interrupt Status (Masked) Register (RXINTSTATMASKED) ................................ 29.5.15 Receive Interrupt Mask Set Register (RXINTMASKSET) .............................................. 29.5.16 Receive Interrupt Mask Clear Register (RXINTMASKCLEAR) ........................................ 29.5.17 MAC Interrupt Status (Unmasked) Register (MACINTSTATRAW) ................................... 29.5.18 MAC Interrupt Status (Masked) Register (MACINTSTATMASKED) .................................. 29.5.19 MAC Interrupt Mask Set Register (MACINTMASKSET)................................................ 29.5.20 MAC Interrupt Mask Clear Register (MACINTMASKCLEAR) ......................................... 29.5.21 Receive Multicast/Broadcast/Promiscuous Channel Enable Register (RXMBPENABLE) ......... 29.5.22 Receive Unicast Enable Set Register (RXUNICASTSET) ............................................. 29.5.23 Receive Unicast Clear Register (RXUNICASTCLEAR) ................................................ 29.5.24 Receive Maximum Length Register (RXMAXLEN)...................................................... 29.5.25 Receive Buffer Offset Register (RXBUFFEROFFSET) ................................................. 29.5.26 Receive Filter Low Priority Frame Threshold Register (RXFILTERLOWTHRESH)................. 29.5.27 Receive Channel Flow Control Threshold Registers (RX0FLOWTHRESH-RX7FLOWTHRESH) 29.5.28 Receive Channel Free Buffer Count Registers (RX0FREEBUFFER-RX7FREEBUFFER) ........ 29.5.29 MAC Control Register (MACCONTROL) ................................................................. 29.5.30 MAC Status Register (MACSTATUS) ..................................................................... 29.5.31 Emulation Control Register (EMCONTROL) ............................................................. 29.5.32 FIFO Control Register (FIFOCONTROL) ................................................................. 29.5.33 MAC Configuration Register (MACCONFIG) ............................................................ 29.5.34 Soft Reset Register (SOFTRESET) ....................................................................... Contents 1670 1671 1672 1673 1673 1674 1675 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1689 1689 1690 1690 1691 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1702 1703 1703 1704 1706 1707 1707 1708 1708 1709 1709 1710 1712 1714 1714 1715 1715 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 29.5.35 29.5.36 29.5.37 29.5.38 29.5.39 29.5.40 29.5.41 29.5.42 29.5.43 29.5.44 29.5.45 29.5.46 29.5.47 29.5.48 29.5.49 29.5.50 30 1716 1716 1717 1717 1718 1718 1719 1719 1720 1721 1721 1722 1722 1723 1723 1724 Data Modification Module (DMM)....................................................................................... 1733 30.1 30.2 30.3 31 MAC Source Address Low Bytes Register (MACSRCADDRLO) ..................................... MAC Source Address High Bytes Register (MACSRCADDRHI) ...................................... MAC Hash Address Register 1 (MACHASH1) ........................................................... MAC Hash Address Register 2 (MACHASH2) ........................................................... Back Off Test Register (BOFFTEST) ..................................................................... Transmit Pacing Algorithm Test Register (TPACETEST) .............................................. Receive Pause Timer Register (RXPAUSE) ............................................................. Transmit Pause Timer Register (TXPAUSE) ............................................................ MAC Address Low Bytes Register (MACADDRLO) .................................................... MAC Address High Bytes Register (MACADDRHI) ..................................................... MAC Index Register (MACINDEX) ........................................................................ Transmit Channel DMA Head Descriptor Pointer Registers (TX0HDP-TX7HDP) .................. Receive Channel DMA Head Descriptor Pointer Registers (RX0HDP-RX7HDP) .................. Transmit Channel Completion Pointer Registers (TX0CP-TX7CP) ................................... Receive Channel Completion Pointer Registers (RX0CP-RX7CP) ................................... Network Statistics Registers ............................................................................... Overview.................................................................................................................. 30.1.1 Features ........................................................................................................ 30.1.2 Block Diagram ................................................................................................. Module Operation ....................................................................................................... 30.2.1 Data Format .................................................................................................... 30.2.2 Data Port ....................................................................................................... 30.2.3 Error Handling ................................................................................................. 30.2.4 Interrupts ....................................................................................................... Control Registers ........................................................................................................ 30.3.1 DMM Global Control Register (DMMGLBCTRL) .......................................................... 30.3.2 DMM Interrupt Set Register (DMMINTSET) ............................................................... 30.3.3 DMM Interrupt Clear Register (DMMINTCLR) ............................................................ 30.3.4 DMM Interrupt Level Register (DMMINTLVL) ............................................................. 30.3.5 DMM Interrupt Flag Register (DMMINTFLG) .............................................................. 30.3.6 DMM Interrupt Offset 1 Register (DMMOFF1) ............................................................ 30.3.7 DMM Interrupt Offset 2 Register (DMMOFF2) ............................................................ 30.3.8 DMM Direct Data Mode Destination Register (DMMDDMDEST) ....................................... 30.3.9 DMM Direct Data Mode Blocksize Register (DMMDDMBL) ............................................. 30.3.10 DMM Direct Data Mode Pointer Register (DMMDDMPT) .............................................. 30.3.11 DMM Direct Data Mode Interrupt Pointer Register (DMMINTPT) ..................................... 30.3.12 DMM Destination x Region 1 (DMMDESTxREG1) ...................................................... 30.3.13 DMM Destination x Blocksize 1 (DMMDESTxBL1) ..................................................... 30.3.14 DMM Destination x Region 2 (DMMDESTxREG2) ...................................................... 30.3.15 DMM Destination x Blocksize 2 (DMMDESTxBL2) ..................................................... 30.3.16 DMM Pin Control 0 (DMMPC0) ............................................................................ 30.3.17 DMM Pin Control 1 (DMMPC1) ............................................................................ 30.3.18 DMM Pin Control 2 (DMMPC2) ............................................................................ 30.3.19 DMM Pin Control 3 (DMMPC3) ............................................................................ 30.3.20 DMM Pin Control 4 (DMMPC4) ............................................................................ 30.3.21 DMM Pin Control 5 (DMMPC5) ............................................................................ 30.3.22 DMM Pin Control 6 (DMMPC6) ............................................................................ 30.3.23 DMM Pin Control 7 (DMMPC7) ............................................................................ 30.3.24 DMM Pin Control 8 (DMMPC8) ............................................................................ 1734 1734 1734 1735 1735 1737 1738 1739 1740 1741 1743 1747 1752 1754 1758 1759 1760 1760 1761 1761 1762 1763 1764 1765 1766 1767 1769 1770 1771 1773 1774 1776 1777 RAM Trace Port (RTP)...................................................................................................... 1779 31.1 Overview.................................................................................................................. 1780 31.1.1 Features ........................................................................................................ 1780 SPNU499C – March 2018 Submit Documentation Feedback Contents Copyright © 2018, Texas Instruments Incorporated 29 www.ti.com 31.2 31.3 31.4 32 31.1.2 Block Diagram ................................................................................................. Module Operation ....................................................................................................... 31.2.1 Trace Mode .................................................................................................... 31.2.2 Direct Data Mode (DDM) ..................................................................................... 31.2.3 Trace Regions ................................................................................................. 31.2.4 Overflow/Empty Handling .................................................................................... 31.2.5 Signal Description ............................................................................................. 31.2.6 Data Rate ...................................................................................................... GIO Function ............................................................................................................. Control Registers ........................................................................................................ 31.4.1 RTP Global Control Register (RTPGLBCTRL) ............................................................ 31.4.2 RTP Trace Enable Register (RTPTRENA) ................................................................ 31.4.3 RTP Global Status Register (RTPGSR).................................................................... 31.4.4 RTP RAM 1 Trace Region [1:2] Register (RTPRAM1REG[1:2]) ........................................ 31.4.5 RTP RAM 2 Trace Region [1:2] Register (RTPRAM2REG[1:2]) ........................................ 31.4.6 RTP Peripheral Trace Region [1:2] Registers (RTPPERREG[1:2]) .................................... 31.4.7 RTP Direct Data Mode Write Register (RTPDDMW) ..................................................... 31.4.8 RTP Pin Control 0 Register (RTPPC0) ..................................................................... 31.4.9 RTP Pin Control 1 Register (RTPPC1) ..................................................................... 31.4.10 RTP Pin Control 2 Register (RTPPC2) ................................................................... 31.4.11 RTP Pin Control 3 Register (RTPPC3) ................................................................... 31.4.12 RTP Pin Control 4 Register (RTPPC4) ................................................................... 31.4.13 RTP Pin Control 5 Register (RTPPC5) ................................................................... 31.4.14 RTP Pin Control 6 Register (RTPPC6) ................................................................... 31.4.15 RTP Pin Control 7 Register (RTPPC7) ................................................................... 31.4.16 RTP Pin Control 8 Register (RTPPC8) ................................................................... 1780 1781 1781 1783 1783 1785 1786 1787 1787 1787 1788 1791 1792 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1806 1807 eFuse Controller ............................................................................................................. 1808 32.1 32.2 32.3 32.4 Overview.................................................................................................................. Introduction ............................................................................................................... eFuse Controller Testing ............................................................................................... 32.3.1 eFuse Controller Connections to ESM ..................................................................... 32.3.2 Checking for eFuse Errors After Power Up ................................................................ eFuse Controller Registers............................................................................................. 32.4.1 EFC Boundary Control Register (EFCBOUND) ........................................................... 32.4.2 EFC Pins Register (EFCPINS) .............................................................................. 32.4.3 EFC Error Status Register (EFCERRSTAT)............................................................... 32.4.4 EFC Self Test Cycles Register (EFCSTCY) ............................................................... 32.4.5 EFC Self Test Signature Register (EFCSTSIG) .......................................................... 1809 1809 1809 1809 1809 1812 1812 1814 1815 1815 1816 Revision History ...................................................................................................................... 1817 30 Contents SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com List of Figures 1-1. Block Diagram .............................................................................................................. 96 1-2. Example: SPIDELAY – 0xFFF7F448 .................................................................................... 97 2-1. Architectural Block Diagram 2-2. Memory-Map 2-3. 2-4. 2-5. 2-6. 2-7. 2-8. 2-9. 2-10. 2-11. 2-12. 2-13. 2-14. 2-15. 2-16. 2-17. 2-18. 2-19. 2-20. 2-21. 2-22. 2-23. 2-24. 2-25. 2-26. 2-27. 2-28. 2-29. 2-30. 2-31. 2-32. 2-33. 2-34. 2-35. 2-36. 2-37. 2-38. 2-39. 2-40. 2-41. 2-42. 2-43. 2-44. 2-45. .............................................................................................. 99 .............................................................................................................. 103 Hardware Memory Initialization Protocol .............................................................................. 113 Clock Test Register (CLKTEST) [offset = FFFF FFF8Ch] .......................................................... 123 EXTCTL_Out_Port Register [offset = 404h] ........................................................................... 124 SYS Pin Control Register 1 (SYSPC1) [offset = 00h] ................................................................ 129 SYS Pin Control Register 2 (SYSPC2) [offset = 04h] ................................................................ 129 SYS Pin Control Register 3 (SYSPC3) [offset = 08h] ................................................................ 130 SYS Pin Control Register 4 (SYSPC4) [offset = 0Ch] ............................................................... 130 SYS Pin Control Register 5 (SYSPC5) [offset = 10h] ................................................................ 131 SYS Pin Control Register 6 (SYSPC6) [offset = 14h] ................................................................ 131 SYS Pin Control Register 7 (SYSPC7) [offset = 18h] ................................................................ 132 SYS Pin Control Register 8 (SYSPC8) [offset = 1Ch] ............................................................... 132 SYS Pin Control Register 9 (SYSPC9) [offset = 20h] ................................................................ 133 Clock Source Disable Register (CSDIS) [offset = 30h] .............................................................. 134 Clock Source Disable Set Register (CSDISSET) [offset = 34h] .................................................... 135 Clock Source Disable Clear Register (CSDISCLR) [offset = 38h] ................................................. 136 Clock Domain Disable Register (CDDIS) [offset = 3Ch] ............................................................. 137 Clock Domain Disable Set Register (CDDISSET) [offset = 40h] ................................................... 139 Clock Domain Disable Clear Register (CDDISCLR) [offset = 44h]................................................. 140 GCLK, HCLK, VCLK, and VCLK2 Source Register (GHVSRC) [offset = 48h] ................................... 143 Peripheral Asynchronous Clock Source Register (VCLKASRC) [offset = 4Ch] .................................. 144 RTI Clock Source Register (RCLKSRC) [offset = 50h] .............................................................. 145 Clock Source Valid Status Register (CSVSTAT) [offset = 54h] .................................................... 146 Memory Self-Test Global Control Register (MSTGCR) [offset = 58h] ............................................. 147 Memory Hardware Initialization Global Control Register (MINITGCR) [offset = 5Ch] ........................... 148 MBIST Controller/Memory Initialization Enable Register (MSINENA) [offset = 60h]............................. 149 MSTC Global Status Register (MSTCGSTAT) [offset = 68h] ....................................................... 150 Memory Hardware Initialization Status Register (MINISTAT) [offset = 6Ch]...................................... 151 PLL Control Register 1 (PLLCTL1) [offset = 70h] .................................................................... 151 PLL Control Register 2 (PLLCTL2) [offset = 74h] .................................................................... 153 SYS Pin Control Register 10 (SYSPC10) [offset = 78h] ............................................................. 154 Die Identification Register, Lower Word (DIEIDL) [offset = 7Ch] ................................................... 155 Die Identification Register, Upper Word (DIEIDH) [offset = 80h] ................................................... 155 LPO/Clock Monitor Control Register (LPOMONCTL) [offset = 88h] ............................................... 156 Clock Test Register (CLKTEST) [offset = 8Ch] ....................................................................... 159 DFT Control Register (DFTCTRLREG) [offset = 90h] ............................................................... 161 DFT Control Register 2 (DFTCTRLREG2) [offset = 94h] ........................................................... 162 General Purpose Register (GPREG1) [offset = A0h] ............................................................... 163 Imprecise Fault Status Register (IMPFASTS) [offset = A8h] ....................................................... 165 Imprecise Fault Write Address Register (IMPFTADD) [offset = ACh] ............................................. 166 System Software Interrupt Request 1 Register (SSIR1) [offset = B0h] ............................................ 167 System Software Interrupt Request 2 Register (SSIR2) [offset = B4h] ............................................ 167 System Software Interrupt Request 3 Register (SSIR3) [offset = B8h] ............................................ 168 System Software Interrupt Request 4 Register (SSIR4) [offset = BCh] ........................................... 168 SPNU499C – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 31 www.ti.com 2-46. RAM Control Register (RAMGCR) [offset = C0h] .................................................................... 169 2-47. Bus Matrix Module Control Register 1 (BMMCR) [offset = C4h] ................................................... 170 2-48. CPU Reset Control Register (CPURSTCR) [offset = CCh] 2-49. Clock Control Register (CLKCNTL) [offset = D0h] ................................................................... 172 2-50. ECP Control Register (ECPCNTL) [offset = D4h] .................................................................... 173 2-51. DEV Parity Control Register 1 (DEVCR1) [offset = DCh] ........................................................... 174 2-52. System Exception Control Register (SYSECR) [offset = E0h] ...................................................... 174 2-53. System Exception Status Register (SYSESR) [offset = E4h] 175 2-54. System Test Abort Status Register (SYSTASR) [offset = E8h] 176 2-55. 2-56. 2-57. 2-58. 2-59. 2-60. 2-61. 2-62. 2-63. 2-64. 2-65. 2-66. 2-67. 2-68. 2-69. 2-70. 2-71. 2-72. 2-73. 2-74. 2-75. 2-76. 2-77. 2-78. 2-79. 2-80. 2-81. 2-82. 2-83. 2-84. 2-85. 2-86. 2-87. 2-88. 2-89. 2-90. 2-91. 2-92. 3-1. 3-2. 32 ........................................................ ...................................................... .................................................... Global Status Register (GLBSTAT) [offset = ECh] ................................................................... Device Identification Register (DEVID) [offset = F0h] ................................................................ Software Interrupt Vector Register (SSIVEC) [offset = F4h] ........................................................ System Software Interrupt Flag Register (SSIF) [offset = F8h] ..................................................... PLL Control Register 3 (PLLCTL3) [offset = 00] ...................................................................... CPU Logic BIST Clock Prescaler (STCLKDIV) [offset = 08h] ...................................................... Clock 2 Control Register (CLK2CNTRL) [offset = 3Ch] ............................................................. Peripheral Asynchronous Clock Configuration 1 Register (VCLKACON1) [offset = 40h] ....................... Clock Slip Register (CLKSLIP) [offset = 70h] ........................................................................ EFUSE Controller Control Register (EFC_CTLREG) [offset = ECh] .............................................. Die Identification Register, Lower Word (DIEIDL_REG0) [offset = F0h] .......................................... Die Identification Register, Upper Word (DIEIDH_REG1) [offset = F4h] .......................................... Die Identification Register, Lower Word (DIEIDL_REG2) [offset = F8h] .......................................... Die Identification Register, Upper Word (DIEIDH_REG3) [offset = FCh] ......................................... Peripheral Memory Protection Set Register 0 (PMPROTSET0) [offset = 00] .................................... Peripheral Memory Protection Set Register 1 (PMPROTSET1) [offset = 04h] ................................... Peripheral Memory Protection Clear Register 0 (PMPROTCLR0) [offset = 10h] ................................ Peripheral Memory Protection Clear Register 1 (PMPROTCLR1) [offset = 14h] ................................ Peripheral Protection Set Register 0 (PPROTSET0) [offset = 20h] ................................................ Peripheral Protection Set Register 1 (PPROTSET1) [offset = 24h] ................................................ Peripheral Protection Set Register 2 (PPROTSET2) [offset = 28h] ................................................ Peripheral Protection Set Register 3 (PPROTSET3) [offset = 2Ch] ............................................... Peripheral Protection Clear Register 0 (PPROTCLR0) [offset = 40h] ............................................. Peripheral Protection Clear Register 1 (PPROTCLR1) [offset = 44h] ............................................. Peripheral Protection Clear Register 2 (PPROTCLR2) [offset = 48h] ............................................. Peripheral Protection Clear Register 3 (PPROTCLR3) [offset = 4Ch] ............................................. Peripheral Memory Power-Down Set Register 0 (PCSPWRDWNSET0) [offset = 60h] ......................... Peripheral Memory Power-Down Set Register 1 (PCSPWRDWNSET1) [offset = 64h] ......................... Peripheral Memory Power-Down Clear Register 0 (PCSPWRDWNCLR0) [offset = 70h] ...................... Peripheral Memory Power-Down Clear Register 1 (PCSPWRDWNCLR1) [offset = 74h] ...................... Peripheral Power-Down Set Register 0 (PSPWRDWNSET0) [offset = 80h] ..................................... Peripheral Power-Down Set Register 1 (PSPWRDWNSET1) [offset = 84h] ..................................... Peripheral Power-Down Set Register 2 (PSPWRDWNSET2) [offset = 88h] ..................................... Peripheral Power-Down Set Register 3 (PSPWRDWNSET3) [offset = 8Ch] ..................................... Peripheral Power-Down Clear Register 0 (PSPWRDWNCLR0) [offset = A0h]................................... Peripheral Power-Down Clear Register 1 (PSPWRDWNCLR1) [offset = A4h]................................... Peripheral Power-Down Clear Register 2 (PSPWRDWNCLR2) [offset = A8h]................................... Peripheral Power-Down Clear Register 3 (PSPWRDWNCLR) [offset = ACh] .................................... PMM Block Diagram...................................................................................................... Core Power Domains..................................................................................................... List of Figures 171 177 178 179 180 182 183 183 184 185 186 186 187 187 188 190 190 191 191 192 193 193 194 194 195 195 196 197 197 198 198 199 200 200 201 201 202 202 203 205 207 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 3-3. Logic Power Domain Control Register (LOGICPDPWRCTRL0) [offset = 00h] ................................... 212 3-4. Memory Power Domain Control Register 0 (MEMPDPWRCTRL0) [offset = 10h] 213 3-5. Power Domain Clock Disable Register (PDCLKDISREG) [offset = 20h] 214 3-6. 3-7. 3-8. 3-9. 3-10. 3-11. 3-12. 3-13. 3-14. 3-15. 3-16. 3-17. 3-18. 3-19. 3-20. 3-21. 3-22. 4-1. 4-2. 4-3. 4-4. 4-5. 4-6. 4-7. 4-8. 4-9. 4-10. 4-11. 4-12. 4-13. 4-14. 4-15. 5-1. 5-2. 5-3. 5-4. 5-5. 5-6. 5-7. 5-8. 5-9. 5-10. 5-11. 5-12. 5-13. 5-14. .............................. ......................................... Power Domain Clock Disable Set Register (PDCLKDISSETREG) [offset = 24h] ................................ Power Domain Clock Disable Clear Register (PDCLKDISCLRREG) [offset = 28h] ............................ Logic Power Domain PD2 Power Status Register (LOGICPDPWRSTAT0) [offset = 40h] ..................... Logic Power Domain PD3 Power Status Register (LOGICPDPWRSTAT1) [offset = 44h] ..................... Logic Power Domain PD4 Power Status Register (LOGICPDPWRSTAT2) [offset = 48h] ..................... Logic Power Domain PD5 Power Status Register (LOGICPDPWRSTAT3) [offset = 4Ch] ..................... Memory Power Domain RAM_PD1 Power Status Register (MEMPDPWRSTAT0) [offset = 80h] ............. Memory Power Domain RAM_PD2 Power Status Register (MEMPDPWRSTAT1) [offset = 84h] ............. Memory Power Domain RAM_PD3 Power Status Register (MEMPDPWRSTAT2) [offset = 88h] ............. Global Control Register 1 (GLOBALCTRL1) [offset = A0h] ......................................................... Global Status Register (GLOBALSTAT) [offset = A8h] .............................................................. PSCON Diagnostic Compare Key Register (PRCKEYREG) [offset = ACh] ...................................... LogicPD PSCON Diagnostic Compare Status Register 1 (LPDDCSTAT1) [offset = B0h] ...................... LogicPD PSCON Diagnostic Compare Status Register 2 (LPDDCSTAT2) [offset = B4h] ...................... Memory PD PSCON Diagnostic Compare Status Register 1 (MPDDCSTAT1) [offset = B8h] ................ Memory PD PSCON Diagnostic Compare Status Register 2 (MPDDCSTAT2) [offset = BCh] ................ Isolation Diagnostic Status Register (ISODIAGSTAT) [offset = C0h] ............................................. PINMMR10 Control Register, Address = FFFF EB38h ............................................................. Output Multiplexing Example ........................................................................................... Input Multiplexing Example ............................................................................................. REVISION_REG: Revision Register (Address = FFFFEA00h) ..................................................... ENDIAN_REG: Device Endianness Register (Address = FFFFEA20h) .......................................... KICK_REG0: Kicker Register 0 (Address = FFFFEA38h) .......................................................... KICK_REG1: Kicker Register 1 (Address = FFFFEA3Ch) .......................................................... ERR_RAW_STATUS_REG: Error Raw Status / Set Register (Address = FFFFEAE0h) ....................... ERR_ENABLED_STATUS_REG: Error Enabled Status / Clear Register (Address = FFFFEAE4h) ......... ERR_ENABLE_REG: Error Signaling Enable Register (Address = FFFFEAE8h) .............................. ERR_ENABLE_CLR_REG: Error Signaling Enable Clear Register (Address = FFFFEAECh) ............... FAULT_ADDRESS_REG: Fault Address Register (Address = FFFFEAF4h) .................................... FAULT_STATUS_REG: Fault Status Register (Address = FFFFEAF8h) ......................................... FAULT_CLEAR_REG: Fault Clear Register (Address = FFFFEAFCh ) .......................................... PINMMRnn: Pin Multiplexing Control Registers (Address = FFFFEB10h-FFFFEB88h) ........................ ECC Organization for Program Flash (144-Bits Wide) .............................................................. TI OTP Bank 0 Sector Information ..................................................................................... TI OTP Bank 0 Package and Memory Size Information (F008 015Ch) ........................................... TI OTP Bank 0 LPO Trim and Max HCLK Information (F008 01B4h) ............................................. TI OTP Bank 0 Symbolization Information (F008 01E0h-F008 01FFh) ........................................... TI OTP Bank 0 Deliberate ECC Error Information (F008 03F0h-F008 03FFh) ................................... Flash Option Control Register (FRDCNTL) [offset = 00h] .......................................................... Flash Error Detection and Correction Control Register 1 (FEDACCTRL1) [offset = 08h]....................... Flash Error Correction and Correction Control Register 2 (FEDACCTRL2) [offset = 0Ch] ..................... Flash Correctable Error Count Register (FCOR_ERR_CNT) [offset = 10h] ...................................... Flash Correctable Error Address Register (FCOR_ERR_ADD) [offset = 14h] ................................... Flash Correctable Error Position Register (FCOR_ERR_POS) [offset = 18h] .................................... Flash Error Detection and Correction Status Register (FEDACSTATUS) [offset = 1Ch] ....................... Flash Uncorrectable Error Address Register (FUNC_ERR_ADD) [offset = 20h] ................................. SPNU499C – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 215 216 217 218 219 220 221 222 223 224 225 225 226 227 228 229 230 232 233 235 237 238 239 239 240 241 242 243 243 244 245 245 257 258 259 259 260 260 269 270 272 272 273 274 275 278 33 www.ti.com 5-15. Flash Error Detection and Correction Sector Disable Register (FEDACSDIS) [offset = 24h] .................. 279 5-16. Primary Address Tag Register (FPRIM_ADD_TAG) [offset = 28h] ................................................ 280 5-17. Duplicate Address Tag Register (FDUP_ADD_TAG) [offset = 2Ch] ............................................... 280 5-18. Flash Bank Protection Register (FBPROT) [offset = 30h] ........................................................... 281 5-19. Flash Bank Sector Enable Register (FBSE) [offset = 34h] .......................................................... 281 5-20. Flash Bank Busy Register (FBBUSY) [offset = 38h] ................................................................. 282 5-21. Flash Bank Access Control Register (FBAC) [offset = 3Ch] ........................................................ 283 5-22. Flash Bank Fallback Power Register (FBFALLBACK) [offset = 40h] .............................................. 284 5-23. Flash Bank/Pump Ready Register (FBPRDY) [offset = 44h] ....................................................... 285 5-24. Flash Pump Access Control Register 1 (FPAC1) [offset = 48h] .................................................... 286 5-25. Flash Pump Access Control Register 2 (FPAC2) [offset = 4Ch] ................................................... 287 5-26. Flash Module Access Control Register (FMAC) [offset = 50h] ..................................................... 287 5-27. Flash Module Status Register (FMSTAT) [offset = 54h] ............................................................. 288 5-28. EEPROM Emulation Data MSW Register (FEMU_DMSW) [offset = 58h] ........................................ 290 5-29. EEPROM Emulation Data LSW Register (FEMU_DLSW) [offset = 5Ch] ......................................... 290 5-30. EEPROM Emulation ECC Register (FEMU_ECC) [offset = 60h] 5-31. 5-32. 5-33. 5-34. 5-35. 5-36. 5-37. 5-38. 5-39. 5-40. 5-41. 5-42. 5-43. 5-44. 5-45. 5-46. 5-47. 5-48. 6-1. 6-2. 6-3. 6-4. 6-5. 6-6. 6-7. 6-8. 6-9. 6-10. 6-11. 6-12. 6-13. 7-1. 7-2. 34 .................................................. EEPROM Emulation Address Register (FEMU_ADDR) [offset = 68h] ............................................ Diagnostic Control Register (FDIAGCTRL) [offset = 6Ch] .......................................................... Uncorrected Raw Data High Register (FRAW_DATAH) [offset = 70h] ............................................ Uncorrected Raw Data Low Register (FRAW_DATAL) [offset = 74h] ............................................. Uncorrected Raw ECC Register (FRAW_ECC) [offset = 78h] ...................................................... Parity Override Register (FPAR_OVR) [offset = 7Ch] ............................................................... Flash Error Detection and Correction Sector Disable Register (FEDACSDIS2) [offset = C0h] ................ FSM Register Write Enable (FSM_WR_ENA) [offset = 288h] ...................................................... FSM Sector Register (FSM_SECTOR) [offset = 2A4h] .............................................................. EEPROM Emulation Configuration Register (EEPROM_CONFIG) [offset = 2B8h] ............................. EEPROM Emulation Error Detection and Correction Control Register 1 (EE_CTRL1) [offset = 308h] ....... EEPROM Emulation Error Correction and Correction Control Register 2 (EE_CTRL2) [offset = 30Ch] ...... EEPROM Emulation Error Correctable Error Count Register (EE_COR_ERR_CNT) [offset = 310h]......... EEPROM Emulation Correctable Error Address Register (EE_COR_ERR_ADD) [offset = 314h] ............ EEPROM Emulation Correctable Error Position Register (EE_COR_ERR_POS) [offset = 318h] ............. EEPROM Emulation Error Status Register (EE_STATUS) [offset = 31Ch] ....................................... EEPROM Emulation Uncorrectable Error Address Register (EE_UNC_ERR_ADD) [offset = 320h] .......... Flash Bank Configuration Register (FCFG_BANK) [offset = 400h] ................................................ TCRAM Module Connections ........................................................................................... RAM Memory Map ........................................................................................................ TCRAM Module Control Register (RAMCTRL) [offset = 00h] ...................................................... TCRAM Module Single-Bit Error Correction Threshold Register (RAMTHRESHOLD) [offset = 04h] ......... TCRAM Module Single-Bit Error Occurrences Counter Register (RAMOCCUR) [offset = 08h] ............... TCRAM Module Interrupt Control Register (RAMINTCTRL) [offset = 0Ch] ....................................... TCRAM Module Error Status Register (RAMERRSTATUS) [offset = 10h] ....................................... TCRAM Module Single-Bit Error Address Register (RAMSERRADDR) [offset = 14h] .......................... TCRAM Module Uncorrectable Error Address Register (RAMUERRADDR) [offset = 1Ch] .................... TCRAM Module Test Mode Control Register (RAMTEST) [offset = 30h] ......................................... TCRAM Module Test Mode Vector Register (RAMADDRDECVECT) [offset = 38h] ............................ TCRAM Module Parity Error Address Register (RAMPERRADDR) [offset = 3Ch] .............................. Auto-Memory Initialization Enable Register (INIT_DOMAIN) [offset = 40h]....................................... PBIST Block Diagram ................................................................................................... PBIST Memory Self-Test Flow Diagram .............................................................................. List of Figures 291 292 293 295 295 296 297 298 299 299 300 301 303 303 304 305 306 307 308 310 311 315 316 317 317 318 319 320 321 322 322 323 325 327 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 7-3. RAM Configuration Register (RAMT) [offset = 0160h] ............................................................... 332 7-4. Datalogger Register (DLR) [offset = 0164h] ........................................................................... 333 7-5. PBIST Activate/ROM Clock Enable Register (PACT) [offset = 0180h] ............................................ 334 7-6. PBIST ID Register [offset = 184h] ...................................................................................... 335 7-7. Override Register (OVER) [offset = 0188h] ........................................................................... 336 7-8. Fail Status Fail Register 0 (FSRF0) [offset = 0190h] 7-9. 7-10. 7-11. 7-12. 7-13. 7-14. 7-15. 7-16. 7-17. 7-18. 8-1. 8-2. 8-3. 8-4. 8-5. 8-6. 8-7. 8-8. 8-9. 8-10. 8-11. 8-12. 8-13. 8-14. 8-15. 8-16. 8-17. 8-18. 9-1. 9-2. 9-3. 10-1. 10-2. 10-3. 10-4. 10-5. 10-6. 10-7. 10-8. 10-9. 10-10. 10-11. 10-12. ................................................................ Fail Status Count 0 Register (FSRC0) [offset = 0198h] ............................................................. Fail Status Count Register 1 (FSRC1) [offset = 019Ch] ............................................................. Fail Status Address 0 Register (FSRA0) [offset = 01A0h] .......................................................... Fail Status Address 1 Register (FSRA1) [offset = 01A4h] .......................................................... Fail Status Data Register 0 (FSRDL0) [offset = 01A8h] ............................................................. Fail Status Data Register 1 (FSRDL1) [offset = 01B0h] ............................................................. ROM Mask Register (ROM) [offset = 01C0h] ......................................................................... ROM Algorithm Mask Register (ALGO) [offset = 01C4h]............................................................ RAM Info Mask Lower Register (RINFOL) [offset = 01C8h] ........................................................ RAM Info Mask Upper Register (RINFOU) [offset = 01CCh] ....................................................... STC Block Diagram ...................................................................................................... Application Self-Test Flow Chart........................................................................................ STC Global Control Register 0 (STCGCR0) [offset = 00] ........................................................... STC Global Control Register 1 (STCGCR1) [offset = 04h] ......................................................... Self-Test Run Timeout Counter Preload Register (STCTPR) [offset = 08h] ...................................... STC Current ROM Address Register (STC_CADDR) [offset = 0Ch] .............................................. STC Current Interval Count Register (STCCICR) [offset = 10h] ................................................... Self-Test Global Status Register (STCGSTAT) [offset = 14h] ...................................................... Self-Test Fail Status Register (STCFSTAT) [offset = 18h] .......................................................... CPU1 Current MISR Register (CPU1_CURMISR3) [offset = 1Ch] ................................................ CPU1 Current MISR Register (CPU1_CURMISR2) [offset = 20h] ................................................. CPU1 Current MISR Register (CPU1_CURMISR1) [offset = 24h] ................................................. CPU1 Current MISR Register (CPU1_CURMISR0) [offset = 28h] ................................................. CPU2 Current MISR Register (CPU2_CURMISR3) [offset = 2Ch] ................................................ CPU2 Current MISR Register (CPU2_CURMISR2) [offset = 30h] ................................................. CPU2 Current MISR Register (CPU2_CURMISR1) [offset = 34h] ................................................. CPU2 Current MISR Register (CPU2_CURMISR0) [offset = 38h] ................................................. Signature Compare Self-Check Register (STCSCSCR) [offset = 3Ch] ........................................... Block Diagram ............................................................................................................. CCM-R4F Status Register (CCMSR) (Address = FFFF F600h).................................................... CCM-R4F Key Register (CCMKEYR) (Address = FFFF F604h) ................................................... Clock Path From Oscillator Through PLL To Device................................................................. Clock Generation Path ................................................................................................... Oscillator Implementation ................................................................................................ Operation of the FM-PLL Module ....................................................................................... PLL Slip Detection and Reset/Bypass Block Diagram ............................................................... SSW PLL BIST Control Register 1 (SSWPLL1) [offset = FF24h] .................................................. SSW PLL BIST Control Register 2 (SSWPLL2) [offset = FF28h] .................................................. SSW PLL BIST Control Register 3 (SSWPLL3) [offset = FF2Ch] .................................................. Basic PLL Circuit .......................................................................................................... PFD Timing ................................................................................................................ PLL Modulation Block Diagram ......................................................................................... Frequency vs. Time ...................................................................................................... SPNU499C – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 337 338 338 339 339 340 340 341 341 342 343 348 350 353 353 354 354 355 356 357 358 358 358 358 359 359 359 359 360 363 368 369 372 373 374 378 384 389 390 391 392 392 393 394 35 www.ti.com 11-1. DCC Operation ............................................................................................................ 397 11-2. Counter Relationship ..................................................................................................... 399 11-3. Clock1 Slower Than Clock0 - Results in an Error and Stops Counting ........................................... 399 11-4. Clock1 Faster Than Clock0 - Results in an Error and Stops Counting ............................................ 400 11-5. Clock1 Not Present - Results in an Error and Stops Counting ..................................................... 400 11-6. Clock0 Not Present - Results in an Error and Stops Counting ..................................................... 401 11-7. DCC Global Control Register (DCCGCTRL) [offset = 00] 404 11-8. DCC Revision Id Register (DCCREV) [offset = 4h] 405 11-9. 11-10. 11-11. 11-12. 11-13. 11-14. 11-15. 11-16. 11-17. 12-1. 12-2. 12-3. 12-4. 12-5. 12-6. 12-7. 12-8. 12-9. 12-10. 12-11. 12-12. 12-13. 12-14. 12-15. 12-16. 12-17. 12-18. 12-19. 12-20. 12-21. 12-22. 12-23. 12-24. 12-25. 12-26. 12-27. 12-28. 12-29. 12-30. 12-31. 12-32. 36 .......................................................... ................................................................. DCC Counter0 Seed Register (DCCCNT0SEED) [offset = 8h] .................................................... DCC Valid0 Seed Register (DCCVALID0SEED) [offset = Ch] ..................................................... DCC Counter1 Seed Register (DCCCNT1SEED) [offset = 10h] .................................................. DCC Status Register (DCCSTAT) [offset = 14h] .................................................................... DCC Counter0 Value Register (DCCCNT0) [offset = 18h] ......................................................... DCC Valid0 Value Register (DCCVALID0) [offset = 1Ch] .......................................................... DCC Counter1 Value Register (DCCCNT1) [offset = 20h] ......................................................... DCC Counter1 Clock Source Selection Register (DCCCNT1CLKSRC) [offset = 24h] ......................... DCC Counter0 Clock Source Selection Register (DCCCNT0CLKSRC) [offset = 28h] ......................... Block Diagram ............................................................................................................. Interrupt Response Handling ........................................................................................... ERROR Pin Response Handling ....................................................................................... ERROR Pin Timing - Example 1 ........................................................................................ ERROR Pin Timing - Example 2 ....................................................................................... ERROR Pin Timing - Example 3 ....................................................................................... ERROR Pin Timing - Example 4 ....................................................................................... ERROR Pin Timing - Example 5 ....................................................................................... ERROR Pin Timing - Example 7 ........................................................................................ ESM Initialization ......................................................................................................... ESM Enable ERROR Pin Action/Response Register 1 (ESMEEPAPR1) [address = FFFF F500h]........... ESM Disable ERROR Pin Action/Response Register 1 (ESMDEPAPR1) [address = FFFF F504h] .......... ESM Interrupt Enable Set Register 1 (ESMIESR1) [address = FFFF F508h] .................................... ESM Interrupt Enable Clear Register 1 (ESMIECR1) [address = FFFF F50Ch] ................................. ESM Interrupt Level Set Register 1 (ESMILSR1) [address = FFFF F510h] ...................................... ESM Interrupt Level Clear Register 1 (ESMILCR1) [address = FFFF F514h] .................................... ESM Status Register 1 (ESMSR1) [address = FFFF F518h] ....................................................... ESM Status Register 2 (ESMSR2) [address = FFFF F51Ch] ...................................................... ESM Status Register 3 (ESMSR3) [address = FFFF F520h] ....................................................... ESM ERROR Pin Status Register (ESMEPSR) [address = FFFF F524h] ........................................ ESM Interrupt Offset High Register (ESMIOFFHR) [address = FFFF F528h] .................................... ESM Interrupt Offset Low Register (ESMIOFFLR) [address = FFFF F52Ch] .................................... ESM Low-Time Counter Register (ESMLTCR) [address = FFFF F530h] ......................................... ESM Low-Time Counter Preload Register (ESMLTCPR) [address = FFFF F534h] ............................. ESM Error Key Register (ESMEKR) [address = FFFF F538h] ..................................................... ESM Status Shadow Register 2 (ESMSSR2) [address = FFFF F53Ch] .......................................... ESM Influence ERROR Pin Set Register 4 (ESMIEPSR4) [address = FFFF F540h] ........................... ESM Influence ERROR Pin Clear Register 4 (ESMIEPCR4) [address = FFFF F544h] ......................... ESM Interrupt Enable Set Register 4 (ESMIESR4) [address = FFFF F548h] .................................... ESM Interrupt Enable Clear Register 4 (ESMIECR4) [address = FFFF F54Ch] ................................. ESM Interrupt Level Set Register 4 (ESMILSR4) [address = FFFF F550h] ...................................... ESM Interrupt Level Clear Register 4 (ESMILCR4) [address = FFFF F554h] .................................... List of Figures 405 406 406 407 408 409 409 410 411 413 414 414 416 416 416 417 417 418 419 421 421 422 422 423 423 424 424 425 425 426 427 428 428 429 429 430 430 431 431 432 432 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 12-33. ESM Status Register 4 (ESMSR4) [address = FFFF F558h] ....................................................... 433 13-1. RTI Block Diagram........................................................................................................ 436 13-2. Counter Block Diagram .................................................................................................. 437 13-3. Compare Unit Block Diagram (shows only 1 of 4 blocks for simplification) ....................................... 439 13-4. Timebase Control ......................................................................................................... 440 13-5. Clock Detection Scheme ................................................................................................. 440 13-6. Switch to NTUx............................................................................................................ 441 13-7. Missing NTUx Signal Example .......................................................................................... 442 13-8. Digital Watchdog .......................................................................................................... 442 13-9. DWD Operation ........................................................................................................... 443 13-10. Digital Windowed Watchdog Timing Example ........................................................................ 444 13-11. Digital Windowed Watchdog Operation Example (25% Window) .................................................. 444 13-12. RTI Global Control Register (RTIGCTRL) [offset = 00] .............................................................. 447 13-13. RTI Timebase Control Register (RTITBCTRL) [offset = 04h] ....................................................... 448 13-14. RTI Capture Control Register (RTICAPCTRL) [offset = 08h] ....................................................... 449 13-15. RTI Compare Control Register (RTICOMPCTRL) [offset = 0Ch]................................................... 450 13-16. RTI Free Running Counter 0 Register (RTIFRC0) [offset = 10h]................................................... 451 13-17. RTI Up Counter 0 Register (RTIUC0) [offset = 14h] ................................................................. 451 ................................................. RTI Capture Free Running Counter 0 Register (RTICAFRC0) [offset = 20h] .................................... RTI Capture Up Counter 0 Register (RTICAUC0) [offset = 24h] ................................................... RTI Free Running Counter 1 Register (RTIFRC1) [offset = 30h]................................................... RTI Up Counter 1 Register (RTIUC1) [offset = 34h] ................................................................. RTI Compare Up Counter 1 Register (RTICPUC1) [offset = 38h] ................................................. RTI Capture Free Running Counter 1 Register (RTICAFRC1) [offset = 40h] .................................... RTI Capture Up Counter 1 Register (RTICAUC1) [offset = 44h] ................................................... RTI Compare 0 Register (RTICOMP0) [offset = 50h] ................................................................ RTI Update Compare 0 Register (RTIUDCP0) [offset = 54h] ....................................................... RTI Compare 1 Register (RTICOMP1) [offset = 58h] ................................................................ RTI Update Compare 1 Register (RTIUDCP1) [offset = 5Ch] ...................................................... RTI Compare 2 Register (RTICOMP2) [offset = 60h] ................................................................ RTI Update Compare 2 Register (RTIUDCP2) [offset = 64h] ....................................................... RTI Compare 3 Register (RTICOMP3) [offset = 68h] ................................................................ RTI Update Compare 3 Register (RTIUDCP3) [offset = 6Ch] ...................................................... RTI Timebase Low Compare Register (RTITBLCOMP) [offset = 70h] ............................................ RTI Timebase High Compare Register (RTITBHCOMP) [offset = 74h] ........................................... RTI Set Interrupt Control Register (RTISETINTENA) [offset = 80h] ............................................... RTI Clear Interrupt Control Register (RTICLEARINTENA) [offset = 84h] ......................................... RTI Interrupt Flag Register (RTIINTFLAG) [offset = 88h] ........................................................... Digital Watchdog Control Register (RTIDWDCTRL) [offset = 90h] ................................................ Digital Watchdog Preload Register (RTIDWDPRLD) [offset = 94h] ................................................ Watchdog Status Register (RTIWDSTATUS) [offset = 98h] ........................................................ RTI Watchdog Key Register (RTIDWDKEY) [offset = 9Ch] ......................................................... RTI Watchdog Down Counter Register (RTIDWDCNTR) [offset = A0h] .......................................... Digital Windowed Watchdog Reaction Control (RTIWWDRXNCTRL) [offset = A4h] ............................ Digital Windowed Watchdog Window Size Control (RTIWWDSIZECTRL) [offset = A8h]....................... RTI Compare Interrupt Clear Enable Register (RTIINTCLRENABLE) [offset = ACh] ........................... RTI Compare 0 Clear Register (RTICMP0CLR) [offset = B0h] ..................................................... RTI Compare 1 Clear Register (RTICMP1CLR) [offset = B4h] ..................................................... 13-18. RTI Compare Up Counter 0 Register (RTICPUC0) [offset = 18h] 452 13-19. 452 13-20. 13-21. 13-22. 13-23. 13-24. 13-25. 13-26. 13-27. 13-28. 13-29. 13-30. 13-31. 13-32. 13-33. 13-34. 13-35. 13-36. 13-37. 13-38. 13-39. 13-40. 13-41. 13-42. 13-43. 13-44. 13-45. 13-46. 13-47. 13-48. SPNU499C – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 453 453 454 455 456 456 457 457 458 458 459 459 460 460 461 461 462 464 466 467 468 469 470 471 471 472 473 474 474 37 www.ti.com 13-49. RTI Compare 2 Clear Register (RTICMP2CLR) [offset = B8h] ..................................................... 475 475 14-1. 478 14-2. 14-3. 14-4. 14-5. 14-6. 14-7. 14-8. 14-9. 14-10. 14-11. 14-12. 14-13. 14-14. 14-15. 14-16. 14-17. 14-18. 14-19. 14-20. 14-21. 14-22. 14-23. 14-24. 14-25. 14-26. 14-27. 14-28. 14-29. 14-30. 14-31. 14-32. 14-33. 14-34. 14-35. 14-36. 14-37. 14-38. 14-39. 14-40. 14-41. 14-42. 14-43. 15-1. 15-2. 15-3. 15-4. 38 .................................................... ................................................................... LFSR ....................................................................................................................... AUTO Mode Using Hardware Timer Trigger ......................................................................... AUTO Mode With Software CPU Trigger ............................................................................. Semi-CPU Mode With Hardware Timer Trigger ...................................................................... Timeout Example 1 ...................................................................................................... Timeout Example 2 ...................................................................................................... Timeout Example 3 ...................................................................................................... CRC Global Control Register 0 (CRC_CTRL0) [offset = 00h] ...................................................... CRC Global Control Register 1 (CRC_CTRL1) [offset = 08h] ...................................................... CRC Global Control Register 2 (CRC_CTRL2) [offset = 10h] ...................................................... CRC Interrupt Enable Set Register (CRC_INTS) [offset = 18h] .................................................... CRC Interrupt Enable Reset Register (CRC_INTR) [offset = 20h] ................................................. CRC Interrupt Status Register (CRC_STATUS) [offset = 28h] ..................................................... CRC Interrupt Offset (CRC_INT_OFFSET_REG) [offset = 30h] ................................................... CRC Busy Register (CRC_BUSY) [offset = 38h] ..................................................................... CRC Pattern Counter Preload Register 1 (CRC_PCOUNT_REG1) [offset = 40h] .............................. CRC Sector Counter Preload Register 1 (CRC_SCOUNT_REG1) [offset = 44h] ............................... CRC Current Sector Preload Register 1 (CRC_CURSEC_REG1) [offset = 48h] ................................ CRC Channel 1 Watchdog Timeout Preload Register A (CRC_WDTOPLD1) [offset = 4Ch] .................. CRC Channel 1 Block Complete Timeout Preload Register B (CRC_BCTOPLD1) [offset = 50h]............. Channel 1 PSA Signature Low Register (PSA_SIGREGL1) [offset = 60h] ....................................... Channel 1 PSA Signature High Register (PSA_SIGREGH1) [offset = 64h] ...................................... Channel 1 CRC Value Low Register (CRC_REGL1) [offset = 68h]................................................ Channel 1 CRC Value High Register (CRC_REGH1) [offset = 6Ch] .............................................. Channel 1 PSA Sector Signature Low Register (PSA_SECSIGREGL1) [offset = 70h] ......................... Channel 1 PSA Sector Signature High Register (PSA_SECSIGREGH1) [offset = 74h] ........................ Channel 1 Raw Data Low Register (RAW_DATAREGL1) [offset = 78h].......................................... Channel 1 Raw Data High Register (RAW_DATAREGH1) [offset = 7Ch] ........................................ CRC Pattern Counter Preload Register 2 (CRC_PCOUNT_REG2) [offset = 80h] .............................. CRC Sector Counter Preload Register 2 (CRC_SCOUNT_REG2) [offset = 84h] ............................... CRC Current Sector Register 2 (CRC_CURSEC_REG2) [offset = 88h] .......................................... CRC Channel 2 Watchdog Timeout Preload Register A (CRC_WDTOPLD2) [offset = 8Ch] .................. CRC Channel 2 Block Complete Timeout Preload Register B (CRC_BCTOPLD2) [offset = 90h]............. Channel 2 PSA Signature Low Register (PSA_SIGREGL2) [offset = A0h] ....................................... Channel 2 PSA Signature High Register (PSA_SIGREGH2) [offset = A4h] ...................................... Channel 2 CRC Value Low Register (CRC_REGL2) [offset = A8h] ............................................... Channel 2 CRC Value High Register (CRC_REGH2) [offset = ACh] .............................................. Channel 2 PSA Sector Signature Low Register (PSA_SECSIGREGL2) [offset = B0h] ......................... Channel 2 PSA Sector Signature High Register (PSA_SECSIGREGH2) [offset = B4h] ........................ Channel 2 Raw Data Low Register (RAW_DATAREGL2) [offset = B8h] ......................................... Channel 2 Raw Data High Register (RAW_DATAREGH2) [offset = BCh] ........................................ Data Bus Selection Register (CRC_TRACE_BUS_SEL) [offset = 140h].......................................... Device Level Interrupt Block Diagram ................................................................................. VIM Interrupt Handling Block Diagram ................................................................................. VIM Channel Mapping ................................................................................................... VIM in Default State ...................................................................................................... 13-50. RTI Compare 3 Clear Register (RTICMP3CLR) [offset = BCh] CRC Controller Block Diagram For One Channel List of Figures 480 483 483 484 486 487 487 494 494 495 496 498 500 502 503 503 504 504 505 505 506 506 506 507 507 507 508 508 508 509 509 510 510 511 511 511 512 512 512 513 513 514 516 519 520 521 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 15-5. VIM in a Programmed State ............................................................................................. 521 15-6. Interrupt Channel Management ......................................................................................... 522 15-7. VIM Interrupt Address Memory Map ................................................................................... 523 15-8. Parity Bit Mapping ........................................................................................................ 525 15-9. Detail of the IRQ Input ................................................................................................... 526 15-10. Capture Event Sources .................................................................................................. 527 15-11. Interrupt Vector Table Parity Flag Register (PARFLG) [offset = ECh] ............................................. 531 15-12. Interrupt Vector Table Parity Control Register (PARCTL) [offset = F0h] .......................................... 531 15-13. Address Parity Error Register (ADDERR) [offset = F4h] ............................................................ 532 15-14. Fall-Back Address Parity Error Register (FBPARERR) [offset = F8h] ............................................. 532 ...................................................... FIQ Index Offset Vector Register (FIQINDEX) [offset = 04h] ....................................................... FIQ/IRQ Program Control Register 0 (FIRQPR0) [offset = 10h] ................................................... FIQ/IRQ Program Control Register 1 (FIRQPR1) [offset = 14h] ................................................... FIQ/IRQ Program Control Register 2 (FIRQPR2) [offset = 18h] ................................................... Pending Interrupt Read Location Register 0 (INTREQ0) [offset = 20h] ........................................... Pending Interrupt Read Location Register 1 (INTREQ1) Register [offset = 24h] ................................ Pending Interrupt Read Location Register 2 (INTREQ2) Register [offset = 28h] ................................ Interrupt Enable Set Register 0 (REQENASET0) [offset = 30h] .................................................... Interrupt Enable Set Register 1 (REQENASET1) [offset = 34h] .................................................... Interrupt Enable Set Register 2 (REQENASET2) [offset = 38h] .................................................... Interrupt Enable Clear Register 0 (REQENACLR0) [offset = 40h] ................................................. Interrupt Enable Clear Register 1 (REQENACLR1) [offset = 44h] ................................................. Interrupt Enable Clear Register 2 (REQENACLR2) [offset = 48h] ................................................. Wake-Up Enable Set Register 0 (WAKEENASET0) [offset = 50h] ................................................ Wake-Up Enable Set Register 1 (WAKEENASET1) [offset = 54h] ................................................ Wake-Up Enable Set Register 2 (WAKEENASET2) [offset = 58h] ................................................ Wake-Up Enable Clear Register 0 (WAKEENACLR0) [offset = 60h] .............................................. Wake-Up Enable Clear Register 1 (WAKEENACLR1) [offset = 64h] .............................................. Wake-Up Enable Clear Register 2 (WAKEENACLR2) [offset = 68h] .............................................. IRQ Interrupt Vector Register (IRQVECREG) [offset = 70h] ........................................................ IRQ Interrupt Vector Register (FIQVECREG) [offset = 74h] ........................................................ Capture Event Register (CAPEVT) [offset = 78h] .................................................................... Interrupt Control Registers (CHANCTRL[0:23]) [offset = 80h-DCh]................................................ DMA Block Diagram ...................................................................................................... Example of a DMA Transfer Using Frame Trigger Source .......................................................... Example of a DMA Transfer Using Block Trigger Source ........................................................... DMA Request Mapping and Control Packet Organization .......................................................... Control Packet Organization and Memory Map ...................................................................... DMA Transfer Example 1 ................................................................................................ DMA Indexing Example 1 ................................................................................................ DMA Indexing Example 2 ................................................................................................ Fixed Priority Scheme .................................................................................................... Example of Priority Queues ............................................................................................. Example Channel Assignments ......................................................................................... Example of DMA Data Unpacking ...................................................................................... Example of DMA Data Packing ......................................................................................... DMA Interrupts ............................................................................................................ Detailed Interrupt Structure (Frame Transfer Complete Path) ...................................................... 15-15. IRQ Index Offset Vector Register (IRQINDEX) [offset = 00h] 534 15-16. 534 15-17. 15-18. 15-19. 15-20. 15-21. 15-22. 15-23. 15-24. 15-25. 15-26. 15-27. 15-28. 15-29. 15-30. 15-31. 15-32. 15-33. 15-34. 15-35. 15-36. 15-37. 15-38. 16-1. 16-2. 16-3. 16-4. 16-5. 16-6. 16-7. 16-8. 16-9. 16-10. 16-11. 16-12. 16-13. 16-14. 16-15. SPNU499C – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 535 535 535 536 536 536 537 537 537 538 538 538 539 539 539 540 540 540 541 541 542 543 546 547 547 549 549 551 551 552 552 553 554 555 556 560 560 39 www.ti.com 563 16-17. 564 16-18. 16-19. 16-20. 16-21. 16-22. 16-23. 16-24. 16-25. 16-26. 16-27. 16-28. 16-29. 16-30. 16-31. 16-32. 16-33. 16-34. 16-35. 16-36. 16-37. 16-38. 16-39. 16-40. 16-41. 16-42. 16-43. 16-44. 16-45. 16-46. 16-47. 16-48. 16-49. 16-50. 16-51. 16-52. 16-53. 16-54. 16-55. 16-56. 16-57. 16-58. 16-59. 16-60. 16-61. 16-62. 16-63. 16-64. 40 .......................................................................................... Example of Protection Mechanism ..................................................................................... Global Control Register (GCTRL) [offset = 00] ....................................................................... Channel Pending Register (PEND) [offset = 04h] .................................................................... DMA Status Register (DMASTAT) [offset = 0Ch] .................................................................... HW Channel Enable Set and Status Register (HWCHENAS) [offset = 14h] ..................................... HW Channel Enable Reset and Status Register (HWCHENAR) [offset = 1Ch] .................................. SW Channel Enable Set and Status Register (SWCHENAS) [offset = 24h]...................................... SW Channel Enable Reset and Status Register (SWCHENAR) [offset = 2Ch] .................................. Channel Priority Set Register (CHPRIOS) [offset = 34h] ............................................................ Channel Priority Reset Register (CHPRIOR) [offset = 3Ch] ........................................................ Global Channel Interrupt Enable Set Register (GCHIENAS) [offset = 44h]....................................... Global Channel Interrupt Enable Reset Register (GCHIENAR) [offset = 4Ch] ................................... DMA Request Assignment Register 0 (DREQASI0) [offset = 54h] ................................................ DMA Request Assignment Register 1 (DREQASI1) [offset = 58h] ................................................ DMA Request Assignment Register 2 (DREQASI2) [offset = 5Ch] ................................................ DMA Request Assignment Register 3 (DREQASI3) [offset = 60h] ................................................ Port Assignment Register 0 (PAR0) [offset = 94h] ................................................................... Port Assignment Register 1 (PAR1) [offset = 98h] ................................................................... FTC Interrupt Mapping Register (FTCMAP) [offset = B4h].......................................................... LFS Interrupt Mapping Register (LFSMAP) [offset = BCh] .......................................................... HBC Interrupt Mapping Register (HBCMAP) [offset = C4h]......................................................... BTC Interrupt Mapping Register (BTCMAP) [offset = CCh] ......................................................... FTC Interrupt Enable Set (FTCINTENAS) [offset = DCh] ........................................................... FTC Interrupt Enable Reset (FTCINTENAR) [offset = E4h]......................................................... LFS Interrupt Enable Set (LFSINTENAS) [offset = ECh] ............................................................ LFS Interrupt Enable Reset (LFSINTENAR) [offset = F4h] ......................................................... HBC Interrupt Enable Set (HBCINTENAS) [offset = FCh] .......................................................... HBC Interrupt Enable Reset (HBCINTENAR) [offset = 104h] ...................................................... BTC Interrupt Enable Set (BTCINTENAS) [offset = 10Ch] .......................................................... BTC Interrupt Enable Reset (BTCINTENAR) [offset = 114h] ....................................................... Global Interrupt Flag Register (GINTFLAG) [offset = 11Ch] ........................................................ FTC Interrupt Flag Register (FTCFLAG) [offset = 124h] ............................................................ LFS Interrupt Flag Register (LFSFLAG) [offset = 12Ch] ............................................................ HBC Interrupt Flag Register (HBCFLAG) [offset = 134h] ........................................................... BTC Interrupt Flag Register (BTCFLAG) [offset = 13Ch]............................................................ FTCA Interrupt Channel Offset Register (FTCAOFFSET) [offset = 14Ch] ........................................ LFSA Interrupt Channel Offset Register (LFSAOFFSET) [offset = 150h] ......................................... HBCA Interrupt Channel Offset Register (HBCAOFFSET) [offset = 154h] ....................................... BTCA Interrupt Channel Offset Register (BTCAOFFSET) [offset = 158h] ........................................ FTCB Interrupt Channel Offset Register (FTCBOFFSET) [offset = 160h] ........................................ LFSB Interrupt Channel Offset Register (LFSBOFFSET) [offset = 164h] ......................................... HBCB Interrupt Channel Offset Register (HBCBOFFSET) [offset = 168h] ....................................... BTCB Interrupt Channel Offset Register (BTCBOFFSET) [offset = 16Ch]........................................ Port Control Register (PTCRL) [offset = 178h] ....................................................................... RAM Test Control (RTCTRL) [offset = 17Ch] ......................................................................... Debug Control (DCTRL) [offset = 180h] ............................................................................... Watch Point Register (WPR) [offset = 184h] .......................................................................... Watch Mask Register (WMR) [offset = 188h] ......................................................................... 16-16. Example of Channel Chaining List of Figures 568 569 569 570 570 571 572 572 573 573 574 575 576 577 578 579 580 581 581 582 582 583 583 584 584 585 585 586 586 587 587 588 588 589 590 590 592 592 594 594 596 596 598 599 600 601 601 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 16-65. Port B Active Channel Source Address Register (PBACDADDR) [offset = 198h] ............................... 602 16-66. Port B Active Channel Destination Address Register (PBACDADDR) [offset = 19Ch] .......................... 602 16-67. Port B Active Channel Transfer Count Register (PBACTC) [offset = 1A0h] ...................................... 603 .................................................................. DMA Parity Error Address Register (DMAPAR) [offset = 1ACh] ................................................... DMA Memory Protection Control Register (DMAMPCTRL) [offset = 1B0h] ...................................... DMA Memory Protection Status Register (DMAMPST) [offset = 1B4h] ........................................... DMA Memory Protection Region 0 Start Address Register (DMAMPR0S) [offset = 1B8h] ..................... DMA Memory Protection Region 0 End Address Register (DMAMPR0E) [offset = 1BCh] ..................... DMA Memory Protection Region 1 Start Address Register (DMAMPR1S) [offset = 1C0h]..................... DMA Memory Protection Region 1 End Address Register (DMAMPR1E) [offset = 1C4h] ..................... DMA Memory Protection Region 2 Start Address Register (DMAMPR2S) [offset = 1C8h]..................... DMA Memory Protection Region 2 End Address Register (DMAMPR2E) [offset = 1CCh] ..................... DMA Memory Protection Region 3 Start Address Register (DMAMPR3S) [offset = 1D0h]..................... DMA Memory Protection Region 3 End Address Register (DMAMPR3E) [offset = 1D4h] ..................... Initial Source Address (ISADDR) [offset = 00] ........................................................................ Initial Destination Address Register (IDADDR) [offset = 04h]....................................................... Initial Transfer Count Register (ITCOUNT) [offset = 08h] ........................................................... Channel Control Register (CHCTRL) [offset = 10h] .................................................................. Element Index Offset Register (EIOFF) [offset = 14h] ............................................................... Frame Index Offset Register (FIOFF) [offset = 18h] ................................................................. Current Source Address Register (CSADDR) [offset = 800h] ...................................................... Current Destination Address Register (CDADDR) [offset = 804h] ................................................. Current Transfer Count Register (CTCOUNT) [offset = 808h] ...................................................... EMIF Functional Block Diagram ........................................................................................ Timing Waveform of SDRAM PRE Command ........................................................................ EMIF to 2M × 16 × 4 bank SDRAM Interface ......................................................................... EMIF to 512K × 16 × 2 bank SDRAM Interface ...................................................................... Timing Waveform for Basic SDRAM Read Operation ............................................................... Timing Waveform for Basic SDRAM Write Operation ............................................................... EMIF Asynchronous Interface ........................................................................................... EMIF to 8-bit/16-bit Memory Interface ................................................................................. Common Asynchronous Interface ...................................................................................... Timing Waveform of an Asynchronous Read Cycle in Normal Mode.............................................. Timing Waveform of an Asynchronous Write Cycle in Normal Mode .............................................. Timing Waveform of an Asynchronous Read Cycle in Select Strobe Mode ...................................... Timing Waveform of an Asynchronous Write Cycle in Select Strobe Mode ...................................... Asynchronous Read in Page Mode .................................................................................... Module ID Register (MIDR) [offset = 00] .............................................................................. Asynchronous Wait Cycle Configuration Register (AWCCR) [offset = 04h] ...................................... SDRAM Configuration Register (SDCR) [offset = 08h] .............................................................. SDRAM Refresh Control Register (SDRCR) [offset = 0Ch] ......................................................... Asynchronous n Configuration Register (CEnCFG) [offset = 10h - 1Ch].......................................... SDRAM Timing Register (SDTIMR) [offset = 20h] ................................................................... SDRAM Self Refresh Exit Timing Register (SDSRETR) [offset = 3Ch] ........................................... EMIF Interrupt Raw Register (INTRAW) [offset = 40h] .............................................................. EMIF Interrupt Mask Register (INTMSK) [offset = 44h] ............................................................. EMIF Interrupt Mask Set Register (INTMSKSET) [offset = 48h] ................................................... EMIF Interrupt Mask Clear Register (INTMSKCLR) [offset = 4Ch] ................................................ 16-68. Parity Control Register (DMAPCR) [offset = 1A8h] 604 16-69. 605 16-70. 16-71. 16-72. 16-73. 16-74. 16-75. 16-76. 16-77. 16-78. 16-79. 16-80. 16-81. 16-82. 16-83. 16-84. 16-85. 16-86. 16-87. 16-88. 17-1. 17-2. 17-3. 17-4. 17-5. 17-6. 17-7. 17-8. 17-9. 17-10. 17-11. 17-12. 17-13. 17-14. 17-15. 17-16. 17-17. 17-18. 17-19. 17-20. 17-21. 17-22. 17-23. 17-24. 17-25. SPNU499C – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 606 608 609 609 610 610 611 611 612 612 613 613 614 614 616 616 617 617 618 621 625 625 626 633 634 636 637 637 641 643 645 647 648 654 655 656 657 658 659 660 661 662 663 664 41 www.ti.com 17-26. Page Mode Control Register (PMCR) [offset = 68h] ................................................................. 665 17-27. Example Configuration Interface ........................................................................................ 667 17-28. SDRAM Timing Register (SDTIMR) .................................................................................... 668 17-29. SDRAM Self Refresh Exit Timing Register (SDSRETR) ............................................................ 669 17-30. SDRAM Refresh Control Register (SDRCR) .......................................................................... 670 17-31. SDRAM Configuration Register (SDCR)............................................................................... 671 17-32. LH28F800BJE-PTTL90 to EMIF Read Timing Waveforms ......................................................... 672 ......................................................... ........................................ System Overlay Block Diagram ......................................................................................... Region Definition Example .............................................................................................. POM Global Control Register (POMGLBCTRL) [address = FFA0 4000h] ........................................ POM Revision ID (POMREV) [address = FFA0 4004h] ............................................................. POM Clock Gate Control Register [address = FFA0 4008h]........................................................ POM Status Register [address = FFA0 400Ch] ...................................................................... 17-33. LH28F800BJE-PTTL90 to EMIF Write Timing Waveforms 673 17-34. Asynchronous m Configuration Register (m = 1, 2) (CEnCFG (n = 2, 3)) 674 18-1. 18-2. 18-3. 18-4. 18-5. 18-6. 677 678 680 681 681 682 18-7. POM Program Region Start Register x (POMPROGSTARTx) [address = FFA0 4200h, FFA0 4210h, ..., FFA0 43F0h] .............................................................................................................. 683 18-8. POM Overlay Region Start Register x (POMOVLSTARTx) [address = FFA0 4204h, FFA0 4214h, ..., FFA0 43F4h] .............................................................................................................. 683 18-9. POM Region Size Register x (POMREGSIZEx) [address = FFA0 4208h, FFA0 4218h, ..., FFA0 43F8h] ... 684 18-10. POM Integration Control Register (POMITCTRL) [address = FFA0 4F00h] ...................................... 684 18-11. POM Claim Set Register (POMCLAIMSET) [address = FFA0 4FA0h] ............................................ 685 686 18-13. 687 18-14. 18-15. 18-16. 18-17. 18-18. 18-19. 18-20. 18-21. 18-22. 18-23. 18-24. 18-25. 18-26. 18-27. 18-28. 18-29. 19-1. 19-2. 19-3. 19-4. 19-5. 19-6. 19-7. 19-8. 19-9. 42 ......................................... POM Lock Access Register (POMLOCKACCESS) [address = FFA0 4FB0h] .................................... POM Lock Status Register (POMLOCKSTATUS) [address = FFA0 4FB4h] ..................................... POM Authentication Status Register (POMAUTHSTATUS) [address = FFA0 4FB8h] .......................... POM Device ID Register (POMDEVID) [address = FFA0 4FC8h] ................................................. POM Device Type Register (POMDEVTYPE) [address = FFA0 4FCCh] ......................................... POM Peripheral ID 4 Register (POMPERIPHERALID4) [address = FFA0 4FD0h] .............................. POM Peripheral ID 5 Register (POMPERIPHERALID5) [address = FFA0 4FD4h] .............................. POM Peripheral ID 6 Register (POMPERIPHERALID6) [address = FFA0 4FD8h] .............................. POM Peripheral ID 7 Register (POMPERIPHERALID7) [address = FFA0 4FDCh] ............................. POM Peripheral ID 0 Register (POMPERIPHERALID0) [address = FFA0 4FE0h] .............................. POM Peripheral ID 1 Register (POMPERIPHERALID1) [address = FFA0 4FE4] ............................... POM Peripheral ID 2 Register (POMPERIPHERALID2) [address = FFA0 4FE8h] .............................. POM Peripheral ID 3 Register (POMPERIPHERALID3) [address = FFA0 4FECh] ............................. POM Component ID 0 Register (POMCOMPONENTID0) [address = FFA0 4FF0h] ............................ POM Component ID 1 Register (POMCPOMPONENTID1) [address = FFA0 4FF4h] .......................... POM Component ID 2 Register (POMCPOMPONENTID2) [address = FFA0 4FF8h] .......................... POM Component ID 3 Register (POMCPOMPONENTID3) [address = FFA0 4FFCh] .......................... Channel Assignments of Two ADC Cores ............................................................................ ADC Block Diagram ...................................................................................................... FIFO Implementation ..................................................................................................... Format of Conversion Result Read from FIFO, 12-bit ADC......................................................... Format of Conversion Result Read from FIFO, 10-bit ADC......................................................... ADC Memory Mapping ................................................................................................... Format of Conversion Result Directly Read from ADC RAM, 12-bit ADC ........................................ Format of Conversion Result Directly Read from ADC RAM, 10-bit ADC ........................................ Conversion Results Storage............................................................................................. 18-12. POM Claim Clear Register (POMCLAIMCLR) [address = FFA0 4FA4h] List of Figures 687 687 688 688 689 689 690 690 691 691 692 692 693 693 694 694 696 697 702 702 703 703 704 704 705 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 19-10. ADC Groups’ Operating Mode Control and Status Registers ....................................................... 706 19-11. Self-Test and Calibration Logic ......................................................................................... 713 19-12. Mid-point Value Calculation ............................................................................................. 716 19-13. Self-Test and Calibration Logic ......................................................................................... 717 19-14. Timing for Self-Test Mode ............................................................................................... 718 ....................................................................... ADC Memory Map in Parity Test Mode ................................................................................ GPIO Functionality of ADxEVT ......................................................................................... ADC Reset Control Register (ADRSTCR) [offset = 00h] ............................................................ ADC Operating Mode Control Register (ADOPMODECR) [offset = 04h] ......................................... ADC Clock Control Register (ADCLOCKCR) [offset = 08h]......................................................... ADC Calibration Mode Control Register (ADCALCR) [offset = 0Ch] .............................................. 12-bit ADC Event Group Operating Mode Control Register (ADEVMODECR) [offset = 10h] .................. 10-bit ADC Event Group Operating Mode Control Register (ADEVMODECR) [offset = 10h] .................. 12-bit ADC Group1 Operating Mode Control Register (ADG1MODECR) [offset = 14h] ........................ 10-bit ADC Group1 Operating Mode Control Register (ADG1MODECR) [offset = 14h] ........................ 12-bit ADC Group2 Operating Mode Control Register (ADG2MODECR) [offset = 18h] ........................ 10-bit ADC Group2 Operating Mode Control Register (ADG2MODECR) [offset = 18h] ........................ ADC Event Group Trigger Source Select Register (ADEVSRC) [offset = 1Ch] .................................. ADC Group1 Trigger Source Select Register (ADG1SRC) [offset = 20h] ......................................... ADC Group2 Trigger Source Select Register (ADG2SRC) [offset = 24h] ......................................... ADC Event Group Interrupt Enable Control Register (ADEVINTENA) [offset = 28h] ............................ ADC Group1 Interrupt Enable Control Register (ADG1INTENA) [offset = 2Ch] ................................. ADC Group2 Interrupt Enable Control Register (ADG2INTENA) [offset = 30h] .................................. ADC Event Group Interrupt Flag Register (ADEVINTFLG) [offset = 34h] ......................................... ADC Group1 Interrupt Flag Register (ADG1INTFLG) [offset = 38h] ............................................... ADC Group2 Interrupt Flag Register (ADG2INTFLG) [offset = 3Ch] .............................................. ADC Event Group Threshold Interrupt Control Register (ADEVTHRINTCR) [offset = 40h] .................... ADC Group1 Threshold Interrupt Control Register (ADG1THRINTCR) [offset = 44h] .......................... ADC Group2 Threshold Interrupt Control Register (ADG2THRINTCR) [offset = 48h] .......................... ADC Event Group DMA Control Register (ADEVDMACR) [offset = 4Ch]......................................... ADC Group1 DMA Control Register (ADG1DMACR) [offset = 50h] ............................................... ADC Group2 DMA Control Register (ADG2DMACR) [offset = 54h] ............................................... ADC Results Memory Configuration Register (ADBNDCR) [offset = 58h] ........................................ ADC Results Memory Size Configuration Register (ADBNDEND) [offset = 5Ch] ................................ ADC Event Group Sampling Time Configuration Register (ADEVSAMP) [offset = 60h] ........................ ADC Group1 Sampling Time Configuration Register (ADG1SAMP) [offset = 64h] .............................. ADC Group2 Sampling Time Configuration Register (ADG2SAMP) [offset = 68h] .............................. ADC Event Group Status Register (ADEVSR) [offset = 6Ch] ...................................................... ADC Group1 Status Register (ADG1SR) [offset = 70h] ............................................................. ADC Group2 Status Register (ADG2SR) [offset = 74h] ............................................................. ADC Event Group Channel Select Register (ADEVSEL) [offset = 78h] ........................................... ADC Group1 Channel Select Register (ADG1SEL) [offset = 7Ch] ................................................. ADC Group2 Channel Select Register (ADG2SEL) [offset = 80h] ................................................. 12-bit ADC Calibration and Error Offset Correction Register (ADCALR) [offset = 84h] ......................... 10-bit ADC Calibration and Error Offset Correction Register (ADCALR) [offset = 84h] ......................... ADC State Machine Status Register (ADSMSTATE) [offset = 88h] ............................................... ADC Channel Last Conversion Value Register (ADLASTCONV) [offset = 8Ch] ................................. 12-bit ADC Event Group Results' FIFO Register (ADEVBUFFER) [offset = 90h-AFh] .......................... 19-15. Timing for Sample Capacitor Discharge Mode 720 19-16. 722 19-17. 19-18. 19-19. 19-20. 19-21. 19-22. 19-23. 19-24. 19-25. 19-26. 19-27. 19-28. 19-29. 19-30. 19-31. 19-32. 19-33. 19-34. 19-35. 19-36. 19-37. 19-38. 19-39. 19-40. 19-41. 19-42. 19-43. 19-44. 19-45. 19-46. 19-47. 19-48. 19-49. 19-50. 19-51. 19-52. 19-53. 19-54. 19-55. 19-56. 19-57. 19-58. SPNU499C – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 722 726 726 728 728 730 730 733 733 736 736 739 740 741 742 743 744 745 746 747 748 748 749 750 752 754 756 757 758 758 759 760 761 762 763 764 765 766 766 766 767 768 43 www.ti.com 19-59. 10-bit ADC Event Group Results' FIFO Register (ADEVBUFFER) [offset = 90h-AFh] .......................... 768 19-60. 12-bit ADC Group1 Results FIFO Register (ADG1BUFFER) [offset = B0h-CFh] ................................ 769 19-61. 10-bit ADC Group1 Results' FIFO Register (ADG1BUFFER) [offset = B0h-CFh] ............................... 769 19-62. 12-bit ADC Group2 Results FIFO Register (ADG2BUFFER) [offset = D0h-EFh] ................................ 770 19-63. 10-bit ADC Group2 Results' FIFO Register (ADG2BUFFER) [offset = D0h-EFh] ............................... 770 19-64. 12-bit ADC Event Group Results Emulation FIFO Register (ADEVEMUBUFFER) [offset = F0h] ............. 771 19-65. 10-bit ADC Event Group Results Emulation FIFO Register (ADEVEMUBUFFER) [offset = F0h] ............. 771 19-66. 12-bit ADC Group1 Results Emulation FIFO Register (ADG1EMUBUFFER) [offset = F4h] ................... 772 19-67. 10-bit ADC Group1 Results Emulation FIFO Register (ADG1EMUBUFFER) [offset = F4h] ................... 772 19-68. 12-bit ADC Group2 Results Emulation FIFO Register (ADG2EMUBUFFER) [offset = F8h] ................... 773 19-69. 10-bit ADC Group2 Results Emulation FIFO Register (ADG2EMUBUFFER) [offset = F8h] ................... 773 19-70. ADC ADEVT Pin Direction Control Register (ADEVTDIR) [offset = FCh] ......................................... 774 19-71. ADC ADEVT Pin Output Value Control Register (ADEVTOUT) [offset = 100h] .................................. 775 19-72. ADC ADEVT Pin Input Value Register (ADEVTIN) [offset = 104h] ................................................ 775 776 19-74. ADC ADEVT Pin Clear Register (ADEVTCLR) [offset = 10Ch] 776 19-75. 19-76. 19-77. 19-78. 19-79. 19-80. 19-81. 19-82. 19-83. 19-84. 19-85. 19-86. 19-87. 19-88. 19-89. 19-90. 19-91. 19-92. 19-93. 19-94. 19-95. 19-96. 19-97. 20-1. 20-2. 20-3. 20-4. 20-5. 20-6. 20-7. 20-8. 20-9. 20-10. 44 ....................................................... .................................................... ADC ADEVT Pin Open Drain Enable Register (ADEVTPDR) [offset = 110h] .................................... ADC ADEVT Pin Pull Control Disable Register (ADEVTPDIS) [offset = 114h]................................... ADC ADEVT Pin Pull Control Select Register (ADEVTPSEL) [offset = 118h] ................................... ADC Event Group Sample Cap Discharge Control Register (ADEVSAMPDISEN) [offset = 11Ch] ........... ADC Group1 Sample Cap Discharge Control Register (ADG1SAMPDISEN) [offset = 120h] .................. ADC Group2 Sample Cap Discharge Control Register (ADG2SAMPDISEN) [offset = 124h] .................. 12-bit ADC Magnitude Compare Interrupt x Control Registers (ADMAGINTxCR) [offset = 128h-138h] ...... 10-bit ADC Magnitude Compare Interrupt x Control Registers (ADMAGINTxCR) [offset = 128h-138h] ...... 12-bit ADC Magnitude Compare Interrupt x Mask Register (ADMAGxMASK) [offset = 12Ch-13Ch] ......... 10-bit ADC Magnitude Compare Interrupt x Mask Register (ADMAGxMASK) [offset = 12Ch-13Ch] ......... ADC Magnitude Compare Interrupt Enable Set Register (ADMAGINTENASET) [offset = 158h] .............. ADC Magnitude Compare Interrupt Enable Clear Register (ADMAGINTENACLR) [offset = 15Ch] ........... ADC Magnitude Compare Interrupt Flag Register (ADMAGINTFLG) [offset = 160h] ........................... ADC Magnitude Compare Interrupt Offset Register (ADMAGINTOFF) [offset = 164h] ......................... ADC Event Group FIFO Reset Control Register (ADEVFIFORESETCR) [offset = 168h] ...................... ADC Group1 FIFO Reset Control Register (ADG1FIFORESETCR) [offset = 16Ch] ............................ ADC Group2 FIFO Reset Control Register (ADG2FIFORESETCR) [offset = 170h]............................. ADC Event Group RAM Write Address Register (ADEVRAMWRADDR) [offset = 174h] ....................... ADC Group1 RAM Write Address Register (ADG1RAMWRADDR) [offset = 178h] ............................. ADC Group2 RAM Write Address Register (ADG2RAMWRADDR) [offset = 17Ch] ............................. ADC Parity Control Register (ADPARCR) [offset = 180h] ........................................................... ADC Parity Error Address Register (ADPARADDR) [offset = 184h] ............................................... ADC Power-Up Delay Control Register (ADPWRUPDLYCTRL) [offset = 188h] ................................. N2HET Block Diagram ................................................................................................... Specialized Timer Micromachine ....................................................................................... Program Flow Timings ................................................................................................... Use of the Overflow Interrupt Flag (HETEXC2) ...................................................................... Multi-Resolution Operation Flow Example ............................................................................ Debug Control Configuration ............................................................................................ Prescaler Configuration .................................................................................................. I/O Control ................................................................................................................. N2HET Loop Resolution Structure for Each Bit ...................................................................... Loop Resolution Instruction Execution Example ..................................................................... 19-73. ADC ADEVT Pin Set Register (ADEVTSET) [offset = 108h] List of Figures 777 777 778 778 779 780 781 781 783 783 784 784 785 785 786 786 787 787 788 788 789 790 790 793 797 798 799 800 801 805 808 809 810 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 20-11. HR I/O Architecture ....................................................................................................... 811 20-12. Example of HR Structure Sharing for N2HET Pins 0/1 .............................................................. 812 20-13. XOR-shared HR I/O ...................................................................................................... 813 20-14. Symmetrical PWM with XOR-sharing Output ......................................................................... 814 20-15. AND-shared HR I/O ...................................................................................................... 814 20-16. HR0 to HR1 Digital Loopback Logic: LBTYPE[0] = 0 ................................................................ 815 20-17. HR0 to HR1 Analog Loop Back Logic: LBTYPE[0] = 1 .............................................................. 816 20-18. N2HET Input Edge Detection ........................................................................................... 817 20-19. ECMP Execution Timings................................................................................................ 818 20-20. High/Low Resolution Modes for ECMP and PWCNT ................................................................ 819 20-21. PCNT Instruction Timing (With Capture Edge After HR Counter Overflow) ...................................... 820 20-22. PCNT Instruction Timing (With Capture Edge Before HR Counter Overflow) .................................... 820 20-23. WCAP Instruction Timing ................................................................................................ 821 20-24. I/O Block Diagram Including Pull Control Logic....................................................................... 822 20-25. N2HET Pin Disable Feature Diagram .................................................................................. 823 ................................................................................. Interrupt Functionality on Instruction Level ............................................................................ Interrupt Flag/Priority Level Architecture............................................................................... Request Line Assignment Example .................................................................................... Operation of N2HET Count Instructions ............................................................................... SCNT Count Operation .................................................................................................. ACNT Period Variation Compensations ............................................................................... N2HET Timings Associated with the Gap Flag (ACNT Deceleration) ............................................. N2HET Timings Associated with the Gap Flag (ACNT Acceleration) ............................................. Angle Generator Principle ............................................................................................... Hardware Angle Generator Block Diagram............................................................................ Angle Tick Generation Principle ........................................................................................ New Angle Tick Generation Architecture .............................................................................. Angle Generation Using Time Based Algorithm ...................................................................... SCNT Stepping Compensation ......................................................................................... ACNT During Acceleration and Deceleration ......................................................................... Singularity Check, ACNT Reset and Timing Associated ............................................................ Example of HWAG Start Sequence .................................................................................... Code ........................................................................................................................ Gap Verification Criteria For a 60-2 Toothed Wheel ................................................................. Using the ARST Bit in a Toothed Wheel Without Singularity ....................................................... Windowing Filter for Toothed Wheel Input on Falling Active Edge................................................. Filtering During Singularity Tooth ...................................................................................... HWAG Interrupt Block Diagram ......................................................................................... Hardware Angle Generator/High End Timer Interface ............................................................... Angle Count Within the HWAG at Resolution Clock ................................................................. Angle Count Within the NHET With Increments ...................................................................... Compare Without ACMP Instruction ................................................................................... Example of ACMP Compare Within the NHET ....................................................................... NHET Interface Block Diagram ......................................................................................... Global Configuration Register (HETGCR) [offset = 00h] ............................................................ Prescale Factor Register (HETPFR) ................................................................................... N2HET Current Address (HETADDR) ................................................................................. Offset Index Priority Level 1 Register (HETOFF1) ................................................................... 20-26. Suppression Filter Counter Operation 825 20-27. 826 20-28. 20-29. 20-30. 20-31. 20-32. 20-33. 20-34. 20-35. 20-36. 20-37. 20-38. 20-39. 20-40. 20-41. 20-42. 20-43. 20-44. 20-45. 20-46. 20-47. 20-48. 20-49. 20-50. 20-51. 20-52. 20-53. 20-54. 20-55. 20-56. 20-57. 20-58. 20-59. SPNU499C – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 827 828 829 829 830 831 832 833 834 835 836 837 837 838 839 840 841 842 843 844 845 846 848 848 849 849 850 851 856 858 859 859 45 www.ti.com 20-60. Offset Index Priority Level 2 Register (HETOFF2) ................................................................... 860 20-61. Interrupt Enable Set Register (HETINTENAS) ....................................................................... 861 20-62. Interrupt Enable Clear (HETINTENAC) ................................................................................ 861 20-63. Exception Control Register (HETEXC1) ............................................................................... 862 20-64. Exception Control Register 2 (HETEXC2) ............................................................................. 863 .................................................................................. 20-66. Interrupt Flag Register (HETFLG) ...................................................................................... 20-67. AND Share Control Register (HETAND) .............................................................................. 20-68. HR Share Control Register (HETHRSH) .............................................................................. 20-69. XOR Share Control Register (HETXOR) .............................................................................. 20-70. Request Enable Set Register (HETREQENS) ........................................................................ 20-71. Request Enable Clear Register (HETREQENC) ..................................................................... 20-72. Request Destination Select Register (HETREQDS) [offset = FFF7 B844h] ...................................... 20-73. N2HET Direction Register (HETDIR) .................................................................................. 20-74. N2HET Data Input Register (HETDIN) ................................................................................. 20-75. N2HET Data Output Register (HETDOUT)............................................................................ 20-76. N2HET Data Set Register (HETDSET) ................................................................................ 20-77. N2HET Data Clear Register (HETDCLR) ............................................................................. 20-78. N2HET Open Drain Register (HETPDR) ............................................................................. 20-79. N2HET Pull Disable Register (HETPULDIS) ......................................................................... 20-80. N2HET Pull Select Register (HETPSL) ................................................................................ 20-81. Parity Control Register (HETPCR) ..................................................................................... 20-82. Parity Address Register (HETPAR) .................................................................................... 20-83. Parity Pin Register (HETPPR) .......................................................................................... 20-84. Suppression Filter Preload Register (HETSFPRLD) ................................................................. 20-85. Suppression Filter Enable Register (HETSFENA) ................................................................... 20-86. Loop Back Pair Select Register (HETLBPSEL) ...................................................................... 20-87. Loop Back Pair Direction Register (HETLBPDIR) .................................................................... 20-88. N2HET Pin Disable Register (HETPINDIS) ........................................................................... 20-89. HWAG Pin Select Register (HWAPINSEL)............................................................................ 20-90. HWAG Global Control Register 0 (HWAGCR0) ...................................................................... 20-91. HWAG Global Control Register 1 (HWAGCR1) ...................................................................... 20-92. HWAG Global Control Register 2 (HWAGCR2) ...................................................................... 20-93. HWAG Interrupt Enable Set Register (HWAENASET) .............................................................. 20-94. HWAG Interrupt Enable Clear Register (HWAENACLR) ............................................................ 20-95. HWAG Interrupt Level Set Register (HWALVLSET) ................................................................. 20-96. HWAG Interrupt Level Clear Register (HWALVLCLR)............................................................... 20-97. HWAG Interrupt Flag Register (HWAFLG) ............................................................................ 20-98. HWAG Interrupt Offset Register 0 (HWAOFF0) ...................................................................... 20-99. HWAG Interrupt Offset Register 1 (HWAOFF1) ...................................................................... 20-100. HWAG Angle Value Register (HWAACNT) .......................................................................... 20-101. HWAG Previous Tooth Period Value Register (HWAPCNT1)..................................................... 20-102. HWAG Current Tooth Period Value Register (HWAPCNT)........................................................ 20-103. HWAG Step Width Register (HWASTWD) ........................................................................... 20-104. HWAG Teeth Number Register (HWATHNB) ....................................................................... 20-105. HWAG Current Teeth Number Register (HWATHVL) .............................................................. 20-106. HWAG Filter Register (HWAFIL) ...................................................................................... 20-107. HWAG Filter Register 2 (HWAFIL2) .................................................................................. 20-108. HWAG Angle Increment Register (HWAANGI) ...................................................................... 20-65. Interrupt Priority Register (HETPRY) 46 List of Figures 864 864 865 866 867 868 868 869 870 871 871 872 872 873 873 874 875 876 877 878 878 879 880 881 883 884 884 885 886 887 888 888 889 890 891 892 893 893 894 895 895 896 896 897 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 20-109. ACMP Program Field (P31:P0) ........................................................................................ 903 20-110. ACMP Control Field (C31:C0) ......................................................................................... 903 20-111. ACMP Data Field (D31:D0) ............................................................................................ 903 20-112. ACNT Program Field (P31:P0) ........................................................................................ 905 20-113. ACNT Control Field (C31:C0) .......................................................................................... 905 20-114. ACNT Data Field (D31:D0) ............................................................................................. 905 20-115. ADCNST Program Field (P31:P0)..................................................................................... 908 20-116. ADCNST Control Field (C31:C0) ...................................................................................... 908 20-117. ADCNST Data Field (D31:D0) ......................................................................................... 908 20-118. ADCNST Operation If Remote Data Field[31:7] Is Not Zero ...................................................... 909 20-119. ADCNST Operation if Remote Data Field [31:7] Is Zero ........................................................... 909 ................................................ ................................................. ADC, ADD, AND, OR, SBB, SUB, XOR Data Field (D31:D0) ..................................................... ADM32 Program Field (P31:P0) ....................................................................................... ADM32 Control Field (C31:C0) ........................................................................................ ADM32 Data Field (D31:D0) ........................................................................................... ADM32 Add and Move Operation for IM®TOREG (Case 00) ............................................... ADM32 Add and Move Operation for REM®TOREG (Case 01) ............................................ APCNT Program Field (P31:P0) ...................................................................................... APCNT Control Field (C31:C0) ........................................................................................ APCNT Data Field (D31:D0) ........................................................................................... BR Program Field (P31:P0) ............................................................................................ BR Control Field (C31:C0) ............................................................................................. BR Data Field (D31:D0) ................................................................................................ CNT Program Field (P31:P0) .......................................................................................... CNT Control Field (C31:C0) ........................................................................................... CNT Data Field (D31:D0) .............................................................................................. DADM64 Program Field (P31:P0) ..................................................................................... DADM64 Control Field (C31:C0) ...................................................................................... DADM64 Data Field (D31:D0) ......................................................................................... DADM64 Add and Move Operation .................................................................................. DJZ Program Field (P31:P0) ........................................................................................... DJZ Control Field (C31:C0) ............................................................................................ DJZ Data Field (D31:D0) ............................................................................................... ECMP Program Field (P31:P0) ........................................................................................ ECMP Control Field (C31:C0) ......................................................................................... ECMP Data Field (D31:D0) ............................................................................................ ECNT Program Field (P31:P0) ........................................................................................ ECNT Control Field (C31:C0) .......................................................................................... ECNT Data Field (D31:D0) ............................................................................................. MCMP Program Field (P31:P0) ....................................................................................... MCMP Control Field (C31:C0) ......................................................................................... MCMP Data Field (D31:D0) ............................................................................................ MOV32 Program Field (P31:P0) ...................................................................................... MOV32 Control Field (C31:C0) ........................................................................................ MOV32 Data Field (D31:D0) ........................................................................................... MOV32 Move Operation for IMTOREG (Case 00) .................................................................. MOV32 Move Operation for IMTOREG&REM (Case 01) .......................................................... 20-120. ADC, ADD, AND, OR, SBB, SUB, XOR Program Field (P31:P0) 910 20-121. ADC, ADD, AND, OR, SBB, SUB, XOR Control Field (C31:C0) 910 20-122. 910 20-123. 20-124. 20-125. 20-126. 20-127. 20-128. 20-129. 20-130. 20-131. 20-132. 20-133. 20-134. 20-135. 20-136. 20-137. 20-138. 20-139. 20-140. 20-141. 20-142. 20-143. 20-144. 20-145. 20-146. 20-147. 20-148. 20-149. 20-150. 20-151. 20-152. 20-153. 20-154. 20-155. 20-156. 20-157. SPNU499C – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 916 916 916 918 918 919 919 919 922 922 922 924 924 924 928 928 928 928 930 930 930 932 932 932 935 935 935 937 937 937 940 940 940 941 942 47 www.ti.com 20-158. MOV32 Move Operation for REGTOREM (Case 10) ............................................................... 942 20-159. MOV32 Move Operation for REMTOREG (Case 11) ............................................................... 942 20-160. MOV64 Program Field (P31:P0) ...................................................................................... 945 20-161. MOV64 Control Field (C31:C0) ........................................................................................ 945 20-162. MOV64 Data Field (D31:D0) ........................................................................................... 945 ............................................................................................... 20-164. PCNT Program Field (P31:P0) ........................................................................................ 20-165. PCNT Control Field (C31:C0) .......................................................................................... 20-166. PCNT Data Field (D31:D0) ............................................................................................. 20-167. PWCNT Program Field (P31:P0) ...................................................................................... 20-168. PWCNT Control Field (C31:C0) ....................................................................................... 20-169. PWCNT Data Field (D31:D0) .......................................................................................... 20-170. RADM64 Program Field (P31:P0) ..................................................................................... 20-171. RADM64 Control Field (C31:C0) ...................................................................................... 20-172. RADM64 Data Field (D31:D0) ......................................................................................... 20-173. RADM64 Add and Move Operation .................................................................................. 20-174. RCNT Program Field (P31:P0) ........................................................................................ 20-175. RCNT Control Field (C31:C0) ......................................................................................... 20-176. RCNT Data Field (D31:D0) ............................................................................................ 20-177. SCMP Program Field (P31:P0) ........................................................................................ 20-178. SCMP Control Field (C31:C0) ......................................................................................... 20-179. SCMP Data Field (D31:D0) ............................................................................................ 20-180. SCNT Program Field (P31:P0) ........................................................................................ 20-181. SCNT Control Field (C31:C0) .......................................................................................... 20-182. SCNT Data Field (D31:D0) ............................................................................................. 20-183. SHFT Program Field (P31:P0)......................................................................................... 20-184. SHFT Control Field (C31:C0) .......................................................................................... 20-185. SHFT Data Field (D31:D0) ............................................................................................. 20-186. WCAP Program Field (P31:P0)........................................................................................ 20-187. WCAP Control Field (C31:C0) ......................................................................................... 20-188. WCAP Data Field (D31:D0) ............................................................................................ 20-189. WCAPE Program Field (P31:P0) ...................................................................................... 20-190. WCAPE Control Field (C31:C0) ....................................................................................... 20-191. WCAPE Data Field (D31:D0) .......................................................................................... 21-1. System Block Diagram ................................................................................................... 21-2. HTU Block Diagram ...................................................................................................... 21-3. Example of a HTU Transfer ............................................................................................. 21-4. Single Buffer Timing and Memory Representation ................................................................... 21-5. Timing Example for Circular Buffer Mode ............................................................................. 21-6. Dual Buffer Timing ........................................................................................................ 21-7. Timing Example for Auto Switch Buffer Mode ........................................................................ 21-8. Timing for Disabling Control Packets .................................................................................. 21-9. Timing Example Including Lost Requests ............................................................................. 21-10. Timing that Generates No Request Lost Error ........................................................................ 21-11. Timing that Generates a Request Lost Error.......................................................................... 21-12. Timing Example for Two WCAP Instructions ......................................................................... 21-13. Timing of the WCAP, ECNT, PCNT Example......................................................................... 21-14. Global Control Register (HTU GC) [offset = 00] ...................................................................... 21-15. Control Packet Enable Register (HTU CPENA) [offset = 04h] ...................................................... 20-163. MOV64 Move Operation 48 List of Figures 945 947 947 947 950 950 950 954 954 954 954 956 956 956 958 958 958 960 960 960 962 962 962 965 965 965 967 967 967 971 972 972 974 974 975 976 977 978 979 979 980 983 987 988 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 21-16. Control Packet (CP) Busy Register 0 (HTU BUSY0) [offset = 08h] ................................................ 989 21-17. Control Packet (CP) Busy Register 1 (HTU BUSY1) [offset = 0Ch] ............................................... 990 21-18. Control Packet (CP) Busy Register 2 (HTU BUSY2) [offset = 10h] ................................................ 990 21-19. Control Packet (CP) Busy Register 3 (HTU BUSY3) [offset = 14h] ................................................ 991 21-20. Active Control Packet and Error Register (HTU ACPE) [offset = 18h] ............................................ 991 21-21. Request Lost and Bus Error Control Register (HTU RLBECTRL) [offset = 20h] ................................. 993 21-22. Buffer Full Interrupt Enable Set Register (HTU BFINTS) [offset = 24h] ........................................... 994 21-23. Buffer Full Interrupt Enable Clear Register (HTU BFINTC) [offset = 28h] ........................................ 994 21-24. Interrupt Mapping Register (HTU INTMAP) [offset = 2Ch] .......................................................... 995 21-25. Interrupt Offset Register 0 (HTU INTOFF0) [offset = 34h] .......................................................... 996 21-26. Interrupt Offset Register 1 (HTU INTOFF1) [offset = 38h] .......................................................... 997 21-27. Buffer Initialization Mode Register (HTU BIM) [offset = 3Ch] ....................................................... 998 21-28. Request Lost Flag Register (HTU RLOSTFL) [offset = 40h] ...................................................... 1000 21-29. Buffer Full Interrupt Flag Register (HTU BFINTFL) [offset = 44h] ................................................ 1000 21-30. BER Interrupt Flag Register (HTU BERINTFL) [offset = 48h] ..................................................... 1001 ...................................... Memory Protection 1 End Address Register (HTU MP1E) [offset = 50h] ........................................ Debug Control Register (HTU DCTRL) [offset = 54h] .............................................................. Watch Point Register (HTU WPR) [offset = 58h] ................................................................... Watch Mask Register (HTU WMR) [offset = 5Ch] .................................................................. Module Identification Register (HTU ID) [offset = 60h] ............................................................. Parity Control Register (HTU PCR) [offset = 64h] .................................................................. Parity Address Register (HTU PAR) [offset = 68h] ................................................................. Memory Protection Control and Status Register (HTU MPCS) [offset = 70h]................................... Memory Protection Start Address Register 0 (HTU MP0S) [offset = 74h] ....................................... Memory Protection End Address Register (HTU MP0E) [offset = 78h] .......................................... Initial Full Address A Register (HTU IFADDRA) .................................................................... Initial Full Address B Register (HTU IFADDRB) .................................................................... Initial N2HET Address and Control Register (HTU IHADDRCT).................................................. Initial Transfer Count Register (HTU ITCOUNT) .................................................................... Current Full Address A Register (HTU CFADDRA) ................................................................ Current Full Address B Register (HTU CFADDRB) ................................................................ Current Frame Count Register (HTU CFCOUNT) .................................................................. I/O Function Quick Start Flow Chart .................................................................................. Interrupt Generation Function Quick Start Flow Chart ............................................................. GIO Module Diagram ................................................................................................... GIO Block Diagram ..................................................................................................... GIO Global Control Register (GIOGCR0) [offset = 00h] ........................................................... GIO Interrupt Detect Register (GIOINTDET) [offset = 08h] ........................................................ GIO Interrupt Polarity Register (GIOPOL) [offset = 0Ch] .......................................................... GIO Interrupt Enable Set Register (GIOENASET) [offset = 10h] ................................................. GIO Interrupt Enable Clear Register (GIOENACLR) [offset = 14h]............................................... GIO Interrupt Priority Register (GIOLVLSET) [offset = 18h] ....................................................... GIO Interrupt Priority Register (GIOLVLCLR) [offset = 1Ch] ...................................................... GIO Interrupt Flag Register (GIOFLG) [offset = 20h] ............................................................... GIO Offset 1 Register (GIOOFF1) [offset = 24h] .................................................................... GIO Offset 2 Register (GIOOFF2) [offset = 28h] .................................................................... GIO Emulation 1 Register (GIOEMU1) [offset = 2Ch] .............................................................. GIO Emulation 2 Register (GIOEMU2) [offset = 30h] .............................................................. 21-31. Memory Protection 1 Start Address Register (HTU MP1S) [offset = 4Ch] 21-32. 21-33. 21-34. 21-35. 21-36. 21-37. 21-38. 21-39. 21-40. 21-41. 21-42. 21-43. 21-44. 21-45. 21-46. 21-47. 21-48. 22-1. 22-2. 22-3. 22-4. 22-5. 22-6. 22-7. 22-8. 22-9. 22-10. 22-11. 22-12. 22-13. 22-14. 22-15. 22-16. SPNU499C – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 1002 1002 1003 1004 1004 1005 1006 1007 1008 1011 1011 1013 1013 1014 1015 1016 1017 1018 1023 1024 1025 1027 1030 1031 1032 1033 1034 1035 1037 1038 1039 1040 1041 1042 49 www.ti.com 22-17. GIO Data Direction Registers (GIODIR[A-B]) [offset = 34h, 54h] ................................................. 1043 1043 22-19. GIO Data Output Registers (GIODOUT[A-B]) [offset = 3Ch, 5Ch] 1044 22-20. 1044 22-21. 22-22. 22-23. 22-24. 23-1. 23-2. 23-3. 23-4. 23-5. 23-6. 23-7. 23-8. 23-9. 23-10. 23-11. 23-12. 23-13. 23-14. 23-15. 23-16. 23-17. 23-18. 23-19. 23-20. 23-21. 23-22. 23-23. 23-24. 23-25. 23-26. 23-27. 23-28. 23-29. 23-30. 23-31. 23-32. 23-33. 23-34. 23-35. 23-36. 23-37. 23-38. 23-39. 23-40. 23-41. 50 ..................................................... ............................................... GIO Data Set Registers (GIODSET[A-B]) [offset = 40h, 60h] ..................................................... GIO Data Clear Registers (GIODCLR[A-B]) [offset = 44h, 64h] .................................................. GIO Open Drain Registers (GIOPDR[A-B]) [offset = 48h, 68h] ................................................... GIO Pull Disable Registers (GIOPULDIS[A-B]) [offset = 4Ch, 6Ch] .............................................. GIO Pull Select Registers (GIOPSL[A-B]) [offset = 50h, 70h] ..................................................... Block Diagram ........................................................................................................... FlexRay Module Blocks ................................................................................................ Transfer Unit ............................................................................................................. FlexRay Transfer Unit Operation Principle ........................................................................... FlexRay Transfer Unit Operation Principle for Transfer FSM (simplified) ....................................... FlexRay Transfer Unit Operation Principle for Event FSM (simplified)........................................... Example: FTU Read Transfer of 6 Words ........................................................................... Example: FTU Write Transfer of 6 Words............................................................................ Transfer Start Address to Message Buffer Number Assignment ................................................. Structure of Communication Cycle .................................................................................... Configuration of NIT Start and Offset Correction Start ............................................................. Overall State Diagram of Communication Controller ............................................................... Structure of POC State WAKEUP .................................................................................... Timing of Wake Up Pattern ............................................................................................ State Diagram Time-Triggered Startup ............................................................................... FIFO Status: Empty, Not Empty, and Overrun ...................................................................... Host Access to Message RAM ........................................................................................ Double Buffer Structure Input Buffer .................................................................................. Swapping of IBCM and IBCR Bits .................................................................................... Double Buffer Structure Output Buffer................................................................................ Swapping of OBCM and OBCR Bits .................................................................................. Access to Transient Buffer RAMs ..................................................................................... Configuration Example of Message Buffers in the Message RAM ............................................... Header Section of Message Buffer in Message RAM .............................................................. Example Structure of Data Partition in Message RAM ............................................................. Parity Structure .......................................................................................................... Parity Generation and Check .......................................................................................... Transfer Unit (TU) Interrupt Structure ................................................................................ Communication Controller (CC) Interrupt Structure ................................................................ Global Static Number 0 (GSN0) [offset_TU = 00h] ................................................................. Global Static Number 1 (GSN1) [offset_TU = 04h] ................................................................. Global Control Set (GCS) [offset_TU = 10h] ........................................................................ Global Control Reset (GCR) [offset_TU = 14h] ..................................................................... Transfer Status Current Buffer (TSCB) [offset_TU = 18h] ......................................................... Last Transferred Buffer to Communication Controller (LTBCC) [offset_TU = 1Ch] ............................ Last Transferred Buffer to System Memory (LTBSM) [offset_TU = 20h] ........................................ Transfer Base Address (TBA) [offset_TU = 24h].................................................................... Next Transfer Base Address (NTBA) [offset_TU = 28h] ........................................................... Base Address of Mirrored Status (BAMS) [offset_TU = 2Ch] ..................................................... Start Address of Memory Protection (SAMP) [offset_TU = 30h] .................................................. End Address of Memory Protection (EAMP) [offset_TU = 34h] ................................................... 22-18. GIO Data Input Registers (GIODIN[A-B]) [offset = 38h, 58h] List of Figures 1045 1045 1046 1046 1050 1053 1054 1055 1056 1057 1059 1059 1061 1064 1065 1069 1073 1075 1077 1087 1090 1091 1091 1092 1093 1095 1096 1097 1099 1100 1101 1104 1106 1110 1110 1111 1111 1114 1115 1115 1116 1116 1117 1117 1118 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com ........................................... Transfer to System Memory Occurred 2 (TSMO2) [offset_TU = 44h] ........................................... Transfer to System Memory Occurred 3 (TSMO3) [offset_TU = 48h] ........................................... Transfer to System Memory Occurred 4 (TSMO4) [offset_TU = 4Ch] ........................................... Transfer to Communication Controller Occurred 1 (TCCO1) [offset_TU = 50h] ................................ Transfer to Communication Controller Occurred 2 (TCCO2) [offset_TU = 54h] ................................ Transfer to Communication Controller Occurred 3 (TCCO3) [offset_TU = 58h] ................................ Transfer to Communication Controller Occurred 4 (TCCO4) [offset_TU = 5Ch]................................ Transfer Occurred Offset (TOOFF) [offset_TU = 60h] ............................................................. Parity Error Address (PEADR) [offset_TU = 70h] ................................................................... Transfer Error Interrupt Flag (TEIF) [offset_TU = 74h] ............................................................. Transfer Error Interrupt Enable Set (TEIRES) [offset_TU = 78h] ................................................. Transfer Error Interrupt Enable Reset (TEIRER) [offset_TU = 7Ch] ............................................. Trigger Transfer to System Memory Set 1 (TTSMS1) [offset_TU = 80h] ........................................ Trigger Transfer to System Memory Reset 1 (TTSMR1) [offset_TU = 84h] ..................................... Trigger Transfer to System Memory Set 2 (TTSMS2) [offset_TU = 88h] ........................................ Trigger Transfer to System Memory Reset 2 (TTSMR2) [offset_TU = 8Ch] .................................... Trigger Transfer to System Memory Set 3 (TTSMS3) [offset_TU = 90h] ........................................ Trigger Transfer to System Memory Reset 3 (TTSMR3) [offset_TU = 94h] ..................................... Trigger Transfer to System Memory Set 4 (TTSMS4) [offset_TU = 98h] ........................................ Trigger Transfer to System Memory Reset 4 (TTSMR4) [offset_TU = 9Ch] .................................... Trigger Transfer to Communication Controller Set 1 (TTCCS1) [offset_TU = A0h] ............................ Trigger Transfer to Communication Controller Reset 1 (TTCCR1) [offset_TU = A4h] ......................... Trigger Transfer to Communication Controller Set 2 (TTCCS2) [offset_TU = A8h] ............................ Trigger Transfer to Communication Controller Reset 2 (TTCCR2) [offset_TU = ACh] ........................ Trigger Transfer to Communication Controller Set 3 (TTCCS3) [offset_TU = B0h] ............................ Trigger Transfer to Communication Controller Reset 3 (TTCCR3) [offset_TU = B4h] ......................... Trigger Transfer to Communication Controller Set 4 (TTCCS4) [offset_TU = B8h] ............................ Trigger Transfer to Communication Controller Reset 4 (TTCCR4) [offset_TU = BCh] ........................ Enable Transfer on Event to System Memory Set 1 (ETESMS1) [offset_TU = C0h] .......................... Enable Transfer on Event to System Memory Reset 1 (ETESMR1) [offset_TU = C4h] ....................... Enable Transfer on Event to System Memory Set 2 (ETESMS2) [offset_TU = C8h] .......................... Enable Transfer on Event to System Memory Reset 2 (ETESMR2) [offset_TU = CCh] ...................... Enable Transfer on Event to System Memory Set 3 (ETESMS3) [offset_TU = D0h] .......................... Enable Transfer on Event to System Memory Reset 3 (ETESMR3) [offset_TU = D4h] ....................... Enable Transfer on Event to System Memory Set 4 (ETESMS4) [offset_TU = D8h] .......................... Enable Transfer on Event to System Memory Reset 4 (ETESMR4) [offset_TU = DCh] ...................... Clear on Event to System Memory Set 1 (CESMS1) [offset_TU = E0h]......................................... Clear on Event to System Memory Reset 1 (CESMR1) [offset_TU = E4h] ..................................... Clear on Event to System Memory Set 2 (CESMS2) [offset_TU = E8h]......................................... Clear on Event to System Memory Reset 2 (CESMR2) [offset_TU = ECh] ..................................... Clear on Event to System Memory Set 3 (CESMS3) [offset_TU = F0h] ......................................... Clear on Event to System Memory Reset 3 (CESMR3) [offset_TU = F4h]...................................... Clear on Event to System Memory Set 4 (CESMS4) [offset_TU = F8h] ......................................... Clear on Event to System Memory Reset 4 (CESMR4) [offset_TU = FCh] ..................................... Transfer to System Memory Interrupt Enable Set 1 (TSMIES1) [offset_TU = 100h] ........................... Transfer to System Memory Interrupt Enable Reset 1 (TSMIER1) [offset_TU = 104h]........................ Transfer to System Memory Interrupt Enable Set 2 (TSMIES2) [offset_TU = 108h] ........................... Transfer to System Memory Interrupt Enable Reset 2 (TSMIER2) [offset_TU = 10Ch] ....................... 23-42. Transfer to System Memory Occurred 1 (TSMO1) [offset_TU = 40h] 1119 23-43. 1119 23-44. 23-45. 23-46. 23-47. 23-48. 23-49. 23-50. 23-51. 23-52. 23-53. 23-54. 23-55. 23-56. 23-57. 23-58. 23-59. 23-60. 23-61. 23-62. 23-63. 23-64. 23-65. 23-66. 23-67. 23-68. 23-69. 23-70. 23-71. 23-72. 23-73. 23-74. 23-75. 23-76. 23-77. 23-78. 23-79. 23-80. 23-81. 23-82. 23-83. 23-84. 23-85. 23-86. 23-87. 23-88. 23-89. 23-90. SPNU499C – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 1119 1119 1121 1121 1121 1121 1123 1124 1125 1127 1128 1129 1129 1130 1130 1131 1131 1132 1132 1133 1133 1134 1134 1135 1135 1136 1136 1137 1137 1138 1138 1139 1139 1140 1140 1141 1141 1142 1142 1143 1143 1144 1144 1145 1145 1146 1146 51 www.ti.com 23-91. Transfer to System Memory Interrupt Enable Set 3 (TSMIES3) [offset_TU = 110h] ........................... 1147 23-92. Transfer to System Memory Interrupt Enable Reset 3 (TSMIER3) [offset_TU = 114h]........................ 1147 23-93. Transfer to System Memory Interrupt Enable Set 4 (TSMIES4) [offset_TU = 118h] ........................... 1148 23-94. Transfer to System Memory Interrupt Enable Reset 4 (TSMIER4) [offset_TU = 11Ch] ....................... 1148 23-95. Transfer to Communication Controller Interrupt Enable Set 1 (TCCIES1) [offset_TU = 120h] ............... 1149 23-96. Transfer to Communication Controller Interrupt Enable Reset 1 (TCCIER1) [offset_TU = 124h] ............ 1149 23-97. Transfer to Communication Controller Interrupt Enable Set 2 (TCCIES2) [offset_TU = 128h] ............... 1150 23-98. Transfer to Communication Controller Interrupt Enable Reset 2 (TCCIER2) [offset_TU = 12Ch]............ 1150 23-99. Transfer to Communication Controller Interrupt Enable Set 3 (TCCIES3) [offset_TU = 130h] ............... 1151 23-100. Transfer to Communication Controller Interrupt Enable Reset 3 (TCCIER3) [offset_TU = 134h] ........... 1151 23-101. Transfer to Communication Controller Interrupt Enable Set 4 (TCCIES4) [offset_TU = 138h] .............. 1152 23-102. Transfer to Communication Controller Interrupt Enable Reset 4 (TCCIER4) [offset_TU = 13Ch] .......... 1152 23-103. Transfer Configuration RAM (TCR) [offset_TU_RAM = 0h-1FFh] ............................................... 1153 23-104. Parity Information in TCR Parity Test Mode [offset_TU_RAM = 200h-3FFh] .................................. 1154 23-105. Message Buffer Assignment.......................................................................................... 1155 23-106. Test Register 1 (TEST1) [offset_CC = 10h] ........................................................................ 1159 23-107. Test Register 2 (TEST2) [offset_CC = 14h] ........................................................................ 1163 23-108. Test Mode Access to Communication Controller RAM Blocks .................................................. 1164 23-109. Lock Register (LCK) [offset_CC = 1Ch]............................................................................. 1165 23-110. Error Interrupt Register (EIR) [offset_CC = 20h]................................................................... 1166 23-111. Status Interrupt Register (SIR) [offset_CC = 24h] ................................................................. 1168 23-112. Error Interrupt Line Select Register (EILS) [offset_CC = 28h] ................................................... 1171 23-113. Status Interrupt Line Select Register (SILS) [offset_CC = 2Ch] ................................................. 1173 23-114. Error Interrupt Enable Set/Reset Register (EIES/EIER) [offset_CC = 30h/34h] ............................... 1175 23-115. Status Interrupt Enable Set/Reset Register (SIES/SIER) [offset_CC = 38h/3Ch] ............................. 1177 23-116. Interrupt Line Enable Register (ILE) [offset_CC = 40h] ........................................................... 1179 23-117. Timer 0 Configuration Register (T0C) [offset_CC = 44h] ......................................................... 1180 23-118. Timer 1 Configuration Register (T1C) [offset_CC = 48h] ......................................................... 1181 23-119. Stop Watch Register 1 (STPW1) [offset_CC = 4Ch] .............................................................. 1182 23-120. Stop Watch Register 2 (STPW2) [offset_CC = 50h] .............................................................. 1183 23-121. SUC Configuration Register 1 (SUCC1) [offset_CC = 80h] ...................................................... 1184 23-122. SUC Configuration Register 2 (SUCC2) [offset_CC = 84h] ...................................................... 1188 23-123. SUC Configuration Register 3 (SUCC3) [offset_CC = 88h] ...................................................... 1189 23-124. NEM Configuration Register (NEMC) [offset_CC = 8Ch] ......................................................... 1189 23-125. PRT Configuration Register 1 (PRTC1) [offset_CC = 90h]....................................................... 1190 23-126. PRT Configuration Register 2 (PRTC2) [offset_CC = 94h]....................................................... 1191 23-127. MHD Configuration Register (MHDC) [offset_CC = 98h] ......................................................... 1192 23-128. GTU Configuration Register 1 (GTUC1) [offset_CC = A0h] ...................................................... 1193 23-129. GTU Configuration Register 2 (GTUC2) [offset_CC = A4h] ...................................................... 1193 23-130. GTU Configuration Register 3 (GTUC3) [offset_CC = A8h] ...................................................... 1194 23-131. GTU Configuration Register 4 (GTUC4) [offset_CC = ACh] ..................................................... 1195 23-132. GTU Configuration Register 5 (GTUC5) [offset_CC = B0h] ...................................................... 1195 23-133. GTU Configuration Register 6 (GTUC6) [offset_CC = B4h] ...................................................... 1196 23-134. GTU Configuration Register 7 (GTUC7) [offset_CC = B8h] ...................................................... 1196 23-135. GTU Configuration Register 8 (GTUC8) [offset_CC = BCh] ..................................................... 1197 1197 23-137. 1198 23-138. 23-139. 52 ..................................................... GTU Configuration Register 10 (GTUC10) [offset_CC = C4h] .................................................. GTU Configuration Register 11 (GTUC11) [offset_CC = C8h] .................................................. Communication Controller Status Vector Register (CCSV) [offset_CC = 100h] ............................... 23-136. GTU Configuration Register 9 (GTUC9) [offset_CC = C0h] List of Figures 1199 1200 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 23-140. Communication Controller Error Vector Register (CCEV) [offset_CC = 104h] ................................ 1202 23-141. Slot Counter Vector Register (SCV) [offset_CC = 110h] ......................................................... 1203 23-142. Macrotick and Cycle Counter Register (MTCCV) [offset_CC = 114h] .......................................... 1203 23-143. Rate Correction Value Register (RCV) [offset_CC = 118h] ...................................................... 1204 23-144. Offset Correction Value Register (OCV) [offset_CC = 11Ch] .................................................... 1204 23-145. Sync Frame Status Register (SFS) [offset_CC = 120h] .......................................................... 1205 23-146. Symbol Window and NIT Status Register (SWNIT) [offset_CC = 124h] ....................................... 1206 23-147. Aggregated Channel Status Register (ACS) [offset_CC = 128h] ................................................ 1207 23-148. Even Sync ID Registers (ESIDn) [offset_CC = 130h-168h] ...................................................... 1209 23-149. Odd Sync ID Registers (OSIDn) [offset_CC = 170h-1A8h] ...................................................... 1210 23-150. Network Management Registers (NMVn) [offset_CC = 1B0h-1B8h] ............................................ 1211 23-151. Message RAM Configuration Register (MRC) [offset_CC = 300h] .............................................. 1212 23-152. FIFO Rejection Filter Register (FRF) [offset_CC = 304h] ........................................................ 1214 23-153. FIFO Rejection Filter Mask Register (FRFM) [offset_CC = 308h] ............................................... 1215 23-154. FIFO Critical Level Register (FCL) [offset_CC = 30Ch] .......................................................... 1215 23-155. Message Handler Status (MHDS) [offset_CC = 310h] ............................................................ 1216 23-156. Last Dynamic Transmit Slot (LDTS) [offset_CC = 314h] ......................................................... 1217 23-157. FIFO Status Register (FSR) [offset_CC = 318h] .................................................................. 1218 23-158. Message Handler Constraints Flags (MHDF) [offset_CC = 31Ch] .............................................. 1219 23-159. Transmission Request Register 1 (TXRQ1) [offset_CC = 320h] ................................................ 1221 23-160. Transmission Request Register 2 (TXRQ2) [offset_CC = 324h] ................................................ 1221 23-161. Transmission Request Register 3 (TXRQ3) [offset_CC = 328h] ................................................ 1221 23-162. Transmission Request Register 4 (TXRQ4) [offset_CC = 32Ch] ................................................ 1221 ............................................................... 23-164. New Data Register 2 (NDAT2) [offset_CC = 334h] ............................................................... 23-165. New Data Register 3 (NDAT3) [offset_CC = 338h] ............................................................... 23-166. New Data Register 4 (NDAT4) [offset_CC = 33Ch] ............................................................... 23-167. Message Buffer Status Changed Register 1 (MBSC1) [offset_CC = 340h] .................................... 23-168. Message Buffer Status Changed Register 2 (MBSC2) [offset_CC = 344h] .................................... 23-169. Message Buffer Status Changed Register 3 (MBSC3) [offset_CC = 348h] .................................... 23-170. Message Buffer Status Changed Register 4 (MBSC4) [offset_CC = 34Ch] ................................... 23-171. Core Release Register (CREL) [offset_CC = 3F0h]............................................................... 23-172. Endian Register (ENDN) [offset_CC = 3F4h] ...................................................................... 23-173. Write Data Section Registers (WRDSn) [offset_CC = 400h-4FCh] ............................................. 23-174. Write Header Section Register 1 (WRHS1) [offset_CC = 500h] ................................................. 23-175. Write Header Section Register 2 (WRHS2) [offset_CC = 504h] ................................................. 23-176. Write Header Section Register 3 (WRHS3) [offset_CC = 508h] ................................................. 23-177. Input Buffer Command Mask Register (IBCM) [offset_CC = 510h] ............................................. 23-178. Input Buffer Command Request Register (IBCR) [offset_CC = 514h] .......................................... 23-179. Read Data Section Registers (RDDSn) [offset_CC = 600h-6FCh] .............................................. 23-180. Read Header Section Register 1 (RDHS1) [offset_CC = 700h] ................................................. 23-181. Read Header Section Register 2 (RDHS2) [offset_CC = 704h] ................................................. 23-182. Read Header Section Register 3 (RDHS3) [offset_CC = 708h] ................................................. 23-183. Message Buffer Status Register (MBS) [offset_CC = 70Ch] ..................................................... 23-184. Output Buffer Command Mask Register (OBCM) [offset_CC = 700h] .......................................... 23-185. Output Buffer Command Mask Register (OBCR) [offset_CC = 714h] .......................................... 24-1. Block Diagram ........................................................................................................... 24-2. Bit Timing ................................................................................................................. 24-3. CAN Bit-timing Configuration .......................................................................................... 23-163. New Data Register 1 (NDAT1) [offset_CC = 330h] SPNU499C – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 1222 1222 1222 1222 1224 1224 1224 1224 1225 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1239 1240 1247 1249 1253 53 www.ti.com 24-4. Structure of a Message Object ........................................................................................ 1255 24-5. Message RAM Representation in Debug/Suspend Mode ......................................................... 1258 24-6. Message RAM Representation in RAM Direct Access Mode ..................................................... 1258 24-7. Data Transfer Between IF1 / IF2 Registers and Message RAM .................................................. 1260 24-8. Initialization of a Transmit Object 1262 24-9. Initialization of a Single Receive Object for Data Frames 1262 24-10. 24-11. 24-12. 24-13. 24-14. 24-15. 24-16. 24-17. 24-18. 24-19. 24-20. 24-21. 24-22. 24-23. 24-24. 24-25. 24-26. 24-27. 24-28. 24-29. 24-30. 24-31. 24-32. 24-33. 24-34. 24-35. 24-36. 24-37. 24-38. 24-39. 24-40. 24-41. 24-42. 24-43. 24-44. 24-45. 24-46. 24-47. 24-48. 24-49. 24-50. 24-51. 24-52. 54 ..................................................................................... ......................................................... Initialization of a Single Receive Object for Remote Frames ...................................................... CPU Handling of a FIFO Buffer (Interrupt Driven) .................................................................. CAN Interrupt Topology 1 .............................................................................................. CAN Interrupt Topology 2 .............................................................................................. Local Power-Down Mode Flow Diagram ............................................................................. CAN Core in Silent Mode .............................................................................................. CAN Core in Loop Back Mode ........................................................................................ CAN Core in External Loop Back Mode .............................................................................. CAN Core in Loop Back Combined with Silent Mode .............................................................. CAN Control Register (DCAN CTL) [offset = 00] ................................................................... Error and Status Register (DCAN ES) [offset = 04h] ............................................................... Error Counter Register (DCAN ERRC) [offset = 08h] .............................................................. Bit Timing Register (DCAN BTR) [offset = 0Ch] .................................................................... Interrupt Register (DCAN INT) [offset = 10h] ........................................................................ Test Register (DCAN TEST) [offset = 14h] .......................................................................... Parity Error Code Register (DCAN PERR) [offset = 1Ch] ......................................................... Core Release Register (DCAN REL) [offset = 20h] ................................................................ Auto-Bus-On Time Register (DCAN ABOTR) [offset = 80h]....................................................... Transmission Request X Register (DCAN TXRQ X) [offset = 84h] ............................................... Transmission Request 12 Register [offset = 88h] ................................................................... Transmission Request 34 Register [offset = 8Ch] .................................................................. Transmission Request 56 Register [offset = 90h] ................................................................... Transmission Request 78 Register [offset = 94h] ................................................................... New Data X Register (DCAN NWDAT X) [offset = 98h] ........................................................... New Data 12 Register [offset = 9Ch] ................................................................................. New Data 34 Register [offset = A0h] ................................................................................. New Data 56 Register [offset = A4h] ................................................................................. New Data 78 Register [offset = A8h] ................................................................................. Interrupt Pending X Register (DCAN INTPND X) [offset = ACh] ................................................. Interrupt Pending 12 Register [offset = B0h] ........................................................................ Interrupt Pending 34 Register [offset = B4h] ........................................................................ Interrupt Pending 56 Register [offset = B8h] ........................................................................ Interrupt Pending 78 Register [offset = BCh] ........................................................................ Message Valid X Register (DCAN MSGVAL X) [offset = C0h].................................................... Message Valid 12 Register [offset = C4h] ........................................................................... Message Valid 34 Register [offset = C8h] ........................................................................... Message Valid 56 Register [offset = CCh] ........................................................................... Message Valid 78 Register [offset = D0h] ........................................................................... Interrupt Multiplexer 12 Register [offset = D8h] ..................................................................... Interrupt Multiplexer 34 Register [offset = DCh] ..................................................................... Interrupt Multiplexer 56 Register [offset = E0h] ..................................................................... Interrupt Multiplexer 78 Register [offset = E4h] ..................................................................... IF1 Command Registers (DCAN IF1CMD) [offset = 100h] ........................................................ List of Figures 1263 1268 1271 1272 1274 1275 1276 1277 1278 1282 1284 1286 1287 1288 1289 1290 1290 1291 1291 1292 1292 1292 1292 1293 1294 1294 1294 1294 1295 1296 1296 1296 1296 1297 1298 1298 1298 1298 1299 1299 1299 1299 1300 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 24-53. IF2 Command Registers (DCAN IF2CMD) [offset = 120h] ........................................................ 1300 24-54. IF1 Mask Register (DCAN IF1MSK) [offset = 104h] ................................................................ 1303 24-55. IF2 Mask Register (DCAN IF2MSK) [offset = 124h] ................................................................ 1303 24-56. IF1 Arbitration Register (DCAN IF1ARB) [offset = 108h] .......................................................... 1304 24-57. IF2 Arbitration Register (DCAN IF2ARB) [offset = 128h] .......................................................... 1304 24-58. IF1 Message Control Register (DCAN IF1MCTL) [offset = 10Ch] ................................................ 1305 24-59. IF2 Message Control Register (DCAN IF2MCTL) [offset = 12Ch] ................................................ 1305 24-60. IF1 Data A Register (DCAN IF1DATA) [offset = 110h] ............................................................. 1307 24-61. IF1 Data B Register (DCAN IF1DATB) [offset = 114h] ............................................................. 1307 24-62. IF2 Data A Register (DCAN IF2DATA) [offset = 130h] ............................................................. 1307 24-63. IF2 Data B Register (DCAN IF2DATB) [offset = 134h] ............................................................. 1307 24-64. IF3 Observation Register (DCAN IF3OBS) [offset = 140h] ........................................................ 1308 24-65. IF3 Mask Register (DCAN IF3MSK) [offset = 144h] ................................................................ 1310 24-66. IF3 Arbitration Register (DCAN IF3ARB) [offset = 148h] .......................................................... 1311 24-67. IF3 Message Control Register (DCAN IF3MCTL) [offset = 14Ch] ............................................... 1312 24-68. IF3 Data A Register (DCAN IF3DATA) [offset = 150h] ............................................................. 1313 24-69. IF3 Data B Register (DCAN IF3DATB) [offset = 154h] ............................................................. 1313 ..................................................................... ..................................................................... IF3 Update Enable 56 Register [offset = 168h] ..................................................................... IF3 Update Enable 78 Register [offset = 16Ch] ..................................................................... CAN TX IO Control Register (DCAN TIOC) [offset = 1E0h] ....................................................... CAN RX IO Control Register (DCAN RIOC) [offset = 1E4h] ...................................................... SPI Functional Logic Diagram ......................................................................................... SPI Three-Pin Operation ............................................................................................... Operation with SPICS .................................................................................................. Operation with SPIENA ................................................................................................. SPI Five-Pin Option with SPIENA and SPICS ...................................................................... Format for Transmitting an 12-Bit Word .............................................................................. Format for Receiving an 10-Bit Word ................................................................................. Clock Mode with Polarity = 0 and Phase = 0 ........................................................................ Clock Mode with Polarity = 0 and Phase = 1 ........................................................................ Clock Mode with Polarity = 1 and Phase = 0 ........................................................................ Clock Mode with Polarity = 1 and Phase = 1 ........................................................................ Five Bits per Character (5-Pin Option) ............................................................................... Typical Diagram when a Buffer in Master is in CSHOLD Mode (SPI-SPI) ...................................... Block Diagram Shift Register, MSB First ............................................................................. Block Diagram Shift Register, LSB First ............................................................................. 2-data Line Mode (Phase 0, Polarity 0) .............................................................................. Two-Pin Parallel Mode Timing Diagram (Phase 0, Polarity 0) .................................................... 4-Data Line Mode (Phase 0, Polarity 0) .............................................................................. 4 Pins Parallel Mode Timing Diagram (Phase 0, Polarity 0)....................................................... 8-data Line Mode (Phase 0, Polarity 0) .............................................................................. 8 Pins Parallel Mode Timing Diagram (Phase 0, Polarity 0)....................................................... I/O Paths during I/O Loopback Modes ............................................................................... TG Interrupt Structure .................................................................................................. SPIFLG Interrupt Structure............................................................................................. DMA Channel and Request Line (Logical) Structure in Multi-buffer Mode ...................................... SPI Global Control Register 0 (SPIGCR0) [offset = 00] ............................................................ 24-70. IF3 Update Enable 12 Register [offset = 160h] 1314 24-71. IF3 Update Enable 34 Register [offset = 164h] 1314 24-72. 1314 24-73. 24-74. 24-75. 25-1. 25-2. 25-3. 25-4. 25-5. 25-6. 25-7. 25-8. 25-9. 25-10. 25-11. 25-12. 25-13. 25-14. 25-15. 25-16. 25-17. 25-18. 25-19. 25-20. 25-21. 25-22. 25-23. 25-24. 25-25. 25-26. SPNU499C – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 1314 1315 1316 1322 1323 1324 1325 1326 1327 1327 1328 1328 1329 1329 1330 1332 1334 1334 1337 1337 1338 1338 1339 1340 1342 1345 1345 1346 1350 55 www.ti.com 25-27. SPI Global Control Register 1 (SPIGCR1) [offset = 04h] .......................................................... 1351 25-28. SPI Interrupt Register (SPIINT0) [offset = 08h] ..................................................................... 1352 25-29. SPI Interrupt Level Register (SPILVL) [offset = 0Ch] ............................................................... 1354 .......................................................................... SPI Pin Control Register 0 (SPIPC0) [offset = 14h] ................................................................ SPI Pin Control Register 1 (SPIPC1) [offset = 18h] ............................................................... SPI Pin Control Register 2 (SPIPC2) [offset = 1Ch] ................................................................ SPI Pin Control Register 3 (SPIPC3) [offset = 20h] ............................................................... SPI Pin Control Register 4 (SPIPC4) [offset = 24h] ............................................................... SPI Pin Control Register 5 (SPIPC5) [offset = 28h] ............................................................... SPI Pin Control Register 6 (SPIPC6) [offset = 2Ch] ............................................................... SPI Pin Control Register 7 (SPIPC7) [offset = 30h] ............................................................... SPI Pin Control Register 8 (SPIPC8) [offset = 34h] ............................................................... SPI Transmit Data Register 0 (SPIDAT0) [offset = 38h] ........................................................... SPI Transmit Data Register 1 (SPIDAT1) [offset = 3Ch]........................................................... SPI Receive Buffer Register (SPIBUF) [offset = 40h] .............................................................. SPI Emulation Register (SPIEMU) [offset = 44h] ................................................................... SPI Delay Register (SPIDELAY) [offset = 48h] ..................................................................... Example: tC2TDELAY= 8 VCLK Cycles.................................................................................... Example: tT2CDELAY= 4 VCLK Cycles.................................................................................... Transmit-Data-Finished-to-ENA-Inactive-Timeout .................................................................. Chip-Select-Active-to-ENA-Signal-Active-Timeout .................................................................. SPI Default Chip Select Register (SPIDEF) [offset = 4Ch] ........................................................ SPI Data Format Registers (SPIFMT[3:0]) [offset = 5Ch-50h] .................................................... Interrupt Vector 0 (NTVECT0) [offset = 60h] ........................................................................ Interrupt Vector 1 (INTVECT1) [offset = 64h]........................................................................ SPI Pin Control Register 9 (SPIPC9) [offset = 68h] ............................................................... Parallel/Modulo Mode Control Register (SPIPMCTRL) [offset = 6Ch] ........................................... Multi-buffer Mode Enable Register (MIBSPIE) [offset = 70h]...................................................... TG Interrupt Enable Set Register (TGITENST) [offset = 74h] ..................................................... TG Interrupt Enable Clear Register (TGITENCR) [offset = 78h] .................................................. Transfer Group Interrupt Level Set Register (TGITLVST) [offset = 7Ch] ........................................ Transfer Group Interrupt Level Clear Register (TGITLVCR) [offset = 80h] ...................................... Transfer Group Interrupt Flag Register (TGINTFLG) [offset = 84h] .............................................. Tick Counter Operation ................................................................................................. Tick Count Register (TICKCNT) [offset = 90h] ...................................................................... Last TG End Pointer (LTGPEND) [offset = 94h] .................................................................... MibSPI TG Control Registers (TGxCTRL) [offsets = 98h-D4h] ................................................... DMA Channel Control Register (DMAxCTRL) [offset = D8h-F4h] ................................................ DMAxCOUNT Register (ICOUNT) [offset = F8h-114h] ............................................................ DMA Large Count Register (DMACNTLEN) [offset = 118h] ....................................................... Multi-buffer RAM Uncorrectable Parity Error Control Register (UERRCTRL) [offset = 120h] ................. Multi-buffer RAM Uncorrectable Parity Error Status Register (UERRSTAT) [offset = 124h] .................. RXRAM Uncorrectable Parity Error Address Register (UERRADDR1) [offset = 128h] ........................ TXRAM Uncorrectable Parity Error Address Register (UERRADDR0) [offset = 12Ch] ........................ RXRAM Overrun Buffer Address Register (RXOVRN_BUF_ADDR) [offset = 130h] ........................... I/O-Loopback Test Control Register (IOLPBKTSTCR) [offset = 134h] ........................................... 25-30. SPI Flag Register (SPIFLG) [offset = 10h] 25-31. 25-32. 25-33. 25-34. 25-35. 25-36. 25-37. 25-38. 25-39. 25-40. 25-41. 25-42. 25-43. 25-44. 25-45. 25-46. 25-47. 25-48. 25-49. 25-50. 25-51. 25-52. 25-53. 25-54. 25-55. 25-56. 25-57. 25-58. 25-59. 25-60. 25-61. 25-62. 25-63. 25-64. 25-65. 25-66. 25-67. 25-68. 25-69. 25-70. 25-71. 25-72. 25-73. 1355 1358 1359 1361 1362 1363 1365 1366 1368 1369 1370 1372 1375 1377 1377 1379 1379 1379 1379 1380 1381 1383 1384 1386 1387 1390 1391 1392 1393 1394 1395 1396 1396 1397 1398 1401 1403 1404 1404 1405 1406 1407 1408 1409 25-74. SPI Extended Prescale Register 1 (EXTENDED_PRESCALE1 for SPIFMT0 and SPIFMT1) [offset = 138h] ...................................................................................................................... 1411 56 List of Figures SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 25-75. SPI Extended Prescale Register 2 (EXTENDED_PRESCALE2 for SPIFMT2 and SPIFMT3) [offset = 13Ch]...................................................................................................................... 1413 ....................................................................................... Multi-Buffer RAM Transmit Data Register (TXRAM) [offset = RAM Base + 0h-1FFh] ......................... Multi-Buffer RAM Receive Buffer Register (RXRAM) [offset = RAM Base + 200h-3FFh] ..................... Memory Map for Parity Locations During Normal and Test Mode ................................................ Example of Memory-Mapped Parity Locations During Test Mode................................................ SPI/MibSPI Pins During Master Mode 3-pin Configuration ........................................................ SPI/MibSPI Pins During Master Mode 4-pin with SPICS Configuation .......................................... SPI/MibSPI Pins During Master Mode 4-pin with SPIENA Configuration........................................ SPI/MibSPI Pins During Master/Slave Mode with 5-pin Configuration ........................................... SPI/MibSPI Pins During Slave Mode 3-pin Configuration ......................................................... SPI/MibSPI Pins During Slave Mode 4-pin with SPIENA Configuration ......................................... SPI/MibSPI Pins During Slave Mode in 5-pin Configuration - (Single Slave) ................................... SPI/MibSPI Pins During Slave Mode in 5-pin Configuration - (Single/Multi Slave) ............................. Detailed SCI Block Diagram ........................................................................................... SCI/LIN Block Diagram ................................................................................................. Typical SCI Data Frame Formats ..................................................................................... Asynchronous Communication Bit Timing ........................................................................... Superfractional Divider Example ...................................................................................... Idle-Line Multiprocessor Communication Format ................................................................... Address-Bit Multiprocessor Communication Format................................................................ Receive Buffers .......................................................................................................... Transmit Buffers ......................................................................................................... General Interrupt Scheme .............................................................................................. Interrupt Generation for Given Flags ................................................................................. LIN Protocol Message Frame Format: Master Header and Slave Response ................................... Header 3 Fields: Synch Break, Synch, and ID ...................................................................... Response Format of LIN Message Frame ........................................................................... Message Header in Terms of Tbit ...................................................................................... ID Field ................................................................................................................... Measurements for Synchronization ................................................................................... Synchronization Validation Process and Baud Rate Adjustment ................................................. Optional Embedded Checksum in Response for Extended Frames ............................................. Checksum Compare and Send for Extended Frames.............................................................. TXRX Error Detector .................................................................................................... Classic Checksum Generation at Transmitting Node .............................................................. LIN 2.0-Compliant Checksum Generation at Transmitting Node ................................................. ID Reception, Filtering and Validation ................................................................................ LIN Message Frame Showing LIN Interrupt Timing and Sequence .............................................. Wakeup Signal Generation ............................................................................................ SCI Global Control Register 0 (SCIGCR0) [offset = 00] ........................................................... SCI Global Control Register 1 (SCIGCR1) [offset = 04h] .......................................................... SCI Global Control Register 2 (SCIGCR2) [offset = 08h] .......................................................... SCI Set Interrupt Register (SCISETINT) [offset = 0Ch] ............................................................ SCI Clear Interrupt Register (SCICLEARINT) [offset = 10h] ...................................................... SCI Set Interrupt Level Register (SCISETINTLVL) [offset = 14h] ................................................ SCI Clear Interrupt Level Register (SCICLEARINTLVL) [offset = 18h] .......................................... SCI Flags Register (SCIFLR) [offset = 1Ch] ......................................................................... 25-76. Multi-Buffer RAM Configuration 25-77. 25-78. 25-79. 25-80. 25-81. 25-82. 25-83. 25-84. 25-85. 25-86. 25-87. 25-88. 26-1. 26-2. 26-3. 26-4. 26-5. 26-6. 26-7. 26-8. 26-9. 26-10. 26-11. 26-12. 26-13. 26-14. 26-15. 26-16. 26-17. 26-18. 26-19. 26-20. 26-21. 26-22. 26-23. 26-24. 26-25. 26-26. 26-27. 26-28. 26-29. 26-30. 26-31. 26-32. 26-33. 26-34. SPNU499C – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 1415 1417 1420 1423 1424 1425 1425 1426 1426 1427 1427 1427 1427 1433 1434 1435 1436 1438 1440 1440 1441 1442 1443 1444 1451 1451 1452 1455 1455 1457 1458 1459 1460 1462 1463 1463 1465 1468 1472 1475 1476 1480 1482 1485 1489 1492 1495 57 www.ti.com 26-35. SCI Interrupt Vector Offset 0 (SCIINTVECT0) [offset = 20h] ...................................................... 1502 26-36. SCI Interrupt Vector Offset 1 (SCIINTVECT1) [offset = 24h] ...................................................... 1502 26-37. SCI Format Control Register (SCIFORMAT) [offset = 28h] ....................................................... 1503 26-38. Baud Rate Selection Register (BRS) [offset = 2Ch] ................................................................ 1504 26-39. Receiver Emulation Data Buffer (SCIED) [offset = 30h] ........................................................... 1505 26-40. Receiver Data Buffer (SCIRD) [offset = 34h] ........................................................................ 1506 26-41. Transmit Data Buffer Register (SCITD) [offset = 38h] .............................................................. 1507 26-42. SCI Pin I/O Control Register 0 (SCIPIO0) [offset = 3Ch] ......................................................... 1507 26-43. SCI Pin I/O Control Register 1 (SCIPIO1) [offset = 40h] ........................................................... 1508 26-44. SCI Pin I/O Control Register 2 (SCIPIO2) [offset = 44h] .......................................................... 1509 26-45. SCI Pin I/O Control Register 3 (SCIPIO3) [offset = 48h] ........................................................... 1510 26-46. SCI Pin I/O Control Register 4 (SCIPIO4) [offset = 4Ch] ......................................................... 1511 26-47. SCI Pin I/O Control Register 5 (SCIPIO5) [offset = 50h] ........................................................... 1512 1513 26-49. 1514 26-50. 26-51. 26-52. 26-53. 26-54. 26-55. 26-56. 26-57. 26-58. 26-59. 26-60. 27-1. 27-2. 27-3. 27-4. 27-5. 27-6. 27-7. 27-8. 27-9. 27-10. 27-11. 27-12. 27-13. 27-14. 27-15. 27-16. 27-17. 27-18. 27-19. 27-20. 27-21. 27-22. 27-23. 58 .......................................................... SCI Pin I/O Control Register 7 (SCIPIO7) [offset = 58h] ........................................................... SCI Pin I/O Control Register 8 (SCIPIO8) [offset = 5Ch] ......................................................... LIN Compare Register (LINCOMPARE) [offset = 60h] ............................................................. LIN Receive Buffer 0 Register (LINRD0) [offset = 64h] ............................................................ LIN Receive Buffer 1 Register (RD1) [offset = 68h] ................................................................ LIN Mask Register (LINMASK) [offset = 6Ch] ....................................................................... LIN Identification Register (LINID) [offset = 70h] .................................................................... LIN Transmit Buffer 0 Register (LINTD0) [offset = 74h] ............................................................ LIN Transmit Buffer 1 Register (LINTD1) [offset = 78h] ............................................................ Maximum Baud Rate Selection Register (MBRS) [offset = 7Ch] ................................................. Input/Output Error Enable Register (IODFTCTRL) [offset = 90h] ................................................. GPIO Functionality ...................................................................................................... Detailed SCI Block Diagram ........................................................................................... Typical SCI Data Frame Formats ..................................................................................... Asynchronous Communication Bit Timing ........................................................................... Idle-Line Multiprocessor Communication Format ................................................................... Address-Bit Multiprocessor Communication Format................................................................ General Interrupt Scheme .............................................................................................. Interrupt Generation for Given Flags ................................................................................. SCI Global Control Register 0 (SCIGCR0) [offset = 00] ........................................................... SCI Global Control Register 1 (SCIGCR1) [offset = 04h] .......................................................... SCI Set Interrupt Register (SCISETINT) [offset = 0Ch] ............................................................ SCI Clear Interrupt Register (SCICLEARINT) [offset = 10h] ...................................................... SCI Set Interrupt Level Register (SCISETINTLVL) [offset = 14h] ................................................ SCI Clear Interrupt Level Register (SCICLEARINTLVL) [offset = 18h] .......................................... SCI Flags Register (SCIFLR) [offset = 1Ch] ......................................................................... SCI Interrupt Vector Offset 0 (SCIINTVECT0) [offset = 20h] ...................................................... SCI Interrupt Vector Offset 1 (SCIINTVECT1) [offset = 24h] ...................................................... SCI Format Control Register (SCIFORMAT) [offset = 28h] ....................................................... Baud Rate Selection Register (BRS) [offset = 2Ch] ................................................................ Receiver Emulation Data Buffer (SCIED) [offset = 30h] ........................................................... Receiver Data Buffer (SCIRD) [offset = 34h] ........................................................................ Transmit Data Buffer Register (SCITD) [offset = 38h] .............................................................. SCI Pin I/O Control Register 0 (SCIPIO0) [offset = 3Ch] ......................................................... SCI Pin I/O Control Register 1 (SCIPIO1) [offset = 40h] ........................................................... 26-48. SCI Pin I/O Control Register 6 (SCIPIO6) [offset = 54h] List of Figures 1514 1515 1516 1516 1517 1518 1519 1519 1520 1521 1523 1527 1528 1529 1531 1532 1533 1534 1541 1542 1545 1547 1549 1550 1552 1556 1556 1557 1558 1559 1559 1560 1560 1561 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com .......................................................... SCI Pin I/O Control Register 3 (SCIPIO3) [offset = 48h] ........................................................... SCI Pin I/O Control Register 4 (SCIPIO4) [offset = 4Ch] ......................................................... SCI Pin I/O Control Register 5 (SCIPIO5) [offset = 50h] ........................................................... SCI Pin I/O Control Register 6 (SCIPIO6) [offset = 54h] .......................................................... SCI Pin I/O Control Register 7 (SCIPIO7) [offset = 58h] ........................................................... SCI Pin I/O Control Register 8 (SCIPIO8) [offset = 5Ch] ......................................................... Input/Output Error Enable Register (IODFTCTRL) [offset = 90h] ................................................. GPIO Functionality ...................................................................................................... Multiple I2C Modules Connection Diagram .......................................................................... Simple I2C Block Diagram ............................................................................................. Clocking Diagram for the I2C Module ................................................................................ Bit Transfer on the I2C Bus ............................................................................................ I2C Module START and STOP Conditions .......................................................................... I2C Module Data Transfer.............................................................................................. I2C Module 7-Bit Addressing Format ................................................................................. I2C Module 10-bit Addressing Format ................................................................................ I2C Module 7-Bit Addressing Format with Repeated START ..................................................... I2C Module in Free Data Format ...................................................................................... Arbitration Procedure Between Two Master Transmitters ......................................................... Synchronization of Two I2C Clock Generators During Arbitration ................................................ I2C Own Address Manager Register (I2COAR) [offset = 00h] .................................................... I2C Interrupt Mask Register (I2CIMR) [offset = 04h] ............................................................... I2C Status Register (I2CSR) [offset = 08h] .......................................................................... I2C Clock Divider Low Register (I2CCKL) [offset = 0Ch] .......................................................... I2C Clock Control High Register (I2CCKH) [offset = 10h] ......................................................... I2C Data Count Register (I2CCNT) [offset = 14h] .................................................................. I2C Data Receive Register (I2CDRR) [offset = 18h] ............................................................... I2C Slave Address Register (I2CSAR) [offset = 1Ch] .............................................................. I2C Data Transmit Register (I2CDXR) [offset = 20h] ............................................................... I2C Mode Register (I2CMDR) [offset = 24h] ......................................................................... Typical Timing Diagram of Repeat Mode ............................................................................ I2C Interrupt Vector Register (I2CIVR) [offset = 28h] .............................................................. I2C Extended Mode Register (I2CEMDR) [offset = 2Ch] .......................................................... I2C Prescale Register (I2CPSC) [offset = 30h] ..................................................................... I2C Peripheral ID Register 1 (I2CPID1) [offset = 34h] ............................................................. I2C Peripheral ID Register 2 (I2CPID2) [offset = 38h] ............................................................. I2C DMA Control Register (I2CDMACR) [offset = 3Ch] ............................................................ I2C Pin Function Register (I2CPFNC) [offset = 48h] ............................................................... I2C Pin Direction Register (I2CPDIR) [offset = 4Ch] ............................................................... I2C Data Input Register (I2CDIN) [offset = 50h] .................................................................... I2C Data Output Register (I2CDOUT) [offset 0x54] ................................................................ I2C Data Set Register (I2CDSET) [offset = 58h] .................................................................... I2C Data Clear Register (I2CDCLR) [offset = 5Ch] ................................................................. I2C Pin Open Drain Register (I2CPDR) [offset = 60h] ............................................................. I2C Pull Disable Register (I2CPDIS) [offset = 64h] ................................................................. I2C Pull Select Register (I2CPSEL) [offset = 68h] .................................................................. I2C Pins Slew Rate Select Register (I2CSRS) [offset = 6Ch] ..................................................... Difference between Normal Operation and Backward Compatibility Mode...................................... 27-24. SCI Pin I/O Control Register 2 (SCIPIO2) [offset = 44h] 1562 27-25. 1563 27-26. 27-27. 27-28. 27-29. 27-30. 27-31. 27-32. 28-1. 28-2. 28-3. 28-4. 28-5. 28-6. 28-7. 28-8. 28-9. 28-10. 28-11. 28-12. 28-13. 28-14. 28-15. 28-16. 28-17. 28-18. 28-19. 28-20. 28-21. 28-22. 28-23. 28-24. 28-25. 28-26. 28-27. 28-28. 28-29. 28-30. 28-31. 28-32. 28-33. 28-34. 28-35. 28-36. 28-37. 28-38. 28-39. 28-40. SPNU499C – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 1564 1565 1566 1567 1567 1568 1570 1573 1575 1576 1577 1578 1578 1579 1579 1579 1580 1583 1584 1589 1590 1591 1594 1594 1595 1595 1596 1596 1597 1599 1600 1601 1601 1602 1602 1603 1603 1604 1604 1605 1605 1606 1606 1607 1607 1608 1609 59 www.ti.com 29-1. 29-2. 29-3. 29-4. 29-5. 29-6. 29-7. 29-8. 29-9. 29-10. 29-11. 29-12. 29-13. 29-14. 29-15. 29-16. 29-17. 29-18. 29-19. 29-20. 29-21. 29-22. 29-23. 29-24. 29-25. 29-26. 29-27. 29-28. 29-29. 29-30. 29-31. 29-32. 29-33. 29-34. 29-35. 29-36. 29-37. 29-38. 29-39. 29-40. 29-41. 29-42. 29-43. 29-44. 29-45. 29-46. 29-47. 29-48. 29-49. 60 ..................................................................................... Ethernet Configuration—MII Connections ........................................................................... Ethernet Configuration—RMII Connections.......................................................................... Ethernet Frame Format ................................................................................................. Basic Descriptor Format ................................................................................................ Typical Descriptor Linked List ......................................................................................... Transmit Packet Add Flow Chart ...................................................................................... Generate Transmit Packet Flow Chart ............................................................................... Transmit Queue Interrupt Processing Flow Chart .................................................................. Transmit Buffer Descriptor Format .................................................................................... Receive Buffer Descriptor Format..................................................................................... EMAC Control Module Block Diagram ............................................................................... MDIO Module Block Diagram .......................................................................................... EMAC Module Block Diagram ......................................................................................... EMAC Control Module Revision ID Register (REVID) ............................................................. EMAC Control Module Software Reset Register (SOFTRESET) ................................................. EMAC Control Module Interrupt Control Register (INTCONTROL) .............................................. EMAC Control Module Receive Threshold Interrupt Enable Register (C0RXTHRESHEN) ................... EMAC Control Module Receive Interrupt Enable Register (C0RXEN) ........................................... EMAC Control Module Transmit Interrupt Enable Register (C0TXEN) .......................................... EMAC Control Module Miscellaneous Interrupt Enable Register (C0MISCEN) ................................ EMAC Control Module Receive Threshold Interrupt Status Register (C0RXTHRESHSTAT) ................ EMAC Control Module Receive Interrupt Status Register (C0RXSTAT) ........................................ EMAC Control Module Transmit Interrupt Status Register (C0TXSTAT) ........................................ EMAC Control Module Miscellaneous Interrupt Status Register (C0MISCSTAT) .............................. EMAC Control Module Receive Interrupts Per Millisecond Register (C0RXIMAX) ............................. EMAC Control Module Transmit Interrupts Per Millisecond Register (C0TXIMAX) ............................ MDIO Revision ID Register (REVID) ................................................................................. MDIO Control Register (CONTROL).................................................................................. PHY Acknowledge Status Register (ALIVE) ......................................................................... PHY Link Status Register (LINK)...................................................................................... MDIO Link Status Change Interrupt (Unmasked) Register (LINKINTRAW) ..................................... MDIO Link Status Change Interrupt (Masked) Register (LINKINTMASKED) ................................... MDIO User Command Complete Interrupt (Unmasked) Register (USERINTRAW) ............................ MDIO User Command Complete Interrupt (Masked) Register (USERINTMASKED) .......................... MDIO User Command Complete Interrupt Mask Set Register (USERINTMASKSET) ........................ MDIO User Command Complete Interrupt Mask Clear Register (USERINTMASKCLEAR) .................. MDIO User Access Register 0 (USERACCESS0) .................................................................. MDIO User PHY Select Register 0 (USERPHYSEL0) ............................................................. MDIO User Access Register 1 (USERACCESS1) .................................................................. MDIO User PHY Select Register 1 (USERPHYSEL1) ............................................................. Transmit Revision ID Register (TXREVID) .......................................................................... Transmit Control Register (TXCONTROL) ........................................................................... Transmit Teardown Register (TXTEARDOWN) ..................................................................... Receive Revision ID Register (RXREVID) ........................................................................... Receive Control Register (RXCONTROL) ........................................................................... Receive Teardown Register (RXTEARDOWN) ..................................................................... Transmit Interrupt Status (Unmasked) Register (TXINTSTATRAW) ............................................. Transmit Interrupt Status (Masked) Register (TXINTSTATMASKED) ........................................... EMAC and MDIO Block Diagram List of Figures 1612 1614 1616 1618 1619 1620 1622 1623 1624 1626 1629 1633 1635 1639 1661 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1689 1689 1690 1690 1691 1691 1692 1693 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 29-50. Transmit Interrupt Mask Set Register (TXINTMASKSET) ......................................................... 1694 29-51. Transmit Interrupt Mask Clear Register (TXINTMASKCLEAR) ................................................... 1695 29-52. MAC Input Vector Register (MACINVECTOR) ...................................................................... 1696 29-53. MAC End Of Interrupt Vector Register (MACEOIVECTOR) ....................................................... 1697 29-54. Receive Interrupt Status (Unmasked) Register (RXINTSTATRAW) ............................................. 1698 29-55. Receive Interrupt Status (Masked) Register (RXINTSTATMASKED) ............................................ 1699 29-56. Receive Interrupt Mask Set Register (RXINTMASKSET) .......................................................... 1700 29-57. Receive Interrupt Mask Clear Register (RXINTMASKCLEAR) ................................................... 1701 29-58. MAC Interrupt Status (Unmasked) Register (MACINTSTATRAW) ............................................... 1702 29-59. MAC Interrupt Status (Masked) Register (MACINTSTATMASKED) ............................................. 1702 29-60. MAC Interrupt Mask Set Register (MACINTMASKSET) ........................................................... 1703 29-61. MAC Interrupt Mask Clear Register (MACINTMASKCLEAR) ..................................................... 1703 29-62. Receive Multicast/Broadcast/Promiscuous Channel Enable Register (RXMBPENABLE)..................... 1704 29-63. Receive Unicast Enable Set Register (RXUNICASTSET) ......................................................... 1706 29-64. Receive Unicast Clear Register (RXUNICASTCLEAR) ............................................................ 1707 29-65. Receive Maximum Length Register (RXMAXLEN) ................................................................. 1707 29-66. Receive Buffer Offset Register (RXBUFFEROFFSET) ............................................................ 1708 29-67. Receive Filter Low Priority Frame Threshold Register (RXFILTERLOWTHRESH) ............................ 1708 ................................... Receive Channel n Free Buffer Count Register (RXnFREEBUFFER) ........................................... MAC Control Register (MACCONTROL) ............................................................................. MAC Status Register (MACSTATUS) ................................................................................ Emulation Control Register (EMCONTROL)......................................................................... FIFO Control Register (FIFOCONTROL) ............................................................................ MAC Configuration Register (MACCONFIG) ........................................................................ Soft Reset Register (SOFTRESET) .................................................................................. MAC Source Address Low Bytes Register (MACSRCADDRLO) ................................................. MAC Source Address High Bytes Register (MACSRCADDRHI) ................................................. MAC Hash Address Register 1 (MACHASH1) ...................................................................... MAC Hash Address Register 2 (MACHASH2) ...................................................................... Back Off Random Number Generator Test Register (BOFFTEST) .............................................. Transmit Pacing Algorithm Test Register (TPACETEST) .......................................................... Receive Pause Timer Register (RXPAUSE)......................................................................... Transmit Pause Timer Register (TXPAUSE) ........................................................................ MAC Address Low Bytes Register (MACADDRLO) ................................................................ MAC Address High Bytes Register (MACADDRHI) ................................................................ MAC Index Register (MACINDEX) .................................................................................... Transmit Channel n DMA Head Descriptor Pointer Register (TXnHDP) ........................................ Receive Channel n DMA Head Descriptor Pointer Register (RXnHDP) ......................................... Transmit Channel n Completion Pointer Register (TXnCP) ....................................................... Receive Channel n Completion Pointer Register (RXnCP) ........................................................ Statistics Register ....................................................................................................... DMM Block Diagram .................................................................................................... Trace Mode Packet Format ............................................................................................ Direct Data Mode Packet Format ..................................................................................... Packet Sync Signal Example .......................................................................................... Example Single Packet Transmission ................................................................................ Interrupt Structure ....................................................................................................... DMM Global Control Register (DMMGLBCTRL) [offset = 00h] ................................................... 29-68. Receive Channel n Flow Control Threshold Register (RXnFLOWTHRESH) 1709 29-69. 1709 29-70. 29-71. 29-72. 29-73. 29-74. 29-75. 29-76. 29-77. 29-78. 29-79. 29-80. 29-81. 29-82. 29-83. 29-84. 29-85. 29-86. 29-87. 29-88. 29-89. 29-90. 29-91. 30-1. 30-2. 30-3. 30-4. 30-5. 30-6. 30-7. SPNU499C – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 1710 1712 1714 1714 1715 1715 1716 1716 1717 1717 1718 1718 1719 1719 1720 1721 1721 1722 1722 1723 1723 1724 1734 1736 1736 1738 1738 1739 1741 61 www.ti.com 30-8. DMM Interrupt Set Register (DMMINTSET) [offset = 04h]......................................................... 1743 30-9. DMM Interrupt Clear Register (DMMINTCLR) [offset = 08h] ...................................................... 1747 30-10. DMM Interrupt Level Register (DMMINTLVL) [offset = 0Ch] ...................................................... 1752 1754 30-12. 1758 30-13. 30-14. 30-15. 30-16. 30-17. 30-18. 30-19. 30-20. 30-21. 30-22. 30-23. 30-24. 30-25. 30-26. 30-27. 30-28. 30-29. 30-30. 31-1. 31-2. 31-3. 31-4. 31-5. 31-6. 31-7. 31-8. 31-9. 31-10. 31-11. 31-12. 31-13. 31-14. 31-15. 31-16. 31-17. 31-18. 31-19. 31-20. 31-21. 31-22. 31-23. 31-24. 32-1. 32-2. 62 ....................................................... DMM Interrupt Offset 1 Register (DMMOFF1) [offset = 14h] ...................................................... DMM Interrupt Offset 2 Register (DMMOFF2) [offset = 18h] ...................................................... DMM Direct Data Mode Destination Register (DMMDDMDEST) [offset = 1Ch] ................................ DMM Direct Data Mode Blocksize Register (DMMDDMBL) [offset = 20h] ...................................... DMM Direct Data Mode Pointer Register (DMMDDMPT) [offset = 24h] ......................................... DMM Direct Data Mode Interrupt Pointer Register (DMMINTPT) [offset = 28h] ................................ DMM Destination x Region 1 (DMMDESTxREG1) [offset = 2Ch, 3Ch, 4Ch, 5Ch] ............................. DMM Destination x Blocksize 1 (DMMDESTxBL1) [offset = 30h, 40h, 50h, 60h] .............................. DMM Destination x Region 2 (DMMDESTxREG2) [offset = 34h, 44h, 54h, 64h] .............................. DMM Destination x Blocksize 2 (DMMDESTxBL2) [offset = 38h, 48h, 58h, 68h] .............................. DMM Pin Control 0 (DMMPC0) [offset = 6Ch] ...................................................................... DMM Pin Control 1 (DMMPC1) [offset = 70h] ....................................................................... DMM Pin Control 2 (DMMPC2) [offset = 74h] ....................................................................... DMM Pin Control 3 (DMMPC3) [offset = 78h] ....................................................................... DMM Pin Control 4 (DMMPC4) [offset = 7Ch] ...................................................................... DMM Pin Control 5 (DMMPC5) [offset = 80h] ....................................................................... DMM Pin Control 6 (DMMPC6) [offset = 84h] ....................................................................... DMM Pin Control 7 (DMMPC7) [offset = 88h] ....................................................................... DMM Pin Control 8 (DMMPC8) [offset = 8Ch] ...................................................................... Block Diagram RAM Trace Port Module ............................................................................. Packet Format Trace Mode for RAM Locations ..................................................................... Packet Format Trace Mode for Peripheral Locations .............................................................. Packet Format in Direct Data Mode .................................................................................. Example for Trace Region Setup ..................................................................................... FIFO Overflow Handling ................................................................................................ RTP Packet Transfer with Sync Signal ............................................................................... Packet Format in Trace Mode ......................................................................................... RTP Global Control Register (RTPGLBCTRL) [offset = 00h] ..................................................... RTP Trace Enable Register (RTPTRENA) [offset = 04h] .......................................................... RTP Global Status Register (RTPGSR) [offset = 08h] ............................................................. RTP RAM 1 Trace Region [1:2] Register (RTPRAM1REG[1:2]) [offset = 0Ch, 10h]........................... RTP RAM 2 Trace Region [1:2] Register (RTPRAM2REG[1:2]) [offset = 14h, 18h] ........................... RTP Peripheral Trace Region [1:2] Register (RTPPERREG[1:2]) [offset = 24h, 28h] ......................... RTP Direct Data Mode Write Register (RTPDDMW) [offset = 2Ch] .............................................. RTP Pin Control 0 Register (RTPPC0) [offset = 34h] .............................................................. RTP Pin Control 1 Register (RTPPC1) [offset = 38h] .............................................................. RTP Pin Control 2 Register (RTPPC2) [offset = 3Ch] .............................................................. RTP Pin Control 3 Register (RTPPC3) [offset = 40h] .............................................................. RTP Pin Control 4 Register (RTPPC4) [offset = 44h] .............................................................. RTP Pin Control 5 Register (RTPPC5) [offset = 48h] .............................................................. RTP Pin Control 6 Register (RTPPC6) [offset = 4Ch] .............................................................. RTP Pin Control 7 Register (RTPPC7) [offset = 50h] .............................................................. RTP Pin Control 8 Register (RTPPC8) [offset = 54h] .............................................................. eFuse Self Test Flow Chart ............................................................................................ EFC Boundary Control Register (EFCBOUND) [offset = 1Ch] .................................................... 30-11. DMM Interrupt Flag Register (DMMINTFLG) [offset = 10h] List of Figures 1759 1760 1760 1761 1761 1762 1763 1764 1765 1766 1767 1769 1770 1771 1773 1774 1776 1777 1780 1781 1781 1783 1784 1785 1786 1786 1788 1791 1792 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1806 1807 1811 1812 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 32-3. 32-4. 32-5. 32-6. ...................................................................... EFC Error Status Register (EFCERRSTAT) [offset = 3Ch] ........................................................ EFC Self Test Cycles Register (EFCSTCY) [offset = 48h] ........................................................ EFC Self Test Cycles Register (EFCSTSIG) [offset = 4Ch] ....................................................... EFC Pins Register (EFCPINS) [offset = 2Ch] SPNU499C – March 2018 Submit Documentation Feedback List of Figures Copyright © 2018, Texas Instruments Incorporated 1814 1815 1815 1816 63 www.ti.com List of Tables 2-1. Definition of Terms........................................................................................................ 100 2-2. Bus Master / Slave Access Privileges 2-3. 2-4. 2-5. 2-6. 2-7. 2-8. 2-9. 2-10. 2-11. 2-12. 2-13. 2-14. 2-15. 2-16. 2-17. 2-18. 2-19. 2-20. 2-21. 2-22. 2-23. 2-24. 2-25. 2-26. 2-27. 2-28. 2-29. 2-30. 2-31. 2-32. 2-33. 2-34. 2-35. 2-36. 2-37. 2-38. 2-39. 2-40. 2-41. 2-42. 2-43. 2-44. 2-45. 2-46. 2-47. 64 ................................................................................. Module Registers / Memories Memory-Map .......................................................................... Flash Memory Banks and Sectors...................................................................................... PBIST Memory Grouping ................................................................................................ PBIST Algorithm Mapping ............................................................................................... Memory Initialization Select Mapping ................................................................................. Causes of Resets ......................................................................................................... Clock Sources ............................................................................................................. Clock Domains ............................................................................................................ Typical Low-Power Modes............................................................................................... Clock Test Mode Options ................................................................................................ EXTCTL_Out_Port Register Field Descriptions ...................................................................... DCC1 Counter 0 Clock Inputs .......................................................................................... DCC1 Counter 1 Clock / Signal Inputs ................................................................................. DCC2 Counter 0 Clock Inputs .......................................................................................... DCC2 Counter 1 Clock / Signal Inputs ................................................................................. Primary System Control Registers ..................................................................................... SYS Pin Control Register 1 (SYSPC1) Field Descriptions .......................................................... SYS Pin Control Register 2 (SYSPC2) Field Descriptions .......................................................... SYS Pin Control Register 3 (SYSPC3) Field Descriptions .......................................................... SYS Pin Control Register 4 (SYSPC4) Field Descriptions .......................................................... SYS Pin Control Register 5 (SYSPC5) Field Descriptions .......................................................... SYS Pin Control Register 6 (SYSPC6) Field Descriptions .......................................................... SYS Pin Control Register 7 (SYSPC7) Field Descriptions .......................................................... SYS Pin Control Register 8 (SYSPC8) Field Descriptions .......................................................... SYS Pin Control Register 9 (SYSPC9) Field Descriptions .......................................................... Clock Source Disable Register (CSDIS) Field Descriptions ........................................................ Clock Sources Table ..................................................................................................... Clock Source Disable Set Register (CSDISSET) Field Descriptions .............................................. Clock Source Disable Clear Register (CSDISCLR) Field Descriptions ............................................ Clock Domain Disable Register (CDDIS) Field Descriptions ....................................................... Clock Domain Disable Set Register (CDDISSET) Field Descriptions ............................................. Clock Domain Disable Clear Register (CDDISCLR) Field Descriptions ........................................... GCLK, HCLK, VCLK, and VCLK2 Source Register (GHVSRC) Field Descriptions ............................. Peripheral Asynchronous Clock Source Register (VCLKASRC) Field Descriptions ............................. RTI Clock Source Register (RCLKSRC) Field Descriptions ........................................................ Clock Source Valid Register (CSVSTAT) Field Descriptions ....................................................... Memory Self-Test Global Control Register (MSTGCR) Field Descriptions ....................................... Memory Hardware Initialization Global Control Register (MINITGCR) Field Descriptions ...................... MBIST Controller/Memory Initialization Enable Register (MSINENA) Field Descriptions ....................... MSTC Global Status Register (MSTCGSTAT) Field Descriptions ................................................. Memory Hardware Initialization Status Register (MINISTAT) Field Descriptions ................................ PLL Control Register 1 (PLLCTL1) Field Descriptions .............................................................. PLL Control Register 2 (PLLCTL2) Field Descriptions .............................................................. SYS Pin Control Register 10 (SYSPC10) Field Descriptions ....................................................... Die Identification Register, Lower Word (DIEIDL) Field Descriptions .............................................. List of Tables 102 104 108 110 111 114 115 118 119 122 123 124 126 126 126 126 127 129 129 130 130 131 131 132 132 133 134 134 135 136 137 139 141 143 144 145 146 147 148 149 150 151 152 153 154 155 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 2-48. Die Identification Register, Upper Word (DIEIDH) Field Descriptions ............................................. 155 2-49. LPO/Clock Monitor Control Register (LPOMONCTL) Field Descriptions.......................................... 156 2-50. Clock Test Register (CLKTEST) Field Descriptions.................................................................. 159 2-51. DFT Control Register (DFTCTRLREG) Field Descriptions .......................................................... 161 2-52. DFT Control Register 2 (DFTCTRLREG2) Field Descriptions 2-53. General Purpose Register (GPREG1) Field Descriptions ........................................................... 163 2-54. Imprecise Fault Status Register (IMPFASTS) Field Descriptions .................................................. 165 2-55. Imprecise Fault Write Address Register (IMPFTADD) Field Descriptions 2-56. System Software Interrupt Request 1 Register (SSIR1) Field Descriptions ...................................... 167 2-57. System Software Interrupt Request 2 Register (SSIR2) Field Descriptions ...................................... 167 2-58. System Software Interrupt Request 3 Register (SSIR3) Field Descriptions ...................................... 168 2-59. System Software Interrupt Request 4 Register (SSIR4) Field Descriptions ...................................... 168 2-60. RAM Control Register (RAMGCR) Field Descriptions ............................................................... 169 2-61. Bus Matrix Module Control Register 1 (BMMCR) Field Descriptions .............................................. 170 2-62. CPU Reset Control Register (CPURSTGCR) Field Descriptions 2-63. Clock Control Register (CLKCNTL) Field Descriptions .............................................................. 172 2-64. ECP Control Register (ECPCNTL) Field Descriptions ............................................................... 173 2-65. DEV Parity Control Register 1 (DEVCR1) Field Descriptions 2-66. System Exception Control Register (SYSECR) Field Descriptions ................................................ 174 2-67. System Exception Status Register (SYSESR) Field Descriptions 175 2-68. System Test Abort Status Register (SYSTASR) Field Descriptions 176 2-69. 2-70. 2-71. 2-72. 2-73. 2-74. 2-75. 2-76. 2-77. 2-78. 2-79. 2-80. 2-81. 2-82. 2-83. 2-84. 2-85. 2-86. 2-87. 2-88. 2-89. 2-90. 2-91. 2-92. 2-93. 2-94. 2-95. 2-96. ..................................................... ........................................ .................................................. ...................................................... ................................................. .............................................. Global Status Register (GLBSTAT) Field Descriptions .............................................................. Device Identification Register (DEVID) Field Descriptions .......................................................... Software Interrupt Vector Register (SSIVEC) Field Descriptions .................................................. System Software Interrupt Flag Register (SSIF) Field Descriptions ............................................... Secondary System Control Registers .................................................................................. PLL Control Register 3 (PLLCTL3) Field Descriptions .............................................................. CPU Logic BIST Clock Prescaler (STCLKDIV) Field Descriptions ................................................. Clock 2 Control Register (CLK2CNTRL) Field Descriptions ....................................................... Peripheral Asynchronous Clock Configuration 1 Register (VCLKACON1) Field Descriptions ................ Clock Slip Register (CLKSLIP) Field Descriptions ................................................................... EFUSE Controller Control Register (EFC_CTLREG) Field Descriptions .......................................... Die Identification Register, Lower Word (DIEIDL_REG0) Field Descriptions ..................................... Die Identification Register, Upper Word (DIEIDH_REG1) Field Descriptions .................................... Die Identification Register, Lower Word (DIEIDL_REG2) Field Descriptions ..................................... Die Identification Register, Upper Word (DIEIDH_REG3) Field Descriptions .................................... Peripheral Central Resource Control Registers ...................................................................... Peripheral Memory Protection Set Register 0 (PMPROTSET0) Field Descriptions ............................. Peripheral Memory Protection Set Register 1 (PMPROTSET1) Field Descriptions ............................. Peripheral Memory Protection Clear Register 0 (PMPROTCLR0) Field Descriptions ........................... Peripheral Memory Protection Clear Register 1 (PMPROTCLR1) Field Descriptions ........................... Peripheral Protection Set Register 0 (PPROTSET0) Field Descriptions .......................................... Peripheral Protection Set Register 1 (PPROTSET1) Field Descriptions .......................................... Peripheral Protection Set Register 2 (PPROTSET2) Field Descriptions .......................................... Peripheral Protection Set Register 3 (PPROTSET3) Field Descriptions .......................................... Peripheral Protection Clear Register 0 (PPROTCLR0) Field Descriptions ....................................... Peripheral Protection Clear Register 1 (PPROTCLR1) Field Descriptions ....................................... Peripheral Protection Clear Register 2 (PPROTCLR2) Field Descriptions ....................................... Peripheral Protection Clear Register 3 (PPROTCLR3) Field Descriptions ....................................... SPNU499C – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 162 166 171 174 177 178 179 180 181 182 183 183 184 185 186 186 187 187 188 189 190 190 191 191 192 193 193 194 194 195 195 196 65 www.ti.com 2-97. Peripheral Memory Power-Down Set Register 0 (PCSPWRDWNSET0) Field Descriptions ................... 197 2-98. Peripheral Memory Power-Down Set Register 1 (PCSPWRDWNSET1) Field Descriptions ................... 197 2-99. Peripheral Memory Power-Down Clear Register 0 (PCSPWRDWNCLR0) Field Descriptions ................. 198 2-100. Peripheral Memory Power-Down Set Register 1 (PCSPWRDWNCLR1) Field Descriptions ................... 198 2-101. Peripheral Power-Down Set Register 0 (PSPWRDWNSET0) Field Descriptions ................................ 199 2-102. Peripheral Power-Down Set Register 1 (PSPWRDWNSET1) Field Descriptions ................................ 200 2-103. Peripheral Power-Down Set Register 2 (PSPWRDWNSET2) Field Descriptions ................................ 200 2-104. Peripheral Power-Down Set Register 3 (PSPWRDWNSET3) Field Descriptions ................................ 201 2-105. Peripheral Power-Down Clear Register 0 (PSPWRDWNCLR0) Field Descriptions ............................. 201 2-106. Peripheral Power-Down Clear Register 1 (PSPWRDWNCLR1) Field Descriptions ............................. 202 2-107. Peripheral Power-Down Clear Register 2 (PSPWRDWNCLR2) Field Descriptions ............................. 202 2-108. Peripheral Power-Down Clear Register 3 (PSPWRDWNCLR3) Field Descriptions ............................. 203 3-1. PMM Registers ............................................................................................................ 211 3-2. Logic Power Domain Control Register (LOGICPDPWRCTRL0) Field Descriptions ............................. 212 3-3. Memory Power Domain Control Register 0 (MEMPDPWRCTRL0) Field Descriptions 213 3-4. Power Domain Clock Disable Register (PDCLKDISREG) Field Descriptions 214 3-5. 3-6. 3-7. 3-8. 3-9. 3-10. 3-11. 3-12. 3-13. 3-14. 3-15. 3-16. 3-17. 3-18. 3-19. 3-20. 3-21. 4-1. 4-2. 4-3. 4-4. 4-5. 4-6. 4-7. 4-8. 4-9. 4-10. 4-11. 4-12. 4-13. 4-14. 4-15. 4-16. 66 ......................... ................................... Power Domain Clock Disable Set Register (PDCLKDISSETREG) Field Descriptions ......................... Power Domain Clock Disable Clear Register (PDCLKDISCLRREG) Field Descriptions ....................... Logic Power Domain PD2 Power Status Register (LOGICPDPWRSTAT0) Field Descriptions ............... Logic Power Domain PD3 Power Status Register (LOGICPDPWRSTAT1) Field Descriptions ............... Logic Power Domain PD4 Power Status Register (LOGICPDPWRSTAT2) Field Descriptions ............... Logic Power Domain PD5 Power Status Register (LOGICPDPWRSTAT3) Field Descriptions ............... Memory Power Domain RAM_PD1 Power Status Register (MEMPDPWRSTAT0) Field Descriptions ...... Memory Power Domain RAM_PD2 Power Status Register (MEMPDPWRSTAT1) Field Descriptions ...... Memory Power Domain RAM_PD3 Power Status Register (MEMPDPWRSTAT2) Field Descriptions ...... Global Control Register 1 (GLOBALCTRL1) Field Descriptions ................................................... Global Status Register (GLOBALSTAT) Field Descriptions ........................................................ PSCON Diagnostic Compare Key Register (PRCKEYREG) Field Descriptions ................................ LogicPD PSCON Diagnostic Compare Status Register 1 (LPDDCSTAT1) Field Descriptions ............... LogicPD PSCON Diagnostic Compare Status Register 2 (LPDDCSTAT2) Field Descriptions ............... Memory PD PSCON Diagnostic Compare Status Register 1 (MPDDCSTAT1) Field Descriptions ........... Memory PD PSCON Diagnostic Compare Status Register 2 (MPDDCSTAT2) Field Descriptions ........... Isolation Diagnostic Status Register (ISODIAGSTAT) Field Descriptions ........................................ Input Multiplexing on 144QFP Parts ................................................................................... Input Multiplexing on 337BGA Parts ................................................................................... IOMM Registers ........................................................................................................... Revision Register Field Descriptions ................................................................................... Device Endianness Register Field Descriptions ..................................................................... Kicker Register 0 Field Descriptions .................................................................................. Kicker Register 1 Field Descriptions .................................................................................. Error Raw Status / Set Register Field Descriptions .................................................................. Error Signaling Enabled Status / Clear Register Field Descriptions .............................................. Error Enable Register Field Descriptions .............................................................................. Interrupt Enable Clear Register Field Descriptions .................................................................. Fault Address Register Field Descriptions ............................................................................ Fault Status Register Field Descriptions .............................................................................. FAULT_CLEAR_REG: Fault Clear Register Field Descriptions ................................................... Pin Multiplexing Control Registers Field Descriptions .............................................................. Multiplexing and Control ................................................................................................. List of Tables 215 216 217 218 219 220 221 222 223 224 225 225 226 227 228 229 230 233 234 237 237 238 239 239 240 241 242 243 243 244 245 245 246 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 5-1. ECC Encoding for BE32 Devices ....................................................................................... 254 5-2. Syndrome Table, Decode to Bit in Error ............................................................................... 255 5-3. Alternate Syndrome Table ............................................................................................... 256 5-4. TI OTP Bank 0 Sector Information Field Descriptions ............................................................... 258 5-5. TI OTP Sector Information Address .................................................................................... 258 5-6. TI OTP Bank 0 Package and Memory Size Information Field Descriptions 5-7. 5-8. 5-9. 5-10. 5-11. 5-12. 5-13. 5-14. 5-15. 5-16. 5-17. 5-18. 5-19. 5-20. 5-21. 5-22. 5-23. 5-24. 5-25. 5-26. 5-27. 5-28. 5-29. 5-30. 5-31. 5-32. 5-33. 5-34. 5-35. 5-36. 5-37. 5-38. 5-39. 5-40. 5-41. 5-42. 5-43. 5-44. 5-45. 5-46. 5-47. 5-48. 5-49. ...................................... TI OTP Bank 0 LPO Trim and Max HCLK Information Field Descriptions ........................................ DIAG_MODE Encoding .................................................................................................. Bus 1 Diagnostic Mode Summary ...................................................................................... Bus 2 and ECC Diagnostic Mode Summary .......................................................................... Port Signals Diagnostic Mode Summary .............................................................................. Flash Control Registers .................................................................................................. Flash Option Control Register (FRDCNTL) Field Descriptions ..................................................... Flash Error Detection and Correction Control Register 1 (FEDACCTRL1) Field Descriptions ................. Flash Error Correction Control and Correction Register 2 (FEDACCTRL2) Field Descriptions ................ Flash Correctable Error Count Register (FCOR_ERR_CNT) Field Descriptions ................................ Flash Correctable Error Address Register (FCOR_ERR_ADD) Field Descriptions .............................. Flash Correctable Error Position Register (FCOR_ERR_POS) Field Descriptions .............................. Flash Error Detection and Correction Status Register (FEDACSTATUS) Field Descriptions .................. Flash Uncorrectable Error Address Register (FUNC_ERR_ADD) Field Descriptions ........................... Flash Error Detection and Correction Sector Disable Register (FEDACSDIS) Field Descriptions ............ Primary Address Tag Register (FPRIM_ADD_TAG) Field Descriptions .......................................... Duplicate Address Tag Register (FDUP_ADD_TAG) Field Descriptions.......................................... Flash Bank Protection Register (FBPROT) Field Descriptions ..................................................... Flash Bank Sector Enable Register (FBSE) Field Descriptions .................................................... Flash Bank Busy Register (FBBUSY) Field Descriptions ........................................................... Flash Bank Access Control Register (FBAC) Field Descriptions .................................................. Flash Bank Fallback Power Register (FBFALLBACK) Field Descriptions ........................................ Flash Pump Access Control Register 1 (FPAC1) Field Descriptions .............................................. Flash Pump Access Control Register 1 (FPAC1) Field Descriptions .............................................. Flash Pump Access Control Register 2 (FPAC2) Field Descriptions .............................................. Flash Module Access Control Register (FMAC) Field Descriptions ................................................ Flash Module Status Register (FMSTAT) Field Descriptions ...................................................... EEPROM Emulation Data MSW Register (FEMU_DMSW) Field Descriptions .................................. EEPROM Emulation Data LSW Register (FEMU_DLSW) Field Descriptions .................................... EEPROM Emulation ECC Register (FEMU_ECC) Field Descriptions ............................................. EEPROM Emulation Address Register (FEMU_ADDR) Field Descriptions ...................................... Diagnostic Control Register (FDIAGCTRL) Field Descriptions ..................................................... Uncorrected Raw Data High Register (FRAW_DATAH) Field Descriptions ...................................... Uncorrected Raw Data Low Register (FRAW_DATAL) Field Descriptions ....................................... Uncorrected Raw ECC Register (FRAW_ECC) Field Descriptions ................................................ Parity Override Register (FPAR_OVR) Field Descriptions .......................................................... Flash Error Detection and Correction Sector Disable Register (FEDACSDIS2) Field Descriptions ........... FSM Register Write Enable (FSM_WR_ENA) Field Descriptions ................................................. FSM Sector Register (FSM_SECTOR) Field Descriptions ......................................................... EPROM Emulation Configuration Register (EEPROM_CONFIG) Field Descriptions .......................... EEPROM Emulation Error Detection and Correction Control Register 1 (EE_CTRL1) Field Descriptions ... EEPROM Emulation Error Correction Control Register 2 (EE_CTRL2) Field Descriptions .................... EEPROM Emulation Correctable Error Count Register (EE_COR_ERR_CNT) Field Descriptions ........... SPNU499C – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 259 259 261 265 266 267 268 269 270 272 272 273 274 275 278 279 280 280 281 281 282 283 284 285 286 287 287 288 290 290 291 292 293 295 295 296 297 298 299 299 300 301 303 303 67 www.ti.com 5-50. EEPROM Emulation Correctable Error Address Register (EE_COR_ERR_ADD) Field Descriptions ........ 304 5-51. EEPROM Emulation Correctable Error Position Register (EE_COR_ERR_POS) Field Descriptions......... 305 5-52. EEPROM Emulation Error Status Register (EE_STATUS) Field Descriptions ................................... 306 5-53. EEPROM Emulation Uncorrectable Error Address Register (EE_UNC_ERR_ADD) Field Descriptions...... 307 5-54. Flash Bank Configuration Register (FCFG_BANK) Field Descriptions ............................................ 308 6-1. TCRAM Module Control and Status Registers........................................................................ 314 6-2. TCRAM Module Control Register (RAMCTRL) Field Descriptions ................................................. 315 6-3. TCRAM Module Single-Bit Error Correction Threshold Register (RAMTHRESHOLD) Field Descriptions 6-4. TCRAM Module Single-Bit Error Occurrences Counter Register (RAMOCCUR) Field Descriptions .......... 317 6-5. TCRAM Module Interrupt Control Register (RAMINTCTRL) Field Descriptions.................................. 317 6-6. TCRAM Module Error Status Register (RAMERRSTATUS) Field Descriptions .................................. 318 6-7. TCRAM Module Single-Bit Error Address Register (RAMSERRADDR) Field Descriptions .................... 319 6-8. TCRAM Module Uncorrectable Error Address Register (RAMUERRADDR) Field Descriptions ............... 320 6-9. TCRAM Module Test Mode Control Register (RAMTEST) Field Descriptions ................................... 321 6-10. TCRAM Module Test Mode Vector Register (RAMADDRDEVECT) Field Descriptions 6-11. TCRAM Module Parity Error Address Register (RAMPERRADDR) Field Descriptions ......................... 322 6-12. Auto-Memory Initialization Enable Register (INIT_DOMAIN) Field Descriptions ................................. 323 7-1. PBIST Registers .......................................................................................................... 331 7-2. RAM Configuration Register (RAMT) Field Descriptions ............................................................ 332 7-3. Datalogger Register (DLR) Field Descriptions ........................................................................ 333 7-4. PBIST Activate/ROM Clock Enable Register (PACT) Field Descriptions ......................................... 334 7-5. PBIST ID Register Field Descriptions .................................................................................. 335 7-6. Override Register (OVER) Field Descriptions......................................................................... 336 7-7. Fail Status Fail Register 0 (FSRF0) Field Descriptions .............................................................. 337 7-8. Fail Status Count 0 Register (FSRC0) Field Descriptions........................................................... 338 7-9. Fail Status Count Register 1 (FSRC1) Field Descriptions........................................................... 338 7-10. Fail Status Address 0 Register (FSRA0) Field Descriptions ........................................................ 339 7-11. Fail Status Address 1 Register (FSRA1) Field Descriptions ........................................................ 339 7-12. Fail Status Data Register 0 (FSRDL0) Field Descriptions........................................................... 340 7-13. Fail Status Data Register 1 (FSRDL1) Field Descriptions........................................................... 340 7-14. ROM Mask Register (ROM) Field Descriptions ....................................................................... 341 7-15. Algorithm Mask Register (ALGO) Field Descriptions 7-16. RAM Info Mask Lower Register (RINFOL) Field Descriptions ...................................................... 342 7-17. RAM Info Mask Upper Register (RINFOU) Field Descriptions 8-1. 8-2. 8-3. 8-4. 8-5. 8-6. 8-7. 8-8. 8-9. 8-10. 8-11. 8-12. 8-13. 9-1. 9-2. 68 ... ........................ ................................................................ ..................................................... STC Test Coverage and Duration ...................................................................................... Typical STC Execution Times ........................................................................................... STC Control Registers ................................................................................................... STC Global Control Register 0 (STCGCR0) Field Descriptions .................................................... STC Global Control Register 1 (STCGCR1) Field Descriptions .................................................... Self-Test Run Timeout Counter Preload Register (STCTPR) ...................................................... STC Current ROM Address Register (STC_CADDR) Field Descriptions ......................................... STC Current Interval Count Register (STCCICR) Field Descriptions .............................................. Self-Test Global Status Register (STCGSTAT) Field Descriptions ................................................ Self-Test Fail Status Register (STCFSTAT) Field Descriptions .................................................... CPU1 Current MISR Register (CPU1_CURMISR[3:0]) Field Descriptions ....................................... CPU2 Current MISR Register (CPU2_CURMISR[3:0]) Field Descriptions ....................................... Signature Compare Self-Check Regsiter (STCSCSCR) Field Descriptions ...................................... Compare Match Test Sequence ........................................................................................ Compare Mismatch Test Sequence ................................................................................... List of Tables 316 322 341 343 351 351 352 353 353 354 354 355 356 357 358 359 360 365 366 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 9-3. 9-4. 9-5. 10-1. 10-2. 10-3. 10-4. 10-5. 10-6. 10-7. 10-8. 11-1. 11-2. 11-3. 11-4. 11-5. 11-6. 11-7. 11-8. 11-9. 11-10. 11-11. 11-12. 12-1. 12-2. 12-3. 12-4. 12-5. 12-6. 12-7. 12-8. 12-9. 12-10. 12-11. 12-12. 12-13. 12-14. 12-15. 12-16. 12-17. 12-18. 12-19. 12-20. 12-21. 12-22. 12-23. 12-24. 12-25. 13-1. ............................................................................................ CCM-R4F Status Register (CCMSR) Field Descriptions ........................................................... CCM-R4F Key Register (CCMKEYR) Field Descriptions ........................................................... Valid Frequency Ranges for PLL ....................................................................................... PLL Value Encoding ...................................................................................................... Summary of PLL Timings ................................................................................................ PLL Module Registers .................................................................................................... LPOCLKDET Module Registers ........................................................................................ SSW PLL BIST Control Register 1 (SSWPLL1) Field Descriptions ................................................ SSW PLL BIST Control Register 2 (SSWPLL2) Field Descriptions ................................................ SSW PLL BIST Control Register 3 (SSWPLL3) Field Descriptions ................................................ DCC Control Registers .................................................................................................. DCC Global Control Register (DCCGCTRL) Field Descriptions ................................................... DCC Revision Id Register (DCCREV) Field Descriptions .......................................................... DCC Counter0 Seed Register (DCCCNT0SEED) Field Descriptions ............................................. DCC Valid0 Seed Register (DCCVALID0SEED) Field Descriptions .............................................. DCC Counter1 Seed Register (DCCCNT0SEED) Field Descriptions ............................................. DCC Status Register (DCCSTAT) Field Descriptions ............................................................... DCC Counter0 Value Register (DCCCNT0) Field Descriptions ................................................... DCC Valid0 Value Register (DCCVALID0) Field Descriptions ..................................................... DCC Counter1 Value Register (DCCCNT1) Field Descriptions ................................................... DCC Counter1 Clock Source Selection Register (DCCCNT1CLKSRC) Field Descriptions ................... DCC Counter0 Clock Source Selection Register (DCCCNT0CLKSRC) Field Descriptions ................... ESM Interrupt and ERROR Pin Behavior ............................................................................. ESM Module Registers................................................................................................... ESM Enable ERROR Pin Action/Response Register 1 (ESMEEPAPR1) Field Descriptions .................. ESM Disable ERROR Pin Action/Response Register 1 (ESMDEPAPR1) Field Descriptions .................. ESM Interrupt Enable Set Register 1 (ESMIESR1) Field Descriptions ............................................ ESM Interrupt Enable Clear Register 1 (ESMIECR1) Field Descriptions ......................................... ESM Interrupt Level Set Register 1 (ESMILSR1) Field Descriptions .............................................. ESM Interrupt Level Clear Register 1 (ESMILCR1) Field Descriptions ........................................... ESM Status Register 1 (ESMSR1) Field Descriptions .............................................................. ESM Status Register 2 (ESMSR2) Field Descriptions .............................................................. ESM Status Register 3 (ESMSR3) Field Descriptions .............................................................. ESM ERROR Pin Status Register (ESMEPSR) Field Descriptions ................................................ ESM Interrupt Offset High Register (ESMIOFFHR) Field Descriptions............................................ ESM Interrupt Offset Low Register (ESMIOFFLR) Field Descriptions ............................................. ESM Low-Time Counter Register (ESMLTCR) Field Descriptions ................................................. ESM Low-Time Counter Preload Register (ESMLTCPR) Field Descriptions ..................................... ESM Error Key Register (ESMEKR) Field Descriptions ............................................................. ESM Status Shadow Register 2 (ESMSSR2) Field Descriptions .................................................. ESM Influence ERROR Pin Set Register 4 (ESMIEPSR4) Field Descriptions ................................... ESM Influence ERROR Pin Clear Register 4 (ESMIEPCR4) Field Descriptions ................................ ESM Interrupt Enable Set Register 4 (ESMIESR4) Field Descriptions ............................................ ESM Interrupt Enable Clear Register 4 (ESMIECR4) Field Descriptions ......................................... ESM Interrupt Level Set Register 4 (ESMILSR4) Field Descriptions .............................................. ESM Interrupt Level Clear Register 4 (ESMILCR4) Field Descriptions ........................................... ESM Status Register 4 (ESMSR4) Field Descriptions ............................................................... RTI Registers .............................................................................................................. CCM-R4F Control Registers SPNU499C – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 367 368 369 378 379 383 388 388 389 390 391 403 404 405 405 406 406 407 408 409 409 410 411 414 420 421 421 422 422 423 423 424 424 425 425 426 427 428 428 429 429 430 430 431 431 432 432 433 446 69 www.ti.com 13-2. RTI Global Control Register (RTIGCTRL) Field Descriptions....................................................... 447 13-3. RTI Timebase Control Register (RTITBCTRL) Field Descriptions ................................................. 448 13-4. RTI Capture Control Register (RTICAPCTRL) Field Descriptions ................................................. 449 13-5. RTI Compare Control Register (RTICOMPCTRL) Field Descriptions ............................................. 450 13-6. RTI Free Running Counter 0 Register (RTIFRC0) Field Descriptions ............................................. 451 13-7. RTI Up Counter 0 Register (RTIUC0) Field Descriptions 13-8. 13-9. 13-10. 13-11. 13-12. 13-13. 13-14. 13-15. 13-16. 13-17. 13-18. 13-19. 13-20. 13-21. 13-22. 13-23. 13-24. 13-25. 13-26. 13-27. 13-28. 13-29. 13-30. 13-31. 13-32. 13-33. 13-34. 13-35. 13-36. 13-37. 13-38. 13-39. 13-40. 13-41. 14-1. 14-2. 14-3. 14-4. 14-5. 14-6. 14-7. 14-8. 14-9. 70 ........................................................... RTI Compare Up Counter 0 Register (RTICPUC0) Field Descriptions ............................................ RTI Capture Free Running Counter 0 Register (RTICAFRC0) Field Descriptions ............................... RTI Capture Up Counter 0 Register (RTICAUC0) Field Descriptions ............................................. RTI Free Running Counter 1 Register (RTIFRC1) Field Descriptions ............................................. RTI Up Counter 1 Register (RTIUC1) Field Descriptions ........................................................... RTI Compare Up Counter 1 Register (RTICPUC1) Field Descriptions ............................................ RTI Capture Free Running Counter 1 Register (RTICAFRC1) Field Descriptions ............................... RTI Capture Up Counter 1 Register (RTICAUC1) Field Descriptions ............................................. RTI Compare 0 Register (RTICOMP0) Field Descriptions .......................................................... RTI Update Compare 0 Register (RTIUDCP0) Field Descriptions ................................................. RTI Compare 1 Register (RTICOMP1) Field Descriptions .......................................................... RTI Update Compare 1 Register (RTIUDCP1) Field Descriptions ................................................. RTI Compare 2 Register (RTICOMP2) Field Descriptions .......................................................... RTI Update Compare 2 Register (RTIUDCP2) Field Descriptions ................................................. RTI Compare 3 Register (RTICOMP3) Field Descriptions .......................................................... RTI Update Compare 3 Register (RTIUDCP3) Field Descriptions ................................................. RTI Timebase Low Compare Register (RTITBLCOMP) Field Descriptions ...................................... RTI Timebase High Compare Register (RTITBHCOMP) Field Descriptions ..................................... RTI Set Interrupt Control Register (RTISETINTENA) Field Descriptions ......................................... RTI Clear Interrupt Control Register (RTICLEARINTENA) Field Descriptions ................................... RTI Interrupt Flag Register (RTIINTFLAG) Field Descriptions...................................................... Digital Watchdog Control Register (RTIDWDCTRL) Field Descriptions ........................................... Digital Watchdog Preload Register (RTIDWDPRLD) Field Descriptions .......................................... Watchdog Status Register (RTIWDSTATUS) Field Descriptions .................................................. RTI Watchdog Key Register (RTIDWDKEY) Field Descriptions.................................................... Example of a WDKEY Sequence ....................................................................................... RTI Watchdog Down Counter Register (RTIDWDCNTR) Field Descriptions ..................................... Digital Windowed Watchdog Reaction Control (RTIWWDRXNCTRL) Field Descriptions ...................... Digital Windowed Watchdog Window Size Control (RTIWWDSIZECTRL) Field Descriptions ................. RTI Compare Interrupt Clear Enable Register (RTIINTCLRENABLE) Field Descriptions ...................... RTI Compare 0 Clear Register (RTICMP0CLR) Field Descriptions ............................................... RTI Compare 1 Clear Register (RTICMP1CLR) Field Descriptions ............................................... RTI Compare 2 Clear Register (RTICMP2CLR) Field Descriptions ............................................... RTI Compare 3 Clear Register (RTICMP3CLR) Field Descriptions ............................................... CRC Modes in Which DMA Request and Counter Logic are Active or Inactive ................................. Modes in Which Interrupt Condition Can Occur ..................................................................... Interrupt Offset Mapping ................................................................................................ CRC Control Registers ................................................................................................... CRC Global Control Register 0 (CRC_CTRL0) Field Descriptions ................................................ CRC Global Control Register 1 (CRC_CTRL1) Field Descriptions ................................................ CRC Global Control Register 2 (CRC_CTRL2) Field Descriptions ................................................ CRC Interrupt Enable Set Register (CRC_INTS) Field Descriptions .............................................. CRC Interrupt Enable Reset Register (CRC_INTR) Field Descriptions ........................................... List of Tables 451 452 452 453 453 454 455 456 456 457 457 458 458 459 459 460 460 461 461 462 464 466 467 468 469 470 470 471 471 472 473 474 474 475 475 484 485 488 493 494 494 495 496 498 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com ............................................... CRC Interrupt Offset (CRC_INT_OFFSET_REG) Field Descriptions ............................................. CRC Busy Register (CRC_BUSY) Field Descriptions ............................................................... CRC Pattern Counter Preload Register 1 (CRC_PCOUNT_REG1) Field Descriptions ......................... CRC Sector Counter Preload Register 1 (CRC_SCOUNT_REG1) Field Descriptions .......................... CRC Current Sector Register 1 (CRC_CURSEC_REG1) Field Descriptions .................................... CRC Channel 1 Watchdog Timeout Preload Register A (CRC_WDTOPLD1) Field Descriptions ............. CRC Channel 1 Block Complete Timeout Preload Register B (CRC_BCTOPLD1) Field Descriptions ....... Channel 1 PSA Signature Low Register (PSA_SIGREGL1) Field Descriptions ................................. Channel 1 PSA Signature High Register (PSA_SIGREGH1) Field Descriptions ................................ Channel 1 CRC Value Low Register (CRC_REGL1) Field Descriptions .......................................... Channel 1 CRC Value High Register (CRC_REGH1) Field Descriptions ......................................... Channel 1 PSA Sector Signature Low Register (PSA_SECSIGREGL1) Field Descriptions ................... Channel 1 PSA Sector Signature High Register (PSA_SECSIGREGH1) Field Descriptions .................. Channel 1 Raw Data Low Register (RAW_DATAREGL1) Field Descriptions .................................... Channel 1 Raw Data High Register (RAW_DATAREGH1) Field Descriptions ................................... CRC Pattern Counter Preload Register 2 (CRC_PCOUNT_REG2) Field Descriptions ......................... CRC Sector Counter Preload Register 2 (CRC_SCOUNT_REG2) Field Descriptions .......................... CRC Current Sector Register 2 (CRC_CURSEC_REG2) Field Descriptions .................................... CRC Channel 2 Watchdog Timeout Preload Register A (CRC_WDTOPLD2) Field Descriptions ............. CRC Channel 2 Block Complete Timeout Preload Register B (CRC_BCTOPLD2) Field Descriptions ....... Channel 2 PSA Signature Low Register (PSA_SIGREGL2) Field Descriptions ................................. Channel 2 PSA Signature High Register (PSA_SIGREGH2) Field Descriptions ................................ Channel 2 CRC Value Low Register (CRC_REGL2) Field Descriptions .......................................... Channel 2 CRC Value High Register (CRC_REGH2) Field Descriptions ......................................... Channel 2 PSA Sector Signature Low Register (PSA_SECSIGREGL2) Field Descriptions ................... Channel 2 PSA Sector Signature High Register (PSA_SECSIGREGH2) Field Descriptions .................. Channel 2 Raw Data Low Register (RAW_DATAREGL2) Field Descriptions .................................... Channel 2 Raw Data High Register (RAW_DATAREGH2) Field Descriptions ................................... Data Bus Selection Register Field Descriptions ...................................................................... VIM Control Registers .................................................................................................... Interrupt Vector Table Parity Flag Register (PARFLG) Field Descriptions ........................................ Interrupt Vector Table Parity Control Register (PARCTL) Field Descriptions .................................... Address Parity Error Register (ADDERR) Field Descriptions ....................................................... Fall Back Address Parity Error Register (FBPARERR) Field Descriptions ....................................... Interrupt Dispatch ......................................................................................................... IRQ Index Offset Vector Register (IRQINDEX) Field Descriptions ................................................. FIQ Index Offset Vector Register (FIQINDEX) Field Descriptions ................................................. FIQ/IRQ Program Control Registers (FIRQPRx) Field Descriptions ............................................... Pending Interrupt Read Location Registers (INTREQx) Field Descriptions ...................................... Interrupt Enable Set Registers (REQENASETx) Field Descriptions .............................................. Interrupt Enable Clear Registers (REQENACLRx) Field Descriptions............................................. Wake-Up Enable Set Registers (WAKEENASETx) Field Descriptions ............................................ Wake-Up Enable Clear Registers (WAKEENACLRx) Field Descriptions ......................................... IRQ Interrupt Vector Register (IRQVECREG) Field Descriptions .................................................. FIQ Interrupt Vector Register (FIQVECREG) Field Descriptions ................................................... Capture Event Register (CAPEVT) Field Descriptions .............................................................. Interrupt Control Registers Organization .............................................................................. Interrupt Control Registers (CHANCTRLx) Field Descriptions...................................................... 14-10. CRC Interrupt Status Register (CRC_STATUS) Field Descriptions 500 14-11. 502 14-12. 14-13. 14-14. 14-15. 14-16. 14-17. 14-18. 14-19. 14-20. 14-21. 14-22. 14-23. 14-24. 14-25. 14-26. 14-27. 14-28. 14-29. 14-30. 14-31. 14-32. 14-33. 14-34. 14-35. 14-36. 14-37. 14-38. 14-39. 15-1. 15-2. 15-3. 15-4. 15-5. 15-6. 15-7. 15-8. 15-9. 15-10. 15-11. 15-12. 15-13. 15-14. 15-15. 15-16. 15-17. 15-18. 15-19. SPNU499C – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 503 503 504 504 505 505 506 506 506 507 507 507 508 508 508 509 509 510 510 511 511 511 512 512 512 513 513 514 530 531 531 532 532 533 534 534 535 536 537 538 539 540 541 541 542 543 543 71 www.ti.com 16-1. Arbitration According to Priority Queues and Priority Schemes .................................................... 553 16-2. DMA Request Line Connection ......................................................................................... 557 16-3. Maximum Number of DMA Transactions per Channel in Non-Bypass Mode..................................... 562 16-4. Maximum Number of DMA Transactions per Channel in Bypass Mode 16-5. 16-6. 16-7. 16-8. 16-9. 16-10. 16-11. 16-12. 16-13. 16-14. 16-15. 16-16. 16-17. 16-18. 16-19. 16-20. 16-21. 16-22. 16-23. 16-24. 16-25. 16-26. 16-27. 16-28. 16-29. 16-30. 16-31. 16-32. 16-33. 16-34. 16-35. 16-36. 16-37. 16-38. 16-39. 16-40. 16-41. 16-42. 16-43. 16-44. 16-45. 16-46. 16-47. 16-48. 16-49. 72 .......................................... Control Packet RAM ...................................................................................................... Control Packet RAM ...................................................................................................... Parity RAM................................................................................................................. DMA Control Registers................................................................................................... Control Packet Memory Map ............................................................................................ Global Control Register (GCTRL) Field Descriptions ................................................................ Channel Pending Register (PEND) Field Descriptions .............................................................. DMA Status Register (DMASTAT) Field Descriptions ............................................................... HW Channel Enable Set and Status Register (HWCHENAS) Field Descriptions................................ HW Channel Enable Reset and Status Register (HWCHENAR) Field Descriptions ............................ SW Channel Enable Set and Status Register (SWCHENAS) Field Descriptions ................................ SW Channel Enable Reset and Status Register (SWCHENAR) Field Descriptions ............................. Channel Priority Set Register (CHPRIOS) Field Descriptions ...................................................... Channel Priority Reset Register (CHPRIOR) Field Descriptions ................................................... Global Channel Interrupt Enable Set Register (GCHIENAS) Field Descriptions ................................. Global Channel Interrupt Enable Reset Register (GCHIENAR) Field Descriptions .............................. DMA Request Assignment Register 0 (DREQASI0) Field Descriptions ........................................... DMA Request Assignment Register 1 (DREQASI1) Field Descriptions ........................................... DMA Request Assignment Register 2 (DREQASI2) Field Descriptions ........................................... DMA Request Assignment Register 3 (DREQASI3) Field Descriptions ........................................... Port Assignment Register 0 (PAR0) Field Descriptions ............................................................. Port Assignment Register 1 (PAR1) Field Descriptions ............................................................. FTC Interrupt Mapping Register (FTCMAP) Field Descriptions .................................................... LFS Interrupt Mapping Register (LFSMAP) Field Descriptions ..................................................... HBC Interrupt Mapping Register (HBCMAP) Field Descriptions ................................................... BTC Interrupt Mapping Register (BTCMAP) Field Descriptions .................................................... FTC Interrupt Enable Set (FTCINTENAS) Field Descriptions ...................................................... FTC Interrupt Enable Reset (FTCINTENAR) Field Descriptions ................................................... LFS Interrupt Enable Set (LFSINTENAS) Field Descriptions ....................................................... LFS Interrupt Enable Reset (LFSINTENAR) Field Descriptions .................................................... HBC Interrupt Enable Set (HBCINTENAS) Field Descriptions ..................................................... HBC Interrupt Enable Reset (HBCINTENAR) Field Descriptions .................................................. BTC Interrupt Enable Reset (BTCINTENAS) Field Descriptions ................................................... BTC Interrupt Enable Reset (BTCINTENAR) Field Descriptions ................................................... Global Interrupt Flag Register (GINTFLAG) Field Descriptions .................................................... FTC Interrupt Flag Register (FTCFLAG) Field Descriptions ........................................................ LFS Interrupt Flag Register (LFSFLAG) Field Descriptions ......................................................... HBC Interrupt Flag (HBCFLAG) Field Descriptions .................................................................. BTC Interrupt Flag Register (BTCFLAG) Field Descriptions ........................................................ FTCA Interrupt Channel Offset Register (FTCAOFFSET) Field Descriptions .................................... LFSA Interrupt Channel Offset Register (LFSAOFFSET) Field Descriptions ..................................... HBCA Interrupt Channel Offset Register (HBCAOFFSET) Field Descriptions ................................... BTCA Interrupt Channel Offset Register (BTCAOFFSET) Field Descriptions .................................... FTCB Interrupt Channel Offset Register (FTCBOFFSET) Field Descriptions .................................... LFSB Interrupt Channel Offset Register (LFSBOFFSET) Field Descriptions ..................................... List of Tables 562 565 565 565 566 567 568 569 569 570 570 571 572 572 573 573 574 575 576 577 578 579 580 581 581 582 582 583 583 584 584 585 585 586 586 587 587 588 588 589 590 590 592 592 594 594 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 16-50. HBCB Interrupt Channel Offset Register (HBCBOFFSET) Field Descriptions ................................... 596 16-51. BTCB Interrupt Channel Offset Register (BTCBOFFSET) Field Descriptions .................................... 596 16-52. Port Control Register (PTCRL) Field Descriptions ................................................................... 598 16-53. RAM Test Control (RTCTRL) Field Descriptions ..................................................................... 599 16-54. Debug Control (DCTRL) Field Descriptions ........................................................................... 600 16-55. Watch Point Register (WPR) Field Descriptions ...................................................................... 601 16-56. Watch Mask Register (WMR) Field Descriptions ..................................................................... 601 16-57. Port B Active Channel Source Address Register (PBACDADDR) Field Descriptions ........................... 602 16-58. Port B Active Channel Destination Address Register (PBACDADDR) Field Descriptions ...................... 602 16-59. Port B Active Channel Transfer Count Register (PBACTC) Field Descriptions .................................. 603 .............................................................. DMA Parity Error Address Register (DMAPAR) Field Descriptions ................................................ DMA Memory Protection Control Register (DMAMPCTRL) Field Descriptions .................................. DMA Memory Protection Status Register (DMAMPST) Field Descriptions ....................................... DMA Memory Protection Region 0 Start Address Register (DMAMPR0S) Field Descriptions ................. DMA Memory Protection Region 0 End Address Register (DMAMPR0E) Field Descriptions .................. DMA Memory Protection Region 1 Start Address Register (DMAMPR1S) Field Descriptions ................. DMA Memory Protection Region 1 End Address Register (DMAMPR1E) Field Descriptions .................. DMA Memory Protection Region 2 Start Address Register (DMAMPR2S) Field Descriptions ................. DMA Memory Protection Region 2 End Address Register (DMAMPR2E) Field Descriptions .................. DMA Memory Protection Region 3 Start Address Register (DMAMPR3S) Field Descriptions ................. DMA Memory Protection Region 3 End Address Register (DMAMPR3E) Field Descriptions .................. Initial Source Address (ISADDR) Field Descriptions ................................................................. Initial Destination Address Register (IDADDR) Field Descriptions ................................................. Initial Transfer Count Register (ITCOUNT) Field Descriptions ..................................................... Channel Control Register (CHCTRL) Field Descriptions ............................................................ Element Index Offset Register (EIOFF) Field Descriptions ........................................................ Frame Index Offset Register (FIOFF) Field Descriptions ........................................................... Current Source Address Register (CSADDR) Field Descriptions ................................................. Current Destination Address Register (CDADDR) Field Descriptions ............................................. Current Transfer Count Register (CTCOUNT) Field Descriptions ................................................. EMIF Pins Used to Access Both SDRAM and Asynchronous Memories ......................................... EMIF Pins Specific to SDRAM .......................................................................................... EMIF Pins Specific to Asynchronous Memory ........................................................................ EMIF SDRAM Commands ............................................................................................... Truth Table for SDRAM Commands ................................................................................... 16-bit EMIF Address Pin Connections ................................................................................. Description of the SDRAM Configuration Register (SDCR) ......................................................... Description of the SDRAM Refresh Control Register (SDRCR) .................................................... Description of the SDRAM Timing Register (SDTIMR) .............................................................. Description of the SDRAM Self Refresh Exit Timing Register (SDSRETR) ...................................... SDRAM LOAD MODE REGISTER Command ........................................................................ Refresh Urgency Levels ................................................................................................. Mapping from Logical Address to EMIF Pins for 16-bit SDRAM ................................................... Normal Mode vs. Select Strobe Mode ................................................................................. Description of the Asynchronous m Configuration Register (CEnCFG) ........................................... Description of the Asynchronous Wait Cycle Configuration Register (AWCC) .................................. Description of the EMIF Interrupt Mask Set Register (INTMSKSET) .............................................. Description of the EMIF Interrupt Mast Clear Register (INTMSKCLR) ............................................ 16-60. Parity Control Register (DMAPCR) Field Descriptions 16-61. 16-62. 16-63. 16-64. 16-65. 16-66. 16-67. 16-68. 16-69. 16-70. 16-71. 16-72. 16-73. 16-74. 16-75. 16-76. 16-77. 16-78. 16-79. 16-80. 17-1. 17-2. 17-3. 17-4. 17-5. 17-6. 17-7. 17-8. 17-9. 17-10. 17-11. 17-12. 17-13. 17-14. 17-15. 17-16. 17-17. 17-18. SPNU499C – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 604 605 606 608 609 609 610 610 611 611 612 612 613 613 614 615 616 616 617 617 618 622 623 623 624 624 626 627 627 628 628 629 630 635 636 638 639 639 639 73 www.ti.com 17-19. Asynchronous Read Operation in Normal Mode ..................................................................... 640 17-20. Asynchronous Write Operation in Normal Mode ..................................................................... 642 17-21. Asynchronous Read Operation in Select Strobe Mode .............................................................. 644 17-22. Asynchronous Write Operation in Select Strobe Mode .............................................................. 646 17-23. Interrupt Monitor and Control Bit Fields ................................................................................ 650 17-24. External Memory Interface (EMIF) Registers ......................................................................... 654 17-25. Module ID Register (MIDR) Field Descriptions ....................................................................... 654 17-26. Asynchronous Wait Cycle Configuration Register (AWCCR) Field Descriptions ................................. 655 17-27. SDRAM Configuration Register (SDCR) Field Descriptions ........................................................ 656 17-28. SDRAM Refresh Control Register (SDRCR) Field Descriptions ................................................... 657 17-29. Asynchronous n Configuration Register (CEnCFG) Field Descriptions ........................................... 658 17-30. SDRAM Timing Register (SDTIMR) Field Descriptions.............................................................. 659 17-31. SDRAM Self Refresh Exit Timing Register (SDSRETR) Field Descriptions ...................................... 660 ........................................................ EMIF Interrupt Mask Register (INTMSK) Field Descriptions ........................................................ EMIF Interrupt Mask Set Register (INTMSKSET) Field Descriptions .............................................. EMIF Interrupt Mask Clear Register (INTMSKCLR) Field Descriptions ........................................... Page Mode Control Register (PMCR) Field Descriptions ........................................................... SR Field Value For the EMIF to K4S641632H-TC(L)70 Interface ................................................. SDTIMR Field Calculations for the EMIF to K4S641632H-TC(L)70 Interface .................................... RR Calculation for the EMIF to K4S641632H-TC(L)70 Interface .................................................. RR Calculation for the EMIF to K4S641632H-TC(L)70 Interface .................................................. SDCR Field Values For the EMIF to K4S641632H-TC(L)70 Interface ............................................ AC Characteristics for a Read Access ................................................................................. AC Characteristics for a Write Access ................................................................................. POM Registers ............................................................................................................ POM Global Control Register (POMGLBCTRL) Field Descriptions ................................................ POM Revision ID (POMREV) Field Descriptions ..................................................................... POM Clock Gate Control Register (POMCLKCTRL) Field Descriptions .......................................... POM Status Register (POMFLG) Field Descriptions................................................................. POM Program Region Start Address Register x (POMPROGSTARTx) Field Descriptions .................... POM Overlay Region Start Address Register x (POMOVLSTARTx) Field Descriptions ........................ POM Region Size Register x (POMREGSIZEx) Field Descriptions ............................................... POM Integration Control Register (POMITCTRL) Field Descriptions .............................................. POM Claim Set Register (POMCLAIMSET) Field Descriptions .................................................... POM Claim Clear Register (POMCLAIMCLR) Field Descriptions .................................................. POM Lock Access Register (POMLOCKACCESS) Field Descriptions ............................................ POM Lock Status Register (POMLOCKSTATUS) Field Descriptions ............................................. POM Authentication Status Register (POMAUTHSTATUS) Field Descriptions .................................. POM Device ID Register (POMDEVID) Field Descriptions ......................................................... POM Device Type Register (POMDEVTYPE) Field Descriptions .................................................. POM Peripheral ID 4 Register (POMPERIPHERALID4) Field Descriptions ...................................... POM Peripheral ID 5 Register (POMPERIPHERALID5) Field Descriptions ...................................... POM Peripheral ID 6 Register (POMPERIPHERALID6) Field Descriptions ...................................... POM Peripheral ID 7 Register (POMPERIPHERALID7) Field Descriptions ...................................... POM Peripheral ID 0 Register (POMPERIPHERALID0) Field Descriptions ...................................... POM Peripheral ID 1 Register (POMPERIPHERALID1) Field Descriptions ...................................... POM Peripheral ID 2 Register (POMPERIPHERALID2) Field Descriptions ...................................... POM Peripheral ID 3 Register (POMPERIPHERALID3) Field Descriptions ...................................... 17-32. EMIF Interrupt Raw Register (INTRAW) Field Descriptions 17-33. 17-34. 17-35. 17-36. 17-37. 17-38. 17-39. 17-40. 17-41. 17-42. 17-43. 18-1. 18-2. 18-3. 18-4. 18-5. 18-6. 18-7. 18-8. 18-9. 18-10. 18-11. 18-12. 18-13. 18-14. 18-15. 18-16. 18-17. 18-18. 18-19. 18-20. 18-21. 18-22. 18-23. 18-24. 74 List of Tables 661 662 663 664 665 666 668 669 670 671 672 672 679 680 681 681 682 683 683 684 684 685 686 687 687 687 688 688 689 689 690 690 691 691 692 692 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 18-25. POM Component ID 0 Register (POMCOMPONENTID0) Field Descriptions .................................... 693 18-26. POM Component ID 1 Register (POMCOMPONENTID1) Field Descriptions .................................... 693 18-27. POM Component ID 2 Register (POMCOMPONENTID2) Field Descriptions .................................... 694 18-28. POM Component ID 3 Register (POMCOMPONENTID3) Field Descriptions .................................... 694 19-1. Calibration Reference Voltages ......................................................................................... 714 19-2. Self-Test Reference Voltages ........................................................................................... 717 19-3. Determination of ADC Input Channel Condition ...................................................................... 718 19-4. Output Buffer and Pull Control Behavior for ADxEVT as GPIO Pins .............................................. 723 19-5. ADC Registers 19-6. 19-7. 19-8. 19-9. 19-10. 19-11. 19-12. 19-13. 19-14. 19-15. 19-16. 19-17. 19-18. 19-19. 19-20. 19-21. 19-22. 19-23. 19-24. 19-25. 19-26. 19-27. 19-28. 19-29. 19-30. 19-31. 19-32. 19-33. 19-34. 19-35. 19-36. 19-37. 19-38. 19-39. 19-40. 19-41. 19-42. 19-43. 19-44. 19-45. ............................................................................................................ ADC Reset Control Register (ADRSTCR) Field Descriptions ...................................................... ADC Operating Mode Control Register (ADOPMODECR) Field Descriptions ................................... ADC Clock Control Register (ADCLOCKCR) Field Descriptions ................................................... ADC Calibration Mode Control Register (ADCALCR) Field Descriptions ......................................... ADC Event Group Operating Mode Control Register (ADEVMODECR) Field Descriptions .................... ADC Group1 Operating Mode Control Register (ADG1MODECR) Field Descriptions .......................... ADC Group 2 Operating Mode Control Register (ADG2MODECR) Field Descriptions ......................... ADC Event Group Trigger Source Select Register (ADEVSRC) Field Descriptions ............................. ADC Group1 Trigger Source Select Register (ADG1SRC) Field Descriptions ................................... ADC Group2 Trigger Source Select Register (ADG2SRC) Field Descriptions ................................... ADC Event Group Interrupt Enable Control Register (ADEVINTENA) Field Descriptions ...................... ADC Group1 Interrupt Enable Control Register (ADG1INTENA) Field Descriptions ............................ ADC Group2 Interrupt Enable Control Register (ADG2INTENA) Field Descriptions ............................ ADC Event Group Interrupt Flag Register (ADEVINTFLG) Field Descriptions ................................... ADC Group1 Interrupt Flag Register (ADG1INTFLG) Field Descriptions ......................................... ADC Group2 Interrupt Flag Register (ADG2INTFLG) Field Descriptions ......................................... ADC Event Group Threshold Interrupt Control Register (ADEVTHRINTCR) Field Descriptions .............. ADC Group1 Threshold Interrupt Control Register (ADG1THRINTCR) Field Descriptions ..................... ADC Group2 Threshold Interrupt Control Register (ADG2THRINTCR) Field Descriptions ..................... ADC Event Group DMA Control Register (ADEVDMACR) Field Descriptions ................................... ADC Group1 DMA Control Register (ADG1DMACR) Field Descriptions ......................................... ADC Group2 DMA Control Register (ADG2DMACR) Field Descriptions ......................................... ADC Results Memory Configuration Register (ADBNDCR) Field Descriptions .................................. ADC Results Memory Size Configuration Register (ADBNDEND) Field Descriptions .......................... ADC Event Group Sampling Time Configuration Register (ADEVSAMP) Field Descriptions .................. ADC Group1 Sampling Time Configuration Register (ADG1SAMP) Field Descriptions ........................ ADC Group2 Sampling Time Configuration Register (ADG2SAMP) Field Descriptions ........................ ADC Event Group Status Register (ADEVSR) Field Descriptions ................................................. ADC Group1 Status Register (ADG1SR) Field Descriptions ....................................................... ADC Group2 Status Register (ADG2SR) Field Descriptions ....................................................... ADC Event Group Channel Select Register (ADEVSEL) Field Descriptions ..................................... ADC Group1 Channel Select Register (ADG1SEL) Field Descriptions ........................................... ADC Group2 Channel Select Register (ADG2SEL) Field Descriptions ........................................... ADC Calibration and Error Offset Correction Register (ADCALR) Field Descriptions ........................... ADC State Machine Status Register (ADSMSTATE) Field Descriptions .......................................... ADC Channel Last Conversion Value Register (ADLASTCONV) Field Descriptions ............................ ADC Event Group Results' FIFO Register (ADEVBUFFER) Field Descriptions ................................. ADC Group1 Results FIFO Register (ADG1BUFFER) Field Descriptions ........................................ ADC Group2 Results FIFO Register (ADG2BUFFER) Field Descriptions ........................................ ADC Event Group Results Emulation FIFO Register (ADEVEMUBUFFER) Field Descriptions ............... SPNU499C – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 724 726 726 728 728 731 734 737 739 740 741 742 743 744 745 746 747 748 748 749 750 752 754 756 757 758 758 759 760 761 762 763 764 765 766 766 767 768 769 770 771 75 www.ti.com 19-46. ADC Group1 Results Emulation FIFO Register (ADG1EMUBUFFER) Field Descriptions ..................... 772 19-47. ADC Group2 Results Emulation FIFO Register (ADG2EMUBUFFER) Field Descriptions ..................... 773 19-48. ADC ADEVT Pin Direction Control Register (ADEVTDIR) Field Descriptions .................................... 774 775 19-50. 775 19-51. 19-52. 19-53. 19-54. 19-55. 19-56. 19-57. 19-58. 19-59. 19-60. 19-61. 19-62. 19-63. 19-64. 19-65. 19-66. 19-67. 19-68. 19-69. 19-70. 19-71. 19-72. 19-73. 20-1. 20-2. 20-3. 20-4. 20-5. 20-6. 20-7. 20-8. 20-9. 20-10. 20-11. 20-12. 20-13. 20-14. 20-15. 20-16. 20-17. 20-18. 20-19. 20-20. 20-21. 76 ............................. ADC ADEVT Pin Input Value Register (ADEVTIN) Field Descriptions ............................................ ADC ADEVT Pin Set Register (ADEVTSET) Field Descriptions ................................................... ADC ADEVT Pin Clear Register (ADEVTCLR) Field Descriptions ................................................. ADC ADEVT Pin Open Drain Enable Register (ADEVTPDR) Field Descriptions ................................ ADC ADEVT Pin Pull Control Disable Register (ADEVTPDIS) Field Descriptions .............................. ADC ADEVT Pin Pull Control Select Register (ADEVTPSEL) Field Descriptions ............................... ADC Event Group Sample Cap Discharge Control Register (ADEVSAMPDISEN) Field Descriptions ....... ADC Group1 Sample Cap Discharge Control Register (ADG1SAMPDISEN) Field Descriptions .............. ADC Group2 Sample Cap Discharge Control Register (ADG2SAMPDISEN) Field Descriptions .............. ADC Magnitude Compare Interrupt x Control Registers (ADMAGINTxCR) Field Descriptions ................ ADC Magnitude Compare Interrupt x Mask Register (ADMAGxMASK) Field Descriptions .................... ADC Magnitude Compare Interrupt Enable Set Register (ADMAGINTENASET) Field Descriptions.......... ADC Magnitude Compare Interrupt Enable Clear Register (ADMAGINTENACLR) Field Descriptions ....... ADC Magnitude Compare Interrupt Flag Register (ADMAGINTFLG) Field Descriptions ....................... ADC Magnitude Compare Interrupt Offset Register (ADMAGINTOFF) Field Descriptions ..................... ADC Event Group FIFO Reset Control Register (ADEVFIFORESETCR) Field Descriptions .................. ADC Group1 FIFO Reset Control Register (ADG1FIFORESETCR) Field Descriptions ........................ ADC Group2 FIFO Reset Control Register (ADG2FIFORESETCR) Field Descriptions ........................ ADC Event Group RAM Write Address Register (ADEVRAMWRADDR) Field Descriptions ................... ADC Group1 RAM Write Address Register (ADG1RAMWRADDR) Field Descriptions ......................... ADC Group2 RAM Write Address Register (ADG2RAMWRADDR) Field Descriptions ......................... ADC Parity Control Register (ADPARCR) Field Descriptions ...................................................... ADC Parity Error Address Register (ADPARADDR) Field Descriptions ........................................... ADC Power-Up Delay Control Register (ADPWRUPDLYCTRL) Field Descriptions ............................. N2HET RAM Base Addresses .......................................................................................... N2HET RAM Bank Structure ............................................................................................ Pin Safe State Upon Parity Error Detection ........................................................................... N2HET Parity Bit Mapping ............................................................................................... Prescale Factor Register Encoding .................................................................................... Interpretation of the 7-Bit HR Data Field............................................................................... Edge Detection Input Timing for Loop Resolution Instructions ..................................................... Edge Detection Input Timing for High Resolution Instructions...................................................... Input Buffer, Output Buffer, and Pull Control Behavior .............................................................. N2HET Pin Disable Feature ............................................................................................. Pulse Length Examples for Suppression Filter ....................................................................... Interrupt Sources and Corresponding Offset Values in Registers HETOFFx..................................... HWAG Interrupt Sources and Offset Values .......................................................................... HWAG Interrupt Descriptions ........................................................................................... N2HET Registers ......................................................................................................... Global Configuration Register (HETGCR) Field Descriptions ...................................................... Prescale Factor Register (HETPFR) Field Descriptions ............................................................. N2HET Current Address (HETADDR) Field Descriptions ........................................................... Offset Index Priority Level 1 Register (HETOFF1) Field Descriptions ............................................. Interrupt Offset Encoding Format ....................................................................................... Offset Index Priority Level 2 Register (HETOFF2) Field Descriptions ............................................. 19-49. ADC ADEVT Pin Output Value Control Register (ADEVTOUT) Field Descriptions List of Tables 776 776 777 777 778 778 779 780 782 783 784 784 785 785 786 786 787 787 788 788 789 790 790 801 802 803 804 805 806 817 817 823 824 825 825 846 847 855 856 858 859 859 860 860 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 20-22. Interrupt Enable Set Register (HETINTENAS) Field Descriptions ................................................. 861 ................................................. ...................................................... Exception Control Register 2 (HETEXC2) Field Descriptions ...................................................... Interrupt Priority Register (HETPRY) Field Descriptions ............................................................ Interrupt Flag Register (HETFLG) Field Descriptions ................................................................ AND Share Control Register (HETAND) Field Descriptions ........................................................ HR Share Control Register (HETHRSH) Field Descriptions ........................................................ XOR Share Control Register (HETXOR) Field Descriptions ........................................................ Request Enable Set Register (HETREQENS) Field Descriptions .................................................. Request Enable Clear Register (HETREQENC) Field Descriptions ............................................... Request Destination Select Register (HETREQDS) Field Descriptions ........................................... N2HET Direction Register (HETDIR) Field Descriptions ............................................................ N2HET Data Input Register (HETDIN) Field Descriptions .......................................................... N2HET Data Output Register (HETDOUT) Field Descriptions ..................................................... N2HET Data Set Register (HETDSET) Field Descriptions .......................................................... N2HET Data Clear Register (HETDCLR) Field Descriptions ....................................................... N2HET Open Drain Register (HETPDR) Field Descriptions ........................................................ N2HET Pull Disable Register (HETPULDIS) Field Descriptions ................................................... N2HET Pull Select Register (HETPSL) Field Descriptions.......................................................... Parity Control Register (HETPCR) Field Descriptions ............................................................... Parity Address Register (HETPAR) Field Descriptions .............................................................. Parity Pin Register (HETPPR) Field Descriptions .................................................................... Known State on Parity Error ............................................................................................. Suppression Filter Preload Register (HETSFPRLD) Field Descriptions........................................... Suppression Filter Enable Register (HETSFENA) Field Descriptions ............................................. Loop Back Pair Select Register (HETLBPSEL) Field Descriptions ................................................ Loop Back Pair Direction Register (HETLBPDIR) Field Descriptions ............................................. NHET Pin Disable Register (HETPINDIS) Field Descriptions ...................................................... HWAG Registers .......................................................................................................... HWAG Pin Select Register (HWAPINSEL) Field Descriptions ..................................................... HWAG Global Control Register 0 (HWAGCR0) Field Descriptions ................................................ HWAG Global Control Register 1 (HWAGCR1) Field Descriptions ................................................ HWAG Global Control Register 2 (HWAGCR2) Field Descriptions ................................................ HWAG Interrupt Enable Set Register (HWAENASET) Field Descriptions ........................................ HWAG Interrupts .......................................................................................................... HWAG Interrupt Enable Clear Register (HWAENACLR) Field Descriptions...................................... HWAG Interrupt Level Set Register (HWALVLSET) Field Descriptions ........................................... HWAG Interrupt Level Clear Register (HWALVLCLR) Field Descriptions ........................................ HWAG Interrupt Flag Register (HWAFLG) Field Descriptions ...................................................... HWAG Interrupt Offset Register 0 (HWAOFF0) Field Descriptions ................................................ HWAG Interrupt Offset Register 1 (HWAOFF1) Field Descriptions ................................................ HWAG Angle Value Register (HWAACNT) Field Descriptions ..................................................... HWAG Previous Tooth Period Value Register (HWAPCNT1) Field Descriptions ................................ HWAG Current Tooth Period Value Register (HWAPCNT) Field Descriptions ................................... HWAG Step Width Register (HWASTWD) Field Descriptions ...................................................... HWAG Teeth Number Register (HWATHNB) Field Descriptions .................................................. HWAG Current Teeth Number Register (HWATHVL) Field Descriptions ......................................... HWAG Filter Register (HWAFIL) Field Descriptions ................................................................. 20-23. NHET Interrupt Enable Clear (HETINTENAC) Field Descriptions 861 20-24. Exception Control Register 1 (HETEXC1) Field Descriptions 862 20-25. 863 20-26. 20-27. 20-28. 20-29. 20-30. 20-31. 20-32. 20-33. 20-34. 20-35. 20-36. 20-37. 20-38. 20-39. 20-40. 20-41. 20-42. 20-43. 20-44. 20-45. 20-46. 20-47. 20-48. 20-49. 20-50. 20-51. 20-52. 20-53. 20-54. 20-55. 20-56. 20-57. 20-58. 20-59. 20-60. 20-61. 20-62. 20-63. 20-64. 20-65. 20-66. 20-67. 20-68. 20-69. 20-70. SPNU499C – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 864 864 865 866 867 868 868 869 870 871 871 872 872 873 873 874 875 876 877 877 878 878 879 880 881 882 883 884 884 885 886 886 887 888 888 889 890 891 892 893 893 894 895 895 896 77 www.ti.com 20-71. HWAG Filter Register 2 (HWAFIL2) Field Descriptions ............................................................. 896 20-72. HWAG Angle Increment Register (HWAANGI) Field Descriptions ................................................. 897 20-73. Instruction Summary ..................................................................................................... 898 20-74. FLAGS Generated by Instruction ....................................................................................... 899 20-75. Interrupt Capable Instructions ........................................................................................... 899 911 20-77. 911 20-78. 20-79. 20-80. 20-81. 20-82. 20-83. 20-84. 20-85. 20-86. 20-87. 20-88. 20-89. 20-90. 20-91. 20-92. 20-93. 20-94. 20-95. 20-96. 20-97. 21-1. 21-2. 21-3. 21-4. 21-5. 21-6. 21-7. 21-8. 21-9. 21-10. 21-11. 21-12. 21-13. 21-14. 21-15. 21-16. 21-17. 21-18. 21-19. 21-20. 21-21. 21-22. 78 .............................................................................. Source Operand Choices ............................................................................................... Destination Operand Choices .......................................................................................... Shift Encoding ............................................................................................................. Execution Time for ADC, ADD, AND, OR, SBB, SUB, XOR Instructions ........................................ Move Types for ADM32 ................................................................................................. Edge Select Encoding for APCNT ..................................................................................... Branch Condition Encoding for BR .................................................................................... DADM64 Control Field Description .................................................................................... Event Encoding Format for ECNT ..................................................................................... Magnitude Compare Order for MCMP ................................................................................ Move Type Encoding Selection ........................................................................................ MOV64 Control Field Descriptions .................................................................................... Comparison Type Encoding Format ................................................................................... Counter Type Encoding Format ........................................................................................ Comparison Type Encoding Format ................................................................................... RADM64 Control Field Descriptions ................................................................................... Step Width Encoding for SCNT ........................................................................................ SHIFT MODE Encoding Format ........................................................................................ SHIFT Condition Encoding .............................................................................................. Event Encoding Format for WCAP .................................................................................... Event Encoding Format for WCAPE .................................................................................. CPENA / TMBx Priority Rules ........................................................................................... Triggered Control Packets ............................................................................................... DCP RAM .................................................................................................................. DCP Parity RAM .......................................................................................................... Field Addresses of the WCAP, ECNT, PCNT Example ............................................................. 32-Bit-Transfer of Data Fields ........................................................................................... Destination Buffer Values ................................................................................................ 64-Bit-Transfer of Control Field and Data Fields ..................................................................... Destination Buffer Values ................................................................................................ HTU Control Registers ................................................................................................... Global Control Register (HTU GC) Field Descriptions ............................................................... Control Packet Enable Register (HTU CPENA) Field Descriptions ................................................ CPENA Write Results .................................................................................................... CPENA Read Results .................................................................................................... Control Packet (CP) Busy Register 0 (HTU BUSY0) Field Descriptions .......................................... Control Packet (CP) Busy Register 1 (HTU BUSY1) Field Descriptions .......................................... Control Packet (CP) Busy Register 2 (HTU BUSY2) Field Descriptions .......................................... Control Packet (CP) Busy Register 3 (HTU BUSY3) Field Descriptions .......................................... Active Control Packet and Error Register (HTU ACPE) Field Descriptions ....................................... Request Lost and Bus Error Control Register (HTU RLBECTRL) Field Descriptions ........................... Buffer Full Interrupt Enable Set Register (HTU BFINTS) Field Descriptions ..................................... Buffer Full Interrupt Enable Clear Register (HTU BFINTC) Field Descriptions ................................... 20-76. Arithmetic / Bitwise Logic Sub-Opcodes List of Tables 911 912 912 917 920 923 928 936 938 941 945 946 948 955 955 961 963 963 966 968 977 980 982 982 983 984 984 985 985 986 987 988 988 988 989 990 990 991 991 993 994 994 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 21-23. Interrupt Mapping Register (HTU INTMAP) Field Descriptions ..................................................... 995 21-24. Interrupt Offset Register 0 (HTU INTOFF0) Field Descriptions..................................................... 996 21-25. Interrupt Offset Register 1 (HTU INTOFF1) Field Descriptions..................................................... 997 21-26. Buffer Initialization Mode Register (HTU BIM) Field Descriptions .................................................. 998 21-27. Buffer Initialization ........................................................................................................ 998 ................................................ Buffer Full Interrupt Flag Register (HTU BFINTFL) Field Descriptions .......................................... BER Interrupt Flag Register (HTU BERINTFL) Field Descriptions ............................................... Memory Protection 1 Start Address Register (HTU MP1S) Field Descriptions ................................. Memory Protection 1 End Address Register (HTU MP1E) Field Descriptions .................................. Debug Control Register (HTU DCTRL) Field Descriptions ........................................................ Watch Point Register (HTU WPR) Field Descriptions .............................................................. Watch Mask Register (HTU WMR) Field Descriptions ............................................................. Module Identification Register (HTU ID) Field Descriptions ....................................................... Parity Control Register (HTU PCR) Field Descriptions............................................................. Parity Address Register (HTU PAR) Field Descriptions ........................................................... Memory Protection Control and Status Register (HTU MPCS) Field Descriptions ............................. Memory Protection 0 Start Address Register (HTU MP0S) Field Descriptions ................................. Memory Protection End Address Register (HTU MP0E) Field Descriptions .................................... Double Control Packet Memory Map ................................................................................. Initial Full Address A Register (HTU IFADDRA) Field Descriptions .............................................. Initial Full Address B Register (HTU IFADDRB) Field Descriptions .............................................. Initial N2HET Address and Control Register (HTU IHADDRCT) Field Descriptions ........................... Initial Transfer Count Register (HTU ITCOUNT) Field Descriptions ............................................. Current Full Address A Register (HTU CFADDRA) Field Descriptions .......................................... Current Full Address B Register (HTU CFADDRB) Field Descriptions .......................................... Current Frame Count Register (HTU CFCOUNT) Field Descriptions ............................................ Application Examples for Setting the Transfer Modes of CP A and B of a DCP ............................... GIO Control Registers .................................................................................................. GIO Global Control Register (GIOGCR0) Field Descriptions ..................................................... GIO Interrupt Detect Register (GIOINTDET) Field Descriptions .................................................. GIO Interrupt Polarity Register (GIOPOL) Field Descriptions ..................................................... GIO Interrupt Enable Set Register (GIOENASET) Field Descriptions ........................................... GIO Interrupt Enable Clear Register (GIOENACLR) Field Descriptions ......................................... GIO Interrupt Priority Register (GIOLVLSET) Field Descriptions ................................................. GIO Interrupt Priority Register (GIOLVLCLR) Field Descriptions ................................................. GIO Interrupt Flag Register (GIOFLG) Field Descriptions ......................................................... GIO Offset 1 Register (GIOOFF1) Field Descriptions .............................................................. GIO Offset 2 Register (GIOOFF2) Field Descriptions .............................................................. GIO Emulation 1 Register (GIOEMU1) Field Descriptions ........................................................ GIO Emulation 2 Register (GIOEMU2) Field Descriptions ........................................................ GIO Data Direction Registers (GIODIR[A-B]) Field Descriptions ................................................. GIO Data Input Registers (GIODIN[A-B]) Field Descriptions ...................................................... GIO Data Output Registers (GIODOUT[A-B]) Field Descriptions ................................................. GIO Data Set Registers (GIODSET[A-B]) Field Descriptions ..................................................... GIO Data Clear Registers (GIODCLR[A-B]) Field Descriptions ................................................... GIO Open Drain Registers (GIOPDR[A-B]) Field Descriptions ................................................... GIO Pull Disable Registers (GIOPULDIS[A-B]) Field Descriptions .............................................. GIO Pull Select Registers (GIOPSL[A-B]) Field Descriptions ..................................................... 21-28. Request Lost Flag Register (HTU RLOSTFL) Field Descriptions 21-29. 21-30. 21-31. 21-32. 21-33. 21-34. 21-35. 21-36. 21-37. 21-38. 21-39. 21-40. 21-41. 21-42. 21-43. 21-44. 21-45. 21-46. 21-47. 21-48. 21-49. 21-50. 22-1. 22-2. 22-3. 22-4. 22-5. 22-6. 22-7. 22-8. 22-9. 22-10. 22-11. 22-12. 22-13. 22-14. 22-15. 22-16. 22-17. 22-18. 22-19. 22-20. 22-21. SPNU499C – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 1000 1000 1001 1002 1002 1003 1004 1004 1005 1006 1007 1008 1011 1011 1012 1013 1013 1014 1015 1016 1017 1018 1019 1029 1030 1031 1032 1033 1034 1035 1037 1038 1039 1040 1041 1042 1043 1043 1044 1044 1045 1045 1046 1046 79 www.ti.com 1047 23-1. 1053 23-2. 23-3. 23-4. 23-5. 23-6. 23-7. 23-8. 23-9. 23-10. 23-11. 23-12. 23-13. 23-14. 23-15. 23-16. 23-17. 23-18. 23-19. 23-20. 23-21. 23-22. 23-23. 23-24. 23-25. 23-26. 23-27. 23-28. 23-29. 23-30. 23-31. 23-32. 23-33. 23-34. 23-35. 23-36. 23-37. 23-38. 23-39. 23-40. 23-41. 23-42. 23-43. 23-44. 23-45. 23-46. 23-47. 23-48. 80 ............................................................. FlexRay Address Range Table ........................................................................................ FlexRay Transfer Unit Event Trigger Conditions .................................................................... Mirroring Address Mapping ............................................................................................ Mirroring Address Mapping ............................................................................................ Error Modes of the POC (Degradation Model) ...................................................................... State Transitions of Communication Controller Overall State Machine .......................................... State Transitions WAKEUP ............................................................................................ Definition of Cycle Set .................................................................................................. Examples for Valid Cycle Sets ........................................................................................ Channel Filtering Configuration ....................................................................................... Scan of Message RAM ................................................................................................. Assignment of Input Buffer Command Mask Bits ................................................................... Assignment of Input Buffer Command Request Bits ............................................................... Assignment of Output Buffer Command Mask Bits ................................................................. Assignment of Output Buffer Command Request Bits ............................................................. Module Interrupt Flags and Interrupt Line Enable .................................................................. Transfer Unit Registers ................................................................................................. Global Static Number 0 (GSN0) Field Descriptions ................................................................ Global Static Number 1 (GSN1) Field Descriptions ................................................................ Global Control Set/Reset (GCS/GCR) Field Descriptions ......................................................... Transfer Status Current Buffer (TSCB) Field Descriptions ........................................................ Last Transferred Buffer to Communication Controller (LTBCC) Field Descriptions ............................ Last Transferred Buffer to System Memory (LTBSM) Field Descriptions........................................ Transfer Base Address (TBA) Field Descriptions ................................................................... Next Transfer Base Address (NTBA) Field Descriptions ........................................................... Base Address of Mirrored Status (BAMS) Field Descriptions ..................................................... Start Address of Memory Protection (SAMP) Field Descriptions ................................................. End Address of Memory Protection (EAMP) Field Descriptions .................................................. Transfer to System Memory Occurred (TSMOn) Field Descriptions ............................................. Transfer to Communication Controller Occurred (TCCOn) Field Descriptions .................................. Transfer Occurred Offset (TOOFF) Field Descriptions ............................................................. Parity Error Address (PEADR) Field Descriptions .................................................................. Coding of Parity Error Address ........................................................................................ Transfer Error Interrupt Flag (TEIF) Field Descriptions ............................................................ Transfer Error Interrupt Enable Set (TEIRES) Field Descriptions ................................................ Transfer Error Interrupt Enable Reset (TEIRER) Field Descriptions ............................................. Trigger Transfer to System Memory Set 1 (TTSMS1) Field Descriptions ....................................... Trigger Transfer to System Memory Reset 1 (TTSMR1) Field Descriptions .................................... Trigger Transfer to System Memory Set 2 (TTSMS2) Field Descriptions ....................................... Trigger Transfer to System Memory Reset 2 (TTSMR2) Field Descriptions .................................... Trigger Transfer to System Memory Set 3 (TTSMS3) Field Descriptions ....................................... Trigger Transfer to System Memory Reset 3 (TTSMR3) Field Descriptions .................................... Trigger Transfer to System Memory Set 4 (TTSMS4) Field Descriptions ....................................... Trigger Transfer to System Memory Reset 4 (TTSMR4) Field Descriptions .................................... Trigger Transfer to Communication Controller Set 1 (TTCCS1) Field Descriptions ............................ Trigger Transfer to Communication Controller Reset 1 (TTCCR1) Field Descriptions......................... Trigger Transfer to Communication Controller Set 2 (TTCCS2) Field Descriptions ............................ Trigger Transfer to Communication Controller Reset 2 (TTCCR2) Field Descriptions ........................ 22-22. Output Buffer and Pull Control Behavior for GIO Pins List of Tables 1058 1060 1061 1067 1070 1073 1082 1082 1083 1089 1092 1092 1094 1094 1107 1108 1110 1110 1112 1114 1115 1115 1116 1116 1117 1117 1118 1120 1122 1123 1124 1124 1125 1127 1128 1129 1129 1130 1130 1131 1131 1132 1132 1133 1133 1134 1134 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 23-49. Trigger Transfer to Communication Controller Set 3 (TTCCS3) Field Descriptions ............................ 1135 23-50. Trigger Transfer to Communication Controller Reset 3 (TTCCR3) Field Descriptions......................... 1135 23-51. Trigger Transfer to Communication Controller Set 4 (TTCCS4) Field Descriptions ............................ 1136 23-52. Trigger Transfer to Communication Controller Reset 4 (TTCCR4) Field Descriptions......................... 1136 23-53. Enable Transfer on Event to System Memory Set 1 (ETESMS1) Field Descriptions .......................... 1137 23-54. Enable Transfer on Event to System Memory Reset 1 (ETESMR1) Field Descriptions ....................... 1137 23-55. Enable Transfer on Event to System Memory Set 2 (ETESMS2) Field Descriptions .......................... 1138 23-56. Enable Transfer on Event to System Memory Reset 2 (ETESMR2) Field Descriptions ....................... 1138 23-57. Enable Transfer on Event to System Memory Set 3 (ETESMS3) Field Descriptions .......................... 1139 23-58. Enable Transfer on Event to System Memory Reset 3 (ETESMR3) Field Descriptions ....................... 1139 23-59. Enable Transfer on Event to System Memory Set 4 (ETESMS4) Field Descriptions .......................... 1140 23-60. Enable Transfer on Event to System Memory Reset 4 (ETESMR4) Field Descriptions ....................... 1140 23-61. Clear on Event to System Memory Set 1 (CESMS1) Field Descriptions ........................................ 1141 23-62. Clear on Event to System Memory Reset 1 (CESMR1) Field Descriptions ..................................... 1141 23-63. Clear on Event to System Memory Set 2 (CESMS2) Field Descriptions ........................................ 1142 23-64. Clear on Event to System Memory Reset 2 (CESMR2) Field Descriptions ..................................... 1142 23-65. Clear on Event to System Memory Set 3 (CESMS3) Field Descriptions ........................................ 1143 23-66. Clear on Event to System Memory Reset 3 (CESMR3) Field Descriptions ..................................... 1143 23-67. Clear on Event to System Memory Set 4 (CESMS4) Field Descriptions ........................................ 1144 23-68. Clear on Event to System Memory Reset 4 (CESMR4) Field Descriptions ..................................... 1144 23-69. Transfer to System Memory Interrupt Enable Set 1 (TSMIES1) Field Descriptions ............................ 1145 23-70. Transfer to System Memory Interrupt Enable Reset 1 (TSMIER1) Field Descriptions ........................ 1145 23-71. Transfer to System Memory Interrupt Enable Set 2 (TSMIES2) Field Descriptions ............................ 1146 ........................ Transfer to System Memory Interrupt Enable Set 3 (TSMIES3) Field Descriptions ............................ Transfer to System Memory Interrupt Enable Reset 3 (TSMIER3) Field Descriptions ........................ Transfer to System Memory Interrupt Enable Set 4 (TSMIES4) Field Descriptions ............................ Transfer to System Memory Interrupt Enable Reset 4 (TSMIER4) Field Descriptions ........................ Transfer to Communication Controller Interrupt Enable Set 1 (TCCIES1) Field Descriptions ................ Transfer to Communication Controller Interrupt Enable Reset 1 (TCCIER1) Field Descriptions ............. Transfer to Communication Controller Interrupt Enable Set 2 (TCCIES2) Field Descriptions ................ Transfer to Communication Controller Interrupt Enable Reset 2 (TCCIER2) Field Descriptions ............. Transfer to Communication Controller Interrupt Enable Set 3 (TCCIES3) Field Descriptions ................ Transfer to Communication Controller Interrupt Enable Reset 3 (TCCIER3) Field Descriptions ............. Transfer to Communication Controller Interrupt Enable Set 4 (TCCIES4) Field Descriptions ................ Transfer to Communication Controller Interrupt Enable Reset 4 (TCCIER4) Field Descriptions ............. Transfer Configuration RAM (TCR) Field Descriptions ............................................................. Parity Information in TCR Parity Test Mode Field Descriptions ................................................... Communication Controller Registers ................................................................................. Test Register 1 (TEST1) Field Descriptions ......................................................................... Test Register 2 (TEST2) Field Descriptions ......................................................................... Lock Register (LCK) Field Descriptions .............................................................................. Error Interrupt Register (EIR) Field Descriptions .................................................................... Status Interrupt Register (SIR) Field Descriptions .................................................................. Error Interrupt Line Select Register (EILS) Field Descriptions .................................................... Status Interrupt Line Select Register (SILS) Field Descriptions .................................................. Error Interrupt Set/Reset Register (EIES/EIER) Field Descriptions .............................................. Status Interrupt Enable Set/Reset Register (SIES/SIER) Field Descriptions ................................... Interrupt Line Enable Register (ILE) Field Descriptions ............................................................ 23-72. Transfer to System Memory Interrupt Enable Reset 2 (TSMIER2) Field Descriptions 23-73. 23-74. 23-75. 23-76. 23-77. 23-78. 23-79. 23-80. 23-81. 23-82. 23-83. 23-84. 23-85. 23-86. 23-87. 23-88. 23-89. 23-90. 23-91. 23-92. 23-93. 23-94. 23-95. 23-96. 23-97. SPNU499C – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 1146 1147 1147 1148 1148 1149 1149 1150 1150 1151 1151 1152 1152 1153 1154 1156 1159 1163 1165 1166 1168 1171 1173 1175 1177 1179 81 www.ti.com 23-98. Timer 0 Configuration Register (T0C) Field Descriptions .......................................................... 1180 23-99. Timer 1 Configuration Register (T1C) Field Descriptions .......................................................... 1181 23-100. Stop Watch Register 1 (STPW1) Field Descriptions .............................................................. 1182 23-101. Stop Watch Register 2 (STPW2) Field Descriptions .............................................................. 1183 23-102. SUC Configuration Register 1 (SUCC1) Field Descriptions ...................................................... 1184 23-103. SUC Configuration Register 2 (SUCC2) Field Descriptions ...................................................... 1188 23-104. SUC Configuration Register 3 (SUCC3) Field Descriptions ...................................................... 1189 23-105. NEM Configuration Register (NEMC) Field Descriptions ......................................................... 1189 23-106. PRT Configuration Register 1 (PRTC1) Field Descriptions ...................................................... 1190 23-107. PRT Configuration Register 2 (PRTC2) Field Descriptions ...................................................... 1191 23-108. MHD Configuration Register (MHDC) Field Descriptions......................................................... 1192 23-109. GTU Configuration Register 1 (GTUC1) Field Descriptions ...................................................... 1193 23-110. GTU Configuration Register 2 (GTUC2) Field Descriptions ...................................................... 1193 23-111. GTU Configuration Register 3 (GTUC3) Field Descriptions ...................................................... 1194 23-112. GTU Configuration Register 4 (GTUC4) Field Descriptions ...................................................... 1195 23-113. GTU Configuration Register 5 (GTUC5) Field Descriptions ...................................................... 1195 23-114. GTU Configuration Register 6 (GTUC6) Field Descriptions ...................................................... 1196 23-115. GTU Configuration Register 7 (GTUC7) Field Descriptions ...................................................... 1196 23-116. GTU Configuration Register 8 (GTUC8) Field Descriptions ...................................................... 1197 23-117. GTU Configuration Register 9 (GTUC9) Field Descriptions ...................................................... 1197 23-118. GTU Configuration Register 10 (GTUC10) Field Descriptions ................................................... 1198 23-119. GTU Configuration Register 11 (GTUC11) Field Descriptions ................................................... 1199 23-120. Communication Controller Status Vector Register (CCSV) Field Descriptions ................................ 1200 1202 23-122. 1203 23-123. 23-124. 23-125. 23-126. 23-127. 23-128. 23-129. 23-130. 23-131. 23-132. 23-133. 23-134. 23-135. 23-136. 23-137. 23-138. 23-139. 23-140. 23-141. 23-142. 23-143. 23-144. 23-145. 23-146. 82 ................................. Slot Counter Vector Register (SCV) Field Descriptions .......................................................... Macrotick and Cycle Counter Register (MTCCV) Field Descriptions ........................................... Rate Correction Value Register (RCV) Field Descriptions ....................................................... Offset Correction Value Register (OCV) Field Descriptions ...................................................... Sync Frame Status Register (SFS) Field Descriptions ........................................................... Symbol Window and NIT Status Register (SWNIT) Field Descriptions ......................................... Aggregated Channel Status Register (ACS) Field Descriptions ................................................. Even Sync ID Registers (ESIDn) Field Descriptions .............................................................. Odd Sync ID Registers (OSIDn) Field Descriptions ............................................................... Assignment of Data Bytes to Network Management Vector ..................................................... Message RAM Configuration Register (MRC) Field Descriptions ............................................... Buffer Configuration ................................................................................................... FIFO Rejection Filter Register (FRF) Field Descriptions ......................................................... FIFO Rejection Filter Mask Register (FRFM) Field Descriptions ................................................ FIFO Critical Level Register (FCL) Field Descriptions ............................................................ Message Handler Status (MHDS) Field Descriptions ............................................................. Last Dynamic Transmit Slot (LDTS) Field Descriptions .......................................................... FIFO Status Register (FSR) Field Descriptions .................................................................... Message Handler Constraint Flags (MHDF) Field Descriptions ................................................. Transmission Request Registers (TXRQn) Field Descriptions .................................................. New Data Registers (NDATn) Field Descriptions.................................................................. Message Buffer Status Changed Register (MBSCn) Field Descriptions ....................................... Core Release Register (CREL) Field Descriptions ................................................................ Release Coding ........................................................................................................ Endian Register (ENDN) Field Descriptions........................................................................ 23-121. Communication Controller Error Vector Register (CCEV) Field Descriptions List of Tables 1203 1204 1204 1205 1206 1207 1209 1210 1211 1212 1213 1214 1215 1215 1216 1217 1218 1219 1221 1223 1224 1225 1225 1225 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 23-147. Write Data Section Registers (WRDSn) Field Descriptions ...................................................... 1226 23-148. Write Header Section Register 1 (WRHS1) Field Descriptions .................................................. 1227 23-149. Channel Filter Control Bit Descriptions ............................................................................. 1228 23-150. Write Header Section Register 2 (WRHS2) Field Descriptions .................................................. 1228 23-151. Write Header Section Register 3 (WRHS3) Field Descriptions .................................................. 1229 .............................................. 23-153. Input Buffer Command Request Register (IBCR) Field Descriptions ........................................... 23-154. Read Data Section Registers (RDDSn) Field Descriptions ...................................................... 23-155. Read Header Section Register 1 (RDHS1) Field Descriptions .................................................. 23-156. Read Header Section Register 2 (RDHS2) Field Descriptions .................................................. 23-157. Read Header Section Register 3 (RDHS3) Field Descriptions .................................................. 23-158. Message Buffer Status Register (MBS) Field Descriptions ...................................................... 23-159. Output Buffer Command Mask Register (OBCM) Field Descriptions ........................................... 23-160. Output Buffer Command Mask Register (OBCR) Field Descriptions ........................................... 23-161. Assignment of FlexRay Configuration Parameters ............................................................... 24-1. Parameters of the CAN Bit Time ...................................................................................... 24-2. Message Object Field Descriptions ................................................................................... 24-3. Message RAM Addressing in Debug/Suspend and RDA Mode .................................................. 24-4. Message Interface Register Sets 1 and 2............................................................................ 24-5. Message Interface Register 3 ......................................................................................... 24-6. DCAN Control Registers ............................................................................................... 24-7. CAN Control Register Field Descriptions ............................................................................ 24-8. Error and Status Register Field Descriptions ........................................................................ 24-9. Error Counter Register Field Descriptions ........................................................................... 24-10. Bit Timing Register Field Descriptions................................................................................ 24-11. Interrupt Register Field Descriptions.................................................................................. 24-12. Test Register Field Descriptions ...................................................................................... 24-13. Parity Error Code Register Field Descriptions ....................................................................... 24-14. Core Release Register (DCAN REL) Field Descriptions ........................................................... 24-15. Auto-Bus-On Time Register Field Descriptions ..................................................................... 24-16. Transmission Request Registers Field Descriptions ............................................................... 24-17. New Data Registers Field Descriptions .............................................................................. 24-18. Interrupt Pending Registers Field Descriptions...................................................................... 24-19. Message Valid Registers Field Descriptions......................................................................... 24-20. Interrupt Multiplexer Registers Field Descriptions .................................................................. 24-21. IF1/IF2 Command Register Field Descriptions ...................................................................... 24-22. IF1/IF2 Mask Register Field Descriptions ............................................................................ 24-23. IF1/IF2 Arbitration Register Field Descriptions ...................................................................... 24-24. IF1/IF2 Message Control Register Field Descriptions .............................................................. 24-25. IF3 Observation Register Field Descriptions ........................................................................ 24-26. IF3 Mask Register Field Descriptions ................................................................................ 24-27. IF3 Arbitration Register Field Descriptions ........................................................................... 24-28. IF3 Message Control Register Field Descriptions .................................................................. 24-29. IF3 Update Control Register Field Descriptions ..................................................................... 24-30. CAN TX IO Control Register Field Descriptions .................................................................... 24-31. CAN RX IO Control Register Field Descriptions .................................................................... 25-1. Pin Configurations ....................................................................................................... 25-2. Clocking Modes.......................................................................................................... 25-3. Pin Mapping for SIMO Pin with MSB First ........................................................................... 23-152. Input Buffer Command Mask Register (IBCM) Field Descriptions SPNU499C – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 1230 1231 1232 1233 1234 1235 1236 1239 1240 1243 1249 1255 1257 1259 1261 1280 1282 1284 1286 1287 1288 1289 1290 1290 1291 1292 1294 1296 1298 1299 1301 1303 1304 1306 1308 1310 1311 1312 1314 1315 1316 1321 1328 1335 83 www.ti.com 25-4. Pin Mapping for SOMI Pin with MSB First ........................................................................... 1335 25-5. Pin Mapping for SIMO Pin with LSB First ............................................................................ 1336 25-6. Pin Mapping for SOMI Pin with LSB First ............................................................................ 1336 25-7. SPI Registers ............................................................................................................ 1349 25-8. SPI Global Control Register 0 (SPIGCR0) Field Descriptions 1350 25-9. SPI Global Control Register 1 (SPIGCR1) Field Descriptions 1351 25-10. 25-11. 25-12. 25-13. 25-14. 25-15. 25-16. 25-17. 25-18. 25-19. 25-20. 25-21. 25-22. 25-23. 25-24. 25-25. 25-26. 25-27. 25-28. 25-29. 25-30. 25-31. 25-32. 25-33. 25-34. 25-35. 25-36. 25-37. 25-38. 25-39. 25-40. 25-41. 25-42. 25-43. 25-44. 25-45. 25-46. 25-47. 25-48. 25-49. 25-50. 25-51. 25-52. 84 .................................................... .................................................... SPI Interrupt Register (SPIINT0) Field Descriptions ................................................................ SPI Interrupt Level Register (SPILVL) Field Descriptions ......................................................... SPI Flag Register (SPIFLG) Field Descriptions ..................................................................... SPI Pin Control (SPIPC0) Field Descriptions ........................................................................ SPI Pin Control Register (SPIPC1) Field Descriptions ............................................................. SPI Pin Control Register 2 (SPIPC2) Field Descriptions........................................................... SPI Pin Control Register 3 (SPIPC3) Field Descriptions........................................................... SPI Pin Control Register 4 (SPIPC4) Field Descriptions........................................................... SPI Pin Control Register 5 (SPIPC5) Field Descriptions........................................................... SPI Pin Control Register 6 (SPIPC6) Field Descriptions........................................................... SPI Pin Control Register 7 (SPIPC7) Field Descriptions........................................................... SPI Pin Control Register 8 (SPIPC8) Field Descriptions........................................................... SPI Transmit Data Register 0 (SPIDAT0) Field Descriptions ..................................................... SPI Transmit Data Register 1 (SPIDAT1) Field Descriptions ..................................................... Chip Select Number Active ............................................................................................ SPI Receive Buffer Register (SPIBUF) Field Descriptions ........................................................ SPI Emulation Register (SPIEMU) Field Descriptions.............................................................. SPI Delay Register (SPIDELAY) Field Descriptions ................................................................ SPI Default Chip Select Register (SPIDEF) Field Descriptions ................................................... SPI Data Format Registers (SPIFMT) Field Descriptions.......................................................... Transfer Group Interrupt Vector 0 (INTVECT0) ..................................................................... Transfer Group Interrupt Vector 1 (INTVECT1) ..................................................................... SPI Pin Control Register 9 (SPIPC9) Field Descriptions........................................................... SPI Parallel/Modulo Mode Control Register (SPIPMCTRL) Field Descriptions ................................. Multi-buffer Mode Enable Register (MIBSPIE) Field Descriptions ................................................ TG Interrupt Enable Set Register (TGITENST) Field Descriptions ............................................... TG Interrupt Enable Clear Register (TGITENCR) Field Descriptions ............................................ Transfer Group Interrupt Level Set Register (TGITLVST) Field Descriptions ................................... Transfer Group Interrupt Level Clear Register (TGITLVCR) Field Descriptions ................................ Transfer Group Interrupt Flag Register (TGINTFLG) Field Descriptions ........................................ Tick Count Register (TICKCNT) Field Descriptions ................................................................ Last TG End Pointer (LTGPEND) Field Descriptions .............................................................. TG Control Registers (TGxCTRL) Field Descriptions .............................................................. DMA Channel Control Register (DMAxCTRL) Field Descriptions ................................................ MibSPI DMAxCOUNT Register (ICOUNT) Field Descriptions .................................................... MibSPI DMA Large Count Register (DMACNTLEN) Field Descriptions ......................................... Multi-buffer RAM Uncorrectable Parity Error Control Register (UERRCTRL) Field Descriptions ............ Multi-buffer RAM Uncorrectable Parity Error Status Register (UERRSTAT) Field Descriptions .............. RXRAM Uncorrectable Parity Error Address Register (UERRADDR1) Field Descriptions .................... TXRAM Uncorrectable Parity Error Address Register (UERRADDR0) Field Descriptions .................... RXRAM Overrun Buffer Address Register (RXOVRN_BUF_ADDR) Field Descriptions ...................... I/O-Loopback Test Control Register (IOLPBKTSTCR) Field Descriptions....................................... SPI Extended Prescale Register 1 (EXTENDED_PRESCALE1) Field Descriptions ........................... List of Tables 1352 1354 1355 1358 1359 1361 1362 1363 1365 1367 1368 1369 1371 1372 1374 1375 1377 1377 1380 1381 1383 1384 1386 1387 1390 1391 1392 1393 1394 1395 1396 1397 1398 1401 1403 1404 1404 1405 1406 1407 1408 1409 1411 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 25-53. SPI Extended Prescale Register 2 (EXTENDED_PRESCALE2) Field Descriptions ........................... 1413 25-54. Multi-Buffer RAM Register Summary ................................................................................. 1416 25-55. Multi-Buffer RAM Transmit Data Register (TXRAM) Field Descriptions ......................................... 1417 ............................................................................................ Multi-Buffer Receive Buffer Register (RXRAM) Field Descriptions ............................................... Superfractional Bit Modulation for SCI Mode (Normal Configuration) ............................................ Superfractional Bit Modulation for SCI Mode (Maximum Configuration) ......................................... SCI Mode (Minimum Configuration) .................................................................................. SCI/LIN Interrupts ....................................................................................................... Response Length Info Using IDBYTE Field Bits [5:4] for LIN Standards Earlier than 1.3 ..................... Response Length with SCIFORMAT[18:16] Programming ........................................................ Superfractional Bit Modulation for LIN Master Mode and Slave Mode ........................................... Timeout Values in Tbit Units ............................................................................................ SCI/LIN Control Registers .............................................................................................. SCI Global Control Register 0 (SCIGCR0) Field Descriptions .................................................... SCI Global Control Register 1 (SCIGCR1) Field Descriptions .................................................... SCI Receiver Status Flags ............................................................................................. SCI Transmitter Status Flags .......................................................................................... SCI Global Control Register 2 (SCIGCR2) Field Descriptions .................................................... SCI Set Interrupt Register (SCISETINT) Field Descriptions ....................................................... SCI Clear Interrupt Register (SCICLEARINT) Field Descriptions................................................. SCI Set Interrupt Level Register (SCISETINTLVL) Field Descriptions ........................................... SCI Clear Interrupt Level Register (SCICLEARINTLVL) Field Descriptions .................................... SCI Flags Register (SCIFLR) Field Descriptions.................................................................... SCI Interrupt Vector Offset 0 (SCIINTVECT0) Field Descriptions ................................................ SCI Interrupt Vector Offset 1 (SCIINTVECT1) Field Descriptions ................................................ SCI Format Control Register (SCIFORMAT) Field Descriptions .................................................. Baud Rate Selection Register (BRS) Field Descriptions ........................................................... Comparative Baud Values for Different P Values, Asynchronous Mode ........................................ Receiver Emulation Data Buffer (SCIED) Field Descriptions ...................................................... Receiver Data Buffer (SCIRD) Field Descriptions .................................................................. Transmit Data Buffer Register (SCITD) Field Descriptions ........................................................ SCI Pin I/O Control Register 0 (SCIPIO0) Field Descriptions ..................................................... SCI Pin I/O Control Register 1 (SCIPIO1) Field Descriptions ..................................................... LINTX Pin Control ...................................................................................................... LINRX Pin Control ...................................................................................................... SCI Pin I/O Control Register 2 (SCIPIO2) Field Descriptions .................................................... SCI Pin I/O Control Register 3 (SCIPIO3) Field Descriptions .................................................... SCI Pin I/O Control Register 4 (SCIPIO4) Field Descriptions .................................................... SCI Pin I/O Control Register 5 (SCIPIO5) Field Descriptions .................................................... SCI Pin I/O Control Register 6 (SCIPIO6) Field Descriptions ..................................................... SCI Pin I/O Control Register 7 (SCIPIO7) Field Descriptions ..................................................... SCI Pin I/O Control Register 8 (SCIPIO8) Field Descriptions .................................................... LIN Compare Register (LINCOMPARE) Field Descriptions ....................................................... LIN Receive Buffer 0 Register (LINRD0) Field Descriptions ...................................................... LIN Receive Buffer 1 Register (RD1) Field Descriptions........................................................... LIN Mask Register (LINMASK) Field Descriptions .................................................................. LIN Identification Register (LINID) Field Descriptions .............................................................. LIN Transmit Buffer 0 Register (LINTD0) Field Descriptions ...................................................... 25-56. Chip Select Number Active 1419 25-57. 1420 26-1. 26-2. 26-3. 26-4. 26-5. 26-6. 26-7. 26-8. 26-9. 26-10. 26-11. 26-12. 26-13. 26-14. 26-15. 26-16. 26-17. 26-18. 26-19. 26-20. 26-21. 26-22. 26-23. 26-24. 26-25. 26-26. 26-27. 26-28. 26-29. 26-30. 26-31. 26-32. 26-33. 26-34. 26-35. 26-36. 26-37. 26-38. 26-39. 26-40. 26-41. 26-42. 26-43. 26-44. SPNU499C – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 1437 1438 1438 1445 1452 1452 1454 1461 1474 1475 1476 1479 1479 1480 1482 1485 1489 1492 1495 1502 1502 1503 1504 1505 1505 1506 1507 1507 1508 1508 1508 1509 1510 1511 1512 1513 1514 1514 1515 1516 1516 1517 1518 1519 85 www.ti.com 26-45. LIN Transmit Buffer 1 Register (LINTD1) Field Descriptions ...................................................... 1519 26-46. Maximum Baud Rate Selection Register (MBRS) Field Descriptions ............................................ 1520 26-47. Input/Output Error Enable Register (IODFTCTRL) Field Descriptions ........................................... 1521 1524 27-1. 1535 27-2. 27-3. 27-4. 27-5. 27-6. 27-7. 27-8. 27-9. 27-10. 27-11. 27-12. 27-13. 27-14. 27-15. 27-16. 27-17. 27-18. 27-19. 27-20. 27-21. 27-22. 27-23. 27-24. 27-25. 27-26. 27-27. 27-28. 27-29. 27-30. 27-31. 27-32. 27-33. 28-1. 28-2. 28-3. 28-4. 28-5. 28-6. 28-7. 28-8. 28-9. 28-10. 28-11. 28-12. 86 ........................................... SCI Interrupts ............................................................................................................ DMA and Interrupt Requests in Multiprocessor Modes ............................................................ SCI Control Registers Summary ...................................................................................... SCI Global Control Register 0 (SCIGCR0) Fied Descriptions ..................................................... SCI Global Control Register 1 (SCIGCR1) Field Descriptions .................................................... SCI Set Interrupt Register (SCISETINT) Field Descriptions ....................................................... SCI Clear Interrupt Register (SCICLEARINT) Field Descriptions................................................. SCI Set Interrupt Level Register (SCISETINTLVL) Field Descriptions ........................................... SCI Clear Interrupt Level Register (SCICLEARINTLVL) Field Descriptions .................................... SCI Flags Register (SCIFLR) Field Descriptions.................................................................... SCI Receiver Status Flags ............................................................................................ SCI Transmitter Status Flags ......................................................................................... SCI Interrupt Vector Offset 0 (SCIINTVECT0) Field Descriptions ................................................ SCI Interrupt Vector Offset 1 (SCIINTVECT1) Field Descriptions ................................................ SCI Format Control Register (SCIFORMAT) Field Descriptions .................................................. Baud Rate Selection Register (BRS) Field Descriptions .......................................................... Comparative Baud Values (Asynchronous Mode) ................................................................. Receiver Emulation Data Buffer (SCIED) Field Descriptions ...................................................... Receiver Data Buffer (SCIRD) Field Descriptions .................................................................. Transmit Data Buffer Register (SCITD) Field Descriptions ........................................................ SCI Pin I/O Control Register 0 (SCIPIO0) Field Descriptions ..................................................... SCI Pin I/O Control Register 1 (SCIPIO1) Field Descriptions ..................................................... SCITX Pin Control ...................................................................................................... SCIRX Pin Control ..................................................................................................... SCI Pin I/O Control Register 2 (SCIPIO2) Field Descriptions .................................................... SCI Pin I/O Control Register 3 (SCIPIO3) Field Descriptions .................................................... SCI Pin I/O Control Register 4 (SCIPIO4) Field Descriptions .................................................... SCI Pin I/O Control Register 5 (SCIPIO5) Field Descriptions .................................................... SCI Pin I/O Control Register 6 (SCIPIO6) Field Descriptions ..................................................... SCI Pin I/O Control Register 7 (SCIPIO7) Field Descriptions ..................................................... SCI Pin I/O Control Register 8 (SCIPIO8) Field Descriptions .................................................... Input/Output Error Enable Register (IODFTCTRL) Field Descriptions ........................................... Input Buffer, Output Buffer, and Pull Control Behavior as GPIO Pins ........................................... Ways to Generate a NACK Bit ........................................................................................ Interrupt Requests Generated by I2C Module ....................................................................... I2C Control Registers ................................................................................................... I2C Own Address Manager Register (I2COAR) Field Descriptions .............................................. Correct Mode for OA Bits .............................................................................................. I2C Interrupt Mask Register (I2CIMR) Field Descriptions.......................................................... I2C Status Register (I2CSTR) Field Descriptions ................................................................... I2C Clock Divider Low Register (I2CCKL) Field Descriptions ..................................................... I2C Clock Control High Register (I2CCKH) Field Descriptions ................................................... I2C Data Count Register (I2CCNT) Field Descriptions............................................................. I2C Data Receive Register (I2CDRR) Field Descriptions .......................................................... I2C Slave Address Register (I2CSAR) Field Descriptions ......................................................... 26-48. Input Buffer, Output Buffer, and Pull Control Behavior as GPIO Pins List of Tables 1536 1540 1541 1542 1545 1547 1549 1550 1552 1555 1555 1556 1556 1557 1558 1558 1559 1559 1560 1560 1561 1561 1561 1562 1563 1564 1565 1566 1567 1567 1568 1571 1580 1585 1588 1589 1589 1590 1591 1594 1594 1595 1595 1596 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 28-13. Correct Mode for SA Bits ............................................................................................... 1596 28-14. I2C Data Transmit Register (I2CDXR) Field Descriptions ......................................................... 1596 28-15. I2C Mode Register (I2CMDR) Field Descriptions ................................................................... 1597 28-16. I2C Module Condition, Bus Activity, and Mode...................................................................... 1599 28-17. I2C Module Operating Modes ......................................................................................... 1599 28-18. Number of Bits Sent on Bus ........................................................................................... 1599 28-19. I2C Interrupt Vector Register (I2CIVR) Field Descriptions ......................................................... 1600 28-20. Interrupt Codes for INTCODE Bits .................................................................................... 1600 28-21. I2C Extended Mode Register (I2CEMDR) Field Descriptions ..................................................... 1601 28-22. I2C Prescale Register (I2CPSC) Field Descriptions ................................................................ 1601 28-23. I2C Peripheral ID Register 1 (I2CPID1) Field Descriptions ........................................................ 1602 28-24. I2C Peripheral ID Register 2 (I2CPID2) Field Descriptions ........................................................ 1602 ...................................................... ......................................................... I2C Pin Direction Register (I2CPDIR) Field Descriptions .......................................................... I2C Data Input Register (I2CDIN) Field Descriptions ............................................................... I2C Data Output Register (I2CDOUT) Field Descriptions.......................................................... I2C Data Set Register (I2CDSET) Field Description ............................................................... I2C Data Clear Register (I2CDSET) Field Descriptions ............................................................ I2C Pin Open Drain Register (I2CPDR) Field Descriptions........................................................ I2C Pull Disable Register (I2CPDIS) Field Descriptions ........................................................... I2C Pull Select Register (I2CPSEL) Field Descriptions ............................................................ Input Buffer, Output Buffer, and Pull Control Behavior as GPIO Pins ........................................... I2C Pins Slew Rate Select Register (I2CSRS) Field Descriptions................................................ EMAC and MDIO Signals for MII Interface .......................................................................... EMAC and MDIO Signals for RMII Interface ........................................................................ MDIO Multiplexing Control ............................................................................................. MII / RMII Multiplexing Control ........................................................................................ Ethernet Frame Description ............................................................................................ Basic Descriptor Description ........................................................................................... Receive Frame Treatment Summary ................................................................................. Middle of Frame Overrun Treatment ................................................................................. Emulation Control ....................................................................................................... EMAC Control Module Registers ...................................................................................... EMAC Control Module Revision ID Register (REVID) Field Descriptions ....................................... EMAC Control Module Software Reset Register (SOFTRESET) ................................................. EMAC Control Module Interrupt Control Register (INTCONTROL) .............................................. EMAC Control Module Receive Threshold Interrupt Enable Register (C0RXTHRESHEN) ................... EMAC Control Module Receive Interrupt Enable Register (C0RXEN) ........................................... EMAC Control Module Transmit Interrupt Enable Register (C0TXEN) .......................................... EMAC Control Module Miscellaneous Interrupt Enable Register (C0MISCEN) ................................ EMAC Control Module Receive Threshold Interrupt Status Register (C0RXTHRESHSTAT) ................ EMAC Control Module Receive Interrupt Status Register (C0RXSTAT) ........................................ EMAC Control Module Transmit Interrupt Status Register (C0TXSTAT) ........................................ EMAC Control Module Miscellaneous Interrupt Status Register (C0MISCSTAT) .............................. EMAC Control Module Receive Interrupts Per Millisecond Register (C0RXIMAX) ............................. EMAC Control Module Transmit Interrupts Per Millisecond Register (C0TXIMAX) ............................ Management Data Input/Output (MDIO) Registers ................................................................. MDIO Revision ID Register (REVID) Field Descriptions ........................................................... 28-25. I2C DMA Control Register (I2CDMACR) Field Descriptions 1603 28-26. I2C Pin Function Register (I2CPFNC) Field Descriptions 1603 28-27. 28-28. 28-29. 28-30. 28-31. 28-32. 28-33. 28-34. 28-35. 28-36. 29-1. 29-2. 29-3. 29-4. 29-5. 29-6. 29-7. 29-8. 29-9. 29-10. 29-11. 29-12. 29-13. 29-14. 29-15. 29-16. 29-17. 29-18. 29-19. 29-20. 29-21. 29-22. 29-23. 29-24. 29-25. SPNU499C – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 1604 1604 1605 1605 1606 1606 1607 1607 1608 1608 1615 1616 1617 1617 1618 1620 1648 1649 1659 1660 1661 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1673 87 www.ti.com 29-26. MDIO Control Register (CONTROL) Field Descriptions ........................................................... 1674 29-27. PHY Acknowledge Status Register (ALIVE) Field Descriptions .................................................. 1675 29-28. PHY Link Status Register (LINK) Field Descriptions ............................................................... 1675 .............. MDIO Link Status Change Interrupt (Masked) Register (LINKINTMASKED) Field Descriptions ............. MDIO User Command Complete Interrupt (Unmasked) Register (USERINTRAW) Field Descriptions ..... MDIO User Command Complete Interrupt (Masked) Register (USERINTMASKED) Field Descriptions .... MDIO User Command Complete Interrupt Mask Set Register (USERINTMASKSET) Field Descriptions .. 29-29. MDIO Link Status Change Interrupt (Unmasked) Register (LINKINTRAW) Field Descriptions 1676 29-30. 1677 29-31. 29-32. 29-33. 1678 1679 1680 29-34. MDIO User Command Complete Interrupt Mask Clear Register (USERINTMASKCLEAR) Field Descriptions .............................................................................................................. 1681 29-35. MDIO User Access Register 0 (USERACCESS0) Field Descriptions............................................ 1682 29-36. MDIO User PHY Select Register 0 (USERPHYSEL0) Field Descriptions ....................................... 1683 29-37. MDIO User Access Register 1 (USERACCESS1) Field Descriptions............................................ 1684 29-38. MDIO User PHY Select Register 1 (USERPHYSEL1) Field Descriptions ....................................... 1685 29-39. Ethernet Media Access Controller (EMAC) Registers .............................................................. 1686 29-40. Transmit Revision ID Register (TXREVID) Field Descriptions .................................................... 1689 29-41. Transmit Control Register (TXCONTROL) Field Descriptions .................................................... 1689 29-42. Transmit Teardown Register (TXTEARDOWN) Field Descriptions............................................... 1690 29-43. Receive Revision ID Register (RXREVID) Field Descriptions ..................................................... 1690 29-44. Receive Control Register (RXCONTROL) Field Descriptions ..................................................... 1691 29-45. Receive Teardown Register (RXTEARDOWN) Field Descriptions ............................................... 1691 29-46. Transmit Interrupt Status (Unmasked) Register (TXINTSTATRAW) Field Descriptions ....................... 1692 29-47. Transmit Interrupt Status (Masked) Register (TXINTSTATMASKED) Field Descriptions ..................... 1693 29-48. Transmit Interrupt Mask Set Register (TXINTMASKSET) Field Descriptions ................................... 1694 29-49. Transmit Interrupt Mask Clear Register (TXINTMASKCLEAR) Field Descriptions ............................. 1695 29-50. MAC Input Vector Register (MACINVECTOR) Field Descriptions ................................................ 1696 29-51. MAC End Of Interrupt Vector Register (MACEOIVECTOR) Field Descriptions ................................ 1697 29-52. Receive Interrupt Status (Unmasked) Register (RXINTSTATRAW) Field Descriptions ....................... 1698 29-53. Receive Interrupt Status (Masked) Register (RXINTSTATMASKED) Field Descriptions...................... 1699 29-54. Receive Interrupt Mask Set Register (RXINTMASKSET) Field Descriptions ................................... 1700 29-55. Receive Interrupt Mask Clear Register (RXINTMASKCLEAR) Field Descriptions ............................. 1701 29-56. MAC Interrupt Status (Unmasked) Register (MACINTSTATRAW) Field Descriptions ......................... 1702 29-57. MAC Interrupt Status (Masked) Register (MACINTSTATMASKED) Field Descriptions ....................... 1702 29-58. MAC Interrupt Mask Set Register (MACINTMASKSET) Field Descriptions ..................................... 1703 29-59. MAC Interrupt Mask Clear Register (MACINTMASKCLEAR) Field Descriptions ............................... 1703 29-60. Receive Multicast/Broadcast/Promiscuous Channel Enable Register (RXMBPENABLE) Field Descriptions .............................................................................................................. 1704 29-61. Receive Unicast Enable Set Register (RXUNICASTSET) Field Descriptions................................... 1706 29-62. Receive Unicast Clear Register (RXUNICASTCLEAR) Field Descriptions ...................................... 1707 29-63. Receive Maximum Length Register (RXMAXLEN) Field Descriptions ........................................... 1707 29-64. Receive Buffer Offset Register (RXBUFFEROFFSET) Field Descriptions ...................................... 1708 29-65. Receive Filter Low Priority Frame Threshold Register (RXFILTERLOWTHRESH) Field Descriptions ...... 1708 29-66. Receive Channel n Flow Control Threshold Register (RXnFLOWTHRESH) Field Descriptions ............. 1709 29-67. Receive Channel n Free Buffer Count Register (RXnFREEBUFFER) Field Descriptions .................... 1709 29-68. MAC Control Register (MACCONTROL) Field Descriptions ...................................................... 1710 29-69. MAC Status Register (MACSTATUS) Field Descriptions .......................................................... 1712 29-70. Emulation Control Register (EMCONTROL) Field Descriptions .................................................. 1714 29-71. FIFO Control Register (FIFOCONTROL) Field Descriptions ...................................................... 1714 29-72. MAC Configuration Register (MACCONFIG) Field Descriptions .................................................. 1715 88 List of Tables SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated www.ti.com 29-73. Soft Reset Register (SOFTRESET) Field Descriptions ............................................................ 1715 29-74. MAC Source Address Low Bytes Register (MACSRCADDRLO) Field Descriptions ........................... 1716 29-75. MAC Source Address High Bytes Register (MACSRCADDRHI) Field Descriptions ........................... 1716 29-76. MAC Hash Address Register 1 (MACHASH1) Field Descriptions ................................................ 1717 29-77. MAC Hash Address Register 2 (MACHASH2) Field Descriptions ................................................ 1717 .......................................................... Transmit Pacing Algorithm Test Register (TPACETEST) Field Descriptions ................................... Receive Pause Timer Register (RXPAUSE) Field Descriptions .................................................. Transmit Pause Timer Register (TXPAUSE) Field Descriptions .................................................. MAC Address Low Bytes Register (MACADDRLO) Field Descriptions .......................................... MAC Address High Bytes Register (MACADDRHI) Field Descriptions .......................................... MAC Index Register (MACINDEX) Field Descriptions ............................................................. Transmit Channel n DMA Head Descriptor Pointer Register (TXnHDP) Field Descriptions .................. Receive Channel n DMA Head Descriptor Pointer Register (RXnHDP) Field Descriptions ................... Transmit Channel n Completion Pointer Register (TXnCP) Field Descriptions ................................. Receive Channel n Completion Pointer Register (RXnCP) Field Descriptions ................................. Encoding of Destination Bits in Trace Mode Packet Format ...................................................... Encoding of Status Bits in Trace Mode Packet Format ............................................................ Encoding of Write Size in Packet Format ............................................................................ Number of Clock Cycles per Packet .................................................................................. Pins Used for Data Communication .................................................................................. DMM Registers .......................................................................................................... DMM Global Control Register (DMMGLBCTRL) Field Descriptions.............................................. DMM Interrupt Set Register (DMMINTSET) Field Descriptions ................................................... DMM Interrupt Clear Register (DMMINTCLR) Field Descriptions ................................................ DMM Interrupt Level Register (DMMINTLVL) Field Descriptions ................................................. DMM Interrupt Flag Register (DMMINTFLG) Field Descriptions .................................................. DMM Interrupt Offset 1 Register (DMMOFF1) Field Descriptions ................................................ DMM Interrupt Offset 2 Register (DMMOFF1) Field Descriptions ................................................ DMM Direct Data Mode Destination Register (DMMDDMDEST) Field Descriptions........................... DMM Direct Data Mode Blocksize Register (DMMDDMBL) Field Descriptions................................. DMM Direct Data Mode Pointer Register (DMMDDMPT) Field Descriptions ................................... DMM Direct Data Mode Interrupt Pointer Register (DMMINTPT) Field Descriptions .......................... DMM Destination x Region 1 (DMMDESTxREG1) Field Descriptions ........................................... DMM Destination x Blocksize 1 (DMMDESTxBL1) Field Descriptions ........................................... DMM Destination x Region 2 (DMMDESTxREG2) Field Descriptions ........................................... DMM Destination x Blocksize 2 (DMMDESTxBL2) Field Descriptions ........................................... DMM Pin Control 0 (DMMPC0) Field Descriptions ................................................................. DMM Pin Control 1 (DMMPC1) Field Descriptions ................................................................. DMM Pin Control 2 (DMMPC2) Field Descriptions ................................................................. DMM Pin Control 3 (DMMPC3) Field Descriptions ................................................................. DMM Pin Control 4 (DMMPC4) Field Descriptions ................................................................. DMM Pin Control 5 (DMMPC5) Field Descriptions ................................................................. DMM Pin Control 6 (DMMPC6) Field Descriptions ................................................................. DMM Pin Control 7 (DMMPC7) Field Descriptions ................................................................. DMM Pin Control 8 (DMMPC8) Field Descriptions ................................................................. Encoding of RAM Bits in Trace Mode Packet Format .............................................................. Encoding of Status Bits in Trace Mode Packet Format ............................................................ Encoding of SIZE bits in Trace Mode Packet Format .............................................................. 29-78. Back Off Test Register (BOFFTEST) Field Descriptions 1718 29-79. 1718 29-80. 29-81. 29-82. 29-83. 29-84. 29-85. 29-86. 29-87. 29-88. 30-1. 30-2. 30-3. 30-4. 30-5. 30-6. 30-7. 30-8. 30-9. 30-10. 30-11. 30-12. 30-13. 30-14. 30-15. 30-16. 30-17. 30-18. 30-19. 30-20. 30-21. 30-22. 30-23. 30-24. 30-25. 30-26. 30-27. 30-28. 30-29. 30-30. 31-1. 31-2. 31-3. SPNU499C – March 2018 Submit Documentation Feedback List of Tables Copyright © 2018, Texas Instruments Incorporated 1719 1719 1720 1721 1721 1722 1722 1723 1723 1736 1736 1736 1737 1737 1740 1741 1743 1747 1752 1754 1758 1759 1760 1760 1761 1761 1762 1763 1764 1765 1766 1767 1769 1770 1771 1773 1774 1776 1777 1781 1782 1782 89 www.ti.com 31-4. Encoding of REG in Trace Mode Packet Format ................................................................... 1782 31-5. Number of Transfers/Packet ........................................................................................... 1782 31-6. RTP Module Registers.................................................................................................. 1787 31-7. RTP Global Control Register (RTPGLBCTRL) Field Descriptions ................................................ 1788 31-8. FIFO Corresponding Addresses....................................................................................... 1790 31-9. Pins Used for Data Communication 31-10. 31-11. 31-12. 31-13. 31-14. 31-15. 31-16. 31-17. 31-18. 31-19. 31-20. 31-21. 31-22. 31-23. 31-24. 32-1. 32-2. 32-3. 32-4. 32-5. 32-6. 32-7. 90 .................................................................................. RTP Trace Enable Register (RTPTRENA) Field Descriptions .................................................... RTP Global Status Register (RTPGSR) [offset = 08h] Field Descriptions ....................................... RTP RAM 1 Trace Region [1:2] Register (RTPRAM1REG[1:2]) Field Descriptions ........................... RTP RAM 2 Trace Region [1:2] Register (RTPRAM2REG[1:2]) Field Descriptions ........................... RTP Peripheral Trace Region [1:2] Register (RTPPERREG[1:2]) Field Descriptions ......................... RTP Direct Data Mode Write Register (RTPDDMW) Field Descriptions ........................................ RTP Pin Control 0 Register (RTPPC0) Field Descriptions ........................................................ RTP Pin Control 1 Register (RTPPC1) Field Descriptions ........................................................ RTP Pin Control 2 Register (RTPPC2) Field Descriptions ........................................................ RTP Pin Control 3 Register (RTPPC3) Field Descriptions ........................................................ RTP Pin Control 4 Register (RTPPC4) Field Descriptions ........................................................ RTP Pin Control 5 Register (RTPPC5) Field Descriptions ........................................................ RTP Pin Control 6 Register (RTPPC6) Field Descriptions ........................................................ RTP Pin Control 7 Register (RTPPC7) Field Descriptions ........................................................ RTP Pin Control 8 Register (RTPPC8) Field Descriptions ........................................................ ESM Signals Set by eFuse Controller ................................................................................ eFuse Controller Registers............................................................................................. EFC Boundary Register (EFCBOUND) Field Descriptions ....................................................... EFC Pins Register (EFCPINS) Field Descriptions .................................................................. EFC Error Status Register (EFCERRSTAT) Field Descriptions .................................................. EFC Self Test Cycles Register (EFCSTCY) Field Descriptions .................................................. EFC Self Test Cycles Register (EFCSTSIG) Field Descriptions .................................................. List of Tables 1790 1791 1792 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1806 1807 1809 1812 1812 1814 1815 1815 1816 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Preface SPNU499C – March 2018 Read This First About This Manual This Technical Reference Manual (TRM) details the integration, the environment, the functional description, and the programming models for each peripheral and subsystem in the device. The TRM should not be considered a substitute for the data manual, rather a companion guide that should be used alongside the device-specific data manual to understand the details to program the device. The primary purpose of the TRM is to abstract the programming details of the device from the data manual. This allows the data manual to outline the high-level features of the device without unnecessary information about register descriptions or programming models. Notational Conventions This document uses the following conventions. • Hexadecimal numbers may be shown with the suffix h or the prefix 0x. For example, the following number is 40 hexadecimal (decimal 64): 40h or 0x40. • Registers in this document are shown in figures and described in tables. – Each register figure shows a rectangle divided into fields that represent the fields of the register. Each field is labeled with its bit name, its beginning and ending bit numbers above, and its read/write properties with default reset value below. A legend explains the notation used for the properties. – Reserved bits in a register figure can have one of multiple meanings: • Not implemented on the device • Reserved for future device expansion • Reserved for TI testing • Reserved configurations of the device that are not supported – Writing nondefault values to the Reserved bits could cause unexpected behavior and should be avoided. Glossary TI Glossary — This glossary lists and explains terms, acronyms, and definitions. Related Documentation From Texas Instruments For product information, visit the Texas Instruments website at http://www.ti.com. SPNA106— Initialization of Hercules™ ARM® Cortex®-R4F Microcontrollers Application Report. Provides a brief overview and initialization procedure of the TMS570LS31x series and the RM4x series of microcontrollers in the Hercules family. SPNS162— TMS570LS3137 16/32-Bit RISC Flash Microcontroller Data Manual. SPNS164— TMS570LS31x5/21x5 16/32-Bit RISC Flash Microcontroller Data Manual. SPNS165— TMS570LS31x4/21x4 16/32-Bit RISC Flash Microcontroller Data Manual. SPNS230— TMS570LS3137-EP 16-/32-Bit RISC Flash Microcontroller Data Manual. SPNU499C – March 2018 Submit Documentation Feedback Read This First Copyright © 2018, Texas Instruments Incorporated 91 www.ti.com SPNU509— TMS570LS31x Hercules™ Development Kit (HDK) User's Guide. Describes the board level operations of the TMS570LS31 Hercules Development Kit (HDK). The HDK is based on the Texas Instruments TMS570LS3137 Microcontroller. The TMS570LS31 HDK is a table top card that allows engineers and software developers to evaluate certain characteristics of the TMS570LS3137 microcontroller to determine if the microcontroller meets the designer's application requirements as well as begin early application development. Evaluators can create software to execute on board or expand the system in a variety of ways. SPNU511— Safety Manual for TMS570LS31x/21x Hercules™ ARM® Safety Critical Microcontrollers User's Guide. A safety manual for the Texas Instruments Hercules safety critical microcontroller product family. The product family utilizes a common safety architecture that is implemented in multiple application focused products. Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community— TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. TI Embedded Processors Wiki— Texas Instruments Embedded Processors Wiki. Established to help developers get started with Embedded Processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices. Trademarks Hercules, E2E are trademarks of Texas Instruments. CoreSight is a trademark of ARM Limited. ARM, Cortex are registered trademarks of ARM Limited. 92 Read This First SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Chapter 1 SPNU499C – March 2018 Introduction Topic 1.1 1.2 1.3 ........................................................................................................................... Page Designed for Safety Applications ......................................................................... 94 Family Description ............................................................................................. 94 Endianism Considerations .................................................................................. 97 SPNU499C – March 2018 Submit Documentation Feedback Introduction Copyright © 2018, Texas Instruments Incorporated 93 Designed for Safety Applications 1.1 www.ti.com Designed for Safety Applications The TMS570LS31x/21x device architecture has been designed from the ground up to simplify development of functionally safe systems. The basic architectural concept is known as a safe island approach. Power, clock, reset, and basic processing function are protected to a high level of diagnostic coverage in hardware. Some of the key features of the safe island region are: • A dual core lockstep processing solution built around ARM® Cortex®-R4F CPU that detects failures at the core boundary on a cycle by cycle basis. Special measures in processor layout, clock distribution, power distribution, reset distribution, and temporal diversity are all implemented to mitigate common cause failures of the logical CPU and its checker. For complete details on the ARM® Cortex®-R4F CPU, refer to the ARM® Cortex®-R4F Technical Reference Manual. • Hardware BIST controllers that provide an extremely high level of diagnostic coverage for the lockstep CPUs and SRAMs in the system, while executing faster and consuming less memory than equivalent software-based self-test solutions • ECC on the SRAM and flash memories tightly coupled to the R4F. The ECC controllers are located inside the CPU. This approach has two key advantages: – The interconnect between CPU and the memory is also covered by the diagnostic – The ECC logic itself is checked on a cycle by cycle basis • Onboard voltage and reset monitoring logic • Onboard oscillator and PLL failure detection logic including a backup RC oscillator that can be utilized upon failure The TMS570LS31x/21x device architecture also includes many features to simplify diagnostics of remaining logic such as: • Continuous parity diagnostics on all peripheral memories • Analog and digital loopback to test for shorts on I/O • HW self-test and diagnostics on the ADC module to check integrity of both analog inputs and the ADC core conversion function • A DMA driven hardware engine for the background calculation of CRC signatures during data transfers • A centralized error reporting function including a status output pin to enable external monitoring of the device status 1.2 Family Description The TMS570LS31x/21x integrates the ARM® Cortex®-R4F Floating Point CPU that offers an efficient 1.6 DMIPS/MHz and has configurations that can run up to 180MHz providing up to 288 DMIPS. The device supports the big-endian [BE32] format. The TMS570LS31x/21x has up to 3MB integrated Flash and up to 256KB data RAM configurations with single bit error correction and double bit error detection. The flash memory on this device is a nonvolatile, electrically erasable and programmable memory implemented with a 64-bit-wide data bus interface. The flash operates on a 3.3V supply input (same level as I/O supply) for all read, program and erase operations. When in pipeline mode, the flash operates with a system clock frequency of up to 180MHz. The SRAM supports single-cycle read/write accesses in byte, halfword, and word modes. The TMS570LS31x/21x device features peripherals for real-time control-based applications, including two Next Generation High End Timer (N2HET) timing coprocessors with up to 40 total IO terminals and a 12bit A to D converter supporting up to 24 inputs. The N2HET is an advanced intelligent timer that provides sophisticated timing functions for real-time applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer micromachine and an attached I/O port. The N2HET can be used for pulse width modulated outputs, capture or compare inputs, or general-purpose I/O. It is especially well suited for applications requiring multiple sensor information and drive actuators with complex and accurate time pulses. A High End Timer Transfer Unit (HET-TU) can perform DMA type transactions to transfer N2HET data to or from main memory. A Memory Protection Unit (MPU) is built into the HET-TU. 94 Introduction SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Family Description www.ti.com The device has two 12-bit-resolution MibADCs with 24 total channels and 64 words of parity protected buffer RAM each. The MibADC channels can be converted individually or can be grouped by software for sequential conversion sequences. Sixteen channels are shared between the two MibADCs. There are three separate groupings. Each sequence can be converted once when triggered or configured for continuous conversion mode. The device has multiple communication interfaces: three MibSPIs, up to two SPIs, one LIN, one SCI, three DCANs, one I2C, one Ethernet, and one FlexRay™ controller. The SPI provides a convenient method of serial interaction for high-speed communications between similar shift-register type devices. The LIN supports the Local Interconnect standard 2.0 and can be used as a UART in full-duplex mode using the standard Non-Return-to-Zero (NRZ) format. The DCAN supports the CAN 2.0B protocol standard and uses a serial, multimaster communication protocol that efficiently supports distributed real-time control with robust communication rates of up to 1 megabit per second (Mbps). The DCAN is ideal for applications operating in noisy and harsh environments (for example, automotive and industrial fields) that require reliable serial communication or multiplexed wiring. The FlexRay uses a dual channel serial, fixed time base multimaster communication protocol with communication rates of 10 megabits per second (Mbps) per channel. A FlexRay Transfer Unit (FTU) enables autonomous transfers of FlexRay data to and from main CPU memory. Transfers are protected by a dedicated, built-in Memory Protection Unit (MPU). The Ethernet module supports MII and MDIO interfaces. The I2C module is a multi-master communication module providing an interface between the microcontroller and an I2C compatible device via the I2C serial bus. The I2C supports both 100 Kbps and 400 Kbps speeds. The frequency-modulated phase-locked loop (FMPLL) clock module is used to multiply the external frequency reference to a higher frequency for internal use. The FMPLL provides one of the seven possible clock source inputs to the global clock module (GCM). The GCM module manages the mapping between the available clock sources and the device clock domains. The device also has an external clock prescaler (ECP) module that when enabled, outputs a continuous external clock on the ECLK pin/ball. The ECLK frequency is a user-programmable ratio of the peripheral interface clock (VCLK) frequency. This low frequency output can be monitored externally as an indicator of the device operating frequency. The Direct Memory Access Controller (DMA) has 16 channels, 32 control packets and parity protection on its memory. A Memory Protection Unit (MPU) is built into the DMA to protect memory against erroneous transfers. The Error Signaling Module (ESM) monitors all device errors and determines whether an interrupt or external Error pin/ball is triggered when a fault is detected. The nERROR can be monitored externally as an indicator of a fault condition in the microcontroller. The External Memory Interface (EMIF) provides a memory extension to asynchronous and synchronous memories or other slave devices. Several interfaces are implemented to enhance the debugging capabilities of application code. In addition to the built in ARM® Cortex®-R4F CoreSight™ debug features. An External Trace Macrocell (ETM) provides instruction and data trace of program execution. For instrumentation purposes, a RAM Trace Port Module (RTP) is implemented to support high-speed tracing of RAM and peripheral accesses by the CPU or any other master. A Data Modification Module (DMM) gives the ability to write external data into the device memory. Both the RTP and DMM have no or only minimum impact on the program execution time of the application code. A Parameter Overlay Module (POM) can re-route Flash accesses to internal memory or to the EMIF, thus avoiding the re-programming steps necessary for parameter updates in Flash. With integrated safety features and a wide choice of communication and control peripherals, the TMS570LS31x/21x is an ideal solution for high performance real time control applications with safety critical requirements. SPNU499C – March 2018 Submit Documentation Feedback Introduction Copyright © 2018, Texas Instruments Incorporated 95 Family Description www.ti.com TRACECTL ETMDATA[31:0] TRACECLKOUT DMMSYNC DMMDATA[15:0] Color Legend for Power Domains Core/RAM always on POM HTU1 DMM RAM Core #1 #2 ETM-R4 RTP DMA Dual Cortex-R4F CPUs in Lockstep TRACECLKIN 64K 64K 64K DMMCLK DMMnENA 256K RAM with ECC RTPnSYNC RTPDATA[15:0] RTPCLK 64K 3M Flash with ECC RTPnENA Figure 1-1. Block Diagram #3 #1 #2 #4 #3 #5 FTU HTU2 EMAC Switched Central Resource Switched Central Resource Switched Central Resource Main Cross Bar: Arbitration and Prioritization Control 64 KB Flash for EEPROM Emulation with ECC CRC Peripheral Central Resource Bridge Switched Central Resource SYS IOMM EMAC Slaves MDCLK MDIO MII_RXD[3:0] MII_RXER MII_TXD[3:0] MII_TXEN MII_TXCLK MII_RXCLK MII_CRS MII_RXDV MII_COL ESM MDIO PMM EMIF_nWAIT EMIF_CLK EMIF_CKE EMIF_nCS[4:2] EMIF_nCS[0] EMIF_ADDR[21:0] EMIF_BA[1:0] EMIF_DATA[15:0] EMIF_nDQM[1:0] EMIF_nOE EMIF_nWE EMIF_nRAS EMIF_nCAS MII EMIF DCAN1 DCAN2 VIM DCAN3 MibSPI1 RTI MibADC2 N2HET1 N2HET2 GIO DCC1 SPI2 DCC2 MibSPI3 FlexRay I2C I2C_SCL I2C_SDA FRAY_RX2 FRAY_TX2 FRAY_TXEN2 FRAY_RX1 FRAY_TX1 FRAY_TXEN1 GIOA[7:0] GIOB[7:0] N2HET2_PIN_nDIS N2HET2[18,16] N2HET2[15:0] N2HET1[31:0] N2HET1_PIN_nDIS ADREFLO AD2EVT VCCAD VSSAD ADREFHI AD2IN[15:0] ADREFLO AD1EVT AD1IN[7:0] AD1IN[23:8] VCCAD VSSAD ADREFHI MibSPI5 96 nERROR CAN1_RX CAN1_TX CAN2_RX CAN2_TX CAN3_RX CAN3_TX MIBSPI1_CLK MIBSPI1_SIMO[1:0] MIBSPI1_SOMI[1:0] MIBSPI1_nCS[5:0] MIBSPI1_nENA SPI4 MibADC1 nPORRST nRST ECLK Introduction LIN SCI SPI2_CLK SPI2_SIMO SPI2_SOMI SPI2_nCS[1:0] SPI2_nENA MIBSPI3_CLK MIBSPI3_SIMO MIBSPI3_SOMI MIBSPI3_nCS[5:0] MIBSPI3_nENA SPI4_CLK SPI4_SIMO SPI4_SOMI SPI4_nCS SPI4_nENA MIBSPI5_CLK MIBSPI5_SIMO[3:0] MIBSPI5_SOMI[3:0] MIBSPI5_nCS[3:0] MIBSPI5_nENA LIN_RX LIN_TX SCI_RX SCI_TX SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Endianism Considerations www.ti.com 1.3 Endianism Considerations 1.3.1 TMS570: Big Endian (BE32) The TMS570 family is based on the ARM® Cortex®-R4F core. ARM has designed this core to be used in big-endian and little-endian systems. For the TI TMS570 family, the endianness has been configured to BE32. Big-endian systems store the most-significant byte of a multi-byte data field in the lowest memory address. Also, the address of the multi-byte data field is the lowest address. Following is an example of the physical addresses of individual bytes. Figure 1-2. Example: SPIDELAY – 0xFFF7F448 31 24 23 16 C2TDELAY[7:0] T2CDELAY[7:0] Byte 3 - 0xFFF7F448 Byte 2 - 0xFFF7F449 15 8 7 0 T2EDELAY[7:0] C2EDELAY[7:0] Byte 1 - 0xFFF7F44A Byte 0 - 0xFFF7F44B 32-bit accesses to this register should use the lowest address, that is, 0xFFF7F448. Writing 0x11223344 to address 0xFFF7F448 shows the following when viewing the memory in 8-bit and 32-bit modes. As such the headers provided as part of HALCoGen do take the endianness into account and provide header structures that are agnostic to endianness. This is achieved by using C directives for the compiler that make use of the compile options configured for the project by the user (__little_endian__ used in Code Composer Studio codegen tools). This directive may need to be adapted for other compilers. #ifdef __little_endian__ char C2EDELAY : char T2EDELAY : char T2CDELAY : char C2TDELAY : #else char C2TDELAY : char T2CDELAY : char T2EDELAY : char C2EDELAY : 8U; 8U; 8U; 8U; /**lt; /**lt; /**lt; /**lt; 0xF448: 0xF449: 0xF44A: 0xF44B: CS to ENA Transmit to ENA Transmit to CS CS to Transmit */ */ */ */ 8U; 8U; 8U; 8U; /**lt; /**lt; /**lt; /**lt; 0xF448: 0xF449: 0xF44A: 0xF44B: CS to Transmit Transmit to CS Transmit to ENA CS to ENA */ */ */ */ SPNU499C – March 2018 Submit Documentation Feedback Introduction Copyright © 2018, Texas Instruments Incorporated 97 Chapter 2 SPNU499C – March 2018 Architecture This chapter consists of five sections. The first section describes specific aspects of the device architecture. The second section describes the clocking structure of the microcontrollers. The third section gives an overview of the device memory organization. The fourth section details exceptions on the device, and the last section describes the system and peripheral control registers of the microcontroller. Topic 2.1 2.2 2.3 2.4 2.5 98 ........................................................................................................................... Page Introduction ....................................................................................................... 99 Memory Organization ........................................................................................ 103 Exceptions....................................................................................................... 115 Clocks ............................................................................................................. 118 System and Peripheral Control Registers ............................................................ 127 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Introduction www.ti.com 2.1 Introduction The TMS570LS31x/21x family of microcontrollers is based on the Texas Instruments TMS570 Architecture. This chapter describes specific aspects of the architecture as applicable to the TMS570LS31x/21x family of microcontrollers. 2.1.1 Architecture Block Diagram The TMS570LS31x/21x microcontrollers are based on the TMS570 Platform architecture, which defines the interconnect between the bus masters and the bus slaves. Figure 2-1 shows a high-level architectural block diagram for the superset microcontroller. Figure 2-1. Architectural Block Diagram Flash 3MB w/ ECC RAM 256KB w/ ECC Dual Cortex-R4F in LockStep DMA DMM POM HTU1 DAP SCR1: AHB Bus Master Matrix (AHB BMM) HTU2 FTU SCR2: VBUSP SCR EMAC SCR3: VBUSP SCR VBUSM Switched Central Resource Controller (VBUSM SCR) PCR: Peripheral Central Resource Controller SCR4: VBUSP SCR Flash EMIF Slaves EMAC Slaves 64KB VBUSP: Peripheral Interface Bus CRC EEPROM Emulation Flash Bank ADC1 ADC2 DCAN1 DCAN2 MibSPI1 SPI2 N2HET1 DCAN3 MibSPI3 N2HET2 LIN SCI SPI4 GIO I2C FlexRay MibSPI5 SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 99 Introduction www.ti.com 2.1.2 Definitions of Terms Table 2-1 provides a definition of terms used in the architectural block diagram. Table 2-1. Definition of Terms Acronym/Term Full Form Description ADCx Analog-to-Digital Converter The ADC uses the Successive Approximation Register architecture. It features a selectable 10-bit or 12-bit resolution. The ADC module also includes a RAM to hold the conversion results. A digital logic wrapper manages accesses to the control and status registers. There are two ADC modules on this device. CRC Cyclic Redundancy Checker The CRC module provides two channels to perform background signature verification on any memory region. It also supports maximum-length Parallel Signature Analysis (PDS) based on a 64-bit primitive polynomial. The CRC module is a bus slave in this device. DAP Debug Access Port The DAP allows a tool such as a debugger to read from or write to any region in the device memory-map. The DAP is a bus master in this device. DCANx Controller Area Network controller The DCAN supports the CAN 2.0B protocol standard and uses a serial, multimaster communication protocol that efficiently supports distributed real-time control with robust communication rates of up to 1 megabit per second (Mbps). The DCAN is ideal for applications operating in noisy and harsh environments (e.g., automotive and industrial fields) that require reliable serial communication or multiplexed wiring. DMA Direct Memory Access The DMA module is used for transferring 8-, 16-, 32- or 64-bit data across the entire device memory-map. The DMA module is one of the bus masters on the device. That is, it can initiate a read or a write transaction. DMM Data Modification Module The DMM allows a tool to use the special DMM I/O interface to modify any data value in any RAM on the device. This modification is done with minimal interruption to the application execution, and can be used for calibration of application algorithms. The DMM is also a bus master in this device. eFuse Electronically Programmable Fuse controller Electrically programmable fuses (eFuses) are used to configure the device after Fuse controller deassertion of PORRST. The eFuse values are read and loaded into internal registers as part of the power-on-reset sequence. The eFuse values are protected with Single-Bit Error Correction Double-Bit Error Detection (SECDED) codes. These fuses are programmed during the initial factory test of the device. The eFuse controller is designed so that the state of the eFuses cannot be changed once the device is packaged. ECC Error Correction Code This is a code that is used by the Single-Bit Error Correction Double-Bit Error Detection (SECDED) logic inside the two Cortex-R4F processors (CPUs). There are 8 bits of ECC for every 64 bits of data accessed from the CPU tightlycoupled memories (flash and RAM). EEPROM Emulation Flash Bank Emulated Electrically Erasable Programmable Read-Only Memory This is a flash bank that is dedicated for use as an emulated EEPROM. This device supports 64KB of flash for emulated EEPROM. EMAC Ethernet Media Access Controller The EMAC has a dedicated DMA-type component that is used to transfer data to / from the EMAC descriptor memory from / to another memory in the device memory-map. This DMA-type component of the EMAC is a bus master in this device. EMAC slaves Ethernet Media Access Controller slave ports There are four EMAC slaves: 1. 2. 3. 4. EMAC Control Module: this provides an interface between the EMAC and MDIO modules and the bus masters. It also includes 8KB of RAM to hold EMAC packet buffer descriptors. EMAC: The EMAC module interfaces to the other devices on the Ethernet Network using the Media Independent Interface (MII) or Reduced Media Independent Interface (RMII). Management Data Input / Output (MDIO): The MDIO module is used to manage the physical layer (PHY) device connected to the EMAC module. Communications Port Programming Interface (CPPI): This is the 8KB of RAM used to hold the EMAC packet buffer descriptors. EMIF slaves External Memory Interface slave ports There are five EMIF slaves:- External SDRAM memory: EMIF chip select 0External asynchronous memories: EMIF chip selects 2, 3 and 4- EMIF module control and status registers FlexRay FlexRay communication controller The FlexRay uses a dual channel serial, fixed time base multi-master communication protocol with communication rates of 10 megabits per second (Mbps) per channel. 100 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Introduction www.ti.com Table 2-1. Definition of Terms (continued) Acronym/Term Full Form Description FTU FlexRay Transfer Unit The FTU is a dedicated transfer unit for the FlexRay communication interface controller. The FTU has a native interface to the FlexRay message RAM and is used to transfer data to / from the FlexRay message RAM from / to another region in the device memory-map. The FTU is a bus master in this device. GIO General-purpose Input/Output The GIO module allows up to 16 terminals to be used as general-purpose Input or Output. Each of these are also capable of generating an interrupt to the CPU. HTUx High-end timer Transfer Unit The HTU is a dedicated transfer unit for the New Enhanced High-End Timer module. The HTU has a native interface to the N2HET RAM, and is used to transfer data to / from the N2HET RAM from / to another region in the device memory-map. There is one HTU per N2HET module, so that there are 2 HTU modules on the device. The HTUx are bus masters in this device. I2C Inter-Integrated Circuit controller The I2C module is a multi-master communication module providing an interface between the device and an I2C-compatible device via the I2C serial bus. The I2C supports both 100 Kbps and 400 Kbps speeds. LIN Local Interconnect Network controller The LIN module supports the Local Interconnect standard revision 2.1 and can be used as a UART in full-duplex mode using the standard Non-Return-to-Zero (NRZ) format. Lockstep – This is the mode of operation of the dual ARM Cortex-R4F CPUs. The outputs of the two CPUs are compared on each CPU clock cycle. Any miscompare is flagged as an error of the highest severity level. MibSPIx Multi-Buffered Serial Peripheral Interface The MibSPIx modules also support the standard SPI communication protocol. The transfers are all grouped into transfer chunks called “transfer groups”. These transfer groups are made up of one ore more buffers in the MibSPIx RAM. The RAM is used to hold the control information and data to be transmitted, as well as the status information and data that is received. There are three MibSPI modules in this device. N2HETx New Enhanced High-End Timer The N2HET is an advanced intelligent timer that provides sophisticated timing functions for real-time applications. The timer is software-controlled, using a reduced instruction set, with a specialized timer micromachine and an attached I/O port. The N2HET can be used for pulse width modulated outputs, capture or compare inputs, or general-purpose I/O. PCR Peripheral Central Resource controller The PCR manages the accesses to the peripheral registers and peripheral memories. It provides a global reset for all the peripherals. It also supports the capability to selectively enable or disable the clock for each peripheral individually. The PCR also manages the accesses to the system module registers required to configure the device’s clocks, interrupts, and so on. The system module registers also include status flags for indicating exception conditions – resets, aborts, errors, interrupts. POM Parameter Overlay Module The parameter overlay module redirects accesses to a programmable region in flash memory (read-only) to a RAM memory, either on-chip or via the external memory interface (EMIF). This allows a user to evaluate the impact of changing values of constants stored in the flash memory without actually having to erase and reprogram the flash. The POM is also a bus master in this device. SCI Serial Communication Interface The SCI module supports the standard UART in full-duplex mode using the standard Non-Return-to-Zero (NRZ) format. SCR1: AHB BMM AMBA High-Performance Bus The DMA, DMM, POM and DAP all act as masters on the AMBA HighMatrix Module performance Bus (AHB). The BMM arbitrates between concurrent accesses by these masters using a fixed priority scheme. The modules in descending order of priority are POM —> DMA —> DMM —> DAP. SCR2: VBUSP SCR VBUSP Switched Central Resource Controller The SCR2 arbitrates between concurrent accesses by the HTUx and FTU modules. A round-robin priority scheme is used between the HTUx and FTU. SCR3: VBUSP SCR VBUSP Switched Central Resource Controller The SCR3 arbitrates between concurrent accesses by the EMAC and another module that is not available in this configuration of the device. SCR4: VBUSP SCR VBUSP Switched Central Resource Controller The SCR4 is used to decode the accesses to the bus slaves for the EMAC and EMIF modules. SCR4 is a bus slave in this device. SPIx Serial Peripheral Interface The SPIx modules provide a clocked serial communication interface for reliable communication between the device and other serial devices with the standard SPI interface. There are two SPI modules on this device. VBUSM SCR VBUSM Switched Central Resource Controller This is the main device SCR. It arbitrates between the accesses from multiple bus masters to the bus slaves using a round robin priority scheme. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 101 Introduction www.ti.com 2.1.3 Bus Master / Slave Access Privileges This device implements some restrictions on the bus slave access privileges in order to improve the overall throughput of the interconnect shown in Figure 2-1. Table 2-2. Bus Master / Slave Access Privileges Bus Slaves Being Accessed 102 Masters Master ID Access Mode CPU Read 0 CPU Write 1 POM EEPROM Bank, ECC Bits, OTP Regions Non-CPU Accesses to CPU Flash and RAM CRC Module EMAC and EMIF Slaves PCR Modules User/Privilege Allowed Allowed Allowed Allowed Allowed User/Privilege Not allowed Allowed Allowed Allowed Allowed 2 User Allowed Allowed Allowed Allowed Allowed DMA 3 User Allowed Allowed Allowed Allowed Allowed DMM 4 User Allowed Allowed Allowed Allowed Allowed DAP 5 Privilege Allowed Allowed Allowed Allowed Allowed HTU1 6 Privilege Not allowed Allowed Allowed Allowed Allowed Allowed FTU 7 User Not allowed Allowed Allowed Allowed HTU2 8 Privilege Not allowed Allowed Allowed Allowed Allowed EMAC 9 User Not allowed Allowed Not allowed Allowed Not allowed Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Memory Organization www.ti.com 2.2 Memory Organization 2.2.1 Memory-Map Overview The Cortex-R4F CPU uses a 32-bit address bus, giving it access to a memory space of 4GB. This space is divided into several regions, each addressed by different memory selects. Figure 2-2 shows the memory-map of the microcontroller. Figure 2-2. Memory-Map 0xFFFFFFFF SYSTEM Modules 0xFFF80000 Peripherals - Frame 1 0xFF000000 0xFE000000 CRC RESERVED 0xFCFFFFFF 0xFC000000 Peripherals - Frame 2 RESERVED 0xF07FFFFF Flash Module Bus2 Interface (Flash ECC, OTP and EEPROM accesses) 0xF0000000 RESERVED 0x87FFFFFF 0x80000000 0x6FFFFFFF 0x60000000 EMIF (128MB) SDRAM RESERVED CS0 reserved 0x6C000000 CS4 0x68000000 CS3 0x64000000 CS2 EMIF (16MB * 3) Async RAM RESERVED 0x202FFFFF 0x20000000 Flash (3MB) (Mirrored Image) RESERVED 0x0843FFFF 0x08400000 RAM - ECC RESERVED 0x0803FFFF 0x08000000 0x002FFFFF 0x00000000 RAM (256KB) RESERVED Flash (3MB) The main flash instruction memory is addressed starting at 0x00000000 by default. This is also the reset vector location – the ARM Cortex-R4F processor core starts execution from the reset vector address of 0x00000000 whenever the core gets reset. The CPU data RAM is addressed starting at 0x08000000 by default. The device also supports the swapping of the CPU instruction memory (flash) and data memory (RAM). This can be done by configuring the MEM SWAP field of the Bus Matrix Module Control Register 1 (BMMCR1). SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 103 Memory Organization www.ti.com After swapping, the data RAM is accessed starting from 0x00000000 and the RAM ECC locations are accessed starting from 0x00400000. The flash memory is now accessed starting from 0x08000000. 2.2.2 Memory-Map Table The control and status registers for each module are mapped within the CPU’s 4GB memory space. Some modules also have associated memories, which are also mapped within this space. Table 2-3 shows the starting and ending addresses of each module’s register frame and any associated memory. The table also shows the response generated by the module or the interconnect whenever an access is made to an unimplemented location inside the register or memory frame. Table 2-3. Module Registers / Memories Memory-Map Frame Address Name Memory Select Start End Frame Size Actual Size Response for Access to Unimplemented Location in Frame CPU Tightly-Coupled Memories TCM Flash CS0 0x0000_0000 0x00FF_FFFF 16MB 3MB TCM RAM + RAM ECC CSRAM0 0x0800_0000 0x0BFF_FFFF 64MB 256KB Mirrored Flash Flash mirror frame 0x2000_0000 0x20FF_FFFF 16MB 3MB Abort External Memory Accesses EMIF Chip Select 2 (asynchronous) EMIF select 2 0x6000_0000 0x63FF_FFFF 64MB 16MB EMIF Chip Select 3 (asynchronous) EMIF select 3 0x6400_0000 0x67FF_FFFF 64MB 16MB EMIF Chip Select 4 (asynchronous) EMIF select 4 0x6800_0000 0x6BFF_FFFF 64MB 16MB EMIF Chip Select 0 (synchronous) EMIF select 0 0x8000_0000 0x87FF_FFFF 128MB 128MB Access to “Reserved” space will generate Abort Flash Bus2 Interface: OTP, ECC, EEPROM Bank Customer OTP,TCM Flash Bank 0 0xF000_0000 0xF000_1FFF 8KB 4KB Customer OTP,TCM Flash Bank 1 0xF000_2000 0xF000_3FFF 8KB 4KB Customer OTP, EEPROM Bank 0xF000_E000 0xF000_FFFF 8KB 4KB Customer OTP–ECC,TCM Flash Bank 0 0xF004_0000 0xF004_03FF 1KB 512B Customer OTP–ECC,TCM Flash Bank 1 0xF004_0400 0xF000_07FF 1KB 512B Customer OTP–ECC, EEPROM Bank 0xF004_1C00 0xF004_1FFF 1KB 512KB TI OTP, TCM Flash Bank 0 0xF008_0000 0xF008_1FFF 8KB 4KB TI OTP, TCM Flash Bank 1 0xF008_2000 0xF008_3FFF 8KB 4KB TI OTP, EEPROM Bank 0xF008_E000 0xF008_FFFF 8KB 4KB TI OTP–ECC,TCM Flash Bank 0 0xF00C_0000 0xF00C_03FF 1KB 512B TI OTP–ECC,TCM Flash Bank 1 0xF00C_0400 0xF00C_07FF 1KB 512B TI OTP–ECC, EEPROM Bank 0xF00C_1C00 0xF00C_1FFF 1KB 512KB EEPROM Bank–ECC 0xF010_0000 0xF013_FFFF 256KB 8KB Abort 104 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Memory Organization www.ti.com Table 2-3. Module Registers / Memories Memory-Map (continued) Frame Address Start End Frame Size EEPROM Bank 0xF020_0000 0xF03F_FFFF 2MB 64KB Flash Data Space ECC 0xF040_0000 0xF04F_FFFF 1MB 384KB Name Memory Select Actual Size Response for Access to Unimplemented Location in Frame Abort EMAC and EMIF Slaves CPPI Memory Slave (Ethernet RAM) 0xFC52_0000 0xFC52_1FFF 8KB 8KB Abort CPGMAC Slave (Ethernet Slave) 0xFCF7_8000 0xFCF7_87FF 2KB 2KB No error CPGMACSS Wrapper (Ethernet Wrapper) 0xFCF7_8800 0xFCF7_88FF 256B 256B No error Ethernet MDIO Interface 0xFCF7_8900 0xFCF7_89FF 256B 256B No error 0xFCFF_E800 0xFCFF_E8FF 256B 256B Abort 16MB 512B Accesses above 0x200 generate abort. EMIF Registers Cyclic Redundancy Checker (CRC) Module Register Frame CRC CRC frame 0xFE00_0000 0xFEFF_FFFF Peripheral Memories MIBSPI5 RAM PCS[5] 0xFF0A_0000 0xFF0B_FFFF 128KB 2KB Abort for accesses above 2KB MIBSPI3 RAM PCS[6] 0xFF0C_0000 0xFF0D_FFFF 128KB 2KB Abort for accesses above 2KB MIBSPI1 RAM PCS[7] 0xFF0E_0000 0xFF0F_FFFF 128KB 2KB Abort for accesses above 2KB 2KB Wrap around for accesses to unimplemented address offsets lower than 0x7FF. Abort generated for accesses beyond offset 0x800. 2KB Wrap around for accesses to unimplemented address offsets lower than 0x7FF. Abort generated for accesses beyond offset 0x800. 2KB Wrap around for accesses to unimplemented address offsets lower than 0x7FF. Abort generated for accesses beyond offset 0x800. 8KB Wrap around for accesses to unimplemented address offsets lower than 0x1FFF. Abort generated for accesses beyond 0x1FFF. 8KB Wrap around for accesses to unimplemented address offsets lower than 0x1FFF. Abort generated for accesses beyond 0x1FFF. DCAN3 RAM DCAN2 RAM DCAN1 RAM MIBADC2 RAM MIBADC1 RAM PCS[13] PCS[14] PCS[15] PCS[29] PCS[31] 0xFF1A_0000 0xFF1C_0000 0xFF1E_0000 0xFF3A_0000 0xFF3E_0000 0xFF1B_FFFF 0xFF1D_FFFF 0xFF1F_FFFF 0xFF3B_FFFF 0xFF3F_FFFF 128KB 128KB 128KB 128KB 128KB Architecture 105 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Memory Organization www.ti.com Table 2-3. Module Registers / Memories Memory-Map (continued) Frame Address Name NHET2 RAM Memory Select PCS[34] Start 0xFF44_0000 End 0xFF45_FFFF Frame Size 128KB Actual Size Response for Access to Unimplemented Location in Frame 16KB Wrap around for accesses to unimplemented address offsets lower than 0x3FFF. Abort generated for accesses beyond 0x3FFF. NHET1 RAM PCS[35] 0xFF46_0000 0xFF47_FFFF 128KB 16KB Wrap around for accesses to unimplemented address offsets lower than 0x3FFF. Abort generated for accesses beyond 0x3FFF. HET TU2 RAM PCS[38] 0xFF4C_0000 0xFF4D_FFFF 128KB 1KB Abort HET TU1 RAM PCS[39] 0xFF4E_0000 0xFF4F_FFFF 128KB 1KB Abort FlexRay TU RAM PCS[40] 0xFF50_0000 0xFF51_FFFF 128KB 1KB Abort Debug Components CoreSight Debug ROM CSCS0 0xFFA0_0000 0xFFA0_0FFF 4KB 4KB Reads return zeros, writes have no effect Cortex-R4F Debug CSCS1 0xFFA0_1000 0xFFA0_1FFF 4KB 4KB Reads return zeros, writes have no effect ETM-R4 CSCS2 0xFFA0_2000 0xFFA0_2FFF 4KB 4KB Reads return zeros, writes have no effect CoreSight TPIU CSCS3 0xFFA0_3000 0xFFA0_3FFF 4KB 4KB Reads return zeros, writes have no effect POM CSCS4 0xFFA0_4000 0xFFA0_4FFF 4KB 4KB Abort Peripheral Control Registers FTU PS[23] 0xFFF7_A000 0xFFF7_A1FF 512B 512B Reads return zeros, writes have no effect HTU1 PS[22] 0xFFF7_A400 0xFFF7_A4FF 256B 256B Reads return zeros, writes have no effect HTU2 PS[22] 0xFFF7_A500 0xFFF7_A5FF 256B 256B Reads return zeros, writes have no effect NHET1 PS[17] 0xFFF7_B800 0xFFF7_B8FF 256B 256B Reads return zeros, writes have no effect NHET2 PS[17] 0xFFF7_B900 0xFFF7_B9FF 256B 256B Reads return zeros, writes have no effect GIO PS[16] 0xFFF7_BC00 0xFFF7_BCFF 256B 256B Reads return zeros, writes have no effect MIBADC1 PS[15] 0xFFF7_C000 0xFFF7_C1FF 512B 512B Reads return zeros, writes have no effect MIBADC2 PS[15] 0xFFF7_C200 0xFFF7_C3FF 512B 512B Reads return zeros, writes have no effect FlexRay PS[12]+PS[13] 0xFFF7_C800 0xFFF7_CFFF 2KB 2KB Reads return zeros, writes have no effect I2C PS[10] 0xFFF7_D400 0xFFF7_D4FF 256B 256B Reads return zeros, writes have no effect DCAN1 PS[8] 0xFFF7_DC00 0xFFF7_DDFF 512B 512B Reads return zeros, writes have no effect DCAN2 PS[8] 0xFFF7_DE00 0xFFF7_DFFF 512B 512B Reads return zeros, writes have no effect DCAN3 PS[7] 0xFFF7_E000 0xFFF7_E1FF 512B 512B Reads return zeros, writes have no effect 106 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Memory Organization www.ti.com Table 2-3. Module Registers / Memories Memory-Map (continued) Frame Address Actual Size Response for Access to Unimplemented Location in Frame Start End Frame Size PS[6] 0xFFF7_E400 0xFFF7_E4FF 256B 256B Reads return zeros, writes have no effect SCI PS[6] 0xFFF7_E500 0xFFF7_E5FF 256B 256B Reads return zeros, writes have no effect MibSPI1 PS[2] 0xFFF7_F400 0xFFF7_F5FF 512B 512B Reads return zeros, writes have no effect SPI2 PS[2] 0xFFF7_F600 0xFFF7_F7FF 512B 512B Reads return zeros, writes have no effect MibSPI3 PS[1] 0xFFF7_F800 0xFFF7_F9FF 512B 512B Reads return zeros, writes have no effect SPI4 PS[1] 0xFFF7_FA00 0xFFF7_FBFF 512B 512B Reads return zeros, writes have no effect MibSPI5 PS[0] 0xFFF7_FC00 0xFFF7_FDFF 512B 512B Reads return zeros, writes have no effect DMA RAM PPCS0 Name Memory Select LIN System Modules Control Registers and Memories 0xFFF8_0000 0xFFF8_0FFF 4KB 4KB Abort VIM RAM PPCS2 0xFFF8_2000 0xFFF8_2FFF 4KB 1KB Wrap around for accesses to unimplemented address offsets lower than 0x3FF. Abort generated for accesses beyond 0x3FF. RTP RAM PPCS3 0xFFF8_3000 0xFFF8_3FFF 4KB 4KB Abort Flash Wrapper PPCS7 0xFFF8_7000 0xFFF8_7FFF 4KB 4KB Abort eFuse Farm Controller PPCS12 0xFFF8_C000 0xFFF8_CFFF 4KB 4KB Abort Power Management Module (PMM) PPSE0 0xFFFF_0000 0xFFFF_01FF 512B 512B Abort Test Controller (FMTM) PPSE1 0xFFFF_0400 0xFFFF_07FF 1KB 1KB Reads return zeros, writes have no effect PCR registers PPS0 0xFFFF_E000 0xFFFF_E0FF 256B 256B Reads return zeros, writes have no effect System Module Frame 2 PPS0 0xFFFF_E100 0xFFFF_E1FF 256B 256B Reads return zeros, writes have no effect PBIST PPS1 0xFFFF_E400 0xFFFF_E5FF 512B 512B Reads return zeros, writes have no effect STC PPS1 0xFFFF_E600 0xFFFF_E6FF 256B 256B Reads return zeros, writes have no effect IOMM Multiplexing Control Module PPS2 0xFFFF_EA00 0xFFFF_EBFF 512B 512B Generates address error interrupt, if enabled DCC1 PPS3 0xFFFF_EC00 0xFFFF_ECFF 256B 256B Reads return zeros, writes have no effect DMA PPS4 0xFFFF_F000 0xFFFF_F3FF 1KB 1KB Reads return zeros, writes have no effect DCC2 PPS5 0xFFFF_F400 0xFFFF_F4FF 256B 256B Reads return zeros, writes have no effect ESM PPS5 0xFFFF_F500 0xFFFF_F5FF 256B 256B Reads return zeros, writes have no effect CCMR4 PPS5 0xFFFF_F600 0xFFFF_F6FF 256B 256B Reads return zeros, writes have no effect DMM PPS5 0xFFFF_F700 0xFFFF_F7FF 256B 256B Reads return zeros, writes have no effect RAM ECC even PPS6 0xFFFF_F800 0xFFFF_F8FF 256B 256B Reads return zeros, writes have no effect Architecture 107 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Memory Organization www.ti.com Table 2-3. Module Registers / Memories Memory-Map (continued) Frame Address Actual Size Response for Access to Unimplemented Location in Frame Start End Frame Size PPS6 0xFFFF_F900 0xFFFF_F9FF 256B 256B Reads return zeros, writes have no effect RTP PPS6 0xFFFF_FA00 0xFFFF_FAFF 256B 256B Reads return zeros, writes have no effect RTI + DWWD PPS7 0xFFFF_FC00 0xFFFF_FCFF 256B 256B Reads return zeros, writes have no effect VIM Parity PPS7 0xFFFF_FD00 0xFFFF_FDFF 256B 256B Reads return zeros, writes have no effect VIM PPS7 0xFFFF_FE00 0xFFFF_FEFF 256B 256B Reads return zeros, writes have no effect System Module Frame 1 PPS7 0xFFFF_FF00 0xFFFF_FFFF 256B 256B Reads return zeros, writes have no effect Name Memory Select RAM ECC odd 2.2.3 Flash Memory The TMS570LS31x/21x microcontrollers support up to 3MB of flash for use as program memory. This is divided into two separate flash banks, each 1.5MB. The microcontrollers also support a separate 64KB flash bank for use as emulated EEPROM. 2.2.3.1 Flash Bank Sectoring Configuration Each bank is divided into multiple sectors. A flash sector is the smallest region in the flash bank that must be erased. The sectoring configuration of each flash bank is shown in Table 2-4. 1. The Flash banks are 144-bit wide bank with ECC support. 2. The flash bank7 can be programmed while executing code from flash bank0 or bank1. 3. Code execution is not allowed from flash bank7. Refer to the device datasheet for electrical and timing specifications related to the flash module. Table 2-4. Flash Memory Banks and Sectors Sector NO. SECTOR SIZE Low Address High address Bank 0: 1.5M Bytes 0 32K Bytes 0x0000_0000 0x0000_7FFF 1 32K Bytes 0x0000_8000 0x0000_FFFF 2 32K Bytes 0x0001_0000 0x0001_7FFF 3 32K Bytes 0x0001_8000 0x0001_FFFF 4 128K Bytes 0x0002_0000 0x0003_FFFF 5 128K Bytes 0x0004_0000 0x0005_FFFF 6 128K Bytes 0x0006_0000 0x0007_FFFF 7 128K Bytes 0x0008_0000 0x0009_FFFF 8 128K Bytes 0x000A_0000 0x000B_FFFF 9 128K Bytes 0x000C_0000 0x000D_FFFF 10 128K Bytes 0x000E_0000 0x000F_FFFF 11 128K Bytes 0x0010_0000 0x0011_FFFF 12 128K Bytes 0x0012_0000 0x0013_FFFF 13 128K Bytes 0x0014_0000 0x0015_FFFF 14 128K Bytes 0x0016_0000 0x0017_FFFF Bank 1: 1.5M Bytes 0 128K Bytes 0x0018_0000 108 Architecture 0x0019_FFFF SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Memory Organization www.ti.com Table 2-4. Flash Memory Banks and Sectors (continued) Sector NO. SECTOR SIZE Low Address High address 1 128K Bytes 0x001A_0000 0x001B_FFFF 2 128K Bytes 0x001C_0000 0x001D_FFFF 3 128K Bytes 0x001E_0000 0x001F_FFFF 4 128K Bytes 0x0020_0000 0x0021_FFFF 5 128K Bytes 0x0022_0000 0x0023_FFFF 6 128K Bytes 0x0024_0000 0x0025_FFFF 7 128K Bytes 0x0026_0000 0x0027_FFFF 8 128K Bytes 0x0028_0000 0x0029_FFFF 9 128K Bytes 0x002A_0000 0x002B_FFFF 10 128K Bytes 0x002C_0000 0x002D_FFFF 11 128K Bytes 0x002E_0000 0x002F_FFFF 0 16K Bytes 0xF020_0000 1 16K Bytes 0xF020_4000 0xF020_7FFF 2 16K Bytes 0xF020_8000 0xF020_BFFF 3 16K Bytes 0xF020_C000 0xF020_FFFF Bank 7: 64K Bytes, dedicated for EEPROM emulation 2.2.3.2 0xF020_3FFF ECC Protection for Flash Accesses The TMS570LS31x/21x microcontrollers protect all accesses to the on-chip flash memory by dedicated Single-Bit Error Correction Double-Bit Error Detection (SECDED) logic. The accesses to the program memory – flash bank 0 and flash bank 1, are protected by SECDED logic implemented inside the ARM Cortex-R4F CPU. Accesses to the EEPROM emulation flash bank (bank 7) are protected by dedicated SECDED logic inside the digital interface to the flash banks. Both the SECDED logic implementations use Error Correction Codes (ECC) for correcting single-bit errors and for detecting multiple-bit errors in the values read from the flash arrays. There is an 8-bit ECC for every 64 bits of data. The ECC for the flash memory contents needs to be calculated by an external tool such as nowECC. The ECC can then be programmed into the flash array along with the actual application code. The ECC for the flash array is stored in the flash itself, and is mapped to a region starting at 0xF040 0000 for the main flash banks 0 and 1, and to a region starting at 0xF010 0000 for the EEPROM emulation flash bank 7. NOTE: ECC Protection Not Enabled By Default The SECDED logic inside the CPU is not enabled by default and must be enabled by the application. Code Example for Enabling ECC Protection for Main Flash Accesses: The following code example can be used to enable the ECC protection for accesses to the main flash array. MRC p15, #0, r1, c1, c0, #1 ORR r1, r1, #0x02000000 DMB MCR p15, #0, r1, c1, c0, #1 ;Enable ECC checking for ATCM The ECC protection for accesses to the EEPROM emulation flash bank can be enabled by writing 0xA to the EDACEN field of the flash module’s Error Correction Control Register 1 (FEDACCTRL1). See Chapter 5 for more details. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 109 Memory Organization www.ti.com When the CPU detects an ECC single-, or double-bit error on a read from the flash memory, it signals this on a dedicated “Event” bus. This event bus signaling is also not enabled by default and must be enabled by the application. The following code example can be used to enable the CPU event signaling. MRC ORR MCR MRC p15,#0,r1,c9,c12,#0 r1, r1, #0x00000010 p15,#0,r1,c9,c12,#0 p15,#0,r1,c9,c12,#0 ;Enabling Event monitor states ;Set 4th bit ('X') of PMNC register The digital logic that interfaces the ARM Cortex-R4F CPU to the flash banks captures the ECC error events signaled by the CPU, and in turn generates error signals that are input to the central Error Signaling Module (ESM). 2.2.4 On-Chip SRAM Several SRAM modules are implemented on the device to support the functionality of the modules included. Reads from the CPU data RAM are protected by ECC calculated inside the CPU. Reads from all other memories are protected by configurable odd or even parity that is evaluated in parallel with the actual read. The TMS570LS31x/21x microcontrollers are targeted towards safety-critical applications, and it is critical for any failures in the on-chip SRAM modules to be identified before these modules are used for safetycritical functions. These microcontrollers support a Programmable Built-In Self-Test (PBIST) mechanism that is used to test each on-chip SRAM module for faults. The PBIST is usually run on device start-up as it is a destructive test and all contents of the tested SRAM module are overwritten during the test. The microcontrollers also support a hardware-based auto-initialization of on-chip SRAM modules. This process also takes into account the read protection scheme implemented for each SRAM module – ECC or parity. TI recommends that the PBIST routines be executed on the SRAM modules prior to the auto-initialization. The following section describe these two processes. 2.2.4.1 PBIST RAM Grouping and Algorithm Mapping For On-Chip SRAM Modules Table 2-5 shows the groupings of the various on-chip memories for PBIST. It also lists the memory types and their assigned RAM Group Select (RGS) and Return Data Select (RDS). See Chapter 7 for more details on the usage of the RGS and RDS information. Table 2-5. PBIST Memory Grouping Memory RAM Group # Memory Type RGS RDS PBIST_ROM 1 ROM 1 0 STC_ROM 2 ROM 2 0 DCAN1 3 Dual-port 3 0 .. 5 DCAN2 4 Dual-port 4 0 .. 5 DCAN3 5 Dual-port 5 0 .. 5 ESRAM1 6 Single-port 6 0/1 .. 4 MIBSPI1 7 Dual-port 7 0 .. 3 MIBSPI3 8 Dual-port 7 4 .. 7 MIBSPI5 9 Dual-port 7 8 .. 11 0 .. 1 VIM 10 Dual-port 8 MIBADC1 11 Dual-port 9 0 DMA 12 Dual-port 10 0 .. 5 N2HET1 13 Dual-port 11 0 .. 11 HET TU1 14 Dual-port 12 0 .. 5 RTP 15 Dual-port 13 0 .. 8 110 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Memory Organization www.ti.com Table 2-5. PBIST Memory Grouping (continued) Memory FLEXRAY RAM Group # Memory Type RGS RDS 16 Dual-port 14 0 .. 13 17 Single-port MIBADC2 18 Dual-port 15 0 N2HET2 19 Dual-port 16 0 .. 11 HET TU2 20 Dual-port 17 0 .. 5 ESRAM5 21 Single-port 18 0/1 .. 4 ESRAM6 22 Single-port 19 0/1 .. 4 23 Dual-port 20 0 .. 6 25 0/1 .. 4 ETHERNET ESRAM8 24 Dual-port 25 Single-port 28 Single-port Table 2-6 maps the different algorithms supported in application mode for the RAM groups. The table also lists the background pattern options available for each algorithm. Table 2-6. PBIST Algorithm Mapping No. ALGO Register Value Algorithm Memories Tested 1 0x00000001 triple_read_slow_read 2 0x00000002 triple_read_fast_read 3 0x00000004 march13n Available Background Patterns Valid RAM Groups Valid RINFO Register Value ROM 1,2 0x00000003 ROM 1,2 0x00000003 Dual-port 0x00000000, 0x96699669, 0x0F0F0F0F, 0xAA55AA55, 0xC3C3C3C3 3,4,5,7,8,9,10,11,12,13,14, 15,16,18,19,20,23,24 0x00CEFFDC 6,17,21,22,25,28 0x09310020 4 0x00000008 march13n Single-port 0x00000000, 0x96699669, 0x0F0F0F0F, 0xAA55AA55, 0xC3C3C3C3 5 0x00000010 down1A_red Dual-port 0xFFFFFFFF, 0xAAAAAAAA 3,4,5,7,8,9,10,11,12,13,14, 15,16,18,19,20,23,24 0x00CEFFDC 6 0x00000020 down1A_red Single-port 0xFFFFFFFF, 0xAAAAAAAA 6,17,21,22,25,28 0x09310020 7 0x00000040 mapcolumn Dual-port 0xFFFFFFFF, 0x00000000 3,4,5,7,8,9,10,11,12,13,14, 15,16,18,19,20,23,24 0x00CEFFDC 8 0x00000080 mapcolumn Single-port 0xFFFFFFFF, 0x00000000 6,17,21,22,25,28 0x09310020 9 0x00000100 precharge Dual-port 0xFFFFFFFF, 0x00000000 3,4,5,7,8,9,10,11,12,13,14, 15,16,18,19,20,23,24 0x00CEFFDC 10 0x00000200 precharge Single-port 0xFFFFFFFF, 0x00000000 6,17,21,22,25,28 0x09310020 11 0x00000400 dtxn2 Dual-port 0xFFFFFFFF, 0x00000000 3,4,5,7,8,9,10,11,12,13,14, 15,16,18,19,20,23,24 0x00CEFFDC 12 0x00000800 dtxn2 Single-port 0xFFFFFFFF, 0x00000000 6,17,21,22,25,28 0x09310020 13 0x00001000 pmos_open Dual-port 0xFFFFFFFF, 0x00000000 3,4,5,7,8,9,11,14,15,16,18, 20,24 0x028AE5DC 14 0x00002000 pmos_open Single-port 0xFFFFFFFF, 0x00000000 6,17,21,22,25,28 0x09310020 15 0x00004000 pmos_open_slice1 Dual-port 0xFFFFFFFF, 0x00000000 10,12,13,19,23 0x00441A00 Architecture 111 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Memory Organization www.ti.com Table 2-6. PBIST Algorithm Mapping (continued) No. ALGO Register Value Algorithm Memories Tested Available Background Patterns Valid RAM Groups Valid RINFO Register Value 16 0x00008000 pmos_open_slice2 Dual-port 0xFFFFFFFF, 0x00000000 10,12,13,19,23 0x00441A00 17 0x00010000 flip10 Dual-port 0xFFFFFFFF 3,4,5,7,8,9,10,11,12,13,14, 15,16,18,19,20,23,24 0x00CEFFDC 18 0x00020000 flip10 Single-port 0xFFFFFFFF 6,17,21,22,25,28 0x09310020 3,4,5,7,8,9,10,11,12,13,14, 15,16,18,19,20,23,24 0x00CEFFDC 19 0x00040000 iddq Dual-port 0x00000000 20 0x00080000 iddq Single-port 0x00000000 6,17,21,22,25,28 0x09310020 3,4,5,7,8,9,10,11,12,13,14, 15,16,18,19,20,23,24 0x00CEFFDC 21 0x00100000 retention Dual-port 0x00000000 22 0x00200000 retention Single-port 0x00000000 6,17,21,22,25,28 0x09310020 0x00CEFFDC 23 0x00400000 iddq Dual-port 0xFFFFFFFF 3,4,5,7,8,9,10,11,12,13,14, 15,16,18,19,20,23,24 24 0x00800000 iddq Single-port 0xFFFFFFFF 6,17,21,22,25,28 0x09310020 25 0x01000000 retention Dual-port 0xFFFFFFFF 3,4,5,7,8,9,10,11,12,13,14, 15,16,18,19,20,23,24 0x00CEFFDC 26 0x02000000 retention Single-port 0xFFFFFFFF 6,17,21,22,25,28 0x09310020 27 0x04000000 iddqrowstripe Dual-port 0x00000000 3,4,5,7,8,9,10,11,12,13,14, 15,16,18,19,20,23,24 0x00CEFFDC 28 0x08000000 iddqrowstripe Single-port 0x00000000 6,17,21,22,25,28 0x09310020 3,4,5,7,8,9,10,11,12,13,14, 15,16,18,19,20,23,24 0x00CEFFDC 29 0x10000000 iddqrowstripe Dual-port 0xFFFFFFFF 30 0x20000000 iddqrowstripe Single-port 0xFFFFFFFF 6,17,21,22,25,28 0x09310020 0x0007FFFF 0x03F80000 31 0x40000000 powerup_invpowerup Dual-port 0xAAAAAAAA 33,34,35,36,37,38,39,40, 41,42,43,44,45,46,47,48, 49,50,51 32 0x80000000 powerup_invpowerup Single-port 0xAAAAAAAA 52,53,54,55,56,57,58 NOTE: Recommended Memory Test Algorithm March13 is the most recommended algorithm for the memory self-test. For HCLK = 180 MHz, VCLK = 90 MHz, PBIST ROM_CLK = 90 MHz, the March13 algorithm takes 14.02 ms to run on all on-chip SRAMs. 112 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Memory Organization www.ti.com 2.2.4.2 Auto-Initialization of On-Chip SRAM Modules The device system provides the capability to perform a hardware initialization on most memories on the system bus and on the peripheral bus. The memory used for the FlexRay message objects is not directly CPU addressable, hence there is no memory auto-initialization support for this memory. The intent of having the hardware initialization is to program the memory arrays with error detection capability to a known state based on their error detection scheme – odd/even parity or ECC. For example, the contents of the CPU data RAM after power-on reset is unknown. A hardware auto-initialization can be started to that there is no ECC error. NOTE: Effect of ECC or Parity on Memory Auto-Initialization The ECC or parity should be enabled on the RAMs before hardware auto-initialization starts if parity or ECC is being used. Auto-Initialization Sequence: 1. Enable the global hardware memory initialization key by programming 0xA into MINITGCR[3:0], the Memory Initialization Key field (MINITGENA) of the Memory Hardware Initialization Global Control Register (MINITGCR) register. 2. Select the module on which the memory hardware initialization has to be performed by programming the appropriate value into the MSINENA(31–0) bits in the MSINENA register. See Table 2-7. 3. If the global auto-initialization scheme is enabled, the corresponding module will initialize its memories based on its memory error checking scheme (even parity or odd parity or ECC). 4. When the memory initialization is complete, the module will signal “memory initialization done”, which sets the corresponding bit in the system module MIDONE field of the MINISTAT register to indicate the completion of its memory initialization. 5. When the memory hardware initialization completes for all modules, (indicated by each module’s MIDONE bit being set), the memory hardware initialization done bit (MINIDONE) is set in the MSTCGSTAT register. Figure 2-3. Hardware Memory Initialization Protocol VCLK Write to enable MINTIGENA key Write to enable MSINENAn (where n = 31:0) When each enabled module completes its hardware initialization, the corresponding MIIDONE bit is set. Poll MIDONEn field of MINISTAT register (where n = 31:0) After all enabled modules’ hardware initialization completes, the MINIDONE bit is set, indicating all hardware memory initialization is done. Poll MINIDONE bit, MSTCGSTAT[8] Memory module hardware initialization SYS_MMISTARTn (where n = 31:0) (from System module to memory modules) DEV_MMIDONEn (where n = 31:0) (from memory modules to System module) Black indicates System register activity. Gray indicates inter-module activity, not accessible via System register. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 113 Memory Organization www.ti.com Table 2-7. Memory Initialization Select Mapping Memory (1) (2) (3) 114 Address Range (1) (2) MSINENA Register Bit # Start End RAM 0x08000000 0x08013FFF 0 RAM (always ON domain, PD#1) 0x08000000 0x0800FFFF 0 RAM (RAM_PD#1) 0x08010000 0x0801FFFF 0 RAM (RAM_PD#2) 0x08020000 0x0802FFFF 0 RAM (RAM_PD#3) 0x08030000 0x0803FFFF 0 MIBSPI5 RAM 0xFF0A0000 0xFF0BFFFF 12 (3) MIBSPI3 RAM 0xFF0C0000 0xFF0DFFFF 11 (3) MIBSPI1 RAM 0xFF0E0000 0xFF0FFFFF 7 (3) DCAN3 RAM 0xFF1A0000 0xFF1BFFFF 10 DCAN2 RAM 0xFF1C0000 0xFF1DFFFF 6 DCAN1 RAM 0xFF1E0000 0xFF1FFFFF 5 MIBADC2 RAM 0xFF3A0000 0xFF3BFFFF 14 MIBADC1 RAM 0xFF3E0000 0xFF3FFFFF 8 NHET2 RAM 0xFF440000 0xFF45FFFF 15 NHET1 RAM 0xFF460000 0xFF47FFFF 3 HET TU2 RAM 0xFF4C0000 0xFF4DFFFF 16 HET TU1 RAM 0xFF4E0000 0xFF4FFFFF 4 DMA RAM 0xFFF80000 0xFFF80FFF 1 VIM RAM 0xFFF82000 0xFFF82FFF 2 Ethernet RAM (CPPI Memory Slave) 0xFC520000 0xFC521FFF N/A FlexRay TU RAM 0xFF500000 0xFF51FFFF 13 If ECC protection is enabled for the CPU data RAM, then the auto-initialization process also initializes the corresponding ECC space. If parity protection is enabled for the peripheral SRAM modules, then the parity bits will also be initialized along with the SRAM modules. The MibSPIx modules perform an initialization of the transmit and receive RAMs as soon as the multi-buffered mode is enabled. This is independent of whether the application has already initialized these RAMs using the auto-initialization method or not. The MibSPIx modules need to be released from reset by writing 1 to their SPIGCR0 registers before starting auto-initialization on their respective RAMs. Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Exceptions www.ti.com 2.3 Exceptions An “Exception” is an event that makes the processor temporarily halt the normal flow of program execution, for example, to service an interrupt from a peripheral. Before attempting to handle an exception, the processor preserves the critical parts of the current processor state so that the original program can resume when the handler routine has finished. The following sections describe three exceptions – Reset, Abort and the System Software Interrupts. For complete details on all exceptions, refer to the ARM® Cortex®-R4F Technical Reference Manual. 2.3.1 Resets The TMS570LS31x/21x microcontroller can be reset by either of the conditions described in Table 2-8. Each reset condition is indicated in the System Exception Status Register (SYSESR). The device nRST terminal is an I/O. It can be driven low by an external circuit to force a warm reset on the microcontroller. This terminal will be driven low as an output for a minimum of 32 peripheral clock (VCLK) cycles for any device system reset condition. As a result the EXTRST bit in the SYSESR register, SYSESR[3], gets set for all reset conditions listed in Table 2-8. The nRST is driven low as an output for a longer duration during device power-up or whenever the power-on reset (nPORRST) is driven low externally. Refer to the device datasheet for the electrical and timing specifications for the nRST. Table 2-8. Causes of Resets Condition Description Driving nPORRST pin low externally Cold reset, or power-on reset. This reset signal is typically driven by an external voltage supervisor. This reset is flagged by the PORST bit in the SYSESR register, SYSESR[15]. Voltage Monitor reset The microcontroller has an embedded voltage monitor that generates a power-on reset when the core voltage gets out of a valid range, or when the I/O voltage falls below a threshold. This reset is also flagged by the PORST bit in the SYSESR register, SYSESR[15]. Note: The voltage monitor is not an alternative for an external voltage supervisor. Driving nRST pin low externally Warm reset. This reset input is typically used in a system with multiple ICs and which requires that the microcontroller also gets reset whenever the other IC detects a fault condition. This reset is flagged by the EXTRST bit in the SYSESR, register SYSESR[3]. Oscillator failure This reset is generated by the system module when the clock monitor detects an oscillator fail condition. Whether or not a reset is generated is also dictated by a register in the system module. This reset is flagged by the OSCRST bit in the SYSESR register, SYSESR[14]. Software reset This reset is generated by the application software writing a 1 to bit 15 of System Exception Control Register (SYSECR) or a 0 to bit 14 of SYSECR. It is typically used by a bootloader type of code that uses a software reset to allow the code execution to branch to the application code once it is programmed into the program memory. This reset is flagged by the SWRST bit in the SYSESR register, SYSESR[4]. CPU reset This reset is generated by the CPU self-test controller (LBIST) or by changing the memory protection (MMU/MPU) configuration in the CPURSTCR register. This reset is flagged by the CPURST bit in the SYSESR register, SYSESR[5]. Debug reset The ICEPICK logic implemented on the microcontroller allows a system reset to be generated via the debug logic. This reset is flagged by the WDRST bit in the SYSESR register, SYSESR[13]. Watchdog reset This reset is generated by the digital windowed watchdog (DWWD) module on the microcontroller. The DWWD can generate a reset whenever the watchdog service window is violated. This reset is flagged by the WDRST bit in the SYSESR register, SYSESR[13]. 2.3.2 Aborts When the ARM Cortex-R4F processor's memory system cannot complete a memory access successfully, an abort is generated. An error occurring on an instruction fetch generates a prefetch abort. Errors occurring on data accesses generate data aborts. Aborts are also categorized as being either precise or imprecise. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 115 Exceptions 2.3.2.1 www.ti.com Prefetch Aborts When a Prefetch Abort (PABT) occurs, the processor marks the prefetched instruction as invalid, but does not take the exception until the instruction is to be executed. If the instruction is not executed, for example because a branch occurs while it is in the pipeline, the abort does not take place. All prefetch aborts are precise aborts. 2.3.2.2 Data Aborts An error occurring on a data memory access can generate a data abort. If the instruction generating the memory access is not executed, for example, because it fails its condition codes, or is interrupted, the data abort does not take place. A Data Abort (DABT) can be either precise or imprecise, depending on the type of fault that caused it. 2.3.2.3 Precise Aborts A precise abort, also known as a synchronous abort, is one for which the exception is guaranteed to be taken on the instruction that generated the aborting memory access. The abort handler can use the value in the Link Register (r14_abt) to determine which instruction generated the abort, and the value in the Saved Program Status Register (SPSR_abt) to determine the state of the processor when the abort occurred. 2.3.2.4 Imprecise Aborts An imprecise abort, also known as an asynchronous abort, is one for which the exception is taken on a later instruction to the instruction that generated the aborting memory access. The abort handler cannot determine which instruction generated the abort, or the state of the processor when the abort occurred. Therefore, imprecise aborts are normally fatal. Imprecise aborts can be generated by store instructions to normal-type or device-type memory. When the store instruction is committed, the data is normally written into a buffer that holds the data until the memory system has sufficient bandwidth to perform the write access. This gives read accesses higher priority. The write data can be held in the buffer for a long period, during which many other instructions can complete. If an error occurs when the write is finally performed, this generates an imprecise abort. The TMS570LS31x/21x microcontroller architecture applies techniques at the system level to mitigate the impact of imprecise aborts. System level adoption of write status sidebands to the data path allow bus masters to comprehend imprecise aborts, turning them into precise aborts. In cases where this approach is not feasible, buffering bridges or other sources of imprecision may build a FIFO of current transactions such that an imprecise abort may be registered at the point of imprecision for later analysis. Masking Of Imprecise Aborts: The nature of imprecise aborts means that they can occur while the processor is handling a different abort. If an imprecise abort generates a new exception in such a situation, the banked link register (R14_abt) and the Saved Processor Status Register (SPSR_abt) values are overwritten. If this occurs before the data is pushed to the stack in memory, the state information about the first abort is lost. To prevent this from happening, the Current Processor Status Register (CPSR) contains a mask bit to indicate that an imprecise abort cannot be accepted, the A-bit. When the A-bit is set, any imprecise abort that occurs is held pending by the processor until the A-bit is cleared, when the exception is actually taken. The A-bit is automatically set when abort, IRQ or FIQ exceptions are taken, and on reset. The application must only clear the A-bit in an abort handler after the state information has either been stacked to memory, or is no longer required. NOTE: Default Behavior for Imprecise Aborts The A-bit in the CPSR is set by default. This means that no imprecise abort exception will occur. The application must enable imprecise abort exception generation by clearing the Abit of the CPSR. 116 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Exceptions www.ti.com 2.3.2.5 Conditions That Generate Aborts An Abort is generated under the following conditions on the TMS570LS31x/21x microcontrollers. • Access to an illegal address (a nonimplemented address) • Access to a protected address (protection violation) • Parity / ECC / Time-out Error on a valid access Illegal Addresses: The illegal addresses and the responses to an access to these addresses are defined in Table 2-3. Addresses Protected By MPU: Memory access permissions can be configured via the ARM Cortex-R4F processor’s Memory Protection Unit (MPU). For more details on the MPU configuration, refer to the ARM® Cortex®-R4F Technical Reference Manual. A memory access violation is logged as a permission fault in the CPU’s fault status register and the virtual address of the access is logged into the CPU’s fault address register. Protection of Peripheral Register and Memory Frames: Accesses to the peripheral register and memory frames can be protected either by configuring the MPU or by configuring the Peripheral Central Resource (PCR) controller registers. The PCR module PPROTSETx registers contain one bit per peripheral select quadrant. These bits define the access permissions to the peripheral register frames. If the CPU attempts to write to a peripheral register for which it does not have the correct permissions, a protection violation is detected and an Abort occurs. Some modules also enforce register updates to only be allowed when the CPU is in a privileged mode of operation. If the CPU writes to these registers in user mode, the writes are ignored. The PCR module PMPROTSETx registers contain one bit per peripheral memory frame. These bits define the access permissions to the peripheral memory frames. If the CPU attempts to write to a peripheral memory for which it does not have the correct permissions, a protection violation is detected and an Abort occurs. NOTE: No Access Protection for Reads The PCR PPROTSETx and PMPROTSETx registers protect the peripheral registers and memories against illegal writes by the CPU. The CPU can read from the peripheral registers and memories in both user and privileged modes. 2.3.3 System Software Interrupts The system module provides the capability of generating up to four software interrupts. A software interrupt is generated by writing the correct key value to either of the four System Software Interrupt Registers (SSIRx). The SSI registers also allow the application to provide a label for that software interrupt. This label is an 8-bit value that can then be used by the interrupt service routine to perform the required task based on the value provided. The source of the system software interrupt is reflected in the system software interrupt vector (SSIVEC) register. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 117 Clocks 2.4 www.ti.com Clocks This section describes the clocking structure of the TMS570LS31x/21x microcontrollers. 2.4.1 Clock Sources The devices support up to 7 clock sources. These are shown in Table 2-9. The electrical specifications as well as the timing requirements for each of the clock sources in Table 2-9 is specified in the device datasheet. Table 2-9. Clock Sources 2.4.1.1 Clock Source # Clock Source Name Description 0 OSCIN Main oscillator. This is the primary clock for the microcontroller and is the primary input to the phase-locked loops. The oscillator frequency must be between 5 and 20 MHz. 1 PLL1 This is the output of the main PLL. The PLL is capable of modulating its output frequency in a controlled manner to reduce the radiated emissions. 2 Not implemented This clock source is not available and must not be enabled or used as source for any clock domain. 3 EXTCLKIN1 External clock input 1. A square wave input can be applied to this device input and used as a clock source inside the device. 4 LF LPO (Low-Frequency LPO) (CLK80K) This is the low-frequency output of the internal reference oscillator. This is typically an 80 KHz signal (CLK80K) that is used by the real-time interrupt module for generating periodic interrupts to wake up from a low power mode. 5 HF LPO (High-Frequency LPO) (CLK10M) This is the high-frequency output of the internal reference oscillator. This is typically a 10 MHz signal (CLK10M) that is used by the clock monitor module as a reference clock to monitor the main oscillator frequency. 6 PLL2 This is the output of the second PLL. There is no option of modulating this PLL’s output signal. This separate non-modulating PLL allows the generation of an asynchronous clock source that is independent of the CPU clock frequency. 7 EXTCLKIN2 External clock input 2. A square wave input can be applied to this device input and used as a clock source inside the device. Enabling / Disabling Clock Sources Each clock source can be independently enabled or disabled using the set of Clock Source Disable registers – CSDIS, CSDISSET and CSDISCLR. Each bit in these registers corresponds to the clock source number indicated in Table 2-9. For example, setting bit 1 in the CSDIS or CSDISSET registers disables the PLL#1. NOTE: Disabling the Main Oscillator or HF LPO By default, the clock monitoring circuit is enabled and checks for the main oscillator frequency to be within a certain range using the HF LPO as a reference. If the main oscillator and/or the HF LPO are disabled with the clock monitoring still enabled, the clock monitor will indicate an oscillator fault. Clock monitoring must be disabled before disabling the main oscillator or the HF LPO clock source(s). A clock source is only disabled once there is no active clock domain that is using that clock source. Also, see Chapter 10 for more information on enabling/disabling the oscillator and PLL. On the TMS570LS31x/21x microcontrollers, the clock sources 0, 4, and 5 are enabled by default. 118 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Clocks www.ti.com 2.4.1.2 Checking for Valid Clock Sources The application can check whether a clock source is valid or not by checking the corresponding bit to be set in the Clock Source Valid Status (CSVSTAT) register. For example, the application can check if bit 1 in CSVSTAT is set before using the output of PLL1 as the source for any clock domain. NOTE: The clock sources LF LPO, EXTCLKIN1, and EXTCLKIN2 have no validity check. These clock sources are considered to be always valid and are available for use by a clock domain as soon as they are enabled. The application must ensure that a valid clock signal is present on the EXTCLKINx inputs before enabling these clock sources. 2.4.2 Clock Domains The clocking on this device is divided into multiple clock domains for flexibility in control as well as clock source selection. There are 10 clock domains on this device. Each of these are described in Table 2-10. Table 2-10. Clock Domains Clock Domain Clock Domain # GCLK 0 Default Source OSCIN Source Selection Register Special Considerations GHVSRC • Clock domain used by one of the two Cortex-R4F CPUs operating in lock-step • Always the same frequency as HCLK • In phase with HCLK • Is disabled separately from HCLK via the CDDISx registers bit 0 • Can be divided by 1 up to 8 when running CPU selftest (LBIST) using the CLKDIV field of the STCCLKDIV register at address 0xFFFFE108 GCLK2 0 OSCIN GHVSRC • Clock domain used by the second Cortex-R4F CPU operating in lock-step • Always the same frequency as GCLK • 2 cycles delayed from GCLK • Is disabled along with GCLK • Gets divided by the same divider setting as that for GCLK when running CPU selftest (LBIST) HCLK 1 OSCIN GHVSRC • Clock domain used by the high-speed system modules: Flash memory interfaces, TCRAM interface, Error Signaling Module (ESM), DMA • Is disabled via the CDDISx registers bit 1 GHVSRC • Clock domain used by some system modules (VIM), peripheral modules accessed via the Peripheral Central Resource (PCR) controller, and all other register interfaces also accessed via the PCR • Divided down from HCLK • Can be HCLK/1, HCLK/2,... or HCLK/16 • Is disabled separately from HCLK via the CDDISx registers bit 2 GHVSRC • Clock domain used by the timer modules: N2HET1, N2HET2 and the dedicated transfer units: HTU1, HTU2 • Divided down from HCLK • Can be HCLK/1, HCLK/2,... or HCLK/16 • Frequency must be an integer multiple of VCLK frequency • Is disabled separately from HCLK via the CDDISx registers bit 3 GHVSRC • • • • VCLK VCLK2 VCLK3 2 3 8 OSCIN OSCIN OSCIN Clock domain used for EMAC and EMIF slave interfaces Divided down from HCLK Can be HCLK/1, HCLK/2,... or HCLK/16 Is disabled separately from HCLK via the CDDISx registers bit 8 Architecture 119 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Clocks www.ti.com Table 2-10. Clock Domains (continued) Clock Domain VCLKA1 VCLKA2 VCLKA4 RTICLK Clock Domain # 4 5 11 6 Default Source VCLK VCLK VCLK VCLK Source Selection Register Special Considerations VCLKASRC • Clock domain dedicated for the CAN controllers: DCAN1, DCAN2, DCAN3, used for baud-rate generation • Defaults to VCLK as the source • Frequency can be as fast as HCLK frequency • Is disabled via the CDDISx registers bit 4 VCLKASRC • Clock domain dedicated for the FlexRay controller and the dedicated transfer unit • Defaults to VCLK as the source • Frequency can be as fast as HCLK frequency • Is disabled via the CDDISx registers bit 5 VCLKACON1 • Clock domain dedicated for the Ethernet controller (EMAC) when the TX and RX clocks are internally generated • Defaults to VCLK as the source • Frequency can be as fast as HCLK frequency • Is disabled via the CDDISx registers bit 11 RCLKSRC • Clock domain dedicated for timebase generation in the Real-Time Interrupt (RTI) generation module • Defaults to VCLK as the source • If a clock source other than VCLK is selected for RTICLK, then the RTICLK frequency must be less than or equal to VCLK/3 • Application can ensure this by programming the RTI1DIV field of the RCLKSRC register, if necessary • Is disabled via the CDDISx registers bit 6 Each of the control registers indicated in Table 2-10 are defined in Section 2.5. The AC timing characteristics for each clock domain are specified in the device datasheet. 120 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Clocks www.ti.com 2.4.2.1 Enabling / Disabling Clock Domains Each clock domain can be independently enabled or disabled using the set of Clock Domain Disable registers – CDDIS, CDDISSET, and CDDISCLR. Each bit in these registers corresponds to the clock domain number indicated in Table 2-10. For example, setting bit 1 in the CDDIS or CDDISSET registers disables the HCLK clock domain. The clock domain will be turned off only when every module that uses the HCLK domain gives the “permission” for HCLK to be turned off. All clock domains are enabled by default, or upon a system reset, or whenever a wake up condition is detected. 2.4.2.2 Mapping Clock Sources to Clock Domains Each clock domain needs to be mapped to a valid clock source. There are control registers that allow an application to choose the clock sources for each clock domain. • Selecting clock source for GCLK, HCLK and VCLKx domains The CPU clock (GCLK), the system module clock (HCLK), and the peripheral bus clocks (VCLKx) all use the same clock source. This clock source is selected via the GHVSRC register. The default source for the GCLK, HCLK and VCLKx is the main oscillator. That is, after power up, the GCLK and HCLK are running at the OSCIN frequency, while the VCLKx frequency is the OSCIN frequency divided by 2. • Selecting clock source for VCLKA1 and VCLKA2 domains The clock source for VCLKA1 and VCLKA2 domains is selected via the VCLKASRC register. The default source for the and VCLKA2 domains is VCLK. • Selecting clock source for VCLKA4 domain The clock source for VCLKA4 domain is selected via the VCLKACON1 register. The default source for the VCLKA4 domain is VCLK. • Selecting clock source for RTICLK domain The clock source for RTICLK domain is selected via the RCLKSRC register. The default source for the RTICLK domain is VCLK. NOTE: Selecting a clock source for RTICLK that is not VCLK When the application chooses a clock source for RTICLK domain that is not VCLK, then the application must ensure that the resulting RTICLK frequency must be less than or equal to VCLK frequency divided by 3. The application can configure the RTI1DIV field of the RCLKSRC register for dividing the selected clock source frequency by 1, 2, 4 or 8 to meet this requirement. 2.4.3 Low Power Modes All clock domains are active in the normal operating mode. This is the default mode of operation. As described in Section 2.4.1.1 and Section 2.4.2.1, the application can choose to disable any particular clock source and domain that it does not plan to use. Also, the peripheral central resource controller (PCR) has control registers to enable / disable the peripheral clock (VCLK) for each peripheral select. This offers the application a large number of choices for enabling / disabling clock sources, or clock domains, or clocks to specific peripherals. This section describes three particular low-power modes and their typical characteristics. They are not the only low-power modes configurable by the application, as just described. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 121 Clocks www.ti.com Table 2-11. Typical Low-Power Modes Mode Name Doze Snooze Sleep Active Clock Source(s) Main oscillator LF LPO None Active Clock Domain(s) Wake Up Options RTICLK RTI interrupt, GIO interrupt, CAN message, SCI message RTICLK None RTI interrupt, GIO interrupt, CAN message, SCI message GIO interrupt, CAN message, SCI message Suggested Wake Up Clock Source(s) Wake Up Time (wake up detected -to- CPU code execution start) Main oscillator Flash pump sleep -> active transition time + Flash bank sleep -> standby transition time + Flash bank standby -> active transition time HF LPO HF LPO warm start-up time + Flash pump sleep -> active transition time + Flash bank sleep -> standby transition time + Flash bank standby -> active transition time HF LPO HF LPO warm start-up time + Flash pump sleep -> active transition time + Flash bank sleep -> standby transition time + Flash bank standby -> active transition time 2.4.3.1 Typical Software Sequence to Enter a Low-Power Mode 1. Program the flash banks and flash pump fall-back modes to be “sleep”. The flash pump transitions from active to sleep mode only after all the flash banks have switched from active to sleep mode. The flash banks start switching from active to sleep mode only after the banks are not accessed for at least a duration defined by the Active Grace Period (AGP) parameter configured for the banks. See Chapter 5 for more details. 2. Disable the clock sources that are not required to be kept active. A clock source does not get disabled until all clock domains using that clock source are disabled first, or are configured to use an alternate clock source. 3. Disable the clock domains that are not required to be kept active. A clock domain does not get disabled until all modules using that clock domain “give their permission” for that clock domain to be turned off. 4. Idle the Cortex-R4F core. The ARM Cortex-R4F CPU has internal power management logic, and requires a dedicated instruction to be used in order to enter a low power mode. This is the Wait For Interrupt (WFI) instruction. When a WFI instruction is executed, the Cortex-R4F core flushes its pipeline, flushes all write buffers, and completes all pending bus transactions. At this time the core indicates to the system that the clock to the core can be stopped. This indication is used by the Global Clock Module (GCM) to turn off the CPU clock domain (GCLK) if the CDDIS register bit 0 is set. 2.4.3.2 Special Considerations for Entry to Low Power Modes Some bus master modules – High-End Timer Transfer Units (HTUx), FlexRay Transfer Unit (FTU), Data Modification Module (DMM), and Parameter Overlay Module (POM), can have ongoing transactions when the application wants to enter a low power mode to turn off the clocks to those modules. This is not recommended as it could leave the device in an unpredictable state. Refer to the individual module chapters for more information about the sequence to be followed to safely enter a low-power mode. 122 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Clocks www.ti.com 2.4.3.3 Selecting Clock Source Upon Wake Up The domains for CPU clock (GCLK), the system clock (HCLK) and the peripheral clock (VCLKx) use the same clock source selected via the GHVSRC field of the GHVSRC register. The GHVSRC register also allows the application to choose the clock source after wake up via the GHVWAKE field. When a wake up condition is detected, if the selected wake up clock source is not already active, the global clock module (GCM) will enable this selected clock source, wait for it to become valid, and then use it for the GCLK, HCLK and VCLKx domains. The other clock domains VCLKAx and RTICLK retain the configuration for their clock source selection registers – VCLKASRC, VCLKACON1 and RCLKSRC. 2.4.4 Clock Test Mode The TMS570LS31x/21x microcontrollers support a test mode which allows a user to bring out several different clock sources and clock domains on to the ECLK terminal. This is very useful information for debug purposes. Each clock source also has a corresponding clock source valid status flag in the Clock Source Valid Status (CSVSTAT) register. The clock source valid status flags can also be brought out on to the NHET1[12] terminal in this clock test mode. The clock test mode is controlled by the CLKTEST register in the system module register frame. Figure 2-4. Clock Test Register (CLKTEST) [offset = FFFF FFF8Ch] 31 27 26 25 24 Reserved ALTLIMPCLOCK ENABLE RANGEDET CTRL RANGEDET ENASSEL R-0 R/WP-0 R/WP-0 R/WP-0 23 20 15 19 16 Reserved CLK_TEST_EN R-0 R/WP-Ah 12 11 8 7 4 3 0 Reserved SEL_GIO_PIN Reserved SEL_ECP_PIN R-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset The clock test mode is enabled by writing 5h to the CLK_TEST_EN field. The signal to be brought out on to the ECLK terminal is defined by the SEL_ECP_PIN field, and the signal to be brought out on to the NHET1[12] terminal is defined by the SEL_GIO_PIN field. The choices for these selections are defined in Table 2-12. Table 2-12. Clock Test Mode Options SEL_ECP_PIN Signal on ECLK SEL_GIO_PIN Signal on NHET1[12] 0000 Oscillator 0000 Oscillator Valid status 0001 PLL1 free-running clock output 0001 PLL1 Valid status 0010 Reserved 0010 Reserved 0011 EXTCLKIN1 0011 Reserved 0100 Low-frequency LPO (Low-Power Oscillator) clock 0100 Reserved 0101 High-frequency LPO (Low-Power Oscillator) clock 0101 HF LPO Valid status 0110 PLL2 free-running clock output 0110 PLL2 Valid status 0111 EXTCLKIN2 0111 Reserved 1000 GCLK 1000 LF LPO Valid status 1001 RTI Base 1001 Reserved 1010 Reserved 1010 Reserved Architecture 123 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Clocks www.ti.com Table 2-12. Clock Test Mode Options (continued) SEL_ECP_PIN Signal on ECLK SEL_GIO_PIN Signal on NHET1[12] 1011 VCLKA1 1011 Reserved 1100 VCLKA2 1100 Reserved 1101 Reserved 1101 Reserved 1110 VCLKA4 1110 Reserved 1111 Reserved 1111 Reserved 2.4.5 Embedded Trace Macrocell (ETM-R4) The TMS570LS31x/21x microcontrollers contain an ETM-R4 module with a 32-bit internal data port. The ETM-R4 module is connected to a Trace Port Interface Unit (TPIU) with a 32-bit data bus; the TPIU provides a 35-bit (32-bit data and 3-bit control) external interface for trace. The ETM-R4 is CoreSight compliant and follows the ETM v3 specification. For more details on the ETM-R4 specification, refer to the Embedded Trace Macrocell Architecture Specification. The ETM clock source is selected as either VCLK or the external ETMTRACECLKIN pin. The selection is done by the EXTCTLOUT control bits of the TPIU EXTCTL_Out_Port register. The address of this register is TPIU base address + 0x404. Before you begin accessing TPIU registers, the TPIU should be unlocked via the CoreSight key and 1h or 2h should be written to this register. Figure 2-5. EXTCTL_Out_Port Register [offset = 404h] 31 16 Reserved R-0 15 2 1 0 Reserved EXTCTLOUT R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-13. EXTCTL_Out_Port Register Field Descriptions Bit Field 31-2 Reserved 1-0 EXTCTLOUT 124 Value 0 Description Reads return 0. Writes have no effect. EXTCTL output control. 0 Tied-zero 1h VCLK 2h ETMTRACECLKIN 3h Tied-zero Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Clocks www.ti.com 2.4.6 Safety Considerations for Clocks The TMS570LS31x/21x microcontrollers are targeted for use in several safety-critical applications. The following sections describe the internal or external monitoring mechanisms that detect and signal clock source failures. 2.4.6.1 Oscillator Monitor The oscillator clock frequency is monitored by a dedicated circuitry called CLKDET using the HF LPO as the reference clock. The CLKDET flags an oscillator fail condition whenever the OSCIN frequency falls outside of a range which is defined by the HF LPO frequency. The valid OSCIN range is defined as a minimum of f(HF LPO) / 4 to a maximum of f(HF LPO) * 4. Refer the specific device datasheet to identify the range of the primary oscillator frequency that is considered valid. The application can select the device response to an oscillator fail indication. See Chapter 10 for more details on the oscillator monitoring and the system response choices. 2.4.6.2 PLL Slip Detector Both the PLL macros implemented on the microcontrollers have an embedded slip detection circuit. A PLL slip is detected by the slip detector under the following conditions: 1. Reference cycle slip, RFSLIP — the output clock is running too fast relative to the reference clock 2. Feedback cycle slip, FBSLIP — the output clock is running too slow relative to the reference clock The device also includes optional filters that can be enabled before a slip indication from the PLL is actually logged in the system module Global Status Register (GLBSTAT). Also, once a PLL slip condition is logged in the system module global status register, the application can choose the device’s response to the slip indication. See Chapter 10 for more details on PLL slip and the system response choices. 2.4.6.3 External Clock Monitor The microcontrollers support a terminal called ECLK – External Clock, which is used to output a slow frequency which is divided down from the device system clock frequency. An external circuit can monitor the ECLK frequency in order to check that the device is operating at the correct frequency. The frequency of the signal output on the ECLK pin can be divided down by 1 to 65536 from the peripheral clock (VCLK) frequency using the External Clock Prescaler Control Register (ECPCNTL). The actual clock output on ECLK is enabled by setting the ECP CLK FUN bit of the SYSPC1 control register. 2.4.6.4 Dual-Clock Comparators The microcontrollers include two instances of the dual-clock comparator module. This module includes two down counters which independently count from two separate seed values at the rate of two independent clock frequencies. One of the clock inputs is a reference clock input, selectable between the main oscillator or the HF LPO in functional mode. The second clock input is selectable from among a set of defined signals as described in Section 2.4.6.4.1 and Section 2.4.6.4.2. This mechanism can be used to use a known-good clock to measure the frequency of another clock. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 125 Clocks www.ti.com 2.4.6.4.1 DCC1 Table 2-14. DCC1 Counter 0 Clock Inputs Clock Source [3-0] Clock / Signal Name All other values Oscillator (OSCIN) 0x5 HF LPO 0xA Test clock (TCK) Table 2-15. DCC1 Counter 1 Clock / Signal Inputs Key [3-0] 0xA All other values Clock Source [3-0] Clock / Signal Name 0x0 PLL1 free-running clock output 0x1 PLL2 free-running clock output 0x2 LF LPO 0x3 HF LPO 0x4 Reserved 0x5 EXTCLKIN1 0x6 EXTCLKIN2 0x7 Reserved 0x8-0xF VCLK Any value N2HET1[31] As can be seen, the main oscillator (OSCIN) can be used for counter 0 as a “known-good” reference clock. The clock for counter 1 can be selected from among 8 options. See Chapter 11 for more details on the DCC usage. 2.4.6.4.2 DCC2 Table 2-16. DCC2 Counter 0 Clock Inputs Clock Source [3-0] Clock / Signal Name All other values Oscillator (OSCIN) 0xA Test clock (TCK) Table 2-17. DCC2 Counter 1 Clock / Signal Inputs Key [3-0] 0xA All other values Clock Source [3-0] Clock / Signal Name 0x0-0x7 Reserved 0x8-0xF VCLK Any value N2HET2[0] As can be seen, the main oscillator (OSCIN) can be used for counter 0 as a “known-good” reference clock. The clock for counter 1 can be selected from among 2 options. See Chapter 11 for more details on the DCC usage. 126 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5 System and Peripheral Control Registers The following sections describe the system and peripheral control registers of the TMS570LS31x/21x microcontroller. 2.5.1 Primary System Control Registers (SYS) This section describes the System registers. These registers are divided into two separate frames. The start address of the primary system module frame is FFFF FF00h. The start address of the secondary system module frame is FFFF E100h. The registers support 32-, 16-, and 8-bit writes. The offset is relative to the system module frame start address. Table 2-18 contains a list of the primary system control registers. Table 2-18. Primary System Control Registers Offset Acronym Register Description 00h SYSPC1 SYS Pin Control Register 1 Section 2.5.1.1 Section 04h SYSPC2 SYS Pin Control Register 2 Section 2.5.1.2 08h SYSPC3 SYS Pin Control Register 3 Section 2.5.1.3 0Ch SYSPC4 SYS Pin Control Register 4 Section 2.5.1.4 10h SYSPC5 SYS Pin Control Register 5 Section 2.5.1.5 14h SYSPC6 SYS Pin Control Register 6 Section 2.5.1.6 18h SYSPC7 SYS Pin Control Register 7 Section 2.5.1.7 1Ch SYSPC8 SYS Pin Control Register 8 Section 2.5.1.8 20h SYSPC9 SYS Pin Control Register 9 Section 2.5.1.9 30h CSDIS Clock Source Disable Register Section 2.5.1.10 34h CSDISSET Clock Source Disable Set Register Section 2.5.1.11 38h CSDISCLR Clock Source Disable Clear Register Section 2.5.1.12 3Ch CDDIS Clock Domain Disable Register Section 2.5.1.13 40h CDDISSET Clock Domain Disable Set Register Section 2.5.1.14 44h CDDISCLR Clock Domain Disable Clear Register Section 2.5.1.15 48h GHVSRC GCLK, HCLK, VCLK, and VCLK2 Source Register Section 2.5.1.16 4Ch VCLKASRC Peripheral Asynchronous Clock Source Register Section 2.5.1.17 50h RCLKSRC RTI Clock Source Register Section 2.5.1.18 54h CSVSTAT Clock Source Valid Status Register Section 2.5.1.19 58h MSTGCR Memory Self-Test Global Control Register Section 2.5.1.20 5Ch MINITGCR Memory Hardware Initialization Global Control Register Section 2.5.1.21 60h MSINENA Memory Self-Test/Initialization Enable Register Section 2.5.1.22 64h Reserved Reserved 68h MSTCGSTAT MSTC Global Status Register Section 2.5.1.23 6Ch MINISTAT Memory Hardware Initialization Status Register Section 2.5.1.24 70h PLLCTL1 PLL Control Register 1 Section 2.5.1.25 74h PLLCTL2 PLL Control Register 2 Section 2.5.1.26 78h SYSPC10 SYS Pin Control Register 10 Section 2.5.1.27 7Ch DIEIDL Die Identification Register, Lower Word Section 2.5.1.28 80h DIEIDH Die Identification Register, Upper Word Section 2.5.1.29 88h LPOMONCTL LPO/Clock Monitor Control Register Section 2.5.1.30 8Ch CLKTEST Clock Test Register Section 2.5.1.31 90h DFTCTRLREG DFT Control Register Section 2.5.1.32 94h DFTCTRLREG2 DFT Control Register 2 Section 2.5.1.33 98h-9Ch Reserved Reserved A0h GPREG1 General Purpose Register Section 2.5.1.34 A8h IMPFASTS Imprecise Fault Status Register Section 2.5.1.35 Architecture 127 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com Table 2-18. Primary System Control Registers (continued) Offset 128 Acronym Register Description ACh IMPFTADD Imprecise Fault Write Address Register Section 2.5.1.36 B0h SSIR1 System Software Interrupt Request 1 Register Section 2.5.1.37 B4h SSIR2 System Software Interrupt Request 2 Register Section 2.5.1.38 B8h SSIR3 System Software Interrupt Request 3 Register Section 2.5.1.39 BCh SSIR4 System Software Interrupt Request 4 Register Section 2.5.1.40 C0h RAMGCR RAM Control Register Section 2.5.1.41 C4h BMMCR1 Bus Matrix Module Control Register 1 Section 2.5.1.42 C8h Reserved Reserved CCh CPURSTCR CPU Reset Control Register Section 2.5.1.43 D0h CLKCNTL Clock Control Register Section 2.5.1.44 D4h ECPCNTL ECP Control Register Section 2.5.1.45 DCh DEVCR1 DEV Parity Control Register 1 Section 2.5.1.46 E0h SYSECR System Exception Control Register Section 2.5.1.47 E4h SYSESR System Exception Status Register Section 2.5.1.48 E8h SYSTASR System Test Abort Status Register Section 2.5.1.49 ECh GLBSTAT Global Status Register Section 2.5.1.50 F0h DEVID Device Identification Register Section 2.5.1.51 F4h SSIVEC Software Interrupt Vector Register Section 2.5.1.52 F8h SSIF System Software Interrupt Flag Register Section 2.5.1.53 Architecture Section SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.1 SYS Pin Control Register 1 (SYSPC1) The SYSPC1 register, shown in Figure 2-6 and described in Table 2-19, controls the function of the ECLK pin. Figure 2-6. SYS Pin Control Register 1 (SYSPC1) [offset = 00h] 31 16 Reserved R-0 15 1 0 Reserved ECPCLKFUN R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-19. SYS Pin Control Register 1 (SYSPC1) Field Descriptions Bit Field 31-1 Value Reserved 0 0 ECPCLKFUN Description Reads return 0. Writes have no effect. ECLK function. This bit changes the function of the ECLK pin. 0 ECLK is in GIO mode. 1 ECLK is in functional mode as a clock output. Note: Proper ECLK duty cycle is not assured until 1 ECLK cycle has elapsed after switching into functional mode. 2.5.1.2 SYS Pin Control Register 2 (SYSPC2) The SYSPC2 register, shown in Figure 2-7 and described in Table 2-20, controls whether the pin is an input or an output when in GIO mode. Figure 2-7. SYS Pin Control Register 2 (SYSPC2) [offset = 04h] 31 16 Reserved R-0 15 1 0 Reserved ECPCLKDIR R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-20. SYS Pin Control Register 2 (SYSPC2) Field Descriptions Bit 31-1 0 Field Value Reserved 0 ECPCLKDIR Description Reads return 0. Writes have no effect. ECLK data direction. This bit controls the direction of the ECLK pin when it is configured to be in GIO mode only. 0 The ECLK pin is an input. Note: If the pin direction is set as an input , the output buffer is tristated. 1 The ECLK pin is an output. Note: The ECLK pin is placed into GIO mode by clearing the ECPCLKFUN bit to 0 in the SYSPC1 register. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 129 System and Peripheral Control Registers 2.5.1.3 www.ti.com SYS Pin Control Register 3 (SYSPC3) The SYSPC3 register, shown in Figure 2-8 and described in Table 2-21, displays the logic state of the ECLK pin when it is in GIO mode. Figure 2-8. SYS Pin Control Register 3 (SYSPC3) [offset = 08h] 31 16 Reserved R-0 15 1 0 Reserved ECPCLKDIN R-0 R-U LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -U = Undefined Table 2-21. SYS Pin Control Register 3 (SYSPC3) Field Descriptions Bit Field 31-1 Reserved 0 Value 0 ECPCLKDIN 2.5.1.4 Description Reads return 0. Writes have no effect. ECLK data in. This bit displays the logic state of the ECLK pin when it is configured to be in GIO mode. 0 The ECLK pin is at logic low (0). 1 The ECLK pin is at logic high (1). SYS Pin Control Register 4 (SYSPC4) The SYSPC4 register, shown in Figure 2-9 and described in Table 2-22, controls the logic level output function of the ECLK pin when when it is configured as an output in GIO mode. Figure 2-9. SYS Pin Control Register 4 (SYSPC4) [offset = 0Ch] 31 16 Reserved R-0 15 1 0 Reserved ECPCLKDOUT R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-22. SYS Pin Control Register 4 (SYSPC4) Field Descriptions Bit 31-1 0 Field Reserved Value 0 ECPCLKDOUT Description Reads return 0. Writes have no effect. ECLK data out write. This bit is only active when the ECLK pin is configured to be in GIO mode. Writes to this bit will only take effect when the ECLK pin is configured as an output in GIO mode. The current logic state of the ECLK pin will be displayed by this bit in both input and output GIO mode. 0 The ECLK pin is driven to logic low (0). 1 The ECLK pin is driven to logic high (1). Note: The ECLK pin is placed into GIO mode by setting the ECPCLKFUN bit to 0 in the SYSPC1 register. The ECLK pin is placed in output mode by setting the ECPCLKDIR bit to 1 in the SYSPC2 register. 130 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.5 SYS Pin Control Register 5 (SYSPC5) The SYSPC5 register, shown in Figure 2-10 and described in Table 2-23, controls the set function of the ECLK pin when when it is configured as an output in GIO mode. Figure 2-10. SYS Pin Control Register 5 (SYSPC5) [offset = 10h] 31 16 Reserved R-0 15 1 0 Reserved ECPCLKSET R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-23. SYS Pin Control Register 5 (SYSPC5) Field Descriptions Bit Field 31-1 Value Reserved 0 0 ECPCLKSET Description Reads return 0. Writes have no effect. ECLK data out set. This bit drives the output of the ECLK pin high when set in GIO output mode. 0 Write: Writing a 0 has no effect. 1 Write: The ECLK pin is driven to logic high (1). Note: The current logic state of the ECPCLKDOUT bit will also be displayed by this bit when the pin is configured in GIO output mode. Note: The ECLK pin is placed into GIO mode by setting the ECPCLKFUN bit to 0 in the SYSPC1 register. The ECLK pin is placed in output mode by setting the ECPCLKDIR bit to 1 in the SYSPC2 register. 2.5.1.6 SYS Pin Control Register 6 (SYSPC6) The SYSPC6 register, shown in Figure 2-11 and described in Table 2-24, controls the clear function of the ECLK pin when it is configured as an output in GIO mode.. Figure 2-11. SYS Pin Control Register 6 (SYSPC6) [offset = 14h] 31 16 Reserved R-0 15 1 0 Reserved ECPCLKCLR R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-24. SYS Pin Control Register 6 (SYSPC6) Field Descriptions Bit 31-1 0 Field Value Reserved 0 ECPCLKCLR Description Reads return 0. Writes have no effect. ECLK data out clear. This bit drives the output of the ECLK pin low when set in GIO output mode. 0 Write: The ECLK pin value is unchanged. 1 Write: The ECLK pin is driven to logic low (0). Note: The current logic state of the ECPCLKDOUT bit will also be displayed by this bit when the pin is configured in GIO output mode. Note: The ECLK pin is placed into GIO mode by setting the ECPCLKFUN bit to 0 in the SYSPC1 register. The ECLK pin is placed in output mode by setting the ECPCLKDIR bit to 1 in the SYSPC2 register. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 131 System and Peripheral Control Registers 2.5.1.7 www.ti.com SYS Pin Control Register 7 (SYSPC7) The SYSPC7 register, shown in Figure 2-12 and described in Table 2-25, controls the open drain function of the ECLK pin. Figure 2-12. SYS Pin Control Register 7 (SYSPC7) [offset = 18h] 31 16 Reserved R-0 15 1 0 Reserved ECPCLKODE R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-25. SYS Pin Control Register 7 (SYSPC7) Field Descriptions Bit Field 31-1 Reserved 0 Value 0 ECPCLKODE Description Reads return 0. Writes have no effect. ECLK open drain enable. This bit is only active when ECLK is configured to be in GIO mode. 0 The ECLK pin is configured in push/pull (normal GIO) mode. 1 The ECLK pin is configured in open drain mode. The ECPCLKDOUT bit in the SYSPC4 register controls the state of the ECLK output buffer: ECPCLKDOUT = 0: The ECLK output buffer is driven low. ECPCLKDOUT = 1: The ECLK output buffer is tristated. Note: The ECLK pin is placed into GIO mode by setting the ECPCLKFUN bit to 0 in the SYSPC1 register. 2.5.1.8 SYS Pin Control Register 8 (SYSPC8) The SYSPC8 register, shown in Figure 2-13 and described in Table 2-26, controls the pull enable function of the ECLK pin when it is configured as an input in GIO mode. Figure 2-13. SYS Pin Control Register 8 (SYSPC8) [offset = 1Ch] 31 16 Reserved R-0 15 1 0 Reserved ECPCLKPUE R-0 R/W-D LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; D = value is device specific Table 2-26. SYS Pin Control Register 8 (SYSPC8) Field Descriptions Bit 31-1 0 Field Reserved Value 0 ECPCLKPUE Description Reads return 0. Writes have no effect. ECLK pull enable. Writes to this bit will only take effect when the ECLK pin is configured as an input in GIO mode. 0 ECLK pull enable is active. 1 ECLK pull enable is inactive. Note: The pull direction (up/down) is selected by the ECPCLKPS bit in the SYSPC9 register. Note: The ECLK pin is placed into GIO mode by setting the ECPCLKFUN bit to 0 in the SYSPC1 register. The ECLK pin is placed in input mode by setting the ECPCLKDIR bit to 0 in the SYSPC2 register. 132 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.9 SYS Pin Control Register 9 (SYSPC9) The SYSPC9 register, shown in Figure 2-14 and described in Table 2-27, controls the pull up/pull down configuration of the ECLK pin when it is configured as an input in GIO mode. Figure 2-14. SYS Pin Control Register 9 (SYSPC9) [offset = 20h] 31 16 Reserved R-0 15 1 0 Reserved ECPCLKPS R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-27. SYS Pin Control Register 9 (SYSPC9) Field Descriptions Bit 31-1 0 Field Value Reserved 0 ECPCLKPS Description Reads return 0. Writes have no effect. ECLK pull up/pull down select. This bit is only active when ECLK is configured as an input in GIO mode and the pull up/pull down logic is enabled. 0 ECLK pull down is selected, when pull up/pull down logic is enabled. 1 ECLK pull up is selected, when pull up/pull down logic is enabled. Note: The ECLK pin pull up/pull down logic is enabled by setting the ECPCLKPUE bit to 0 in the SYSPC8 register. Note: The ECLK pin is placed into GIO mode by setting the ECPCLKFUN bit to 0 in the SYSPC1 register. The ECLK pin is placed in input mode by setting the ECPCLKDIR bit to 0 in the SYSPC2 register. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 133 System and Peripheral Control Registers www.ti.com 2.5.1.10 Clock Source Disable Register (CSDIS) The CSDIS register, shown in Figure 2-15 and described in Table 2-28, controls and displays the state of the device clock sources. Figure 2-15. Clock Source Disable Register (CSDIS) [offset = 30h] 31 8 Reserved R-0 7 6 5 4 3 2 1 0 CLKSR7OFF CLKSR6OFF CLKSR5OFF CLKSR4OFF CLKSR3OFF Reserved CLKSR1OFF CLKSR0OFF R/WP-1 R/WP-1 R/WP-0 R/WP-0 R/WP-1 R-1 R/WP-1 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-28. Clock Source Disable Register (CSDIS) Field Descriptions Bit Field 31-8 Reserved 7-3 CLKSR[7-3]OFF Value 0 Description Reads return 0. Writes have no effect. Clock source[7-3] off. 0 Clock source[7-3] is enabled. 1 Clock source[7-3] is disabled. Note: On wakeup, only clock sources 0, 4 and 5 are enabled. 2 1-0 Reserved Reads return one. Writes have no effect. CLKSR[1-0]OFF Clock source[1-0] off. 0 Clock source[1-0] is enabled. 1 Clock source[1-0] is disabled. Note: On wakeup, only clock sources 0, 4 and 5 are enabled. Table 2-29. Clock Sources Table Clock Source # Clock Source Name Clock Source 0 Oscillator Clock Source 1 PLL1 Clock Source 2 Not Implemented Clock Source 3 EXTCLKIN Clock Source 4 Low Frequency LPO (Low Power Oscillator) clock Clock Source 5 High Frequency LPO (Low Power Oscillator) clock Clock Source 6 PLL2 Clock Source 7 EXTCLKIN2 NOTE: Nonimplemented clock sources should not be enabled or used. 134 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.11 Clock Source Disable Set Register (CSDISSET) The CSDISSET register, shown in Figure 2-16 and described in Table 2-30, sets clock sources to the disabled state. Figure 2-16. Clock Source Disable Set Register (CSDISSET) [offset = 34h] 31 8 Reserved R-0 7 6 5 4 3 2 1 0 SETCLKSR7 OFF SETCLKSR6 OFF SETCLKSR5 OFF SETCLKSR4 OFF SETCLKSR3 OFF Reserved SETCLKSR1 OFF SETCLKSR0 OFF R/WP-1 R/WP-1 R/WP-0 R/WP-0 R/WP-1 R-1 R/WP-1 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-30. Clock Source Disable Set Register (CSDISSET) Field Descriptions Bit Field 31-8 Reserved 7-3 SETCLKSR[7-3]OFF Value 0 Description Reads return 0. Writes have no effect. Set clock source[7-3] to the disabled state. 0 Read: Clock source[7-3] is enabled. Write: Clock source[7-3] is unchanged. 1 Read: Clock source[7-3] is disabled. Write: Clock source[7-3] is set to the disabled state. Note: After a new clock source disable bit is set via the CSDISSET register, the new status of the bit will be reflected in the CSDIS register (offset 30h), the CSDISSET register (offset 34h) and the CSDISCLR register (offset 38h). 2 1-0 Reserved 1 SETCLKSR[1-0]OFF Reads return 1. Writes have no effect. Set clock source[1-0] to the disabled state. 0 Read: Clock source[1-0] is enabled. Write: Clock source[1-0] is unchanged. 1 Read: Clock source[1-0] is disabled. Write: Clock source[1-0] is set to the disabled state. Note: After a new clock source disable bit is set via the CSDISSET register, the new status of the bit will be reflected in the CSDIS register (offset 30h), the CSDISSET register (offset 34h) and the CSDISCLR register (offset 38h). NOTE: A list of the available clock sources is shown in Table 2-29. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 135 System and Peripheral Control Registers www.ti.com 2.5.1.12 Clock Source Disable Clear Register (CSDISCLR) The CSDISCLR register, shown in Figure 2-17 and described in Table 2-31, clears clock sources to the enabled state. Figure 2-17. Clock Source Disable Clear Register (CSDISCLR) [offset = 38h] 31 8 Reserved R-0 7 6 5 4 3 2 1 0 CLRCLKSR7 OFF CLRCLKSR6 OFF CLRCLKSR5 OFF CLRCLKSR4 OFF CLRCLKSR3 OFF Reserved CLRCLKSR1 OFF CLRCLKSR0 OFF R/WP-1 R/WP-1 R/WP-0 R/WP-0 R/WP-1 R-1 R/WP-1 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-31. Clock Source Disable Clear Register (CSDISCLR) Field Descriptions Bit Field 31-8 Reserved 7-3 CLRCLKSR[7-3]OFF Value 0 Description Reads return 0. Writes have no effect. Enables clock source[7-3]. 0 Read: Clock source[7-3] is enabled. Write: Clock source[7-3] is unchanged. 1 Read: Clock source[7-3] is enabled. Write: Clock source[7-3] is set to the enabled state. Note: After a new clock source disable bit is set via the CSDISSET register, the new status of the bit will be reflected in the CSDIS register (offset 30h), the CSDISSET register (offset 34h) and the CSDISCLR register (offset 38h). 2 1-0 Reserved 1 CLRCLKSR[1-0]OFF Reads return 1. Writes have no effect. Enables clock source[1-0]. 0 Read: Clock source[1-0] is enabled. Write: Clock source[1-0] is unchanged. 1 Read: Clock source[1-0] is enabled. Write: Clock source[1-0] is set to the enabled state. Note: After a new clock source disable bit is set via the CSDISSET register, the new status of the bit will be reflected in the CSDIS register (offset 30h), the CSDISSET register (offset 34h) and the CSDISCLR register (offset 38h). NOTE: A list of the available clock sources is shown in Table 2-29. 136 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.13 Clock Domain Disable Register (CDDIS) The CDDIS register, shown in Figure 2-18 and described in Table 2-32, controls the state of the clock domains. NOTE: All the clock domains are enabled on wakeup. The application should guarantee that when HCLK and VCLK_sys are turned off through the HCLKOFF bit, the GCLK domain is also turned off. The register bits in CDDIS are designated as high-integrity bits and have been implemented with error-correcting logic such that each bit, although read and written as a single bit, is actually a multi-bit key with error correction capability. As such, single-bit flips within the “key” can be corrected allowing protection of the system as a whole. An error detected is signaled to the ESM module. Figure 2-18. Clock Domain Disable Register (CDDIS) [offset = 3Ch] 31 16 Reserved R-0 15 11 10 9 8 Reserved 12 VCLKA4OFF Reserved Reserved VCLK3OFF R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 6 5 4 3 2 1 0 Reserved RTICLK1OFF VCLKA2OFF VCLKA1OFF VCLK2OFF VCLKPOFF HCLKOFF GCLKOFF R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-32. Clock Domain Disable Register (CDDIS) Field Descriptions Bit Field 31-12 Reserved 11 Value 0 VCLKA4OFF Description Reads return 0. Writes have no effect. VCLKA4 domain off. 0 The VCLKA4 domain is enabled. 1 The VCLKA4 domain is disabled. 10 Reserved 0-1 Reads return 0 or 1 and privilege mode writes allowed. 9 Reserved 0-1 Reads return 0 or 1 and privilege mode writes allowed. 8 VCLK3OFF 7 Reserved 6 RTICLK1OFF 5-4 3 2 VCLK3 domain off. 0 The VCLK3 domain is enabled. 1 The VCLK3 domain is disabled. 0-1 Reads return 0 or 1 and privilege mode writes allowed. RTICLK1 domain off. 0 The RTICLK1 domain is enabled. 1 The RTICLK1 domain is disabled. VCLKA[2-1]OFF VCLKA[2-1] domain off. 0 The VCLKA[2-1] domain is enabled. 1 The VCLKA[2-1] domain is disabled. VCLK2OFF VCLK2 domain off. 0 The VCLK2 domain is enabled. 1 The VCLK2 domain is disabled. VCLKPOFF VCLK_periph domain off. 0 The VCLK_periph domain is enabled. 1 The VCLK_periph domain is disabled. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 137 System and Peripheral Control Registers www.ti.com Table 2-32. Clock Domain Disable Register (CDDIS) Field Descriptions (continued) Bit 1 0 138 Field Value HCLKOFF Description HCLK and VCLK_sys domains off. 0 The HCLK and VCLK_sys domains are enabled. 1 The HCLK and VCLK_sys domains are disabled. GCLKOFF GCLK domain off. 0 The GCLK domain is enabled. 1 The GCLK domain is disabled. Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.14 Clock Domain Disable Set Register (CDDISSET) This CDDISSET register, shown in Figure 2-19 and described in Table 2-33, sets clock domains to the disabled state. Figure 2-19. Clock Domain Disable Set Register (CDDISSET) [offset = 40h] 31 16 Reserved R-0 15 11 10 9 8 Reserved 12 SETVCLKA4 OFF Reserved Reserved SETVCLK3 OFF R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 6 5 4 3 2 1 0 Reserved SETRTI1CLK OFF SETVCLKA2 OFF SETVCLKA1 OFF SETVCLK2 OFF SETVCLKP OFF SETHCLK OFF SETGCLK OFF R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-33. Clock Domain Disable Set Register (CDDISSET) Field Descriptions Bit 31-12 11 Field Reserved Value 0 SETVCLKA4OFF Description Reads return 0. Writes have no effect. Set VCLKA4 domain. 0 Read: The VCLKA4 domain is enabled. Write: The VCLKA4 domain is unchanged. 1 Read: The VCLKA4 domain is disabled. Write: The VCLKA4 domain is set to the enabled state. 10 Reserved 0-1 Reads return 0 or 1 and privilege mode writes allowed. 9 Reserved 0-1 Reads return 0 or 1 and privilege mode writes allowed. 8 SETVCLK3OFF Set VCLK3 domain. 0 Read: The VCLK3 domain is enabled. Write: The VCLK3 domain is unchanged. 1 Read: The VCLK3 domain is disabled. Write: The VCLK3 domain is set to the enabled state. 7 Reserved 6 SETRTI1CLKOFF 0-1 Reads return 0 or 1 and privilege mode writes allowed. Set RTICLK1 domain. 0 Read: The RTICLK1 domain is enabled. Write: The RTICLK1 domain is unchanged. 1 Read: The RTICLK1 domain is disabled. Write: The RTICLK1 domain is set to the enabled state. 5 SETVCLKA2OFF Set VCLKA2 domain. 0 Read: The VCLKA2 domain is enabled. Write: The VCLKA2 domain is unchanged. 1 Read: The VCLKA2 domain is disabled. Write: The VCLKA2 domain is set to the enabled state. 4 SETVCLKA1OFF Set VCLKA1 domain. 0 Read: The VCLKA1 domain is enabled. Write: The VCLKA1 domain is unchanged. 1 Read: The VCLKA1 domain is disabled. Write: The VCLKA1 domain is set to the enabled state. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 139 System and Peripheral Control Registers www.ti.com Table 2-33. Clock Domain Disable Set Register (CDDISSET) Field Descriptions (continued) Bit Field 3 Value SETVCLK2OFF Description Set VCLK2 domain. 0 Read: The VCLK2 domain is enabled. Write: The VCLK2 domain is unchanged. 1 Read: The VCLK2 domain is disabled. Write: The VCLK2 domain is set to the enabled state. 2 SETVCLKPOFF Set VCLK_periph domain. 0 Read: The VCLK_periph domain is enabled. Write: The VCLK_periph domain is unchanged. 1 Read: The VCLK_periph domain is disabled. Write: The VCLK_periph domain is set to the enabled state. 1 SETHCLKOFF Set HCLK and VCLK_sys domains. 0 Read: The HCLK and VCLK_sys domain is enabled. Write: The HCLK and VCLK_sys domain is unchanged. 1 Read: The HCLK and VCLK_sys domain is disabled. Write: The HCLK and VCLK_sys domain is set to the enabled state. 0 SETGCLKOFF Set GCLK domain. 0 Read: The GCLK domain is enabled. Write: The GCLK domain is unchanged. 1 Read: The GCLK domain is disabled. Write: The GCLK domain is set to the enabled state. 2.5.1.15 Clock Domain Disable Clear Register (CDDISCLR) The CDDISCLR register, shown in Figure 2-20 and described in Table 2-34, clears clock domains to the enabled state. Figure 2-20. Clock Domain Disable Clear Register (CDDISCLR) [offset = 44h] 31 16 Reserved R-0 15 11 10 9 8 Reserved 12 CLRVCLKA4 OFF Reserved Reserved CLRVCLK3 OFF R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 6 5 4 3 2 1 0 Reserved CLRRTI1CLK OFF CLRVCLKA2 OFF CLRVCLKA1 OFF CLRVCLK2 OFF CLRVCLKP OFF CLRHCLK OFF CLRGCLK OFF R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; R = Read only; WP = Write in privileged mode only; -n = value after reset 140 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com Table 2-34. Clock Domain Disable Clear Register (CDDISCLR) Field Descriptions Bit 31-12 11 Field Reserved Value 0 CLRVCLKA4OFF Description Reads return 0. Writes have no effect. Clear VCLKA4 domain. 0 Read: The VCLKA4 domain is enabled. Write: The VCLKA4 domain is unchanged. 1 Read: The VCLKA4 domain is disabled. Write: The VCLKA4 domain is cleared to the enabled state. 10 Reserved 0-1 Reads return 0 or 1 and privilege mode writes allowed. 9 Reserved 0-1 Reads return 0 or 1 and privilege mode writes allowed. 8 CLRVCLK3OFF Clear VCLK3 domain. 0 Read: The VCLK3 domain is enabled. Write: The VCLK3 domain is unchanged. 1 Read: The VCLK3 domain is disabled. Write: The VCLK3 domain is cleared to the enabled state. 7 Reserved 6 CLRRTI1CLKOFF 0-1 Reads return 0 or 1 and privilege mode writes allowed. Clear RTICLK1 domain. 0 Read: The RTICLK1 domain is enabled. Write: The RTICLK1 domain is unchanged. 1 Read: The RTICLK1 domain is disabled. Write: The RTICLK1 domain is cleared to the enabled state. 5 CLRVCLKA2OFF Clear VCLKA2 domain. 0 Read: The VCLKA2 domain is enabled. Write: The VCLKA2 domain is unchanged. 1 Read: The VCLKA2 domain is disabled. Write: The VCLKA2 domain is cleared to the enabled state. 4 CLRVCLKA1OFF Clear VCLKA1 domain. 0 Read: The VCLKA1 domain is enabled. Write: The VCLKA1 domain is unchanged. 1 Read: The VCLKA1 domain is disabled. Write: The VCLKA1 domain is cleared to the enabled state. 3 CLRVCLK2OFF Clear VCLK2 domain. 0 Read: The VCLK2 domain is enabled. Write: The VCLK2 domain is unchanged. 1 Read: The VCLK2 domain is disabled. Write: The VCLK2 domain is cleared to the enabled state. 2 CLRVCLKPOFF Clear VCLK_periph domain. 0 Read: The VCLK_periph domain is enabled. Write: The VCLK_periph domain is unchanged. 1 Read: The VCLK_periph domain is disabled. Write: The VCLK_periph domain is cleared to the enabled state. 1 CLRHCLKOFF Clear HCLK and VCLK_sys domains. 0 Read: The HCLK and VCLK_sys domain is enabled. Write: The HCLK and VCLK_sys domain is unchanged. 1 Read: The HCLK and VCLK_sys domain is disabled. Write: The HCLK and VCLK_sys domain is cleared to the enabled state. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 141 System and Peripheral Control Registers www.ti.com Table 2-34. Clock Domain Disable Clear Register (CDDISCLR) Field Descriptions (continued) Bit 0 Field Value CLRGCLKOFF Description Clear GCLK domain. 0 Read: The GCLK domain is enabled. Write: The GCLK domain is unchanged. 1 Read: The GCLK domain is disabled. Write: The GCLK domain is cleared to the enabled state. 142 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.16 GCLK, HCLK, VCLK, and VCLK2 Source Register (GHVSRC) The GHVSRC register, shown in Figure 2-21 and described in Table 2-35, controls the clock source configuration for the GCLK, HCLK, VCLK and VCLK2 clock domains. Figure 2-21. GCLK, HCLK, VCLK, and VCLK2 Source Register (GHVSRC) [offset = 48h] 31 28 27 24 23 20 19 16 Reserved GHVWAKE Reserved HVLPM R-0 R/WP-0 R-0 R/WP-0 15 4 3 0 Reserved GHVSRC R-0 R/WP-0 LEGEND: R = Read only; R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-35. GCLK, HCLK, VCLK, and VCLK2 Source Register (GHVSRC) Field Descriptions Bit Field 31-28 Reserved 27-24 GHVWAKE Value 0 Reserved 19-16 HVLPM GCLK, HCLK, VCLK, VCLK2 source on wakeup. Clock source0 is the source for GCLK, HCLK, VCLK, VCLK2 on wakeup. 1h Clock source1 is the source for GCLK, HCLK, VCLK, VCLK2 on wakeup. 2h Clock source2 is the source for GCLK, HCLK, VCLK, VCLK2 on wakeup. 3h Clock source3 is the source for GCLK, HCLK, VCLK, VCLK2 on wakeup. 4h Clock source4 is the source for GCLK, HCLK, VCLK, VCLK2 on wakeup. 5h Clock source5 is the source for GCLK, HCLK, VCLK, VCLK2 on wakeup. 6h Clock source6 is the source for GCLK, HCLK, VCLK, VCLK2 on wakeup. 7h Clock source7 is the source for GCLK, HCLK, VCLK, VCLK2 on wakeup. 0 Reserved 3-0 GHVSRC Reserved Reads return 0. Writes have no effect. HCLK, VCLK, VCLK2 source on wakeup when GCLK is turned off. 0 Clock source0 is the source for HCLK, VCLK, VCLK2 on wakeup. 1h Clock source1 is the source for HCLK, VCLK, VCLK2 on wakeup. 2h Clock source2 is the source for HCLK, VCLK, VCLK2 on wakeup. 3h Clock source3 is the source for HCLK, VCLK, VCLK2 on wakeup. 4h Clock source4 is the source for HCLK, VCLK, VCLK2 on wakeup. 5h Clock source5 is the source for HCLK, VCLK, VCLK2 on wakeup. 6h Clock source6 is the source for HCLK, VCLK, VCLK2 on wakeup. 7h Clock source7 is the source for HCLK, VCLK, VCLK2 on wakeup. 8h-Fh 15-4 Reads return 0. Writes have no effect. 0 8h-Fh 23-20 Description 0 Reserved Reads return 0. Writes have no effect. GCLK, HCLK, VCLK, VCLK2 current source. Note: The GHVSRC[3-0] bits are updated with the HVLPM[3-0] setting when GCLK is turned off, and are updated with the GHVWAKE[3-0] setting on system wakeup. 0 Clock source0 is the source for GCLK, HCLK, VCLK, VCLK2. 1h Clock source1 is the source for GCLK, HCLK, VCLK, VCLK2. 2h Clock source2 is the source for GCLK, HCLK, VCLK, VCLK2. 3h Clock source3 is the source for GCLK, HCLK, VCLK, VCLK2. 4h Clock source4 is the source for GCLK, HCLK, VCLK, VCLK2. 5h Clock source5 is the source for GCLK, HCLK, VCLK, VCLK2. 6h Clock source6 is the source for GCLK, HCLK, VCLK, VCLK2. 7h Clock source7 is the source for GCLK, HCLK, VCLK, VCLK2. 8h-Fh Reserved SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 143 System and Peripheral Control Registers www.ti.com NOTE: Non implemented clock sources should not be enabled or used. A list of the available clock sources is shown in Table 2-29. 2.5.1.17 Peripheral Asynchronous Clock Source Register (VCLKASRC) The VCLKASRC register, shown in Figure 2-22 and described in Table 2-36, sets the clock source for the asynchronous peripheral clock domains to be configured to run from a specific clock source. Figure 2-22. Peripheral Asynchronous Clock Source Register (VCLKASRC) [offset = 4Ch] 31 16 Reserved R-0 15 12 11 8 7 4 3 0 Reserved VCLKA2S Reserved VCLKA1S R-0 R/WP-9h R-0 R/WP-9h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-36. Peripheral Asynchronous Clock Source Register (VCLKASRC) Field Descriptions Bit Field 31-12 Reserved 11-8 VCLKA2S Value 0 Reserved 3-0 VCLKA1S Reads return 0. Writes have no effect. Peripheral asynchronous clock2 source. 0 Clock source0 is the source for peripheral asynchronous clock2. 1h Clock source1 is the source for peripheral asynchronous clock2. 2h Clock source2 is the source for peripheral asynchronous clock2. 3h Clock source3 is the source for peripheral asynchronous clock2. 4h Clock source4 is the source for peripheral asynchronous clock2. 5h Clock source5 is the source for peripheral asynchronous clock2. 6h Clock source6 is the source for peripheral asynchronous clock2. 7h Clock source7 is the source for peripheral asynchronous clock2. 8h-Fh 7-4 Description 0 VCLK is the source for peripheral asynchronous clock2. Reads return 0. Writes have no effect. Peripheral asynchronous clock1 source. 0 Clock source0 is the source for peripheral asynchronous clock1. 1h Clock source1 is the source for peripheral asynchronous clock1. 2h Clock source2 is the source for peripheral asynchronous clock1. 3h Clock source3 is the source for peripheral asynchronous clock1. 4h Clock source4 is the source for peripheral asynchronous clock1. 5h Clock source5 is the source for peripheral asynchronous clock1. 6h Clock source6 is the source for peripheral asynchronous clock1. 7h Clock source7 is the source for peripheral asynchronous clock1. 8h-Fh VCLK is the source for peripheral asynchronous clock1. NOTE: Non implemented clock sources should not be enabled or used. A list of the available clock sources is shown in Table 2-29. 144 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.18 RTI Clock Source Register (RCLKSRC) The RCLKSRC register, shown in Figure 2-23 and described in Table 2-37, controls the RTI (Real Time Interrupt) clock source selection. NOTE: Important constraint when the RTI clock source is not VCLK If the RTIx clock source is chosen to be anything other than the default VCLK, then the RTI clock needs to be at least three times slower than the VCLK. This can be achieved by configuring the RTIxCLK divider in this register. This divider is internally bypassed when the RTIx clock source is VCLK. Figure 2-23. RTI Clock Source Register (RCLKSRC) [offset = 50h] 31 26 25 24 23 20 19 16 Reserved Reserved Reserved Reserved R-0 R/WP-1h R-0 R/WP-9h 15 10 9 8 7 4 3 0 Reserved RTI1DIV Reserved RTI1SRC R-0 R/WP-1h R-0 R/WP-9h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-37. RTI Clock Source Register (RCLKSRC) Field Descriptions Bit Field Value Description 31-26 Reserved 0 Reads return 0. Writes have no effect. 25-24 Reserved 0 Reads return value and privilege mode writes allowed. 23-20 Reserved 0 Reads return 0. Writes have no effect. 19-16 Reserved 0 Reads return value and privilege mode writes allowed. 15-10 Reserved 0 Reads return 0. Writes have no effect. 9-8 RTI1DIV 7-4 Reserved 3-0 RTI1SRC RTI clock1 Divider. 0 RTICLK1 divider value is 1. 1h RTICLK1 divider value is 2. 2h RTICLK1 divider value is 4. 3h RTICLK1 divider value is 8. 0 Reads return 0. Writes have no effect. RTI clock1 source. 0 Clock source0 is the source for RTICLK1. 1h Clock source1 is the source for RTICLK1. 2h Clock source2 is the source for RTICLK1. 3h Clock source3 is the source for RTICLK1. 4h Clock source4 is the source for RTICLK1. 5h Clock source5 is the source for RTICLK1. 6h Clock source6 is the source for RTICLK1. 7h Clock source7 is the source for RTICLK1. 8h-Fh VCLK is the source for RTICLK1. NOTE: A list of the available clock sources is shown in Table 2-29. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 145 System and Peripheral Control Registers www.ti.com 2.5.1.19 Clock Source Valid Status Register (CSVSTAT) The CSVSTAT register, shown in Figure 2-24 and described in Table 2-38, indicates the status of usable clock sources. Figure 2-24. Clock Source Valid Status Register (CSVSTAT) [offset = 54h] 31 8 Reserved R-0 7 6 5 4 3 2 1 0 CLKSR7V CLKSR6V CLKSR5V CLKSR4V CLKSR3V Reserved CLKSR1V CLKSR0V R-1 R-0 R-0 R-1 R-1 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 2-38. Clock Source Valid Register (CSVSTAT) Field Descriptions Bit Field 31-8 Reserved. 7-3 CLKSR[7-3]V Value 0 Description Reads return 0. Writes have no effect. Clock source[7-3] valid. 0 Clock source[7-3] is not valid. 1 Clock source[7-3] is valid. Note: If the valid bit of the source of a clock domain is not set (that is, the clock source is not fully stable), the respective clock domain is disabled by the Global Clock Module (GCM). 2 1-0 Reserved. 0 CLKSR[1-0]V Reads return 0. Writes have no effect. Clock source[1-0] valid. 0 Clock source[1-0] is not valid. 1 Clock source[1-0] is valid. Note: If the valid bit of the source of a clock domain is not set (that is, the clock source is not fully stable), the respective clock domain is disabled. NOTE: A list of the available clock sources is shown in Table 2-29. 146 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.20 Memory Self-Test Global Control Register (MSTGCR) The MSTGCR register, shown in Figure 2-25 and described in Table 2-39, controls several aspects of the PBIST (Programmable Built-In Self Test) memory controller. Figure 2-25. Memory Self-Test Global Control Register (MSTGCR) [offset = 58h] 31 16 Reserved R-0 15 10 9 8 7 4 3 0 Reserved ROM_DIV Reserved MSTGENA R-0 R/WP-0 R-0 R/WP-5h LEGEND: R = Read only; R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-39. Memory Self-Test Global Control Register (MSTGCR) Field Descriptions Bit Field 31-10 Reserved 9-8 ROM_DIV 7-4 Reserved 3-0 MSTGENA Value 0 Description Reads return 0. Writes have no effect. Prescaler divider bits for ROM clock source. 0 ROM clock source is HCLK divided by 1. PBIST will reset for 16 VBUS cycles. 1h ROM clock source is HCLK divided by 2. PBIST will reset for 32 VBUS cycles. 2h ROM clock source is HCLK divided by 4. PBIST will reset for 64 VBUS cycles. 3h ROM clock source is HCLK divided by 8. PBIST will reset for 96 VBUS cycles. 0 Reads return 0. Writes have no effect. Memory self-test controller global enable key Note: Enabling the MSTGENA key will generate a reset to the state machine of the selected PBIST controller. Ah Memory self-test controller is enabled. All other values Memory self-test controller is disabled. Note: It is recommended that a value of 0101b be used to disable the memory self-test controller. This value will give maximum protection from a bit flip inducing event that would inadvertently enable the controller. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 147 System and Peripheral Control Registers www.ti.com 2.5.1.21 Memory Hardware Initialization Global Control Register (MINITGCR) The MINITGCR register, shown in Figure 2-26 and described in Table 2-40, enables automatic hardware memory initialization. Figure 2-26. Memory Hardware Initialization Global Control Register (MINITGCR) [offset = 5Ch] 31 16 Reserved R-0 15 4 3 0 Reserved MINITGENA R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-40. Memory Hardware Initialization Global Control Register (MINITGCR) Field Descriptions Bit Field 31-4 Reserved 3-0 MINITGENA Value 0 Description Reads return 0. Writes have no effect. Memory hardware initialization global enable key. Ah Global memory hardware initialization is enabled. All other values Global memory hardware initialization is disabled. Note: It is recommended that a value of 5h be used to disable memory hardware initialization. This value will give maximum protection from an event that would inadvertently enable the controller. 148 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.22 MBIST Controller/ Memory Initialization Enable Register (MSINENA) The MSINENA register, shown in Figure 2-27 and described in Table 2-41, enables PBIST controllers for memory self test and the memory modules initialized during automatic hardware memory initialization. Figure 2-27. MBIST Controller/Memory Initialization Enable Register (MSINENA) [offset = 60h] 31 0 MSIENA R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-41. MBIST Controller/Memory Initialization Enable Register (MSINENA) Field Descriptions Bit 31-0 Field Value MSIENA Description PBIST controller and memory initialization enable register. In memory self-test mode, all the corresponding bits of the memories to be tested should be set before enabling the global memory selftest controller key (MSTGENA) in the MSTGCR register (offset 58h). The reason for this is that MSTGENA, in addition to being the global enable for all individual PBIST controllers, is the source for the reset generation to all the PBIST controller state machines. Disabling the MSTGENA or MINITGENA key (by writing from Ah to any other value) will reset all the MSIENA [31-0] bits to their default values. 0 In memory self-test mode (MSTGENA = Ah): PBIST controller [31-0] is disabled. In memory Initialization mode (MINITGENA = Ah): Memory module [31-0] auto hardware initialization is disabled. 1 In memory self-test mode (MSTGENA = Ah): PBIST controller [31-0] is enabled. In memory Initialization mode (MINITGENA = Ah): Memory module [31-0] auto hardware initialization is enabled. Note: Software should ensure that both the memory self-test global enable key (MSTGENA) and the memory hardware initialization global key (MINITGENA) are not enabled at the same time. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 149 System and Peripheral Control Registers www.ti.com 2.5.1.23 MSTC Global Status Register (MSTCGSTAT) The MSTCGSTAT register, shown in Figure 2-28 and described in Table 2-42, shows the status of the memory hardware initialization and the memory seft-test. Figure 2-28. MSTC Global Status Register (MSTCGSTAT) [offset = 68h] 31 16 Reserved R-0 15 9 Reserved 8 7 MINIDONE R-0 1 Reserved R/WPC-0 0 MSTDONE R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; WP = Write in privileged mode only; -n = value after reset Table 2-42. MSTC Global Status Register (MSTCGSTAT) Field Descriptions Bit 31-9 8 Field Reserved Value 0 MINIDONE Description Reads return 0. Writes have no effect. Memory hardware initialization complete status. Note: Disabling the MINITGENA key (by writing from Ah to any other value) will clear the MINIDONE status bit to 0. Note: Individual memory initialization status is shown in the MINISTAT register. 0 Read: Memory hardware initialization is not complete for all memory. Write: A write of 0 has no effect. 1 Read: Hardware initialization of all memory is completed. Write: The bit is cleared to 0. 7-1 0 Reserved 0 MSTDONE Reads return 0. Writes have no effect. Memory self-test run complete status. Note: Disabling the MSTGENA key (by writing from Ah to any other value) will clear the MSTDONE status bit to 0. 0 Read: Memory self-test is not completed. Write: A write of 0 has no effect. 1 Read: Memory self-test is completed. Write: The bit is cleared to 0. 150 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.24 Memory Hardware Initialization Status Register (MINISTAT) The MINISTAT register, shown in Figure 2-29 and described in Table 2-43, indicates the status of hardware memory initialization. Figure 2-29. Memory Hardware Initialization Status Register (MINISTAT) [offset = 6Ch] 31 0 MIDONE R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-43. Memory Hardware Initialization Status Register (MINISTAT) Field Descriptions Bit Field 31-0 Value MIDONE Description Memory hardware initialization status bit. 0 Read: Memory module[31-0] hardware initialization is not completed. Write: A write of 0 has no effect. 1 Read: Memory module[31-0] hardware initialization is completed. Write: The bit is cleared to 0. Note: Disabling the MINITGENA key (by writing from Ah to any other value) will reset all the individual status bits to 0. 2.5.1.25 PLL Control Register 1 (PLLCTL1) The PLLCTL1 register, shown in Figure 2-30 and described in Table 2-44, controls the output frequency of PLL1 (Clock Source 1 - FMzPLL). It also controls the behavior of the device if a PLL slip or oscillator failure is detected. Figure 2-30. PLL Control Register 1 (PLLCTL1) [offset = 70h] 31 30 29 28 24 ROS MASK_SLIP PLLDIV R/WP-0 R/WP-1h R/WP-Fh 23 22 21 16 ROF Reserved REFCLKDIV R/WP-0 R-0 R/WP-2h 15 0 PLLMUL R/WP-5F00h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 151 System and Peripheral Control Registers www.ti.com Table 2-44. PLL Control Register 1 (PLLCTL1) Field Descriptions Bit Field 31 ROS Value Description Reset on PLL Slip 0 Do not reset system when PLL slip is detected. 1 Reset when PLL slip is detected. Note: MASK_SLIP (Bits 30-29) must also be enabled for ROS to be enabled. 30-29 MASK_SLIP Mask detection of PLL slip 2h Others Bypass on PLL Slip is disabled. If a PLL Slip is detected no action is taken. Bypass on PLL Slip is enabled. If a PLL Slip is detected the device will automatically bypass the PLL and use the oscillator to provide the device clock. Note: If ROS (Bit 31) is set to 1, the device will be reset if a PLL Slip and the PLL will be bypassed after the reset occurs. 28-24 PLLDIV PLL Output Clock Divider R = PLLDIV + 1 f PLL CLK= f post_ODCLK / R 0 f PLL CLK= f post-ODCLK / 1 1h f PLL CLK= f post-ODCLK / 2 : 1Fh 23 ROF 22 Reserved 21-16 : f PLL CLK= f post-ODCLK / 32 Reset on Oscillator Fail 0 Do not reset system when oscillator is out of range. 1 Reset system when oscillator is out of range. 0 Value has no effect on PLL operation. REFCLKDIV Reference Clock Divider NR = REFCLKDIV + 1 f INT CLK= f OSCIN / NR 0 f INT CLK= f OSCIN / 1 1h f INT CLK= f OSCIN / 2 : 3Fh 15-0 PLLMUL : f INT CLK= f OSCIN / 64 PLL Multiplication Factor NF = (PLLMUL / 256) + 1, valid multiplication factors are from 1 to 256. f VCO CLK= f INT CLK x NF 0h f VCO CLK= f INT CLK x 1 100h f VCO CLK= f INT CLK x 2 : f VCO CLK= f INT CLK x 92 5C00h f VCO CLK= f INT CLK x 93 : FF00h 152 : 5B00h : f VCO CLK= f INT CLK x 256 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.26 PLL Control Register 2 (PLLCTL2) The PLLCTL2 register, shown in Figure 2-31 and described in Table 2-45, controls the modulation characteristics and the output divider of the PLL. Figure 2-31. PLL Control Register 2 (PLLCTL2) [offset = 74h] 31 30 22 FMENA SPREADINGRATE R/WP-0 R/WP-1FFh 15 12 11 9 21 20 16 Rsvd MULMOD R-0 R/WP-0 8 0 MULMOD ODPLL SPR_AMOUNT R/WP-7h R/WP-1h R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-45. PLL Control Register 2 (PLLCTL2) Field Descriptions Bit Field 31 FMENA 30-22 Value Frequency Modulation Enable. 0 Disable frequency modulation. 1 Enable frequency modulation. SPREADINGRATE NS = SPREADINGRATE + 1 f mod= f s= f INT CLK/(2 × NS) 0 f mod= f s= f INT CLK / (2 × 1) 1h f mod= f s= f INT CLK / (2 × 2) : 1FFh 21 Reserved 20-12 MULMOD Description 0 : f mod= f s= f INT CLK / (2 × 512) Value has no effect on PLL operation. Multiplier Correction when Frequency Modulation is enabled. When FMENA = 0, MUL_when_MOD = 0; when FMENA = 1, MUL_when_MOD = (MULMOD / 256) 0 No adder to NF 8h MUL_when_MOD = 8/256 9h MUL_when_MOD = 9/256 : 1FFh 11-9 ODPLL : MUL_when_MOD = 511/256 Internal PLL Output Divider. OD = ODPLL + 1 f post-ODCLK= f VCO CLK/OD 0 f post-ODCLK= f VCO CLK / 1 1h f post-ODCLK= f VCO CLK / 2 : 7h : f post-ODCLK= f VCO CLK / 8 Note: PLL output clock is gated off, if ODPLL is changed while the PLL is active. 8-0 SPR_AMOUNT Spreading Amount. NV = (SPR_AMOUNT + 1)/2048 NV ranges from 1/2048 to 512/2048 Note that the PLL output clock is disabled for 1 modulation period, if the SPR_AMOUNT field is changed while the frequency modulation is enabled. If frequency modulation is disabled and SPR_AMOUNT is changed, there is no effect on the PLL output clock. 0 NV = 1/2048 1h NV = 2/2048 : 1FFh : NV = 512/2048 SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 153 System and Peripheral Control Registers www.ti.com 2.5.1.27 SYS Pin Control Register 10 (SYSPC10) The SYSPC10 register, shown in Figure 2-32 and described in Table 2-46, controls the function of the ECPCLK slew mode. Figure 2-32. SYS Pin Control Register 10 (SYSPC10) [offset = 78h] 31 16 Reserved R-0 15 1 0 Reserved ECPCLK_SLEW R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-46. SYS Pin Control Register 10 (SYSPC10) Field Descriptions Bit 31-1 0 154 Field Reserved Value 0 ECPCLK_SLEW Description Reads return 0. Writes have no effect. ECPCLK slew control. This bit controls between the fast or slow slew mode. 0 Fast mode is enabled; the normal output buffer is used for this pin. 1 Slow mode is enabled; slew rate control is used for this pin. Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.28 Die Identification Register Lower Word (DIEIDL) The DIEIDL register, shown in Figure 2-33 and described in Table 2-47, contains information about the die wafer number, and X, Y wafer coordinates. Figure 2-33. Die Identification Register, Lower Word (DIEIDL) [offset = 7Ch] 31 24 15 23 16 WAFER # Y WAFER COORDINATE R-D R-D 12 11 0 Y WAFER COORDINATE X WAFER COORDINATE R-D R-D LEGEND: R = Read only; -n = value after reset; D = value is device specific Table 2-47. Die Identification Register, Lower Word (DIEIDL) Field Descriptions Bit Field Description 31-24 WAFER # These read-only bits contain the wafer number of the device. 23-12 Y WAFER COORDINATE These read-only bits contain the Y wafer coordinate of the device. 11-0 X WAFER COORDINATE These read-only bits contain the X wafer coordinate of the device. NOTE: Die Identification Information The die identification information will vary from unit to unit. This information is programmed by TI as part of the initial device test procedure. 2.5.1.29 Die Identification Register Upper Word (DIEIDH) The DIEIDH register, shown in Figure 2-34 and described in Table 2-48, contains information about the die lot number. Figure 2-34. Die Identification Register, Upper Word (DIEIDH) [offset = 80h] 31 24 23 16 Reserved LOT # R-0 R-D 15 0 LOT # R-D LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; D = value is device dependent Table 2-48. Die Identification Register, Upper Word (DIEIDH) Field Descriptions Bit Field Description 31-24 Reserved Reserved for TI use. Writes have no effect. 23-0 LOT # This read-only register contains the device lot number. NOTE: Die Identification Information The die identification information will vary from unit to unit. This information is programmed by TI as part of the initial device test procedure. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 155 System and Peripheral Control Registers www.ti.com 2.5.1.30 LPO/Clock Monitor Control Register (LPOMONCTL) The LPOMONCTL register, shown in Figure 2-35 and described in Table 2-49, controls the Low Frequency (Clock Source 4) and High Frequency (Clock Source 5) Low Power Oscillator's trim values. Figure 2-35. LPO/Clock Monitor Control Register (LPOMONCTL) [offset = 88h] 31 25 15 24 23 17 16 Reserved BIAS ENABLE Reserved OSCFRQCONFIGCNT R-0 R/WP-1 R-0 R/WP-0 13 12 8 7 5 4 0 Reserved HFTRIM Reserved LFTRIM R-0 R/WP-10h R-0 R/WP-10h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-49. LPO/Clock Monitor Control Register (LPOMONCTL) Field Descriptions Bit Field 31-25 Reserved 24 0 BIAS ENABLE 23-17 Reserved 16 Value Description Reads return 0. Writes have no effect. Bias enable. 0 The bias circuit inside the low-power oscillator (LPO) is disabled. 1 The bias circuit inside LPO is enabled. 0 Reads return 0. Writes have no effect. OSCFRQCONFIGCNT Configures the counter based on OSC frequency. 0 Read: OSC freq is ≤ 20MHz Write: A write of 0 has no effect. 1 Read: OSC freq is > 20MHz and ≤ 80MHz Write: A write of 1 has no effect. 15-13 Reserved 156 0 Reads return 0. Writes have no effect. Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com Table 2-49. LPO/Clock Monitor Control Register (LPOMONCTL) Field Descriptions (continued) Bit 12-8 Field Value HFTRIM Description High-frequency oscillator trim value. This five-bit value is used to center the HF oscillator's frequency. Caution: This value should only be changed when the HF oscillator is not the source for a clock domain; otherwise, a system failure could result. The following values are the ratio: f / fo in the F021 process. 7-5 Reserved 0 29.52 1h 34.24% 2h 38.85% 3h 43.45% 4h 47.99% 5h 52.55% 6h 57.02% 7h 61.46% 8h 65.92% 9h 70.17 Ah 74.55% Bh 78.92% Ch 83.17% Dh 87.43% Eh 91.75% Fh 95.89% 10h 100.00% Default at Reset. 11h 104.09 12h 108.17 13h 112.32 14h 116.41 15h 120.67 16h 124.42 17h 128.38 18h 132.24 19h 136.15 1Ah 140.15 1Bh 143.94 1Ch 148.02 1Dh 151.80x 1Eh 155.50x 1Fh 159.35% 0 Reads return 0. Writes have no effect. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 157 System and Peripheral Control Registers www.ti.com Table 2-49. LPO/Clock Monitor Control Register (LPOMONCTL) Field Descriptions (continued) Bit Field 4-0 LFTRIM Value Description Low-frequency oscillator trim value. This five-bit value is used to center the LF oscillator's frequency. Caution: This value should only be changed when the LF oscillator is not the source for a clock domain; otherwise, a system failure could result. The following values are the ratio: f / fo in the F021 process. 158 0 20.67 1h 25.76 2h 30.84 3h 35.90 4h 40.93 5h 45.95 6h 50.97 7h 55.91 8h 60.86 9h 65.78 Ah 70.75 Bh 75.63 Ch 80.61 Dh 85.39 Eh 90.23 Fh 95.11 10h 100.00% Default at Reset 11h 104.84 12h 109.51 13h 114.31 14h 119.01 15h 123.75 16h 128.62 17h 133.31 18h 138.03 19h 142.75 1Ah 147.32 1Bh 152.02 1Ch 156.63 1Dh 161.38 1Eh 165.90 1Fh 170.42 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.31 Clock Test Register (CLKTEST) The CLKTEST register, shown in Figure 2-36 and described in Table 2-50, controls the clock signal that is supplied to the ECLK pin for test and debug purposes. NOTE: Clock Test Register Usage This register should only be used for test and debug purposes. Figure 2-36. Clock Test Register (CLKTEST) [offset = 8Ch] 31 26 25 24 Reserved 27 ALTLIMPCLOCK ENABLE RANGEDET CTRL RANGEDET ENASSEL R-0 R/WP-0 R/WP-0 R/WP-0 23 20 15 19 16 Reserved CLK_TEST_EN R-0 R/WP-Ah 12 11 8 7 4 3 0 Reserved SEL_GIO_PIN Reserved SEL_ECP_PIN R-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-50. Clock Test Register (CLKTEST) Field Descriptions Bit 31-27 26 25 24 Field Reserved Value Description 0 Reads return 0. Writes have no effect. ALTLIMPCLOCKENABLE This bit selects a clock driven by the GIOB[0] pin as an alternate limp clock to the clock monitor phase frequency detect (PFD). 0 The 10-MHz LPO fast clock is the compare clock for the clock detect PFD circuit and the source to limp clock on a clock fail. 1 The ALTLIMPCLOCK driven on the GIOB[0] pin is the compare clock for the clock detect PFD circuit and the source to limp clock on a clock fail. RANGEDETCTRL Range detection control. This bit's functionality is dependant on the state of the RANGEDETENSSEL bit (Bit 24) of the CLKTEST register. 0 The clock monitor range detection circuitry (RANGEDETECTENABLE) is disabled. 1 The clock monitor range detection circuitry (RANGEDETECTENABLE) is enabled. RANGEDETENASSEL 23-20 Reserved 19-16 CLK_TEST_EN Selects range detection enable. This bit resets asynchronously on power on reset. 0 The range detect enable is generated by the hardware in the clock monitor wrapper. 1 The range detect enable is controlled by the RANGEDETCTRL bit (Bit 25) of the CLKTEST register. 0 Reads return 0. Writes have no effect. Clock test enable. This bit enables the clock going to the ECLK pin. Note: The ECLK pin must also be placed into Functional mode by setting the ECPCLKFUN bit to 1 in the SYSPC1 register. 15-12 Reserved 5h Clock going to ECLK pin is enabled. Others Clock going to ECLK pin is disabled. 0 Reads return 0. Writes have no effect. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 159 System and Peripheral Control Registers www.ti.com Table 2-50. Clock Test Register (CLKTEST) Field Descriptions (continued) Bit 11-8 Field Value SEL_GIO_PIN GIOB[0] pin clock source valid, clock source select 0 Oscillator valid status 1h PLL1 valid status 2h-4h Reserved 3-0 SEL_ECP_PIN Reserved 5h High-frequency LPO (Low-Power Oscillator) clock valid status 6h PLL2 valid status 7h Reserved 8h Low-frequency LPO (Low-Power Oscillator) clock valid status 9h-Fh 7-4 Description 0 Reserved Reads return 0. Writes have no effect. ECLK pin clock source select Note: Only valid clock sources can be selected for the ECLK pin. Valid clock sources are displayed by the CSVSTAT register. 0 Oscillator clock 1h PLL1 clock output 2h Reserved 3h EXTCLKIN1 4h Low-frequency LPO (Low-Power Oscillator) clock 5h High-frequency LPO (Low-Power Oscillator) clock 6h PLL2 clock output 7h EXTCLKIN2 8h GCLK 9h RTI Base Ah Reserved Bh VCLKA1 Ch VCLKA2 Dh Reserved Eh VCLKA4 Fh Reserved NOTE: Nonimplemented clock sources should not be enabled or used. 160 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.32 DFT Control Register (DFTCTRLREG) This register is shown in Figure 2-37 and described in Table 2-51. Figure 2-37. DFT Control Register (DFTCTRLREG) [offset = 90h] 31 16 Reserved R-0 15 14 13 12 11 10 9 8 7 4 3 0 Reserved DFTWRITE Reserved DFTREAD Reserved TEST_MODE_KEY R-0 R/WP-2h R-0 R/WP-2h R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-51. DFT Control Register (DFTCTRLREG) Field Descriptions Bit Field 31-14 Reserved 13-12 DFTWRITE Value 0 Description Reads return 0. Writes have no effect. DFT logic access. For F021: DFTWRITE[0] = 0 and DFTREAD[0] = 0 configured in stress mode DFTWRITE[1] = 0 and DFTREAD[1] = 0 configured in stress mode DFTWRITE[0] = 0 and DFTREAD[0] = 0 configured in fast mode DFTWRITE[1] = 1 and DFTREAD[1] = 1 configured in fast mode DFTWRITE[0] = 1 and DFTREAD[0] = 1 configured in slow mode DFTWRITE[1] = 0 and DFTREAD[1] = 0 configured in slow mode DFTWRITE[0] = 1 and DFTREAD[0] = 1 configured in screen mode DFTWRITE[1] = 1 and DFTREAD[1] = 1 configured in screen mode 11-10 Reserved 9-8 DFTREAD 0 Reads return 0. Writes have no effect. DFT logic access. For F021: DFTWRITE[0] = 0 and DFTREAD[0] = 0 configured in stress mode DFTWRITE[1] = 0 and DFTREAD[1] = 0 configured in stress mode DFTWRITE[0] = 0 and DFTREAD[0] = 0 configured in fast mode DFTWRITE[1] = 1 and DFTREAD[1] = 1 configured in fast mode DFTWRITE[0] = 1 and DFTREAD[0] = 1 configured in slow mode DFTWRITE[1] = 0 and DFTREAD[1] = 0 configured in slow mode DFTWRITE[0] = 1 and DFTREAD[0] = 1 configured in screen mode DFTWRITE[1] = 1 and DFTREAD[1] = 1 configured in screen mode 7-4 Reserved 3-0 TEST_MODE_KEY 0 Reads return 0. Writes have no effect. Test mode key. This register is for internal TI use only. 0-Fh (except Ah) Register key disable. All bits in this register will maintain their default value and cannot be written. Ah Register key enable. All the bits can be written to only when the key is enabled. On reset, these bits will be set to 5h. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 161 System and Peripheral Control Registers www.ti.com 2.5.1.33 DFT Control Register 2 (DFTCTRLREG2) This register is shown in Figure 2-38 and described in Table 2-52. Figure 2-38. DFT Control Register 2 (DFTCTRLREG2) [offset = 94h] 31 16 IMPDF(27:12) R/WP-0 15 4 3 0 IMPDF(11:0) TEST_MODE_KEY R/WP-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-52. DFT Control Register 2 (DFTCTRLREG2) Field Descriptions Bit 31-4 3-0 Field Value IMPDF[27:0] DFT Implementation defined bits. 0 IMPDF[27:0] - Disabled 1 IMPDF[27:0] - Enabled TEST_MODE_KEY Test mode key. This register is for internal TI use only. 0-Fh (except Ah) Ah 162 Description Register key disable. All bits in this register will maintain their default value and cannot be written. Register key enable. All the bits can be written to only when the key is enabled. Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.34 General Purpose Register (GPREG1) This register is shown in Figure 2-39 and described in Table 2-53. For information on filtering the RFSLIP, see Section 2.5.2.5. Figure 2-39. General Purpose Register (GPREG1) [offset = A0h] 31 30 26 25 20 19 16 EMIF_FUNC Reserved PLL1_FBSLIP_FILTER_COUNT PLL1_FBSLIP_FILTER_KEY R/WP-0 R-0 R/WP-0 R/WP-5h 15 0 OUTPUT_BUFFER_LOW_EMI_MODE R/WP-FFFFh LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-53. General Purpose Register (GPREG1) Field Descriptions Bit Field Value Description 31 EMIF_FUNC 0 Enable EMIF functions to be output. EMIF_ADDR[0], EMIF_ADDR[1], EMIF_ADDR[6], EMIF_ADDR[7], EMIF_ADDR[8], EMIF_BA[1], EMIF_nCS[0], and EMIF_nCS[3] are multiplexed with N2HET2 signals. By default, these terminals are tri-stated and pulled down. Any application that requires the EMIF functionality must set the EMIF_FUNC bit. This allows these 8 EMIF module outputs to be driven on to the assigned balls. 30-26 Reserved 0 Reads return 0. Writes have no effect. 25-20 PLL1_FBSLIP_FILTER_ COUNT FBSLIP down counter programmed value. Configures the system response when a FBSLIP is indicated by the PLL macro. When PLL1_FBSLIP_FILTER_KEY is not Ah, the down counter counts from the programmed value on every LPO highfrequency clock once PLL macro indicates FBSLIP. When the count reaches 0, if the synchronized FBSLIP signal is still high, an FBSLIP condition is indicated to the system module and is captured in the global status register. When the FBSLIP signal from the PLL macro is de-asserted before the count reaches 0, the counter is reloaded with the programmed value. On reset, counter value is 0. Counter must be programmed to a nonzero value and enabled for the filtering to be enabled. 0 Filtering is disabled. 1h Filtering is enabled. Every slip is recognized. 2h Filtering is enabled. The slip must be at least 2 HF LPO cycles wide in order to be recognized as a slip. : 3Fh 19-16 PLL1_FBSLIP_FILTER_ KEY Filtering is enabled. The slip must be at least 63 HF LPO cycles wide in order to be recognized as a slip. Enable the FBSLIP filtering. 5h On reset, the FBSLIP filter is disabled and the FBSLIP passes through. Fh This is an unsupported value. You should avoid writing this value to this bit field. All other values FBSLIP filtering is enabled. Recommended to program Ah in this bit field. Enabling of the FBSLIP occurs when the KEY is programmed and a non-zero value is present in the COUNT field. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 163 System and Peripheral Control Registers www.ti.com Table 2-53. General Purpose Register (GPREG1) Field Descriptions (continued) Bit 15-0 Field Value OUTPUT_BUFFER_LOW_EMI_MODE Description Control field for the low-EMI mode of output buffers for module/signals: bit[0] controls MiBSPI1 bit[1] controls SPI2 bit[2] controls MiBSPI3 bit[3] controls SPI4 bit[4] controls MiBSPI5 bit[5] controls FlexRay bit[6] controls EMIF bit[7] controls ETM bit[8] controls signal TMS bit[9] controls signal TDI bit[10] controls signal TDO bit[11] controls signal RTCK bit[12] controls signal TEST bit[13] controls signal nERROR bit[14] controls signal ADEVT bit[15] controls signal RTP 0 Enable EMI mode for each connected output buffers. 1h-FFFEh Enable/Disable EMI mode for connected output buffers. FFFFh 164 Disable EMI mode for each connected output buffer. Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.35 Imprecise Fault Status Register (IMPFASTS) The IMPFASTS register, shown in Figure 2-40 and described in Table 2-54, displays information about imprecise aborts that have occurred. Figure 2-40. Imprecise Fault Status Register (IMPFASTS) [offset = A8h] 31 24 23 16 Reserved MASTERID R-0 R-0 15 10 9 8 Reserved 11 EMIFA NCBA VBUSA 7 Reserved 1 ATYPE 0 R-0 R-0 R-0 R-0 R-0 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 2-54. Imprecise Fault Status Register (IMPFASTS) Field Descriptions Bit Field 31-24 Reserved 23-16 MASTERID Value 0 0-FFh Description Reads return 0. Writes have no effect. Master ID. This register indicates which master is responsible for the imprecise abort. The master ID value depends on device implementation, see Table 2-2 for MASTERID values for each bus master. Notes: • These bits are only updated when an imprecise abort occurs • These bits are cleared to 0 only on power-on reset. The value of these bits remains unchanged after all other resets. 15-11 10 Reserved 0 EMIFA Reads return 0. Writes have no effect. EMIF imprecise abort. This register indicates the imprecise abort was generated writing into the EMIF. Notes: • This bit is only updated when an imprecise abort occurs • This bit is cleared to 0 only on power-on reset. The value of this register remains unchanged after all other resets. 9 0 EMIF did not generate the last imprecise abort. 1 EMIF was written with an illegal address and generated an imprecise abort. NCBA Non-cacheable, bufferable abort (NCBA). This register indicates the imprecise abort was generated by a non-cacheable, bufferable write or shared device write through the write buffer of the CPU. Notes: • This bit is only updated when an imprecise abort generated by a non-cacheable, bufferable write or shared device write occurs. • This bit is cleared to 0 only on power-on reset. The value of this register remains unchanged after all other resets. 8 0 A NCBA is not responsible for the last imprecise abort. 1 A NCBA was written with an illegal address and generated an imprecise abort. VBUSA VBUS abort. This register indicates the imprecise abort was generated when writing into the peripheral frame. Notes: • This bit is only updated when an imprecise abort is generated when writing into the peripheral frame • This bit is cleared to 0 only on power-on reset. The value of this register remains unchanged after all other resets. 7-1 Reserved 0 The peripheral frame did not generate the last imprecise abort. 1 The peripheral frame was written with an illegal address and generated an imprecise abort. 0 Reads return 0. Writes have no effect. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 165 System and Peripheral Control Registers www.ti.com Table 2-54. Imprecise Fault Status Register (IMPFASTS) Field Descriptions (continued) Bit 0 Field Value ATYPE Description Abort type. This bit indicates to the CPU whether the last abort was an imprecise abort or a precise abort. Notes: • This bit is updated after each abort is generated to the CPU. • This bit is cleared on CPU read. • This bit is cleared to 0 only on power-on reset. The value of this bit remains unchanged after all other resets 0 The last abort generated was a precise abort. MASTERID, VBUSA, NCBA, EMIFA and IMPFTADD were not updated. 1 The last abort generated was an imprecise abort. MASTERID, VBUSA, NCBA, EMIFA and IMPFTADD were updated. Note: Once ATYPE is set, the IMPFAWADD and IMPFASTS bits are not updated by subsequent ABORT signals. NOTE: The DMA, DMM, and the peripheral master port will also generate an imprecise abort to the CPU when writing to the peripheral region or to the EMIF region. This will be indicated in the Master ID field of this register. 2.5.1.36 Imprecise Fault Address Register (IMPFTADD) This IMPFTADD register, shown in Figure 2-41 and described in Table 2-55, shows the address at which an imprecise abort occurred. Figure 2-41. Imprecise Fault Write Address Register (IMPFTADD) [offset = ACh] 31 0 IMPFTADD R-0 LEGEND: R = Read only; -n = value after reset Table 2-55. Imprecise Fault Write Address Register (IMPFTADD) Field Descriptions Bit 31-0 Field IMPFTADD Value 0-FFFF FFFFh Description These bits contain the fault address when an imprecise abort occurs. Note: These bits are only updated when an imprecise abort occurs. Note: These bits are cleared to 0 only on power-on reset. The value of this register remains unchanged after all other resets. 166 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.37 System Software Interrupt Request 1 Register (SSIR1) The SSIR1 register, shown in Figure 2-42 and described in Table 2-56, is used for software interrupt generation. Figure 2-42. System Software Interrupt Request 1 Register (SSIR1) [offset = B0h] 31 16 Reserved R-0 15 8 7 0 SSKEY1 SSDATA1 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-56. System Software Interrupt Request 1 Register (SSIR1) Field Descriptions Bit Field Value Description 31-16 Reserved 0 15-8 SSKEY1 0-FFh Reads return 0. Writes have no effect. System software interrupt request key. A 075h written to these bits initiates IRQ/FIQ interrupts. Data in this field is always read as 0. The SSKEY1 field can be written into only if the write data matches the key (75h). The SSDATA1 field can only be written into if the write data into this field, the SSKEY1 field, matches the key (75h). 7-0 SSDATA1 0-FFh System software interrupt data. These bits contain user read/write register bits. They may be used by the application software as different entry points for the interrupt routine. The SSDATA1 field cannot be written into unless the write data into the SSKEY1 field matches the key (75h); therefore, byte writes cannot be performed on the SSDATA1 field. NOTE: This register is mirrored at offset FCh for compatibility reasons. 2.5.1.38 System Software Interrupt Request 2 Register (SSIR2) The SSIR2 register, shown in Figure 2-43 and described in Table 2-57, is used for software interrupt generation. Figure 2-43. System Software Interrupt Request 2 Register (SSIR2) [offset = B4h] 31 16 Reserved R-0 15 8 7 0 SSKEY2 SSDATA2 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-57. System Software Interrupt Request 2 Register (SSIR2) Field Descriptions Bit Field Value Description 31-16 Reserved 0 Reads return 0. Writes have no effect. 15-8 SSKEY2 0-FFh System software interrupt2 request key. A 84h written to these bits initiates IRQ/FIQ interrupts. Data in this field is always read as 0. The SSKEY2 field can be written into only if the write data matches the key (84h). The SSDATA2 field can only be written into if the write data into this field, the SSKEY2 field, matches the key (84h). 7-0 SSDATA2 0-FFh System software interrupt data. These bits contain user read/write register bits. They may be used by the application software as different entry points for the interrupt routine. The SSDATA2 field cannot be written into unless the write data into the SSKEY2 field matches the key (84h); therefore, byte writes cannot be performed on the SSDATA2 field. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 167 System and Peripheral Control Registers www.ti.com 2.5.1.39 System Software Interrupt Request 3 Register (SSIR3) The SSIR3 register, shown in Figure 2-44 and described in Table 2-58, is used for software interrupt generation. Figure 2-44. System Software Interrupt Request 3 Register (SSIR3) [offset = B8h] 31 16 Reserved R-0 15 8 7 0 SSKEY3 SSDATA3 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-58. System Software Interrupt Request 3 Register (SSIR3) Field Descriptions Bit Field Value Description 31-16 Reserved 0 15-8 SSKEY3 0-FFh Reads return 0. Writes have no effect. System software interrupt request key. A 93h written to these bits initiates IRQ/FIQ interrupts. Data in this field is always read as 0. The SSKEY3 field can be written into only if the write data matches the key (93h). The SSDATA3 field can only be written into if the write data into this field, the SSKEY3 field, matches the key (93h). 7-0 SSDATA3 0-FFh System software interrupt data. These bits contain user read/write register bits. They may be used by the application software as different entry points for the interrupt routine. The SSDATA3 field cannot be written into unless the write data into the SSKEY3 field matches the key (93h); therefore, byte writes cannot be performed on the SSDATA3 field. 2.5.1.40 System Software Interrupt Request 4 Register (SSIR4) The SSIR4 register, shown in Figure 2-45 and described in Table 2-59, is used for software interrupt generation. Figure 2-45. System Software Interrupt Request 4 Register (SSIR4) [offset = BCh] 31 16 Reserved R-0 15 8 7 0 SSKEY4 SSDATA4 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-59. System Software Interrupt Request 4 Register (SSIR4) Field Descriptions Bit Field Value Description 31-16 Reserved 0 15-8 SSKEY4 0-FFh System software interrupt2 request key. A A2h written to these bits initiates IRQ/FIQ interrupts. Data in this field is always read as 0. The SSKEY4 field can be written into only if the write data matches the key (A2h). The SSDATA4 field can only be written into if the write data into this field, the SSKEY4 field, matches the key (A2h). 7-0 SSDATA4 0-FFh System software interrupt data. These bits contain user read/write register bits. They may be used by the application software as different entry points for the interrupt routine. The SSDATA4 field cannot be written into unless the write data into the SSKEY4 field matches the key (A2h); therefore, byte writes cannot be performed on the SSDATA4 field. 168 Reads return 0. Writes have no effect. Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.41 RAM Control Register (RAMGCR) The RAMGCR register, shown in Figure 2-46 and described in Table 2-60, is used to configure eSRAM data and address wait states. NOTE: The RAM_DFT_EN bits are for TI internal use only. The contents of the RAM_DFT_EN field should not be changed. Figure 2-46. RAM Control Register (RAMGCR) [offset = C0h] 31 20 19 16 Reserved RAM_DFT_EN R-0 R/WP-5h 15 8 Reserved R-0 7 2 1 0 Reserved 3 WST_AENA0 Reserved WST_DENA0 R-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-60. RAM Control Register (RAMGCR) Field Descriptions Bit Field 31-20 Reserved 19-16 RAM_DFT_EN Value 0 Description Reads return 0. Writes have no effect. Functional mode RAM DFT (Design For Test) port enable key. Note: For TI internal use only. Ah RAM DFT port is enabled. Others RAM DFT port is disabled. Note: It is recommended that a value of 5h be used to disable the RAM DFT port. This value will give maximum protection from a bit flip inducing event that would inadvertently enable the controller. 15-3 2 Reserved 0 WST_AENA0 1 Reserved 0 WST_DENA0 Reads return 0. Writes have no effect. eSRAM data phase wait state enable bit. 0 The default address setup time for eSRAM0 is used. 1 The eSRAM address setup time is increased by one HCLK cycle. 0 Reads return 0. Writes have no effect. eSRAM data phase wait state enable bit. 0 There are no wait states for eSRAM during the data phase. 1 The eSRAM data phase setup time is increased by one HCLK cycle. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 169 System and Peripheral Control Registers www.ti.com 2.5.1.42 Bus Matrix Module Control Register 1 (BMMCR1) The BMMCR1 register, shown in Figure 2-47 and described in Table 2-61, allows RAM and Program (Flash) memory addresses to be swapped. Figure 2-47. Bus Matrix Module Control Register 1 (BMMCR) [offset = C4h] 31 16 Reserved R-0 15 4 3 0 Reserved MEMSW R-0 R/WP-Ah LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-61. Bus Matrix Module Control Register 1 (BMMCR) Field Descriptions Bit Field 31-4 Reserved 3-0 MEMSW Value 0 Description Reads return 0. Writes have no effect. Memory swap key. Note: A CPU reset must be issued after the memory swap key has been changed for the memory swap to occur. A CPU reset can be initiated by changing the state of the CPU RESET bit in the CPURSTCR register. 5h Swapped memory-map: eSRAM starts at address 0. Program memory (Flash) starts at address 800 0000h. Ah Default memory-map: Program memory (Flash) starts at address 0. eSRAM starts at address 800 0000h. All other values 170 The device memory-map is unchanged. Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.43 CPU Reset Control Register (CPURSTCR) The CPURSTCR register shown in Figure 2-48 and described in Table 2-62 allows a reset to the CortexR4F CPU to be generated. NOTE: The register bits in CPURSTCR are designated as high-integrity bits and have been implemented with error-correcting logic such that each bit, although read and written as a single bit, is actually a multi-bit key with error correction capability. As such, single-bit flips within the “key” can be corrected allowing protection of the system as a whole. An error detected is signaled to the ESM module. Figure 2-48. CPU Reset Control Register (CPURSTCR) [offset = CCh] 31 16 Reserved R-0 15 1 0 Reserved CPU RESET R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-62. CPU Reset Control Register (CPURSTGCR) Field Descriptions Bit 31-1 0 Field Reserved CPU RESET Value 0 Description Reads return 0. Writes have no effect. CPU Reset. Only the CPU is reset whenever this bit is toggled. There is no system reset. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 171 System and Peripheral Control Registers www.ti.com 2.5.1.44 Clock Control Register (CLKCNTL) The CLKCNTL register, shown in Figure 2-49 and described in Table 2-63, controls peripheral reset and the peripheral clock divide ratios. NOTE: VCLK and VCLK2 clock ratio restrictions. The VCLK2 frequency must always be greater than or equal to the VCLK frequency. The VCLK2 frequency must be an integer multiple of the VCLK frequency. In addition, the VCLK and VCLK2 clock ratios must not be changed simultaneously. When increasing the frequency (decreasing the divider), first change the VCLK2R field and then change the VCLKR field. When reducing the frequency (increasing the divider), first change the VCLKR field and then change the VCLK2R field. You should do a read-back between the two writes. This assures that there are enough clock cycles between the two writes. Figure 2-49. Clock Control Register (CLKCNTL) [offset = D0h] 31 28 27 24 23 20 19 16 Reserved VCLK2R Reserved VCLKR R-0 R/WP-1h R-0 R/WP-1h 15 9 8 7 0 Reserved PENA Reserved R-0 R/WP-0 R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-63. Clock Control Register (CLKCNTL) Field Descriptions Bit Field 31-28 Reserved 27-24 VCLK2R Value 0 Description Reads return 0. Writes have no effect. VBUS clock2 ratio. Note: The VCLK2 frequency must always be greater than or equal to the VCLK frequency. The VCLK2 frequency must be an integer multiple of the VCLK frequency. In addition, the VCLK and VCLK2 clock ratios must not be changed simultaneously. 0 The VCLK2 speed is HCLK divided by 1. : : Fh 23-20 Reserved 19-16 VCLKR 0 The VCLK2 speed is HCLK divided by 16. Reads return 0. Writes have no effect. VBUS clock ratio. Note: The VCLK2 frequency must always be greater than or equal to the VCLK frequency. The VCLK2 frequency must be an integer multiple of the VCLK frequency. In addition, the VCLK and VCLK2 clock ratios must not be changed simultaneously. 0 The VCLK speed is HCLK divided by 1. : : Fh 15-9 8 7-0 172 Reserved 0 PENA Reserved The VCLK speed is HCLK divided by 16. Reads return 0. Writes have no effect. Peripheral enable bit. The application must set this bit before accessing any peripheral. 0 The global peripheral/peripheral memory frames are in reset. 1 All peripheral/peripheral memory frames are out of reset. 0 Reads return 0. Writes have no effect. Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.45 ECP Control Register (ECPCNTL) The ECP register, shown in Figure 2-50 and described in Table 2-64, configures the ECLK pin in functional mode. NOTE: ECLK Functional mode configuration. The ECLK pin must be placed into Functional mode by setting the ECPCLKFUN bit to 1 in the SYSPC1 register before a clock source will be visible on the ECLK pin. Figure 2-50. ECP Control Register (ECPCNTL) [offset = D4h] 31 25 Reserved 24 23 22 ECPSSEL ECPCOS R-0 R/W-0 R/W-0 18 17 16 Reserved ECPINSEL R-0 R/W-0 15 0 ECPDIV R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 2-64. ECP Control Register (ECPCNTL) Field Descriptions Bit Field 31-25 Reserved 24 ECPSSEL Value 0 Description Reads return 0. Writes have no effect. This bit allows the selection between VCLK and OSCIN as the clock source for ECLK. Note: Other ECLK clock sources are available for debug purposes by configuring the CLKTEST register. 23 0 VCLK is selected as the ECP clock source. 1 OSCIN is selected as the ECP clock source. ECPCOS ECP continue on suspend. Note: Suspend mode is entered while performing certain JTAG debugging operations. 22-18 Reserved 17-16 ECPINSEL 15-0 ECPDIV 0 ECLK output is disabled in suspend mode. ECLK output will be shut off and will not be seen on the I/O pin of the device. 1 ECLK output is not disabled in suspend mode. ECLK output will not be shut off and will be seen on the I/O pin of the device. 0 Reads return 0. Writes have no effect. Select ECP input clock source. 0 Tied Low 1h HCLK 2h External clock 3h Tied Low 0-FFFFh ECP divider value. The value of ECPDIV bits determine the external clock (ECP clock) frequency as a ratio of VBUS clock or OSCIN as shown in the formula: ECLK = V C L K o r O S C IN (E C P D I V + 1 ) SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 173 System and Peripheral Control Registers www.ti.com 2.5.1.46 DEV Parity Control Register 1 (DEVCR1) This register is shown in Figure 2-51 and described in Table 2-65. Figure 2-51. DEV Parity Control Register 1 (DEVCR1) [offset = DCh] 31 16 Reserved R-0 15 4 3 0 Reserved DEVPARSEL R-0 R/WP-Ah LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-65. DEV Parity Control Register 1 (DEVCR1) Field Descriptions Bit Field Value 31-4 Reserved 0 3-0 DEVPARSEL Description Reads return 0. Writes have no effect. Device parity select bit key. Note: After an odd (DEVPARSEL = Ah) or even (DEVPARSEL = 5h) scheme is programmed into the DEVPARSEL register, any one bit change can be detected and will retain its programmed scheme. More than one bit changes in DEVPARSELwill cause a default to odd parity scheme. 5h The device parity is even. Ah The device parity is odd. 2.5.1.47 System Exception Control Register (SYSECR) The SYSECR register, shown in Figure 2-52 and described in Table 2-66, is used to generate a software reset. NOTE: The register bits in SYSECR are designated as high-integrity bits and have been implemented with error-correcting logic such that each bit, although read and written as a single bit, is actually a multi-bit key with error correction capability. As such, single-bit flips within the “key” can be corrected allowing protection of the system as a whole. An error detected is signaled to the ESM module. Figure 2-52. System Exception Control Register (SYSECR) [offset = E0h] 31 16 Reserved R-0 15 14 RESET1 RESET0 13 Reserved 0 R/WP-0 R/WP-1 R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-66. System Exception Control Register (SYSECR) Field Descriptions Bit Field 31-16 Reserved 15-14 RESET[1-0] Value 0 0, 2h-3h 174 Reserved Reads return 0. Writes have no effect. Software reset bits. Setting RESET1 or clearing RESET0 causes a system software reset. 1h 13-0 Description 0 No reset will occur. A global system reset will occur. Reads return 0. Writes have no effect. Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.48 System Exception Status Register (SYSESR) The SYSESR register, shown in Figure 2-53 and described in Table 2-67, shows the source for different resets encountered. Previous reset source status bits are not automatically cleared if new resets occur. After reading this register, the software should clear any flags that are set so that the source of future resets can be determined. Any bit in this register can be cleared by writing a 1 to the bit. Figure 2-53. System Exception Status Register (SYSESR) [offset = E4h] 31 16 Reserved R-0 15 14 13 PORST OSCRST WDRST 12 Reserved R/WC-X R/WC-X* R/WC-X* R-0 7 6 5 4 8 3 2 0 Reserved CPURST SWRST EXTRST Reserved R-0 R/WC-X* R/WC-X* R/WC-X* R-0 LEGEND: R/W = Read/Write; R = Read only; C= Clear; X = value unchanged after reset; X* = 0 after PORST but unchanged after other resets; -n = value after reset Table 2-67. System Exception Status Register (SYSESR) Field Descriptions Bit 31-16 15 14 Field Reserved Value 0 PORST Description Reads return 0. Writes have no effect. Power-on reset. This bit is set when a power-on reset occurs, either internally asserted by the VMON or externally asserted by the nPORRST pin. 0 No power-on reset has occurred since this bit was last cleared. 1 A reset was caused by a power-on reset. (This bit should be cleared after being read so that subsequent resets can be properly identified as not being power-on resets.) OSCRST Reset caused by an oscillator failure or PLL cycle slip. This bit is set when a reset is caused by an oscillator failure or PLL slip. Note: The action taken when an oscillator failure or PLL slip is detected must configured in the PLLCTL1 register. 13 0 No reset has occurred due to an oscillator failure or a PLL cycle slip. 1 A reset was caused by an oscillator failure or a PLL cycle slip. WDRST Watchdog reset flag. This bit is set when the last reset was caused by the digital windowed watchdog. During debugging, the ICEPICK logic implemented on the microcontroller also allows a system reset to be generated via the debug logic (DBGRST). This DBGRST reset is also indicated on the WDRST bit of the SYSESR. This flag can also be set via a reset driven by ICEPICK. 12-6 Reserved 5 CPURST 0 No reset has occurred because of the DWWD. 1 A reset was caused by the DWWD. 0 Reads return 0. Writes have no effect. CPU reset flag. This bit is set when the CPU is reset. Note: A CPU reset can be initiated by the CPU self-test controller (LBIST) or by changing the memory protection (MMU/MPU) configuration in CPURSTCR register. 4 0 No CPU reset has occurred. 1 A CPU reset occurred. SWRST Software reset flag. This bit is set when a software system reset has occurred. Note: A software system reset can be initiated by writing to the RESET bits in the SYSECR register. 0 No software reset has occurred. 1 A software reset occurred. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 175 System and Peripheral Control Registers www.ti.com Table 2-67. System Exception Status Register (SYSESR) Field Descriptions (continued) Bit 3 2-0 Field Value EXTRST Description External reset flag. This bit is set when a reset is caused by the external reset pin nRST or by any reset that also asserts the nRST pin (PORST, OSCRST, WDRST and SWRST). Reserved 0 The external reset pin has not asserted a reset. 1 A reset has been caused by the external reset pin. 0 Reads return 0. Writes have no effect. 2.5.1.49 System Test Abort Status Register (SYSTASR) This register is shown in Figure 2-54 and described in Table 2-68. Figure 2-54. System Test Abort Status Register (SYSTASR) [offset = E8h] 31 16 Reserved R-0 15 5 4 0 Reserved EFUSE_Abort R-0 R/WPC-X/0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; C = Clear; -X = Value unchanged after reset; -n = value after reset Table 2-68. System Test Abort Status Register (SYSTASR) Field Descriptions Bit Field 31-5 Reserved 4-0 EFUSE_Abort Value 0 Reads return 0. Writes have no effect. Test Abort status flag. These bits are set when test abort occurred: 0 Read: The last operation (if any) completed successfully. This is also the value that the error/status register is set to after reset. 1h Read: Controller times out because there is no last row sent from the FuseROM. 2h Read: The autoload machine was started, either through the SYS_INITZ signal from the system or the JTAG data register. In either case, the autoload machine did not find enough FuseROM data to fill the scan chain. 3h Read: The autoload machine was started, either through the SYS_INITZ signal from the system or the JTAG data register. In either case, the autoload machine starts the scan chain with a signature it expects to see after the scan chain is full. The autoload machine was able to fill the scan chain, but the wrong signature was returned. 4h Read: The autoload machine was started, either through the SYS_INITZ signal from the system or the JTAG data register. In either case, the autoload machine was not able or not allowed to complete its operation. Others 1Fh 176 Description Read: Reserved. Write: These bits are cleared to 0. Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.50 Global Status Register (GLBSTAT) The GLBSTAT register, shown in Figure 2-55 and described in Table 2-69, indicates the FMzPLL (PLL1) slip status and the oscillator fail status. NOTE: PLL and OSC fail behavior The device behavior after a PLL slip or an oscillator failure is configured in the PLLCTL1 register. Figure 2-55. Global Status Register (GLBSTAT) [offset = ECh] 31 16 Reserved R-0 15 9 8 Reserved 10 FBSLIP RFSLIP 7 Reserved 1 OSCFAIL 0 R-0 R/W1C-n R/W1C-n R-0 R/W1C-n LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to Clear; -n = value after reset Table 2-69. Global Status Register (GLBSTAT) Field Descriptions Bit 31-10 9 Field Reserved Value 0 FBSLIP Description Reads return 0. Writes have no effect. PLL over cycle slip detection. (cleared by nPORRST, maintains its previous value for all other resets) 0 Read: No PLL over cycle slip has been detected. Write: The bit is unchanged. 1 Read: A PLL over cycle slip has been detected. Write: The bit is cleared to 0. 8 RFSLIP PLL under cycle slip detection. (cleared by nPORRST, maintains its previous value for all other resets) 0 Read: No PLL under cycle slip has been detected. Write: The bit is unchanged. 1 Read: A PLL under cycle slip has been detected. Write: The bit is cleared to 0. 7-1 Reserved 0 OSCFAIL 0 Reads return 0. Writes have no effect. Oscillator fail flag bit. (cleared by nPORRST, maintains its previous value for all other resets) 0 Read: No oscillator failure has been detected. Write: The bit is unchanged. 1 Read: An oscillator failure has been detected. Write: The bit is cleared to 0. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 177 System and Peripheral Control Registers www.ti.com 2.5.1.51 Device Identification Register (DEVID) The DEVID is a read-only register. It contains device-specific information that is hard-coded during device manufacture. For the initial silicon version, the device identification code value is 802A AD05h. This register is shown in Figure 2-56 and described in Table 2-70. Figure 2-56. Device Identification Register (DEVID) [offset = F0h] 31 30 17 16 CP15 UNIQUE ID TECH R-K R-K R-K 15 12 11 TECH 13 I/O VOLTAGE PERIPHERAL PARITY FLASH ECC RAM ECC R-K R-K R-K R-K R-K 7 3 10 9 2 8 1 VERSION PLATFORM ID R-K R-K 0 LEGEND: R = Read only; -n = value after reset; K = Constant value Table 2-70. Device Identification Register (DEVID) Field Descriptions Bit Field 31 CP15 30-17 UNIQUE ID 16-13 TECH Value CP15 CPU. This bit indicates whether the CPU has a coprocessor 15 (CP15). 0 The CPU has no CP15 present. 1 The CPU has a CP15 present. The CPU ID can be read using the CP15 C0,C0,0 register. 0-3FFFh 11 0 Device manufactured in the C05 process technology. 1h Device manufactured in the F05 process technology. 2h Device manufactured in the C035 process technology. 3h Device manufactured in the F035 process technology. 4h Device manufactured in the C021 process technology. 5h Device manufactured in the F021 process technology. 10-9 8 I/O VOLTAGE PERIPHERAL PARITY 2-0 PLATFORM ID 178 Input/output voltage. This bit defines the I/O voltage of the device. The I/O voltage is 3.3 V. 1 The I/O voltage is 5 V. Peripheral parity. This bit indicates whether or not peripheral memory parity is present. 0 The peripheral memories have no parity. 1 The peripheral memories have parity. These bits indicate which parity is present for the program memory. 0 No memory protection is present. 1h The program memory (Flash) has single-bit parity. 2h The program memory (Flash) has ECC. 3h This combination is reserved. RAM ECC VERSION Reserved 0 FLASH ECC 7-3 Device ID. The device ID is unique by device configuration. These bits define the process technology by which the device was manufactured. 6h-Fh 12 Description RAM ECC. This bit indicates whether or not RAM memory ECC is present. 0 The RAM memories do not have ECC. 1 The RAM memories have ECC. 0-1Fh 5h Version. These bits provide the revision of the device. The device is part of the TMS570 family. The TMS570 ID is always 5h. Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.1.52 Software Interrupt Vector Register (SSIVEC) The SSIVEC register, shown in Figure 2-57 and described in Table 2-71, contains information about software interrupts. Figure 2-57. Software Interrupt Vector Register (SSIVEC) [offset = F4h] 31 16 Reserved R-0 15 8 7 0 SSIDATA SSIVECT R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 2-71. Software Interrupt Vector Register (SSIVEC) Field Descriptions Bit Field Value 31-16 Reserved 0 15-8 SSIDATA 0-FFh 7-0 SSIVECT Description Reads return 0. Writes have no effect. System software interrupt data key. These bits contain the data key value of the source for the system software interrupt, which is indicated by the vector in the SSIVEC[7-0] field. These bits contain the source for the system software interrupt. Note: A read from the SSIVECT bits clears the corresponding SSI_FLAG[4-1] bit in the SSIF register, corresponding to the source vector of the system software interrupt. Note: The SSIR[4-1] interrupt has the following priority order: SSIR1 has the highest priority. SSIR4 has the lowest priority. 0 No software interrupt is pending. 1h A software interrupt has been generated by writing the correct key value to The SSIR1 register. 2h A software interrupt has been generated by writing the correct key value to The SSIR2 register. 3h A software interrupt has been generated by writing the correct key value to The SSIR3 register. 4h A software interrupt has been generated by writing the correct key value to The SSIR4 register. 5h-FFh Reserved SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 179 System and Peripheral Control Registers www.ti.com 2.5.1.53 System Software Interrupt Flag Register (SSIF) The SSIF register, shown in Figure 2-58 and described in Table 2-72, contains software interrupt flag status information. Figure 2-58. System Software Interrupt Flag Register (SSIF) [offset = F8h] 31 16 Reserved R-0 15 8 Reserved R-0 7 3 2 1 0 Reserved 4 SSI_FLAG4 SSI_FLAG3 SSI_FLAG2 SSI_FLAG1 R-0 R/WC-0 R/WC-0 R/WC-0 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 2-72. System Software Interrupt Flag Register (SSIF) Field Descriptions Bit Field 31-4 Reserved 3-0 SSI_FLAG[4-1] Value 0 Description Reads return 0. Writes have no effect. System software interrupt flag[4-1]. This flag is set when the correct SSKEY is written to the SSIR register[4-1]. Note: A read from the SSIVEC register clears the corresponding SSI_FLAG[4-1] bit in the SSIF, corresponding to the source vector of the system software interrupt. 0 Read: No IRQ/FIQ interrupt was generated since the bit was last cleared. Write: The bit is unchanged. 1 Read: An IRQ/FIQ interrupt was generated. Write: The bit is cleared to 0. 180 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.2 Secondary System Control Registers (SYS2) This section describes the secondary frame of system registers. The start address of the secondary system module frame is FFFF E100. The registers support 32-, 16-, and 8-bit writes. The offset is relative to the system module frame start address. Table 2-73 contains a list of the secondary system control registers. Table 2-73. Secondary System Control Registers Offset Acronym Register Description Section 00 PLLCTL3 PLL Control Register 3 Section 2.5.2.1 04h Reserved Reserved 08h STCCLKDIV CPU Logic BIST Clock Divider 0Ch-20h Reserved Reserved 24h ECPCNTL ECP Control Register 28h-38h Reserved Reserved 3Ch CLK2CNTRL Clock 2 Control Register Section 2.5.2.3 40h VCLKACON1 Peripheral Asynchronous Clock Configuration 1 Register Section 2.5.2.4 44h-6Ch Reserved Reserved 70h CLKSLIP Clock Slip Register 74h-E8h Reserved Reserved ECh EFC_CTLREG EFUSE Controller Control Register Section 2.5.2.6 F0h DIEIDL_REG0 Die Identification Register Lower Word Section 2.5.2.7 F4h DIEIDH_REG1 Die Identification Register Upper Word Section 2.5.2.8 F8h DIEIDL_REG2 Die Identification Register Lower Word Section 2.5.2.9 FCh DIEIDH_REG3 Die Identification Register Upper Word Section 2.5.2.10 Section 2.5.2.2 Section 2.5.1.45 Section 2.5.2.5 NOTE: All additional registers in the secondary system frame are reserved. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 181 System and Peripheral Control Registers 2.5.2.1 www.ti.com PLL Control Register 3 (PLLCTL3) The PLLCTL3 register is shown in Figure 2-59 and described in Table 2-74; controls the settings of PLL2 (Clock Source 6 - FPLL). Figure 2-59. PLL Control Register 3 (PLLCTL3) [offset = 00] 31 29 28 24 23 22 21 16 ODPLL2 PLLDIV2 Reserved REFCLKDIV2 R/WP-1h R/WP-Fh R-0 R/WP-2h 15 0 PLL_MUL2 R/WP-5F00h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-74. PLL Control Register 3 (PLLCTL3) Field Descriptions Bit 31-29 Field Value ODPLL2 Description Internal PLL Output Divider OD2 = ODPLL2 + 1, ranges from 1 to 8. fpost_ODCLK2 = foutput_CLK2 / OD2 0 fpost_ODCLK2 = foutput_CLK2 / 1 1h fpost_ODCLK2 = foutput_CLK2 / 2 : 7h : fpost_ODCLK2 = foutput_CLK2 / 8 Note: PLL output clock is gated off, if ODPLL2 is changed while the PLL2 is active. 28-24 PLLDIV2 PLL2 Output Clock Divider R2 = PLLDIV2 + 1, ranges from 1 to 32. fPLL2 CLK = fpost_ODCLK2 / R2 0 f PLL2 CLK = f post_ODCLK2 /1 1h f PLL2 CLK = f post_ODCLK2 /2 : 1Fh 23-22 Reserved 21-16 REFCLKDIV2 0 : f PLL2 CLK = f post_ODCLK2 /32 Value has no effect on PLL operation. Reference Clock Divider NR2 = REFCLKDIV2 + 1, ranges from 1 to 64. fINTCLK2 = fOSCIN / NR2 0 f INTCLK2= f OSCIN /1 1h f INTCLK2= f OSCIN /2 : 3Fh : f INTCLK2= f OSCIN /64 Note: This value should not be changed while the PLL2 is active. 15-0 PLLMUL2 PLL2 Multiplication Factor NF2 = (PLLMUL2 / 256) + 1, valid multiplication factors are from 1 to 256. fVCOCLK2 = fINTCLK2 x NF2 User and privileged mode (read): Privileged mode (write): 100h : : 5B00h fVCOCLK2 = fINTCLK2 x 92 5C00h fVCOCLK2 = fINTCLK2 x 93 : FF00h 182 f VCOCLK2= f INTCLK2 x 1 : fVCOCLK2 = fINTCLK2 x 256 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.2.2 CPU Logic Bist Clock Divider (STCLKDIV) This register is shown in Figure 2-60 and described in Table 2-75. Figure 2-60. CPU Logic BIST Clock Prescaler (STCLKDIV) [offset = 08h] 31 27 26 24 23 16 Reserved CLKDIV Reserved R-0 R/WP-0 R-0 15 0 Reserved R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-75. CPU Logic BIST Clock Prescaler (STCLKDIV) Field Descriptions Bit Field Value Description 31-27 Reserved 0 Reads return 0. Writes have no effect. 26-24 CLKDIV 0 Clock divider/prescaler for CPU clock during logic BIST 23-0 Reserved 0 Reads return 0. Writes have no effect. 2.5.2.3 Clock 2 Control Register (CLK2CNTRL) This register is shown in Figure 2-61 and described in Table 2-76. Figure 2-61. Clock 2 Control Register (CLK2CNTRL) [offset = 3Ch] 31 16 Reserved R-0 15 12 11 8 7 4 3 0 Reserved Reserved Reserved VCLK3R R-0 R/WP-1h R-0 R/WP-1h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-76. Clock 2 Control Register (CLK2CNTRL) Field Descriptions Bit Field 31-12 Reserved 11-8 Reserved 7-4 Reserved 3-0 VCLK3R Value 0 Description Reads return 0. Writes have no effect. Reads return value and writes allowed in privilege mode. 0 Reads return 0. Writes have no effect. VBUS clock3 ratio. 0 The ratio is HCLK divide by 1. : : Fh The ratio is HCLK divided by 16. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 183 System and Peripheral Control Registers 2.5.2.4 www.ti.com Peripheral Asynchronous Clock Configuration 1 Register (VCLKACON1) This register is shown in Figure 2-62 and described in Table 2-77. Figure 2-62. Peripheral Asynchronous Clock Configuration 1 Register (VCLKACON1) [offset = 40h] 31 27 26 24 Reserved VCLKA4R R-0 R/WP-1h 23 21 20 19 16 Reserved VCLKA4_DIV_ CDDIS VCLKA4S R-0 R/WP-0 R/WP-9h 15 11 10 8 7 5 4 0 Reserved Reserved Reserved Reserved R-0 R/WP-1h R-0 R/WP-9h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-77. Peripheral Asynchronous Clock Configuration 1 Register (VCLKACON1) Field Descriptions Bit Field 31-27 Reserved Value 0 26-24 VCLKA4R Description Reads return 0. Writes have no effect. Clock divider for the VCLKA4 source. Output will be present on VCLKA4_DIVR. VCLKA4 domain will be enabled by writing to the CDDIS register and VCLKA4_DIV_CDDIS bit. It can be inferred that VCLKA4_DIV clock is disabled when VCLKA4 clock is disabled. 23-21 Reserved 20 0 The ratio is VCLKA4 divided by 1. : : 7h The ratio is VCLKA4 divided by 8. 0 Reads return 0. Writes have no effect. VCLKA4_DIV_CDDIS Disable the VCLKA4 divider output. VCLKA4 domain will be enabled by writing to the CDDIS register 0 Enable the prescaled VCLKA4 clock on VCLKA4_DIVR. 1 Disable the prescaled VCLKA4 clock on VCLKA4_DIVR. 19-16 VCLKA4S 15-0 Reserved Peripheral asynchronous clock4 source. 0 Clock source0 is the source for peripheral asynchronous clock4. 1h Clock source1 is the source for peripheral asynchronous clock4. 2h Clock source2 is the source for peripheral asynchronous clock4. 3h Clock source3 is the source for peripheral asynchronous clock4. 4h Clock source4 is the source for peripheral asynchronous clock4. 5h Clock source5 is the source for peripheral asynchronous clock4. 6h Clock source6 is the source for peripheral asynchronous clock4. 7h Clock source7 is the source for peripheral asynchronous clock4. 8h-Fh VCLK or a divided VCLK is the source for peripheral asynchronous clock4. See the devicespecific data manual for details. 109h Reserved NOTE: Non implemented clock sources should not be enabled or used. A list of the available clock sources is shown in Table 2-29. 184 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.2.5 Clock Slip Register (CLKSLIP) This register is shown in Figure 2-63 and described in Table 2-78. For information on filtering the FBSLIP see Section 2.5.1.34. Figure 2-63. Clock Slip Register (CLKSLIP) [offset = 70h] 31 16 Reserved R-0 15 14 13 8 7 4 3 0 Reserved PLL1_RFSLIP_FILTER_COUNT Reserved PLL1_RFSLIP_FILTER_KEY R-0 R/WP-0 R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-78. Clock Slip Register (CLKSLIP) Field Descriptions Bit Field 31-14 Reserved 13-8 PLL1_RFSLIP_FILTER_COUNT Value 0 Description Reads return 0. Writes have no effect. PLL RFSLIP down counter programmed value. Count is on 10M clock. On reset, counter value is 0. Counter must be programmed to a non-zero value and enabled for the filtering to be enabled. 0 Filtering is disabled. 1h Filtering is enabled. Every slip is recognized. 2h Filtering is enabled. The slip must be at least 2 HF LPO cycles wide in order to be recognized as a slip. : 3Fh 7-4 Reserved 3-0 PLL1_RFSLIP_FILTER_KEY 0 : Filtering is enabled. The RFSLIP must be at least 63 HF LPO cycles wide in order to be recognized as a slip. Reads return 0. Writes have no effect. Enable the PLL RFSLIP filtering. 5h On reset, the PLL RFSLIP filter is disabled and the PLL RFSLIP passes through. Fh This is an unsupported value. You should avoid writing this value to this bit field. Others PLL RFSLIP filtering is enabled. Recommended to program Ah in this bit field. Enabling of the PLL RFSLIP occurs when the KEY is programmed and a nonzero value is present in the COUNT field. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 185 System and Peripheral Control Registers 2.5.2.6 www.ti.com EFUSE Controller Control Register (EFC_CTLREG) This register is shown in Figure 2-64 and described in Table 2-79. Figure 2-64. EFUSE Controller Control Register (EFC_CTLREG) [offset = ECh] 31 16 Reserved R-0 15 4 3 0 Reserved EFC_INSTR_WEN R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 2-79. EFUSE Controller Control Register (EFC_CTLREG) Field Descriptions Bit Field Value 31-4 Reserved 0 3-0 EFC_INSTR_WEN Description Reads return 0. Writes have no effect. Enable user write of 4 EFUSE controller instructions. SYS module generates the enable signal which will be tied to OCP_FROM_WRITE_DISABLE on efuse controller port 2.5.2.7 Ah Writing of instructions (Program, ProgramCRA, RunAutoload, and LoadFuseScanchain) to EFC is allowed enabled. Others Writing of instructions (Program, ProgramCRA, RunAutoload, and LoadFuseScanchain) in EFC registers is blocked. Die Identification Register Lower Word (DIEIDL_REG0) The DIEIDL_REG0 is a duplicate of DIEIDL, see Section 2.5.1.28. The DIEIDL_REG0, shown in Figure 265 and described in Table 2-80, contains information about the die wafer number, and X, Y wafer coordinates. Figure 2-65. Die Identification Register, Lower Word (DIEIDL_REG0) [offset = F0h] 31 24 15 23 16 WAFER # Y WAFER COORDINATE R-D R-D 12 11 0 Y WAFER COORDINATE X WAFER COORDINATE R-D R-D LEGEND: R = Read only; -n = value after reset; D = value is device specific Table 2-80. Die Identification Register, Lower Word (DIEIDL_REG0) Field Descriptions Field Description 31-24 Bit WAFER # These read-only bits contain the wafer number of the device. 23-12 Y WAFER COORDINATE These read-only bits contain the Y wafer coordinate of the device. 11-0 X WAFER COORDINATE These read-only bits contain the X wafer coordinate of the device. NOTE: Die Identification Information The die identification information will vary from unit to unit. This information is programmed by TI as part of the initial device test procedure. 186 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.2.8 Die Identification Register Upper Word (DIEIDH_REG1) The DIEIDH_REG1 is a duplicate of DIEIDH, see Section 2.5.1.29. The DIEIDH_REG1, shown in Figure 2-66 and described in Table 2-81, contains information about the die lot number. Figure 2-66. Die Identification Register, Upper Word (DIEIDH_REG1) [offset = F4h] 31 24 23 16 Reserved LOT # R-0 R-D 15 0 LOT # R-D LEGEND: R = Read only; -n = value after reset; D = value is device dependent Table 2-81. Die Identification Register, Upper Word (DIEIDH_REG1) Field Descriptions Bit Field Description 31-24 Reserved Reserved for TI use. Writes have no effect. 23-0 LOT # This read-only register contains the device lot number. NOTE: Die Identification Information The die identification information will vary from unit to unit. This information is programmed by TI as part of the initial device test procedure. 2.5.2.9 Die Identification Register Lower Word (DIEIDL_REG2) This register is shown in Figure 2-67 and described in Table 2-82. Figure 2-67. Die Identification Register, Lower Word (DIEIDL_REG2) [offset = F8h] 31 0 DIEIDL2 R-X LEGEND: R = Read only; -n = value after reset; X = value is unchanged after reset Table 2-82. Die Identification Register, Lower Word (DIEIDL_REG2) Field Descriptions Bit 31-0 Field DIEIDL2(95-64) Value 0-FFFF FFFFh Description This read-only register contains the lower word (95:64) of the die ID information. The contents of this register is reserved. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 187 System and Peripheral Control Registers www.ti.com 2.5.2.10 Die Identification Register Upper Word (DIEIDH_REG3) This register is shown in Figure 2-68 and described in Table 2-83. Figure 2-68. Die Identification Register, Upper Word (DIEIDH_REG3) [offset = FCh] 31 0 DIEIDH2 R-X LEGEND: R = Read only; -n = value after reset; X = value is unchanged after reset Table 2-83. Die Identification Register, Upper Word (DIEIDH_REG3) Field Descriptions Bit 31-0 188 Field DIEIDH2(127-96) Value Description 0-FFFF FFFFh This read-only register contains the upper word (127:97) of the die ID information. The contents of this register is reserved. Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.3 Peripheral Central Resource (PCR) Control Registers This section describes the Peripheral Central Resource (PCR) control registers. The start address of the PCR register frame is FFFF E000h. Table 2-84 lists the registers in the PCR, which are used to configure protection to the peripherals in PCS and PS regions. Not all chip selects exist on this device. Table 2-84. Peripheral Central Resource Control Registers Offset Acronym Register Description 00h PMPROTSET0 Peripheral Memory Protection Set Register 0 Section 2.5.3.1 04h PMPROTSET1 Peripheral Memory Protection Set Register 1 Section 2.5.3.2 Reserved Reserved 10h PMPROTCLR0 Peripheral Memory Protection Clear Register 0 Section 2.5.3.3 14h PMPROTCLR1 Peripheral Memory Protection Clear Register 1 Section 2.5.3.4 Reserved Reserved 20h PPROTSET0 Peripheral Protection Set Register 0 Section 2.5.3.5 24h PPROTSET1 Peripheral Protection Set Register 1 Section 2.5.3.6 28h PPROTSET2 Peripheral Protection Set Register 2 Section 2.5.3.7 2Ch PPROTSET3 Peripheral Protection Set Register 3 Section 2.5.3.8 08h-0Ch 18h-1Ch 30h-3Ch Section Reserved Reserved 40h PPROTCLR0 Peripheral Protection Clear Register 0 Section 2.5.3.9 44h PPROTCLR1 Peripheral Protection Clear Register 1 Section 2.5.3.10 48h PPROTCLR2 Peripheral Protection Clear Register 2 Section 2.5.3.11 4Ch PPROTCLR3 Peripheral Protection Clear Register 3 Section 2.5.3.12 Reserved Reserved 60h PCSPWRDWNSET0 Peripheral Memory Power-Down Set Register 0 Section 2.5.3.13 64h PCSPWRDWNSET1 Peripheral Memory Power-Down Set Register 1 Section 2.5.3.14 Reserved Reserved 70h PCSPWRDWNCLR0 Peripheral Memory Power-Down Clear Register 0 Section 2.5.3.15 74h PCSPWRDWNCLR1 Peripheral Memory Power-Down Clear Register 1 Section 2.5.3.16 Reserved Reserved 80h PSPWRDWNSET0 Peripheral Power-Down Set Register 0 Section 2.5.3.17 84h PSPWRDWNSET1 Peripheral Power-Down Set Register 1 Section 2.5.3.18 88h PSPWRDWNSET2 Peripheral Power-Down Set Register 2 Section 2.5.3.19 8Ch PSPWRDWNSET3 Peripheral Power-Down Set Register 3 Section 2.5.3.20 Reserved Reserved A0h PSPWRDWNCLR0 Peripheral Power-Down Clear Register 0 Section 2.5.3.21 A4h PSPWRDWNCLR1 Peripheral Power-Down Clear Register 1 Section 2.5.3.22 A8h PSPWRDWNCLR2 Peripheral Power-Down Clear Register 2 Section 2.5.3.23 ACh PSPWRDWNCLR3 Peripheral Power-Down Clear Register 3 Section 2.5.3.24 50h-5Ch 68h-6Ch 78h-7Ch 90h-9Ch SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 189 System and Peripheral Control Registers 2.5.3.1 www.ti.com Peripheral Memory Protection Set Register 0 (PMPROTSET0) This register is shown in Figure 2-69 and described in Table 2-85. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to nonimplemented bits have no effect and reads are 0. Figure 2-69. Peripheral Memory Protection Set Register 0 (PMPROTSET0) [offset = 00] 31 0 PCS[31-0]PROTSET R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-85. Peripheral Memory Protection Set Register 0 (PMPROTSET0) Field Descriptions Bit Field 31-0 Value PCS[31-0]PROTSET Description Peripheral memory frame protection set. 0 Read: The peripheral memory framen can be written to and read from in both user and privileged modes. Write: The bit is unchanged. 1 Read: The peripheral memory framen can be written to only in privileged mode, but it can be read in both user and privileged modes. Write: The corresponding bit in PMPROTSET0 and PMPROTCLR0 registers is set to 1. 2.5.3.2 Peripheral Memory Protection Set Register 1 (PMPROTSET1) This register is shown in Figure 2-70 and described in Table 2-86. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to nonimplemented bits have no effect and reads are 0. Figure 2-70. Peripheral Memory Protection Set Register 1 (PMPROTSET1) [offset = 04h] 31 0 PCS[63-32]PROTSET R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-86. Peripheral Memory Protection Set Register 1 (PMPROTSET1) Field Descriptions Bit 31-0 Field Value PCS[63-32]PROTSET Description Peripheral memory frame protection set. 0 Read: The peripheral memory framen can be written to and read from in both user and privileged modes. Write: The bit is unchanged. 1 Read: The peripheral memory framen can be written to only in privileged mode, but it can be read in both user and privileged modes. Write: The corresponding bit in PMPROTSET1 and PMPROTCLR1 registers is set to 1. 190 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.3.3 Peripheral Memory Protection Clear Register 0 (PMPROTCLR0) This register is shown in Figure 2-71 and described in Table 2-87. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to nonimplemented bits have no effect and reads are 0. Figure 2-71. Peripheral Memory Protection Clear Register 0 (PMPROTCLR0) [offset = 10h] 31 0 PCS[31-0]PROTCLR R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-87. Peripheral Memory Protection Clear Register 0 (PMPROTCLR0) Field Descriptions Bit Field 31-0 Value PCS[31-0]PROTCLR Description Peripheral memory frame protection clear. 0 Read: The peripheral memory framen can be written to and read from in both user and privileged modes. Write: The bit is unchanged. 1 Read: The peripheral memory framen can be written to only in privileged mode, but it can be read in both user and privileged modes. Write: The corresponding bit in PMPROTSET0 and PMPROTCLR0 registers is cleared to 0. 2.5.3.4 Peripheral Memory Protection Clear Register 1 (PMPROTCLR1) This register is shown in Figure 2-72 and described in Table 2-88. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to nonimplemented bits have no effect and reads are 0. Figure 2-72. Peripheral Memory Protection Clear Register 1 (PMPROTCLR1) [offset = 14h] 31 0 PCS[63-32]PROTCLR R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-88. Peripheral Memory Protection Clear Register 1 (PMPROTCLR1) Field Descriptions Bit 31-0 Field Value PCS[63-32]PROTCLR Description Peripheral memory frame protection clear. 0 Read: The peripheral memory framen can be written to and read from in both user and privileged modes. Write: The bit is unchanged. 1 Read: The peripheral memory framen can be written to only in privileged mode, but it can be read in both user and privileged modes. Write: The corresponding bit in PMPROTSET1 and PMPROTCLR1 registers is cleared to 0. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 191 System and Peripheral Control Registers 2.5.3.5 www.ti.com Peripheral Protection Set Register 0 (PPROTSET0) There is one bit for each quadrant for PS0 to PS7. The following are the ways in which quadrants are used within a PS frame: a. The slave uses all the four quadrants. Only the bit corresponding to the quadrant 0 of PSn is implemented. It protects the whole 1K-byte frame. The remaining three bits are not implemented. b. The slave uses two quadrants. Each quadrant has to be in one of these groups: (Quad 0 and Quad 1) or (Quad 2 and Quad 3). For the group Quad0/Quad1, the bit quadrant 0 protects both quadrants 0 and 1. The bit quadrant 1 is not implemented. For the group Quad2/Quad3, the bit quadrant 2 protects both quadrants 2 and 3. The bit quadrant 3 is not implemented c. The slave uses only one quadrant. In this case, the bit, as specified in Table 2-89, protects the slave. The above arrangement is true for all the peripheral select (PS0 to PS31) presented in Section 2.5.3.6 to Section 2.5.3.12. This register holds bits for PS0 to PS7 and is shown in Figure 2-73 and described in Table 2-89. NOTE: Writes to nonimplemented bits have no effect and reads are 0. Figure 2-73. Peripheral Protection Set Register 0 (PPROTSET0) [offset = 20h] 31 0 PS[7-0]QUAD[3-0]PROTSET R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-89. Peripheral Protection Set Register 0 (PPROTSET0) Field Descriptions Bit 31-0 Field PS[7-0]QUAD[3-0] PROTSET Value Description Peripheral select quadrant protection set. 0 Read: The peripheral select quadrant an be written to and read from in both user and privileged modes. Write: The bit is unchanged. 1 Read: The peripheral select quadrant can be written to only in privileged mode, but it can be read in both user and privileged modes. Write: The corresponding bit in PPROTSET0 and PPROTCLR0 registers is set to 1. 192 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.3.6 Peripheral Protection Set Register 1 (PPROTSET1) There is one bit for each quadrant for PS8 to PS15. The protection scheme is described in Section 2.5.3.5. This register is shown in Figure 2-74 and described in Table 2-90. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to nonimplemented bits have no effect and reads are 0. Figure 2-74. Peripheral Protection Set Register 1 (PPROTSET1) [offset = 24h] 31 0 PS[15-8]QUAD[3-0]PROTSET R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-90. Peripheral Protection Set Register 1 (PPROTSET1) Field Descriptions Bit Field 31-0 Value PS[15-8]QUAD[3-0] PROTSET Description Peripheral select quadrant protection set. 0 Read: The peripheral select quadrant can be written to and read from in both user and privileged modes. Write: The bit is unchanged. 1 Read: The peripheral select quadrant can be written to only in privileged mode, but it can be read in both user and privileged modes. Write: The corresponding bit in PPROTSET1 and PPROTCLR1 registers is set to 1. 2.5.3.7 Peripheral Protection Set Register 2 (PPROTSET2) There is one bit for each quadrant for PS16 to PS23. The protection scheme is described in Section 2.5.3.5. This register is shown in Figure 2-75 and described in Table 2-91. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to nonimplemented bits have no effect and reads are 0. Figure 2-75. Peripheral Protection Set Register 2 (PPROTSET2) [offset = 28h] 31 0 PS[23-16]QUAD[3-0]PROTSET R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-91. Peripheral Protection Set Register 2 (PPROTSET2) Field Descriptions Bit 31-0 Field PS[23-16]QUAD[3-0] PROTSET Value Description Peripheral select quadrant protection set. 0 Read: The peripheral select quadrant can be written to and read from in both user and privileged modes. Write: The bit is unchanged. 1 Read: The peripheral select quadrant can be written to only in privileged mode, but it can be read in both user and privileged modes. Write: The corresponding bit in PPROTSET2 and PPROTCLR2 registers is set to 1. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 193 System and Peripheral Control Registers 2.5.3.8 www.ti.com Peripheral Protection Set Register 3 (PPROTSET3) There is one bit for each quadrant for PS24 to PS31. The protection scheme is described in Section 2.5.3.5. This register is shown in Figure 2-76 and described in Table 2-92. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to nonimplemented bits have no effect and reads are 0. Figure 2-76. Peripheral Protection Set Register 3 (PPROTSET3) [offset = 2Ch] 31 0 PS[31-24]QUAD[3-0]PROTSET R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-92. Peripheral Protection Set Register 3 (PPROTSET3) Field Descriptions Bit Field 31-0 Value PS[31-24]QUAD[3-0] PROTSET Description Peripheral select quadrant protection set. 0 Read: The peripheral select quadrant can be written to and read from in both user and privileged modes. Write: The bit is unchanged. 1 Read: The peripheral select quadrant can be written to only in privileged mode, but it can be read in both user and privileged modes. Write: The corresponding bit in PPROTSET3 and PPROTCLR3 registers is set to 1. 2.5.3.9 Peripheral Protection Clear Register 0 (PPROTCLR0) There is one bit for each quadrant for PS0 to PS7. The protection scheme is described in Section 2.5.3.5. This register is shown in Figure 2-77 and described in Table 2-93. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to nonimplemented bits have no effect and reads are 0. Figure 2-77. Peripheral Protection Clear Register 0 (PPROTCLR0) [offset = 40h] 31 0 PS[7-0]QUAD[3-0]PROTCLR R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-93. Peripheral Protection Clear Register 0 (PPROTCLR0) Field Descriptions Bit 31-0 Field PS[7-0]QUAD[3-0] PROTCLR Value Description Peripheral select quadrant protection clear. 0 Read: The peripheral select quadrant can be written to and read from in both user and privileged modes. Write: The bit is unchanged. 1 Read: The peripheral select quadrant can be written to only in privileged mode, but it can be read in both user and privileged modes. Write: The corresponding bit in PPROTSET0 and PPROTCLR0 registers is cleared to 0. 194 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.3.10 Peripheral Protection Clear Register 1 (PPROTCLR1) There is one bit for each quadrant for PS8 to PS15. The protection scheme is described in Section 2.5.3.5. This register is shown in Figure 2-78 and described in Table 2-94. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to nonimplemented bits have no effect and reads are 0. Figure 2-78. Peripheral Protection Clear Register 1 (PPROTCLR1) [offset = 44h] 31 0 PS[15-8]QUAD[3-0]PROTCLR R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-94. Peripheral Protection Clear Register 1 (PPROTCLR1) Field Descriptions Bit 31-0 Field Value PS[15-8]QUAD[3-0] PROTCLR Description Peripheral select quadrant protection clear. 0 Read: The peripheral select quadrant can be written to and read from in both user and privileged modes. Write: The bit is unchanged. 1 Read: The peripheral select quadrant can be written to only in privileged mode, but it can be read in both user and privileged modes. Write: The corresponding bit in PPROTSET1 and PPROTCLR1 registers is cleared to 0. 2.5.3.11 Peripheral Protection Clear Register 2 (PPROTCLR2) There is one bit for each quadrant for PS16 to PS23. The protection scheme is described in Section 2.5.3.5. This register is shown in Figure 2-79 and described in Table 2-95. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to nonimplemented bits have no effect and reads are 0. Figure 2-79. Peripheral Protection Clear Register 2 (PPROTCLR2) [offset = 48h] 31 0 PS[23-16]QUAD[3-0]PROTCLR R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-95. Peripheral Protection Clear Register 2 (PPROTCLR2) Field Descriptions Bit 31-0 Field PS[23-16]QUAD[3-0] PROTCLR Value Description Peripheral select quadrant protection clear. 0 Read: The peripheral select quadrant can be written to and read from in both user and privileged modes. Write: The bit is unchanged. 1 Read: The peripheral select quadrant can be written to only in privileged mode, but it can be read in both user and privileged modes. Write: The corresponding bit in PPROTSET2 and PPROTCLR2 registers is cleared to 0. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 195 System and Peripheral Control Registers www.ti.com 2.5.3.12 Peripheral Protection Clear Register 3 (PPROTCLR3) There is one bit for each quadrant for PS24 to PS31. The protection scheme is described in Section 2.5.3.5. This register is shown in Figure 2-80 and described in Table 2-96. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to nonimplemented bits have no effect and reads are 0. Figure 2-80. Peripheral Protection Clear Register 3 (PPROTCLR3) [offset = 4Ch] 31 0 PS[31-24]QUAD[3-0]PROTCLR R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-96. Peripheral Protection Clear Register 3 (PPROTCLR3) Field Descriptions Bit 31-0 Field PS[31-24]QUAD[3-0] PROTCLR Value Description Peripheral select quadrant protection clear. 0 Read: The peripheral select quadrant can be written to and read from in both user and privileged modes. Write: The bit is unchanged. 1 Read: The peripheral select quadrant can be written to only in privileged mode, but it can be read in both user and privileged modes. Write: The corresponding bit in PPROTSET3 and PPROTCLR3 registers is cleared to 0. 196 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.3.13 Peripheral Memory Power-Down Set Register 0 (PCSPWRDWNSET0) Each bit corresponds to a bit at the same index in the PMPROT register in that they both relate to the same peripheral. This register is shown in Figure 2-81 and described in Table 2-97. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to nonimplemented bits have no effect and reads are 0. Figure 2-81. Peripheral Memory Power-Down Set Register 0 (PCSPWRDWNSET0) [offset = 60h] 31 0 PCS[31-0]PWRDNSET R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-97. Peripheral Memory Power-Down Set Register 0 (PCSPWRDWNSET0) Field Descriptions Bit 31-0 Field Value PCS[31-0]PWRDNSET Description Peripheral memory clock power-down set. 0 Read: The peripheral memory clock[31-0] is active. Write: The bit is unchanged. 1 Read: The peripheral memory clock[31-0] is inactive. Write: The corresponding bit in the PCSPWRDWNSET0 and PCSPWRDWNCLR0 registers is set to 1. 2.5.3.14 Peripheral Memory Power-Down Set Register 1 (PCSPWRDWNSET1) This register is shown in Figure 2-82 and described in Table 2-98. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to nonimplemented bits have no effect and reads are 0. Figure 2-82. Peripheral Memory Power-Down Set Register 1 (PCSPWRDWNSET1) [offset = 64h] 31 0 PCS[63-32]PWRDNSET R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-98. Peripheral Memory Power-Down Set Register 1 (PCSPWRDWNSET1) Field Descriptions Bit 31-0 Field Value PCS[63-32]PWRDNSET Description Peripheral memory clock power-down set. 0 Read: The peripheral memory clock[63-32] is active. Write: The bit is unchanged. 1 Read: The peripheral memory clock[63-32] is inactive. Write: The corresponding bit in the PCSPWRDWNSET1 and PCSPWRDWNCLR1 registers is set to 1. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 197 System and Peripheral Control Registers www.ti.com 2.5.3.15 Peripheral Memory Power-Down Clear Register 0 (PCSPWRDWNCLR0) This register is shown in Figure 2-83 and described in Table 2-99. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to nonimplemented bits have no effect and reads are 0. Figure 2-83. Peripheral Memory Power-Down Clear Register 0 (PCSPWRDWNCLR0) [offset = 70h] 31 0 PCS[31-0]PWRDNCLR R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-99. Peripheral Memory Power-Down Clear Register 0 (PCSPWRDWNCLR0) Field Descriptions Bit 31-0 Field Value PCS[31-0]PWRDNCLR Description Peripheral memory clock power-down clear. 0 Read: The peripheral memory clock[31-0] is active. Write: The bit is unchanged. 1 Read: The peripheral memory clock[31-0] is inactive. Write: The corresponding bit in the PCSPWRDWNSET0 and PCSPWRDWNCLR0 registers is cleared to 0. 2.5.3.16 Peripheral Memory Power-Down Clear Register 1 (PCSPWRDWNCLR1) This register is shown in Figure 2-84 and described in Table 2-100. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to nonimplemented bits have no effect and reads are 0. Figure 2-84. Peripheral Memory Power-Down Clear Register 1 (PCSPWRDWNCLR1) [offset = 74h] 31 0 PCS[63-32]PWRDNCLR R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-100. Peripheral Memory Power-Down Set Register 1 (PCSPWRDWNCLR1) Field Descriptions Bit 31-0 Field Value PCS[63-32]PWRDNCLR Description Peripheral memory clock power-down clear. 0 Read: The peripheral memory clock[63-32] is active. Write: The bit is unchanged. 1 Read: The peripheral memory clock[63-32] is inactive. Write: The corresponding bit in the PCSPWRDWNSET1 and PCSPWRDWNCLR1 registers is cleared to 0. 198 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.3.17 Peripheral Power-Down Set Register 0 (PSPWRDWNSET0) There is one bit for each quadrant for PS0 to PS7. Each bit of this register corresponds to the bit at the same index in the corresponding PPROT register in that they relate to the same peripheral. These bits are used to power down/power up the clock to the corresponding peripheral. For every bit implemented in the PPROT register, there is one bit in the PSnPWRDWN register, except when two peripherals (both in PS area) share buses. In that case, only one Power-Down bit is implemented, at the position corresponding to that peripheral whose quadrant comes first (the lower numbered). The ways in which quadrants can be used within a frame are identical to what is described under PPROTSET0, Section 2.5.3.5. This arrangement is the same for bits of PS8 to PS31, presented in Section 2.5.3.18 - Section 2.5.3.24. This register holds bits for PS0 to PS7. This register is shown in Figure 2-85 and described in Table 2101. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to nonimplemented bits have no effect and reads are 0. Figure 2-85. Peripheral Power-Down Set Register 0 (PSPWRDWNSET0) [offset = 80h] 31 0 PS[7-0]QUAD[3-0]PWRDWNSET R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-101. Peripheral Power-Down Set Register 0 (PSPWRDWNSET0) Field Descriptions Bit 31-0 Field PS[7-0]QUAD[3-0] PWRDWNSET Value Description Peripheral select quadrant clock power-down set. 0 Read: The clock to the peripheral select quadrant is active. Write: The bit is unchanged. 1 Read: The clock to the peripheral select quadrant is inactive. Write: The corresponding bit in PSPWRDWNSET0 and PSPWRDWNCLR0 registers is set to 1. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 199 System and Peripheral Control Registers www.ti.com 2.5.3.18 Peripheral Power-Down Set Register 1 (PSPWRDWNSET1) There is one bit for each quadrant for PS8 to PS15. The protection scheme is described in Section 2.5.3.17. This register is shown in Figure 2-86 and described in Table 2-102. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to nonimplemented bits have no effect and reads are 0. Figure 2-86. Peripheral Power-Down Set Register 1 (PSPWRDWNSET1) [offset = 84h] 31 0 PS[15-8]QUAD[3-0]PWRDWNSET R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-102. Peripheral Power-Down Set Register 1 (PSPWRDWNSET1) Field Descriptions Bit 31-0 Field Value PS[15-8]QUAD[3-0] PWRDWNSET Description Peripheral select quadrant clock power-down set. 0 Read: The clock to the peripheral select quadrant is active. Write: The bit is unchanged. 1 Read: The clock to the peripheral select quadrant is inactive. Write: The corresponding bit in PSPWRDWNSET1 and PSPWRDWNCLR1 registers is set to 1. 2.5.3.19 Peripheral Power-Down Set Register 2 (PSPWRDWNSET2) There is one bit for each quadrant for PS16 to PS23. The protection scheme is described in Section 2.5.3.17. This register is shown in Figure 2-87 and described in Table 2-103. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to nonimplemented bits have no effect and reads are 0. Figure 2-87. Peripheral Power-Down Set Register 2 (PSPWRDWNSET2) [offset = 88h] 31 0 PS[23-16]QUAD[3-0]PWRDWNSET R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-103. Peripheral Power-Down Set Register 2 (PSPWRDWNSET2) Field Descriptions Bit 31-0 Field PS[23-16]QUAD[3-0] PWRDWNSET Value Description Peripheral select quadrant clock power-down set. 0 Read: The clock to the peripheral select quadrant is active. Write: The bit is unchanged. 1 Read: The clock to the peripheral select quadrant is inactive. Write: The corresponding bit in PSPWRDWNSET2 and PSPWRDWNCLR2 registers is set to 1. 200 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.3.20 Peripheral Power-Down Set Register 3 (PSPWRDWNSET3) There is one bit for each quadrant for PS24 to PS31. The protection scheme is described in Section 2.5.3.17. This register is shown in Figure 2-88 and described in Table 2-104. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to nonimplemented bits have no effect and reads are 0. Figure 2-88. Peripheral Power-Down Set Register 3 (PSPWRDWNSET3) [offset = 8Ch] 31 0 PS[31-24]QUAD[3-0]PWRDWNSET R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-104. Peripheral Power-Down Set Register 3 (PSPWRDWNSET3) Field Descriptions Bit 31-0 Field Value PS[31-24]QUAD[3-0] PWRDWNSET Description Peripheral select quadrant clock power-down set. 0 Read: The clock to the peripheral select quadrant is active. Write: The bit is unchanged. 1 Read: The clock to the peripheral select quadrant is inactive. Write: The corresponding bit in PSPWRDWNSET3 and PSPWRDWNCLR3 registers is set to 1. 2.5.3.21 Peripheral Power-Down Clear Register 0 (PSPWRDWNCLR0) There is one bit for each quadrant for PS0 to PS7. The protection scheme is described in Section 2.5.3.17. This register is shown in Figure 2-89 and described in Table 2-105. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to nonimplemented bits have no effect and reads are 0. Figure 2-89. Peripheral Power-Down Clear Register 0 (PSPWRDWNCLR0) [offset = A0h] 31 0 PS[7-0]QUAD[3-0]PWRDWNCLR R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-105. Peripheral Power-Down Clear Register 0 (PSPWRDWNCLR0) Field Descriptions Bit 31-0 Field PS[7-0]QUAD[3-0] PWRDWNCLR Value Description Peripheral select quadrant clock power-down clear. 0 Read: The clock to the peripheral select quadrant is active. Write: The bit is unchanged. 1 Read: The clock to the peripheral select quadrant is inactive. Write: The corresponding bit in PSPWRDWNSET0 and PSPWRDWNCLR0 registers is cleared to 0. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 201 System and Peripheral Control Registers www.ti.com 2.5.3.22 Peripheral Power-Down Clear Register 1 (PSPWRDWNCLR1) There is one bit for each quadrant for PS8 to PS15. The protection scheme is described in Section 2.5.3.17. This register is shown in Figure 2-90 and described in Table 2-106. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to nonimplemented bits have no effect and reads are 0. Figure 2-90. Peripheral Power-Down Clear Register 1 (PSPWRDWNCLR1) [offset = A4h] 31 0 PS[15-8]QUAD[3-0]PWRDWNCLR R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-106. Peripheral Power-Down Clear Register 1 (PSPWRDWNCLR1) Field Descriptions Bit 31-0 Field Value PS[15-8]QUAD[3-0] PWRDWNCLR Description Peripheral select quadrant clock power-down clear. 0 Read: The clock to the peripheral select quadrant is active. Write: The bit is unchanged. 1 Read: The clock to the peripheral select quadrant is inactive. Write: The corresponding bit in PSPWRDWNSET1 and PSPWRDWNCLR1 registers is cleared to 0. 2.5.3.23 Peripheral Power-Down Clear Register 2 (PSPWRDWNCLR2) There is one bit for each quadrant for PS16 to PS23. The protection scheme is described in Section 2.5.3.17. This register is shown in Figure 2-91 and described in Table 2-107. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to nonimplemented bits have no effect and reads are 0. Figure 2-91. Peripheral Power-Down Clear Register 2 (PSPWRDWNCLR2) [offset = A8h] 31 0 PS[23-16]QUAD[3-0]PWRDWNCLR R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-107. Peripheral Power-Down Clear Register 2 (PSPWRDWNCLR2) Field Descriptions Bit 31-0 Field PS[23-16]QUAD[3-0] PWRDWNCLR Value Description Peripheral select quadrant clock power-down clear. 0 Read: The clock to the peripheral select quadrant is active. Write: The bit is unchanged. 1 Read: The clock to the peripheral select quadrant is inactive. Write: The corresponding bit in PSPWRDWNSET2 and PSPWRDWNCLR2 registers is cleared to 0. 202 Architecture SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated System and Peripheral Control Registers www.ti.com 2.5.3.24 Peripheral Power-Down Clear Register 3 (PSPWRDWNCLR3) There is one bit for each quadrant for PS24 to PS31. The protection scheme is described in Section 2.5.3.17. This register is shown in Figure 2-92 and described in Table 2-108. NOTE: Only those bits that have a slave at the corresponding bit position are implemented. Writes to nonimplemented bits have no effect and reads are 0. Figure 2-92. Peripheral Power-Down Clear Register 3 (PSPWRDWNCLR) [offset = ACh] 31 0 PS[31-24]QUAD[3-0]PWRDWNCLR R/WP-1 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 2-108. Peripheral Power-Down Clear Register 3 (PSPWRDWNCLR3) Field Descriptions Bit 31-0 Field PS[31-24]QUAD[3-0] PWRDWNCLR Value Description Peripheral select quadrant clock power-down clear. 0 Read: The clock to the peripheral select quadrant is active. Write: The bit is unchanged. 1 Read: The clock to the peripheral select quadrant is inactive. Write: The corresponding bit in PSPWRDWNSET3 and PSPWRDWNCLR3 registers is cleared to 0. SPNU499C – March 2018 Submit Documentation Feedback Architecture Copyright © 2018, Texas Instruments Incorporated 203 Chapter 3 SPNU499C – March 2018 Power Management Module (PMM) This chapter describes the power management module (PMM). 204 Topic ........................................................................................................................... 3.1 3.2 3.3 3.4 Overview ......................................................................................................... Power Domains ................................................................................................ PMM Operation................................................................................................. PMM Registers ................................................................................................. Power Management Module (PMM) Page 205 206 208 211 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Overview www.ti.com 3.1 Overview The microcontroller is part of the Hercules family of microcontrollers from Texas Instruments for safetycritical applications. Several functions are implemented on this microcontroller targeted towards varied applications. The core logic is divided into several domains that can be independently turned on or off based on the application’s requirements. This allows an application to reduce the leakage current for a core domain that has modules that are not being used by the application. This chapter describes the Power Management Module (PMM). The PMM provides memory-mapped registers that control the states of the supported power domains. The PMM includes interfaces to the Power Mode Controller (PMC) and the Power State Controller (PSCON). The PMC and PSCON control the power up/down sequence of each power domain. 3.1.1 Main Features of the Power Management Module (PMM) The main features of the PMM implemented on the microcontroller are: • Supports 5 logic power domains: PD1, PD2, PD3, PD4 and PD5 Note that PD1 is an always-ON power domain and is not controlled by the PMM. • Supports 3 memory-only power domains: RAM_PD1, RAM_PD2 and RAM_PD3 • Manages the clocks for each power domain • Manages the resets to each power domain • Includes failsafe compare logic to continuously monitor the states of each power domain • Supports diagnostic and self-test logic to validate failsafe compare logic 3.1.2 Block Diagram Figure 3-1. PMM Block Diagram PMM Wake Up Control Self-test PMC Diagnostic Register Interface PSCON Diagnostic Compare Diagnostic Diagnostic PSCON(1) PSCON(1) Primary PSCON(1) Primary PSCON(n) Power Domain(1) Power Domain(n) Register File Clock Management System Interface Reset Management SPNU499C – March 2018 Submit Documentation Feedback Power Management Module (PMM) Copyright © 2018, Texas Instruments Incorporated 205 Power Domains www.ti.com PMM consists of several key components: • Register interface – the PMM control registers are mapped to the device memory space and start at address 0xFFFF0000. • System Interface – the PMM receives the clocks, resets, errors and all other control signals through this interface. • PSCON Diagnostic Compare – this block compares the outputs of each primary PSCON and the respective diagnostic PSCON implemented for failsafe safety. • Self-Test Diagnostic – this block contains the logic to place the PSCON diagnostic compare block in a self-test mode in order to test the failsafe feature. • Clock management – the PMM provides independent clock gating and handshaking controls for each power domain and also generates the clock domains for each power domain. • Reset Management – the PMM provides independent reset signals for each power domain. • Power State Controller (PSCON) – The PSCON is a finite state machine that controls the power sequence of a power domain from one state to another. Each power domain is controlled by one dedicated PSCON. • Power Domain – A power domain is a group of logic and/or memories which is separated from the global power supply via power switches. These power switches are controlled by the PSCON and can be turned on or off. 3.2 Power Domains Figure 3-2 shows the core and memory power domains implemented on the microcontroller. This device has 8 separate core power domains: • PD1 is an always-ON domain and is not controlled by PMM. It contains the CPU as well as other principal modules and the interconnect required for operation of the microcontroller. This domain also includes 64KB of the tightly-coupled RAM. The PD1 can operate on its own even when all the other core power domains are turned off by the PMM. Note that all I/Os are in this always-ON domain as well. Core power domains PD2 through PD5 and RAM_PD1 through RAM_PD3 are controlled by the PMM. • PD2 contains the Embedded Trace Macrocell (ETM-R4), RAM Trace Port (RTP), and Data Modification Module (DMM) components of the debug sub-system as well as the Parameter Overlay Module (POM). • PD3 contains some additional peripheral modules as an enhanced configuration over and above the peripheral set available in PD1. These include a second High-End Timer (NHET2) with its dedicated transfer unit (HTU2), a second Analog-to-Digital Converter (ADC2), a Serial Communication Interface (SCI), an Inter-Integrated Circuit controller (I2C), a third Controller Area Network controller (DCAN3), and a fourth Serial Peripheral Interface module (SPI4). • PD4 contains the FlexRay controller and its dedicated transfer unit (FTU). • PD5 contains the Ethernet controller (EMAC), the External Memory Interface (EMIF), as well as some components of the interconnect fabric required by these modules. • RAM_PD1, RAM_PD2 and RAM_PD3 each contain 64KB of tightly-coupled RAM. NOTE: Switching of Power Domains The microcontrollers only support static switching of the power domains. That is, the power domains can be turned ON or OFF one time during device initialization. Once configured, it is not allowed to change the state of a power domain without first asserting a system reset. 206 Power Management Module (PMM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Power Domains www.ti.com TRACECTL ETMDATA[31:0] TRACECLKOUT DMMSYNC DMMDATA[15:0] Color Legend for Power Domains Core/RAM always on POM HTU1 DMM RAM Core #1 #2 ETM-R4 RTP DMA Dual Cortex-R4F CPUs in Lockstep TRACECLKIN 64K 64K 64K DMMCLK DMMnENA 256K RAM with ECC RTPnSYNC RTPDATA[15:0] RTPCLK 64K 3M Flash with ECC RTPnENA Figure 3-2. Core Power Domains #3 #1 #2 #4 #3 #5 FTU EMAC HTU2 Switched Central Resource Switched Central Resource Switched Central Resource Main Cross Bar: Arbitration and Prioritization Control 64 KB Flash for EEPROM Emulation with ECC CRC Peripheral Central Resource Bridge Switched Central Resource SYS IOMM EMAC Slaves MDCLK MDIO MII_RXD[3:0] MII_RXER MII_TXD[3:0] MII_TXEN MII_TXCLK MII_RXCLK MII_CRS MII_RXDV MII_COL ESM EMIF_nWAIT EMIF_CLK EMIF_CKE EMIF_nCS[4:2] EMIF_nCS[0] EMIF_ADDR[21:0] EMIF_BA[1:0] EMIF_DATA[15:0] EMIF_nDQM[1:0] EMIF_nOE EMIF_nWE EMIF_nRAS EMIF_nCAS EMIF_RnW MDIO MII EMIF PMM DCAN1 DCAN2 VIM DCAN3 MibSPI1 RTI MibADC2 N2HET1 N2HET2 GIO DCC1 SPI2 DCC2 MibSPI3 FlexRay I2C I2C_SCL I2C_SDA FRAY_RX2 FRAY_TX2 FRAY_TXEN2 FRAY_RX1 FRAY_TX1 FRAY_TXEN1 GIOA[7:0] GIOB[7:0] N2HET2_PIN_nDIS N2HET2[18,16] N2HET2[15:0] N2HET1[31:0] N2HET1_PIN_nDIS ADREFLO AD2EVT VCCAD VSSAD ADREFHI AD2IN[15:0] ADREFLO AD1EVT AD1IN[7:0] AD1IN[23:8] MibSPI5 VCCAD VSSAD ADREFHI nERROR CAN1_RX CAN1_TX CAN2_RX CAN2_TX CAN3_RX CAN3_TX MIBSPI1_CLK MIBSPI1_SIMO[1:0] MIBSPI1_SOMI[1:0] MIBSPI1_nCS[5:0] MIBSPI1_nENA SPI4 MibADC1 nPORRST nRST ECLK SPNU499C – March 2018 Submit Documentation Feedback LIN SCI SPI2_CLK SPI2_SIMO SPI2_SOMI SPI2_nCS[1:0] SPI2_nENA MIBSPI3_CLK MIBSPI3_SIMO MIBSPI3_SOMI MIBSPI3_nCS[5:0] MIBSPI3_nENA SPI4_CLK SPI4_SIMO SPI4_SOMI SPI4_nCS SPI4_nENA MIBSPI5_CLK MIBSPI5_SIMO[3:0] MIBSPI5_SOMI[3:0] MIBSPI5_nCS[3:0] MIBSPI5_nENA LIN_RX LIN_TX SCI_RX SCI_TX Power Management Module (PMM) Copyright © 2018, Texas Instruments Incorporated 207 PMM Operation 3.3 www.ti.com PMM Operation It is important to understand some fundamental concepts beforehand. 3.3.1 Power Switch A power domain gets its power supply via a power switch. The power switch creates a link between the global core supply plane and the local switchable power domain supply. Each power domain uses multiple power switches, which are daisy-chained together. 3.3.2 Power Domain State Each core power domain can be in one of three states: Active, Idle, or Off. In the active state, a power domain is fully powered with normal supply voltage. In the idle state, all clocks to a power domain are turned off (driven low). The supply voltage is still maintained at the normal level. In the off state, a power domain is completely cut off from the power supply. 3.3.3 Default Power Domain State The default state of each power domain, except for PD1, is controlled by TI during production testing via programmation of individual bits within the reset configuration word in the TI-OTP sector of flash bank 0. This allows each power domain to default to either the active state or the off state. 3.3.4 Disabling a Power Domain Permanently TI can also permanently disable any power domain, except for PD1. This is also controlled by programmation of individual bits within the reset configuration word in the TI-OTP sector of flash bank 0. 3.3.5 Changing Power Domain State A domain can only change state when commanded by the application. Each domain has an associated 4bit key to define the intended power state. When the correct key is programmed, the PMM initiates the sequence to transition that domain to the commanded state. A power state transition is considered complete only when every single power switch for that domain has switched over to the commanded state. 3.3.5.1 Turning a Power Domain Off It is necessary to turn off all clocks going to a power domain before that domain can be powered down. PMM contains the hardware interlocks to handle this. Each power domain has an associated memorymapped register which allows the application to turn off clocks to that power domain. Steps to power down a domain with logic – PD2, PD3, PD4, PD5: 1. Write to the PDCLK_DISx register to disable all clocks to the power domain. 2. Write 0xA to the LOGICPDPWRCTRL0 register to power down each domain. 3. Poll for LOGICPDPWRSTATx.LOGICPDPWR_STATx to become “00”. The power domain is now powered down. A power domain with only SRAM macros does not have a clock input, so the sequence is shorter. This applies to RAM_PD1, RAM_PD2 and RAM_PD3 power domains shown in Figure 3-2: 1. Write the correct key to the MEMPDONx register to power down the domain. 2. Poll for MEMPDPWRSTATx.MEMPDPWR_STATx to become “00”. The power domain is now powered down. 208 Power Management Module (PMM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PMM Operation www.ti.com 3.3.5.2 Turning a Power Domain On A power domain can be turned on by writing the correct key to the LOGICPDPWRCTRL0.LOGICPDONx or MEMPDPWRCTRL0.MEMPDONx. PMM will automatically restart the clocks to the power domain once the power is restored if the “automatic clock enable upon wake up” option is selected. If this option is not selected, the application can turn on clocks to the power domain by clearing the PDCLK_DIS register. The application must poll the LOGICPDPWRSTATx.DOMAIN_ONx to ensure that the power has been fully restored before enabling the clocks. NOTE: if a power domain is permanently disabled by TI, then the application cannot turn that power domain back on. No error is generated if the application attempts to do so. 3.3.6 Reset Management PMM handles the reset sequence for each power domain. When a power domain is turned on from an off state, the PMM will reset the power domain to ensure that all logic begins in its default reset state. PMM generates nPORRST (power-on reset), nRST (system reset), nPRST (peripheral reset), and nTRST (test / debug logic reset) for each domain. 3.3.7 Diagnostic Power State Controller (PSCON) Each power domain state is controlled by a primary PSCON. There is a second PSCON as well for each power domain. This is the diagnostic PSCON. All power management inputs to a power domain are controlled only by the primary PSCON. All power management outputs from the power domain are fed back to both the primary and the diagnostic PSCON. The PMM commands both the PSCON identically so that they are always in a lock-step operating mode. A dedicated compare unit checks the outputs of the two PSCON modules on every cycle. 3.3.8 PSCON Compare Block The diagnostic compare block can operate in one of four modes: 3.3.8.1 Lock-Step Mode This is the default mode of operation of the PSCON compare block. The PSCON diagnostic compare block compares the outputs from the two PSCONs on every cycle. Any mismatch in the PSCON outputs is indicated as a PSCON compare error. This error signal is mapped to the Error Signaling Module’s (ESM) Group1 channel 38. The application can define the response to this error. SPNU499C – March 2018 Submit Documentation Feedback Power Management Module (PMM) Copyright © 2018, Texas Instruments Incorporated 209 PMM Operation 3.3.8.2 www.ti.com Self-Test Mode A self-test mechanism is provided to check the PSCON compare logic for faults. The compare error signal output is disabled in self-test mode. The PSCON diagnostic compare block generates two types of patterns during self-test mode: compare match test followed by compare mismatch test. During the selftest, each test pattern is applied on both PSCON signal ports of the PSCON diagnostic compare block and then is clocked for one cycle. The duration of the self-test is 24 cycles. Any detected fault is indicated as a self-test error, mapped to ESM group1 channel 39. If no fault is detected, the self-test complete flag is set. The application can poll for this flag to be set and then switch the mode of the PSCON compare block back to lock-step mode by writing to the mode key register. NOTE: PSCON operation when compare block is in self-test mode When the PSCON compare block is in its self-test mode, both PSCONs continue to function normally. However, there is no comparison done on the PSCON outputs. Compare match test: An identical vector is applied to both input ports at the same time, thereby expecting a compare match. If the compare unit produces a mismatch then the self-test error flag is set and the self-test error signal is generated. The compare match test is terminated if a compare mismatch is detected. The compare match test takes 4 cycles to complete when the test passes. Compare mismatch test: A vector with all 1's is applied to the PSCON diagnostic compare block’s primary input port and the same input is also applied to the secondary input port but with one bit flipped starting from bit position 0. The unequal vectors should cause the PSCON diagnostic compare block to generate a compare mismatch at bit position 0. In case a mismatch is not detected, a self-test error is indicated. This compare mismatch test algorithm is repeated until every single bit position is verified on both PSCON signal ports. 3.3.8.3 Error-Forcing Mode This mode is designed specifically to ensure that the error signal output from the PSCON compare block is not stuck inactive. In this mode, a test pattern is applied to the PSCON related inputs of the compare logic to force an error. During error forcing mode, both the error signal and the self-test error signal will be asserted to the ESM. The application can clear flags for ESM group1 channel 38 and ESM group1 channel 39 once the error is flagged. If the two ESM flags do not get set, this indicates that the PSCON compare error signal is stuck inactive and cannot be relied upon to detect a PSCON mismatch. 3.3.8.4 Self-Test Error-Forcing Mode In this mode, an error is forced so that the self-test error output from the PSCON compare block is activated. The application can clear the flag for ESM group1 channel 39 once the error is flagged. If the ESM group1 channel 39 flag does not get set, this indicates that the PSCON compare block self-test error signal is stuck inactive and there is no self-test mechanism available for the PSCON compare block. 3.3.8.5 PMM Operation During CPU Halt Debug Mode No compare errors are generated when the CPU is halted in debug mode, regardless of the mode of the diagnostic compare block. No status flags are updated in this mode. Normal operation of the compare block is resumed once the CPU exits the debug mode. 210 Power Management Module (PMM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PMM Registers www.ti.com 3.4 PMM Registers Table 3-1 shows a summary of the control registers in the PMM module. The registers support 32-bit, 16bit and 8-bit accesses. The address offset is specified from the base address of FFFF 0000h. Any access to an unimplemented location within the PMM register frame will generate a bus error that results in an Abort exception. Table 3-1. PMM Registers Offset 00h 04h-0Ch 10h 14h-1Ch Acronym Register Description Section LOGICPDPWRCTRL0 Logic Power Domain Control Register 0 Reserved Reserved MEMPDPWRCTRL0 Memory Power Domain Control Register 0 Section 3.4.1 Section 3.4.2 Reserved Reserved 20h PDCLKDISREG Power Domain Clock Disable Register Section 3.4.3 24h PDCLKDISSETREG Power Domain Clock Disable Set Register Section 3.4.4 28h PDCLKDISCLRREG Power Domain Clock Disable Clear Register Section 3.4.5 30h-3Ch Reserved Reserved 40h LOGICPDPWRSTAT0 Logic Power Domain PD2 Power Status Register Section 3.4.6 44h LOGICPDPWRSTAT1 Logic Power Domain PD3 Power Status Register Section 3.4.7 48h LOGICPDPWRSTAT2 Logic Power Domain PD4 Power Status Register Section 3.4.8 4Ch LOGICPDPWRSTAT3 Logic Power Domain PD5 Power Status Register Section 3.4.9 Reserved Reserved 80h MEMPDPWRSTAT0 Memory Power Domain RAM_PD1 Power Status Register Section 3.4.10 84h MEMPDPWRSTAT1 Memory Power Domain RAM_PD2 Power Status Register Section 3.4.11 88h MEMPDPWRSTAT2 Memory Power Domain RAM_PD3 Power Status Register Section 3.4.12 Reserved Reserved A0h GLOBALCTRL1 Global Control Register 1 Section 3.4.13 A8h GLOBALSTAT Global Status Register Section 3.4.14 ACh PRCKEYREG PSCON Diagnostic Compare Key Register Section 3.4.15 B0h LPDDCSTAT1 LogicPD PSCON Diagnostic Compare Status Register 1 Section 3.4.16 B4h LPDDCSTAT2 LogicPD PSCON Diagnostic Compare Status Register 2 Section 3.4.17 B8h MPDDCSTAT1 Memory PD PSCON Diagnostic Compare Status Register 1 Section 3.4.18 BCh MPDDCSTAT2 Memory PD PSCON Diagnostic Compare Status Register 2 Section 3.4.19 C0h ISODIAGSTAT Isolation Diagnostic Status Register Section 3.4.20 50h-7Fh 8Ch-9Fh SPNU499C – March 2018 Submit Documentation Feedback Power Management Module (PMM) Copyright © 2018, Texas Instruments Incorporated 211 PMM Registers www.ti.com 3.4.1 Logic Power Domain Control Register (LOGICPDPWRCTRL0) The default values of the control fields are determined by the device reset configuration word stored in the TI-OTP region of flash bank 0. Figure 3-3. Logic Power Domain Control Register (LOGICPDPWRCTRL0) [offset = 00h] 31 28 27 24 23 20 19 16 Reserved LOGICPDON0 Reserved LOGICPDON1 R-0 R/WP-n R-0 R/WP-n 15 12 11 8 7 4 3 0 Reserved LOGICPDON2 Reserved LOGICPDON3 R-0 R/WP-n R-0 R/WP-n LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 3-2. Logic Power Domain Control Register (LOGICPDPWRCTRL0) Field Descriptions Bit Field 31-28 Reserved 27-24 LOGICPDON0 Value 0 Description Read returns 0. Writes have no effect. Read in User and Privileged Mode. Write in Privileged Mode only. Ah Read: Power domain PD2 is in OFF state. Write: Power domain PD2 is commanded to switch to OFF state. 9h Any other value Reserved Read: Power domain PD2 is in Active state. Write: Power domain PD2 is commanded to switch to Active state. 23-20 Reserved 19-16 LOGICPDON1 0 Read returns 0. Writes have no effect. Read in User and Privileged Mode. Write in Privileged Mode only. Ah Read: Power domain PD3 is in OFF state. Write: Power domain PD3 is commanded to switch to OFF state. 9h Any other value Reserved Read: Power domain PD3 is in Active state. Write: Power domain PD3 is commanded to switch to Active state. 15-12 Reserved 11-8 LOGICPDON2 0 Read returns 0. Writes have no effect. Read in User and Privileged Mode. Write in Privileged Mode only. Ah Read: Power domain PD4 is in OFF state. Write: Power domain PD4 is commanded to switch to OFF state. 9h Any other value Reserved Read: Power domain PD4 is in Active state. Write: Power domain PD4 is commanded to switch to Active state. 7-4 Reserved 3-0 LOGICPDON3 0 Read returns 0. Writes have no effect. Read in User and Privileged Mode. Write in Privileged Mode only. Ah Read: Power domain PD5 is in OFF state. Write: Power domain PD5 is commanded to switch to OFF state. 9h Any other value Reserved Read: Power domain PD5 is in Active state. Write: Power domain PD5 is commanded to switch to Active state. 212 Power Management Module (PMM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PMM Registers www.ti.com 3.4.2 Memory Power Domain Control Register 0 (MEMPDPWRCTRL0) The default values of the control fields are determined by the device reset configuration word stored in the TI-OTP region of flash bank 0. Figure 3-4. Memory Power Domain Control Register 0 (MEMPDPWRCTRL0) [offset = 10h] 31 28 27 24 23 20 19 16 Reserved MEMPDON0 Reserved MEMPDON1 R-0 R/WP-n R-0 R/WP-n 15 12 11 8 7 0 Reserved MEMPDON2 Reserved R-0 R/WP-n R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 3-3. Memory Power Domain Control Register 0 (MEMPDPWRCTRL0) Field Descriptions Bit Field 31-28 Reserved 27-24 MEMPDON0 Value 0 Description Read returns 0. Writes have no effect. Read in User and Privileged Mode. Write in Privileged Mode only. Ah Read: Power domain RAM_PD1 is in OFF state. Write: Power domain RAM_PD1 is commanded to switch to OFF state. 9h Any other value Reserved Read: Power domain RAM_PD1 is in Active state. Write: Power domain RAM_PD1 is commanded to switch to Active state. 23-20 Reserved 19-16 MEMPDON1 0 Read returns 0. Writes have no effect. Read in User and Privileged Mode. Write in Privileged Mode only. Ah Read: Power domain RAM_PD2 is in OFF state. Write: Power domain RAM_PD2 is commanded to switch to OFF state. 9h Any other value Reserved Read: Power domain RAM_PD2 is in Active state. Write: Power domain RAM_PD2 is commanded to switch to Active state. 15-12 Reserved 11-8 MEMPDON2 0 Read returns 0. Writes have no effect. Read in User and Privileged Mode. Write in Privileged Mode only. Ah Read: Power domain RAM_PD3 is in OFF state. Write: Power domain RAM_PD3 is commanded to switch to OFF state. 9h Any other value Reserved Read: Power domain RAM_PD3 is in Active state. Write: Power domain RAM_PD3 is commanded to switch to Active state. 7-0 Reserved 0 Read returns 0. Writes have no effect. SPNU499C – March 2018 Submit Documentation Feedback Power Management Module (PMM) Copyright © 2018, Texas Instruments Incorporated 213 PMM Registers www.ti.com 3.4.3 Power Domain Clock Disable Register (PDCLKDISREG) The default values of the control fields are determined by the device reset configuration word stored in the TI-OTP region of flash bank 0. Figure 3-5. Power Domain Clock Disable Register (PDCLKDISREG) [offset = 20h] 31 8 Reserved R-0 7 3 2 1 0 Reserved 4 PDCLK_DIS[3] PDCLK_DIS[2] PDCLK_DIS[1] PDCLK_DIS[0] R-0 R/WP-n R/WP-n R/WP-n R/WP-n LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 3-4. Power Domain Clock Disable Register (PDCLKDISREG) Field Descriptions Bit Field 31-4 Reserved 3 2 1 0 214 Value 0 PDCLK_DIS[3] Description Read returns 0. Writes have no effect. Read in User and Privileged Mode returns the current value of PDCLK_DIS[3]. Write in Privileged Mode only. 0 Enable clocks to logic power domain PD5. 1 Disable clocks to logic power domain PD5. PDCLK_DIS[2] Read in User and Privileged Mode returns the current value of PDCLK_DIS[2]. Write in Privileged Mode only 0 Enable clocks to logic power domain PD4. 1 Disable clocks to logic power domain PD4. PDCLK_DIS[1] Read in User and Privileged Mode returns the current value of PDCLK_DIS[1]. Write in Privileged Mode only. 0 Enable clocks to logic power domain PD3. 1 Disable clocks to logic power domain PD3. PDCLK_DIS[0] Read in User and Privileged Mode returns the current value of PDCLK_DIS[0]. Write in Privileged Mode only. 0 Enable clocks to logic power domain PD2. 1 Disable clocks to logic power domain PD2. Power Management Module (PMM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PMM Registers www.ti.com 3.4.4 Power Domain Clock Disable Set Register (PDCLKDISSETREG) The default values of the control fields are determined by the device reset configuration word stored in the TI-OTP region of flash bank 0. Figure 3-6. Power Domain Clock Disable Set Register (PDCLKDISSETREG) [offset = 24h] 31 8 Reserved R-0 7 4 Reserved 3 2 1 0 PDCLK_DISSET[3] PDCLK_DISSET[2] PDCLK_DISSET[1] PDCLK_DISSET[0] R-0 R/WP-n R/WP-n R/WP-n R/WP-n LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 3-5. Power Domain Clock Disable Set Register (PDCLKDISSETREG) Field Descriptions Bit Field 31-4 Reserved 3 2 1 0 Value 0 PDCLK_DISSET[3] Description Read returns 0. Writes have no effect. Read in User and Privileged Mode returns the current value of PDCLK_DISSET[3]. Write in Privileged Mode only. 0 No effect to state of clocks to power domain PD5. 1 Disable clocks to logic power domain PD5. PDCLK_DISSET[2] Read in User and Privileged Mode returns the current value of PDCLK_DISSET[2]. Write in Privileged Mode only. 0 No effect to state of clocks to power domain PD4. 1 Disable clocks to logic power domain PD4. PDCLK_DISSET[1] Read in User and Privileged Mode returns the current value of PDCLK_DISSET[1]. Write in Privileged Mode only. 0 No effect to state of clocks to power domain PD3. 1 Disable clocks to logic power domain PD3. PDCLK_DISSET[0] Read in User and Privileged Mode returns the current value of PDCLK_DISSET[0]. Write in Privileged Mode only. 0 No effect to state of clocks to power domain PD2. 1 Disable clocks to logic power domain PD2. SPNU499C – March 2018 Submit Documentation Feedback Power Management Module (PMM) Copyright © 2018, Texas Instruments Incorporated 215 PMM Registers www.ti.com 3.4.5 Power Domain Clock Disable Clear Register (PDCLKDISCLRREG) The default values of the control fields are determined by the device reset configuration word stored in the TI-OTP region of flash bank 0. Figure 3-7. Power Domain Clock Disable Clear Register (PDCLKDISCLRREG) [offset = 28h] 31 8 Reserved R-0 7 4 Reserved 3 2 1 0 PDCLK_DISCLR[3] PDCLK_DISCLR[2] PDCLK_DISCLR[1] PDCLK_DISCLR[0] R-0 R/WP-n R/WP-n R/WP-n R/WP-n LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 3-6. Power Domain Clock Disable Clear Register (PDCLKDISCLRREG) Field Descriptions Bit Field 31-4 Reserved 3 2 1 0 216 Value 0 PDCLK_DISCLR[3] Description Read returns 0. Writes have no effect. Read in User and Privileged Mode returns the current value of PDCLK_DIS[3]. Write in Privileged Mode only. 0 No effect to state of clocks to power domain PD5. 1 Enable clocks to logic power domain PD5. PDCLK_DISCLR[2] Read in User and Privileged Mode returns the current value of PDCLK_DIS[2]. Write in Privileged Mode only. 0 No effect to state of clocks to power domain PD4. 1 Enable clocks to logic power domain PD4. PDCLK_DISCLR[1] Read in User and Privileged Mode returns the current value of PDCLK_DIS[1]. Write in Privileged Mode only. 0 No effect to state of clocks to power domain PD3. 1 Enable clocks to logic power domain PD3. PDCLK_DISCLR[0] Read in User and Privileged Mode returns the current value of PDCLK_DIS[0]. Write in Privileged Mode only. 0 No effect to state of clocks to power domain PD2. 1 Enable clocks to logic power domain PD2. Power Management Module (PMM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PMM Registers www.ti.com 3.4.6 Logic Power Domain PD2 Power Status Register (LOGICPDPWRSTAT0) This is a read-only register. All writes are ignored. The default values of the control fields are determined by the device reset configuration word stored in the TI-OTP region of flash bank 0. Figure 3-8. Logic Power Domain PD2 Power Status Register (LOGICPDPWRSTAT0) [offset = 40h] 31 25 24 23 17 16 Reserved LOGIC IN TRANS0 Reserved MEM IN TRANS0 R-0 R-n R-0 R-n 15 9 8 7 DOMAIN ON0 Reserved R-0 R-n 2 Reserved 1 0 LOGICPDPWR STAT0 R-0 R-n LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 3-7. Logic Power Domain PD2 Power Status Register (LOGICPDPWRSTAT0) Field Descriptions Bit 31-25 24 Field Reserved Value 0 LOGIC IN TRANS0 Description Read returns 0. Writes have no effect. Logic in transition status for power domain PD2. Read in User and Privileged Mode. 23-17 16 Reserved 0 Logic in power domain PD2 is in the steady Active or OFF state. 1 Logic in power domain PD2 is in the process of power-down/up. 0 Read returns 0. Writes have no effect. MEM IN TRANS0 Memory in transition status for power domain PD2. Read in User and Privileged Mode. 15-9 8 Reserved 0 Memory in power domain PD2 is in the steady Active or OFF state. 1 Memory in power domain PD2 is in the process of power-down/up. 0 Read returns 0. Writes have no effect. DOMAIN ON0 Current state of power domain PD2. Read in User and Privileged Mode. 7-2 Reserved 1-0 LOGICPDPWR STAT0 0 Power domain PD2 is in the OFF state. 1 Power domain PD2 is in the Active state. 0 Read returns 0. Writes have no effect. Logic power domain PD2 power state. Read in User and Privileged Mode. 0 Logic power domain PD2 is switched OFF. 1h Logic power domain PD2 is in the Idle state. 2h Reserved 3h Logic power domain PD2 is in the Active state. SPNU499C – March 2018 Submit Documentation Feedback Power Management Module (PMM) Copyright © 2018, Texas Instruments Incorporated 217 PMM Registers www.ti.com 3.4.7 Logic Power Domain PD3 Power Status Register (LOGICPDPWRSTAT1) This is a read-only register. All writes are ignored. The default values of the control fields are determined by the device reset configuration word stored in the TI-OTP region of flash bank 0. Figure 3-9. Logic Power Domain PD3 Power Status Register (LOGICPDPWRSTAT1) [offset = 44h] 31 25 24 23 17 16 Reserved LOGIC IN TRANS1 Reserved MEM IN TRANS1 R-0 R-n R-0 R-n 15 9 8 7 DOMAIN ON1 Reserved R-0 2 1 0 Reserved LOGICPDPWR STAT1 R-0 R-n R-n LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 3-8. Logic Power Domain PD3 Power Status Register (LOGICPDPWRSTAT1) Field Descriptions Bit Field 31-25 24 Reserved Value 0 LOGIC IN TRANS1 Description Read returns 0. Writes have no effect. Logic in transition status for power domain PD3. Read in User and Privileged Mode. 23-17 16 Reserved 0 Logic in power domain PD3 is in the steady Active or OFF state. 1 Logic in power domain PD3 is in the process of power-down/up. 0 Read returns 0. Writes have no effect. MEM IN TRANS1 Memory in transition status for power domain PD3. Read in User and Privileged Mode. 15-9 8 Reserved 0 Memory in power domain PD3 is in the steady Active or OFF state. 1 Memory in power domain PD3 is in the process of power-down/up. 0 Read returns 0. Writes have no effect. DOMAIN ON1 Current state of power domain PD3. Read in User and Privileged Mode. 7-2 Reserved 1-0 LOGICPDPWR STAT1 0 Power domain PD3 is in the OFF state. 1 Power domain PD3 is in the Active state. 0 Read returns 0. Writes have no effect. Logic power domain PD3 power state. Read in User and Privileged Mode. 218 0 Logic power domain PD3 is switched OFF. 1h Logic power domain PD3 is in the Idle state. 2h Reserved 3h Logic power domain PD3 is in the Active state. Power Management Module (PMM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PMM Registers www.ti.com 3.4.8 Logic Power Domain PD4 Power Status Register (LOGICPDPWRSTAT2) This is a read-only register. All writes are ignored. The default values of the control fields are determined by the device reset configuration word stored in the TI-OTP region of flash bank 0. Figure 3-10. Logic Power Domain PD4 Power Status Register (LOGICPDPWRSTAT2) [offset = 48h] 31 25 24 23 17 16 Reserved LOGIC IN TRANS2 Reserved MEM IN TRANS2 R-0 R-n R-0 R-n 15 9 8 7 DOMAIN ON2 Reserved R-0 R-n 2 Reserved 1 0 LOGICPDPWR STAT2 R-0 R-n LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 3-9. Logic Power Domain PD4 Power Status Register (LOGICPDPWRSTAT2) Field Descriptions Bit 31-25 24 Field Reserved Value 0 LOGIC IN TRANS2 Description Read returns 0. Writes have no effect. Logic in transition status for power domain PD4. Read in User and Privileged Mode. 23-17 16 Reserved 0 Logic in power domain PD4 is in the steady Active or OFF state. 1 Logic in power domain PD4 is in the process of power-down/up. 0 Read returns 0. Writes have no effect. MEM IN TRANS2 Memory in transition status for power domain PD4. Read in User and Privileged Mode. 15-9 8 Reserved 0 Memory in power domain PD4 is in the steady Active or OFF state. 1 Memory in power domain PD4 is in the process of power-down/up. 0 Read returns 0. Writes have no effect. DOMAIN ON2 Current state of power domain PD4. Read in User and Privileged Mode. 7-2 Reserved 1-0 LOGICPDPWR STAT2 0 Power domain PD4 is in the OFF state. 1 Power domain PD4 is in the Active state. 0 Read returns 0. Writes have no effect. Logic power domain PD4 power state. Read in User and Privileged Mode. 0 Logic power domain PD4 is switched OFF. 1h Logic power domain PD4 is in the Idle state. 2h Reserved 3h Logic power domain PD4 is in the Active state. SPNU499C – March 2018 Submit Documentation Feedback Power Management Module (PMM) Copyright © 2018, Texas Instruments Incorporated 219 PMM Registers www.ti.com 3.4.9 Logic Power Domain PD5 Power Status Register (LOGICPDPWRSTAT3) This is a read-only register. All writes are ignored. The default values of the control fields are determined by the device reset configuration word stored in the TI-OTP region of flash bank 0. Figure 3-11. Logic Power Domain PD5 Power Status Register (LOGICPDPWRSTAT3) [offset = 4Ch] 31 25 24 23 17 16 Reserved LOGIC IN TRANS3 Reserved MEM IN TRANS3 R-0 R-n R-0 R-n 15 9 8 7 DOMAIN ON3 Reserved R-0 R-n 2 1 0 LOGICPDPWR STAT3 Reserved R-0 R-n LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 3-10. Logic Power Domain PD5 Power Status Register (LOGICPDPWRSTAT3) Field Descriptions Bit Field 31-25 24 Reserved Value 0 LOGIC IN TRANS3 Description Read returns 0. Writes have no effect. Logic in transition status for power domain PD5. Read in User and Privileged Mode. 23-17 16 Reserved 0 Logic in power domain PD5 is in the steady Active or OFF state. 1 Logic in power domain PD5 is in the process of power-down/up. 0 Read returns 0. Writes have no effect. MEM IN TRANS3 Memory in transition status for power domain PD5. Read in User and Privileged Mode. 15-9 8 Reserved 0 Memory in power domain PD5 is in the steady Active or OFF state. 1 Memory in power domain PD5 is in the process of power-down/up. 0 Read returns 0. Writes have no effect. DOMAIN ON3 Current state of power domain PD5. Read in User and Privileged Mode. 7-2 Reserved 1-0 LOGICPDPWR STAT3 0 Power domain PD5 is in the OFF state. 1 Power domain PD5 is in the Active state. 0 Read returns 0. Writes have no effect. Logic power domain PD5 power state. Read in User and Privileged Mode. 220 0 Logic power domain PD5 is switched OFF. 1h Logic power domain PD5 is in the Idle state. 2h Reserved 3h Logic power domain PD5 is in the Active state. Power Management Module (PMM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PMM Registers www.ti.com 3.4.10 Memory Power Domain RAM_PD1 Power Status Register (MEMPDPWRSTAT0) This is a read-only register. All writes are ignored. The default values of the control fields are determined by the device reset configuration word stored in the TI-OTP region of flash bank 0. Figure 3-12. Memory Power Domain RAM_PD1 Power Status Register (MEMPDPWRSTAT0) [offset = 80h] 31 25 24 23 17 16 Reserved LOGIC IN TRANS0 Reserved MEM IN TRANS0 R-0 R-n R-0 R-n 15 9 8 7 DOMAIN ON0 Reserved R-0 2 Reserved R-n R-0 1 0 MEMPDPWR STAT0 R-n LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 3-11. Memory Power Domain RAM_PD1 Power Status Register (MEMPDPWRSTAT0) Field Descriptions Bit 31-25 24 Field Reserved Value 0 LOGIC IN TRANS0 Description Read returns 0. Writes have no effect. Logic in transition status for power domain RAM_PD1. This power domain only contains SRAM macros. However, an SRAM macro also has some digital logic controlled by the PSCON. Therefore, a memory power domain also contains a logic status indicator. Read in User and Privileged Mode. 23-17 16 Reserved 0 Logic in power domain RAM_PD1 is in the steady Active or OFF state. 1 Logic in power domain RAM_PD1 is in the process of power-down/up. 0 Read returns 0. Writes have no effect. MEM IN TRANS0 Memory in transition status for power domain RAM_PD1. Read in User and Privileged Mode. 15-9 8 Reserved 0 Memory in power domain RAM_PD1 is in the steady Active or OFF state. 1 Memory in power domain RAM_PD1 is in the process of power-down/up. 0 Read returns 0. Writes have no effect. DOMAIN ON0 Current state of power domain RAM_PD1. Read in User and Privileged Mode. 7-2 Reserved 1-0 MEMPDPWR STAT0 0 Power domain RAM_PD1 is in the OFF state. 1 Power domain RAM_PD1 is in the Active state. 0 Read returns 0. Writes have no effect. Memory power domain RAM_PD1 power state. Read in User and Privileged Mode. 0 Memory power domain RAM_PD1 is switched OFF. 1h Reserved 2h Reserved 3h Memory power domain RAM_PD1 is in the Active state. SPNU499C – March 2018 Submit Documentation Feedback Power Management Module (PMM) Copyright © 2018, Texas Instruments Incorporated 221 PMM Registers www.ti.com 3.4.11 Memory Power Domain RAM_PD2 Power Status Register (MEMPDPWRSTAT1) This is a read-only register. All writes are ignored. The default values of the control fields are determined by the device reset configuration word stored in the TI-OTP region of flash bank 0. Figure 3-13. Memory Power Domain RAM_PD2 Power Status Register (MEMPDPWRSTAT1) [offset = 84h] 31 25 24 23 17 16 Reserved LOGIC IN TRANS1 Reserved MEM IN TRANS1 R-0 R-n R-0 R-n 15 9 8 7 DOMAIN ON1 Reserved R-0 2 Reserved R-n 1 0 MEMPDPWR STAT1 R-0 R-n LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 3-12. Memory Power Domain RAM_PD2 Power Status Register (MEMPDPWRSTAT1) Field Descriptions Bit Field 31-25 24 Reserved Value 0 LOGIC IN TRANS1 Description Read returns 0. Writes have no effect. Logic in transition status for power domain RAM_PD2. This power domain only contains SRAM macros. However, an SRAM macro also has some digital logic controlled by the PSCON. Therefore, a memory power domain also contains a logic status indicator. Read in User and Privileged Mode. 23-17 16 Reserved 0 Logic in power domain RAM_PD2 is in the steady Active or OFF state. 1 Logic in power domain RAM_PD2 is in the process of power-down/up. 0 Read returns 0. Writes have no effect. MEM IN TRANS1 Memory in transition status for power domain RAM_PD2. Read in User and Privileged Mode. 15-9 8 Reserved 0 Memory in power domain RAM_PD2 is in the steady Active or OFF state. 1 Memory in power domain RAM_PD2 is in the process of power-down/up. 0 Read returns 0. Writes have no effect. DOMAIN ON1 Current state of power domain RAM_PD2. Read in User and Privileged Mode. 7-2 Reserved 1-0 MEMPDPWR STAT1 0 Power domain RAM_PD2 is in the OFF state. 1 Power domain RAM_PD2 is in the Active state. 0 Read returns 0. Writes have no effect. Memory power domain RAM_PD2 power state. Read in User and Privileged Mode. 222 0 Memory power domain RAM_PD2 is switched OFF. 1h Reserved 2h Reserved 3h Memory power domain RAM_PD2 is in the Active state. Power Management Module (PMM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PMM Registers www.ti.com 3.4.12 Memory Power Domain RAM_PD3 Power Status Register (MEMPDPWRSTAT2) This is a read-only register. All writes are ignored. The default values of the control fields are determined by the device reset configuration word stored in the TI-OTP region of flash bank 0. Figure 3-14. Memory Power Domain RAM_PD3 Power Status Register (MEMPDPWRSTAT2) [offset = 88h] 31 25 24 23 17 16 Reserved LOGIC IN TRANS2 Reserved MEM IN TRANS2 R-0 R-n R-0 R-n 15 9 8 7 DOMAIN ON2 Reserved R-0 2 Reserved R-n R-0 1 0 MEMPDPWR STAT2 R-n LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 3-13. Memory Power Domain RAM_PD3 Power Status Register (MEMPDPWRSTAT2) Field Descriptions Bit 31-25 24 Field Reserved Value 0 LOGIC IN TRANS2 Description Read returns 0. Writes have no effect. Logic in transition status for power domain RAM_PD3. This power domain only contains SRAM macros. However, an SRAM macro also has some digital logic controlled by the PSCON. Therefore, a memory power domain also contains a logic status indicator. Read in User and Privileged Mode. 23-17 16 Reserved 0 Logic in power domain RAM_PD3 is in the steady Active or OFF state. 1 Logic in power domain RAM_PD3 is in the process of power-down/up. 0 Read returns 0. Writes have no effect. MEM IN TRANS2 Memory in transition status for power domain RAM_PD3. Read in User and Privileged Mode. 15-9 8 Reserved 0 Memory in power domain RAM_PD3 is in the steady Active or OFF state. 1 Memory in power domain RAM_PD3 is in the process of power-down/up. 0 Read returns 0. Writes have no effect. DOMAIN ON2 Current state of power domain RAM_PD3. Read in User and Privileged Mode. 7-2 Reserved 1-0 MEMPDPWR STAT2 0 Power domain RAM_PD3 is in the OFF state. 1 Power domain RAM_PD3 is in the Active state. 0 Read returns 0. Writes have no effect. Memory power domain RAM_PD3 power state. Read in User and Privileged Mode. 0 Memory power domain RAM_PD3 is switched OFF. 1h Reserved 2h Reserved 3h Memory power domain RAM_PD3 is in the Active state. SPNU499C – March 2018 Submit Documentation Feedback Power Management Module (PMM) Copyright © 2018, Texas Instruments Incorporated 223 PMM Registers www.ti.com 3.4.13 Global Control Register 1 (GLOBALCTRL1) Figure 3-15. Global Control Register 1 (GLOBALCTRL1) [offset = A0h] 31 16 Reserved R-0 15 9 Reserved 8 PMCTRL PWRDN R-0 7 R/WP-0 1 0 Reserved AUTO CLK WAKE ENA R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 3-14. Global Control Register 1 (GLOBALCTRL1) Field Descriptions Bit Field 31-9 Reserved 8 Value 0 PMCTRL PWRDN Description Read returns 0. Writes have no effect. PMC/PSCON Power Down Read in User and Privileged Mode returns current value of PMCTRL PWRDN. Write in Privileged mode only. 7-1 0 Reserved 0 Enable the clock to pmctrl_wakeup block. 1 Disable the clock to pmctrl_wakeup block, which contains PMC and all PSCONs. 0 Read returns 0. Writes have no effect. AUTO CLK WAKE ENA Automatic Clock Enable on Wake Up Read in User and Privileged Mode returns current value of AUTO CLK WAKE ENA. Write in Privileged mode only. 224 0 Disable automatic clock wake up. The application must enable clocks by clearing the correct bit in the PDCLK_DIS register. 1 Enable automatic clock wake up when a power domain transitions to Active state. Power Management Module (PMM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PMM Registers www.ti.com 3.4.14 Global Status Register (GLOBALSTAT) Figure 3-16. Global Status Register (GLOBALSTAT) [offset = A8h] 31 16 Reserved R-0 15 1 0 Reserved PMCTRL IDLE R-0 R-1 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 3-15. Global Status Register (GLOBALSTAT) Field Descriptions Bit Field Value 31-1 Reserved 0 0 PMCTRL IDLE Description Read returns 0. Writes have no effect. State of PMC and all PSCONs. The PMM captures the status of PMC and PSCONs as they do not have a register interface to the host CPU. 0 PMC and PSCONs for all power domains are in the process of generating power state transition control sequence for logic and/or SRAM. 1 PMC and PSCONs for all power domains have completed generating power state transition control sequence triggered by PMC input control signals. 3.4.15 PSCON Diagnostic Compare Key Register (PRCKEYREG) Figure 3-17. PSCON Diagnostic Compare Key Register (PRCKEYREG) [offset = ACh] 31 16 Reserved R-0 15 4 3 0 Reserved MKEY R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 3-16. PSCON Diagnostic Compare Key Register (PRCKEYREG) Field Descriptions Bit Field 31-4 Reserved 3-0 Value 0 MKEY Description Read returns 0. Writes have no effect. Diagnostic PSCON Mode Key. The mode key is applied to all individual PSCON compare units. Read in User and Privileged mode returns the current value of MKEY. Write in Privileged mode only. 0 Lock Step mode 6h Self-test mode 9h Error Forcing mode Fh Self-test Error Forcing Mode All others Lock Step mode SPNU499C – March 2018 Submit Documentation Feedback Power Management Module (PMM) Copyright © 2018, Texas Instruments Incorporated 225 PMM Registers www.ti.com 3.4.16 LogicPD PSCON Diagnostic Compare Status Register 1 (LPDDCSTAT1) Figure 3-18. LogicPD PSCON Diagnostic Compare Status Register 1 (LPDDCSTAT1) [offset = B0h] 31 24 Reserved R-0 23 19 18 17 16 Reserved 20 LCMPE[3] LCMPE[2] LCMPE[1] LCMPE[0] R-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 15 8 Reserved R-0 7 3 2 1 0 Reserved 4 LSTC[3] LSTC[2] LSTC[1] LSTC[0] R-0 R-0 R-0 R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 3-17. LogicPD PSCON Diagnostic Compare Status Register 1 (LPDDCSTAT1) Field Descriptions Bit Field 31-20 Reserved 19-16 LCMPE[3-0] Value 0 Description Read returns 0. Writes have no effect. Logic Power Domain Compare Error Each of these bits corresponds to a logic power domain: Bit 3 for PD5, Bit 2 for PD4, Bit 1 for PD3, Bit 0 for PD2. Read in User and Privileged Mode. Write in Privileged mode only. 0 Read: PSCON signals are identical. Write: Writing 0 has no effect. 1 Read: PSCON signal compare mismatch identified. Write: Clears the corresponding LCMPE bit, if set. 15-4 Reserved 3-0 LSTC[3-0] 0 Read returns 0. Writes have no effect. Logic Power Domain Self-test Complete Each of these bits corresponds to a logic power domain: Bit 3 for PD5, Bit 2 for PD4, Bit 1 for PD3, Bit 0 for PD2. Read in User and Privileged Mode. Writes have no effect. 226 0 Self-test is ongoing if self-test mode is entered. 1 Self-test is complete. Power Management Module (PMM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PMM Registers www.ti.com 3.4.17 LogicPD PSCON Diagnostic Compare Status Register 2 (LPDDCSTAT2) Figure 3-19. LogicPD PSCON Diagnostic Compare Status Register 2 (LPDDCSTAT2) [offset = B4h] 31 24 Reserved R-0 23 19 18 17 16 Reserved 20 LSTET[3] LSTET[2] LSTET[1] LSTET[0] R-0 R-0 R-0 R-0 R-0 15 8 Reserved R-0 7 3 2 1 0 Reserved 4 LSTE[3] LSTE[2] LSTE[1] LSTE[0] R-0 R-0 R-0 R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 3-18. LogicPD PSCON Diagnostic Compare Status Register 2 (LPDDCSTAT2) Field Descriptions Bit Field 31-20 Reserved 19-16 LSTET[3-0] Value 0 Description Read returns 0. Writes have no effect. Logic Power Domain Self-test Error Type Each of these bits corresponds to a logic power domain: Bit 3 for PD5, Bit 2 for PD4, Bit 1 for PD3, Bit 0 for PD2. Read in User and Privileged Mode. Writes have no effect. 15-4 Reserved 3-0 LSTE[3-0] 0 Self-test failed during compare match test. 1 Self-test failed during compare mismatch test. 0 Read returns 0. Writes have no effect. Logic Power Domain Self-test Error Each of these bits corresponds to a logic power domain: Bit 3 for PD5, Bit 2 for PD4, Bit 1 for PD3, Bit 0 for PD2. Read in User and Privileged Mode. Writes have no effect. 0 Self-test passed. 1 Self-test failed. SPNU499C – March 2018 Submit Documentation Feedback Power Management Module (PMM) Copyright © 2018, Texas Instruments Incorporated 227 PMM Registers www.ti.com 3.4.18 Memory PD PSCON Diagnostic Compare Status Register 1 (MPDDCSTAT1) This register shows the interrupt status (before enabling) and allows setting of the interrupt status. Figure 3-20. Memory PD PSCON Diagnostic Compare Status Register 1 (MPDDCSTAT1) [offset = B8h] 31 24 Reserved R-0 23 18 17 16 Reserved 19 MCMPE[2] MCMPE[1] MCMPE[0] R-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 15 8 Reserved R-0 7 2 1 0 Reserved 3 MSTC[2] MSTC[1] MSTC[0] R-0 R-0 R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 3-19. Memory PD PSCON Diagnostic Compare Status Register 1 (MPDDCSTAT1) Field Descriptions Bit Field 31-19 Reserved 18-16 MCMPE[2-0] Value 0 Description Read returns 0. Writes have no effect. Memory Power Domain Compare Error Each of these bits corresponds to a memory power domain: Bit 2 for RAM_PD3, Bit 1 for RAM_PD2, Bit 0 for RAM_PD1. Read in User and Privileged Mode. Write in Privileged mode only. 0 Read: PSCON signals are identical. Write: Writing 0 has no effect. 1 Read: PSCON signal compare mismatch identified. Write: Clears the corresponding MCMPE bit, if set. 15-3 Reserved 2-0 MSTC[2-0] 0 Read returns 0. Writes have no effect. Memory Power Domain Self-test Complete Each of these bits corresponds to a memory power domain: Bit 2 for RAM_PD3, Bit 1 for RAM_PD2, Bit 0 for RAM_PD1. Read in User and Privileged Mode. Writes have no effect. 228 0 Self-test is ongoing if self-test mode is entered. 1 Self-test is complete. Power Management Module (PMM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PMM Registers www.ti.com 3.4.19 Memory PD PSCON Diagnostic Compare Status Register 2 (MPDDCSTAT2) Figure 3-21. Memory PD PSCON Diagnostic Compare Status Register 2 (MPDDCSTAT2) [offset = BCh] 31 24 Reserved R-0 23 18 17 16 Reserved 19 MSTET[2] MSTET[1] MSTET[0] R-0 R-0 R-0 R-0 15 8 Reserved R-0 7 2 1 0 Reserved 3 MSTE[2] MSTE[1] MSTE[0] R-0 R-0 R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 3-20. Memory PD PSCON Diagnostic Compare Status Register 2 (MPDDCSTAT2) Field Descriptions Bit Field 31-19 Reserved 18-16 MSTET[2-0] Value 0 Description Read returns 0. Writes have no effect. Memory Power Domain Self-test Error Type Each of these bits corresponds to a memory power domain: Bit 2 for RAM_PD3, Bit 1 for RAM_PD2, Bit 0 for RAM_PD1. Read in User and Privileged Mode. Writes have no effect. 15-3 Reserved 2-0 MSTE[2-0] 0 Self-test failed during compare match test. 1 Self-test failed during compare mismatch test. 0 Read returns 0. Writes have no effect. Memory Power Domain Self-test Error Each of these bits corresponds to a memory power domain: Bit 2 for RAM_PD3, Bit 1 for RAM_PD2, Bit 0 for RAM_PD1. Read in User and Privileged Mode. Writes have no effect. 0 Self-test passed. 1 Self-test failed. SPNU499C – March 2018 Submit Documentation Feedback Power Management Module (PMM) Copyright © 2018, Texas Instruments Incorporated 229 PMM Registers www.ti.com 3.4.20 Isolation Diagnostic Status Register (ISODIAGSTAT) There is an ISO_DIAG cell implemented separately for each logic power domain. This is a special tie-off cell that reads a value of 1 when the logic power domain is powered up. This cell has an isolation value of 0. That is, when this logic power domain is turned off, this cell will read 0. The ISO_DIAG statuses for each logic power domain is reflected in the ISODIAGSTAT register. The application can poll this diagnostic register to make sure that a domain that has been commanded to turn off has actually received the command. Figure 3-22. Isolation Diagnostic Status Register (ISODIAGSTAT) [offset = C0h] 31 8 Reserved R-0 3 2 1 0 Reserved 4 ISO DIAG[3] ISO DIAG[2] ISO DIAG[1] ISO DIAG[0] R-0 R-0 R-0 R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 3-21. Isolation Diagnostic Status Register (ISODIAGSTAT) Field Descriptions Bit Field 31-4 Reserved 3-0 Value 0 ISO DIAG[3-0] Description Read returns 0. Writes have no effect. Isolation Diagnostic Each of these bits corresponds to a logic power domain: Bit 3 for PD5, Bit 2 for PD4, Bit 1 for PD3, Bit 0 for PD2. Read in User and Privileged Mode. Writes have no effect. 230 0 Isolation is enabled for corresponding power domain. 1 Isolation is disabled for corresponding power domain. Power Management Module (PMM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Chapter 4 SPNU499C – March 2018 I/O Multiplexing and Control Module (IOMM) This chapter describes the I/O Multiplexing and Control Module (IOMM). Topic ........................................................................................................................... 4.1 4.2 4.3 4.4 4.5 4.6 Overview ........................................................................................................ Main Features of I/O Multiplexing Module (IOMM) ................................................ Control of Multiplexed Functions ....................................................................... Safety Features ............................................................................................... IOMM Registers ................................................................................................ Signal Multiplexing and Control ......................................................................... SPNU499C – March 2018 Submit Documentation Feedback I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated Page 232 232 232 236 237 246 231 Overview 4.1 www.ti.com Overview This chapter describes the overall features of the module which controls the I/O multiplexing on the device. The mapping of control registers to multiplexing options is specified in Section 4.6. 4.2 Main Features of I/O Multiplexing Module (IOMM) The IOMM contains memory-mapped registers (MMR) that control device-specific multiplexed functions. The safety and diagnostic features of the IOMM are: • Kicker mechanism to protect the MMRs from accidental writes • Error indication for access violations 4.3 Control of Multiplexed Functions Several functions are multiplexed on this microcontroller. The following sections describe the multiplexing scheme and its implementation. 4.3.1 Control of Multiplexed Outputs The signal multiplexing controlled by each memory-mapped control register (PINMMRn) is described in Table 4-16. Each byte in the PINMMRs control the functionality output on a single terminal. Consider the following example for the PINMMR10 control register. Figure 4-1. PINMMR10 Control Register, Address = FFFF EB38h 31 26 25 24 Reserved EMIF DATA[2] ETM DATA[18] RWP-0 R/WP-0 R/WP-1 23 17 16 Reserved 18 RTP DATA[15] EMIF nCS[0] RWP-0 R/WP-0 R/WP-1 15 9 8 Reserved 10 EMIF DATA[3] ETM DATA[19] RWP-0 R/WP-0 R/WP-1 7 2 1 0 Reserved 3 RMII_RX_ER MII_RX_ER AD1 EVT RWP-0 R/WP-0 R/WP-0 R/WP-1 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset • • • Consider the multiplexing controlled by PINMMR10[15–8]. These bits control the multiplexing between the ETMDATA[19] and EMIF_DATA[3] on the ball N15 of the 337BGA package for this device. The default function on the N15 ball is ETMDATA[19]. This is indicated by bit 8 of the PINMMR10 register being set. If the application wants to use N15 as an EMIF_DATA[3] signal, then bit 8 of PINMMR10 must be cleared and bit 9 must be set. Each feature of the output function is determined by the function selected to be output on a terminal. For example, the ball N15 on the 337BGA package is driven by an output buffer with an 8mA drive strength and which supports the adaptive impedance control mode for reduced electromagnetic emissions. This output buffer has the following signals: A (signal to be output), GZ (output enable), SBEN (Standard Buffer Enable) and LPM (Low Power Mode). Each of these signals is an output of a multiplexor which allows the selected function to control all available features of the output buffer. 232 I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control of Multiplexed Functions www.ti.com • The PINMMR control registers are used to implement a one-hot encoding scheme for selecting the multiplexed function. – For example, for the N15 ball on the 337BGA package for this device at least one out of bit 8 or bit 9 must be set. – If the application clears both bits 8 and 9, then the default function will be selected for output on N15. – If the application sets both bits 8 and 9, then the default function will be selected for output on N15. – If the application sets one ore more reserved bit(s) within the byte 15–8, then the default function will be selected for output on N15. Figure 4-2 shows the multiplexing between the output functions for the N15 ball. This terminal uses an 8mA low-EMI output buffer. Figure 4-2. Output Multiplexing Example PINMMR10[8, 9] 8mA low-EMI output buffer TIED ZERO GZ EMIF_DATA[3]_nEN ETM_DATA[19] A Y EMIF_DATA[3] pad not(GPREG1.7) for ETM SBEN not(GPREG1.6) for EMIF Notes on Figure 4-2: • ETM_DATA[19] is an output-only signal. Therefore the GZ is tied to zero when the ETM functionality is selected to be output on this pad. • The low-EMI mode controls for the EMIF and ETM signals are independent. These controls are multiplexed and chosen as per the function being output on this pad. 4.3.2 Control of Multiplexed Inputs The microcontrollers are available in two package options – 337-ball grid array (BGA) and 144-pin Quad Flat Pack (QFP). Input multiplexing is not required for the 337BGA package except for GIOB[2] and all the SPI4 signals. For the 144QFP package, some signals have a multiplexor implemented on their input side. The selection between the two input paths is done by a combination of two control registers. These registers are described in Table 4-1. Table 4-1. Input Multiplexing on 144QFP Parts Signal 144QFP Dedicated Input Pin # 144QFP Multiplexed Input Pin # SPI4SIMO – SPI4SOMI – SPI4CLK SPI4NENA SPNU499C – March 2018 Submit Documentation Feedback Control Register Bit A Control Register Bit B 30 PINMMR5[9] PINMMR23[16] 31 PINMMR5[17] PINMMR23[24] – 25 PINMMR5[1] PINMMR23[8] – 23 PINMMR4[17] PINMMR24[0] I/O Multiplexing and Control Module (IOMM) 233 Copyright © 2018, Texas Instruments Incorporated Control of Multiplexed Functions www.ti.com Table 4-1. Input Multiplexing on 144QFP Parts (continued) Signal 144QFP Dedicated Input Pin # 144QFP Multiplexed Input Pin # Control Register Bit A Control Register Bit B SPI4NCS[0] – 24 PINMMR4[25] PINMMR24[8] N2HET1[17] – 130 PINMMR20[17] PINMMR24[16] N2HET1[19] – 40 PINMMR8[9] PINMMR24[24] N2HET1[23] – 96 PINMMR12[17] PINMMR25[8] N2HET1[25] – 37 PINMMR7[9] PINMMR25[16] N2HET1[27] – 4 PINMMR0[26] PINMMR25[24] N2HET1[29] – 3 PINMMR0[18] PINMMR26[0] N2HET1[31] – 54 PINMMR9[10] PINMMR26[8] GIOB[2] 142 55 PINMMR29[16] PINMMR29[16] For signals with a “–” in the column for dedicated input pin #, these signals do have a dedicated pad on the die. The default input for these signals comes from the dedicated pad. To be able to drive in the input from the multiplexed pins on the 144QFP package, the IOMM registers need to be configured. Table 4-2. Input Multiplexing on 337BGA Parts Signal 337BGA Dedicated Input Ball # 337BGA Multiplexed Input Ball # SPI4SIMO – SPI4SOMI – Control Register Bit A Control Register Bit B W5 PINMMR5[9] PINMMR23[16] V6 PINMMR5[17] PINMMR23[24] SPI4CLK – K18 PINMMR5[1] PINMMR23[8] SPI4NENA – V2 PINMMR4[17] PINMMR24[0] SPI4NCS[0] – U1 PINMMR4[25] PINMMR24[8] GIOB[2] F2 V10 PINMMR29[16] PINMMR29[16] Table 4-1 and Table 4-2 show two controls for selecting the input path for each of these signals: A and B. A indicates the control register bit to be set to enable the corresponding signal to be output on the multiplexed pin. B is another control register bit that is used to select between the dedicated input terminal and the multiplexed pin. • The input to a module comes from the multiplexed pin when the condition [ A and not(B) ] = TRUE. • The input to a module comes from the dedicated pad when the condition [ not(A) or (A and B) ] = TRUE. NOTE: Inputs are broadcast to all multiplexed functions The input signals are broadcast to all modules hooked up to a terminal. The application must ensure that modules that are not being used in the application do not react to a change on their input functions. e.g. a GIO signal toggle can trigger an interrupt request, when the application actually is using the function multiplexed with this GIO signal. 234 I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control of Multiplexed Functions www.ti.com Figure 4-3. Input Multiplexing Example dedicated SPI4CLK pad Combination of PINMMR5[1] and PINMMR23[8] SPI4 SPI4CLK_IN multiplexed SPI4CLK pad to other input functions multiplexed with SPI4CLK 4.3.3 Control of Special Multiplexed Options PINMMR29 and PINMMR30 registers are used to control some specific device functions. • EMIF_CLK Control: PINMMR29[8] is set by default. This is used to block the EMIF_CLK from being output from the microcontroller. If the EMIF is used to connect to an external SDRAM module, then the application must enable the EMIF_CLK output by clearing the PINMMR29[8] bit. • Control for other EMIF Signals: Bit 31 of the system module control register GPREG1 at address 0xFFFFFFA0 is used to gate off the EMIF module outputs: EMIF_ADDR[0], EMIF_ADDR[1], EMIF_ADDR[6], EMIF_ADDR[7], EMIF_ADDR[8], EMIF_BA[1], EMIF_nCS[0], EMIF_nCS[3]. These 8 signals are multiplexed with NHET2 signals. By default, these terminals are tri-stated and pulled down. Any application that requires the EMIF functionality must set GPREG1[31]. This allows these 8 EMIF module outputs to be driven on to the assigned balls. • Ethernet Controller Mode Control: PINMMR29[24] is set by default. This bit is used to enable the Reduced Media Independent Interface of the Ethernet controller. If the application desires to use the Media Independent Interface of the Ethernet controller, then the PINMMR29[24] must be cleared. • ADC Trigger Control: The microcontrollers contain two Analog-to-Digital Converter (ADC) modules. The ADC conversions can be started using a rising or falling or both edges as the trigger event. Both the ADC modules support up to eight event trigger inputs. There are two sets of these 8 inputs for each ADC. The first set is the default set and is selected by setting the PINMMR30[0]. The PINMMR30[0] is also set by default. The alternate set of 8 event trigger options are selected by clearing PINMMR30[0] bit. • Generating Interrupt when fault is indicated to N2HET2 The N2HET modules on this microcontroller support a mechanism to respond to faults indicated on their PIN_nDIS inputs. This input for the N2HET2 module is connected to the MibSPI3_nCS[0]/AD2EVT terminal. When this terminal is driven low, the N2HET2 can be configured to tri-state all PWMs output from the N2HET2. It is very useful to be able to generate an interrupt to the host CPU when this happens. Therefore, the MibSPI3_nCS[0] / AD2EVT signal is also available to be connected to the GIOB[2] signal. This device also contains a dedicated terminal for the GIOB[2] signal. This necessitates a multiplexor on the input connection to the GIOB[2]. This multiplexor's selection is controlled by PINMMR29[16]. When PINMMR29[16] is cleared (0, default), the connection to the GIOB[2] comes from the dedicated terminal. When PINMMR29[16] is set, the connection to the GIOB[2] comes from the MibSPI3_nCS[0] / AD2EVT terminal. Enabling this connection to the GIOB[2] allows the application to generate a GIO interrupt to the host CPU when the external fault monitor circuitry drives the MibSPI3_nCS[0] / AD2EVT terminal low to indicate a fault condition to the N2HET2 module. SPNU499C – March 2018 Submit Documentation Feedback I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated 235 Safety Features 4.4 www.ti.com Safety Features The IOMM supports certain safety functions that are designed to prevent unintentional changes to the I/O multiplexing configuration. These are described in the following sections. 4.4.1 Locking Mechanism for Memory-Mapped Registers The IOMM contains a mechanism to prevent any spurious writes from changing any of the IOMM control register values. The control registers other than the KICK0 and KICK1 registers are locked by default and after any system reset. None of the IOMM control registers can be written under this condition. The application can read any of the IOMM registers regardless of the state of the locking mechanism. • Enabling Write Access to the IOMM Registers To enable write access to the IOMM registers other than Kick0 and Kick1 registers, the CPU must write 0x83e70b13 to the kick0 register followed by a write of 0x95a4f1e0 to the kick1 register. • Disabling Write Access to the IOMM Registers It is recommended to disable write access to the IOMM registers once the I/O multiplexing configuration is completed. This can be done by: • writing any other data value to either of the kick registers, or • restarting the unlock sequence by writing 0x83e70b13 to the kick0 register, and not writing the correct key to the kick1 register NOTE: No Error On Write to Locked IOMM Registers There is no error response on any write accesses to the IOMM registers when write access is disabled. None of the IOMM registers change state due to this write. 4.4.2 Error Conditions The IOMM generates one error signal that is mapped to the Error Signaling Module’s Group 1, channel 37. This error signal is generated under either of the following two conditions: • Address Error – occurs when there is a read or a write access to an non-implemented memory location within the IOMM register frame. • Protection Error – occurs when the CPU writes to an IOMM register while not in a privileged mode of operation. The application can read the Error Raw Status register (Section 4.5.5) to determine the actual cause of the error. 236 I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback IOMM Registers www.ti.com 4.5 IOMM Registers Table 4-3 shows a summary of the control registers in the IOMM. The address offset is specified from the base address of FFFF EA00h. Table 4-3. IOMM Registers Offset Acronym Register Description 00h REVISION_REG Revision Register Section 4.5.1 Section 20h ENDIAN_REG Device Endianness Register Section 4.5.2 38h KICK_REG0 Kicker Register 0 Section 4.5.3 3Ch KICK_REG1 Kicker Register 1 Section 4.5.4 E0h ERR_RAW_STATUS_REG Error Raw Status / Set Register Section 4.5.5 E4h ERR_ENABLED_STATUS_REG Error Enabled Status / Clear Register Section 4.5.6 E8h ERR_ENABLE_REG Error Signaling Enable Register Section 4.5.7 ECh ERR_ENABLE_CLR_REG Error Signaling Enable Clear Register Section 4.5.8 F4h FAULT_ADDRESS_REG Fault Address Register Section 4.5.9 F8h FAULT_STATUS_REG Fault Status Register Section 4.5.10 FCh FAULT_CLEAR_REG Fault Clear Register Section 4.5.11 PINMMRnn Pin Multiplexing Control Registers Section 4.5.12 B10h-B88h 4.5.1 REVISION_REG: Revision Register This is a read-only register that provides the revision information about the I/O Multiplexing Module (IOMM). Figure 4-4. REVISION_REG: Revision Register (Address = FFFFEA00h) 31 30 29 28 27 16 REV SCHEME Reserved REV MODULE R-01 R-0 R-E84h 15 11 10 8 7 6 5 0 REV RTL REV MAJOR REV CUSTOM REV MINOR R-0 R-001 R-0 R-2h LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 4-4. Revision Register Field Descriptions Bit Field Value Description 31-30 REV SCHEME 01 Revision Scheme 29-28 Reserved 0 Reads return zeros, writes have no effect. 27-16 REV MODULE 15-11 REV RTL E84h 0 RTL Revision 10-8 REV MAJOR 7-6 REV CUSTOM 0 Custom Revision 5-0 REV MINOR 2h Minor Revision SPNU499C – March 2018 Submit Documentation Feedback 001 Module Id Major Revision I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated 237 IOMM Registers www.ti.com 4.5.2 ENDIAN_REG: Device Endianness Register This is a read-only register that reflects the state of the device endianness. Figure 4-5. ENDIAN_REG: Device Endianness Register (Address = FFFFEA20h) 31 16 Reserved R-0 15 1 0 Reserved ENDIAN R-0 R-D LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; R-D = Value read is determined by external configuration Table 4-5. Device Endianness Register Field Descriptions Bit Field 31-1 Reserved 0 ENDIAN 238 Value 0 Description Reads return zeros, writes have no effect. Device endianness 0 Device is configured in little-endian mode. 1 Device is configured in big-endian mode. I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback IOMM Registers www.ti.com 4.5.3 KICK_REG0: Kicker Register 0 This register forms the first part of the unlock sequence for being able to update the I/O multiplexing control registers (PINMMRnn). Figure 4-6. KICK_REG0: Kicker Register 0 (Address = FFFFEA38h) 31 16 KICK0 R/W-0 15 0 KICK0 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 4-6. Kicker Register 0 Field Descriptions Bit Field Value 31-0 KICK0 0 Description Kicker 0 Register. The value 83E7 0B13h must be written to KICK0 as part of the process to unlock the CPU write access to the PINMMRnn registers. 4.5.4 KICK_REG1: Kicker Register 1 This register forms the second part of the unlock sequence for being able to update the I/O multiplexing control registers (PINMMRnn). Figure 4-7. KICK_REG1: Kicker Register 1 (Address = FFFFEA3Ch) 31 16 KICK1 R/W-0 15 0 KICK1 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 4-7. Kicker Register 1 Field Descriptions Bit Field Value 31-0 KICK1 0 SPNU499C – March 2018 Submit Documentation Feedback Description Kicker 1 Register. The value 95A4 F1E0h must be written to the KICK1 as part of the process to unlock the CPU write access to the PINMMRnn registers. I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated 239 IOMM Registers www.ti.com 4.5.5 ERR_RAW_STATUS_REG: Error Raw Status / Set Register This register shows the status of the error conditions (before enabling) and allows setting the error status. The IOMM module error signal is connected to the device's Error Signaling Module (ESM) group1 channel 37. The application can choose to generate an interrupt whenever this ESM channel flag gets set. This interrupt service routine can then read this Error Raw Status Register to determine the actual cause of the error condition. The Error Raw Status register is also writable by the application in order to test the ESM signaling and interrupt generation mechanism. Figure 4-8. ERR_RAW_STATUS_REG: Error Raw Status / Set Register (Address = FFFFEAE0h) 31 8 Reserved R-0 7 1 0 Reserved 2 ADDR_ERR PROT_ERR R-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 4-8. Error Raw Status / Set Register Field Descriptions Bit 31-2 1 Field Reserved Value 0 ADDR_ERR Description Read returns zeros, writes have no effect. Addressing Error Status. An Addressing Error occurs when an unimplemented location inside the IOMM register frame is accessed. 0 Read: Addressing Error has not occurred. Write: Writing 0 has no effect. 1 Read: Addressing Error has been detected. Write: Addressing Error status is set. 0 PROT_ERR Protection Error Status. A Protection Error occurs when any control register inside the IOMM is written in the CPU's user mode of operation. 0 Read: Protection Error has not occurred. Write: Writing 0 has no effect. 1 Read: Protection Error has been detected. Write: Protection Error status is set. 240 I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback IOMM Registers www.ti.com 4.5.6 ERR_ENABLED_STATUS_REG: Error Enabled Status / Clear Register This register shows the status of the error conditions and allows clearing of the error status. Figure 4-9. ERR_ENABLED_STATUS_REG: Error Enabled Status / Clear Register (Address = FFFFEAE4h) 31 8 Reserved R-0 7 2 Reserved R-0 1 0 ENABLED_ ADDR_ERR ENABLED_ PROT_ERR R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 4-9. Error Signaling Enabled Status / Clear Register Field Descriptions Bit 31-2 1 Field Reserved Value 0 ENABLED_ADDR_ERR Description Read returns zeros, writes have no effect. Addressing Error Signaling Enable and Status Clear 0 Read: Addressing Error Signaling is disabled. Write: Writing 0 has no effect. 1 Read: Addressing Error Signaling is enabled. Write: Addressing Error status is cleared. 0 ENABLED_PROT_ERR Protection Error Signaling Enable and Status Clear 0 Read: Protection Error Signaling is disabled. Write: Writing 0 has no effect. 1 Read: Protection Error Signaling is enabled. Write: Protection Error status is cleared. SPNU499C – March 2018 Submit Documentation Feedback I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated 241 IOMM Registers www.ti.com 4.5.7 ERR_ENABLE_REG: Error Signaling Enable Register This register shows the interrupt enable status and allows enabling of the interrupts. Figure 4-10. ERR_ENABLE_REG: Error Signaling Enable Register (Address = FFFFEAE8h) 31 8 Reserved R-0 7 2 Reserved 1 ADDR_ERR_EN R-0 R/WP-0 0 PROT_ERR_EN R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 4-10. Error Enable Register Field Descriptions Bit 31-2 1 Field Reserved Value 0 ADDR_ERR_EN Description Read returns zeros, writes have no effect. Addressing Error Signaling Enable 0 Read: Addressing Error Signaling is disabled. Write: Writing 0 has no effect. 1 Read: Addressing Error Signaling is enabled. Write: Addressing Error Signaling is enabled. 0 PROT_ERR_EN Protection Error Signaling Enable 0 Read: Protection Error Signaling is disabled. Write: Writing 0 has no effect. 1 Read: Protection Error Signaling is enabled. Write: Protection Error Signaling is enabled. 242 I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback IOMM Registers www.ti.com 4.5.8 ERR_ENABLE_CLR_REG: Error Signaling Enable Clear Register This register shows the error signaling enable status and allows disabling of the error signaling. Figure 4-11. ERR_ENABLE_CLR_REG: Error Signaling Enable Clear Register (Address = FFFFEAECh) 31 8 Reserved R-0 7 1 0 Reserved 2 ADDR_ERR_ EN_CLR PROT_ERR_ EN_CLR R-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 4-11. Interrupt Enable Clear Register Field Descriptions Bit 31-2 1 Field Value Reserved 0 ADDR_ERR_EN_CLR Description Read returns zeros, writes have no effect. Addressing Error Signaling Enable Clear 0 Read: Addressing Error signaling is disabled. Write: Writing 0 has no effect. 1 Read: Addressing Error signaling is enabled. Write: Addressing Error signaling is disabled. 0 PROT_ERR_EN_CLR Protection Error Signaling Enable Clear 0 Read: Protection Error signaling is disabled. Write: Writing 0 has no effect. 1 Read: Protection Error signaling is enabled. Write: Protection Error signaling is disabled. 4.5.9 FAULT_ADDRESS_REG: Fault Address Register This register holds the address offset of the first fault transfer. Figure 4-12. FAULT_ADDRESS_REG: Fault Address Register (Address = FFFFEAF4h) 31 16 Reserved R-0 15 9 8 0 Reserved FAULT_ADDR R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 4-12. Fault Address Register Field Descriptions Bit Field Value Description 31-9 Reserved 0 Read returns zeros, writes have no effect. 8-0 FAULT_ADDR 0 Fault Address. The fault address offset in case of an address error or a protection error condition. SPNU499C – March 2018 Submit Documentation Feedback I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated 243 IOMM Registers www.ti.com 4.5.10 FAULT_STATUS_REG: Fault Status Register This register holds the status and attributes of the first fault transfer. Figure 4-13. FAULT_STATUS_REG: Fault Status Register (Address = FFFFEAF8h) 31 28 27 24 23 16 Reserved FAULT_ID FAULT_MSTID R-0 R-0 R-0 15 13 Reserved 12 9 FAULT_PRIVID R-0 R-0 8 7 6 Rsvd Rsvd Rsvd R-0 R-0 R-0 5 0 FAULT_TYPE R-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 4-13. Fault Status Register Field Descriptions Bit Field 31-28 Reserved 27-24 FAULT_ID 23-16 FAULT_MSTID 15-13 Reserved 12-9 FAULT_PRIVID 8-6 Reserved 5-0 FAULT_TYPE 244 Value 0 Description Reads return zeros, writes have no effect. Faulting Transaction ID ID of Master that initiated the faulting transaction 0 Reads return zeros, writes have no effect. Faulting Privilege ID 0 Reads return zeros, writes have no effect. Type of fault detected 0 No fault 1h User execute fault 2h User write fault 4h User read fault 8h Supervisor execute fault 10h Supervisor write fault 20h Supervisor read fault I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback IOMM Registers www.ti.com 4.5.11 FAULT_CLEAR_REG: Fault Clear Register This register allows the application to clear the current fault so that another can be captured when 1 is written to this register. Figure 4-14. FAULT_CLEAR_REG: Fault Clear Register (Address = FFFFEAFCh ) 31 16 Reserved R-0 15 1 0 Reserved FAULT_CLEAR R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 4-14. FAULT_CLEAR_REG: Fault Clear Register Field Descriptions Bit 31-1 0 Field Value Reserved 0 FAULT_CLEAR Description Reads return zeros, writes have no effect. Fault Clear 0 Read: Current value of the FAULT_CLEAR bit is 0. Write: Writing 0 has no effect. 1 Read: Current value of the FAULT_CLEAR bit is 1. Write: Writing a 1 clears the current fault. 4.5.12 PINMMRnn: Pin Multiplexing Control Registers These registers control the multiplexing of the functionality available on each pad. There are 31 such registers – PINMMR0 through PINMMR31. Each 8-bit field of a PINMMR register controls the functionality of a single ball/pin. The mapping between the PINMMRx control registers and the functionality selected on a given terminal is defined in Section 4.6. Some of the PINMMRnn registers are also used to control special multiplexed functions on the device. These are described in Section 4.3.3. Figure 4-15. PINMMRnn: Pin Multiplexing Control Registers (Address = FFFFEB10h-FFFFEB88h) 31 24 23 16 PINMMRx[31-24] PINMMRx[23-16] R/WP-1 R/WP-1 15 8 7 0 PINMMRx[15-8] PINMMRx[7-0] R/WP-1 R/WP-1 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 4-15. Pin Multiplexing Control Registers Field Descriptions Bit Field Value 31-24 PINMMRx[31-24] 1h 23-16 PINMMRx[23-16] 1h 15-8 PINMMRx[15-8] 1h 7-0 PINMMRx[7-0] 1h SPNU499C – March 2018 Submit Documentation Feedback Description Each of these byte-fields control the functionality on a given ball/pin. Please refer to Table 4-16 for a list of multiplexed signals sorted by the control registers. I/O Multiplexing and Control Module (IOMM) Copyright © 2018, Texas Instruments Incorporated 245 Signal Multiplexing and Control 4.6 www.ti.com Signal Multiplexing and Control Table 4-16 shows the multiplexing implemented on this microcontroller as well as the memory-mapped registers (PINMMRx) that control these multiplexors. These are all 32-bit registers and can be addressed using byte, half-word, or word accesses. Any bit not shown in the table is reserved and will read as zero. Table 4-16. Multiplexing and Control Control Register Address Default Function Selection Bit Alternate Function 1 Selection Bit Alternate Function 2 Selection Bit Alternate Function 3 Selection Bit Alternate Function 4 GIOB[3] PINMMR0[0] RESERVED PINMMR0[1] RESERVED PINMMR0[2] RESERVED PINMMR0[3] RESERVED PINMMR0[4] GIOA[0] PINMMR0[8] RESERVED PINMMR0[9] RESERVED PINMMR0[10] RESERVED PINMMR0[11] RESERVED PINMMR0[12] MIBSPI3NCS[3] PINMMR0[16] I2C_SCL PINMMR0[17] N2HET1[29] PINMMR0[18] RESERVED PINMMR0[19] RESERVED PINMMR0[20] MIBSPI3NCS[2] PINMMR0[24] I2C_SDA PINMMR0[25] N2HET1[27] PINMMR0[26] RESERVED PINMMR0[27] RESERVED PINMMR0[28] GIOA[1] PINMMR1[0] RESERVED PINMMR1[1] RESERVED PINMMR1[2] RESERVED PINMMR1[3] RESERVED PINMMR1[4] N2HET1[11] PINMMR1[8] MIBSPI3NCS[4] PINMMR1[9] N2HET2[18] PINMMR1[10] RESERVED PINMMR1[11] RESERVED PINMMR1[12] ETMDATA[20] PINMMR1[16] EMIF_DATA[4] PINMMR1[17] RESERVED PINMMR1[18] RESERVED PINMMR1[19] RESERVED PINMMR1[20] ETMDATA[21] PINMMR1[24] EMIF_DATA[5] PINMMR1[25] RESERVED PINMMR1[26] RESERVED PINMMR1[27] RESERVED PINMMR1[28] GIOA[2] PINMMR2[0] RESERVED PINMMR2[1] RESERVED PINMMR2[2] N2HET2[0] PINMMR2[3] RESERVED PINMMR2[4] ETMDATA[22] PINMMR2[8] EMIF_DATA[6] PINMMR2[9] RESERVED PINMMR2[10] RESERVED PINMMR2[11] RESERVED PINMMR2[12] GIOA[3] PINMMR2[16] N2HET2[2] PINMMR2[17] RESERVED PINMMR2[18] RESERVED PINMMR2[19] RESERVED PINMMR2[20] GIOA[5] PINMMR2[24] EXTCLKIN PINMMR2[25] RESERVED PINMMR2[26] RESERVED PINMMR2[27] RESERVED PINMMR2[28] ETMDATA[23] PINMMR3[0] EMIF_DATA[7] PINMMR3[1] RESERVED PINMMR3[2] RESERVED PINMMR3[3] RESERVED PINMMR3[4] N2HET1[22] PINMMR3[8] RESERVED PINMMR3[9] RESERVED PINMMR3[10] RESERVED PINMMR3[11] RESERVED PINMMR3[12] Selection Bit FFFF EB10h FFFF EB14h FFFF EB18h FFFF EB1Ch GIOA[6] PINMMR3[16] N2HET2[4] PINMMR3[17] RESERVED PINMMR3[18] RESERVED PINMMR3[19] RESERVED PINMMR3[20] ETMDATA[24] PINMMR3[24] EMIF_DATA[8] PINMMR3[25] RESERVED PINMMR3[26] RESERVED PINMMR3[27] RESERVED PINMMR3[28] GIOA[7] PINMMR4[0] N2HET2[6] PINMMR4[1] RESERVED PINMMR4[2] RESERVED PINMMR4[3] RESERVED PINMMR4[4] ETMDATA[25] PINMMR4[8] EMIF_DATA[9] PINMMR4[9] RESERVED PINMMR4[10] RESERVED PINMMR4[11] RESERVED PINMMR4[12] N2HET1[01] PINMMR4[16] SPI4NENA PINMMR4[17] RESERVED PINMMR4[18] RESERVED PINMMR4[19] N2HET2[8] PINMMR4[20] N2HET1[03] PINMMR4[24] SPI4NCS[0] PINMMR4[25] RESERVED PINMMR4[26] RESERVED PINMMR4[27] N2HET2[10] PINMMR4[28] N2HET1[0] PINMMR5[0] SPI4CLK PINMMR5[1] RESERVED PINMMR5[2] RESERVED PINMMR5[3] RESERVED PINMMR5[4] N2HET1[02] PINMMR5[8] SPI4SIMO PINMMR5[9] RESERVED PINMMR5[10] RESERVED PINMMR5[11] RESERVED PINMMR5[12] FFFF EB20h FFFF EB24h N2HET1[05] PINMMR5[16] SPI4SOMI PINMMR5[17] N2HET2[12] PINMMR5[18] RESERVED PINMMR5[19] RESERVED PINMMR5[20] ETMDATA[26] PINMMR5[24] EMIF_DATA[10] PINMMR5[25] RESERVED PINMMR5[26] RESERVED PINMMR5[27] RESERVED PINMMR5[28] N2HET1[07] PINMMR6[0] RESERVED PINMMR6[1] RESERVED PINMMR6[2] N2HET2[14] PINMMR6[3] RESERVED PINMMR6[4] ETMDATA[27] PINMMR6[8] EMIF_DATA[11] PINMMR6[9] RESERVED PINMMR6[10] RESERVED PINMMR6[11] RESERVED PINMMR6[12] FFFF EB28h N2HET1[09] PINMMR6[16] N2HET2[16] PINMMR6[17] RESERVED PINMMR6[18] RESERVED PINMMR6[19] RESERVED PINMMR6[20] ETMDATA[28] PINMMR6[24] EMIF_DATA[12] PINMMR6[25] RESERVED PINMMR6[26] RESERVED PINMMR6[27] RESERVED PINMMR6[28] ETMDATA[29] PINMMR7[0] EMIF_DATA[13] PINMMR7[1] RESERVED PINMMR7[2] RESERVED PINMMR7[3] RESERVED PINMMR7[4] MIBSPI3NCS[1] PINMMR7[8] N2HET1[25] PINMMR7[9] MDCLK PINMMR7[10] RESERVED PINMMR7[11] RESERVED PINMMR7[12] N2HET1[06] PINMMR7[16] SCIRX PINMMR7[17] RESERVED PINMMR7[18] RESERVED PINMMR7[19] RESERVED PINMMR7[20] ETMDATA[30] PINMMR7[24] EMIF_DATA[14] PINMMR7[25] RESERVED PINMMR7[26] RESERVED PINMMR7[27] RESERVED PINMMR7[28] FFFF EB2Ch 246 I/O Multiplexing and Control Module (IOMM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Signal Multiplexing and Control www.ti.com Table 4-16. Multiplexing and Control (continued) Control Register Address Default Function Selection Bit Alternate Function 1 Selection Bit Alternate Function 2 Selection Bit Alternate Function 3 Selection Bit Alternate Function 4 N2HET1[13] PINMMR8[0] SCITX PINMMR8[1] RESERVED PINMMR8[2] RESERVED PINMMR8[3] RESERVED PINMMR8[4] MIBSPI1NCS[2] PINMMR8[8] N2HET1[19] PINMMR8[9] MDIO PINMMR8[10] RESERVED PINMMR8[11] RESERVED PINMMR8[12] Selection Bit FFFF EB30h N2HET1[15] PINMMR8[16] MIBSPI1NCS[4] PINMMR8[17] RESERVED PINMMR8[18] RESERVED PINMMR8[19] RESERVED PINMMR8[20] ETMDATA[31] PINMMR8[24] EMIF_DATA[15] PINMMR8[25] RESERVED PINMMR8[26] RESERVED PINMMR8[27] RESERVED PINMMR8[28] ETMTRACECLKIN PINMMR9[0] EXTCLKIN2 PINMMR9[1] RESERVED PINMMR9[2] RESERVED PINMMR9[3] RESERVED PINMMR9[4] MIBSPI3NENA PINMMR9[8] MIBSPI3NCS[5] PINMMR9[9] N2HET1[31] PINMMR9[10] RESERVED PINMMR9[11] RESERVED PINMMR9[12] MIBSPI3NCS[0] PINMMR9[16] AD2EVT PINMMR9[17] GIOB[2] PINMMR9[18] RESERVED PINMMR9[19] RESERVED PINMMR9[20] MIBSPI1NCS[3] PINMMR9[24] N2HET1[21] PINMMR9[25] RESERVED PINMMR9[26] RESERVED PINMMR9[27] RESERVED PINMMR9[28] AD1EVT PINMMR10[0] MII_RX_ER PINMMR10[1] RMII_RX_ER PINMMR10[2] RESERVED PINMMR10[3] RESERVED PINMMR10[4] ETMDATA[19] PINMMR10[8] EMIF_DATA[3] PINMMR10[9] RESERVED PINMMR10[10] RESERVED PINMMR10[11] RESERVED PINMMR10[12] FFFF EB34h FFFF EB38h EMIF_nCS[0] PINMMR10[16] RTP_DATA[15] PINMMR10[17] N2HET2[7] PINMMR10[18] RESERVED PINMMR10[19] RESERVED PINMMR10[20] ETMDATA[18] PINMMR10[24] EMIF_DATA[2] PINMMR10[25] RESERVED PINMMR10[26] RESERVED PINMMR10[27] RESERVED PINMMR10[28] EMIF_nCS[3] PINMMR11[0] RTP_DATA[14] PINMMR11[1] N2HET2[9] PINMMR11[2] RESERVED PINMMR11[3] RESERVED PINMMR11[4] EMIF_nCS[4] PINMMR11[8] RTP_DATA[07] PINMMR11[9] RESERVED PINMMR11[10] RESERVED PINMMR11[11] RESERVED PINMMR11[12] ETMDATA[17] PINMMR11[16] EMIF_DATA[1] PINMMR11[17] RESERVED PINMMR11[18] RESERVED PINMMR11[19] RESERVED PINMMR11[20] N2HET1[24] PINMMR11[24] MIBSPI1NCS[5] PINMMR11[25] MII_RXD[0] PINMMR11[26] RMII_RXD[0] PINMMR11[27] RESERVED PINMMR11[28] N2HET1[26] PINMMR12[0] MII_RXD[1] PINMMR12[1] RMII_RXD[1] PINMMR12[2] RESERVED PINMMR12[3] RESERVED PINMMR12[4] ETMDATA[16] PINMMR12[8] EMIF_DATA[0] PINMMR12[9] RESERVED PINMMR12[10] RESERVED PINMMR12[11] RESERVED PINMMR12[12] MIBSPI1NENA PINMMR12[16] N2HET1[23] PINMMR12[17] MII_RXD[2] PINMMR12[18] RESERVED PINMMR12[19] RESERVED PINMMR12[20] MIBSPI5NENA PINMMR12[24] DMM_DATA[7] PINMMR12[25] MII_RXD[3] PINMMR12[26] RESERVED PINMMR12[27] RESERVED PINMMR12[28] MIBSPI5SOMI[0] PINMMR13[0] DMM_DATA[12] PINMMR13[1] MII_TXD[0] PINMMR13[2] RMII_TXD[0] PINMMR13[3] RESERVED PINMMR13[4] MIBSPI5SIMO[0] PINMMR13[8] DMM_DATA[8] PINMMR13[9] MII_TXD[1] PINMMR13[10] RMII_TXD[1] PINMMR13[11] RESERVED PINMMR13[12] FFFF EB3Ch FFFF EB40h FFFF EB44h MIBSPI5CLK PINMMR13[16] DMM_DATA[4] PINMMR13[17] MII_TXEN PINMMR13[18] RMII_TXEN PINMMR13[19] RESERVED PINMMR13[20] MIBSPI1NCS[0] PINMMR13[24] MIBSPI1SOMI[1] PINMMR13[25] MII_TXD[2] PINMMR13[26] RESERVED PINMMR13[27] RESERVED PINMMR13[28] N2HET1[8] PINMMR14[0] MIBSPI1SIMO[1] PINMMR14[1] MII_TXD[3] PINMMR14[2] RESERVED PINMMR14[3] RESERVED PINMMR14[4] N2HET1[28] PINMMR14[8] MII_RXCLK PINMMR14[9] RMII_REFCLK PINMMR14[10] MII_RX_AVCLK4 PINMMR14[11] RESERVED PINMMR14[12] FFFF EB48h EMIF_nWE PINMMR14[16] RESERVED PINMMR14[17] RESERVED PINMMR14[18] RESERVED PINMMR14[19] RESERVED PINMMR14[20] EMIF_BA[1] PINMMR14[24] N2HET2[5] PINMMR14[25] RESERVED PINMMR14[26] RESERVED PINMMR14[27] RESERVED PINMMR14[28] EMIF_ADDR[21] PINMMR15[0] RTP_CLK PINMMR15[1] RESERVED PINMMR15[2] RESERVED PINMMR15[3] RESERVED PINMMR15[4] EMIF_ADDR[20] PINMMR15[8] RTP_nSYNC PINMMR15[9] RESERVED PINMMR15[10] RESERVED PINMMR15[11] RESERVED PINMMR15[12] EMIF_ADDR[19] PINMMR15[16] RTP_nENA PINMMR15[17] RESERVED PINMMR15[18] RESERVED PINMMR15[19] RESERVED PINMMR15[20] EMIF_ADDR[18] PINMMR15[24] RTP_DATA[0] PINMMR15[25] RESERVED PINMMR15[26] RESERVED PINMMR15[27] RESERVED PINMMR15[28] ETMDATA[12] PINMMR16[0] EMIF_BA[0] PINMMR16[1] RESERVED PINMMR16[2] RESERVED PINMMR16[3] RESERVED PINMMR16[4] EMIF_ADDR[17] PINMMR16[8] RTP_DATA[01] PINMMR16[9] RESERVED PINMMR16[10] RESERVED PINMMR16[11] RESERVED PINMMR16[12] EMIF_ADDR[16] PINMMR16[16] RTP_DATA[02] PINMMR16[17] RESERVED PINMMR16[18] RESERVED PINMMR16[19] RESERVED PINMMR16[20] ETMDATA[13] PINMMR16[24] EMIF_nOE PINMMR16[25] RESERVED PINMMR16[26] RESERVED PINMMR16[27] RESERVED PINMMR16[28] FFFF EB4Ch FFFF EB50h I/O Multiplexing and Control Module (IOMM) 247 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Signal Multiplexing and Control www.ti.com Table 4-16. Multiplexing and Control (continued) Control Register Address Default Function Selection Bit Alternate Function 1 Selection Bit Alternate Function 2 Selection Bit Alternate Function 3 Selection Bit Alternate Function 4 Selection Bit N2HET1[10] PINMMR17[0] MII_TX_CLK PINMMR17[1] RESERVED PINMMR17[2] MII_TX_AVCLK4 PINMMR17[3] RESERVED PINMMR17[4] ETMDATA[14] PINMMR17[8] EMIF_nDQM[1] PINMMR17[9] RESERVED PINMMR17[10] RESERVED PINMMR17[11] RESERVED PINMMR17[12] N2HET1[12] PINMMR17[16] MII_CRS PINMMR17[17] RMII_CRS_DV PINMMR17[18] RESERVED PINMMR17[19] RESERVED PINMMR17[20] ETMDATA[8] PINMMR17[24] EMIF_ADDR[5] PINMMR17[25] RESERVED PINMMR17[26] RESERVED PINMMR17[27] RESERVED PINMMR17[28] EMIF_ADDR[15] PINMMR18[0] RTP_DATA[03] PINMMR18[1] RESERVED PINMMR18[2] RESERVED PINMMR18[3] RESERVED PINMMR18[4] N2HET1[14] PINMMR18[8] RESERVED PINMMR18[9] RESERVED PINMMR18[10] RESERVED PINMMR18[11] RESERVED PINMMR18[12] EMIF_ADDR[14] PINMMR18[16] RTP_DATA[04] PINMMR18[17] RESERVED PINMMR18[18] RESERVED PINMMR18[19] RESERVED PINMMR18[20] GIOB[0] PINMMR18[24] RESERVED PINMMR18[25] RESERVED PINMMR18[26] RESERVED PINMMR18[27] RESERVED PINMMR18[28] ETMDATA[09] PINMMR19[0] EMIF_ADDR[4] PINMMR19[1] RESERVED PINMMR19[2] RESERVED PINMMR19[3] RESERVED PINMMR19[4] N2HET1[30] PINMMR19[8] MII_RX_DV PINMMR19[9] RESERVED PINMMR19[10] RESERVED PINMMR19[11] RESERVED PINMMR19[12] ETMDATA[15] PINMMR19[16] EMIF_nDQM[0] PINMMR19[17] RESERVED PINMMR19[18] RESERVED PINMMR19[19] RESERVED PINMMR19[20] ETMDATA[10] PINMMR19[24] EMIF_ADDR[3] PINMMR19[25] RESERVED PINMMR19[26] RESERVED PINMMR19[27] RESERVED PINMMR19[28] EMIF_ADDR[13] PINMMR20[0] RTP_DATA[05] PINMMR20[1] RESERVED PINMMR20[2] RESERVED PINMMR20[3] RESERVED PINMMR20[4] EMIF_ADDR[12] PINMMR20[8] RTP_DATA[06] PINMMR20[9] RESERVED PINMMR20[10] RESERVED PINMMR20[11] RESERVED PINMMR20[12] FFFF EB54h FFFF EB58h FFFF EB5Ch FFFF EB60h MIBSPI1NCS[1] PINMMR20[16] N2HET1[17] PINMMR20[17] MII_COL PINMMR20[18] RESERVED PINMMR20[19] RESERVED PINMMR20[20] EMIF_ADDR[11] PINMMR20[24] RTP_DATA[8] PINMMR20[25] RESERVED PINMMR20[26] RESERVED PINMMR20[27] RESERVED PINMMR20[28] EMIF_ADDR[1] PINMMR21[0] N2HET2[3] PINMMR21[1] RESERVED PINMMR21[2] RESERVED PINMMR21[3] RESERVED PINMMR21[4] GIOB[1] PINMMR21[8] RESERVED PINMMR21[9] RESERVED PINMMR21[10] RESERVED PINMMR21[11] RESERVED PINMMR21[12] EMIF_ADDR[10] PINMMR21[16] RTP_DATA[09] PINMMR21[17] RESERVED PINMMR21[18] RESERVED PINMMR21[19] RESERVED PINMMR21[20] EMIF_ADDR[9] PINMMR21[24] RTP_DATA[10] PINMMR21[25] RESERVED PINMMR21[26] RESERVED PINMMR21[27] RESERVED PINMMR21[28] EMIF_ADDR[0] PINMMR22[0] N2HET2[1] PINMMR22[1] RESERVED PINMMR22[2] RESERVED PINMMR22[3] RESERVED PINMMR22[4] EMIF_ADDR[7] PINMMR22[8] RTP_DATA[12] PINMMR22[9] N2HET2[13] PINMMR22[10] RESERVED PINMMR22[11] RESERVED PINMMR22[12] EMIF_ADDR[6] PINMMR22[16] RTP_DATA[13] PINMMR22[17] N2HET2[11] PINMMR22[18] RESERVED PINMMR22[19] RESERVED PINMMR22[20] ETMDATA[11] PINMMR22[24] EMIF_ADDR[2] PINMMR22[25] RESERVED PINMMR22[26] RESERVED PINMMR22[27] RESERVED PINMMR22[28] EMIF_ADDR[8] PINMMR23[0] RTP_DATA[11] PINMMR23[1] N2HET2[15] PINMMR23[2] RESERVED PINMMR23[3] RESERVED PINMMR23[4] SPI4CLK PINMMR23[8] RESERVED PINMMR23[9] RESERVED PINMMR23[10] RESERVED PINMMR23[11] RESERVED PINMMR23[12] SPI4SIMO PINMMR23[16] RESERVED PINMMR23[17] RESERVED PINMMR23[18] RESERVED PINMMR23[19] RESERVED PINMMR23[20] SPI4SOMI PINMMR23[24] RESERVED PINMMR23[25] RESERVED PINMMR23[26] RESERVED PINMMR23[27] RESERVED PINMMR23[28] SPI4NENA PINMMR24[0] RESERVED PINMMR24[1] RESERVED PINMMR24[2] RESERVED PINMMR24[3] RESERVED PINMMR24[4] SPI4NCS[0] PINMMR24[8] RESERVED PINMMR24[9] RESERVED PINMMR24[10] RESERVED PINMMR24[11] RESERVED PINMMR24[12] N2HET1[17] PINMMR24[16] RESERVED PINMMR24[17] RESERVED PINMMR24[18] RESERVED PINMMR24[19] RESERVED PINMMR24[20] N2HET1[19] PINMMR24[24] RESERVED PINMMR24[25] RESERVED PINMMR24[26] RESERVED PINMMR24[27] RESERVED PINMMR24[28] N2HET1[21] PINMMR25[0] RESERVED PINMMR25[1] RESERVED PINMMR25[2] RESERVED PINMMR25[3] RESERVED PINMMR25[4] N2HET1[23] PINMMR25[8] RESERVED PINMMR25[9] RESERVED PINMMR25[10] RESERVED PINMMR25[11] RESERVED PINMMR25[12] N2HET1[25] PINMMR25[16] RESERVED PINMMR25[17] RESERVED PINMMR25[18] RESERVED PINMMR25[19] RESERVED PINMMR25[20] N2HET1[27] PINMMR25[24] RESERVED PINMMR25[25] RESERVED PINMMR25[26] RESERVED PINMMR25[27] RESERVED PINMMR25[28] FFFF EB64h FFFF EB68h FFFF EB6Ch FFFF EB70h FFFF EB74h 248 I/O Multiplexing and Control Module (IOMM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Signal Multiplexing and Control www.ti.com Table 4-16. Multiplexing and Control (continued) Control Register Address Default Function Selection Bit Alternate Function 1 Selection Bit Alternate Function 2 Selection Bit Alternate Function 3 Selection Bit Alternate Function 4 Selection Bit N2HET1[29] PINMMR26[0] RESERVED PINMMR26[1] RESERVED PINMMR26[2] RESERVED PINMMR26[3] RESERVED PINMMR26[4] N2HET1[31] PINMMR26[8] RESERVED PINMMR26[9] RESERVED PINMMR26[10] RESERVED PINMMR26[11] RESERVED PINMMR26[12] MIBSPI5NCS[2] PINMMR26[16] DMM_DATA[2] PINMMR26[17] RESERVED PINMMR26[18] RESERVED PINMMR26[19] RESERVED PINMMR26[20] MIBSPI5NCS[3] PINMMR26[24] DMM_DATA[3] PINMMR26[25] RESERVED PINMMR26[26] RESERVED PINMMR26[27] RESERVED PINMMR26[28] MIBSPI5NCS[0] PINMMR27[0] DMM_DATA[5] PINMMR27[1] RESERVED PINMMR27[2] RESERVED PINMMR27[3] RESERVED PINMMR27[4] MIBSPI5NCS[1] PINMMR27[8] DMM_DATA[6] PINMMR27[9] RESERVED PINMMR27[10] RESERVED PINMMR27[11] RESERVED PINMMR27[12] MIBSPI5SIMO[1] PINMMR27[16] DMM_DATA[9] PINMMR27[17] RESERVED PINMMR27[18] RESERVED PINMMR27[19] RESERVED PINMMR27[20] MIBSPI5SIMO[2] PINMMR27[24] DMM_DATA[10] PINMMR27[25] RESERVED PINMMR27[26] RESERVED PINMMR27[27] RESERVED PINMMR27[28] MIBSPI5SIMO[3] PINMMR28[0] DMM_DATA[11] PINMMR28[1] RESERVED PINMMR28[2] RESERVED PINMMR28[3] RESERVED PINMMR28[4] MIBSPI5SOMI[1] PINMMR28[8] DMM_DATA[13] PINMMR28[9] RESERVED PINMMR28[10] RESERVED PINMMR28[11] RESERVED PINMMR28[12] MIBSPI5SOMI[2] PINMMR28[16] DMM_DATA[14] PINMMR28[17] RESERVED PINMMR28[18] RESERVED PINMMR28[19] RESERVED PINMMR28[20] MIBSPI5SOMI[3] PINMMR28[24] DMM_DATA[15] PINMMR28[25] RESERVED PINMMR28[26] RESERVED PINMMR28[27] RESERVED PINMMR28[28] SPI2NENA PINMMR29[0] SPI2NCS[1] PINMMR29[1] RESERVED PINMMR29[2] RESERVED PINMMR29[3] RESERVED PINMMR29[4] EMIF_CLK_SEL PINMMR29[8] RESERVED PINMMR29[9] RESERVED PINMMR29[10] RESERVED PINMMR29[11] RESERVED PINMMR29[12] FFFF EB78h FFFF EB7Ch FFFF EB80h FFFF EB84h GIOB[2] PINMMR29[16] RESERVED PINMMR29[17] RESERVED PINMMR29[18] RESERVED PINMMR29[19] RESERVED PINMMR29[20] GMII_SEL PINMMR29[24] RESERVED PINMMR29[25] RESERVED PINMMR29[26] RESERVED PINMMR29[27] RESERVED PINMMR29[28] ADC_TRG1 PINMMR30[0] ADC_TRG2 PINMMR30[1] RESERVED PINMMR30[2] RESERVED PINMMR30[3] RESERVED PINMMR30[4] RESERVED PINMMR30[8] RESERVED PINMMR30[9] RESERVED PINMMR30[10] RESERVED PINMMR30[11] RESERVED PINMMR30[12] RESERVED PINMMR30[16] RESERVED PINMMR30[17] RESERVED PINMMR30[18] RESERVED PINMMR30[19] RESERVED PINMMR30[20] RESERVED PINMMR30[24] RESERVED PINMMR30[25] RESERVED PINMMR30[26] RESERVED PINMMR30[27] RESERVED PINMMR30[28] FFFF EB88h I/O Multiplexing and Control Module (IOMM) 249 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Chapter 5 SPNU499C – March 2018 F021 Flash Module Controller (FMC) The Flash electrically-erasable programmable read-only memory module is a type of nonvolatile memory that has fast read access times and is able to be reprogrammed in the field or in the application. This chapter describes the F021 Flash module controller (FMC). 250 Topic ........................................................................................................................... 5.1 5.2 5.3 5.4 5.5 5.6 5.7 Overview ........................................................................................................ Default Flash Configuration .............................................................................. SECDED ......................................................................................................... Memory Map ................................................................................................... Power On, Power Off, and Reset Considerations ................................................. Emulation and SIL3 Diagnostic Modes ................................................................ Control Registers ............................................................................................ F021 Flash Module Controller (FMC) Page 251 252 253 257 260 261 267 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Overview www.ti.com 5.1 Overview The F021 Flash is used to provide non-volatile memory for instruction execution or data storage. The Flash can be electrically programmed and erased many times to ease code development. Refer to the following documents for support in how to initialize and use the on-chip Flash and its API: • Initialization of Hercules ARM Cortex-R4F Microcontrollers Application Report (SPNA106) • F021 (Texas Instruments 65nm Flash) Flash API Reference Guide (SPNU501) 5.1.1 Features • • • • • Read, program and erase with a single 3.3 V supply voltage Supports error detection and correction – Single Error Correction and Double Error Detection (SECDED) – Error Correction Code (ECC) is evaluated in the CPU for the main Flash bank arrays and in the Flash Wrapper for the EEPROM emulation Flash banks – Address bits included in ECC calculation Provides different read modes to optimize performance and verify the integrity of Flash contents Provides built-in power mode control logic Integrated program/erase state machine – Simplifies software algorithms – Supports simultaneous read access on a bank while performing a write or erase operation on any one of the remaining banks – Suspend command allows read access to a sector being programmed/erased – Fast erase and program times (for details, see the device-specific data sheet) For the actual size of the Flash memory for the device, see the device-specific data sheet. 5.1.2 Definition of Terms Terms used in this document have the following meaning: • ATCM: Port A tightly coupled memory • BAGP (Bank Active Grace Period): Time (in HCLK cycles) from the most recent Flash access of a particular bank until that bank enters fallback power mode. This reduces power consumption by the Flash. However, it can also increase access time. • bw: Normal data space bank data width of a Flash bank. The bw is 128 bits (144 bits including the error correction bits). • bwe: EEPROM emulation bank is 128-bits wide (144 bits including the error correction bits). • Charge pump: Voltage generators and associated control (logic, oscillator, and bandgap, for example). • CSM: Program/erase command state machine • Fallback power mode: The power mode (active, standby or sleep, depending on which mode is selected) into which a bank or the charge pump falls back each time the active grace period expires. • Flash bank: A group of Flash sectors that share input/output buffers, data paths, sense amplifiers, and control logic. • FEE - Flash EEPROM Emulation. Features on the FMC to support using a Flash type memory in place of an EEPROM Flash memory. EEPROM is erasable by the word while this Flash memory is only erasable by the sector. The FEE bank is accessible only through Bus 2 in a special address range and always resides in bank 7. • Flash module: Flash banks, charge pump, and Flash wrapper. • Flash wrapper: Power and mode control logic, data path, wait logic, and write/erase state machines. • FMC: Flash Module Controller. • Command: A sequence of coded instructions to Flash module to execute a certain task. SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 251 Overview • • • • • • • • • www.ti.com FSM (Flash State Machine): State machine that parses and decodes FSM commands. It executes embedded algorithms and generates control signals to both Flash bank and charge pump during the actual program/erase operation. OTP (one-time programmable): A program-only-once Flash sector (cannot be erased) PAGP (Pump Active Grace Period): Time (in HCLK cycles) from when the last of the banks have entered fallback power mode until the pump enters a fallback power mode. This can reduce power consumption by the Flash; however, it can also increase access time. Pipeline mode: The mode in which Flash is read 128 bits (+ 16 bit ECC) at a time, providing higher throughput. Sector: A contiguous region of Flash memory which must be erased simultaneously. Wide_Word: The width of the data output from the Flash bank. This is 144-bits wide for main Flash and for the FEE bank. Standard read mode: The mode assumed when the pipeline mode is disabled. Physically, 128 (+ 16 bit ECC) is read at a time. However, only 32 bits of data is used while the other bits of data are discarded. Read Margin 1 mode: More stringent read mode designed for early detection of marginally erased bits. Read Margin 0 mode: More stringent read mode designed for early detection of marginally programmed bits. 5.1.3 F021 Flash Tools Texas Instruments provides the following tools for F021 Flash: • nowECC Generation Tool - to generate the Flash ECC from the Flash data. • nowFLASH Programming Tool - to erase/program/verify the device Flash content through JTAG. • Code Composer Studio - the development environment with integrated Flash programming capabilities. • F021 Flash API Library - a set of software peripheral functions to program/erase the Flash module. Refer to F021 Flash API Reference Guide (SPNU501) for more information. 5.2 Default Flash Configuration At • • • • • 252 power up, the Flash module state exhibits the following properties: Wait states are set to 1 data wait state and 0 address wait states Pipeline mode is disabled The Flash content is protected from modification Power modes are set to Active (no power savings) The boot code must initialize the wait states (including data wait states and address wait states) and the desired pipeline mode by initializing the FRDCNTL register to achieve the optimum system performance. This needs to be done before switching to the final device operating frequency. Refer to Initialization of Hercules ARM Cortex-R4F Microcontrollers Application Report (SPNA106) for more information. F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated SECDED www.ti.com 5.3 SECDED The Flash memory can be protected by Single Error Correction Double Error Detection (SECDED). The main program memory is protected by the SECDED circuit inside of the Cortex-R4 CPU. All OTP and the FEE memory (bank 7) is protected by SECDED logic in the Flash wrapper. 5.3.1 SECDED Initialization Flash error detection and correction is not enabled at reset. To enable SECDED, error correction detection must be enabled in the Flash wrapper, the CPU event bus must be enabled and SECDED must be enabled within the CPU. Refer to Initialization of Hercules ARM Cortex-R4F Microcontrollers Application Report (SPNA106) for information on these steps. The ECC values for all of the ATCM program memory space (Flash banks 0 through 6) must be programmed into the Flash before SECDED is enabled. This can be done by generating the correct values of the ECC with an external tool such as nowECC or may be generated by the programming tool. The Cortex-R4 CPU may generate speculative fetches to any location within the ATCM memory space. A speculative fetch to a location with invalid ECC, which is subsequently not used, will not create an abort, but will set the ESM flags for a correctable or uncorrectable error. An uncorrectable error will unconditionally cause the nERROR pin to toggle low. Therefore care must be taken to generate the correct ECC for the entire ATCM space including the holes between sections and any unused or blank Flash areas. The Cortex-R4 CPU does not generate speculative fetches into the address space of bank 7, the EEPROM Emulation Flash. It is only necessary to initialize the ECC values of the locations which will be intentionally read by the CPU or other bus masters. SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 253 SECDED www.ti.com 5.3.2 ECC Encoding Nineteen address lines are also included in the ECC calculation. A failure of a single address line inside of the bank will be treated as an uncorrectable error. The ECC encoding is shown in Table 5-1. Bits 31:0 come from the word at the address ending in 0x0 or 0x8, Bits 63:31 come from the word at the address ending in 0x4 or 0xC. Table 5-1. ECC Encoding for BE32 Devices 8 2 8 1 8 0 7 9 7 8 7 7 7 6 7 5 7 4 7 3 7 2 7 1 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 7 0 6 9 6 8 6 7 6 6 6 5 6 4 Participating Address Bits ADDR_MSW_LSW ECC Bit 0007F_00FFFF00_FF0000FF 7 7FF80_FF0000FF_FF0000FF 6 07F80_00FF00FF_00FF00FF 5 19F83_FCC0FCC0_FCC0FCC0 4 6A78D_E338E338_E338E338 3 2A9B5_99A699A6_99A699A6 2 0BAD1_57155715_57155715 1 554EA_D1B4D1B4_2E4B2E4B 0 x x x x x x x x x x x x x x x x x x x x 0 9 0 8 0 7 0 6 0 5 0 4 0 3 x x x x x x x x x x x x x x x x x x x x x x x x x Participating Data Bits 6 3 6 2 6 1 6 0 5 9 5 8 5 7 5 6 x x x x x x x x x x x x x x x x x x x x x x x x x x x 5 4 5 3 5 2 5 1 5 0 4 9 4 8 4 7 4 6 4 5 4 4 4 3 4 2 4 1 4 0 x x x x x x x x x x x x x x x x x x x x x x x x 5 5 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x 3 8 3 7 3 6 3 5 3 4 3 3 3 2 x x x x x x x x x x x x x x x x x x x x x x x x 3 9 x x x x x x Participating Data Bits 2 6 2 5 2 4 x x x x x x x x x x x (1) (2) 254 2 2 x x x x x x x 2 3 2 1 x x x 2 0 x x 1 9 x x x x x 1 7 x 1 6 x x x 1 4 1 3 x x x x x x x x x 1 5 1 2 1 1 1 0 0 9 0 8 x x x x 1 8 x x x x x x x x x x x x x x x x 3 0 2 9 2 8 2 7 x x x x x x x x x x x x x x x x x x x x x x x x x x x x x Parity (1) Check Bits (2) 0 7 0 6 0 5 0 4 0 3 0 2 0 1 0 0 x x x x x x x x Even ECC[7] x x x x x x x x Even ECC[6] x x x x x x x x Even ECC[5] x x Even ECC[4] Odd ECC[3] Odd ECC[2] x Even ECC[1] x Even ECC[0] x x x 3 1 x x x x x x x x x x x x x x For Odd parity, XOR a 1 to the row’s XOR result. For even Parity, use the row’s XOR result directly. Each ECC[x] bit represents the XOR of all the address and data bits marked with x in the same row. F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated SECDED www.ti.com 5.3.3 Syndrome Table: Decode to Bit in Error The syndrome is an 8-bit value that decodes to the bit in error. The bit in error can be a bit among the 64 data bits, the 19 address bits, or a bit among the 8 ECC check bits. A syndrome value of 00000000 indicates there is no error. Any other syndrome combinations not shown in the table are uncorrectable multi-bit error. Errors of three of more bits may escape detection. The syndrome decoding is shown in Table 5-2. Table 5-2. Syndrome Table, Decode to Bit in Error Address Bit Error Position 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 0 9 0 8 0 7 0 6 0 5 0 4 0 3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 0 1 0 1 0 0 1 1 1 1 0 0 0 1 1 0 1 0 1 0 1 0 1 0 1 0 0 1 1 0 1 1 0 1 0 1 0 0 0 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 1 1 0 1 0 1 0 1 0 1 0 0 1 1 1 0 1 0 1 0 Data Bit Error Position 6 3 6 2 6 1 6 0 5 9 5 8 5 7 5 6 5 5 5 4 5 3 5 2 5 1 5 0 4 9 4 8 4 7 4 6 4 5 4 4 4 3 4 2 4 1 4 0 3 9 3 8 3 7 3 6 3 5 3 4 3 3 3 2 3 1 3 0 2 9 2 8 2 7 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 0 0 0 1 1 0 1 1 0 1 0 0 1 1 0 1 0 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1 Data Bit Error Position ECC Error Bit 2 6 2 5 2 4 2 3 2 2 2 1 2 0 1 9 1 8 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 0 0 9 0 8 0 7 0 6 0 5 0 4 0 3 0 2 0 1 0 0 0 7 0 6 0 5 0 4 0 3 0 2 0 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 Bit[7] 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0 0 0 0 0 Bit[6] 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 1 0 0 0 0 0 Bit[5] 1 0 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 Bit[4] 0 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 1 0 0 0 Bit[3] 0 0 1 1 0 1 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 1 0 0 1 1 0 0 0 0 0 0 1 0 0 Bit[2] 1 1 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 1 1 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0 1 1 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0 0 1 Bit[0] SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated Bit1] 255 SECDED www.ti.com 5.3.4 Syndrome Table: An Alternate Method Table 5-3. Alternate Syndrome Table • • • • • 256 Syndrome msb 7:4 Syndrome lsb: 3:0 0x 1x 2x 3x 4x 5x 6x 7x 8x 9x Ax Bx Cx Dx Ex x0 good E04 E05 D E06 D D D38 E07 D D D54 D M M D x1 E00 D D D22 D A19 A17 D D A04 M D M D D D06 x2 E01 D D M D D58 D32 D D D42 D48 D M D D M x3 D D10 D16 D M D D A15 A09 D D M D D26 D00 D x4 E02 D D D23 D D59 D33 D D D43 D49 D M D D D07 x5 D D11 D17 D M D D D39 A08 D D D55 D D27 D01 D x6 D D12 D18 D M D D A14 A07 D D M D D28 D02 D x7 M D D M D D60 D34 D D D44 D50 D M D D M x8 E03 D D M D D61 D35 D D D45 D51 D M D D M D Fx x9 D D13 D19 D A21 D D A13 A06 D D M D D29 D03 xA D D14 D20 D D57 D D A12 D41 D D M D D30 D04 D xB D09 D D M D D62 D36 D D D46 D52 D D25 D D M xC D D15 D21 D A20 D D A11 A05 D D M D D31 D05 D xD M D D M D D63 D37 D D D47 D53 D M D D M xE D08 D D M D A18 A16 D D A03 M D D24 D D M xF D M M D D56 D D A10 D40 D D M D M M D E0x - Single-bit ECC error, correctable Dxx - Single-bit data error, correctable Axx - Single-bit address error, uncorrectable D - Double-bit error, uncorrectable M - Multi-bit errors, uncorrectable F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Memory Map www.ti.com 5.4 Memory Map The Flash module contains the program memory, which is mapped starting at location 0, and one Customer OTP sector and one TI OTP sector per bank. The Customer OTP sectors may be programmed by the customer, but cannot be erased. They are typically blank in new parts. The TI OTP sectors are used to contain manufacturing information. They may be read by the customer but can not be programmed or erased. The TI OTP sectors contain settings used by the Flash API to setup the Flash state machine for erase and program operations. All of these OTP regions are memory-mapped to facilitate ease of access by the CPU. They are memory mapped to an offset starting at F000 0000h in the CPU’s memory map. The RWAIT value is used to define the number of wait states for the program-memory Flash. The EWAIT value is used to define the number of wait states for the data Flash in bank 7. Bank 7 starting at offset F020 0000h is dedicated for data storages such as EEPROM Emulation. 5.4.1 Location of Flash ECC Bits The Flash ECC bits can be read starting at address 0xF0400000. The ECC bits are packed in their memory space as shown in Figure 5-1. The ECC bytes must be read as bytes or halfwords. Reading a single ECC byte with ECC enabled will actually cause 144 bits to be read from the Flash, and the ECC bits will be corrected if necessary. Any errors in either of the two double-words accessed will be recorded in the FEDACSTATUS register (main memory) or the EE_STATUS register (bank 7). Figure 5-1. ECC Organization for Program Flash (144-Bits Wide) Big Endian 8-bit Read 0x00000028 64 – bit data word 5 0x00000020 64 – bit data word 4 0x00000018 64 – bit data word 3 0xF0400005 ECC5 0xF0400004 ECC4 0xF0400003 ECC3 ECC5 0xF0400002 ECC2 ECC1 ECC0 16-bit Read 64 – bit data word 2 0xF0400004 0x00000008 64 – bit data word 1 0xF0400002 ECC2 ECC3 0xF0400001 0x00000000 64 – bit data word 0 0xF0400000 ECC0 ECC1 0xF0400000 0x00000010 ECC4 SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 257 Memory Map www.ti.com 5.4.2 OTP Memory 5.4.2.1 Flash Bank and Sector Sizes Flash Bank/Sectoring information can be determined from the device-specific datasheet or can be computed by reading locations in the TI OTP and FMC registers. The number of banks, which banks are available, and the number of sectors for bank 0 can be read from TI OTP location F008 0158h as shown in Figure 5-2 and described in Table 5-4. Figure 5-2. TI OTP Bank 0 Sector Information 31 24 23 16 Reserved BX_NUM_Sectors R R 15 14 13 12 11 10 9 8 B7 B6 B5 B4 B3 B2 B1 B0 7 NUM_Banks 0 R-1 R-0 R-0 R-0 R-0 R-0 R-1 R-1 R LEGEND: R = Read only Table 5-4. TI OTP Bank 0 Sector Information Field Descriptions Bit Field Value 31-24 Reserved 0 23-16 BX_NUM_Sectors Description Reserved. All bits will be read as 0. 1-32 Number of sectors in this bank. 15 B7 1 1 = Bank 7 is present 14 B6 0 0 = Bank 6 is not present 13 B5 0 0 = Bank 5 is not present 12 B4 0 0 = Bank 4 is not present 11 B3 0 0 = Bank 3 is not present 10 B2 0 0 = Bank 2 is not present 9 B1 1 1 = Bank 1 is present 8 B0 1 1 = Bank 0 is present 7-0 NUM_Banks 2 or 3 Number of banks on this part. The bank sector information is repeated once for each bank in the device. The number of sectors is unique for each bank. The number of banks and which banks are implemented is repeated in each location. Use the TI OTP information for bank 0 to determine which banks are in the device, and then read the number of sectors for each bank using the TI OTP locations shown in Table 5-5. Table 5-5. TI OTP Sector Information Address 258 Bank TI OTP Address 0 F008 0158h 1 F008 2158h 2 F008 4158h 3 F008 6158h 4 F008 8158h 5 F008 A158h 6 F008 C158h 7 F008 E158h F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Memory Map www.ti.com 5.4.2.2 Package and Memory Size Package and memory size information can be determined from the device-specific datasheet, or can be computed by reading locations in the TI OTP Bank 0 registers. The package and memory size can be read from TI OTP location F008 015Ch as shown in Figure 5-3 and described in Table 5-6. Figure 5-3. TI OTP Bank 0 Package and Memory Size Information (F008 015Ch) 31 28 27 16 Reserved PACKAGE R R 15 0 MEMORY_SIZE R LEGEND: R = Read only Table 5-6. TI OTP Bank 0 Package and Memory Size Information Field Descriptions Bit Field Description 31-28 Reserved Reserved 27-16 PACKAGE Count of pins in the package 15-0 MEMORY_SIZE Flash memory size in Kbytes 5.4.2.3 LPO Trim and Max HCLK The HF LPO trim solution, LF LPO trim solution and maximum HCLK frequency can be read from TI OTP location F008 01B4h as shown in Figure 5-4 and described in Table 5-7. Figure 5-4. TI OTP Bank 0 LPO Trim and Max HCLK Information (F008 01B4h) 31 24 23 16 HFLPO_TRIM LFLPO_TRIM R R 15 0 MAX_HCLK R LEGEND: R = Read only Table 5-7. TI OTP Bank 0 LPO Trim and Max HCLK Information Field Descriptions Field Description 31-24 Bit HFLPO_TRIM HF LPO Trim Solution 23-16 LFLPO_TRIM LF LPO Trim Solution 15-0 MAX_HCLK Maximum HCLK Speed SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 259 Power On, Power Off, and Reset Considerations 5.4.2.4 www.ti.com Part Number Symbolization Device part number symbolization information can be determined from the device-specific datasheet or can be computed by reading locations in the TI OTP bank 0 registers. For example the device part number symbolization "TMS570LS3137CPGEQQ1" can be read from TI OTP bank 0 location F008 01E0h through F008 01FFh as shown in Figure 5-5. Figure 5-5. TI OTP Bank 0 Symbolization Information (F008 01E0h-F008 01FFh) 0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07 0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F 0x54 0x4D 0x53 0x35 0x37 0x30 0x4C 0x53 0x33 0x31 0x33 0x37 0x43 0x50 0x47 0x45 R 0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17 0x18 0x19 0x1A 0x1B 0x1C 0x1D 0x1E 0x1F 0x51 0x51 0x31 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 R LEGEND: R = Read only 5.4.2.5 Deliberate ECC Errors for FMC ECC Checking Deliberate single-bit and double-bit errors have been placed in the OTP for checking the FMC ECC functionality. Any portion of the 64 bits in TI OTP bank 0 location F008 03F0h through F008 03F7h as shown in Figure 5-6 will generate a single-bit error. Any portion of the 64 bits in TI OTP bank 0 location F008 03F8h through F008 03FFh as shown in Figure 5-6 will generate a double-bit error. Figure 5-6. TI OTP Bank 0 Deliberate ECC Error Information (F008 03F0h-F008 03FFh) 0x00 0x04 0x08 0x0C 0x12345678 0x9ABCDEF1 0x12345678 0x9ABCDEF3 R R R R LEGEND: R = Read only, ECC is calculated for the value 0x123456789ABCDEF0 5.5 Power On, Power Off, and Reset Considerations 5.5.1 Error Checking at Power On As the device is coming out of the device reset sequence, the Flash wrapper reads two configuration words from the TI OTP section of bank 0, the hardware configuration word at address 0xF0080140, and then the AJSM visible password at address 0xF0000000. During these reads ECC is enabled. Single-bit errors are corrected and generate an ESM group 1 channel 6 error event. The first failing address will be latched in the FCOR_ERR_ADD register along with the bit position in FCOR_ERR_POS register and the FEDACSTATUS register flags will be updated to indicate the type of error. Uncorrectable errors will generate an ESM group 3 channel 7 error event, the ERROR pin will be activated, the first failing address will be latched in the FUNC_ERR_ADD register and the FEDACSTATUS register flags will be updated to indicate the type of error. 5.5.2 Flash Integrity when Reset while Programming or Erasing If a device is reset while programming, then the bits being programmed when reset is asserted are indeterminate; however, the other bits in the Flash are not disturbed. Likewise, If the device is reset while being erased, the sector or sectors being erased will have indeterminate bits; however, the other sectors in the same bank and the other banks will not be disturbed. 260 F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Power On, Power Off, and Reset Considerations www.ti.com 5.5.3 Flash Integrity at Power Off If power is lost during a programming or erase operation, a power-on reset must be asserted before the core supply voltage drops below specification. The PORRST pin has a glitch filter which means that the PORRST pin must be asserted low tf(nPORRST) (2µs) before the core supply drops below VccMIN (1.14V). If this requirement is met, then the bits being programmed when PORRST goes low are indeterminate; however, the other bits in the Flash are not disturbed. Likewise, if this requirement is met, and PORRST is asserted while erasing, the sector or sectors being erased will have indeterminate bits; however, the other sectors in the same bank and the other banks will not be disturbed. 5.6 Emulation and SIL3 Diagnostic Modes 5.6.1 System Emulation During emulation when the SUSPEND signal is high, the data read from memory is still passed to SECDED for correction if ECC_ENABLE is active. If a correctable error is detected, then it is corrected but error event is not generated and error occurrence counter is not incremented if in profiling mode. If a double error is detected, then the raw data is returned without generating a double-error signal. The SUSPEND signal can be disable by using the SUSP_IGNR bit in the Flash error detection and correction control register 1 (FEDACCTRL1). The SUSPEND signal should not be confused with the suspend_now operation for the FSM. 5.6.2 Diagnostic Mode The Flash wrapper can be put in diagnostic mode to verify various logic. There are multiple diagnostic modes supported by the wrapper. A specific diagnostic mode is selected via the DIAG_MODE control bits in the diagnostic control register (FDIAGCTRL), as listed in Table 5-8. The diagnostic mode is only enabled by a 4-bit key stored in the DIAG_EN_KEY bits in FDIAGCTRL register. Only DIAG_EN_KEY = 0101 enables any diagnostic mode and all diagnostic modes use the DIAG_TRIG bit in FDIAGCTRL register to initiate the action. All tests run from any pipeline mode. Some of the diagnostic modes can corrupt the Flash data access, and generate errors as part of the test. Running in non-pipeline may minimize some of these conditions. For all modes it is best to follow this sequence: 1. Write 0101 to the DIAG_EN_KEY bits and set the desired DIAG_MODE control bits. This blocks many UERR sources. 2. Set any data registers needed for this mode. 3. Write 1 to the DIAG_TRIG bit to initiate the action and allow UERRs to happen for one cycle. 4. Write 1010 to the DIAG_EN_KEY bits to disable the diagnostic modes. When the CONF_TYPE is 5, the ECC logic is in the CPU and most diagnostic modes are removed. Some because the logic they test no longer exists and the rest because the path is validated via the ECC path to the CPU. Table 5-8. DIAG_MODE Encoding Mode DIAG_MODE Bits Description 0 0 0 0 Diagnostic mode is disabled. Same as DIAG_EN_KEY not equal to 5h. 1 0 0 1 ECC Data Correction test mode 2 0 1 0 ECC Syndrome Reporting test mode 3 0 1 1 ECC Malfunction test mode 1 (same data) 4 1 0 0 ECC Malfunction test mode 2 (inverted data) 5 1 0 1 Address Tag Register test mode 6 1 1 0 Reserved 7 1 1 1 ECC Data Correction Diagnostic test mode SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 261 Emulation and SIL3 Diagnostic Modes 5.6.2.1 www.ti.com ECC Data Correction Test Mode: DIAG_MODE = 1 This diagnostic mode can be enabled while ECC logic is also enabled for normal bank read. The Flash wrapper will arbitrate the usage of the ECC logic if a conflict occurs between a normal bank read and diagnostic checking. When in diagnostic data correction mode, FEMU_xxxx registers contain the 64-bit EEPROM emulation data register, the 19-bit emulation address register and the 8-bit emulation check-bit register. These values are used to enter diagnostic data to exercise the SECDED logic. The user can apply a value with an error in any bit location. When the DIAG_TRIG is set, the SECDED calculation is done and the corrected values are saved back into the same FEMU_xxxx registers. The error position register is also updated to indicate the bit position in error. Either ERR_ONE_FLG or ERR_ZERO_FLG bit is set when a correctable error is detected. The D_COR_ERR bit will also be set in FEDACSTATUS register. For uncorrectable error, the error status bit ERR_PRF_FLG is set as well as the D_UNC_ERR bit in the same register. Status bits should be cleared by the user before applying a new diagnostic data. It takes multiple CPU transactions to preload the registers with diagnostic values. During this time, the result of the diagnostic logic such as comparator can change. User should apply a trigger by setting DIAG_TRIG bit to 1 as a qualifier after all registers are loaded with intended values. The DIAG_TRIG serves to validate the diagnostic result. Only when DIAG_TRIG is high and a failing result in the diagnostic logic will update the corresponding status flag and the position register. 5.6.2.2 ECC Syndrome Reporting Test Mode: DIAG_MODE = 2 When in diagnostic syndrome reporting mode, the resulting syndrome calculated by SECDED is captured into the ECC check-bit register FEMU_ECC. The syndrome can be read by the user and compare with a known syndrome value. Diagnostic data in FEMU_DxSW and FEMU_ADDR is not corrected and the error position register is not updated. The FEDACSTATUS register error bits are not updated during this mode. For devices with ECC_IN_CPU (CONF_TYPE = 5), the resulting FEMU_ECC value represents the 32-bit byte swapped values. Here, bytes 7654_3210 are rearranged to 4567_0123. For instance, if the syndrome shows an error in data bit 33, it would really be an error in EMU_DMW bit 57. You can also XOR the data bit position with “011000”. (21h XOR 18h => 39h) NOTE: The user should pre-load the registers with the test values with DIAG_TRIG = 0. After all test values are written, the DIAG_TRIG should then be set high to validate the diagnostic result. 262 F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Emulation and SIL3 Diagnostic Modes www.ti.com 5.6.2.3 ECC Malfunction Test Mode 1: DIAG_MODE = 3 There are three inputs to the malfunction detection logic: the resulting syndrome, the original uncorrected data, and the final corrected data. In normal function, the malfunction detection logic will detect an error if the syndrome is 0 and if the data before the correction and the data after the correction is not equal; or if the syndrome is not 0 and if the data before the correction and data after the correction is equal to each other. During diagnostic mode 3 or 4, user supplied values are sent to the malfunction logic. No functional checking is done by the ecc_malfunction logic while the mode is 3 or 4. Diagnostic mode 3 is also known as “same data” mode. A diagnostic value can be stored in the ECC checkbit register. The value stored in the 64-bit Raw data register will be supplied to the two inputs of the malfunction comparator logic. If a non-zero value is stored in the Raw ECC checkbit register (FRAW_ECC), then the malfunction logic should detect it as an error. The DIAG_TRIG is set to initiate this mode. 5.6.2.4 ECC Malfunction Test Mode 2: DIAG_MODE = 4 Diagnostic mode 4 is also known as “inverted data” mode. A diagnostic value can be stored in the ECC checkbit register. A value stored in the 64-bit Raw data register and its bit-wise inverted counterpart will be supplied to the two inputs of the malfunction comparator logic. If a zero value is stored in the Raw ECC checkbit register (FRAW_ECC), then the malfunction logic should detect it as an error. Set the DIAG_ECC_SEL bits before entering mode 4 or enter mode 4 from a non-mode 4 and set the DIAG_ECC_SEL bits at the same time. 5.6.2.5 Address Tag Register Test Mode: DIAG_MODE = 5 NOTE: The test code for Diag mode 5 needs to be executed from RAM or when executed from Flash, the Flash Address Wait State (ASWSTEN) bit in the FRDCNTL register should be set to 1. This is due to conflicting accesses by the CPU and Flash wrapper during the test execution. There are four sets of address tag registers. Each set consists of a primary and a duplicate address tag registers. Normally, these registers store the recently issued CPU addresses during pipeline mode. To detect errors in these registers, the primary and duplicate address tag registers are continuously compared to each other if the buffer is valid. If they are different, then an address tag register error event is generated. These registers are memory-mapped. All primary address tag registers are memory-mapped to one address and, likewise, all duplicate tag registers are mapped to another single address. During diagnostic mode, each individual set can be selected by the DIAG_BUF_SEL (Diagnostic Buffer Select) bit in the FDIAGCTRL register. User-supplied values can be written into the selected set during a diagnostic mode. If different values are written into the primary and the duplicate address tag registers, then the ADD_TAG_ERR (Address Tag Error) flag in the FEDACSTATUS register will be set. This diagnostic mode uses the FRAW_DATAL register to supply the alternate address when DIAG_TRIG is set. The FUNC_ERR_ADD register will not contain useful information during Diag mode 5. It will also trigger the normal uncorrectable register freeze. All address tags and buffer valid bits will be cleared to 0 when leaving Diag mode 5. Going to mode 5 and back out clears the pipeline buffers and is useful for other test modes also. No functional checking is done by the address tag logic while the mode is 5. NOTE: The user should pre-load the registers with the test values with DIAG_TRIG = 0. After all test values are written, the DIAG_TRIG should then be set high to validate the diagnostic result. SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 263 Emulation and SIL3 Diagnostic Modes 5.6.2.6 www.ti.com ECC Data Correction Diagnostic Test Mode: DIAG_MODE = 7 Testing the error correction and ECC logic in the CPU involves corrupting the ECC value returned to the CPU. By inverting one or more bits of the ECC, the CPU will detect errors in a selected data or ECC bit, or in any possible value returned by the ECC. To set an error for a particular bit use the syndrome, see Section 5.3.3. For example, if you want to corrupt data bit 62 then put the value 5Bh into the test register. The method uses the DATA_INV_PAR value in the FPAR_OVR register to alter the ECC during a slave access cycle. The value in the DATA_INV_PAR register will be XORed with the current ECC to give a bad ECC value to the CPU. This only will occur when the DIAG_MODE is 7, the PAR_OVR_KEY is 5, the DIAG_EN_KEY in the FDIAGCTRL register is 5 and the access is a slave cycle. This mode can set the FEDACSTATUS register status error bits B1_UNC_ERR or ERR_ZERO_FLG, but it will not set the D_UNC_ERR nor D_COR_ERR bits. The sequence to do this test is: 1. Make sure the true DMA module is off. 2. Put 5h in BUS_PAR_DIS and 5h in PAR_OVR_KEY fields (00005Axxh) of the FPAR_OVR register. 3. Put the desired value in DAT_INV_PAR field of the FPAR_OVR register. 4. Put 7h in DIAG_MODE and 5h in DIAG_EN_KEY fields of the FDIAGCTRL register. 5. Read desired address from the mirrored Flash location. Mirrored Flash starts at address 0x20000000. 6. Put 0 in DIAG_MODE or Ah in one of the key fields to turn off this test. 7. Check error registers (FCOR_ERR_ADD, FEDACSTATUS, and FUNC_ERR_ADD) for ECC errors. 8. Repeat as necessary to test out the ECC. 9. Put 0 in DIAG_MODE field of the FDIAGCTRL register and Ah in both of the key fields to completely disable this test at the end of the test. 10. Put 2h in PAR_OVR_KEY field (00005400h) of the FPAR_OVR register to clear DAT_INV_PAR field. 264 F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Emulation and SIL3 Diagnostic Modes www.ti.com 5.6.3 Diagnostic Mode Summary The following tables give a summary of the input registers needed for each mode, the possible registers that can change, and the possible error bits in FEDACSTATUS register that may set. Table 5-9. Bus 1 Diagnostic Mode Summary DIAG MODE Name Inputs Possible Error Bits Set Possible Outputs Notes 1 ECC Data Correction test mode Not Applicable 2 ECC Syndrome Reporting test mode Not Applicable 3 ECC Malfunction test mode 1 Not Applicable 4 ECC Malfunction test mode 2 Not Applicable 5 Address Tag Register test mode FPRIM_ADD_TAG FUNC_ERR_ADD (1) ADD_TAG_ERR FDUP_ADD_TAG FRAW_DATAL (1) 6 Reserved 7 ECC Data Correction Diagnostic test mode DAT_INV_PAR FUNC_ERR_ADD B1_UNC_ERR FCOR_ERR_ADD ERR_ZERO_FLG Slave access only Register output value will change, but will not contain useful information. SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 265 Emulation and SIL3 Diagnostic Modes www.ti.com Table 5-10. Bus 2 and ECC Diagnostic Mode Summary DIAG MODE Name 1 ECC Data Correction test mode Inputs Possible Outputs Possible Error Bits Set FEUM_DMSW FEMU_ECC D_UNC_ERR FEMU_DLSW FUNC_ERR_ADD D_COR_ERR FEMU_ECC FCOR_ERR_ADD ERR_ONE_FLG FEMU_ADDR FCOR_ERR_POS ERR_ZERO_FLG Notes ERR_PRF_FLG FEMU_ECC EE_D_UNC_ERR EE_UNC_ERR_ADD EE_D_COR_ERR EE_COR_ERR_ADD EE_ERR_ONE_FLG EE_COR_ERR_POS EE_ERR_ZERO_FLG EE_ERR_PRF_FLG 2 ECC Syndrome Reporting test mode FEMU_DMSW FEMU_ECC NA FEMU_DLSW FEMU_ECC FEMU_ADDR 3 ECC Malfunction test mode 1 FRAW_DATAH (1) ECC_B2_MAL_ERR FRAW_DATAL FRAW_DATAL (1) D_UNC_ERR FRAW_ECC FRAW_ECC FRAW_DATAH (1) FUNC_ERR_ADD (1) FRAW_DATAH (1) EE_CME FRAW_DATAL (1) EE_D_UNC_ERR FRAW_ECC (1) EE_UNC_ERR_ADD 4 ECC Malfunction test mode 2 FRAW_DATAH FRAW_DATAH (1) FRAW_DATAL FRAW_DATAL (1) FRAW_ECC FRAW_ECC (1) ECC_B2_MAL_ERR (1) FRAW_DATAH (1) EE_CMG FRAW_DATAL (1) EE_CME FRAW_ECC (1) EE_UNC_ERR_ADD 266 COMB2_MAL_G D_UNC_ERR FUNC_ERR_ADD (1) (1) EE_D_UNC_ERR (1) 5 Address Tag Register test mode Not applicable 6 Reserved Not applicable 7 ECC Data Correction Diagnostic test mode Not applicable Register output value will change, but will not contain useful information. F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Emulation and SIL3 Diagnostic Modes www.ti.com Table 5-11. Port Signals Diagnostic Mode Summary DIAG MODE Name 1 Error In Uncorrectable Error Correctable Error Address Bus Parity Error FEE Uncorrectable Error FEE Correctable Error ESM Group 3 Channel 7 ESM Group 1 Channel 6 ESM Group 2 Channel 4 ESM Group 1 Channel 36 ESM Group 1 Channel 35 ECC Data Correction test mode Bus 2 Yes Yes No No No EEPROM No No No Yes Yes ECC Syndrome Reporting test mode Bus 2 No No No No No EEPROM No No No No No 3 ECC Malfunction test mode 1 Bus 2 Yes No No No No EEPROM No No No Yes No 4 ECC Malfunction test mode 2 Bus 2 Yes No No No No EEPROM No No No Yes No Yes No No No No Yes Yes No No No 2 5 Address Tag Register Bus 1 test mode 6 Reserved 7 ECC Data Correction Diagnostic test mode Bus 1 5.6.4 Read Margin When the bits are programmed or erased, they are checked against a program_verify or erase_verify reference level that is far away from the normal read reference point. Over time, bit levels may drift toward the normal read point and if it is too much then a bit will read the wrong value. To counteract this, the bits can be read using different read_margin reference points to give an early detection of the problem. The bits can then be either re-programmed (most common) or the sector can be erased and reprogrammed. 5.7 Control Registers This section details the Flash module registers, summarized in Table 5-12. A detailed description of each register and its bits is also provided. The Flash module control registers can only be read and/or written by the CPU while in privileged mode. Each register begins on a word boundary. All registers are 32-bit, 16-bit and 8-bit accessible. The start address of the Flash module is FFF8 7000h. SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 267 Control Registers www.ti.com Table 5-12. Flash Control Registers 268 Address Acronym Register Description FFF8 7000h FRDCNTL Flash Option Control Register Section 5.7.1 Section FFF8 7008h FEDACTRL1 Flash Error Detection and Correction Control Register 1 Section 5.7.2 FFF8 700Ch FEDACTRL2 Flash Error Detection and Correction Control Register 2 Section 5.7.3 FFF8 7010h FCOR_ERR_CNT Flash Correctable Error Count Register Section 5.7.4 FFF8 7014h FCOR_ERR_ADD Flash Correctable Error Address Register Section 5.7.5 FFF8 7018h FCOR_ERR_POS Flash Correctable Error Position Register Section 5.7.6 FFF8 701Ch FEDACSTATUS Flash Error Detection and Correction Status Register Section 5.7.7 FFF8 7020h FUNC_ERR_ADD Flash Uncorrectable Error Address Register Section 5.7.8 FFF8 7024h FEDACSDIS Flash Error Detection and Correction Sector Disable Register Section 5.7.9 FFF8 7028h FPRIM_ADD_TAG Flash Primary Address Tag Register Section 5.7.10 FFF8 702Ch FDUP_ADD_TAG Flash Duplicate Address Tag Register Section 5.7.11 FFF8 7030h FBPROT Flash Bank Protection Register Section 5.7.12 FFF8 7034h FBSE Flash Bank Sector Enable Register Section 5.7.13 FFF8 7038h FBBUSY Flash Bank Busy Register Section 5.7.14 FFF8 703Ch FBAC Flash Bank Access Control Register Section 5.7.15 FFF8 7040h FBFALLBACK Flash Bank Fallback Power Register Section 5.7.16 FFF8 7044h FBPRDY Flash Bank/Pump Ready Register Section 5.7.17 FFF8 7048h FPAC1 Flash Pump Access Control Register 1 Section 5.7.18 FFF8 704Ch FPAC2 Flash Pump Access Control Register 2 Section 5.7.19 FFF8 7050h FMAC Flash Module Access Control Register Section 5.7.20 FFF8 7054h FMSTAT Flash Module Status Register Section 5.7.21 FFF8 7058h FEMU_DMSW EEPROM Emulation Data MSW Register Section 5.7.22 FFF8 705Ch FEMU_DLSW EEPROM Emulation Data LSW Register Section 5.7.23 FFF8 7060h FEMU_ECC EEPROM Emulation ECC Register Section 5.7.24 FFF8 7068h FEMU_ADDR EEPROM Emulation Address Register Section 5.7.25 FFF8 706Ch FDIAGCTRL Diagnostic Control Register Section 5.7.26 FFF8 7070h FRAW_DATAH Uncorrected Raw Data High Register Section 5.7.27 FFF8 7074h FRAW_DATAL Uncorrected Raw Data Low Register Section 5.7.28 FFF8 7078h FRAW_ECC Uncorrected Raw ECC Register Section 5.7.29 FFF8 707Ch FPAR_OVR Parity Override Register Section 5.7.30 FFF8 70C0h FEDACSDIS2 Flash Error Detection and Correction Sector Disable Register 2 Section 5.7.31 FFF8 7288h FSM_WR_ENA FSM Register Write Enable Section 5.7.32 FFF8 72A4h FSM_SECTOR FSM Sector Register Section 5.7.33 FFF8 72B8h EEPROM_CONFIG EEPROM Emulation Configuration Register Section 5.7.34 FFF8 7308h EE_CTRL1 EEPROM Emulation Error Detection and Correction Control Register 1 Section 5.7.35 FFF8 730Ch EE_CTRL2 EEPROM Emulation Error Detection and Correction Control Register 2 Section 5.7.36 FFF8 7310h EE_COR_ERR_CNT EEPROM Emulation Correctable Error Count Register Section 5.7.37 FFF8 7314h EE_COR_ERR_ADD EEPROM Emulation Correctable Error Address Register Section 5.7.38 FFF8 7318h EE_COR_ERR_POS EEPROM Emulation Correctable Error Bit Position Register Section 5.7.39 FFF8 731Ch EE_STATUS EEPROM Emulation Error Status Register Section 5.7.40 FFF8 7320h EE_UNC_ERR_ADD EEPROM Emulation Uncorrectable Error Address Register Section 5.7.41 FFF8 7400h FCFG_BANK Flash Bank Configuration Register Section 5.7.42 F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 5.7.1 Flash Option Control Register (FRDCNTL) FRDCNTL supports pipeline mode. This register controls Flash timings for the main Flash banks. For the equivalent register that controls Flash timings for the EEPROM Emulation Flash bank (bank 7), see Section 5.7.34. Figure 5-7. Flash Option Control Register (FRDCNTL) [offset = 00h] 31 16 Reserved R-0 15 12 11 8 Reserved RWAIT R-0 R/WP-1 7 5 4 3 1 0 Reserved ASWSTEN Reserved ENPIPE R-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 5-13. Flash Option Control Register (FRDCNTL) Field Descriptions Bit Field 31-12 Reserved 11-8 RWAIT Value 0 0-Fh Description Reads return 0. Writes have no effect. Random/data Read Wait State The random read wait state bits indicate how many wait states are added to a Flash read access. In Pipeline mode there is always one wait state even when RWAIT is cleared to 0. Note: The required wait states for each HCLK frequency can be found in the device-specific data manual. 7-5 4 Reserved 0 ASWSTEN Reads return 0. Writes have no effect. Address Setup Wait State Enable 0 Address Setup Wait State is disabled. 1 Address Setup Wait State is enabled. Address is latched one cycle before decoding to determine pipeline hit or miss. Address Setup Wait State is only available in pipeline mode. Note: The required address wait state for each HCLK frequency can be found in the device-specific data manual. 3-1 0 Reserved 0 ENPIPE Reads return 0. Writes have no effect. Enable Pipeline Mode 0 Pipeline mode is disabled. 1 Pipeline mode is enabled. SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 269 Control Registers www.ti.com 5.7.2 Flash Error Detection and Correction Control Register 1 (FEDACCTRL1) This register controls ECC event detection for the main Flash banks. For the equivalent register that controls ECC event detection for the EEPROM Emulation Flash bank (bank 7), see Section 5.7.35. Figure 5-8. Flash Error Detection and Correction Control Register 1 (FEDACCTRL1) [offset = 08h] 31 25 24 Reserved SUSP_IGNR R-0 R/WP-0 23 20 19 16 Reserved EDACMODE R-0 R/WP-Ah 15 10 9 8 Reserved 11 EOFEN EZFEN EPEN R-0 R/WP-0 R/WP-0 R/WP-0 7 4 3 0 Reserved EDACEN R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 5-14. Flash Error Detection and Correction Control Register 1 (FEDACCTRL1) Field Descriptions Bit 31-25 24 Field Reserved Value 0 SUSP_IGNR Description Reads return 0. Writes have no effect. Suspend Ignore In emulation mode, for example, viewing memory in the debugger's window, the CPU suspend signal is set. This bit determines whether the CPU suspend signal is ignored by the Flash module. 0 CPU suspend signal blocks error bits setting and unfreezing. The Flash module blocks all errors from setting the error bits in emulation mode and blocks the unfreezing of the bits and registers by reading the FUNC_ERR_ADD register. 1 CPU suspend has no effect on error bit setting and unfreezing. The Flash module ignores the CPU suspend signal and allows the error bits to set even in emulation mode. It also allows the Flash module to unfreeze the error bits and other registers by reading the FUNC_ERR_ADD register even in emulation mode. 23-20 Reserved 19-16 EDACMODE 0 Reads return 0. Writes have no effect. Error Correction Mode for the main Flash banks. For EEPROM Emulation Flash bank (bank 7), see Section 5.7.35. 5h Single-bit errors during reads from OTP, ECC and the mirrored space (starting at 0x20000000) of banks 0 through 6, will be treated as uncorrectable errors by the Flash wrapper. The wrapper will assert an ESM group 3 error on channel 7 and the ERROR pin will be activated. No abort will be taken by the CPU. All Other Values Single-bit errors during reads from OTP, ECC and the mirrored space (starting at 0x20000000) of banks 0 through 6, will be treated as correctable errors by the Flash wrapper. The wrapper will assert an ESM group 1 error on channel 6. The single-bit error will be corrected. Note: This mode does not affect reads from the main program Flash starting at address 0. Note: Reading ECC bits will generate an ECC error based on the contents of the 8 ECC bits and the 64 data bits they protect. 15-11 270 Reserved 0 Reads return 0. Writes have no effect. F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com Table 5-14. Flash Error Detection and Correction Control Register 1 (FEDACCTRL1) Field Descriptions (continued) Bit Field 10 EOFEN Value Description Event on One's Fail Enable 0 No ESM error event is generated on a single-bit error where a 1 reads as a 0 when reading from the OTP or ECC memory locations. 1 An ESM error event is generated on a single-bit error where a 1 reads as a 0 when reading from the OTP or ECC memory locations. Note: When either the EOFEN or the EZFEN bit is set, an error event will be generated on ESM group 1 channel 6 when any correctable error is generated by reading the main memory. 9 EZFEN Event on Zero's Fail Enable 0 No ESM error event is generated on a single-bit error where a 0 reads as a 1 when reading from the OTP or ECC memory locations. 1 An ESM error event is generated on a single-bit error where a 0 reads as a 1 when reading from the OTP or ECC memory locations. Note: When either the EOFEN or the EZFEN bit is set, an error event will be generated on ESM group 1 channel 6 when any correctable error is generated by reading the main memory. 8 EPEN Error Profiling Enable. 0 Error profiling is disabled. 1 Error profiling is enabled. The correctable error event is generated (ESM group 1 channel 6) when the number of CPU accesses of correctable bit errors detected and corrected has reached the threshold value defined in the FEDACCTRL2 register. 7-4 Reserved 3-0 EDACEN 0 Reads return 0. Writes have no effect. Error Detection and Correction Enable 5h CPU single and double error event signals are blocked. Note: It is recommended to enable ECC in the Flash wrapper by writing 1010 to these bits before enabling ECC in the CPU. If ECC is enabled in the CPU, but not in the wrapper, the CPU will still check and correct single-bit ECC errors, and generate aborts on uncorrectable errors for the main Flash. However, the generation of ESM events, the capture of failing addresses and the detections and correction of errors in the OTP will be prevented. All Other Values Error Detection and Correction events are captured and sent to the ESM. SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 271 Control Registers www.ti.com 5.7.3 Flash Error Correction and Correction Control Register 2 (FEDACCTRL2) This register applies to ECC event detection for the main Flash banks. For the equivalent register that applies to the EEPROM Emulation Flash bank (bank 7), see Section 5.7.36. Figure 5-9. Flash Error Correction and Correction Control Register 2 (FEDACCTRL2) [offset = 0Ch] 31 16 Reserved R-0 15 0 SEC_THRESHOLD R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 5-15. Flash Error Correction Control and Correction Register 2 (FEDACCTRL2) Field Descriptions Bit Field Value 31-16 Reserved 15-0 SEC_THRESHOLD 0 Description Reads return 0. Writes have no effect. Single Error Correction Threshold When error profiling is enabled, this register contains the threshold value for the SEC (single error correction) occurrences before a correctable error event is generated (ESM group 1, channel 6). A threshold of zero disables the threshold so that it does not generate an event. 5.7.4 Flash Correctable Error Count Register (FCOR_ERR_CNT) This register applies to the main Flash banks. For the equivalent register that applies to the EEPROM Emulation Flash bank (bank 7), see Section 5.7.37. Figure 5-10. Flash Correctable Error Count Register (FCOR_ERR_CNT) [offset = 10h] 31 16 Reserved R-0 15 0 FERRCNT R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 5-16. Flash Correctable Error Count Register (FCOR_ERR_CNT) Field Descriptions Bit Field 31-16 Reserved 15-0 FERRCNT Value 0 Description Reads return 0. Writes have no effect. Single Error Correction Count This register contains the number of SEC (single error correction) occurrences. Writing any value to this register resets the count value to 0. The counter resets to 0 when it increments to be equal to the single error correction threshold. This register only increments when profiling mode is enabled. This register is not affected by the EOFEN or EZEFEN error control bits in the FEDACCTRL1 register. 272 F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 5.7.5 Flash Correctable Error Address Register (FCOR_ERR_ADD) This register applies to the main Flash banks. For the equivalent register that applies to the EEPROM Emulation Flash bank (bank 7), see Section 5.7.38. The error address is captured during errors when either EOFEN or EZFEN enable bit is set. During error profiling mode when only EPEN is set, the error address is not captured if a correctable error is detected. This register is frozen while either the ERR_ZERO_FLG or the ERR_ONE_FLG bit is set in the FEDACSTATUS register. During emulation mode, this address is frozen even when read. By setting the SUSP_IGNR bit (see Table 5-14), this register can be unfrozen in emulation mode. This register is not changed with the reset signal and contains unknown data at power-up. Figure 5-11. Flash Correctable Error Address Register (FCOR_ERR_ADD) [offset = 14h] 31 16 COR_ERR_ADD R-u 15 3 2 0 COR_ERR_ADD B_OFF R-u R-u LEGEND: R = Read only; -n = value after reset; -u = unchanged value on internal reset, cleared on power up Table 5-17. Flash Correctable Error Address Register (FCOR_ERR_ADD) Field Descriptions Bit 31-3 Field COR_ERR_ADD Value Description 0-1FFF FFFFh Correctable Error Address COR_ERR_ADD records the CPU logical address of which a correctable error is detected by the ECC logic. This error address is frozen from begin updated until it is read by the CPU. Additional error are blocked until this register is read. 2-0 B_OFF 0-7h Byte Offset Since ECC is checked on 64 bit data, when checking main memory or OTP, the address captured is aligned to a 64-bit boundary with address bits[2:0] equal to 0.When reading from the ECC bytes, these bits will indicate the failing address of the ECC location associated with the failure. When reading an ECC byte, the ECC is checked against the 64 data bits they protect. SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 273 Control Registers www.ti.com 5.7.6 Flash Correctable Error Position Register (FCOR_ERR_POS) This register applies to the main Flash banks. For the equivalent register that applies to the EEPROM Emulation Flash bank (bank 7), see Section 5.7.39. Note: The bit error position is only detected during reads of the OTP, the mirrored Flash image or the ECC bytes. Single-bit errors corrected during reads of the main memory will only capture the failing address, but not the bit position. The bit position is captured during errors when either EOFEN or EZFEN enable bit is set. During error profiling mode when only EPEN is set, the bit position is not captured if a correctable error is detected. This register is frozen while either the ERR_ZERO_FLG or the ERR_ONE_FLG bit is set in the FEDACSTATUS register. During emulation mode, this address is frozen even when read. By setting the SUSP_IGNR bit, this register can be unfrozen in emulation mode. This register is not changed with the reset signal and contains unknown data at power-up. Figure 5-12. Flash Correctable Error Position Register (FCOR_ERR_POS) [offset = 18h] 31 16 Reserved R-0 15 9 8 Reserved 10 BUS2 TYPE 7 ERR_POS 0 R-0 R-u R-u R-u LEGEND: R = Read only; -n = value after reset; -u = unchanged value on internal reset, cleared on power up Table 5-18. Flash Correctable Error Position Register (FCOR_ERR_POS) Field Descriptions Bit 31-10 9 8 7-0 274 Field Reserved Value 0 BUS2 Reads return 0. Writes have no effect. Bus 2 Error 0 The error was in the main Flash. 1 The error was from an OTP read. TYPE ERR_POS Description ErrorType 0 The error was one of the 64 data bits. 1 The error was one of the 8 check bits. The bit address of the single-bit error. F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 5.7.7 Flash Error Detection and Correction Status Register (FEDACSTATUS) This register applies to the main Flash banks. For the equivalent register that applies to the EEPROM Emulation Flash bank (bank 7), see Section 5.7.40. All these error status bits can be cleared by writing a 1 to the bit. Writing a 0 has no effect. The correctable errors in bits 2:0, and FSM_DONE bit 24, must be cleared before the end of their error event service routine or else the error event will re-issue. Figure 5-13. Flash Error Detection and Correction Status Register (FEDACSTATUS) [offset = 1Ch] 31 25 24 Reserved 26 Reserved FSM_DONE R-0 R-0 RCP-u 23 20 Reserved 19 18 COMB2_MAL_ ECC_B2_MAL_ G ERR R-0 RCP-u 15 13 RCP-u 17 16 B2_UNC_ ERR B2_COR_ ERR RCP-u RCP-u 12 11 10 9 8 Reserved D_UNC_ ERR ADD_TAG_ ERR ADD_PAR_ ERR Reserved B1_UNC_ ERR R-0 RCP-u RCP-u RCP-u R-0 RCP-u 4 3 2 1 0 Reserved D_COR_ ERR ERR_ONE_ FLG ERR_ZERO_ FLG ERR_PRF_ FLG R-0 RCP-u RCP-u RCP-u RCP-u 7 LEGEND: R = Read only; RCP = Read and Clear in Privilege Mode; -n = value after reset; -u = unchanged value on internal reset, cleared on power up Table 5-19. Flash Error Detection and Correction Status Register (FEDACSTATUS) Field Descriptions Bit Field Value Description 31-26 Reserved 0 Reads return 0. Writes have no effect. 25 Reserved 0 Reserved 24 FSM_DONE Flash State Machine Done This bit is set to 1 when the Flash state machine completes a program or erase operation. This bit will generate an interrupt on VIM channel 61 if the FSM_EVT_EN bit of the FSM_ST_MACHINE register is set. This bit must be cleared by writing a 1 to it in the interrupt routine to clear the interrupt request. 23-20 19 Reserved 0 COMB2_MAL_G Reads return 0. Writes have no effect. Bus 2 Compare Malfunction Flag 0 Compare Malfunction is detected on the Bus 2 SECDED in diagnostic mode 4 or is not in diagnostic mode. 1 Compare Malfunction is not detected on the Bus 2 SECDED or entered diagnostic mode 4. This bit becomes 1 when entering diagnostic mode 4, with DIAG_ECC_SEL field set to 0 or 1, and will be cleared if diagnostic mode 4 triggers an error. This bit will reset to 0 and will be 0 outside of diagnostic mode 4. Writing a 1 will set this bit to 1 only in diagnostic mode 4; otherwise, writes have no effect. 18 ECC_B2_MAL_ ERR Bus 2 ECC Malfunction Error Flag 0 SECDED malfunction is not detected on Bus 2. 1 SECDED malfunction is detected on Bus 2. SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 275 Control Registers www.ti.com Table 5-19. Flash Error Detection and Correction Status Register (FEDACSTATUS) Field Descriptions (continued) Bit Field 17 B2_UNC_ERR Value Description Bus 2 Uncorrectable Error Flag 0 No bus 2 uncorrectable errors were detected. 1 A bus 2 uncorrectable error was detected. Two or more bits in the data, or ECC field; or a single-bit error in the address field have been found in error. Address-bit errors are considered an uncorrectable error. The FUNC_ERR_ADD register should contain the Bus 2 error location. This error will generate an ESM group 3 channel 7 event. 16 B2_COR_ERR Bus 2 Correctable Error Flag 0 No bus 2 correctable error was detected. 1 A bus 2 correctable error was detected. One bit in the data, or ECC field has been found in error. Either the ERR_ONE_FLAG or ERR_ZERO_FLAG should be set in this register along with this bit. The FCOR_ERR_ADD register should contain the error address, and the FCOR_ERR_POS register should contain the failing bit position. This error will generate an ESM group 1 channel 6 event. 15-13 12 Reserved 0 D_UNC_ERR Reads return 0. Writes have no effect. Diagnostic Uncorrectable Error Flag This bit sets when diagnostic mode 1 discovers a multi-bit error using the ECC. This means two or more bits in the data, address or ECC field have been found in error. The ECC is capable of correcting a single-bit error and this would show up in the D_COR_ERR bit. The ECC can always detect two bit errors. Three or more bit errors may escape detection with the ECC. This bit also may set during other uncorrectable errors and during the diagnostic mode like address tag errors and ECC malfunctions. 11 ADD_TAG_ERR Address Tag Register Error Flag 0 No address tag register error was detected. 1 An address tag register error was detected. This bit is set if the primary address tag has a hit but the duplicate address tag does not match the primary address tag. This bit is functional only when pipeline mode is enabled. This error will create an ESM group 3 channel 7 event. 10 ADD_PAR_ERR Address Parity Error Flag 0 No address parity error was detected. 1 A parity error was detected on the incoming address bus. The full 32 bit address will be stored in FUNC_ERR_ADD register. This error will create an ESM group 2 channel 4 event. 9 Reserved 8 B1_UNC_ERR 0 Reads return 0. Writes have no effect. Bus 1 Uncorrectable Error Flag 0 No bus 1 uncorrectable errors were detected. 1 A bus 1 uncorrectable error was detected. Two or more bits in the data, or ECC field; or a single-bit error in the address field have been found in error. Address-bit errors are considered an uncorrectable error. The FUNC_ERR_ADD register will contain the Bus 1 error location. This error will generate an ESM group 3 channel 7 event.. 7-4 3 Reserved 0 D_COR_ERR Reads return 0. Writes have no effect. Diagnostic Correctable Error Status Flag This bit sets when diagnostic mode 1 discovers a single-bit correctable error using the ECC. Multi-bit errors are flagged using the D_UNC_ERR bit. The uncorrectable error address must be unfrozen in order to set this bit. 276 F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com Table 5-19. Flash Error Detection and Correction Status Register (FEDACSTATUS) Field Descriptions (continued) Bit 2 Field Value ERR_ONE_FLG Description Error on One Fail Status Flag 0 No correctable error where a 1 was read as a 0 on bus 2. 1 A correctable error occurred on bus 2 where a 1 was read as a 0. This bit is set if the EOFEN (Error on One Fail Enable) bit is set then, and one bit in the data, or ECC field which should have been read as a 1 reads as a 0. During the read, the bit is corrected to a 1. The FCOR_ERR_ADD register will contain the bus 2 error address, and the FCOR_ERR_POS register will contain the failing bit position. This error will generate an ESM group 1 channel 6 event. When this bit is set, the B2_CORR_ERR bit will also be set. This error will generate an ESM group 1 channel 6 event. 1 ERR_ZERO_ FLG Error on Zero Fail Status Flag 0 No correctable errors on bus 1 nor any correctable errors on bus 2 where a 0 was read as a 1. 1 A correctable error occurred on bus 1, or a correctable error occurred on bus 2 where a 0 was read as a 1. This bit is set if the EZFEN (Error on Zero Fail Enable) bit is set and a correctable error is detected on bus 2 where a 0 is read as a 1 and corrected to a 0, or if either the EZFEN or the EOFEN bits are set and any single-bit error is detected and corrected on bus 1. The FCOR_ERR_ADD register will contain the error address. If the error was on bus 2, then the B2_COR_ERR bit will also be set and the FCOR_ERR_POS register will contain the failing bit position. The FCOR_ERR_POS register will not indicate the failing bit position for a bus 1 error. This error will generate an ESM group 1 channel 6 event. 0 ERR_PRF_FLG Error Profiling Status Flag 0 Error profiling is not enabled, or the number of correctable errors has not reached the threshold programmed into the SEC_THRESHOLD register. 1 Error profiling is enabled and the number of correctable errors has reached the threshold programmed into the SEC_THRESHOLD register. SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 277 Control Registers www.ti.com 5.7.8 Flash Uncorrectable Error Address Register (FUNC_ERR_ADD) This register applies to ECC event detection for the main Flash banks. For the equivalent register that applies to the EEPROM Emulation Flash bank (bank 7), see Section 5.7.41. During emulation mode, this address is frozen even when read. By setting the SUSP_IGNR bit, (see Table 5-14) this register can be unfrozen in emulation mode. This register is not changed with the reset signal and contains unknown data at power-up. Figure 5-14. Flash Uncorrectable Error Address Register (FUNC_ERR_ADD) [offset = 20h] 31 16 UNC_ERR_ADD R-u 15 3 2 0 UNC_ERR_ADD B_OFF R-u R-u LEGEND: R = Read only; -n = value after reset; -u = unchanged value on internal reset, cleared on power up Table 5-20. Flash Uncorrectable Error Address Register (FUNC_ERR_ADD) Field Descriptions Bit 31-3 Field UNC_ERR_ADD Value Description 0-1FFF FFFFh Uncorrectable Error Address UNC_ERR_ADD records the CPU logical address of which an uncorrectable error is detected by the ECC logic in the CPU. The UNC_ERR_ADD also captures the error address when a address bus parity mismatch is detected. This error address is frozen from begin updated until it is read by the CPU. Additional error are blocked until this register is read. This register captures the full 32-bit incoming address when there is a bus parity error. It only captures address of 22:3 for multiple bit ECC errors. Address parity errors take priority over other errors that happen in the same cycle. 2-0 B_OFF 0-7h Byte offset Since ECC is checked on 64 bit data, when checking main memory or OTP, the address captured is aligned to a 64-bit boundary with address bits[2:0] equal to 0.When reading from the ECC bytes, these bits will indicate the failing address of the ECC location associated with the failure. When reading an ECC byte, the ECC is checked against the 64 data bits they protect. 278 F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 5.7.9 Flash Error Detection and Correction Sector Disable Register (FEDACSDIS) This register is used to disable the SECDED function for one or two sectors from the EEPROM Emulation Flash (bank 7). An additional two sectors can have SECDED disabled by the use of the FEDACSDIS2 register (see Section 5.7.31). Figure 5-15. Flash Error Detection and Correction Sector Disable Register (FEDACSDIS) [offset = 24h] 31 29 28 27 24 23 21 20 19 16 BankID1_Inverse Rsvd SectorID1_inverse BankID1 Rsvd SectorID1 R/WP-0 R-0 R/WP-0 R/WP-0 R-0 R/WP-0 15 13 12 11 8 7 5 4 3 0 BankID0_Inverse Rsvd SectorID0_inverse BankID0 Rsvd SectorID0 R/WP-0 R-0 R/WP-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 5-21. Flash Error Detection and Correction Sector Disable Register (FEDACSDIS) Field Descriptions Bit 31-29 Field Value BankID1_Inverse The bank ID inverse bits are used with the bank ID bits to select the bank for which a sector is disabled. The only bank that supports sector disable is bank 7. 0 28 Reserved Description If BankID1 = 7h and BankID1_inverse = 0, then if a valid sector is selected by SectorID1 and SectorID1_inverse that sector will have ECC checking disabled. other No sector is disabled by disable ID 1. 0 Reads return 0. Writes have no effect. 27-24 SectorID1_inverse The sector ID inverse bits are used with the sector ID bits to determine which sector is disabled. If the sector ID bits are not pointing to a valid sector (0-3) or the sector ID inverse bits are not an inverse of the sector ID bits, then no sector is disabled by disable ID 1. 23-21 BankID1 The bank ID bits are used with the bank ID inverse bits to select the bank for which a sector is disabled. The only bank that supports sector disable is bank 7. 7h If BankID1 = 7h and BankID1_inverse = 0, then if a valid sector is selected by SectorID1 and SectorID1_inverse that sector will have ECC checking disabled. other No sector is disabled by disable ID 1. 0 Reads return 0. Writes have no effect. 20 Reserved 19-16 SectorID1 The sector ID bits are used with the sector ID inverse bits to determine which sector is disabled. If the sector ID bits are not pointing to a valid sector (0-3) or the sector ID inverse bits are not an inverse of the sector ID bits, then no sector is disabled by disable ID 1. 15-13 BankID0_Inverse The bank ID inverse bits are used with the bank ID bits to select the bank for which a sector is disabled. The only bank that supports sector disable is bank 7. 0 12 Reserved If BankID0 = 7h and BankID0_inverse = 0, then if a valid sector is selected by SectorID0 and SectorID0_inverse that sector will have ECC checking disabled. other No sector is disabled by disable ID 0. 0 Reads return 0. Writes have no effect. 11-8 SectorID0_inverse The sector ID inverse bits are used with the sector ID bits to determine which sector is disabled. If the sector ID bits are not pointing to a valid sector (0-3) or the sector ID inverse bits are not an inverse of the sector ID bits, then no sector is disabled by disable ID 0. 7-5 BankID0 The bank ID bits are used with the bank ID inverse bits to select the bank for which a sector is disabled. The only bank that supports sector disable is bank 7. 7h If BankID0 = 7h and BankID0_inverse = 0, then if a valid sector is selected by SectorID0 and SectorID0_inverse that sector will have ECC checking disabled. other No sector is disabled by disable ID 0. 4 Reserved 0 Reads return 0. Writes have no effect. 3-0 SectorID0 0-Fh The sector ID bits are used with the sector ID inverse bits to determine which sector is disabled. If the sector ID bits are not pointing to a valid sector (0-3) or the sector ID inverse bits are not an inverse of the sector ID bits, then no sector is disabled by disable ID 0. SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 279 Control Registers www.ti.com 5.7.10 Primary Address Tag Register (FPRIM_ADD_TAG) This register is used to test the pipeline address tag registers (see Section 5.6.2.5). Figure 5-16. Primary Address Tag Register (FPRIM_ADD_TAG) [offset = 28h] 31 16 PRIM_ADD_TAG[31:16] R/WP-0 15 4 3 0 PRIM_ADD_TAG[15:4] 0000 R/WP-0 R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset; Table 5-22. Primary Address Tag Register (FPRIM_ADD_TAG) Field Descriptions Bit 31-4 Field Value PRIM_ADD_TAG Description Primary Address Tag Register The primary address tag register selected via DIAG_BUF_SEL bits in FDIAGCTRL register is memory mapped here. (see Section 5.7.26) This register can only be written in privileged mode when diagnostic mode is enabled with DIAG_EN_KEY = 5h and DIAG_MODE = 5h. This register will not update with new Flash data if DIAG_EN_KEY is not equal to 5h or DIAG_MODE is 0 or 7h. Valid reads can occur in any mode. The register will clear when an address tag error is found and when leaving DIAG_MODE 5. 3-0 0 Always 0000 5.7.11 Duplicate Address Tag Register (FDUP_ADD_TAG) This register is used to test the pipeline address tag registers (see Section 5.6.2.5). Figure 5-17. Duplicate Address Tag Register (FDUP_ADD_TAG) [offset = 2Ch] 31 16 DUP_ADD_TAG[31:16] R/WP-0 15 4 3 0 DUP_ADD_TAG[15:4] 0000 R/WP-0 R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset; Table 5-23. Duplicate Address Tag Register (FDUP_ADD_TAG) Field Descriptions Bit 31-4 Field Value DUP_ADD_TAG Description Primary Address Tag Register The duplicate address tag register selected via DIAG_BUF_SEL bits in FDIAGCTRL register is memory mapped here. (see Section 5.7.26) This register can only be written in privileged mode when diagnostic mode is enabled with DIAG_EN_KEY = 5h and DIAG_MODE = 5h. This register will not update with new Flash data if DIAG_EN_KEY is not equal to 5h or DIAG_MODE is 0 or 7h. Valid reads can occur in any mode. The register will clear when an address tag error is found and when leaving DIAG_MODE 5. 3-0 280 0 Always 0000 F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 5.7.12 Flash Bank Protection Register (FBPROT) Figure 5-18. Flash Bank Protection Register (FBPROT) [offset = 30h] 31 16 Reserved R-0 15 1 0 Reserved PROTL1DIS R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 5-24. Flash Bank Protection Register (FBPROT) Field Descriptions Bit 31-1 0 Field Value Reserved 0 PROTL1DIS Description Reads return 0. Writes have no effect. PROTL1DIS: Level 1 Protection Disabled Level 1 Protection Disable bit. Setting this bit disables protection from writing to the OTPPROTDIS bits as well as the Sector Enable registers FBSE for all banks. Clearing this bit enables protection and disables write access to the OTPPROTDIS register bits and FBSE register. 0 Level 1 protection is enabled. 1 Level 1 protection is disabled. 5.7.13 Flash Bank Sector Enable Register (FBSE) FBSE provides one enable bit per sector for up to 16 sectors per bank. Each bank in the Flash module has one FBSE register. The bank is selected via the BANK[2:0] bits of the FMAC register (see Section 5.7.20). As only one bank at a time can be selected by FMAC, only the register for the bank selected appears at this address. Figure 5-19. Flash Bank Sector Enable Register (FBSE) [offset = 34h] 31 16 Reserved R-0 15 0 BSE R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 5-25. Flash Bank Sector Enable Register (FBSE) Field Descriptions Bit Field 31-16 Reserved 15-0 BSE Value 0 Description Reads return 0. Writes have no effect. Bank Sector Enable Each bit corresponds to a Flash sector in the bank specified by the FMAC register. Bit 0 corresponds to sector 0, bit 1 corresponds to sector 1, and so on. These bits can be set only when PROTL1DIS = 1 and in privilege mode. 0 The corresponding numbered sector is disabled for program or erase access. 1 The corresponding numbered sector is enabled for program or erase access. SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 281 Control Registers www.ti.com 5.7.14 Flash Bank Busy Register (FBBUSY) Figure 5-20. Flash Bank Busy Register (FBBUSY) [offset = 38h] 31 16 Reserved R-0 15 8 7 0 BUSY[7:0] R/WP-0 R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 5-26. Flash Bank Busy Register (FBBUSY) Field Descriptions Bit Field 31-8 Reserved 7-0 BUSY[7:0] Value 0 Description Reads return 0. Writes have no effect. Bank Busy Each bit corresponds to a Flash bank. 282 0 The corresponding bank is not busy. 1 The corresponding bank is busy with a state machine or bus 2 operation, or the bank is not implemented. F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 5.7.15 Flash Bank Access Control Register (FBAC) Figure 5-21. Flash Bank Access Control Register (FBAC) [offset = 3Ch] 31 24 23 16 Reserved OTPPROTDIS R-0 R/WP-0 15 8 7 0 BAGP VREADST R/WP-0 R/WP-Fh LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 5-27. Flash Bank Access Control Register (FBAC) Field Descriptions Bit Field 31-24 Reserved 23-16 OTPPROTDIS Value 0 Description Reads return 0. Writes have no effect. OTP Sector Protection Disable Each bit corresponds to a Flash bank. This bit can be set only when PROTL1DIS = 1 and in privilege mode. 15-8 BAGP 0 Programming of the OTP sector is disabled. 1 Programming of the OTP sector is enabled. 0-FFh Bank Active Grace Period These bits contain the starting count value for the BAGP down counter. Any access to a given bank causes its BAGP counter to reload the BAGP value for that bank. After the last access to this Flash bank, the down counter delays from 0 to 255 prescaled HCLK clock cycles before putting the bank into one of the fallback power modes as determined by the FBFALLBACK register. This value must be greater than 1 when the fallback mode is not ACTIVE. Note: The prescaled clock used for the BAGP down counter is a clock divided by 16 from HCLK. 7-0 VREADST 0-FFh VREAD Setup VREAD is generated by the Flash pump and used for Flash read operation. The bank power up sequencing starts VREADST HCLK cycles after VREAD power supply becomes stable. Note: There is not a programmable Bank Sleep counter and Standby counter register. The number of clock cycles to transition from sleep to standby and standby to active is hardcoded in the Flash wrapper design. SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 283 Control Registers www.ti.com 5.7.16 Flash Bank Fallback Power Register (FBFALLBACK) Figure 5-22. Flash Bank Fallback Power Register (FBFALLBACK) [offset = 40h] 31 16 Reserved R-0505h 15 14 13 4 3 2 1 0 BANKPWR7 Reserved BANKPWR1 BANKPWR0 R/WP-3h R/WP-3FFh R/WP-3h R/WP-3h LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 5-28. Flash Bank Fallback Power Register (FBFALLBACK) Field Descriptions Bit Field Value Description 31-16 Reserved 0505h Do not write to these bits. 15-14 BANKPWR7 13-4 Reserved 3-2 BANKPWR1 1-0 284 Bank 7 Fallback Power Mode 0 Bank sleep mode 1h Bank standby mode 2h Reserved 3h Bank active mode 3FFh Do not write to these bits. Bank 1 Fallback Power Mode 0 Bank sleep mode 1h Bank standby mode 2h Reserved 3h Bank active mode BANKPWR0 Bank 0 Fallback Power Mode 0 Bank sleep mode 1h Bank standby mode 2h Reserved 3h Bank active mode F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 5.7.17 Flash Bank/Pump Ready Register (FBPRDY) Figure 5-23. Flash Bank/Pump Ready Register (FBPRDY) [offset = 44h] 31 24 15 23 16 Reserved BANKBUSY[7:0] R-0 R-1 (Unimplemented banks) or R-0 (Implemented banks) 14 8 7 0 PUMPRDY Reserved BANKRDY[7:0] R-1 R-0 R-1 LEGEND: R = Read only; -n = value after reset Table 5-29. Flash Pump Access Control Register 1 (FPAC1) Field Descriptions Bit Field 31-24 Reserved 23-16 BANKBUSY[7:0] Value 0 Description Reads return 0. Writes have no effect. Bank busy bits (one bit for each bank) 0 The bank is not busy. 1 The bank is busy, not ready or this bank is not implemented. Note: A bank is considered busy if it is being accessed by the TCM, Bus 2 or the Flash state machine. 15 PUMPRDY 14-8 Reserved 7-0 BANKRDY[7:0] Flash pump ready flag 0 Pump is not ready (Code must be executing from somewhere other than internal Flash). 1 Pump is ready for Flash accesses. 0 Reads return 0. Writes have no effect. Bank ready bits (one bit for each bank) 0 Flash bank is in the sleep or standby state. 1 Flash bank is in the active state, or the bank is not implemented. SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 285 Control Registers www.ti.com 5.7.18 Flash Pump Access Control Register 1 (FPAC1) Figure 5-24. Flash Pump Access Control Register 1 (FPAC1) [offset = 48h] 31 27 26 16 Reserved PSLEEP R-0 R/WP-64h 15 1 0 Reserved PUMPPWR R-0 R/WP-1 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 5-30. Flash Pump Access Control Register 1 (FPAC1) Field Descriptions Bit Field 31-12 Reserved 26-16 PSLEEP Value 0 Description Reads return 0. Writes have no effect. Pump Sleep These bits contain the starting count value for the charge pump sleep down counter. While the charge pump is in sleep mode, the power mode management logic holds the charge pump sleep counter at this value. When the charge pump exits sleep power mode, the down counter delays from 0 to PSLEEP pump sleep down clock cycles before putting the charge pump into active power mode. Note: Pump sleep down counter clock is a divide by 2 input of HCLK. That is, there are 2*HCLK cycles for every PSLEEP counter cycle. 15-1 0 286 Reserved 0 PUMPPWR Reads return 0. Writes have no effect. Flash Charge Pump Fallback Power Mode 0 Sleep (all pump circuits disabled). 1 Active (all pump circuits active). F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 5.7.19 Flash Pump Access Control Register 2 (FPAC2) Figure 5-25. Flash Pump Access Control Register 2 (FPAC2) [offset = 4Ch] 31 16 Reserved R-0 15 0 PAGP R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 5-31. Flash Pump Access Control Register 2 (FPAC2) Field Descriptions Bit Field 31-16 Reserved 15-0 PAGP Value 0 Description Reads return 0. Writes have no effect. Pump Active Grace Period This register contains the starting count value for the PAGP mode down counter. Any access to Flash memory causes the counter to reload with the PAGP value. After the last access to Flash memory, the down counter delays from 0 to 65535 prescaled HCLK clock cycles before entering one of the charge pump fallback power modes as determined by PUMPPWR in the FPAC1 register. Note: The PAGP down counter is clocked by the same prescaled clock as the BAGP down counter which is a divide by 16 of HCLK. 5.7.20 Flash Module Access Control Register (FMAC) Figure 5-26. Flash Module Access Control Register (FMAC) [offset = 50h] 31 16 Reserved R-0 15 3 2 0 Reserved BANK R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 5-32. Flash Module Access Control Register (FMAC) Field Descriptions Bit 31-16 2-0 Field Value Reserved BANK 0 Description Reads return 0. Writes have no effect. Bank Enable. These bits select which bank is enabled for operations such as local register access, OTP sector access, and program/erase commands. These bits select only one bank at a time from up to eight banks depending on the specific device being used. For example, a 000 selects bank 0; 011 selects Bank 3. Note: BANK[2:0] can identify up to 8 Flash banks. If BANK[2:0] is selected for an unimplemented bank then the BANK[2:0] will set itself to the number of an implemented bank. To determine if a bank is implemented, write the bank number to BANK[2:0] and read back the value to see if what was written can be read back. SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 287 Control Registers www.ti.com 5.7.21 Flash Module Status Register (FMSTAT) Figure 5-27. Flash Module Status Register (FMSTAT) [offset = 54h] 31 24 Reserved R-0 23 16 Reserved R-0 15 14 13 12 11 10 9 8 Reserved ILA Reserved PGV Reserved EV Reserved BUSY R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 7 6 5 4 3 2 1 0 ERS PGM INVDAT CSTAT VOLTSTAT ESUSP PSUSP SLOCK R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 5-33. Flash Module Status Register (FMSTAT) Field Descriptions Bit 31-15 14 Field Reserved Value 0 ILA Description Reads return 0. Writes have no effect. Illegal Address When set, indicates that an illegal address is detected. Five conditions can set the illegal address flag. 1. 2. 3. 4. 5. 13 Reserved 12 PGV 0 Writing to a hole (unimplemented logical address space) within a Flash bank. Writing to an address location to an unimplemented Flash space. Input address for write is decoded to select a different bank from the bank ID register. The address range does not match the type of FSM command. For example, the erase_sector command must match the address regions. TI-OTP address selected but CMD_EN in FSM_ST_MACHINE is not set. Reads return 0. Writes have no effect. Program Verify When set, indicates that a word is not successfully programmed after the maximum allowed number of program pulses are given for program operation. 11 Reserved 10 EV 0 Reads return 0. Writes have no effect. Erase Verify When set, indicates that a sector is not successfully erased after the maximum allowed number of erase pulses are given for erase operation. During Erase verify command, this flag is set immediately if a bit is found to be 0. 9 Reserved 8 BUSY 7 ERS 0 Reads return 0. Writes have no effect. Busy When set, this bit indicates that a program, erase, or suspend operation is being processed. Erase Active When set, this bit indicates that the Flash module is actively performing an erase operation. This bit is set when erasing starts and is cleared when erasing is complete. It is also cleared when the erase is suspended and set when the erase resumes. 6 PGM Program Active When set, this bit indicates that the Flash module is currently performing a program operation. This bit is set when programming starts and is cleared when programming is complete. It is also cleared when programming is suspended and set when programming is resumes. 5 INVDAT Invalid Data When set, this bit indicates that the user attempted to program a 1 where a 0 was already present. This bit is cleared by the Clear Status command. 288 F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com Table 5-33. Flash Module Status Register (FMSTAT) Field Descriptions (continued) Bit 4 Field Value CSTAT Description Command Status Once the FSM starts any failure will set this bit. When set, this bit informs the host that the program, erase, or validate sector command failed and the command was stopped. This bit is cleared by the Clear Status command. For some errors, this will be the only indication of an FSM error because the cause does not fall within the other error bit types. 3 VOLTSTAT Core Voltage Status When set, this bit indicates that the core voltage generator of the pump power supply dipped below the lower limit allowable during a program or erase operation. This bit is cleared by the Clear Status command. 2 ESUSP Erase Suspended When set, this bit indicates that the Flash module has received and processed an erase suspend operation. This bit remains set until the erase resume command has been issued or until the Clear_More command is run. 1 PSUSP Program Suspended When set, this bit indicates that the Flash module has received and processed a program suspend operation. This bit remains set until the program resume command has been issued or until the Clear_More command is run. 0 SLOCK Sector Lock Status When set, this bit indicates that the operation was halted because the target sector was locked for erasing and programming either by the sector protect bit or by OTP write protection disable bits. (Bits BSE in FBSE register or OTPPROTDIS in register FBAC). This bit is cleared by the Clear Status command. No SLOCK FSM error will occur if all sectors in a bank erase operation are set to 1. All the sectors will be checked but no SLOCK will be set if no operation occurs due to the SECT_ERASED bits being set to all 1s. A SLOCK error will occur if attempting to do a sector erase with either BSE is cleared or SECT_ERASED is set. SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 289 Control Registers www.ti.com 5.7.22 EEPROM Emulation Data MSW Register (FEMU_DMSW) The Flash module controller includes hardware support computing the check bits for ECC, based on the data and address being programmed into the EEPROM emulation array. To utilize this capability, the address to be programmed is written to the FEMU_ADDR register and the data to be programmed is written to the FEMU_DMSW and FEMU_DLSW registers. The write to FEMU_DLSW triggers an ECC calculation and the resulting check bits are available in the FEMU_ECC register. The value from FEMU_ECC can then be used to program the check bits into the EEPROM emulation array for the particular data word over which they were calculated. Figure 5-28. EEPROM Emulation Data MSW Register (FEMU_DMSW) [offset = 58h] 31 0 EMU_DMSW[63:32] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in Privilege mode; -n = value after reset Table 5-34. EEPROM Emulation Data MSW Register (FEMU_DMSW) Field Descriptions Bit 31-0 Field Description EMU_DMSW EEPROM Emulation Most-Significant Data Word. The most-significant data word of the 64-bits of data for which the ECC check bits are to be calculated should be programmed into this register. This register is also used in diagnostic modes 1 and 2 where it supplies the upper data for checking the SECDED hardware. 5.7.23 EEPROM Emulation Data LSW Register (FEMU_DLSW) The Flash module controller includes hardware support computing the check bits for ECC, based on the data and address being programmed into the EEPROM emulation array. To utilize this capability, the address to be programmed is written to the FEMU_ADDR register and the data to be programmed is written to the FEMU_DMSW and FEMU_DLSW registers. The write to FEMU_DLSW triggers an ECC calculation and the resulting check bits are available in the FEMU_ECC register. The value from FEMU_ECC can then be used to program the check bits into the EEPROM emulation array for the particular data word over which they were calculated. Figure 5-29. EEPROM Emulation Data LSW Register (FEMU_DLSW) [offset = 5Ch] 31 0 EMU_DLSW[31:0] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in Privilege mode; -n = value after reset Table 5-35. EEPROM Emulation Data LSW Register (FEMU_DLSW) Field Descriptions Bit 31-0 Field Description EMU_DLSW EEPROM Emulation Least-Significant Data Word. The least-significant data word of the 64-bits of data for which the ECC check bits are to be calculated should be programmed into this register. This register is also used in diagnostic modes 1 and 2 where it supplies the lower data for checking the SECDED hardware. 290 F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 5.7.24 EEPROM Emulation ECC Register (FEMU_ECC) The Flash module controller includes hardware support computing the check bits for ECC, based on the data and address being programmed into the EEPROM emulation array. To utilize this capability, the address to be programmed is written to the FEMU_ADDR register and the data to be programmed is written to the FEMU_DMSW and FEMU_DLSW registers. The write to FEMU_DLSW triggers an ECC calculation and the resulting check bits are available in the FEMU_ECC register. The value from FEMU_ECC can then be used to program the check bits into the EEPROM emulation array for the particular data word over which they were calculated. Figure 5-30. EEPROM Emulation ECC Register (FEMU_ECC) [offset = 60h] 31 16 Reserved R-0 15 8 7 0 Reserved EMU_ECC[7:0] R-0 R/WP-3h LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege mode; -n = value after reset Table 5-36. EEPROM Emulation ECC Register (FEMU_ECC) Field Descriptions Bit Field 31-8 Reserved 7-0 EMU_ECC[7:0] Value 0 Description Reserved EEPROM Emulation ECC Check Bit Value. This register contains the ECC check bits calculated by the FMC controller based on the address written to FEMU_ADDR and the 64-bits of data written to FEMU_DMSW and FEMU_DLSW. This register is also used in the diagnostic modes 1 and 2. In these modes, this register supplies the ECC data for checking the SECDED. In mode 1, this register is filled with the desired ECC and after the DIAG_TRIG is set this register is set to the ECC value returned from the SECDED selected by DIAG_ECC_SEL. DIAG_EN_KEY and DIAG_TRIG must be set to fill this register in the diagnostic modes. Writes to FEMU_DxSW will not affect this register in diagnostic modes 1 or 2. In mode 2, this register is filled with the desired ECC and after the DIAG_TRIG is set this register is set to the syndrome value returned from the SECDED selected by DIAG_ECC_SEL. This register is only available when the module is configured to use the ECC logic; otherwise, it is a reserved register. SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 291 Control Registers www.ti.com 5.7.25 EEPROM Emulation Address Register (FEMU_ADDR) The Flash module controller includes hardware support computing the check bits for ECC, based on the data and address being programmed into the EEPROM emulation array. To utilize this capability, the address to be programmed is written to the FEMU_ADDR register and the data to be programmed is written to the FEMU_DMSW and FEMU_DLSW registers. The write to FEMU_DLSW triggers an ECC calculation and the resulting check bits are available in the FEMU_ECC register. The value from FEMU_ECC can then be used to program the check bits into the EEPROM emulation array for the particular data word over which they were calculated. Figure 5-31. EEPROM Emulation Address Register (FEMU_ADDR) [offset = 68h] 31 22 21 16 Reserved EMU_ADDR[21:16] R-0 R/WP-0 15 3 2 0 EMU_ADDR[15:3] Reserved R/WP-0 R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege mode; -n = value after reset Table 5-37. EEPROM Emulation Address Register (FEMU_ADDR) Field Descriptions Bit Field 31-22 Reserved 21-3 EMU_ADDR Value 0 0-7 FFFFh Description Reserved. Writes have no effect. It is not necessary to mask these upper ten bits when writing the address of bank 7 locations (0xF002xxxx); however, these bits are not used in calculating the ECC value and will read back as 0. EEPROM Emulation Address. The address of the 64-bit data word over which ECC is to be calculated is written to this field. Note that only bits 21:3 are actually written and used for the calculation. The other bits (31:22 and 2:0) are ignored, but do not need to be masked off before being written to this register. This register is also used in diagnostic modes 1 and 2 where it supplies the address bits for checking the SECDED hardware. 2-0 292 Reserved 0 Reserved. Writes have no effect. The lower three bits of the CPU address are not used in the ECC calculation to align the data on a 64-bit boundary. These bits will read back as 0. F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 5.7.26 Diagnostic Control Register (FDIAGCTRL) Set the DIAG_MODE and the DIAG_EN_KEY first before setting up the other registers to block the other registers from causing a false error. The final write should set the DIAG_TRIG register to activate the test. Running out of ram will prevent problems with the diagnostic test corrupting the Flash access in some of the modes. Figure 5-32. Diagnostic Control Register (FDIAGCTRL) [offset = 6Ch] 31 15 25 24 23 20 19 16 Reserved DIAG_TRIG Reserved DIAG_EN_KEY R-0 R/WP-0 R-0 R/WP-Ah 14 12 11 10 9 8 7 3 2 0 Rsvd DIAG_ECC_ SEL Reserved DIAG_BUF_ SEL Reserved DIAG_MODE R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege mode; -n = value after reset Table 5-38. Diagnostic Control Register (FDIAGCTRL) Field Descriptions Bit Field 31-25 Reserved 24 Value 0 DIAG_TRIG Description Reserved Diagnostic Trigger Diagnostic trigger is the final qualifier for the diagnostic result. After setting all the other diagnostic register values, the DIAG_TRIG is set to 1. This will activate the diagnostic logic for one access and then automatically clear the DIAG_TRIG value. DIAG_EN_KEY and DIAG_MODE must be set at least one cycle before setting DIAG_TRIG. This bit always reads as 0. 23-20 Reserved 0 19-16 DIAG_EN_KEY Reserved Diagnostic Enable Key 5h Diagnostic mode is enabled. All other values Diagnostic mode is disabled. 15 Reserved 0 14-12 DIAG_ECC_SEL 11-10 Reserved Reserved Diagnostic SECDED Select 0 Select SECDED0 for diagnostic testing. 1h Select SECDED1 for diagnostic testing. 2h Select SECDED2 for diagnostic testing (256 bit wide words only). 3h Select SECDED3 for diagnostic testing (256 bit wide words only). 4h Select BUS2 SECDED for diagnostic testing. 5h Select FEE SECDED for diagnostic testing (Same ECC logic as BUS2 but sets FEE registers). 6h-7h Reserved 0 Reserved SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 293 Control Registers www.ti.com Table 5-38. Diagnostic Control Register (FDIAGCTRL) Field Descriptions (continued) Bit Field 9-8 DIAG_BUF_ SEL Value Description Diagnostic Buffer Select 0 The DIAG_BUF_SEL selects the Instruction or Data buffer to read or write when accessing the FPRIM_ADD_TAG and FDUP_ADD_TAG registers. The address tags consists of matching primary and duplicate address tag registers. All the primary address tag registers are memory mapped to a common address (see Section 5.7.10 ) and are selected by DIAG_BUF_SEL. The same occurs for the duplicate address. (see Section 5.7.11 ). Bit 0 selects a data buffer if high and an instruction buffer if low. Bits 1 indicate the buffer number. DIAG_BUF_SEL ENCODING: 7-4 Reserved 2-0 DIAG_MODE 294 0 Buffer Number Bits 1 Inst=0 Data=1 Bit0 0 0 Instruction Buffer 0 0 1 Data Buffer 0 1 0 Instruction Buffer 1 1 1 Data Buffer 1 Buffer Reserved Diagnostic Mode 0 Diagnostic mode is disabled. This is the same as DIAG_EN_KEY is not equal to 5h. 1h Diagnostic ECC Data Correction test mode (see Section 5.6.2.1 ). 2h Diagnostic ECC Syndrome Reporting test mode (see Section 5.6.2.2 ). 3h ECC Malfunction test mode 1 (same data) (see Section 5.6.2.3 ). 4h ECC Malfunction test mode 2 (inverted data) (see Section 5.6.2.4 ). 5h Address Tag Register test mode (see Section 5.6.2.5 ). 6h Reserved 7h ECC Data Correction Diagnostic test mode (see Section 5.6.2.6 ). F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 5.7.27 Uncorrected Raw Data High Register (FRAW_DATAH) Figure 5-33. Uncorrected Raw Data High Register (FRAW_DATAH) [offset = 70h] 31 0 RAW_DATA[63:32] R/WP-u LEGEND: R/W = Read/Write; WP = Write in Privilege mode; -n = value after reset; -u = unchanged value on internal reset, cleared on power up Table 5-39. Uncorrected Raw Data High Register (FRAW_DATAH) Field Descriptions Bit 31-0 Field Description RAW_DATA [63:32] Uncorrected Raw Data This register contains the upper 32 bits of the 64-bit raw data used in diagnostic testing of the ECC logic. NOTE: Raw Data and Raw ECC registers can be loaded with diagnostic values only in diagnostic modes 1 through 6 with DIAG_EN_KEY=0101. These modes must be set for at least one clock cycle before writing to any FRAW* register. 5.7.28 Uncorrected Raw Data Low Register (FRAW_DATAL) Figure 5-34. Uncorrected Raw Data Low Register (FRAW_DATAL) [offset = 74h] 31 0 RAW_DATA[31:0] R/WP-u LEGEND: R/W = Read/Write; WP = Write in Privilege mode; -n = value after reset -u = unchanged value on internal reset, cleared on power up Table 5-40. Uncorrected Raw Data Low Register (FRAW_DATAL) Field Descriptions Bit 31-0 Field Description RAW_DATA [31:0] Uncorrected Raw Data. This register contains the lower 32 bits of the 64-bit raw data used in diagnostic testing of the ECC logic. NOTE: Raw Data and Raw ECC registers can be loaded with diagnostic values only in diagnostic modes 1 through 6 with DIAG_EN_KEY=0101. These modes must be set for at least one clock cycle before writing to any FRAW* register. SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 295 Control Registers www.ti.com 5.7.29 Uncorrected Raw ECC Register (FRAW_ECC) Figure 5-35. Uncorrected Raw ECC Register (FRAW_ECC) [offset = 78h] 31 16 Reserved R-0 15 9 8 7 0 Reserved PIPE BUF RAW_ECC[7:0] R-0 RC-0 R/WD-u LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege mode; C = Clear by writing a 1; -n = value after reset -u = unchanged value on internal reset, cleared on power up Table 5-41. Uncorrected Raw ECC Register (FRAW_ECC) Field Descriptions Bit Field 31-9 Reserved 8 PIPE BUF Value 0 Description Reserved Error came from pipeline buffer hit When this bit is a 1, latest error came from a pipeline buffer hit and the FRAW_DATH, FRAW_DATL, and RAW_ECC fields will not contain information that matches the error address nor error status bits. This bit is cleared when the RAW_ECC field is updated with new valid information or by writing a 1 to this bit. 7-0 RAW_ECC[7:0] Uncorrected Raw ECC This register contains the ECC data used in diagnostic testing of the ECC logic. NOTE: Raw Data and Raw ECC registers can loaded with diagnostic values only in a used diagnostic mode with DIAG_EN_KEY=0101. This mode must be set for at least one clock cycle before writing to any FRAW* register. 296 F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 5.7.30 Parity Override Register (FPAR_OVR) Figure 5-36. Parity Override Register (FPAR_OVR) [offset = 7Ch] 31 17 15 12 11 16 Reserved BNK_INV_ PAR R-0 R/WP-0 9 8 7 0 BUS_PAR_DIS PAR_OVR_KEY ADD_INV_ PAR DAT_INV_PAR R/WP-5h R/WP-2h R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 5-42. Parity Override Register (FPAR_OVR) Field Descriptions Bit 31-17 16 Field Value Reserved BNK_INV_PAR 0 Description Reserved Buffer Invert Parity When this value is 1 and PAR_OVR_KEY is 101 then the current system parity signal SYS_ODD_PARITY is inverted when doing bank parity calculations. This will generate parity errors and cause interrupt signals to be generated. When 0, the SYS_ODD_PARITY value is used. This bit is only implemented for parity configurations and is reserved for ECC devices. 15-12 BUS_PAR_DIS Disable Bus Parity When this value is 1010, the address bus parity error and buffer parity error are disabled and no checking is done and no events are generated. Any other value will enable the parity checking on the Address bus and read data bus. The read data parity is never disabled from this module. 11-9 PAR_OVR_KEY When this value is 101, the selected ADD_INV_PAR and DAT_INV_PAR fields will become active. Any other value will cause the module to use the global system parity bit in the system register DEVCR1. 8 ADD_INV_PAR Address Odd Parity This bit is active only when PAR_OVR_KEY = 101. When ADD_INV_PAR is 1, the incoming address bus will invert the system signal SYS_ODD_PARITY for parity calculations. This will cause parity errors and generate interrupt error signals. When 0, it will use the SYS_ODD_PARITY value. This bit is set to the SYS_ODD_PAR signal value on reset. 7-0 DAT_INV_PAR Data Odd Parity This byte is active only when PAR_OVR_KEY = 101. When a DATA_INV_PAR bit is 1, the output read data will invert the system signal SYS_ODD_PARITY for parity calculations. This will cause parity errors and generate interrupt signals. When 0, it will use the SYS_ODD_PARITY value. This byte can support up to a 64 bit data bus but when the device has a 32 bit bus, bits 7:4 are reserved. Bit 0 affects read bus bits 7:0, Bit 1 affects read bus bits 15:8 and so on. Each active bit of this field is set to the SYS_ODD_PAR signal value on reset. The DAT_INV_PAR is used in the parity for the pipeline buffer logic and for the read data bus to the CPU. When the ECC logic is in the CPU (CONF_TYPE = 5) and SIL3 is active, this field becomes the ECC corrupting value for SIL3 diagnostic mode 7. (Starting with version 1.0.0.0) In diagnostic mode 7 the FPAR_OVR should be set to 00005Axxh to allow writes to the DAT_INV_PAR field. This field should be written before entering diagnostic mode 7. SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 297 Control Registers www.ti.com 5.7.31 Flash Error Detection and Correction Sector Disable Register (FEDACSDIS2) This register is used to disable the SECDED function for one or two sectors from the EEPROM Emulation Flash (bank 7). An additional two sectors can have SECDED disabled by the use of the FEDACSDIS register. see Section 5.7.9. Figure 5-37. Flash Error Detection and Correction Sector Disable Register (FEDACSDIS2) [offset = C0h] 31 29 28 27 24 23 21 20 19 16 BankID3_Inverse Rsvd SectorID3_inverse BankID3 Rsvd SectorID3 R/WP-0 R-0 R/WP-0 R/WP-0 R-0 R/WP-0 15 13 12 11 8 7 5 4 3 0 BankID2_Inverse Rsvd SectorID2_inverse BankID2 Rsvd SectorID2 R/WP-0 R-0 R/WP-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 5-43. Flash Error Detection and Correction Sector Disable Register (FEDACSDIS2) Field Descriptions Bit 31-29 Field Value BankID3_Inverse The bank ID inverse bits are used with the bank ID bits to select the bank for which a sector is disabled. The only bank that supports sector disable is bank 7. 0 28 Reserved Description If BankID3 = 7h and BankID3_inverse = 0, then if a valid sector is selected by SectorID3 and SectorID3_inverse that sector will have ECC checking disabled. other No sector is disabled by disable ID 3. 0 Reads return 0. Writes have no effect. 27-24 SectorID3_inverse The sector ID inverse bits are used with the sector ID bits to determine which sector is disabled. If the sector ID bits are not pointing to a valid sector (0-3) or the sector ID inverse bits are not an inverse of the sector ID bits, then no sector is disabled by disable ID 3. 23-21 BankID3 The bank ID bits are used with the bank ID inverse bits to select the bank for which a sector is disabled. The only bank that supports sector disable is bank 7. 7h If BankID3 = 7h and BankID3_inverse = 0, then if a valid sector is selected by SectorID3 and SectorID3_inverse that sector will have ECC checking disabled. other No sector is disabled by disable ID 3. 0 Reads return 0. Writes have no effect. 20 Reserved 19-16 SectorID3 The sector ID bits are used with the sector ID inverse bits to determine which sector is disabled. If the sector ID bits are not pointing to a valid sector (0-3) or the sector ID inverse bits are not an inverse of the sector ID bits, then no sector is disabled by disable ID 3. 15-13 BankID2_Inverse The bank ID inverse bits are used with the bank ID bits to select the bank for which a sector is disabled. The only bank that supports sector disable is bank 7. 0 12 Reserved If BankID2 = 7h and BankID2_inverse = 0, then if a valid sector is selected by SectorID2 and SectorID2_inverse that sector will have ECC checking disabled. other No sector is disabled by disable ID 2. 0 Reads return 0. Writes have no effect. 11-8 SectorID2_inverse The sector ID inverse bits are used with the sector ID bits to determine which sector is disabled. If the sector ID bits are not pointing to a valid sector (0-3) or the sector ID inverse bits are not an inverse of the sector ID bits, then no sector is disabled by disable ID 2. 7-5 BankID2 The bank ID bits are used with the bank ID inverse bits to select the bank for which a sector is disabled. The only bank that supports sector disable is bank 7. 7h If BankID2 = 7h and BankID2_inverse = 0, then if a valid sector is selected by SectorID2 and SectorID2_inverse that sector will have ECC checking disabled. other No sector is disabled by disable ID 2. 4 Reserved 0 Reads return 0. Writes have no effect. 3-0 SectorID2 0-Fh 298 The sector ID bits are used with the sector ID inverse bits to determine which sector is disabled. If the sector ID bits are not pointing to a valid sector (0-3) or the sector ID inverse bits are not an inverse of the sector ID bits, then no sector is disabled by disable ID 2. F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 5.7.32 FSM Register Write Enable (FSM_WR_ENA) Figure 5-38. FSM Register Write Enable (FSM_WR_ENA) [offset = 288h] 31 16 Reserved R-0 15 3 2 0 Reserved WR_ENA R-0 R/WP-2h LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 5-44. FSM Register Write Enable (FSM_WR_ENA) Field Descriptions Bit Field 31-16 Reserved 2-0 WR_ENA Value Description 0 Reads return 0. Writes have no effect. Flash State Machine Write Enable 5h This register must contain 101 in order to write to any other register in the range FFF8 7200h to FFF8 72FFh. This is the first register to be written when setting up the FSM. All other values For all other values, the FSM registers cannot be written. 5.7.33 FSM Sector Register (FSM_SECTOR) This is a banked register. A separate register is implemented for each bank, but they all occupy the same address. The correct bank must be selected in the FMAC register before reading or writing this register. See Section 5.7.20. Figure 5-39. FSM Sector Register (FSM_SECTOR) [offset = 2A4h] 31 16 SECT_ERASED[16:0] R/WP-0 15 0 Reserved R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 5-45. FSM Sector Register (FSM_SECTOR) Field Descriptions Bit 31-16 Field Value SECT_ERASED[16:0] Description Sectors Erased There is one bit for each sector. Bit 16 corresponds to sector 0, bit 17 corresponds to sector 1, and so on. After bank erase, the bit corresponding to each sector which is erased will be changed from 0 to 1. 15-0 Reserved 0 During bank erase, each sector will be erased. 1 Each sector will not be erased. 0 These bits are used by the state machine during bank erase. Do not write to these bits. SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 299 Control Registers www.ti.com 5.7.34 EEPROM Emulation Configuration Register (EEPROM_CONFIG) Figure 5-40. EEPROM Emulation Configuration Register (EEPROM_CONFIG) [offset = 2B8h] 31 20 15 16 EWAIT R-0 R/WP-1h 9 Reserved 19 Reserved 8 7 AUTOSUSP_EN R-0 0 AUTOSTART_GRACE R/WP-0 R/WP-2h LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 5-46. EPROM Emulation Configuration Register (EEPROM_CONFIG) Field Descriptions Bit Field 31-20 Reserved 19-16 EWAIT Value 0 Description Reads return 0. Writes have no effect. EEPROM Wait State Counter This register will replace the RWAIT count in the EEPROM register. The same formulas that apply to RWAIT will apply to EWAIT in the EEPROM bank. 15-9 8 Reserved 0 AUTOSUSP_EN Reads return 0. Writes have no effect. Auto Suspend Enable 0 Auto Suspend is disabled. 1 Auto Suspend is enabled. The auto-suspend will begin when the CPU or Bus 2 attempts to access a bank with an active and suspendable FSM operation. If this happens the FSM will automatically be issued a suspend command and exit from the FSM. It will then do the access. After the access, the FMC will wait for a time determined by the Autostart_grace field before issuing the FSM resume command. 7-0 300 AUTOSTART_GRACE Auto-suspend Startup Grace Period 1 The value in this register determines how many cycles the FMC will wait after the last CPU or Bus 2 access before issuing the FSM resume command. 0 The FMC will wait 16 HCLK periods for each count in the AUTOSTART_GRACE field. A value of 2 will wait for 32 periods after the last access. Each access will reset the counter to the AUTOSTART_GRACE value × 16. F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 5.7.35 EEPROM Emulation Error Detection and Correction Control Register 1 (EE_CTRL1) This register controls ECC event detection for the EEPROM Emulation Flash bank (bank 7). For the equivalent register that controls ECC event detection for the main Flash banks, see Section 5.7.2. Figure 5-41. EEPROM Emulation Error Detection and Correction Control Register 1 (EE_CTRL1) [offset = 308h] 31 24 Reserved R-05h 23 20 19 16 Reserved EE_EDACMODE R-0 R/WP-Ah 15 7 10 9 8 Reserved EE_EOFEN EE_EZFEN EE_EPEN R-0 R/WP-0 R/WP-0 R/WP-0 5 4 Reserved 6 EE_ALL1_OK EE_ALL0_OK 3 EE_EDACEN 0 R-0 R/WP-0 R/WP-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 5-47. EEPROM Emulation Error Detection and Correction Control Register 1 (EE_CTRL1) Field Descriptions Field Value Description 31-20 Bit Reserved 050h Reads return 050h. Writes have no effect. 19-16 EE_ EDACMODE Error Correction Mode for the EEPROM Emulation Flash bank (bank 7). For the main Flash banks, see Section 5.7.2. 5h Detection only mode. Note: In detection only mode single-bit errors will not be corrected, but will be treated as uncorrectable errors. The single-bit error flags and profiling mode are disabled. Detection only mode has the advantage that a triple bit error will be detected and not mistaken for a single-bit error and mis-corrected. All Other Values Single-bit errors are corrected and multi-bit or address errors are detected. Note: It is recommended to leave the EE_EDACMODE field as 1010 to guard against soft errors from flipping EE_EDACMODE to a detection only. 15-11 10 9 8 Reserved 0 EE_EOFEN Reads return 0. Writes have no effect. EEPROM Emulation Event on a correctable One's Fail Enable bit 0 No ESM event will be generated on a single-bit error when a 1 reads as a 0 and is corrected. 1 An ESM group 1 channel 35 event will be generated on a single-bit error when a 1 reads as a 0 and is corrected. EE_EZFEN EEPROM Emulation Event on a correctable Zero's Fail Enable bit 0 No ESM event will be generated on a single-bit error when a 0 reads as a 1 and is corrected. 1 An ESM group 1 channel 35 event will be generated on a single-bit error when a 0 reads as a 1 and is corrected. EE_EPEN EEPROM Emulation Error Profiling Enable 0 Error profiling is disabled. 1 Error profiling is enabled. An ESM group 1 channel 35 event will be generated when number of correctable bit errors detected and corrected has reached the threshold value defined in the EE_CTRL2 register. 7-6 Reserved 0 Reads return 0. Writes have no effect. SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 301 Control Registers www.ti.com Table 5-47. EEPROM Emulation Error Detection and Correction Control Register 1 (EE_CTRL1) Field Descriptions (continued) Bit 5 Field Value EE_ALL1_OK Description EEPROM Emulation All One Condition Valid 0 One condition valid is disabled. Reading of an erased location (64 data bits and the corresponding 8 ECC bits are all 1s) will generate ECC errors. The error counter for profiling will increment if all 1s are detected. 1 One condition valid is enabled. Reading of an erased location (64 data bits and the corresponding 8 ECC bits are all 1s) will NOT generate ECC errors. The error counter for profiling will NOT increment if all 1s are detected. 4 EE_ALL0_OK EEPROM Emulation All Zero Condition Valid 0 Zero condition valid is disabled. Reading of all 0s (64 data bits and the corresponding 8 ECC bits are all 0s) will generate ECC errors. The error counter for profiling will increment if all 0s are detected. 1 Zero condition valid is enabled. Reading of all 0s (64 data bits and the corresponding 8 ECC bits are all 0s) will NOT generate ECC errors. The error counter for profiling will NOT increment if all 0s are detected. 3-0 EE_EDACEN EEPROM Emulation Error Detection and Correction Enable 5h Error Detection and Correction is disabled. All Other Values Error Detection and Correction is enabled. Note: It is recommended to leave the EE_EDACEN field as 1010 to guard against soft errors from flipping the EE_EDACEN to a disabled state. 302 F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 5.7.36 EEPROM Emulation Error Correction and Correction Control Register 2 (EE_CTRL2) Figure 5-42. EEPROM Emulation Error Correction and Correction Control Register 2 (EE_CTRL2) [offset = 30Ch] 31 16 Reserved R-0 15 0 EE_SEC_THRESHOLD R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 5-48. EEPROM Emulation Error Correction Control Register 2 (EE_CTRL2) Field Descriptions Bit Field Value 31-16 Reserved 15-0 EE_SEC_THRESHOLD 0 Description Reads return 0. Writes have no effect. 0-FFFFh EEPROM Emulation Single Error Correction Threshold This register contains the threshold value for the SEC (single error correction) occurrences before a single interrupt request is generated. A threshold of zero disables the threshold so that it never triggers the profile interrupt. 5.7.37 EEPROM Emulation Correctable Error Count Register (EE_COR_ERR_CNT) Figure 5-43. EEPROM Emulation Error Correctable Error Count Register (EE_COR_ERR_CNT) [offset = 310h] 31 16 Reserved R-0 15 0 EE_ERRCNT R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privilege Mode; -n = value after reset Table 5-49. EEPROM Emulation Correctable Error Count Register (EE_COR_ERR_CNT) Field Descriptions Bit Field 31-16 Reserved 15-0 EE_ERRCNT Value 0 Description Reads return 0. Writes have no effect. 0-FFFFh Single Error Correction Count This register contains the number of SEC (single error correction) occurrences. Writing any value to this register resets the count value to 0. The counter resets to 0 when it increments to be equal to the single error correction threshold. This register only increments when profiling mode is enabled. This register is not affected by the EE_ZERO_EN or EE_ONE_EN error control bits in the EE_CTRL1 register. SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 303 Control Registers www.ti.com 5.7.38 EEPROM Emulation Correctable Error Address Register (EE_COR_ERR_ADD) During emulation mode, this address is frozen even when read. By setting the SUSP_IGNR bit, (seeTable 5-14) this register can be unfrozen in emulation mode. This register is not changed with the reset signal and contains unknown data at power-up. Figure 5-44. EEPROM Emulation Correctable Error Address Register (EE_COR_ERR_ADD) [offset = 314h] 31 16 COR_ERR_ADD R-u 15 3 2 0 COR_ERR_ADD B_OFF R-u R-u LEGEND: R = Read only; -n = value after reset; -u = unchanged value on internal reset, cleared on power up Table 5-50. EEPROM Emulation Correctable Error Address Register (EE_COR_ERR_ADD) Field Descriptions Bit 31-3 Field COR_ERR_ADD Value Description 0-1FFF FFFFh Correctable Error Address COR_ERR_ADD records the CPU logical address of which a correctable error is detected by the ECC logic. This error address is frozen from begin updated until it is read by the CPU. Additional error are blocked until this register is read. 2-0 B_OFF 0-7h Byte offset Since ECC is checked on 64 bit data, when checking main memory or OTP, the address captured is aligned to a 64-bit boundary with address bits[2:0] equal to 0. When reading from the ECC bytes, these bits will indicate the failing address of the ECC location associated with the failure. When reading an ECC byte, the ECC is checked against the 64 data bits they protect. 304 F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 5.7.39 EEPROM Emulation Correctable Error Position Register (EE_COR_ERR_POS) The bit position is captured during errors when either EE_EOFEN or EE_EZFEN enable bit is set. During error profiling mode when only EE_EPEN is set, the bit position is not captured if a correctable error is detected. This register is frozen while either the EE_ERR_ZERO_FLG or the EE_ERR_ONE_FLG bit is set in the EE_EDACSTATUS register. During emulation mode, this address is frozen even when read. By setting the SUSP_IGNR bit, this register can be unfrozen in emulation mode. This register is not changed with the reset signal and contains unknown data at power-up. Figure 5-45. EEPROM Emulation Correctable Error Position Register (EE_COR_ERR_POS) [offset = 318h] 31 16 Reserved R-0 15 8 7 0 Reserved TYPE EE_ERR_POS R-0 R-u R-u LEGEND: R = Read only; -n = value after reset; -u = unchanged value on internal reset, cleared on power up Table 5-51. EEPROM Emulation Correctable Error Position Register (EE_COR_ERR_POS) Field Descriptions Bit 31-9 8 7-0 Field Reserved Value 0 TYPE EE_ERR_POS Description Reads return 0. Writes have no effect. Error Type 0 The error was one of the 64 data bits. 1 The error was one of the 8 check bits. 0-FFh The bit address of the single-bit error. SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 305 Control Registers www.ti.com 5.7.40 EEPROM Emulation Error Status Register (EE_STATUS) During emulation mode, this address is frozen even when read. By setting the SUSP_IGNR bit in FEDACCTRL1 register, (see Table 5-14) this register can be unfrozen in emulation mode. This register is not changed with the reset signal and contains unknown data at power-up. All these error status bits can be deactivated by writing a 1 to the bit. Writing a 0 has no effect. Bits 0 to 3 show correctable errors while bits 4 to 12 show uncorrectable errors. When the uncorrectable errors are triggered, the current address is stored in the EE_UNC_ERR_ADD register. These error bits are not set while the FMC is in the suspend mode but they can be cleared in suspend by writing 1s to the bits. By setting the SUSP_IGNR bit to 1, these error bits can be set in suspend mode (see Table 5-14). Figure 5-46. EEPROM Emulation Error Status Register (EE_STATUS) [offset = 31Ch] 31 24 Reserved R-0 23 16 Reserved R-0 15 13 12 11 9 8 Reserved EE_D_UNC_ ERR Reserved EE_UNC_ ERR R-0 RCP-u R-0 RCP-u 7 6 5 4 3 2 1 0 Reserved EE_CMG Reserved EE_CME EE_D_COR_ ERR EE_ERR_ ONE_FLG EE_ERR_ ZERO_FLG EE_ERR_ PRF_FLG R-0 R-0 R-0 R-0 RCP-u RCP-u RCP-u RCP-u LEGEND: R = Read only; RCP = Read and Clear in Privilege Mode; -n = value after reset; -u = unchanged value on internal reset, cleared on power up Table 5-52. EEPROM Emulation Error Status Register (EE_STATUS) Field Descriptions Bit 31-13 12 11-9 8 306 Field Reserved Value 0 EE_D_UNC_ERR Reserved Reserved 6 EE_CMG 5 Reserved 4 EE_CME Reads return 0. Writes have no effect. Diagnostic Mode Uncorrectable Error Status Flag 0 No uncorrectable error was detected in diagnostic mode 1. 1 An uncorrectable error was detected in diagnostic mode 1. This means two or more bits in the data or ECC field have been found in error, or one or more bits in the address have been found in error. 0 Reads return 0. Writes have no effect. EE_UNC_ERR 7 Description EEPROM Emulation Uncorrectable Error Flag 0 No uncorrectable errors were detected in bank 7. 1 An uncorrectable error was detected in bank 7. 0 Reads return 0. Writes have no effect. EEPROM Emulation Compare Malfunction Good 0 Compare malfunction was detected on the Bus2 SECDED logic. 1 Compare malfunction was not detected on the Bus2 SECDED logic. 0 Reads return 0. Writes have no effect. EEPROM Emulation Compare Malfunction Error 0 Compare malfunction was not detected on the Bus2 SECDED logic. 1 Compare malfunction was detected on the Bus2 SECDED logic. F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com Table 5-52. EEPROM Emulation Error Status Register (EE_STATUS) Field Descriptions (continued) Bit 3 2 1 0 Field Value EE_D_COR_ERR Description Diagnostic Correctable Error Flag 0 No correctable error was detected. 1 A correctable error was detected. EE_ERR_ONE_FLG Error on One Fail Error Flag 0 No correctable error was detected. 1 A correctable error was detected. EE_ERR_ZERO_FLG Error on Zero Fail Error Flag 0 No correctable error was detected. 1 A correctable error was detected. EE_ERR_PRF_FLG Error Profiling Error Flag 0 No correctable error was detected. 1 A correctable error was detected. 5.7.41 EEPROM Emulation Uncorrectable Error Address Register (EE_UNC_ERR_ADD) During emulation mode, this address is frozen even when read. By setting the SUSP_IGNR bit, (see Table 5-14) this register can be unfrozen in emulation mode. This register is not changed with the reset signal and contains unknown data at power-up. Figure 5-47. EEPROM Emulation Uncorrectable Error Address Register (EE_UNC_ERR_ADD) [offset = 320h] 31 16 UNC_ERR_ADD R-u 15 3 2 0 UNC_ERR_ADD B_OFF R-u R-u LEGEND: R = Read only; -n = value after reset; -u = unchanged value on internal reset, cleared on power up Table 5-53. EEPROM Emulation Uncorrectable Error Address Register (EE_UNC_ERR_ADD) Field Descriptions Bit 31-3 Field UNC_ERR_ADD Value Description 0-1FFF FFFFh Uncorrectable Error Address UNC_ERR_ADD records the CPU logical address of which an uncorrectable error is detected by the ECC logic. This error address is frozen from begin updated until it is read by the CPU. Additional error are blocked until this register is read. 2-0 B_OFF 0-7h Byte offset Since ECC is checked on 64-bit data, when checking main memory or OTP, the address captured is aligned to a 64-bit boundary with address bits[2:0] equal to 0.When reading from the ECC bytes, these bits will indicate the failing address of the ECC location associated with the failure. When reading an ECC byte, the ECC is checked against the 64 data bits they protect. SPNU499C – March 2018 Submit Documentation Feedback F021 Flash Module Controller (FMC) Copyright © 2018, Texas Instruments Incorporated 307 Control Registers www.ti.com 5.7.42 Flash Bank Configuration Register (FCFG_BANK) Figure 5-48. Flash Bank Configuration Register (FCFG_BANK) [offset = 400h] 31 20 19 16 EE_BANK_WIDTH Reserved R-90h R-1 15 4 3 0 MAIN_BANK_WIDTH Reserved R-90h R-2h LEGEND: R = Read only; -n = value after reset Table 5-54. Flash Bank Configuration Register (FCFG_BANK) Field Descriptions Bit 31-20 Field EE_BANK_WIDTH Value 90h Description Bank 7 width (144-bits wide) This read-only value indicates the maximum number of bits that can be programmed in the bank in one operation. The 144 bits includes 128 data bits and 16 ECC bits. 19-16 Reserved 15-4 MAIN_BANK_WIDTH 1 90h Writes have no effect. Width of main Flash banks (144-bits wide) This read-only value indicates the maximum number of bits that can be programmed in the bank in one operation. The 144 bits includes 128 data bits and 16 ECC bits. 3-0 308 Reserved 2h Writes have no effect. F021 Flash Module Controller (FMC) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Chapter 6 SPNU499C – March 2018 Tightly-Coupled RAM (TCRAM) Module This chapter describes the tightly-coupled RAM (TCRAM) module. Topic ........................................................................................................................... 6.1 6.2 6.3 6.4 6.5 6.6 6.7 Overview ......................................................................................................... RAM Memory Map ............................................................................................ Safety Features ................................................................................................ TCRAM Auto-Initialization .................................................................................. Trace Module Support ....................................................................................... Emulation / Debug Mode Behavior ...................................................................... Control and Status Registers ............................................................................. SPNU499C – March 2018 Submit Documentation Feedback Tightly-Coupled RAM (TCRAM) Module Copyright © 2018, Texas Instruments Incorporated Page 310 311 312 313 314 314 314 309 Overview 6.1 www.ti.com Overview The Hercules family of microcontrollers are based on the ARM Cortex-R4F processor. This CPU has two tightly-coupled memory interfaces – ATCM and BTCM, which are used to interface to the program and data memories, respectively. The Hercules MCUs use the ATCM interface for the main flash memory and the BTCM interface for the CPU data RAM. 6.1.1 B0TCM and B1TCM Connection Diagram The BTCM interface is further divided into two parts – B0TCM and B1TCM, which are both used to interface to actual RAM banks as shown in Figure 6-1. Figure 6-1. TCRAM Module Connections 36 Bit 36 Bit Upper 32 bits data and 4 ECC bits Cortex-R4F EVEN Address TCM BUS B0 TCM 36 bit RAM Wide RAM TCRAMW 1 36 Bit 64 Bit data and 8 ECC bits Lower 32 bits data and 4 ECC bits 36 Bit 36 bit RAM Wide RAM 36 Bit B1 TCM Upper 32 bits data and 4 ECC bits ODD Address TCM BUS 36 Bit 36 bit RAM Wide RAM TCR AMW 2 36 Bit 64 Bit data and 8 ECC bits Lower 32 bits data and 4 ECC bits 36 Bit 36 bit RAM Wide RAM 6.1.2 Main Features The main features of the tightly-coupled RAM interface module are: • Controls read/write accesses to the data RAM • Decodes addresses within the memory region allocated for the RAM • Supports read and write accesses in 64-bit, 32-bit, 16-bit or 8-bit access sizes – Does not support bit-wise operations • Safety Features: – Support for Cortex-R4F CPU's Built-In Single-Error-Correction Double-Error-Detection (SECDED) Logic • Uses the CPU's Event bus and maintains the SECDED status in memory-mapped registers • Captures the number of occurrences of single-bit or multi-bit errors as well as the RAM address that has the fault • Generates signals for indicating single-bit and multi-bit errors to the Error Signaling Module (ESM) – Support for Cortex-R4F CPU's Parity Protection Logic for BTCM Address Bus and Control Signals • Uses the CPU's TCM Address Parity Scheme and indicates an address bus parity error to the ESM 310 Tightly-Coupled RAM (TCRAM) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RAM Memory Map www.ti.com • • 6.2 – Redundant Address Decode Scheme • Checks the decoding of CPU address lines and generation of correct memory selects for the RAM banks • Also supports checking of the redundant address decode comparators themselves Supports auto-initialization of the CPU data RAM banks Supports the RAM Trace Port (RTP) Interface – Traces out all RAM read and write accesses to the RTP module RAM Memory Map The ARM Cortex-R4F CPU allows up to 8MB to be accessed through the BTCM interface. The Hercules family of microcontrollers support up to 256KB RAM on the BTCM interface. Check the specific part's datasheet to identify the actual amount of TCRAM supported on the part. This RAM is protected by ECC allowing the CPU to correct any single-bit errors and detect double-bit errors within a 64-bit value. The error correction codes (ECC) are stored in the RAM memory space as well. The memory map for the TCRAM and the corresponding ECC space is shown in Figure 6-2. Any access to an unimplemented TCRAM location results in an error response from the TCRAM module. Figure 6-2. RAM Memory Map 8 MB Illegal address 4MB + 256KB Implemented ECC space 4MB Illegal address 256KB Implemented data space 0x0 Each RAM data word is 64 bits wide. These 64 bits are divided into two 32 bits per RAM bank as shown in Figure 6-1. The 8 bits of ECC are also divided into 4 bits per RAM bank. For every 64-bit read from the RAM, an 8-bit ECC is also read by the CPU on its ECC bus. Similarly, for every 64-bit write to the RAM, the CPU also writes an 8-bit ECC using the same ECC bus. NOTE: Read-Modify-Write Requirement for Writes to RAM: The TCRAM interface module supports 64-bit, 32-bit, 16-bit or 8-bit writes to the RAM. However the ECC is calculated by the CPU for 64-bit values only. For any write access smaller than 64 bits, it is necessary to force the CPU to perform a 64-bit read-modify-write operation in order to ensure that the correct ECC is also written. This can be done by setting the bit 1: BTCMRMW of c15, the Secondary Auxiliary Control Register of the CPU. This bit is already set by default. SPNU499C – March 2018 Submit Documentation Feedback Tightly-Coupled RAM (TCRAM) Module Copyright © 2018, Texas Instruments Incorporated 311 Safety Features www.ti.com The ECC memory can also be directly accessed via memory-mapped offset addresses starting from 4MB, as shown in Figure 6-2. A read from the ECC space results in the 8-bit ECC value appearing on each byte of the 64-bit CPU data. The ECC memory can only be written to as a 64-bit access. The write to the ECC space must also first be enabled via the RAM Control Register (RAMCTRL). Accesses to the ECC space are not traced out to the RAM Trace Port (RTP). NOTE: No ECC Error Generated for Accesses to ECC Memory: A read from the ECC space send the ECC value on both the 64-bit TCM read data bus as well as the 8-bit ECC bus. This could result in the detection of a multi-bit error by the SECDED logic inside the CPU. The TCRAM interface module ignores the ECC error indicated by the CPU for the access to the ECC space. 6.3 Safety Features The TCRAM interface module incorporates some features that are designed specifically with safety considerations. These are described in the following sections. 6.3.1 Support for Cortex-R4F CPU's Single-Error-Correction Double-Error-Detection (SECDED) The TCRAM interface module monitors the CPU's event bus. The CPU's event bus signals single-bit or multi-bit errors for B0TCM as well as B1TCM separately. These signals are monitored by the TCRAM modules for each of these interfaces. TCRAM Interface Module Features dedicated for SECDED Support: • Dedicated single-bit error counter – This counter is stored in a memory-mapped register called RAMOCCUR – RAMOCCUR is used to count the single-bit errors corrected by the CPU's SECDED logic – The TCRAM interface module allows the application to generate an interrupt via the RAMINTCTRL register when the number of single-bit errors corrected by the CPU exceeds a programmable threshold, RAMTHRESHOLD • RAM Error Status Register – The errors detected by the TCRAM interface module as well as those indicated by the CPU are flagged in the RAMERRSTATUS register – There are separate bits to indicate single-bit error, double-bit error, address decode failure, address compare logic failure, read-address parity failure, and write-address parity failure • ECC Error Address Capture – Separate registers to hold the address on which a single-bit error is detected (RAMSERRADDR) or a double-bit error is detected (RAMUERRADDR) – The RAMSERRADDR register is only updated when the RAMTHRESHOLD value is set to 1 – Both the RAMSERRADDR and RAMUERRADDR capture the 64-bit-aligned address for the access to the TCRAM as an offset from the base address of the TCRAM (0x08000000 by default) NOTE: Cortex-R4F CPU Event Bus Signaling Not Enabled By Default: Upon power-up and after a CPU reset, the event signaling mechanism inside the Cortex-R4F CPU is disabled. This feature must be enabled by setting the Export (X-bit) of the Performance Monitoring and Control Register (PMNC) in the CPU. The TCRAM interface module can only capture the single-bit or double-bit ECC error occurrences once the CPU's event signaling mechanism is enabled. 312 Tightly-Coupled RAM (TCRAM) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Safety Features www.ti.com 6.3.2 Support for Cortex-R4F CPU's Address and Control Bus Parity Checking The Cortex-R4F CPU calculates a single parity-bit for the TCRAM address and control signals. The TCRAM interface module also computes this parity bit based on the CPU's address bus and control signals. The computed parity bit is compared against the parity bit received from the CPU. A mismatch is signaled as an Address Parity Failure to the Error Signaling Module (ESM) group2 channel 10 or 12. There is a separate address parity failure error channel for B0TCM and B1TCM. The 64-bit TCRAM address which fails the parity check is captured in the RAMPERRADDR register as an offset from the base address of the TCRAM (0x08000000 by default). The TCRAM interface module also indicates the type of access, read or write, that failed the parity check. This is indicated by the RADDR_PAR_FAIL or the WADDR_PAR_FAIL status flags in the RAMERRSTATUS register. The RAMERRSTATUS and RAMPERRADDR registers must be cleared by the application in order for the TCRAM interface module to continue capturing subsequent errors and error addresses. The parity scheme used for the described parity checking mechanism is defined by the global system parity selection. This can be configured using the DEVPARSEL field of the DEVCR1 control register in the system module. This device-wide parity scheme can be overridden inside the TCRAM interface module by configuring the Address Parity Override field in the RAMCTRL register. NOTE: No Change Of Parity Scheme On-The-Fly: The TCRAM interface module does not support on-the-fly change to the parity scheme being used for checking the CPU address bus and control bus. The application must ensure that the parity polarity (odd or even) is not changed while there is an ongoing access to the TCRAM. 6.3.3 Redundant Address Decode The TCRAM interface module generates the memory selects for each of the TCRAM banks as well as the ECC memory based on the CPU address. The logic to generate these memory selects is duplicated and the outputs compared to detect any address decode errors. A mismatch is indciated as an Address Error to the Error Signaling Module (ESM), one signal for B0TCM and one for B1TCM. The TCRAM or ECC address that caused the fault is captured in the RAMUERRADDR register. This 64-bit-aligned address is stored as an offset from the base of the TCRAM or ECC memory. As described earlier, each individual physical RAM bank is 36 bits wide. Each RAM bank contributes 32 bits of data and 4 bits of ECC when the bus master performs a 64-bit read from the TCRAM. Each TCRAM bank receives a memory select and the address from the TCRAM interface module. Any difference between the address and the memory selects results in wrong data and ECC pair being sent to the CPU. The CPU's SECDED block will detect this data error. The TCRAM interface module also supports a mechanism to test the operation of the redundant address decode logic and the compare logic. This testing is supported by providing a test stimulus, and can be triggered by the application by configuring the RAMTEST register. The address of any error identified during testing of the redundant address decode and compare logic is not captured in the RAMUERRADDR register. NOTE: Address decode checking when in compare logic test mode: When the address decode and compare logic test mode is enabled, the redundant address decode and compare logic is not available for checking the proper generation of the memory selects for the TCRAM and ECC memory. 6.4 TCRAM Auto-Initialization The RAM memory can be initialized by using the dedicated auto-initialization hardware. The TCRAM Module initializes the entire memory when the auto-initialization is enabled by the INIT_DOMAIN register upon receiving a MMI_INIT pulse from the system module. All enabled RAM data memory locations are initialized to zeros and the ECC memory is initialized to the correct ECC value for zeros, that is, 0Ch. SPNU499C – March 2018 Submit Documentation Feedback Tightly-Coupled RAM (TCRAM) Module Copyright © 2018, Texas Instruments Incorporated 313 Trace Module Support 6.5 www.ti.com Trace Module Support The TCRAM Module traces out the following signals to the RAM Trace Port (RTP) module, thereby providing RAM dataport trace capability. • 18-bit address line • 64-bit data bus • Byte strobe information • Current access master identification number • Access type: Opcode or data fetch • Read or Write access No data is traced for an access to ECC memory. 6.6 Emulation / Debug Mode Behavior The following describes the behavior of the TCRAM Module when in debug mode: • The RAMOCCUR register continues to count the single-bit error corrections performed by the CortexR4F CPU's SECDED logic. • No single-bit error interrupt is generated nor is any single-bit error address captured even when the RAMOCCUR counter reaches the programmed single-bit error correction threshold. • No uncorrectable error interrupt is generated nor is any double-bit error address captured. • No address parity error interrupt is generated nor is any parity error address captured. • The RAMUERRADDR register is not cleared by a read in debug mode. – That is, if a double-bit error address is captured and is not read by the CPU before entering debug mode, then it remains frozen during debug mode even if it is read. • The RAMPERRADDR register is not cleared by a read in debug mode. 6.7 Control and Status Registers The TCRAM Module registers are accessed through the system module registers' space in the CortexR4F CPU's memory map. All registers are 32-bit wide and are located on a 32-bit boundary. Reads and writes to registers are supported in 8-, 16-, and 32-bit accesses. The base address for the control registers is FFFF F800h for even RAM ECC and FFFF F900h for odd RAM ECC. Table 6-1. TCRAM Module Control and Status Registers 314 Offset Acronym Register Description 00h RAMCTRL TCRAM Module Control Register Section 6.7.1 Section 04h RAMTHRESHOLD TCRAM Module Single-Bit Error Correction Threshold Register Section 6.7.2 08h RAMOCCUR TCRAM Module Single-Bit Error Occurrences Control Register Section 6.7.3 0Ch RAMINTCTRL TCRAM Module Interrupt Control Register Section 6.7.4 10h RAMERRSTATUS TCRAM Module Error Status Register Section 6.7.5 14h RAMSERRADDR TCRAM Module Single-Bit Error Address Register Section 6.7.6 1Ch RAMUERRADDR TCRAM Module Uncorrectable Error Address Register Section 6.7.7 30h RAMTEST TCRAM Module Test Mode Control Register Section 6.7.8 38h RAMADDRDECVECT TCRAM Module Test Mode Vector Register Section 6.7.9 3Ch RAMPERADDR TCRAM Module Parity Error Address Register Section 6.7.10 40h INIT_DOMAIN Auto-Memory Initialization Enable Register Section 6.7.11 Tightly-Coupled RAM (TCRAM) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control and Status Registers www.ti.com 6.7.1 TCRAM Module Control Register (RAMCTRL) The RAMCTRL register, shown in Figure 6-3 and described in Table 6-2, controls the safety features supported by the TCRAM Module. Figure 6-3. TCRAM Module Control Register (RAMCTRL) [offset = 00h] 31 30 Reserved EMU_TRACE_DIS 29 Reserved 28 ADDR_PARITY_OVERRIDE R-0 R/WP-0 R-0 R/WP-0 23 20 27 24 19 16 Reserved ADDR_PARITY_DISABLE R-0 R/WP-5h 15 9 7 8 Reserved ECC_WR_EN R-0 R/WP-0 4 3 0 Reserved ECC_DETECT_EN R-0 R/WP-Ah LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 6-2. TCRAM Module Control Register (RAMCTRL) Field Descriptions Bit Field 31 Reserved 30 EMU_TRACE_DIS 29-28 Reserved Value 0 Read returns 0. Writes have no effect. Emulation Mode Trace Disable. This bit, when set, disables the tracing of read data to RAM Trace Port (RTP) module during emulation mode access. 0 Data is allowed to be traced out to the trace modules during emulation mode accesses. 1 Data is blocked from being traced out to the trace modules during emulation mode accesses. 0 Read returns 0. Writes have no effect. 27-24 ADDR_PARITY_OVERRIDE 23-20 Reserved Description Address Parity Override. This field, when set to Dh, will invert the parity scheme selected by the device global parity selection. The address parity checker would then work on the inverted parity scheme. By default, the parity scheme is the same as the global device parity scheme. Dh Parity scheme is opposite to the device global parity scheme. All Others Parity scheme is the same as the device global parity scheme. 0 Read returns 0. Writes have no effect. 19-16 ADDR_PARITY_DISABLE Address Parity Detect Disable. This field, when set to Ah, disables the parity checking for the address bus. The parity checking is enabled when this field is set to any other value. Note: The application must ensure that the WADDR_PAR_FAIL and RADDR_PAR_FAIL bits in RAMERRSTATUS register are cleared before enabling address parity checking. 15-9 8 Reserved Ah Address parity checking is disabled All Others Address parity checking is enabled 0 ECC_WR_EN Read returns 0. Writes have no effect. ECC Memory Write Enable. This bit is provided to prevent accidental writes to the ECC memory. A write access to the ECC memory is allowed only when the ECC_WR_EN bit is set to 1. If this bit is cleared, then any writes to ECC memory are ignored. Note: Reads are allowed from the ECC memory regardless of the state of the ECC_WR_EN bit. 7-4 Reserved 0 ECC memory writes are disabled. 1 ECC memory writes are enabled. 0 Read returns 0. Writes have no effect. SPNU499C – March 2018 Submit Documentation Feedback Tightly-Coupled RAM (TCRAM) Module Copyright © 2018, Texas Instruments Incorporated 315 Control and Status Registers www.ti.com Table 6-2. TCRAM Module Control Register (RAMCTRL) Field Descriptions (continued) Bit Field 3-0 ECC_DETECT_EN Value Description ECC Detect Enable. This is a 4-bit key to enable the ECC detection feature in the TCRAM Module. If this field is set to any value other than 5h, then the TCRAM Module starts monitoring the TCM event bus and generates the corresponding error status flags. The error status updates are done only when the ECC_DETECT_EN field is not 5h. The ECC detection is enabled by default, as the ECC_DETECT_EN field default value is Ah. 5h ECC detection is disabled. All Others ECC detection is enabled. 6.7.2 TCRAM Module Single-Bit Error Correction Threshold Register (RAMTHRESHOLD) The RAMTHRESHOLD register, shown in Figure 6-4 and described in Table 6-3, allows the application to configure the number of single-bit error corrections by the SECDED logic inside the Cortex-R4F CPU before generating a single-bit error interrupt. Figure 6-4. TCRAM Module Single-Bit Error Correction Threshold Register (RAMTHRESHOLD) [offset = 04h] 31 16 Reserved R-0 15 0 THRESHOLD R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 6-3. TCRAM Module Single-Bit Error Correction Threshold Register (RAMTHRESHOLD) Field Descriptions Bit Field 31-16 Reserved 15-0 THRESHOLD 316 Value 0 Description Read returns 0. Writes have no effect. Single-bit Error Threshold Count. This field contains the threshold value for the Single-bit Error Correction (SEC) occurrences before the single-bit error interrupt is generated. If this threshold is set to 1 then all single-bit error addresses are captured. To enable the error occurrence detection, the threshold must be set to a non-zero value. Tightly-Coupled RAM (TCRAM) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control and Status Registers www.ti.com 6.7.3 TCRAM Module Single-Bit Error Occurrences Counter Register (RAMOCCUR) The RAMOCCUR register, shown in Figure 6-5 and described in Table 6-4, indicates the number of single-bit error corrections performed by the SEC logic inside the Cortex-R4F CPU. Figure 6-5. TCRAM Module Single-Bit Error Occurrences Counter Register (RAMOCCUR) [offset = 08h] 31 16 Reserved R-0 15 0 SINGLE_ERROR_OCCURRENCES R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 6-4. TCRAM Module Single-Bit Error Occurrences Counter Register (RAMOCCUR) Field Descriptions Bit Field Value 31-16 Reserved 15-0 SINGLE_ERROR_ OCCURRENCES 0 Description Read returns 0. Writes have no effect. Single-bit Error Correction Occurrences. This 16-bit counter contains the number of singlebit error occurrences. RAMOCCUR is reset to zero when it becomes equal to the THRESHOLD value set in the RAMTHRESHOLD register. The application must clear the RAMOCCUR register by writing 0x0 before setting the THRESHOLD value. If the RAMOCCUR value is already higher than the programmed THRESHOLD value then the counter increments and wraps around (overflow) to zero. Note: If the application tries to clear the RAMOCCUR register at the same time as the TCRAM Module tried to update it, then the TCRAM Module takes priority. Note: When the RAMTHRESHOLD register is set to 1, then the RAMOCCUR register must be cleared whenever a single-bit error correction occurs in order to count subsequent single-bit error corrections. 6.7.4 TCRAM Module Interrupt Control Register (RAMINTCTRL) The RAMINTCTRL register, shown in Figure 6-6 and described in Table 6-5, enables the generation of an interrupt to the CPU whenever the number of single-bit error corrections (RAMOCCUR) reaches the programmed threshold (RAMTHRESHOLD). Figure 6-6. TCRAM Module Interrupt Control Register (RAMINTCTRL) [offset = 0Ch] 31 16 Reserved R-0 15 1 0 Reserved SERR_EN R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 6-5. TCRAM Module Interrupt Control Register (RAMINTCTRL) Field Descriptions Bit Field 31-1 Reserved 0 SERR_EN Value 0 Description Read returns 0. Writes have no effect. Single-bit Error Correction Interrupt Enable. This bit, when set to 1, enables the generation of the single-bit error interrupt when the RAMOCCUR count reaches the programmed RAMTHRESHOLD. If the interrupt is not enabled, the single-bit error counter continues to count by resetting back to zero without generating any error interrupt. The SERR status flag in the RAMERRSTATUS register gets set regardless of whether the SERR interrupt is enabled or not. 0 Single-bit error generation is disabled. 1 Single-bit error generation is enabled. SPNU499C – March 2018 Submit Documentation Feedback Tightly-Coupled RAM (TCRAM) Module Copyright © 2018, Texas Instruments Incorporated 317 Control and Status Registers www.ti.com 6.7.5 TCRAM Module Error Status Register (RAMERRSTATUS) The RAMERRSTATUS register, shown in Figure 6-7 and described in Table 6-6, indicates the status of the various error conditions monitored by the TCRAM Module. Figure 6-7. TCRAM Module Error Status Register (RAMERRSTATUS) [offset = 10h] 31 16 Reserved R-0 15 10 7 6 9 8 Reserved WADDR_ PAR_ FAIL RADDR_ PAR_ FAIL R-0 R/W1CP-0 R/W1CP-0 5 4 3 2 1 0 Reserved DERR ADDR_COMP_ LOGIC_FAIL Reserved ADDR_DEC_ FAIL Reserved SERR R-0 R/W1CP-0 R/W1CP-0 R-0 R/W1CP-0 R-0 R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 6-6. TCRAM Module Error Status Register (RAMERRSTATUS) Field Descriptions Bit Field 31-10 Reserved Value Description 0 Read returns 0. Writes have no effect. 9 WADDR_PAR_FAIL This bit indicates a Write Address Parity Failure. This bit must be cleared by writing 1 to it in order to enable the capture of parity error address for subsequent failures. This bit must be in a cleared state for generation of any new parity error interrupt. 8 RADDR_PAR_FAIL This bit indicates a Read Address Parity Failure. This bit must be cleared by writing 1 to it in order to enable the capture of parity error address for subsequent failures. This bit must be in a cleared state for generation of any new parity error interrupt. 7-6 Reserved 0 Read returns 0. Writes have no effect. 5 DERR This bit indicates a multi-bit error detected by the Cortex-R4F SECDED logic. 4 ADDR_COMP_LOGIC_FAIL Address decode logic element failed. This bit indicates that the redundant address decode logic test scheme has detected that a compare element has malfunctioned during the testing of the logic. This bit has to be cleared by writing 1 to it in order to enable the capture of uncorrectable error address for subsequent failures. This bit has to be in a cleared state for generation of a new uncorrectable error interrupt. This bit only gets set in the test mode, and has no relevance in functional mode. 3 Reserved 2 ADDR_DEC_FAIL 1 Reserved 0 SERR 318 0 Read returns 0. Writes have no effect. Address decode failed. This bit indicates that an address error interrupt was generated by the redundant address decode and compare logic due to a functional failure. This bit must be cleared by writing 1 to it in order to enable the capture of uncorrectable error address for subsequent failures. This bit has to be in a cleared state for generation of a new address error interrupt. 0 Read returns 0. Writes have no effect. Single Error Status. This bit indicates that the single-bit error threshold has been reached. This bit is set even if the single-bit error threshold interrupt is disabled. This bit must be cleared by writing 1 to it in order to clear the interrupt request and to enable subsequent single-bit error interrupt generation. Tightly-Coupled RAM (TCRAM) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control and Status Registers www.ti.com NOTE: For equality test: • • If the comparator matches (no true silicon fail), there is no status bit set for ADDR_COMP_LOGIC_FAIL or ADDR_DEC_FAIL. If there is true silicon malfunction, ADDR_COMP_LOGIC_FAIL and ADDR_DEC_FAIL will be set, no UERRADDRESS is captured. For inequality test, the compare vector will not match since non-inverted and inverted values of the same test vector are fed to the comparator: • • If there is no silicon malfunction on any of the comparator bits, then only ADDR_DEC_FAIL will be set. This is chosen so that we can ensure the functional ADDR_DEC_FAIL status bit data path can be tested. If there is a silicon malfunction on any of the comparator bits, then, ADDR_COMP_LOGIC_FAIL and ADDR_DEC_FAIL will be set, no UERRADDRESS is captured. 6.7.6 TCRAM Module Single-Bit Error Address Register (RAMSERRADDR) The RAMSERRADDR register, shown in Figure 6-8 and described in Table 6-7, captures the address for which the Cortex-R4F CPU detected a single-bit error. NOTE: The SERR bit in the RAMERRSTATUS register must be cleared, by writing 1 to the bit, in order to enable the RAMSERRADDR register to capture a subsequent new error address. Figure 6-8. TCRAM Module Single-Bit Error Address Register (RAMSERRADDR) [offset = 14h] 31 18 Reserved R-0 17 3 2 0 SINGLE_ERROR_ADDRESS Reserved R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 6-7. TCRAM Module Single-Bit Error Address Register (RAMSERRADDR) Field Descriptions Bit Field 31-18 Reserved 17-3 Value Description 0 SINGLE_ERROR_ADDRESS Read returns 0. Writes have no effect. This register captures bits 17-3 of the address for which the Cortex-R4F CPU detects a single-bit error when the RAMTHRESHOLD register is set to 1. The lower 3 bits are always tied to zero so that the address captured is a double-word (64-bit) address. This is a 64-bit-aligned address is stored as an offset from the base of the TCRAM or ECC memory. This register can only be reset by asserting power-on reset, and holds the last error address even after a system reset. 2-0 Reserved 0 Read returns 0. Writes have no effect. SPNU499C – March 2018 Submit Documentation Feedback Tightly-Coupled RAM (TCRAM) Module Copyright © 2018, Texas Instruments Incorporated 319 Control and Status Registers www.ti.com 6.7.7 TCRAM Module Uncorrectable Error Address Register (RAMUERRADDR) The RAMUERRADDR register, shown in Figure 6-9 and described in Table 6-8, captures the address for which the Cortex-R4F CPU detected a multi-bit error. Figure 6-9. TCRAM Module Uncorrectable Error Address Register (RAMUERRADDR) [offset = 1Ch] 31 23 22 16 Reserved UNCORRECTABLE_ERROR_ADDRESS R-0 R-0 15 3 2 0 UNCORRECTABLE_ERROR_ADDRESS Reserved R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 6-8. TCRAM Module Uncorrectable Error Address Register (RAMUERRADDR) Field Descriptions Bit Field 31-23 Reserved 22-3 UNCORRECTABLE_ ERROR_ADDRESS Value 0 Description Read returns 0. Writes have no effect. This register captures the address for which there was an uncorrectable error. The uncorrectable error is indicated by the Cortex-R4F CPU's SECDED logic. For the SECDED multi-bit or double-bit uncorrectable error this register stores bits 17-3 of the TCM access address. The lower 3 bits 2-0 are always read as zeros to indicate that the latched address is a double-word address. The address bits 31-18 are read as zeros. This is a 64-bit-aligned address is stored as an offset from the base of the TCRAM or ECC memory. For a redundant address decode and compare logic error this register stores the complete TCM access address rounded to a double-word boundary (bits 22-3). This error is also indicated by the ADDR_DEC_FAIL flag in the RAMERRSTATUS register. No error address is stored as a result of a redundant address logic test. The register has to be read-cleared to enable further error address captures. Reading the register does not clear its contents but enables the register to be updated with an uncorrectable error address. This register can only be reset by asserting power-on reset, and holds the last error address even after a system reset. 2-0 320 Reserved 0 Read returns 0. Writes have no effect. Tightly-Coupled RAM (TCRAM) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control and Status Registers www.ti.com 6.7.8 TCRAM Module Test Mode Control Register (RAMTEST) The RAMTEST register, shown in Figure 6-10 and described in Table 6-9, controls the test mode of the TCRAM Module. Figure 6-10. TCRAM Module Test Mode Control Register (RAMTEST) [offset = 30h] 31 16 Reserved R-0 15 9 8 Reserved TRIGGER R-0 R/WP-0 7 6 5 TEST_MODE R/WP-0 4 Reserved 3 0 TEST_ENABLE R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 6-9. TCRAM Module Test Mode Control Register (RAMTEST) Field Descriptions Bit Field 31-9 Reserved 8 TRIGGER 7-6 Value 0 Description Read returns 0. Writes have no effect. Test Trigger. This is an auto reset test trigger used to test the redundant address decode and compare logic. A redundant address decode test is executed when test mode is enabled and the test trigger is applied by writing a 1 to this bit. The trigger is valid only if test is enabled and the correct mode is configured in the TEST_MODE field, and the ADDR_DEC_FAIL, ADDR_COMP_LOGIC_FAIL, and DERR flags are cleared in the RAMERRSTATUS register and the RAMUERRADDR register is read-cleared. TEST_MODE 5-4 Reserved 3-0 TEST_ENABLE Test Mode. This field selects either equality or inequality testing schemes. 1h If TEST_MODE is set to 1h, inequality check is done. The test stimulus stored in ADDRTEST_VECT register is inverted and fed into one channel and the non-inverted vector is fed into the other channel. If the XOR of these inputs is zero then the UERR interrupt is generated and ADDR_COMP_LOGIC_FAIL flag is set in RAMERRSTATUS register. 2h If TEST_MODE is set to 2h, equality check is done. The test stimulus stored in ADDRTEST_VECT register is fed directly to both the channels of the comparator. If the XOR of these two inputs is not zero then UERR interrupt is generated and ADDR_COMP_LOGIC_FAIL flag is set in RAMERRSTATUS register. 0 Read returns 0. Writes have no effect. Test Enable. This is a 4-bit key to enable the redundant address decode and compare logic test scheme. If the test scheme is enabled then the compare logic uses the test vector inputs from the ADDRTEST_VECT register. The functional path comparison is disabled when test mode is enabled. Ah Test mode is enabled. All Others Test mode is disabled. NOTE: For equality test: • • If the comparator matches (no true silicon fail), there is no status bit set for ADDR_COMP_LOGIC_FAIL or ADDR_DEC_FAIL. If there is true silicon malfunction, ADDR_COMP_LOGIC_FAIL and ADDR_DEC_FAIL will be set, no UERRADDRESS is captured. For inequality test, the compare vector will not match since non-inverted and inverted values of the same test vector are fed to the comparator: • • If there is no silicon malfunction on any of the comparator bits, then only ADDR_DEC_FAIL will be set. This is chosen so that we can ensure the functional ADDR_DEC_FAIL status bit data path can be tested. If there is a silicon malfunction on any of the comparator bits, then, ADDR_COMP_LOGIC_FAIL and ADDR_DEC_FAIL will be set, no UERRADDRESS is captured. SPNU499C – March 2018 Submit Documentation Feedback Tightly-Coupled RAM (TCRAM) Module Copyright © 2018, Texas Instruments Incorporated 321 Control and Status Registers www.ti.com 6.7.9 TCRAM Module Test Mode Vector Register (RAMADDRDECVECT) The RAMADDRDECVECT register, shown in Figure 6-11 and described in Table 6-10, is used for testing the redundant address decode and compare logic of the TCRAM Module. Figure 6-11. TCRAM Module Test Mode Vector Register (RAMADDRDECVECT) [offset = 38h] 31 27 26 25 16 Reserved ECC_SELECT Reserved R-0 R/WP-0 R-0 15 0 RAM_CHIP_SELECT R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 6-10. TCRAM Module Test Mode Vector Register (RAMADDRDEVECT) Field Descriptions Bit 31-27 26 Field Value Reserved 0 ECC_SELECT 25-16 Reserved 15-0 RAM_CHIP_SELECT Description Read returns 0. Writes have no effect. ECC Select. This bit is used to store the ECC select value for the redundant address decode and compare logic. The stored value is passed as test stimulus for the built-in test scheme. 0 Read returns 0. Writes have no effect. RAM Chip Select. This field is used to store the RAM chip select value for the redundant address decode and compare logic. The stored value is passed as test stimulus for the built-in test scheme. 6.7.10 TCRAM Module Parity Error Address Register (RAMPERRADDR) The RAMPERRADDR register, shown in Figure 6-12 and described in Table 6-11, stores the address for which an address-parity error was detected. Figure 6-12. TCRAM Module Parity Error Address Register (RAMPERRADDR) [offset = 3Ch] 31 23 22 16 Reserved ADDRESS_PARITY_ERROR_ADDRESS R-0 R-U 15 3 2 0 ADDRESS_PARITY_ERROR_ADDRESS Reserved R-U R-0 LEGEND: R = Read only; U = Undefined; -n = value after reset Table 6-11. TCRAM Module Parity Error Address Register (RAMPERRADDR) Field Descriptions Bit Field 31-23 Reserved 22-3 ADDRESS_PARITY_ ERROR_ADDRESS 2-0 Reserved 322 Value 0 Description Read returns 0. Writes have no effect. Parity Error Address. This register stores the double-word boundary (bits 22-3) of the TCM access address for which there was an address parity error. This register must be readcleared to enable further error address captures. Reading the register does not clear the register contents but enables the register to be updated with a new parity error address. This is a 64-bit-aligned address is stored as an offset from the base of the TCRAM or ECC memory. 0 Read returns 0. Writes have no effect. Tightly-Coupled RAM (TCRAM) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control and Status Registers www.ti.com 6.7.11 Auto-Memory Initialization Enable Register (INIT_DOMAIN) The INIT_DOMAIN register is shown in Figure 6-13 and described in Table 6-12. The INIT_DOMAIN register should not be written into when a memory initialization is proceeding. In other words, the INIT_DOMAIN register should be programmed prior to the generation of the SYS_TCRAMW_MMI_INIT_I pulse from the system module. You should disable the initialization of any implemented memory domain that has been powered down by software before auto-memory initialization. Figure 6-13. Auto-Memory Initialization Enable Register (INIT_DOMAIN) [offset = 40h] 31 16 Reserved R-0 15 8 7 0 Reserved AUTO_MEM_INIT_ENABLE R-0 R/WP-FFh LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 6-12. Auto-Memory Initialization Enable Register (INIT_DOMAIN) Field Descriptions Bit Field 31-8 Reserved 7-0 AUTO_MEM_INIT_ENABLE Value Description 0 Read returns 0. Writes have no effect. 0-FFh These bits are used to enable auto-memory initialization per power domain. These bits are all 1 by default and need to be written to 0 to prevent a certain power domain from getting initialized. Note that these bits are only enable bits for their respective power domains and the indication for the start of Memory Initialization would still come from the system module through the pulsed input signal SYS_TCRAMW_MMI_INIT_I. bit[0] represents the enable bit for power domain 0. bit[1] represents the enable bit for power domain 1. bit[2] represents the enable bit for power domain 2. bit[3] represents the enable bit for power domain 3. bit[4] represents the enable bit for power domain 4. bit[5] represents the enable bit for power domain 5. bit[6] represents the enable bit for power domain 6. bit[7] represents the enable bit for power domain 7. SPNU499C – March 2018 Submit Documentation Feedback Tightly-Coupled RAM (TCRAM) Module Copyright © 2018, Texas Instruments Incorporated 323 Chapter 7 SPNU499C – March 2018 Programmable Built-In Self-Test (PBIST) Module This chapter describes the programmable built-in self-test (PBIST) controller module used for testing the on-chip memories on the Hercules microcontrollers. 324 Topic ........................................................................................................................... 7.1 7.2 7.3 7.4 7.5 7.6 Overview ........................................................................................................ RAM Grouping and Algorithm ........................................................................... PBIST Flow ..................................................................................................... Memory Test Algorithms on the On-chip ROM .................................................... PBIST Control Registers ................................................................................... PBIST Configuration Example ........................................................................... Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated Page 325 326 327 329 331 344 SPNU499C – March 2018 Submit Documentation Feedback Overview www.ti.com 7.1 Overview The PBIST (Programmable Built-In Self-Test) controller architecture provides a run-time-programmable memory BIST engine for varying levels of coverage across many embedded memory instances. 7.1.1 Features of PBIST • • • • • Information regarding on-chip memories, memory groupings, memory background patterns and test algorithms stored in dedicated on-chip PBIST ROM Host processor interface to configure and start BIST of memories Supports testing of PBIST ROM itself as well Supports testing of each memory at its maximum access speed in application Implements intelligent clock gating to conserve power NOTE: Refer to the device datasheet for the maximum PBIST ROM clock frequency supported. 7.1.2 PBIST vs. Application Software-Based Testing The PBIST architecture consists of a small coprocessor with a dedicated instruction set targeted specifically toward testing memories. This coprocessor executes test routines stored in the PBIST ROM and runs them on multiple on-chip memory instances. The on-chip memory configuration information is also stored in the PBIST ROM. The testing is done in parallel for each of the CPU data RAMs, while it is done sequentially for the rest of the memories. The PBIST Controller architecture offers significant advantages over tests running on the main CortexR4F processor (application software-based testing): • Embedded CPUs have a long access path to memories outside the tightly-couple memory sub-system, while the PBIST controller has a dedicated path to the memories specifically for the self-test • Embedded CPUs are designed for their targeted use and are often not easily programmed for memory test algorithms. • The memory test algorithm code on embedded CPUs is typically significantly larger than that needed for PBIST. • The embedded CPU is significantly larger than the PBIST controller. 7.1.3 PBIST Block Diagram Figure 7-1 illustrates the basic PBIST blocks and its wrapper logic for the device. Figure 7-1. PBIST Block Diagram Host CPU Control Interface PBIST ROM Memory Configurations, Algorithms, Backgrouns PBIST Controller Memory Data Path System and Peripheral Memories Data Logger SPNU499C – March 2018 Submit Documentation Feedback Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated 325 RAM Grouping and Algorithm 7.1.3.1 www.ti.com On-chip ROM The on-chip ROM contains the information regarding the algorithms and memories to be tested. 7.1.3.2 Host Processor Interface to the PBIST Controller Registers The Cortex-R4F CPU can select the algorithm and RAM groups for the memories' self-test from the onchip ROM based on the application requirements. Once the self-test has executed, the CPU can query the PBIST controller registers to identify any memories that failed the self-test and to then take appropriate next steps as required by the application's author. 7.1.3.3 Memory Data Path This is the read and write data path logic between different system and peripheral memories tightly coupled to the PBIST memory interface. The PBIST controller executes each selected algorithm on each valid memory group sequentially until all the algorithms are executed. NOTE: Not all algorithms are designed to run on all RAM groups. If an algorithm is selected to run on an incompatible memory, this will result in a failure. Refer to Table 2-5 and Table 2-6 for RAM grouping and algorithm information. 7.2 RAM Grouping and Algorithm Table 2-5 gives the list of RAM groups and their types supported on the device. Table 2-6 maps the different algorithms supported in application mode for the RAM groups with the background patterns used for the particular algorithm. NOTE: March13 is the most recommended algorithm for the memory self-test. 326 Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback PBIST Flow www.ti.com 7.3 PBIST Flow Figure 7-2 illustrates the memory self-test flow. Figure 7-2. PBIST Memory Self-Test Flow Diagram Yes Is system in reset = 1? No Setup memories, peripheral and clock tree like HCLK, VCLK peripheral and ROMCLK as required for the PBIST test. Enable PBIST controller by by writing MSIENA = 0x01 Reset the PBIST controller by writing MSTGCR = 0x0A Wait for approximately N vbus clocks. Enable pbist clocks and ROM clock by writing PACT = 0x03 Select the RAM group and algorithm using RINFO and ALGO registers Program OVER = 0 for self test without Override or OVER = 1 for RINFO Override Write ROM = 0x03 to enable the microcode load of the algorithm and RAM info groups from the on Chip ROM Write 0x14 to DLR register to configure PBIST in ROM mode and start the Test Resume PBIST self test by writing 0x02 to the STR register No Is (MSTDONE = 1) ? Read FSRD and FSRA datalog reg. for Fail data and address values Yes Is FSRF0 = 1 ? Yes Read RAMT reg for RGS/RDS info No Disable pbist clocks and ROM clock by writing PACT = 0 Disable PBIST Test by writing MSTGCR = 0x05 PBIST Selftest Done SPNU499C – March 2018 Submit Documentation Feedback Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated 327 PBIST Flow www.ti.com 7.3.1 PBIST Sequence 1. Configure the device clock sources and domains so that they are running at their target frequencies. 2. Program the HCLK to PBIST ROM clock ratio by configuring the ROM_DIV field (bits 9:8) of the MSTGCR register of the system module. Check the device datasheet for the maximum supported PBIST ROM clock frequency. 3. Enable PBIST Controller by setting bit 1 of MSIENA register in system module. 4. Enable the PBIST self-test by writing a value of 0x0A to bits 3:0 of the MSTGCR in the system module. 5. Wait for N VBUS clock cycles based on the HCLK to PBIST ROM clock ratio: N = 16 when HCLK:PBIST ROM clock is 1:1 N = 32 when HCLK:PBIST ROM clock is 1:2 N = 64 when HCLK:PBIST ROM clock is 1:4 N = 64 when HCLK:PBIST ROM clock is 1:8 6. Write 1h to PACT register to enable the PBIST internal clocks. 7. Program the ALGO register to decide which algorithm from the instruction ROM must be selected (the default value of ALGO register is all 1’s, meaning all algorithms are selected). Similarly, program the RINFOL and RINFOU registers to indicate whether a particular RAM group in the instruction ROM would get executed or not. NOTE: In case of RAM Override (Override Register (OVER) = 00), the user should make sure that only the algorithms that run on similar RAMs are selected. If a single port algorithm is selected in ROM Algorithm Mask Register (ALGO), the RAM Info Mask Lower Register (RINFOL) and RAM Info Mask Upper Register (RINFOU) must select only the single port RAM’s. The same applies for two port RAM’s. Check Architecture chapter for information on the memory types. 8. Program OVER = 1h to run PBIST self-test without RAM override. Program OVER = 0 to run PBIST self-test with RAM Override. 9. Write a value of 3h to the ROM mask register should the microcode for the Algorithms as well as the RAM groups loaded from the on-chip PBIST ROM. 10. Write DLR (Data Logger register) with 14h to configure the PBIST run in ROM mode and to enable the configuration access. This starts the memory self-tests. 11. Wait for the PBIST self-test done by polling MSTDONE bit of MSTCGSTAT register in System Module. 12. Once self-test is completed, check the Fail Status register FSRF0. In case there is a failure (FSRF0 = 1h): a. Read RAMT register that indicates the RGS and RDS values of the failure RAM b. Read FSRC0 and FSRC1 registers that contains the failure count c. Read FSRA0 and FSRA1 registers that contains the address of first failure d. Read FSRDL0 and FSRDL1 registers that contains the failure data. e. Write a value of 2h to the STR register to resume the test. In case there is no failure (FSRF0 = 0) the memory self-test is completed. a. Disable the PBIST internal clocks by writing a 0 to the PACT register. b. Disable the PBIST self-test by writing a value of 5h to bits 3:0 of the MSTGCR in the system module. 13. Repeat steps 2 through 9 for subsequent runs with different RAM group and algorithm configurations. 14. After required Memory tests are completed, Resume or Start the Normal Application software. NOTE: The contents of the selected memory before the test will be completely lost. User software must take care of data backup if required. Typically the PBIST tests are carried out at the beginning of Application software. 328 Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Memory Test Algorithms on the On-chip ROM www.ti.com NOTE: Memory test fail information is reported in terms of RGS:RDS and not RAM GROUP. Check Table 2-5 for information on the RGS:RDS information applicable to each memory being tested. 7.4 Memory Test Algorithms on the On-chip ROM This section provides a brief description for some of the test algorithms used for memory self-test. 1. March13N: • March13N is the baseline test algorithm for SRAM testing. It provides the highest overall coverage. The other algorithms provide additional coverage of otherwise missed boundary conditions of the SRAM operation. • The concept behind the general march algorithm is to indicate: – The bit cell can be written and read as both a 1 and a 0. – The bits around the bit cell do not affect the bit cell. • The basic operation of the march is to initialize the array to a know pattern, then march a different pattern through the memory. • Type of faults detected by this algorithm: – Address decoder faults – Stuck-At faults – Coupled faults – State coupling faults – Parametric faults – Write recovery faults – Read/write logic faults 2. Map Column: • The MAP COLUMN algorithm is used to identify bit line sensitivities in the memory array. The memory array is loaded with a row stripe pattern of all 1s in the first row followed by all 0s in the second row and repeated throughout the array. Then the values are read down each column on consecutive cycles. The pattern in memory is inverted and run the column reads again. • This particular pattern is looking for the following SRAM failure mechanisms: – Leakage due to a low resist path in a bit – An Open in the bit cell – Leakage on a BIT or BITN line – Miss-balance in the sense amp – Leakage in the sense – High resist in the sense amp – Failure of the pre-charge circuits after read operations 3. Pre-Charge: • The Pre-Charge algorithm exercises the pre-charge capability within the SRAM array. It is important to specifically target this issue as it is the only part of the analog portion of the SRAM that is frequency sensitive. • Similar to the MAP COLUMN algorithm, this algorithm works its way down the columns of the SRAM. However, unlike the MAP COLUMN, this algorithm sandwiches a write between two reads to force the worst-case conditions for the pre-charge circuits in the array. • This test will fail when an increase in system frequency nears the minimum access time of the array, at this boundary: – High voltage should operate better than low voltage. – Likewise, low temperature should operate better than high temperature. SPNU499C – March 2018 Submit Documentation Feedback Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated 329 Memory Test Algorithms on the On-chip ROM www.ti.com 4. DOWN1a: • The Down1 pattern forces the switching of all data bits and most address bits on consecutive read cycles. This is primarily a read/write test of the CPU/memory subsystem. • The aggressive writes target at-speed write failures. • It also targets row/column decode in the memory array. • Targets the sense amps and sense amp multiplexors. • Memory array output buffers. • This algorithm operates as follows: – Load 1st half of the memory under test with one pattern. – Load 2nd half of the memory under test with the bit-wise inverse of the pattern. – Alternate sequential reads sequences between one sequence starting at the beginning of the array and a second sequence starting at the end of the array. – Upon completion of the read back, invert the patterns in both halves of the array and repeat the above step. – Perform an aggressive write sequence by alternating writes between the bottom half of the memory upwards with a data pattern and the top half of the memory downwards with the inverse data pattern. – Invert the data pattern for the above two steps to perform another sequence of aggressive writes. 5. DTXN2a: This algorithm is used to target the global column decode Logic. 330 Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback PBIST Control Registers www.ti.com 7.5 PBIST Control Registers PBIST controller uses configuration registers for programming the algorithm and its execution. All the configuration registers are memory mapped for access by the CPU through the Peripheral Bus interface. The base address for the control registers is FFFF E400h. NOTE: There is no watchdog functionality implemented in the PBIST controller. If a bad code is executed, the PBIST runs forever. The PBIST controller does not guard against this situation. Registers are accessible only when the clock to the PBIST controller is active. The clock is activated by first writing 1h to the PACT register. Table 7-1. PBIST Registers Offset Acronym Register Description 000h - 15Ch Reserved Reserved locations. Do not write to these locations. 160h RAMT RAM Configuration Register Section 7.5.1 164h DLR Datalogger Register Section 7.5.2 168h - 17Ch Section Reserved Reserved locations. Do not write to these locations. 180h PACT PBIST Activate/Clock Enable Register Section 7.5.3 184h PBISTID PBIST ID Register Section 7.5.4 188h OVER Override Register Section 7.5.5 190h FSRF0 Fail Status Fail Register 0 Section 7.5.6 198h FSRC0 Fail Status Count Register 0 Section 7.5.7 19Ch FSRC1 Fail Status Count Register 1 Section 7.5.7 1A0h FSRA0 Fail Status Address 0 Register Section 7.5.8 1A4h FSRA1 Fail Status Address 1 Register Section 7.5.8 1A8h FSRDL0 Fail Status Data Register 0 Section 7.5.9 1B0h FSRDL1 Fail Status Data Register 1 Section 7.5.9 1C0h ROM ROM Mask Register Section 7.5.10 1C4h ALGO ROM Algorithm Mask Register Section 7.5.11 1C8h RINFOL RAM Info Mask Lower Register Section 7.5.12 1CCh RINFOU RAM Info Mask Upper Register Section 7.5.13 SPNU499C – March 2018 Submit Documentation Feedback Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated 331 PBIST Control Registers www.ti.com 7.5.1 RAM Configuration Register (RAMT) This register is divided into the following internal registers, none of which have a default value after reset. Figure 7-3 and Table 7-2 illustrate this register. This register provides the information regarding the memory being currently tested. In case of a PBIST failure, the application can read this register to identify the RGS:RDS values for the memory that failed the self-test. Figure 7-3. RAM Configuration Register (RAMT) [offset = 0160h] 31 24 23 16 RGS RDS R/W-X R/W-X 15 8 7 6 5 2 1 0 DWR SMS PLS RLS R/W-X R/W-X R/W-X R/W-X LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 7-2. RAM Configuration Register (RAMT) Field Descriptions Bit Field Description 31-24 RGS Ram Group Select. Refer to Table 2-5 for information on the RGS value for each memory. 23-16 RDS Return Data Select. Refer to Table 2-5 for information on the RDS values for each memory. 15-8 DWR Data Width Register 7-6 SMS Sense Margin Select Register 5-2 PLS Pipeline Latency Select 1-0 RLS RAM Latency Select 332 Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback PBIST Control Registers www.ti.com 7.5.2 Datalogger Register (DLR) This register puts the PBIST controller into the appropriate comparison modes for data logging. Figure 7-4 and Table 7-3 illustrate this register. Figure 7-4. Datalogger Register (DLR) [offset = 0164h] 31 16 Reserved R-0 15 4 3 2 Reserved 5 DLR4 Rsvd DLR2 1 Reserved 0 R-0 R/W-0 R/W-1 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 7-3. Datalogger Register (DLR) Field Descriptions Bit Field 31-5 Reserved 4 DLR4 3 Reserved 2 DLR2 1-0 Reserved • Value 0 Description Reads return 0. Do not change these bits from their default value. Config access: setting this bit allows the host processor to configure the PBIST controller registers. 1 Do not change this bit from its default value of 1. ROM-based testing: setting this bit enables the PBIST controller to execute test algorithms that are stored in the PBIST ROM. 00 Do not change these bits from their default value of 00. DLR2: ROM-based testing mode Writing a 1 to this register starts the ROM-based testing. This register is used to initiate ROM-based testing from Config and ATE interfaces. Also, since a 1 in this bit position means the instruction ROM is used for memory testing, all the intermediate interrupts and PBIST done signal after each memory test are masked until all the selected algorithms in the ROM are executed for all RAM groups. However, a failure would stop the test and report the status immediately. • DLR4: Config access mode This mode, when set, indicates the CPU is being used to access PBIST. SPNU499C – March 2018 Submit Documentation Feedback Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated 333 PBIST Control Registers www.ti.com 7.5.3 PBIST Activate/Clock Enable Register (PACT) This is the first register that needs to be programmed to activate the PBIST controller. Bit [0] is used for static clock gating, and unless a 1 is written to this bit, all the internal PBIST clocks are shut off. Figure 7-5 and Table 7-4 illustrate this register. NOTE: This register must be programmed to 1h during application self-test. Figure 7-5. PBIST Activate/ROM Clock Enable Register (PACT) [offset = 0180h] 31 16 Reserved R-0 15 1 0 Reserved PACT0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 7-4. PBIST Activate/ROM Clock Enable Register (PACT) Field Descriptions Bit Field 31-1 Reserved 0 Value 0 PACT0 • Description Reads return 0. Writes have no effect. PBIST internal clocks enable. 0 Disable PBIST internal clocks. 1 Enable PBIST internal clocks. PACT0 This bit must be set to 1 to turn on the PBIST internal clocks. Setting this bit asserts an internal signal that is used as the clock gate enable. As long as this bit is 0, any access to the PBIST will not go through and the PBIST will remain in an almost zero-power mode. 334 Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback PBIST Control Registers www.ti.com 7.5.4 PBIST ID Register Functionality of this register is described in Figure 7-6 and Table 7-5. Figure 7-6. PBIST ID Register [offset = 184h] 31 16 Reserved R-0 15 8 7 0 Reserved PBIST ID R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 7-5. PBIST ID Register Field Descriptions Bit Field 31-8 Reserved 7-0 PBIST ID Value 0 SPNU499C – March 2018 Submit Documentation Feedback Description Reads return 0. Writes have no effect. This is a unique ID assigned to each PBIST controller in a device with multiple PBIST controllers. Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated 335 PBIST Control Registers www.ti.com 7.5.5 Override Register (OVER) Functionality of the register is described in Figure 7-7 and Table 7-6. Figure 7-7. Override Register (OVER) [offset = 0188h] 31 16 Reserved R-0 15 3 2 Reserved 1 Reserved R-0 R-0 0 OVER0 R-0 R/W-1 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 7-6. Override Register (OVER) Field Descriptions Bit Field Value Description 31-3 Reserved 0 Reads return 0. Writes have no effect. 2 Reserved 0 Reserved. This bit must not be changed from its default value of 0. 1 Reserved 0 Reserved. This bit must not be changed from its default value of 0. 0 OVER0 • RINFO Override Bit 0 The RAM info registers RINFOL and RINFOU are used to select the memories for test. 1 The memory information available from ROM will override the RAM selection from the RAM info registers RINFOL and RINFOU. OVER0 While doing ROM-based testing, each algorithm downloaded from the ROM has a memory mask associated with it that defines the applicable memory groups the algorithm will be run on. By default, this bit is set to 1, which means the memory mask that is downloaded from the ROM will overwrite the RAM info registers. The override bit can be reset by writing a 0 to it. In this case, the application can select the RAM groups to be tested by configuring the RAM info registers. NOTE: When this override bit = 0, each algorithm selected in ALGO register will run on each RAM selected in RINFOL and RINFOU register. It must be ensured that: 1. Only the same type of memories (single port or two port) are selected, and 2. Only memories that are valid for all algorithms enabled via the ALGO register are selected. If the above two requirements are not met, the memory self-test will fail. 336 Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback PBIST Control Registers www.ti.com 7.5.6 Fail Status Fail Register (FSRF0) This register indicates if a Port0 failure occurred during a memory self-test. Bit [0] gets set whenever a failure occurs. Functionality of the register is described in Figure 7-8 and Table 7-7. Figure 7-8. Fail Status Fail Register 0 (FSRF0) [offset = 0190h] 31 16 Reserved R-0 15 1 0 Reserved FSRF0 R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 7-7. Fail Status Fail Register 0 (FSRF0) Field Descriptions Bit 31-1 0 Field Reserved Value 0 FSRF0 Description Reads return 0. Writes have no effect. Fail Status 0. This bit would be cleared by reset of the module using MSTGCR register in system module. 0 No failure occurred. 1 Failure occurred on port 0. SPNU499C – March 2018 Submit Documentation Feedback Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated 337 PBIST Control Registers www.ti.com 7.5.7 Fail Status Count Registers (FSRC0 and FSRC1) These registers keep count of the number of failures observed during the memory self-test. The PBIST controller stops executing the memory self-test whenever a failure occurs in any memory instance for any of the test algorithms. The value in FSRC0 / FSRC1 gets incremented by one whenever a failure occurs and gets decremented by one when the failure is processed. FSRC0 is for Port 0 and FSRC1 is for Port 1. Figure 7-9 and Table 7-8 illustrate the FSRC0 register, while Figure 7-10 and Table 7-9 illustrate the FSRC1 register. Figure 7-9. Fail Status Count 0 Register (FSRC0) [offset = 0198h] 31 16 Reserved R-0 15 8 7 0 Reserved FSRC0 R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 7-8. Fail Status Count 0 Register (FSRC0) Field Descriptions Bit Field 31-8 Reserved 7-0 FSRC0 Value 0 Description Reads return 0. Writes have no effect. Fail Status Count 0. Indicates the number of failures on port 0. Figure 7-10. Fail Status Count Register 1 (FSRC1) [offset = 019Ch] 31 16 Reserved R-0 15 8 7 0 Reserved FSRC1 R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 7-9. Fail Status Count Register 1 (FSRC1) Field Descriptions Bit Field 31-8 Reserved 7-0 FSRC1 338 Value 0 Description Reads return 0. Writes have no effect. Fail Status Count 1. Indicates the number of failures on port 1. Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback PBIST Control Registers www.ti.com 7.5.8 Fail Status Address Registers (FSRA0 and FSRA1) These registers capture the memory address of the first failure on port 0 and port 1, respectively. Figure 711 and Table 7-10 illustrate the FSRA0 register, while Figure 7-12 and Table 7-11 illustrate the FSRA1 register. Figure 7-11. Fail Status Address 0 Register (FSRA0) [offset = 01A0h] 31 16 Reserved R-0 15 0 FSRA0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 7-10. Fail Status Address 0 Register (FSRA0) Field Descriptions Bit Field 31-16 Reserved 15-0 FSRA0 Value 0 Description Reads return 0. Writes have no effect. Fail Status Address 0. Contains the address of the first failure. Figure 7-12. Fail Status Address 1 Register (FSRA1) [offset = 01A4h] 31 16 Reserved R-0 15 0 FSRA1 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 7-11. Fail Status Address 1 Register (FSRA1) Field Descriptions Bit Field 31-16 Reserved 15-0 FSRA1 Value 0 SPNU499C – March 2018 Submit Documentation Feedback Description Reads return 0. Writes have no effect. Fail Status Address 1. Contains the address of the first failure. Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated 339 PBIST Control Registers www.ti.com 7.5.9 Fail Status Data Registers (FSRDL0 and FSRDL1) These registers are used to capture the failure data in case of a memory self-test failure. FSRDL0 corresponds to Port 0, while FSRDL1 corresponds to Port 1. Figure 7-13 and Table 7-12 illustrate the FSRDL0 register, while Figure 7-14 and Table 7-13 illustrate the FSRDL1 register. Figure 7-13. Fail Status Data Register 0 (FSRDL0) [offset = 01A8h] 31 16 FSRDL0 R-AAAAh 15 0 FSRDL0 R-AAAAh LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 7-12. Fail Status Data Register 0 (FSRDL0) Field Descriptions Bit 31-0 Field Description FSRDL0 Failure data on port 0 Figure 7-14. Fail Status Data Register 1 (FSRDL1) [offset = 01B0h] 31 16 FSRDL1 R-AAAAh 15 0 FSRDL1 R-AAAAh LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 7-13. Fail Status Data Register 1 (FSRDL1) Field Descriptions Bit 31-0 340 Field Description FSRDL1 Failure data on port 1 Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback PBIST Control Registers www.ti.com 7.5.10 ROM Mask Register (ROM) This two-bit register sets appropriate ROM access modes for the PBIST controller. The default value is 11b. This register is illustrated in Figure 7-15. It can be programmed according to Table 7-14. Figure 7-15. ROM Mask Register (ROM) [offset = 01C0h] 31 16 Reserved R-0 15 2 1 0 Reserved ROM R-0 R/W-3h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 7-14. ROM Mask Register (ROM) Field Descriptions Bit Field 31-2 Reserved 1-0 ROM Value 0 Description Reads return 0. Writes have no effect. ROM Mask 0 No information is used from ROM. 1h Only RAM Group information from ROM. 2h Only Algorithm information from ROM. 3h Both Algorithm and RAM Group information from ROM. This option should be selected for application self-test. 7.5.11 ROM Algorithm Mask Register (ALGO) This register is used to indicate the algorithm(s) to be used for the memory self-test routine. Each bit corresponds to a specific algorithm. For example, bit [0] controls whether algorithm 1 is enabled or not. Figure 7-16 and Table 7-15 illustrate this register. Figure 7-16. ROM Algorithm Mask Register (ALGO) [offset = 01C4h] 31 24 23 16 ALGO3 ALGO2 R/W-FFh R/W-FFh 15 8 7 0 ALGO1 ALGO0 R/W-FFh R/W-FFh LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 7-15. Algorithm Mask Register (ALGO) Field Descriptions Bit 31 30 Field Value Description 0 Algorithm 32 is not selected. 1 Selects algorithm 32 for PBIST run. 0 Algorithm 31 is not selected. 1 Selects algorithm 31 for PBIST run. 0 Algorithm 1 is not selected. 1 Selects algorithm 1 for PBIST run. 0 None of the algorithms are selected. : 0 31-0 SPNU499C – March 2018 Submit Documentation Feedback Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated 341 PBIST Control Registers www.ti.com NOTE: Please refer to Table 2-6 for available algorithms and the memories on which each algorithm can be run. 7.5.12 RAM Info Mask Lower Register (RINFOL) This register is to select RAM groups to run the algorithms selected in the ALGO register. For an algorithm to be executed on a particular RAM group, the corresponding bit in this register must be set to 1. The default value of this register is all 1s, which means all the RAM Groups are selected. Figure 7-17 and Table 7-16 illustrate this register. The information from this register is used only when bit 0 in OVER register is not set. Figure 7-17. RAM Info Mask Lower Register (RINFOL) [offset = 01C8h] 31 24 23 16 RINFOL3 RINFOL2 R/W-FFh R/W-FFh 15 8 7 0 RINFOL1 RINFOL0 R/W-FFh R/W-FFh LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 7-16. RAM Info Mask Lower Register (RINFOL) Field Descriptions Bit 31 30 Field Value Description 0 RAM Group 32 is not selected. 1 Selects group 32 for PBIST run. 0 RAM Group 31 is not selected. 1 Selects RAM group 31 for PBIST run. 0 RAM Group 1 is not selected. 1 Selects RAM Group 1 for PBIST run. 0 None of the RAM Groups 1 to 32 are selected. : 0 31-0 NOTE: Please refer to Table 2-5 for RAM info groups. 342 Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback PBIST Control Registers www.ti.com 7.5.13 RAM Info Mask Upper Register (RINFOU) This register is to select RAM groups to run the algorithms selected in the ALGO register. For an algorithm to be executed on a particular RAM group, the corresponding bit in this register should be set to 1. The default value of this register is all 1s, which means all the RAM Info Groups would be selected. Figure 718 and Table 7-17 illustrate this register. Figure 7-18. RAM Info Mask Upper Register (RINFOU) [offset = 01CCh] 31 24 23 16 RINFOU3 RINFOU2 R/W-FFh R/W-FFh 15 8 7 0 RINFOU1 RINFOU0 R/W-FFh R/W-FFh LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 7-17. RAM Info Mask Upper Register (RINFOU) Field Descriptions Bit 31 30 Field Value Description 0 RAM Group 64 is not selected. 1 Selects group 64 for PBIST run. 0 RAM Group 63 is not selected. 1 Selects RAM group 63 for PBIST run. 0 RAM Group 33 is not selected. 1 Selects RAM Group 33 for PBIST run. 0 None of RAM Groups 33 to 64 are selected. : 0 31-0 SPNU499C – March 2018 Submit Documentation Feedback Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated 343 PBIST Configuration Example 7.6 www.ti.com PBIST Configuration Example The following examples assume that the PLL is locked and selected as clock source with HCLK = 160 MHz and VCLK = 80 MHz. 7.6.1 Example 1 : Configuration of PBIST Controller to Run Self-Test on RAM Group 3 This example explains the configurations for running March13, Down1A and Map Column algorithms on RAM Group 3 (see device datasheet for RAM Group information). 1. Program the HCLK to PBIST ROM clock ratio to 1:2 in System Module. MSTGCR[9:8] = 1 2. Enable PBIST Controller in System Module. MSIENA[31:0] = 0x00000001 3. Enable the PBIST self-test in System Module. MSTGCR[3:0] = 0xA 4. Wait for at least 32 VCLK cycles in a software loop. 5. Enable the PBIST internal clocks. PACT = 0x1 6. Disable RAM Override. This will make the PBIST controller use the information provided by the application in the RINFOx and ALGO registers for the memory self-test. OVER = 0x0 7. Select the Algorithm (refer to Table 2-6). ALGO = 0x00000054 (Algo 3 = March13N, Algo 5 = down1A_red, Algo 7 = Map column for two-port RAM Group 3) 8. Program the RAM group Info to select RAM Group 3 (refer to Table 2-5). RINFOL = 0x00000004 (select RAM Group 3) RINFOU = 0x00000000 (since this device supports only 28 RAM Groups) 9. Select both Algorithm and RAM information from on-chip PBIST ROM. ROM = 0x3 10. Configure PBIST to run in ROM Mode and start PBIST run. DLR = 0x14 11. Wait for PBIST test to complete by polling MSTDONE bit in System Module. while (MSTDONE !=1) 12. Once self-test is completed, check the Fail Status register FSRF0. a. In case there is a failure (FSRF0 = 0x01): i. Read RAMT register that indicates the RGS and RDS values of the failure RAM. ii. Read FSRC0 and FSRC1 registers that contains the failure count. iii. Read FSRA0 and FSRA1 registers that contains the address of first failure. iv. Read FSRDL0 and FSRDL1 registers that contains the failure data. v. Resume the Test if required using Program Control register (offset = 0x16C) STR = 2. b. In case there is no failure (FSRF0 = 0x00), the memory self-test is completed: i. Disable the PBIST internal clocks. PACT = 0 ii. Disable the PBIST self-test. MSTGCR[3:0] = 0x5 344 Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback PBIST Configuration Example www.ti.com 7.6.2 Example 2 : Configuration of PBIST Controller to Run Self-Test on ALL RAM Groups This example explains the configurations for running March13, Down1A and Mapcolumn algorithms on all RAM groups defined in the PBIST ROM. 1. Program the HCLK to PBIST ROM clock ratio to 1:2 in System Module. MSTGCR[9:8] = 1 2. Enable PBIST Controller in System Module. MSIENA[31:0] = 0x00000001 3. Enable the PBIST self-test in System Module. MSTGCR[3:0] = 0xA 4. Wait for at least 32 VCLK cycles in a software loop. 5. Enable the PBIST internal clocks. PACT = 0x1 6. Enable RAM Override. OVER = 0x1 7. Select the Algorithms to be run (refer to Table 2-6). ALGO = 0x000000FC (select March13N, Down1A and Map Column algorithms for single-port and twoport RAMs) 8. Select both Algorithm and RAM information from on-chip PBIST ROM. ROM = 0x3 9. Configure PBIST to run in ROM Mode and kickoff PBIST test. DLR = 0x14 10. Wait for PBIST test to complete by polling MSTDONE bit in System Module. while (MSTDONE !=1) 11. Once self-test is completed, check the Fail Status register FSRF0: a. In case there is a failure (FSRF0 = 0x01): i. Read RAMT register that indicates the RGS and RDS values of the failure RAM. ii. Read FSRC0 and FSRC1 registers that contains the failure count. iii. Read FSRA0 and FSRA1 registers that contains the address of first failure. iv. Read FSRDL0 and FSRDL1 registers that contains the failure data. v. Resume the Test if required using Program Control register (offset = 0x16C) STR = 2. b. In case there is no failure (FSRF0 = 0x00), the memory self-test is completed: i. Disable the PBIST internal clocks. PACT = 0 ii. Disable the PBIST self-test. MSTGCR[3:0] = 0x5 SPNU499C – March 2018 Submit Documentation Feedback Programmable Built-In Self-Test (PBIST) Module Copyright © 2018, Texas Instruments Incorporated 345 Chapter 8 SPNU499C – March 2018 CPU Self-Test Controller (STC) Module This chapter describes the basics and configuration of the CPU self-test controller present in the device. 346 Topic ........................................................................................................................... 8.1 8.2 8.3 8.4 8.5 General Description .......................................................................................... Application Self-Test Flow ................................................................................. STC Test Coverage and Duration........................................................................ STC Control Registers ...................................................................................... STC Configuration Example .............................................................................. CPU Self-Test Controller (STC) Module Page 347 349 351 352 361 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated General Description www.ti.com 8.1 General Description The CPU self-test controller (STC) is used to test the ARM-CPU core using the Deterministic Logic Built-in Self-Test (LBIST) Controller as the test engine. To achieve better coverage for the self-test of complex cores like Cortex-R4, on-chip logic BIST is the preferred solution. 8.1.1 CPU Self-Test Controller Features The CPU self-test controller has the following features: • Capable of running the complete test as well as running a few intervals at a time – Ability to continue from the last executed interval (test set) as well as the ability to restart from the beginning (first test set) – Total of 24 intervals supported in this device • Complete isolation of the self-tested CPU core from the rest of the system during the self-test run – The self-tested CPU core master bus transaction signals are configured to be in idle mode during the self-test run – Any master access to the CPU core under self-test (example: DMA access to CPU TCM) will be held until the completion of the self-test • Ability to capture the failure interval number • Timeout counter for the CPU self-test run as a fail-safe feature • Able to read the MISR data (shifted from LBIST controller) of the last executed interval of the self-test run for debugging purposes • STCCLK determines the self-test execution speed, STC clock divider (STCCLKDIV) register in the system module is used to divide HCLK (system clock) to generate STCCLK 8.1.2 STC Block Diagram STC module provides an interface to the LBIST controller implemented on the core. The CPU STC is composed of following blocks of logic: • ROM Interface • FSM and Sequence Control • Register Block • Peripheral Bus Interface (VBUSP Interface) • STC Bypass/ATE Interface 8.1.2.1 ROM Interface This block handles the ROM address and control signal generation to read the self-test microcode from the ROM. The test microcode and golden signature value for each interval are stored in ROM. 8.1.2.1.1 FSM and Sequence Control This block generates the signals and data to the LBIST controller based on the seed, test_type and scan chain depth. 8.1.2.1.2 Clock Control The CLOCK CNTRL sub-block handles the internal clock selection and clock generation for the ROM and LBIST controller. 8.1.2.2 Register Block This block handles the control of the self-test controller. This block contains various configuration and status registers that provide the result of a self-test run. These registers are memory-mapped and accessible through the Peripheral Bus (VBUSP) Interface. This block controls the reseeding (reloading the existing seed of the PRPG) in the LBIST controller. SPNU499C – March 2018 Submit Documentation Feedback CPU Self-Test Controller (STC) Module Copyright © 2018, Texas Instruments Incorporated 347 General Description 8.1.2.3 www.ti.com STC Bypass / ATE Interface This is a production test interface. Only for TI internal use. 8.1.2.4 Peripheral Bus (VBUSP) Interface STC control registers are accessed through Peripheral Bus (VBUSP) Interface. During application programming, configuration registers are programmed through the Peripheral Bus Interface to enable and run the self-test controller. Figure 8-1. STC Block Diagram Global Clock Controller Clock Controller ESM ROM FSM and Sequence COMP Controller BLK1 ROM Interface COMP BLK1 Cpu_Reset misr_out misr_out STC CPU1 (BIST’ed core) DBIST CNTRL STC REG STC_BYPASS / BLOCK ATE Interface CCM DBIST CNTRL CPU2 (BIST’ed core) VBUSP Interface PCR 348 Test controller CPU Self-Test Controller (STC) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Application Self-Test Flow www.ti.com 8.2 Application Self-Test Flow This section describes the STC module configuration and the application self-test flow that the user should follow for successful execution. The following two configurations must be part of the STC initialization code: • STC clock rate configuration, STC clock divider (STCCLKDIV) register in system module is used to divide HCLK (system clock) to generate STCCLK • Clear SYSESR register before triggering an STC test 8.2.1 STC Module Configuration • • • Configure the test interval count using STCGCR0[31:16] register. A maximum of 24 intervals are supported in the device. You can run 24 intervals together or in slices. If the tests are run in slices, the user software can specify to the self-test controller whether to continue the run from the next interval onwards or to restart from interval 0 using bit STCGCR0[0]. This bit gets reset after the completion of the self-test run. Configure self-test run timeout counter preload register STCTPR. This register contains the total number of VBUS clock cycles it will take before a self-test timeout error (TO_ERR) will be triggered after the initiation of the self-test run. Enable CPU self-test by writing the enable key to STCGCR1 register. 8.2.2 Context Saving STC generates a CPU reset after completion of the test regardless of pass or fail. You can run the STC test during startup or can divide STC into 24 or fewer intervals and run them during normal operation. If STC is ran only on startup, the user software need not save the CPU contents since the reset caused will go through all startup configurations. You should check the STCGSTAT register for the self-test status before going to the application software. If STC is divided into intervals and ran, user software must save the CPU contents and reload them after the CPU reset caused by the completion of the STC test interval. The check for STC status should bypass STC run if the reset is caused by an STC run to prevent a cyclic reset, that is, if reset is caused by STC the second time through, then it should not be ran again. You should also check the STCGSTAT register for the self-test status before restoring the application software. Following are some of the registers that are required to be backed up before and restored after self-test: 1. CPU core registers (all modes R0-R15, PC, CPSR) 2. CP15 System Control Coprocessor registers - MPU control and configuration registers, Auxiliary Control Register used to Enable ECC, Fault Status Register etc. 3. CP13 Coprocessor Registers - FPU configuration registers, General Purpose Registers 4. Hardware Break Point and watch point registers like BVR, BSR, WVR, WSR etc. For more information on the CPU reset, refer to the ARM® Cortex®-R4F Technical Reference Manual. NOTE: Check all reset source flags in the SYSESR register after a CPU BIST execution. If a flag, in addition to CPU reset, is set, clear the CPU reset flag and service the other reset sources accordingly. 8.2.3 Entering CPU Idle Mode After enabling the STC test by writing the STC enable key, the test is triggered only after the CPU is taken to idle mode by executing the CPU Idle Instruction asm(“ WFI”). SPNU499C – March 2018 Submit Documentation Feedback CPU Self-Test Controller (STC) Module Copyright © 2018, Texas Instruments Incorporated 349 Application Self-Test Flow www.ti.com 8.2.4 Self-Test Completion and Error Generation At the end of each interval, the 128 bit MISR value (reflected in registers CPUx_CURMISR[3:0]) from the DBIST controller is shifted into the STC. This is compared with the golden MISR value stored in the ROM. At the end of a CPU self-test, the STC controller updates the status flags in the Global Status Register (STCGSTAT) and resets the CPU. In case of a MISR mismatch or a test timeout, an error is generated through the ESM module. TEST_ERR signal is asserted when an MISR miss-compare occurs during the self-test. A TO_ERR is asserted when a timeout occurs during the self-test, meaning the test could not complete within the time specified in the timeout counter preload register STCTPR. However, at the device level, these two errors are combined and mapped to a single ESM channel. To identify which error occurred, user software must check the global status register (STCGSTAT) and fail status register STCFSTAT in the ESM interrupt service routine. Figure 8-2 illustrates the application self-test test flow chart, drawn based on the assumption that the device has gone through startup, necessary clocks initialized and SYSESR register bits cleared. Figure 8-2. Application Self-Test Flow Chart Configure STCCLK rate using STCCLKDIV register in SYS2 register frame. Program the STCGCR0 registers to specify the number of intervals(N), timeout counter etc for a selftest run. Configure STC_ENA Key to enable SelfTest NO StartUp selftest? Store CPU state and Registers in Memory before starting STC Test YES Configure CPU in WFI mode (IDLE mode) NO WFI executed? YES CPU SelfTest execution. CPU configured into safe mode YES SelfTest Done? NO 350 CPU reset asserted Read the SelfTest and system status registers. Retrieve state of CPU and Registers and continue Application Software. CPU Self-Test Controller (STC) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated STC Test Coverage and Duration www.ti.com 8.3 STC Test Coverage and Duration The test coverage and number of test execution cycles (STCCLK) for each test interval when the device is running at HCLK = 180 MHz, VCLK = 90 MHz, and STCCLK = 90 MHz are shown in Table 8-1. Table 8-1. STC Test Coverage and Duration Intervals Test Coverage (%) Test Time (Cycles) 0 0 0 Test Time (µs) 0 1 62.13 1365 15.17 2 70.09 2730 30.33 3 74.49 4095 45.50 4 77.28 5460 60.67 5 79.28 6825 75.83 6 80.90 8190 91.00 7 82.02 9555 106.17 8 83.10 10920 121.33 9 84.08 12285 136.50 10 84.87 13650 151.67 11 85.59 15015 166.83 12 86.11 16380 182.00 13 86.67 17745 197.17 14 87.16 19110 212.33 15 87.61 20475 227.50 16 87.98 21840 242.67 17 88.38 23205 257.83 18 88.69 24570 273.00 19 88.98 25935 288.17 20 89.28 27300 303.33 21 89.50 28665 318.50 22 89.76 30030 333.67 23 90.01 31395 348.83 24 90.21 32760 364.00 Table 8-2 gives the typical STC execution times for 24 intervals at different clock rates. Table 8-2. Typical STC Execution Times Number of Intervals @ HCLK = 180 MHz VCLK = 90 MHz STCCLK = 90 MHz @ HCLK = 100 MHz VCLK = 100 MHz STCCLK = 50MHz @ HCLK = 160 MHz VCLK = 80 MHz STCCLK = 80 MHz 24 364 µs 655.20 µs 409.50 µs SPNU499C – March 2018 Submit Documentation Feedback CPU Self-Test Controller (STC) Module Copyright © 2018, Texas Instruments Incorporated 351 STC Control Registers 8.4 www.ti.com STC Control Registers STC control registers are accessed through Peripheral Bus (VBUSP) interface. Read and write access in 8, 16, and 32 bit are supported. The base address for the control registers is FFFF E600h. NOTE: In suspend mode, all registers can be written irrespective of user or privilege mode. Table 8-3. STC Control Registers 352 Offset Acronym Register Description 00h STCGCR0 STC Global Control Register 0 Section 8.4.1 Section 04h STCGCR1 STC Global Control Register 1 Section 8.4.2 08h STCTPR Self-Test Run Timeout Counter Preload Register Section 8.4.3 0Ch STC_CADDR STC Current ROM Address Register Section 8.4.4 10h STCCICR STC Current Interval Count Register Section 8.4.5 14h STCGSTAT Self-Test Global Status Register Section 8.4.6 18h STCFSTAT Self-Test Fail Status Register Section 8.4.7 1Ch CPU1_CURMISR3 CPU1 Current MISR Register Section 8.4.8 20h CPU1_CURMISR2 CPU1 Current MISR Register Section 8.4.8 24h CPU1_CURMISR1 CPU1 Current MISR Register Section 8.4.8 28h CPU1_CURMISR0 CPU1 Current MISR Register Section 8.4.8 2Ch CPU2_CURMISR3 CPU2 Current MISR Register Section 8.4.9 30h CPU2_CURMISR2 CPU2 Current MISR Register Section 8.4.9 34h CPU2_CURMISR1 CPU2 Current MISR Register Section 8.4.9 38h CPU2_CURMISR0 CPU2 Current MISR Register Section 8.4.9 3Ch STCSCSCR Signature Compare Self-Check Register Section 8.4.10 CPU Self-Test Controller (STC) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated STC Control Registers www.ti.com 8.4.1 STC Global Control Register 0 (STCGCR0) This register is described in Figure 8-3 and Table 8-4. Figure 8-3. STC Global Control Register 0 (STCGCR0) [offset = 00] 31 16 INTCOUNT R/W-1 15 1 0 Reserved RS_CNT R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 8-4. STC Global Control Register 0 (STCGCR0) Field Descriptions Bit 31-16 Field Value INTCOUNT Description Number of intervals of self-test run This register specifies the number of intervals to run for the self-test run. This corresponds to the number of intervals to be ran from the value reflected in the current interval counter. 15-1 Reserved 0 RS_CNT 0 Read returns 0. Writes have no effect. Restart or Continue This bit specifies whether to continue the run from next interval onwards or to restart from interval 0. This bit gets reset after the completion of a self-test run. 0 Continue STC run from the previous interval. 1 Restart STC run from interval 0. NOTE: On a power-on reset or system reset, this register gets reset to its default values. 8.4.2 STC Global Control Register 1 (STCGCR1) This register is described in Figure 8-4 and Table 8-5. Figure 8-4. STC Global Control Register 1 (STCGCR1) [offset = 04h] 31 16 Reserved R-0 15 4 3 0 Reserved STC_ENA R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after nPORST (power-on reset) or System reset Table 8-5. STC Global Control Register 1 (STCGCR1) Field Descriptions Bit Field 31-4 Reserved 3-0 STC_ENA Value 0 Description Read returns 0. Writes have no effect. Self-test run enable key Ah Self-test run is enabled. All Others Self-test run is disabled. NOTE: On a power-on reset or system reset, this register resets to its default values. Also, this register automatically resets to its default values at the completion of a self-test run. SPNU499C – March 2018 Submit Documentation Feedback CPU Self-Test Controller (STC) Module Copyright © 2018, Texas Instruments Incorporated 353 STC Control Registers www.ti.com 8.4.3 Self-Test Run Timeout Counter Preload Register (STCTPR) This register is described in Figure 8-5 and Table 8-6. Figure 8-5. Self-Test Run Timeout Counter Preload Register (STCTPR) [offset = 08h] 31 16 RTOD R/WP-FFFFh 15 0 RTOD R/WP-FFFFh LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after nPORST (power-on reset) or System reset Table 8-6. Self-Test Run Timeout Counter Preload Register (STCTPR) Bit Field Description 31-0 RTOD Self-test timeout count preload This register contains the total number of VBUS clock cycles it will take before an self-test timeout error (TO_ERR) will be triggered after the initiation of the self-test run. This is a fail safe feature to prevent the device from hanging up due to a run away test during the self-test. The preload count value gets loaded into the self-test time out down counter whenever a self-test run is initiated (STC_KEY is enabled) and gets disabled on completion of a self-test run. NOTE: On a power-on reset or system reset, this register gets reset to its default values. 8.4.4 STC Current ROM Address Register (STC_CADDR) This register is described in Figure 8-6 and Table 8-7. Figure 8-6. STC Current ROM Address Register (STC_CADDR) [offset = 0Ch] 31 16 ADDR R-0 15 0 ADDR R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after nPORST (power-on reset) or System reset Table 8-7. STC Current ROM Address Register (STC_CADDR) Field Descriptions Bit Field Description 31-0 ADDR Current ROM Address This register reflects the current ROM address (for micro code load) which is the current value of the STC program counter. NOTE: When the RS_CNT bit in STCGCR0 is set to a 1 on the start of a self-test run, or on a power-on reset or system reset, this register resets to all zeroes. 354 CPU Self-Test Controller (STC) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated STC Control Registers www.ti.com 8.4.5 STC Current Interval Count Register (STCCICR) This register is described in Figure 8-7 and Table 8-8. Figure 8-7. STC Current Interval Count Register (STCCICR) [offset = 10h] 31 16 Reserved R-0 15 0 N R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 8-8. STC Current Interval Count Register (STCCICR) Field Descriptions Bit Field 31-16 Reserved 15-0 N Value 0 Description Read returns 0. Writes have no effect. Interval Number This specifies the last executed interval number. NOTE: When the RS_CNT bit in STCGCR0 is set to a 1 or on a power-on reset, the current interval counter resets to the default value. SPNU499C – March 2018 Submit Documentation Feedback CPU Self-Test Controller (STC) Module Copyright © 2018, Texas Instruments Incorporated 355 STC Control Registers www.ti.com 8.4.6 Self-Test Global Status Register (STCGSTAT) This register is described in Figure 8-8 and Table 8-9. Figure 8-8. Self-Test Global Status Register (STCGSTAT) [offset = 14h] 31 8 Reserved R-0 1 0 Reserved 2 TEST_FAIL TEST_DONE R-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 8-9. Self-Test Global Status Register (STCGSTAT) Field Descriptions Bit 31-2 1 0 Field Reserved Value 0 TEST_FAIL Description Read returns 0. Writes have no effect. Test Fail 0 Self-test run has not failed. 1 Self-test run has failed. TEST_DONE Test Done 0 Not completed. 1 Self-test run completed. The test done flag is set to a 1 for any of the following conditions: 1. 2. 3. When the STC run is complete without any failure When a failure occurs on a STC run When a timeout failure occurs Reset is generated to the CPU on which the STC run is being performed when TEST_DONE goes high (the test is completed). NOTE: The two status bits can be cleared to their default values on a write of 1 to the bits. Additionally when the STC_ENA key is written from a disabled state to enabled state, the two status flags get cleared to their default values. This register gets reset to its default value with power-on reset assertion. 356 CPU Self-Test Controller (STC) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated STC Control Registers www.ti.com 8.4.7 Self-Test Fail Status Register (STCFSTAT) This register is described in Figure 8-9 and Table 8-10. Figure 8-9. Self-Test Fail Status Register (STCFSTAT) [offset = 18h] 31 8 Reserved R-0 2 1 0 Reserved 3 TO_ERR CPU2_FAIL CPU1_FAIL R-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after nPORST (power-on reset) or System reset Table 8-10. Self-Test Fail Status Register (STCFSTAT) Field Descriptions Bit Field 31-3 Reserved 2 TO_ERR 1 0 Value 0 Description Read returns 0. Writes have no effect. Timeout Error 0 No time out error occurred. 1 Self-test run failed due to a timeout error. CPU2_FAIL CPU2 failure info 0 No MISR mismatch for CPU2. 1 Self-test run failed due to MISR mismatch for CPU2. CPU1_FAIL CPU1 failure info 0 No MISR mismatch for CPU1. 1 Self-test run failed due to MISR mismatch for CPU1. NOTE: The three status bits can be cleared to their default values on a write of 1 to the bits. Additionally when the STC_ENA key in STCGCR1 is written from a disabled state to an enabled state, the three status bits get cleared to their default values. This register gets reset to its default value with power-on reset assertion. SPNU499C – March 2018 Submit Documentation Feedback CPU Self-Test Controller (STC) Module Copyright © 2018, Texas Instruments Incorporated 357 STC Control Registers www.ti.com 8.4.8 CPU1 Current MISR Register (CPU1_CURMISR[3:0]) This register is described in Figure 8-10 through Figure 8-13 and Table 8-11. Figure 8-10. CPU1 Current MISR Register (CPU1_CURMISR3) [offset = 1Ch] 31 16 MISR[31:16] R-0 15 0 MISR[15:0] R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Figure 8-11. CPU1 Current MISR Register (CPU1_CURMISR2) [offset = 20h] 31 16 MISR[63:48] R-0 15 0 MISR[47:32] R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Figure 8-12. CPU1 Current MISR Register (CPU1_CURMISR1) [offset = 24h] 31 16 MISR[95:80] R-0 15 0 MISR[79:64] R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Figure 8-13. CPU1 Current MISR Register (CPU1_CURMISR0) [offset = 28h] 31 16 MISR[127:112] R-0 15 0 MISR[111:96] R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 8-11. CPU1 Current MISR Register (CPU1_CURMISR[3:0]) Field Descriptions Bit Field Description 127-0 MISR MISR data from CPU1 This register contains the MISR data from the CPU1 for the most recent interval. This value is compared with the GOLDEN MISR value copied from ROM. NOTE: This register gets reset to its default value with power-on or system reset assertion. 358 CPU Self-Test Controller (STC) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated STC Control Registers www.ti.com 8.4.9 CPU2_CURMISR[3:0] (CPU2 Current MISR Register) This register is described in Figure 8-14 through Figure 8-17 and Table 8-12. Figure 8-14. CPU2 Current MISR Register (CPU2_CURMISR3) [offset = 2Ch] 31 16 MISR[31:16] R-0 15 0 MISR[15:0] R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Figure 8-15. CPU2 Current MISR Register (CPU2_CURMISR2) [offset = 30h] 31 16 MISR[63:48] R-0 15 0 MISR[47:32] R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Figure 8-16. CPU2 Current MISR Register (CPU2_CURMISR1) [offset = 34h] 31 16 MISR[95:80] R-0 15 0 MISR[79:64] R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Figure 8-17. CPU2 Current MISR Register (CPU2_CURMISR0) [offset = 38h] 31 16 MISR[127:112] R-0 15 0 MISR[111:96] R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 8-12. CPU2 Current MISR Register (CPU2_CURMISR[3:0]) Field Descriptions Bit Field Description 127-0 MISR MISR data from CPU2 This register contains the MISR data from the CPU2 for the most recent interval. This value is compared with the GOLDEN MISR value copied from ROM. NOTE: This register gets reset to its default value with power-on or system reset assertion. SPNU499C – March 2018 Submit Documentation Feedback CPU Self-Test Controller (STC) Module Copyright © 2018, Texas Instruments Incorporated 359 STC Control Registers www.ti.com 8.4.10 STCSCSCR (Signature Compare Self-Check Register) This register is described in Figure 8-18. This register is used to enable the self-check feature of the CPU Self-Test Controller's (STC) signature compare logic. Self-check can only be done for the STC interval 0 by setting the RS_CNT bit in STCGCR0 to 1 to restart the self-test. The STC run will fail for signature miss-compare, provided the signature compare logic is operating correctly. To proceed with regular CPU self-test, STCSCSCR should be programmed to disable the self-check feature and clear the RS_CNT bit in STCGCR0 to 0. This register gets reset to its default value with any system reset assertion. Figure 8-18. Signature Compare Self-Check Register (STCSCSCR) [offset = 3Ch] 31 16 Reserved R-0 15 5 4 3 0 Reserved FAULT_INS SELF_CHECK_KEY R-0 R/WP-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after nPORST (power-on reset) or System reset Table 8-13. Signature Compare Self-Check Regsiter (STCSCSCR) Field Descriptions Bit 31-5 4 3-0 Field Value Reserved Reads return zeros, writes have no effect FAULT_INS Enable / Disable fault insertion. 0 No fault is inserted. 1 Insert stuck-at-fault inside CPU so that STC signature compare will fail. SELF_CHECK_KEY Signature compare logic self-check enable key Ah Any other value 360 Description Signature compare logic self-check is enabled. This allows a fault to be inserted using the FAULT_INS field. Signature compare logic self-check is disabled The FAULT_INS field has no effect in this case. CPU Self-Test Controller (STC) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated STC Configuration Example www.ti.com 8.5 STC Configuration Example The following examples assume that the PLL is locked and selected as the system clock source with HCLK = 180 MHz and VCLK = 90 MHz. 8.5.1 Example 1: Self-Test Run for 24 Interval This example explains the configurations for running STC Test for maximum Test Intervals 24. 1. Maximum STC clock rate support at 180 MHz HCLK is 90 MHz. Divide HCLK by 2 to achieve this clock rate. STCCLKDIV[26:24] register in the secondary system module frame at location 0xFFFF E108 is used. STCCLKDIV[26:24] = 1 2. Clear CPU_RST status bit in the System Exception Status Register in the system module. SYSESR[5] = 1 3. Configure the test interval count in STC module. STCGCR0[31:16] = 24 4. Configure self-test run time out counter preload register. STCTPR[31:0] = 0xFFFFFFFF 5. Enable CPU self-test. STCGCR1[3:0]= 0xA 6. Perform a context save of CPU state and configuration registers that get reset on CPU reset. 7. Put the CPU in idle mode by executing the CPU idle instruction. asm(“ WFI”) 8. Upon CPU reset, verify the CPU_RST status bit in the System Exception Status Register is set. This also verifies that no other resets occurred during the self-test. SYSESR[5] == 1 9. Check the STCGSTAT register for the self-test status. Check TEST_DONE bit before evaluating TEST_FAIL bit. If TEST_DONE = 0 the self-test is not completed. restart the STC test by going to Step 5. If (TEST_DONE = 1 and TEST_FAIL = 1) the self-test is completed and Failed. • Read STC Fail Status Register STCFSTAT[2:0] to identify the type of Failure (Timeout, CPU1 fail, CPU2 fail). In case there is no failure (TEST_DONE = 1 and TEST_FAIL = 0), the CPU self-test is completed successfully. • Recover the CPU status, configuration registers and continue the application software. SPNU499C – March 2018 Submit Documentation Feedback CPU Self-Test Controller (STC) Module Copyright © 2018, Texas Instruments Incorporated 361 Chapter 9 SPNU499C – March 2018 CPU Compare Module for Cortex-R4F (CCM-R4F) This chapter describes the CPU compare module for Cortex-R4F (CCM-R4F). This device implements two instances of the Cortex-R4F CPU which are running in lock step to detect faults which may result in unsafe operating conditions. The CCM-R4F detects faults and signals them to an error signaling module (ESM). NOTE: In general, R4F is used when referencing the Cortex CPU used in the Hercules family of devices; however, the floating-point functionality is a device-specific option and may not be included in some devices. Consult your device-specific datasheet to determine which core is included on your specific device being used. 362 Topic ........................................................................................................................... 9.1 9.2 9.3 9.4 Main Features .................................................................................................. Block Diagram.................................................................................................. Module Operation ............................................................................................. CCM-R4F Control Registers ............................................................................... CPU Compare Module for Cortex-R4F (CCM-R4F) Copyright © 2018, Texas Instruments Incorporated Page 363 363 364 367 SPNU499C – March 2018 Submit Documentation Feedback Main Features www.ti.com 9.1 Main Features Safety-critical applications require run-time detection of faults in the Central Processing Unit (CPU). For this purpose, the CPU Compare Module for Cortex-R4F (CCM-R4F) compares the core compare bus outputs of two Cortex-R4F CPUs running in a 1oo1D (one-out-of-one, with diagnostics) lockstep configuration. Any difference in the core compare bus outputs of the CPUs is flagged as an error. For diagnostic purposes, the CCM-R4F also incorporates a self-test capability to allow for boot time checking of hardware faults within the CCM-R4F itself. The main features of the CCM-R4F are: • run-time detection of faults • self-test capability • error forcing capability 9.2 Block Diagram Figure 9-1 shows the interconnection diagram of the CCM-R4F with the two Cortex-R4F CPUs. The core compare bus outputs of the CPUs are compared in the CCM-R4F. To avoid common mode impacts, the signals of the CPUs to be compared are temporally diverse. The output signals of the master CPU are delayed 2 cycles while the input signals of checker CPU are delayed 2 cycles. The CCM-R4F is constantly comparing about 900 signals from each of the two CPUs. These signals include the address, data and control signals from the flash and RAM TCMs and from the AXI peripheral bus. An internal register or ALU error will be flagged as a mis-compare when the faulty value is stored, used as an index, or causes a change in program execution. Figure 9-1. Block Diagram CCM-R4F 2 cycles delay CCM-R4F compare CPU1CLK CPU 1 Master CPU compare error ESM (Error Signaling Module) CPU 2 Checker CPU 2 cycles delay CPU2CLK SPNU499C – March 2018 Submit Documentation Feedback CPU Compare Module for Cortex-R4F (CCM-R4F) Copyright © 2018, Texas Instruments Incorporated 363 Module Operation 9.3 www.ti.com Module Operation The CCM-R4F compares the core compare bus outputs of the master and checker Cortex-R4F CPUs on the microcontroller and signals an error on any mismatch. This comparison is started 6 CPU clock cycles after the CPU comes out of reset to ensure that CPU output signals have propagated to a known value after reset. Once comparison is started, the CCM module continues to monitor the outputs of two CPUs without any software intervention. Upon an error software needs to handle it. The CCM-R4F can run in one of the following four operating modes: 1. 1oo1D lock step 2. self-test 3. error forcing 4. self-test error forcing The operating mode can be selected by writing a dedicated key to the key register (MKEY). 9.3.1 1oo1D Lock Step Mode This is the default mode on start-up. In lock step mode, the compare bus output signals of both CPUs are compared. A difference in the CPU compare bus outputs is indicated by signaling an error to the ESM which sets the error flag “CCM-R4F compare”. NOTE: The CPU compare error asserts “CCM-R4F self-test error” flag as well. By doing this, the CPU compare error has two paths (“CCM-R4F - compare” and “CCM-R4F self-test error” flag) to the ESM, so that even if one of the paths fails, the error is still propagated to the ESM. Not all internal registers of the Cortex-R4F CPU have fixed values upon reset. To avoid an erroneous CCMR4F compare error, the application software needs to ensure that the CPU registers of both CPUs are initialized with the same values before the registers are used, including function calls where the register values are pushed onto the stack. 9.3.2 Self-Test Mode In self-test mode, the CCM-R4F checks itself for faults. During self-test, the compare error module output signal is deactivated. Any fault detected inside the CCM-R4F will be flagged by ESM error “CCM-R4F self-test”. In self-test mode, the CCM-R4F automatically generates test patterns to look for any hardware faults. If a fault is detected, then a self-test error flag is set, a self-test error signal is asserted and sent to the ESM, and the self-test is terminated immediately. If no fault is found during self-test, the self-test complete flag is set. In both cases, the CCM-R4F remains in self-test mode after the test has been terminated or completed, and the application needs to switch the CCM-R4F mode by writing another key to the mode key register (MKEY). During the self-test operation, the compare error signal output to the ESM is inactive irrespective of the compare result. There are two types of patterns generated by CCM-R4F during self-test mode: i. Compare Match Test ii. Compare Mismatch Test CCM-R4F first generates Compare Match Test patterns, followed by Compare Mismatch Test patterns. Each test pattern is applied on both CPU signal inputs of the CCM-R4F’s compare block and clocked for one cycle. The duration of self-test is 3615 CPU clock cycles (GCLK). NOTE: During self-test, both CPUs can execute normally, but the compare logic will not be checking any CPU signals. Also during self-test, only the compare unit logic is tested and not the memory mapped register controls for the CCM-R4F. The self-test is not interruptible. 364 CPU Compare Module for Cortex-R4F (CCM-R4F) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Module Operation www.ti.com 9.3.2.1 Compare Match Test During the Compare Match Test, there are four different test patterns generated to stimulate the CCMR4F. An identical vector is applied to both input ports at the same time expecting a compare match. These patterns cause the self-test logic to exercise every CPU compare bus output signal in parallel. If the compare unit produces a compare mismatch then the self-test error flag is set, the self-test error signal is generated, and the Compare Match Test is terminated. The four test patterns used for the Compare Match Test are: • All 1s on both CPU signal ports • All 0s on both CPU signal ports • 0xAs on both CPU signal ports • 0x5s on both CPU signal ports These four test patterns will take four clock cycles to complete. illustrates the sequence of Compare Match Test. Table 9-1. Compare Match Test Sequence CPU 1 Signal Position 9.3.2.2 CPU 2 Signal Position Cycle n:8 7 6 5 4 3 2 1 0 n:8 7 6 5 4 3 2 1 0 1s 1 1 1 1 1 1 1 1 1s 1 1 1 1 1 1 1 1 0 0s 0 0 0 0 0 0 0 0 0s 0 0 0 0 0 0 0 0 1 0xA 1 0 1 0 1 0 1 0 0xA 1 0 1 0 1 0 1 0 2 0x5 0 1 0 1 0 1 0 1 0x5 0 1 0 1 0 1 0 1 3 Compare Mismatch Test During the Compare Mismatch Test, the number of test patterns is equal to twice the number of CPU output signals to compare in lock step mode. An all 1s vector is applied to the CCM-R4F’s CPU1 input port and the same pattern is also applied to the CCM-R4F’s CPU2 input port but with one bit flipped starting from signal position 0. The un-equal vector will cause the CCM-R4F to expect a compare mismatch at signal position 0, if the CCM-R4F logic is working correctly. If, however, the CCM-R4F logic reports a compare match, the self-test error flag is set, the self-test error signal is asserted, and the Compare Mismatch Test is terminated. This Compare Mismatch Test algorithm repeats in a domino fashion with the next signal position flipped while forcing all other signals to logic level 1. This sequence is repeated until every single signal position is verified on both CPU signal ports. The Compare Mismatch Test is terminated if the CCM-R4F reports a compare match versus the expected compare mismatch. This test ensures that the compare unit is able to detect a mismatch on every CPU signal being compared. Table 9-2 illustrates the sequence of Compare Mismatch Test. There is no error signal is sent to ESM if the expected errors are seen with each pattern. SPNU499C – March 2018 Submit Documentation Feedback CPU Compare Module for Cortex-R4F (CCM-R4F) 365 Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Table 9-2. Compare Mismatch Test Sequence CPU 1 Signal Position n n-1:8 CPU 2 Signal Position 7 6 5 4 3 2 1 0 n n-1:8 7 6 5 4 3 2 1 0 Cycle 1 1 1s 1 1 1 1 1 1 1 1 1 1 1s 1 1 1 1 1 1 1 0 0 1 1 1s 1 1 1 1 1 1 1 1 1 1 1s 1 1 1 1 1 1 0 1 1 1 1 1s 1 1 1 1 1 1 1 1 1 1 1s 1 1 1 1 1 0 1 1 2 1 1 1s 1 1 1 1 1 1 1 1 1 1 1s 1 1 1 1 0 1 1 1 3 1 1 1s 1 1 1 1 1 1 1 1 1 0 1s 1 1 1 1 1 1 1 1 n-1 1 1 1s 1 1 1 1 1 1 1 1 0 1 1s 1 1 1 1 1 1 1 1 n 1 1 1s 1 1 1 1 1 1 1 0 1 1 1s 1 1 1 1 1 1 1 1 n+1 1 1 1s 1 1 1 1 1 1 0 1 1 1 1s 1 1 1 1 1 1 1 1 n+2 1 1 1s 1 1 1 1 1 0 1 1 1 1 1s 1 1 1 1 1 1 1 1 n+3 1 1 1s 1 1 1 1 0 1 1 1 1 1 1s 1 1 1 1 1 1 1 1 n+4 1 0 1s 1 1 1 1 1 1 1 1 1 1 1s 1 1 1 1 1 1 1 1 2n-1 0 1 1s 1 1 1 1 1 1 1 1 1 1 1s 1 1 1 1 1 1 1 1 2n :: :: 9.3.3 Error Forcing Mode In error forcing mode, a test pattern is applied to the CPU related inputs of the CCM-R4F compare logic to force an error in the compare error output signal of the compare unit. The ESM error flag “CCM-R4F compare” is expected after the error forcing mode completes. As a side effect, the “CCM-R4F self-test error” flag is also asserted whenever the CPU compare error is asserted. Error forcing mode is similar to the Compare Mismatch Test operation of self-test mode in which an unequal vector is applied to the CCM-R4F CPU signal ports. The error forcing mode forces the compare mismatch to actually assert the compare error output signal. This ensures that faults in the path between CCM-R4F and ESM is detected. Only one hardcoded test pattern is applied into CCM-R4F during error forcing mode. A repeated 0x5 pattern is applied to CPU1 signal port of CCM-R4F input while a repeated 0xA pattern is applied to the CPU2 signal port of CCM-R4F input. The error forcing mode takes one cycle to complete. Hence, the failing signature is presented for one clock cycle. After that, the mode is automatically switched to lock step mode. The key register (MKEY) will indicate the lock step key mode once it is switched to lock step mode. During the one cycle required by the error forcing test, the CPU output signals are not compared. User should expect the ESM to trigger a response (report the CCM-R4F fail). If no error is detected by ESM, then a hardware fault is present. 9.3.4 Self-Test Error Forcing Mode In self-test error forcing mode, an error is forced at the self-test error signal. The compare unit is still running in lockstep mode and the key is switched to lockstep after one clock cycle. The ESM error flag “CCM-R4F - self-test” is expected after the self-test error forcing mode completes. Once the expected errors are seen, the application can clean the error through ESM module. 366 CPU Compare Module for Cortex-R4F (CCM-R4F) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Module Operation www.ti.com 9.3.5 Operation During CPU Debug Mode Certain debug operations place the CPU in a halting debug state where the code execution is halted. Because halting debug events are asynchronous, there is a possibility for the debug requests to cause loss of lockstep. CCM-R4F will disable upon detection of halting debug requests. Core compare error will not be generated and flags will not update. A CPU reset is needed to ensure the CPUs are again in lockstep and will also re-enable the CCM-R4F. 9.4 CCM-R4F Control Registers Table 9-3 lists the CCM-R4F registers. Each register begins on a 32-bit word boundary. The registers support 32-bit, 16-bit and 8-bit accesses. The base address for the control registers is FFFF F600h. Table 9-3. CCM-R4F Control Registers Offset Acronym Register Description 00h CCMSR CCM-R4F Status Register Section 9.4.1 04h CCMKEYR CCM-R4F Key Register Section 9.4.2 SPNU499C – March 2018 Submit Documentation Feedback Section CPU Compare Module for Cortex-R4F (CCM-R4F) Copyright © 2018, Texas Instruments Incorporated 367 CCM-R4F Control Registers www.ti.com 9.4.1 CCM-R4F Status Register (CCMSR) Figure 9-2. CCM-R4F Status Register (CCMSR) (Address = FFFF F600h) 31 17 15 16 Reserved CPME R-0 R/WPC-0 9 8 7 2 1 0 Reserved STC Reserved STET STE R-0 R-0 R-0 R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; WP = Write in Privileged mode only; -n = value after reset Table 9-4. CCM-R4F Status Register (CCMSR) Field Descriptions Bit 31-17 16 Field Reserved Value 0 CMPE (1) Description Reads return zeros and writes have no effect. Compare Error Read in User and Privileged mode. Write in Privileged mode only. 0 Read: CPU signals are identical. Write: Leaves the bit unchanged. 1 Read: CPU signal compare mismatch. Write: Clears the bit. 15-9 8 Reserved 0 STC Reads return zeros and writes have no effect. Self-test Complete Note: This bit is always 0 when not in self-test mode. Once set, switching from self-test mode to other modes will clear this bit. Read/Write in User and Privileged mode. 0 Read: Self-test on-going if self-test mode is entered. Write: Writes have no effect. 1 Read: Self-test is complete. Write: Writes have no effect. 7-2 1 Reserved 0 STET Reads return zeros and writes have no effect. Self-test Error Type Read/Write in User and Privileged mode. 0 Read: Self-test failed during Compare Match Test if STE = 1. Write: Writes have no effect. 1 Read: Self-test failed during Compare Mismatch Test if STE = 1. Write: Writes have no effect. 0 STE Self-test Error Note: This bit gets updated when the self-test is complete or an error is detected. Read/Write in User and Privileged mode. 0 Read: Self-test passed. Write: Writes have no effect. 1 Read: Self-test failed. Write: Writes have no effect. (1) 368 The contents of this register should be interpreted in context of what test was selected. That is what mode is CCM operating in. CPU Compare Module for Cortex-R4F (CCM-R4F) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback CCM-R4F Control Registers www.ti.com 9.4.2 CCM-R4F Key Register (CCMKEYR) Figure 9-3. CCM-R4F Key Register (CCMKEYR) (Address = FFFF F604h) 31 16 Reserved R-0 15 4 3 0 Reserved MKEY R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in Privileged mode only; -n = value after reset Table 9-5. CCM-R4F Key Register (CCMKEYR) Field Descriptions Bit Field 31-4 Reserved 3-0 MKEY Value 0 Description Reads return to zeros and writes have no effect. Mode Key Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Returns current value of the MKEY. Write: Lockstep mode. 6h Read: Returns current value of the MKEY. Write: Self-test mode. 9h Read: Returns current value of the MKEY. Write: Error Forcing mode. Fh Read: Returns current value of the MKEY. Write: Self-test Error Forcing mode. Other values SPNU499C – March 2018 Submit Documentation Feedback Note: It is recommended to not write any other key combinations. Invalid keys will result in switching operation to lockstep mode. CPU Compare Module for Cortex-R4F (CCM-R4F) Copyright © 2018, Texas Instruments Incorporated 369 Chapter 10 SPNU499C – March 2018 Oscillator and PLL This chapter describes the oscillator and PLL clock source paths for the device. Topic 10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 370 ........................................................................................................................... Introduction ..................................................................................................... Quick Start....................................................................................................... Oscillator ......................................................................................................... Low-Power Oscillator and Clock Detect (LPOCLKDET) ......................................... PLL ................................................................................................................. PLL Control Registers ....................................................................................... Phase-Locked Loop Theory of Operation ............................................................ Programming Example ...................................................................................... Oscillator and PLL Page 371 372 373 375 378 388 392 394 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Introduction www.ti.com 10.1 Introduction This chapter provides an overview of the oscillator and PLL clock source paths for the device. The oscillator macro will pass a signal driven into the OSCIN pin to clock source 0 that is the device default clock source on reset. When a crystal or resonator with appropriate load circuitry is connected to OSCIN and OSCOUT, the oscillator macro drives the crystal/resonator to generate the input waveform. In addition to being directly usable as clock source 0, the oscillator clock is the input to the PLL. The oscillator frequency is continuously monitored by a dedicated clock detect circuit. If the frequency falls out of a fixed range, the clock detect switches the clock from the oscillator to an internally generated, freerunning frequency (generated by the low-power oscillator (LPO)). The phase lock loop (PLL), a circuit in the microcontroller, is used to multiply the input frequency to some higher (device operation) frequency. This frequency synthesis is useful for generating higher frequencies than can be conveniently achieved with an external crystal or resonator. Additionally, the PLL allows the flexibility to be able to synthesize one of multiple frequency options from a given crystal or resonator. Frequency modulation can be superimposed on the synthesized frequency. The modulation provides a means to reduce the impact of electromagnetic radiation from the device; this reduction in measured radiation can be useful in sensitive applications. 10.1.1 Features The main features of the source clock path are: • The oscillator may drive a crystal/resonator or be driven from an external source • The clock detect provides continuous monitoring of the oscillator frequency and provides an automatic switch over to a free-running clock in case of oscillator failure. • The FM-PLL module can be operated in either modulation or non-modulation mode. • The phase-frequency detector assures lock to the fundamental reference frequency. • • • f PLL = f O S C IN NF ´ NR OD ´ R (1) – Configurable prescale divider (NR) for the input clock – Configurable multiplier (NF) – Configurable postscale dividers (OD, R) The PLL may be used with modulation enabled. – Configurable modulation frequency (NS) – Configurable modulation depth (NV) The slip control circuitry provides flexible response to a PLL failure (slip) including reset or automatic switch over to oscillator. SPNU499C – March 2018 Submit Documentation Feedback Oscillator and PLL Copyright © 2018, Texas Instruments Incorporated 371 Quick Start www.ti.com 10.2 Quick Start The purpose of this section is to provide an overview of how to configure the oscillator and PLL clock paths on power-up. More detailed descriptions are presented in later sections. Figure 10-1 shows the oscillator and PLL clock paths. Figure 10-1. Clock Path From Oscillator Through PLL To Device load capacitors osc device pin CLKDET PLL1 OSCILLATOR slip PLL2 LPO Clock source numbering can be found in the device data sheet. crystal device pin KELVIN_GND While power-on reset is asserted (low), the oscillator and low-power oscillator (LPO) are enabled and start-up by default. After power-on reset is released to a high level, the clock detect circuit (CLKDET) begins to monitor the oscillator. If the oscillator is within a valid range, the oscillator becomes the default clock for the device as it exits reset; if the oscillator is not within a valid range, the clock detect selects the high-frequency low-power oscillator as the default clock for the device. The low-power oscillator has a wide frequency range which also creates a large valid window for the clock detect; in order to refine the clock detect window, the low-power oscillator can be trimmed. The initial trim value is stored in one-time programmable section of the flash memory, address 0xF008_01B4. Bits 31:16 of this word contain a 16 bit value that may be programmed into LPOMONCTL(15:0) in order to initialize the trim for both HF LPO and LF LPO. Software should read the initial trim values from flash and write them to the control register. The PLL is disabled by default on power-up. The PLL control registers (PLLCTL1 and PLLCTL2) must be configured to set the desired output frequency. Then, the system PLL may be enabled (CSDISCLR.1). Similarly, the second PLL must be configured in PLLCTL3 and enabled (CSDISCLR.6). Each PLL has a valid bit that indicates the PLL is locked (CLKSRnV bit in the Clock Source Valid Status Register (CSVSTAT) of the System and Peripheral Control Registers). Prior to selecting the PLL clock as the source for a clock domain (for example, GCLK, HCLK, VCLKA1), the domain and modules on the domain must be configured to accept the new frequency. An example of a module that should be configured prior to selecting the PLL as clock source for GCLK and HCLK is the memory wrapper to insure that access times are maintained correctly. 372 Oscillator and PLL SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Oscillator www.ti.com 10.3 Oscillator The clock generation path through the PLL begins with the oscillator. The oscillator consists of three separate pads -- OSCIN, OSCOUT, and Kelvin_GND (see Figure 10-2). Figure 10-2. Clock Generation Path load capacitors OSCIN OSCILLATOR crystal OSCOUT KELVIN_GND The oscillator is responsible for two independent functions: 1. The oscillator is responsible for generating positive feedback in the external crystal/resonator with appropriate load and tank circuitry. At start-up, the oscillator amplifies random noise. The external circuitry acts like a band-pass and selects the crystal/resonator frequency to provide as positive feedback into the amplifier. The positive feedback increases the amplitude of the output waveform into the crystal/resonator (and the load circuitry), and the voltage waveform shows an envelope of increasing amplitude. The oscillator can drive a crystal frequency that is within the data sheet range tc(OSC). Looking at the input waveform into OSCIN, the voltage waveform is an AC-coupled, filtered version of the OSCOUT waveform. The band-pass functionality of the crystal/resonator removes distortion from the OSCOUT waveform, leaving a sinusoidal input waveform. NOTE: Vendor Validation of Resonators/Crystals The crystal is a very tight bandpass filter while a resonator is a somewhat wider bandpass. The load circuitry pulls the center frequency of the bandpass. Texas Instruments strongly encourages each customer to submit samples of the device to the resonator/crystal vendor for validation. The vendor is equipped to determine what load capacitances will best tune their resonator/crystal to the microcontroller device for optimum start-up and operation over temperature and voltage extremes. The vendor also factors in margins for variations in the microcontroller process. 2. The oscillator is also responsible for squaring-up the input waveform. This squaring-up converts the sinusoid into a square wave at the core logic levels. The input path limits the input frequency range as a low-pass filter with a cutoff frequency. The oscillator has a frequency range that is determined by the driving capability of external crystals/resonators (feedback path). If a clock is driven directly into the oscillator, then the feedback path is not relevant and the frequency range is determined solely by the forward path (which typically allows a higher frequency); the device can support inputs within the data sheet range tc(OSC_Sqr). SPNU499C – March 2018 Submit Documentation Feedback Oscillator and PLL Copyright © 2018, Texas Instruments Incorporated 373 Oscillator www.ti.com 10.3.1 Oscillator Implementation The oscillator operates at 3.3V and uses a constant current source to drive current onto the OSCOUT node. An internal transistor shunts the current (and current from the external circuitry) to GND. This current steering drives the voltage waveform on OSCOUT. Figure 10-3. Oscillator Implementation R OSCOUT OSCIN 10.3.2 Oscillator Enable The oscillator is enabled asynchronously when nPORRST is low. The oscillator is enabled by clearing bit 0 in the Clock Source Disable Register (CSDIS) or setting bit 0 in the Clock Source Disable Clear Register (CSDISCLR) of the System and Peripheral Control Registers. The bit sends a start signal to the oscillator. Bit 0 of CSDIS is cleared to 0 by default on a system or power-on reset so that the oscillator starts-up by default. After the oscillator swings at a high-enough amplitude to pass an input clock into the core domain and nPORRST is released, 1024 oscillator periods are counted before setting the CLKSR0V bit in the Clock Source Valid Status Register (CSVSTAT) of the System and Peripheral Control Registers. The oscillator generates clock source 0 in the global clock module (GCM). 10.3.3 Oscillator Disable The clock sources (for example, OSC, PLL) are disabled by setting the appropriate bit in the Clock Source Disable Register (CSDIS) or setting the appropriate bit in the Clock Source Disable Set Register (CSDISSET) of the System and Peripheral Control Registers. These bits allow the clock source to disable but do not force the behavior until the clock is no longer used as the source for a clock domain (for example, GCLK, VCLK, VCLK2, RTICLK). The CLKSR0V bit in the Clock Source Valid Status Register (CSVSTAT), of the System and Peripheral Control Registers, is cleared after clock disable is asserted (which occurs after all clock domains are stopped). The oscillator disable signal places the oscillator into a low-power state, disconnects the feedback (bias) resistor between OSCIN and OSCOUT, and OSCIN is grounded. 374 Oscillator and PLL SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Low-Power Oscillator and Clock Detect (LPOCLKDET) www.ti.com 10.4 Low-Power Oscillator and Clock Detect (LPOCLKDET) The low-power oscillator (LPO) is comprised of two oscillators -- HF LPO and LF LPO -- in a single macro. The low-power oscillator and clock detect (LPOCLKDET) uses a relaxation oscillator to generate an internal clock whose frequency is NOT tightly controlled. This frequency is used to monitor the oscillator input frequency and is also available as an independent clock source in the GCM. The LPO produces two frequencies: • High-frequency low-power oscillator (HF LPO) with a nominal frequency of 9.6MHz and a range from 5.5MHz to 19.5MHz; the HF LPO generates clock source 5 in the GCM. • Low-frequency low-power oscillator (LF LPO) with a nominal frequency of 85kHz; the LF LPO generates clock source 4 in the GCM. A single current source drives current onto a capacitor; when the voltage on the capacitor exceeds some threshold, the clock toggles. The LPO uses a single current source and the two different comparators to generate the HF LPO and LF LPO frequencies. The LPO is controlled by 4 different bit fields -CSDIS.(5:4), HFTRIM(4:0), LFTRIM(4:0), and BIASEN. • CSDIS.5 enables/disables the comparator that generates HF LPO. • CSDIS.4 enables/disables the comparator that generates LF LPO. • The HF TRIM and LF TRIM bit fields vary the current into the comparator to independently trim the HF LPO and LF LPO frequencies. • BIAS ENABLE (LPOMONCTL.24) enables/disables the current source that drives the LPO. 10.4.1 Clock Detect The LPO HF clock frequency is typically near 9.6MHz but ranges from 5.5MHz to 19.5MHz. The clock detect establishes a window for the oscillator by: OSCIN > HF LPOmin / 4 OSCIN / 4 < HF LPOmax OSCIN > 5.5[MHz] / 4 = 1.375[MHz] OSCIN < 4 × 19.5 = 78[MHz] The clock detect circuit works by checking for a rising edge on one clock (oscillator or HF LPO) between rising edges of the other clock. The result is that in addition to flagging incorrect, repeating frequencies, the circuit also fails due to transient conditions. The low end of the clock detect window ignores a transient low phase of at least 12 HF LPO cycles. NOTE: Clock Detection of Oscillator MUST be Disabled Before Disabling HF LPO The HF LPO frequency is the comparison frequency for the oscillator. The clock detection must be disabled prior to disabling the HF LPO frequency. If the clock detection is NOT disabled prior to disabling the HF LPO, the clock detect circuitry will fail the oscillator as too fast (compared to the non-existent HF LPO). The clock detect circuitry will switch to the non-existent clock, leaving the device without a valid clock. 10.4.2 Behavior on Oscillator Failure If the oscillator frequency fails, the clock detects supplies: • the HF LPO clock to GCM clock source 0 instead of the oscillator • the HF LPO clock to GCM clock source 1 instead of the PLL The HF LPO signal will be available as three different clock sources: • GCM clock source 0 (replacing the oscillator) • GCM clock source 1 (replacing the PLL) • GCM clock source 5 as HF LPO SPNU499C – March 2018 Submit Documentation Feedback Oscillator and PLL Copyright © 2018, Texas Instruments Incorporated 375 Low-Power Oscillator and Clock Detect (LPOCLKDET) www.ti.com The automatic switch-over from oscillator to HF LPO allows the application to execute at a reduced frequency and respond to a problem with the external crystal/resonator. During and after an oscillator failure, the oscillator CLKSRnV bit in the Clock Source Valid Status Register (CSVSTAT), of the System and Peripheral Control Registers, is set along with the OSCFAIL flag in the Global Status Register (GLBSTAT), of the System and Peripheral Control Registers. It is useful to explicitly change the GHVSRC register, defining the current clock source for GCLK/HCLK/VCLK domains, to the HF LPO after an oscillator failure. When reset on oscillator failure is set, PLLCTL1.23 (ROF), the device responds to an oscillator failure by generating a device reset. 10.4.3 Recovery from Oscillator Failure If the oscillator fails, the clock detect switches the HF LPO frequency onto the oscillator source into the GCM. The OSCFAIL flag in the Global Status Register (GLBSTAT), of the System and Peripheral Control Registers, is also set. The oscillator may be re-enabled (though if the failure was caused by a hard-fault, the re-enable will fail) through the following procedure: 1. Switch all clock domains from the oscillator to the HF LPO (for example, GHVSRC uses HF LPO, VCLKAn uses HF LPO or VCLK, and so on). 2. If the PLL is used, disable the PLL by setting the appropriate bit in the Clock Source Disable Set Register (CSDISSET) of the System and Peripheral Control Registers. 3. Disable the oscillator by setting the appropriate bit in the Clock Source Disable Set Register (CSDISSET). This action resets the clock detect and allows the oscillator to propagate through GCM clock source 0. 4. Re-enable the oscillator by setting the appropriate bit in the Clock Source Disable Clear Register (CSDISCLR) of the System and Peripheral Control Registers. 5. Clear the OSCFAIL flag in the Global Status Register (GLBSTAT) by writing a 1 to the bit. The PLL slip bits may also be set on an oscillator failure. These can also be cleared. 6. Switch the clock domains back to the oscillator. 7. Re-enable the PLL by setting the appropriate bit in the Clock Source Disable Clear Register (CSDISCLR). NOTE: Clock Re-Enable Procedure Will Fail If Caused by a Hard Failure Although it is possible to re-enable the oscillator after a failure, if the oscillator failure was caused by a hard fault (for example, disconnected crystal/resonator terminal), the re-enable process will fail. 10.4.4 LPOCLKDET Enable The LPO is enabled by default while nPORRST is low. During this time, the current source initializes, holding the relaxation oscillator in reset until initialized. After the current source releases the HF LPO and the LF LPO, these clock frequencies slew to their final frequencies; the final frequency may be achieved while nPORRST is active or after its release. After, nPORRST is released, the HF LPO Valid signal is set 32 HF LPO clock cycles later. The clock detect is enabled once the oscillator and HF LPO are valid. Because an oscillator failure could occur from reset, the clock detect logic must provide an override path. If the HF LPO is valid and the oscillator is not valid, the clock detect circuitry will become active (overriding the oscillator invalid signal) after 16K LF LPO cycles (about 200ms). 376 Oscillator and PLL SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Low-Power Oscillator and Clock Detect (LPOCLKDET) www.ti.com 10.4.5 LPOCLKDET Disable 10.4.5.1 Disable Clock Detect It is possible to disable the clock detect circuitry. For protection, this clock detect disable employs a 2-bit key: • RANGE DET ENA SSET (CLKTEST.24) must be set to 1 • RANGE DET CTRL (CLKTEST.25) must be cleared to 0 In this case, the LPO HF and LF clocks are still active but the clock detect circuitry is disabled. The clock detect unconditionally switches GCM_CLK_SRC(0) back to the oscillator so care should be taken to insure that the oscillator is good before disabling the clock detect circuitry. 10.4.5.2 Disable LPO HF and LF Clocks The LPO may be disabled by holding the relaxation oscillator clocks (HF and LF) in reset. The clock detect must be disabled, and any clock domains using either HF or LF clocks must be switched to a different clock source. The LPO HF clock is reset by setting CSDIS.5; CSDISSET.5 is an easy way to set specific bits without disturbing the rest of the register. The HF LPO clock disables several HF LPO cycles after CSDIS is set. Similarly, the LPO LF clock is reset by setting CSDIS.4, and in a similar way CSDISSET.4 can set the specific CSDIS register bit without using a read-modify-write construction. The LF LPO disables several LF LPO cycles after CSDIS is set. Restarting the LPO clocks from this condition is fast and is known as a warm re-start. The CSDISCLR register allows the user to clear CSDIS bits without using a read-modify-write code-construct. 10.4.5.3 Disable LPO Current Bias The LPO current source may be disabled after the clock detect is disabled and HF and LF clock sources are disabled. Turning off this current source places the LPOCLKDET into its lowest power configuration. The bias may be disabled by clearing the BIAS ENABLE bit (LPOMONCTL.24). Restarting the LPO when the bias current has been disabled requires the current source to initialize first and is, therefore slower than a warm re-start; re-enabling the LPO from this condition is known as a warm re-start (similar to what happens during nPORRST active). 10.4.6 Trimming the HF LPO Oscillator The HF LPO range varies considerably around 9.6MHz from device to device. In order to provide tighter monitoring of the crystal/resonator, it is useful to trim the oscillator. During device test, a trim value is written into the one-time programmable section of the flash memory (OTP), address 0xF008_01B4. Bits 31:16 of this OTP word contain a 16 bit value that may be programmed into LPOMONCTL(15:0) in order to initialize the trim for both HF LPO and LF LPO. When trimming the HF LPO, it is recommended to step the trim value so as not to make a large change to any TRIM setting. After the initial trim, further trimming may be done in LPOMONCTL, using the dual clock compare module (see Chapter 11) in order to determine the resultant frequency. This module allows for comparison of two clock frequencies. Once the HF LPO is determined to be in-range with the initial HFTRIM setting from the OTP, the crystal oscillator may be used as a reference against which the HF LPO and LF LPO may be further adjusted. SPNU499C – March 2018 Submit Documentation Feedback Oscillator and PLL Copyright © 2018, Texas Instruments Incorporated 377 PLL www.ti.com 10.5 PLL The following bit fields from PLLCTL1 and PLLCTL2 configure the PLL: • REFCLKDIV[5:0] • PLLMUL[15:0] • ODPLL[2:0] • PLLDIV[4:0] • SPR_AMOUNT[8:0] • SPREADINGRATE[8:0] • FMENA The PLL is responsible for synthesizing an output frequency from the input clock (from the oscillator); Figure 10-4 shows a simple block diagram of the PLL. The FM-PLL divides the reference input for a lower frequency input into the PLL (fINTCLK = fCLKIN/NR). The PLL multiplies this internal frequency by NF to get the VCO output clock frequency (fOutput CLK = fINTCLK × NF). The PLL output is subsequently divided by two prescale values (OD and R). The value of OD is an integer from 1 to 8 and R is an integer from 1 to 32. This output clock, PLL CLK, sources GCM clock source 1. Valid frequencies are shown in Table 10-1 while Table 10-2 shows how that encoding is generated from the PLL bit fields. [f(post_ODCLK) and f(GCLK) are data sheet parameters.] Table 10-1. Valid Frequency Ranges for PLL Frequency Limit fCLKIN f(OSC_Sqr) fINTCLK 1MHz - f(OSC_Sqr) fOutput 150MHz - 550MHz CLK fpost-ODCLK f(post_ODCLK) fPLL f(GCLK) CLK Figure 10-4. Operation of the FM-PLL Module CLKIN ÷NR ÷1 - ÷64 Output CLK INTCLK PLL ÷OD post-ODCLK ÷1 - ÷8 ÷R PLL CLK ÷1 - ÷32 ÷NF ÷1 - ÷256 f CLKIN 1 1 f PLLCLK = ----------------- x NF x --------- x ---OD R NR 378 Oscillator and PLL SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PLL www.ti.com Table 10-2. PLL Value Encoding PLL NR NR = REFCLKDIV [5...0] + 1 (2) Non-modulated: NF = ( P L L M U L [1 5 . . . 0 ] + 2 5 6 ) 256 (3) Modulated: NF NV NF = ( P L L M U L [1 5 ... 0 ] + M U L M O D [ 8 ... 0 ] + 2 5 6 ) 256 (4) NV = ( S P R _ A M O U N T [ 8 ... 0 ] + 1) 2048 (5) NS NS = SPRRATE [8...0] + 1 (6) OD OD = ODPLL[2...0] + 1 (7) NOTE: ODPLL change should occur prior to enabling asynchronous clock domains Since changing the ODPLL bit-field causes the PLL CLK to be gated, these changes to ODPLL should be completed before configuring a clock domain for an asynchronous clock source. Some clock domains (for example, RTICLK, VCLK2) require a frequency relationship to the VCLK. fVCLK ³ 3 ´ f RTISRC RTIDIV If the PLL is clocking VCLK and it is stopped for some cycles, then the frequency relationship is temporarily violated. Many asynchronous domains require frequency relationships between VCLK and the asynchronous domain. Therefore, if the PLL clock is the source for GCLK, HCLK, and VCLK, then the gating produces a short-term change in the PLL clock frequency (and hence also the VCLK frequency). As such, this frequency change could violate the requirements for an asynchronous clock domain. SPNU499C – March 2018 Submit Documentation Feedback Oscillator and PLL Copyright © 2018, Texas Instruments Incorporated 379 PLL www.ti.com 10.5.1 Modulation Optionally, the frequency can be modulated, that is, a controlled jitter is introduced onto the baseline frequency of the PLL. This modulation mechanism is not shown in Figure 10-4. When the PLL is used in the modulating mode, the programmable modulation block varies the PLL frequency from the baseline frequency (fbaseline = (fCLKIN/NR) × NF/(OD × R)) to fbaseline × (1 - 2 × Depth) in a period defined by 1/fs; the modulation waveform is triangular and should be enabled after lock. Modulation Period (1/fs) f0 - n% Depth Modulation Frequency (MHz) f0 f0-2n% Time (Ps) The modulation is digital and the spreading profile is triangular, down-spread which implies: • the modulation waveform is composed of a series of frequency steps. • the modulation frequency and modulation depth are both well controlled due to their digital character. • the average frequency during modulation is lower than the average frequency prior to enabling modulation. The depth of modulation, however, sets the new average frequency. • the modulation frequency must be selected slower than the loop bandwidth. From a practical perspective, NS should be near 20. The modulation fields have a simple geometric meaning: • the modulation step size is: NV ´ f O u tp u tC L K NF • • the number of steps per modulation period is 2 × NS the modulation depth is given by: NS NV ´ ´ f O u tp u tC L K 2 NF Df = D e p th [% ] = • N S N V ´ 2 N F (9) the modulation frequency is: Tmod = • (8) f OSC 2 ´ NR ´ NS (10) MULMOD minimizes frequency offset when programmed as: ( S P R _ A M O U N T [ 8 ... 0 ] + 1)( S P R R AT E [ 8 ... 0 ] + 1) 16 (11) NOTE: Modulation should be enabled after Lock Enable modulation after the lock is completed. 380 Oscillator and PLL SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PLL www.ti.com 10.5.2 PLL Output Control The outputs from the PLL are the output clock, slip signals, and VALID. • RFSLIP -- the RFSLIP signal indicates that the Output CLK is running too fast relative to INTCLK and sets a RFSLIP status flag in the Global Status Register (GLBSTAT), of the System and Peripheral Control Registers, if the slip signal is active during normal PLL operation; the RFSLIP flag is masked off while the PLL is not active and during the PLL’s lock period. • FBSLIP -- the FBSLIP signal indicates that the Output CLK is running too slow relative to INTCLK and sets a FBSLIP status flag in the Global Status Register (GLBSTAT), of the System and Peripheral Control Registers, if the slip signal is active during normal PLL operation; the FBSLIP flag is masked off while the PLL is not active and during the PLL’s lock period. • PLL Slip -- Logical-OR of the two PLL slip signals. Typically this signal is used to generate a consolidated slip signal to the device (for example, error logic or exception generation). Also used to gate VALID. NOTE: Clearing Slip Bits In order to clear any of the slip bits, it is necessary to disable the PLL first. • • VALID -- is driven based upon whether the output clock, PLL CLK, is gated or not. However, the VALID signal is dependent upon the PLL Slip signals so that VALID cannot be set if either slip signal is active. PLL Clock -- The PLL output clock runs at the programmed frequency. When enabled, it takes some time to acquire the programmed frequency (see Section 10.5.2.1). Similarly, the disable has some timing/constraints (see Section 10.5.2.2). 10.5.2.1 PLL Enable After setting the PLL control registers, the clock source is enabled by clearing the appropriate bit in the Clock Source Disable Register (CSDIS) or setting the appropriate bit in the Clock Source Disable Clear Register (CSDISCLR) of the System and Peripheral Control Registers. The bit sends a signal to the PLL that starts the process of enabling the PLL. 1. The PLL checks to make sure that the oscillator is ON. If not, it turns the oscillator ON. 2. The PLL begins a locking process in which the PLL slews from a starting frequency point to the programmed frequency. During this lock period, the PLL slip signals are typically active, and the PLL masks off the signals during this phase. The lock phase takes the following length of time: Parameter Lock Enable clocks after lock Value TLock = (512 × TOSCIN) + (1024 × NR × TOSCIN) TEnable = 6 × TOSCIN 3. After the lock phase is complete (when lock counters expire), the PLL releases the slip signals to the system. 4. Then, after the slip signals are released and a delay to enable the clocks, the clock is released to the system and the appropriate CLKSRnV bit for the PLL is set in the Clock Source Valid Status Register (CSVSTAT) of the System and Peripheral Control Registers. SPNU499C – March 2018 Submit Documentation Feedback Oscillator and PLL Copyright © 2018, Texas Instruments Incorporated 381 PLL www.ti.com 10.5.2.2 PLL Disable The clock sources (for example, OSC, PLL) are disabled by setting the appropriate bit in the Clock Source Disable Register (CSDIS) or setting the appropriate bit in the Clock Source Disable Set Register (CSDISSET) of the System and Peripheral Control Registers. These bits allow the clock to disable but do not force the behavior until the clock is no longer used as the source for a clock domain (for example, GCLK, VCLK, VCLK2, RTICLK). The PLL receives a signal to disable after the clock is no longer used by any clock domain. Within the PLL, the clock is disabled and the appropriate CLKSRnV bit for the PLL in the Clock Source Valid Status Register (CSVSTAT), of the System and Peripheral Control Registers, becomes inactive. Then the PLL is placed into a low-power state after the following length of time: TEnable = 150 × TOSCIN 10.5.2.3 OD-divider Change The PLL gates the clock if the ODPLL bit-field is changed while the PLL is active. The output clock from the PLL is gated for 3 or 12 OSCIN clock cycles. As the post-ODCLK is gated in the low phase, the output clock to the device -- PLL CLK -- may be gated in a high or low phase though the transition is always glitchless: TODPLL = 3 × TOSCIN NOTE: ODPLL change should occur prior to enabling asynchronous clock domains Since changing the ODPLL bit-field causes the PLL CLK to be gated, these changes to ODPLL should be completed before configuring a clock domain for an asynchronous clock source. Some clock domains (for example, RTICLK, VCLK2) require a frequency relationship to the VCLK. fVCLK ³ 3 ´ f RTISRC RTIDIV If the PLL is clocking VCLK and it is stopped for some cycles, then the frequency relationship is temporarily violated. Many asynchronous domains require frequency relationships between VCLK and the asynchronous domain. Therefore, if the PLL clock is the source for GCLK, HCLK, and VCLK, then the gating produces a short-term change in the PLL clock frequency (and hence also the VCLK frequency). As such, this frequency change could violate the requirements for an asynchronous clock domain. 10.5.2.4 Changing the PLL Operating Point While the PLL is Active Once the valid bit (CLKSRnV bit in the Clock Source Valid Status Register (CSVSTAT) of the System and Peripheral Control Registers) is set, software may change values to the PLL. If the change of values results in a small percentage change to the VCO frequency (∆fOutputCLK < 0.1 × fOutputCLK), then these changes can be done on-the-fly. In this mode, the values are updated into the PLL synchronously, and the PLL re-locks to the new value without gating the clocks or the slip bits. If the operating point change is too large, then the slip bits will be set. Conversely, if the changes to the VCO frequency are large, then the PLL should be disabled prior to changing the values. Typically, any change to the REFCLKDIV field or large changes to the PLLMUL field in the PLL Control Register 1 (PLLCTL1) of the System and Peripheral Control Registers requires a complete disable-and-relock strategy. 382 Oscillator and PLL SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PLL www.ti.com 10.5.2.5 Summary of PLL Timings In addition to controlling the lock period and disabling the clock during an ODPLL change, the PLL also generates reset delays. When power-on reset is released (nPORRST 0 --> 1), that release is delayed by 1024 OSCIN cycles so that it is released at the same time that the oscillator valid is asserted. The system reset release is delayed by an additional 8 oscillator clock cycles. Table 10-3. Summary of PLL Timings Parameter nPORRST delay nRST delay OSC valid Lock Value TnPORRST = 1024 × TOSCIN TnRST = 1032 × TOSCIN TOSCVALID = 1024 × TOSCIN TLock = (512 × TOSCIN) + (1024 × NR × TOSCIN) Enable clocks after lock TEnable = 6 × TOSCIN Disable clocks after lock TEnable = 150 × TOSCIN Change ODPLL TODPLL = 3 × TOSCIN SPNU499C – March 2018 Submit Documentation Feedback Oscillator and PLL Copyright © 2018, Texas Instruments Incorporated 383 PLL www.ti.com 10.5.3 Behavior on PLL Fail The PLL allows flexible response to a PLL failure (slip). Like the oscillator, the PLL clock is configured by default to automatically switch-over to the oscillator in case of a PLL slip. (In this case, the oscillator sources GCM clock source 1 as well as GCM clock source 0. Also, if the oscillator fails, LPO HF is sourced to both GCM clock sources 0 and 1.) The PLL slip outputs indicate that the PLL is running either too fast or too slow. These error output toggle when the PLL is locking and when the PLL is disabling. The PLL blocks these slip outputs during these times, leaving them active only while the PLL is active. A slip after the PLL has locked and while it is active is an indication of a PLL failure. The PLL provides slip-filtering which enhances the flexibility of the PLL’s response to failure. The slip-filtering circuit samples the slip based on HF LPO. The filter defines the number of consecutive HF LPO cycles for which the slip signal must be active before the slip is recognized. This slip is latched in the RFSLIP and FBSLIP status flags in the Global Status Register (GLBSTAT) of the System and Peripheral Control Registers. The PLL may enable/disable the automatic switch over as well as the error signaling; if the error signaling is enabled, a PLL slip may be configured to generate a reset. The automatic switch-over and suppression of the error signals are controlled by the bypass on slip bit field -- BPOS[1:0] (PLLCTL1.(30:29)). When BPOS[1:0] is disabled (BPOS[1:0] = 10b): • automatic response to the PLL slip is prevented • ESM/exception is NOT generated • reset on slip is not generated regardless of the state of the ROS bit • status bits are set on a PLL slip independent of BPOS[1:0] When BPOS[1:0] is enabled (BPOS[1:0] = 00b OR 01b OR 11b): • PLL slip causes the clock source into GCM clock source 1 to shift from the PLL to the oscillator • ESM/exception is generated • reset on slip is generated if ROS is set The effect of BPOS[1:0] on the system is shown in Figure 10-5. Figure 10-5. PLL Slip Detection and Reset/Bypass Block Diagram PLL Bypass CLK Input from Oscillator CLK signal to Clock Control Module PLL CLK FMzPLL Bypass on Slip BPOS Slip Detector BPOS 384 ROS Reset on Slip Oscillator and PLL To Device Reset SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PLL www.ti.com 10.5.4 Recovery from a PLL Failure If PLL1 fails, the PLL’s slip causes the valid flag to be locked and causes the clock source into GCM clock source 1 to shift from the PLL to the oscillator. The RFSLIP or FBSLIP status flags in the Global Status Register (GLBSTAT) of the System and Peripheral Control Registers are also set. PLL1 may be reenabled (though if the failure was caused by a hard-fault, the re-enable will fail) through the following procedure: 1. Switch all clock domains from PLL1 to the oscillator (for example, GHVSRC uses oscillator, VCLKAn uses oscillator or VCLK, and so on). 2. Disable PLL1 with CSDISSET. This action disables the PLL and causes the slip signal to no longer be driven. Valid is not released until the slip is cleared. 3. Clear the RFSLIP or FBSLIP status flags in the Global Status Register (GLBSTAT) of the System and Peripheral Control Registers by writing a 1 to the bit. After this step, the valid flag is unlocked and cleared if it was previously set. 4. Re-enable PLL1 with CSDISCLR. 5. Switch the clock domains back to PLL1. If PLL2 fails, the PLL’s slip causes the valid flag to be locked. There is no autonomous change of clock source for PLL2. Neither the RFSLIP or FBSLIP status flags in the Global Status Register (GLBSTAT) of the System and Peripheral Control Registers are set. PLL2 may be re-enabled in a similar procedure to re-enabling PLL1 (though if the failure was caused by a hard-fault, the re-enable will fail): 1. Switch all clock domains from PLL2 to the oscillator (for example, GHVSRC uses oscillator, VCLKAn uses oscillator or VCLK, and so on). 2. Disable PLL2 with CSDISSET. This action disables the PLL and causes the slip signal to no longer be driven. Valid is not released until the slip is cleared. 3. Reset PLL2 Valid by writing a 1 to both RFSLIP and FBSLIP status flags in the Global Status Register (GLBSTAT) of the System and Peripheral Control Registers (even though they are not set by the slip). After this step, the valid flag is unlocked and cleared if it was previously set. 4. Re-enable PLL2 with CSDISCLR. 5. Switch the clock domains back to PLL2. SPNU499C – March 2018 Submit Documentation Feedback Oscillator and PLL Copyright © 2018, Texas Instruments Incorporated 385 PLL www.ti.com 10.5.5 PLL Modulation Depth Measurement The PLL contains a circuit for estimating the depth of the modulation. The circuit counts clock edges over a fixed window of the modulation waveform (SSW_CAPTURE_COUNT in SSWPLL2) and clock edges over the entire waveform (SSW_CLKOUT_COUNT in SSWPLL3). The capture ends after a predetermined number of clock edges in SSW_CLKOUT_COUNTER as set in TAP_COUNTER_DIS. There are 2 × NR windows per modulation waveform. The procedure for estimating the modulation depth is: 1. While GCLK is sourced by the oscillator and the PLL is enabled with modulation, configure SSWPLL1 as follows: a. CAPTURE_WINDOW_INDEX is set equal to NR. b. COUNTER_RESET is set. c. TAP_COUNTER_DIS is set to disable the measurement after SSW_CLKOUT_COUNT captures this number of clocks. The measurement is disabled after the set tap is set AND the modulation cycle ends. d. Ensure that EXT_COUNTER_EN is cleared. 2. Ensure that both SSW_CAPTURE_COUNT and SSW_CLKOUT_COUNT are cleared (by the COUNTER_RESET). 3. Set COUNTER_EN and clear COUNTER_RESET. This step releases the reset and enables the counter to begin counting. 4. After a wait loop, poll for COUNTER_READ_READY to set. After the bit is set, read SSW_CAPTURE_COUNT and SSW_CLKOUT_COUNT. 5. Compute the modulation depth as: æ 2 ´ NR ´ SSW _ CAPTURE _ COUNT ö ÷÷ Depth = absçç1 SSW _ CLKOUT _ COUNT ø è 386 Oscillator and PLL (12) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PLL www.ti.com 10.5.6 PLL Frequency Measurement Circuit The same circuit that is used to measure modulation depth is also available to measure the average frequency of the PLL. In this mode, the PLL output (before the R-divider) is captured in SSW_CLKOUT_COUNT while the oscillator is captured in SSW_CAPTURE_COUNT. The procedure for using the PLL frequency measurement circuit is: 1. While the PLL is enabled, set EXT_COUNTER_EN. 2. Set COUNTER_EN. This bit clears both SSW_CAPTURE_COUNT and SSW_CLKOUT_COUNT and then immediately enables for counting. 3. Wait for some software delay loop. 4. Clear COUNTER_EN. Wait for COUNTER_READ_READY to set. Read both SSW_CAPTURE_COUNT and SSW_CLKOUT_COUNT and compute the ratio of PLL multiplication as: NF SSW _ C LK O U T _ C O U N T = NR ´ OD SSW _ C APTU RE _ C O U N T (13) 5. Note that CAPTURE_WINDOW_INDEX, COUNTER_RESET, TAP_COUNTER_DIS are not used in this procedure. 10.5.7 PLL2 PLL2 drives GCM clock source 6. The PLL is identical to PLL1, except modulation is disabled on this instance of the PLL. Also, the PLL typically does not clock the system, there is no automatic switch over feature. Any PLL error can be handled by the CPU. PLL2 is programmed through PLLCTL3. SPNU499C – March 2018 Submit Documentation Feedback Oscillator and PLL Copyright © 2018, Texas Instruments Incorporated 387 PLL Control Registers www.ti.com 10.6 PLL Control Registers The clock module has two registers (PLLCTL1 and PLLCTL2) located within the System and Peripheral Control Registers, plus it has four bits located in other System and Peripheral Control Registers. The FM-PLL is off at power-on. The clock source is enabled by clearing the appropriate bit in the Clock Source Disable Register (CSDIS) or setting the appropriate bit in the Clock Source Disable Clear Register (CSDISCLR) of the System and Peripheral Control Registers. [CSDISCLR and Clock Source Disable Set Register (CSDISSET) also enable/disable the PLL and oscillator (and other clock sources).] The LPOCLKDET module generates the OSCFAIL flag in the Global Status Register (GLBSTAT), of the System and Peripheral Control Registers, if a problem with the reference oscillator is detected. The slip signals are also registered in the RFSLIP and FBSLIP status flags in the Global Status Register (GLBSTAT), of the System and Peripheral Control Registers, in order to indicate the source of a clock failure. The appropriate CLKSRnV bit for the PLL is set in the Clock Source Valid Status Register (CSVSTAT) of the System and Peripheral Control Registers. The following sections describe the PLL registers used in the system module. These registers support 8, 16, and 32-bit write accesses. The reset values for these registers are configured so that an input frequency in the range from 5MHz to 20MHz generates a valid clock. Table 10-4. PLL Module Registers Offset Acronym Register Description Section FFFF FF30h CSDIS Clock Source Disable Register Section 2.5.1.10 FFFF FF34h CSDISSET Clock Source Disable Set Register Section 2.5.1.11 FFFF FF38h CSDISCLR Clock Source Disable Clear Register Section 2.5.1.12 FFFF FF54h CSVSTAT Clock Source Valid Status Register Section 2.5.1.19 FFFF FF70h PLLCTL1 PLL Control 1 Register Section 2.5.1.25 FFFF FF74h PLLCTL2 PLL Control 2 Register Section 2.5.1.26 FFFF E100h PLLCTL3 PLL Control 3 Register Section 2.5.2.1 FFFF FFA0h GPREG1 General Purpose Register Section 2.5.1.34 FFFF FFECh GLBSTAT Global Status Register Section 2.5.1.50 FFFF E170h CLKSLIP PLL Clock Slip Control Register Section 2.5.2.5 FFFF FF24h SSWPLL1 PLL Modulation Depth Measurement Control Register Section 10.6.1 FFFF FF28h SSWPLL2 SSW PLL BIST Control Register 2 Section 10.6.2 FFFF FF2Ch SSWPLL3 SSW PLL BIST Control Register 3 Section 10.6.3 Table 10-5. LPOCLKDET Module Registers Offset 388 Acronym Register Description FFFF FF88h LPOMONCTL LPO/Clock Monitor Control Register Section 2.5.1.30 FFFF FF8Ch CLKTEST Clock Test Register Section 2.5.1.31 Oscillator and PLL Section SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PLL Control Registers www.ti.com 10.6.1 PLL Modulation Depth Measurement Control Register (SSWPLL1) Figure 10-6 illustrates this register and Table 10-6 provides the bit descriptions. This register applies to PLL1, but does not apply to PLL2. Figure 10-6. SSW PLL BIST Control Register 1 (SSWPLL1) [offset = FF24h] 31 16 Reserved R-0 15 8 CAPTURE_WINDOW_INDEX R/W-0 7 6 5 4 Reserved COUNTER_READ_ READY COUNTER_ RESET COUNTER_EN 3 TAP_COUNTER_DIS 1 EXT_COUNTER_ EN 0 R-0 R-0 R/W-1 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 10-6. SSW PLL BIST Control Register 1 (SSWPLL1) Field Descriptions Bit Field 31-16 Reserved 15-8 CAPTURE_WINDOW_INDEX 7 Reserved 6 COUNTER_READ_READY 5 4 Value 0 0-FFh 0 Description Read returns 0. Writes have no effect. The capture counter present in the PLL wrapper will count the PLL clock edges when the current modulation phase capture window value is equal to these bits. Should be set equal to NR. Read returns 0. Writes have no effect. Counter read ready. Indicates that SSW_CAPTURE_COUNT (SSWPLL2) and SSW_CLKOUT_COUNT (SSWPLL3) can be read. 0 Counter registers in SSWPLL2 and SSWPLL3 are not ready to read. 1 Counter registers in SSWPLL2 and SSWPLL3 are ready to read. COUNTER_RESET Counter reset. If EXT_COUNTER_EN = 0, COUNTER_RESET resets SSW_CAPTURE_COUNT (SSWPLL2) and SSW_CLKOUT_COUNT (SSWPLL3). If EXT_COUNTER_EN = 1, this bit is ignored. 0 No impact to counters 1 If the EXT_COUNTER_EN bit is 0, then counters SSW_CAPTURE_COUNT and SSW_CLKOUT_COUNT will be held in the reset state. If EXT_COUNTER_EN bit is 1, then this bit will be ignored by the PLL wrapper. COUNTER_EN Counter enable. If EXT_COUNTER_EN = 0, COUNTER_EN initializes the modulation depth measurement. (In this mode, the disable is set to occur automatically.) If EXT_COUNTER_EN = 1, the counters are enabled/disabled with COUNTER_EN. 0 If EXT_COUNTER_EN = 0, COUNTER_EN = 0 indicates that the counters are inactive. If EXT_COUNTER_EN = 1, COUNTER_EN = 0 disables the counters. 1 If EXT_COUNTER_EN = 0, COUNTER_EN = 1 indicates that the counters are still active. If EXT_COUNTER_EN = 1, COUNTER_EN = 1 enables the counters. SPNU499C – March 2018 Submit Documentation Feedback Oscillator and PLL Copyright © 2018, Texas Instruments Incorporated 389 PLL Control Registers www.ti.com Table 10-6. SSW PLL BIST Control Register 1 (SSWPLL1) Field Descriptions (continued) Bit Field 3-1 TAP_COUNTER_DIS 0 Value EXT_COUNTER_EN Description The value in this register is used to program a particular bit in CLKOUT counter. When that particular bit in CLKOUT counter becomes 1, then both the CLKOUT counter and the CAPTURE counter will stop counting when EXT_COUNTER_EN = 0. When EXT_COUNTER_EN = 1, this bit field is not used. 0 Bit 16 of CLKOUT counter is selected. When this bit is set and the modulation period finishes, the counters are disabled and READ_READY_FLAG is set. 1h Bit 18 of CLKOUT counter is selected. 2h Bit 20 of CLKOUT counter is selected. 3h Bit 22 of CLKOUT counter is selected. 4h Bit 24 of CLKOUT counter is selected. 5h Bit 26 of CLKOUT counter is selected. 6h Bit 28 of CLKOUT counter is selected. 7h Bit 30 of CLKOUT counter is selected. 0 Modulation Depth Measurement mode 1 Frequency Measurement mode 10.6.2 SSW PLL BIST Control Register 2 (SSWPLL2) This is an observation register used to log counter value for the capture counter inside the PLL wrapper. This register applies to PLL1, but does not apply to PLL2. The SSWPLL2 register is shown in Figure 10-7 and described in Table 10-7. Figure 10-7. SSW PLL BIST Control Register 2 (SSWPLL2) [offset = FF28h] 31 16 SSW_CAPTURE_COUNT R-0 15 0 SSW_CAPTURE_COUNT R-0 LEGEND: R = Read only; -n = value after reset Table 10-7. SSW PLL BIST Control Register 2 (SSWPLL2) Field Descriptions Bit 31-0 390 Field SSW_CAPTURE_COUNT Value Description 0-FFFF FFFFh Capture count. This register returns the value of the capture count. When EXT_COUNTER_EN = 0, this counter increments within a fixed modulation window. When EXT_COUNTER_EN = 1, this counter increments based upon the oscillator. Oscillator and PLL SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated PLL Control Registers www.ti.com 10.6.3 SSW PLL BIST Control Register 3 (SSWPLL3) This is observation register used to log counter value for CLKOUT counter inside PLL wrapper. This register applies to PLL1, but does not apply to PLL2. The SSWPLL3 register is shown in Figure 10-8 and described in Table 10-8. Figure 10-8. SSW PLL BIST Control Register 3 (SSWPLL3) [offset = FF2Ch] 31 16 SSW_CLKOUT_COUNT R-0 15 0 SSW_CLKOUT_COUNT R-0 LEGEND: R = Read only; -n = value after reset Table 10-8. SSW PLL BIST Control Register 3 (SSWPLL3) Field Descriptions Bit 31-0 Field SSW_CAPTURE_COUNT Value Description 0-FFFF FFFFh Value of CLKout count register. This counter increments based upon the PLL output (prior to the R-divider). SPNU499C – March 2018 Submit Documentation Feedback Oscillator and PLL Copyright © 2018, Texas Instruments Incorporated 391 Phase-Locked Loop Theory of Operation www.ti.com 10.7 Phase-Locked Loop Theory of Operation The PLL block consists of six logical sub-blocks: • Phase-Frequency Detector (PFD) • Charge Pump (CP) • Loop Filter (LF) • Voltage-Controlled Oscillator (VCO) • Frequency Modulation • Slip Detector Figure 10-9 illustrates the sub-blocks in a basic PLL circuit. The VCO adjusts its frequency until the two signals into the PFD have the same phase and frequency. The feedback path (from VCO to PFD) divides the frequency of the feedback signal by 2 × NF; this feedback divider requires the VCO to generate a frequency 2 × NF times greater than the internal frequency (OSCIN/NR). In the forward path (from VCO to PLL CLK), the /2 block creates a clean duty cycle. Figure 10-9. Basic PLL Circuit Output CLK INTCLK CLKIN ÷NR PFD CP LF ÷2 ÷NF VCO post-ODCLK ÷OD ÷2 ÷R PLL CLK Feedback CLK 10.7.1 Phase-Frequency Detector The phase-frequency detector (PFD) compares the input reference phase/frequency to the phase/frequency of the feedback divider and generates two signals: an up pulse and a down pulse that drive a charge pump. The resulting charge, when integrated by the circuit at the LF pin, provides a VCO control voltage, as shown in Figure 10-10. Figure 10-10. PFD Timing Input reference Feedback divider output Leading phase Lagging phase Up Down VCO control Interpulse slope caused by filter time constant and leakage voltage 392 Oscillator and PLL SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Phase-Locked Loop Theory of Operation www.ti.com The width of the up pulse and the down pulse depends on the difference in phase between the two inputs. For example, when the reference input leads the feedback input by 10 ns, then an up pulse of approximately 10 ns is generated (see Figure 10-10). On the other hand, when the reference input lags the feedback input by 10 ns, then a down pulse of approximately 10 ns is generated. When the two inputs are exactly in phase, the up pulse and down pulse become essentially zero-width. These pulses are fed to the charge pump block, which meters charge into the low-pass loop filter. The advantage of a phase-frequency detector over a phase-only detector is that it cannot lock to a harmonic or subharmonic of the reference. This important property also ensures that the output frequency of the VCO is always exactly 2 × NF times the reference frequency. The reference feedback frequency is based upon the VCO frequency and the feedback divider. Fractional multiplication is achieved by changing the feedback divider real-time in order to create the fractional multiplication. As an example, if a multiplier of 100.5 is selected, the feedback divider divides by 100 and 101 in equal proportions; in this case, the PLLMUL bit field would be programmed as 99.5 (0x6380). This fractional multiplication is useful when trying to achieve final frequencies that are non-integer to the input frequency (for example, a final frequency that is a prime number). The fractional portion of the divider should be small compared to the multiplier and so it is recommended that the fractional portion relate to parts in 16, implying that the last 4 bits should always be 0. 10.7.2 Charge Pump and Loop Filter The charge pump (CP) add or remove charge from the loop filter based on the pulses coming from the phase-frequency detector (PFD). Two components of the filter output signal are summed together: an integral component and a proportional component. The integral component maintains a DC level going to the VCO to set its frequency, and the proportional component makes the VCO track changes in phase to minimize jitter. The capacitors and resistors required for the filter are integrated in silicon. 10.7.3 Voltage-Controlled Oscillator The output frequency of the VCO is proportional to its input control voltage, which is generated by the charge pump via the integrated loop filter. If the VCO oscillates too slowly, the feedback phase begins to lag the reference phase at the PFD, which increases the control voltage at the VCO. Conversely, if the VCO oscillates too fast, the feedback phase begins to lead the reference phase at the PFD, which decreases the control voltage at the VCO. These two actions keep the VCO running at the correct frequency multiple of the reference. Figure 10-11. PLL Modulation Block Diagram CLKIN ÷NR post-ODCLK Output CLK INTCLK PFD CP LF VCO ÷2 ÷OD ÷R PLL CLK Feedback CLK NF NV NS Divider ÷2 SPNU499C – March 2018 Submit Documentation Feedback Oscillator and PLL Copyright © 2018, Texas Instruments Incorporated 393 Phase-Locked Loop Theory of Operation www.ti.com 10.7.4 Frequency Modulation The output clock of the PLL changes frequency in a controlled way, centered around the unmodulated output frequency. The modulation block directly modulates the VCO frequency at the loop filter, and creates the triangular frequency modulation (see Figure 10-12). Figure 10-12. Frequency vs. Time Modulation Period (1/fs) Depth f0 Modulation Frequency (MHz) f0+n% f0-n% Time (Ps) 10.8 Programming Example This section provides an example of how to program the PLL. For non-modulation settings, the PLLCTL1 and PLLCTL2 settings from 130nm process devices can be used without modification. Suppose that, using a 20MHz crystal, the application requires: • 180MHz GCLK (and HCLK) frequency • 100 kHz spreading frequency • 0.5% spreading depth 1. Choose an NR and NS such that: • • • • • f CLKIN ³ 40 NR ´ f s (14) f CLKIN 2 ´ NR ´ NS f 2 ´ NS = CLKIN ³ 40 NR ´ f s fs º (15) (16) (NR,NS) = {(5,20), (4,25), (2,50), (1,100)} Either NR = 5 and NS = 20 or NR = 4 and NS = 25 are reasonable. Another choice (NR = 3 and NS = 33) is possible, if the modulation frequency can vary from 100KHz. 2. Choose Output CLK frequency as integer divider of output frequency near to 330MHz. Output CLK frequency shall not exceed 550MHz or fall below 150MHz. The integer values for 180MHz are 360MHz or 540MHz. 360MHz is close to the target frequency of 330MHz and we use this frequency. 3. In this case, either of the following equations are suitable choices for getting to 360MHz. Choose NR = 5, NS = 20 and set NF = 90 or choose NR = 4, NS = 25 and set NF = 72. f CLKIN 20[ MHz ] f 20[ MHz ] = = 5[ MHz ] or CLKIN = = 4[ MHz ] NR 5 4 NR 394 Oscillator and PLL (17) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Programming Example www.ti.com 4. Select the output divider OD so that the post-ODCLK frequency does not exceed the maximum frequency of output divider R (device specific frequency). In this case, choose OD = 2 and R = 1. 5. Compute the divider value NV: D ep th = 0 .5 NV NS N V 20 = ´ = ´ 100 NF 2 90 2 (18) NV = 0.045 6. If it is important to maintain the same average frequency in modulation as in non-modulation, either NF should be modified OR program the MULMOD bit field. The modulation fields create a multiplier offset equal to: DNF = NV ´ NS 2 (19) If using MULMOD[8:0], then: MULMOD [8 ...0 ] NV ´ NS 0 .045 ´ 20 = = 256 2 2 0 . 045 ´ 20 M U LM O D [8 ... 0 ] = ´ 256 = 115 . 2 2 D NF = (20) (21) MULMOD will be set to 115. 7. Convert the PLL parameters into bit field values: • NR = 5, implies that REFCLKDIV[5:0] = 4 • NS = 20, implies that SPRATE[8:0] = 19 = 0x13 • NF = 90, implies that PLLMUL[15:0] = 0x5900 • OD = 2, implies that ODPLL[2:0] = 1 • R = 1, implies that PLLDIV[4:0] = 0 • NV = 0.045, implies that SPR_AMOUNT[8:0] = 91 = 0x5B • MULMOD[8:0] = 115 = 0x73 8. Setting only these fields (that is, not BPOS, ROF, or ROS) yields: PLLCTL1 = 0x00045900 PLLCTL2 = 0x04C7325B When FM ENA is turned on, PLLCTL2 = 0x84C7325B The Output CLK is centered in the range from 150MHz to 550MHz at 360MHz. NF = 90 falls within the multiplier range from 1 to 256. OD is selected so that post-ODCLK meets the device specification. SPNU499C – March 2018 Submit Documentation Feedback Oscillator and PLL Copyright © 2018, Texas Instruments Incorporated 395 Chapter 11 SPNU499C – March 2018 Dual-Clock Comparator (DCC) Module This chapter describes the dual-clock comparator (DCC) module. Topic 11.1 11.2 11.3 11.4 396 ........................................................................................................................... Introduction ..................................................................................................... Module Operation ............................................................................................. Clock Source Selection for Counter0 and Counter1 .............................................. DCC Control Registers ...................................................................................... Dual-Clock Comparator (DCC) Module Page 397 398 402 403 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Introduction www.ti.com 11.1 Introduction The primary purpose of a DCC module is to measure the frequency of a clock signal using a second known clock signal as a reference. This capability can be used to ensure the correct frequency range for several different device clock sources, thereby enhancing the system safety metrics. 11.1.1 Main Features The main features of each of the DCC modules are: • Allows application to ensure that a fixed ratio is maintained between frequencies of two clock signals • Supports the definition of a programmable tolerance window in terms of number of reference clock cycles • Supports continuous monitoring without requiring application intervention • Also supports a single-sequence mode for spot measurements • Allows selection of clock source for each of the counters resulting in several specific use cases 11.1.2 Block Diagram Figure 11-1 illustrates the main concept of the DCC module. Figure 11-1. DCC Operation Preload Count 0 Reload Preload Valid 0 0 0 Reload Clock 0 Down Counter 0 = Valid 0 Down Counter = Error (to ESM) Compare and Control Logic Done (to VIM) Preload Count 1 Reload Reload Clock 1 Down Counter 1 Single Sequence Mode SPNU499C – March 2018 Submit Documentation Feedback Dual-Clock Comparator (DCC) Module Copyright © 2018, Texas Instruments Incorporated 397 Module Operation www.ti.com 11.2 Module Operation As shown in Figure 11-1, the DCC contains two counters – counter0 and counter1, which are driven by two signals – clock0 and clock1. The application programs the seed values for both these counters. The application also configures the tolerance window time by configuring the valid counter for clock0. Counter0 and counter1 both start counting simultaneously once the DCC is enabled. When counter0 counts down to zero, this automatically triggers the count down of the tolerance window counter (valid0). The DCC module can be used in two different operating modes: 11.2.1 Continuous Monitoring Mode In this mode, the DCC is used by the application to ensure that two clock signals maintain the correct frequency ratio. Suppose the application wants to ensure that the PLL output signal (clock source # 1) always maintains a fixed frequency relationship with the main oscillator (clock source # 0). • In this case, the application can use the main oscillator as the clock0 signal (for counter0 and valid0) and the PLL output as the clock1 (for counter1). • The seed values of counter0, valid0 and counter1 are selected such that if the actual frequencies of clock0 and clock1 are equal to their expected frequencies, then the counter1 will reach zero either at the same time as counter0 or during the count down of the valid0 counter. • If the counter1 reaches zero during the count down of the valid0 counter, then all the counters (counter0, valid0, counter1) are reloaded with their initial seed values once valid0 has also counted down to zero. • This sequence of counting down and checking then continues as long as there is no error, or until the DCC module is disabled. • The counters also all get reloaded if the application resets and restarts the DCC module. Error Conditions: An error condition is generated by any one of the following: 1. Counter1 counts down to 0 before Counter0 reaches 0. This means that clock1 is faster than expected, or clock0 is slower than expected. It includes the case when clock0 is stuck at 1 or 0. 2. Counter1 does not reach 0 even when Counter0 and Valid0 have both reached 0. This means that clock1 is slower than expected. It includes the case when clock1 is stuck at 1 or 0. Any error freezes the counters from counting. An application may then read out the counter values to help determine what caused the error. 11.2.1.1 Error Conditions While operating in continuous mode, the counters get reloaded with the seed values and continue counting down under the following conditions: • The module is reset or restarted by the application, OR • Counter0, Valid 0 and Counter1 all reach 0 without any error 398 Dual-Clock Comparator (DCC) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Figure 11-2. Counter Relationship (no error) Error Count0 Count0 Valid0 Valid0 Count1 Count1 Clock0 0 Clock1 0 time reload Clock1 must expire in this window, otherwise signal an error reload Figure 11-3. Clock1 Slower Than Clock0 - Results in an Error and Stops Counting Error Count0 Clock0 Valid0 0 Count1 Clock1 0 time reload Counter1 does not reach 0 before VALID0 reaches 0 SPNU499C – March 2018 Submit Documentation Feedback Dual-Clock Comparator (DCC) Module Copyright © 2018, Texas Instruments Incorporated 399 Module Operation www.ti.com Figure 11-4. Clock1 Faster Than Clock0 - Results in an Error and Stops Counting Error Count0 Clock0 Valid0 0 Count1 Clock1 0 time reload Counter1 reaches 0 before Counter0 reaches 0 Figure 11-5. Clock1 Not Present - Results in an Error and Stops Counting Error Count0 Clock0 Valid0 0 Count1 Count1 does not count down due to an inactive clock 1 Clock1 0 time reload An error signal is generated since Count1 does not reach 0 in the Valid0 window. 400 Dual-Clock Comparator (DCC) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Figure 11-6. Clock0 Not Present - Results in an Error and Stops Counting Error Count0 Count0 and Valid 0 do not count down due to an inactive clock 0 Clock0 Valid0 Count1 Clock1 reload time Counter1 reaches 0 at the right time, but since Clock0 is not running, Valid0 hasn’t started, thus an error is generated. 11.2.2 Single-Shot Measurement Mode The DCC module can be programmed to count down one time by enabling the single-shot mode. In this mode, the DCC stops operating when the down counter0 and the valid counter0 reach 0. Alternatively, the DCC can be programmed to stop counting when the down counter1 reaches 0. At the end of one sequence of counting down in this single-shot mode, the DCC gets disabled automatically, which prevents further counting. This mode is typically used for spot measurements of the frequency of a signal. This frequency could be an unknown for the application before the measurement. Example Usage of Single-Shot Measurement Mode: Trimming the High-Frequency Low-Power Oscillator A practical example of the usage of the spot measurement mode is in trimming the HF LPO (clock source # 5) using the main oscillator as a reference. This measurement sequence would proceed as follows: • The application sets up the seed values for counter0 and valid0 for the duration of the measurement. Suppose the main oscillator frequency is 10MHz and the intended duration of the measurement is 500µs. The application needs to configure a seed value of 5000. • These 5000 counts need to be divided between the counter0 and the valid0 counters. The minimum value for the valid0 seed is 4, so the application can configure counter0 seed value as 4996 and the valid0 seed value as 4. • Suppose the HF LPO frequency is truly unknown. In this case the application can choose the maximum allowed seed value for counter1. This increases the probability of counter0 and valid0 counting down while the counter1 has still not fully counted down to zero. The maximum allowed seed value for counter1 is 1048575. • Once the DCC is enabled, the counters counter0 and counter1 both start counting down from their seed values. • When counter0 reaches zero, it automatically triggers the valid0 counter. • When valid0 reaches zero, if counter1 is not zero as well, an ERROR status flag is set and a "DCC error" is sent to the ESM. Counter1 is also frozen so that it stops counting down any further. The application can enable an interrupt to be generated from the ESM whenever this DCC error is indicated. Refer the device datasheet to identify the ESM group and channel where the DCC error is connected. SPNU499C – March 2018 Submit Documentation Feedback Dual-Clock Comparator (DCC) Module Copyright © 2018, Texas Instruments Incorporated 401 Clock Source Selection for Counter0 and Counter1 • • www.ti.com The DCC error interrupt service routine can then check the value of counter1 when the error was generated. Suppose that the counter1 now reads 1044575. This means that counter1 has counted 1048575 - 1044575, or 4000 cycles within the 500µs measurement period. This means that the average frequency of the HF LPO over this 500µs period was 4000 cycles / 500µs, or 8MHz. The application then needs to clear the ERROR status flag and restart the DCC module so that it is ready for the next spot measurement. If there is no error generated at the end of the sequence, then the DONE status flag is set and a DONE interrupt is generated. The application must clear the DONE flag before restarting the DCC. The conditions that cause a DCC error are identical between the continuous monitoring mode and the single-shot measurement mode. Error Conditions: An error condition is generated by any one of the following: 1. Counter1 counts down to 0 before Counter0 reaches 0. This means that clock1 is faster than expected, or clock0 is slower than expected. It includes the case when clock0 is stuck at 1 or 0. 2. Counter1 does not reach 0 even when Counter0 and Valid0 have both reached 0. This means that clock1 is slower than expected. It includes the case when clock1 is stuck at 1 or 0. Any error freezes the counters from counting. An application may then read out the counter values to help determine what caused the error. Freezing Counters when Counter1 Reaches Zero: The DCC module also allows the counters to be frozen when the counter1 reaches zero. This allows one of the clock sources for counter1 to be used as a reference for measuring one of the clock sources for counter0. The error conditions are the same as those where (counter0=0 and valid0=0) define the condition when the DCC counters are frozen. That is, an error is indicated if coutner0 and valid0 become zero while counter1 is still non-zero. In this case, however, the application would typically set up the seed values such that the counter1 will become zero before counter0. Essentially the measurement period is defined by the seed value of the counter1. Note that this is also an error condition, and the interrupt service routine can use the measurement period and the actual cycles counted by counter1 to determine the frequency of the clock0 signal. 11.3 Clock Source Selection for Counter0 and Counter1 Refer to the device datasheet to identify the available options for selecting the clock sources for both counters of the DCC module. Some microcontrollers may include multiple instances of the DCC module. This will also be identified in the device datasheet. The selection of the clock sources for counter0 and coutner1 is done by a combination of the KEY, CNT0 CLKSRC, and CNT1 CLKSRC control fields of the CNT0CLKSRC and CNT1CLKSRC registers. 402 Dual-Clock Comparator (DCC) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated DCC Control Registers www.ti.com 11.4 DCC Control Registers This section describes the dual-clock comparator (DCC) module control and status registers. The registers support 8-bit, 16-bit or 32-bit writes and are aligned on a word (32-bit) boundary. Table 11-1 shows address offsets from the module base address. The base address for the control registers is FFFF EC00h for DCC1 and FFFF F400h for DCC2. Table 11-1. DCC Control Registers Offset Acronym Register Description 00h DCCGCTRL DCC Global Control Register Section 11.4.1 04h DCCREV DCC Revision Id Register Section 11.4.2 08h DCCCNT0SEED DCC Counter0 Seed Register Section 11.4.3 0Ch DCCVALID0SEED DCC Valid0 Seed Register Section 11.4.4 10h DCCCNT1SEED DCC Counter1 Seed Register Section 11.4.5 14h DCCSTAT DCC Status Register Section 11.4.6 18h DCCCNT0 DCC Counter0 Value Register Section 11.4.7 1Ch DCCVALID0 DCC Valid0 Value Register Section 11.4.8 20h DCCCNT1 DCC Counter1 Value Register Section 11.4.9 24h DCCCNT1CLKSRC DCC Counter1 Clock Source Selection Register Section 11.4.10 28h DCCCNT0CLKSRC DCC Counter0 Clock Source Selection Register Section 11.4.11 SPNU499C – March 2018 Submit Documentation Feedback Section Dual-Clock Comparator (DCC) Module Copyright © 2018, Texas Instruments Incorporated 403 DCC Control Registers www.ti.com 11.4.1 DCC Global Control Register (DCCGCTRL) Figure 11-7 and Table 11-2 describe the DCC Global Control register. Figure 11-7. DCC Global Control Register (DCCGCTRL) [offset = 00] 31 16 Reserved R-0 15 12 11 8 7 4 3 0 DONE INT ENA SINGLE SHOT ERR ENA DCC ENA R/WP-5h R/WP-5h R/WP-5h R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 11-2. DCC Global Control Register (DCCGCTRL) Field Descriptions Bit Field 31-16 Reserved 15-12 DONE INT ENA Value 0 Description Reads return 0. Writes have no effect. Done Interrupt Enable. Any operation mode read, privileged mode write: 5h Others 11-8 SINGLE SHOT No interrupt is generated when the DONE flag is set in the DCC Status (DCCSTAT) register. DONE interrupt is generated when the DONE flag is set in the DCC Status (DCCSTAT) register. Single-Shot Mode Enable. Any operation mode read, privileged mode write: Ah DCC stops counting when counter0 and valid0 both reach zero. Bh DCC stops counting when counter1 reaches zero. Others 7-4 ERR ENA DCC counts continuously and only stops when an error occurs. Error Interrupt Enable. Any operation mode read, privileged mode write: 5h Others 3-0 DCC ENA No interrupt is generated when the ERR flag is set in the DCC Status (DCCSTAT) register. ERROR interrupt is generated when the ERR flag is set in the DCC Status (DCCSTAT) register. DCC Enable. Any operation mode read, privileged mode write: 5h Others All DCC counters are stopped and error-checking is disabled. When an error occurs, the counters stop and this field is set to 5h automatically disabling the DCC counter in hardware. Read: Counters are enabled. Write: Load counters with their seed values and begin counting. It is recommended to write Ah to enable counters to protect against single-bit errors. 404 Dual-Clock Comparator (DCC) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated DCC Control Registers www.ti.com 11.4.2 DCC Revision Id Register (DCCREV) Figure 11-8 and Table 11-3 describe the DCC Revision Id register. Figure 11-8. DCC Revision Id Register (DCCREV) [offset = 4h] 31 30 29 28 27 16 SCHEME Reserved FUNC R-01 R-0 R-0 15 11 10 8 7 6 5 0 RTL MAJOR CUSTOM MINOR R-0 R-2h R-0 R-4h LEGEND: R = Read only; -n = value after reset Table 11-3. DCC Revision Id Register (DCCREV) Field Descriptions Bit Field Value Description 31-30 SCHEME 01 Reads return 01, writes have no effect. 29-28 Reserved 0 Reads return 0. Writes have no effect. 27-16 FUNC 0 Functional release number. Reads return 0x000, writes have no effect. 15-11 RTL 0 Design release number. Reads return 0x00, writes have no effect. 10-8 MAJOR 2h Major revision number. Reads return 0x2, writes have no effect. 7-6 CUSTOM 0 Custom version number. Reads return 0x0, writes have no effect. 5-0 MINOR 4h Minor revision number. Reads return 0x4, writes have no effect. 11.4.3 DCC Counter0 Seed Register (DCCCNT0SEED) Figure 11-9 and Table 11-4 describe the DCC Counter0 Seed register. Figure 11-9. DCC Counter0 Seed Register (DCCCNT0SEED) [offset = 8h] 31 20 19 16 Reserved COUNT0 SEED R-0 R/WP-0 15 0 COUNT0 SEED R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 11-4. DCC Counter0 Seed Register (DCCCNT0SEED) Field Descriptions Bit Field Value 31-20 Reserved 19-0 COUNT0 SEED 0 Description Reads return 0. Writes have no effect. Seed value for DCC counter0. Reads in any operating mode return the current value of counter0. Writing in privileged mode only sets the current seed value for counter0. NOTE: Seed for Counter0 must be non-zero The DCC must only be enabled after programming a non-zero value in the COUNT0 SEED register. SPNU499C – March 2018 Submit Documentation Feedback Dual-Clock Comparator (DCC) Module Copyright © 2018, Texas Instruments Incorporated 405 DCC Control Registers www.ti.com 11.4.4 DCC Valid0 Seed Register (DCCVALID0SEED) Figure 11-10 and Table 11-5 describe the DCC Valid0 Seed register. Figure 11-10. DCC Valid0 Seed Register (DCCVALID0SEED) [offset = Ch] 31 16 Reserved R-0 15 0 VALID0 SEED R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 11-5. DCC Valid0 Seed Register (DCCVALID0SEED) Field Descriptions Bit Field Value 31-16 Reserved 0 15-0 VALID0 SEED Description Reads return 0. Writes have no effect. Seed value for DCC Valid0. This value defines the window within which the counter1 must reach 0. This window needs to be at least 4 cycles wide. Reads in any operating mode return the current value of seed for Valid0. Writing in privileged mode only sets the current seed value for Valid0. Writes in user mode are ignored. NOTE: Seed for Valid0 must be at least 0x4 The DCC must only be enabled after programming a value greater than or equal to 0x4 in the VALID0 SEED register. 11.4.5 DCC Counter1 Seed Register (DCCCNT1SEED) Figure 11-11 and Table 11-6 describe the DCC Counter1 Seed register. Figure 11-11. DCC Counter1 Seed Register (DCCCNT1SEED) [offset = 10h] 31 20 19 16 Reserved COUNT1 SEED R-0 R/WP-0 15 0 COUNT1 SEED R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 11-6. DCC Counter1 Seed Register (DCCCNT0SEED) Field Descriptions Bit Field Value 31-20 Reserved 0 19-0 COUNT1 SEED Description Reads return 0. Writes have no effect. Seed value for DCC counter1. Reads in any operating mode return the current value of seed for counter1. Writing in privileged mode only sets the current seed value for counter1. Writes in user mode are ignored. NOTE: Seed for Counter0 must be non-zero The DCC must only be enabled after programming a non-zero value in the COUNT1 SEED register. 406 Dual-Clock Comparator (DCC) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated DCC Control Registers www.ti.com 11.4.6 DCC Status Register (DCCSTAT) Figure 11-7 and Table 11-2 describe the DCC Status register. Figure 11-12. DCC Status Register (DCCSTAT) [offset = 14h] 31 16 Reserved R-0 15 1 0 Reserved 2 DONE ERR R-0 R/W1CP-0 R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 11-7. DCC Status Register (DCCSTAT) Field Descriptions Bit 31-2 1 Field Value Reserved 0 DONE Description Reads return 0. Writes have no effect. Single-Shot Sequence Done flag. Indicates that a single-shot DCC sequence is done without any error. 0 Read: Single-shot sequence is not done. Write: Writing 0 has no effect. 1 Read: Single-shot sequence is done without any error. Write: Writing 1 in privileged mode clears the DONE flag. 0 ERR Error flag. Indicates that a DCC error has occurred. 0 Read: DCC error has not occurred. Write: Writing 0 has no effect. 1 Read: An error has occurred. Write: Writing 1 in privileged mode clears the ERR flag. SPNU499C – March 2018 Submit Documentation Feedback Dual-Clock Comparator (DCC) Module Copyright © 2018, Texas Instruments Incorporated 407 DCC Control Registers www.ti.com 11.4.7 DCC Counter0 Value Register (DCCCNT0) Figure 11-13 and Table 11-8 describe the DCC Counter0 Value register. Figure 11-13. DCC Counter0 Value Register (DCCCNT0) [offset = 18h] 31 20 19 16 Reserved COUNT0 R-0 R-0 15 0 COUNT0 R-0 LEGEND: R = Read only; -n = value after reset Table 11-8. DCC Counter0 Value Register (DCCCNT0) Field Descriptions Bit Field 31-20 Reserved 19-0 COUNT0 Value 0 Description Reads return 0. Writes have no effect. Current value of DCC counter0. Reads in any operating mode return the current value of counter0. Writes have no effect. NOTE: Reads may not return exact current value of counter Reading the counter0 value while counting is enabled may not return the exact value of the counter0. 408 Dual-Clock Comparator (DCC) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated DCC Control Registers www.ti.com 11.4.8 DCC Valid0 Value Register (DCCVALID0) Figure 11-14 and Table 11-9 describe the DCC Valid0 Value register. Figure 11-14. DCC Valid0 Value Register (DCCVALID0) [offset = 1Ch] 31 16 Reserved R-0 15 0 VALID0 R-0 LEGEND: R = Read only; -n = value after reset Table 11-9. DCC Valid0 Value Register (DCCVALID0) Field Descriptions Bit Field 31-16 Reserved 15-0 VALID0 Value 0 Description Reads return 0. Writes have no effect. Current value for DCC Valid0. Reads in any operating mode return the current value of Valid0. Writes have no effect. NOTE: Reads may not return exact current value of Valid0 Reading the Valid0 value while counting is enabled may not return the exact value of the Valid0. 11.4.9 DCC Counter1 Value Register (DCCCNT1) Figure 11-15 and Table 11-10 describe the DCC Counter1 Value register. Figure 11-15. DCC Counter1 Value Register (DCCCNT1) [offset = 20h] 31 20 19 16 Reserved COUNT1 R-0 R/WP-0 15 0 COUNT1 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 11-10. DCC Counter1 Value Register (DCCCNT1) Field Descriptions Bit Field 31-20 Reserved 19-0 COUNT1 Value 0 Description Reads return 0. Writes have no effect. Current value for DCC counter1. Reads in any operating mode return the current value of counter1. Writes have no effect. NOTE: Reads may not return exact current value of counter Reading the counter1 value while counting is enabled may not return the exact value of the counter1. SPNU499C – March 2018 Submit Documentation Feedback Dual-Clock Comparator (DCC) Module Copyright © 2018, Texas Instruments Incorporated 409 DCC Control Registers www.ti.com 11.4.10 DCC Counter1 Clock Source Selection Register (DCCCNT1CLKSRC) Figure 11-15 and Table 11-10 describe the DCC Counter1 Clock Source Selection register. Figure 11-16. DCC Counter1 Clock Source Selection Register (DCCCNT1CLKSRC) [offset = 24h] 31 16 Reserved R-0 15 12 11 4 3 0 KEY Reserved CNT1 CLKSRC R/WP-5h R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 11-11. DCC Counter1 Clock Source Selection Register (DCCCNT1CLKSRC) Field Descriptions Bit Field 31-16 Reserved Value 0 15-12 KEY Description Reads return 0. Writes have no effect. Key to enable clock source selection for counter1. Reads in any operating mode return the current value of the key. Writes in privileged mode set the key value. Ah Writing Ah as the key enables the CNT1 CLKSRC field to define the clock source for counter1. Any other value Writing any other value as the key disables the clock source selection for counter1. In this case, the N2HET signal is used as the source for counter1. Refer to the device datasheet for available clock source options and the KEY required to enable these options for counter1. 11-4 Reserved 3-0 CNT1 CLKSRC 0 Reads return 0. Writes have no effect. Clock source for counter1 when KEY is programmed to Ah. Reads in any operating mode return the current value of CLKSRC. Writes in privileged mode select the clock source for counter1. Refer to the device datasheet for available clock source options and the KEY required to enable these options for counter1. 410 Dual-Clock Comparator (DCC) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated DCC Control Registers www.ti.com 11.4.11 DCC Counter0 Clock Source Selection Register (DCCCNT0CLKSRC) Figure 11-15 and Table 11-10 describe the DCC Counter0 Clock Source Selection register. Figure 11-17. DCC Counter0 Clock Source Selection Register (DCCCNT0CLKSRC) [offset = 28h] 31 16 Reserved R-0 15 4 3 0 Reserved CNT0 CLKSRC R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 11-12. DCC Counter0 Clock Source Selection Register (DCCCNT0CLKSRC) Field Descriptions Bit Field 31-4 Reserved 3-0 CNT0 CLKSRC Value 0 Description Reads return 0. Writes have no effect. Clock source for counter0 . Reads in any operating mode return the current value of CLKSRC. Writes in privileged mode select the clock source for counter0. Refer to the device datasheet for available clock source options for counter0. SPNU499C – March 2018 Submit Documentation Feedback Dual-Clock Comparator (DCC) Module Copyright © 2018, Texas Instruments Incorporated 411 Chapter 12 SPNU499C – March 2018 Error Signaling Module (ESM) This chapter provides the details of the error signaling module (ESM) that aggregates device errors and provides the capability to define internal and external error response based on error severity. Topic 12.1 12.2 12.3 12.4 412 ........................................................................................................................... Overview ........................................................................................................ Module Operation ............................................................................................ Recommended Programming Procedure ............................................................ Control Registers ............................................................................................ Error Signaling Module (ESM) Page 413 415 419 420 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Overview www.ti.com 12.1 Overview The Error Signaling Module (ESM) collects and reports the various error conditions on the microcontroller. The error condition is categorized based on a severity level. Error response is then generated based on the category of the error. Possible error responses include a low-priority interrupt, high-priority interrupt, and an external pin action. 12.1.1 Features • • • • Up to 128 error channels are supported, divided into 3 different groups: – 64 Group1 (low-severity) channels with configurable interrupt generation and configurable ERROR pin behavior – 32 Group2 (high-severity) channels with predefined interrupt generation and predefined ERROR pin behavior – 32 Group3 (high-severity) channels with no interrupt generation and predefined ERROR pin behavior. These channels have no interrupt response as they are reserved for CPU based diagnostics that generate aborts directly to the CPU. Dedicated device ERROR pin to signal an external observer Configurable timebase for ERROR pin output Error forcing capability for latent fault testing 12.1.2 Block Diagram As shown in Figure 12-1, the ESM channels are divided into three groups. Group1 channels are considered to be low-severity. Group1 errors have a configurable interrupt response and configurable ERROR pin behavior. Note that the ESM Status Register 1 (ESMSR1) for error group1 gets updated, regardless of whether an ESM interrupt for that Group1 channel is enabled or not. Group2 channels are connected to higher-severity error signals. Group2 errors generate a non-maskable high-priority interrupt to the CPU and assert the ERROR pin. Group3 channels indicate errors of the highest severity. Check the specific part's datasheet for identifying group3 errors and their expected responses. Group3 errors always generate an ERROR pin output. The ESM interrupt and ERROR pin behavior are also summarized in Table 12-1. Figure 12-1. Block Diagram Low-Priority Interrupt High-Priority Interrupt Handling High-Priority Interrupt error_group1 Interrupt Enable Interrupt Priority from Hardware Diagnostics error_group2 ERROR Pin Enable error_group3 Error Signal Handling to VIM Interrupt Controller Low-Priority Interrupt Handling Device ERROR Output PIN Error Signaling Module (ESM) 413 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Overview www.ti.com Table 12-1. ESM Interrupt and ERROR Pin Behavior Error Group Interrupt to CPU Interrupt Priority ERROR Pin Response 1 Can be enabled or disabled for each channel Can be selected as low/high-priority for each channel ERROR pin action can be selected for each channel separately 2 Cannot be disabled High priority ERROR pin is asserted 3 No interrupt NA ERROR pin is asserted Figure 12-2 and Figure 12-3 show the interrupt response handling and ERROR pin response handling with register configuration. The total active time of the ERROR pin is controlled by the Low-Time Counter Preload register (LTCP) and the key register (ESMEPSR) as shown in Figure 12-3. See Section 12.2.2 for details. Figure 12-2. Interrupt Response Handling Low-Priority Interrupt High-Priority Interrupt Handling High-Priority Interrupt error_group1 Interrupt Enable Controlled by: ESMIESR1 ESMIECR1 ESMIESR4 ESMIECR4 error_group2 Interrupt Priority Controlled by: ESMILSR1 ESMILCR1 ESMILSR4 ESMILCR4 to VIM Interrupt Controller Low-Priority Interrupt Handling Figure 12-3. ERROR Pin Response Handling Peripheral clock (VCLK) error_group1 ERROR Pin Enable Controlled by: ESMIEPSR1, ESMIEPCR1 ESMIEPSR4, ESMIEPCR4 Error Signal Control Low-Time Counter Preload (LTCP ) error_group2 Low-Time Counter (LTC) error_group3 ERROR Device Output PIN ESMEPSR 414 Error Signaling Module (ESM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 12.2 Module Operation This device has 128 error channels, divided into 3 different error groups. Please refer to the device datasheet for ESM channel assignment details. The ESM module has error flags for each error channel. The error status registers ESMSR1, ESMSR4, ESMSR2, ESMSR3 provide status information on a pending error of Group1 (Channel 0-31), Group1 (Channel 32-63), Group2, and Group3, respectively. The ESMEPSR register provides the current ERROR status. The module also provides a status shadow register, ESMSSR2, which maintains the error flags of Group2 until power-on reset (PORRST) is asserted. See Section 12.2.1 for details of their behavior during power on reset and warm reset. Once an error occurs, the ESM module will set the corresponding error flags. In addition, it can trigger an interrupt, ERROR pin outputs low depending on the ESM settings. Once the ERROR pin outputs low, a power on reset or a write of 5h to ESMEKR is required to release the ESM error pin back to normal state. See Section 12.2.2 for details. The application can read the error status registers (ESMSR1, ESMSR4, ESMSR2, and ESMSR3) to debug the error. If an RST is triggered or the error interrupt has been served, the error flag of Group2 should be read from ESMSSR2 because the error flag in ESMSR2 will be cleared by RST. The user can also test the functionality of the ERROR pin by forcing an error. See Section 12.2.3 for details. 12.2.1 Reset Behavior Power on reset: • ERROR pin behavior When PORRST is active, the ERROR pin is in a high impedance state (output drivers disabled). • Register behavior After PORRST, all registers in ESM module will be re-initialized to the default value. All the error status registers are cleared to zero. Warm reset (RST): • ERROR pin behavior During RST, the ERROR pin is in “output active” state with pull-down disabled. The ERROR pin remains unchanged after RST. • Register behavior After RST, ESMSR1, ESMSR4, ESMSSR2, ESMSR3 and ESMEPSR register values remains unchanged. Since RST does not clear the critical failure registers, the user can read those registers to debug the failures after RST pin goes back to high. After RST, if one of the flags in ESMSR1 and ESMSR4 is set, the interrupt service routine will be called once the corresponding interrupt is enabled. NOTE: ESMSR2 is cleared after RST. The flag in ESMSR2 gets cleared when reading the appropriate vector in the ESMIOFFHR offset register. Reading ESMIOFFHR will not clear the ESMSR1, ESMSR4, and the shadow register ESMSSR2. Reading ESMIOFFLR will also not clear the ESMSR1 and ESMSR4. SPNU499C – March 2018 Submit Documentation Feedback Error Signaling Module (ESM) Copyright © 2018, Texas Instruments Incorporated 415 Module Operation www.ti.com 12.2.2 ERROR Pin Timing The ERROR pin is an active-low function. The state of the pin is also readable from ERROR Pin Status Register (ESMEPSR). The pin is in a high-impedance state during power-on reset. Once the ESM module drives the ERROR pin low, it remains in this state for the time specified by the Low-Time Counter Preload register (LTCPR). Based on the time period of the peripheral clock (VCLK), the total active time of the ERROR pin can be calculated as: t ERROR _ low = tVCLK ´ ( LTCP + 1) (22) Once this period expires, the ERROR pin is set to high in case the reset of the ERROR pin was requested. This request is done by writing an appropriate key (5h) to the key register (ESMEKR) during the ERROR pin low time. Here are a few examples: Example 1: ESM detects a failure and drives the ERROR pin low. No ERROR pin reset is requested. The ERROR pin continues outputting low until power on reset occurs. Figure 12-4. ERROR Pin Timing - Example 1 failure ERROR tERROR_low Example 2: ESM detects a failure and drives the ERROR pin low. An ERROR pin reset request is received before tERROR_low expires. In this case, the ERROR pin is set to high immediately after tERROR_low expires. Figure 12-5. ERROR Pin Timing - Example 2 failure ERROR ERROR pin reset request tERROR_low Example 3: ESM detects a failure and drives the ERROR pin low. An ERROR pin reset request is received after tERROR_low expires. In this case, the ERROR pin is set to high immediately after ERROR pin reset request is received. Figure 12-6. ERROR Pin Timing - Example 3 failure ERROR 416 ERROR pin reset request tERROR_low Error Signaling Module (ESM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Example 4: ESM detects a failure and drives the ERROR pin low. Another failure occurs within the time the pin stays low. In this case, the low-time counter will be reset when the other failure occurs. In other words, tERROR_low should be counted from whenever the most recent failure occurs. Figure 12-7. ERROR Pin Timing - Example 4 ERROR pin reset request failure failure ERROR tERROR_low tERROR_low Example 5: The reset of the ERROR pin was requested by the software even before the failure occurs. In this case, the ERROR pin is set to high immediately after tERROR_low expires. This case is not recommended and should be avoided by the application. Figure 12-8. ERROR Pin Timing - Example 5 ERROR pin reset request ERROR failure tERROR_low Example 6: Failure1, then ERROR pin reset request, then Failure2 occurs before ERROR pin gets reset. In this case, the ERROR pin low-time is just extended (restarted) when the failure2 occurs and goes high when this count-down expires. There now is a scenario where the ERROR pin is high and the group2/3 status flag is set. To avoid this scenario, the application must write 5h followed by 0 to the ESM Error Key Register (ESMEKR). In this case, the ERROR pin will go high and then go low again to indicate the second failure. SPNU499C – March 2018 Submit Documentation Feedback Error Signaling Module (ESM) Copyright © 2018, Texas Instruments Incorporated 417 Module Operation www.ti.com 12.2.3 Forcing an Error Condition The error response generation mechanism is testable by software by forcing an error condition. This allows testing the ERROR pin functionality. By writing a dedicated key to the ESM Error Key Register (ESMEKR), the ERROR pin is set to low for the specified time. The following steps describe how to force an error condition: 1. Check ERROR Pin Status Register (ESMEPSR). This register must be 1 to switch into the error forcing mode. The ESM module cannot be switched into the error forcing mode if a failure has already been detected in functional mode. The application command to switch to error forcing mode is ignored. 2. Write 5h to the ESM Error Key Register (ESMEKR). After that, the ERROR pin should output low (error force mode). Once the application puts the ESM module in the error forcing mode, the ERROR pin cannot indicate the normal error functionality. If a failure occurs during this time, it gets still latched and the LTC is reset and stopped. The error output pin is already driven low on account of the error forcing mode. When the ESM is forced back to normal functional mode, the LTC becomes active and forces the ERROR pin low until the expiration of the LTC (see Figure 12-9). 3. Write 0 to the ESM Error Key Register (ESMEKR) back to the active normal mode. If there are no errors detected while the ESM module is in the error forcing mode, the ERROR pin goes high immediately after exiting the error forcing mode. Figure 12-9. ERROR Pin Timing - Example 7 failure Write “1010” to ESMEKR Write “0101” to ESMEKR Write “0” to ESMEKR ERROR 418 tERROR_low Error Signaling Module (ESM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Recommended Programming Procedure www.ti.com 12.3 Recommended Programming Procedure During the initialization stage, the application code should follow the recommendations in Figure 12-10 to initialize the ESM. Figure 12-10. ESM Initialization Power up or PORRST Force error on ERROR pin to check the functionality of ERROR pin and external monitoring device connected to ERROR pin (ESMEKR). Initialize VIM RAM. Map the ESM low priority interrupt service routine and high priority interrupt service routine to pre-defined device specific interrupt channel. (Refer to device specific datasheet.) Enable the interrupt in VIM and CPU. Map ESM interrupt to high/low (ESM Group1 only, see register ESMILSR1,ESMILCR1, ESMILSR4, and ESMILCR4). Enable ESM interrupt and influence on ERROR pin (ESM Group1 only, see register ESMIEPSR1, ESMIEPCR1, ESMIESR1,ESMIECR1, ESMIEPSR4, ESMIEPCR4, ESMIESR4, and ESMIECR4). Define ESM Low-Time Counter Preload Register ESMLTCPR to determine the ERROR pin low time in case an error occurs. Once an error occurs, it can trigger an interrupt, ERROR pin outputs low depending on the ESM settings. Once the ERROR pin outputs low, a power on reset or a write of 5h to ESMEKR is required to release the ESM back to normal state. The application can read the error status registers (ESMSR1, ESMSR4, ESMSR2, and ESMSR3) to debug the error. If an RST is triggered or the error interrupt has been served, the error flag of Group2 should be read from ESMSSR2 because the error flag in ESMSR2 will be cleared by RST. SPNU499C – March 2018 Submit Documentation Feedback Error Signaling Module (ESM) Copyright © 2018, Texas Instruments Incorporated 419 Control Registers www.ti.com 12.4 Control Registers This section describes the ESM registers. Each register begins on a 32-bit word boundary. The registers support 32-bit, 16-bit, and 8-bit accesses. The base address for the registers is FFFF F500h. Table 12-2. ESM Module Registers Address 420 Acronym Register Description FFFF F500h ESMEEPAPR1 ESM Enable ERROR Pin Action/Response Register 1 Section 12.4.1 Section FFFF F504h ESMDEPAPR1 ESM Disable ERROR Pin Action/Response Register 1 Section 12.4.2 FFFF F508h ESMIESR1 ESM Interrupt Enable Set Register 1 Section 12.4.3 FFFF F50Ch ESMIECR1 ESM Interrupt Enable Clear Register 1 Section 12.4.4 FFFF F510h ESMILSR1 Interrupt Level Set Register 1 Section 12.4.5 FFFF F514h ESMILCR1 Interrupt Level Clear Register 1 Section 12.4.6 FFFF F518h ESMSR1 ESM Status Register 1 Section 12.4.7 FFFF F51Ch ESMSR2 ESM Status Register 2 Section 12.4.8 FFFF F520h ESMSR3 ESM Status Register 3 Section 12.4.9 FFFF F524h ESMEPSR ESM ERROR Pin Status Register Section 12.4.10 FFFF F528h ESMIOFFHR ESM Interrupt Offset High Register Section 12.4.11 FFFF F52Ch ESMIOFFLR ESM Interrupt Offset Low Register Section 12.4.12 FFFF F530h ESMLTCR ESM Low-Time Counter Register Section 12.4.13 FFFF F534h ESMLTCPR ESM Low-Time Counter Preload Register Section 12.4.14 FFFF F538h ESMEKR ESM Error Key Register Section 12.4.15 FFFF F53Ch ESMSSR2 ESM Status Shadow Register 2 Section 12.4.16 FFFF F540h ESMIEPSR4 ESM Influence ERROR Pin Set Register 4 Section 12.4.17 FFFF F544h ESMIEPCR4 ESM Influence ERROR Pin Clear Register 4 Section 12.4.18 FFFF F548h ESMIESR4 ESM Interrupt Enable Set Register 4 Section 12.4.19 FFFF F54Ch ESMIECR4 ESM Interrupt Enable Clear Register 4 Section 12.4.20 FFFF F550h ESMILSR4 Interrupt Level Set Register 4 Section 12.4.21 FFFF F554h ESMILCR4 Interrupt Level Clear Register 4 Section 12.4.22 FFFF F558h ESMSR4 ESM Status Register 4 Section 12.4.23 Error Signaling Module (ESM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 12.4.1 ESM Enable ERROR Pin Action/Response Register 1 (ESMEEPAPR1) This register is dedicated for Group1. Figure 12-11. ESM Enable ERROR Pin Action/Response Register 1 (ESMEEPAPR1) [address = FFFF F500h] 31 16 IEPSET R/WP-0 15 0 IEPSET R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 12-3. ESM Enable ERROR Pin Action/Response Register 1 (ESMEEPAPR1) Field Descriptions Bit 31-0 Field Value IEPSET Description Enable ERROR Pin Action/Response on Group 1. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Failure on channel x has no influence on ERROR pin. Write: Leaves the bit and the corresponding clear bit in the ESMIEPCR1 register unchanged. 1 Read: Failure on channel x has influence on ERROR pin. Write: Enables failure influence on ERROR pin and sets the corresponding clear bit in the ESMIEPCR1 register. 12.4.2 ESM Disable ERROR Pin Action/Response Register 1 (ESMDEPAPR1) This register is dedicated for Group1. Figure 12-12. ESM Disable ERROR Pin Action/Response Register 1 (ESMDEPAPR1) [address = FFFF F504h] 31 16 IEPCLR R/WP-0 15 0 IEPCLR R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 12-4. ESM Disable ERROR Pin Action/Response Register 1 (ESMDEPAPR1) Field Descriptions Bit 31-0 Field Value IEPCLR Description Disable ERROR Pin Action/Response on Group 1. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Failure on channel x has no influence on ERROR pin. Write: Leaves the bit and the corresponding set bit in the ESMIEPSR1 register unchanged. 1 Read: Failure on channel x has influence on ERROR pin. Write: Disables failure influence on ERROR pin and clears the corresponding set bit in the ESMIEPSR1 register. SPNU499C – March 2018 Submit Documentation Feedback Error Signaling Module (ESM) Copyright © 2018, Texas Instruments Incorporated 421 Control Registers www.ti.com 12.4.3 ESM Interrupt Enable Set Register 1 (ESMIESR1) This register is dedicated for Group1. Figure 12-13. ESM Interrupt Enable Set Register 1 (ESMIESR1) [address = FFFF F508h] 31 16 INTENSET R/WP-0 15 0 INTENSET R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 12-5. ESM Interrupt Enable Set Register 1 (ESMIESR1) Field Descriptions Bit 31-0 Field Value INTENSET Description Set interrupt enable. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Interrupt is disabled. Write: Leaves the bit and the corresponding clear bit in the ESMIECR1 register unchanged. 1 Read: Interrupt is enabled. Write: Enables interrupt and sets the corresponding clear bit in the ESMIECR1 register. 12.4.4 ESM Interrupt Enable Clear Register 1 (ESMIECR1) This register is dedicated for Group1. Figure 12-14. ESM Interrupt Enable Clear Register 1 (ESMIECR1) [address = FFFF F50Ch] 31 16 INTENCLR R/WP-0 15 0 INTENCLR R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 12-6. ESM Interrupt Enable Clear Register 1 (ESMIECR1) Field Descriptions Bit 31-0 Field Value INTENCLR Description Clear interrupt enable. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Interrupt is disabled. Write: Leaves the bit and the corresponding set bit in the ESMIESR1 register unchanged. 1 Read: Interrupt is enabled. Write: Disables interrupt and clears the corresponding set bit in the ESMIESR1 register. 422 Error Signaling Module (ESM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 12.4.5 ESM Interrupt Level Set Register 1 (ESMILSR1) This register is dedicated for Group1. Figure 12-15. ESM Interrupt Level Set Register 1 (ESMILSR1) [address = FFFF F510h] 31 16 INTLVLSET R/WP-0 15 0 INTLVLSET R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 12-7. ESM Interrupt Level Set Register 1 (ESMILSR1) Field Descriptions Bit 31-0 Field Value INTLVLSET Description Set interrupt priority. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Interrupt of channel x is mapped to low-level interrupt line. Write: Leaves the bit and the corresponding clear bit in the ESMILCR1 register unchanged. 1 Read: Interrupt of channel x is mapped to high-level interrupt line. Write: Maps interrupt of channel x to high-level interrupt line and sets the corresponding clear bit in the ESMILCR1 register. 12.4.6 ESM Interrupt Level Clear Register 1 (ESMILCR1) This register is dedicated for Group1. Figure 12-16. ESM Interrupt Level Clear Register 1 (ESMILCR1) [address = FFFF F514h] 31 16 INTLVLCLR R/WP-0 15 0 INTLVLCLR R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 12-8. ESM Interrupt Level Clear Register 1 (ESMILCR1) Field Descriptions Bit 31-0 Field Value INTLVLCLR Description Clear interrupt priority. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Interrupt of channel x is mapped to low-level interrupt line. Write: Leaves the bit and the corresponding set bit in the ESMILSR1 register unchanged. 1 Read: Interrupt of channel x is mapped to high-level interrupt line. Write: Maps interrupt of channel x to low-level interrupt line and clears the corresponding set bit in the ESMILSR1 register. SPNU499C – March 2018 Submit Documentation Feedback Error Signaling Module (ESM) Copyright © 2018, Texas Instruments Incorporated 423 Control Registers www.ti.com 12.4.7 ESM Status Register 1 (ESMSR1) This register is dedicated for Group1. Note that the ESMSR1 status register will get updated if an error condition occurs, regardless if the corresponding interrupt enable flag is set or not. Figure 12-17. ESM Status Register 1 (ESMSR1) [address = FFFF F518h] 31 16 ESF R/W1CP-X/0 15 0 ESF R/W1CP-X/0 LEGEND: R/W = Read/Write; W1CP = Write 1 to clear in privilege mode only; -n = value after reset/PORRST; X = Value unchanged Table 12-9. ESM Status Register 1 (ESMSR1) Field Descriptions Bit Field 31-0 ESF Value Description Error Status Flag. Provides status information on a pending error. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: No error occurred; no interrupt is pending. Write: Leaves the bit unchanged. 1 Read: Error occurred; interrupt is pending. Write: Clears the bit. Note: After RST, if one of these flags are set and the corresponding interrupt are enabled, the interrupt service routine will be called. 12.4.8 ESM Status Register 2 (ESMSR2) This register is dedicated for Group2. Figure 12-18. ESM Status Register 2 (ESMSR2) [address = FFFF F51Ch] 31 16 ESF R/W1CP-0 15 0 ESF R/W1CP-0 LEGEND: R/W = Read/Write; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 12-10. ESM Status Register 2 (ESMSR2) Field Descriptions Bit Field 31-0 ESF Value Description Error Status Flag. Provides status information on a pending error. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: No error occurred; no interrupt is pending. Write: Leaves the bit unchanged. 1 Read: Error occurred; interrupt is pending. Write: Clears the bit. ESMSSR2 is not impacted by this action. Note: In normal operation, the flag gets cleared when reading the appropriate vector in the ESMIOFFHR offset register. Reading ESMIOFFHR will not clear the ESMSR1 and the shadow register ESMSSR2. 424 Error Signaling Module (ESM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 12.4.9 ESM Status Register 3 (ESMSR3) This register is dedicated for Group3. Figure 12-19. ESM Status Register 3 (ESMSR3) [address = FFFF F520h] 31 16 ESF R/W1CP-X/0 15 0 ESF R/W1CP-X/0 LEGEND: R/W = Read/Write; W1CP = Write 1 to clear in privilege mode only; -n = value after reset/PORRST; X = Value unchanged Table 12-11. ESM Status Register 3 (ESMSR3) Field Descriptions Bit Field 31-0 ESF Value Description Error Status Flag. Provides status information on a pending error. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: No error occurred. Write: Leaves the bit unchanged. 1 Read: Error occurred. Write: Clears the bit. 12.4.10 ESM ERROR Pin Status Register (ESMEPSR) Figure 12-20. ESM ERROR Pin Status Register (ESMEPSR) [address = FFFF F524h] 31 16 Reserved R-0 15 1 0 Reserved EPSF R-0 R-X/1 LEGEND: R = Read only; -n = value after reset/PORRST; X = Value unchanged Table 12-12. ESM ERROR Pin Status Register (ESMEPSR) Field Descriptions Bit 31-1 0 Field Value Reserved 0 EPSF Description Reads return 0. Writes have no effect. ERROR Pin Status Flag. Provides status information for the ERROR pin. Read/Write in User and Privileged mode. 0 Read: ERROR pin is low (active) if any error has occurred. Write: Writes have no effect. 1 Read: ERROR pin is high if no error has occurred. Write: Writes have no effect. Note: This flag will be set to 1 after PORRST. The value will be unchanged after RST. The ERROR pin status remains unchanged after RST. SPNU499C – March 2018 Submit Documentation Feedback Error Signaling Module (ESM) Copyright © 2018, Texas Instruments Incorporated 425 Control Registers www.ti.com 12.4.11 ESM Interrupt Offset High Register (ESMIOFFHR) Figure 12-21. ESM Interrupt Offset High Register (ESMIOFFHR) [address = FFFF F528h] 31 16 Reserved R-0 15 7 6 0 Reserved INTOFFH R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 12-13. ESM Interrupt Offset High Register (ESMIOFFHR) Field Descriptions Bit Field 31-7 Reserved 6-0 INTOFFH Value 0 Description Reads return 0. Writes have no effect. Offset High-Level Interrupt. This vector gives the channel number of the highest-pending interrupt request for the high-level interrupt line. Interrupts of error Group2 have higher priority than interrupts of error Group1. Inside a group, channel 0 has highest priority and channel 31 has lowest priority. User and privileged mode (read): Returns number of pending interrupt with the highest priority for the high-level interrupt line. 0 No pending interrupt. 1h Interrupt pending for channel 0, error Group1. : : 20h Interrupt pending for channel 31, error Group1. 21h Interrupt pending for channel 0, error Group2. : : 40h Interrupt pending for channel 31, error Group2. 41h Interrupt pending for channel 32, error Group1. : 60h : Interrupt pending for channel 63, error Group1. Note: Reading the interrupt vector will clear the corresponding flag in the ESMSR2 register; will not clear ESMSR1 and ESMSSR2 and the offset register gets updated. User and privileged mode (write): Writes have no effect. 426 Error Signaling Module (ESM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 12.4.12 ESM Interrupt Offset Low Register (ESMIOFFLR) Figure 12-22. ESM Interrupt Offset Low Register (ESMIOFFLR) [address = FFFF F52Ch] 31 16 Reserved R-0 15 7 6 0 Reserved INTOFFL R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 12-14. ESM Interrupt Offset Low Register (ESMIOFFLR) Field Descriptions Bit Field 31-7 Reserved 6-0 INTOFFL Value 0 Description Reads return 0. Writes have no effect. Offset Low-Level Interrupt. This vector gives the channel number of the highest-pending interrupt request for the low-level interrupt line. Inside a group, channel 0 has highest priority and channel 31 has lowest priority. User and privileged mode (read): Returns number of pending interrupt with the highest priority for the low-level interrupt line. 0 No pending interrupt. 1h Interrupt pending for channel 0, error Group1. : 20h : Interrupt pending for channel 31, error Group1. 21h-40h Reserved 41h : 60h Interrupt pending for channel 32, error Group1. : Interrupt pending for channel 63, error Group1. Note: Reading the interrupt vector will not clear the corresponding flag in the ESMSR1 register. Group2 interrupts are fixed to the high-level interrupt line only. User and privileged mode (write): Writes have no effect. SPNU499C – March 2018 Submit Documentation Feedback Error Signaling Module (ESM) Copyright © 2018, Texas Instruments Incorporated 427 Control Registers www.ti.com 12.4.13 ESM Low-Time Counter Register (ESMLTCR) Figure 12-23. ESM Low-Time Counter Register (ESMLTCR) [address = FFFF F530h] 31 16 Reserved R-0 15 0 LTC R-3FFFh LEGEND: R = Read only; -n = value after reset Table 12-15. ESM Low-Time Counter Register (ESMLTCR) Field Descriptions Bit Field Value 31-16 Reserved 15-0 LTC 0 Description Reads return 0. Writes have no effect. ERROR Pin Low-Time Counter 16-bit preloadable down-counter to control low-time of ERROR pin. The low-time counter is triggered by the peripheral clock (VCLK). Note: Low-time counter is set to the default preload value of the ESMLTCPR in the following cases: 1. 2. 3. Reset (power on reset or warm reset) An error occurs User forces an error 12.4.14 ESM Low-Time Counter Preload Register (ESMLTCPR) Figure 12-24. ESM Low-Time Counter Preload Register (ESMLTCPR) [address = FFFF F534h] 31 16 Reserved R-0 15 14 13 0 LTCP LTCP R/WP-0 R-3FFFh LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 12-16. ESM Low-Time Counter Preload Register (ESMLTCPR) Field Descriptions Bit Field 31-16 Reserved 15-0 LTCP Value 0 0-FFFFh Description Reads return 0. Writes have no effect. ERROR Pin Low-Time Counter Pre-load Value 16-bit preload value for the ERROR pin low-time counter. Defines the minimum period for which the ERROR pin will be driven to 16384 VCLK cycles. Note: Only LTCP[15] and LTCP[14] are configurable (privileged mode write). 428 Error Signaling Module (ESM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 12.4.15 ESM Error Key Register (ESMEKR) Figure 12-25. ESM Error Key Register (ESMEKR) [address = FFFF F538h] 31 16 Reserved R-0 15 4 3 0 Reserved EKEY R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 12-17. ESM Error Key Register (ESMEKR) Field Descriptions Bit Field 31-4 Reserved 3-0 EKEY Value Description 0 Reads return 0. Writes have no effect. Error Key. The key to reset the ERROR pin or to force an error on the ERROR pin. User and privileged mode (read): Returns current value of the EKEY. Privileged mode (write): 0 Activates normal mode (recommended default mode). 5h The ERROR pin set to high when the low-time counter (LTC) has completed; then the EKEY bit will switch back to normal mode (EKEY = 0000). Ah Forces error on ERROR pin. All other values Activates normal mode. 12.4.16 ESM Status Shadow Register 2 (ESMSSR2) This register is dedicated for Group2. Figure 12-26. ESM Status Shadow Register 2 (ESMSSR2) [address = FFFF F53Ch] 31 16 ESF R/W1CP-X/0 15 0 ESF R/W1CP-X/0 LEGEND: R/W = Read/Write; W1CP = Write 1 to clear in privilege mode only; -n = value after reset/PORRST; X = Value unchanged Table 12-18. ESM Status Shadow Register 2 (ESMSSR2) Field Descriptions Bit Field 31-0 ESF Value Description Error Status Flag. Shadow register for status information on pending error. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: No error occurred. Write: Leaves the bit unchanged. 1 Read: Error occurred. Write: Clears the bit. ESMSR2 is not impacted by this action. Note: Errors are stored until they are cleared by the software or at power-on reset (PORRST). SPNU499C – March 2018 Submit Documentation Feedback Error Signaling Module (ESM) Copyright © 2018, Texas Instruments Incorporated 429 Control Registers www.ti.com 12.4.17 ESM Influence ERROR Pin Set Register 4 (ESMIEPSR4) This register is dedicated for Group1. Figure 12-27. ESM Influence ERROR Pin Set Register 4 (ESMIEPSR4) [address = FFFF F540h] 31 16 IEPSET[63:48] R/WP-0 15 0 IEPSET[47:32] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 12-19. ESM Influence ERROR Pin Set Register 4 (ESMIEPSR4) Field Descriptions Bit 63-32 Field Value IEPSET Description Set influence on ERROR pin. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Failure on channel x has no influence on ERROR pin. Write: Leaves the bit and the corresponding clear bit in the ESMIEPCR4 register unchanged. 1 Read: Failure on channel x has influence on ERROR pin. Write: Enables failure influence on ERROR pin and sets the corresponding clear bit in the ESMIEPCR4 register. 12.4.18 ESM Influence ERROR Pin Clear Register 4 (ESMIEPCR4) This register is dedicated for Group1. Figure 12-28. ESM Influence ERROR Pin Clear Register 4 (ESMIEPCR4) [address = FFFF F544h] 31 16 IEPCLR[63:48] R/WP-0 15 0 IEPCLR[47:32] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 12-20. ESM Influence ERROR Pin Clear Register 4 (ESMIEPCR4) Field Descriptions Bit 63-32 Field Value IEPCLR Description Clear influence on ERROR pin. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Failure on channel x has no influence on ERROR pin. Write: Leaves the bit and the corresponding set bit in the ESMIEPSR4 register unchanged. 1 Read: Failure on channel x has influence on ERROR pin. Write: Disables failure influence on ERROR pin and clears the corresponding set bit in the ESMIEPSR4 register. 430 Error Signaling Module (ESM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 12.4.19 ESM Interrupt Enable Set Register 4 (ESMIESR4) This register is dedicated for Group1. Figure 12-29. ESM Interrupt Enable Set Register 4 (ESMIESR4) [address = FFFF F548h] 31 16 INTENSET[63:48] R/WP-0 15 0 INTENSET[47:32] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 12-21. ESM Interrupt Enable Set Register 4 (ESMIESR4) Field Descriptions Bit 63-32 Field Value INTENSET Description Set interrupt enable. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Interrupt is disabled. Write: Leaves the bit and the corresponding clear bit in the ESMIECR4 register unchanged. 1 Read: Interrupt is enabled. Write: Enables interrupt and sets the corresponding clear bit in the ESMIECR4 register. 12.4.20 ESM Interrupt Enable Clear Register 4 (ESMIECR4) This register is dedicated for Group1. Figure 12-30. ESM Interrupt Enable Clear Register 4 (ESMIECR4) [address = FFFF F54Ch] 31 16 INTENCLR[63:48] R/WP-0 15 0 INTENCLR[47:32] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 12-22. ESM Interrupt Enable Clear Register 4 (ESMIECR4) Field Descriptions Bit 63-32 Field Value INTENCLR Description Clear interrupt enable. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Interrupt is disabled. Write: Leaves the bit and the corresponding set bit in the ESMIESR4 register unchanged. 1 Read: Interrupt is enabled. Write: Disables interrupt and clears the corresponding set bit in the ESMIESR4 register. SPNU499C – March 2018 Submit Documentation Feedback Error Signaling Module (ESM) Copyright © 2018, Texas Instruments Incorporated 431 Control Registers www.ti.com 12.4.21 ESM Interrupt Level Set Register 4 (ESMILSR4) This register is dedicated for Group1. Figure 12-31. ESM Interrupt Level Set Register 4 (ESMILSR4) [address = FFFF F550h] 31 16 INTLVLSET[63:48] R/WP-0 15 0 INTLVLSET[47:32] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 12-23. ESM Interrupt Level Set Register 4 (ESMILSR4) Field Descriptions Bit 63-32 Field Value INTLVLSET Description Set interrupt level. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Read: Interrupt of channel x is mapped to low-level interrupt line. Write: Leaves the bit and the corresponding clear bit in the ESMILCR4 register unchanged. 1 Read: Interrupt of channel x is mapped to high-level interrupt line. Write: Maps interrupt of channel x to high-level interrupt line and sets the corresponding clear bit in the ESMILCR4 register. 12.4.22 ESM Interrupt Level Clear Register 4 (ESMILCR4) This register is dedicated for Group1. Figure 12-32. ESM Interrupt Level Clear Register 4 (ESMILCR4) [address = FFFF F554h] 31 16 INTLVLCLR[63:48] R/WP-0 15 0 INTLVLCLR[47:32] R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 12-24. ESM Interrupt Level Clear Register 4 (ESMILCR4) Field Descriptions Bit 63-32 Field Value INTLVLCLR Description Clear interrupt level. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: Interrupt of channel x is mapped to low-level interrupt line. Write: Leaves the bit and the corresponding set bit in the ESMILSR4 register unchanged. 1 Read: Interrupt of channel x is mapped to high-level interrupt line. Write: Maps interrupt of channel x to low-level interrupt line and clears the corresponding set bit in the ESMILSR4 register. 432 Error Signaling Module (ESM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 12.4.23 ESM Status Register 4 (ESMSR4) This register is dedicated for Group1. Figure 12-33. ESM Status Register 4 (ESMSR4) [address = FFFF F558h] 31 16 ESF[63:48] R/W1CP-X/0 15 0 ESF[47:32] R/W1CP-X/0 LEGEND: R/W = Read/Write; W1CP = Write 1 to clear in privilege mode only; -n = value after reset/PORRST; X = Value unchanged Table 12-25. ESM Status Register 4 (ESMSR4) Field Descriptions Bit Field 63-32 ESF Value Description Error Status Flag. Provides status information on a pending error. Read in User and Privileged mode. Write in Privileged mode only. 0 Read: No error occurred; no interrupt is pending. Write: Leaves the bit unchanged. 1 Read: Error occurred; interrupt is pending. Write: Clears the bit. Note: After RST, if one of these flags are set and the corresponding interrupt are enabled, the interrupt service routine will be called. SPNU499C – March 2018 Submit Documentation Feedback Error Signaling Module (ESM) Copyright © 2018, Texas Instruments Incorporated 433 Chapter 13 SPNU499C – March 2018 Real-Time Interrupt (RTI) Module This chapter describes the functionality of the real-time interrupt (RTI) module. The RTI is designed as an operating system timer to support a real time operating system (RTOS). NOTE: This chapter describes a superset implementation of the RTI module that includes features and functionality related to DMA, FlexRay, and Timbase control. These features are dependent on the device-specific feature content. Consult your device-specific datasheet to determine the applicability of these features to your device being used. Topic 13.1 13.2 13.3 434 ........................................................................................................................... Page Overview ......................................................................................................... 435 Module Operation ............................................................................................. 436 RTI Control Registers ........................................................................................ 446 Real-Time Interrupt (RTI) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Overview www.ti.com 13.1 Overview The real-time interrupt (RTI) module provides timer functionality for operating systems and for benchmarking code. The RTI module can incorporate several counters that define the timebases needed for scheduling in the operating system. The timers also allow you to benchmark certain areas of code by reading the values of the counters at the beginning and the end of the desired code range and calculating the difference between the values. In addition the RTI provides a mechanism to synchronize the operating system to the FlexRay communication cycle. Clock supervision allows for detection of issues on the FlexRay bus with an automatic switch to an internally generated timebase when a failure with the FlexRay timebase is detected. 13.1.1 Features The RTI module has the following features: • Two independent 64 bit counter blocks • Four configurable compares for generating operating system ticks or DMA requests. Each event can be driven by either counter block 0 or counter block 1. • One counter block usable for application synchronization to FlexRay network including clock supervision • Fast enabling/disabling of events • Two time stamp (capture) functions for system or peripheral interrupts, one for each counter block • Digital windowed watchdog 13.1.2 Industry Standard Compliance Statement This module is specifically designed to fulfill the requirements for OSEK (Offene Systeme und deren Schnittstellen für die Elektronik im Kraftfahrzeug, or Open Systems and the Corresponding Interfaces for Automotive Electronics) as well as OSEK/time-compliant operating systems, but is not limited to it. SPNU499C – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 435 Module Operation www.ti.com 13.2 Module Operation Figure 13-1 illustrates the high level block diagram of the RTI module. The RTI module has two independent counter blocks for generating different timebases: counter block 0 and counter block 1. The two counter blocks provide the same basic functionality, but counter block 0 has the additional functionality of being able to work with the FlexRay Macrotick (NTU0) or Start of Cycle (NTU1) and perform clock supervision to detect a missing signal. A compare unit compares the counters with programmable values and generates four independent interrupt or DMA requests on compare matches. Each of the compare registers can be programmed to be compared to either counter block 0 or counter block 1. The following sections describe the individual functions in more detail. Figure 13-1. RTI Block Diagram Compare Unit 32 RTICLK FlexRay Macrotick (NTU0) FlexRay Start of Cycle (NTU1) NTU2 NTU3 Counter Block 0 64-bit incl. FlexRay Feature Capture Feature Counter Block 1 64-bit Capture Feature RTICLK Event0 VIM REQ[2] DMA REQ[12] Event1 VIM REQ[3] DMA REQ[13] Event2 VIM REQ[4] DMA REQ[18] Event3 VIM REQ[5] DMA REQ[19] 32 32 32 32 32 13.2.1 Counter Operation Each counter block consists of the following (see Figure 13-2): • One 32-bit prescale counter (RTIUC0 or RTIUC1) • One 32-bit free running counter (RTIFRC0 or RTIFRC1) The RTIUC0/1 is driven by the RTICLK and counts up until the compare value in the compare up counter register (RTICPUC0 or RTICPUC1) is reached. When the compare matches, RTIFRC0/1 is incremented and RTIUC0/1 is reset to 0. If RTIFRC0/1 overflows, an interrupt is generated to the vectored interrupt manager (VIM). The overflow interrupt is not intended to generate the timebase for the operating system. See Section 13.2.2 for the timebase generation. The up counter together with the compare up counter value prescale the RTI clock. The resulting formula for the frequency of the free running counter (RTIFRC0/1) is: f RTIFRCx = { f RTICLK --------------------------------------RTICPUCx + 1 f RTICLK -------------------32 2 +1 when RTICPUCx ≠ 0 when RTICPUCx = 0 (23) NOTE: Setting RTICPUCx equal to zero is not recommended. Doing so will hold the Up Counter at zero for two RTICLK cycles after it overflows from 0xFFFFFFFF to zero. The counter values can be determined by reading the respective counter registers or by generating a hardware event which captures the counter value into the respective capture register. Both functions are described in the following sections. 436 Real-Time Interrupt (RTI) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Figure 13-2. Counter Block Diagram 31 0 Counter Block 0 Compare Up Counter RTICPUC0 RTICLK 0 Up Counter 31 OVLINT0 32 32 = 31 1 32 RTIFRC0 Up Counter Register To Compare Unit Timebase Control RTIUC0 32 31 0 Free Running Counter 0 NTU0 NTU1 NTU2 NTU3 1 31 0 32 31 Capture Up Counter 0 Capture Free Running Counter RTICAUC0 RTICAFRC0 1 Control CAP event source 0 from VIM CAP event source 1 from VIM RTICAPCTRL 31 0 Counter Block 1 1 Compare Up Counter OVLINT1 RTICPUC1 RTICLK 0 Up Counter 31 32 1 31 32 = 31 1 0 Free Running Counter RTIFRC1 32 To Compare Unit 0 Up Counter Register RTIUC1 32 31 0 Capture Up Counter RTICAUC1 32 31 0 Capture Free Running Counter RTICAFRC1 SPNU499C – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 437 Module Operation www.ti.com 13.2.1.1 Counter and Capture Read Consistency Portions of the device internal databus are 32-bits wide. If the application wants to read the 64-bit counters or the 64-bit capture values, a certain order of 32-bit read operations needs to be followed. This is to prevent one counter incrementing in between the two separate read operations to both counters. Reading the Counters The free running counter (RTIFRCx) must be read first. This priority will ensure that in the cycle when the CPU reads RTIFRCx, the up counter value is stored in its counter register (RTIUCx). The second read has to access the up counter register (RTIUCx), which then holds the value which corresponds to the number of RTICLK cycles that have elapsed at the time reading the free running counter register (RTIFRCx). NOTE: The up counters are implemented as shadow registers. Reading RTIUCx without having read RTIFRCx first will return always the same value. RTIUCx will only be updated when RTIFRCx is read. Reading the Capture Values The free running counter capture register (RTICAFRCx) must be read first. This priority will ensure that in the cycle when the CPU reads RTICAFRCx, the up counter value is stored in its counter register (RTICAUCx). The second read has to access the up counter register (RTICAUCx), which then holds the value captured at the time when reading the capture free running counter register (RTICAFRCx). NOTE: The capture up counter registers are implemented as shadow registers. Reading RTICAUCx without having read RTICAFRCx first will return always the same value. RTICAUCx will only be updated when RTICAFRCx is read. 13.2.1.2 Capture Feature Both counter blocks also provide a capture feature on external events. Two capture sources can trigger the capture event. The source triggering the block is configurable (RTICAPCTRL). The sources originate from the Vectored Interrupt Manager (VIM) and allow the generation of capture events when a peripheral modules has generated an interrupt. Any of the peripheral interrupts can be selected as the capture event in the VIM. When an event is detected, RTIUCx and RTIFRCx are stored in the capture up counter (RTICAUCx) and capture free running counter (RTICAFRCx) registers. The read order of the captured values must be the same as the read order of the actual counters (see Section 13.2.1.1). 13.2.2 Interrupt/DMA Requests There are four compare registers (RTICOMPy) to generate interrupt requests to the VIM or DMA requests to the DMA controller. The interrupts can be used to generate different timebases for the operating system. Each of the compare registers can be configured to be compared to either RTIFRC0 or RTIFRC1. When the counter value matches the compare value, an interrupt is generated. To allow periodic interrupts, a certain value can be added to the compare value in RTICOMPy automatically. This value is stored in the update compare register (RTIUDCPy) and will be added after a compare is matched. The period of the generated interrupt/DMA request can be calculated with: t COMPx = t RTICLK x (RTICPUCy + 1) x RTIUDCPy if RTICPUCy ≠ 0, 32 t COMPx = t RTICLK x (2 +1) x RTIUDCPy if RTIUDCPy = 0, 32 t COMPx = t RTICLK x (RTICPUCy + 1) x 2 438 Real-Time Interrupt (RTI) Module (24) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Figure 13-3. Compare Unit Block Diagram (shows only 1 of 4 blocks for simplification) 31 0 Update Compare RTIUDCP0 / RTIUDCP1 RTIUDCP2 / RTIUDCP3 32 DMA REQy + 31 0 Enable/Disable Compare RTICOMP0 / RTICOMP1 RTICOMP2 / RTICOMP3 From counter block 0 RTISETINTENA[11:8] RTICLEARINTENA[11:8] 32 = 32 1 From counter block 1 INT REQn Enable/Disable Control RTICOMPCTRL RTISETINTENA[3:0] RTICLEARINTENA[3:0] Another interrupt that can be generated is the overflow interrupt (OVLINTx) in case the RTIFRCx counter overflows. The interrupts/DMA requests can be enabled in the RTISETINTENA register and disabled in the RTICLEARINTENA register. The RTIINTFLAG register shows the pending interrupts. 13.2.3 RTI Clocking The counter blocks are clocked with RTICLK (for definition see Section 2.4.2). Counter block 0 can be clocked in addition by either the FlexRay Macrotick (NTU0) or the FlexRay Start of Cycle (NTU1). A clock supervision for the NTUx clocking scheme is implemented to avoid missing operating system ticks. 13.2.4 Synchronizing Timer Events to Network Time (NTU) For applications which are participating on a time-triggered communication bus, it is often beneficial to synchronize the application or operating system to the network time. The RTI provides a feature to increment Free Running Counter 0 (RTIFRC0) by a periodic clock provided by the communication module. In this case two different clocks can be chosen. One is the FlexRay module Macrotick (NTU0) and the other is the Start of Cycle (NTU1) information of the same module. The application has control over which clock (RTICLK, NTU0, NTU1) should be used for clocking RTIFRC0. If NTUx is used, a clock supervision circuit allows to monitor this clock and provides a fallback solution, should the clock be non-functional (missing). A too fast running NTUx cannot be detected. RTIUC0 is utilized to monitor the NTUx signal. A detection window can be programmed in which a valid NTU clock pulse needs to occur. If no pulse is detected, the RTI automatically switches back to clock the Free Running Counter 0 with RTIUC0. In order to avoid a big jitter in the operating ticks, in case a switch back to RTIUC0 happens, RTICPUC0 should be set to a value so the clock frequency RTIUC0 outputs is approximately the same as the NTUx frequency. SPNU499C – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 439 Module Operation www.ti.com Figure 13-4. Timebase Control RTIUC0 RTIFRC0 Control RTIGCTRL 31 Increment by 1 NTU0 NTU1 Control RTITBCTRL 0 Timebase Low Compare RTITBLCOMP NTU edge detect ≥ 31 0 Control Timebase High Compare RTITBCTRL RTITBHCOMP ≤ Control Timebase Interrupt TBINT RTITBCTRL 13.2.4.1 Detecting Clock Edges To detect clock edges on the NTUx signal, the timebase low compare has to be set lower or equal than the value stored in the RTICPUC0 register and the timebase high compare has to be set higher than 0 and lower than the timebase low compare value. This effectively opens a window in which an edge of the NTUx signal is expected (see Figure 13-5). Outside this window, no edges will be detected. If no edge will occur inside the detection window, the multiplexer is switched to internal timebase. The application can select to generate a timebase interrupt (TBINT) and if the INC bit is set, also will automatically increment RTIFRC0 by one to compensate for the missed clock cycle of NTUx. If an edge occurs inside the window, RTIUC0 will be reset to synchronize the two timebases. In order to make the edge detection work properly, the value in RTICPUC0 needs to be adapted so that RTIUC0 has a similar period as NTUx. NOTE: To ensure the NTUx signal is properly detected, the NTUx period must be at least twice as long as the RTICLK period. Figure 13-5. Clock Detection Scheme RTIUC0 RTICPUC0 RTITBLCOMP RTITBHCOMP Active Edge time Detection NTUx 440 Real-Time Interrupt (RTI) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 13.2.4.2 Switching from Internal Source to External Source If the application switches from an internal source to an external source, the two signals must be synchronized (see Figure 13-6). The synchronization will occur when the TBEXT bit is set. RTIUC0 will be reset and the edge detection circuit will be active for one (RTICPUC0 + RTITBHCOMP) period or until an edge is detected. If there is no pulse during this period, the source will be reset from an external clock source to an internal clock source. If an edge is detected, the windowed edge detection behavior will take place. Setting the TBEXT bit will not increment free running counter 0. NOTE: If an external timebase is used, then the software must ensure that timebase low compare and timebase high compare are programmed to a valid state before switching TBEXT to an external source. This state is necessary to allow the timebase control circuit to operate correctly. The following condition must be met: • RTITBHCOMP < RTITBLCOMP + RTICPUC0 RTITBHCOMP must be lower than RTICPUC0 because RTIUC0 will be reset if RTICPUC0 is reached. RTITBHCOMP will represent the number of RTICLK cycles from RTICPUC0 until the circuit switches to the internal timebase when no NTU edge is detected. If an external timebase is used, RTIGCTRL[0] must be set to 1 (enable RTIUC0) to ensure that the timebase control circuit does not wait indefinitely for an incoming signal. Figure 13-6 shows a timing example for the synchronization phase when the TBEXT bit is set. Figure 13-6. Switch to NTUx RTIUC0 CPUC0 might not be matched depending on the NTU period RTICPUC0 Write TBEXT = 1 to switch to ext. timbase time Active edge detection for one RTICPUC0 + RTITBHCOMP NTUx 13.2.4.3 Switching from External Source to Internal Source When the edge detection is active (TBEXT = 1) and no clock edge of NTUx is detected inside the programmed detection window, the RTI will automatically switch the timebase to RTIUC0. Figure 13-7 shows a timing example for a missing NTU signal. In the case where the INC bit is set, RTIFRC0 will automatically be incremented by one to compensate for the missed NTU pulse. Setting TBEXT = 0 will also switch the clock source for RTIFRC0 to RTIUC0. SPNU499C – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 441 Module Operation www.ti.com Figure 13-7. Missing NTUx Signal Example RTIUC0 RTICPUC0 UC0 reset by NTU edge time switch to internal timebase UC0 reset by CPUC0 compare match missing NTU pulse NTUx 13.2.5 Digital Watchdog (DWD) The digital watchdog (DWD) is an optional safety diagnostic which can detect a runaway CPU and generate either a reset or NMI (non-maskable interrupt) response. It generates resets or NMIs after a programmable period, or if no correct key sequence was written to the RTIWDKEY register. Figure 13-8 illustrates the DWD. Figure 13-8. Digital Watchdog To RESET logic 15 0 RTIWDKEY Reset WD Finite State Machine =0 Discharge 24 15 0 Compare 16 bit out to 2 KEY [1:0] 0 DWD down counter RTIDWDCNTR RTICLK Suspend nTRST 11 0 DWD preload RTIDWDPRLD 442 31 31 0 DWD ctrl RTIDWDCTRL = Real-Time Interrupt (RTI) Module 0 DWD hardwired code SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 13.2.5.1 Digital Watchdog (DWD) The DWD is disabled by default. If it should be used, it must be enabled by writing a 32-bit value to the RTIDWDCTRL register. NOTE: Once the DWD is enabled, it cannot be disabled except by system reset or power on reset. If the correct key sequence is written to the RTIWDKEY register (0xE51A followed by 0xA35C), the 25-bit DWD down counter is reloaded with the left justified 12-bit preload value stored in RTIDWDPRLD. If an incorrect value is written, a watchdog reset or NMI will occur immediately. A reset or NMI will also be generated when the DWD down counter is decremented to 0. While the device is in suspend mode (halting debug mode), the DWD down counter keeps the value it had when entering suspend mode. The DWD down counter will be decremented with the RTICLK frequency. Figure 13-9. DWD Operation 0x1FFFFFF Preload Register Value left shifted 13bits DWD Down Counter 0 time CPU access to DWD Reset/NMI set DWD Preload enable DWD write E51A to WDKEY write A35C write E51A write A35C to WDKEY to WDKEY to WDKEY The expiration time of the DWD down counter can be determined with the following equation: texp = (DWDPRLD + 1) × 213/RTICLK where DWDPRLD = 0...4095 NOTE: Care should be taken to ensure that the CPU write to the watchdog register is made allowing time for the write to propagate to the RTI. 13.2.5.2 Digital Windowed Watchdog (DWWD) In addition to the time-out boundary configurable via the digital watchdog discussed in Section 13.2.5.1, for enhanced safety metrics it is desirable to check for a watchdog "pet" within a time window rather than using a single time threshold. This is enabled by the digital windowed watchdog (DWWD) feature. • Functional Behavior The DWWD opens a configurable time window in which the watchdog must be serviced. Any attempt to service the watchdog outside this time window, or a failure to service the watchdog in this time window, will cause the watchdog to generate either a reset or a NMI to the CPU. This is controlled by configuring the RTIWWDRXNCTRL register. As with the DWD, the DWWD is disabled after power on reset. When the DWWD is configured to generate a non-maskable interrupt on a window violation, the watchdog counter continues to count down. The NMI handler needs to clear the watchdog violation status flag(s) and then SPNU499C – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 443 Module Operation www.ti.com service the watchdog by writing the correct sequence in the watchdog key register. This service will cause the watchdog counter to get reloaded from the preload value and start counting down. If the NMI handler does not service the watchdog in time, it could count down all the way to zero and wrap around. If the NMI Handler does not service the watchdog in time, the NMI gets generated continuously, each time the counter counts to '0'. The DWWD uses the Digital Watchdog (DWD) preload register (RTIDWDPRLD) setting to define the endtime of the window. The start-time of the window is defined by a window size configuration register(RTIWWDSIZECTRL). The default window size is set to 100%, which corresponds to the DWD functionality of a time-out-only watchdog. The window size can be selected (through register RTIWWDSIZECTRL) from among 100%, 50%, 25%, 12.5%, 6.25% and 3.125% as shown in Figure 13-10. The window with the respective size will be opened before the end of the DWD expiration. The user has to serve the watchdog in the window. Otherwise, a reset or NMI will generate. Figure 13-11 shows an DWWD operation example (25% window). • Configuration of DWWD The DWWD preload value (same as DWD preload) can only be configured when the DWWD counter is disabled. The window size and watchdog reaction to a violation can be configured even after the watchdog has been enabled. Any changes to the window size and watchdog reaction configurations will only take effect after the next servicing of the DWWD. This feature can be utilized to dynamically set windows of different sizes based on task execution time, adding a program sequence element to the diagnostic which can improve fault coverage. Figure 13-10. Digital Windowed Watchdog Timing Example DWD Down Counter open window 100% window open window open window 50% window open window open window open window 25% window open window open window open window 12.5% window open window open window open window 6.25% window op. win op. win op. win 3.125% window o w o w o w Figure 13-11. Digital Windowed Watchdog Operation Example (25% Window) 0x1FFFFFF Preload Register Value left shifted 13bits Open Window DWD Down Counter Preload Register Value left shifted 11bits DWD can NOT be served in this period 0 time CPU access to DWD 444 set DWD Preload Config 25% DWD Window Reset/NMI enable DWD Write WD Keys Real-Time Interrupt (RTI) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 13.2.6 Low Power Modes Low power modes allow the trade off of the current used during low power versus functionality and fast wakeup response. All low power modes have the following characteristics: • CPU and system clocks are disabled. • Flash banks and pump are in sleep mode. • All peripheral modules are in low power modes and the clocks are disabled (exceptions to this may occur and would be documented in the specific device data sheet). Flexibility in enabling and disabling clocks allows for many different low-power modes (see Section 2.4.3). The operation of the RTI Module is guaranteed in Run, Doze and Snooze modes. In Sleep mode, all clocks will be switched off and the RTI will not work. In Doze and Snooze modes, the RTI is active and is able to wake up the device with compare, timebase and overflow interrupts. The compare interrupts can be used to periodically wake up the device. The overflow interrupt can be used to notify the operating system that a counter overflow has occurred. Capturing events generated by the Vectored Interrupt Module (VIM) is also possible since, in both of these low power modes, the peripheral modules are able to generate interrupts that can trigger capture events. Capturing events while in Sleep mode is not supported as the clock to the RTI is not active. When the device is put into low power mode, the peripheral which is generating the external clock NTU is no longer active, and the timebase control circuitry has to switch to an internal clocking scheme when it detects a missing clock on NTU. The timebase interrupt will wake up the device and the application software has to adapt the periodic interrupt generation to the internal clock source. DMA transfers will be disabled, and DMA requests will not be generated after device wakeup since the DMA controller will be powered down. NOTE: RTICLK in Doze Mode In the special case of Doze Mode with PLL off, RTICLK might have a different period than with PLL enabled since RTICLK will be derived from the oscillator output. It has to be ensured that the VCLK to RTICLK ratio is at least 3:1. 13.2.7 Halting Debug Mode Behaviour Once the system enters halting debug mode, the behavior of the RTI depends on the COS (continue on suspend) bit. If the bit is cleared and halting debug mode is active, all counters will stop operation. If the bit is set to one, all counters will be clocked normally and the RTI will work like in normal mode. However, if the external timebase (NTU) is used and the system is in halting debug mode, the timebase control circuit will switch to internal timebase once it detects the missing NTU signal of the suspended communication controller. This will be signaled with an TBINT interrupt so that software can resynchronize after the device exits halting debug mode. SPNU499C – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 445 RTI Control Registers www.ti.com 13.3 RTI Control Registers Table 13-1 provides a summary of the registers. The registers support 8-bit, 16-bit, and 32-bit writes. The offset is relative to the associated peripheral select. See the following sections for detailed descriptions of the registers. The base address for the control registers is FFFF FC00h. The address locations not listed are reserved. Table 13-1. RTI Registers Offset 446 Acronym Register Description Section 00h RTIGCTRL RTI Global Control Register Section 13.3.1 04h RTITBCTRL RTI Timebase Control Register Section 13.3.2 08h RTICAPCTRL RTI Capture Control Register Section 13.3.3 0Ch RTICOMPCTRL RTI Compare Control Register Section 13.3.4 10h RTIFRC0 RTI Free Running Counter 0 Register Section 13.3.5 14h RTIUC0 RTI Up Counter 0 Register Section 13.3.6 18h RTICPUC0 RTI Compare Up Counter 0 Register Section 13.3.7 20h RTICAFRC0 RTI Capture Free Running Counter 0 Register Section 13.3.8 24h RTICAUC0 RTI Capture Up Counter 0 Register Section 13.3.9 30h RTIFRC1 RTI Free Running Counter 1 Register Section 13.3.10 34h RTIUC1 RTI Up Counter 1 Register Section 13.3.11 38h RTICPUC1 RTI Compare Up Counter 1 Register Section 13.3.12 40h RTICAFRC1 RTI Capture Free Running Counter 1 Register Section 13.3.13 44h RTICAUC1 RTI Capture Up Counter 1 Register Section 13.3.14 50h RTICOMP0 RTI Compare 0 Register Section 13.3.15 54h RTIUDCP0 RTI Update Compare 0 Register Section 13.3.16 58h RTICOMP1 RTI Compare 1 Register Section 13.3.17 5Ch RTIUDCP1 RTI Update Compare 1 Register Section 13.3.18 60h RTICOMP2 RTI Compare 2 Register Section 13.3.19 64h RTIUDCP2 RTI Update Compare 2 Register Section 13.3.20 68h RTICOMP3 RTI Compare 3 Register Section 13.3.21 6Ch RTIUDCP3 RTI Update Compare 3 Register Section 13.3.22 70h RTITBLCOMP RTI Timebase Low Compare Register Section 13.3.23 74h RTITBHCOMP RTI Timebase High Compare Register Section 13.3.24 80h RTISETINTENA RTI Set Interrupt Enable Register Section 13.3.25 84h RTICLEARINTENA RTI Clear Interrupt Enable Register Section 13.3.26 88h RTIINTFLAG RTI Interrupt Flag Register Section 13.3.27 90h RTIDWDCTRL Digital Watchdog Control Register Section 13.3.28 94h RTIDWDPRLD Digital Watchdog Preload Register Section 13.3.29 98h RTIWDSTATUS Watchdog Status Register Section 13.3.30 9Ch RTIWDKEY RTI Watchdog Key Register Section 13.3.31 A0h RTIDWDCNTR RTI Digital Watchdog Down Counter Register Section 13.3.32 A4h RTIWWDRXNCTRL Digital Windowed Watchdog Reaction Control Register Section 13.3.33 A8h RTIWWDSIZECTRL Digital Windowed Watchdog Window Size Control Register Section 13.3.34 ACh RTIINTCLRENABLE RTI Compare Interrupt Clear Enable Register Section 13.3.35 B0h RTICOMP0CLR RTI Compare 0 Clear Register Section 13.3.36 B4h RTICOMP1CLR RTI Compare 1 Clear Register Section 13.3.37 B8h RTICOMP2CLR RTI Compare 2 Clear Register Section 13.3.38 BCh RTICOMP3CLR RTI Compare 3 Clear Register Section 13.3.39 Real-Time Interrupt (RTI) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com NOTE: Writes to Reserved registers may clear the pending RTI interrupt. 13.3.1 RTI Global Control Register (RTIGCTRL) The global control register starts/stops the counters and selects the signal compared with the timebase control circuit. This register is shown in Figure 13-12 and described in Table 13-2. Figure 13-12. RTI Global Control Register (RTIGCTRL) [offset = 00] 31 15 20 19 16 Reserved NTUSEL R-0 R/WP-0 14 2 1 0 COS Reserved CNT1EN CNT0EN R/WP-0 R-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 13-2. RTI Global Control Register (RTIGCTRL) Field Descriptions Bit Field 31-20 Reserved 19-16 NTUSEL Value 0 Select NTU signal. These bits determine which NTU input signal is used as external timebase NTU0 5h NTU1 Ah NTU2 Fh NTU3 COS 14-2 Reserved 1 CNT1EN 0 Reads return 0. Writes have no effect. 0h All other values 15 Description Tied to 0 Continue on suspend. This bit determines if both counters are stopped when the device goes into halting debug mode or if they continue counting. 0 Counters are stopped while in halting debug mode. 1 Counters are running while in halting debug mode. 0 Reads return 0. Writes have no effect. Counter 1 enable. This bit starts and stops counter block 1 (RTIUC1 and RTIFRC1). 0 Counter block 1 is stopped. 1 Counter block 1 is running. CNT0EN Counter 0 enable. This bit starts and stops counter block 0 (RTIUC0 and RTIFRC0). 0 Counter block 0 is stopped. 1 Counter block 0 is running. NOTE: If the application uses the timebase circuit for synchronization between the communications controller and the operating system and the device enters halting debug mode, the synchronization may be lost depending on the COS setting in the RTI module and the halting debug mode behavior of the communications controller. SPNU499C – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 447 RTI Control Registers www.ti.com 13.3.2 RTI Timebase Control Register (RTITBCTRL) The timebase control register selects if the free running counter 0 is incremented by RTICLK or NTU. This register is shown in Figure 13-13 and described in Table 13-3. Figure 13-13. RTI Timebase Control Register (RTITBCTRL) [offset = 04h] 31 8 Reserved R-0 7 1 0 Reserved 2 INC TBEXT R-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 13-3. RTI Timebase Control Register (RTITBCTRL) Field Descriptions Bit 31-2 1 0 Field Reserved Value 0 INC Description Reads return 0. Writes have no effect. Increment free running counter 0. This bit determines whether the free running counter 0 (RTIFRC0) is automatically incremented if a failing clock on the NTU signal is detected. 0 RTIFRC0 will not be incremented on a failing external clock. 1 RTIFRC0 will be incremented on a failing external clock. TBEXT Timebase external. This bit selects whether the free running counter 0 (RTIFRC0) is clocked by the internal up counter 0 (RTIUC0) or from the external signal NTU. Setting the TBEXT bit from 0 to 1 will not increment RTIFRC0, since RTIUC0 is reset. When the timebase supervisor circuit detects a missing clock edge, then the TBEXT bit is reset. Only the software can select whether the external signal should be used. 448 0 RTIUC0 clocks RTIFRC0. 1 NTU clocks RTIFRC0. Real-Time Interrupt (RTI) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com 13.3.3 RTI Capture Control Register (RTICAPCTRL) The capture control register controls the capture source for the counters. This register is shown in Figure 13-14 and described in Table 13-4. Figure 13-14. RTI Capture Control Register (RTICAPCTRL) [offset = 08h] 31 8 Reserved R-0 7 1 0 Reserved 2 CAPCNTR1 CAPCNTR0 R-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 13-4. RTI Capture Control Register (RTICAPCTRL) Field Descriptions Bit 31-2 1 0 Field Reserved Value 0 CAPCNTR1 Description Reads return 0. Writes have no effect. Capture counter 1. This bit determines which external interrupt source triggers a capture event of RTIUC1 and RTIFRC1. 0 Capture of RTIUC1/ RTIFRC1 is triggered by capture event source 0. 1 Capture of RTIUC1/ RTIFRC1 is triggered by capture event source 1. CAPCNTR0 Capture counter 0. This bit determines which external interrupt source triggers a capture event of RTIUC0 and RTIFRC0. 0 Capture of RTIUC0/ RTIFRC0 is triggered by capture event source 0. 1 Capture of RTIUC0/ RTIFRC0 is triggered by capture event source 1. SPNU499C – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 449 RTI Control Registers www.ti.com 13.3.4 RTI Compare Control Register (RTICOMPCTRL) The compare control register controls the source for the compare registers. This register is shown in Figure 13-15 and described in Table 13-5. Figure 13-15. RTI Compare Control Register (RTICOMPCTRL) [offset = 0Ch] 31 16 Reserved R-0 15 13 12 11 9 8 Reserved COMPSEL3 Reserved COMPSEL2 R-0 R/WP-0 R-0 R/WP-0 7 5 4 3 1 0 Reserved COMPSEL1 Reserved COMPSEL0 R-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 13-5. RTI Compare Control Register (RTICOMPCTRL) Field Descriptions Bit 31-13 12 11-9 8 7-5 4 3-1 0 450 Field Reserved Value 0 COMPSEL3 Reserved 0 Value will be compared with RTIFRC0. 1 Value will be compared with RTIFRC1. 0 Reads return 0. Writes have no effect. Compare select 2. This bit determines the counter with which the compare value held in compare register 2 (RTICOMP2) is compared. 0 Value will be compared with RTIFRC0. 1 Value will be compared with RTIFRC1. 0 Reads return 0. Writes have no effect. COMPSEL1 Reserved Reads return 0. Writes have no effect. Compare select 3. This bit determines the counter with which the compare value held in compare register 3 (RTICOMP3) is compared. COMPSEL2 Reserved Description Compare select 1. This bit determines the counter with which the compare value held in compare register 1 (RTICOMP1) is compared. 0 Value will be compared with RTIFRC0. 1 Value will be compared with RTIFRC1. 0 Reads return 0. Writes have no effect. COMPSEL0 Compare select 0. This bit determines the counter with which the compare value held in compare register 0 (RTICOMP0) is compared. 0 Value will be compared with RTIFRC0. 1 Value will be compared with RTIFRC1. Real-Time Interrupt (RTI) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com 13.3.5 RTI Free Running Counter 0 Register (RTIFRC0) The free running counter 0 register holds the current value of free running counter 0. This register is shown in Figure 13-16 and described in Table 13-6. Figure 13-16. RTI Free Running Counter 0 Register (RTIFRC0) [offset = 10h] 31 16 FRC0 R/WP-0 15 0 FRC0 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 13-6. RTI Free Running Counter 0 Register (RTIFRC0) Field Descriptions Bit Field Value 31-0 FRC0 0-FFFF FFFFh Description Free running counter 0. This registers holds the current value of the free running counter 0. A read of this counter returns the current value of the counter. The counter can be preset by writing (in privileged mode only) to this register. The counter increments then from this written value upwards. Note: If counters must be preset, they must be disabled in the RTIGCTRL register to ensure consistency between RTIUC0 and RTIFRC0. 13.3.6 RTI Up Counter 0 Register (RTIUC0) The up counter 0 register holds the current value of prescale counter. This register is shown in Figure 1317 and described in Table 13-7. Figure 13-17. RTI Up Counter 0 Register (RTIUC0) [offset = 14h] 31 16 UC0 R/WP-0 15 0 UC0 R/WP-0 LLEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 13-7. RTI Up Counter 0 Register (RTIUC0) Field Descriptions Bit Field Value 31-0 UC0 0-FFFF FFFFh Description Up counter 0. This register holds the current value of the up counter 0 and prescales the RTI clock. It will be only updated by a previous read of free running counter 0 (RTIFRC0). This method of updating effectively gives a 64-bit read of both counters, without having the problem of a counter being updated between two consecutive reads on up counter 0 (RTIUC0) and free running counter 0 (RTIFRC0). A read of this counter returns the value of the counter at the time RTIFRC0 was read. A write to this counter presets it with a value. The counter then increments from this written value upwards. Note: If counters must be preset, they must be disabled in the RTIGCTRL register to ensure consistency between RTIUC0 and RTIFRC0. Note: If the preset value is bigger than the compare value stored in register RTICPUC0, then it can take a long time until a compare matches, since RTIUC0 has to count up until it overflows. SPNU499C – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 451 RTI Control Registers www.ti.com 13.3.7 RTI Compare Up Counter 0 Register (RTICPUC0) The compare up counter 0 register holds the value to be compared with prescale counter 0 (RTIUC0). This register is shown in Figure 13-18 and described in Table 13-8. Figure 13-18. RTI Compare Up Counter 0 Register (RTICPUC0) [offset = 18h] 31 16 CPUC0 R/WP-0 15 0 CPUC0 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 13-8. RTI Compare Up Counter 0 Register (RTICPUC0) Field Descriptions Bit 31-0 Field Value CPUC0 0-FFFF FFFFh Description Compare up counter 0. This register holds the value that is compared with the up counter 0. When the compare shows a match, the free running counter 0 (RTIFRC0) is incremented. RTIUC0 is set to 0 when the counter value matches the RTICPUC0 value. The value set in this register prescales the RTI clock. If CPUC0 = 0, then fFRC0 = RTICLK/(232+1) (Setting CPUC0 equal to 0 is not recommended. Doing so will hold the Up Counter at 0 for 2 RTICLK cycles after it overflows from FFFF FFFFh to 0.) If CPUC0 ≠ 0, then fFRC0 = RTICLK/(RTICPUC0+1) A read of this register returns the current compare value. A write to this register: • If TBEXT = 0, the compare value is updated. • If TBEXT = 1, the compare value is unchanged. 13.3.8 RTI Capture Free Running Counter 0 Register (RTICAFRC0) The capture free running counter 0 register holds the free running counter 0 on external events. This register is shown in Figure 13-19 and described in Table 13-9. Figure 13-19. RTI Capture Free Running Counter 0 Register (RTICAFRC0) [offset = 20h] 31 16 CAFRC0 R-0 15 0 CAFRC0 R-0 LEGEND: R = Read only; -n = value after reset Table 13-9. RTI Capture Free Running Counter 0 Register (RTICAFRC0) Field Descriptions Bit 31-0 Field CAFRC0 Value 0-FFFF FFFFh Description Capture free running counter 0. This register captures the current value of the free running counter 0 (RTIFRC0) when an event occurs, controlled by the external capture control block. A read of this register returns the value of RTIFRC0 on a capture event. 452 Real-Time Interrupt (RTI) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com 13.3.9 RTI Capture Up Counter 0 Register (RTICAUC0) The capture up counter 0 register holds the current value of prescale counter 0 on external events. This register is shown in Figure 13-20 and described in Table 13-10. Figure 13-20. RTI Capture Up Counter 0 Register (RTICAUC0) [offset = 24h] 31 16 CAUC0 R-0 15 0 CAUC0 R-0 LEGEND: R = Read only; -n = value after reset Table 13-10. RTI Capture Up Counter 0 Register (RTICAUC0) Field Descriptions Bit 31-0 Field CAUC0 Value 0-FFFF FFFFh Description Capture up counter 0. This register captures the current value of the up counter 0 (RTIUC0) when an event occurs, controlled by the external capture control block. Note: The read sequence must be the same as with RTIUC0 and RTIFRC0. Therefore, the RTICAFRC0 register must be read before the RTICAUC0 register is read. This sequence ensures that the value of the RTICAUC0 register is the corresponding value to the RTICAFRC0 register, even if another capture event happens in between the two reads. A read of this register returns the value of RTIUC0 on a capture event. 13.3.10 RTI Free Running Counter 1 Register (RTIFRC1) The free running counter 1 register holds the current value of the free running counter 1. This register is shown in Figure 13-21 and described in Table 13-11. Figure 13-21. RTI Free Running Counter 1 Register (RTIFRC1) [offset = 30h] 31 16 FRC1 R/WP-0 15 0 FRC1 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 13-11. RTI Free Running Counter 1 Register (RTIFRC1) Field Descriptions Bit Field Value 31-0 FRC1 0-FFFF FFFFh Description Free running counter 1. This register holds the current value of the free running counter 1 and will be updated continuously. A read of this register returns the current value of the counter. A write to this register presets the counter. The counter increments then from this written value upwards. Note: If counters must be preset, they must be disabled in the RTIGCTRL register to ensure consistency between RTIUC1 and RTIFRC1. SPNU499C – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 453 RTI Control Registers www.ti.com 13.3.11 RTI Up Counter 1 Register (RTIUC1) The up counter 1 register holds the current value of the prescale counter 1. This register is shown in Figure 13-22 and described in Table 13-12. Figure 13-22. RTI Up Counter 1 Register (RTIUC1) [offset = 34h] 31 16 UC1 R/WP-0 15 0 UC1 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 13-12. RTI Up Counter 1 Register (RTIUC1) Field Descriptions Bit Field Value 31-0 UC1 0-FFFF FFFFh Description Up counter 1. This register holds the current value of the up counter 1 and prescales the RTI clock. It will be only updated by a previous read of free running counter 1 (RTIFRC1). This method of updating effectively gives a 64-bit read of both counters, without having the problem of a counter being updated between two consecutive reads on RTIUC1 and RTIFRC1. A read of this register will return the value of the counter when the RTIFRC1 was read. A write to this register presets the counter. The counter then increments from this written value upwards. Note: If counters must be preset, they must be disabled in the RTIGCTRL register to ensure consistency between RTIUC1 and RTIFRC1. Note: If the preset value is bigger than the compare value stored in register RTICPUC1, then it can take a long time until a compare matches, since RTIUC1 has to count up until it overflows. 454 Real-Time Interrupt (RTI) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com 13.3.12 RTI Compare Up Counter 1 Register (RTICPUC1) The compare up counter 1 register holds the value compared with prescale counter 1. This register is shown in Figure 13-23 and described in Table 13-13. Figure 13-23. RTI Compare Up Counter 1 Register (RTICPUC1) [offset = 38h] 31 16 CPUC1 R/WP-0 15 0 CPUC1 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 13-13. RTI Compare Up Counter 1 Register (RTICPUC1) Field Descriptions Bit 31-0 Field CPUC1 Value 0-FFFF FFFFh Description Compare up counter 1. This register holds the compare value, which is compared with the up counter 1. When the compare matches, the free running counter 1 (RTIFRC1) is incremented. The up counter is cleared to 0 when the counter value matches the CPUC1 value. The value set in this prescales the RTI clock according to the following formula: If CPUC1 = 0, then fFRC1 = RTICLK/(232+1) (Setting CPUC1 equal to 0 is not recommended. Doing so will hold the Up Counter at 0 for 2 RTICLK cycles after it overflows from FFFF FFFFh to 0.) If CPUC1 ≠ 0, then fFRC1 = RTICLK/(RTICPUC1+1) A read of this register returns the current compare value. A write to this register updates the compare value. SPNU499C – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 455 RTI Control Registers www.ti.com 13.3.13 RTI Capture Free Running Counter 1 Register (RTICAFRC1) The capture free running counter 1 register holds the current value of free running counter 1 on external events. This register is shown in Figure 13-24 and described in Table 13-14. Figure 13-24. RTI Capture Free Running Counter 1 Register (RTICAFRC1) [offset = 40h] 31 16 CAFRC1 R-0 15 0 CAFRC1 R-0 LEGEND: R = Read only; -n = value after reset Table 13-14. RTI Capture Free Running Counter 1 Register (RTICAFRC1) Field Descriptions Bit 31-0 Field CAFRC1 Value 0-FFFF FFFFh Description Capture free running counter 1. This register captures the current value of the free running counter 1 (RTIFRC1) when an event occurs, controlled by the external capture control block. A read of this register returns the value of RTIFRC1 on a capture event. 13.3.14 RTI Capture Up Counter 1 Register (RTICAUC1) The capture up counter 1 register holds the current value of prescale counter 1 on external events. This register is shown in Figure 13-25 and described in Table 13-15. Figure 13-25. RTI Capture Up Counter 1 Register (RTICAUC1) [offset = 44h] 31 16 CAUC1 R-0 15 0 CAUC1 R-0 LEGEND: R = Read only; -n = value after reset Table 13-15. RTI Capture Up Counter 1 Register (RTICAUC1) Field Descriptions Bit 31-0 Field CAUC1 Value 0-FFFF FFFFh Description Capture up counter 1. This register captures the current value of the up counter 1 (RTIUC1) when an event occurs, controlled by the external capture control block. Note: The RTICAFRC1 register must be read before the RTICAUC1 register is read. This sequence ensures that the value of the RTICAUC1 register is the corresponding value to the RTICAFRC1 register, even if another capture event happens in between the two reads. A read of this register returns the value of RTIUC1 on a capture event. 456 Real-Time Interrupt (RTI) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com 13.3.15 RTI Compare 0 Register (RTICOMP0) The compare 0 register holds the value to be compared with the counters. This register is shown in Figure 13-26 and described in Table 13-16. Figure 13-26. RTI Compare 0 Register (RTICOMP0) [offset = 50h] 31 16 COMP0 R/WP-0 15 0 COMP0 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 13-16. RTI Compare 0 Register (RTICOMP0) Field Descriptions Bit 31-0 Field COMP0 Value 0-FFFF FFFFh Description Compare 0. This registers holds a value that is compared with the counter selected in the compare control logic. If RTIFRC0 or RTIFRC1, depending on the counter selected, matches the compare value, an interrupt is flagged. With this register it is also possible to initiate a DMA request. A read of this register will return the current compare value. A write to this register (in privileged mode only) will update the compare register with a new compare value. 13.3.16 RTI Update Compare 0 Register (RTIUDCP0) The update compare 0 register holds the value to be added to the compare register 0 value on a compare match. This register is shown in Figure 13-27 and described in Table 13-17. Figure 13-27. RTI Update Compare 0 Register (RTIUDCP0) [offset = 54h] 31 16 UDCP0 R/WP-0 15 0 UDCP0 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 13-17. RTI Update Compare 0 Register (RTIUDCP0) Field Descriptions Bit 31-0 Field UDCP0 Value 0-FFFF FFFFh Description Update compare 0. This register holds a value that is added to the value in the compare 0 (RTICOMP0) register each time a compare matches. This function allows periodic interrupts to be generated without software intervention. A read of this register will return the value to be added to the RTICOMP0 register on the next compare match. A write to this register will provide a new update value. SPNU499C – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 457 RTI Control Registers www.ti.com 13.3.17 RTI Compare 1 Register (RTICOMP1) The compare 1 register holds the value to be compared to the counters. This register is shown in Figure 13-28 and described in Table 13-18. Figure 13-28. RTI Compare 1 Register (RTICOMP1) [offset = 58h] 31 16 COMP1 R/WP-0 15 0 COMP1 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 13-18. RTI Compare 1 Register (RTICOMP1) Field Descriptions Bit 31-0 Field COMP1 Value 0-FFFF FFFFh Description Compare 1. This register holds a value that is compared with the counter selected in the compare control logic. If RTIFRC0 or RTIFRC1, depending on the counter selected, matches this compare value, an interrupt is flagged. With this register, it is possible to initiate a DMA request. A read of this register will return the current compare value. A write to this register will update the compare register with a new compare value. 13.3.18 RTI Update Compare 1 Register (RTIUDCP1) The update compare 1 register holds the value to be added to the compare register 1 value on a compare match. This register is shown in Figure 13-29 and described in Table 13-19. Figure 13-29. RTI Update Compare 1 Register (RTIUDCP1) [offset = 5Ch] 31 16 UDCP1 R/WP-0 15 0 UDCP1 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 13-19. RTI Update Compare 1 Register (RTIUDCP1) Field Descriptions Bit 31-0 Field UDCP1 Value 0-FFFF FFFFh Description Update compare 1. This register holds a value that is added to the value in the RTICOMP1 register each time a compare matches. This process allows periodic interrupts to be generated without software intervention. A read of this register will return the value to be added to the RTICOMP1 register on the next compare match. A write to this register will provide a new update value. 458 Real-Time Interrupt (RTI) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com 13.3.19 RTI Compare 2 Register (RTICOMP2) The compare 2 register holds the value to be compared to the counters. This register is shown in Figure 13-30 and described in Table 13-20. Figure 13-30. RTI Compare 2 Register (RTICOMP2) [offset = 60h] 31 16 COMP2 R/WP-0 15 0 COMP2 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 13-20. RTI Compare 2 Register (RTICOMP2) Field Descriptions Bit 31-0 Field COMP2 Value 0-FFFF FFFFh Description Compare 2. This register holds a value that is compared with the counter selected in the compare control logic. If RTIFRC0 or RTIFRC1, depending on the counter selected, matches this compare value, an interrupt is flagged. With this register, it is possible to initiate a DMA request. A read of this register will return the current compare value. A write to this register (in privileged mode only) will provide a new compare value. 13.3.20 RTI Update Compare 2 Register (RTIUDCP2) The update compare 2 register holds the value to be added to the compare register 2 value on a compare match. This register is shown in Figure 13-31 and described in Table 13-21. Figure 13-31. RTI Update Compare 2 Register (RTIUDCP2) [offset = 64h] 31 16 UDCP2 R/WP-0 15 0 UDCP2 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 13-21. RTI Update Compare 2 Register (RTIUDCP2) Field Descriptions Bit 31-0 Field UDCP2 Value 0-FFFF FFFFh Description Update compare 2. This register holds a value that is added to the value in the RTICOMP2 register each time a compare matches. This process makes it possible to generate periodic interrupts without software intervention. A read of this register will return the value to be added to the RTICOMP2 register on the next compare match. A write to this register will provide a new update value. SPNU499C – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 459 RTI Control Registers www.ti.com 13.3.21 RTI Compare 3 Register (RTICOMP3) The compare 3 register holds the value to be compared to the counters. This register is shown in Figure 13-32 and described in Table 13-22. Figure 13-32. RTI Compare 3 Register (RTICOMP3) [offset = 68h] 31 16 COMP3 R/WP-0 15 0 COMP3 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 13-22. RTI Compare 3 Register (RTICOMP3) Field Descriptions Bit 31-0 Field COMP3 Value 0-FFFF FFFFh Description Compare 3. This register holds a value that is compared with the counter selected in the compare control logic. If RTIFRC0 or RTIFRC1, depending on the counter selected, matches this compare value, an interrupt is flagged. With this register, it is possible to initiate a DMA request. A read of this register will return the current compare value. A write to this register will provide a new compare value. 13.3.22 RTI Update Compare 3 Register (RTIUDCP3) The update compare 3 register holds the value to be added to the compare register 3 value on a compare match. This register is shown in Figure 13-33 and described in Table 13-23. Figure 13-33. RTI Update Compare 3 Register (RTIUDCP3) [offset = 6Ch] 31 16 UDCP3 R/WP-0 15 0 UDCP3 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 13-23. RTI Update Compare 3 Register (RTIUDCP3) Field Descriptions Bit 31-0 Field UDCP3 Value 0-FFFF FFFFh Description Update compare 3. This register holds a value that is added to the value in the RTICOMP3 register each time a compare matches. This process makes it possible to generate periodic interrupts without software intervention. A read of this register will return the value to be added to the RTICOMP3 register on the next compare match. A write to this register will provide a new update value. 460 Real-Time Interrupt (RTI) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com 13.3.23 RTI Timebase Low Compare Register (RTITBLCOMP) The timebase low compare register holds the value to activate the edge detection circuit. This register is shown in Figure 13-34 and described in Table 13-24. Figure 13-34. RTI Timebase Low Compare Register (RTITBLCOMP) [offset = 70h] 31 16 TBLCOMP R/WP-0 15 0 TBLCOMP R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 13-24. RTI Timebase Low Compare Register (RTITBLCOMP) Field Descriptions Bit 31-0 Field Value TBLCOMP 0-FFFF FFFFh Description Timebase low compare value. This value determines when the edge detection circuit starts monitoring the NTU signal. It will be compared with RTIUC0. A read of this register will return the current compare value. A write to this register has the following effects: If TBEXT = 0: The compare value is updated. If TBEXT = 1: The compare value is not changed. 13.3.24 RTI Timebase High Compare Register (RTITBHCOMP) The timebase high compare register holds the value to deactivate the edge detection circuit. This register is shown in Figure 13-35 and described in Table 13-25. Figure 13-35. RTI Timebase High Compare Register (RTITBHCOMP) [offset = 74h] 31 16 TBHCOMP R/WP-0 15 0 TBHCOMP R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 13-25. RTI Timebase High Compare Register (RTITBHCOMP) Field Descriptions Bit 31-0 Field TBHCOMP Value 0-FFFF FFFFh Description Timebase high compare value. This value determines when the edge detection circuit will stop monitoring the NTU signal. It will be compared with RTIUC0. RTITBHCOMP must be less than RTICPUC0 because RTIUC0 will be reset when RTICPUC0 is reached. Example: The NTU edge detection circuit should be active ± 10 RTICLK cycles around RTICPUC0. • RTICPUC0 = 0050h • RTITBLCOMP = 0046h • RTITBHCOMP = 0009h A read of this register will return the current compare value. A write to this register has the following effects: If TBEXT = 0: The compare value is updated. If TBEXT = 1: The compare value is not changed. SPNU499C – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 461 RTI Control Registers www.ti.com 13.3.25 RTI Set Interrupt Enable Register (RTISETINTENA) This register prevents the necessity of a read-modify-write operation if a particular interrupt should be enabled. This register is shown in Figure 13-36 and described in Table 13-26. Figure 13-36. RTI Set Interrupt Control Register (RTISETINTENA) [offset = 80h] 31 24 Reserved R-0 23 18 17 16 Reserved 19 SETOVL1INT SETOVL0INT SETTBINT R-0 R/WP-0 R/WP-0 R/WP-0 15 11 10 9 8 Reserved 12 SETDMA3 SETDMA2 SETDMA1 SETDMA0 R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 3 2 1 0 Reserved 4 SETINT3 SETINT2 SETINT1 SETINT0 R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 13-26. RTI Set Interrupt Control Register (RTISETINTENA) Field Descriptions Bit 31-19 18 Field Reserved Value 0 SETOVL1INT Description Reads return 0. Writes have no effect. Set free running counter 1 overflow interrupt. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 1 17 SETOVL0INT Read or Write: Interrupt is enabled. Set free running counter 0 overflow interrupt. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 1 16 SETTBINT Read or Write: Interrupt is enabled. Set timebase interrupt. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 15-12 Reserved 11 SETDMA3 1 Read or Write: Interrupt is enabled. 0 Reads return 0. Writes have no effect. Set compare DMA request 3. 0 Read: DMA request is disabled. Write: DMA request is unchanged. 1 10 SETDMA2 Read or Write: DMA request is enabled. Set compare DMA request 2. 0 Read: DMA request is disabled. Write: DMA request is unchanged. 1 9 SETDMA1 Read or Write: DMA request is enabled. Set compare DMA request 1. 0 Read: DMA request is disabled. Write: DMA request is unchanged. 1 462 Read or Write: DMA request is enabled. Real-Time Interrupt (RTI) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com Table 13-26. RTI Set Interrupt Control Register (RTISETINTENA) Field Descriptions (continued) Bit 8 Field Value SETDMA0 Description Set compare DMA request 0. 0 Read: DMA request is disabled. Write: DMA request is unchanged. 7-4 Reserved 3 SETINT3 1 Read or Write: DMA request is enabled. 0 Reads return 0. Writes have no effect. Set compare interrupt 3. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 1 2 SETINT2 Read or Write: Interrupt is enabled. Set compare interrupt 2. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 1 1 SETINT1 Read or Write: Interrupt is enabled. Set compare interrupt 1. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 1 0 SETINT0 Read or Write: Interrupt is enabled. Set compare interrupt 0. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 1 Read or Write: Interrupt is enabled. SPNU499C – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 463 RTI Control Registers www.ti.com 13.3.26 RTI Clear Interrupt Enable Register (RTICLEARINTENA) This register prevents the necessity of a read-modify-write operation if a particular interrupt should be disabled. This register is shown in Figure 13-37 and described in Table 13-27. Figure 13-37. RTI Clear Interrupt Control Register (RTICLEARINTENA) [offset = 84h] 31 24 Reserved R-0 23 19 18 Reserved 17 CLEAROVL1INT R-0 R/WP-0 15 12 16 CLEAROVL0INT R/WP-0 CLEARTBINT R/WP-0 11 10 9 8 Reserved CLEARDMA3 CLEARDMA2 CLEARDMA1 CLEARDMA0 R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 3 2 1 0 Reserved 4 CLEARINT3 CLEARINT2 CLEARINT1 CLEARINT0 R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 13-27. RTI Clear Interrupt Control Register (RTICLEARINTENA) Field Descriptions Bit 31-19 18 Field Reserved Value 0 CLEAROVL1INT Description Reads return 0. Writes have no effect. Clear free running counter 1 overflow interrupt. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 1 Read: Interrupt is enabled. Write: Interrupt is disabled. 17 CLEAROVL0INT Clear free running counter 0 overflow interrupt. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 1 Read: Interrupt is enabled. Write: Interrupt is disabled. 16 CLEARTBINT Clear timebase interrupt. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 1 Read: Interrupt is enabled. Write: Interrupt is disabled. 15-12 11 Reserved 0 CLEARDMA3 Reads return 0. Writes have no effect. Clear compare DMA request 3. 0 Read: DMA request is disabled. Write: Corresponding bit is unchanged. 1 Read: DMA request is enabled. Write: DMA request is disabled. 10 CLEARDMA2 Clear compare DMA request 2. 0 Read: DMA request is disabled. Write: Corresponding bit is unchanged. 1 Read: DMA request is enabled. Write: DMA request is disabled. 464 Real-Time Interrupt (RTI) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com Table 13-27. RTI Clear Interrupt Control Register (RTICLEARINTENA) Field Descriptions (continued) Bit 9 Field Value CLEARDMA1 Description Clear compare DMA request 1. 0 Read: DMA request is disabled. Write: Corresponding bit is unchanged. 1 Read: DMA request is enabled. Write: DMA request is disabled. 8 CLEARDMA0 Clear compare DMA request 0. 0 Read: DMA request is disabled. Write: Corresponding bit is unchanged. 1 Read: DMA request is enabled. Write: DMA request is disabled. 7-4 3 Reserved 0 CLEARINT3 Reads return 0. Writes have no effect. Clear compare interrupt 3. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 1 Read: Interrupt is enabled. Write: Interrupt is disabled. 2 CLEARINT2 Clear compare interrupt 2. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 1 Read: Interrupt is enabled. Write: Interrupt is disabled. 1 CLEARINT1 Clear compare interrupt 1. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 1 Read: Interrupt is enabled. Write: Interrupt is disabled. 0 CLEARINT0 Clear compare interrupt 0. 0 Read: Interrupt is disabled. Write: Corresponding bit is unchanged. 1 Read: Interrupt is enabled. Write: Interrupt is disabled. SPNU499C – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 465 RTI Control Registers www.ti.com 13.3.27 RTI Interrupt Flag Register (RTIINTFLAG) The corresponding flags are set at every compare match of the RTIFRCx and RTICOMPx values, whether the interrupt is enabled or not. This register is shown in Figure 13-38 and described in Table 13-28. Figure 13-38. RTI Interrupt Flag Register (RTIINTFLAG) [offset = 88h] 31 19 Reserved R-0 15 4 18 17 16 OVL1INT OVL0INT TBINT R/W1CP- R/W1CP0 0 R/W1C P-0 3 2 1 0 Reserved INT3 INT2 INT1 INT0 R-0 R/W1C P-0 R/W1C P-0 R/W1C P-0 R/W1C P-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 13-28. RTI Interrupt Flag Register (RTIINTFLAG) Field Descriptions Bit Field 31-19 Reserved 18 OVL1INT Value 0 Description Reads return 0. Writes have no effect. Free running counter 1 overflow interrupt flag. This bit determines if an interrupt is pending. 0 Read: No interrupt is pending. Write: Bit is unchanged. 1 Read: Interrupt is pending. Write: Bit is cleared to 0. 17 OVL0INT Free running counter 0 overflow interrupt flag. This bit determines if an interrupt is pending. 0 Read: No interrupt is pending. Write: Bit is unchanged. 1 Read: Interrupt is pending. Write: Bit is cleared to 0. 16 TBINT Timebase interrupt flag. This flag is set when the TBEXT bit is cleared by detection of a missing external clock edge. It will not be set by clearing TBEXT by software. It determines if an interrupt is pending. 0 Read: No interrupt is pending. Write: Bit is unchanged. 1 Read: Interrupt is pending. Write: Bit is cleared to 0. 15-4 3 Reserved 0 INT3 Reads return 0. Writes have no effect. Interrupt flag 3. These bits determine if an interrupt due to a Compare 3 match is pending. 0 Read: No interrupt is pending. Write: Bit is unchanged. 1 Read: Interrupt is pending. Write: Bit is cleared to 0. 2 INT2 Interrupt flag 2. These bits determine if an interrupt due to a Compare 2 match is pending. 0 Read: No interrupt is pending. Write: Bit is unchanged. 1 Read: Interrupt is pending. Write: Bit is cleared to 0. 1 INT1 Interrupt flag 1. These bits determine if an interrupt due to a Compare 1 match is pending. 0 Read: No interrupt is pending. Write: Bit is unchanged. 1 Read: Interrupt is pending. Write: Bit is cleared to 0. 466 Real-Time Interrupt (RTI) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com Table 13-28. RTI Interrupt Flag Register (RTIINTFLAG) Field Descriptions (continued) Bit Field 0 INT0 Value Description Interrupt flag 0. These bits determine if an interrupt due to a Compare 0 match is pending. 0 Read: No interrupt is pending. Write: Bit is unchanged. 1 Read: Interrupt is pending. Write: Bit is cleared to 0. 13.3.28 Digital Watchdog Control Register (RTIDWDCTRL) The software has to write to the DWDCTRL field in order to enable the DWD, as described below. Once enabled, the watchdog can only be disabled by a system reset. The application cannot disable the watchdog. However should the RTICLK source be changed to a source that is unimplemented it will have the same effect as disabling the watchdog. This register is shown in Figure 13-38 and described in Table 13-28. Figure 13-39. Digital Watchdog Control Register (RTIDWDCTRL) [offset = 90h] 31 16 DWDCTRL R/WP-5312h 15 0 DWDCTRL R/WP-ACEDh LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 13-29. Digital Watchdog Control Register (RTIDWDCTRL) Field Descriptions Bit 31-0 Field Value DWDCTRL Description Digital Watchdog Control. 5312 ACEDh Read: DWD counter is disabled. Write: State of DWD counter is unchanged (stays enabled or disabled). A985 59DAh Read: DWD counter is enabled. Write: DWD counter is enabled. All other values Read: DWD counter state is unchanged (enabled or disabled). Write: State of DWD counter is unchanged (stays enabled or disabled). Note: Once the enable value is written, all other future writes are blocked. In other words, once DWD is enabled, it can only be disabled by system reset or power on reset. However should the RTICLK source be changed to a source that is unimplemented it will have the same effect as disabling the watchdog. SPNU499C – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 467 RTI Control Registers www.ti.com 13.3.29 Digital Watchdog Preload Register (RTIDWDPRLD) This register sets the expiration time of the DWD. This register is shown in Figure 13-38 and described in Table 13-28. Figure 13-40. Digital Watchdog Preload Register (RTIDWDPRLD) [offset = 94h] 31 16 Reserved R-0 15 12 11 0 Reserved DWDPRLD R-0 R/WP-FFFh LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 13-30. Digital Watchdog Preload Register (RTIDWDPRLD) Field Descriptions Bit Field 31-12 Reserved 11-0 DWDPRLD Value 0 0-FFFh Description Reads return 0 and writes have no effect. Digital Watchdog Preload Value. Read: The current preload value Write: Set the preload value. The DWD preload register can be configured only when the DWD is disabled. Therefore, the application can only configure the DWD preload register before it enables the DWD down counter. The expiration time of the DWD Down Counter can be determined with following equation: texp = (DWDPRLD+1) x 213 / RTICLK1 where: DWDPRLD = 0...4095 468 Real-Time Interrupt (RTI) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com 13.3.30 Watchdog Status Register (RTIWDSTATUS) This register records the status of the DWD. The values of the following status bits will not be affected by a soft reset. These bits are cleared by a power-on reset, or by a write of 1. These bits can be used for debug purposes. This register is shown in Figure 13-38 and described in Table 13-28. Figure 13-41. Watchdog Status Register (RTIWDSTATUS) [offset = 98h] 31 8 Reserved R-0 7 5 4 3 2 1 0 Reserved 6 DWWD ST END TIME VIOL START TIME VIOL KEY ST DWD ST Reserved R-0 R/W1CP-x R/W1CP-x R/W1CP-x R/W1CP-x R/W1CP-x R-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 13-31. Watchdog Status Register (RTIWDSTATUS) Field Descriptions Bit 31-6 5 Field Reserved Value 0 DWWD ST Description Reads return 0. Writes have no effect. Windowed Watchdog Status 0 Read: No time-window violation has occurred. Write: Leaves the current value unchanged. 1 Read: Time-window violation has occurred. The watchdog has generated either a system reset or a non-maskable interrupt to the CPU in this case. Write: Bit is cleared to 0. This will also clear all other status flags in the RTIWDSTATUS register. Clearing of the status flags will deassert the non-maskable interrupt generated due to violation of the DWWD. 4 END TIME VIOL Windowed Watchdog End Time Violation Status. This bit indicates whether the Watchdog counter expired. 0 Read: No end-time window violation has occurred. Write: Leaves the current value unchanged. 1 Read: End-time defined by the windowed watchdog configuration has been violated. Write: Bit is cleared to 0. 3 START TIME VIOL Windowed Watchdog Start Time Violation Status. This bit indicates whether the key is written before the watchdog window opened up. 0 Read: No start-time window violation has occurred. Write: Leaves the current value unchanged. 1 Read: Start-time defined by the windowed watchdog configuration has been violated. Write: Bit is cleared to 0. 2 KEY ST Watchdog key status. This bit indicates a reset or NMI generated by a wrong key or key sequence written to the RTIWDKEY register. 0 Read: No wrong key or key-sequence written. Write: Bit is unchanged. 1 Read: Wrong key or key-sequence written to RTIWDKEY register. Write: Bit is cleared to 0. 1 DWD ST DWD status. This bit is equivalent to bit END TIME VIOL. 0 Read: No reset or NMI was generated. Write: Bit is unchanged. 1 Read: Reset or NMI was generated. Write: Bit is cleared to 0. 0 Reserved 0 Reads return 0. Writes have no effect. SPNU499C – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 469 RTI Control Registers www.ti.com 13.3.31 RTI Watchdog Key Register (RTIWDKEY) This register must be written with the correct written key values to serve the watchdog. This register is shown in Figure 13-42 and described in Table 13-32. NOTE: It has to be taken into account that the write to the RTIWDKEY register takes 3 VCLK cycles. Figure 13-42. RTI Watchdog Key Register (RTIDWDKEY) [offset = 9Ch] 31 16 Reserved R-0 15 0 WDKEY R/WP-A35Ch LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 13-32. RTI Watchdog Key Register (RTIDWDKEY) Field Descriptions Bit Field 31-16 Reserved 15-0 WDKEY Value 0 0-FFFFh Description Reads return 0 and writes have no effect. Watchdog key. These bits provide the key sequence location. Reads returns the current WDKEY value. A write of E51Ah followed by A35Ch in two separate write operations defines the key sequence and reloads the DWD. Writing any other value causes a reset or NMI, as shown in Table 13-33. Writing any other value will cause the WDKEY to reset to A35Ch. Table 13-33. Example of a WDKEY Sequence 470 Step Value Written to WDKEY 1 A35Ch Result No action 2 A35Ch No action 3 E51Ah WDKEY is enabled for reset or NMI by next A35Ch. 4 E51Ah WDKEY is enabled for reset or NMI by next A35Ch. 5 E51Ah WDKEY is enabled for reset or NMI by next A35Ch. 6 A35Ch Watchdog is reset. 7 A35Ch No action 8 E51Ah WDKEY is enabled for reset or NMI by next A35Ch. 9 A35Ch Watchdog is reset. 10 E51Ah WDKEY is enabled for reset or NMI by next A35Ch. 11 2345h System reset or NMI; incorrect value written to WDKEY. Real-Time Interrupt (RTI) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com 13.3.32 RTI Digital Watchdog Down Counter (RTIDWDCNTR) This register provides the current value of the DWD down counter. This register is shown in Figure 13-43 and described in Table 13-34. Figure 13-43. RTI Watchdog Down Counter Register (RTIDWDCNTR) [offset = A0h] 31 25 24 16 Reserved DWDCNTR R-0 R-1FFh 15 0 DWDCNTR R-FFFFh LEGEND: R = Read only; -n = value after reset Table 13-34. RTI Watchdog Down Counter Register (RTIDWDCNTR) Field Descriptions Bit Field 31-25 Reserved 24-0 DWDCNTR Value 0 0-1FF FFFFh Description Reads return 0 and writes have no effect. DWD down counter. Reads return the current counter value. 13.3.33 Digital Windowed Watchdog Reaction Control (RTIWWDRXNCTRL) This register selects the DWWD reaction if the watchdog is serviced outside the time window. This register is shown in Figure 13-44 and described in Table 13-35. Figure 13-44. Digital Windowed Watchdog Reaction Control (RTIWWDRXNCTRL) [offset = A4h] 31 16 Reserved R-0 15 4 3 0 Reserved WWDRXN R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 13-35. Digital Windowed Watchdog Reaction Control (RTIWWDRXNCTRL) Field Descriptions Bit Field 31-4 Reserved 3-0 WWDRXN Value 0 Description Reads return 0 and writes have no effect. The DWWD reaction 5h The windowed watchdog will cause a reset if the watchdog is serviced outside the time window defined by the configuration, or if the watchdog is not serviced at all. Ah The windowed watchdog will generate a non-maskable interrupt to the CPU if the watchdog is serviced outside the time window defined by the configuration, or if the watchdog is not serviced at all. All other values The windowed watchdog will cause a reset if the watchdog is serviced outside the time window defined by the configuration, or if the watchdog is not serviced at all. Note: The DWWD reaction can be selected by the application even when the DWWD counter is already enabled. If a change to the WWDRXN is made before the watchdog service window is opened, then the change in the configuration takes effect immediately. If a change to the WWDRXN is made when the watchdog service window is already open, then the change in configuration takes effect only after the watchdog is serviced. SPNU499C – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 471 RTI Control Registers www.ti.com 13.3.34 Digital Windowed Watchdog Window Size Control (RTIWWDSIZECTRL) This register selects the DWWD window size. This register is shown in Figure 13-45 and described in Table 13-36. Figure 13-45. Digital Windowed Watchdog Window Size Control (RTIWWDSIZECTRL) [offset = A8h] 31 16 WWDSIZE R/WP-0000 15 0 WWDSIZE R/WP-0005h LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 13-36. Digital Windowed Watchdog Window Size Control (RTIWWDSIZECTRL) Field Descriptions Bit 31-0 Field WWDSIZE Value 0 Description The DWWD window size 0000 0005h 100% (The functionality is the same as the standard time-out digital watchdog.) 0000 0050h 50% 0000 0500h 25% 0000 5000h 12.5% 0005 0000h 6.25% All other values 3.125% Note: The DWWD window size can be selected by the application even when the DWWD counter is already enabled. If a change to the WWDSIZE is made before the watchdog service window is opened, then the change in the configuration takes effect immediately. If a change to the WWDSIZE is made when the watchdog service window is already open, then the change in configuration takes effect only after the watchdog is serviced. 472 Real-Time Interrupt (RTI) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com 13.3.35 RTI Compare Interrupt Clear Enable Register (RTIINTCLRENABLE) When the RTI compare event is configured to generate a DMA request or triggers (all triggered by RTI compare interrupt request flag) to other peripherals, it is often desirable to clear the RTI compare flag automatically so that the requests can be generated repeatedly without any CPU intervention. This register works with the RTI compare clear registers to enable an "auto-clear" of the compare interrupt enable bit after a compare equal event. This register is shown in Figure 13-46 and described in Table 1337. Figure 13-46. RTI Compare Interrupt Clear Enable Register (RTIINTCLRENABLE) [offset = ACh] 31 28 27 24 23 20 19 16 Reserved INTCLRENABLE3 Reserved INTCLRENABLE2 R-0 R/WP-5h R-0 R/WP-5h 15 12 11 8 7 4 3 0 Reserved INTCLRENABLE1 Reserved INTCLRENABLE0 R-0 R/WP-5h R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 13-37. RTI Compare Interrupt Clear Enable Register (RTIINTCLRENABLE) Field Descriptions Bit Field Value 31-28 Reserved 0 27-24 INTCLRENABLE3 Description Reads return 0. Writes have no effect. Enables the auto-clear functionality on the compare 3 interrupt. 5h Read: Auto-clear for compare 3 interrupt is disabled. Privileged Write: Auto-clear for compare 3 interrupt becomes disabled. All other values Read: Auto-clear for compare 3 interrupt is enabled. Privileged Write: Auto-clear for compare 3 interrupt becomes enabled. 23-20 Reserved 0 19-16 INTCLRENABLE2 Reads return 0. Writes have no effect. Enables the auto-clear functionality on the compare 2 interrupt. 5h Read: Auto-clear for compare 2interrupt is disabled. Privileged Write: Auto-clear for compare 2 interrupt becomes disabled. All other values Read: Auto-clear for compare 2 interrupt is enabled. Privileged Write: Auto-clear for compare 2 interrupt becomes enabled. 15-12 Reserved 11-8 0 INTCLRENABLE1 Reads return 0. Writes have no effect. Enables the auto-clear functionality on the compare 1 interrupt. 5h Read: Auto-clear for compare 1 interrupt is disabled. Privileged Write: Auto-clear for compare 1 interrupt becomes disabled. All other values Read: Auto-clear for compare 1 interrupt is enabled. Privileged Write: Auto-clear for compare 1 interrupt becomes enabled. 7-4 Reserved 3-0 INTCLRENABLE0 0 Reads return 0. Writes have no effect. Enables the auto-clear functionality on the compare 0 interrupt. 5h Read: Auto-clear for compare 0 interrupt is disabled. Privileged Write: Auto-clear for compare 0 interrupt becomes disabled. All other values Read: Auto-clear for compare 0 interrupt is enabled. Privileged Write: Auto-clear for compare 0 interrupt becomes enabled. SPNU499C – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 473 RTI Control Registers www.ti.com 13.3.36 RTI Compare 0 Clear Register (RTICMP0CLR) This registers holds an initial value which is larger than the value in the RTI Compare 0 register Section 13.3.4. The user needs to choose the value such that the compare clear 0 event occurs before next compare 0 event. If the Free Running Counter matches the compare value, the compare 0 interrupt request flag is cleared and the value in the RTIUDCP0 register Section 13.3.16 is added to this register. This register is shown in Figure 13-47 and described in Table 13-38. Figure 13-47. RTI Compare 0 Clear Register (RTICMP0CLR) [offset = B0h] 31 16 CMP0CLR R/WP-0 15 0 CMP0CLR R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 13-38. RTI Compare 0 Clear Register (RTICMP0CLR) Field Descriptions Bit 31-0 Field CMP0CLR Value 0-FFFF FFFFh Description Compare 0 clear. This registers holds a compare value. If the Free Running Counter matches the compare value, the compare 0 interrupt request flag is cleared and the value in the RTIUDCP0 register Section 13.3.16 is added to this register. Reads return the current compare clear value. A privileged write to this register updates the compare clear value. 13.3.37 RTI Compare 1 Clear Register (RTICMP1CLR) This registers holds an initial value which is larger than the value in the RTI Compare 1 register Section 13.3.4. The user needs to choose the value such that the compare clear 1 event occurs before next compare 1 event. If the Free Running Counter matches the compare value, the compare 1 interrupt request flag is cleared and the value in the RTIUDCP1 register Section 13.3.18 is added to this register. This register is shown in Figure 13-48 and described in Table 13-39. Figure 13-48. RTI Compare 1 Clear Register (RTICMP1CLR) [offset = B4h] 31 16 CMP1CLR R/WP-0 15 0 CMP1CLR R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 13-39. RTI Compare 1 Clear Register (RTICMP1CLR) Field Descriptions Bit 31-0 Field CMP0CLR Value 0-FFFF FFFFh Description Compare 1 clear. This registers holds a compare value. If the Free Running Counter matches the compare value, the compare 1 interrupt request flag is cleared and the value in the RTIUDCP1 register Section 13.3.18 is added to this register. Reads return the current compare clear value. A privileged write to this register updates the compare clear value. 474 Real-Time Interrupt (RTI) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated RTI Control Registers www.ti.com 13.3.38 RTI Compare 2 Clear Register (RTICMP2CLR) This registers holds an initial value which is larger than the value in the RTI Compare 2 register Section 13.3.4. The user needs to choose the value such that the compare clear 2 event occurs before next compare 2 event. If the Free Running Counter matches the compare value, the compare 2 interrupt request flag is cleared and the value in the RTIUDCP2 register Section 13.3.20 is added to this register. This register is shown in Figure 13-49 and described in Table 13-40. Figure 13-49. RTI Compare 2 Clear Register (RTICMP2CLR) [offset = B8h] 31 16 CMP2CLR R/WP-0 15 0 CMP2CLR R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 13-40. RTI Compare 2 Clear Register (RTICMP2CLR) Field Descriptions Bit 31-0 Field CMP2CLR Value 0-FFFF FFFFh Description Compare 2 clear. This registers holds a compare value. If the Free Running Counter matches the compare value, the compare 2 interrupt request flag is cleared and the value in the RTIUDCP2 register Section 13.3.20 is added to this register. Reads return the current compare clear value. A privileged write to this register updates the compare clear value. 13.3.39 RTI Compare 3 Clear Register (RTICMP3CLR) This registers holds an initial value which is larger than the value in the RTI Compare 3 register Section 13.3.4. The user needs to choose the value such that the compare clear 3 event occurs before next compare 3 event. If the Free Running Counter matches the compare value, the compare 3 interrupt request flag is cleared and the value in the RTIUDCP3 register Section 13.3.22 is added to this register. This register is shown in Figure 13-50 and described in Table 13-41. Figure 13-50. RTI Compare 3 Clear Register (RTICMP3CLR) [offset = BCh] 31 16 CMP3CLR R/WP-0 15 0 CMP3CLR R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privileged mode only; -n = value after reset Table 13-41. RTI Compare 3 Clear Register (RTICMP3CLR) Field Descriptions Bit 31-0 Field CMP3CLR Value 0-FFFF FFFFh Description Compare 3 clear. This registers holds a compare value. If the Free Running Counter matches the compare value, the compare 3 interrupt request flag is cleared and the value in the RTIUDCP3 register Section 13.3.22 is added to this register. Reads return the current compare clear value. A privileged write to this register updates the compare clear value. SPNU499C – March 2018 Submit Documentation Feedback Real-Time Interrupt (RTI) Module Copyright © 2018, Texas Instruments Incorporated 475 Chapter 14 SPNU499C – March 2018 Cyclic Redundancy Check (CRC) Controller Module This chapter describes the cyclic redundancy check (CRC) controller module. NOTE: This chapter describes a superset implementation of the CRC module that includes features and functionality that require DMA. Since not all devices have DMA capability, consult your device-specific datasheet to determine applicability of these features and functions to your device being used. Topic 14.1 14.2 14.3 14.4 476 ........................................................................................................................... Overview ........................................................................................................ Module Operation ............................................................................................ Example ......................................................................................................... CRC Control Registers ...................................................................................... Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated Page 477 479 490 493 SPNU499C – March 2018 Submit Documentation Feedback Overview www.ti.com 14.1 Overview The CRC controller is a module that is used to perform CRC (Cyclic Redundancy Check) to verify the integrity of memory system. A signature representing the contents of the memory is obtained when the contents of the memory are read into CRC controller. The responsibility of CRC controller is to calculate the signature for a set of data and then compare the calculated signature value against a pre-determined good signature value. CRC controller supports two channels to perform CRC calculation on multiple memories in parallel and can be used on any memory system. 14.1.1 Features The CRC controller offers: • Two channels to perform background signature verification on any memory sub-system. • Data compression on 8, 16, 32, and 64 bit data size. • Maximum-length PSA (Parallel Signature Analysis) register constructed based on 64 bit primitive polynomial. • Each channel has a CRC Value Register that contains the pre-determined CRC value. • Use timed base event trigger from timer to initiate DMA data transfer. • Programmable 20-bit pattern counter per channel to count the number of data patterns for compression. • Three modes of operation: Auto, Semi-CPU, and Full-CPU. • For each channel, CRC can be performed either by CRC Controller or by CPU. • Automatically perform signature verification without CPU intervention in AUTO mode. • Generate interrupt to CPU in Semi-CPU mode to allow CPU to perform signature verification itself. • Generate CRC fail interrupt in AUTO mode if signature verification fails. • Generate Timeout interrupt if CRC is not performed within the time limit. • Generate DMA request per channel to initiate CRC value transfer. • Data trace capability on Peripheral Bus Master, Flash and System RAM data buses. SPNU499C – March 2018 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 477 Overview www.ti.com 14.1.2 Block Diagram Figure 14-1 shows a block diagram of the CRC controller. NOTE: Only Channel 1 can support data trace. See Section 14.2.11. Figure 14-1. CRC Controller Block Diagram For One Channel Read Data Bus(Peripheral, Flash, System RAM) Mux Bus Matrix Module 64 Write Data Data Synchronization Register File 64 FSM & Control Raw Data Register PSA Signature Register Trace Enable HBSTRB[7:0] CRC Value Register PSA Sector Signature Register 64 64 20 Bit Pattern Count Preload 20 Bit Pattern Counter = DMA Request Logic Mode Reg DMA Request CRC Status Bit 24 Bit Timeout Preload Register 16 Bit Sector Count Preload 478 24 Bit Time Out Counter CRC Interrupt Generation Logic CRC Fail Interrupt CRC Overrun Interrupt CRC Underrun Interrupt CRC Timeout Interrupt CH1_INT CH2_INT CH3_INT CH4_INT 16 Bit Sector Counter Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated CRC_INT SPNU499C – March 2018 Submit Documentation Feedback Module Operation www.ti.com 14.2 Module Operation 14.2.1 General Operation There are two channels in CRC controller and for each channel there is a memory-mapped PSA (Parallel Signature Analysis) Signature Register and a memory-mapped CRC (Cyclic Redundancy Check) Value register. A memory can be organized into multiple sectors with each sector consisting of multiple data patterns. A data pattern can be a 8, 16, 32, or 64 bit data. CRC module performs the signature calculation and compares the signature to a pre-determined value. The PSA Signature Register compresses an incoming data pattern into a signature when it is written. When one sector of data patterns are written into PSA Signature Register, a final signature corresponding to the sector is obtained. CRC Value Register stores the pre-determined signature corresponding to one sector of data patterns. The calculated signature and the pre-determined signature are then compared to each other for signature verification. To minimize CPU’s involvement, data patterns transfer can be carried out at the background of CPU using DMA controller. DMA is setup to transfer data from memory from which the contents to be verified to the memory-mapped PSA Signature Register. When DMA transfers data to the memory-mapped PSA Signature Register, a signature is generated. A programmable 20-bit data pattern counter is used for each channel to define the number of data patterns to calculate for each sector. Signature verification can be performed automatically by CRC controller in AUTO mode or by CPU itself in Semi-CPU or Full-CPU mode. In AUTO mode, a self sustained CRC signature calculation can be achieved without any CPU intervention. CRC Controller also provides data trace capability. Channel 1 can perform data trace on CPU data bus. During data trace, channel 1 monitors any data being read on CPU data bus and compresses it. When data trace is enabled for channel 1, all circuits related to DMA request and interrupt generation and counters are disabled. 14.2.2 CRC Modes of Operation CRC Controller can operate in AUTO, Semi-CPU, and Full-CPU modes. 14.2.2.1 AUTO Mode In AUTO mode, CRC Controller in conjunction with DMA controller can perform CRC totally without CPU intervention. A sustained transfer of data to both the PSA Signature Register and CRC Value Register are performed in the background of CPU. When a mismatch is detected, an interrupt is generated to CPU. A 16 bit current sector ID register is provided to identify which sector causes a CRC failure. 14.2.2.2 Semi-CPU Mode In Semi-CPU mode, DMA controller is also utilized to perform data patterns transfer to PSA Signature Register. Instead of performing signature verification automatically, the CRC controller generates an compression complete interrupt to CPU after each sector is compressed. Upon responding to the interrupt the CPU performs the signature verification by reading the calculated signature stored at the PSA Sector Signature Register and compare it to a pre-determined CRC value. 14.2.2.3 Full CPU Mode In Full-CPU mode, the CPU does the data patterns transfer and signature verification all by itself. When CPU has enough throughput, it can perform data patterns transfer by reading data from the memory system to the PSA Signature Register. After certain number of data patterns are compressed, the CPU can read from the PSA Signature Register and compare the calculated signature to the pre-determined CRC signature value. In Full-CPU mode, neither interrupt nor DMA request is generated. All counters are also disabled. SPNU499C – March 2018 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 479 Module Operation www.ti.com 14.2.3 PSA Signature Register The 64-bit PSA Signature Register is based on the primitive polynomial (as in the following equation) to produce the maximum length LFSR (Linear Feedback Shift Register), as shown in Figure 14-2. 64 4 3 f(x) = x + x + x + x + 1 (25) Figure 14-2. LFSR Data D Q D Q D Q D Q D Q D Q X0 X1 X2 X3 X4 X63 The serial implementation of LFSF has a limitation that, it requires ‘n’ clock cycles to calculate the CRC values for an ‘n’ bit data stream. The idea is to produce the same CRC value operating on a multi-bit data stream, as would occur if the CRC were computed one bit at a time over the whole data stream. The algorithm involves looping to simulate the shifting, and concatenating strings to build the equations after ‘n’ shift. The parallel CRC calculation based on the polynomial can be illustrated in the following HDL code: for i in 63 to 0 loop NEXT_CRC_VAL(0) := CRC_VAL(63) xor DATA(i); for j in 1 to 63 loop case j is when 1|3|4 => NEXT_CRC_VAL(j) := CRC_VAL(j - 1) xor CRC_VAL(63) xor DATA(i); when others => NEXT_CRC_VAL(j) := CRC_VAL(j - 1); end case; end loop; CRC_VAL := NEXT_CRC_VAL; end loop; NOTE: 1) The inner loop is to calculate the next value of each shift register bit after one cycle 2) The outer loop is to simulate 64 cycles of shifting. The equation for each shift register bit is thus built before it is compressed into the shift register. 3) MSB of the DATA is shifted in first There is one PSA Signature Register per CRC channel. PSA Signature Register can be both read and written. When it is written, it can either compress the data or just capture the data depending on the state of CHx_MODE bits. If CHx_MODE=Data Capture, a seed value can be planted in the PSA Signature Register without compression. Other modes other than Data Capture will result with the data compressed by PSA Signature Register when it is written. Each channel can be planted with different seed value before compression starts. When PSA Signature Register is read, it gives the calculated signature. CRC Controller should be used in conjunction with the on chip DMA controller to produce optimal system performance. The incoming data pattern to PSA Signature Register is typically initiated by the DMA master. When DMA is properly setup, it would read data from the pre-determined memory system and write them to the memory-mapped PSA Signature Register. Each time PSA Signature Register is written a signature is generated. CPU itself can also perform data transfer by reading from the memory system and perform write operation to PSA Signature Register if CPU has enough throughput to handle data patterns transfer. 480 Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Module Operation www.ti.com After system reset and when AUTO mode is enabled, CRC Controller automatically generates a DMA request to request the pre-determined CRC value corresponding to the first sector of memory to be checked. In AUTO mode, when one sector of data patterns is compressed, the signature stored at the PSA Signature Register is first copied to the PSA Sector Signature Register and PSA Signature Register is then cleared out to all zeros. An automatic signature verification is then performed by comparing the signature stored at the PSA Sector Signature Register to the CRC Value Register. After the comparison the CRC Controller can generate a DMA request. Upon receiving the DMA request the DMA controller will update the CRC Value Register by transferring the next pre-determined signature value associated with the next sector of memory system. If the signature verification fails then CRC Controller can generate a CRC fail interrupt. In Full-CPU mode, no DMA request and interrupt are generated at all. The number of data patterns to be compressed is determined by CPU itself. Full-CPU mode is useful when DMA controller is not available to perform background data patterns transfer. The OS can periodically generate a software interrupt to CPU and use CPU to accomplish data transfer and signature verification. CRC Controller supports doubleword, word, half word and byte access to the PSA Signature Register. During a non-doubleword write access, all unwritten byte lanes are padded with zero’s before compression. Note that comparison between PSA Sector Signature Register and CRC Value Register is always in 64 bit because a compressed value is always expressed in 64 bit. There is a software reset per channel for PSA Signature Register. When set, the PSA Signature Register is reset to all zeros. PSA Signature Register is reset to zero under the following conditions: • System reset • PSA Software reset • One sector of data patterns are compressed 14.2.4 PSA Sector Signature Register After one sector of data is compressed, the final resulting signature calculated by PSA Signature Register is transferred to the PSA Sector Signature Register. PSA Signature Register is a read only register. During Semi-CPU mode, the host CPU should read from the PSA Sector Signature Register instead of reading from PSA Signature Register for signature verification to avoid data coherency issue. The PSA Signature Register can be updated with new signature before the host CPU is able to retrieve it. In Semi-CPU mode, no DMA request is generated. When one sector of data patterns is compressed, CRC controller first generates a compression complete interrupt. Responding to the interrupt, CPU will in the ISR read the PSA Sector Signature Register and compare it to the known good signature or write the signature value to another memory location to build a signature file. In Semi-CPU mode, CPU must perform the signature verification in a manner to prevent any overrun condition. The overrun condition occurs when the compression complete interrupt is generated after one sector of data patterns is compressed and CPU has not read from the PSA Sector Signature Register to perform necessary signature verification before PSA Sector Signature Register is overridden with a new value. An overrun interrupt can be enable to generate when overrun condition occurs. During Semi-CPU mode, the host CPU should read from the PSA Sector Signature Register instead of reading from PSA Signature Register for signature verification to avoid data coherency issue. The PSA Signature Register can be updated with new signature before the host CPU is able to retrieve it. SPNU499C – March 2018 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 481 Module Operation www.ti.com 14.2.5 CRC Value Register Associated with each channel there is a CRC Value Register. The CRC Value Register stores the predetermined CRC value. After one sector of data patterns is compressed by PSA Signature Register, CRC Controller can automatically compare the resulting signature stored at the PSA Sector Signature Register with the pre-determined value stored at the CRC Value Register if AUTO mode is enabled. If the signature verification fails, CRC Controller can be enabled to generate an CRC fail interrupt. When the channel is set up for Semi-CPU mode, CRC controller first generates a compression complete interrupt to CPU. Upon servicing the interrupt, CPU will then read the PSA Sector Signature Register and then read the corresponding CRC value stored at another location and compare them. CPU should not read from the CRC Value Register during Semi-CPU or Full-CPU mode because the CRC Value Register is not updated during these two modes. In AUTO mode, for first sector’s signature, DMA request is generated when mode is programmed to AUTO. For subsequent sectors, DMA request is generated after each sector is compressed. Responding to the DMA request, DMA controller reloads the CRC Value Register for the next sector of memory system to be checked. When CRC Value Register is updated with a new CRC value, an internal flag is set to indicate that CRC Value Register contains the most current value. This flag is cleared when CRC comparison is performed. Each time at the end of the final data pattern compression of a sector, CRC Controller first checks to see if the corresponding CRC Value Register has the most current CRC value stored in it by polling the flag. If the flag is set then the CRC comparison can be performed. If the flag is not set then it means the CRC Value Register contains stale information. A CRC underrun interrupt is generated. When an underrun condition is detected, signature verification is not performed. CRC Controller supports doubleword, word, half word and byte access to the CRC Value Register. As noted before comparison between PSA Sector Signature Register and CRC Value Register during AUTO mode is carried out in 64 bit. 14.2.6 Raw Data Register The raw or un-compressed data written to the PSA Signature Register is also saved in the Raw Data Register. This register is read only. 14.2.7 Example DMA Controller Setup DMA controller needs to be setup properly in either AUTO or Semi-CPU mode as DMA controller is used to transfer data patterns. Hardware or a combination of hardware and software DMA triggering are supported. 14.2.7.1 AUTO Mode Using Hardware Timer Trigger There are two DMA channels associated with each CRC channel when in AUTO mode. One DMA channel is setup to transfer data patterns from the source memory to the PSA Signature Register. The second DMA channel is setup to transfer the pre-determined signature to the CRC Value Register. The trigger source for the first DMA channel can be either by hardware or by software. As illustrated in Figure 14-3 a timer can be used to trigger a DMA request to initiate transfer from the source memory system to PSA Signature Register. In AUTO mode, CRC Controller also generates DMA request after one sector of data patterns is compressed to initiate transfer of the next CRC value corresponding to the next sector of memory. Thus a new CRC value is always updated in the CRC Value Register by DMA synchronized to each sector of memory. A block of memory system is usually divided into many sectors. All sectors are the same size. The sector size is programmed in the CRC_PCOUNT_REGx and the number of sectors in one block is programmed in the CRC_SCOUNT_REGx of the respective channel. CRC_PCOUNT_REGx multiplies CRC_SCOUNT_REGx and multiplies transfer size of each data pattern should give the total block size in number of bytes. 482 Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Module Operation www.ti.com The total size of the memory system to be examined is also programmed in the respective transfer count register inside DMA module. The DMA transfer count register is divided into two parts. They are element count and frame count. Note that an HW DMA request can be programmed to trigger either one frame or one entire block transfer. In Figure 14-3, an HW DMA request from a timer is used as a trigger source to initiate DMA transfer. If all four CRC channels are active in AUTO mode then a total of four DMA requests would be generated by CRC Controller. Figure 14-3. AUTO Mode Using Hardware Timer Trigger Timer DMA Controller Memory System HW DMA Req HW DMA Req Sector 1 Sector 2 .DMA Request Event Sync. DMA channel 0 CRC Controller one block PSA Sig Reg Ch1 DMA channel p DMA channel q CRC Value Reg Sector n Sector 1 CRC value Sector 2 CRC value PSA Sig Reg Ch4 CRC Value Reg DMA channel 15 Sector n CRC value 14.2.7.2 AUTO Mode Using Software Trigger The data patterns transfer can also be initiated by software. CPU can generate a software DMA request to activate the DMA channel to transfer data patterns from source memory system to the PSA Signature Register. To generate a software DMA request CPU needs to set the corresponding DMA channel in the DMA software trigger register. Note that just one software DMA request from CPU is enough to complete the entire data patterns transfer for all sectors. See Figure 14-4 for an illustration. Figure 14-4. AUTO Mode With Software CPU Trigger CPU DMA Controller Memory System SW DMA Req HW DMA Req CRC Controller Sector 1 Sector 2 .DMA Request Event Sync. DMA channel 0 one block PSA Sig Reg Ch1 CRC Value Reg DMA channel p DMA channel q Sector n Sector 1 CRC value Sector 2 CRC value PSA Sig Reg Ch4 CRC Value Reg SPNU499C – March 2018 Submit Documentation Feedback DMA channel 15 Sector n CRC value Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 483 Module Operation www.ti.com 14.2.7.3 Semi-CPU Mode Using Hardware Timer Trigger During semi-CPU mode, no DMA request is generated by CRC controller. Therefore, no DMA channel is allocated to update CRC Value Register. CPU should not read from CRC Value Register in semi-CPU mode as it contains stale value. Note that no signature verification is performed at all during this mode. Similar to AUTO mode, either by hardware or by software DMA request can be used as a trigger for data patterns transfer. Figure 14-5 illustrates the DMA setup using semi-CPU mode with hardware timer trigger. Figure 14-5. Semi-CPU Mode With Hardware Timer Trigger Timer DMA Controller Memory System HW DMA Req .DMA Request Event Sync. Sector 1 Sector 2 DMA channel 0 CRC Controller one block PSA Reg Ch1 DMA channel p DMA channel q CRC Reg Sector n PSA Reg Ch4 CRC Reg DMA channel 31 Table 14-1. CRC Modes in Which DMA Request and Counter Logic are Active or Inactive Mode DMA Request Pattern Counter Sector Counter Timeout Counter AUTO Active Active Active Active Semi-CPU Inactive Active Active Active Full-CPU Inactive Inactive Inactive Inactive 14.2.8 Pattern Count Register There is a 20-bit data pattern counter for every CRC channel. The data pattern counter is a down counter and can be pre-loaded with a programmable value stored in the Pattern Count Register. When the data pattern counter reaches zero, a compression complete interrupt is generated in Semi-CPU mode and an automatic signature verification is performed in AUTO mode. In AUTO only, DMA request is generated to trigger the DMA controller to update the CRC Value Register. NOTE: The data pattern count should be divisible by the total transfer count as programmed in DMA controller. The total transfer count is the product of element count and frame count. 14.2.9 Sector Count Register/Current Sector Register Each channel contains a 16 bit sector counter. The sector count register stores the number of sectors. Sector counter is a free running counter and is incremented by one each time when one sector of data patterns is compressed. When the signature verification fails, the current value stored in the sector counter is saved into current sector register. If signature verification fails, CPU can read from the current sector register to identify the sector which causes the CRC mismatch. To aid and facilitate the CPU in determining the cause of a CRC failure, it is advisable to use the following equation during CRC and DMA setup: CRC Pattern Count × CRC Sector Count = DMA Element Count × DMA Frame Count 484 Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Module Operation www.ti.com The current sector register is frozen from being updated until both the current sector register is read and CRC fail status bit is cleared by CPU. If CPU does not respond to the CRC failure in a timely manner before another sector produces a signature verification failure, the current sector register is not updated with the new sector number. An overrun interrupt is generate instead. If current sector register is already frozen with an erroneous sector and emulation is entered with SUSPEND signal goes to high then the register still remains frozen even it is read. In Semi-CPU mode, the current sector register is used to indicate the sector for which the compression complete has last happened. The current sector register is reset when the PSA software reset is enabled. NOTE: Both data pattern count and sector count registers must be greater than or equal to one for the counters to count. After reset, pattern count and sector count registers default to zero and the associated counters are inactive. 14.2.10 Interrupt The CRC controller generates several types of interrupts per channel. Associated with each interrupt, there is an interrupt enable bit. No interrupt is generated in Full-CPU mode. • Compression complete interrupt • CRC fail interrupt • Overrun interrupt • Underrun interrupt • Timeout interrupt Table 14-2. Modes in Which Interrupt Condition Can Occur AUTO Semi-CPU Full-CPU Compression Complete no yes no CRC Fail yes no no Overrun yes yes no Underrun yes no no Timeout yes yes no 14.2.10.1 Compression Complete Interrupt Compression complete interrupt is generated in Semi-CPU mode only. When the data pattern counter reaches zero, the compression complete flag is set and the interrupt is generated. 14.2.10.2 CRC Fail Interrupt CRC fail interrupt is generated in AUTO mode only. When the signature verification fails, the CRC fail flag is set,. CPU should take action to address the fail condition and clear the CRC fail flag after it resolves the CRC mismatch. 14.2.10.3 Overrun Interrupt Overrun interrupt is generated in either AUTO or Semi-CPU mode. During AUTO mode, if a CRC fail is detected, then the current sector number is recorded in the current sector register. If CRC fail status bit is not cleared and current sector register is not read by the host CPU before another CRC fail is detected for another sector, then an overrun interrupt is generated. During Semi-CPU mode, when the data pattern counter finishes counting, it generates a compression complete interrupt. At the same time, the signature is copied into the PSA Sector Signature Register. If the host CPU does not read the signature from PSA Sector Signature Register before it is updated again with a new signature value, then an overrun interrupt is generated. SPNU499C – March 2018 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 485 Module Operation www.ti.com 14.2.10.4 Underrun Interrupt Underrun interrupt only occurs in AUTO mode. The interrupt is generated when the CRC Value Register is not updated with the corresponding signature when the data pattern counter finishes counting. During AUTO mode, CRC Controller generates DMA request to update CRC Value Register in synchronization to the corresponding sector of the memory. Signature verification is also performed if underrun condition is detected. And CRC fail interrupt is generated at the same time as the underrun interrupt. 14.2.10.5 Timeout Interrupt To ensure that the memory system is examined within a pre-defined time frame and no loss of incoming data there is a 24 bit timeout counter per CRC channel. The 24 bit timeout down counter can be preloaded with two different pre-load values, watchdog timeout pre-load value (CRC_WDTOPLDx) and block complete timeout pre-load value (CRC_BCTOPLDx). The timeout counter is clocked by a prescaler clock which is permanently running at division 64 of HCLK clock. First pattern of data must be transferred by the DMA before the timeout counter expires, Watchdog timeout pre-load register (CRC_WDTOPLDx) is used as timeout counter. Block complete timeout pre-load register (CRC_BCTOPLDx) is used to check if one complete block of data patterns are compressed within a specific time frame. The timeout counter is first pre-loaded with CRC_WDTOPLDx after either AUTO or Semi-CPU mode is selected and starts to down count. If the timeout counter expires before DMA transfers any data pattern to PSA Signature Register then a timeout interrupt is generated. An incoming data pattern before the timeout counter expires will automatically pre-load the timeout counter with CRC_BCTOPLDx the block complete timeout pre-load value. Block complete timeout pre-load value is used to check it one block of data patterns are compressed within a given time limit. If the timeout counter pre-loaded with CRC_BCTOPLDx value expires before one block of data patterns are compressed a timeout interrupt is generated. When one block (pattern count x sector count) of data patterns are compressed before the counter has expired, the counter is pre-loaded with CRC_WDTOPLDx value again. If the timeout counter is pre-loaded with zero then the counter is disable and no timeout interrupt is generated. In Figure 14-6, a timer generates DMA request every 10ms to trigger one block (pattern count x sector count) transfer. Since we want to make sure that DMA does start to transfer a block every 10 ms we would set the first pre-load value to 10ms in CRC_WDTOPLDx. We also want to make sure that one block of data patterns are compressed within 4ms. With such a requirement, we would set the second pre-load value to 4ms in CRC_BCTOPLDx register. Figure 14-6. Timeout Example 1 Timer HW DMA req every 10 ms 0 ms 10 ms 20 ms 30 ms Time scale 3 ms 13 ms 23 ms Data Timeout Counter WD pre-load 10 9 8 7 6 5 4 3 4 3 2 10 9 8 7 6 5 4 4 3 2 10 9 8 7 6 5 4 4 3 2 10 9 8 7 6 5 4 BC WD pre-load pre-load BC WD pre-load pre-load BC WD pre-load pre-load WD pre-load = watchdog timeout pre-load (CRC_WDTOPLDx) BC pre-load = block complete timeout pre-load (CRC_BCTOPLDx) Note: No timeout interrupt is generated in this example since each block of data patterns are compressed in 3 ms and DMA does initiate a block transfer every 10 ms. 486 Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Module Operation www.ti.com Figure 14-7. Timeout Example 2 Timer HW DMA req every 10 ms 0 ms 10 ms 20 ms 30 ms Time scale 6 ms 16 ms 26 ms Data Timeout Counter 10 9 8 7 6 5 4 3 4 3 2 1 0 10 9 8 7 6 4 3 2 1 0 10 9 8 7 6 4 3 2 1 0 10 9 8 7 6 BC pre-load WD pre-load WD pre-load BC pre-load WD pre-load time out interrup BC pre-load WD pre-load time out interrup time out interrup WD pre-load = watchdog timeout pre-load (CRC_WDTOPLDx) BC pre-load = block complete timeout pre-load (CRC_BCTOPLDx) Note: Timeout interrupt is generated in this example since each block of data patterns are compressed in 6 ms and this is out of the 4ms time frame. Figure 14-8. Timeout Example 3 Timer HW DMA req every 10 ms 0 ms 10 ms 20 ms 30 ms Time scale 3 ms 15 ms 25 ms Data Timeout Counter 10 9 8 7 6 5 4 3 4 3 2 10 9 8 7 6 5 4 3 2 1 0 4 4 3 2 10 9 8 7 6 5 4 4 3 2 10 9 WD pre-load BC WD pre-load pre-load BC pre-load WD pre-load BC WD pre-load pre-load timeout interrupt WD pre-load = watchdog timeout pre-load (CRC_WDTOPLDx) BC pre-load = block complete timeout pre-load (CRC_BCTOPLDx) Note: Timeout interrupt is generated in this example since DMA can not transfer the second block of data within 10ms time limit and the reason may be that DMA is set up in fixed priority scheme and DMA is serving other higher priority channels at the time before it can service the timer request. SPNU499C – March 2018 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 487 Module Operation www.ti.com 14.2.10.6 Interrupt Offset Register CRC Controller only generates one interrupt request to interrupt manager. A interrupt offset register is provided to indicate the source of the pending interrupt with highest priority. Table 14-3 shows the offset interrupt vector address of each interrupt condition in an ascending order of priority. Table 14-3. Interrupt Offset Mapping Offset Value 14.2.10.7 Interrupt Condition 0 Phantom 1h Ch1 CRC Fail 2h Ch2 CRC Fail 3h-8h Reserved 9h Ch1 Compression Complete Ah Ch2 Compression Complete Bh-10h Reserved 11h Ch1 Overrun 12h Ch2 Overrun 13h-18h Reserved 19h Ch1 Underrun 1Ah Ch2 Underrun 1Bh-20h Reserved 21h Ch1 Timeout 22h Ch2 Timeout 23h-24h Reserved Error Handling When an interrupt is generated, host CPU should take appropriate actions to identify the source of error and restart the respective channel in DMA and CRC module. To restart a CRC channel, the user should perform the following steps in the ISR: 1. Write to software reset bit in CRC_CTRL register to reset the respective PSA Signature Register. 2. Reset the CHx_MODE bits to 00 in CRC_CTRL register as Data capture mode. 3. Set the CHx_MODE bits in CRC_CTRL register to desired new mode again. 4. Release software reset. The host CPU should use byte write to restart each individual channel. 14.2.11 CPU Data Trace CRC channel 1 can be used to snoop Flash, System RAM and Peripheral Bus Master Data buses. However, at any one point only one bus is snooped. It is possible to disable the snooping of any of the buses by programming CRC_BUS_SEL register. While snooping the data, there is a priority scheme implemented between the buses. Peripheral Bus Master has the highest priority followed by Flash, Even System RAM and Odd System RAM. For each data read by CPU on its data bus the same data is compressed in the PSA Signature Register. A write to PSA Signature Register does not get compressed. Therefore, it is possible to write a seed value into PSA Signature Register before the bus snooping takes place. During data trace mode, all interrupts and DMA request logic are inactive. For non double word read on the data bus, all un-selected byte lanes are padded with zero during compression. 488 Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Module Operation www.ti.com 14.2.11.1 Data Capture Mode used in Conjunction with Data Trace Data capture mode is especially useful when it is used in conjunction when data trace for channel 1 is enabled (CRC_CTRL2.CH1_TRACEEN = 1). The seed value can be planted in PSA Signature Register during data capture mode by writing a seed value into PSA Signature Register. The data trace enable bit is then set to snoop and compress any read transaction on DAHB bus. When trace enable bit is set, CRC_CTRL2.CH1_MODE is automatically reset to 0 (data capture mode). To change from one mode to another mode in the middle of an on-going mode, perform the following steps: 1. Assert software reset for the respective channel. 2. Change from the current active mode to Data Capture mode (CRC_CTRL2.CH1_MODE = 0). 3. Change from Data Capture mode to the new mode. 4. Release software reset. 14.2.12 Power Down Mode CRC module can be put into power down mode when the power down control bit PWDN is set. The module wakes up when the PWDN bit is cleared. When CRC controller is in power down mode, no data tracing alone will happen. However, if CRC registers are accessed then data trace happens from channel 1. 14.2.13 Emulation A read access from a register in functional mode can sometimes trigger a certain internal event to follow. For example, reading an interrupt offset register triggers an event to clear the corresponding interrupt status flag. During emulation when SUSPEND signal is high, a read access from any register should only return the register contents to the bus and should not trigger or mask any event as it would have in functional mode. This is to prevent debugger from reading the interrupt offset register during refreshing screen and cause the corresponding interrupt status flag to get cleared. Timeout counters are stopped to generate timeout interrupts in emulation mode. No Peripheral Master bus error should be generated if reading from the unimplemented locations. When channel 1 is placed under data trace, the PSA Signature Register does not compress any data read on CPU data bus when suspend is active. 14.2.14 Peripheral Bus Interface CRC is a Peripheral slave module. The register interface is similar to other peripheral modules. CRC supports following features: • Different sizes of burst operation. • Aligned and unaligned accesses. • Abort is generated for any illegal address accesses. SPNU499C – March 2018 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 489 Example 14.3 www.ti.com Example This section illustrates several of the ways in which the CRC Controller can be utilized to perform CRC. 14.3.1 Example: Auto Mode Using Time Based Event Triggering A large memory area with 2Mbyte (256k doubleword) is to be checked in the background of CPU. CRC is to be performed every 1K byte (128 doubleword). Therefore there should be 2048 pre-recorded CRC values. For illustration purpose, we map channel 1 CRC Value Register to DMA channel 1 and channel 1 PSA Signature Register to DMA channel 2. Assume all DMA transfers are carried out in 64-bit transfer size. 14.3.1.1 DMA Setup • Set up DMA channel 1 with the starting address from which the pre-determined CRC values are stored. Set up the destination address to the memory-mapped channel 1 CRC Value Register. Put the source address at post increment addressing mode and put the destination address at constant addressing mode. Use hardware DMA request for channel 1 to trigger a frame transfer. • Set up DMA channel 2 with the source address from which the contents of memory to be verified. Set up the destination address to the memory-mapped channel 1 PSA Signature Register. Program the element transfer count to 128 and the frame transfer count to 2048. Put the source address at post increment addressing mode and put the destination address at constant address mode. Use hardware DMA request for channel 2 to trigger an entire block transfer. 14.3.1.2 Timer Setup The timer can be any general-purpose timer that is capable of generating a time-based DMA request. • Set up timer to generate DMA request associated with DMA channel 2. For example, an OS can set up the timer to generate a DMA request every 10ms. 14.3.1.3 • • • • CRC Setup Program the pattern count to 128. Program the sector count to 2048. For example, we want the entire 2Mbytes to be compressed within 5ms. We can program the block complete timeout pre-load (CRC_BCTOPLDx) value to 15625 (5 ms / (1 HCLK period × 64)) if CRC is operating at 200 MHz. Enable AUTO mode and all interrupts. After AUTO mode is selected, CRC Controller automatically generates a DMA request on channel 1. Around the same time the timer module also generates a DMA request on DMA channel 2. When the first incoming data pattern arrives at the PSA Signature Register, the CRC Controller will compress it. After some time, the DMA controller would update the CRC Value Register with a pre-determined value matching the calculated signature for the first sector of 128 64 bit data patterns. After one sector of data patterns are compressed, the CRC Controller generate a CRC fail interrupt if signature stored at the PSA Sector Signature Register does not match the CRC Value Register. CRC Controller generates a DMA request on DMA channel 1 when one sector of data patterns are compressed. This routine will continue until the entire 2Mbyte are consumed. If the timeout counter reached zero before the entire 2Mbytes are compressed a timeout interrupt is generated. After 2MBytes are transferred, the DMA can generate an interrupt to CPU. The entire operation will continue again when DMA responds to the DMA request from both the timer and CRC Controller. The CRC is performed totally without any CPU intervention. 490 Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Example www.ti.com 14.3.2 Example: Auto Mode Without Using Time Based Triggering A small but highly secured memory area with 1kbytes is to be checked in the background of CPU. CRC is to be performed every 1Kbytes. Therefore there is only one pre-recorded CRC value. For illustration purpose, we map channel 1 CRC Value Register to DMA channel 1 and channel 1 PSA Signature Register to DMA channel 2. Assume all transfers carried out by DMA are in 64 bit transfer size. 14.3.2.1 DMA Setup • Set up DMA channel 1 with the source address from which the pre-determined CRC value is stored. Set up the destination address to the memory-mapped channel 1 CRC Value Register. Put the source address at constant addressing mode and put the destination address at constant addressing mode. Use hardware DMA request for channel 1. • Set up DMA channel 2 with the source address from which the memory area to be verified. Set up the destination address to the memory-mapped channel 1 PSA Signature Register. Program the element transfer count to 128 and the frame transfer count to 1. Put the source address at post increment addressing mode and put the destination address at constant address mode. Generate a software DMA request on channel 2 after CRC has completed its setup. Enable autoinitiation for DMA channel 2. 14.3.2.2 • • • • CRC Setup Program the pattern count to 128. Program the sector count to 1. Leaving the timeout count register with the reset value of zero means no timeout interrupt is generated. Enable AUTO mode and all interrupts. After AUTO mode is selected, the CRC Controller automatically generates a DMA request on channel 1. At the same time the CPU generates a software DMA request on DMA channel 2. When the first incoming data pattern arrives at the PSA Signature Register, the CRC Controller will compress it. After some time, the DMA controller would update the CRC Value Register with a pre-determined value matching the calculated signature for the first sector of 128 64 bit data patterns. After one sector of data patterns are compressed, the CRC Controller generates a CRC fail interrupt if signature stored at the PSA Sector Signature Register does not match the CRC Value Register. CRC Controller generates a DMA request on DMA channel 1 again after one sector is compressed. After 1kbytes are transferred, the DMA can generate an interrupt to CPU. Responding to the DMA interrupt CPU can restart the CRC routine by generating a software DMA request onto channel 2 again. SPNU499C – March 2018 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 491 Example www.ti.com 14.3.3 Example: Semi-CPU Mode If DMA controller is available in a system, the CRC module can also operate in semi-CPU mode. This means that CPU can still make use of the DMA to perform data patterns transfer to CRC controller in the background. The difference between semi-CPU mode and AUTO mode is that CRC controller does not automatically perform the signature verification. CRC controllers generates a compression complete interrupt to CPU when the one sector of data patterns are compressed. CPU needs to perform the signature verification itself. A memory area with 2Mbyte is to be verified with the help of the CPU. CRC operation is to be performed every 1K byte. Since there are 2Mbyte (256k doublewords) of memory to be check and we want to perform a CRC every 1Kbyte (128 doublewords) and therefore there should be 2048 pre-recorded CRC values. In Semi-CPU mode, the CRC Value Register is not updated and contains indeterminate data. 14.3.3.1 DMA Setup Set up DMA channel 1 with the source address from which the memory area to be verified are mapped. Set up the destination address to the memory-mapped channel 1 PSA Signature Register. Put the starting address at post increment addressing mode and put the destination address at constant address mode. Use hardware DMA request to trigger an entire block transfer for channel 1. Disable autoinitiation for DMA channel 1. 14.3.3.2 Timer Setup The timer can be any general-purpose timer that is capable of generating a time-based DMA request. Set up timer to generate DMA request associated with DMA channel 1. For example, an OS can set up the timer to generate a DMA request every 10ms. 14.3.3.3 • • • • CRC Setup Program the pattern count to 128. Program the sector count to 2048. For example, we want the entire 2Mbytes to be compressed within 5ms. We can program the block complete timeout pre-load value to 15625 (5 ms / (1 HCLK period × 64)) if CRC is operating at 200 MHz. Enable Semi-CPU mode and enable all interrupts. The timer module first generates a DMA request on DMA channel 1 when it is enabled. When the first incoming data pattern arrives at the PSA Signature Register, the CRC controller will compress it. After one sector of data patterns are compressed, the CRC controller generate a compression complete interrupt. Upon responding to the interrupt the CPU would read from the PSA Sector Signature Register. It is up to the CPU on how to deal with the PSA value just read. It can compare it to a known signature value or it can write it to another memory location to build a signature file or even transfer the signature out of the device via SCI or SPI. This routine will continue until the entire 2Mbyte are consumed. The latency of the interrupt response from CPU can cause overrun condition. If CPU does not read from PSA Sector Signature Register before the PSA value is overridden with the signature of the next sector of memory, an overrun interrupt will be generated by CRC controller. 14.3.4 Example: Full-CPU Mode In a system without the availability of DMA controller, the CRC routine can be operated by CPU provided the CPU has enough throughput. CPU needs to read from the memory area from which CRC is to be performed. A memory area with 2Mbyte is to be checked with the help of the CPU. CRC verification is to be performed every 1K byte. In CPU mode, the CRC Value Register is not updated and contains indeterminate data. 492 Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback CRC Control Registers www.ti.com 14.3.4.1 CRC Setup • All control registers can be left in their reset state. Only enable Full-CPU mode. CPU itself reads from the memory and write the data to the PSA Signature Register inside CRC Controller. When the first incoming data pattern arrives at the PSA Signature Register, the CRC Controller will compress it. After 2MBytes data patterns are compressed, CPU can read from the PSA Signature Register. It is up to the CPU on how to deal with the PSA signature value just read. It can compare it to a known signature value stored at another memory location. 14.4 CRC Control Registers All registers are in word boundary. 64-, 32-, 16-, and 8-bit write accesses are supported to all registers. The base address for the control registers is FE00 0000h. Table 14-4. CRC Control Registers Offset Acronym Register Description 0h CRC_CTRL0 CRC Global Control Register Section 14.4.1 Section 8h CRC_CTRL1 CRC Global Control Register 1 Section 14.4.2 10h CRC_CTRL2 CRC Global Control Register 2 Section 14.4.3 18h CRC_INTS CRC Interrupt Enable Set Register Section 14.4.4 20h CRC_INTR CRC Interrupt Enable Reset Register Section 14.4.5 28h CRC_STATUS CRC Interrupt Status Register Section 14.4.6 30h CRC_INT_OFFS_ET_REG CRC Interrupt Offset Register Section 14.4.7 38h CRC_BUSY CRC Busy Register Section 14.4.8 40h CRC_PCOUNT_REG1 CRC Channel 1 Pattern Counter Preload Register Section 14.4.9 44h CRC_SCOUNT_REG1 CRC Channel 1 Sector Counter Preload Register Section 14.4.10 48h CRC_CURSEC_REG1 CRC Channel 1 Current Sector Register Section 14.4.11 4Ch CRC_WDTOPLD1 CRC Channel 1 Watchdog Timeout Preload Register Section 14.4.12 50h CRC_BCTOPLD1 CRC Channel 1 Block Complete Timeout Preload Register Section 14.4.13 60h PSA_SIGREGL1 Channel 1 PSA Signature Low Register Section 14.4.14 64h PSA_SIGREGH1 Channel 1 PSA Signature High Register Section 14.4.15 68h CRC_REGL1 Channel 1 CRC Value Low Register Section 14.4.16 6Ch CRC_REGH1 Channel 1 CRC Value High Register Section 14.4.17 70h PSA_SECSIGREGL1 Channel 1 PSA Sector Signature Low Register Section 14.4.18 74h PSA_SECSIGREGH1 Channel 1 PSA Sector Signature High Register Section 14.4.19 78h RAW_DATAREGL1 Channel 1 Raw Data Low Register Section 14.4.20 7Ch RAW_DATAREGH1 Channel 1 Raw Data High Register Section 14.4.21 80h CRC_PCOUNT_REG2 CRC Channel 2 Pattern Counter Preload Register Section 14.4.22 84h CRC_SCOUNT_REG2 CRC Channel 2 Sector Counter Preload Register Section 14.4.23 88h CRC_CURSEC_REG2 CRC Current Sector Register 2 Section 14.4.24 8Ch CRC_WDTOPLD2 CRC Channel 2 Watchdog Timeout Preload Register A Section 14.4.25 90h CRC_BCTOPLD2 CRC Channel 2 Block Complete Timeout Preload Register B Section 14.4.26 A0h PSA_SIGREGL2 Channel 2 PSA Signature Low Register Section 14.4.27 A4h PSA_SIGREGH2 Channel 2 PSA Signature High Register Section 14.4.28 A8h CRC_REGL2 Channel 2 CRC Value Low Register Section 14.4.29 ACh CRC_REGH2 Channel 2 CRC Value High Register Section 14.4.30 B0h PSA_SECSIGREGL2 Channel 2 PSA Sector Signature Low Register Section 14.4.31 B4h PSA_SECSIGREGH2 Channel 2 PSA Sector Signature High Register Section 14.4.32 B8h RAW_DATAREGL2 Channel 2 Raw Data Low Register Section 14.4.33 BCh RAW_DATAREGH2 Channel 2 Raw Data High Register Section 14.4.34 140h CRC_BUS_SEL Data Bus Selection Register Section 14.4.35 SPNU499C – March 2018 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 493 CRC Control Registers www.ti.com 14.4.1 CRC Global Control Register 0 (CRC_CTRL0) Figure 14-9. CRC Global Control Register 0 (CRC_CTRL0) [offset = 00h] 31 16 Reserved R-0 15 9 8 Reserved CH2_PSA_SWREST R-0 R/W-0 7 1 0 Reserved CH1_PSA_SWREST R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 14-5. CRC Global Control Register 0 (CRC_CTRL0) Field Descriptions Bit 31-9 8 7-1 0 Field Value Reserved 0 CH2_PSA_SWREST Description Reads return 0. Writes have no effect. Channel 2 PSA Software Reset. When set, the PSA Signature Register is reset to all zero. Software reset does not reset software reset bit itself. Therefore, CPU is required to clear this bit by writing a 0. Reserved 0 PSA Signature Register is not reset. 1 PSA Signature Register is reset. 0 Reads return 0. Writes have no effect. CH1_PSA_SWREST Channel 1 PSA Software Reset. When set, the PSA Signature Register is reset to all zero. Software reset does not reset software reset bit itself. Therefore, CPU is required to clear this bit by writing a 0. 0 PSA Signature Register is not reset. 1 PSA Signature Register is reset. 14.4.2 CRC Global Control Register (CRC_CTRL1) Figure 14-10. CRC Global Control Register 1 (CRC_CTRL1) [offset = 08h] 31 16 Reserved R-0 15 1 0 Reserved PWDN R-0 RW-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 14-6. CRC Global Control Register 1 (CRC_CTRL1) Field Descriptions Bit 31-1 0 494 Field Reserved Value 0 PWDN Description Reads return 0. Writes have no effect. Power Down. When set, CRC module is put in power-down mode 0 CRC is not in power-down mode. 1 CRC is in power-down mode. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback CRC Control Registers www.ti.com 14.4.3 CRC Global Control Register 2 (CRC_CTRL2) Figure 14-11. CRC Global Control Register 2 (CRC_CTRL2) [offset = 10h] 31 16 Reserved R-0 15 10 7 CH2_MODE R-0 R/WP-0 4 3 2 CH1_TRACEEN R-0 8 Reserved 5 Reserved 9 Reserved R/WP-0 R-0 1 0 CH1_MODE R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 14-7. CRC Global Control Register 2 (CRC_CTRL2) Field Descriptions Bit 31-10 9-8 7-5 4 Field Reserved Value 0 CH2_MODE Reserved Reserved 1-0 CH1_MODE SPNU499C – March 2018 Submit Documentation Feedback Reads return 0. Writes have no effect. Channel 2 Mode Selection 0 Data Capture mode. In this mode, the PSA Signature Register does not compress data when it is written. Any data written to PSA Signature Register is simply captured by PSA Signature Register without any compression. This mode can be used to plant seed value into the PSA register. 1h AUTO Mode 2h Semi-CPU Mode 3h Full-CPU Mode 0 Reads return 0. Writes have no effect. CH1_TRACEEN 3-2 Description Channel 1 Data Trace Enable. When set, the channel is put into data trace mode. The channel snoops on the CPU Peripheral Bus Master, Flash, System RAM buses for any read transaction. Any read data on these buses is compressed by the PSA Signature Register. When suspend is on, the PSA Signature Register does not compress any read data on these buses. When trace enable bit is set, the CH1_MODE bit is automatically reset to 0 (Data Capture mode). 0 Data Trace is disabled. 1 Data Trace is enabled. 0 Reads return 0. Writes have no effect. Channel 1 Mode Selection 0 Data Capture mode. In this mode, the PSA Signature Register does not compress data when it is written. Any data written to PSA Signature Register is simply captured by PSA Signature Register without any compression. This mode can be used to plant seed value into the PSA register. 1h AUTO mode 2h Semi-CPU mode 3h Full-CPU mode Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 495 CRC Control Registers www.ti.com 14.4.4 CRC Interrupt Enable Set Register (CRC_INTS) Figure 14-12. CRC Interrupt Enable Set Register (CRC_INTS) [offset = 18h] 31 16 Reserved R-0 15 13 12 11 10 9 8 Reserved CH2_ TIMEOUTENS CH2_ UNDERENS CH2_ OVERENS CH2_ CRCFAILENS CH2_ CCITENS R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 4 3 2 1 0 Reserved 5 CH1_ TIMEOUTENS CH1_ UNDERENS CH1_ OVERENS CH1_ CRCFAILENS CH1_ CCITENS R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 14-8. CRC Interrupt Enable Set Register (CRC_INTS) Field Descriptions Bit 31-13 12 Field Reserved Value 0 CH2_TIMEOUTENS Description Reads return 0. Writes have no effect. Channel 2 Timeout Interrupt Enable Bit. User and Privileged mode (read): 0 Timeout Interrupt is disabled. 1 Timeout Interrupt is enabled. Privileged mode (write): 11 0 Has no effect. 1 Timeout Interrupt is enabled. CH2_UNDERENS Channel 2 Underrun Interrupt Enable Bit. User and Privileged mode (read): 0 Underrun Interrupt is disabled. 1 Underrun Interrupt is enabled. Privileged mode (write): 10 0 Has no effect. 1 Underrun Interrupt is enabled. CH2_OVERENS Channel 2 Overrun Interrupt Enable Bit. User and Privileged mode (read): 0 Overrun Interrupt is disabled. 1 Overrun Interrupt is enabled. Privileged mode (write): 9 0 Has no effect. 1 Overrun Interrupt is enabled. CH2_CRCFAILENS Channel 2 CRC Fail Interrupt Enable Bit. User and Privileged mode (read): 0 CRC Fail Interrupt is disabled. 1 CRC Fail Interrupt is enabled. Privileged mode (write): 496 0 Has no effect. 1 CRC Fail Interrupt is enabled. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback CRC Control Registers www.ti.com Table 14-8. CRC Interrupt Enable Set Register (CRC_INTS) Field Descriptions (continued) Bit 8 Field Value CH2_CCITENS Description Channel 2 Compression Complete Interrupt Enable Bit. User and Privileged mode (read): 0 Compression Complete Interrupt is disabled. 1 Compression Complete Interrupt is enabled. Privileged mode (write): 7-5 4 Reserved 0 Has no effect. 1 Compression Complete Interrupt is enabled. 0 Reads return 0. Writes have no effect. CH1_TIMEOUTENS Channel 1 Timeout Interrupt Enable Bit. User and Privileged mode (read): 0 Timeout Interrupt is disabled. 1 Timeout Interrupt is enabled. Privileged mode (write): 3 0 Has no effect. 1 Timeout Interrupt is enabled. CH1_UNDERENS Channel 1 Underrun Interrupt Enable Bit. User and Privileged mode (read): 0 Underrun Interrupt is disabled. 1 Underrun Interrupt is enabled. Privileged mode (write): 2 0 Has no effect. 1 Underrun Interrupt is enabled. CH1_OVERENS Channel 1 Overrun Interrupt Enable Bit. User and Privileged mode (read): 0 Overrun Interrupt is disabled. 1 Overrun Interrupt is enabled. Privileged mode (write): 1 0 Has no effect. 1 Overrun Interrupt is enabled. CH1_CRCFAILENS Channel 1 CRC Fail Interrupt Enable Bit. User and Privileged mode (read): 0 CRC Fail Interrupt is disabled. 1 CRC Fail Interrupt is enabled. Privileged mode (write): 0 0 Has no effect. 1 CRC Fail Interrupt is enabled. CH1_CCITENS Channel 1 Compression Complete Interrupt Enable Bit. User and Privileged mode (read): 0 Compression Complete Interrupt is disabled. 1 Compression Complete Interrupt is enabled. Privileged mode (write): SPNU499C – March 2018 Submit Documentation Feedback 0 Has no effect. 1 Compression Complete Interrupt is enabled. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 497 CRC Control Registers www.ti.com 14.4.5 CRC Interrupt Enable Reset Register (CRC_INTR) Figure 14-13. CRC Interrupt Enable Reset Register (CRC_INTR) [offset = 20h] 31 16 Reserved R-0 15 13 12 11 10 9 8 Reserved CH2_ TIMEOUTENR CH2_ UNDERENR CH2_ OVERENR CH2_ CRCFAILENR CH2_ CCITENR R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 4 3 2 1 0 Reserved 5 CH1_ TIMEOUTENR CH1_ UNDERENR CH1_ OVERENR CH1_ CRCFAILENR CH1_ CCITENR R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 14-9. CRC Interrupt Enable Reset Register (CRC_INTR) Field Descriptions Bit 31-13 12 Field Reserved Value 0 CH2_TIMEOUTENR Description Reads return 0. Writes have no effect. Channel 2 Timeout Interrupt Enable Reset Bit. User and Privileged mode (read): 0 Timeout Interrupt is disabled. 1 Timeout Interrupt is enabled. Privileged mode (write): 11 0 Has no effect. 1 Timeout Interrupt is disabled. CH2_UNDERENR Channel 2 Underrun Interrupt Enable Reset Bit. User and Privileged mode (read): 0 Underrun Interrupt is disabled. 1 Underrun Interrupt is enabled. Privileged mode (write): 10 0 Has no effect. 1 Underrun Interrupt is disabled. CH2_OVERENR Channel 2 Overrun Interrupt Enable Reset Bit. User and Privileged mode (read): 0 Overrun Interrupt is disabled 1 Overrun Interrupt is enabled Privileged mode (write): 9 0 Has no effect 1 Overrun Interrupt disable CH2_CRCFAILENR Channel 2 CRC Fail Interrupt Enable Reset Bit. User and Privileged mode (read): 0 CRC Fail Interrupt is disabled. 1 CRC Fail Interrupt is enabled. Privileged mode (write): 498 0 Has no effect. 1 CRC Fail Interrupt is disabled. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback CRC Control Registers www.ti.com Table 14-9. CRC Interrupt Enable Reset Register (CRC_INTR) Field Descriptions (continued) Bit 8 Field Value CH2_CCITENR Description Channel 2 Compression Complete Interrupt Enable Reset Bit. User and Privileged mode (read): 0 Compression Complete Interrupt is disabled. 1 Compression Complete Interrupt is enabled. Privileged mode (write): 7-5 4 Reserved 0 Has no effect. 1 Compression Complete Interrupt is disabled. 0 Reads return 0. Writes have no effect. CH1_TIMEOUTENR Channel 1 Timeout Interrupt Enable Reset Bit. User and Privileged mode (read): 0 Timeout Interrupt is disabled. 1 Timeout Interrupt is enabled. Privileged mode (write): 3 0 Has no effect. 1 Timeout Interrupt is disabled. CH1_UNDERENR Channel 1 Underrun Interrupt Enable Reset Bit. User and Privileged mode (read): 0 Underrun Interrupt is disabled. 1 Underrun Interrupt is enabled. Privileged mode (write): 2 0 Has no effect. 1 Underrun Interrupt is disabled. CH1_OVERENR Channel 1 Overrun Interrupt Enable Reset Bit. User and Privileged mode (read): 0 Overrun Interrupt is disabled. 1 Overrun Interrupt is enabled. Privileged mode (write): 1 0 Has no effect. 1 Overrun Interrupt is disabled. CH1_CRCFAILENR Channel 1 CRC Fail Interrupt Enable Reset Bit. User and Privileged mode (read): 0 CRC Fail Interrupt is disabled. 1 CRC Fail Interrupt is enabled. Privileged mode (write): 0 0 Has no effect. 1 CRC Fail Interrupt is disabled. CH1_CCITENR Channel 1 Compression Complete Interrupt Enable Reset Bit. User and Privileged mode (read): 0 Compression Complete Interrupt is disabled. 1 Compression Complete Interrupt is enabled. Privileged mode (write): SPNU499C – March 2018 Submit Documentation Feedback 0 Has no effect. 1 Compression Complete Interrupt is disabled. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 499 CRC Control Registers www.ti.com 14.4.6 CRC Interrupt Status Register (CRC_STATUS) Figure 14-14. CRC Interrupt Status Register (CRC_STATUS) [offset = 28h] 31 16 Reserved R-0 15 13 12 11 10 9 8 Reserved CH2_TIMEOUT CH2_UNDER CH2_OVER CH2_CRCFAIL CH2_CCIT R-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 7 4 3 2 1 0 Reserved 5 CH1_TIMEOUT CH1_UNDER CH1_OVER CH1_CRCFAIL CH1_CCIT R-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 14-10. CRC Interrupt Status Register (CRC_STATUS) Field Descriptions Bit 31-13 12 Field Reserved Value 0 CH2_TIMEOUT Description Reads return 0. Writes have no effect. Channel 2 CRC Timeout Interrupt Status Flag. This bit is set in both AUTO and Semi-CPU mode. User and Privileged mode (read): 0 No timeout interrupt is active. 1 Timeout interrupt is active. Privileged mode (write): 11 0 Has no effect. 1 Bit is cleared. CH2_UNDER Channel 2 CRC Underrun Interrupt Status Flag. This bit is set in AUTO mode only. User and Privileged mode (read): 0 No Underrun Interrupt is active. 1 Underrun Interrupt is active. Privileged mode (write): 10 0 Has no effect. 1 Bit is cleared. CH2_OVER Channel 2 CRC Overrun Interrupt Status Flag. This bit is set in either AUTO or Semi-CPU mode. User and Privileged mode (read): 0 No Overrun Interrupt is active. 1 Overrun Interrupt is active. Privileged mode (write): 9 0 Has no effect. 1 Bit is cleared. CH2_CRCFAIL Channel 2 CRC Compare Fail Interrupt Status Flag. This bit is set in AUTO mode only. User and Privileged mode (read): 0 No CRC Fail Interrupt is active. 1 CRC Fail Interrupt is active. Privileged mode (write): 500 0 Has no effect. 1 Bit is cleared. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback CRC Control Registers www.ti.com Table 14-10. CRC Interrupt Status Register (CRC_STATUS) Field Descriptions (continued) Bit 8 Field Value CH2_CCIT Description Channel 2 CRC Pattern Compression Complete Interrupt Status Flag. This bit is only set in Semi-CPU mode. User and Privileged mode (read): 0 No Compression Complete Interrupt is active. 1 Compression Complete Interrupt is active. Privileged mode (write): 7-5 4 Reserved 0 Has no effect. 1 Bit is cleared. 0 Reads return 0. Writes have no effect. CH1_TIMEOUT Channel 1 CRC Timeout Interrupt Status Flag. User and Privileged mode (read): 0 No timeout interrupt is active. 1 Timeout interrupt is active. Privileged mode (write): 3 0 Has no effect. 1 Bit is cleared. CH1_UNDER Channel 1 Underrun Interrupt Status Flag. User and Privileged mode (read): 0 No Underrun Interrupt is active. 1 Underrun Interrupt is active. Privileged mode (write): 2 0 Has no effect. 1 Bit is cleared. CH1_OVER Channel 1 Overrun Interrupt Status Flag. User and Privileged mode (read): 0 No Overrun Interrupt is active. 1 Overrun Interrupt is active. Privileged mode (write): 1 0 Has no effect. 1 Bit is cleared. CH1_CRCFAIL Channel 1 CRC Compare Fail Interrupt Status Flag. User and Privileged mode (read): 0 No CRC Fail Interrupt is active. 1 CRC Fail Interrupt is active. Privileged mode (write): 0 0 Has no effect. 1 Bit is cleared. CH1_CCIT Channel 1 CRC Pattern Compression Complete Interrupt Status Flag. User and Privileged mode (read): 0 No Compression Complete Interrupt is active. 1 Compression Complete Interrupt is active. Privileged mode (write): 0 Has no effect. 1 Bit is cleared. 14.4.7 CRC Interrupt Offset (CRC_INT_OFFSET_REG) SPNU499C – March 2018 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 501 CRC Control Registers www.ti.com Figure 14-15. CRC Interrupt Offset (CRC_INT_OFFSET_REG) [offset = 30h] 31 16 Reserved R-0 15 8 7 0 Reserved OFSTREG R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 14-11. CRC Interrupt Offset (CRC_INT_OFFSET_REG) Field Descriptions Bit Field 31-8 Reserved 7-0 OFSTREG Value 0 Reads return 0. Writes have no effect. CRC Interrupt Offset. This register indicates the highest priority pending interrupt vector address. Reading the offset register automatically clears the respective interrupt flag. 0 Phantom 1h Ch1 CRC Fail 2h Ch2 CRC Fail 3h-8h Reserved 9h Ch1 Compression Complete Ah Ch2 Compression Complete Bh-10h Reserved 11h Ch1 Overrun 12h Ch2 Overrun 13h-18h Reserved 19h Ch1 Underrun 1Ah Ch2 Underrun 1Bh-20h Reserved 21h Ch1 Timeout 22h Ch2 Timeout 23h-FFh 502 Description Reserved Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback CRC Control Registers www.ti.com 14.4.8 CRC Busy Register (CRC_BUSY) Figure 14-16. CRC Busy Register (CRC_BUSY) [offset = 38h] 31 16 Reserved R-0 15 9 8 7 1 0 Reserved CH2_BUSY Reserved CH1_BUSY R-0 R-0 R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 14-12. CRC Busy Register (CRC_BUSY) Field Descriptions Bit 31-9 8 7-1 0 Field Value Reserved 0 CH2_BUSY Reserved CH1_BUSY Description Reads return 0. Writes have no effect. CH2_BUSY. During AUTO or Semi-CPU mode, the busy flag is set when the first data pattern of the block is compressed and remains set until the last data pattern of the block is compressed. The flag is cleared when the last data pattern of the block is compressed. 0 Reads return 0. Writes have no effect. CH1_BUSY. During AUTO or Semi-CPU mode, the busy flag is set when the first data pattern of the block is compressed and remains set until the last data pattern of the block is compressed. The flag is cleared when the last data pattern of the block is compressed. 14.4.9 CRC Pattern Counter Preload Register 1 (CRC_PCOUNT_REG1) Figure 14-17. CRC Pattern Counter Preload Register 1 (CRC_PCOUNT_REG1) [offset = 40h] 31 20 19 16 Reserved CRC_PAT_COUNT1 R-0 R/W-0 15 0 CRC_PAT_COUNT1 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 14-13. CRC Pattern Counter Preload Register 1 (CRC_PCOUNT_REG1) Field Descriptions Bit Field 31-20 Reserved 19-0 CRC_PAT_COUNT1 SPNU499C – March 2018 Submit Documentation Feedback Value 0 Description Reads return 0. Writes have no effect. Channel 1 Pattern Counter Preload Register. This register contains the number of data patterns in one sector to be compressed before a CRC is performed. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 503 CRC Control Registers www.ti.com 14.4.10 CRC Sector Counter Preload Register 1 (CRC_SCOUNT_REG1) Figure 14-18. CRC Sector Counter Preload Register 1 (CRC_SCOUNT_REG1) [offset = 44h] 31 16 Reserved R-0 15 0 CRC_SEC_COUNT1 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 14-14. CRC Sector Counter Preload Register 1 (CRC_SCOUNT_REG1) Field Descriptions Bit Field Value 31-16 Reserved 15-0 CRC_SEC_COUNT1 0 Description Reads return 0. Writes have no effect. Channel 1 Sector Counter Preload Register. This register contains the number of sectors in one block of memory. 14.4.11 CRC Current Sector Register 1 (CRC_CURSEC_REG1) Figure 14-19. CRC Current Sector Preload Register 1 (CRC_CURSEC_REG1) [offset = 48h] 31 16 Reserved R-0 15 0 CRC_CURSEC1 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 14-15. CRC Current Sector Register 1 (CRC_CURSEC_REG1) Field Descriptions Bit Field 31-16 Reserved 15-0 CRC_CURSEC1 504 Value 0 Description Reads return 0. Writes have no effect. Channel 1 Current Sector ID Register. In AUTO mode, this register contains the current sector number of which the signature verification fails. The sector counter is a free running up counter. When a sector fails, the erroneous sector number is logged into current sector ID register and the CRC fail interrupt is generated The sector ID register is frozen until it is read and the CRC fail status bit is cleared by CPU. While it is frozen, it does not capture another erroneous sector number. When this condition happens, an overrun interrupt is generated instead. Once the register is read and the CRC fail interrupt flag is cleared it can capture new erroneous sector number. In Semi-CPU mode, this register is used to indicate the sector number for which the compression complete has last happened. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback CRC Control Registers www.ti.com 14.4.12 CRC Channel 1 Watchdog Timeout Preload Register A (CRC_WDTOPLD1) Figure 14-20. CRC Channel 1 Watchdog Timeout Preload Register A (CRC_WDTOPLD1) [offset = 4Ch] 31 24 23 16 Reserved CRC_WDTOPLD1 R-0 R/W-0 15 0 CRC_WDTOPLD1 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 14-16. CRC Channel 1 Watchdog Timeout Preload Register A (CRC_WDTOPLD1) Field Descriptions Bit Field 31-24 Reserved 23-0 CRC_WDTOPLD1 Value 0 Description Reads return 0. Writes have no effect. Channel 1 Watchdog Timeout Counter Preload Register. This register contains the number of clock cycles within which the DMA must transfer the next block of data patterns. In SemiCPU mode, this register is used to indicate the sector number for which the compression complete has last happened. 14.4.13 CRC Channel 1 Block Complete Timeout Preload Register B (CRC_BCTOPLD1) Figure 14-21. CRC Channel 1 Block Complete Timeout Preload Register B (CRC_BCTOPLD1) [offset = 50h] 31 24 23 16 Reserved CRC_BCTOPLD1 R-0 R/W-0 15 0 CRC_BCTOPLD1 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 14-17. CRC Channel 1 Block Complete Timeout Preload Register B (CRC_BCTOPLD1) Field Descriptions Bit Field 31-24 Reserved 23-0 CRC_BCTOPLD1 SPNU499C – March 2018 Submit Documentation Feedback Value 0 Description Reads return 0. Writes have no effect. Channel 1 Block Complete Timeout Counter Preload Register. This register contains the number of clock cycles within which the CRC for an entire block needs to complete before a timeout interrupt is generated. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 505 CRC Control Registers www.ti.com 14.4.14 Channel 1 PSA Signature Low Register (PSA_SIGREGL1) Figure 14-22. Channel 1 PSA Signature Low Register (PSA_SIGREGL1) [offset = 60h] 31 0 PSASIG1 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 14-18. Channel 1 PSA Signature Low Register (PSA_SIGREGL1) Field Descriptions Bit 31-0 Field Description PSASIG1 Channel 1 PSA Signature Low Register. This register contains the value stored at PSASIG1[31:0] register. 14.4.15 Channel 1 PSA Signature High Register (PSA_SIGREGH1) Figure 14-23. Channel 1 PSA Signature High Register (PSA_SIGREGH1) [offset = 64h] 31 0 PSASIG1 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 14-19. Channel 1 PSA Signature High Register (PSA_SIGREGH1) Field Descriptions Bit 31-0 Field Description PSASIG1 Channel 1 PSA Signature High Register. This register contains the value stored at PSASIG1[63:32] register. 14.4.16 Channel 1 CRC Value Low Register (CRC_REGL1) Figure 14-24. Channel 1 CRC Value Low Register (CRC_REGL1) [offset = 68h] 31 0 CRC1 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 14-20. Channel 1 CRC Value Low Register (CRC_REGL1) Field Descriptions Bit Field Description 31-0 CRC1 Channel 1 CRC Value Low Register. This register contains the current known good signature value stored at CRC1[31:0] register. 506 Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback CRC Control Registers www.ti.com 14.4.17 Channel 1 CRC Value High Register (CRC_REGH1) Figure 14-25. Channel 1 CRC Value High Register (CRC_REGH1) [offset = 6Ch] 31 0 CRC1 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 14-21. Channel 1 CRC Value High Register (CRC_REGH1) Field Descriptions Bit Field Description 31-0 CRC1 Channel 1 CRC Value High Register. This register contains the current known good signature value stored at CRC1[63:32] register. 14.4.18 Channel 1 PSA Sector Signature Low Register (PSA_SECSIGREGL1) Figure 14-26. Channel 1 PSA Sector Signature Low Register (PSA_SECSIGREGL1) [offset = 70h] 31 0 PSASECSIG1 R-0 LEGEND: R = Read only; -n = value after reset Table 14-22. Channel 1 PSA Sector Signature Low Register (PSA_SECSIGREGL1) Field Descriptions Bit 31-0 Field Description PSASECSIG1 Channel 1 PSA Sector Signature Low Register. This register contains the value stored at PSASECSIG1[31:0] register. 14.4.19 Channel 1 PSA Sector Signature High Register (PSA_SECSIGREGH1) Figure 14-27. Channel 1 PSA Sector Signature High Register (PSA_SECSIGREGH1) [offset = 74h] 31 0 PSASECSIG1 R-0 LEGEND: R = Read only; -n = value after reset Table 14-23. Channel 1 PSA Sector Signature High Register (PSA_SECSIGREGH1) Field Descriptions Bit 31-0 Field Description PSASECSIG1 Channel 1 PSA Sector Signature High Register. This register contains the value stored at PSASECSIG1[63:32] register. SPNU499C – March 2018 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 507 CRC Control Registers www.ti.com 14.4.20 Channel 1 Raw Data Low Register (RAW_DATAREGL1) Figure 14-28. Channel 1 Raw Data Low Register (RAW_DATAREGL1) [offset = 78h] 31 0 RAW_DATA1 R-0 LEGEND: R = Read only; -n = value after reset Table 14-24. Channel 1 Raw Data Low Register (RAW_DATAREGL1) Field Descriptions Bit 31-0 Field Description RAW_DATA1 Channel 1 Raw Data Low Register. This register contains bits 31:0 of the uncompressed raw data. 14.4.21 Channel 1 Raw Data High Register (RAW_DATAREGH1) Figure 14-29. Channel 1 Raw Data High Register (RAW_DATAREGH1) [offset = 7Ch] 31 0 RAW_DATA1 R-0 LEGEND: R = Read only; -n = value after reset Table 14-25. Channel 1 Raw Data High Register (RAW_DATAREGH1) Field Descriptions Bit 31-0 Field Description RAW_DATA1 Channel 1 Raw Data High Register. This register contains bits 63:32 of the uncompressed raw data. 14.4.22 CRC Pattern Counter Preload Register 2 (CRC_PCOUNT_REG2) Figure 14-30. CRC Pattern Counter Preload Register 2 (CRC_PCOUNT_REG2) [offset = 80h] 31 18 19 16 Reserved CRC_PAT_COUNT2 R-0 R/W-0 15 0 CRC_PAT_COUNT2 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 14-26. CRC Pattern Counter Preload Register 2 (CRC_PCOUNT_REG2) Field Descriptions Bit Field 31-20 Reserved 19-0 CRC_PAT_COUNT2 508 Value 0 Description Reads return 0. Writes have no effect. Channel 2 Pattern Counter Preload Register. This register contains the number of data patterns in one sector to be compressed before a CRC is performed. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback CRC Control Registers www.ti.com 14.4.23 CRC Sector Counter Preload Register 2 (CRC_SCOUNT_REG2) Figure 14-31. CRC Sector Counter Preload Register 2 (CRC_SCOUNT_REG2) [offset = 84h] 31 16 Reserved R-0 15 0 CRC_SEC_COUNT2 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 14-27. CRC Sector Counter Preload Register 2 (CRC_SCOUNT_REG2) Field Descriptions Bit Field Value 31-16 Reserved 15-0 CRC_SEC_COUNT2 0 Description Reads return 0. Writes have no effect. Channel 2 Sector Counter Preload Register. This register contains the number of sectors in one block of memory. 14.4.24 CRC Current Sector Register 2 (CRC_CURSEC_REG2) Figure 14-32. CRC Current Sector Register 2 (CRC_CURSEC_REG2) [offset = 88h] 31 16 Reserved R-0 15 0 CRC_CURSEC2 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 14-28. CRC Current Sector Register 2 (CRC_CURSEC_REG2) Field Descriptions Bit Field 31-16 Reserved 15-0 CRC_CURSEC2 SPNU499C – March 2018 Submit Documentation Feedback Value 0 Description Reads return 0. Writes have no effect. Channel 2 Current Sector ID Register. In AUTO mode, this register contains the current sector number of which the signature verification fails. The sector counter is a free running up counter. When a sector fails, the erroneous sector number is logged into current sector ID register and the CRC fail interrupt is generated The sector ID register is frozen until it is read and the CRC fail status bit is cleared by CPU. While it is frozen, it does not capture another erroneous sector number. When this condition happens, an overrun interrupt is generated instead. Once the register is read and the CRC fail interrupt flag is cleared it can capture new erroneous sector number. In Semi-CPU mode, this register is used to indicate the sector number for which the compression complete has last happened. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 509 CRC Control Registers www.ti.com 14.4.25 CRC Channel 2 Watchdog Timeout Preload Register A (CRC_WDTOPLD2) Figure 14-33. CRC Channel 2 Watchdog Timeout Preload Register A (CRC_WDTOPLD2) [offset = 8Ch] 31 24 23 16 Reserved CRC_WDTOPLD2 R-0 R/W-0 15 0 CRC_WDTOPLD2 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 14-29. CRC Channel 2 Watchdog Timeout Preload Register A (CRC_WDTOPLD2) Field Descriptions Bit Field 31-24 Reserved 23-0 CRC_WDTOPLD2 Value 0 Description Reads return 0. Writes have no effect. Channel 2 Watchdog Timeout Counter Preload Register. This register contains the number of clock cycles within which the DMA must transfer the next block of data patterns. In SemiCPU mode, this register is used to indicate the sector number for which the compression complete has last happened. 14.4.26 CRC Channel 2 Block Complete Timeout Preload Register B (CRC_BCTOPLD2) Figure 14-34. CRC Channel 2 Block Complete Timeout Preload Register B (CRC_BCTOPLD2) [offset = 90h] 31 24 23 16 Reserved CRC_BCTOPLD2 R-0 R/W-0 15 0 CRC_BCTOPLD2 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 14-30. CRC Channel 2 Block Complete Timeout Preload Register B (CRC_BCTOPLD2) Field Descriptions Bit Field 31-24 Reserved 23-0 CRC_BCTOPLD2 510 Value 0 Description Reads return 0. Writes have no effect. Channel 2 Block Complete Timeout Counter Preload Register. This register contains the number of clock cycles within which the CRC for an entire block needs to complete before a timeout interrupt is generated. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback CRC Control Registers www.ti.com 14.4.27 Channel 2 PSA Signature Low Register (PSA_SIGREGL2) Figure 14-35. Channel 2 PSA Signature Low Register (PSA_SIGREGL2) [offset = A0h] 31 0 PSASIG2 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 14-31. Channel 2 PSA Signature Low Register (PSA_SIGREGL2) Field Descriptions Bit 31-0 Field Description PSASIG2 Channel 2 PSA Signature Low Register. This register contains the value stored at PSASIG2[31:0] register. 14.4.28 Channel 2 PSA Signature High Register (PSA_SIGREGH2) Figure 14-36. Channel 2 PSA Signature High Register (PSA_SIGREGH2) [offset = A4h] 31 0 PSASIG2 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 14-32. Channel 2 PSA Signature High Register (PSA_SIGREGH2) Field Descriptions Bit 31-0 Field Description PSASIG2 Channel 2 PSA Signature High Register. This register contains the value stored at PSASIG2[63:32] register. 14.4.29 Channel 2 CRC Value Low Register (CRC_REGL2) Figure 14-37. Channel 2 CRC Value Low Register (CRC_REGL2) [offset = A8h] 31 0 CRC2 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 14-33. Channel 2 CRC Value Low Register (CRC_REGL2) Field Descriptions Bit Field Description 31-0 CRC2 Channel 2 CRC Value Low Register. This register contains the current known good signature value stored at CRC2[31:0] register. SPNU499C – March 2018 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 511 CRC Control Registers www.ti.com 14.4.30 Channel 2 CRC Value High Register (CRC_REGH2) Figure 14-38. Channel 2 CRC Value High Register (CRC_REGH2) [offset = ACh] 31 0 CRC2 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 14-34. Channel 2 CRC Value High Register (CRC_REGH2) Field Descriptions Bit Field Description 31-0 CRC2 Channel 2 CRC Value High Register. This register contains the current known good signature value stored at CRC2[63:32] register. 14.4.31 Channel 2 PSA Sector Signature Low Register (PSA_SECSIGREGL2) Figure 14-39. Channel 2 PSA Sector Signature Low Register (PSA_SECSIGREGL2) [offset = B0h] 31 0 PSASECSIG2 R-0 LEGEND: R = Read only; -n = value after reset Table 14-35. Channel 2 PSA Sector Signature Low Register (PSA_SECSIGREGL2) Field Descriptions Bit 31-0 Field Description PSASECSIG2 Channel 2 PSA Sector Signature Low Register. This register contains the value stored at PSASECSIG2[31:0] register. 14.4.32 Channel 2 PSA Sector Signature High Register (PSA_SECSIGREGH2) Figure 14-40. Channel 2 PSA Sector Signature High Register (PSA_SECSIGREGH2) [offset = B4h] 31 0 PSASECSIG2 R-0 LEGEND: R = Read only; -n = value after reset Table 14-36. Channel 2 PSA Sector Signature High Register (PSA_SECSIGREGH2) Field Descriptions Bit 31-0 512 Field Description PSASECSIG2 Channel 2 PSA Sector Signature High Register. This register contains the value stored at PSASECSIG2[63:32] register. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback CRC Control Registers www.ti.com 14.4.33 Channel 2 Raw Data Low Register (RAW_DATAREGL2) Figure 14-41. Channel 2 Raw Data Low Register (RAW_DATAREGL2) [offset = B8h] 31 0 RAW_DATA2 R-0 LEGEND: R = Read only; -n = value after reset Table 14-37. Channel 2 Raw Data Low Register (RAW_DATAREGL2) Field Descriptions Bit 31-0 Field Description RAW_DATA2 Channel 2 Raw Data Low Register. This register contains bits 31:0 of the uncompressed raw data.. 14.4.34 Channel 2 Raw Data High Register (RAW_DATAREGH2) Figure 14-42. Channel 2 Raw Data High Register (RAW_DATAREGH2) [offset = BCh] 31 0 RAW_DATA2 R-0 LEGEND: R = Read only; -n = value after reset Table 14-38. Channel 2 Raw Data High Register (RAW_DATAREGH2) Field Descriptions Bit 31-0 Field Description RAW_DATA2 Channel 2 Raw Data High Register. This register contains bits 63:32 of the uncompressed raw data.. SPNU499C – March 2018 Submit Documentation Feedback Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated 513 CRC Control Registers www.ti.com 14.4.35 Data Bus Selection Register (CRC_TRACE_BUS_SEL) Figure 14-43. Data Bus Selection Register (CRC_TRACE_BUS_SEL) [offset = 140h] 31 16 Reserved R-0 15 3 Reserved R-0 2 1 0 MEn DTCMEn ITCMEn R/W-1 R/W-1 R/W-1 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 14-39. Data Bus Selection Register Field Descriptions Bit 31-3 2 1 0 514 Field Reserved Value 0 MEn Description Reads return 0. Writes have no effect. Enable/disables the tracing of Peripheral Bus Master 0 Tracing of Peripheral Bus Master has been disabled. 1 Tracing of Peripheral Bus Master has been enabled. DTCMEn Enable/disables the tracing of data TCM 0 Tracing of System Odd and Even RAM buses have been disabled. 1 Tracing of System Odd and Even RAM buses have been enabled. ITCMEn Enable/disables the tracing of instruction TCM 0 Tracing of Flash data bus has been disabled. 1 Tracing of Flash data bus has been enabled. Cyclic Redundancy Check (CRC) Controller Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Chapter 15 SPNU499C – March 2018 Vectored Interrupt Manager (VIM) Module This chapter describes the behavior of the vectored interrupt manager (VIM) module of the device family. Topic 15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 ........................................................................................................................... Overview ......................................................................................................... Device Level Interrupt Management .................................................................... Interrupt Handling Inside VIM ............................................................................. Interrupt Vector Table (VIM RAM) ....................................................................... VIM Wakeup Interrupt ........................................................................................ Capture Event Sources ..................................................................................... Examples......................................................................................................... VIM Control Registers ....................................................................................... SPNU499C – March 2018 Submit Documentation Feedback Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated Page 516 516 519 523 526 527 527 530 515 Overview www.ti.com 15.1 Overview The vectored interrupt manager (VIM) provides hardware assistance for prioritizing and controlling the many interrupt sources present on a device. Interrupts are caused by events outside of the normal flow of program execution. Normally, these events require a timely response from the central processing unit (CPU); therefore, when an interrupt occurs, the CPU switches execution from the normal program flow to an interrupt service routine (ISR). The VIM module has the following features: • Supports 95 interrupt channels, in both register vectored interrupt and hardware vectored interrupt mode. – Provides IRQ vector directly to the CPU VIC port – Provides FIQ/IRQ vector through registers – Provides programmable priority and enable for interrupt request lines • Provides a direct hardware dispatch mechanism for fastest IRQ dispatch. • Provides two software dispatch mechanisms for backward compatibility with earlier generation of TI processors. – Index interrupt – Register vectored interrupt • Parity protected vector interrupt table against soft errors. 15.2 Device Level Interrupt Management A block diagram of device level interrupt handling is shown in Figure 15-1. When an event occurs within a peripheral, the peripheral makes an interrupt request to the VIM. Then, VIM prioritizes the requests from peripherals and provides the address of the highest interrupt service routine (ISR) to the CPU. Finally, CPU starts executing the ISR instructions from that address in the ISR. Section 15.2.1 through Section 15.2.3 provide additional details about these three steps. Figure 15-1. Device Level Interrupt Block Diagram Peripherals - Generate Interrupt Requests ESM ADC LIN SPI DCAN INT_REQ0 INT_REQ1 INT_REQ94 VIM CPU Interrupts Special Interrupts NHET - Interrupt Enable - Interrupt Priority - Interrupt Mapping - Interrupt Generation INT IRQ FIQ IRQ FIQ FIQ IRQ IRQ Table Index Index Vector Vector Request Request t Vector Configuration Register RegisterRegister Register (Direct CAPEVT[1:0] Wakeup_INT Hardware VBUSP RTI 516 CPU GCM Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated Vector) VIC Port SPNU499C – March 2018 Submit Documentation Feedback Device Level Interrupt Management www.ti.com 15.2.1 Interrupt Generation at the Peripheral Interrupt generation begins when an event occurs within a peripheral module. Some examples of interruptcapable events are expiration of a counter within a timer module, receipt of a character in a communications module, and completion of a conversion in an analog-to-digital converter (ADC) module. Some device peripherals are capable of requesting interrupts on more than one interrupt request line. Interrupts are not always generated when an event occurs; the peripheral must make an interrupt request to the VIM based on the event occurrence. Typically, the peripheral contains: • An interrupt flag bit for each event to signify the event occurrence. • An interrupt enable bit to control whether the event occurrence causes an interrupt request to the VIM. 15.2.2 Interrupt Handling at the CPU The ARM CPU provides two vectors for interrupt requests—fast interrupt requests (FIQs) and normal interrupt requests (IRQs). FIQs are higher priority than IRQs, and FIQ interrupts may interrupt IRQ interrupts. NOTE: The FIQ implemented in Cortex-R4F is Non-Maskable Fast Interrupts (NMFI). Once FIQ is enabled (by clearing F bit in CPSR), it can NOT be disabled by setting F bit in CPSR. Only a reset or an FIQ will be able to set the F bit in CPSR. By hardware, Non Maskable FIQ are not reentrant. After reset (power reset or warm reset), both FIQ and IRQ are disabled. The CPU may enable these interrupt request channels individually within the CPSR (Current Program Status Register); CPSR bits 6 and 7 must be cleared to enable the FIQ (bit 6) and IRQ (bit 7) interrupt requests at the CPU. CPSR is writable in privilege mode only. Example 15-2 shows how to enable the IRQ and FIQ through CPSR. When the CPU receives an interrupt request, the CPSR mode field changes to either FIQ or IRQ mode. When an IRQ interrupt is received, the CPU disables other IRQ interrupts by setting CPSR bit 7. When an FIQ interrupt is received, the CPU disables both IRQ and FIQ interrupts by setting CPSR bits 6 and 7. A write of 1 to CPSR bit 7 disables the IRQ from CPU. However, a write of 1 to CPSR bit 6 leaves it unchanged. Example 15-2 also shows how to disable the IRQ through CPSR. SPNU499C – March 2018 Submit Documentation Feedback Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 517 Device Level Interrupt Management www.ti.com 15.2.3 Software Interrupt Handling Options The device supports three different possibilities for software to handle interrupts 1. Index interrupts mode (compatible with TMS470R1x legacy code) After the interrupt is received by the CPU, the CPU branches to 0x18 (IRQ) or 0x1C (FIQ) to execute the main ISR. The main ISR routine reads the offset register (IRQINDEX, FIQINDEX) to determine the source of the interrupt. This mode is compatible with the TMS470R1x (CIM) module and provides the same interrupt registers. This mode could be used if legacy code needs to be reused, porting it from the TMS470R1x family. However, imported software will not benefit from the VIM improvements. To port legacy software, the interrupt vector at 0x18 (IRQ) or 0x1C (FIQ) only needs to be a branch statement to a software interrupt table. The software interrupt table reads the pending interrupt from a vector offset register (FIQINDEX[7:0] for FIQ interrupts and IRQINDEX[7:0] for IRQ interrupts). All pending interrupts can be viewed in the INTREQ register. Example 15-4 shows how to respond to FIQ with short latency in this mode. 2. Register vectored interrupts (automatically provide vector address to application) Before enabling interrupts, the application software also has to initiate the interrupt vector table (VIM RAM). Once the VIM receives an interrupt, it loads the address of ISR from interrupt vector table, and store it into the interrupt vector register (IRQVECREG for IRQ interrupt, FIQVECREG for FIQ interrupt). After the interrupt is received by the CPU, the CPU executes the instruction placed at 0x18 or 0x1C (IRQ or FIQ vector) to load the address of ISR (interrupt vector) from the interrupt vector register. Example 15-3 illustrates the configuration for the exception vectors using this mode. 3. Hardware vectored interrupts (automatically dispatch to ISR, IRQ only) Before enabling interrupts, the application software must initiate the interrupt vector table (VIM RAM) pointing to the ISR for each interrupt channel. After the interrupt (IRQ) is received by the CPU, CPU reads the address of ISR directly from the interface with VIM (VIC port) instead of branching to 0x18. The CPU will branch directly to the ISR. The hardware vectored interrupt behavior must be explicitly enabled by setting the vector enable (VE) bit in the CP15 R1 register. This bit resets to 0, so that the default state after reset is backward compatible to earlier ARM CPU. Example 15-1 shows how to enable the hardware vectored interrupt. NOTE: This mode is NOT available for FIQ. 4. Software-Based Priority Decoding Scheme If the application uses a software-based interrupt priority decoding scheme instead of the hardware vector capabilities, then there is an additional step which was not required on earlier devices. This version of the VIM will hold an interrupt request generated by a peripheral. When the software clears the interrupt condition in the source module (for example, RTI, GIO, and so on), then it must also perform an additional clear of the interrupt request in the VIM. This can be done by reading the IRQVECREG register ( Section 15.8.14) or FIQVECREG register (Section 15.8.15), or by writing a 1 to the INTREQ(i) bit (Section 15.8.9) in the VIM. This is not necessary if any of the three previous methods are used as the interrupt request bit in the VIM will be automatically cleared when the vector is read. 518 Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Interrupt Handling Inside VIM www.ti.com 15.3 Interrupt Handling Inside VIM A block diagram of the interrupt handling inside VIM is shown in Figure 15-2 Figure 15-2. VIM Interrupt Handling Block Diagram INT_ REQ0 INT_ REQ1 INT_ REQ2 INT_ INT_ REQ93 REQ94 CHANNEL MAPPING CHAN0 CHAN1 CHAN2 CHAN93 CHAN94 INTERRUPT ENABLE INT_ INT_ INT_ CHAN0 CHAN1 CHAN2 INT_ INT_ CHAN93 CHAN94 IRQ / FIQ LEVEL FIQ_ FIQ_ CHAN93 CHAN94 FIQ_ FIQ_ FIQ_ CHAN0 CHAN1 CHAN2 IRQ_ CHAN2 FIQ Register FIQINDEX FIQ INDEX To CPU IRQ LEVEL PRIORITY ENCODER IRQ INDEX FIQ LEVEL PRIORITY ENCODER IRQ_ IRQ_ CHAN93 CHAN94 IRQ PROGRAMMABLE INTERRUPT VECTOR TABLE To CPU Register IRQINDEX Phantom Vector Channel 0 Vector Channel 1 Vector Register FIQVECREG SPNU499C – March 2018 Submit Documentation Feedback IRQ VECTOR FIQ VECTOR Channel 94 Vector TO CPU VIC Port Register IRQVECREG Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 519 Interrupt Handling Inside VIM www.ti.com 15.3.1 VIM Interrupt Channel Mapping The VIM support 96 interrupt channels (including phantom interrupt). A block diagram of the VIM interrupt requests arrangement from peripheral modules to the interrupt channels, is provided in Figure 15-3. Each interrupt channel(CHANx) has a corresponding mapping register bit field (CHANMAPx[6:0]). This mapping register determines which interrupt channel it maps each VIM interrupt request. With this scheme, the same request can be mapped to multiple channels. A lower numbered channel in each FIQ and IRQ has higher priority. The programmability of the VIM allows software to control the interrupt priority. Figure 15-3. VIM Channel Mapping INT_ INT_ INT_ REQ0 REQ1 REQ2 CHANMAP2[6:0] INT_ REQ94 NOTE: CHAN0 and CHAN1 are hard wired to INT_REQ0 and INT_REQ1, can NOT be remapped. 7 CHAN2 CHANNEL MAPPING INT_ INT_ INT_ REQ0 REQ1 REQ2 CHANMAP94[6:0] 95 Interrupt Channels INT_ REQ94 7 CHAN94 NOTE: CHAN95 CHAN95 has no dedicated interrupt vector table entry. Therefore, CHAN95 shall NOT be remapped to other INT_REQ (INT_REQ95 is reserved at device level). In the reset state, the VIM maps all of the interrupt requests in the system to their respective interrupt channels. Figure 15-4 shows the default state following the reset. Figure 15-5 shows the VIM INT2 is remapped to both Channel 2 and 4, and INT3 is mapped to channel 3. NOTE: By mapping INT2 to channel 2 and channel 4, and mapping INT3 to channel 3, it is possible for the software to change the priority dynamically by changing the ENABLE register (REQENASET and REQENACLR). When channel 2 is enabled, the priority is: 1. INT0 2. INT1 3. INT2 4. INT3 Disabling channel 2, the priority becomes: 1. 2. 3. 4. 520 INT0 INT1 INT3 INT2 Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Interrupt Handling Inside VIM www.ti.com Figure 15-4. VIM in Default State Phantom Vector 0xFFF82000 Peripheral 0 INT_REQ0 CHANMAP0 CHAN0 Channel 0 Vector 0xFFF82004 Peripheral 1 INT_REQ1 CHANMAP1 CHAN1 Channel 1 Vector 0xFFF82008 Peripheral 2 INT_REQ2 CHANMAP2 CHAN2 Channel 2 Vector 0xFFF8200C Peripheral 3 INT_REQ3 CHANMAP3 CHAN3 Channel 3 Vector 0xFFF82010 Peripheral 4 INT_REQ4 CHANMAP4 CHAN4 Channel 4 Vector 0xFFF82014 Interrupt requests (from peripheral) Interrupt channels Peripheral 93 INT_REQ93 CHANMAP93 CHAN93 Channel 93 Vector 0xFFF82178 Peripheral 94 INT_REQ94 CHANMAP94 CHAN94 Channel 94 Vector 0xFFF8217C NOTE: CHAN0 and CHAN1 are hardwired to INT_REQ0 and INT_REQ1, so they cannot be remapped. Figure 15-5. VIM in a Programmed State Phantom Vector 0xFFF82000 Peripheral 0 INT_REQ0 CHANMAP0 CHAN0 Channel 0 Vector 0xFFF82004 Peripheral 1 INT_REQ1 CHANMAP1 CHAN1 Channel 1 Vector 0xFFF82008 Peripheral 2 INT_REQ2 CHANMAP2 CHAN2 Channel 2 Vector 0xFFF8200C Peripheral 3 INT_REQ3 CHANMAP3 CHAN3 Channel 3 Vector 0xFFF82010 Peripheral 4 INT_REQ4 CHANMAP4 CHAN4 Channel 4 Vector 0xFFF82014 Interrupt requests (from peripheral) Interrupt channels Peripheral 93 INT_REQ93 CHANMAP93 CHAN93 Channel 93 Vector 0xFFF82178 Peripheral 94 INT_REQ94 CHANMAP94 CHAN94 Channel 94 Vector 0xFFF8217C NOTE: CHAN0 and CHAN1 are hard wired to INT_REQ0 and INT_REQ1, so they cannot be remapped. SPNU499C – March 2018 Submit Documentation Feedback Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 521 Interrupt Handling Inside VIM www.ti.com 15.3.2 VIM Input Channel Management As shown in Figure 15-6, the VIM enables channels on a channel-by-channel basis (in the REQENASET and REQENACLR registers); unused channels may be masked to prevent spurious interrupts. NOTE: The interrupt ENABLE register does not affect the value of INTREQ. Figure 15-6. Interrupt Channel Management INT FLAG INTREQ.0 FIQ_CHAN[0] CHAN0 INT_CHAN0 INT FLAG INTREQ.1 FIQ_CHAN[1] CHAN1 INT_CHAN1 INT FLAG INTREQ.2 CHAN2 1 REQENA.2 INT_CHAN2 Controlled by: REQENASET.2 REQENACLR.2 0 FIQ_CHAN[2] IRQ_CHAN[2] FIRQPR.2 INT FLAG INTREQ.95 CHAN95 FIQ_CHAN[95] 1 REQENA.95 INT_CHAN95 Controlled by: REQENASET.95 REQENACLR.95 0 IRQ_CHAN[95] FIRQPR.95 By default, interrupt CHAN0 is mapped to ESM (Error Signal Module) high level interrupt and CHAN1 is reserved for other NMI. For safety reasons, these two channels are mapped to FIQ only and can NOT be disabled through ENABLE registers. NOTE: NMI Channel Channel 0 and channel 1 are not maskable by the REQENASET/REQENACLR bit and both channels are routed exclusively to FIQ/NMI request line (FIRQPR0 and FIRQPR1 have no effect). The VIM prioritizes the received interrupts based upon a programmed prioritization scheme. The VIM can send two interrupt requests to the CPU simultaneously—one IRQ and one FIQ. If both interrupt types are enabled at the CPU level, then the FIQ has greater priority and is handled first. Each interrupt channel, except channel 0 and 1, can be assigned to send either an FIQ or IRQ request to the CPU (in the FIRQPR register). The VIM provides a default prioritization scheme, which sends the lowest numbered active channel (in each FIQ and IRQ classes) to the CPU. Within the FIQ and IRQ classes of interrupts, the lowest channel has the highest priority interrupt. The channel number is programmable through register CHANMAPx. 522 Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Interrupt Vector Table (VIM RAM) www.ti.com After the VIM has generated the vector corresponding to the highest active IRQ, it updates the FIQINDEX or the IRQINDEX register, depending on the class of interrupt. Then, it accesses the interrupt vector table using the vector value to fetch the address of the corresponding ISR. If the request is an FIQ class interrupt, the address read from the interrupt vector table, is written to the FIQVECREG register. If the request is an IRQ class interrupt, the address is written to the IRQVECREG register and put on the VIC port of the CPU (in case of hardware vectored interrupt is enabled). All of the interrupt registers are updated when a new high priority interrupt line becomes active. 15.4 Interrupt Vector Table (VIM RAM) Interrupt vector table stores the address of ISRs. During register vectored interrupt and hardware vectored interrupt, VIM accesses the interrupt vector table using the vector value to fetch the address of the corresponding ISR. For safety reasons, the interrupt vector table has protection by parity to indicate corruption due to soft errors. The parity scheme is implemented as a continuous background check based on memory access. Section 15.4.1 through Section 15.4.4 describe how parity works in the interrupt vector table. NOTE: Writes to the interrupt vector table parity flag register (PARFLG) and the interrupt vector table parity control register (PARCTL) are in privilege mode only. 15.4.1 Interrupt Vector Table Operation The interrupt vector table is organized in 96 words of 32 bits. 32-bit, 16-bit, and 8-bit accesses are supported (when parity is disabled). Figure 15-7 shows the interrupt memory mapping. The table base address is FFF8 2000h. Figure 15-7. VIM Interrupt Address Memory Map Interrupt vector table address space 0xFFF82000 Phantom Vector 0xFFF82004 Channel 0 Vector 0xFFF82008 Channel 1 Vector 0xFFF82178 Channel 93 Vector 0xFFF8217C Channel 94 Vector NOTE: The interrupt vector table only has 96 entries, one phantom vector and 95 interrupt channels. Channel 95 does not have a dedicated vector and shall not be used. SPNU499C – March 2018 Submit Documentation Feedback Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 523 Interrupt Vector Table (VIM RAM) www.ti.com There is one bit of parity per 32-bit ISR address. When a write is performed into the interrupt vector table, the parity is calculated for the 32-bit word and a parity bit is written into the corresponding parity region of interrupt vector table. NOTE: Only 32-bit write/read access are allowed on interrupt vector table if parity is required. Non 32-bit access might result in parity errors. When a read occurs from the CPU or VIM, the VIM calculates the parity from the data coming from the interrupt vector table and compares it to the parity stored in the table. The access of the data and the parity is performed in the same clock cycle. If the parity bit does not match the calculated parity, a parity error is generated and the VIM stores the address of the error in the ADDERR register. The parity flag error (PARFLG) is set. NOTE: The PARFLG register is only for bypassing the interrupt vector table in case of a parity fault. It should be used only to maintain the interrupt vector table bypassed. The checking of the parity fault should be done in the error signaling module (ESM) module where all parity errors are flagged. Since the interrupt vector table may have an error, the FBPARERR register will provide to the VIC port, IRQVECREG and FIQVECREG, a fall-back address to an ISR that can restore the interrupt vector table content. The FBPARERR register should be set before initializing the interrupt in the interrupt vector table, to avoid branching to an unpredictable location. The normal operation is restored when the PARFLG is cleared by the CPU. It is recommended to restore the content of the VIM before clearing the PARFLG. The parity error signal is forwarded to the ESM. 15.4.2 Enabling and Controlling the VIM Parity The polarity of VIM parity is controlled by the DEVCR1 register in the system module (address FFFF FFDCh). The parity enable is controlled by the PARCTL register. After reset, the parity is disabled. Parity checking can be enabled by writing 0xA (1010b) in the PARENA[3:0] bit field of the PARCTL register. The default polarity is odd. The polarity can be changed to even by writing 5 (0101b) in the DEVPARSEL[3:0] bit field of the DEVCR1 register. 15.4.3 Interrupt Vector Table Initialization After reset, the interrupt vector table content including the parity bits is not initialized. Therefore, the CPU needs to initialize all of the interrupt addresses into the table, before enabling the corresponding interrupt channel. If parity is required, this initialization should be done after the parity functionality is enabled. In this way, the corresponding parity bit will be automatically updated. This initialization is only required when vectored interrupts are used, index interrupt management does not need the table to be initialized. 524 Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Interrupt Vector Table (VIM RAM) www.ti.com 15.4.4 Interrupt Vector Table Parity Testing To test the parity checking mechanism, the parity RAM allows manual insertion of faults. This option is implemented by the test bit in the PARCTL register. Once the bit is set, the parity bits are mapped to 0xFFF82400. After that, user can force faults into the parity bits. Finally, the parity error can be triggered by reading interrupt vector table (not parity bit) from VIM or CPU. The interrupt vector table parity can also be verified by inserting faults into interrupt vector table. Once the VIM parity is disabled in system module, user can modify interrupt vector table without impacting the parity bit. After user re-enable interrupt vector table parity, the parity error can be triggered by reading interrupt vector table from VIM or CPU. Figure 15-8. Parity Bit Mapping 32-bit only accessible 31 0xFFF82000 0 Word 0 Word 1 Word 2 Word 3 31 0xFFF82400 SPNU499C – March 2018 Submit Documentation Feedback 1 0 Read 0 P0 Read 0 P1 Read 0 P2 Read 0 P3 Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 525 VIM Wakeup Interrupt www.ti.com 15.5 VIM Wakeup Interrupt The wakeup interrupts are used to come out of low power mode (LPM). Any interrupt requests can be used to wake up the device. After reset, all interrupt requests are set to wake up from LPM. However, the VIM can mask unwanted interrupt lines for wake-up by using the WAKEENASET and WAKEENACLR register. The value in REQENASET/REQENACLR does NOT impact the wakeup interrupt. As shown in Figure 15-9, the WAKEENASET and WAKEENACLR registers will enable/disable an interrupt for wake-up from low-power mode. All wake-up interrupts are “ORed” into a single signal WAKE_INT connected to the Global Clock Module. Figure 15-9. Detail of the IRQ Input INT_REQ0 WAKEUP0 WAKEENA.0 Controlled by: WAKEENASET.0 WAKEENACLR.0 INT_REQ1 WAKEUP1 WAKEENA.1 Controlled by: WAKEENASET.1 WAKEENACLR.1 INT_REQ2 WAKEUP2 OR WAKE_INT WAKEENA.2 Controlled by: WAKEENASET.2 WAKEENACLR.2 INT_REQ95 WAKEUP95 WAKEENA.95 Controlled by: WAKEENASET.95 WAKEENACLR.95 526 Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Capture Event Sources www.ti.com 15.6 Capture Event Sources The VIM can select any of the 96 interrupt requests to generate up to two capture events for the real-time interrupt (RTI) module (see Figure 15-10). The value in REQENASET/REQENACLR does NOT impact the capture event. Two registers (Section 15.8.16) are available, one for each capture event source. Figure 15-10. Capture Event Sources 7 CAPEVTSRC0[6:0] 7 INT_REQ0 INT_REQ1 INT_REQ0 INT_REQ1 CAPEVT0 To RTI CAPEVTSRC1[6:0] CAPEVT1 To RTI INT_REQ94 INT_REQ95 INT_REQ94 INT_REQ95 15.7 Examples The following sections provide examples about the operation of the VIM. 15.7.1 Examples - Configure CPU To Receive Interrupts Example 15-1 shows how to set the vector enable (VE) bit in the CP15 R1 register to enable the hardware vector interrupt. Example 15-2 shows how to enable/disable the IRQ and FIQ through CPSR. As a convention, the program who calls these subroutines shall preserve register R1 if needed. Example 15-2 can ONLY run in privileged mode. However, in USER mode, the application software can force the program into software interrupt by instruction SWI. Then, in the software interrupt service routine, user can write register SPSR, which is the copy of CPSR in this exception mode. Example 15-1. Enable Hardware Vector Interrupt (IRQ Only) _HW_Vec_Init MRC p15 ,#0 ,R1 ,c1 ,c0 ,#0 ORR R1 ,R1 ,#0x01000000 MCR p15 ,#0 ,R1 ,c1 ,c0 ,#0 MOV PC, LR SPNU499C – March 2018 Submit Documentation Feedback ; Mask 0-31 bits except bit 24 in Sys ; Ctrl Reg of CORTEX-R4 ; Enable bit 24 Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 527 Examples www.ti.com Example 15-2. Enable/Disable IRQ/FIQ through CPSR FIQENABLE .equ 0x40 IRQENABLE .equ 0x80 ...... _Enable_Fiq MRS R1, CPSR BIC R1, R1, #FIQENABLE MSR CPSR, R1 MOV PC, LR ...... _Disable_Irq MRS R1, CPSR ORR R1, R1, #IRQENABLE MSR CPSR, R1 MOV PC, LR ...... _Enable_Irq MRS R1, CPSR BIC R1, R1, #IRQENABLE MSR CPSR, R1 MOV PC, LR 15.7.2 Examples - Register Vector Interrupt and Index Interrupt Handling Example 15-3 shows the configuration for the exception vectors in Register Vector Interrupt handling. After the interrupt is received by the CPU, the CPU branches to 0x18 (IRQ) or 0x1C (FIQ). The instruction placed here should be LDR PC, [PC,#-0x1B0]. The pending ISR address is written into the corresponding vector register (IRQVECREG for IRQ, FIQVECREG for FIQ). The CPU reads the content of the register and branches to the ISR. Example 15-3. Exception Vector Configuration for VIM Vector 00000000h 00000004h 00000008h 0000000Ch 00000010h 00000014h 00000018h 0000001Ch .sect ".intvecs" b _RESET b _UNDEF_INST_INT b _SW_INT b _ABORT_PREF_INT b _ABORT_DATA_INT b #-8 ldr pc,[pc,#-0x1B0] ldr pc,[pc,#-0x1B0] ; ; ; ; ; ; ; ; RESET interrupt UNDEFINED INSTRUCTION interrupt SOFTWARE interrupt ABORT (PREFETCH) interrupt ABORT (DATA) interrupt Reserved IRQ interrupt FIQ interrupt NOTE: Program Counter (PC) always pointers two instructions beyond the current executed instruction. In this case, PC equals to ‘0x18 or 0x1C + 0x08’. The LDR instruction load the memory at ‘PC - 0x1B0’, which is ‘0x18 or 0x1C + 0x08 - 0x1B0 = 0xFFFFFE70 or 0xFFFFFE74’. These are the address of IRQVECREG and FIQVECREG, which store the pending ISR address. 528 Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Examples www.ti.com Example 15-4 shows a fast response to the FIQ interrupt in Index Interrupt and can be applied to a system that has more than one channel assigned as a FIQ. It is built in Index Interrupt compatible with TMS470R1x legacy code. Example 15-4. How to Respond to FIQ With Short Latency 00000000h 00000004h 00000008h 0000000Ch 00000010h 00000014h 00000018h .sect ".intvecs" b _RESET b _UNDEF_INST_INT b _SW_INT b _ABORT_PREF_INT b _ABORT_DATA_INT b #-8 b _IRQ_ENTRY_0 0000001Ch ldrb R8, [PC,#-0x21d] 00000020h ldr PC, [PC, R8, LSL#2] 00000024h nop 00000028h _INT_TABLE 0000002Ch .word _FIQ_TABLE 00000030h .word _ISR1 00000034h .word _ISR2 . . ; Interrupt and exception vector sector ; RESET interrupt ; UNDEFINED INSTRUCTION interrupt ; SOFTWARE interrupt ; ABORT (PREFETCH) interrupt ; ABORT (DATA) interrupt ; Reserved ; IRQ interrupt ;********************************* ; INTERRUPT PROCESSING AREA ;********************************* ; FIQ INTERRUPT ENTRY ; R8 used to get the FIQ index ; with address pointer to the ; first FIQ banked register ; Branch to the indexed interrupt ; routine. The prefetch ; operation causes the PC to be 2 ; words (8 bytes) ahead of the ; current instruction, so ; pointing to _INT_TABLE. ; Required due to pipeline. ;================================= ; FIQ INTERRUPT DISPATCH ;================================= ; beginning of FIQ Dispatch ; dispatch to interrupt routine 1 ; dispatch to interrupt routine 2 Another way to improve the FIQ latency is to assign only one channel to the FIQ interrupt and to map the ISR code corresponding to this channel directly starting at 0x1C. NOTE: When the CPU is in vector-enabled mode, Example 15-3 and Example 15-4 are still valid. The difference is that the CPU will not read from the 0x18 location during IRQ interrupt, but will jump directly to the corresponding ISR routine. SPNU499C – March 2018 Submit Documentation Feedback Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 529 VIM Control Registers www.ti.com 15.8 VIM Control Registers This section details the VIM module registers, summarized in Table 15-1. Each register begins on a word boundary. All registers are 32-bit, 16-bit, and 8-bit accessible for read and write. Write is only possible in privilege mode. The base address of the control registers is FFFF FE00h. The base address of the parity-related VIM registers is FFFF FD00h. The address locations not listed are reserved. Table 15-1. VIM Control Registers Offset Acronym Register Description Section Parity-related Registers ECh PARFLG Interrupt Vector Table Parity Flag Register Section 15.8.1 F0h PARCTL Interrupt Vector Table Parity Control Register Section 15.8.2 F4h ADDERR Address Parity Error Register Section 15.8.3 F8h FBPARERR Fall-Back Address Parity Error Register Section 15.8.4 Control Registers 00h IRQINDEX IRQ Index Offset Vector Register Section 15.8.6 04h FIQINDEX FIQ Index Offset Vector Register Section 15.8.7 10h FIRQPR0 FIQ/IRQ Program Control Register 0 Section 15.8.8 14h FIRQPR1 FIQ/IRQ Program Control Register 1 Section 15.8.8 18h FIRQPR2 FIQ/IRQ Program Control Register 2 Section 15.8.8 20h INTREQ0 Pending Interrupt Read Location Register 0 Section 15.8.9 24h INTREQ1 Pending Interrupt Read Location Register 1 Section 15.8.9 28h INTREQ2 Pending Interrupt Read Location Register 2 Section 15.8.9 30h REQENASET0 Interrupt Enable Set Register 0 Section 15.8.10 34h REQENASET1 Interrupt Enable Set Register 1 Section 15.8.10 38h REQENASET2 Interrupt Enable Set Register 2 Section 15.8.10 40h REQENACLR0 Interrupt Enable Clear Register 0 Section 15.8.11 44h REQENACLR1 Interrupt Enable Clear Register 1 Section 15.8.11 48h REQENACLR2 Interrupt Enable Clear Register 2 Section 15.8.11 50h WAKEENASET0 Wake-up Enable Set Register 0 Section 15.8.12 54h WAKEENASET1 Wake-up Enable Set Register 1 Section 15.8.12 58h WAKEENASET2 Wake-up Enable Set Register 2 Section 15.8.12 60h WAKEENACLR0 Wake-up Enable Clear Register 0 Section 15.8.13 64h WAKEENACLR1 Wake-up Enable Clear Register 1 Section 15.8.13 68h WAKEENACLR2 Wake-up Enable Clear Register 2 Section 15.8.13 70h IRQVECREG IRQ Interrupt Vector Register Section 15.8.14 74h FIQVECREG FIQ Interrupt Vector Register Section 15.8.15 78h CAPEVT Capture Event Register Section 15.8.16 CHANCTRL VIM Interrupt Control Register Section 15.8.17 80h-DCh 530 Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback VIM Control Registers www.ti.com 15.8.1 Interrupt Vector Table Parity Flag Register (PARFLG) Figure 15-11 and Table 15-2 describe this register. Figure 15-11. Interrupt Vector Table Parity Flag Register (PARFLG) [offset = ECh] 31 16 Reserved R-0 15 1 0 Reserved PARFLG R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 15-2. Interrupt Vector Table Parity Flag Register (PARFLG) Field Descriptions Bit Field Value 31-1 Reserved 0 PARFLG 0 Description Read returns 0. Writes have no effect. The PARFLG indicates that a parity error has been found and that the Interrupt Vector Table is bypassed. The resulting vector of any IRQ/FRQ interrupt is then the value contained in the FBPARERR register until this bit has been cleared. 0 Read: No parity error has occurred. Write: A write to this bit has no effect. 1 Read: A parity error has occurred and the Interrupt Vector Table is bypassed. Write: The PARFLG is cleared and the interrupt vector can be read from the Interrupt Vector Table. 15.8.2 Interrupt Vector Table Parity Control Register (PARCTL) Figure 15-12. Interrupt Vector Table Parity Control Register (PARCTL) [offset = F0h] 31 16 Reserved R-0 15 9 Reserved 8 7 TEST R-0 R/WP-0 4 Reserved R-0 3 0 PARENA R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 15-3. Interrupt Vector Table Parity Control Register (PARCTL) Field Descriptions Bit 31-9 8 Field Reserved Value 0 TEST 7-4 Reserved 3-0 PARENA Description Read returns 0. Writes have no effect. This bit maps the parity bits into the Interrupt Vector Table frame to make them accessible by the CPU. 0 Parity bits are not memory mapped. 1 Parity bits are memory mapped. 0 Read returns 0. Writes have no effect. VIM parity enable. 5h The VIM parity is disabled. All Others The VIM parity is enabled. Note: To avoid soft error to disable VIM parity checking, it is recommended to write Ah to enable parity checking. SPNU499C – March 2018 Submit Documentation Feedback Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 531 VIM Control Registers www.ti.com 15.8.3 Address Parity Error Register (ADDERR) The address parity error register gives the address of the first parity error location. NOTE: No computation is needed when reading the complete register to retrieve the address in the Interrupt Vector Table. This register will never be reset by a power-on reset nor any other reset source. Figure 15-13. Address Parity Error Register (ADDERR) [offset = F4h] 31 16 Interrupt Vector Table offset R-FFF8h 15 9 8 2 1 0 Interrupt Vector Table offset ADDERR Word offset R-0010 000b R-x R-0 LEGEND: R = Read only; -n = value after reset Table 15-4. Address Parity Error Register (ADDERR) Field Descriptions Field Description 31-9 Bit Interrupt Vector Table offset Interrupt Vector Table offset. Reads are always FFF8 2xxxh; writes have no effect. 8-2 ADDERR Address parity error register. This register gives the address of the first encountered parity error since the flag has been clear. Subsequent parity errors will not update this register until the PARFLG register has been cleared. 1-0 Word offset Note: This register is valid only when PARFLG is set (see Section 15.8.1). Word offset. Reads are always 0; writes have no effect. 15.8.4 Fall-Back Address Parity Error Register (FBPARERR) This register provides a fall-back address to the VIM if a parity error has occurred in the Interrupt Vector Table. Figure 15-14 and Table 15-5 describe this register. NOTE: This register will never be reset by a power-on reset nor any other reset source. Figure 15-14. Fall-Back Address Parity Error Register (FBPARERR) [offset = F8h] 31 16 FBPARERR R/WP-x 15 0 FBPARERR R/WP-x LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset; x = Indeterminate Table 15-5. Fall Back Address Parity Error Register (FBPARERR) Field Descriptions Bit 31-0 Field FBPARERR Value 0-FFFF FFFFh Description Fall back address parity error. This register is used by the VIM if the Interrupt Vector Table has been corrupted. The contents of the IRQVECREG and FIQVECREG registers will reflect the value programmed in FBPARERR. The value provided to the VIC port will also reflect FBPARERR until the PARFLG register has been cleared. This register provides the address of the ISR that will restore the integrity of the Interrupt Vector Table. 532 Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback VIM Control Registers www.ti.com 15.8.5 VIM Offset Vector Registers The VIM offset register provides the user with the numerical index value that represents the pending interrupt with the highest precedence. The register IRQINDEX holds the index to the highest priority IRQ interrupt; the register FIQINDEX holds the index to the highest priority FIQ interrupt. The index can be used to locate the interrupt routine in a dispatch table, as shown in Table 15-6. Table 15-6. Interrupt Dispatch IRQINDEX / FIQINDEX Register Bit Field Highest Priority Pending Interrupt Enabled 0x00 No interrupt 0x01 Channel 0 : : 0x5F Channel 94 0x60 Channel 95 NOTE: Channel 95 has no dedicated interrupt vector table entry. Therefore, Channel 95 shall NOT be used in application. The VIM offset registers are read only. They are updated continuously by the VIM. When an interrupt is serviced, the offset vectors show the index for the next highest pending interrupt or 0x0 if no interrupt is pending. SPNU499C – March 2018 Submit Documentation Feedback Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 533 VIM Control Registers www.ti.com 15.8.6 IRQ Index Offset Vector Register (IRQINDEX) The IRQ offset register provides the user with the numerical index value that represents the pending IRQ interrupt with the highest priority. Figure 15-15 and Table 15-7 describe this register. Figure 15-15. IRQ Index Offset Vector Register (IRQINDEX) [offset = 00h] 31 16 Reserved R-0 15 8 7 0 Reserved IRQINDEX R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 15-7. IRQ Index Offset Vector Register (IRQINDEX) Field Descriptions Bit Field Value 31-8 Reserved 0 7-0 IRQINDEX 0-FFh Description Read returns 0. Writes have no effect. IRQ index vector. The least-significant bits represent the index of the IRQ pending interrupt with the highest precedence, as shown in Table 15-6. When no interrupts are pending, the leastsignificant byte of IRQINDEX is 0. Note: A read of register IRQINDEX or IRQVECREG will cause IRQINDEX / IRQVECREG to reflect the index/ISR address for the next highest-priority pending IRQ interrupt. In case there is no other interrupt pending, the IRQINDEX will read 0x00 and the IRQVECREG register will read the phantom interrupt address. 15.8.7 FIQ Index Offset Vector Registers (FIQINDEX) The FIQINDEX register provides the user with a numerical index value that represents the pending FIQ interrupt with the highest priority. Figure 15-16 and Table 15-8 describe this register. Figure 15-16. FIQ Index Offset Vector Register (FIQINDEX) [offset = 04h] 31 16 Reserved R-0 15 8 7 0 Reserved FIQINDEX R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 15-8. FIQ Index Offset Vector Register (FIQINDEX) Field Descriptions Bit Field Value 31-8 Reserved 0 7-0 FIQINDEX 0-FFh 534 Description Read returns 0. Writes have no effect. FIQ index offset vector. The least-significant bits represent the index of the FIQ pending interrupt with the highest precedence, as shown in Table 15-6. When no interrupts are pending, the least-significant byte of FIQINDEX is 0x00. Note: A read of register FIQINDEX or FIQVECREG will cause FIQINDEX / FIQVECREG to reflect the index/ISR address for the next highest-priority pending FIQ interrupt. In case there is no other interrupt pending, the FIQINDEX will read 0x00 and the FIQVECREG register will read the phantom interrupt address. Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback VIM Control Registers www.ti.com 15.8.8 FIQ/IRQ Program Control Registers (FIRQPR[0:2]) The FIQ/IRQ program control registers (FIRQPRx) determine whether a given interrupt request will be either FIQ or IRQ. Figure 15-17, Figure 15-18, Figure 15-19 and Table 15-9 describe these registers. NOTE: Channel 0 and 1 are FIQ only, not impacted by this register. Figure 15-17. FIQ/IRQ Program Control Register 0 (FIRQPR0) [offset = 10h] 31 16 FIRQPR0[31:16] R/WP-0 15 2 1 0 FIRQPR0[15:2] Reserved R/WP-0 R-3h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Figure 15-18. FIQ/IRQ Program Control Register 1 (FIRQPR1) [offset = 14h] 31 16 FIRQPR1[63:48] R/WP-0 15 0 FIRQPR1[47:32] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Figure 15-19. FIQ/IRQ Program Control Register 2 (FIRQPR2) [offset = 18h] 31 16 FIRQPR2[95:80] R/WP-0 15 0 FIRQPR2[79:64] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 15-9. FIQ/IRQ Program Control Registers (FIRQPRx) Field Descriptions Bit 95-2 1-0 Field Value FIRQPRx[95:2] Reserved SPNU499C – March 2018 Submit Documentation Feedback Description FIQ/IRQ program control bits. These bits determine whether an interrupt request from a peripheral is of type FIQ or IRQ. Bit FIRQPRx[95:2] corresponds to request channel[95:2]. 0 Interrupt request is of IRQ type. 1 Interrupt request is of FIQ type. 3h Read only. Writes have no effect. Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 535 VIM Control Registers www.ti.com 15.8.9 Pending Interrupt Read Location Registers (INTREQ[0:2]) The pending interrupt registers (INTREQx) give the pending interrupt requests. The register is updated every vbus clock cycle. Figure 15-20, Figure 15-21, Figure 15-22 and Table 15-10 describe this register. Figure 15-20. Pending Interrupt Read Location Register 0 (INTREQ0) [offset = 20h] 31 16 INTREQ0[31:16] R/W1CP-0 15 0 INTREQ0[15:0] R/W1CP-0 LEGEND: R/W = Read/Write; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Figure 15-21. Pending Interrupt Read Location Register 1 (INTREQ1) Register [offset = 24h] 31 16 INTREQ1[63:48] R/W1CP-0 15 0 INTREQ1[47:32] R/W1CP-0 LEGEND: R/W = Read/Write; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Figure 15-22. Pending Interrupt Read Location Register 2 (INTREQ2) Register [offset = 28h] 31 16 INTREQ2[95:80] R/W1CP-0 15 0 INTREQ2[79:64] R/W1CP-0 LEGEND: R/W = Read/Write; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 15-10. Pending Interrupt Read Location Registers (INTREQx) Field Descriptions Bit 95-0 Field Value INTREQx[95:0] Description Pending interrupt bits. These bits determine whether an interrupt request is pending for the request channel between 0 and 95. The interrupt ENABLE register does not affect the value of the interrupt pending bit. Bit INTREQx[95:0] corresponds to request channel[95:0]. User and Privilege Mode read: 0 No interrupt event has occurred. 1 An interrupt is pending. Privilege Mode write only: 536 0 Writing 0 has no effect. 1 Clears the interrupt pending status flag. This write-clear functionality is intended to allow clearing those interrupts which have been signaled to VIM before enabling the interrupt channel, if they are undesired. Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback VIM Control Registers www.ti.com 15.8.10 Interrupt Enable Set Registers (REQENASET[0:2]) The interrupt enable set registers (REQENASETx) selectively enables individual request channels. Figure 15-23, Figure 15-24, Figure 15-25 and Table 15-11 describe these registers. NOTE: Channel 0 and 1 are always enabled, not impacted by this register. Figure 15-23. Interrupt Enable Set Register 0 (REQENASET0) [offset = 30h] 31 16 REQENASET0[31:16] R/WP-0 15 2 1 0 REQENASET0[15:2] Reserved R/WP-0 R-3h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Figure 15-24. Interrupt Enable Set Register 1 (REQENASET1) [offset = 34h] 31 16 REQENASET1[63:48] R/WP-0 15 0 REQENASET1[47:32] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Figure 15-25. Interrupt Enable Set Register 2 (REQENASET2) [offset = 38h] 31 16 REQENASET2[95:80] R/WP-0 15 0 REQENASET2[79:64] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 15-11. Interrupt Enable Set Registers (REQENASETx) Field Descriptions Bit 95-2 Field Value REQENASETx[95:2] Description Request enable set bits. This vector determines whether the interrupt request channel is enabled. Bit REQENASETx[95:2] corresponds to request channel[95:2]. 0 Read: Interrupt request channel is disabled. Write: A write of 0 has no effect. 1-0 Reserved SPNU499C – March 2018 Submit Documentation Feedback 1 Read or Write: The interrupt request channel is enabled. 3h Read only. Writes have no effect. Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 537 VIM Control Registers www.ti.com 15.8.11 Interrupt Enable Clear Registers (REQENACLR[0:2]) The interrupt enable clear registers (REQENACLRx) selectively disables individual request channels. Figure 15-26, Figure 15-27, Figure 15-28 and Table 15-12 describe these registers. NOTE: Channel 0 and 1 are always enabled, not impacted by this register. Figure 15-26. Interrupt Enable Clear Register 0 (REQENACLR0) [offset = 40h] 31 16 REQENACLR0[31:16] R/WP-0 15 2 1 0 REQENACLR0[15:2] Reserved R/WP-0 R-3h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Figure 15-27. Interrupt Enable Clear Register 1 (REQENACLR1) [offset = 44h] 31 16 REQENACLR1[63:48] R/WP-0 15 0 REQENACLR1[47:32] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Figure 15-28. Interrupt Enable Clear Register 2 (REQENACLR2) [offset = 48h] 31 16 REQENACLR2[95:80] R/WP-0 15 0 REQENACLR2[79:64] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 15-12. Interrupt Enable Clear Registers (REQENACLRx) Field Descriptions Bit 95-2 Field Value REQENACLRx[95:2] Description Request enable clear bits. This vector determines whether the interrupt request channel is enabled. Bit REQENACLRx[95:2] corresponds to request channel[95:2]. 0 Read: Interrupt request channel is disabled. Write: A write of 0 has no effect. 1 Read: The interrupt request channel is enabled. Write: The interrupt request channel is disabled. 1-0 538 Reserved 3h Read only. Writes have no effect. Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback VIM Control Registers www.ti.com 15.8.12 Wake-Up Enable Set Registers (WAKEENASET[0:2]) The wake-up enable set registers (WAKEENASETx) selectively enables individual wake-up interrupt request lines. Figure 15-29, Figure 15-30, Figure 15-31 and Table 15-13 describe these registers. Figure 15-29. Wake-Up Enable Set Register 0 (WAKEENASET0) [offset = 50h] 31 16 WAKEENASET0[31:16] R/WP-FFFFh 15 0 WAKEENASET0[15:0] R/WP-FFFFh LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Figure 15-30. Wake-Up Enable Set Register 1 (WAKEENASET1) [offset = 54h] 31 16 WAKEENASET1[63:48] R/WP-FFFFh 15 0 WAKEENASET1[47:32] R/WP-FFFFh LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Figure 15-31. Wake-Up Enable Set Register 2 (WAKEENASET2) [offset = 58h] 31 16 WAKEENASET2[95:80] R/WP-FFFFh 15 0 WAKEENASET2[79:64] R/WP-FFFFh LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 15-13. Wake-Up Enable Set Registers (WAKEENASETx) Field Descriptions Bit 95-0 Field Value WAKEENASETx[95:0] Description Wake-up enable set bits. This vector determines whether the wake-up interrupt line is enabled. Bit WAKEENASETx[95:0] corresponds to interrupt request channel[95:0]. 0 Read: Interrupt request channel is disabled. Write: A write of 0 has no effect. 1 SPNU499C – March 2018 Submit Documentation Feedback Read or Write: The interrupt request channel is enabled. Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 539 VIM Control Registers www.ti.com 15.8.13 Wake-Up Enable Clear Registers (WAKEENACLR[0:2]) The wake-up enable clear registers (WAKEENACLRx) selectively disables individual wake-up interrupt request lines. Figure 15-32, Figure 15-33, Figure 15-34 and Table 15-14 describe these registers. Figure 15-32. Wake-Up Enable Clear Register 0 (WAKEENACLR0) [offset = 60h] 31 16 WAKEENACLR0[31:16] R/WP-FFFFh 15 0 WAKEENACLR0[15:0] R/WP-FFFFh LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Figure 15-33. Wake-Up Enable Clear Register 1 (WAKEENACLR1) [offset = 64h] 31 16 WAKEENACLR1[63:48] R/WP-FFFFh 15 0 WAKEENACLR1[47:32] R/WP-FFFFh LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Figure 15-34. Wake-Up Enable Clear Register 2 (WAKEENACLR2) [offset = 68h] 31 16 WAKEENACLR2[95:80] R/WP-FFFFh 15 0 WAKEENACLR2[79:64] R/WP-FFFFh LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 15-14. Wake-Up Enable Clear Registers (WAKEENACLRx) Field Descriptions Bit 95-0 Field Value WAKEENACLRx[95:0 ] Description Wake-up enable clear bits. This vector determines whether the wake-up interrupt line is enabled. Bit WAKEENACLRx[95:0] corresponds to interrupt request channel[95:0]. 0 Read: Wake-up interrupt channel is disabled. Write: A write of 0 has no effect. 1 Read: The wake-up interrupt channel is enabled. Write: The wake-up interrupt channel is disabled. 540 Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback VIM Control Registers www.ti.com 15.8.14 IRQ Interrupt Vector Register (IRQVECREG) The interrupt vector register gives the address of the enabled and active IRQ interrupt. Figure 15-35 and Table 15-15 describe these registers. Figure 15-35. IRQ Interrupt Vector Register (IRQVECREG) [offset = 70h] 31 16 IRQVECREG R-0 15 0 IRQVECREG R-0 LEGEND: R = Read only; -n = value after reset Table 15-15. IRQ Interrupt Vector Register (IRQVECREG) Field Descriptions Bit 31-0 Field IRQVECREG Value From Section 15.4 Description IRQ interrupt vector register. This vector gives the address of the ISR with the highest pending IRQ request. The CPU reads the address and branches to this location. Note: A read of register IRQINDEX or IRQVECREG will cause IRQINDEX / IRQVECREG to reflect the index/ISR address for the next highest-priority pending IRQ interrupt. In case there is no other interrupt pending, the IRQINDEX will read 0x00 and the IRQVECREG register will read the phantom interrupt address. 15.8.15 FIQ Interrupt Vector Register (FIQVECREG) The interrupt vector register gives the address of the enabled and active FIQ interrupt. Figure 15-36 and Table 15-16 describe these registers. Figure 15-36. IRQ Interrupt Vector Register (FIQVECREG) [offset = 74h] 31 16 FIQVECREG R-0 15 0 FIQVECREG R-0 LEGEND: R = Read only; -n = value after reset; X = Unknown Table 15-16. FIQ Interrupt Vector Register (FIQVECREG) Field Descriptions Bit 31-0 Field FIQVECREG Value From Section 15.4 SPNU499C – March 2018 Submit Documentation Feedback Description FIQ interrupt vector register. This vector gives the address of the ISR with the highest pending FIQ request. The CPU reads the address and branches to this location. Note: A read of register FIQINDEX or FIQVECREG will cause FIQINDEX / FIQVECREG to reflect the index/ISR address for the next highest-priority pending FIQ interrupt. In case there is no other interrupt pending, the FIQINDEX will read 0x00 and the FIQVECREG register will read the phantom interrupt address. Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 541 VIM Control Registers www.ti.com 15.8.16 Capture Event Register (CAPEVT) Figure 15-37 and Table 15-17 describe this register. Figure 15-37. Capture Event Register (CAPEVT) [offset = 78h] 31 23 22 16 Reserved CAPEVTSRC1 R-U R/W-0 15 7 6 0 Reserved CAPEVTSRC0 R-U R/W-0 LEGEND: R/W = Read/Write; R = Read only; U = Undefined; -n = value after reset Table 15-17. Capture Event Register (CAPEVT) Field Descriptions Bit Field 31-23 Reserved 22-16 CAPEVTSRC1 Value 0 0 Interrupt request 0. 1h Interrupt request 1. 5Fh Reserved 6-0 CAPEVTSRC0 0 : Interrupt request 95. Reads are indeterminate and writes have no effect. Capture event source 0 mapping control. These bits determine which interrupt request maps to the capture event source 0 of the RTI: 0 Interrupt request 0. 1h Interrupt request 1. : 5Fh 542 Reads are indeterminate and writes have no effect. Capture event source 1 mapping control. These bits determine which interrupt request maps to the capture event source 1 of the RTI: : 15-7 Description : Interrupt request 95. Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback VIM Control Registers www.ti.com 15.8.17 VIM Interrupt Control Registers (CHANCTRL[0:23]) Twenty-four interrupt control registers control the 96 interrupt channels of the VIM. Each register controls four interrupt channels: each of them is indexed from 0 to 95. Table 15-18 shows the organization of all the registers and the reset value of each. Each four fields of the register has been named with a generic index that refers to the detailed register organization. Figure 15-38 and Table 15-19 describe these registers. Table 15-18. Interrupt Control Registers Organization Register Field 31:24 CHANMAPx0 Register Field 23:16 CHANMAPx1 Register Field 15:8 CHANMAPx2 Register Field 7:0 CHANMAPx3 Reset Value Address Register Acronym FFFF FE80h CHANCTRL0 CHANMAP0 CHANMAP1 CHANMAP2 CHANMAP3 0001 0203h FFFF FE84h CHANCTRL1 CHANMAP4 CHANMAP5 CHANMAP6 CHANMAP7 0405 0607h : : : : : : : FFFF FED8h CHANCTRL22 CHANMAP88 CHANMAP89 CHANMAP90 CHANMAP91 5859 5A5Bh FFFF FEDCh CHANCTRL23 CHANMAP92 CHANMAP93 CHANMAP94 CHANMAP95 5C5D 5E5Fh NOTE: CHANMAP0 and CHANMAP1 are not programable. CHAN0 and CHAN1 are hard wired to INT_REQ0 and INT_REQ1. Do NOT write any value other than 0x5F to CHANMAP95. Channel 95 is reserved because no interrupt vector table entry supports this channel. Figure 15-38. Interrupt Control Registers (CHANCTRL[0:23]) [offset = 80h-DCh] 31 30 24 23 22 16 Rsvd CHANMAPx0 Rsvd CHANMAPx1 R-U R/W-n R-U R/W-n 15 14 8 7 6 0 Rsvd CHANMAPx2 Rsvd CHANMAPx3 R-U R/W-n R-U R/W-n LEGEND: R/W = Read/Write; R = Read only; U = Undefined; -n = value after reset (see Table 15-18) Table 15-19. Interrupt Control Registers (CHANCTRLx) Field Descriptions Bit Field 31 Reserved 30-24 Value 0 CHANMAPx0 Description Reads are indeterminate and writes have no effect. CHANMAPx0(6-0). Interrupt CHANx0 mapping control. These bits determine which interrupt request the priority channel CHANx0 maps to: 0 Read: Interrupt request 0 maps to channel priority CHANx0. Write: The default value of this bit after reset is given in Table 15-18 . The channel priority CHANx0 is set with the interrupt request. 1h Read: Interrupt request 1 maps to channel priority CHANx0. Write: The default value of this bit after reset is given in Table 15-18. The channel priority CHANx0 is set with the interrupt request. : 5Fh : Read: Interrupt request 95 maps to channel priority CHANx0. Write: The default value of this bit after reset is given in Table 15-18. The channel priority CHANx0 is set with the interrupt request. 23 Reserved SPNU499C – March 2018 Submit Documentation Feedback 0 Reads are indeterminate and writes have no effect. Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated 543 VIM Control Registers www.ti.com Table 15-19. Interrupt Control Registers (CHANCTRLx) Field Descriptions (continued) Bit 22-16 Field Value CHANMAPx1 Description CHANMAPx1(6-0). Interrupt CHANx1 mapping control. These bits determine which interrupt request the priority channel CHANx1 maps to: 0 Read: Interrupt request 0 maps to channel priority CHANx1. Write: The default value of this bit after reset is given in Table 15-18. The channel priority CHANx1 is set with the interrupt request. 1h Read: Interrupt request 1 maps to channel priority CHANx1. Write: The default value of this bit after reset is given in Table 15-18. The channel priority CHANx1 is set with the interrupt request. : 5Fh : Read: Interrupt request 95 maps to channel priority CHANx1. Write: The default value of this bit after reset is given in Table 15-18. The channel priority CHANx1 is set with the interrupt request. 15 14-8 Reserved 0 CHANMAPx2 Reads are indeterminate and writes have no effect. CHANMAPx2(6-0). Interrupt CHANx2 mapping control. These bits determine which interrupt request the priority channel CHANx2 maps to: 0 Read: Interrupt request 0 maps to channel priority CHANx2. Write: The default value of this bit after reset is given in Table 15-18. The channel priority CHANx2 is set with the interrupt request. 1h Read: Interrupt request 1 maps to channel priority CHANx2. Write: The default value of this bit after reset is given in Table 15-18. The channel priority CHANx2 is set with the interrupt request. : 5Fh : Read: Interrupt request 95 maps to channel priority CHANx2. Write: The default value of this bit after reset is given in Table 15-18. The channel priority CHANx2 is set with the interrupt request. 7 6-0 Reserved 0 CHANMAPx3 Reads are indeterminate and writes have no effect. CHANMAPx3(6-0). Interrupt CHANx3 mapping control. These bits determine which interrupt request the priority channel CHANx3 maps to: 0 Read: Interrupt request 0 maps to channel priority CHANx3. Write: The default value of this bit after reset is given in Table 15-18. The channel priority CHANx3 is set with the interrupt request. 1h Read: Interrupt request 1 maps to channel priority CHANx3. Write: The default value of this bit after reset is given in Table 15-18. The channel priority CHANx3 is set with the interrupt request. : 5Fh : Read: Interrupt request 95 maps to channel priority CHANx3. Write: The default value of this bit after reset is given in Table 15-18. The channel priority CHANx3 is set with the interrupt request. 544 Vectored Interrupt Manager (VIM) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Chapter 16 SPNU499C – March 2018 Direct Memory Access Controller (DMA) Module This chapter describes the direct memory access (DMA) controller. Topic 16.1 16.2 16.3 ........................................................................................................................... Page Overview ......................................................................................................... 546 Module Operation ............................................................................................. 547 Control Registers and Control Packets ............................................................... 566 SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 545 Overview www.ti.com 16.1 Overview The DMA controller is used to transfer data between two locations in the memory map in the background of CPU operations. Typically, the DMA is used to: • Transfer blocks of data between external and internal data memories • Restructure portions of internal data memory • Continually service a peripheral • Page program sections to internal program memory 16.1.1 Main Features • • • • • • • • • • • • • CPU independent data transfer One master port - PortB (64-bits wide) that interfaces microcontrollers Memory System. FIFO buffer (4 entries deep and each 64-bits wide) Channel control information is stored in RAM protected by parity 16 channels with individual enable Channel chaining capability 32 peripheral DMA requests Hardware and Software DMA requests 8-, 16-, 32-, or 64-bit transactions supported Multiple addressing modes for source/destination (fixed, increment, offset) Auto-initiation Power-management mode Memory Protection for the address range DMA can access with four configurable memory regions 16.1.1.1 Block Diagram Figure 16-1 gives a detailed view of the DMA internal architecture. DMA data read and write access happens through Port B. FIFO B is 4 levels deep and 64-bits wide. 32 DMA requests go into the DMA that can trigger DMA transfers. Five interrupt request lines go out of the DMA to signal that a certain transfer status is reached. Register banks hold the memory-mapped DMA configuration registers. Local RAM consists of DMA control packets and is secured by parity. All the programming / configuration of the DMA controller is done via the Peripheral bus. Figure 16-1. DMA Block Diagram Register Bank FIFO B Peripheral Bus Local RAM (with parity) 32 DMAREQ 5 Port B 546 WRITE Bus READ Bus IRQ Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Module Operation www.ti.com 16.2 Module Operation The DMA acts as an independent master in the platform architecture. All DMA memory and register accesses are performed in user mode. If the DMA writes to registers that are only accessible in privileged mode, the write will not be performed. The DMA registers and its local RAM can only be accessed in privilege mode. Therefore, it is not possible for the DMA to reprogram itself. 16.2.1 Memory Space The DMA controller makes no distinction between program memory and data memory. The DMA controller can transfer to and from any space within the 4 gigabyte physical address map, by programming the absolute address for the source and destination in the control packet. Control packets store the transfer information such as source address, destination address, transfer count and control attributes for each channel. 16.2.2 DMA Data Access The DMA controller refers to data in three levels of granularity: • Element: Depending on the programmed data type, an 8-bit, 16-bit, 32-bit, or a 64-bit value. The type can be individually selected for the source (read) and destination (write). See Figure 16-2 and Figure 16-3 for an example of the use of elements. An element transfer cannot be interrupted. • Frame: One or more elements to be transferred as a unit. A frame transfer can be interrupted between element transfers. See Figure 16-2 for an example. Use a frame size of one and frame transfer trigger source for transfers of one element per request. • Block: One or more frames to be transferred as a unit. Each channel can transfer one block of data (once or multiple times). See Figure 16-3 for an example. Figure 16-2. Example of a DMA Transfer Using Frame Trigger Source Trigger Source = frame transfer triggered by DMA request Block Frame 1 Frame 2 Element 1 Element 2 DMAREQ Element 3 Element 4 DMAREQ Element Count = 2 Frame count = 4 Frame 4 Frame 3 Element 5 Element 6 DMAREQ Element 7 Element 8 DMAREQ Figure 16-3. Example of a DMA Transfer Using Block Trigger Source Block Frame 1 Element 1 Element 2 Trigger Source = block transfer triggered by DMA request Frame 2 Element 3 Element 4 Frame 3 Element Count = 2 Frame count = 4 Frame 4 Element 5 Element 6 Element 7 Element 8 DMAREQ SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 547 Module Operation www.ti.com 16.2.3 Addressing Modes There are three addressing modes supported by the DMA controller that can be setup independent for the source and the destination address: • Constant -- source and/or destination addresses do not change. • Post incremented -- source and/or destination address are post-incremented by the element size. • Indexed -- source and/or destination address is post-incremented as defined in the Element Index Offset Register (Section 16.3.2.5) and the Frame Index Offset Register (Section 16.3.2.6). An unaligned address with respect to the element size is not supported. 16.2.4 DMA Channel Control Packets There are a total of 16 control packets. Each control packet is associated with a channel in a fixed order. For example, control packet 0 stores channel information for channel 0. The DMA requests can be mapped to the individual channels as described in Section 16.2.7. The mapping scheme between DMA requests and channels is shown in Figure 16-4. Each control packet contains nine fields. The first six fields compose the primary control packet and are programmable during DMA setup. The last three fields compose working control packet and are only readable by the CPU. The working control packets are used to support auto-initiation. The organization of control packets is shown in Figure 16-5. The primary control packet contains channel information such as source address, destination address, transfer count, element/frame offset value and channel configuration. Source address, destination address and transfer count also have their respective working images. The three fields of working images compose a working control packet and are not accessible to the CPU in write access. The first time a DMA channel is selected for a transaction, the following process occurs: 1. The primary control packet is first read by the DMA state machine. 2. Once the channel is arbitrated, the current source address, destination address and transfer count are then copied to their respective working images. 3. When the channel is serviced again by the DMA, the state machine will read both the primary control packet and the working control packet to continue the DMA transaction until the end of an entire block transfer. When the same channel is requested again, the state machine will start again by reading only the primary control packet and then continue the same process described above. The user software need not set up control packets again because the contents of the primary control packet were never lost. The working images of the control packets are reducing the software overhead and interaction with the DMA module to a minimum. NOTE: Changing the contents of a channel control packet will clear the corresponding pending bit (Section 16.3.1.2) if the channel has a pending status. If the control packet of an active channel (as indicated in Section 16.3.1.3) is changed, then the channel will stop immediately at an arbitration boundary. When the same channel is triggered again, it will begin with the new control packet information. 16.2.4.1 Initial Source Address This field stores the absolute 32-bit source address of the DMA transfer. 16.2.4.2 Initial Destination Address This field stores the absolute 32-bit destination address of the DMA transfer. 548 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Module Operation www.ti.com Figure 16-4. DMA Request Mapping and Control Packet Organization CH0ASI(5–0) CH1ASI(5–0) Channel Sel0 Control Packet 0 Channel Sel1 Control Packet 1 DMA_REQ[31:0] CHnASI(5–0) Channel Sel15 Control Packet 15 Figure 16-5. Control Packet Organization and Memory Map Base + 0x00 0x10 0x20 0x30 Base + 0XXX0 Base + 0xXXX4 Base + 0xXXX8 Initial Source Address Channel Configuration Initial Source Address Channel Configuration Initial Destination Address Element Offset Value Initial Destination Address Element Offset Value Initial Transfer Count Frame Offset Value Initial Transfer Count Frame Offset Value Base + 0xXXXC } Primary CP0 } Primary CP1 Reserved 0x1E0 0x1F0 Initial Source Address Channel Configuration Reserved Reserved Reserved 0x800 0x810 Current Source Address Current Source Address Current Destination Address Current Destination Address Current Transfer Count Current Transfer Count } Working CP0 } Working CP1 0x8F0 Current Source Address Current Destination Address Current Transfer Count } Working CPnn SPNU499C – March 2018 Submit Documentation Feedback Initial Destination Address Element Offset Value Initial Transfer Count Frame Offset Value } Primary CPnn Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 549 Module Operation www.ti.com 16.2.4.3 Initial Transfer Count The transfer count field is composed of two parts. The frame transfer count value and the element transfer count value. Each count value is 13 bits wide. As a Single Block transfer maximum of 512 Mbytes of data can be transferred. Element count and frame count are programmed according to the source data structure. The total transfer size is calculated as: Tsz = Ersz • Etc • Ftc (26) where Tsz = Total Transfer Size Ersz = Read Element Size Etc = Element Transfer Count Ftc = Frame Transfer Count NOTE: A zero element count with a non-zero frame count or a non-zero element count with a zero frame count are all considered as zero total transfer count. No DMA transaction is initiated with any of the counters set to 0. 16.2.4.4 Channel Configuration Word The channel configuration defines the following individual parameters • Read element size • Write element size • Trigger type (frame or block) • Addressing mode for source • Addressing mode for destination • Auto-initiation mode • Next control packet to be triggered at control packet finish (Channel Chaining) 16.2.4.5 Element/Frame Offset Value There are 4 offset values that allow the creation of different types of buffers in RAM and address registers in a structured manner: an element offset value for source and destination and a frame offset value for source and destination. The element offset value for source and/or destination defines the offset to be added after each element transfer to the source and/or destination address. The frame offset value for source and/or destination defines the offset to be added to the source and/or destination address after the element count reaches zero. The element and frame offset values must be defined in terms of the number of bytes of offset. The DMA controller does not adjust the element/frame index number according to the element size. An index of 2 means increment the address by 2 and not by 16 when the element size is 64 bits. 16.2.4.6 Current Source Address The current source address field contains the current working source address during a DMA transaction. The current source address is incremented during post increment addressing mode or indexing mode. 16.2.4.7 Current Destination Address The current destination address field contains the current working destination address during a DMA transaction. The current destination address is incremented during post-increment addressing mode or indexing mode. 550 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Module Operation www.ti.com 16.2.4.8 Current Transfer Count The current transfer count stores the remaining number of elements to be transferred in a block. It is decremented by one for each element read from the source location. Figure 16-6, Figure 16-7, and Figure 16-8 show some examples of DMA transfers. Figure 16-6. DMA Transfer Example 1 Source 0x00 Destination f1 f2 f3 f4 E1 E3 E5 E7 0x04 0x0 E1/3/5/7 E2/4/6/8 Dest. Element Index = 1 0x4 Dest. Frame Index = 0 0x08 0x0C E2 E4 E6 E8 0x0 E1/2 E3/4 E5/6 E7/8 Dest. Element Index = 0 Dest. Frame Index = 1 0x0 E1 E3 E5 E7 Dest. Element Index = 4 0x4 E2 E4 E6 E8 Dest. Frame Index = 1 0x0 E1 E2 E3 E4 Dest. Element Index = 1 0x4 E5 E6 E7 E8 Dest. Frame Index = 2 Source Element Index = 12 Source Frame Index = 1 The example assumes the following setup. Read Element Size = 8 bit Write Element Size = 8 bit Element Count = 2 Frame Count = 4 Figure 16-7. DMA Indexing Example 1 f1 f2 f3 f4 0x0 E1 E5 E9 E13 0x10 E2 E6 E10 E14 0x20 E3 E7 E11 E15 0x30 E4 E8 E12 E16 Element Index = 16 Frame Index = 4 This example can be applied to either source or destination indexing and assumes the following setup. Element Size = 16 bit Element Count = 4 Frame Count = 4 SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 551 Module Operation www.ti.com Figure 16-8. DMA Indexing Example 2 0x0 E1 E4 E7 E10 E13 E16 E19 E22 E2 E5 E8 E11 E14 E17 E20 E23 E3 E6 E9 E12 E15 E18 E21 E23 0x20 0x40 0x60 0x80 Element Index = 64 Frame Index = 4 This example can be applied to either source or destination indexing and assumes the following setup. Element Size = 32 bit Element Count = 3 Frame Count = 8 16.2.5 Priority Queue User can assign channels in to priority queues to facilitate request handling during arbitration. The port has two priority queues: a high and a low priority queue. The queue can be configured to follow a fixed or rotating priority scheme. Fixed priority is such that the lower the channel number (Figure 16-9), the higher its priority. Rotating priority is based on a round-robin scheme. Initially, the priority list is sorted according to the fixed priority scheme. Channels assigned to the high priority queue are always serviced first according to the selected priority scheme before channels in the low priority queue are serviced. Table 161 describes how arbitration is performed according to different priority schemes. NOTE: Since the DMA controller provides the capability to map any one of the 32 hardware DMA request lines to any channel, the numerical order of the hardware DMA request does not imply any priority. The priority of each hardware DMA request is programmed and determined by software. Figure 16-9. Fixed Priority Scheme Priority Queue Ch0 Ch2 Ch3 Ch4... Triggered Channels Control Packet 0 Control Packet 1 Control Packet 2 Control Packet 3 Control Packet 4 Control Packet 5 Control Packet 6 Control Packet 7 Control Packet 8 Control Packet 9 Control Packet 10 Control Packet 11 Control Packet 12 Control Packet 13 Control Packet 14 Control Packet 15 High ORDER OF PRIORITY Low The above figure illustrates that by default Lower the channel number, higher the Priority. 552 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Module Operation www.ti.com Table 16-1. Arbitration According to Priority Queues and Priority Schemes Queue Priority Scheme Remark Fixed Channels are serviced in an ascending order according to the channel number. The lower the channel number, the higher the priority. A channel will be arbitrated out whenever there is a higher pending channel. Otherwise a channel is completely serviced until its transfer count reaches zero before the next highest pending channel is serviced. When there is no pending channels left in high queue then the DMA switches to service low queue channels. Rotating Channels are arbitrated by using the round-robin scheme. Arbitration is performed when the FIFO is empty. When there are no pending channels left in high queue then the DMA switches to service low queue channels. High priority Fixed Low priority Rotating Channels are serviced in an ascending order according to the channel number. The lower the channel number the higher the priority. A channel will be arbitrated out whenever there is a higher-priority pending channel. Otherwise a channel is completely serviced until its transfer count reaches zero, before the next highest pending channel is serviced. If there is a pending channel in the high-priority queue while DMA is servicing a low queue channel then DMA will switch back to service high queue channel after an arbitration boundary. Channels are arbitrated by using round-robin scheme. Arbitration is performed when the FIFO is empty. A Simple Priority Queues example in both Fixed and Rotation Scheme is shown in Figure 16-10. Figure 16-10. Example of Priority Queues CH1 CH1 in use CH3 CH7 CH15 CH3 CH3 CH9 in queue CH13 High queue Rotation CH1 Fixed CH6 CH6 CH6 CH4 CH8 CH14 CH4 CH4 CH5 CH5 CH10 ininqu eue n u se queue CH2 CH2 i use in CH2 Low queue CH7 CH7 Pending triggere d SPNU499C – March 2018 Submit Documentation Feedback Start/S top se rving Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 553 Module Operation www.ti.com For optimal system performance, the high priority channels should be put in fixed arbitration scheme and low priority channels in the rotating priority scheme as illustrated in Figure 16-11. Figure 16-11. Example Channel Assignments Port B Priority Queue high Ch0 Ch2 Ch3 Ch4 low Ch8, Ch12 fixed priority rotational priority Control Packet 0 Control Packet 1 Control Packet 2 Control Packet 3 Control Packet 4 Control Packet 5 Control Packet 6 Control Packet 7 Control Packet 8 Control Packet 9 Control Packet 10 Control Packet 11 Control Packet 12 Control Packet 13 Control Packet 14 Control Packet 15 1 The above figure illustrates the channel assignments in a system with 16 channels. This approach can be scaled dependent on the total channels available. 16.2.6 Data Packing and Unpacking The DMA controller automatically performs the necessary data packing and unpacking when the read element size differs from the write element size. Data packing is required when the read element size is smaller than the write element size; data unpacking is required when the read element size is larger than the write element size. When the read element size is equal to the write element size, no packing is performed during read, nor is any unpacking performed during write. Figure 16-12 shows an example of data unpacking in which the DMA is used to transfer 128 transmit data elements to the MibSPI FIFO buffer. In this example, data unpacking is required because the read element size is 64 while the write element size is 16. The DMA first performs an 64-bit read from the source into its FIFO buffer. After the 64-bit data is read into the DMA FIFO buffer, it must unpack the data into four 16-bit data elements before writing out to the destination. Therefore the DMA would need to perform four 16-bit write operations to the destination. NOTE: In the example in Figure 16-12, to transmit data at the lower bits of the MibSPI, bits 15:0, the destination address should be incremented by a factor of 2. NOTE: 1) The element Count (Section 16.3.2.3) refers only to the read element. 2) Data unpacking does not require the DMA request. Once the DMA request is received, data from Source is moved in to FIFO and unpacking happens until the FIFO is empty. 3) DMA assumes the destination is always ready and will perform write immediately. In case of data unpacking and Constant Addressing Mode write (Section 16.3.2.4 (1 - 0) = 0) the destination data will be overwritten by next data or next data might be skipped in case the destination has overflow protection (eg., SCITD register). User should configure DMA to avoid data unpacking if the Destination is configured as Constant Addressing Mode write to avoid data loss. 554 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Module Operation www.ti.com Figure 16-12. Example of DMA Data Unpacking 63 0 31 1615 0x0 Control 0 0x4 E124 E125 E126 Control 1 0 Transmit buf 0 E0 Transmit buf 1 E1 E127 Control 127 0x8 E4 E5 E6 E7 0x0 E0 E1 E2 E3 Transmit buf 127 E127 Status 0 Receive buf 0 Status 1 Receive buf 1 64-bit memory organization 0x400 Status 127 Receive buf 127 MIBSPI FIFO organization In this example, initialization of the MIBSPI FIFO is illustrated and assumes the following setup: Read Element Size = 64 bit Write Element Size = 16 bit Element Count = 32 Frame Count = 1 Source Element Index = n/a, use post increment addressing mode Source Frame Index = n/a, use post increment addressing mode Destination Element Index = 4 Destination Frame Index = 0 When the read element size is smaller than the write element size, the DMA controller needs to perform data packing. The number of elements to pack is equal to the ratio between the write element size and read element size. In the example in Figure 16-13, the read element size is 16 bits and the write element size is 64 bits. The DMA controller would first pack the first four elements by performing four consecutive 16-bit read accesses of E0, E1, E2, and E3 into the first word of the DMA's internal FIFO. The DMA controller would then perform one single 64-bit write operation to transfer the data to the 64-bit destination memory. Normally, the DMA controller carries out bus transactions on the bus according to the element size. For example, the DMA controller would perform a 16-bit read transaction if the read element size is programmed as 16 bits, or an 8-bit write transaction if the write element size is programmed as 8 bit. The exception is when the total transfer size is as defined in Equation 26 is not a multiple of the write element size. SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 555 Module Operation www.ti.com Figure 16-13. Example of DMA Data Packing 31 1615 0x0 Control 0 Transmit buf 0 Control 1 Transmit buf 1 0x4 0 63 0 E126 Control 127 Status 0 Status 1 E127 E124 E125 Transmit buf 127 Receive buf 0 E0 Receive buf 1 E1 0x8 E6 E7 E4 E5 0x0 E2 E3 E0 E1 64-bit memory organization Receive buf 127 E127 MIBSPI FIFO organization 0x400 Status 127 In this example, a read of the MIBSPI FIFO is illustrated and assumes the following setup: Read Element Size = 16 bit Write Element Size = 64 bit Element Count = 128 Frame Count = 1 Source Element Index = 4 Source Frame Index = 0 Destination Element Index = n/a, use post increment addressing mode Destination Frame Index = n/a, use post increment addressing mode For example, if the read element size is 8 bits, the element transfer count is equal to 9, and the write element size is 64 bit. The DMA controller would first perform eight 8-bit read transactions from the source. It would then perform a 64-bit write to the destination. When the same channel wins arbitration again, the DMA controller would first perform one 8-bit read from the source, followed by one 8-bit write to the destination, even though the write element size is 64 bit. NOTE: Since peripherals are slower, it is advised to use data packing feature with caution for reading data from peripherals. Improper use might delay servicing other pending DMA channels. 556 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Module Operation www.ti.com 16.2.7 DMA Request There are three ways to start a DMA transfer: • Software request: The transfer will be triggered by writing to SW Channel Enable Set and Status Register (Section 16.3.1.6). The software request can trigger either a block or a frame transfer depending on the setting of the TTYPE bit in the Channel Control Register (Section 16.3.2.4). • Hardware request: The DMA controller can handle up to 32 DMA Request lines. A hardware request can trigger either a frame or a block transfer depending on the setting of the TTYPE bit in the Channel Control Register (Section 16.3.2.4). • Triggered by other control packet: When a control packet finishes the programmed number of transfers it can trigger another channel to initiate its transfers. Each time a DMA request is made, either one frame transfer or one block transfer can be chosen. An active DMA request signal will trigger a DMA transaction. The DMA controller has a two-level buffer to capture HW requests per channel. When a HW request is generated and the channel is enabled, the corresponding bit in the DMA Status Register (Section 16.3.1.3) is set. The pending register acts as a first-level buffer. Typically, a peripheral acting as a source of a transfer would initiate another request after its data registers have been read out by DMA, even though that data has not been completely transferred to the destination. If a second HW request is generated by the peripheral, the DMA controller has an extra request buffer to capture this second request and service it after the first request is complete. NOTE: The DMA cannot capture more than three requests if its request buffers are already full. If any request occur during this moment DMA will discard it. The DMA controller also supports a mix of hardware and software requests on the same channel. Note that such interchangeable usage may result into an out of sync for DMA channel and peripheral. The application needs to be careful as the DMA does not have a built-in mechanism to protect against this loss of synchronization. If a software request is generated, the corresponding bit in the Channel Pending Register (Section 16.3.1.2) is set accordingly. If the pending request is not completely serviced by the DMA and a hardware request is generated by a peripheral onto the same channel, the DMA will capture and recognize this hardware request into its request buffer. NOTE: The DMA controller cannot recognize two software requests on the same channel if the first software request is still pending. If such request occur DMA will discard it. Therefore the user software should check the pending register before issuing a new software request. The DMA module has 16 channels and up to 32 hardware DMA requests. The module contains DREQASIx registers that are used to map the DMA requests to the DMA channels. By default, channel 0 is mapped to request 0, channel 1 to request 1, and so on. Some DMA requests have multiple sources, as shown in Table 16-2. The application must ensure that only one of these DMA request sources is enabled at any time. Table 16-2. DMA Request Line Connection (1) (2) Modules DMA Request Sources DMA Request MIBSPI1 MIBSPI1[1] (1) DMAREQ[0] MIBSPI1 MIBSPI1[0] (2) DMAREQ[1] SPI2 SPI2 receive DMAREQ[2] SPI2 SPI2 transmit DMAREQ[3] MIBSPI1 / MIBSPI3 / DCAN2 MIBSPI1[2] / MIBSPI3[2] / DCAN2 IF3 DMAREQ[4] MIBSPI1 / MIBSPI3 / DCAN2 MIBSPI1[3] / MIBSPI3[3] / DCAN2 IF2 DMAREQ[5] DCAN1 / MIBSPI5 DCAN1 IF2 / MIBSPI5[2] DMAREQ[6] SPI1, SPI3, SPI5 receive in standard SPI mode SPI1, SPI3, SPI5 transmit in standard SPI mode SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module 557 Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com Table 16-2. DMA Request Line Connection (continued) Modules DMA Request Sources DMA Request MIBADC1 / MIBSPI5 MIBADC1 event / MIBSPI5[3] DMAREQ[7] MIBSPI1 / MIBSPI3 / DCAN1 MIBSPI1[4] / MIBSPI3[4] / DCAN1 IF1 DMAREQ[8] MIBSPI1 / MIBSPI3 / DCAN2 MIBSPI1[5] / MIBSPI3[5] / DCAN2 IF1 DMAREQ[9] MIBADC1 / I2C / MIBSPI5 MIBADC1 G1 / I2C receive / MIBSPI5[4] DMAREQ[10] MIBADC1 / I2C / MIBSPI5 MIBADC1 G2 / I2C transmit / MIBSPI5[5] DMAREQ[11] RTI / MIBSPI1 / MIBSPI3 RTI DMAREQ0 / MIBSPI1[6] / MIBSPI3[6] DMAREQ[12] RTI / MIBSPI1 / MIBSPI3 RTI DMAREQ1 / MIBSPI1[7] / MIBSPI3[7] DMAREQ[13] MIBSPI3 / MibADC2 / MIBSPI5 MIBSPI3[1] (1) / MibADC2 event / MIBSPI5[6] DMAREQ[14] MIBSPI3 / MIBSPI5 (3) (4) 558 MIBSPI3[0] (2) / MIBSPI5[7] DMAREQ[15] MIBSPI1 / MIBSPI3 / DCAN1 / MibADC2 MIBSPI1[8] / MIBSPI3[8] / DCAN1 IF3 / MibADC2 G1 DMAREQ[16] MIBSPI1 / MIBSPI3 / DCAN3 / MibADC2 MIBSPI1[9] / MIBSPI3[9] / DCAN3 IF1 / MibADC2 G2 DMAREQ[17] RTI / MIBSPI5 RTI DMAREQ2 / MIBSPI5[8] DMAREQ[18] RTI / MIBSPI5 RTI DMAREQ3 / MIBSPI5[9] DMAREQ[19] N2HET1 / N2HET2 / DCAN3 N2HET1 DMAREQ[4] / N2HET2 DMAREQ[4] / DCAN3 IF2 DMAREQ[20] N2HET1 / N2HET2 / DCAN3 N2HET1 DMAREQ[5] / N2HET2 DMAREQ[5] / DCAN3 IF3 DMAREQ[21] MIBSPI1 / MIBSPI3 / MIBSPI5 MIBSPI1[10] / MIBSPI3[10] / MIBSPI5[10] DMAREQ[22] MIBSPI1 / MIBSPI3 / MIBSPI5 MIBSPI1[11] / MIBSPI3[11] / MIBSPI5[11] DMAREQ[23] N2HET1 / N2HET2 / SPI4 / MIBSPI5 N2HET1 DMAREQ[6] / N2HET2 DMAREQ[6] / SPI4 receive / MIBSPI5[12] DMAREQ[24] N2HET1 / N2HET2 / SPI4 / MIBSPI5 N2HET1 DMAREQ[7] / N2HET2 DMAREQ[7] / SPI4 transmit / MIBSPI5[13] DMAREQ[25] CRC / MIBSPI1 / MIBSPI3 CRC DMAREQ[0] / MIBSPI1[12] / MIBSPI3[12] DMAREQ[26] CRC / MIBSPI1 / MIBSPI3 CRC DMAREQ[1] / MIBSPI1[13] / MIBSPI3[13] DMAREQ[27] LIN / MIBSPI5 LIN receive / MIBSPI5[14] DMAREQ[28] LIN / MIBSPI5 LIN transmit / MIBSPI5[15] DMAREQ[29] MIBSPI1 / MIBSPI3 / SCI / MIBSPI5 MIBSPI1[14] / MIBSPI3[14] / SCI receive / MIBSPI5[1] (3) DMAREQ[30] MIBSPI1 / MIBSPI3 / SCI / MIBSPI5 MIBSPI1[15] / MIBSPI3[15] / SCI transmit / MIBSPI5[0] (4) DMAREQ[31] SPI1, SPI3, SPI5 receive in standard SPI mode SPI1, SPI3, SPI5 transmit in standard SPI mode Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Module Operation www.ti.com 16.2.8 Auto-Initiation When Auto-initiation Mode (AIM) bit of Channel Control Register (Section 16.3.2.4) is enabled for a channel and the channel is triggered by a software request for a block transfer, the channel will restart again using the same channel information stored at the respective control packet after one block transfer is completed. In the case of Hardware Request, the channel needs to be retriggered each time after a block is complete even if auto-initiation is enabled. 16.2.9 Interrupts Each channel can be configured to generate interrupts on several transfer conditions: • Frame transfer complete (FTC) interrupt: an interrupt is issued after the last element of a frame has been transferred. • Last frame transfer started (LFS) interrupt: an interrupt is issued before the first element of the last frame of a block transfer has started. • First half of block complete (HBC) interrupt: an interrupt is issued if more than half of the block is transferred. – If the number of frames n is odd, then the HBC interrupt is generated at the end of the frame when (n+1) / 2 number of frames are left in the block. – If the number of frames n is even, then the HBC interrupt is generated at the end of the frame after n/2 number of frames are left in the block. • Block transfer complete (BTC) interrupt: an interrupt is issued after the last element of the last frame has been transferred. • External imprecise error on read: an interrupt can be issued when a bus error (Illegal transaction with ok response) is detected. The imprecise read error is connected to the ESM module. • External imprecise error on write: an interrupt can be issued when a bus error (Illegal transaction with ok response) is detected. The imprecise write error is connected to the ESM module. • Memory Protection Unit error (MPU): an interrupt is issued when the DMA detects that the access falls outside of a memory region programmed in the MPU registers of the DMA. The MPU interrupt is connected to the ESM module. • Parity error (PAR): an interrupt is issued when the DMA detects a parity error when reading one of the control packets. The PAR interrupt is connected to the ESM module. The DMA outputs 5 interrupt lines for control packet handling, a parity interrupt and a memory protection interrupt (Figure 16-14). Each type of transfer interrupt condition is grouped together. For example, all block-transfer complete interrupts that are routed to a port are combined (ORed). The channel that caused the interrupt is given in the corresponding interrupt channel offset register. Priority between interrupts among the same interrupt type is resolved by a fixed priority scheme. Priority between different interrupt types is resolved in the Vector Interrupt Manager. Figure 16-15 explains the Frame Transfer Complete Interrupt structure in detail. NOTE: Each Channel Specific interrupts in DMA module are routed towards Group A or B to support two different CPUs individually. For devices with Single CPU or Dual CPU where both CPUs are running same code in delayed lock-step as safety feature: Group A - Interrupts (FTC, LFS, HBC, and BTC) are routed to the ARM CPU. Group B - Interrupts (FTC, LFS, HBC, and BTC) are not routed out. User software should configure only Group A interrupts. SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 559 Module Operation www.ti.com Figure 16-14. DMA Interrupts DMA FTCA CHANNEL SPECIFIC INTERRUPT G R O U P LFSA HBCA BTCA VECTOR INTERRUPT MODULE (VIM) A S C R CPU High PARITY ERROR PAR MPU ERROR MPU Low ERROR SIGNALING MODULE (ESM) DMA/DMM imprecise read error Group 1.5 DMA/DMM imprecise write error Group 1.13 Figure 16-15. Detailed Interrupt Structure (Frame Transfer Complete Path) Frame Transfer Complete Ch0 ••• ••• ••• FTC0AB FTCA Frame Transfer Complete Ch31 FTC31AB This figure is applicable for the HBC, LFS, and BTC interrupt. 560 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Module Operation www.ti.com 16.2.10 Debugging The DMA supports four different behaviors in suspend mode. These behaviors can be configured by the user as per the application requirement. • Immediate stop at a DMA channel arbitration boundary. Please refer to Table 16-3 and Table 16-4 for arbitration boundary definition. • Finish current frame transfer and continue after suspend ends. • Finish current block transfer and continue after suspend ends. • Ignore the suspend. The DMA continues to be operational as in functional mode when debug mode is active. When the DMA controller enters suspend mode, it continues to sample incoming hardware DMA requests, but the Channel Pending Register (Section 16.3.1.2) is frozen from being updated. After the suspend ends, all new requests that were received during suspend mode are reflected in the Channel Pending Register (Section 16.3.1.2). Except when the DMA controller is configured to ignore suspend mode, no channel arbitration is performed during suspend mode. The current channel under which suspend mode was entered will finish its entire frame or block-transfer after suspend mode ends, depending how the debug option was chosen. To facilitate debugging, a Watch Point Register (Section 16.3.1.47) and a Watch Mask Register (Section 16.3.1.48) are used. The watch point register together with the watch mask register can be configured to watch for a unique address or a range of addresses. When the condition to watch is true, the DMA freezes its state and generates a debug request signal to the host CPU so the state of the DMA can be examined. 16.2.11 Power Management The DMA offers two power-management modes: run and sleep. In run mode, the DMA is fully operational. The sleep mode shuts down the DMA if no pending channels are waiting to be serviced. If a DMA request is received or a software request is generated by the user software, then the DMA wakes up immediately. The sleep mode may be used to optimize the DMA module power consumption. When the system module issues a global low power mode request, the DMA will respond to the system module with an acknowledge if no DMA requests are pending. NOTE: When the DMA is in global low power mode, the clock is stopped and therefore it cannot detect any DMA request. The device must be woken up before a peripheral can generate a DMA request. 16.2.12 FIFO Buffer DMA FIFO is 4 levels deep and 64-bit wide (can hold up to 4 x 64-bits of data). They are used for Data packing and unpacking. The DMA FIFO has two states: • EMPTY : The FIFO contains no data. • FULL : The FIFO is filled or the element count has reached zero; the read operation has to be stopped. DMA channels can only be switched when the FIFO is empty. This also implies that arbitration between channels is done when the FIFO is empty. The FIFO buffer may be bypassed through the use of the bypass feature in the port control register; see Port Control Register (Section 16.3.1.44) for register details. Writing 1 to this bit limits the FIFO depth to the size of one element. That means if the read element size is equal to or larger than the write element size, after one element is read the write out to the destination starts. Otherwise, the write out to the destination starts after enough reads have completed to do one write of the write element size. This feature is particularly useful to minimize switching latency in-between channels. When bypass mode is enabled, the DMA performs minimal bus cycles on AHB bus. In addition, the bypass feature allows arbitration between channels that can be carried out at a source element granularity. SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 561 Module Operation www.ti.com However, it has to be considered that while in bypass mode, the DMA controller does not make optimal use of the bus bandwidth. Since the read and write element sizes can be different, then the number of read and write transactions will be different. Table 16-3 and Table 16-4 show a comparison between the number of read and write transactions performed by the DMA controller from one channel to another before arbitration in non-bypass and bypass mode. Table 16-3. Maximum Number of DMA Transactions per Channel in Non-Bypass Mode Write Element Size Read Element Size 8 bit 16 bit 32 bit 64 bit 8 bit 4 read 4 write 4 read 2 write 4 read 1 write 8 read 1 write 16 bit 2 read 4 write 4 read 4 write 4 read 2 write 4 read 1 write 32 bit 1 read 4 write 2 read 4 write 4 read 4 write 4 read 2 write 64 bit 1 read 8 write 1 read 4 write 2 read 4 write 4 read 4 write Table 16-4. Maximum Number of DMA Transactions per Channel in Bypass Mode Write Element Size Read Element Size 8 bit 16 bit 32 bit 64 bit 8 bit 1 read 1 write 2 read 1 write 4 read 1 write 8 read 1 write 16 bit 1 read 2 write 1 read 1 write 2 read 1 write 4 read 1 write 32 bit 1 read 4 write 1 read 2 write 1 read 1 write 2 read 1 write 64 bit 1 read 8 write 1 read 4 write 1 read 2 write 1 read 1 write 16.2.13 Channel Chaining Channel chaining is used to trigger a single or multiple channels with out an external DMA request. This is possible by chaining one control packet to other. Chain[5:0] field of the Channel Control Register (Section 16.3.2.4) is used to program the chaining control packet. Chained control packets follow arbitration rules within the pending register. For example if CH1, CH2, CH4, CH5 are triggered together and CH3 is chained with CH1. The order of channels serviced in spite of chaining will be CH1 -> CH2 -> CH3 -> CH4 -> CH5. In order to setup up channel chain feature, the Channel Control Register (Section 16.3.2.4) needs to be enabled for all chained channels before triggering first DMA request. Figure 16-16 illustrates how internally chained request is generated after completing the required transfers and stored in pending register. In this example CH1 is Chained to CH0. When CH0 is triggered CH1 is captured as pending in the Channel Pending Register (Section 16.3.1.2) even when it is not triggered. 562 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Module Operation www.ti.com Figure 16-16. Example of Channel Chaining Ch chain0 Pending Register CH1ASI[5:0] Ch Sel0 0 Bit 0 0 Bit 1 Ch chain1 CH1ASI[5:0] Ch Sel1 Bit 2 DMA_REQ[31:0] Ch chain14 CH14ASI[5:0] Ch Sel14 0 Bit 14 0 Bit 15 Ch chain15 CH15ASI[5:0] Ch Sel15 16.2.14 Memory Protection The DMA controller is capable of access to the full address range of the device. The protection mechanism allows the protection of up to four memory regions to restrict accesses to those address ranges. This will allow the application to protect critical application data from unintentionally being accessed by the DMA controller. 16.2.14.1 Protection Mechanism The memory protection mechanism consists of the access privilege for a given memory region, the start and end address for the region, and notification of an access violation for the protected region. Each region to be protected is configured by software by writing the start address and end address for each region into the DMA Memory Protection Registers, DMAMPRxS and DMAMPRxE. The definition of these registers can be found starting at Section 16.3.1.54. Any region in the valid address space can be protected from inappropriate accesses. The access privileges can be set to one of four permission settings: • Full access • Read only access • Write only access • No access The permissions for a given region are selected by writing the appropriate values in the DMA Memory Protection Control Register (Section 16.3.1.54). NOTE: If the regions defined by the start and end addresses overlap, the region defined first in the register space determines the access privilege. For example, if region 0 and region 1 overlap, the access permissions defined for region 0 will take precedence since region 0 registers are before region 1. SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 563 Module Operation www.ti.com In a case where a memory protection violation occurs, a flag will be set and an interrupt will be generated, if interrupts are enabled. The DMA Memory Protection Status Register (Section 16.3.1.55) contains the status flags for the memory protection mechanism, and the DMA Memory Protection Control Register (Section 16.3.1.54) contains the interrupt enable bits. Upon detection of the memory protection violation, the DMA Channel that caused the violation will be stopped and the next available DMA channel will be serviced. Figure 16-17 Illustrates a protection mechanism. Figure 16-17. Example of Protection Mechanism 0xFFFFFFFF Region3 System + peripherals Region2 0xFFF78000 No access restrictions Access restrictions 0x08003FFF Region1 RAM Region0 0x08000000 0x00000000 16.2.15 Parity Checking Parity checking is implemented using parity on a per-byte basis for DMA Control Packets in the RAM. Checking for even or odd parity can be programmed by a 4-bit key located in the system module that controls the parity configuration on a global basis. This ensures that all modules using parity are acting in the same manner. The default setup after reset is odd parity. In addition, parity checking can be enabled and disabled within the module by a 4-bit key. The key is located in the Parity Control Register (Section 16.3.1.52). During a read access, regardless if it was read by the DMA state machine or another master (CPU), the parity is calculated based on the data read from the RAM and compared with the good parity value stored in the parity bits. If any word fails the parity check, then a parity error interrupt is generated. The address that generated the error is detected and is captured for host system debugging in the DMA Parity Error Address Register (Section 16.3.1.53). The address is frozen from being updated until it is read by the bus master. 564 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Module Operation www.ti.com Additional error handling is dependent on the requestor. • DMA reading from a control packet RAM: The transmission requested by DMA request will not take place. • CPU reading from the control packet RAM: The data will be retrieved by the CPU and a parity error interrupt will be generated. In both cases, the control packet will be left active or the DMA will be switched off dependent on the ERRA bit in the Parity Control Register (Section 16.3.1.52). 16.2.16 Parity Testing The parity RAM is accessible to allow manually inserting faults so that the parity checking feature can be tested. Test mode is entered by asserting the TEST bit in the Parity Control Register (Section 16.3.1.52). Once the bit is set, the parity bits are mapped to the control packet RAM starting address A00h. NOTE: When in test mode, no parity checking will be done when reading from parity memory, but parity checking will be performed on the normal memory. Each byte in Control Packet RAM has its own parity bit in the Control Packet Parity RAM as shown in Table 16-5, Table 16-6, and Table 16-7. P0 is the parity bit for byte 0, P1 is the parity bit for byte 1 and so on. Each byte in the control packet RAM has its own parity bit in the control packet parity RAM as shown in Table 16-5 and Table 16-6. Table 16-5. Control Packet RAM Bit 31 24 23 16 15 8 7 0 Word0 Byte 0 Byte 1 Byte 2 Byte 3 Word1 Byte 4 Byte 5 Byte 6 Byte 7 Word2 Byte 8 Byte 9 Byte 10 Byte 11 Word3 Byte 12 Byte 13 Byte 14 Byte 15 Table 16-6. Control Packet RAM Bit 127 96 95 Word 3 64 63 32 Word 2 31 Word 1 0 Word 0 Table 16-7. Parity RAM Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 P15 P14 P13 P12 P11 P10 P9 P8 P7 P6 P5 P4 P3 P2 P1 P0 16.2.17 Initializing RAM with Parity After power up, the RAM content including the parity bit cannot be guaranteed. To avoid parity failures when reading RAM, the RAM has to be initialized. The RAM can be initialized by writing known values into it. When the known value is written, the corresponding parity bit will be automatically calculated and updated. Another possibility to initialize the memory is to follow the Auto-Initialization of On-Chip SRAM Modules subsection in the Architecture chapter. The RAM will be initialized to 0. Depending on the even/odd parity selection, the parity bit will be calculated accordingly. To allow for parity calculation during initialization, the parity functionality has to be enabled as discussed in Section 16.2.15. SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 565 Control Registers and Control Packets www.ti.com 16.3 Control Registers and Control Packets The DMA control registers are summarized in Table 16-8. The base address for the control registers is FFFF F000h. The control packets are summarized in Table 16-9. The base address for the control packets is FFF8 0000h. Each register begins on a word boundary. All registers and control packets are accessible in 8, 16, and 32 bit. NOTE: The register definitions are given for a full DMA module configuration (32 channels, 64 requests, 2 Ports, Dual CPU support). Writes and Reads of bits pertaining to features not included in the DMA implementation as defined in the device-specific data manual are possible without error; however, they will have no affect on device operation. Table 16-8. DMA Control Registers Offset Acronym Register Description Section 00h GCTRL Global Control Register Section 16.3.1.1 04h PEND Channel Pending Register Section 16.3.1.2 0Ch DMASTAT DMA Status Register Section 16.3.1.3 14h HWCHENAS HW Channel Enable Set and Status Register Section 16.3.1.4 1Ch HWCHENAR HW Channel Enable Reset and Status Register Section 16.3.1.5 24h SWCHENAS SW Channel Enable Set and Status Register Section 16.3.1.6 2Ch SWCHENAR SW Channel Enable Reset and Status Register Section 16.3.1.7 Section 16.3.1.8 34h CHPRIOS Channel Priority Set Register 3Ch CHPRIOR Channel Priority Reset Register Section 16.3.1.9 44h GCHIENAS Global Channel Interrupt Enable Set Register Section 16.3.1.10 4Ch GCHIENAR Global Channel Interrupt Enable Reset Register Section 16.3.1.11 54h DREQASI0 DMA Request Assignment Register 0 Section 16.3.1.12 58h DREQASI1 DMA Request Assignment Register 1 Section 16.3.1.13 5Ch DREQASI2 DMA Request Assignment Register 2 Section 16.3.1.14 60h DREQASI3 DMA Request Assignment Register 3 Section 16.3.1.15 94h PAR0 Port Assignment Register 0 Section 16.3.1.16 98h PAR1 Port Assignment Register 1 Section 16.3.1.17 B4h FTCMAP FTC Interrupt Mapping Register Section 16.3.1.18 BCh LFSMAP LFS Interrupt Mapping Register Section 16.3.1.19 C4h HBCMAP HBC Interrupt Mapping Register Section 16.3.1.20 CCh BTCMAP BTC Interrupt Mapping Register Section 16.3.1.21 DCh FTCINTENAS FTC Interrupt Enable Set Register Section 16.3.1.22 E4h FTCINTENAR FTC Interrupt Enable Reset Register Section 16.3.1.23 ECh LFSINTENAS LFS Interrupt Enable Set Register Section 16.3.1.24 F4h LFSINTENAR LFS Interrupt Enable Reset Register Section 16.3.1.25 FCh HBCINTENAS HBC Interrupt Enable Set Register Section 16.3.1.26 104h HBCINTENAR HBC Interrupt Enable Reset Register Section 16.3.1.27 10Ch BTCINTENAS BTC Interrupt Enable Set Register Section 16.3.1.28 114h BTCINTENAR BTC Interrupt Enable Reset Register Section 16.3.1.29 11Ch GINTFLAG Global Interrupt Flag Register Section 16.3.1.30 124h FTCFLAG FTC Interrupt Flag Register Section 16.3.1.31 12Ch LFSFLAG LFS Interrupt Flag Register Section 16.3.1.32 134h HBCFLAG HBC Interrupt Flag Register Section 16.3.1.33 13Ch BTCFLAG BTC Interrupt Flag Register Section 16.3.1.34 144h BERFLAG BER Interrupt Flag Register Section 16.3.1.35 14Ch FTCAOFFSET FTCA Interrupt Channel Offset Register Section 16.3.1.36 150h LFSAOFFSET LFSA Interrupt Channel Offset Register Section 16.3.1.37 566 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com Table 16-8. DMA Control Registers (continued) Offset Acronym Register Description 154h HBCAOFFSET HBCA Interrupt Channel Offset Register Section 16.3.1.38 Section 158h BTCAOFFSET BTCA Interrupt Channel Offset Register Section 16.3.1.39 160h FTCBOFFSET FTCB Interrupt Channel Offset Register Section 16.3.1.40 164h LFSBOFFSET LFSB Interrupt Channel Offset Register Section 16.3.1.41 168h HBCBOFFSET HBCB Interrupt Channel Offset Register Section 16.3.1.42 16Ch BTCBOFFSET BTCB Interrupt Channel Offset Register Section 16.3.1.43 178h PTCRL Port Control Register Section 16.3.1.44 17Ch RTCTRL RAM Test Control Register Section 16.3.1.45 180h DCTRL Debug Control Register Section 16.3.1.46 184h WPR Watch Point Register Section 16.3.1.47 188h WMR Watch Mask Register Section 16.3.1.48 198h PBACSADDR Port B Active Channel Source Address Register Section 16.3.1.49 19Ch PBACDADDR Port B Active Channel Destination Address Register Section 16.3.1.50 1A0h PBACTC Port B Active Channel Transfer Count Register Section 16.3.1.51 1A8h DMAPCR Parity Control Register Section 16.3.1.52 1ACh DMAPAR DMA Parity Error Address Register Section 16.3.1.53 1B0h DMAMPCTRL DMA Memory Protection Control Register Section 16.3.1.54 1B4h DMAMPST DMA Memory Protection Status Register Section 16.3.1.55 1B8h DMAMPR0S DMA Memory Protection Region 0 Start Address Register Section 16.3.1.56 1BCh DMAMPR0E DMA Memory Protection Region 0 End Address Register Section 16.3.1.57 1C0h DMAMPR1S DMA Memory Protection Region 1 Start Address Register Section 16.3.1.58 1C4h DMAMPR1E DMA Memory Protection Region 1 End Address Register Section 16.3.1.59 1C8h DMAMPR2S DMA Memory Protection Region 2 Start Address Register Section 16.3.1.60 1CCh DMAMPR2E DMA Memory Protection Region 2 End Address Register Section 16.3.1.61 1D0h DMAMPR3S DMA Memory Protection Region 3 Start Address Register Section 16.3.1.62 1D4h DMAMPR3E DMA Memory Protection Region 3 End Address Register Section 16.3.1.63 Table 16-9. Control Packet Memory Map Offset Acronym Register Description Section Primary Control Packet 0 00h ISADDR Initial Source Address Register Section 16.3.2.1 04h IDADDR Initial Destination Address Register Section 16.3.2.2 08h ITCOUNT Initial Transfer Count Register Section 16.3.2.3 10h CHCTRL Channel Control Register Section 16.3.2.4 14h EIOFF Element Index Offset Register Section 16.3.2.5 18h FIOFF Frame Index Offset Register Section 16.3.2.6 Working Control Packet 0 800h CSADDR Current Source Address Register Section 16.3.2.7 804h CDADDR Current Destination Address Register Section 16.3.2.8 808h CTCOUNT Current Transfer Count Register Section 16.3.2.9 SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 567 Control Registers and Control Packets www.ti.com 16.3.1 Global Configuration Registers These registers control the overall behavior of the DMA controller. 16.3.1.1 Global Control Register (GCTRL) Figure 16-18. Global Control Register (GCTRL) [offset = 00] 31 17 16 Reserved DMA_EN R-0 R/WP-0 15 14 Reserved BUS_BUSY 13 Reserved 10 DEBUG_MODE R-0 R-0 R-0 R/WP-0 7 9 8 1 0 Reserved DMA_RES R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-10. Global Control Register (GCTRL) Field Descriptions Bit Field 31-17 Reserved 16 DMA_EN 15 Reserved 14 BUS_BUSY 13-10 9-8 Reserved Value 0 Reserved 0 DMA_RES Reads return 0. Writes have no effect. DMA enable bit. The configuration registers and channel control packets should be setup first before DMA_EN bit is set to 1 to prevent state machines from carrying out bus transactions. If DMA_EN bit is cleared in the middle of an bus transaction, the state machine will stop at an arbitration boundary. 0 The DMA is disabled. 1 The DMA is enabled. 0 Reads return 0. Writes have no effect. This bit indicates status of DMA external AHB bus status. 0 DMAs external bus is not busy in data transfers. 1 DMAs external bus is busy in data transfers. 0 Reads return 0. Writes have no effect. DEBUG_MODE 7-1 Description Debug Mode. 0 Ignore suspend. 1h Finish current block transfer. 2h Finish current frame transfer. 3h Immediately stop at an DMA arbitration boundary and continue after suspend. 0 Reads return 0. Writes have no effect. DMA software reset Note: In the event a DMA slave does not respond, the DMA module will respond to the software reset upon reaching an arbitration boundary. 0 Read: Software reset is disabled. Write: No effect. 1 568 Read and write: The DMA state machine and all control registers are in software reset. Control packets are not reset when DMA software reset is active. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 16.3.1.2 Channel Pending Register (PEND) Figure 16-19. Channel Pending Register (PEND) [offset = 04h] 31 16 Reserved R-0 15 0 PEND[15:0] R-0 LEGEND: R = Read only; -n = value after reset Table 16-11. Channel Pending Register (PEND) Field Descriptions Bit Field 31-16 Reserved 15-0 PEND[n] Value 0 Description Reads return 0. Writes have no effect. Channel pending register. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. Reading from PEND gives the channel pending information if the channel was initiated by SW or HW. Once set, it remains set even if the corresponding channel is disabled via HWCHENA or SWCHENA. The pending bit is automatically cleared for the following conditions: • At the end of a frame or a block transfer depending on how the channel is triggered as programmed in the TTYPE bit field of CHCTRL. • The control packet is modified after the pending bit is set. • An AHB bus error occurs. 0 The corresponding channel is inactive. 1 The corresponding channel is pending and is waiting for service. 16.3.1.3 DMA Status Register (DMASTAT) Figure 16-20. DMA Status Register (DMASTAT) [offset = 0Ch] 31 16 Reserved R-0 15 0 STCH[15:0] R-0 LEGEND: R = Read only; -n = value after reset Table 16-12. DMA Status Register (DMASTAT) Field Descriptions Bit Field 31-16 Reserved 15-0 STCH[n] Value 0 Description Reads return 0. Writes have no effect. Status of DMA channels. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 The channel is inactive. 1 The channel is active; that is, the channel is currently in the DMA's execution queue. Note: The status of a channel currently in DMA's execution queue remains active even if emulation mode is entered or DMA is disabled via DMA_EN bit. SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 569 Control Registers and Control Packets www.ti.com 16.3.1.4 HW Channel Enable Set and Status Register (HWCHENAS) Figure 16-21. HW Channel Enable Set and Status Register (HWCHENAS) [offset = 14h] 31 16 Reserved R-0 15 0 HWCHENA[15:0] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-13. HW Channel Enable Set and Status Register (HWCHENAS) Field Descriptions Bit Field 31-16 Reserved 15-0 HWCHENA[n] Value 0 Description Reads return 0. Writes have no effect. Hardware channel enable bit. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. An active hardware DMA request cannot initiate a DMA transfer unless the corresponding hardware enable bit is set. The corresponding hardware enable bit is cleared automatically for the following conditions: • At the end of a block transfer if the auto-initiation bit AIM (see CHCTRL) is not active. • If an AHB bus error is detected for an active channel. Reading from HWCHENAS gives the status (enabled/disabled) of channels 0 through 15. 0 The corresponding channel is disabled for hardware triggering. 1 The corresponding channel is enabled for hardware triggering. 16.3.1.5 HW Channel Enable Reset and Status Register (HWCHENAR) Figure 16-22. HW Channel Enable Reset and Status Register (HWCHENAR) [offset = 1Ch] 31 16 Reserved R-0 15 0 HWCHDIS[15:0] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-14. HW Channel Enable Reset and Status Register (HWCHENAR) Field Descriptions Bit Field 31-16 Reserved 15-0 HWCHDIS[n] Value 0 Description Reads return 0. Writes have no effect. HW channel disable bit. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 Read: The corresponding channel is disabled for HW triggering. Write: No effect. 1 Read: The corresponding channel is enabled for HW triggering. Write: The corresponding channel is disabled. 570 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 16.3.1.6 SW Channel Enable Set and Status Register (SWCHENAS) Figure 16-23. SW Channel Enable Set and Status Register (SWCHENAS) [offset = 24h] 31 16 Reserved R-0 15 0 SWCHENA[15:0] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-15. SW Channel Enable Set and Status Register (SWCHENAS) Field Descriptions Bit Field 31-16 Reserved 15-0 SWCHENA[n] Value 0 Description Reads return 0. Writes have no effect. SW channel enable bit. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. Writing a 1 to a bit triggers a SW request on the corresponding channel to start a DMA transaction. The corresponding bit is automatically cleared by the following conditions. • The corresponding bit is cleared after one frame transfer if the TTYPE bit in Channel Control Register (CHCTRL) is programmed for frame transfer. • The corresponding bit is cleared after one block transfer if the corresponding TTYPE bit is programmed for block transfer and the auto-initiation bit is not enabled. • The control packet is modified after the pending bit is set. • The corresponding bit is cleared after one block transfer when TTYPE bit is programmed for blocks transfer and if the corresponding bit in HW channel enable register (HWCHENAS) is enabled. When a channel is enabled for both HW and SW, the state machine will initiate transfers based on the SW first. After one block transfer is complete, the corresponding bit in the SWCHENA register is then cleared. The same channel is serviced again by a HW DMA request. • The corresponding bit is cleared if an AHB bus error is detected. Reading from SWCHENAS gives the status (enabled/disabled) of channels 0 through 15. SPNU499C – March 2018 Submit Documentation Feedback 0 The corresponding channel is not triggered by SW request. 1 The corresponding channel is triggered by SW request. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 571 Control Registers and Control Packets www.ti.com 16.3.1.7 SW Channel Enable Reset and Status Register (SWCHENAR) Figure 16-24. SW Channel Enable Reset and Status Register (SWCHENAR) [offset = 2Ch] 31 16 Reserved R-0 15 0 SWCHDIS[15:0] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-16. SW Channel Enable Reset and Status Register (SWCHENAR) Field Descriptions Bit Field 31-16 Reserved 15-0 SWCHDIS[n] Value 0 Description Reads return 0. Writes have no effect. SW channel disable bit. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 Read: The corresponding channel was not triggered by SW. Write: No effect. 1 Read: The corresponding channel was triggered by SW. Write: The corresponding channel is disabled. 16.3.1.8 Channel Priority Set Register (CHPRIOS) Figure 16-25. Channel Priority Set Register (CHPRIOS) [offset = 34h] 31 16 Reserved R-0 15 0 CPS[15:0] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-17. Channel Priority Set Register (CHPRIOS) Field Descriptions Bit Field 31-16 Reserved 15-0 CPS[n] Value 0 Description Reads return 0. Writes have no effect. Channel priority set bit. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. Writing a 1 to a bit assigns the corresponding channel to the high-priority queue. 0 Read: The corresponding channel is assigned to the low-priority queue. Write: No effect. 1 572 Read and write: The corresponding channel is assigned to high-priority queue. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 16.3.1.9 Channel Priority Reset Register (CHPRIOR) Figure 16-26. Channel Priority Reset Register (CHPRIOR) [offset = 3Ch] 31 16 Reserved R-0 15 0 CPR[15:0] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-18. Channel Priority Reset Register (CHPRIOR) Field Descriptions Bit Field Value 31-16 Reserved 15-0 CPR[n] 0 Description Reads return 0. Writes have no effect. Channel priority reset bit. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. Writing a 1 to a bit assigns the according channel to the low-priority queue. 0 Read: The corresponding channel is assigned to the low-priority queue. Write: No effect. 1 Read: The corresponding channel is assigned to the high-priority queue. Write: The corresponding channel is assigned to the low-priority queue. 16.3.1.10 Global Channel Interrupt Enable Set Register (GCHIENAS) Figure 16-27. Global Channel Interrupt Enable Set Register (GCHIENAS) [offset = 44h] 31 16 Reserved R-0 15 0 GCHIE[15:0] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-19. Global Channel Interrupt Enable Set Register (GCHIENAS) Field Descriptions Bit Field 31-16 Reserved 15-0 GCHIE[n] Value 0 Description Reads return 0. Writes have no effect. Global channel interrupt enable bit. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 Read: The corresponding channel is disabled for interrupt. Write: No effect. 1 SPNU499C – March 2018 Submit Documentation Feedback Read and write: The corresponding channel is enabled for interrupt. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 573 Control Registers and Control Packets www.ti.com 16.3.1.11 Global Channel Interrupt Enable Reset Register (GCHIENAR) Figure 16-28. Global Channel Interrupt Enable Reset Register (GCHIENAR) [offset = 4Ch] 31 16 Reserved R-0 15 0 GCHID[15:0] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-20. Global Channel Interrupt Enable Reset Register (GCHIENAR) Field Descriptions Bit Field 31-16 Reserved 15-0 GCHID[n] Value 0 Description Reads return 0. Writes have no effect. Global channel interrupt disable bit. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 Read: The corresponding channel is disabled for interrupt. Write: No effect. 1 Read: The corresponding channel is enabled for interrupt. Write: The corresponding channel is disabled for interrupt. 574 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 16.3.1.12 DMA Request Assignment Register 0 (DREQASI0) Figure 16-29. DMA Request Assignment Register 0 (DREQASI0) [offset = 54h] 31 30 29 24 23 22 21 16 Reserved CH0ASI Reserved CH1ASI R-0 R/WP-0 R-0 R/WP-1h 15 14 13 8 7 6 5 0 Reserved CH2ASI Reserved CH3ASI R-0 R/WP-2h R-0 R/WP-3h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-21. DMA Request Assignment Register 0 (DREQASI0) Field Descriptions Bit Field 31-30 Reserved 29-24 CH0ASI 23-22 Reserved 21-16 CH1ASI 15-14 Reserved 13-8 CH2ASI 7-6 Reserved 5-0 CH3ASI Value 0 Description Reads return 0. Writes have no effect. Channel 0 assignment. This bit field chooses the DMA request assignment for channel 0. 0 DMA request line 0 triggers channel 0. : : 1Fh DMA request line 31 triggers channel 0. 20h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 1 assignment. This bit field chooses the DMA request assignment for channel 1. 0 DMA request line 0 triggers channel 1. : : 1Fh DMA request line 31 triggers channel 1. 20h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 2 assignment. This bit field chooses the DMA request assignment for channel 2. 0 DMA request line 0 triggers channel 2. : : 1Fh DMA request line 31 triggers channel 2. 20h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 3 assignment. This bit field chooses the DMA request assignment for channel 3. 0 DMA request line 0 triggers channel 3. : : 1Fh DMA request line 31 triggers channel 3. 20h3Fh Reserved SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 575 Control Registers and Control Packets www.ti.com 16.3.1.13 DMA Request Assignment Register 1 (DREQASI1) Figure 16-30. DMA Request Assignment Register 1 (DREQASI1) [offset = 58h] 31 30 29 24 23 22 21 16 Reserved CH4ASI Reserved CH5ASI R-0 R/WP-4h R-0 R/WP-5h 15 14 13 8 7 6 5 0 Reserved CH6ASI Reserved CH7ASI R-0 R/WP-6h R-0 R/WP-7h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-22. DMA Request Assignment Register 1 (DREQASI1) Field Descriptions Bit Field 31-30 Reserved 29-24 CH4ASI 23-22 Reserved 21-26 CH5ASI 15-14 Reserved 13-8 CH6ASI 7-6 Reserved 5-0 CH7ASI 576 Value 0 Description Reads return 0. Writes have no effect. Channel 4 assignment. This bit field chooses the DMA request assignment for channel 4. 0 DMA request line 0 triggers channel 4. : : 1Fh DMA request line 31 triggers channel 4. 20h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 5 assignment. This bit field chooses the DMA request assignment for channel 5. 0 DMA request line 0 triggers channel 5. : : 1Fh DMA request line 31 triggers channel 5. 20h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 6 assignment. This bit field chooses the DMA request assignment for channel 6. 0 DMA request line 0 triggers channel 6. : : 1Fh DMA request line 31 triggers channel 6. 20h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 7 assignment. This bit field chooses the DMA request assignment for channel 7. 0 DMA request line 0 triggers channel 7. : : 1Fh DMA request line 31 triggers channel 7. 20h3Fh Reserved Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 16.3.1.14 DMA Request Assignment Register 2 (DREQASI2) Figure 16-31. DMA Request Assignment Register 2 (DREQASI2) [offset = 5Ch] 31 30 29 24 23 22 21 16 Reserved CH8ASI Reserved CH9ASI R-0 R/WP-8h R-0 R/WP-9h 15 14 13 8 7 6 5 0 Reserved CH10ASI Reserved CH11ASI R-0 R/WP-Ah R-0 R/WP-Bh LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-23. DMA Request Assignment Register 2 (DREQASI2) Field Descriptions Bit Field 31-30 Reserved 29-24 CH8ASI 23-22 Reserved 21-16 CH9ASI 15-14 Reserved 13-8 CH10ASI 7-6 Reserved 5-0 CH11ASI Value 0 Description Reads return 0. Writes have no effect. Channel 8 assignment. This bit field chooses the DMA request assignment for channel 8. 0 DMA request line 0 triggers channel 8. : : 1Fh DMA request line 31 triggers channel 8. 20h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 9 assignment. This bit field chooses the DMA request assignment for channel 9. 0 DMA request line 0 triggers channel 9. : : 1Fh DMA request line 31 triggers channel 9. 20h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 10 assignment. This bit field chooses the DMA request assignment for channel 10. 0 DMA request line 0 triggers channel 10. : : 1Fh DMA request line 31 triggers channel 10. 20h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 11 assignment. This bit field chooses the DMA request assignment for channel 11. 0 DMA request line 0 triggers channel 11. : : 1Fh DMA request line 31 triggers channel 11. 20h3Fh Reserved SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 577 Control Registers and Control Packets www.ti.com 16.3.1.15 DMA Request Assignment Register 3 (DREQASI3) Figure 16-32. DMA Request Assignment Register 3 (DREQASI3) [offset = 60h] 31 30 29 24 23 22 21 16 Reserved CH12ASI Reserved CH13ASI R-0 R/WP-Ch R-0 R/WP-Dh 15 14 13 8 7 6 5 0 Reserved CH14ASI Reserved CH15ASI R-0 R/WP-Eh R-0 R/WP-Fh LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-24. DMA Request Assignment Register 3 (DREQASI3) Field Descriptions Bit Field 31-30 Reserved 29-24 CH12ASI 23-22 Reserved 21-16 CH13ASI 15-14 Reserved 13-8 CH14ASI 7-6 Reserved 5-0 CH15ASI 578 Value 0 Description Reads return 0. Writes have no effect. Channel 12 assignment. This bit field chooses the DMA request assignment for channel 12. 0 DMA request line 0 triggers channel 12. : : 1Fh DMA request line 31 triggers channel 12. 20h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 13 assignment. This bit field chooses the DMA request assignment for channel 13. 0 DMA request line 0 triggers channel 13. : : 1Fh DMA request line 31 triggers channel 13. 20h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 14 assignment. This bit field chooses the DMA request assignment for channel 14. 0 DMA request line 0 triggers channel 14. : : 1Fh DMA request line 31 triggers channel 14. 20h3Fh Reserved 0 Reads return 0. Writes have no effect. Channel 15 assignment. This bit field chooses the DMA request assignment for channel 15. 0 DMA request line 0 triggers channel 15. : : 1Fh DMA request line 31 triggers channel 15. 20h3Fh Reserved Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 16.3.1.16 Port Assignment Register 0 (PAR0) Figure 16-33. Port Assignment Register 0 (PAR0) [offset = 94h] 31 30 28 27 26 24 23 22 20 19 18 16 Rsvd CH0PA Rsvd CH1PA Rsvd CH2PA Rsvd CH3PA R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 15 14 12 11 10 8 7 6 4 3 2 0 Rsvd CH4PA Rsvd CH5PA Rsvd CH6PA Rsvd CH7PA R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-25. Port Assignment Register 0 (PAR0) Field Descriptions Bit Field 31 Reserved 30-28 27 26-24 23 22-20 19 18-16 15 14-12 11 10-8 7 6-4 3 2-0 Value 0 CH0PA Reserved These bit fields determine to which port channel 0 is assigned. Port B 0xx Reserved 0 These bit fields determine to which port channel 1 is assigned. Port B 0xx Reserved 0 1xx Port B 0xx Reserved 0 1xx Port B 0xx Reserved 0 These bit fields determine to which port channel 4 is assigned. Port B 0xx Reserved 0 Reads return 0. Writes have no effect. These bit fields determine to which port channel 5 is assigned. 1xx Port B 0xx Reserved 0 CH6PA Reserved Reads return 0. Writes have no effect. 1xx CH5PA Reserved Reads return 0. Writes have no effect. These bit fields determine to which port channel 3 is assigned. CH4PA Reserved Reads return 0. Writes have no effect. These bit fields determine to which port channel 2 is assigned. CH3PA Reserved Reads return 0. Writes have no effect. 1xx CH2PA Reserved Reads return 0. Writes have no effect. 1xx CH1PA Reserved Description Reads return 0. Writes have no effect. These bit fields determine to which port channel 6 is assigned. 1xx Port B 0xx Reserved 0 CH7PA Reads return 0. Writes have no effect. These bit fields determine to which port channel 7 is assigned. 1xx Port B 0xx Reserved SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 579 Control Registers and Control Packets www.ti.com 16.3.1.17 Port Assignment Register 1 (PAR1) Figure 16-34. Port Assignment Register 1 (PAR1) [offset = 98h] 31 30 28 27 26 24 23 22 20 19 18 16 Rsvd CH8PA Rsvd CH9PA Rsvd CH10PA Rsvd CH11PA R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 15 14 12 11 10 8 7 6 4 3 2 0 Rsvd CH12PA Rsvd CH13PA Rsvd CH14PA Rsvd CH15PA R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-26. Port Assignment Register 1 (PAR1) Field Descriptions Bit Field 31 Reserved 30-28 27 26-24 0 CH8PA Reserved Reserved 22-20 CH10PA 19 Reserved 18-16 CH11PA 15 Reserved 14-12 CH12PA 11 Reserved 10-8 CH13PA 7 Reserved 6-4 CH14PA 3 Reserved 2-0 CH15PA Description Reads return 0. Writes have no effect. These bit fields determine to which port channel 8 is assigned. 1xx Port B 0xx Reserved 0 CH9PA 23 580 Value Reads return 0. Writes have no effect. These bit fields determine to which port channel 9 is assigned. 1xx Port B 0xx Reserved 0 Reads return 0. Writes have no effect. These bit fields determine to which port channel 10 is assigned. 1xx Port B 0xx Reserved 0 Reads return 0. Writes have no effect. These bit fields determine to which port channel 11 is assigned. 1xx Port B 0xx Reserved 0 Reads return 0. Writes have no effect. These bit fields determine to which port channel 12 is assigned. 1xx Port B 0xx Reserved 0 Reads return 0. Writes have no effect. These bit fields determine to which port channel 13 is assigned. 1xx Port B 0xx Reserved 0 Reads return 0. Writes have no effect. These bit fields determine to which port channel 14 is assigned. 1xx Port B 0xx Reserved 0 Reads return 0. Writes have no effect. These bit fields determine to which port channel 15 is assigned. 1xx Port B 0xx Reserved Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 16.3.1.18 FTC Interrupt Mapping Register (FTCMAP) NOTE: On this device Group B interrupts are not implemented; hence, user software should configure only Group A interrupts. Figure 16-35. FTC Interrupt Mapping Register (FTCMAP) [offset = B4h] 31 16 Reserved R-0 15 0 FTCAB[15:0] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-27. FTC Interrupt Mapping Register (FTCMAP) Field Descriptions Bit Field 31-16 Reserved 15-0 FTCAB[n] Value 0 Description Reads return 0. Writes have no effect. Frame transfer complete (FTC) interrupt to Group A or Group B. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 The FTC interrupt of the corresponding channel is routed to Group A. 1 The FTC interrupt of the corresponding channel is routed to Group B. 16.3.1.19 LFS Interrupt Mapping Register (LFSMAP) NOTE: On this device Group B interrupts are not implemented; hence, user software should configure only Group A interrupts. Figure 16-36. LFS Interrupt Mapping Register (LFSMAP) [offset = BCh] 31 16 Reserved R-0 15 0 LFSAB[15:0] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-28. LFS Interrupt Mapping Register (LFSMAP) Field Descriptions Bit Field 31-16 Reserved 15-0 LFSAB[n] Value 0 Description Reads return 0. Writes have no effect. Last frame started (LFS) interrupt to Group A or Group B. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 The LFS interrupt of the corresponding channel is routed to Group A. 1 The LFS interrupt of the corresponding channel is routed to Group B. SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 581 Control Registers and Control Packets www.ti.com 16.3.1.20 HBC Interrupt Mapping Register (HBCMAP) NOTE: On this device Group B interrupts are not implemented; hence, user software should configure only Group A interrupts. Figure 16-37. HBC Interrupt Mapping Register (HBCMAP) [offset = C4h] 31 16 Reserved R-0 15 0 HBCAB[15:0] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-29. HBC Interrupt Mapping Register (HBCMAP) Field Descriptions Bit Field 31-16 Reserved 15-0 HBCAB[n] Value 0 Description Reads return 0. Writes have no effect. Half block complete (HBC) interrupt to Group A or Group B. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 The HBC interrupt of the corresponding channel is routed to Group A. 1 The HBC interrupt of the corresponding channel is routed to Group B. 16.3.1.21 BTC Interrupt Mapping Register (BTCMAP) NOTE: On this device Group B interrupts are not implemented; hence, user software should configure only Group A interrupts. Figure 16-38. BTC Interrupt Mapping Register (BTCMAP) [offset = CCh] 31 16 Reserved R-0 15 0 BTCAB[15:0] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-30. BTC Interrupt Mapping Register (BTCMAP) Field Descriptions Bit Field 31-16 Reserved 15-0 BTCAB[n] 582 Value 0 Description Reads return 0. Writes have no effect. Block transfer complete (BTC) interrupt to Group A or Group B. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 The BTC interrupt of the corresponding channel is routed to Group A. 1 The BTC interrupt of the corresponding channel is routed to Group B. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 16.3.1.22 FTC Interrupt Enable Set (FTCINTENAS) Figure 16-39. FTC Interrupt Enable Set (FTCINTENAS) [offset = DCh] 31 16 Reserved R-0 15 0 FTCINTENA[15:0] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-31. FTC Interrupt Enable Set (FTCINTENAS) Field Descriptions Bit Field Value 31-16 Reserved 15-0 FTCINTENA[n] 0 Description Reads return 0. Writes have no effect. Frame transfer complete (FTC) interrupt enable. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 Read: The corresponding FTC interrupt of a channel is disabled. Write: No effect. 1 Read or write: The FTC interrupt of the corresponding channel is enabled. 16.3.1.23 FTC Interrupt Enable Reset (FTCINTENAR) NOTE: On this device Group B interrupts are not implemented hence user software should configure only Group A interrupts. Figure 16-40. FTC Interrupt Enable Reset (FTCINTENAR) [offset = E4h] 31 16 Reserved R-0 15 0 FTCINTDIS[15:0] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-32. FTC Interrupt Enable Reset (FTCINTENAR) Field Descriptions Bit Field 31-16 Reserved 15-0 FTCINTDIS[n] Value 0 Description Reads return 0. Writes have no effect. Frame transfer complete (FTC) interrupt disable. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 Read: The corresponding FTC interrupt of a channel is disabled. Write: No effect. 1 Read: The corresponding FTC interrupt of a channel is enabled. Write: The corresponding FTC interrupt is disabled. SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 583 Control Registers and Control Packets www.ti.com 16.3.1.24 LFS Interrupt Enable Set (LFSINTENAS) Figure 16-41. LFS Interrupt Enable Set (LFSINTENAS) [offset = ECh] 31 16 Reserved R-0 15 0 LFSINTENA[15:0] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-33. LFS Interrupt Enable Set (LFSINTENAS) Field Descriptions Bit Field Value 31-16 Reserved 15-0 LFSINTENA[n] 0 Description Reads return 0. Writes have no effect. Last frame started (LFS) interrupt enable. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 Read: The corresponding LFS interrupt of a channel is disabled. Write: No effect. 1 Read or write: The LFS interrupt of the corresponding channel is enabled. 16.3.1.25 LFS Interrupt Enable Reset (LFSINTENAR) Figure 16-42. LFS Interrupt Enable Reset (LFSINTENAR) [offset = F4h] 31 16 Reserved R-0 15 0 LFSINTDIS[15:0] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-34. LFS Interrupt Enable Reset (LFSINTENAR) Field Descriptions Bit Field 31-16 Reserved 15-0 LFSINTDIS[n] Value 0 Description Reads return 0. Writes have no effect. Last frame started (LFS) interrupt disable. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 Read: The LFS interrupt of the corresponding channel is disabled. Write: No effect. 1 Read: The LFS interrupt of the corresponding channel is enabled. Write: The LFS interrupt of the corresponding channel is disabled. 584 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 16.3.1.26 HBC Interrupt Enable Reset (HBCINTENAS) Figure 16-43. HBC Interrupt Enable Set (HBCINTENAS) [offset = FCh] 31 16 Reserved R-0 15 0 HBCINTENA[15:0] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-35. HBC Interrupt Enable Set (HBCINTENAS) Field Descriptions Bit Field Value 31-16 Reserved 15-0 HBCINTENA[n] 0 Description Reads return 0. Writes have no effect. Half block complete (HBC) interrupt enable. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 Read: The HBC interrupt of the corresponding channel is disabled. Write: No effect. 1 Read or write: The HBC interrupt of the corresponding channel is enabled. 16.3.1.27 HBC Interrupt Enable Reset (HBCINTENAR) Figure 16-44. HBC Interrupt Enable Reset (HBCINTENAR) [offset = 104h] 31 16 Reserved R-0 15 0 HBCINTDIS[15:0] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-36. HBC Interrupt Enable Reset (HBCINTENAR) Field Descriptions Bit Field 31-16 Reserved 15-0 HBCINTDIS[n] Value 0 Description Reads return 0. Writes have no effect. Half block complete (HBC) interrupt disable. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 Read: The HBC interrupt of the corresponding channel is disabled. Write: No effect. 1 Read: The HBC interrupt of the corresponding channel is enabled. Write: The HBC interrupt of the corresponding channel is disabled. SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 585 Control Registers and Control Packets www.ti.com 16.3.1.28 BTC Interrupt Enable Set (BTCINTENAS) Figure 16-45. BTC Interrupt Enable Set (BTCINTENAS) [offset = 10Ch] 31 16 Reserved R-0 15 0 BTCINTENA[15:0] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-37. BTC Interrupt Enable Reset (BTCINTENAS) Field Descriptions Bit Field Value 31-16 Reserved 15-0 BTCINTENA[n] 0 Description Reads return 0. Writes have no effect. Block transfer complete (BTC) interrupt enable. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 Read: The BTC interrupt of the corresponding channel is disabled. Write: No effect. 1 Read or write: The BTC interrupt of the corresponding channel is enabled. 16.3.1.29 BTC Interrupt Enable Reset (BTCINTENAR) Figure 16-46. BTC Interrupt Enable Reset (BTCINTENAR) [offset = 114h] 31 16 Reserved R-0 15 0 BTCINTDIS[15:0] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-38. BTC Interrupt Enable Reset (BTCINTENAR) Field Descriptions Bit Field 31-16 Reserved 15-0 BTCINTDIS[n] Value 0 Description Reads return 0. Writes have no effect. Block transfer complete (BTC) interrupt disable. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. 0 Read: The BTC interrupt of the corresponding channel is disabled. Write: No effect. 1 Read: The BTC interrupt of the corresponding channel is enabled. Write: The BTC interrupt of the corresponding channel is disabled. 586 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 16.3.1.30 Global Interrupt Flag Register (GINTFLAG) Figure 16-47. Global Interrupt Flag Register (GINTFLAG) [offset = 11Ch] 31 16 Reserved R-0 15 0 GINT[15:0] R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-39. Global Interrupt Flag Register (GINTFLAG) Field Descriptions Bit Field 31-16 Reserved 15-0 GINT[n] Value 0 Description Reads return 0. Writes have no effect. Global interrupt flags. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. A global interrupt flag bit is an OR function of FTC, LFS, HBC, and BTC interrupt flags. 0 No interrupt is pending on the corresponding channel. 1 One or more of the interrupt types (FTC, LFS, HBC, or BTC) is pending on the corresponding channel. 16.3.1.31 FTC Interrupt Flag Register (FTCFLAG) Figure 16-48. FTC Interrupt Flag Register (FTCFLAG) [offset = 124h] 31 16 Reserved R-0 15 0 FTCI[15:0] R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 in privilege mode to clear the bit; -n = value after reset Table 16-40. FTC Interrupt Flag Register (FTCFLAG) Field Descriptions Bit Field 31-16 Reserved 15-0 FTCI[n] Value 0 Description Reads return 0. Writes have no effect. Frame transfer complete (FTC) flags. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. Note: Reading from the respective interrupt channel offset register also clears the corresponding flag (see Section 16.3.1.36 and Section 16.3.1.40). Note: The state of the flag bit can be polled even if the corresponding interrupt enable bit is cleared. 0 Read: An FTC interrupt of the corresponding channel is not pending. Write: No effect. 1 Read: An FTC interrupt of the corresponding channel is pending. Write: The flag is cleared. SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 587 Control Registers and Control Packets www.ti.com 16.3.1.32 LFS Interrupt Flag Register (LFSFLAG) Figure 16-49. LFS Interrupt Flag Register (LFSFLAG) [offset = 12Ch] 31 16 Reserved R-0 15 0 LFSI[15:0] R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 in privilege mode to clear the bit; -n = value after reset Table 16-41. LFS Interrupt Flag Register (LFSFLAG) Field Descriptions Bit Field 31-16 Reserved 15-0 LFSI[n] Value 0 Description Reads return 0. Writes have no effect. Last frame started (LFS) flags. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. Note: Reading from the respective interrupt channel offset register also clears the corresponding flag (see Section 16.3.1.37 and Section 16.3.1.41). Note: The state of the flag bit can be polled even if the corresponding interrupt enable bit is cleared. 0 Read: An LFS interrupt of the corresponding channel is not pending. Write: No effect. 1 Read: An LFS interrupt of the corresponding channel is pending. Write: The flag is cleared. 16.3.1.33 HBC Interrupt Flag Register (HBCFLAG) Figure 16-50. HBC Interrupt Flag Register (HBCFLAG) [offset = 134h] 31 16 Reserved R-0 15 0 HBCI[15:0] R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 in privilege mode to clear the bit; -n = value after reset Table 16-42. HBC Interrupt Flag (HBCFLAG) Field Descriptions Bit Field 31-16 Reserved 15-0 HBCI[n] Value 0 Description Reads return 0. Writes have no effect. Half block transfer (HBC) complete flags. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. Note: Reading from the respective interrupt channel offset register also clears the corresponding flag (see Section 16.3.1.38 and Section 16.3.1.42). Note: The state of the flag bit can be polled even if the corresponding interrupt enable bit is cleared. 0 Read: An HBC interrupt of the corresponding channel is not pending. Write: No effect. 1 Read: An HBC interrupt of the corresponding channel is pending. Write: The flag is cleared. 588 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 16.3.1.34 BTC Interrupt Flag Register (BTCFLAG) Figure 16-51. BTC Interrupt Flag Register (BTCFLAG) [offset = 13Ch] 31 16 Reserved R-0 15 0 BTCI[15:0] R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 in privilege mode to clear the bit; -n = value after reset Table 16-43. BTC Interrupt Flag Register (BTCFLAG) Field Descriptions Bit Field 31-16 Reserved 15-0 BTCI[n] Value 0 Description Reads return 0. Writes have no effect. Block transfer complete (BTC) flags. Bit 0 corresponds to channel 0, bit 1 corresponds to channel 1, and so on. Note: Reading from the respective interrupt channel offset register also clears the corresponding flag (see Section 16.3.1.39 and Section 16.3.1.43). Note: The state of the flag bit can be polled even if the corresponding interrupt enable bit is cleared. 0 Read: A BTC interrupt of the corresponding channel is not pending. Write: No effect. 1 Read: A BTC interrupt of the corresponding channel is pending. Write: The flag is cleared. 16.3.1.35 BER Interrupt Flag Register (BERFLAG) The BERFLAG will never be set in this device. The bus error reporting is handled by the DMA Read Imprecise Error and DMA Write Imprecise Error asserted to the ESM module directly, which are detected at the device level. See the ESM error mapping for the DMA Read/Write Imprecise Error. SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 589 Control Registers and Control Packets www.ti.com 16.3.1.36 FTCA Interrupt Channel Offset Register (FTCAOFFSET) Figure 16-52. FTCA Interrupt Channel Offset Register (FTCAOFFSET) [offset = 14Ch] 31 16 Reserved R-0 15 8 7 6 5 0 Reserved sbz sbz FTCA R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 16-44. FTCA Interrupt Channel Offset Register (FTCAOFFSET) Field Descriptions Bit Field Value Description 31-8 Reserved 0 Reads return 0. Writes have no effect. 7-6 sbz 0 These bits should always be programmed as 0. 5-0 FTCA Channel causing FTC interrupt Group A. These bits contain the channel number of the pending interrupt for Group A if the corresponding interrupt enable is set. Note: Reading this location clears the corresponding interrupt pending flag (see Section 16.3.1.31) with the highest priority. 0 No interrupt is pending. 1h Channel 0 is causing the pending interrupt Group A. : : 10h Channel 15 is causing the pending interrupt Group A. 11h3Fh Reserved 16.3.1.37 LFSA Interrupt Channel Offset Register (LFSAOFFSET) Figure 16-53. LFSA Interrupt Channel Offset Register (LFSAOFFSET) [offset = 150h] 31 16 Reserved R-0 15 7 6 Reserved 8 sbz sbz 5 LFSA 0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 16-45. LFSA Interrupt Channel Offset Register (LFSAOFFSET) Field Descriptions Bit Field Value Description 31-8 Reserved 0 Reads return 0. Writes have no effect. 7-6 sbz 0 These bits should always be programmed as 0. 590 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com Table 16-45. LFSA Interrupt Channel Offset Register (LFSAOFFSET) Field Descriptions (continued) Bit Field 5-0 LFSA Value Description Channel causing LFS interrupt Group A. These bits contain the channel number of the pending interrupt for Group A if the corresponding interrupt enable is set. Note: Reading this location clears the corresponding interrupt pending flag (see Section 16.3.1.32) with the highest priority. 0 No interrupt is pending. 1h Channel 0 is causing the pending interrupt Group A. : : 10h Channel 15 is causing the pending interrupt Group A. 11h3Fh Reserved SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 591 Control Registers and Control Packets www.ti.com 16.3.1.38 HBCA Interrupt Channel Offset Register (HBCAOFFSET) Figure 16-54. HBCA Interrupt Channel Offset Register (HBCAOFFSET) [offset = 154h] 31 16 Reserved R-0 15 8 7 6 5 0 Reserved sbz sbz HBCA R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 16-46. HBCA Interrupt Channel Offset Register (HBCAOFFSET) Field Descriptions Bit Field Value Description 31-8 Reserved 0 Reads return 0. Writes have no effect. 7-6 sbz 0 These bits should always be programmed as 0. 5-0 HBCA Channel causing HBC interrupt Group A. These bits contain the channel number of the pending interrupt for Group A if the corresponding interrupt enable is set. Note: Reading this location clears the corresponding interrupt pending flag (see Section 16.3.1.33) with the highest priority. 0 No interrupt is pending. 1h Channel 0 is causing the pending interrupt Group A. : : 10h Channel 15 is causing the pending interrupt Group A. 11h3Fh Reserved 16.3.1.39 BTCA Interrupt Channel Offset Register (BTCAOFFSET) Figure 16-55. BTCA Interrupt Channel Offset Register (BTCAOFFSET) [offset = 158h] 31 16 Reserved R-0 15 7 6 Reserved 8 sbz sbz 5 BTCA 0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 16-47. BTCA Interrupt Channel Offset Register (BTCAOFFSET) Field Descriptions Bit Field Value Description 31-8 Reserved 0 Reads return 0. Writes have no effect. 7-6 sbz 0 These bits should always be programmed as 0. 592 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com Table 16-47. BTCA Interrupt Channel Offset Register (BTCAOFFSET) Field Descriptions (continued) Bit Field 5-0 BTCA Value Description Channel causing BTC interrupt Group A. These bits contain the channel number of the pending interrupt for Group A if the corresponding interrupt enable is set. Note: Reading this location clears the corresponding interrupt pending flag (see Section 16.3.1.34) with the highest priority. 0 No interrupt is pending. 1h Channel 0 is causing the pending interrupt Group A. : : 10h Channel 15 is causing the pending interrupt Group A. 11h3Fh Reserved SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 593 Control Registers and Control Packets www.ti.com 16.3.1.40 FTCB Interrupt Channel Offset Register (FTCBOFFSET) Figure 16-56. FTCB Interrupt Channel Offset Register (FTCBOFFSET) [offset = 160h] 31 16 Reserved R-0 15 8 7 6 5 0 Reserved sbz sbz FTCB R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 16-48. FTCB Interrupt Channel Offset Register (FTCBOFFSET) Field Descriptions Bit Field Value Description 31-8 Reserved 0 Reads return 0. Writes have no effect. 7-6 sbz 0 These bits should always be programmed as 0. 5-0 FTCB Channel causing FTC interrupt Group B. These bits contain the channel number of the pending interrupt for Group B if the corresponding interrupt enable is set. Note: Reading this location clears the corresponding interrupt pending flag (see Section 16.3.1.31) with the highest priority. 0 No interrupt is pending. 1h Channel 0 is causing the pending interrupt Group B. : : 10h Channel 15 is causing the pending interrupt Group B. 11h3Fh Reserved 16.3.1.41 LFSB Interrupt Channel Offset Register (LFSBOFFSET) Figure 16-57. LFSB Interrupt Channel Offset Register (LFSBOFFSET) [offset = 164h] 31 16 Reserved R-0 15 7 6 Reserved 8 sbz sbz 5 LFSB 0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 16-49. LFSB Interrupt Channel Offset Register (LFSBOFFSET) Field Descriptions Bit Field Value Description 31-8 Reserved 0 Reads return 0. Writes have no effect. 7-6 sbz 0 These bits should always be programmed as 0. 594 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com Table 16-49. LFSB Interrupt Channel Offset Register (LFSBOFFSET) Field Descriptions (continued) Bit Field 5-0 LFSB Value Description Channel causing LFS interrupt Group B. These bits contain the channel number of the pending interrupt for Group B if the corresponding interrupt enable is set. Note: Reading this location clears the corresponding interrupt pending flag (see Section 16.3.1.32) with the highest priority. 0 No interrupt is pending. 1h Channel 0 is causing the pending interrupt Group B. : : 10h Channel 15 is causing the pending interrupt Group B. 11h3Fh Reserved SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 595 Control Registers and Control Packets www.ti.com 16.3.1.42 HBCB Interrupt Channel Offset Register (HBCBOFFSET) Figure 16-58. HBCB Interrupt Channel Offset Register (HBCBOFFSET) [offset = 168h] 31 16 Reserved R-0 15 8 7 6 5 0 Reserved sbz sbz HBCB R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 16-50. HBCB Interrupt Channel Offset Register (HBCBOFFSET) Field Descriptions Bit Field Value Description 31-8 Reserved 0 Reads return 0. Writes have no effect. 7-6 sbz 0 These bits should always be programmed as 0. 5-0 HBCB Channel causing HBC interrupt Group B. These bits contain the channel number of the pending interrupt for Group B if the corresponding interrupt enable is set. Note: Reading this location clears the corresponding interrupt pending flag (see Section 16.3.1.33) with the highest priority. 0 No interrupt is pending. 1h Channel 0 is causing the pending interrupt Group B. : : 10h Channel 15 is causing the pending interrupt Group B. 11h3Fh Reserved 16.3.1.43 BTCB Interrupt Channel Offset Register (BTCBOFFSET) Figure 16-59. BTCB Interrupt Channel Offset Register (BTCBOFFSET) [offset = 16Ch] 31 16 Reserved R-0 15 7 6 Reserved 8 sbz sbz 5 BTCB 0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 16-51. BTCB Interrupt Channel Offset Register (BTCBOFFSET) Field Descriptions Bit Field Value Description 31-8 Reserved 0 Reads return 0. Writes have no effect. 7-6 sbz 0 These bits should always be programmed as 0. 596 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com Table 16-51. BTCB Interrupt Channel Offset Register (BTCBOFFSET) Field Descriptions (continued) Bit Field 5-0 BTCB Value Description Channel causing BTC interrupt Group B. These bits contain the channel number of the pending interrupt for Group B if the corresponding interrupt enable is set. Note: Reading this location clears the corresponding interrupt pending flag (see Section 16.3.1.34) with the highest priority. 0 No interrupt is pending. 1h Channel 0 is causing the pending interrupt Group B. : : 10h Channel 15 is causing the pending interrupt Group B. 11h3Fh Reserved SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 597 Control Registers and Control Packets www.ti.com 16.3.1.44 Port Control Register (PTCRL) Figure 16-60. Port Control Register (PTCRL) [offset = 178h] 31 25 24 Reserved PENDB R-0 R-0 23 19 18 17 16 Reserved BYB PSFRHQPB PSFRLQPB R-0 R/WP-0 R/WP-0 R/WP-0 15 0 Reserved R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-52. Port Control Register (PTCRL) Field Descriptions Bit 31-25 24 23-19 18 Field Reserved Value 0 PENDB Reserved Description Reads return 0. Writes have no effect. Transfers pending for Port B. This flag determines if transfers are ongoing on port B. The flag will be cleared if no transfers are performed. It can be used to determine if there is still data transferred while DMA_EN is set to 0 in GCTCRL. In this case, once all transfers are finished, the flag will be set to 0. 0 No transfers are pending. 1 Transfers are pending. 0 Reads return 0. Writes have no effect. BYB Bypass FIFO B. 0 FIFO B is not bypassed. 1 FIFO B is bypassed. Writing 1 to this bit limits the FIFO depth to the size of one element. That means that after one element is read, the write-out to the destination will begin. This feature is particularly useful to minimize switching latency between channels. Note: This feature does not make optimal use of bus bandwidth. 17 16 15-0 598 PSFRHQPB Priority scheme fix or rotate for high priority queue of Port B. 0 Fixed priority is used. 1 Rotation priority is used. PSFRLQPB Reserved Priority scheme fix or rotate for low priority queue of Port B. 0 The fixed priority scheme is used. 1 The rotation priority scheme is used. 0 Reads return 0. Writes have no effect. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 16.3.1.45 RAM Test Control (RTCTRL) Figure 16-61. RAM Test Control (RTCTRL) [offset = 17Ch] 31 16 Reserved R-0 15 1 0 Reserved RTC R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-53. RAM Test Control (RTCTRL) Field Descriptions Bit 31-1 0 Field Reserved Value 0 RTC Description Reads return 0. Writes have no effect. RAM Test Control. Writing a 1 to this bit opens the write access to the reserved locations of control packet RAM as defined in the memory map. Note: This bit should be cleared to 0 during normal operation. 0 RAM Test Control is disabled. 1 RAM Test Control is enabled. SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 599 Control Registers and Control Packets www.ti.com 16.3.1.46 Debug Control (DCTRL) Figure 16-62. Debug Control (DCTRL) [offset = 180h] 31 29 28 24 23 17 16 Reserved CHNUM Reserved DMADBGS R-0 R-0 R-0 R/W1C-0 15 1 0 Reserved DBGEN R-0 R/WC-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset Table 16-54. Debug Control (DCTRL) Field Descriptions Bit Field Value 31-29 Reserved 0 28-24 CHNUM 0-1Fh 23-17 Reserved 0 16 DMADBGS Description Reads return 0. Writes have no effect. Channel Number. This bit field indicates the channel number that causes the watch point to match. Reads return 0. Writes have no effect. DMA debug status. When a watch point is set up to watch for a unique bus address or a range of addresses is true on one of the three bus ports, then the DMA debug status bit is set to 1 and a debug request signal is asserted to the main CPU. The CPU must write a 1 to clear this bit for the DMA controller to release the debug request signal. 0 Read: No watch point condition is detected. Write: No effect. 1 Read: The watch point condition is detected. Write: The bit is cleared. 15-1 0 Reserved 0 DBGEN Reads return 0. Writes have no effect. Debug Enable. Note: This bit can only be set when using a debugger. Note: This bit is reset when Test reset (nTRST) is low. 600 0 Debug is disabled. 1 The watch point checking logics is enabled. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 16.3.1.47 Watch Point Register (WPR) Figure 16-63. Watch Point Register (WPR) [offset = 184h] 31 16 WP R/W-0 15 0 WP R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 16-55. Watch Point Register (WPR) Field Descriptions Bit 31-0 Field WP Value Description 0-FFFF FFFFh Watch point. Note: These bits can only be set when using a debugger. Note: This register is only reset by a when Test reset (nTRST). A 32-bit address can be programmed into this register as a watch point. This register is used with the watch mask register (WMR). When the DBGEN bit in the DCTRL register is set and a unique address or a range of addresses are detected on the AHB address bus of Port B, a debug request signal is sent to the ARM CPU. The state machine of the port in which the watch point condition is true is frozen. 16.3.1.48 Watch Mask Register (WMR) Figure 16-64. Watch Mask Register (WMR) [offset = 188h] 31 16 WM[31:16] R/W-0 15 0 WM[15:0] R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 16-56. Watch Mask Register (WMR) Field Descriptions Bit Field 31-0 WM[n] Value Description Watch mask. Note: These bits can only be set when using a debugger. Note: This register is only reset by a when Test reset (nTRST). 0 Allows the corresponding bit in the WPR register to be used for address matching for a watch point. 1 Masks the corresponding bit in the WPR register and is disregarded in the comparison. SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 601 Control Registers and Control Packets www.ti.com 16.3.1.49 Port B Active Channel Source Address Register (PBACSADDR) Figure 16-65. Port B Active Channel Source Address Register (PBACDADDR) [offset = 198h] 31 16 PBACSA R-0 15 0 PBACSA R-0 LEGEND: R = Read only; -n = value after reset Table 16-57. Port B Active Channel Source Address Register (PBACDADDR) Field Descriptions Bit 31-0 Field PBACSA Value 0-FFFF FFFFh Description Port B Active Channel Source Address. This register contains the current source address of the active channel as broadcasted in Section 16.3.1.3 for Port B. 16.3.1.50 Port B Active Channel Destination Address Register (PBACDADDR) Figure 16-66. Port B Active Channel Destination Address Register (PBACDADDR) [offset = 19Ch] 31 16 PBACDA R-0 15 0 PBACDA R-0 LEGEND: R = Read only; -n = value after reset Table 16-58. Port B Active Channel Destination Address Register (PBACDADDR) Field Descriptions Bit 31-0 602 Field PBACDA Value 0-FFFF FFFFh Description Port B Active Channel Destination Address. This register contains the current destination address of the active channel as broadcasted in Section 16.3.1.3 for Port B. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 16.3.1.51 Port B Active Channel Transfer Count Register (PBACTC) Figure 16-67. Port B Active Channel Transfer Count Register (PBACTC) [offset = 1A0h] 31 29 28 16 Reserved PBFTCOUNT R-0 R-0 15 13 12 0 Reserved PBETCOUNT R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 16-59. Port B Active Channel Transfer Count Register (PBACTC) Field Descriptions Bit Field 31-29 Reserved 28-16 PBFTCOUNT 15-13 Reserved 12-0 PBETCOUNT Value 0 0-1FFFh 0 0-1FFFh SPNU499C – March 2018 Submit Documentation Feedback Description Reads return 0. Writes have no effect. Port B active channel frame count. These bits contain the current frame count value of the active channel as broadcasted in Section 16.3.1.3 for Port B. Reads return 0. Writes have no effect. Port B active channel element count. These bits contain the current element count value of the active channel as broadcasted in Section 16.3.1.3 for Port B. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 603 Control Registers and Control Packets www.ti.com 16.3.1.52 Parity Control Register (DMAPCR) Figure 16-68. Parity Control Register (DMAPCR) [offset = 1A8h] 31 15 15 9 16 Reserved ERRA R-0 R/WP-0 8 7 4 3 0 Reserved TEST Reserved PARITY_ENA R-0 R/WP-0 R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-60. Parity Control Register (DMAPCR) Field Descriptions Bit 31-17 16 15-9 8 Field Reserved Value 0 ERRA Reserved Reserved 3-0 PARITY_ENA Reads return 0. Writes have no effect. Error action. 0 If a parity error is detected on control packet x (x = 0, 1, ... n), then the enable/disable state of control packet x remains unchanged. 1 If a parity error is detected on control packet x (x = 0, 1, ...n), then the DMA controller is disabled immediately. If a frame on control packet x is processed at the time the parity error is detected, then remaining elements of this frame will not be transferred anymore. The DMA will be disabled regardless of whether the error was detected during a read to the control packet RAM performed by the DMA state machine or by a different master. 0 Reads return 0. Writes have no effect. TEST 7-4 Description When this bit is set, the parity bits are memory mapped to make them accessible by the CPU. 0 The parity bits are not memory mapped. 1 The parity bits are memory mapped. 0 Reads return 0. Writes have no effect. Parity error detection enable. This bit field enables or disables the parity check on read operations and the parity calculation on write operations. If parity checking is enabled and a parity error is detected, the DMA_UERR signal is activated. 5h The parity check is disabled. All other values The parity check is enabled. Note: It is recommended to write Ah to enable parity check, to guard against soft error from flipping PARITY_ENA to a disable state. 604 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 16.3.1.53 DMA Parity Error Address Register (DMAPAR) Figure 16-69. DMA Parity Error Address Register (DMAPAR) [offset = 1ACh] 31 25 24 23 16 Reserved EDFLAG Reserved R-0 R/W1C-0 R-0 15 12 11 0 Reserved ERRORADDRESS R-0 R-X LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; X= Undefined; -n = value after reset Table 16-61. DMA Parity Error Address Register (DMAPAR) Field Descriptions Bit Field 31-25 Reserved 24 EDFLAG Value 0 Description Reads return 0. Writes have no effect. Parity Error Detection Flag. This flag indicates if a parity error occurred on reading DMA Control packet RAM. 0 Read: No error occurred. Write: No effect. 1 Read: Error detected and the address is captured in DMAPAR's ERROR_ADDRESS field Write: Clears the bit. 23-12 Reserved 11-0 ERRORADDRESS 0 0-FFFh Reads return 0. Writes have no effect. Error address. These bits hold the address of the first parity error generated in the RAM. This error address is frozen from being updated until it is read by the CPU. During emulation mode when SUSPEND is high, this address is frozen even when read. Note: The error address register will not be reset by PORRST nor by any other reset source. SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 605 Control Registers and Control Packets www.ti.com 16.3.1.54 DMA Memory Protection Control Register (DMAMPCTRL) Figure 16-70. DMA Memory Protection Control Register (DMAMPCTRL) [offset = 1B0h] 31 28 27 Reserved 29 INT3AB INT3ENA REG3AP REG3ENA R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 20 19 Reserved INT2AB INT2ENA REG2AP REG2ENA R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 23 21 15 13 26 25 18 17 12 11 INT1AB INT1ENA REG1AP REG1ENA R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 5 9 16 Reserved 7 10 24 2 1 8 4 3 Reserved INT0AB INT0ENA REG0AP REG0ENA 0 R-0 R/WP-0 R/WP-0 R/WP-00 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-62. DMA Memory Protection Control Register (DMAMPCTRL) Field Descriptions Bit 31-29 28 27 26-25 24 23-21 20 19 18-17 16 606 Field Reserved Value 0 INT3AB Reads return 0. Writes have no effect. Interrupt assignment of region 3 to Group A or Group B. 0 The interrupt is routed to the VIM (Group A). 1 The interrupt is routed to the second CPU (Group B). INT3ENA Interrupt enable of region 3. 0 The interrupt is disabled. 1 The interrupt is enabled. REG3AP Region 3 access permission. These bits determine the access permission for region 3. 0 All accesses are allowed. 1h Read only accesses are allowed. 2h Write only accesses are allowed. 3h No accesses are allowed. REG3ENA Reserved Description Region 3 enable. 0 The region is disabled (no address checking done). 1 The region is enabled (address and access permission checking done). 0 Reads return 0. Writes have no effect. INT2AB Interrupt assignment of region 2 to Group A or Group B. 0 The interrupt is routed to the VIM (Group A). 1 The interrupt is routed to the second CPU (Group B). INT2ENA Interrupt enable of region 2. 0 The interrupt is disabled. 1 The interrupt is enabled. REG2AP Region 2 access permission. These bits determine the access permission for region 2. 0 All accesses are allowed. 1h Read only accesses are allowed. 2h Write only accesses are allowed. 3h No accesses are allowed. REG2ENA Region 2 enable. 0 The region is disabled (no address checking done). 1 The region is enabled (address and access permission checking done). Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com Table 16-62. DMA Memory Protection Control Register (DMAMPCTRL) Field Descriptions (continued) Bit 15-13 12 11 10-9 8 7-5 4 3 2-1 0 Field Reserved Value 0 INT1AB Reads return 0. Writes have no effect. Interrupt assignment of region 1 to Group A or Group B. 0 The interrupt is routed to the VIM (Group A). 1 The interrupt is routed to the second CPU (Group B). INT1ENA Interrupt enable of region 1. 0 The interrupt is disabled. 1 The interrupt is enabled. REG1AP Region 1 access permission. These bits determine the access permission for region 1. 0 All accesses are allowed. 1h Read only accesses are allowed. 2h Write only accesses are allowed. 3h No accesses are allowed. REG1ENA Reserved Description Region 1 enable. 0 The region is disabled (no address checking done). 1 The region is enabled (address and access permission checking done). 0 Reads return 0. Writes have no effect. INT0AB Interrupt assignment of region 0 to Group A or Group B. 0 The interrupt is routed to the VIM (Group A). 1 The interrupt is routed to the DSP CPU (Group B). INT0ENA Interrupt enable of region 0. 0 The interrupt is disabled. 1 The interrupt is enabled. REG0AP Region 0 access permission. These bits determine the access permission for region 0. 0 All accesses are allowed. 1h Read only accesses are allowed. 2h Write only accesses are allowed. 3h No accesses are allowed. REG0ENA Region 0 enable. 0 The region is disabled (no address checking done). 1 The region is enabled (address and access permission checking done). SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 607 Control Registers and Control Packets www.ti.com 16.3.1.55 DMA Memory Protection Status Register (DMAMPST) Figure 16-71. DMA Memory Protection Status Register (DMAMPST) [offset = 1B4h] 31 25 24 23 17 16 Reserved REG3FT Reserved REG2FT R-0 R/W1C-0 R-0 R/W1C-0 15 9 8 7 1 0 Reserved REG1FT Reserved REG0FT R-0 R/W1C-0 R-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset Table 16-63. DMA Memory Protection Status Register (DMAMPST) Field Descriptions Bit Field 31-25 Reserved 24 REG3FT Value 0 Description Reads return 0. Writes have no effect. Region 3 fault. This bit determines whether an access permission violation was detected in this region. 0 Read: No fault was detected. Write: No effect. 1 Read: A fault was detected. Write: The bit was cleared. 23-17 Reserved 16 REG2FT 0 Reads return 0. Writes have no effect. Region 2 fault. This bit determines whether an access permission violation was detected in this region. 0 Read: No fault was detected. Write: No effect. 1 Read: A fault was detected. Write: The bit was cleared. 15-9 Reserved 8 REG1FT 0 Reads return 0. Writes have no effect. Region 1 fault. This bit determines whether an access permission violation was detected in this region. 0 Read: No fault was detected. Write: No effect. 1 Read: A fault was detected. Write: The bit was cleared. 7-1 Reserved 0 REG0FT 0 Reads return 0. Writes have no effect. Region 0 fault. This bit determines whether an access permission violation was detected in this region. 0 Read: No fault was detected. Write: No effect. 1 Read: A fault was detected. Write: The bit was cleared. 608 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 16.3.1.56 DMA Memory Protection Region 0 Start Address Register (DMAMPR0S) Figure 16-72. DMA Memory Protection Region 0 Start Address Register (DMAMPR0S) [offset = 1B8h] 31 16 STARTADDRESS R/WP-0 15 0 STARTADDRESS R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-64. DMA Memory Protection Region 0 Start Address Register (DMAMPR0S) Field Descriptions Bit 31-0 Field Value STARTADDRESS 0-FFFF FFFFh Description Start Address defines the address at which the region begins. The effective start address is truncated to the nearest word address, that is, 0x103 = 0x100. 16.3.1.57 DMA Memory Protection Region 0 End Address Register (DMAMPR0E) Figure 16-73. DMA Memory Protection Region 0 End Address Register (DMAMPR0E) [offset = 1BCh] 31 16 ENDADDRESS R/WP-0 15 0 ENDADDRESS R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-65. DMA Memory Protection Region 0 End Address Register (DMAMPR0E) Field Descriptions Bit 31-0 Field ENDADDRESS Value 0-FFFF FFFFh Description End Address defines the address at which the region ends. The end address usually is larger than the start address for this region; otherwise, the region will wrap around at the end of the address space. The end address is the start address plus the region length minus 1. The effective end address is rounded up to the nearest 32-bit word end address, that is, 0x200 = 0x203. Note: When using 64-bit transfers, the address is rounded up to the nearest 64-bit word end address, that is, 0x200 = 0x207. All other transfers are rounded up to the nearest 32-bit word end address. SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 609 Control Registers and Control Packets www.ti.com 16.3.1.58 DMA Memory Protection Region 1 Start Address Register (DMAMPR1S) Figure 16-74. DMA Memory Protection Region 1 Start Address Register (DMAMPR1S) [offset = 1C0h] 31 16 STARTADDRESS R/WP-0 15 0 STARTADDRESS R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-66. DMA Memory Protection Region 1 Start Address Register (DMAMPR1S) Field Descriptions Bit 31-0 Field Value STARTADDRESS 0-FFFF FFFFh Description Start Address defines the address at which the region begins. The effective start address is truncated to the nearest word address, that is, 0x103 = 0x100. 16.3.1.59 DMA Memory Protection Region 1 End Address Register (DMAMPR1E) Figure 16-75. DMA Memory Protection Region 1 End Address Register (DMAMPR1E) [offset = 1C4h] 31 16 ENDADDRESS R/WP-0 15 0 ENDADDRESS R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-67. DMA Memory Protection Region 1 End Address Register (DMAMPR1E) Field Descriptions Bit 31-0 Field ENDADDRESS Value 0-FFFF FFFFh Description End Address defines the address at which the region ends. The end address usually is larger than the start address for this region; otherwise, the region will wrap around at the end of the address space. The end address is the start address plus the region length minus 1. The effective end address is rounded up to the nearest 32-bit word end address, that is, 0x200 = 0x203. Note: When using 64-bit transfers, the address is rounded up to the nearest 64-bit word end address, that is, 0x200 = 0x207. All other transfers are rounded up to the nearest 32-bit word end address. 610 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 16.3.1.60 DMA Memory Protection Region 2 Start Address Register (DMAMPR2S) Figure 16-76. DMA Memory Protection Region 2 Start Address Register (DMAMPR2S) [offset = 1C8h] 31 16 STARTADDRESS R/WP-0 15 0 STARTADDRESS R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-68. DMA Memory Protection Region 2 Start Address Register (DMAMPR2S) Field Descriptions Bit 31-0 Field Value STARTADDRESS 0-FFFF FFFFh Description Start Address defines the address at which the region begins. The effective start address is truncated to the nearest word address, that is, 0x103 = 0x100. 16.3.1.61 DMA Memory Protection Region 2 End Address Register (DMAMPR2E) Figure 16-77. DMA Memory Protection Region 2 End Address Register (DMAMPR2E) [offset = 1CCh] 31 16 ENDADDRESS R/WP-0 15 0 ENDADDRESS R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-69. DMA Memory Protection Region 2 End Address Register (DMAMPR2E) Field Descriptions Bit 31-0 Field ENDADDRESS Value 0-FFFF FFFFh Description End Address defines the address at which the region ends. The end address usually is larger than the start address for this region; otherwise, the region will wrap around at the end of the address space. The end address is the start address plus the region length minus 1. The effective end address is rounded up to the nearest 32-bit word end address, that is, 0x200 = 0x203. Note: When using 64-bit transfers, the address is rounded up to the nearest 64-bit word end address, that is, 0x200 = 0x207. All other transfers are rounded up to the nearest 32-bit word end address. SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 611 Control Registers and Control Packets www.ti.com 16.3.1.62 DMA Memory Protection Region 3 Start Address Register (DMAMPR3S) Figure 16-78. DMA Memory Protection Region 3 Start Address Register (DMAMPR3S) [offset = 1D0h] 31 16 STARTADDRESS R/WP-0 15 0 STARTADDRESS R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-70. DMA Memory Protection Region 3 Start Address Register (DMAMPR3S) Field Descriptions Bit 31-0 Field Value STARTADDRESS 0-FFFF FFFFh Description Start Address defines the address at which the region begins. The effective start address is truncated to the nearest word address, that is, 0x103 = 0x100. 16.3.1.63 DMA Memory Protection Region 3 End Address Register (DMAMPR3E) Figure 16-79. DMA Memory Protection Region 3 End Address Register (DMAMPR3E) [offset = 1D4h] 31 16 ENDADDRESS R/WP-0 15 0 ENDADDRESS R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 16-71. DMA Memory Protection Region 3 End Address Register (DMAMPR3E) Field Descriptions Bit 31-0 Field ENDADDRESS Value 0-FFFF FFFFh Description End Address defines the address at which the region ends. The end address usually is larger than the start address for this region; otherwise, the region will wrap around at the end of the address space. The end address is the start address plus the region length minus 1. The effective end address is rounded up to the nearest 32-bit word end address, that is, 0x200 = 0x203. Note: When using 64-bit transfers, the address is rounded up to the nearest 64-bit word end address, that is, 0x200 = 0x207. All other transfers are rounded up to the nearest 32-bit word end address. 612 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 16.3.2 Channel Configuration The channel configuration is defined by the channel control packet: channel control, transfer count, offset values, source/destination address. • It is stored in local RAM, which is protected by parity. • Each control packet contains a total of nine fields. • The first six fields are programmable, while the last three fields are read only. • The RAM is accessible by queue A and queue B state machines as well as CPU. • When there are simultaneous accesses, the priority is resolved in a fixed priority scheme with the CPU having the highest priority. All the control packets look the same. Following, there is the detailed layout of these registers shown for control packet 0. 16.3.2.1 Initial Source Address (ISADDR) Figure 16-80. Initial Source Address (ISADDR) [offset = 00] 31 16 ISADDR R/WP-X 15 0 ISADDR R/WP-X LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset; X = Unknown Table 16-72. Initial Source Address (ISADDR) Field Descriptions Bit 31-0 Field ISADDR Value 0-FFFF FFFFh Description Initial source address. These bits give the absolute 32-bit source address (physical). 16.3.2.2 Initial Destination Address Register (IDADDR) Figure 16-81. Initial Destination Address Register (IDADDR) [offset = 04h] 31 16 IDADDR R/WP-X 15 0 IDADDR R/WP-X LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset; X = Unknown Table 16-73. Initial Destination Address Register (IDADDR) Field Descriptions Bit 31-0 Field IDADDR Value 0-FFFF FFFFh SPNU499C – March 2018 Submit Documentation Feedback Description Initial destination address. These bits give the absolute 32-bit destination address (physical). Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 613 Control Registers and Control Packets www.ti.com 16.3.2.3 Initial Transfer Count Register (ITCOUNT) Figure 16-82. Initial Transfer Count Register (ITCOUNT) [offset = 08h] 31 29 28 16 Reserved IFTCOUNT R-X R/WP-X 15 13 12 0 Reserved IETCOUNT R-X R/WP-X LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset; X = Unknown Table 16-74. Initial Transfer Count Register (ITCOUNT) Field Descriptions Bit Field Value 31-29 Reserved 28-16 IFTCOUNT 15-13 Reserved 12-0 IETCOUNT Description 0 Reads are undefined. Writes have no effect. 0-1FFFh Initial frame transfer count. These bits define the number of frame transfers. 0 Reads are undefined. Writes have no effect. 0-1FFFh Initial element transfer count. These bits define the number of element transfers. The block transfer size will be IETCOUNT x IFTCOUNT 16.3.2.4 Channel Control Register (CHCTRL) Figure 16-83. Channel Control Register (CHCTRL) [offset = 10h] 31 22 15 14 13 12 21 16 Reserved CHAIN R-X R/WP-X 11 9 8 7 5 4 3 2 1 0 RES WES Reserved TTYPE Reserved ADDMR ADDMW AIM R/WP-X R/WP-X R-X R/WP-X R-X R/WP-X R/WP-X R/WP-X LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset; X = Unknown 614 Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com Table 16-75. Channel Control Register (CHCTRL) Field Descriptions Bit Field 31-22 Reserved 21-16 CHAIN Value 0 Description Reads are undefined. Writes have no effect. Next channel to be triggered. At the end of the programmed number of frames, the specified channel will be triggered. Programmed value x means channel (x-1) is chained. Note: The programmer must program the CHAIN bits before initiating a DMA transfer. 0 No channel is selected. 1h Channel 0 is selected. : 10h 11h-3Fh 15-14 13-12 11-9 8 RES Reserved 4-3 ADDMR 2-1 0 Reserved Read element size. The element is byte, 8-bit. 1h The element is half-word, 16-bit. 2h The element is word, 32-bit. 3h The element is double-word, 64-bit. Write element size. 0 The element is byte, 8-bit. 1h The element is half-word, 16-bit. 2h The element is word, 32-bit. 3h The element is double-word, 64-bit. 0 Reads are undefined. Writes have no effect. TTYPE 7-5 Channel 15 is selected. 0 WES Reserved : Transfer type. 0 A request triggers one frame transfer. 1 A request triggers one block transfer. 0 Reads are undefined. Writes have no effect. Addressing mode read. 0 Constant 1h Post-increment 2h Reserved 3h Indexed ADDMW Addressing mode write. 0 Constant 1h Post-increment 2h Reserved 3h Indexed AIM Auto-initiation mode. 0 Auto-initiation mode is disabled. 1 Auto-initiation mode is enabled. SPNU499C – March 2018 Submit Documentation Feedback Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 615 Control Registers and Control Packets www.ti.com 16.3.2.5 Element Index Offset Register (EIOFF) Figure 16-84. Element Index Offset Register (EIOFF) [offset = 14h] 31 29 28 16 Reserved EIDXD R-X R/WP-X 15 13 12 0 Reserved EIDXS R-X R/WP-X LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset; X = Unknown Table 16-76. Element Index Offset Register (EIOFF) Field Descriptions Bit Field 31-29 Reserved 28-16 EIDXD 15-13 Reserved 12-0 EIDXS Value 0 0-1FFFh 0 0-1FFFh Description Reads are undefined. Writes have no effect. Destination address element index. These bits define the offset to be added to the destination address after each element transfer. Reads are undefined. Writes have no effect. Source address element index. These bits define the offset to be added to the source address after each element transfer. 16.3.2.6 Frame Index Offset Register (FIOFF) Figure 16-85. Frame Index Offset Register (FIOFF) [offset = 18h] 31 29 28 16 Reserved FIDXD R-X R/WP-X 15 13 12 0 Reserved FIDXS R-X R/WP-X LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset; X = Unknown Table 16-77. Frame Index Offset Register (FIOFF) Field Descriptions Bit Field 31-29 Reserved 28-16 FIDXD 15-13 Reserved 12-0 FIDXS 616 Value 0 0-1FFFh 0 0-1FFFh Description Reads are undefined. Writes have no effect. Destination address frame index. These bits define the offset to be added to the destination address after element count reached 1. Reads are undefined. Writes have no effect. Source address frame index. These bits define the offset to be added to the source address after element count reached 1. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers and Control Packets www.ti.com 16.3.2.7 Current Source Address Register (CSADDR) Figure 16-86. Current Source Address Register (CSADDR) [offset = 800h] 31 16 CSADDR R-X 15 0 CSADDR R-X LEGEND: R = Read only; -n = value after reset; X = Unknown Table 16-78. Current Source Address Register (CSADDR) Field Descriptions Bit 31-0 Field CSADDR Value 0-FFFF FFFFh Description Current source address. These bits contain the current working absolute 32-bit source address (physical). These bits are only updated after a channel is arbitrated out from the priority queue. 16.3.2.8 Current Destination Address Register (CDADDR) Figure 16-87. Current Destination Address Register (CDADDR) [offset = 804h] 31 16 CDADDR R-X 15 0 CDADDR R-X LEGEND: R = Read only; -n = value after reset; X = Unknown Table 16-79. Current Destination Address Register (CDADDR) Field Descriptions Bit 31-0 Field CDADDR Value 0-FFFF FFFFh SPNU499C – March 2018 Submit Documentation Feedback Description Current destination address. These bits contain the current working absolute 32-bit destination address (physical). These bits are only updated after a channel is arbitrated out of the priority queue. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated 617 Control Registers and Control Packets www.ti.com 16.3.2.9 Current Transfer Count Register (CTCOUNT) Figure 16-88. Current Transfer Count Register (CTCOUNT) [offset = 808h] 31 29 28 16 Reserved CFTCOUNT R-X R-X 15 13 12 0 Reserved CETCOUNT R-X R-X LEGEND: R = Read only; -n = value after reset; X = Unknown Table 16-80. Current Transfer Count Register (CTCOUNT) Field Descriptions Bit Field 31-29 Reserved 28-16 CFTCOUNT 15-13 Reserved 12-0 CETCOUNT 618 Value 0 0-1FFFh 0 0-1FFFh Description Reads are undefined. Writes have no effect. Current frame transfer count. Returned the current remaining frame counts. Reads are undefined. Writes have no effect. Current element transfer count. These bits return the current remaining element counts. CTCOUNT register is only updated after a channel is arbitrated out of the priority queue. Direct Memory Access Controller (DMA) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Chapter 17 SPNU499C – March 2018 External Memory Interface (EMIF) This chapter describes the external memory Interface (EMIF). Topic 17.1 17.2 17.3 17.4 ........................................................................................................................... Introduction ..................................................................................................... EMIF Module Architecture ................................................................................. EMIF Registers ................................................................................................. Example Configuration ...................................................................................... SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated Page 620 622 654 666 619 Introduction www.ti.com 17.1 Introduction 17.1.1 Purpose of the Peripheral This EMIF memory controller is compliant with the JESD21-C SDR SDRAM memories utilizing a 16-bit data bus. The purpose of this EMIF is to provide a means for the CPU to connect to a variety of external devices including: • Single data rate (SDR) SDRAM • Asynchronous devices including NOR Flash and SRAM The most common use for the EMIF is to interface with both a flash device and an SDRAM device simultaneously. Section 17.4 contains an example of operating the EMIF in this configuration. 17.1.2 Features The EMIF includes many features to enhance the ease and flexibility of connecting to external SDR SDRAM and asynchronous devices. 17.1.2.1 Asynchronous Memory Support EMIF supports asynchronous: • SRAM memories • NOR Flash memories The EMIF data bus width is up to 16 bits and there are up to 22 address lines. There is an external wait input that allows slower asynchronous memories to extend the memory access. The EMIF module supports up to 3 chip selects (EMIF_nCS[4:2]). Each chip select has the following individually programmable attributes: • Data Bus Width • Read cycle timings: setup, hold, strobe • Write cycle timings: setup, hold, strobe • Bus turn-around time • Extended Wait Option with Programmable Timeout • Select Strobe option 17.1.2.2 Synchronous DRAM Memory Support The EMIF module supports 16-bit SDRAM in addition to the asynchronous memories listed in Section 17.1.2.1. It has a single SDRAM chip select (EMIF_nCS[0]). SDRAM configurations that are supported are: • One, Two and Four Bank SDRAM devices • Devices with Eight, Nine, Ten, and Eleven Column Address • CAS Latency of two or three clock cycles • 16-bit Data Bus Width • 3.3V LVCMOS Interface Additionally, the EMIF supports placing the SDRAM in Self-Refresh and Powerdown modes. Self-refresh mode allows the SDRAM to be put in a low-power state while still retaining memory contents; since the SDRAM will continue to refresh itself even without clocks from the microcontroller. Powerdown mode achieves even lower power, except the microcontroller must periodically wake up and issue refreshes if data retention is required. Note that the EMIF module does not support Mobile SDRAM devices. 620 External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Introduction www.ti.com 17.1.3 Functional Block Diagram Figure 17-1 illustrates the connections between the EMIF and its internal requesters, along with the external EMIF pins. Section 17.2.2 contains a description of the entities internal to the SoC that can send requests to the EMIF, along with their prioritization. Section 17.2.3 describes the EMIF external pins and summarizes their purpose when interfacing with SDRAM and asynchronous devices. Figure 17-1. EMIF Functional Block Diagram EMIF CPU EDMA EMIF_nCS[0] EMIF_nCAS EMIF_nRAS EMIF_CLK EMIF_CKE EMIF_nCS[4:2] EMIF_nOE SDRAM interface Asynchronous interface EMIF_nWAIT Master Peripherals EMIF_nWE EMIF_BA[1:0] EMIF_nDQM[1:0] EMIF_DATA[15:0] EMIF_ADDR[21:0] Shared SDRAM and asynchronous interface SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 621 EMIF Module Architecture www.ti.com 17.2 EMIF Module Architecture This section provides details about the architecture and operation of the EMIF. Both, SDRAM and asynchronous Interface are covered, along with other system-related issues such as clock control. 17.2.1 EMIF Clock Control The EMIF clock is output on the EMIF_CLK pin and should be used when interfacing to external SDRAM devices. The EMIF module gets the VCLK3 clock domain as the input. This clock domain is running at half the frequency of the main oscillator by default, that is, between 2.5MHz to 10MHz. The VCLK3 frequency is divided down from the HCLK domain frequency by a programmable divider (/1 to /16). Refer the Architecture chapter of the device technical reference manual for more information on configuring the VCLK3 domain frequency. 17.2.2 EMIF Requests Different sources within the SoC can make requests to the EMIF. These requests consist of accesses to SDRAM memory, asynchronous memory, and EMIF registers. The EMIF can process only one request at a time. Therefore a high performance crossbar switch exists within the SoC to provide prioritized requests from the different sources to the EMIF. The sources are: 1. CPU 2. DMA 3. Other master peripherals If a request is submitted from two or more sources simultaneously, the crossbar switch will forward the highest priority request to the EMIF first. Upon completion of a request, the crossbar switch again evaluates the pending requests and forwards the highest priority pending request to the EMIF. When the EMIF receives a request, it may or may not be immediately processed. In some cases, the EMIF will perform one or more auto refresh cycles before processing the request. For details on the EMIF's internal arbitration between performing requests and performing auto refresh cycles, see Section 17.2.13. 17.2.3 EMIF Signal Descriptions This section describes the function of each of the EMIF signals. Table 17-1. EMIF Pins Used to Access Both SDRAM and Asynchronous Memories Pins(s) I/O Description EMIF_DATA[15:0] I/O EMIF data bus. EMIF_ADDR[21:0] O EMIF address bus. When interfacing to an SDRAM device, these pins are primarily used to provide the row and column address to the SDRAM. The mapping from the internal program address to the external values placed on these pins can be found in Table 17-13. EMIF_A[10] is also used during the PRE command to select which banks to deactivate. When interfacing to an asynchronous device, these pins are used in conjunction with the EMIF_BA pins to form the address that is sent to the device. The mapping from the internal program address to the external values placed on these pins can be found in Section 17.2.6.1. EMIF_BA[1:0] O EMIF bank address. When interfacing to an SDRAM device, these pins are used to provide the bank address inputs to the SDRAM. The mapping from the internal program address to the external values placed on these pins can be found inTable 17-13. When interfacing to an asynchronous device, these pins are used in conjunction with the EMIF_A pins to form the address that is sent to the device. The mapping from the internal program address to the external values placed on these pins can be found in Section 17.2.6.1. EMIF_nDQM[1:0] O Active-low byte enables. When interfacing to SDRAM, these pins are connected to the DQM pins of the SDRAM to individually enable/disable each of the bytes in a data access. When interfacing to an asynchronous device, these pins are connected to byte enables. See Section 17.2.6 for details. 622 External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com Table 17-1. EMIF Pins Used to Access Both SDRAM and Asynchronous Memories (continued) Pins(s) I/O Description EMIF_nWE O Active-low write enable. When interfacing to SDRAM, this pin is connected to the nWE pin of the SDRAM and is used to send commands to the device. When interfacing to an asynchronous device, this pin provides a signal which is active-low during the strobe period of an asynchronous write access cycle. Table 17-2. EMIF Pins Specific to SDRAM Pin(s) I/O Description EMIF_nCS[0] O Active-low chip enable pin for SDRAM devices. This pin is connected to the chip-select pin of the attached SDRAM device and is used for enabling/disabling commands. By default, the EMIF keeps this SDRAM chip select active, even if the EMIF is not interfaced with an SDRAM device. This pin is deactivated when accessing the asynchronous memory bank and is reactivated on completion of the asynchronous access. EMIF_nRAS O Active-low row address strobe pin. This pin is connected to the nRAS pin of the attached SDRAM device and is used for sending commands to the device. EMIF_nCAS O Active-low column address strobe pin. This pin is connected to the nCAS pin of the attached SDRAM device and is used for sending commands to the device. EMIF_CKE O Clock enable pin. This pin is connected to the CKE pin of the attached SDRAM device and is used for issuing the SELF REFRESH command which places the device in self refresh mode. See Section 17.2.5.7 for details. EMIF_CLK O SDRAM clock pin. This pin is connected to the CLK pin of the attached SDRAM device. See Section 17.2.1 for details on the clock signal. Table 17-3. EMIF Pins Specific to Asynchronous Memory Pin(s) I/O Description EMIF_nCS[4:2] O Active-low chip enable pins for asynchronous devices. These pins are meant to be connected to the chip-select pins of the attached asynchronous device. These pins are active only during accesses to the asynchronous memory. EMIF_nWAIT I Wait input with programmable polarity. A connected asynchronous device can extend the strobe period of an access cycle by asserting the EMIF_nWAIT input to the EMIF as described in Section 17.2.6.6. To enable this functionality, the EW bit in the asynchronous 1 configuration register (CE2CFG) must be set to 1. In addition, the WP0 bit in CE2CFG must be configured to define the polarity of the EMIF_nWAIT pin. EMIF_nOE O Active-low pin enable for asynchronous devices. This pin provides a signal which is active-low during the strobe period of an asynchronous read access cycle. 17.2.4 EMIF Signal Multiplexing Control Several EMIF signals are multiplexed with other functions on this microcontroller. Please refer to the I/O Multiplexing Module chapter of the technical reference manual for more information on how to enable the output of these EMIF signals. SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 623 EMIF Module Architecture www.ti.com 17.2.5 SDRAM Controller and Interface The EMIF can gluelessly interface to most standard SDR SDRAM devices and supports such features as self refresh mode and prioritized refresh. In addition, it provides flexibility through programmable parameters such as the refresh rate, CAS latency, and many SDRAM timing parameters. The following sections include details on how to Interface and properly configure the EMIF to perform read and write operations to externally connected SDR SDRAM devices. Also, Section 17.4 provides a detailed example of interfacing the EMIF to a common SDRAM device. 17.2.5.1 SDRAM Commands The EMIF supports the SDRAM commands described in Table 17-4. Table 17-5 shows the truth table for the SDRAM commands, and an example timing waveform of the PRE command is shown in Figure 17-2. EMIF_A[10] is pulled low in this example to deactivate only the bank specified by the EMIF_BA pins. Table 17-4. EMIF SDRAM Commands Command Function PRE Precharge. Depending on the value of EMIF_A[10], the PRE command either deactivates the open row in all banks (EMIF_A[10] = 1) or only the bank specified by the EMIF_BA[1:0] pins (EMIF_A[10] = 0). ACTV Activate. The ACTV command activates the selected row in a particular bank for the current access. READ Read. The READ command outputs the starting column address and signals the SDRAM to begin the burst read operation. Address EMIF_A[10] is always pulled low to avoid auto precharge. This allows for better bank interleaving performance. WRT Write. The WRT command outputs the starting column address and signals the SDRAM to begin the burst write operation. Address EMIF_A[10] is always pulled low to avoid auto precharge. This allows for better bank interleaving performance. BT Burst terminate. The BT command is used to truncate the current read or write burst request. LMR Load mode register. The LMR command sets the mode register of the attached SDRAM devices and is only issued during the SDRAM initialization sequence described in Section 17.2.5.4. REFR Auto refresh. The REFR command signals the SDRAM to perform an auto refresh according to its internal address. SLFR Self refresh. The self refresh command places the SDRAM into self refresh mode, during which it provides its own clock signal and auto refresh cycles. NOP No operation. The NOP command is issued during all cycles in which one of the above commands is not issued. Table 17-5. Truth Table for SDRAM Commands SDRAM Pins: CKE nCS nRAS nCAS nWE BA[1:0] A[12:11] A[10] A[9:0] EMIF_CKE EMIF_nCS[0] EMIF_nRAS EMIF_nCAS EMIF_nWE EMIF_BA[1:0] EMIF_A[12:11] EMIF_A[10] EMIF_A[9:0] PRE H L L H L Bank/X X L/H X ACTV H L L H H Bank Row Row Row READ H L H L H Bank Column L Column WRT H L H L L Bank Column L Column BT H L H H L X X X X LMR H L L L L X Mode Mode Mode REFR H L L L H X X X X SLFR L L L L H X X X X NOP H L H H H X X X X EMIF Pins: 624 External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com Figure 17-2. Timing Waveform of SDRAM PRE Command PRE EMIF_CLK EMIF_nCS[0] EMIF_nDQM Bank EMIF_BA EMIF_A[10]=0 EMIF_A EMIF_nRAS EMIF_nCAS EMIF_nWE 17.2.5.2 Interfacing to SDRAM The EMIF supports a glueless interface to SDRAM devices with the following characteristics: • Pre-charge bit is A[10] • The number of column address bits is 8, 9, 10, or 11. • The number of row address bits is 13, 14, 15, or 16. • The number of internal banks is 1, 2, or 4. Figure 17-3 shows an interface between the EMIF and a 2M × 16 × 4 bank SDRAM device, and Figure 17-4 shows an interface between the EMIF and a 512K × 16 × 2 bank SDRAM device. For devices supporting 16-bit interface, refer to Table 17-6 for list of commonly-supported SDRAM devices and the required connections for the address pins. Figure 17-3. EMIF to 2M × 16 × 4 bank SDRAM Interface EMIF EMIF_nCS[0] EMIF_nCAS EMIF_nRAS EMIF_nWE EMIF_CLK EMIF_CKE EMIF_BA[1:0] EMIF_A[11:0] EMIF_nDQM[0] EMIF_nDQM[1] EMIF_D[15:0] nCE nCAS nRAS nWE CLK CKE BA[1:0] SDRAM 2M x 16 x 4 bank A[11:0] LDQM UDQM DQ[15:0] SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 625 EMIF Module Architecture www.ti.com Figure 17-4. EMIF to 512K × 16 × 2 bank SDRAM Interface EMIF EMIF_nCS[0] EMIF_nCAS EMIF_nRAS EMIF_nWE EMIF_CLK EMIF_CKE EMIF_BA[0] nCE nCAS nRAS nWE CLK CKE BA[0] EMIF_A[10:0] EMIF_nDQM[0] EMIF_nDQM[1] EMIF_D[15:0] SDRAM 512 x 16 x 2 bank A[10:0] LDQM UDQM DQ[15:0] Table 17-6. 16-bit EMIF Address Pin Connections SDRAM Size Width Banks Device Address Pins 16M bits ×16 2 SDRAM A[10:0] EMIF EMIF_A[10:0] 64M bits ×16 4 SDRAM A[11:0] EMIF EMIF_A[11:0] 128M bits ×16 4 SDRAM A[11:0] EMIF EMIF_A[11:0] 256M bits x16 4 SDRAM A[12:0] EMIF EMIF_A[12:0] 512M bits 626 x16 4 SDRAM A[12:0] EMIF EMIF_A[12:0] External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com 17.2.5.3 SDRAM Configuration Registers The operation of the EMIF's SDRAM interface is controlled by programming the appropriate configuration registers. This section describes the purpose and function of each configuration register, but Section 17.3 should be referred for a more detailed description of each register, including the default registers values and bit-field positions. The following tables list the four such configuration registers, along with a description of each of their programmable fields. NOTE: Writing to any of the fields: NM, CL, IBANK, and PAGESIZE in the SDRAM configuration register (SDCR) causes the EMIF to abandon whatever it is currently doing and trigger the SDRAM initialization procedure described in Section 17.2.5.4. Table 17-7. Description of the SDRAM Configuration Register (SDCR) Parameter Description SR This bit controls entering and exiting of the Self-Refresh mode. The field should be written using a bytewrite to the upper byte of SDCR to avoid triggering the SDRAM initialization sequence. PD This bit controls entering and exiting of the Power down mode. The field should be written using a bytewrite to the upper byte of SDCR to avoid triggering the SDRAM initialization sequence. If both SR and PD bits are set, the EMIF will go into Self Refresh. PDWR Perform refreshes during Power Down. Writing a 1 to this bit will cause the EMIF to exit the power down state and issue an AUTO REFRESH command every time Refresh May level is set. The field should be written using a byte-write to the upper byte of SDCR to avoid triggering the SDRAM initialization sequence. This bit should be set along with PD when entering power-down mode. NM Narrow Mode. This bit defines the width of the data bus between the EMIF and the attached SDRAM device. When set to 1, the data bus is set to 16-bits. When set to 0, the data bus is set to 32-bits. This bit must always be set to 1. CL CAS latency. This field defines the number of clock cycles between when an SDRAM issues a READ command and when the first piece of data appears on the bus. The value in this field is sent to the attached SDRAM device via the LOAD MODE REGISTER command during the SDRAM initialization procedure as described in Section 17.2.5.4. Only, values of 2h (CAS latency = 2) and 3h (CAS latency = 3) are supported and should be written to this field. A 1 must be simultaneously written to the BIT11_9LOCK bit field of SDCR in order to write to the CL bit field. IBANK Number of Internal SDRAM Banks. This field defines the number of banks inside the attached SDRAM devices in the following way: • When IBANK = 0, 1 internal bank is used • When IBANK = 1h, 2 internal banks are used • When IBANK = 2h, 4 internal banks are used This field value affects the mapping of logical addresses to SDRAM row, column, and bank addresses. See Section 17.2.5.11 for details. PAGESIZE Page Size. This field defines the internal page size of the attached SDRAM devices in the following way: • When PAGESIZE = 0, 256-word pages are used • When PAGESIZE = 1h, 512-word pages are used • When PAGESIZE = 2h, 1024-word pages are used • When PAGESIZE = 3h, 2048-word pages are used This field value affects the mapping of logical addresses to SDRAM row, column, and bank addresses. See Section 17.2.5.11 for details. Table 17-8. Description of the SDRAM Refresh Control Register (SDRCR) Parameter Description RR Refresh Rate. This field controls the rate at which attached SDRAM devices will be refreshed. The following equation can be used to determine the required value of RR for an SDRAM device: • RR = fEMIF_CLK / (Required SDRAM Refresh Rate) More information about the operation of the SDRAM refresh controller can be found in Section 17.2.5.6. SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 627 EMIF Module Architecture www.ti.com Table 17-9. Description of the SDRAM Timing Register (SDTIMR) Parameter Description T_RFC SDRAM Timing Parameters. These fields configure the EMIF to comply with the AC timing requirements of the attached SDRAM devices. This allows the EMIF to avoid violating SDRAM timing constraints and to more efficiently schedule its operations. More details about each of these parameters can be found in the register description in Section 17.3.6. These parameters should be set to satisfy the corresponding timing requirements found in the SDRAM's datasheet. T_RP T_RCD T_WR T_RAS T_RC T_RRD Table 17-10. Description of the SDRAM Self Refresh Exit Timing Register (SDSRETR) Parameter Description T_XS Self Refresh Exit Parameter. The T_XS field of this register informs the EMIF about the minimum number of EMIF_CLK cycles required between exiting Self Refresh and issuing any command. This parameter should be set to satisfy the tXSR value for the attached SDRAM device. 17.2.5.4 SDRAM Auto-Initialization Sequence The EMIF automatically performs an SDRAM initialization sequence, regardless of whether it is interfaced to an SDRAM device, when either of the following two events occur: • The EMIF comes out of reset. No memory accesses to the SDRAM and Asynchronous interfaces are performed until this auto-initialization is complete. • A write is performed to any of the three least significant bytes of the SDRAM configuration register (SDCR) An SDRAM initialization sequence consists of the following steps: 1. If the initialization sequence is activated by a write to SDCR, and if any of the SDRAM banks are open, the EMIF issues a PRE command with EMIF_A[10] held high to indicate all banks. This is done so that the maximum ACTV to PRE timing for an SDRAM is not violated. 2. The EMIF drives EMIF_CKE high and begins continuously issuing NOP commands until eight SDRAM refresh intervals have elapsed. An SDRAM refresh interval is equal to the value of the RR field of SDRAM refresh control register (SDRCR), divided by the frequency of EMIF_CLK (RR/fEMIF_CLK). This step is used to avoid violating the Power-up constraint of most SDRAM devices that requires 200 μs (sometimes 100 μs) between receiving stable Vdd and CLK and the issuing of a PRE command. Depending on the frequency of EMIF_CLK, this step may or may not be sufficient to avoid violating the SDRAM constraint. See Section 17.2.5.5 for more information. 3. After the refresh intervals have elapsed, the EMIF issues a PRE command with EMIF_A[10] held high to indicate all banks. 4. The EMIF issues eight AUTO REFRESH commands. 5. The EMIF issues the LMR command with the EMIF_A[9:0] pins set as described in Table 17-11. 6. Finally, the EMIF performs a refresh cycle, which consists of the following steps: a. Issuing a PRE command with EMIF_A[10] held high if any banks are open b. Issuing an REF command 628 External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com Table 17-11. SDRAM LOAD MODE REGISTER Command EMIF_A[9:7] EMIF_A[6:4] EMIF_A[3] EMIF_A[2:0] 0 (Write bursts are of the programmed burst length in EMIF_A[2:0]) These bits control the CAS latency of the SDRAM and are set according to CL field in the SDRAM configuration register (SDCR) as follows: • If CL = 2, EMIF_A[6:4] = 2h (CAS latency = 2) • If CL = 3, EMIF_A[6:4] = 3h (CAS latency = 3) 0 (Sequential Burst Type. Interleaved Burst Type not supported) These bits control the burst length of the SDRAM and are set according to the NM field in the SDRAM configuration register (SDCR) as follows: • If NM = 0, EMIF_A[2:0] = 2h (Burst Length = 4) • If NM = 1, EMIF_A[2:0] = 3h (Burst Length = 8) 17.2.5.5 SDRAM Configuration Procedure There are two different SDRAM configuration procedures. Although EMIF automatically performs the SDRAM initialization sequence described in Section 17.2.5.4 when coming out of reset, it is recommended to follow one of the procedures listed below before performing any EMIF memory requests. Procedure A should be followed if it is determined that the SDRAM Power-up constraint was not violated during the SDRAM Auto-Initialization Sequence detailed in Section 17.2.5.4 on coming out of Reset. The SDRAM Power-up constraint specifies that 200 μs (sometimes 100 μs) should exist between receiving stable Vdd and CLK and the issuing of a PRE command. Procedure B should be followed if the SDRAM Power-up constraint was violated. The 200 μs (100 μs) SDRAM Power-up constraint will be violated if the frequency of EMIF_CLK is greater than 50 MHz (100 MHz for 100 μs SDRAM power-up constraint) during SDRAM Auto-Initialization Sequence. Procedure B should be followed if there is any doubt that the Power-up constraint was not met. Procedure A — Following is the procedure to be followed if the SDRAM Power-up constraint was NOT violated: 1. Place the SDRAM into Self-Refresh Mode by setting the SR bit of SDCR to 1. A byte-write to the upper byte of SDCR should be used to avoid restarting the SDRAM Auto-Initialization Sequence described in Section 17.2.5.4. The SDRAM should be placed into Self-Refresh mode when changing the frequency of EMIF_CLK to avoid incurring the 200 μs Power-up constraint again. 2. Configure the desired EMIF_CLK clock frequency. The frequency of the memory clock must meet the timing requirements in the SDRAM manufacturer's documentation and the timing limitations shown in the electrical specifications of the device datasheet. 3. Remove the SDRAM from Self-Refresh Mode by clearing the SR bit of SDCR to 0. A byte-write to the upper byte of SDCR should be used to avoid restarting the SDRAM Auto-Initialization Sequence described in Section 17.2.5.4. 4. Program SDTIMR and SDSRETR to satisfy the timing requirements for the attached SDRAM device. The timing parameters should be taken from the SDRAM datasheet. 5. Program the RR field of SDRCR to match that of the attached device's refresh interval. See Section 17.2.5.6.1 details on determining the appropriate value. 6. Program SDCR to match the characteristics of the attached SDRAM device. This will cause the autoinitialization sequence in Section 17.2.5.4 to be re-run. This second initialization generally takes much less time due to the increased frequency of EMIF_CLK. Procedure B — Following is the procedure to be followed if the SDRAM Power-up constraint was violated: 1. Configure the desired EMIF_CLK clock frequency. The frequency of the memory clock must meet the timing requirements in the SDRAM manufacturer's documentation and the timing limitations shown in the electrical specifications of the device datasheet. 2. Program SDTIMR and SDSRETR to satisfy the timing requirements for the attached SDRAM device. The timing parameters should be taken from the SDRAM datasheet. 3. Program the RR field of SDRCR such that the following equation is satisfied: (RR × 8)/(fEMIF_CLK) > 200 μs (sometimes 100 μs). For example, an EMIF_CLK frequency of 100 MHz would require setting RR to 2501 (9C5h) or higher to meet a 200 μs constraint. SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 629 EMIF Module Architecture www.ti.com 4. Program SDCR to match the characteristics of the attached SDRAM device. This will cause the autoinitialization sequence in Section 17.2.5.4 to be re-run with the new value of RR. 5. Perform a read from the SDRAM to assure that step 5 of this procedure will occur after the initialization process has completed. Alternatively, wait for 200 μs instead of performing a read. 6. Finally, program the RR field to match that of the attached device's refresh interval. See Section 17.2.5.6.1 details on determining the appropriate value. After following the above procedure, the EMIF is ready to perform accesses to the attached SDRAM device. See Section 17.4 for an example of configuring the SDRAM interface. 17.2.5.6 EMIF Refresh Controller An SDRAM device requires that each of its rows be refreshed at a minimum required rate. The EMIF can meet this constraint by performing auto refresh cycles at or above this required rate. An auto refresh cycle consists of issuing a PRE command to all banks of the SDRAM device followed by issuing a REFR command. To inform the EMIF of the required rate for performing auto refresh cycles, the RR field of the SDRAM refresh control register (SDRCR) must be programmed. The EMIF will use this value along with two internal counters to automatically perform auto refresh cycles at the required rate. The auto refresh cycles cannot be disabled, even if the EMIF is not interfaced with an SDRAM. The remainder of this section details the EMIF's refresh scheme and provides an example for determining the appropriate value to place in the RR field of SDRCR. The two counters used to perform auto-refresh cycles are a 13-bit refresh interval counter and a 4-bit refresh backlog counter. At reset and upon writing to the RR field, the refresh interval counter is loaded with the value from RR field and begins decrementing, by one, each EMIF clock cycle. When the refresh interval counter reaches zero, the following actions occur: • The refresh interval counter is reloaded with the value from the RR field and restarts decrementing. • The 4-bit refresh backlog counter increments unless it has already reached its maximum value. The refresh backlog counter records the number of auto refresh cycles that the EMIF currently has outstanding. This counter is decremented by one each time an auto refresh cycle is performed and incremented by one each time the refresh interval counter expires. The refresh backlog counter saturates at the values of 0000b and 1111b. The EMIF uses the refresh backlog counter to determine the urgency with which an auto refresh cycle should be performed. The four levels of urgency are described in Table 17-12. This refresh scheme allows the required refreshes to be performed with minimal impact on access requests. Table 17-12. Refresh Urgency Levels Urgency Level 630 Refresh Backlog Counter Range Action Taken Refresh May 1-3 An auto-refresh cycle is performed only if the EMIF has no requests pending and none of the SDRAM banks are open. Refresh Release 4-7 An auto-refresh cycle is performed if the EMIF has no requests pending, regardless of whether any SDRAM banks are open. Refresh Need 8-11 An auto-refresh cycle is performed at the completion of the current access unless there are read requests pending. Refresh Must 12-15 Multiple auto-refresh cycles are performed at the completion of the current access until the Refresh Release urgency level is reached. At that point, the EMIF can begin servicing any new read or write requests. External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com 17.2.5.6.1 Determining the Appropriate Value for the RR Field The value that should be programmed into the RR field of SDRCR can be calculated by using the frequency of the EMIF_CLK signal (fEMIF_CLK) and the required refresh rate of the SDRAM (fRefresh). The following formula can be used: RR = fEMIF_CLK / fRefresh The SDRAM datasheet often communicates the required SDRAM Refresh Rate in terms of the number of REFR commands required in a given time interval. The required SDRAM Refresh Rate in the formula above can therefore be calculated by dividing the number of required cycles per time interval (ncycles) by the time interval given in the datasheet (tRefresh Period) : fRefresh = ncycles / tRefresh Period Combining these formulas, the value that should be programmed into the RR field can be computed as: RR = fEMIF_CLK × tRefresh Period / ncycles The following example illustrates calculating the value of RR. Given that: • fEMIF_CLK = 100 MHz (frequency of the EMIF clock) • tRefresh Period = 64 ms (required refresh interval of the SDRAM) • ncycles = 8192 (number of cycles in a refresh interval for the SDRAM) RR can be calculated as: RR = 100 MHz × 64 ms/8192 RR = 781.25 RR = 782 cycles = 30Eh cycles 17.2.5.7 Self-Refresh Mode The EMIF can be programmed to enter the self-refresh state by setting the SR bit of SDCR to 1. This will cause the EMIF to issue the SLFR command after completing any outstanding SDRAM access requests and clearing the refresh backlog counter by performing one or more auto refresh cycles. This places the attached SDRAM device into self-refresh mode in which it consumes a minimal amount of power while performing its own refresh cycles. The SR bit should be set and cleared using a byte-write to the upper byte of the SDRAM configuration register (SDCR) to avoid triggering the SDRAM initialization sequence. While in the self-refresh state, the EMIF continues to service asynchronous bank requests and register accesses as normal, with one caveat. The EMIF will not park the data bus following a read to asynchronous memory while in the self-refresh state. Instead, the EMIF tri-states the data bus. Therefore, it is not recommended to perform asynchronous read operations while the EMIF is in the self-refresh state, in order to prevent floating inputs on the data bus. More information about data bus parking can be found in Section 17.2.7. The EMIF will exit from the self-refresh state if either of the following events occur: • The SR bit of SDCR is cleared to 0. • An SDRAM accesses is requested. The EMIF exits from the self-refresh state by driving EMIF_CKE high and performing an auto refresh cycle. The attached SDRAM device should also be placed into Self-Refresh Mode when changing the frequency of EMIF_CLK. If the frequency of EMIF_CLK changes while the SDRAM is not in Self-Refresh Mode, Procedure B in Section 17.2.5.5 should be followed to reinitialize the device. SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 631 EMIF Module Architecture www.ti.com 17.2.5.8 Power Down Mode To support low-power modes, the EMIF can be requested to issue a POWER DOWN command to the SDRAM by setting the PD bit in the SDRAM configuration register (SDCR). When this bit is set, the EMIF will continue normal operation until all outstanding memory access requests have been serviced and the SDRAM refresh backlog (if there is one) has been cleared. At this point the EMIF will enter the powerdown state. Upon entering this state, the EMIF will issue a POWER DOWN command (same as a NOP command but driving EMIF_CKE low on the same cycle). The EMIF then maintains EMIF_CKE low until it exits the power-down state. Since the EMIF services the refresh backlog before it enters the power-down state, all internal banks of the SDRAM are closed (precharged) prior to issuing the POWER DOWN command. Therefore, the EMIF only supports Precharge Power Down. The EMIF does not support Active Power Down, where internal banks of the SDRAM are open (active) before the POWER DOWN command is issued. During the power-down state, the EMIF services the SDRAM, asynchronous memory, and register accesses as normal, returning to the power-down state upon completion. The PDWR bit in SDCR indicates whether the EMIF should perform refreshes in power-down state. If the PDWR bit is set, the EMIF exits the power-down state every time the Refresh Must level is set, performs AUTO REFRESH commands to the SDRAM, and returns back to the power-down state. This evenly distributes the refreshes to the SDRAM in power-down state. If the PDWR bit is not set, the EMIF does not perform any refreshes to the SDRAM. Therefore, the data integrity of the SDRAM is not assured upon power down exit if the PDWR bit is not set. If the PD bit is cleared while in the power-down state, the EMIF will come out of the power-down state. The EMIF: • Drives EMIF_CKE high. • Enters its idle state. 632 External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com 17.2.5.9 SDRAM Read Operation When the EMIF receives a read request to SDRAM from one of the requesters listed in Section 17.2.2, it performs one or more read access cycles. A read access cycle begins with the issuing of the ACTV command to select the desired bank and row of the SDRAM device. After the row has been opened, the EMIF proceeds to issue a READ command while specifying the desired bank and column address. EMIF_A[10] is held low during the READ command to avoid auto-precharging. The READ command signals the SDRAM device to start bursting data from the specified address while the EMIF issues NOP commands. Following a READ command, the CL field of the SDRAM configuration register (SDCR) defines how many delay cycles will be present before the read data appears on the data bus. This is referred to as the CAS latency. Figure 17-5 shows the signal waveforms for a basic SDRAM read operation in which a burst of data is read from a single page. When the EMIF SDRAM interface is configured to 16 bit by setting the NM bit of the SDRAM configuration register (SDCR) to 1, a burst size of eight is used. Figure 17-5 shows a burst size of eight. The EMIF will truncate a series of bursting data if the remaining addresses of the burst are not required to complete the request. The EMIF can truncate the burst in three ways: • By issuing another READ to the same page in the same bank. • By issuing a PRE command in order to prepare for accessing a different page of the same bank. • By issuing a BT command in order to prepare for accessing a page in a different bank. Figure 17-5. Timing Waveform for Basic SDRAM Read Operation CL=3 ACTV READ EMIF_CLK EMIF_nCS[0] EMIF_nDQM Bank EMIF_BA EMIF_A Row EMIF_D Col D1 D2 D3 D4 D5 D6 D7 D8 EMIF_nRAS EMIF_nCAS EMIF_nWE Several other pins are also active during a read access. The EMIF_nDQM[1:0] pins are driven low during the READ commands and are kept low during the NOP commands that correspond to the burst request. The state of the other EMIF pins during each command can be found in Table 17-5. The EMIF schedules its commands based on the timing information that is provided to it in the SDRAM timing register (SDTIMR). The values for the timing parameters in this register should be chosen to satisfy the timing requirements listed in the SDRAM datasheet. The EMIF uses this timing information to avoid violating any timing constraints related to issuing commands. This is commonly accomplished by inserting NOP commands between various commands during an access. Refer to the register description of SDTIMR in Section 17.3.6 for more details on the various timing parameters. SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 633 EMIF Module Architecture www.ti.com 17.2.5.10 SDRAM Write Operations When the EMIF receives a write request to SDRAM from one of the requesters listed in Section 17.2.2, it performs one or more write-access cycles. A write-access cycle begins with the issuing of the ACTV command to select the desired bank and row of the SDRAM device. After the row has been opened, the EMIF proceeds to issue a WRT command while specifying the desired bank and column address. EMIF_A[10] is held low during the WRT command to avoid auto-precharging. The WRT command signals the SDRAM device to start writing a burst of data to the specified address while the EMIF issues NOP commands. The associated write data will be placed on the data bus in the cycle concurrent with the WRT command and with subsequent burst continuation NOP commands. Figure 17-6 shows the signal waveforms for a basic SDRAM write operation in which a burst of data is read from a single page. When the EMIF SDRAM interface is configured to 16-bit by setting the NM bit of the SDRAM configuration register (SDCR) to 1, a burst size of eight is used. Figure 17-6 shows a burst size of eight. Figure 17-6. Timing Waveform for Basic SDRAM Write Operation ACTV WRT EMIF_CLK EMIF_nCS[0] EMIF_nDQM EMIF_BA EMIF_A Bank Row EMIF_D Column D1 D2 D3 D4 D5 D6 D7 D8 EMIF_nRAS EMIF_nCAS EMIF_nWE The EMIF will truncate a series of bursting data if the remaining addresses of the burst are not part of the write request. The EMIF can truncate the burst in three ways: • By issuing another WRT to the same page • By issuing a PRE command in order to prepare for accessing a different page of the same bank • By issuing a BT command in order to prepare for accessing a page in a different bank Several other pins are also active during a write access. The EMIF_nDQM[1:0] pins are driven to select which bytes of the data word will be written to the SDRAM device. They are also used to mask out entire undesired data words during a burst access. The state of the other EMIF pins during each command can be found in Table 17-5. The EMIF schedules its commands based on the timing information that is provided to it in the SDRAM timing register (SDTIMR). The values for the timing parameters in this register should be chosen to satisfy the timing requirements listed in the SDRAM datasheet. The EMIF uses this timing information to avoid violating any timing constraints related to issuing commands. This is commonly accomplished by inserting NOP commands during various cycles of an access. Refer to the register description of SDTIMR in Section 17.3.6 for more details on the various timing parameters. 634 External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com 17.2.5.11 Mapping from Logical Address to EMIF Pins When the EMIF receives an SDRAM access request, it must convert the address of the access into the appropriate signals to send to the SDRAM device. The details of this address mapping are shown in Table 17-13 for 16-bit operation. Using the settings of the IBANK and PAGESIZE fields of the SDRAM configuration register (SDCR), the EMIF determines which bits of the logical address will be mapped to the SDRAM row, column, and bank addresses. As the logical address is incremented by one halfword (16-bit operation), the column address is likewise incremented by one until a page boundary is reached. When the logical address increments across a page boundary, the EMIF moves into the same page in the next bank of the attached device by incrementing the bank address EMIF_BA and resetting the column address. The page in the previous bank is left open until it is necessary to close it. This method of traversal through the SDRAM banks helps maximize the number of open banks inside of the SDRAM and results in an efficient use of the device. There is no limitation on the number of banks that can be open at one time, but only one page within a bank can be open at a time. The EMIF uses the EMIF_nDQM[1:0] pins during a WRT command to mask out selected bytes or entire words. The EMIF_nDQM[1:0] pins are always low during a READ command. Table 17-13. Mapping from Logical Address to EMIF Pins for 16-bit SDRAM Logical Address IBANK PAGESIZE 0 0 1 0 2 0 0 1 1 1 2 1 0 2 1 2 2 2 0 3 1 3 2 3 31:27 26 25 24 23 22 21:14 13 12 - EMIF_BA[1:0] Row Address - EMIF_BA[0 ] Row Address - Row Address - EMIF_BA[1:0] Row Address - EMIF_BA[0 ] Row Address Row Address - - 9 EMIF_BA[0 ] Row Address - - 10 Row Address - - 11 Row Address EMIF_BA[1:0] Row Address Row Address Row Address EMIF_BA[0 ] EMIF_BA[1:0] 8:1 0 Col Address EMIF_nDQM[0] Col Address EMIF_nDQM[0] Col Address EMIF_nDQM[0] Column Address EMIF_nDQM[0] Column Address EMIF_nDQM[0] Column Address EMIF_nDQM[0] Column Address EMIF_nDQM[0] Column Address EMIF_nDQM[0] Column Address EMIF_nDQM[0] Column Address EMIF_nDQM[0] Column Address EMIF_nDQM[0] Column Address EMIF_nDQM[0] NOTE: The upper bit of the Row Address is used only when addressing 256-Mbit and 512-Mbit SDRAM memories. SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 635 EMIF Module Architecture www.ti.com 17.2.6 Asynchronous Controller and Interface The EMIF easily interfaces to a variety of asynchronous devices including NOR Flash and SRAM. It can be operated in two major modes (see Table 17-14): • Normal Mode • Select Strobe Mode Table 17-14. Normal Mode vs. Select Strobe Mode Mode Function of EMIF_nDQM pins Operation of EMIF_nCS[4:2] Normal Mode Byte enables Active during the entire asynchronous access cycle Select Strobe Mode Byte enables Active only during the strobe period of an access cycle The first mode of operation is Normal Mode, in which the EMIF_nDQM pins of the EMIF function as byte enables. In this mode, the EMIF_nCS[4:2] pins behaves as typical chip select signals, remaining active for the duration of the asynchronous access. See Section 17.2.6.1 for an example interface with multiple 8-bit devices. The second mode of operation is Select Strobe Mode, in which the EMIF_nCS[4:2] pins act as a strobe, active only during the strobe period of an access. In this mode, the EMIF_nDQM pins of the EMIF function as standard byte enables for reads and writes. A summary of the differences between the two modes of operation are shown in Table 17-14. Refer to Section 17.2.6.4 for the details of asynchronous operations in Normal Mode, and to Section 17.2.6.5 for the details of asynchronous operations in Select Strobe Mode. The EMIF hardware defaults to Normal Mode, but can be manually switched to Select Strobe Mode by setting the SS bit in the asynchronous m (m = 1, 2, 3, or 4) configuration register (CEnCFG) (n = 2, 3, or 4). Throughout the chapter, m can hold the values 1, 2, 3 or 4; and n can hold the values 2, 3, or 4. The EMIF also provides configurable cycle timing parameters and an Extended Wait Mode that allows the connected device to extend the strobe period of an access cycle. The following sections describe the features related to interfacing with external asynchronous devices. 17.2.6.1 Interfacing to Asynchronous Memory Figure 17-7 shows the EMIF's external pins used in interfacing with an asynchronous device. In EMIF_nCS[n], n = 2, 3, or 4. Figure 17-7. EMIF Asynchronous Interface EMIF EMIF_nCS[n] EMIF_nWE EMIF_nOE EMIF_WAIT EMIF_D[x:0] EMIF_nDQM[x:0] EMIF_A[x:0] EMIF_BA[1:0] 636 External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com Of special note is the connection between the EMIF and the external device's address bus. The EMIF address pin EMIF_A[0] always provides the least significant bit of a 32-bit word address. Therefore, when interfacing to a 16-bit or 8-bit asynchronous device, the EMIF_BA[1] and EMIF_BA[0] pins provide the least-significant bits of the halfword or byte address, respectively. Additionally, when the EMIF interfaces to a 16-bit asynchronous device, the EMIF_BA[0] pin can serve as the upper address line EMIF_A[22]. Figure 17-8 and Figure 17-9 show the mapping between the EMIF and the connected device's data and address pins for various programmed data bus widths. The data bus width may be configured in the asynchronous n configuration register (CEnCFG). Figure 17-9 shows a common interface between the EMIF and external asynchronous memory. Figure 179 shows an interface between the EMIF and an external memory with byte enables. The EMIF should be operated in either Normal Mode or Select Strobe Mode when using this interface, so that the EMIF_nDQM signals operate as byte enables. Figure 17-8. EMIF to 8-bit/16-bit Memory Interface EMIF 8−bit asynchronous memory EMIF_D[7:0] EMIF_A[x:0] EMIF_BA[1:0] DQ[7:0] A[(x+2):2] A[1:0] a) EMIF to 8-bit memory interface EMIF 16−bit asynchronous memory EMIF_D[15:0] EMIF_A[x:0] EMIF_BA[1] DQ[15:0] A[(x+1):1] A[0] b) EMIF to 16-bit memory interface Figure 17-9. Common Asynchronous Interface 16−bit asynchronous device EMIF EMIF_nCS[n] EMIF_nWE EMIF_nDQM[1:0] EMIF_D[15:0] nCE nWE BE[1:0] DQ[15:0] SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 637 EMIF Module Architecture www.ti.com 17.2.6.2 Accessing Larger Asynchronous Memories The device has 22 dedicated EMIF address lines. If a device such as a large asynchronous flash needs to be attached to the EMIF, then GPIO pins may be used to control the flash device’s upper address lines. 17.2.6.3 Configuring the EMIF for Asynchronous Accesses The operation of the EMIF's asynchronous interface can be configured by programming the appropriate register fields. The reset value and bit position for each register field can be found in Section 17.3. The following tables list the register fields that can be programmed and describe the purpose of each field. These registers can be programmed prior to accessing the external memory, and the transfer following a write to these registers will use the new configuration. Table 17-15. Description of the Asynchronous m Configuration Register (CEnCFG) Parameter Description SS Select Strobe mode. This bit selects the EMIF's mode of operation in the following way: • SS = 0 selects Normal Mode – EMIF_nDQM pins function as byte enables – EMIF_nCS[4:2] active for duration of access • SS = 1 selects Select Strobe Mode – EMIF_nDQM pins function as byte enables – EMIF_nCS[4:2] acts as a strobe. EW Extended Wait Mode enable. • EW = 0 disables Extended Wait Mode • EW = 1 enables Extended Wait Mode When set to 1, the EMIF enables its Extended Wait Mode in which the strobe width of an access cycle can be extended in response to the assertion of the EMIF_nWAIT pin. The WPn bit in the asynchronous wait cycle configuration register (AWCC) controls to polarity of EMIF_nWAIT pin. See Section 17.2.6.6 for more details on this mode of operation. W_SETUP/R_SETUP Read/Write setup widths. These fields define the number of EMIF clock cycles of setup time for the address pins (EMIF_A and EMIF_BA), byte enables (EMIF_nDQM), and asynchronous chip enable (EMIF_nCS[4:2]) before the read strobe pin (EMIF_nOE) or write strobe pin (EMIF_nWE) falls, minus one cycle. For writes, the W_SETUP field also defines the setup time for the data pins (EMIF_D). Refer to the datasheet of the external asynchronous device to determine the appropriate setting for this field. W_STROBE/R_STROBE Read/Write strobe widths. These fields define the number of EMIF clock cycles between the falling and rising of the read strobe pin (EMIF_nOE) or write strobe pin (EMIF_nWE), minus one cycle. If Extended Wait Mode is enabled by setting the EW field in the asynchronous n configuration register (CEnCFG), these fields must be set to a value greater than zero. Refer to the datasheet of the external asynchronous device to determine the appropriate setting for this field. W_HOLD/R_HOLD Read/Write hold widths. These fields define the number of EMIF clock cycles of hold time for the address pins (EMIF_A and EMIF_BA), byte enables (EMIF_nDQM), and asynchronous chip enable (EMIF_nCS[4:2]) after the read strobe pin (EMIF_nOE) or write strobe pin (EMIF_nWE) rises, minus one cycle. For writes, the W_HOLD field also defines the hold time for the data pins (EMIF_D). Refer to the datasheet of the external asynchronous device to determine the appropriate setting for this field. TA Minimum turnaround time. This field defines the minimum number of EMIF clock cycles between asynchronous reads and writes, minus one cycle. The purpose of this feature is to avoid contention on the bus. The value written to this field also determines the number of cycles that will be inserted between asynchronous accesses and SDRAM accesses. Refer to the datasheet of the external asynchronous device to determine the appropriate setting for this field. 638 External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com Table 17-15. Description of the Asynchronous m Configuration Register (CEnCFG) (continued) Parameter Description ASIZE Asynchronous Device Bus Width. This field determines the data bus width of the asynchronous interface in the following way: • ASIZE = 0 selects an 8-bit bus • ASIZE = 1 selects a 16-bit bus The configuration of ASIZE determines the function of the EMIF_A and EMIF_BA pins as described in Section 17.2.6.1. This field also determines the number of external accesses required to fulfill a request generated by one of the sources mentioned in Section 17.2.2. For example, a request for a 32-bit word would require four external access when ASIZE = 0. Refer to the datasheet of the external asynchronous device to determine the appropriate setting for this field. Table 17-16. Description of the Asynchronous Wait Cycle Configuration Register (AWCC) Parameter Description WPn EM_WAIT Polarity. • WPn = 0 selects active-low polarity • WPn = 1 selects active-high polarity When set to 1, the EMIF will wait if the EMIF_nWAIT pin is high. When cleared to 0, the EMIF will wait if the EMIF_nWAIT pin is low. The EMIF must have the Extended Wait Mode enabled for the EMIF_nWAIT pin to affect the width of the strobe period. MAX_EXT_WAIT Maximum Extended Wait Cycles. This field configures the number of EMIF clock cycles the EMIF will wait for the EMIF_nWAIT pin to be deactivated during the strobe period of an access cycle. The maximum number of EMIF clock cycles it will wait is determined by the following formula: Maximum Extended Wait Cycles = (MAX_EXT_WAIT + 1) × 16 If the EMIF_nWAIT pin is not deactivated within the time specified by this field, the EMIF resumes the access cycle, registering whatever data is on the bus and proceeding to the hold period of the access cycle. This situation is referred to as an Asynchronous Timeout. An Asynchronous Timeout generates an interrupt, if it has been enabled in the EMIF interrupt mask set register (INTMSKSET). Refer to Section 17.2.9.1 for more information about the EMIF interrupts. Table 17-17. Description of the EMIF Interrupt Mask Set Register (INTMSKSET) Parameter Description WR_MASK_SET Wait Rise Mask Set. Writing a 1 enables an interrupt to be generated when a rising edge on EMIF_nWAIT occurs AT_MASK_SET Asynchronous Timeout Mask Set. Writing a 1 to this bit enables an interrupt to be generated when an Asynchronous Timeout occurs. Table 17-18. Description of the EMIF Interrupt Mast Clear Register (INTMSKCLR) Parameter Description WR_MASK_CLR Wait Rise Mask Clear. Writing a 1 to this bit disables the interrupt, clearing the WR_MASK_SET bit in the EMIF interrupt mask set register (INTMSKSET). AT_MASK_CLR Asynchronous Timeout Mask Clear. Writing a 1 to this bit prevents an interrupt from being generated when an Asynchronous Timeout occurs. SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 639 EMIF Module Architecture www.ti.com 17.2.6.4 Read and Write Operations in Normal Mode Normal Mode is the asynchronous interface's default mode of operation. It is selected when the SS bit in the asynchronous n configuration register (CEnCFG) is cleared to 0. In this mode, the EMIF_nDQM pins operate as byte enables. Section 17.2.6.4.1 and Section 17.2.6.4.2 explain the details of read and write operations while in Normal Mode. 17.2.6.4.1 Asynchronous Read Operations (Normal Mode) NOTE: During an entire asynchronous read operation, the EMIF_nWE pin is driven high. An asynchronous read is performed when any of the requesters mentioned in Section 17.2.2 request a read from the attached asynchronous memory. After the request is received, a read operation is initiated once it becomes the EMIF's highest priority task, according to the priority scheme detailed in Section 17.2.13. In the event that the read request cannot be serviced by a single access cycle to the external device, multiple access cycles will be performed by the EMIF until the entire request is fulfilled. The details of an asynchronous read operation in Normal Mode are described in Table 17-19. Also, Figure 17-10 shows an example timing diagram of a basic read operation. Table 17-19. Asynchronous Read Operation in Normal Mode Time Interval Pin Activity in Normal Mode Turn-around period Once the read operation becomes the highest priority task for the EMIF, the EMIF waits for the programmed number of turn-around cycles before proceeding to the setup period of the operation. The number of wait cycles is taken directly from the TA field of the asynchronous n configuration register (CEnCFG). There are two exceptions to this rule: • If the current read operation was directly proceeded by another read operation, no turnaround cycles are inserted. • If the current read operation was directly proceeded by a write operation and the TA field has been cleared to 0, one turn-around cycle will be inserted. After the EMIF has waited for the turnaround cycles to complete, it again checks to make sure that the read operation is still its highest priority task. If so, the EMIF proceeds to the setup period of the operation. If it is no longer the highest priority task, the EMIF terminates the operation. Start of the setup period The following actions occur at the start of the setup period: • The setup, strobe, and hold values are set according to the R_SETUP, R_STROBE, and R_HOLD values in CEnCFG. • The address pins EMIF_A and EMIF_BA become valid and carry the values described in Section 17.2.6.1. • EMIF_nCS[4:2] falls to enable the external device (if not already low from a previous operation) Strobe period The following actions occur during the strobe period of a read operation: 1. 2. EMIF_nOE falls at the start of the strobe period On the rising edge of the clock which is concurrent with the end of the strobe period: • EMIF_nOE rises • The data on the EMIF_D bus is sampled by the EMIF. In Figure 17-10, EMIF_nWAIT is inactive. If EMIF_nWAIT is instead activated, the strobe period can be extended by the external device to give it more time to provide the data. Section 17.2.6.6 contains more details on using the EMIF_nWAIT pin. End of the hold At the end of the hold period: period • The address pins EMIF_A and EMIF_BA become invalid • EMIF_nCS[4:2] rises (if no more operations are required to complete the current request) EMIF may be required to issue additional read operations to a device with a small data bus width in order to complete an entire word access. In this case, the EMIF immediately re-enters the setup period to begin another operation without incurring the turn-round cycle delay. The setup, strobe, and hold values are not updated in this case. If the entire word access has been completed, the EMIF returns to its previous state unless another asynchronous request has been submitted and is currently the highest priority task. If this is the case, the EMIF instead enters directly into the turnaround period for the pending read or write operation. 640 External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com Figure 17-10. Timing Waveform of an Asynchronous Read Cycle in Normal Mode Setup 2 Strobe 3 Hold 2 EMIF_CLK EMIF_nCS[n] EMIF_nDQM EMIF_A/EMIF_BA Byte enable Address EMIF_D Data EMIF_nOE EMIF_nWE SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 641 EMIF Module Architecture www.ti.com 17.2.6.4.2 Asynchronous Write Operations (Normal Mode) NOTE: During an entire asynchronous write operation, the EMIF_nOE pin is driven high. An asynchronous write is performed when any of the requesters mentioned in Section 17.2.2 request a write to memory in the asynchronous bank of the EMIF. After the request is received, a write operation is initiated once it becomes the EMIF's highest priority task, according to the priority scheme detailed in Section 17.2.13. In the event that the write request cannot be serviced by a single access cycle to the external device, multiple access cycles will be performed by the EMIF until the entire request is fulfilled. The details of an asynchronous write operation in Normal Mode are described in Table 17-20. Also, Figure 17-11 shows an example timing diagram of a basic write operation. Table 17-20. Asynchronous Write Operation in Normal Mode Time Interval Pin Activity in Normal Mode Turnaround period Once the write operation becomes the highest priority task for the EMIF, the EMIF waits for the programmed number of turn-around cycles before proceeding to the setup period of the operation. The number of wait cycles is taken directly from the TA field of the asynchronous n configuration register (CEnCFG). There are two exceptions to this rule: • If the current write operation was directly proceeded by another write operation, no turn-around cycles are inserted. • If the current write operation was directly proceeded by a read operation and the TA field has been cleared to 0, one turnaround cycle will be inserted. After the EMIF has waited for the turn-around cycles to complete, it again checks to make sure that the write operation is still its highest priority task. If so, the EMIF proceeds to the setup period of the operation. If it is no longer the highest priority task, the EMIF terminates the operation. Start of the setup period The following actions occur at the start of the setup period: • The setup, strobe, and hold values are set according to the W_SETUP, W_STROBE, and W_HOLD values in CEnCFG. • The address pins EMIF_A and EMIF_BA and the data pins EMIF_D become valid. The EMIF_A and EMIF_BA pins carry the values described in Section 17.2.6.1. • EMIF_nCS[4:2] falls to enable the external device (if not already low from a previous operation). Strobe period The following actions occur at the start of the strobe period of a write operation: 1. EMIF_nWE falls 2. The EMIF_nDQM pins become valid as byte enables. The following actions occur on the rising edge of the clock which is concurrent with the end of the strobe period: 1. EMIF_nWE rises 2. The EMIF_nDQM pins deactivate In Figure 17-11, EMIF_nWAIT is inactive. If EMIF_nWAIT is instead activated, the strobe period can be extended by the external device to give it more time to accept the data. Section 17.2.6.6 contains more details on using the EMIF_nWAIT pin. End of the hold At the end of the hold period: period • The address pins EMIF_A and EMIF_BA become invalid • The data pins become invalid • EMIF_nCS[n] (n = 2, 3, or 4) rises (if no more operations are required to complete the current request) The EMIF may be required to issue additional write operations to a device with a small data bus width in order to complete an entire word access. In this case, the EMIF immediately re-enters the setup period to begin another operation without incurring the turnaround cycle delay. The setup, strobe, and hold values are not updated in this case. If the entire word access has been completed, the EMIF returns to its previous state unless another asynchronous request has been submitted and is currently the highest priority task. If this is the case, the EMIF instead enters directly into the turnaround period for the pending read or write operation. 642 External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com Figure 17-11. Timing Waveform of an Asynchronous Write Cycle in Normal Mode Setup 2 Strobe 3 Hold 2 EMIF_CLK EMIF_nCS[n] EMIF_nDQM EMIF_A/EMIF_BA EMIF_D Byte enable Address Data EMIF_nOE EMIF_nWE SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 643 EMIF Module Architecture www.ti.com 17.2.6.5 Read and Write Operation in Select Strobe Mode Select Strobe Mode is the EMIF's second mode of operation. It is selected when the SS bit of the asynchronous n configuration register (CEnCFG) is set to 1. In this mode, the EMIF_nDQM pins operate as byte enables and the EMIF_nCS[n] (n = 2, 3, or 4) pin is only active during the strobe period of an access cycle. Section 17.2.6.4.1 and Section 17.2.6.4.2 explain the details of read and write operations while in Select Strobe Mode. 17.2.6.5.1 Asynchronous Read Operations (Select Strobe Mode) NOTE: During the entirety of an asynchronous read operation, the EMIF_nWE pin is driven high. An asynchronous read is performed when any of the requesters mentioned in Section 17.2.2 request a read from the attached asynchronous memory. After the request is received, a read operation is initiated once it becomes the EMIF's highest priority task, according to the priority scheme detailed in Section 17.2.13. In the event that the read request cannot be serviced by a single access cycle to the external device, multiple access cycles will be performed by the EMIF until the entire request is fulfilled. The details of an asynchronous read operation in Select Strobe Mode are described in Table 17-21. Also, Figure 17-12 shows an example timing diagram of a basic read operation. Table 17-21. Asynchronous Read Operation in Select Strobe Mode Time Interval Pin Activity in Select Strobe Mode Turnaround period Once the read operation becomes the highest priority task for the EMIF, the EMIF waits for the programmed number of turn-around cycles before proceeding to the setup period of the operation. The number of wait cycles is taken directly from the TA field of the asynchronous n configuration register (CEnCFG). There are two exceptions to this rule: • If the current read operation was directly proceeded by another read operation, no turn-around cycles are inserted. • If the current read operation was directly proceeded by a write operation and the TA field has been cleared to 0, one turn-around cycle will be inserted. After the EMIF has waited for the turn-around cycles to complete, it again checks to make sure that the read operation is still its highest priority task. If so, the EMIF proceeds to the setup period of the operation. If it is no longer the highest priority task, the EMIF terminates the operation. Start of the setup period The following actions occur at the start of the setup period: • The setup, strobe, and hold values are set according to the R_SETUP, R_STROBE, and R_HOLD values in CEnCFG. • The address pins EMIF_A and EMIF_BA become valid and carry the values described in Section 17.2.6.1. • The EMIF_nDQM pins become valid as byte enables. Strobe period The following actions occur during the strobe period of a read operation: 1. 2. EMIF_nCS[n] (n = 2, 3, or 4) and EMIF_nOE fall at the start of the strobe period On the rising edge of the clock which is concurrent with the end of the strobe period: • EMIF_nCS[n] (n = 2, 3, or 4) and EMIF_nOE rise • The data on the EMIF_D bus is sampled by the EMIF. In Figure 17-12, EMIF_nWAIT is inactive. If EMIF_nWAIT is instead activated, the strobe period can be extended by the external device to give it more time to provide the data. Section 17.2.6.6 contains more details on using the EMIF_nWAIT pin. End of the hold At the end of the hold period: period • The address pins EMIF_A and EMIF_BA become invalid • The EMIF_nDQM pins become invalid The EMIF may be required to issue additional read operations to a device with a small data bus width in order to complete an entire word access. In this case, the EMIF immediately re-enters the setup period to begin another operation without incurring the turnaround cycle delay. The setup, strobe, and hold values are not updated in this case. If the entire word access has been completed, the EMIF returns to its previous state unless another asynchronous request has been submitted and is currently the highest priority task. If this is the case, the EMIF instead enters directly into the turnaround period for the pending read or write operation. 644 External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com Figure 17-12. Timing Waveform of an Asynchronous Read Cycle in Select Strobe Mode Setup 2 Strobe 3 Hold 2 EMIF_CLK EMIF_nCS[n] EMIF_nDQM EMIF_A/EMIF_BA Byte enables Address Data EMIF_D EMIF_nOE EMIF_nWE SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 645 EMIF Module Architecture www.ti.com 17.2.6.5.2 Asynchronous Write Operations (Select Strobe Mode) NOTE: During the entirety of an asynchronous write operation, the EMIF_nOE pin is driven high. An asynchronous write is performed when any of the requesters mentioned in Section 17.2.2 request a write to memory in the asynchronous bank of the EMIF. After the request is received, a write operation is initiated once it becomes the EMIF's highest priority task, according to the priority scheme detailed in Section 17.2.13. In the event that the write request cannot be serviced by a single access cycle to the external device, multiple access cycles will be performed by the EMIF until the entire request is fulfilled. The details of an asynchronous write operation in Select Strobe Mode are described in Table 17-22. Also, Figure 17-13 shows an example timing diagram of a basic write operation. Table 17-22. Asynchronous Write Operation in Select Strobe Mode Time Interval Pin Activity in Select Strobe Mode Turnaround period Once the write operation becomes the highest priority task for the EMIF, the EMIF waits for the programmed number of turnaround cycles before proceeding to the setup period of the operation. The number of wait cycles is taken directly from the TA field of the asynchronous n configuration register (CEnCFG). There are two exceptions to this rule: • If the current write operation was directly proceeded by another write operation, no turn-around cycles are inserted. • If the current write operation was directly proceeded by a read operation and the TA field has been cleared to 0, one turnaround cycle will be inserted. After the EMIF has waited for the turnaround cycles to complete, it again checks to make sure that the write operation is still its highest priority task. If so, the EMIF proceeds to the setup period of the operation. If it is no longer the highest priority task, the EMIF terminates the operation. Start of the setup period The following actions occur at the start of the setup period: • The setup, strobe, and hold values are set according to the W_SETUP, W_STROBE, and W_HOLD values in CEnCFG. • The address pins EMIF_A and EMIF_BA and the data pins EMIF_D become valid. The EMIF_A and EMIF_BA pins carry the values described in Section 17.2.6.1. • The EMIF_nDQM pins become active as byte enables. Strobe period The following actions occur at the start of the strobe period of a write operation: • EMIF_nCS[n] (n = 2, 3, or 4) and EMIF_nWE fall The following actions occur on the rising edge of the clock which is concurrent with the end of the strobe period: • EMIF_nCS[n] (n = 2, 3, or 4) and EMIF_nWE rise In Figure 17-13, EMIF_nWAIT is inactive. If EMIF_nWAIT is instead activated, the strobe period can be extended by the external device to give it more time to accept the data. Section 17.2.6.6 contains more details on using the EMIF_nWAIT pin. End of the hold At the end of the hold period: period • The address pins EMIF_A and EMIF_BA become invalid • The data pins become invalid • The EMIF_nDQM pins become invalid The EMIF may be required to issue additional write operations to a device with a small data bus width in order to complete an entire word access. In this case, the EMIF immediately re-enters the setup period to begin another operation without incurring the turnaround cycle delay. The setup, strobe, and hold values are not updated in this case. If the entire word access has been completed, the EMIF returns to its previous state unless another asynchronous request has been submitted and is currently the highest priority task. If this is the case, the EMIF instead enters directly into the turn-around period for the pending read or write operation. 646 External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com Figure 17-13. Timing Waveform of an Asynchronous Write Cycle in Select Strobe Mode Setup 2 Strobe 3 Hold 2 EMIF_CLK EMIF_nCS[n] EMIF_nDQM Byte enables EMIF_A/EMIF_BA Address Data EMIF_D EMIF_nOE EMIF_nWE 17.2.6.6 Extended Wait Mode and the EMIF_nWAIT Pin The EMIF supports the Extend Wait Mode. This is a mode in which the external asynchronous device may assert control over the length of the strobe period. The Extended Wait Mode can be entered by setting the EW bit in the asynchronous n configuration register (CEnCFG) (n = 2, 3, or 4). When this bit is set, the EMIF monitors the EMIF_nWAIT pin to determine if the attached device wishes to extend the strobe period of the current access cycle beyond the programmed number of clock cycles. When the EMIF detects that the EMIF_nWAIT pin has been asserted, it will begin inserting extra strobe cycles into the operation until the EMIF_nWAIT pin is deactivated by the external device. The EMIF will then return to the last cycle of the programmed strobe period and the operation will proceed as usual from this point. Please refer to the device data manual for details on the timing requirements of the EMIF_nWAIT signal. The EMIF_nWAIT pin cannot be used to extend the strobe period indefinitely. The programmable MAX_EXT_WAIT field in the asynchronous wait cycle configuration register (AWCC) determines the maximum number of EMIF_CLK cycles the strobe period may be extended beyond the programmed length. When the counter expires, the EMIF proceeds to the hold period of the operation regardless of the state of the EMIF_nWAIT pin. The EMIF can also generate an interrupt upon expiration of this counter. See Section 17.2.9.1 for details on enabling this interrupt. For the EMIF to function properly in the Extended Wait mode, the WPn bit of AWCC must be programmed to match the polarity of the EMIF_nWAIT pin. In its reset state of 1, the EMIF will insert wait cycles when the EMIF_nWAIT pin is sampled high. When set to 0, the EMIF will insert wait cycles only when EMIF_nWAIT is sampled low. This programmability allows for a glueless connection to larger variety of asynchronous devices. Finally, a restriction is placed on the strobe period timing parameters when operating in Extended Wait mode. Specifically, the sum of the W_SETUP and W_STROBE fields must be greater than 4, and the sum of the R_SETUP and R_STROBE fields must be greater than 4 for the EMIF to recognize the EMIF_nWAIT pin has been asserted. The W_SETUP, W_STROBE, R_SETUP, and R_STROBE fields are in CEnCFG. SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 647 EMIF Module Architecture www.ti.com 17.2.6.7 NOR Flash Page Mode EMIF supports Page mode reads for NOR Flash on its asynchronous memory chip selects. This mode can be enabled by writing a 1 to the CSn_PG_MD_EN (n = 2, 3, or 4) field in the Page Mode Control register for the chip select in consideration. Whenever Page Mode for reads is enabled for a particular chip select, the page size for the device connected must also be programmed in the CSn_PG_SIZE field of the Page Mode Control register. The address change to valid read data available timing must be programmed in the CSn_PG_DEL field of the Page Control register. All other asynchronous memory timings must be programmed in the asynchronous configuration register (CEnCFG). See Figure 17-14 for read in asynchronous page mode. NOTE: The Extended Wait mode and the Select Strobe mode must be disabled when using the asynchronous interface in Page mode. Figure 17-14. Asynchronous Read in Page Mode Setup Strobe pg_delay pg_delay A1 A2 Hold pg_delay EMIF_CLK EMIF_nCS[n] EMIF_nDQM EMIF_A/EMIF_BA EMIF_D A0 D0 D1 A3 D2 D3 EMIF_nOE EMIF_nWE 17.2.7 Data Bus Parking The EMIF always drives the data bus to the previous write data value when it is idle. This feature is called data bus parking. Only when the EMIF issues a read command to the external memory does it stop driving the data bus. After the EMIF latches the last read data, it immediately parks the data bus again. The one exception to this behavior occurs after performing an asynchronous read operation while the EMIF is in the self-refresh state. In this situation, the read operation is not followed by the EMIF parking the data bus. Instead, the EMIF tri-states the data bus. Therefore, it is not recommended to perform asynchronous read operations while the EMIF is in the self-refresh state, in order to prevent floating inputs on the data bus. External pull-ups, such as 10kΩ resistors, should be placed on the 16 EMIF data bus pins (which do not have internal pull-ups) if it is required to perform reads in this situation. The precise resistor value should be chosen so that the worst case combined off-state leakage currents do not cause the voltage levels on the associated pins to drop below the high-level input voltage requirement. For information about the self-refresh state, see Section 17.2.5.7. 648 External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com 17.2.8 Reset and Initialization Considerations The EMIF memory controller has two active-low reset signals, CHIP_RST_n and MOD_G_RST_n. Both these reset signals are driven by the device system reset signal. This device does not offer the flexibility to reset just the EMIF state machine without also resetting the EMIF controller's memory-mapped registers. As soon as the device system reset is released (driven High), the EMIF memory controller immediately begins its initialization sequence. Command and data stored in the EMIF memory controller FIFOs are lost. Refer the Architecture chapter of the tecnical reference manual (TRM) for more information on conditions that can cause a device system reset to be asserted. When system reset is released, the EMIF automatically begins running the SDRAM initialization sequence described in Section 17.2.5.4. Even though the initialization procedure is automatic, a special procedure, found in Section 17.2.5.5 must still be followed. 17.2.9 Interrupt Support The EMIF supports a single interrupt to the CPU. Section 17.2.9.1 details the generation and internal masking of EMIF interrupts. 17.2.9.1 Interrupt Events There are three conditions that may cause the EMIF to generate an interrupt to the CPU. These conditions are: • A rising edge on the EMIF_nWAIT signal (wait rise interrupt) • An asynchronous time out • Usage of unsupported addressing mode (line trap interrupt) The wait rise interrupt occurs when a rising edge is detected on EMIF_nWAIT signal. This interrupt generation is not affected by the WPn bit in the asynchronous wait cycle configuration register (AWCC). The asynchronous time out interrupt condition occurs when the attached asynchronous device fails to deassert the EMIF_nWAIT pin within the number of cycles defined by the MAX_EXT_WAIT bit in AWCC (this happens only in extended wait mode). EMIF supports only linear incrementing and cache line wrap addressing modes . If an access request for an unsupported addressing mode is received, the EMIF will set the LT bit in the EMIF interrupt raw register (INTRAW) and treat the request as a linear incrementing request. Only when the interrupt is enabled by setting the appropriate bit (WR_MASK_SET/AT_MASK_SET/LT_MASK_SET) in the EMIF interrupt mask set register (INTMSKSET) to 1, will the interrupt be sent to the CPU. Once enabled, the interrupt may be disabled by writing a 1 to the corresponding bit in the EMIF interrupt mask clear register (INTMSKCLR). The bit fields in both the INTMSKSET and INTMSKCLR may be used to indicate whether the interrupt is enabled. When the interrupt is enabled, the corresponding bit field in both the INTMSKSET and INTMSKCLR will have a value of 1; when the interrupt is disabled, the corresponding bit field will have a value of 0. The EMIF interrupt raw register (INTRAW) and the EMIF interrupt mask register (INTMSK) indicate the status of each interrupt. The appropriate bit (WR/AT/LT) in INTRAW is set when the interrupt condition occurs, whether or not the interrupt has been enabled. However, the appropriate bit (WR_MASKED/AT_MASKED/LT_MASKED) in INTMSK is set only when the interrupt condition occurs and the interrupt is enabled. Writing a 1 to the bit in INTRAW clears the INTRAW bit as well as the corresponding bit in INTMSK. Table 17-23 contains a brief summary of the interrupt status and control bit fields. See Section 17.3 for complete details on the register fields. External Memory Interface (EMIF) 649 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com Table 17-23. Interrupt Monitor and Control Bit Fields Register Name Bit Name EMIF interrupt raw register (INTRAW) WR EMIF interrupt mask register (INTMSK) EMIF interrupt mask set register (INTMSKSET) EMIF interrupt mask clear register (INTMSKCLR) Description This bit is set when an rising edge on the EMIF_nWAIT signal occurs. Writing a 1 clears the WR bit as well as the WR_MASKED bit in INTMSK. AT This bit is set when an asynchronous timeout occurs. Writing a 1 clears the AT bit as well as the AT_MASKED bit in INTMSK. LT This bit is set when an unsupported addressing mode is used. Writing a 1 clears LT bit as well as the LT_MASKED bit in INTMSK. WR_MASKED This bit is set only when a rising edge on the EMIF_nWAIT signal occurs and the interrupt has been enabled by writing a 1 to the WR_MASK_SET bit in INTMSKSET. AT_MASKED This bit is set only when an asynchronous timeout occurs and the interrupt has been enabled by writing a 1 to the AT_MASK_SET bit in INTMSKSET. LT_MASKED This bit is set only when line trap interrupt occurs and the interrupt has been enabled by writing a 1 to the LT_MASK_SET bit in INTMSKSET. WR_MASK_SET Writing a 1 to this bit enables the wait rise interrupt. AT_MASK_SET Writing a 1 to this bit enables the asynchronous timeout interrupt. LT_MASK_SET Writing a 1 to this bit enables the line trap interrupt. WR_MASK_CLR Writing a 1 to this bit disables the wait rise interrupt. AT_MASK_CLR Writing a 1 to this bit disables the asynchronous timeout interrupt. LT_MASK_CLR Writing a 1 to this bit disables the line trap interrupt. 17.2.10 DMA Event Support EMIF memory controller is a DMA slave peripheral and therefore does not generate DMA events. Data read and write requests may be made directly, by masters and the DMA. 17.2.11 EMIF Signal Multiplexing For details on EMIF signal multiplexing, see the I/O Multiplexing Module chapter of the technical reference manual. 17.2.12 Memory Map For information describing the device memory-map, see your device-specific datasheet. 650 External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com 17.2.13 Priority and Arbitration Section 17.2.2 describes the external prioritization and arbitration among requests from different sources within the microcontroller. The result of this external arbitration is that only one request is presented to the EMIF at a time. Once the EMIF completes a request, the external arbiter then provides the EMIF with the next pending request. Internally, the EMIF undertakes memory device transactions according to a strict priority scheme. The highest priority events are: • A device reset. • A write to any of the three least significant bytes of the SDRAM configuration register (SDCR). Either of these events will cause the EMIF to immediately commence its initialization sequence as described in Section 17.2.5.4. Once the EMIF has completed its initialization sequence, it performs memory transactions according to the following priority scheme (highest priority listed first): 1. If the EMIF's backlog refresh counter is at the Refresh Must urgency level, the EMIF performs multiple SDRAM auto refresh cycles until the Refresh Release urgency level is reached. 2. If an SDRAM or asynchronous read has been requested, the EMIF performs a read operation. 3. If the EMIF's backlog refresh counter is at the Refresh Need urgency level, the EMIF performs an SDRAM auto refresh cycle. 4. If an SDRAM or asynchronous write has been requested, the EMIF performs a write operation. 5. If the EMIF's backlog refresh counter is at the Refresh May or Refresh Release urgency level, the EMIF performs an SDRAM auto refresh cycle. 6. If the value of the SR bit in SDCR has been set to 1, the EMIF will enter the self-refresh state as described in Section 17.2.5.7. After taking one of the actions listed above, the EMIF then returns to the top of the priority list to determine its next action. Because the EMIF does not issue auto-refresh cycles when in the self-refresh state, the above priority scheme does not apply when in this state. See Section 17.2.5.7 for details on the operation of the EMIF when in the self-refresh state. SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 651 EMIF Module Architecture www.ti.com 17.2.14 System Considerations This section describes various system considerations to keep in mind when operating the EMIF. 17.2.14.1 Asynchronous Request Times In a system that interfaces to both SDRAM and asynchronous memory, the asynchronous requests must not take longer than the smaller of the following two values: • tRAS (typically 120 μs) - to avoid violating the maximum time allowed between issuing an ACTV and PRE command to the SDRAM. • tRefresh Rate × 11 (typically 15.7 μs × 11 = 172.7 μs) - to avoid refresh violations on the SDRAM. The length of an asynchronous request is controlled by multiple factors, the primary factor being the number of access cycles required to complete the request. For example, an asynchronous request for 4 bytes will require four access cycles using an 8-bit data bus and only two access cycle using a 16-bit data bus. The maximum request size that the EMIF can be sent is 16 words, therefore the maximum number of access cycles per memory request is 64 when the EMIF is configured with an 8-bit data bus. The length of the individual access cycles that make up the asynchronous request is determined by the programmed setup, strobe, hold, and turnaround values, but can also be extended with the assertion of the EMIF_nWAIT input signal up to a programmed maximum limit. It is up to the user to make sure that an entire asynchronous request does not exceed the timing values listed above when also interfacing to an SDRAM device. This can be done by limiting the asynchronous timing parameters. 17.2.14.2 Interface to External Peripheral or FIFO Memory If EMIF is used to interface to an external peripheral or FIFO logic (for example, UHPI), it is recommended to use the host CPU's Memory Protection Unit (MPU) to define this external memory range as a region that is either strongly-ordered or of device type. 17.2.14.3 Interface to External SDRAM If EMIF is used to interface to an external SDRAM, it is recommended to burst as much as possible to normal memory to improve the interface bandwidth. 652 External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Module Architecture www.ti.com 17.2.15 Power Management Power dissipation from the EMIF memory controller may be managed by following methods: • Self-refresh mode • Power-down mode • Gating input clocks to the module off Gating input clocks off to the EMIF memory controller achieves higher power savings when compared to the power savings of self-refresh or power down mode. The input clock VCLK3 can be turned off through the use of the Global Clock Module (GCM). Before gating clocks off, the EMIF memory controller must place the SDR SDRAM memory in self-refresh mode. If the external memory requires a continuous clock, the VCLK3 clock domain must not be turned off because this may result in data corruption. See the following subsections for the proper procedures to follow when stopping the EMIF memory controller clocks. 17.2.15.1 Power Management Using Self-Refresh Mode The EMIF can be placed into a self-refresh state in order to place the attached SDRAM devices into selfrefresh mode, which consumes less power for most SDRAM devices. In this state, the attached SDRAM device uses an internal clock to perform its own auto refresh cycles. This maintains the validity of the data in the SDRAM without the need for any external commands. Refer to Section 17.2.5.7 for more details on placing the EMIF into the self-refresh state. 17.2.15.2 Power Management Using Power Down Mode In the power down mode, EMIF drives EMIF_CKE low to lower the power consumption. EMIF_CKE goes high when there is a need to send refresh (REFR) commands, after which EMIF_CKE is again driven low. EMIF_CKE remains low until any request arrives. Refer to Section 17.2.5.8 for more details on placing EMIF in power down mode. 17.2.16 Emulation Considerations EMIF memory controller remains fully functional during emulation halts in order to allow emulation access to external memory. SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 653 EMIF Registers www.ti.com 17.3 EMIF Registers The external memory interface (EMIF) is controlled by programming its internal memory-mapped registers (MMRs). Table 17-24 lists the memory-mapped registers for the EMIF. NOTE: All EMIF MMRs, except SDCR, support only word (32-bit) accesses. Performing a byte (8bit) or halfword (16-bit) write to these registers results in undefined behavior. The SDCR is byte writable to allow the setting of the SR, PD, and PDWR bits without triggering the SDRAM initialization sequence. The EMIF registers must always be accessed using 32-bit accesses (unless otherwise specified in this chapter). The base address of the EMIF memory-mapped registers is FCFF E800h. Table 17-24. External Memory Interface (EMIF) Registers Offset Acronym Register Description 00h MIDR Module ID Register Section 17.3.1 Section 04h AWCC Asynchronous Wait Cycle Configuration Register Section 17.3.2 08h SDCR SDRAM Configuration Register Section 17.3.3 0Ch SDRCR SDRAM Refresh Control Register Section 17.3.4 10h CE2CFG Asynchronous 1 Configuration Register Section 17.3.5 14h CE3CFG Asynchronous 2 Configuration Register Section 17.3.5 18h CE4CFG Asynchronous 3 Configuration Register Section 17.3.5 1Ch CE5CFG Asynchronous 4 Configuration Register Section 17.3.5 20h SDTIMR SDRAM Timing Register Section 17.3.6 3Ch SDSRETR SDRAM Self Refresh Exit Timing Register Section 17.3.7 40h INTRAW EMIF Interrupt Raw Register Section 17.3.8 44h INTMSK EMIF Interrupt Mask Register Section 17.3.9 48h INTMSKSET EMIF Interrupt Mask Set Register Section 17.3.10 4Ch INTMSKCLR EMIF Interrupt Mask Clear Register Section 17.3.11 68h PMCR Page Mode Control Register Section 17.3.12 17.3.1 Module ID Register (MIDR) This is a read-only register indicating the module ID of the EMIF. The MIDR is shown in Figure 17-15 and described in Table 17-25. Figure 17-15. Module ID Register (MIDR) [offset = 00] 31 0 REV R-x LEGEND: R = Read only; -n = value after reset Table 17-25. Module ID Register (MIDR) Field Descriptions Bit Field Value 31-0 REV x 654 Description Module ID of EMIF. See the device-specific data manual. External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Registers www.ti.com 17.3.2 Asynchronous Wait Cycle Configuration Register (AWCC) The asynchronous wait cycle configuration register (AWCC) is used to configure the parameters for extended wait cycles. Both the polarity of the EMIF_nWAIT pin(s) and the maximum allowable number of extended wait cycles can be configured. The AWCC is shown in Figure 17-16 and described in Table 1726. Not all devices support both EMIF_nWAIT[1] and EMIF_nWAIT[0], see the device-specific data manual to determine support on each device. NOTE: The EW bit in the asynchronous n configuration register (CEnCFG) must be set to allow for the insertion of extended wait cycles. Figure 17-16. Asynchronous Wait Cycle Configuration Register (AWCCR) [offset = 04h] 31 30 29 28 Reserved WP1 WP0 27 Reserved 24 CS5_WAIT CS4_WAIT CS3_WAIT CS2_WAIT R-3h R/W-1 R/W-1 R-0 R/W-0 R/W-0 R/W-0 R/W-0 15 8 23 22 21 20 19 18 17 7 16 0 Reserved MAX_EXT_WAIT R-0 R/W-80h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 17-26. Asynchronous Wait Cycle Configuration Register (AWCCR) Field Descriptions Bit 31-30 29 28 Field Reserved Value 3h WP1 Reserved 23-22 CS5_WAIT 21-20 CS4_WAIT EMIF_nWAIT[1] polarity bit. This bit defines the polarity of the EMIF_nWAIT[1] pin. Insert wait cycles if EMIF_nWAIT[1] pin is low. 1 Insert wait cycles if EMIF_nWAIT[1] pin is high. EMIF_nWAIT[0] polarity bit. This bit defines the polarity of the EMIF_nWAIT[0] pin. 0 Insert wait cycles if EMIF_nWAIT[0] pin is low. 1 Insert wait cycles if EMIF_nWAIT[0] pin is high. 0 Reserved 0-3h 0 EMIF_nWAIT[0] pin is used to control external wait states. 1h EMIF_nWAIT[1] pin is used to control external wait states. CS3_WAIT 0 EMIF_nWAIT[0] pin is used to control external wait states. 1h EMIF_nWAIT[1] pin is used to control external wait states. CS2_WAIT 15-8 Reserved 7-0 MAX_EXT_WAIT Reserved Chip Select 3 WAIT signal selection. This signal determines which EMIF_nWAIT[n] signal will be used for memory accesses to chip select 3 memory space. 2h-3h 17-16 Chip Select 5 WAIT signal selection. This signal determines which EMIF_nWAIT[n] signal will be used for memory accesses to chip select 5 memory space. This device does not support chip select 5, so any value written to this field has no effect. Chip Select 4 WAIT signal selection. This signal determines which EMIF_nWAIT[n] signal will be used for memory accesses to chip select 4 memory space. 2h-3h 19-18 Reserved 0 WP0 27-24 Description Reserved Chip Select 2 WAIT signal selection. This signal determines which EMIF_nWAIT[n] signal will be used for memory accesses to chip select 2 memory space. 0 EMIF_nWAIT[0] pin is used to control external wait states. 1h EMIF_nWAIT[1] pin is used to control external wait states. 2h-3h Reserved 0 Reserved 0-FFh Maximum extended wait cycles. The EMIF will wait for a maximum of (MAX_EXT_WAIT + 1) × 16 clock cycles before it stops inserting asynchronous wait cycles and proceeds to the hold period of the access. SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 655 EMIF Registers www.ti.com 17.3.3 SDRAM Configuration Register (SDCR) The SDRAM configuration register (SDCR) is used to configure various parameters of the SDRAM controller such as the number of internal banks, the internal page size, and the CAS latency to match those of the attached SDRAM device. In addition, this register is used to put the attached SDRAM device into Self-Refresh mode. The SDCR is shown in Figure 17-17 and described in Table 17-27. NOTE: Writing to the lower three bytes of this register will cause the EMIF to start the SDRAM initialization sequence described in Section 17.2.5.4. Figure 17-17. SDRAM Configuration Register (SDCR) [offset = 08h] 31 30 29 SR PD PDWR 28 Reserved 24 R/W-0 R/W-0 R/W-0 R-0 23 16 Reserved R-0 15 14 Reserved NM(A) 13 Reserved 12 CL BIT11_9LOCK R-0 R/W-0 R-0 R/W-3h R/W-0 7 6 4 11 3 9 2 8 0 Reserved IBANK Reserved PAGESIZE R-0 R/W-2h R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset A. The NM bit must be set to 1 if the EMIF on your device only has 16 data bus pins. Table 17-27. SDRAM Configuration Register (SDCR) Field Descriptions Bit Field 31 SR 30 29 28-15 14 13-12 656 Value Self-Refresh mode bit. This bit controls entering and exiting of the Self-Refresh mode described in Section 17.2.5.7. The field should be written using a byte-write to the upper byte of SDCR to avoid triggering the SDRAM initialization sequence. 0 Writing a 0 to this bit will cause connected SDRAM devices and the EMIF to exit the Self-Refresh mode. 1 Writing a 1 to this bit will cause connected SDRAM devices and the EMIF to enter the Self-Refresh mode. PD Power Down bit. This bit controls entering and exiting of the power-down mode. The field should be written using a byte-write to the upper byte of SDCR to avoid triggering the SDRAM initialization sequence. If both SR and PD bits are set, the EMIF will go into Self Refresh. 0 Writing a 0 to this bit will cause connected SDRAM devices and the EMIF to exit the power-down mode. 1 Writing a 1 to this bit will cause connected SDRAM devices and the EMIF to enter the power-down mode. PDWR Reserved Perform refreshes during power down. Writing a 1 to this bit will cause EMIF to exit power-down state and issue and AUTO REFRESH command every time Refresh May level is set. 0 NM Reserved Description Reserved. The reserved bit location is always read as 0. If writing to this field, always write the default value of 0. Narrow mode bit. This bit defines whether a 16- or 32-bit-wide SDRAM is connected to the EMIF. This bit field must always be set to 1. Writing to this field triggers the SDRAM initialization sequence. 0 32-bit SDRAM data bus is used. 1 16-bit SDRAM data bus is used. 0 Reserved. The reserved bit location is always read as 0. If writing to this field, always write the default value of 0. External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Registers www.ti.com Table 17-27. SDRAM Configuration Register (SDCR) Field Descriptions (continued) Bit 11-9 Field Value CL CAS Latency. This field defines the CAS latency to be used when accessing connected SDRAM devices. A 1 must be simultaneously written to the BIT11_9LOCK bit field of this register in order to write to the CL bit field. Writing to this field triggers the SDRAM initialization sequence. 0-1h 7 6-4 CAS latency = 2 EMIF_CLK cycles 3h CAS latency = 3 EMIF_CLK cycles BIT11_9LOCK 2-0 Reserved Bits 11 to 9 lock. CL can only be written if BIT11_9LOCK is simultaneously written with a 1. BIT11_9LOCK is always read as 0. Writing to this field triggers the SDRAM initialization sequence. Reserved 0 CL cannot be written. 1 CL can be written. 0 Reserved. The reserved bit location is always read as 0. If writing to this field, always write the default value of 0. IBANK Internal SDRAM Bank size. This field defines number of banks inside the connected SDRAM devices. Writing to this field triggers the SDRAM initialization sequence. 0 1 bank SDRAM devices. 1 2 bank SDRAM devices. 2 4 bank SDRAM devices. 3h-7h 3 Reserved 2h 4h-7h 8 Description Reserved 0 PAGESIZE Reserved. Reserved. The reserved bit location is always read as 0. If writing to this field, always write the default value of 0. Page Size. This field defines the internal page size of connected SDRAM devices. Writing to this field triggers the SDRAM initialization sequence. 0 8 column address bits (256 elements per row) 1h 9 column address bits (512 elements per row) 2h 10 column address bits (1024 elements per row) 3h 11 column address bits (2048 elements per row) 4h-7h Reserved 17.3.4 SDRAM Refresh Control Register (SDRCR) The SDRAM refresh control register (SDRCR) is used to configure the rate at which connected SDRAM devices will be automatically refreshed by the EMIF. Refer to Section 17.2.5.6 on the refresh controller for more details. The SDRCR is shown in Figure 17-18 and described in Table 17-28. Figure 17-18. SDRAM Refresh Control Register (SDRCR) [offset = 0Ch] 31 16 Reserved R-0 15 13 12 0 Reserved RR R-0 R/W-60h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 17-28. SDRAM Refresh Control Register (SDRCR) Field Descriptions Bit Field 31-13 Reserved 12-0 RR Value 0 0-1FFFh Description Reserved. The reserved bit location is always read as 0. If writing to this field, always write the default value of 0. Refresh Rate. This field is used to define the SDRAM refresh period in terms of EMIF_CLK cycles. Writing a value < 0x0020 to this field will cause it to be loaded with (2 × T_RFC) + 1 value from the SDRAM timing register (SDTIMR). SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 657 EMIF Registers www.ti.com 17.3.5 Asynchronous n Configuration Registers (CE2CFG-CE5CFG) The asynchronous n configuration registers (CE2CFG, CE3CFG, CE4CFG, and CE5CFG) are used to configure the shaping of the address and control signals during an access to asynchronous memory connected to CS2, CS3, CS4, and CS5, respectively. CS5 is not available on this device. It is also used to program the width of asynchronous interface and to select from various modes of operation. This register can be written prior to any transfer, and any asynchronous transfer following the write will use the new configuration. The CEnCFG is shown in Figure 17-19 and described in Table 17-29. Figure 17-19. Asynchronous n Configuration Register (CEnCFG) [offset = 10h - 1Ch] 31 30 SS EW(A) 29 W_SETUP 26 W_STROBE(B) R/W-0 R/W-0 R/W-Fh R/W-3Fh 23 20 15 13 25 19 24 17 16 W_STROBE(B) W_HOLD R_SETUP R/W-3Fh R/W-7h R/W-Fh 12 7 6 4 3 2 1 0 R_SETUP R_STROBE(B) R_HOLD TA ASIZE R/W-Fh R/W-3Fh R/W-7h R/W-3h R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset A. The EW bit must be cleared to 0. B. This bit field must be cleared to 0 if the EMIF on your device does not have an EMIF_nWAIT pin. Table 17-29. Asynchronous n Configuration Register (CEnCFG) Field Descriptions Bit Field 31 SS 30 Value Description Select Strobe bit. This bit defines whether the asynchronous interface operates in Normal Mode or Select Strobe Mode. See Section 17.2.6 for details on the two modes of operation. 0 Normal Mode is enabled. 1 Select Strobe Mode is enabled. EW Extend Wait bit. This bit defines whether extended wait cycles will be enabled. See Section 17.2.6.6 on extended wait cycles for details. This bit field must be cleared to 0, if the EMIF on your device does not have an EMIF_nWAIT pin. 0 Extended wait cycles are disabled. 1 Extended wait cycles are enabled. 29-26 W_SETUP 0-Fh Write setup width in EMIF_CLK cycles, minus 1 cycle. See Section 17.2.6.3 for details. 25-20 W_STROBE 0-3Fh Write strobe width in EMIF_CLK cycles, minus 1 cycle. See Section 17.2.6.3 for details. 19-17 W_HOLD 16-13 12-7 6-4 R_HOLD 0-7h Read hold width in EMIF_CLK cycles, minus 1 cycle. See Section 17.2.6.3 for details. 3-2 TA 0-3h Minimum Turn-Around time. This field defines the minimum number of EMIF_CLK cycles between reads and writes, minus 1 cycle. See Section 17.2.6.3 for details. 1-0 ASIZE 0-7h Write hold width in EMIF_CLK cycles, minus 1 cycle. See Section 17.2.6.3 for details. R_SETUP 0-Fh Read setup width in EMIF_CLK cycles, minus 1 cycle. See Section 17.2.6.3 for details. R_STROBE 0-3Fh Read strobe width in EMIF_CLK cycles, minus 1 cycle. See Section 17.2.6.3 for details. Asynchronous Data Bus Width. This field defines the width of the asynchronous device data bus. 0 8-bit data bus 1h 16-bit data bus 2h-3h 658 Reserved External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Registers www.ti.com 17.3.6 SDRAM Timing Register (SDTIMR) The SDRAM timing register (SDTIMR) is used to program many of the SDRAM timing parameters. Consult the SDRAM datasheet for information on the appropriate values to program into each field. The SDTIMR is shown in Figure 17-20 and described in Table 17-30. Figure 17-20. SDRAM Timing Register (SDTIMR) [offset = 20h] 31 27 26 24 23 22 20 19 18 16 T_RFC T_RP Rsvd T_RCD Rsvd T_WR R/W-8h R/W-2h R-0 R/W-2h R-0 R/W-1h 15 12 11 8 7 6 4 3 0 T_RAS T_RC Rsvd T_RRD Reserved R/W-5h R/W-8h R-0 R/W-1h R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 17-30. SDRAM Timing Register (SDTIMR) Field Descriptions Field Value Description 31-27 Bit T_RFC 0-1Fh Specifies the Trfc value of the SDRAM. This defines the minimum number of EMIF_CLK cycles from Refresh (REFR) to Refresh (REFR), minus 1: T_RFC = (Trfc/tEMIF_CLK) - 1 26-24 T_RP 0-7h Specifies the Trp value of the SDRAM. This defines the minimum number of EMIF_CLK cycles from Precharge (PRE) to Activate (ACTV) or Refresh (REFR) command, minus 1: T_RP = (Trp/tEMIF_CLK) - 1 23 22-20 19 Reserved T_RCD Reserved 0 Reserved. The reserved bit location is always read as 0. If writing to this field, always write the default value of 0. 0-7h Specifies the Trcd value of the SDRAM. This defines the minimum number of EMIF_CLK cycles from Active (ACTV) to Read (READ) or Write (WRT), minus 1: T_RCD = (Trcd/tEMIF_CLK) - 1 0 Reserved. The reserved bit location is always read as 0. If writing to this field, always write the default value of 0. 18-16 T_WR 0-7h Specifies the Twr value of the SDRAM. This defines the minimum number of EMIF_CLK cycles from last Write (WRT) to Precharge (PRE), minus 1: T_WR = (Twr/tEMIF_CLK) - 1 15-12 T_RAS 0-Fh Specifies the Tras value of the SDRAM. This defines the minimum number of EMIF_CLK clock cycles from Activate (ACTV) to Precharge (PRE), minus 1: T_RAS = (Tras/tEMIF_CLK) - 1 11-8 T_RC 0-Fh Specifies the Trc value of the SDRAM. This defines the minimum number of EMIF_CLK clock cycles from Activate (ACTV) to Activate (ACTV), minus 1: T_RC = (Trc/tEMIF_CLK) - 1 7 Reserved 6-4 T_RRD 3-0 Reserved 0 Reserved. The reserved bit location is always read as 0. If writing to this field, always write the default value of 0. 0-7h Specifies the Trrd value of the SDRAM. This defines the minimum number of EMIF_CLK clock cycles from Activate (ACTV) to Activate (ACTV) for a different bank, minus 1: T_RRD = (Trrd/tEMIF_CLK) - 1 0 Reserved. The reserved bit location is always read as 0. If writing to this field, always write the default value of 0. SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 659 EMIF Registers www.ti.com 17.3.7 SDRAM Self Refresh Exit Timing Register (SDSRETR) The SDRAM self refresh exit timing register (SDSRETR) is used to program the amount of time between when the SDRAM exits Self-Refresh mode and when the EMIF issues another command. The SDSRETR is shown in Figure 17-21 and described in Table 17-31. Figure 17-21. SDRAM Self Refresh Exit Timing Register (SDSRETR) [offset = 3Ch] 31 16 Reserved R-0 15 5 4 0 Reserved T_XS R-0 R/W-9h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 17-31. SDRAM Self Refresh Exit Timing Register (SDSRETR) Field Descriptions Bit Field 31-5 Reserved 4-0 T_XS 660 Value 0 0-1Fh Description Reserved. The reserved bit location is always read as 0. This field specifies the minimum number of ECLKOUT cycles from Self-Refresh exit to any command, minus 1. T_XS = Txsr / tEMIF_CLK - 1 External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Registers www.ti.com 17.3.8 EMIF Interrupt Raw Register (INTRAW) The EMIF interrupt raw register (INTRAW) is used to monitor and clear the EMIF’s hardware-generated Asynchronous Timeout Interrupt. The AT bit in this register will be set when an Asynchronous Timeout occurs regardless of the status of the EMIF interrupt mask set register (INTMSKSET) and EMIF interrupt mask clear register (INTMSKCLR). Writing a 1 to this bit will clear it. The EMIF on some devices does not have the EMIF_nWAIT pin; therefore, these registers and fields are reserved on those devices. The INTRAW is shown in Figure 17-22 and described in Table 17-32. Figure 17-22. EMIF Interrupt Raw Register (INTRAW) [offset = 40h] 31 8 Reserved R-0 7 2 1 0 Reserved 3 WR LT AT R-0 R/W1C-0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear (writing 0 has no effect); -n = value after reset Table 17-32. EMIF Interrupt Raw Register (INTRAW) Field Descriptions Bit 31-3 2 1 0 Field Reserved Value 0 WR Description Reserved. The reserved bit location is always read as 0. If writing to this field, always write the default value of 0. Wait Rise. This bit is set to 1 by hardware to indicate that a rising edge on the EMIF_nWAIT pin has occurred. 0 Indicates that a rising edge has not occurred on the EMIF_nWAIT pin. Writing a 0 has no effect. 1 Indicates that a rising edge has occurred on the EMIF_nWAIT pin. Writing a 1 will clear this bit and the WR_MASKED bit in the EMIF interrupt masked register (INTMSK). LT Line Trap. Set to 1 by hardware to indicate illegal memory access type or invalid cache line size. 0 Writing a 0 has no effect. 1 Indicates that a line trap has occurred. Writing a 1 will clear this bit as well as the LT_MASKED bit in the EMIF interrupt masked register (INTMSK). AT Asynchronous Timeout. This bit is set to 1 by hardware to indicate that during an extended asynchronous memory access cycle, the EMIF_nWAIT pin did not go inactive within the number of cycles defined by the MAX_EXT_WAIT field in the asynchronous wait cycle configuration register (AWCC). 0 Indicates that an Asynchronous Timeout has not occurred. Writing a 0 has no effect. 1 Indicates that an Asynchronous Timeout has occurred. Writing a 1 will clear this bit as well as the AT_MASKED bit in the EMIF interrupt masked register (INTMSK). SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 661 EMIF Registers www.ti.com 17.3.9 EMIF Interrupt Masked Register (INTMSK) Like the EMIF interrupt raw register (INTRAW), the EMIF interrupt masked register (INTMSK) is used to monitor and clear the status of the EMIF’s hardware-generated Asynchronous Timeout Interrupt. The main difference between the two registers is that when the AT_MASKED bit in this register is set, an active-high pulse will be sent to the CPU interrupt controller. Also, the AT_MASKED bit field in INTMSK is only set to 1 if the associated interrupt has been enabled in the EMIF interrupt mask set register (INTMSKSET). The EMIF on some devices does not have the EMIF_nWAIT pin, therefore, these registers and fields are reserved on those devices. The INTMSK is shown in Figure 17-23 and described in Table 17-33. Figure 17-23. EMIF Interrupt Mask Register (INTMSK) [offset = 44h] 31 8 Reserved R-0 7 2 1 0 Reserved 3 WR_MASKED LT_MASKED AT_MASKED R-0 R/W1C-0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear (writing 0 has no effect); -n = value after reset Table 17-33. EMIF Interrupt Mask Register (INTMSK) Field Descriptions Bit 31-3 2 1 0 662 Field Reserved Value 0 WR_MASKED Description Reserved. The reserved bit location is always read as 0. If writing to this field, always write the default value of 0. Wait Rise Masked. This bit is set to 1 by hardware to indicate a rising edge has occurred on the EMIF_nWAIT pin, provided that the WR_MASK_SET bit is set to 1 in the EMIF interrupt mask set register (INTMSKSET). 0 Indicates that a wait rise interrupt has not been generated. Writing a 0 has no effect. 1 Indicates that a wait rise interrupt has been generated. Writing a 1 will clear this bit and the WR bit in the EMIF interrupt raw register (INTRAW). LT_MASKED Masked Line Trap. Set to 1 by hardware to indicate illegal memory access type or invalid cache line size, only if the LT_MASK_SET bit in the EMIF interrupt mask set register (INTMSKSET) is set to 1. 0 Writing a 0 has no effect. 1 Writing a 1 will clear this bit as well as the LT bit in the EMIF interrupt raw register (INTRAW). AT_MASKED Asynchronous Timeout Masked. This bit is set to 1 by hardware to indicate that during an extended asynchronous memory access cycle, the EMIF_nWAIT pin did not go inactive within the number of cycles defined by the MAX_EXT_WAIT field in the asynchronous wait cycle configuration register (AWCC), provided that the AT_MASK_SET bit is set to 1 in the EMIF interrupt mask set register (INTMSKSET). 0 Indicates that an Asynchronous Timeout Interrupt has not been generated. Writing a 0 has no effect. 1 Indicates that an Asynchronous Timeout Interrupt has been generated. Writing a 1 will clear this bit as well as the AT bit in the EMIF interrupt raw register (INTRAW). External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Registers www.ti.com 17.3.10 EMIF Interrupt Mask Set Register (INTMSKSET) The EMIF interrupt mask set register (INTMSKSET) is used to enable the Asynchronous Timeout Interrupt. If read as 1, the AT_MASKED bit in the EMIF interrupt masked register (INTMSK) will be set and an interrupt will be generated when an Asynchronous Timeout occurs. If read as 0, the AT_MASKED bit will always read 0 and no interrupt will be generated when an Asynchronous Timeout occurs. Writing a 1 to the AT_MASK_SET bit enables the Asynchronous Timeout Interrupt. The EMIF on some devices does not have the EMIF_nWAIT pin; therefore, these registers and fields are reserved on those devices. The INTMSKSET is shown in Figure 17-24 and described in Table 17-34. Figure 17-24. EMIF Interrupt Mask Set Register (INTMSKSET) [offset = 48h] 31 16 Reserved R-0 15 2 1 0 Reserved 3 WR_MASK_SET LT_MASK_SET AT_MASK_SET R-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 17-34. EMIF Interrupt Mask Set Register (INTMSKSET) Field Descriptions Bit 31-3 2 1 0 Field Value Reserved 0 WR_MASK_SET Description Reserved. The reserved bit location is always read as 0. If writing to this field, always write the default value of 0. Wait Rise Mask Set. This bit determines whether or not the wait rise Interrupt is enabled. Writing a 1 to this bit sets this bit, sets the WR_MASK_CLR bit in the EMIF interrupt mask clear register (INTMSKCLR), and enables the wait rise interrupt. To clear this bit, a 1 must be written to the WR_MASK_CLR bit in INTMSKCLR. 0 Indicates that the wait rise interrupt is disabled. Writing a 0 has no effect. 1 Indicates that the wait rise interrupt is enabled. Writing a 1 sets this bit and the WR_MASK_CLR bit in the EMIF interrupt mask clear register (INTMSKCLR). LT_MASK_SET Mask set for LT_MASKED bit in the EMIF interrupt mask register (INTMSK). 0 Indicates that the line trap interrupt is disabled. Writing a 0 has no effect. 1 Indicates that the line trap interrupt is enabled. Writing a 1 sets this bit and the LT_MASK_CLR bit in the EMIF interrupt mask clear register (INTMSKCLR). AT_MASK_SET Asynchronous Timeout Mask Set. This bit determines whether or not the Asynchronous Timeout Interrupt is enabled. Writing a 1 to this bit sets this bit, sets the AT_MASK_CLR bit in the EMIF interrupt mask clear register (INTMSKCLR), and enables the Asynchronous Timeout Interrupt. To clear this bit, a 1 must be written to the AT_MASK_CLR bit of the EMIF interrupt mask clear register (INTMSKCLR). 0 Indicates that the Asynchronous Timeout Interrupt is disabled. Writing a 0 has no effect. 1 Indicates that the Asynchronous Timeout Interrupt is enabled. Writing a 1 sets this bit and the AT_MASK_CLR bit in the EMIF interrupt mask clear register (INTMSKCLR). SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 663 EMIF Registers www.ti.com 17.3.11 EMIF Interrupt Mask Clear Register (INTMSKCLR) The EMIF interrupt mask clear register (INTMSKCLR) is used to disable the Asynchronous Timeout Interrupt. If read as 1, the AT_MASKED bit in the EMIF interrupt masked register (INTMSK) will be set and an interrupt will be generated when an Asynchronous Timeout occurs. If read as 0, the AT_MASKED bit will always read 0 and no interrupt will be generated when an Asynchronous Timeout occurs. Writing a 1 to the AT_MASK_CLR bit disables the Asynchronous Timeout Interrupt. The EMIF on some devices does not have the EMIF_nWAIT pin, therefore, these registers and fields are reserved on those devices. The INTMSKCLR is shown in Figure 17-25 and described in Table 17-35. Figure 17-25. EMIF Interrupt Mask Clear Register (INTMSKCLR) [offset = 4Ch] 31 16 Reserved R-0 15 2 1 0 Reserved 3 WR_MASK_CLR LT_MASK_CLR AT_MASK_CLR R-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 17-35. EMIF Interrupt Mask Clear Register (INTMSKCLR) Field Descriptions Bit 31-3 2 1 0 664 Field Reserved Value 0 WR_MASK_CLR Description Reserved. The reserved bit location is always read as 0. If writing to this field, always write the default value of 0. Wait Rise Mask Clear. This bit determines whether or not the wait rise interrupt is enabled. Writing a 1 to this bit clears this bit, clears the WR_MASK_SET bit in the EMIF interrupt mask set register (INTMSKSET), and disables the wait rise interrupt. To set this bit, a 1 must be written to the WR_MASK_SET bit in INTMSKSET. 0 Indicates that the wait rise interrupt is disabled. Writing a 0 has no effect. 1 Indicates that the wait rise interrupt is enabled. Writing a 1 clears this bit and the WR_MASK_SET bit in the EMIF interrupt mask set register (INTMSKSET). LT_MASK_CLR Line trap Mask Clear. This bit determines whether or not the line trap interrupt is enabled. Writing a 1 to this bit clears this bit, clears the LT_MASK_SET bit in the EMIF interrupt mask set register (INTMSKSET), and disables the line trap interrupt. To set this bit, a 1 must be written to the LT_MASK_SET bit in INTMSKSET. 0 Indicates that the line trap interrupt is disabled. Writing a 0 has no effect. 1 Indicates that the line trap interrupt is enabled. Writing a 1 clears this bit and the LT_MASK_SET bit in the EMIF interrupt mask set register (INTMSKSET). AT_MASK_CLR Asynchronous Timeout Mask Clear. This bit determines whether or not the Asynchronous Timeout Interrupt is enabled. Writing a 1 to this bit clears this bit, clears the AT_MASK_SET bit in the EMIF interrupt mask set register (INTMSKSET), and disables the Asynchronous Timeout Interrupt. To set this bit, a 1 must be written to the AT_MASK_SET bit of the EMIF interrupt mask set register (INTMSKSET). 0 Indicates that the Asynchronous Timeout Interrupt is disabled. Writing a 0 has no effect. 1 Indicates that the Asynchronous Timeout Interrupt is enabled. Writing a 1 clears this bit and the AT_MASK_SET bit in the EMIF interrupt mask set register (INTMSKSET). External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated EMIF Registers www.ti.com 17.3.12 Page Mode Control Register (PMCR) The page mode control register (PMCR) is shown in Figure 17-26 and described in Table 17-36. This register is configured when using NOR Flash page mode. Figure 17-26. Page Mode Control Register (PMCR) [offset = 68h] 31 25 24 CS5_PG_DEL 26 CS5_PG_SIZE CS5_PG_MD_EN R/W-3Fh R/W-0 R/W-0 23 17 16 CS4_PG_DEL 18 CS4_PG_SIZE CS4_PG_MD_EN R/W-3Fh R/W-0 R/W-0 15 9 8 CS3_PG_DEL 10 CS3_PG_SIZE CS3_PG_MD_EN R/W-3Fh R/W-0 R/W-0 7 1 0 CS2_PG_DEL 2 CS2_PG_SIZE CS2_PG_MD_EN R/W-3Fh R/W-0 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 17-36. Page Mode Control Register (PMCR) Field Descriptions Field Value Description 31-26 Bit CS5_PG_DEL 1-3Fh Page access delay for NOR Flash connected on CS5. CS5 is not available on this device. 25 CS5_PG_SIZE Page Size for NOR Flash connected on CS5. CS5 is not available on this device. 24 CS5_PG_MD_EN Page Mode enable for NOR Flash connected on CS5. CS5 is not available on this device. 23-18 CS4_PG_DEL 17 CS4_PG_SIZE 16 CS3_PG_DEL 9 CS3_PG_SIZE CS2_PG_DEL 1 CS2_PG_SIZE 0 0 Page size is 4 words. 1 Page size is 8 words. Page Mode enable for NOR Flash connected on CS4. 0 Page mode is disabled for this chip select. 1 Page mode is enabled for this chip select. 1-3Fh Page access delay for NOR Flash connected on CS3. Number of EMIF_CLK cycles required for the page read data to be valid, minus 1 cycle. This value must not be cleared to 0. Page Size for NOR Flash connected on CS3. 0 Page size is 4 words. 1 Page size is 8 words. CS3_PG_MD_EN 7-2 Page access delay for NOR Flash connected on CS4. Number of EMIF_CLK cycles required for the page read data to be valid, minus 1 cycle. This value must not be cleared to 0. Page Size for NOR Flash connected on CS4. CS4_PG_MD_EN 15-10 8 1-3Fh Page Mode enable for NOR Flash connected on CS3. 0 Page mode is disabled for this chip select. 1 Page mode is enabled for this chip select. 1-3Fh Page access delay for NOR Flash connected on CS2. Number of EMIF_CLK cycles required for the page read data to be valid, minus 1 cycle. This value must not be cleared to 0. Page Size for NOR Flash connected on CS2. 0 Page size is 4 words. 1 Page size is 8 words. CS2_PG_MD_EN Page Mode enable for NOR Flash connected on CS2. 0 Page mode is disabled for this chip select. 1 Page mode is enabled for this chip select. SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 665 Example Configuration www.ti.com 17.4 Example Configuration This section presents an example of interfacing the EMIF to both an SDR SDRAM device and an asynchronous flash device. 17.4.1 Hardware Interface Figure 17-27 shows the hardware interface between the EMIF, a Samsung K4S641632H-TC(L)70 64Mb SDRAM device, and two SHARP LH28F800BJE-PTTL90 8Mb Flash memory. The connection between the EMIF and the SDRAM is straightforward, but the connection between the EMIF and the flash deserves a detailed look. The address inputs for the flash are provided by three sources. The A[18:0] address inputs are provided by a combination of the EMIF_A and EMIF_BA pins according to Section 17.2.6.1. RD/nBY signal from one flash is connected to EMIF_nWAIT pin of EMIF. Finally, this example configuration connects the EMIF_nWE pin to the nWE input of the flash and operates the EMIF in Select Strobe Mode. 17.4.2 Software Configuration The following sections describe how to configure the EMIF registers and bit fields to interface the EMIF with the Samsung K4S641632H-TC(L)70 SDRAM and the SHARP LH28F800BJE-PTTL90 8Mb Flash memory. 17.4.2.1 Configuring the SDRAM Interface This section describes how to configure the EMIF to interface with the Samsung K4S641632H-TC(L)70 SDRAM with a clock frequency of fEMIF_CLK = 100 MHz. Procedure A described in Section 17.2.5.5 is followed which assumes that the SDRAM power-up timing constraint were met during the SDRAM AutoInitialization sequence after Reset. 17.4.2.1.1 PLL Programming for the EMIF to K4S641632H-TC(L)70 Interface The device global clock module (GCM) should first be programmed to select the desired EMIF_CLK frequency. Before doing this, the SDRAM should be placed in Self-Refresh Mode by setting the SR bit in the SDRAM configuration register (SDCR). The SR bit should be set using a byte-write to the upper byte of the SDCR to avoid triggering the SDRAM Initialization Sequence. The EMIF_CLK frequency can now be configured to the desired value by selecting the appropriate clock source for the VCLK3 domain. Once the VCLK3 domain frequency has been configured, remove the SDRAM from Self-Refresh by clearing the SR bit in SDCR, again with a byte-write. Table 17-37. SR Field Value For the EMIF to K4S641632H-TC(L)70 Interface 666 Field Value Purpose SR 1 then 0 To place the EMIF into the self refresh state External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Example Configuration www.ti.com Figure 17-27. Example Configuration Interface EMIF EMIF_nCS[0] EMIF_nCAS EMIF_nRAS EMIF_nWE EMIF_CLK EMIF_CKE EMIF_BA[1] EMIF_BA[0] EMIF_ADDR[11:0] EMIF_nDQM[0] EMIF_nDQM[1] EMIF_DATA[15:0] EMIF_nCS[2] EMIF_nCS[3] EMIF_nOE EMIF_nWAIT nRESET EMIF_ADDR [18:13] Reset SDRAM nCE 1M x 16 nCAS x 4 bank nRAS nWE CLK CKE BA[1] BA[0] A[11:0] LDQM UDQM DQ[15:0] FLASH A[0] A[12:1] 512k x 16 DQ[15:0] nCE nWE nOE nRESET A[18:13] RY/BY nBYTE0 nBYTE1 FLASH A[0] A[12:1] 512k x 16 DQ[15:0] nCE nWE nOE nRESET A[18:13] RY/BY nBYTE0 nBYTE1 SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 667 Example Configuration www.ti.com 17.4.2.1.2 SDRAM Timing Register (SDTIMR) Settings for the EMIF to K4S641632H-TC(L)70 Interface The fields of the SDRAM timing register (SDTIMR) should be programmed first as described in Table 1738 to satisfy the required timing parameters for the K4S641632H-TC(L)70. Based on these calculations, a value of 6111 4610h should be written to SDTIMR. Figure 17-28 shows a graphical description of how SDTIMR should be programmed. Table 17-38. SDTIMR Field Calculations for the EMIF to K4S641632H-TC(L)70 Interface Field Name Formula Value from K4S641632H-TC(L)70 Datasheet Value Calculated for Field T_RFC T_RFC >= (tRFC × fEMIF_CLK) - 1 tRC = 68 ns (min) (1) 6 T_RP T_RP >= (tRP × fEMIF_CLK) - 1 tRP = 20 ns (min) 1 T_RCD T_RCD >= (tRCD × fEMIF_CLK) - 1 tRCD = 20 ns (min) 1 (2) T_WR T_WR >= (tWR × fEMIF_CLK) - 1 tRDL = 2 CLK = 20 ns (min) T_RAS T_RAS >= (tRAS × fEMIF_CLK) - 1 tRAS = 49 ns (min) 4 T_RC T_RC >= (tRC × fEMIF_CLK) - 1 tRC = 68 ns (min) 6 T_RRD T_RRD >= (tRRD × fEMIF_CLK) - 1 tRRD = 14 ns (min) 1 (1) (2) 1 The Samsung datasheet does not specify a tRFC value. Instead, Samsung specifies tRC as the minimum auto refresh period. The Samsung datasheet does not specify a tWR value. Instead, Samsung specifies tRDL as last data in to row precharge minimum delay. Figure 17-28. SDRAM Timing Register (SDTIMR) 31 27 24 23 22 20 19 18 16 001 0 001 0 001 T_RFC T_RP Rsvd T_RCD Rsvd T_WR 15 668 26 0 0110 12 11 8 7 6 4 3 0 0100 0110 0 001 0000 T_RAS T_RC Rsvd T_RRD Reserved External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Example Configuration www.ti.com 17.4.2.1.3 SDRAM Self Refresh Exit Timing Register (SDSRETR) Settings for the EMIF to K4S641632HTC(L)70 Interface The SDRAM self refresh exit timing register (SDSRETR) should be programmed second to satisfy the tXSR timing requirement from the K4S641632H-TC(L)70 datasheet. Table 17-39 shows the calculation of the proper value to program into the T_XS field of this register. Based on this calculation, a value of 6h should be written to SDSRETR. Figure 17-29 shows how SDSRETR should be programmed. Table 17-39. RR Calculation for the EMIF to K4S641632H-TC(L)70 Interface Field Name Formula Value from K4S641632H-TC(L)70 Datasheet Value Calculated for Field T_XS T_XS >= (tXSR × fEMIF_CLK) - 1 tRC = 68 ns (min) (1) 6 (1) The Samsung datasheet does not specify a tXSR value. Instead, Samsung specifies tRC as the minimum required time after CKE going high to complete self refresh exit. Figure 17-29. SDRAM Self Refresh Exit Timing Register (SDSRETR) 31 16 0000 0000 0000 0000 Reserved 15 5 4 0 000 0000 0000 0 0110 Reserved T_XS SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 669 Example Configuration www.ti.com 17.4.2.1.4 SDRAM Refresh Control Register (SDRCR) Settings for the EMIF to K4S641632H-TC(L)70 Interface The SDRAM refresh control register (SDRCR) should next be programmed to satisfy the required refresh rate of the K4S641632H-TC(L)70. Table 17-40 shows the calculation of the proper value to program into the RR field of this register. Based on this calculation, a value of 61Ah should be written to SDRCR. Figure 17-30 shows how SDRCR should be programmed. Table 17-40. RR Calculation for the EMIF to K4S641632H-TC(L)70 Interface Field Name Formula RR RR ≤ fEMIF_CLK × tRefresh Period From SDRAM datasheet: tRefresh Period / ncycles = 64 ms; ncycles = 4096 EMIF clock rate: fEMIF_CLK = 100 MHz Values Value Calculated for Field RR = 1562 cycles = 61Ah cycles Figure 17-30. SDRAM Refresh Control Register (SDRCR) 31 19 15 670 13 18 16 0 0000 0000 0000 000 Reserved Reserved 12 0 000 0 0110 0001 1010 (61Ah) Reserved RR External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Example Configuration www.ti.com 17.4.2.1.5 SDRAM Configuration Register (SDCR) Settings for the EMIF to K4S641632H-TC(L)70 Interface Finally, the fields of the SDRAM configuration register (SDCR) should be programmed as described in Table 17-37 to properly interface with the K4S641632H-TC(L)70 device. Based on these settings, a value of 4720h should be written to SDCR. Figure 17-31 shows how SDCR should be programmed. The EMIF is now ready to perform read and write accesses to the SDRAM. Table 17-41. SDCR Field Values For the EMIF to K4S641632H-TC(L)70 Interface Field Value Purpose SR 0 To avoid placing the EMIF into the self refresh state NM 1 To configure the EMIF for a 16-bit data bus CL 011b To select a CAS latency of 3 BIT11_9LOCK 1 To allow the CL field to be written IBANK 010b To select 4 internal SDRAM banks PAGESIZE 0 To select a page size of 256 words Figure 17-31. SDRAM Configuration Register (SDCR) 31 30 29 0 0 0 28 0 0000 24 SR Reserved Reserved Reserved 23 17 16 00 0000 18 0 0 Reserved Reserved Reserved 9 8 15 14 13 12 0 1 0 0 011 1 Reserved NM Reserved Reserved CL BIT11_9LOCK 7 6 4 11 3 2 0 0 010 0 000 Reserved IBANK Reserved PAGESIZE SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 671 Example Configuration www.ti.com 17.4.2.2 Configuring the Flash Interface This section describes how to configure the EMIF to interface with the two of SHARP LH28F800BJEPTTL90 8Mb Flash memory with a clock frequency of fEMIF_CLK = 100 MHz. The example assumes that one flash is connected to EMIF_nCS2 and the other to EMIF_nCS3. 17.4.2.2.1 Asynchronous 1 Configuration Register (CE2CFG) Settings for the EMIF to LH28F800BJEPTTL90 Interface The asynchronous 1 configuration register (CE2CFG) and asynchronous 2 configuration register (CE3CFG) are the only registers that is necessary to program for this asynchronous interface (assuming that one Flash is connected to EMIF_nCS[2] and the other to EMIF_nCS[3]. The SS bit (in both registers) should be set to 1 to enable Select Strobe Mode and the ASIZE field (in both registers) should be set to 1 to select a 16-bit interface. The other fields in this register control the shaping of the EMIF signals, and the proper values can be determined by referring to the AC Characteristics in the Flash datasheet and the device datasheet. Based on the following calculations, a value of 8862 25BDh should be written to CE2CFG. Table 17-42 and Table 17-43 show the pertinent AC Characteristics for reads and writes to the Flash device, and Figure 17-32 and Figure 17-33 show the associated timing waveforms. Finally, Figure 17-34 shows programming the CEnCFG (n = 2, 3) with the calculated values. Table 17-42. AC Characteristics for a Read Access AC Characteristic Device Definition Min tSU EMIF Setup time, read EMIF_D before EMIF_CLK high 6.5 Max Unit ns tH EMIF Data hold time, read EMIF_D after EMIF_CLK high 1 ns tD EMIF Output delay time, EMIF_CLK high to output signal valid 7 ns tELQV Flash nCE to Output Delay 90 ns tEHQZ Flash nCE High to Output in High Impedance 55 ns Max Unit Table 17-43. AC Characteristics for a Write Access AC Characteristic Device Definition Min tAVAV Flash Write Cycle Time 90 ns tELEH Flash nCE Pulse Width Low 50 ns tEHEL Flash nCE Pulse Width High (not shown in Figure 17-33) 30 ns Figure 17-32. LH28F800BJE-PTTL90 to EMIF Read Timing Waveforms Setup Hold Strobe TA EMIF_CLK tD tD EMIF_nCS[n] EMIF_A/ EMIF_BA tEHQZ tSU tH tELQV EMIF_D Data EMIF_nOE 672 External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Example Configuration www.ti.com Figure 17-33. LH28F800BJE-PTTL90 to EMIF Write Timing Waveforms Hold Setup Strobe tAVAV EMIF_CLK tELEH EMIF_nCS[n] EMIF_A/ EMIF_BA Address EMIF_D Data EMIF_nWE The R_STROBE field should be set to meet the following equation: R_STROBE >= (tD + tELQV + tSU) × fEMIF_CLK - 1 R_STROBE >= (7 ns + 90 ns + 6.5 ns) × 100 MHz - 1 R_STROBE >= 9.35 R_STROBE = 10 The R_HOLD field must be large enough to satisfy the EMIF Data hold time, tH: R_HOLD > = tH × fEMIF_CLK - 1 R_HOLD >= 1 ns × 100 MHz - 1 R_HOLD >= -0.9 The R_HOLD field must also combine with the TA field to satisfy the Flash's nCE High to Output in High Impedance time, tEHQZ: R_HOLD + TA >= (tD + tEHQZ) × fEMIF_CLK - 2 R_HOLD + TA >= (7 ns + 55 ns) × 100 MHz - 2 R_HOLD + TA >= 4.2 The largest value that can be programmed into the TA field is 3h, therefore the following values can be used: R_HOLD = 2 TA = 3 For Writes, the W_STROBE field should be set to satisfy the Flash's nCE Pulse Width constraint, tELEH: W_STROBE >= tELEH × fEMIF_CLK - 1 W_STROBE >= 50 ns × 100 MHz - 1 W_STROBE >= 4 SPNU499C – March 2018 Submit Documentation Feedback External Memory Interface (EMIF) Copyright © 2018, Texas Instruments Incorporated 673 Example Configuration www.ti.com The W_SETUP and W_HOLD fields should combine to satisfy the Flash's nCE Pulse Width High constraint, tEHEL, when performing back-to-back writes: W_SETUP + W_HOLD > = tEHEL × fEMIF_CLK - 2 W_SETUP + W_HOLD > = 30 ns × 100 MHz - 2 W_SETUP + W_HOLD > = 1 In addition, the entire Write access length must satisfy the Flash's minimum Write Cycle Time, tAVAV: W_SETUP + W_STROBE + W_HOLD >= tAVAV × fEMIF_CLK - 3 W_SETUP + W_STROBE + W_HOLD >= 90 ns × 100 MHz - 3 W_SETUP + W_STROBE + W_HOLD >= 6 Solving the above equations for the Write fields results in the following possible solution: W_SETUP = 1 W_STROBE = 5 W_HOLD = 0 Adding a 10 ns (1 cycle) margin to each of the periods (excluding TA which is already at its maximum) in this example produces the following recommended values: W_SETUP = 2h W_STROBE = 6h W_HOLD = 1h R_SETUP = 1h R_STROBE = Bh R_HOLD = 3h TA = 3h Figure 17-34. Asynchronous m Configuration Register (m = 1, 2) (CEnCFG (n = 2, 3)) 31 30 1 0 29 0010 26 00 SS EW W_SETUP W_STROBE 23 20 15 674 13 25 19 24 17 16 0110 001 0 W_STROBE W_HOLD R_SETUP 12 7 6 4 3 2 1 0 001 001011 011 11 01 R_SETUP R_STROBE R_HOLD TA ASIZE External Memory Interface (EMIF) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Chapter 18 SPNU499C – March 2018 Parameter Overlay Module (POM) This chapter describes the parameter overlay module (POM). Topic 18.1 18.2 18.3 ........................................................................................................................... Page Introduction ..................................................................................................... 676 Module Operation ............................................................................................. 677 POM Control Registers ...................................................................................... 679 SPNU499C – March 2018 Submit Documentation Feedback Parameter Overlay Module (POM) Copyright © 2018, Texas Instruments Incorporated 675 Introduction www.ti.com 18.1 Introduction In many applications it is important to be able to change certain parameters in the program without having to re-flash the device and immediately test these changes either in a hardware-in-the-loop simulation or in a real environment. The POM provides a mechanism to redirect accesses to non-volatile memory into a volatile memory internal or external to the device. The data requested by the CPU will be fetched from the overlay memory instead of the main non-volatile memory. 18.1.1 Main Features • • • Redirects program memory accesses to internal or external memory (overlay memory) Up to 8 MByte of external overlay memory Provides up to 32 programmable memory regions to replace non-volatile memory – Programmable region start address – Programmable region size (64 Bytes up to 256 kBytes in power of 2 steps) 18.1.2 Parameter Overlay Module (POM) Considerations • • • • 676 The POM can map onto up to 8MB of the internal or external memory space. The starting address and the size of the memory overlay are configurable through the POM control registers. Care must be taken to ensure that the overlay is mapped on to available memory. ECC must be disabled by software through CP15 in case POM overlay is enabled; otherwise ECC errors will be generated. POM overlay must not be enabled when the flash and internal RAM memories are swapped through the MEM SWAP field of the Bus Matrix Module Control Register 1 (BMMCR1). When POM is used to overlay the flash on to internal or external RAM, there is a bus contention possibility when another master accesses the TCM flash. This results in a system hang. – The POM implements a timeout feature to detect this exact scenario. The timeout needs to be enabled whenever POM overlay is enabled. – The timeout can be enabled by writing Ah to the enable timeout (ETO) field of the POM global control register (POMGLBCTRL). – In case a read request by the POM cannot be completed within 32 HCLK cycles, the timeout (TO) flag is set in the POM status register (POMFLG). Also, an abort is generated to the CPU. This can be a prefetch abort for an instruction fetch or a data abort for a data fetch. – The prefetch-abort and data-abort handlers must be modified to check if the TO flag in the POM is set. If so, then the application can assume that the timeout is caused by a bus contention between the POM transaction and another master accessing the same memory region. The abort handlers need to clear the TO flag, so that any further aborts are not misinterpreted as having been caused due to a timeout from the POM. Parameter Overlay Module (POM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Introduction www.ti.com 18.1.3 Block Diagram Figure 18-1. System Overlay Block Diagram ext. Mem Bus External Memory (overlay) EMIF Internal RAM SCR POM Data Data Program Memory Address Wrapper Address 18.2 Module Operation The POM has up to 32 programmable regions. Whenever the CPU requests data from the non-volatile memory which address falls into one of the programmed regions, the POM will request the data from the overlay memory. Wait states will be automatically inserted until the data is available from the overlay memory. This ensures that the overlay memory has the same (in the case that the latency from overlay memory is less than the program memory latency) or slower access time than the program memory. The POM does not provide a feature to write into the overlay memory. The write has to be performed directly to the memory mapped address space of the overlay memory. When the module is disabled, no redirection of access will be performed. NOTE: The overlay feature is not available for any other bus masters other than the main CPU. Any attempt to access overlaid memory via the POM by any other bus master would result in a deadlock situation (system hang). Other bus masters need to access the target internal or external memory directly. SPNU499C – March 2018 Submit Documentation Feedback Parameter Overlay Module (POM) Copyright © 2018, Texas Instruments Incorporated 677 Module Operation www.ti.com 18.2.1 Decode Regions There are 32 decode regions. Regions are defined by a start address and a region size. The start address is 23 bits wide to cover the maximum 8 MByte address space defined for program memory. The region size ranges from 64 Bytes to 256 kBytes with a step size of power of 2. If a region size of 0 is selected, the region is disabled. To support overlay memory that is not the same size as the program memory, an overlay start address that is 23-bits wide can be specified. The size of the overlay region is the same as the program memory region. The start address of both program memory and overlay memory region have to be a multiple of the programmed region size. When the address of the access falls into one of the programmed regions, the POM will start requesting the data from the overlay memory address, based on the overlay start address. If the address falls into multiple overlapping regions, the region with the lowest number has highest priority and only one read request from overlay memory will be initiated. This avoids that regions with the same program memory address, but different overlay memory addresses, request different data. Figure 18-2. Region Definition Example Overlay Memory Program Memory 0x00000000 0x00001000 1 kByte 64 Byte 0x00000400 64 Byte 0x00024400 1 kByte 18.2.2 Bus Errors on Accesses via POM In case a read by the POM cannot be completed within 32 HCLK cycles due to other transactions ongoing or due to other bus errors, a timeout mechanism is implemented. This timeout mechanism is disabled by default and must be enabled by writing Ah to the enable timeout (ETO) field of the POM global control register (POMGLBCTRL). An abort is generated to the host CPU when this timeout occurs. The host CPU responds by either taking the prefetch abort or the data abort exceptions depending on the nature of the access that caused the timeout. The abort handler can check if the TO flag is set in the POM module's flag register (POMFLG). If this flag is set, then the application can assume that the timeout is caused by the POM access not completing. This flag must be cleared so that any further aborts are not misinterpreted as having been caused by timeout on a POM access. 678 Parameter Overlay Module (POM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated POM Control Registers www.ti.com 18.3 POM Control Registers Table 18-1 lists the Parameter Overlay Module registers. The registers support only 32-bit writes. The offset is relative to the associated peripheral select. The base address for the control packets is FFA0 4000h. Table 18-1. POM Registers Offset Acronym Register Description 00h POMGLBCTRL POM Global Control Register Section 18.3.1 Section 04h POMREV POM Revision ID Section 18.3.2 08h POMCLKCTRL POM Clock Gate Control Register Section 18.3.3 0Ch POMFLG POM Status Register Section 18.3.4 200h, 210h, ..., 3F0h POMPROGSTARTx POM Program Region Start Address Register x Section 18.3.5 204h, 214h, ..., 3F4h POMOVLSTARTx POM Overlay Region Start Address Register x Section 18.3.6 208h, 218h, ..., 3F8h POMREGSIZEx POM Region Size Register x Section 18.3.7 Section 18.3.8 F00h POMITCTRL POM Integration Control Register FA0h POMCLAIMSET POM Claim Set Register Section 18.3.9 FA4h POMCLAIMCLR POM Claim Clear Register Section 18.3.10 FB0h POMLOCKACCESS POM Lock Access Register Section 18.3.11 FB4h POMLOCKSTATUS POM Lock Status Register Section 18.3.12 FB8h POMAUTHSTATUS POM Authentication Status Register Section 18.3.13 FC8h POMDEVID POM Device ID Register Section 18.3.14 FCCh POMDEVTYPE POM Device Type Register Section 18.3.15 FD0h POMPERIPHERALID4 POM Peripheral ID 4 Register Section 18.3.16 FD4h POMPERIPHERALID5 POM Peripheral ID 5 Register Section 18.3.17 FD8h POMPERIPHERALID6 POM Peripheral ID 6 Register Section 18.3.18 FDCh POMPERIPHERALID7 POM Peripheral ID 7 Register Section 18.3.19 FE0h POMPERIPHERALID0 POM Peripheral ID 0 Register Section 18.3.20 FE4h POMPERIPHERALID1 POM Peripheral ID 1 Register Section 18.3.21 FE8h POMPERIPHERALID2 POM Peripheral ID 2 Register Section 18.3.22 FECh POMPERIPHERALID3 POM Peripheral ID 3 Register Section 18.3.23 FF0h POMCOMPONENTID0 POM Component ID 0 Register Section 18.3.24 FF4h POMCOMPONENTID1 POM Component ID 1 Register Section 18.3.25 FF8h POMCOMPONENTID2 POM Component ID 2 Register Section 18.3.26 FFCh POMCOMPONENTID3 POM Component ID 3 Register Section 18.3.27 SPNU499C – March 2018 Submit Documentation Feedback Parameter Overlay Module (POM) Copyright © 2018, Texas Instruments Incorporated 679 POM Control Registers www.ti.com 18.3.1 POM Global Control Register (POMGLBCTRL) This register contains a key to enable the POM module. Logic remains reset until this key is set. Figure 18-3. POM Global Control Register (POMGLBCTRL) [address = FFA0 4000h] 31 23 15 22 16 OTADDR Reserved R/WP-60h R-0 12 11 8 7 4 3 0 Reserved ETO Reserved ON/OFF R-0 R/WP-5h R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 18-2. POM Global Control Register (POMGLBCTRL) Field Descriptions Bit Field Value 31-23 OTADDR 60h 22-12 Reserved 0 11-8 ETO All other values Reserved 3-0 ON/OFF Overlay target Address. These bits determine the upper address bits of the target overlay address. Writing a different value to this field will steer the POM access to a different location in the 4GB address space. The application must ensure that the overlay memory address points to a valid internal or external memory location. Reads return 0, writes have no effect. Enable Timeout. Refer to Section 18.2.2 for more details on the timeout error. Ah 7-4 Description 0 Timeout for bus transactions is enabled. Timeout for bus transactions is disabled. The timeout is disabled by default. Reads return zeros, writes have no effect. Turn functionality of POM on or off. Ah All other values POM is functional. POM is held in reset. NOTE: The key should be written to 5h, to avoid single bit flips inadvertently turning on the module. 680 Parameter Overlay Module (POM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated POM Control Registers www.ti.com 18.3.2 POM Revision ID (POMREV) This register contains the revision ID of the POM module. Figure 18-4. POM Revision ID (POMREV) [address = FFA0 4004h] 31 30 29 28 27 16 SCHEME Reserved FUNC R-1h R-0 R-A03h 15 11 10 8 7 6 5 0 RTL MAJOR CUSTOM MINOR R-0 R-1h R-0 R-8h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 18-3. POM Revision ID (POMREV) Field Descriptions Bit Field Value Description 31-30 SCHEME 1h Used to distinguish between different ID schemes. 29-28 Reserved 0 Reads return 0, writes have no effect. 27-16 FUNC 15-11 RTL 0 RTL version number. 10-8 MAJOR 1h Major revision number. 7-6 CUSTOM 0 Indicates a device specific implementation. 5-0 MINOR 8h Minor revision number. A03h Indicates the SW compatible module family. 18.3.3 POM Clock Gate Control Register (POMCLKCTRL) This register is for TI internal use only. Figure 18-5. POM Clock Gate Control Register [address = FFA0 4008h] 31 16 Reserved R-0 15 0 Reserved CLK GATE OFF R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 18-4. POM Clock Gate Control Register (POMCLKCTRL) Field Descriptions Bit 31-1 0 Field Value Description Reserved 0 Reads return 0, writes have no effect. CLK GATE OFF 0 Do not modify this bit. Leave it in its reset state. Modifying the bit while the POM module is switched on can result in unexpected behavior. SPNU499C – March 2018 Submit Documentation Feedback Parameter Overlay Module (POM) Copyright © 2018, Texas Instruments Incorporated 681 POM Control Registers www.ti.com 18.3.4 POM Status Register (POMFLG) This register provides POM status information. Figure 18-6. POM Status Register [address = FFA0 400Ch] 31 16 Reserved R-0 15 0 Reserved TO R-0 R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 to clear in privilege mode only; -n = value after reset Table 18-5. POM Status Register (POMFLG) Field Descriptions Bit 31-1 0 Field Reserved Value 0 TO Description Reads return 0, writes have no effect. Timeout. This flag signals a timeout condition on the last CPU read access through the POM. This flag is only updated when the POM module is enabled (ON/OFF = Ah). 0 Read: No timeout occurred. Write: No effect. 1 Read: Timeout occurred. Write: Bit is cleared. 682 Parameter Overlay Module (POM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated POM Control Registers www.ti.com 18.3.5 POM Program Region Start Address Register x (POMPROGSTARTx) This register contains the start address of the region in program memory. x goes from 0 to 31, since up to 32 regions can be defined. Figure 18-7. POM Program Region Start Register x (POMPROGSTARTx) [address = FFA0 4200h, FFA0 4210h, ..., FFA0 43F0h] 31 23 22 16 Reserved STARTADDRESS R-0 R/WP-0 15 0 STARTADDRESS R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 18-6. POM Program Region Start Address Register x (POMPROGSTARTx) Field Descriptions Bit Field 31-23 Reserved 22-0 STARTADDRESS Value 0 Description Reads return 0, writes have no effect. Defines the start address of the program memory region. The start address has to be a multiple of the region size. NOTE: If the region start address is programmed to a non-region size boundary, the region will begin at the next lower region size boundary. 18.3.6 POM Overlay Region Start Address Register x (POMOVLSTARTx) This register contains the start address of the region in overlay memory. x goes from 0 to 31, since up to 32 regions can be defined. Figure 18-8. POM Overlay Region Start Register x (POMOVLSTARTx) [address = FFA0 4204h, FFA0 4214h, ..., FFA0 43F4h] 31 23 22 16 Reserved STARTADDRESS R-0 R/W-0 15 0 STARTADDRESS R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 18-7. POM Overlay Region Start Address Register x (POMOVLSTARTx) Field Descriptions Bit Field 31-23 Reserved 22-0 STARTADDRESS Value 0 Description Reads return 0, writes have no effect. Defines the start address of the overlay memory region. The start address has to be a multiple of the region size. NOTE: If the region start address is programmed to a non-region size boundary, the region will begin at the next lower region size boundary. SPNU499C – March 2018 Submit Documentation Feedback Parameter Overlay Module (POM) Copyright © 2018, Texas Instruments Incorporated 683 POM Control Registers www.ti.com 18.3.7 POM Region Size Register x (POMREGSIZEx) This register contains the region size for both program memory and overlay memory. x goes from 0 to 31, since up to 32 regions can be defined. Figure 18-9. POM Region Size Register x (POMREGSIZEx) [address = FFA0 4208h, FFA0 4218h, ..., FFA0 43F8h] 31 16 Reserved R-0 15 4 3 0 Reserved SIZE R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 18-8. POM Region Size Register x (POMREGSIZEx) Field Descriptions Bit Field Value 31-4 Reserved 3-0 SIZE 0 Description Reads return 0, writes have no effect. Region size 0 Region is disabled. 1h 64 Bytes 2h 128 Bytes : Dh Eh-Fh : 256 kBytes Reserved NOTE: If the region is enabled by writing a non-zero value to the SIZE bitfield, it will take some number of VCLK cycles until the write takes effect. If during this time an access to the programmed region is taking place and the POM is already enabled in the POMGLBCTRL register, it either decodes the previous setting of the SIZE field or the access will be directed to the program memory when the region was disabled. 18.3.8 POM Integration Control Register (POMITCTRL) This is a CoreSight register and is for debug purpose only. The integration functionality is not implemented. The register reads 00000000. Figure 18-10. POM Integration Control Register (POMITCTRL) [address = FFA0 4F00h] 31 0 Reserved R-0 LEGEND: R = Read only; -n = value after reset Table 18-9. POM Integration Control Register (POMITCTRL) Field Descriptions Bit 31-0 684 Field Reserved Value 0 Description Reads return 0, writes have no effect. Parameter Overlay Module (POM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated POM Control Registers www.ti.com 18.3.9 POM Claim Set Register (POMCLAIMSET) This is a CoreSight register and is for debug purpose only. This register allows different masters to claim the control for the POM module. There is no control functionality for POM register accesses implemented. The only functionality of these bits is to indicate that another master is controlling the module. Figure 18-11. POM Claim Set Register (POMCLAIMSET) [address = FFA0 4FA0h] 31 16 Reserved R-0 15 1 0 Reserved 2 SET1 SET0 R-0 R/W-1 R/W-1 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 18-10. POM Claim Set Register (POMCLAIMSET) Field Descriptions Bit 31-2 1 Field Reserved Value 0 SET1 Description Reads return 0, writes have no effect. The module is claimed. 0 Read: This claim tag bit is not implemented. Write: No effect. 1 Read: This claim tag is implemented. Write: Set claim tag. 0 SET0 The module is claimed. 0 Read: This claim tag bit is not implemented. Write: No effect. 1 Read: This claim tag is implemented. Write: Set claim tag. SPNU499C – March 2018 Submit Documentation Feedback Parameter Overlay Module (POM) Copyright © 2018, Texas Instruments Incorporated 685 POM Control Registers www.ti.com 18.3.10 POM Claim Clear Register (POMCLAIMCLR) This is a CoreSight register and is for debug purpose only. This register allows different masters to claim the control for the POM module. There is no control functionality for POM register accesses implemented. The only functionality of these bits is to indicate that another master is controlling the module. Figure 18-12. POM Claim Clear Register (POMCLAIMCLR) [address = FFA0 4FA4h] 31 16 Reserved R-0 15 1 0 Reserved 2 CLR1 CLR0 R-0 R/W-1 R/W-1 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 18-11. POM Claim Clear Register (POMCLAIMCLR) Field Descriptions Bit 31-2 1 Field Reserved Value 0 CLR1 Description Reads return 0, writes have no effect. The module is claimed. Read: Current claim tag value. 0 0 Write: No effect. 1 Write: Clear claim tag. CLR0 The module is claimed. Read: Current claim tag value. 686 0 Write: No effect. 1 Write: Clear claim tag. Parameter Overlay Module (POM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated POM Control Registers www.ti.com 18.3.11 POM Lock Access Register (POMLOCKACCESS) This is a CoreSight register and is for debug purpose only. The register reads 00000000. Figure 18-13. POM Lock Access Register (POMLOCKACCESS) [address = FFA0 4FB0h] 31 0 Reserved R-0 LEGEND: R = Read only; -n = value after reset Table 18-12. POM Lock Access Register (POMLOCKACCESS) Field Descriptions Bit 31-0 Field Value Reserved 0 Description Reads return 0, writes have no effect. 18.3.12 POM Lock Status Register (POMLOCKSTATUS) This is a CoreSight register and is for debug purpose only. The register reads 00000000. Figure 18-14. POM Lock Status Register (POMLOCKSTATUS) [address = FFA0 4FB4h] 31 0 Reserved R-0 LEGEND: R = Read only; -n = value after reset Table 18-13. POM Lock Status Register (POMLOCKSTATUS) Field Descriptions Bit 31-0 Field Reserved Value 0 Description Reads return 0, writes have no effect. 18.3.13 POM Authentication Status Register (POMAUTHSTATUS) This is a CoreSight register and is for debug purpose only. The register reads 00000000. Figure 18-15. POM Authentication Status Register (POMAUTHSTATUS) [address = FFA0 4FB8h] 31 0 Reserved R-0 LEGEND: R = Read only; -n = value after reset Table 18-14. POM Authentication Status Register (POMAUTHSTATUS) Field Descriptions Bit 31-0 Field Reserved Value 0 Description Reads return 0, writes have no effect. SPNU499C – March 2018 Submit Documentation Feedback Parameter Overlay Module (POM) Copyright © 2018, Texas Instruments Incorporated 687 POM Control Registers www.ti.com 18.3.14 POM Device ID Register (POMDEVID) This is a CoreSight register and is for debug purpose only. The register reads 00000000. Figure 18-16. POM Device ID Register (POMDEVID) [address = FFA0 4FC8h] 31 0 Reserved R-0 LEGEND: R = Read only; -n = value after reset Table 18-15. POM Device ID Register (POMDEVID) Field Descriptions Bit 31-0 Field Value Reserved 0 Description Reads return 0, writes have no effect. 18.3.15 POM Device Type Register (POMDEVTYPE) This is a CoreSight register and is for debug purpose only. The device type register defines the CoreSight module class. Figure 18-17. POM Device Type Register (POMDEVTYPE) [address = FFA0 4FCCh] 31 16 Reserved R-0 15 8 7 4 3 0 Reserved Sub Type Major Type R-0 R-0 R-4h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 18-16. POM Device Type Register (POMDEVTYPE) Field Descriptions Bit Field 31-8 Reserved 7-4 3-0 688 Value Description 0 Reads return 0, writes have no effect. Sub Type 0 Other Major Type 4h Debug Control Parameter Overlay Module (POM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated POM Control Registers www.ti.com 18.3.16 POM Peripheral ID 4 Register (POMPERIPHERALID4) This is a CoreSight register and is for debug purpose only. This register shows the peripheral identification of the CoreSight component. Figure 18-18. POM Peripheral ID 4 Register (POMPERIPHERALID4) [address = FFA0 4FD0h] 31 16 Reserved R-0 15 8 7 4 3 0 Reserved 4KB Count JEP106 Continuation Code R-0 R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 18-17. POM Peripheral ID 4 Register (POMPERIPHERALID4) Field Descriptions Bit Field Value Description 31-8 Reserved 0 Reads return 0, writes have no effect. 7-4 4KB Count 0 Only 4KB is implemented. 3-0 JEP Continuation Code 0 JEP106 Code 18.3.17 POM Peripheral ID 5 Register (POMPERIPHERALID5) This is a CoreSight register and is for debug purpose only. This register reads 00000000. Figure 18-19. POM Peripheral ID 5 Register (POMPERIPHERALID5) [address = FFA0 4FD4h] 31 0 Reserved R-0 LEGEND: R = Read only; -n = value after reset Table 18-18. POM Peripheral ID 5 Register (POMPERIPHERALID5) Field Descriptions Bit 31-0 Field Reserved Value 0 Description Reads return 0, writes have no effect. SPNU499C – March 2018 Submit Documentation Feedback Parameter Overlay Module (POM) Copyright © 2018, Texas Instruments Incorporated 689 POM Control Registers www.ti.com 18.3.18 POM Peripheral ID 6 Register (POMPERIPHERALID6) This is a CoreSight register and is for debug purpose only. This register reads 00000000. Figure 18-20. POM Peripheral ID 6 Register (POMPERIPHERALID6) [address = FFA0 4FD8h] 31 0 Reserved R-0 LEGEND: R = Read only; -n = value after reset Table 18-19. POM Peripheral ID 6 Register (POMPERIPHERALID6) Field Descriptions Bit 31-0 Field Value Reserved 0 Description Reads return 0, writes have no effect. 18.3.19 POM Peripheral ID 7 Register (POMPERIPHERALID7) This is a CoreSight register and is for debug purpose only. This register reads 00000000. Figure 18-21. POM Peripheral ID 7 Register (POMPERIPHERALID7) [address = FFA0 4FDCh] 31 0 Reserved R-0 LEGEND: R = Read only; -n = value after reset Table 18-20. POM Peripheral ID 7 Register (POMPERIPHERALID7) Field Descriptions Bit 31-0 690 Field Reserved Value 0 Description Reads return 0, writes have no effect. Parameter Overlay Module (POM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated POM Control Registers www.ti.com 18.3.20 POM Peripheral ID 0 Register (POMPERIPHERALID0) This is a CoreSight register and is for debug purpose only. This register shows the peripheral identification of the CoreSight component. Figure 18-22. POM Peripheral ID 0 Register (POMPERIPHERALID0) [address = FFA0 4FE0h] 31 16 Reserved R-0 15 8 7 0 Reserved Part Number R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 18-21. POM Peripheral ID 0 Register (POMPERIPHERALID0) Field Descriptions Bit Field Value Description 31-8 Reserved 0 Reads return 0, writes have no effect. 7-0 Part Number 0 Reads 0, since POMREV defines the module. 18.3.21 POM Peripheral ID 1 Register (POMPERIPHERALID1) This is a CoreSight register and is for debug purpose only. This register shows the peripheral identification of the CoreSight component. Figure 18-23. POM Peripheral ID 1 Register (POMPERIPHERALID1) [address = FFA0 4FE4] 31 16 Reserved R-0 15 8 7 4 3 0 Reserved JEP106 Identity Code Part Number R-0 R-7h R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 18-22. POM Peripheral ID 1 Register (POMPERIPHERALID1) Field Descriptions Bit Field Value Description 31-8 Reserved 0 Reads return 0, writes have no effect. 7-4 JEP106 Identity Code 7h Part of TI JEDEC number. 3-0 Part Number 0 Reads 0, since POMREV defines the module. SPNU499C – March 2018 Submit Documentation Feedback Parameter Overlay Module (POM) Copyright © 2018, Texas Instruments Incorporated 691 POM Control Registers www.ti.com 18.3.22 POM Peripheral ID 2 Register (POMPERIPHERALID2) This is a CoreSight register and is for debug purpose only. This register shows the peripheral identification of the CoreSight component. Figure 18-24. POM Peripheral ID 2 Register (POMPERIPHERALID2) [address = FFA0 4FE8h] 31 16 Reserved R-0 15 8 7 4 3 2 0 Reserved Revision JEDEC JEP106 Identity Code R-0 R-0 R-1h R-1h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 18-23. POM Peripheral ID 2 Register (POMPERIPHERALID2) Field Descriptions Bit Field Value Description 31-8 Reserved 0 Reads return 0, writes have no effect. 7-4 Revision 0 Reads 0, since POMREV defines the module. 3 JEDEC 1h Indicates JEDEC assigned value. JEP106 Identity Code 1h JEDEC+JEP106 Identity Code (POMPERIPHERALID2)+JEP106 Identity Code (POMPERIPHERALID1) form TI JEDEC ID of 97h. 2-0 18.3.23 POM Peripheral ID 3 Register (POMPERIPHERALID3) This is a CoreSight register and is for debug purpose only. This register reads 00000000. Figure 18-25. POM Peripheral ID 3 Register (POMPERIPHERALID3) [address = FFA0 4FECh] 31 0 Reserved R-0 LEGEND: R = Read only; -n = value after reset Table 18-24. POM Peripheral ID 3 Register (POMPERIPHERALID3) Field Descriptions Bit 31-0 692 Field Reserved Value 0 Description Reads return 0, writes have no effect. Parameter Overlay Module (POM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated POM Control Registers www.ti.com 18.3.24 POM Component ID 0 Register (POMCOMPONENTID0) This is a CoreSight register and is for debug purpose only. Figure 18-26. POM Component ID 0 Register (POMCOMPONENTID0) [address = FFA0 4FF0h] 31 16 Reserved R-0 15 8 7 0 Reserved Preamble R-0 R-Dh LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 18-25. POM Component ID 0 Register (POMCOMPONENTID0) Field Descriptions Bit Field Value 31-8 Reserved 0 7-0 Preamble Dh Description Reads return 0, writes have no effect. Preamble 18.3.25 POM Component ID 1 Register (POMCOMPONENTID1) This is a CoreSight register and is for debug purpose only. Figure 18-27. POM Component ID 1 Register (POMCPOMPONENTID1) [address = FFA0 4FF4h] 31 16 Reserved R-0 15 8 7 4 3 0 Reserved Component Class Preamble R-0 R-9h R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 18-26. POM Component ID 1 Register (POMCOMPONENTID1) Field Descriptions Bit Field Value Description 31-8 Reserved 0 Reads return 0, writes have no effect. 7-4 Component Class 9h CoreSight Component 3-0 Preamble 0 Preamble SPNU499C – March 2018 Submit Documentation Feedback Parameter Overlay Module (POM) Copyright © 2018, Texas Instruments Incorporated 693 POM Control Registers www.ti.com 18.3.26 POM Component ID 2 Register (POMCOMPONENTID2) This is a CoreSight register and is for debug purpose only. Figure 18-28. POM Component ID 2 Register (POMCPOMPONENTID2) [address = FFA0 4FF8h] 31 16 Reserved R-0 15 8 7 0 Reserved Preamble R-0 R-5h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 18-27. POM Component ID 2 Register (POMCOMPONENTID2) Field Descriptions Bit Field Value Description 31-8 Reserved 0 Reads return 0, writes have no effect. 7-0 Preamble 5h Preamble 18.3.27 POM Component ID 3 Register (POMCOMPONENTID3) This is a CoreSight register and is for debug purpose only. Figure 18-29. POM Component ID 3 Register (POMCPOMPONENTID3) [address = FFA0 4FFCh] 31 16 Reserved R-0 15 8 7 0 Reserved Preamble R-0 R-B1h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 18-28. POM Component ID 3 Register (POMCOMPONENTID3) Field Descriptions Bit Field Value 31-8 Reserved 0 7-0 Preamble B1h 694 Description Reads return 0, writes have no effect. Preamble Parameter Overlay Module (POM) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Chapter 19 SPNU499C – March 2018 Analog To Digital Converter (ADC) Module This chapter describes the analog to digital converter (ADC) module. Topic ........................................................................................................................... 19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 19.10 19.11 Overview ......................................................................................................... Introduction ..................................................................................................... Basic Features and Usage of the ADC................................................................. Advanced Conversion Group Configuration Options ............................................ ADC Module Basic Interrupts ............................................................................. ADC Module DMA Requests............................................................................... ADC Magnitude Threshold Interrupts .................................................................. ADC Special Modes .......................................................................................... ADC Results’ RAM Special Features ................................................................... ADEVT Pin General Purpose I/O Functionality .................................................... ADC Control Registers ..................................................................................... SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated Page 696 697 700 706 710 711 712 713 721 722 724 695 Overview www.ti.com 19.1 Overview The microcontroller includes two 12-bit ADC modules. The main features of each of the ADC modules are: • Selectable 10-bit or 12-bit resolution, 10-bit mode is the default • Successive-approximation-register architecture • Three conversion groups – Group1, Group2 and Event Group • All three conversion groups can be configured to be hardware-triggered; group1 and group2 can also be triggered by software • Conversion results are stored in a 64-word memory (SRAM) – These 64 words are divided between the three conversion groups and are configurable by software – Accesses to the conversion result RAM are protected by parity • Flexible options for generating DMA requests for transferring conversion results • Multichannel conversions performed in ascending order, one channel at a time • Single or continuous conversion modes • Embedded self-test logic for input channel failure mode (open / short) detection • Embedded calibration logic for offset error correction • Enhanced Power-down mode • External event pin (ADEVT) to trigger conversions – ADEVT is also programmable as general-purpose I/O • Eight hardware events to trigger conversions The two instances of the 12-bit ADC modules on the microcontroller share 16 analog input channels. The connections are shown in Figure 19-1. • ADC1 supports 24 channels • ADC2 supports 16 channels, all of which are shared with ADC1 • When using both ADC1 and ADC2 on a shared channel, the sample windows must be identical such that the sample windows completely match each other or non-overlapping with a minimum of 2 ADC cycles buffer between the end of one ADC’s sample window and the start of the other ADC’s sample window. • The reference voltages, as well as operating supply and ground, are shared between the two ADC cores. Figure 19-1. Channel Assignments of Two ADC Cores AD1IN[7:0] AD1EVT AD1IN[23:8] ADC1 12 Bit VCCAD VSSAD ADREFHI ADREFLO AD2EVT 696 CPU Interface ADC2 12 Bit Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Introduction www.ti.com 19.2 Introduction This section presents a brief functional description of the analog-to-digital converter (ADC) module. Figure 19-2 illustrates the components of the ADC module. Figure 19-2. ADC Block Diagram ADIN0 ADREFLO ADREFHI 10/12-bit AIN Successive Approximation Analog-to-Digital Converter Control Signals 24 – 1 Input Multiplexor ADIN23 VSSAD VCCAD Self-Test and Calibration Cell End Of Conversion Sequencer and ADC Results’ Memory Interface Controller 10/12-bit Result ADC Results’ Memory VBUS Interface for Access to ADC Registers VBUSP SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 697 Introduction www.ti.com 19.2.1 Input Multiplexor The input multiplexor (MUX) connects the selected input channel to the AIN input of the ADC core. The ADC1 module supports up to 24 inputs as shown in Figure 19-2. The ADC2 module supports up to 16 inputs. The sequencer selects the channel to be converted. 19.2.2 Self-Test and Calibration Cell The ADC includes specific hardware that allows a software algorithm to detect open/short on an ADC analog input. It also allows the application program to calibrate the ADC. Also see Section 19.8.1 and Section 19.8.2. 19.2.3 Analog-to-Digital Converter Core The ADC core is a combination voltage scaling, charge redistribution Successive Approximation Register (SAR) based analog-to-digital converter. The core can be configured for operation in 10-bit resolution (default) or 12-bit resolution. This is controlled by the sequencer logic. This selection applies to all conversions performed by the ADC module. It is not possible to convert some channels with a 12-bit resolution and some with a 10-bit resolution. A single conversion from an analog input to a digital conversion result occurs in two distinct periods: • Sampling Period: – The sequencer generates a START signal to the ADC core to signal the start of the sampling period. – The analog input signal is sampled directly on to the switched capacitor array during this period, providing an inherent sample-and-hold function. – The sampling period ends one full ADCLK after the falling edge of the START signal. – The sequencer can control the sampling period duration by configuring the conversion group’s sample time control register (ADEVSAMP, ADG1SAMP, ADG2SAMP). This register controls the time for which the START signal stays high. • Conversion Period: – The conversion period starts one full ADCLK after the falling edge of START. – One bit of the conversion result is output on each rising edge of ADCLK in the conversion period, starting with the most-significant bit first. – The conversion period is 12 ADCLK cycles in case of a 12-bit ADC, and is 10 ADCLK cycles in case of a 10-bit ADC. – The ADC core generates an End-Of-Conversion (EOC) signal to the sequencer at the end of the conversion period. At this time the complete 12-, or 10-bit conversion result is available. – The sequencer captures the ADC core conversion result output as soon as EOC is driven High. The analog conversion range is determined by the reference voltages: ADREFHI and ADREFLO. ADREFHI is the top reference voltage and is the maximum analog voltage that can be converted. An analog input voltage equal to ADREFHI or higher results in an output code of 0x3FF for 10-bit resolution and 0xFFF for 12-bit resolution. ADREFLO is the bottom reference voltage and is the minimum analog voltage that can be converted. Applying an input voltage equal to ADREFLO or lower results in an output code of 0x000. Both ADREFHI and ADREFLO must be chosen not to exceed the analog power supplies: VCCAD and VSSAD, respectively. Input voltages between ADREFHI and ADREFLO produce a conversion result given by Equation 27 for 10-bit resolution and by Equation 28 for 12-bit resolution. 698 1024 x (InputVoltage - AD REFLO) DigitalResult = -------------------------------------------------------------------------------------- – 0.5 AD REFHI - AD REFLO (27) 4096 x(InputVoltage - AD REFLO) – 0.5 DigitalResult = -------------------------------------------------------------------------------------(AD REFHI - AD REFLO) (28) Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Introduction www.ti.com 19.2.4 Sequencer The sequencer coordinates the operations of the ADC, including the input multiplexor, the ADC core, and the result memory. In addition, the logic of the sequencer sets the status register flags when the conversion is ongoing, stopped, or finished. All the features of the sequencer are discussed in detail in the following sections of this document. 19.2.5 Conversion Groups Several applications require groups of channels to be converted using a single trigger source for example. There could also be some groups of channels identified which require a specific setting of the acquisition time. The ADC module supports three conversion groups for this purpose – Group1, Group2 and the Event Group. Any of the available analog input channels can be assigned to any of the conversion groups. This also allows a particular channel to be repeatedly sampled by selecting it in multiple groups. There is an inherent priority scheme used when multiple conversion groups are triggered at once. The Event Group is the highest-priority, followed by the Group1 and then the Group2. The Event Group is always hardware event-triggered. Group1 and Group2 are software-triggered by default and can be configured to be hardware-, or event-triggered as well. The triggering of conversions in each group is discussed in Section 19.3.6. Each conversion group has a separate set of control registers to: • Select the input channels to be converted • Configure the mode of conversion: single conversion sequence or continuous conversions • Configure the input channel sampling time • Configure the interrupt and/or DMA request generation conditions SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 699 Basic Features and Usage of the ADC www.ti.com 19.3 Basic Features and Usage of the ADC This section describes the usage of the basic features of the ADC module. 19.3.1 How to Select Between 12-bit and 10-bit Resolution The 10_12_BIT field of the ADC Operating Mode Control Register (ADOPMODECR) configures the ADC to be in 10-bit or 12-bit resolution mode. • If 10_12_BIT = 0, the module is in 10-bit resolution mode. This is the default mode of operation. • If 10_12_BIT = 1, the module is in 12-bit resolution mode. 19.3.2 How to Set Up the ADCLK Speed The ADC sequencer generates the clock for the ADC core, ADCLK. The ADC core uses the ADCLK signal for its timing. The ADCLK is generated by dividing down the input clock to the ADC module, which is the VBUSP interface clock, VCLK. A 5-bit field (PS) in the ADC Clock Control Register (ADCLOCKCR) is used to divide down the VCLK by 1 up to 32. The ADCLK valid frequency range is specified in the device datasheet. fADCLK = fVCLK / (PS + 1) The maximum frequency for ADCLK is specified in the device datasheet. 19.3.3 How to Set Up the Input Channel Acquisition Time The signal acquisition time for each group is separately configurable using the ADG1SAMP[11:0], ADG2SAMP[11:0], and ADEVSAMP[11:0] registers. The acquisition time is specified in terms of ADCLK cycles and ranges from a minimum of 2 ADCLK cycles to a maximum of 4098 ADCLK cycles. For example, Group1 acquisition time, tACQG1 = G1SAMP[11:0] + 2, in ADCLK cycles. The minimum acquisition time is specified in the device datasheet. This time also depends on the impedance of the circuit connected to the analog input channel being converted. See the ADC Source Impedance for Hercules™ ARM® Safety MCUs Application Report (SPNA118). 19.3.4 How to Select an Input Channel for Conversion The ADC module needs to be enabled first before selecting an input channel for conversion. The ADC module can be enabled by setting the ADC EN bit in the ADC Operating Mode Control Register (ADOPMODECR). Multiple input channels can be selected for conversion in each group. Only one input channel is converted at a time. The channels to be converted are configured in one or more of the three conversion groups’ channel selection registers. Channels to be converted in Group1 are configured in the Group1 Channel-Select Register (ADG1SEL), those to be converted in Group2 are configured in the Group2 Channel-Select Register (ADG2SEL), and those to be converted in the Event Group are configured in the Event Group Channel-Select Register (ADEVSEL). 19.3.5 How to Select Between Single Conversion Sequence or Continuous Conversions Each group has its own mode control register. The MODE field of these control registers allow the application to select between a single conversion sequence or continuous conversion mode. NOTE: Selecting continuous conversion mode for all three groups All three conversion groups cannot be configured to be in a continuous conversion mode. If the application configures the group mode control registers to enable continuous conversion mode for all three groups, then the Group2 will be automatically be configured to be in a single conversion sequence mode. 700 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Basic Features and Usage of the ADC www.ti.com With conversions ongoing in continuous conversion mode, if the MODE field of a group is cleared, then that group switches to the single conversion sequence mode. Conversions for this group will stop once all channels selected for that group have been converted. 19.3.6 How to Start a Conversion The conversion groups Group1 and Group2 are software-triggered by default. A conversion in these groups can be started just by writing the desired channels to the respective Channel-Select Registers. For example, in order to convert channels 0, 1, 2, and 3 in Group1 and channels 8, 9, 10, and 11 in Group2, the application just has to write 0x0000000F to ADG1SEL and 0x00000F00 to ADG2SEL. The ADC module will start by servicing the group that was triggered first, Group1 in this example. The conversions for all groups are performed in ascending order of the channel number. For the Group1 the conversions will be performed in the order: channel 0 first, followed by channel 1, then channel 2, and then channel 3. The Group2 conversions will be performed in the order: channels 8, 9, 10, and 11. The Event Group is only hardware-triggered. There are up to eight hardware event trigger sources defined for the ADC module. Check the device datasheet for a complete listing of these eight hardware trigger options. The trigger source to be used needs to be configured in the ADEVSRC register. Similar registers also exist for the Group1 and Group2 as these can also be configured to be event-triggered. The polarity of the event trigger is also configurable, with a falling edge being the default. An Event Group conversion starts when at least one channel is selected for conversion in this group, and when the defined event trigger occurs. If any conversion group is configured to be in a continuous conversion mode, then it needs to only be triggered once. All the channels selected for conversion in that group will be converted repeatedly. 19.3.7 How to Know When the Group Conversion is Completed Each conversion group has a status flag to indicate when its conversion has ended. See ADEVSR, ADG1SR, and ADG2SR. This bit is set when a conversion sequence for a group ends. This bit does is always set if a group is configured for continuous conversions. 19.3.8 How Results are Stored in the Results’ Memory The ADC stores the conversion results in three separate memory regions in the ADC Results’ RAM, one region for each group. Each memory region is a stack of buffers, with each buffer capable of holding one conversion result. The number of buffers allocated for each group is programmed by configuring the ADC module registers ADBNDCR and ADBNDEND. ADBNDCR contains two 9-bit pointers BNDA and BNDB. BNDA, BNDB, and BNDEND are used to partition the total memory available into three memory regions as shown in Figure 19-3. Both BNDA and BNDB are pointers referenced from the start of the results’ memory. BNDA specifies the number of buffers allocated for the Event Group conversion results in units of two buffers; BNDB specifies the number of buffers allocated for the Event Group plus Group1 in units of two buffers. Please refer to Section 19.11.23 for more details on configuring the ADC results’ memory. ADBNDEND contains a 3-bit field called BNDEND that configures the total memory available. The ADC module can support up to 1024 buffers. The device supports a maximum of 64 buffers for both the ADC modules. SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 701 Basic Features and Usage of the ADC www.ti.com Figure 19-3. FIFO Implementation 0x00 Total Memory Depth Event Memory Depth BNDA Group 1 Memory Depth BNDB Group 2 Memory Depth BNDEND • • • Number of buffers for Event Group = 2 × BNDA Number of buffers for Group1 = 2 × (BNDB – BNDA) Number of buffers for Group2 = Total number of buffers – 2 × BNDB 19.3.9 How to Read the Results from the Results’ Memory The CPU can read the conversion results in one of two ways: 1. By using the conversion results memory as a FIFO queue 2. By accessing the conversion results memory directly 19.3.9.1 Reading Conversion Results from a FIFO The conversion results for each group can be accessed via a range of addresses provided to facilitate the use of the ARM Cortex-R4 CPU’s Load-Multiple (LDM) instruction. A single read performed using the LDR instruction can also be used to read out a single conversion result. The results are read out from the group’s memory region as a FIFO queue by reading from any location inside this address range. The conversion result that got stored first gets read first. A result that is read from the memory in this method is removed from the memory. For example, a read from any address in the range ADEVBUFFER (offset 0x90 to 0xAF) pulls out one conversion result from the Event Group memory. Figure 19-4. Format of Conversion Result Read from FIFO, 12-bit ADC Offset Address Register 0x90 to 0xAF ADEVBUFFER 0xB0 to 0xCF ADG1BUFFER 0xD0 to 0xEF ADG2BUFFER 702 31 30 15 29 14 28 13 27 12 EV_ EMPTY 26 11 25 10 24 9 23 8 22 7 21 6 Reserved Reserved 20 5 19 4 18 3 17 2 16 1 0 EV_CHID EV_DR G1_ EMPTY Reserved Reserved G1_CHID G1_DR G2_ EMPTY Reserved Reserved G2_CHID G2_DR Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Basic Features and Usage of the ADC www.ti.com Figure 19-5. Format of Conversion Result Read from FIFO, 10-bit ADC Offset Address Register 0x90 to 0xAF ADEVBUFFER 0xB0 to 0xCF ADG1BUFFER 0xD0 to 0xEF ADG2BUFFER 31 30 15 29 14 28 13 27 12 26 11 25 10 24 9 23 8 22 7 21 6 20 5 19 4 18 3 17 2 16 1 0 Reserved EV_ EMPTY EV_CHID EV_DR Reserved G1_ EMPTY G1_CHID G1_DR Reserved G2_ EMPTY G2_CHID G2_DR Option to read channel id along with conversion result: The application has an option to read the channel id along with the conversion result. This is controlled by the CHID field of the group’s mode control register. If the option to read the channel id is not selected, the channel id field of the conversion result reads as zeros. Protection against reading from empty FIFO: There is also a hardware mechanism to protect the application from reading past the number of new conversion results held in the FIFO. Once all available conversion results have been read out of the FIFO by the application, a subsequent read from the FIFO causes the mechanism to indicate that the FIFO is empty by setting the EMPTY field. Debug / Emulation Support: For debug purposes, each conversion group also provides an address that the application can read from for extracting the group’s conversion results. However, no status flags for a conversion group are affected by reading from these emulation buffer addresses. For example, reading from ADEVEMUBUFFER (offset 0xF0) returns the next result in the Event Group buffer but does not actually remove that result from the buffer or change the amount of data held in the buffer. 19.3.9.2 Reading Conversion Results Directly from the Conversion Results’ Memory The conversion result memory is part of the device’s memory map. The base address for the ADC1 result memory is FF3E 0000h and for the ADC2 result memory is FF3A 0000h. Figure 19-6. ADC Memory Mapping ADC1 SPNU499C – March 2018 Submit Documentation Feedback ADC2 0xFF3E0000 0xFF3A0000 Conversion word 0 0xFF3E0004 0xFF3A0004 Conversion word 1 0xFF3E0008 0xFF3A0008 Conversion word 2 0xFF3E01F8 0xFF3A01F8 Conversion word 62 0xFF3E00FC 0xFF3A00FC Conversion word 63 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 703 Basic Features and Usage of the ADC www.ti.com The application can identify the address ranges for each of the three memory regions for the three conversion groups after performing the segmentation as described in Section 19.3.8. It is up to the application to read the desired results from the three conversion groups. The formats of the conversion results when reading from RAM directly are shown in the following figures. Figure 19-7. Format of Conversion Result Directly Read from ADC RAM, 12-bit ADC ADC RAM address Reserved channel id [3-0] channel id [4] 12-bit conversion result Figure 19-8. Format of Conversion Result Directly Read from ADC RAM, 10-bit ADC ADC RAM address Reserved Rsvd channel id [4-0] 10-bit conversion result Note that there is no EMPTY field to protect the application from reading data that has been previously read. Each group does have a separate register which holds the address in the group’s result memory where the ADC will write the next conversion result. These are the ADEVRAMWRADDR, ADG1RAMWRADDR, and ADG2RAMWRADDR registers. The application can use this information to calculate how many valid conversion results are available to be read. Benefit of reading conversion results directly from ADC RAM: The application does not have to read out conversion results sequentially as in the case of reading from a FIFO. As a result, the application can selectively read the conversion results for any particular input channel of interest without having to read other channels’ conversion results. 19.3.9.3 Example Suppose that channels 0, 1, and 2 are selected for conversion in the Event Group, channels 4, 7, and 8 are selected for conversion in group 1, and channels 3, 5, and 6 are selected for conversion in group 2. The conversion results will get stored in the three memory regions as shown in Figure 19-9. Suppose that the CPU wants to read out the results for the Event Group from a FIFO queue. The CPU needs to read from any address in the range ADEVBUFFER (offset 0x90 to 0xAF) multiple times, or do a “load multiple” from this range of addresses. This will cause the ADC to return the results for channel 0, then channel 1, then channel 2, then channel 0, and so on for each read access to this address range. Now suppose that the application wants to read out the results for the group 1 from the RAM directly. The conversion results for the group 1 are accessible starting from address ADC RAM Base Address + BNDA. Also, it is known that the first result at this address is for the input channel 4, the next one is for input channel 7, and so on. So the application can selectively read the conversion results for only one channel if so desired. 704 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Basic Features and Usage of the ADC www.ti.com Figure 19-9. Conversion Results Storage 0x00 Channel 0 Channel 1 Channel 2 Channel 0 Channel 1 Event Group Memory Channel 2 EV RAM ADDR ... BNDA Channel 4 Channel 7 Channel 8 Channel 4 Channel 7 Group 1 Memory Channel 8 G1 RAM ADDR ... BNDB Channel 3 Channel 5 Channel 6 Channel 3 Channel 5 Group 2 Memory Channel 6 G2 RAM ADDR ... BNDEND 19.3.10 How to Stop a Conversion A group’s conversion can be stopped by clearing the group’s channel select register. 19.3.11 Example Sequence for Basic Configuration of ADC Module The following sequence is necessary to configure the ADC to convert channels 0, 2, 4, and 8 in singleconversion mode using Group1: 1. Write 0 to the Reset Control Register (ADRSTCR) to release the module from the reset state 2. Write 1 to the ADC_EN bit of the Operating Mode Control Register (ADOPMODECR) to enable the ADC state machine 3. Configure the ADCLK frequency by programming the desired divider into the Clock Control Register (ADCLOCKCR) 4. Configure the acquisition time for the group that is to be used. For example, configure the Group1 Sampling Time Control Register (ADG1SAMP) to set the acquisition time for Group1. 5. Select the channels that need to be converted in Group1 by writing to the Group1 Channel Select Register (ADG1SEL). In this example, a value of 0x115 needs to be written to ADG1SEL in order to select channels 0, 2, 4, and 8 for conversion in Group1. • The ADC sequencer will start the Group1 conversions as soon as the write to the ADG1SEL register is completed. 6. Wait for the G1_END bit to be set in the Group1 Conversion Status Register (ADG1SR). This bit gets set when all the channels selected for conversion in Group1 are converted and the results are stored in the Group1 memory. 7. Read the conversion results by reading from the Group1 FIFO access location (ADG1BUFFER) or by reading directly from the Group1 results’ memory. SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 705 Advanced Conversion Group Configuration Options www.ti.com 19.4 Advanced Conversion Group Configuration Options Figure 19-10 shows the operating mode control registers and the status registers for each of the three conversion groups. The register addresses shown are offsets from the base address. The ADC1 register frame base address is 0xFFF7C000 and the ADC2 register frame base address is 0xFFF7C200. Figure 19-10. ADC Groups’ Operating Mode Control and Status Registers Offset Address Register 31 30 15 29 14 28 13 27 12 26 11 25 10 24 23 9 22 8 7 21 6 20 5 19 4 18 3 17 2 16 1 Reserved 0x010 ADEVMODECR EV_ DATA_FMT Reserved Reserved EV_ CHID OVR_ EV_ RAM_ IGN Rsvd EV_ 8BIT EV_ MODE 0x014 ADG1MODECR G1_ DATA_FMT Reserved G1_ CHID OVR_ G1_ RAM_ IGN Rsvd G1_ 8BIT G1_ MODE 0x018 ADG2MODECR G2_ DATA_FMT Reserved FRZ_ G1 No Reset On ChnSel Reserved Reserved FRZ_ EV No Reset On ChnSel Reserved Reserved 0 No Reset On ChnSel G2_ CHID OVR_ G2_ RAM_ IGN Rsvd G2_ 8BIT G2_ MODE FRZ_ G2 EV_ MEM_ EMPTY EV_ BUSY EV_ STOP EV_ END G1_ MEM_ EMPTY G1_ BUSY G1_ STOP G1_ END G2_ MEM_ EMPTY G2_ BUSY G2_ STOP G2_ END Reserved 0x06C ADEVSR Reserved Reserved 0x070 ADG1SR Reserved Reserved 0x074 ADG2SR Reserved The following sections describe each of these group configuration options separately. 706 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Advanced Conversion Group Configuration Options www.ti.com 19.4.1 Group Trigger Options The Group1 and Group2 operating mode control registers have an extra control bit: HW TRIG. This bit configures the group to be hardware event-triggered instead of software-triggered, which is the default. When a group is configured to be event-triggered, the group conversion starts when at least one channel is selected for conversion in this group, and when the defined event trigger occurs. The event trigger source is defined for each group in the ADEVSRC, ADG1SRC, and the ADG2SRC registers. The actual connections used as the event trigger sources are defined in the device datasheet for both the ADC modules. 19.4.2 Single or Continuous Conversion Modes The EV_MODE, G1_MODE, and G2_MODE bits are used to select between either single or continuous conversion mode for each of the three groups. 19.4.2.1 Single Conversion Mode A conversion group configured to be in single-conversion mode gets serviced only once by the ADC for each group trigger. The trigger can be a software trigger as in the case of Group1 and Group2 by default, or it could be a hardware event trigger as in the case of the Event Group or Group1 or Group2. The entire conversion sequence, from the acceptance of the group conversion request to the end of the last channel’s conversion, is flagged for each group by the corresponding BUSY bit in that group’s status register. After single-conversion mode is started, the BUSY bit is read as 1 until the conversion of the last channel is complete. The END bit for the group is set once all the channels in that group are converted. For example, say channels 0, 2, 4, and 6 are selected for conversion in Group1 in single-conversion mode. When the Group1 gets serviced, the ADC will start conversion for channel 0, then channel 2, then channel 4, and then channel 6. It will then stop servicing the Group1, set the G1_END status bit, and look to service the Event Group or the Group2, if required. 19.4.2.2 Continuous Conversion Mode A conversion group configured to be in continuous-conversion mode gets serviced by the ADC continuously. The group still needs to be triggered appropriately for the first conversion to start. The conversions are performed continuously thereafter. The entire conversion sequence, from the acceptance of the group conversion request to the end of the last channel’s conversion, is flagged for each group by the corresponding BUSY bit in that group’s status register. After continuous-conversion mode is started, the BUSY bit is read as 1 as long as the continuous-conversion mode for this group is selected. As an example, say the channels 0, 2, 4, and 6 are selected for conversion in Group1, now in continuousconversion mode. When the Group1 gets serviced, the ADC will complete conversions for channels 0, 2, 4, and 6, and then look to service the Event Group or the Group2. Once it is done servicing the Event Group or the Group2, it will return to service the Group1 again. The Group1 does not need to be triggered again for the repeated conversion. NOTE: Configuring all conversion groups in continuous conversion mode All the three groups cannot operate in continuous-conversion mode at the same time. If the application program configures all three groups to be in continuous-conversion mode, the Group2 is automatically reset to single-conversion mode, and the G2_MODE bit in the ADG2MODECR register is cleared to reflect the single-conversion mode of Group2. SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 707 Advanced Conversion Group Configuration Options www.ti.com 19.4.3 Conversion Group Freeze Capability The ADC module has an inherent priority order between the three conversion groups. This group priority determines the order of conversion in case multiple groups are triggered. The priority of conversions between the three groups in descending order is: 1. Event Group 2. Group1 3. Group2 Examples of conversion group priority: • If an Event Group conversion is ongoing in single conversion sequence mode and Group2 and Group1 conversions are requested, then the ADC will finish conversion of channels selected in Event Group, then switch over to converting channels selected in Group1, and then convert channels selected in Group2. • If Group1 conversions are ongoing in continuous conversion mode and Group2 conversion is requested, then the ADC will complete converting the current channel for Group1 and switch over to converting channels selected in Group2. The new conversion request for Group2 has a higher priority than the pending continuous conversion request for Group1. The conversion group freeze capability allows the application to override this default priority between the conversion groups. Enabling the freeze capability allows the ADC to freeze a higher-priority conversion group’s conversions whenever there is a request for conversion in another (lower-priority) group. For example, setting the FRZ_EV bit in the ADEVMODECR register will allow the ADC to freeze ongoing Event Group conversions whenever there is a pending request, or a new request for a Group1 or Group2 conversion. The conversions for the Event Group will be frozen as long as the Group1 or Group2 conversions are active. Once the Group1 or Group2 conversions are completed, the Event Group conversions start from where they were frozen. While a group’s conversions are frozen, the group’s STOP status bit is set. This bit is cleared once the group’s conversions are restarted. 19.4.4 Conversion Group Memory Overrun Option An overrun condition occurs when the ADC module tries to store more conversion results to a group’s results’ memory which is already full. In this case, the ADC allows two options. If the OVR_RAM_IGN bit in the group’s operating mode control register (ADEVMODECR, ADG1MODECR, ADG1MODECR) is set, then the ADC module ignores the contents of the group’s results’ memory and wraps around to overwrite the memory with the results of new conversions. If the OVR_RAM_IGN bit is not set, then the application program has to read out the group’s results’ memory upon an overrun condition; only then can the ADC continue to write new results to the memory. 19.4.5 Response on Writing Non-Zero Value to Conversion Group’s Channel Select Register If the application writes a non-zero value to a group’s channel select register while that group’s conversions are already being serviced, then that group’s conversions will be restarted with the new configuration programmed in the channel select registers. The following rules apply in terms of the effect on the ADC conversion sequence: • If the new conversion request comes from the same group as the ongoing conversion, then the ongoing conversion will be stopped in whichever stage it is in, and the new sequence of conversions will be started. • If the new conversion request comes from a separate group, then the ongoing channel’s conversion will be completed before starting the new sequence of conversions. The following rules apply in terms of the effect on the group’s results memory: • If a group conversion is ongoing or is frozen, writing a non-zero value to the group’s channel select register will also reset its results FIFO. This does not clear the contents of the results FIFO; only the ADC module is allowed to overwrite the FIFO’s contents with new conversion results starting from the first location. 708 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Advanced Conversion Group Configuration Options www.ti.com • If the group conversion is completed (_END flag is set), or the group is not being used, then writing a non-zero value to the group’s channel select register will either be reset or not depending on the value of the NoResetOnChnSel bit for that group (ADEVMODECR, ADG1MODECR, ADG1MODECR). – If the NoResetOnChnSel bit is 0, then the group’s FIFO will be reset. – If the NoResetOnChnSel bit is 1, then the group’s FIFO will not be reset. 19.4.6 Conversion Result Size on Reading: 8-bit, 10-bit or 12-bit Some applications do not need the full 12-bit resolution of the ADC modules on the device and can work with 8-bit or 10-bit conversion results. 19.4.6.1 ADC Configured in 12-bit Resolution The mode control register for each conversion group contains a field called DATA_FMT, which defines the format of the conversion result read out of the result RAM, when accessed as a FIFO. The DATA_FMT field is encoded as follows: • If DATA_FMT = 00, the complete 12-bit conversion result is read out of the FIFO. • If DATA_FMT = 01, the 12-bit conversion result is right-shifted by 2 and the resulting 10-bit result is read out of the FIFO. • If DATA_FMT = 10, the 12-bit conversion result is right-shifted by 4 and the resulting 8-bit result is read out of the FIFO. This control field is not effective when the application chooses to access the conversion result memory directly. In that case, the application can choose to mask off the number of bits as required. 19.4.6.2 ADC Configured in 10-bit Resolution The DATA_FMT field is not effective in this mode and the application has the choice to read either the full 10-bit conversion result or an 8-bit conversion result. This is controlled by the 8BIT field of the group’s operating mode control register. • If 8BIT = 0, the complete 10-bit conversion result is read out of the FIFO. • If 8BIT = 1, the 10-bit conversion result is right-shifted by 2 and the resulting 8-bit result is read out of the FIFO. 19.4.7 Option to Read Group Channel ID Along with Conversion Result The ADC module allows the application program to also read out the analog input channel number along with its conversion result. This capability is enabled by setting the CHID bit in the group’s operating mode control register. • If CHID = 0, the bits [14-10] are forced to 00000 when the conversion results are read out from the group’s results’ FIFO. • If CHID = 1, the bits [14-10] in the group’s results’ memory contain the input channel number to which the conversion result belongs. NOTE: Actual Storage of Channel ID Regardless of whether the CHID bit is set or not, the channel number is always stored in the memory along with the conversion result. The CHID bit only affects whether the channel number is available with the conversion result when the group’s memory is read. Therefore, the CHID bit for a group can be changed dynamically without affecting that group’s ongoing conversions. SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 709 ADC Module Basic Interrupts www.ti.com 19.5 ADC Module Basic Interrupts This section describes the basic interrupts generated by the ADC module. 19.5.1 Group Conversion End Interrupt The ADC module sets the group’s conversion end flag (EV_END, G1_END, or G2_END) in that group’s interrupt flag register (ADEVINTFLG, ADG1INTFLG, ADG2INTFLG) when all the channels selected for conversion in that group are converted. This causes a group conversion end interrupt to be generated if this interrupt is enabled by setting the group’s END_INT_EN control bit (EV_END_INT_EN, G1_END_INT_EN, or G2_END_INT_EN). This interrupt can be easily used for conversion groups configured to be in the single-conversion mode. The application program can read out the conversion results, change the group’s configuration if necessary, and restart the conversions by triggering the group from within the interrupt service routine. For groups configured to be in continuous conversion mode, this interrupt condition is not practical as the conversions are always in progress. In this case, the Group Memory Threshold Interrupt is more practical as the application can allow a programmable number of conversion results to accumulate before interrupting the CPU. 19.5.2 Group Memory Threshold Interrupt The ADC module has the ability to generate an interrupt for a fixed number of conversions for each group. A group memory threshold register determines how many conversion results must be in a group’s memory region before the CPU is interrupted. This feature can be used to significantly reduce the CPU load when using interrupts for reading the conversion results. The group’s threshold register needs to be configured before the group conversions are triggered. This threshold register value behaves like a down-counter, which decrements each time the ADC writes a conversion result to this group’s memory. This counter is incremented each time the application program reads a conversion result from the results’ memory by accessing the FIFO queue. Simultaneous read (by application program) and write (by ADC module) operations from the group’s results’ memory leave the threshold counter unchanged. The threshold counter can decrement past 0 and become negative. It always increments back to its original value when the memory region is emptied. To determine how many samples are in the memory region at a given moment, the threshold counter can be subtracted from the originally configured threshold count. Whenever the threshold counter transitions from +1 to 0, it sets the group’s threshold interrupt flag, and the CPU is interrupted if the group’s threshold interrupt is enabled. The CPU is expected to clear the interrupt flag after reading the conversion results from the memory. The interrupt flag is not set when the threshold counter stays at 0 or transitions from -1 to 0. 19.5.3 Group Memory Overrun Interrupt An interrupt can be generated for each group if the number of ADC conversions for that group exceed the number of buffers allocated for that conversion group. The application program can choose to read out all the conversion results using the CPU or the DMA. Alternatively, the application program can set the group’s OVR_RAM_IGN bit and allow the ADC module to overwrite the group’s results’ memory contents with new conversion results. 710 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Module DMA Requests www.ti.com 19.6 ADC Module DMA Requests This section describes the capabilities of the ADC module to take advantage of the Platform DMA controller module. The ADC module can generate a DMA request under two conditions: 19.6.1 DMA Request for Each Conversion Result Written to the Results’ Memory In this mode, the ADC module will generate the first DMA request as soon as a conversion result gets written to the group’s results’ memory. Subsequent writes to the results’ memory will cause DMA requests to be generated. This mode allows a smaller amount of ADC results’ memory to suffice for an application. This DMA request generation is enabled by setting the group’s DMA_EN bit in the group’s DMA control register. The BLK_XFER bit in this register must be left cleared (default) if a DMA request is desired to be generated for new results getting written to the results’ memory. 19.6.2 DMA Request for a Fixed Number of Conversion Results This mode is enabled by setting both the group’s DMA_EN and the group’s BLK_XFER bits in the group’s DMA control registers. In this mode, a DMA request will be generated for a specified number of conversion results being available in the group’s results’ memory. The number of conversion results desired are configured using the group’s BLOCKS field in the control registers. For example, if the BLOCK count is configured for 10, then ADC module will generate a DMA request at the end of 10th conversion. DMA controller should complete reading out 10 data before next set of 10 conversions complete. NOTE: Usage of Block DMA transfers with Threshold Interrupts It is not recommended to enable the block DMA transfers for a group at the same time as the group threshold interrupt. The group’s BLOCKS field is essentially the same as the group’s THRESHOLD field in the group’s interrupt control register described in Section 19.5.2. SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 711 ADC Magnitude Threshold Interrupts www.ti.com 19.7 ADC Magnitude Threshold Interrupts The ADC allows up to three magnitude threshold interrupts to be generated. The comparison parameters are programmed via the Magnitude Compare Interrupt x Control Register (ADMAGINTxCR). 19.7.1 Magnitude Threshold Interrupt Configuration The following fields are configurable for each of the three available magnitude threshold interrupts: 1. CHN_THR_COMP: Specifies whether to compare two channels’ conversion results, or to compare a channel’s conversion result to a programmable threshold value. A value of 0 will select the programmable threshold to be compared, and a value of 1 will select the conversion result of the channel identified by the COMP_CHID field to be compared. 2. MAG_CHID: Specifies the channel number from 0 to 23 whose conversion result needs to be monitored. 3. COMP_CHID: Specifies the channel number from 0 to 23 whose last conversion result is used for the comparison with the conversion result of the channel being monitored. 4. MAG_THR: Specifies the value for comparison with the conversion result of the channel identified by the MAG_CHID field. 5. CMP_GE_LT: Specifies whether the conversion result of the channel identified by MAG_CHID is compared to be “greater than or equal to”, or “less than” the reference value. The reference value can be the conversion result of another channel identified by the COMP_CHID field, or it could be a threshold value specified in the MAG_THR field. A value of 0 in the CMP_GE_LT field indicates a “less than” comparison and a value of 1 indicates a “greater than or equal to” comparison. 19.7.2 Magnitude Threshold Interrupt Comparison Mask Configuration There is also a separate comparison mask register (ADMAGINTxMASK) for each of the three magnitude threshold interrupts. This register is used to specify the bits that are masked off for the sake of the comparison. For example, the lower 4 bits of the conversion result can be masked off by writing 0xF to the interrupt comparison mask register, allowing a gross comparison to be made. By default, the full 10/12-bit conversion results are compared. 19.7.3 Magnitude Threshold Interrupt Enable / Disable Control Each of the three magnitude interrupts also have separate interrupt enable set (ADMAGINTENASET) and clear (ADMAGINTENACLR) registers. These are used to respectively enable and disable that particular magnitude threshold interrupt from being generated. To enable a magnitude threshold interrupt, write a 1 to the corresponding bit of the interrupt enable set register. Conversely, to disable a magnitude threshold interrupt, write a 1 to the corresponding bit of the interrupt enable clear register. 19.7.4 Magnitude Threshold Interrupt Flags There is a separate Magnitude Interrupt Flag register (ADMAGINTFLG) that holds the flags for these three interrupts. This flag gets set whenever the comparison condition for the corresponding interrupt is met. A magnitude threshold interrupt is generated if the corresponding flag is set inside the flag register, and the interrupt generation is enabled. This flag can be cleared by writing a 1 to the flag or by reading from the interrupt offset register in case of this interrupt being the current highest-priority pending interrupt. 19.7.5 Magnitude Threshold Interrupt Offset Register It is possible to have multiple magnitude threshold interrupts pending at the same time. The magnitude threshold interrupt offset register (ADMAGINTOFF) holds the index of the currently pending highest priority magnitude threshold interrupt. The magnitude threshold interrupt 1 has the highest priority while the magnitude threshold interrupt 3 has the lowest priority. This is a read-only register and returns zeros if none of the magnitude threshold interrupts are pending. Writes to this register have no effect. A read from this register updates the register to the next highest-priority pending magnitude threshold interrupt. This read also clears the corresponding flag from the magnitude threshold interrupt flag register. However, a read from the magnitude threshold interrupt offset register in emulation mode does not affect the interrupt flag register or the interrupt offset register. 712 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Special Modes www.ti.com 19.8 ADC Special Modes The ADC module supports some special modes for diagnostics and power saving purposes. 19.8.1 ADC Error Calibration Mode The application program can activate a calibration sequence any time self-test mode is disabled (SELF_TEST = 0). This calibration sequence includes the conversion of an embedded calibration reference voltage followed by the calculation of an offset error correction value. NOTE: Disable Self-Test Mode Before Calibration To avoid errors during the calibration operation, self-test mode must not be enabled during a calibration sequence. In addition, to ensure accurate results, calibrate the ADC in an environment with minimum noise. Calibration mode is enabled by setting the CAL_EN bit (ADCALCR.0). The application needs to ensure that no conversion group is being serviced when the calibration mode is enabled. The input multiplexor gets disabled and only the reference voltage is connected to the ADC core input. Switch S5 of Figure 19-11 is opened. In addition, the digital result issued from a conversion is output from the ADC core to the calibration and offset error correction register, ADCALR. The ADC results’ memory is not affected by the calibration conversion. When calibration mode is disabled, the ADC can be configured for normal conversions. Figure 19-11. Self-Test and Calibration Logic ADREFHI ADREFLO Self-test and calibration R1 ~ 5K R2 ~ 7K S3 S4 S1 S2 R2 R1 ADIN0 MUX Vin ADC Core S5 ADIN31 CALR ADCALR.9:0 ADDRx.16,9:0 19.8.1.1 Calibration Conversion The calibration conversion also needs to meet the minimum sampling time specification for the ADC. This value is typically 1 us. The Event Group sample time register (ADEVSAMP) is used to specify the number of ADCLK cycles for the calibration conversion. The BRIDGE_EN and HILO bits (ADCALCR.9:8) control the voltage to the calibration reference device shown in Figure 19-13. The positions of the switches in calibration mode are listed in Table 19-1. SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 713 ADC Special Modes www.ti.com Table 19-1. Calibration Reference Voltages (1) CAL_EN BRIDGE_EN HILO S1 S2 S3 S4 S5 Reference Voltage 1 0 0 1 0 1 0 0 (ADREFHI × R1 + ADREFLO × R2) / (R1 + R2) 1 0 1 0 1 0 1 0 (ADREFLO × R1 + ADREFHI × R2) / (R1 + R2) 1 1 0 0 1 1 0 0 ADREFLO 1 1 1 1 0 0 1 0 ADREFHI 0 X X 0 0 0 0 1 Vin (1) The state of the switches in this table assumes that self-test mode is not enabled. When CAL_ST (ADCALCR.16) is set, a calibration conversion is started. The voltage source selected via the bits BRIDGE_EN and HILO is converted once (single conversion mode) and the digital result is returned to the calibration and correction register, ADCALR, where it can be read by the CPU. The CAL_ST bit acts as a flag and must be polled by the CPU. It is held set during the conversion process and automatically clears to indicate the end of the reference voltage conversion. NOTE: No Interrupt for end of calibration The ADC does not generate an interrupt to signal the end of the calibration conversion. The application must poll the CAL_ST bit to determine the end of the calibration conversion. After the CAL_ST bit is set by the application program, it can only be reset by the end of the ongoing conversion generated by the ADC core. If the calibration conversion is interrupted (CAL_EN bit is cleared), the CAL_ST bit is held at 1 until a new calibration conversion has been set and completed. Setting the CAL_ST bit while calibration is disabled (CAL_EN = 0) has no effect; however, in this situation, setting CAL_EN immediately starts a calibration conversion. When the calibration conversion is interrupted by an ADC enable (ADC_EN = 0, CAL_EN = 1, and CAL_ST = 1), a new conversion is automatically restarted as soon as the ADC enable bit is released (ADC_EN = 1). 19.8.1.2 Calibration and Offset Error Correction Sequences The number of measurements and the source to measure for an ADC calibration are application dependent. The CAL_ST bit must be set for each calibration source to be measured. While calibration mode is enabled, any available calibration sources can be converted according to the BRIDGE_EN and HILO bits (see Table 19-1). The digital results of the calibration measurements should be read from ADCALR by the application after each reference conversion so that a correction value can be computed and written back into ADCALR. When the application has the necessary calibration data, it should compute the offset error correction value and load it into the calibration and correction register, ADCALR. After the CAL_EN bit is cleared, normal conversion mode restarts, continuing from where it was frozen, but with the addition of selfcorrection data. In normal mode, the self-correction system adds the correction value stored in ADCALR to each digital result before it is written to the respective group’s FIFO. The basic calibration routine is as follows: 1. Enable calibration via CAL_EN (ADCALCR.0). 2. Select the voltage source via BRIDGE_EN and HILO (ADCALCR.9:8). 3. Start the conversion with CAL_ST (ADCALCR.16). 4. Wait for CAL_ST to go to 0. 5. Get the results from ADCALR and save to memory. 6. Loop to step 2 until the calibration conversion data is collected for the desired reference voltages. 7. Compute the error correction value using calibration data saved in memory. 8. Load the ADCALR register with the 2s complement of the computed error correction value. 9. Disable calibration mode. 714 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Special Modes www.ti.com At this point, the ADC can be configured for normal operation, and it corrects each digital result with the error correction value loaded in ADCALR. NOTE: Prevent ADC Calibration Data From Being Overwritten In calibration mode, the conversion result is written to ADCALR which overwrites any previous calibration data; therefore, the ADCALR register must be read before a new conversion is started. For no correction, a value of 0x0000 must be written to ADCALR. In noncalibration mode, the ADCALR register can be read and written. Any value written to ADCALR in normal mode (CAL_EN = 0) is added to each digital result from the ADC core. 19.8.1.3 Mid-Point Calibration Because of its connections to the ADC’s reference voltage (VrefHi, VrefLo), the precision of the calibration reference is voltage independent. On the other hand, the accuracy of the switched bridge resistor (R1 and R2) relies on the manufacturing process deviation. Consequently, the mid-point voltage’s accuracy can be affected due to the imperfections in the two resistors (expected mismatch error is around 1.5%). The switched reference voltage device has been specially designed to support a differential measurement of its mid-point voltage. This ensures the accuracy of the mid-point reference, and hence the efficiency of the calibration. The differential mid-point calibration is software controlled; the algorithm (voltage source measurements and associated calculation) is inserted within the calibration software module included in the application program. The basic differential mid-point calibration flow is illustrated here after: 1. The application program connects the voltage VrefHi to R1 and VrefLo to R2, (BRIDGE_EN = 0, HILO = 0), launches a conversion of the input voltage V(cal1), and stores the digital result D(cal1) into the memory. 2. Then the application program switches the voltage VrefHi to R2 and VrefLo to R1 (BRIDGE_EN = 0, HILO = 1), converts this new input voltage V(cal2) and again stores the issued digital result D(cal2) into the memory. 3. The actual value of the real middle point is obtained by computing the average of these two results. [D(cal1)+D(cal2)] /2; Figure 19-12 summarizes the mid-point calibration flow. SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 715 ADC Special Modes www.ti.com Figure 19-12. Mid-point Value Calculation Digital Code (hex) FS 3FF * The Real function shown is a straight line between the ends points of the real staircase characteristic. 10-bit ADC’s Theoretical Transfer Function The Theoretical transfer function is for reference only. *Real straight line Transfer Function D(cal2) D(cal) R D(cal1) Vin VrefLo V(cal1) V(cal2) VrefHi (VrefHi - VrefLo)/2 MEMORY V(cal1) = [VREFHI*R1+VREFLO*R2] / (R1 + R2) D(cal1) V(cal2) = [VREFLO*R1+VREFHI*R2] / (R1 + R2) D(cal2) CPU [V(cal1) + V(cal2)] / 2 = (VrefHi-VrefLo) / 2 716 [D(cal1) + D(cal2)] / 2 = D(cal) Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Special Modes www.ti.com 19.8.2 ADC Self-Test Mode The ADC module supports a self-test mode which can be used to detect an open or a short on the ADC input channels. Self-test mode is enabled by setting the SELF_TEST bit (ADCALCR.24). Any conversion type (continuous or single conversion, freeze enabled or non-freeze enabled, interrupts enabled or disabled) can be performed in this mode. In normal mode, setting the self-test mode while a conversion sequence is in process can corrupt the current channel conversion results. However, the next channel in the sequence is converted correctly during the additional self-test cycle. The logic associated with both self-test and calibration is shown in Figure 19-13. Figure 19-13. Self-Test and Calibration Logic ADREFHI ADREFLO Self-test and calibration R1 ~ 5K R2 ~ 7K S3 S4 S1 S2 R2 R1 ADIN0 MUX Vin ADC Core S5 ADIN31 CALR ADCALR.9:0 ADDRx.16,9:0 In self-test mode, a test voltage defined by the HILO bit (ADCALCR.8) is provided to the ADC core input through a resistor (see Table 19-2). To change the test source, this bit can be toggled before any single conversion mode request. Changing this bit while a conversion is in progress can corrupt the results if the source switches during the acquisition period. Please note that the switch S5 shown in Figure 19-13 is only for the purpose of explaining the self-test sequence. There is no physical switch. Table 19-2. Self-Test Reference Voltages (1) (1) SELF_TEST HILO S1 S2 S3 S4 S5 Reference Voltage 1 0 0 1 1 0 1 ADREFLO via R1 || R2 connected to Vin 1 1 1 0 0 1 1 ADREFHI via R1 || R2 connected to Vin 0 X 0 0 0 0 1 Vin Switches refer to Figure 19-13. SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 717 ADC Special Modes www.ti.com Conversions in self-test mode are started just as they are in the normal operating mode (see Section 19.3.6). The conversion starts according to the configuration set in the three mode control registers (ADEVMODECR, ADG1MODECR, ADG2MODECR) and the sampling time control registers (ADEVSAMP, ADG1SAMP, ADG2SAMP). The acquisition time for each conversion in self-test mode is extended to twice the normal configured acquisition time. The selected reference voltage and the input voltage from the ADINx input channel are both connected to the ADC internal sampling capacitor throughout this extended acquisition period. Figure 19-14 shows the self-test mode timing when the ADREFLO is chosen as the reference voltage for the self-test mode conversion. It also assumes an external capacitor connected to the ADC input channel. Figure 19-14. Timing for Self-Test Mode Sample time doubled in self-test mode Sample time in normal operation mode Tsamp1 ADREFLO + ADINx Tsamp2 ADREFLO + ADINx Conversion of last value sampled Start ADREFHI Ext. Input AD_Core _In discharge of ext. cap charging of ext. cap ADREFLO time 19.8.2.1 Use of Self-Test Mode to Determine Open/Short on ADC Input Channels The following sequence needs to be used to deduce the ADC pin status: • Convert the channel with self test enabled and with the reference voltage as Vreflo. Store the conversion result, say Vd. • Convert the channel with self test enabled and with the reference voltage as Vrefhi. Store the conversion result, say Vu. • Convert the channel with self test disabled. Store the conversion result, say Vn. The results can be interpreted using Table 19-3. Table 19-3. Determination of ADC Input Channel Condition 718 Normal Conversion Result, Vn Self-test Conversion Result, Vu Self-test Conversion Result, Vd Pin Condition Vn Vn < Vu < ADREFHI ADREFLO < Vd < Vn Good ADREFHI ADREFHI approx. ADREFHI Shorted to ADREFHI ADREFLO approx. ADREFLO ADREFLO Shorted to ADREFLO Unknown ADREFHI ADREFLO Open Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Special Modes www.ti.com 19.8.3 ADC Power-Down Mode This is an inactive mode in which the clocks to the ADC module are stopped leaving the module in a static state. The clock to the ADC core (ADCLK) is stopped whenever there are no ongoing conversions. This is the clock-gating implementation requirement. Also, the ADC module places the ADC core into the power down mode such that there is minimal current drawn from the ADC operating and reference supplies. 19.8.3.1 Powering Down Just The ADC Core The ADC core can be individually powered down without stopping the clocks to the ADC module. This can be done by setting the POWERDOWN bit of the ADC Operating Mode Control Register (ADOPMODECR.3). Whenever a conversion is required the POWERDOWN bit must be cleared, and a minimum time td(PU-ADV), (see the specific device data sheet for actual value) has to be allowed before starting a new conversion. This wait must be implemented in the application software. 19.8.3.2 Enhanced Power-Down Mode A bit in the ADC operating mode control register, IDLE_PWRDN (ADOPMODECR.4) enables the enhanced power-down mode of the ADC. Once this bit is set, the ADC module will power down the ADC core whenever there are no more ongoing or pending ADC conversions. The ADC core will be powered down regardless of the state of the POWERDOWN bit (ADOPMODECR.3). The ADC module releases the ADC core from power down mode as soon as a new conversion is requested. The ADC logic state machine then has to wait for at least td(PU-ADV) (see the device data sheet for actual value) before starting a new conversion. The IDLE_PWRDN bit will remain set at all times. The logic state machine can use this bit to determine that it needs to wait for a programmable number of VCLK cycles before it allows the input channel to be sampled. This time is configured by the ADC Power Up Delay Control register (ADPWRUPDLYCTRL). If IDLE_PWRDN is not set, the ADC module does not wait for any additional delay before sampling the input channel and the application software has to take account of this required delay. 19.8.3.3 Managing Clocks to the ADC Module The clock to the ADC module can be turned off via the appropriate Peripheral Central Resource (PCR) controller PSPWRDNSET register (check the specific device datasheet to identify the register and the bit to be set). If a conversion is ongoing when this bit is set, the ADC module will wait until the current conversion completes before allowing the ADC module clock to be stopped. SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 719 ADC Special Modes www.ti.com 19.8.4 ADC Sample Capacitor Discharge Mode This mode allows the charge on the ADC core’s internal sampling capacitor to be discharged before starting the sampling phase of the next channel. The ADC Sample Cap Discharge Mode is enabled by setting the SAMP_DIS_EN bit of the group’s ADSAMPDISEN register. A discharge period for the sampling capacitor is added before the sampling period for each channel as shown in Figure 19-15. The duration of this discharge period is configurable via the corresponding group’s SAMP_DIS_CYC field in the ADSAMPDISEN register. The discharge time is specified in terms of number of ADCLK cycles. During the sample capacitor discharge period, the VREFLO reference voltage is connected to the input voltage terminal of the ADC core. This allows any charge collected on the sampling capacitor from the previous conversion to be discharged to ground. The VREFLO reference voltage is usually connected to ground. Figure 19-15. Timing for Sample Capacitor Discharge Mode Sample cap discharge time Tdischarge Vreflo Sampling time Tsamp ADINx Conversion of last value sampled Start 720 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Results’ RAM Special Features www.ti.com 19.9 ADC Results’ RAM Special Features The following sections describe some of the special features supported by the ADC module to enhance the results’ RAM testability and integrity. 19.9.1 ADC Results’ RAM Auto-Initialization The ADC module allows the application to auto-initialize the ADC results’ RAM to all zeros. The application must ensure that the ADC module is not in any of the conversion modes before triggering off the auto-initialization process. The auto-initialization sequence is as follows: 1. Enable the global hardware memory initialization key by programming a value of Ah to the bits [3-0] of the MINITGCR register of the System module. 2. Set the control bit for the ADC results’ RAM in the MSINENA System module register. The bit 8 of the MSINENA register is used to control the initialization of the ADC1 results’ RAM, while bit 14 controls the initialization of the ADC2 results’ RAM. This starts the initialization process. The BUF_INIT_ACTIVE flag in the ADBNDEND register will get set to reflect that the initialization is ongoing. 3. When the memory initialization is completed, the corresponding status bit in the MINISTAT register will be set. Also, the BUF_INIT_ACTIVE flag will get cleared. 19.9.2 ADC Results’ RAM Test Mode In the defined conversion modes of the ADC, the application can only read from the ADC results’ RAM. Only the ADC module is allowed to write to the results’ RAM. A special test mode is defined to allow the application to also write into the ADC results’ RAM - this mode is the ADC Results’ RAM Test Mode. Only 32-bit reads and writes are allowed to the ADC results’ RAM in this test mode. NOTE: Contention on access to ADC Results’ RAM The ADC module cannot handle a contention between the application write to the results’ RAM and the ADC writing a conversion result to the results’ RAM. The application must ensure that the ADC is not likely to write a new conversion result to the results’ RAM when the ADC Results’ RAM Test Mode is enabled. The ADC Results’ RAM Test Mode is enabled by setting the RAM_TEST_EN bit in the ADOPMODECR. 19.9.3 ADC Results’ RAM Parity The following shows the ADC Results’ RAM parity control registers. Parity checking is implemented using parity on a per-half word basis for the ADC RAM. That is, there is one parity bit for 16 bits of the ADC RAM. The polarity of the ADC RAM parity is controlled by the DEVCR1 register in the system module (address = FFFF FFDCh). The parity checking is enabled by the ADPARCR register. After reset, the parity checking is disabled and must be enabled if parity protection is required. During a read access, the parity is calculated based on the data read from the ADC RAM and compared with the good parity value stored in the parity bits. If any word fails the parity check then the ADC generates an error signal hooked up to the Error Signaling Module (ESM). The ADC RAM address which generated the parity error is captured for host system debugging, and is frozen from being updated until it is read by the application. Testing the Parity Checking Mechanism: To test the parity checking mechanism itself, the parity RAM is made writable by the CPU in a special test mode. This is done by a control bit called TEST in the ADPARCR register. Once this bit is set, the parity bits are mapped to an address starting at an address offset of 4KB from the base address of the ADC RAM. See Figure 19-16. The CPU can now manually insert parity errors. Note that the ADC RAM only supports 32-bit accesses. SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 721 ADEVT Pin General Purpose I/O Functionality www.ti.com Figure 19-16. ADC Memory Map in Parity Test Mode ADC1 BASE ADDRESS ADC2 0xFF3E0000 0xFF3A0000 Conversion word 0 0xFF3E0004 0xFF3A0004 Conversion word 1 0xFF3E0008 0xFF3A0008 Conversion word 2 0xFF3E01F8 0xFF3A01F8 Conversion word 62 0xFF3E00FC 0xFF3A00FC Conversion word 63 Reserved 0xFF3E1000 0xFF3A1000 Parity Bits 19.10 ADEVT Pin General Purpose I/O Functionality The AD1EVT pin for ADC1 and AD2EVT pin for ADC2 can be configured as general-purpose I/O signals. The following sections describe the different ways in which the application can configure the ADxEVT pins. 19.10.1 GPIO Functionality Figure 19-17 illustrates the GPIO functionality of the ADxEVT pin. Figure 19-17. GPIO Functionality of ADxEVT Output enable ADxEVT pin Data out Data in Pull control disable Pull control logic Pull select 722 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADEVT Pin General Purpose I/O Functionality www.ti.com Once the device power-on reset is released, the ADC module controls the state of the ADxEVT pin. • Pull control: The pull control can either be enabled or disabled by default (while system reset is active and after it is released). The actual default state of the pull control is specified in the device datasheet. The application can enable pull control by clearing the PDIS (pull control disable) bit in the ADEVTPDIS register. In this case, if the PSEL (pull select) bit in the ADEVTPSEL register is set, the pin will have a pull-up. If the PSEL bit is cleared, the pin will have a pull-down. If the PDIS bit is set in the control register, there is no pull-up or pull-down on the pin. NOTE: Pull Behavior when ADxEVT is configured as output If the ADxEVT pin is configured as output, then the pulls are disabled automatically. If the pin is configured as input, the pulls are enabled or disabled depending on bit PDIS in the pull disable register ADEVTPDIS. • • Output buffer: The ADxEVT pin can be driven as an output pin if the ADEVTDIR bit is set in the pin direction control register. Open-Drain feature: The open drain output capability is enabled via the ADEVTPDR control register. The ADxEVT pin must be also configured to be an output pin for this mode. – The output buffer is enabled if a low signal is being driven on to the pin. – The output buffer is disabled if a high signal is being driven on to the pin. 19.10.2 Summary The behavior of the output buffer and the pull control is summarized in Table 19-4. The input buffer for the ADxEVT pins are enabled once the device power-on reset is released. Table 19-4. Output Buffer and Pull Control Behavior for ADxEVT as GPIO Pins (1) (2) (3) (4) System Reset Active? Pin Direction (DIR) (1) (2) Pull Disable (PDIS) (1) (3) Pull Select (PSEL) (1) (4) Yes X X No 0 0 No 0 No No No Pull Control Output Buffer X Enabled Disabled 0 Pull down Disabled 0 1 Pull up Disabled 0 1 0 Disabled Disabled 0 1 1 Disabled Disabled 1 X X Disabled Enabled X = Don’t care DIR = 0 for input, 1 for output PULDIS = 0 for enabling pull control, 1 for disabling pull control PULSEL = 0 for pull-down functionality, 1 for pull-up functionality SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 723 ADC Control Registers www.ti.com 19.11 ADC Control Registers All registers in the ADC module are 32-bit, word-aligned; 8-bit, 16-bit and 32-bit accesses are allowed. The application must ensure that the reserved bits are always written as 0 to ensure software compatibility to future revisions of the module. Table 19-5 shows register address offsets from the base address of the ADC modules. The base address of the ADC1 registers is FFF7 C000h and the base address of the ADC2 registers is FFF7 C200h. Table 19-5. ADC Registers Offset Acronym Register Description 00h ADRSTCR ADC Reset Control Register Section 19.11.1 Section 04h ADOPMODECR ADC Operating Mode Control Register Section 19.11.2 08h ADCLOCKCR ADC Clock Control Register Section 19.11.3 0Ch ADCALCR ADC Calibration Mode Control Register Section 19.11.4 10h ADEVMODECR ADC Event Group Operating Mode Control Register Section 19.11.5 14h ADG1MODECR ADC Group1 Operating Mode Control Register Section 19.11.6 18h ADG2MODECR ADC Group2 Operating Mode Control Register Section 19.11.7 1Ch ADEVSRC ADC Trigger Source Select Register Section 19.11.8 20h ADG1SRC ADC Group1 Trigger Source Select Register Section 19.11.9 24h ADG2SRC ADC Group2 Trigger Source Select Register Section 19.11.10 28h ADEVINTENA ADC Event Interrupt Enable Control Register Section 19.11.11 2Ch ADG1INTENA ADC Group1 Interrupt Enable Control Register Section 19.11.12 30h ADG2INTENA ADC Group2 Interrupt Enable Control Register Section 19.11.13 34h ADEVINTFLG ADC Event Group Interrupt Flag Register Section 19.11.14 38h ADG1INTFLG ADC Group1 Interrupt Flag Register Section 19.11.15 3Ch ADG2INTFLG ADC Group2 Interrupt Flag Register Section 19.11.16 40h ADEVTHRINTCR ADC Event Group Threshold Interrupt Control Register Section 19.11.17 44h ADG1THRINTCR ADC Group1 Threshold Interrupt Control Register Section 19.11.18 48h ADG2THRINTCR ADC Group2 Threshold Interrupt Control Register Section 19.11.19 4Ch ADEVDMACR ADC Event Group DMA Control Register Section 19.11.20 50h ADG1DMACR ADC Group1 DMA Control Register Section 19.11.21 54h ADG2DMACR ADC Group2 DMA Control Register Section 19.11.22 58h ADBNDCR ADC Results Memory Configuration Register Section 19.11.23 5Ch ADBNDEND ADC Results Memory Size Configuration Register Section 19.11.24 60h ADEVSAMP ADC Event Group Sampling Time Configuration Register Section 19.11.25 64h ADG1SAMP ADC Group1 Sampling Time Configuration Register() Section 19.11.26 68h ADG2SAMP ADC Group2 Sampling Time Configuration Register Section 19.11.27 6Ch ADEVSR ADC Event Group Status Register Section 19.11.28 70h ADG1SR ADC Group1 Status Register Section 19.11.29 74h ADG2SR ADC Group2 Status Register Section 19.11.30 78h ADEVSEL ADC Event Group Channel Select Register Section 19.11.31 7Ch ADG1SEL ADC Group1 Channel Select Register Section 19.11.32 80h ADG2SEL ADC Group2 Channel Select Register Section 19.11.33 84h ADCALR ADC Calibration and Error Offset Correction Register Section 19.11.34 88h ADSMSTATE ADC State Machine Status Register Section 19.11.35 8Ch ADLASTCONV ADC Channel Last Conversion Value Register Section 19.11.36 90h-AFh ADEVBUFFER ADC Event Group Results FIFO Register Section 19.11.37 B0h-CFh ADG1BUFFER ADC Group1 Results FIFO Register Section 19.11.38 D0h-EFh ADG2BUFFER ADC Group2 Results FIFO Register Section 19.11.39 F0h ADEVEMUBUFFER ADC Event Group Results Emulation FIFO Register Section 19.11.40 F4h ADG1EMUBUFFER ADC Group1 Results Emulation FIFO Register Section 19.11.41 724 Analog To Digital Converter (ADC) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated ADC Control Registers www.ti.com Table 19-5. ADC Registers (continued) Offset Acronym Register Description F8h ADG2EMUBUFFER ADC Group2 Results Emulation FIFO Register Section 19.11.42 Section FCh ADEVTDIR ADC ADEVT Pin Direction Control Register Section 19.11.43 100h ADEVTOUT ADC ADEVT Pin Output Value Control Register Section 19.11.44 104h ADEVTIN ADC ADEVT Pin Input Value Register Section 19.11.45 108h ADEVTSET ADC ADEVT Pin Set Register Section 19.11.46 10Ch ADEVTCLR ADC ADEVT Pin Clear Register Section 19.11.47 110h ADEVTPDR ADC ADEVT Pin Open Drain Enable Register Section 19.11.48 114h ADEVTPDIS ADC ADEVT Pin Pull Control Disable Register Section 19.11.49 118h ADEVTPSEL ADC ADEVT Pin Pull Control Select Register Section 19.11.50 11Ch ADEVSAMPDISEN ADC Event Group Sample Cap Discharge Control Register Section 19.11.51 120h ADG1SAMPDISEN ADC Group1 Sample Cap Discharge Control Register Section 19.11.52 124h ADG2SAMPDISEN ADC Group2 Sample Cap Discharge Control Register Section 19.11.53 128h-138h ADMAGINTxCR ADC Magnitude Compare Interrupt x Control Register Section 19.11.54 12Ch-13Ch ADMAGxMASK ADC Magnitude Compare Interrupt x Mask Register Section 19.11.55 158h ADMAGINTENASET ADC Magnitude Compare Interrupt Enable Set Register Section 19.11.56 15Ch ADMAGINTENACLR ADC Magnitude Compare Interrupt Enable Clear Register Section 19.11.57 160h ADMAGINTFLG ADC Magnitude Compare Interrupt Flag Register Section 19.11.58 164h ADMAGINTOFF ADC Magnitude Compare Interrupt Offset Register Section 19.11.59 168h ADEVFIFORESETCR ADC Event Group FIFO Reset Control Register Section 19.11.60 16Ch ADG1FIFORESETCR ADC Group1 FIFO Reset Control Register Section 19.11.61 170h ADG2FIFORESETCR ADC Group2 FIFO Reset Control Register Section 19.11.62 174h ADEVRAMWRADDR ADC Event Group RAM Write Address Register Section 19.11.63 178h ADG1RAMWRADDR ADC Group1 RAM Write Address Register Section 19.11.64 17Ch ADG2RAMWRADDR ADC Group2 RAM Write Address Register Section 19.11.65 180h ADPARCR ADC Parity Control Register Section 19.11.66 184h ADPARADDR ADC Parity Error Address Register Section 19.11.67 188h ADPWRUPDLYCTRL ADC Power-Up Delay Control Register Section 19.11.68 SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 725 ADC Control Registers www.ti.com 19.11.1 ADC Reset Control Register (ADRSTCR) Figure 19-18 and Table 19-6 describe the ADRSTCR register. Figure 19-18. ADC Reset Control Register (ADRSTCR) [offset = 00h] 31 1 0 Reserved RESET R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 19-6. ADC Reset Control Register (ADRSTCR) Field Descriptions Bit Field 31-1 Value Reserved 0 0 RESET Description Reads return zeros, writes have no effect. This bit is used to reset the ADC internal state machines and control/status registers. This reset state is held until this bit is cleared. Read in all modes, write in privileged mode. 0 Module is released from the reset state. 1 All the module's internal state machines and the control/status registers are reset. 19.11.2 ADC Operating Mode Control Register (ADOPMODECR) Figure 19-19 and Table 19-7 describe the ADOPMODECR register. Figure 19-19. ADC Operating Mode Control Register (ADOPMODECR) [offset = 04h] 31 30 25 24 10_12_BIT Reserved COS R/W-0 R-0 RW-0 23 21 20 17 16 Reserved CHN_TEST_EN RAM_TEST_ EN R-0 R/W-Ah R/W-0 15 9 7 8 Reserved POWERDOWN R-0 RW-0 5 4 3 1 0 Reserved IDLE_PWRDN Reserved ADC_EN R-0 R/W-0 R-0 RW-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-7. ADC Operating Mode Control Register (ADOPMODECR) Field Descriptions Bit Field 31 10_12_BIT Value Description This bit controls the resolution of the ADC core. It also affects the size of the conversion results stored in the results’ RAM. Any operation mode read/write: 30-25 726 Reserved 0 The ADC core and digital logic are configured to be in 10-bit resolution. This is the default mode of operation. 1 The ADC core and digital logic are configured to be in 12-bit resolution. 0 Read returns 0. Writes have no effect. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com Table 19-7. ADC Operating Mode Control Register (ADOPMODECR) Field Descriptions (continued) Bit Field 24 COS Value Description This bit affects emulation operation only. It defines whether the ADC core clock (ADCLK) is immediately halted when the emulation system enters suspend mode or if it should continue operating normally. Note: If COS = 0 when the ADC module enters the emulation mode, then the accuracy of the conversion results can be affected depending on how long the module stays in the emulation mode. Any operation mode read/write: 23-21 Reserved 20-17 CHN_TEST_EN 0 ADC module halts all ongoing conversions immediately after emulation mode is entered. 1 ADC module continues all ongoing conversions as per the configurations of the three conversion groups. 0 Read returns 0. Writes have no effect. Enable the input channels’ impedance measurement mode. This mode is reserved for use by TI. Any operation mode read/write: 16 5h Input impedance measurement mode is enabled. Ah Input impedance measurement mode is disabled. other Input impedance measurement mode is disabled. RAM_TEST_EN Enable the ADC Results’ RAM Test Mode. Please refer to Section 19.9.2 for more details. Any operation mode read/write: 15-9 8 Reserved 0 ADC RAM Test Mode is disabled. The application cannot write to the ADC RAM by the CPU or the DMA. 1 ADC RAM Test Mode is enabled. The application can directly write to the ADC RAM by the CPU or the DMA. 0 Read returns 0. Writes have no effect. POWERDOWN ADC Power Down. This bit powers down only the ADC core; the digital logic in the sequencer stays active. To release the core from power down mode, this bit must be cleared. If a conversion is ongoing, the ADC module will wait until the current conversion is completed before powering down the ADC core. Also refer to Section 19.11.68, ADC Power-Up Delay Control Register (ADPWRUPDLYCTRL). Any operation mode read/write: 7-5 4 Reserved 0 The state of the ADC core is controlled by the IDLE_PWRDN bit, or by a global power down mode entry. 1 ADC core is in the power-down state. 0 Read returns 0. Writes have no effect. IDLE_PWRDN ADC Power Down When Idle. When this bit is set, the ADC module will automatically power down the ADC core whenever there are no conversions ongoing or pending. This is the enhanced power down mode. Also refer to Section 19.11.68, ADC Power-Up Delay Control Register (ADPWRUPDLYCTRL). Any operation mode read/write: 3-1 Reserved 0 ADC_EN 0 The ADC stays in the normal operating mode even if no conversions are ongoing or pending. The power down state is entered only by configuring the POWERDOWN bit or via a global power down mode entry. 1 Enhanced power down mode is enabled. 0 Read returns 0. Writes have no effect. ADC Enable. This bit must be set to allow the ADC module to be configured to perform any conversions. Any operation mode read/write: SPNU499C – March 2018 Submit Documentation Feedback 0 No ADC conversions can occur. The input channel select registers: ADEVSEL, ADG1SEL, and ADG2SEL are held at their reset values. 1 ADC conversions can now proceed as configured. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 727 ADC Control Registers www.ti.com 19.11.3 ADC Clock Control Register (ADCLOCKCR) Figure 19-20 and Table 19-8 describe the ADCLOCKCR register. Figure 19-20. ADC Clock Control Register (ADCLOCKCR) [offset = 08h] 31 5 4 0 Reserved PS R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-8. ADC Clock Control Register (ADCLOCKCR) Field Descriptions Bit Field Value 31-5 Reserved 4-0 PS 0 0-1Fh Description Reads return zeros, writes have no effect. ADC Clock Prescaler. These bits define the prescaler value for the ADC core clock (ADCLK). The ADCLK is generated by dividing down the input bus clock (VCLK) to the ADC module. Note: The supported range for the ADC clock frequency is specified in the device datasheet. The ADC clock prescaler must be configured to meet this datasheet specification. Any operation mode read/write: t C(ADCLK) = t C(VCLK) × (PS[4:0] + 1), where tC(ADCLK) is the period of the ADCLK, and t C(VCLK) is the period of the VCLK. 19.11.4 ADC Calibration Mode Control Register (ADCALCR) Figure 19-21 and Table 19-9 describe the ADCALCR register. Figure 19-21. ADC Calibration Mode Control Register (ADCALCR) [offset = 0Ch] 31 25 24 Reserved SELF_TEST R-0 RW-0 23 17 16 Reserved CAL_ST R-0 R/S-0 15 9 8 Reserved 10 BRIDGE_EN HILO R-0 RW-0 RW-0 7 1 0 Reserved CAL_EN R-0 RW-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 19-9. ADC Calibration Mode Control Register (ADCALCR) Field Descriptions Bit Field 31-25 24 Reserved Value 0 SELF_TEST Description Read returns 0. Writes have no effect. ADC Self Test Enable. When this bit is Set, either ADREFHI or ADREFLO is connected through a resistor to the selected input channel. The desired conversion mode is configured in the group mode control registers. For more details on the ADC Self Test Mode, please refer to Section 19.8.2. Any operation mode read/write: 728 0 ADC Self Test mode is disabled. 1 ADC Self Test mode is enabled. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com Table 19-9. ADC Calibration Mode Control Register (ADCALCR) Field Descriptions (continued) Bit Field 23-17 Reserved 16 CAL_ST Value 0 Description Read returns 0. Writes have no effect. ADC Calibration Conversion Start. Setting the CAL_ST bit while the CAL_EN bit is set starts conversion of the selected reference voltage. The ADC module uses the sample time configured in the Event Group sample time configuration register (ADEVSAMP) for the calibration conversion. Any operation mode: 1 Read: Calibration conversion is in progress. Write: ADC module starts calibration conversion. 0 Read: Calibration conversion has completed, or has not yet been started. Write: Writing 0 to this bit has no effect. 15-10 Reserved 0 Read returns 0. Writes have no effect. 9 BRIDGE_EN Bridge Enable. When set with the HILO bit, BRIDGE_EN allows a reference voltage to be converted in calibration mode. Table 19-1 defines the four different reference voltages that can be selected. 8 HILO ADC Self Test mode and Calibration Mode Reference Source Selection. In the ADC Self Test mode, this bit defines the test voltage to be combined through a resistor with the selected input pin voltage. Refer to Section 19.8.2 for details on the ADC Self Test Mode. In the ADC Calibration Mode, this bit defines the reference source polarity. Refer to Section 19.8.1 for details on the ADC Calibration Mode. In the ADC module’s normal operating mode, this bit has no effect. 7-1 Reserved 0 CAL_EN 0 Read returns 0. Writes have no effect. ADC Calibration Enable. When this bit is Set, the input channel multiplexor is disconnected and the calibration reference voltage is connected to the ADC core input. The calibration reference voltage is selected by the combination of the BRIDGE_EN and HILO. The actual conversion of this reference voltage starts when the CAL_ST bit is set. If the CAL_ST bit is already set when the CAL_EN bit is set, then the calibration conversion is immediately started. Please refer to Section 19.8.1 for more details on the ADC calibration mode. Any operation mode read/write: SPNU499C – March 2018 Submit Documentation Feedback 0 Calibration mode is disabled. 1 Calibration mode is enabled. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 729 ADC Control Registers www.ti.com 19.11.5 ADC Event Group Operating Mode Control Register (ADEVMODECR) ADC Event Group Operating Mode Control Register (ADEVMODECR) is shown in Figure 19-22 and Figure 19-23, and described in Table 19-10. As shown, the format of the ADEVMODECR is different based on whether the ADC module is configured to be a 12-bit or a 10-bit ADC module. Figure 19-22. 12-bit ADC Event Group Operating Mode Control Register (ADEVMODECR) [offset = 10h] 31 24 Reserved R-0 23 17 Reserved R-0 R/W-0 15 10 7 6 16 No Reset on ChnSel 9 8 Reserved EV_DATA_FMT R-0 R/W-0 5 4 1 0 Reserved EV_CHID OVR_EV_ RAM_IGN 3 Reserved 2 EV_MODE FRZ_EV R-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Figure 19-23. 10-bit ADC Event Group Operating Mode Control Register (ADEVMODECR) [offset = 10h] 31 24 Reserved R-0 23 17 16 Reserved No Reset on ChnSel R-0 R/W-0 15 8 Reserved R-0 7 6 5 4 3 2 1 0 Reserved EV_CHID OVR_EV_ RAM_IGN Reserved EV_8BIT EV_MODE FRZ_EV R-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset 730 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com Table 19-10. ADC Event Group Operating Mode Control Register (ADEVMODECR) Field Descriptions Field Reserved Value 0 No Reset on ChnSel Description Reads return zeros, writes have no effect. No Event Group Results Memory Reset on New Channel Select. This bit determines whether the event group results’ RAM is reset whenever a non-zero value is written to the event group channel select register. Any operation mode read/write: 0 Event group results RAM is reset when a non-zero value is written to event group channel select register, even if event group conversions are completed. 1 Event group results RAM is not reset when a non-zero value is written to event group channel select register, and event group conversions are completed. If the event group conversions are ongoing (active or frozen), then writing a non-zero value to the event group channel select register will always reset the event group results RAM. Reserved 0 EV_DATA_FMT Reads return zeros, writes have no effect. Event Group Read Data Format. This field is only applicable when the ADC module is configured to be a 12-bit ADC module. This field determines the format in which the conversion results are read out of the Event group results RAM when using the FIFO interface, that is, when reading from the ADEVBUFFER or ADEVEMUBUFFER locations. Any operation mode read/write: Reserved 0 Conversion results are read out in full 12-bit format. This is the default mode. 1h Conversion results are read out in 10-bit format. Bits 11-2 of the 12-bit conversion result are returned as the 10-bit conversion result. 2h Conversion results are read out in 8-bit format. Bits 11-4 of the 12-bit conversion result are returned as the 8-bit conversion result. 3h Reserved. The full 12-bit conversion result is returned if programmed. 0 Reads return zeros, writes have no effect. EV_CHID Enable Channel Id for the Event Group conversion results to be read. This bit only affects the “read from FIFO” mode. The ADC always stores the channel id in the results RAM. Any 16-bit read performed in the “read from RAM” mode will return the 5-bit channel id along with the 10-bit conversion result. Any operation mode read/write: 0 Bits 14-10, the channel id field, of the data read from the Event Group results’ FIFO is read as 00000b. 1 Bits 14-10, the channel id field, of the data read from the Event Group results’ FIFO contains the number of the ADC analog input to which the conversion result belongs. OVR_EV_RAM_IGN This bit allows the ADC module to overwrite the contents of the Event Group results memory under an overrun condition. Any operation mode read/write: Reserved 0 The ADC cannot overwrite the contents of the Event Group results memory. When an overrun of this memory occurs, the software needs to read out all the contents of this memory before the ADC is able to write a new conversion result for the Event Group. 1 When an overrun of the Event Group results memory occurs, the ADC proceeds to overwrite the contents with any new conversion results for the Event Group, starting with the first location in this memory. 0 Reads return zeros, writes have no effect. EV_8BIT Event Group 8-bit result mode. This bit is only applicable when the ADC module is configured to be a 10-bit ADC module. This bit allows the Event Group conversion results to be read out in an 8-bit format. This bit only applies to the “read from FIFO” mode. The lower 2 bits of the 10-bit conversion result are discarded and the upper 8 bits are shifted right two places to form the 8-bit conversion result. Any operation mode read/write: 0 The Event Group conversion result is read out as a 10-bit value in the “read from Event Group FIFO” mode. 1 The Event Group conversion result is read out as an 8-bit value in the “read from Event Group FIFO” mode. SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 731 ADC Control Registers www.ti.com Table 19-10. ADC Event Group Operating Mode Control Register (ADEVMODECR) Field Descriptions (continued) Field Value EV_MODE Description Event Group Conversion Mode. This bit defines whether the input channels selected for conversion in the Event Group are converted only once per trigger, or are continuously converted. Any operation mode read/write: 0 The channels selected for conversion in the Event Group are converted only once when the selected event trigger condition occurs. 1 The channels selected for conversion in the Event Group are converted continuously when the selected event trigger condition occurs. FRZ_EV Event Group Freeze Enable. This bit allows an Event Group conversion sequence to be frozen if a Group1 or a Group2 conversion is requested. The Event Group conversion is kept frozen while the Group1 or Group2 conversion is active, and continues from where it was frozen once the Group1 or Group2 conversions are completed. While the Event Group conversion is frozen, the EV_STOP status flag in the ADEVSR register indicates that the Event Group conversions have stopped. This bit gets cleared when the Event Group conversions resume. Any operation mode read/write: 732 0 Event Group conversions cannot be frozen. All the channels selected for conversion in the Event Group are converted before the ADC can switch over to servicing any other conversion group. 1 Event Group conversions are frozen whenever there is a request for conversion from Group1 or Group2. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com 19.11.6 ADC Group1 Operating Mode Control Register (ADG1MODECR) ADC Group1 Operating Mode Control Register (ADG1MODECR) is shown in Figure 19-24 and Figure 1925, and described in Table 19-11. As shown, the format of the ADG1MODECR is different based on whether the ADC module is configured to be a 12-bit or a 10-bit ADC module. Figure 19-24. 12-bit ADC Group1 Operating Mode Control Register (ADG1MODECR) [offset = 14h] 31 24 Reserved R-0 23 17 Reserved R-0 R/W-0 15 10 7 6 16 No Reset on ChnSel 9 8 Reserved G1_DATA_FMT R-0 R/W-0 5 4 3 2 1 0 Reserved G1_CHID OVR_G1_ RAM_IGN G1_HW_TRIG Reserved G1_MODE FRZ_G1 R-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Figure 19-25. 10-bit ADC Group1 Operating Mode Control Register (ADG1MODECR) [offset = 14h] 31 24 Reserved R-0 23 17 16 Reserved No Reset on ChnSel R-0 R/W-0 15 8 Reserved R-0 7 6 5 4 3 2 1 0 Reserved G1_CHID OVR_G1_ RAM_IGN G1_HW_TRIG G1_8BIT G1_MODE FRZ_G1 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 733 ADC Control Registers www.ti.com Table 19-11. ADC Group1 Operating Mode Control Register (ADG1MODECR) Field Descriptions Field Value Reserved 0 No Reset on ChnSel Description Reads return zeros, writes have no effect. No Group1 Results Memory Reset on New Channel Select. This bit determines whether the group1 results’ RAM is reset whenever a non-zero value is written to the group1 channel select register. Any operation mode read/write: 0 Group1 results RAM is reset when a non-zero value is written to group1 channel select register, even if group1 conversions are completed. 1 Group1 results RAM is not reset when a non-zero value is written to group1 channel select register, and group1 conversions are completed. If the group1 conversions are ongoing (active or frozen), then writing a nonzero value to the group1 channel select register will always reset the group1 results RAM. Reserved 0 G1_DATA_FMT Reads return zeros, writes have no effect. Group1 Read Data Format. This field is only applicable when the ADC module is configured to be a 12-bit ADC module. This field determines the format in which the conversion results are read out of the group1 results RAM when using the FIFO interface, that is, when reading from the ADG1BUFFER or ADG1EMUBUFFER locations. Any operation mode read/write: Reserved 0 Conversion results are read out in full 12-bit format. This is the default mode. 1h Conversion results are read out in 10-bit format. Bits 11-2 of the 12-bit conversion result are returned as the 10-bit conversion result. 2h Conversion results are read out in 8-bit format. Bits 11-4 of the 12-bit conversion result are returned as the 8-bit conversion result. 3h Reserved. The full 12-bit conversion result is returned if programmed. 0 Reads return zeros, writes have no effect. G1_CHID Enable Channel Id for the Group1 conversion results to be read. This bit only affects the “read from FIFO” mode. The ADC always stores the channel id in the results RAM. Any 16-bit read performed in the “read from RAM” mode will return the 5-bit channel id along with the 10-bit conversion result. Any operation mode read/write: 0 Bits 14-10, the channel id field, of the data read from the Group1 results’ FIFO is read as 00000b. 1 Bits 14-10, the channel id field, of the data read from the Group1 results’ FIFO contains the number of the ADC analog input to which the conversion result belongs. OVR_G1_RAM_IGN This bit allows the ADC module to overwrite the contents of the Group1 results memory under an overrun condition. Any operation mode read/write: 0 The ADC cannot overwrite the contents of the Group1 results memory. When an overrun of this memory occurs, the software needs to read out all the contents of this memory before the ADC is able to write a new conversion result for the Group1. 1 When an overrun of the Group1 results memory occurs, the ADC proceeds to overwrite the contents with any new conversion results for the Group1, starting with the first location in this memory. G1_HW_TRIG Group1 Hardware Triggered. This bit allows the Group1 to be hardware triggered. The Group1 is software triggered by default. For more details on how to trigger a conversion group, please refer to Section 19.3.6. Any operation mode read/write: 0 The Group1 is software-triggered. A Group1 conversion starts whenever the Group1 channel select register (ADG1SEL) is written with a non-zero value. 1 The Group1 is hardware-triggered. A Group1 conversion starts whenever the Group1 channel select register has a non-zero value, and the specified hardware trigger occurs. The hardware trigger for the Group1 is specified in the Group1 Trigger Source register (ADG1SRC). G1_8BIT Group1 8-bit result mode. This bit is only applicable when the ADC module is configured to be a 10-bit ADC module. This bit allows the Group1 conversion results to be read out in an 8-bit format. This bit only applies to the “read from FIFO” mode. The lower 2 bits of the 10-bit conversion result are discarded and the upper 8 bits are shifted right two places to form the 8-bit conversion result. Any operation mode read/write: 734 0 The Group1 conversion result is read out as a 10-bit value in the “read from Group1 FIFO” mode. 1 The Group1 conversion result is read out as an 8-bit value in the “read from Group1 FIFO” mode. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com Table 19-11. ADC Group1 Operating Mode Control Register (ADG1MODECR) Field Descriptions (continued) Field Value G1_MODE Description Group1 Conversion Mode. This bit defines whether the input channels selected for conversion in the Group1 are converted only once, or are continuously converted. Any operation mode read/write: 0 The channels selected for conversion in the Group1 are converted only once. 1 The channels selected for conversion in the Group1 are converted continuously. FRZ_G1 Group1 Freeze Enable. This bit allows a Group1 conversion sequence to be frozen if an Event Group or a Group2 conversion is requested. The Group1 conversion is kept frozen while the Event Group or Group2 conversion is active, and continues from where it was frozen once the Event Group or Group2 conversions are completed. While the Group1 conversion is frozen, the G1_STOP status flag in the ADG1SR register indicates that the Group1 conversions have stopped. This bit gets cleared when the Group1 conversions resume. Any operation mode read/write: 0 Group1 conversions cannot be frozen. All the channels selected for conversion in the Group1 are converted before the ADC can switch over to servicing any other conversion group. 1 Group1 conversions are frozen whenever there is a request for conversion from Event Group or Group2. SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 735 ADC Control Registers www.ti.com 19.11.7 ADC Group2 Operating Mode Control Register (ADG2MODECR) ADC Group2 Operating Mode Control Register (ADG2MODECR) is shown in Figure 19-26 and Figure 1927, described in Table 19-12. As shown, the format of the ADG2MODECR is different based on whether the ADC module is configured to be a 12-bit or a 10-bit ADC module. Figure 19-26. 12-bit ADC Group2 Operating Mode Control Register (ADG2MODECR) [offset = 18h] 31 24 Reserved R-0 23 16 Reserved No Reset on ChnSel R-0 R/W-0 15 10 7 6 9 8 Reserved G2_DATA_FMT R-0 R/W-0 5 4 3 2 1 0 Reserved G2_CHID OVR_G2_ RAM_IGN G2_HW_TRIG Reserved G2_MODE FRZ_G2 R-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Figure 19-27. 10-bit ADC Group2 Operating Mode Control Register (ADG2MODECR) [offset = 18h] 31 24 Reserved R-0 23 16 Reserved No Reset on ChnSel R-0 R/W-0 15 8 Reserved R-0 7 6 5 4 3 2 1 0 Reserved G2_CHID OVR_G2_ RAM_IGN G2_HW_TRIG G2_8BIT G2_MODE FRZ_G2 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset 736 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com Table 19-12. ADC Group 2 Operating Mode Control Register (ADG2MODECR) Field Descriptions Field Reserved Value 0 No Reset on ChnSel Description Reads return zeros, writes have no effect. No Group2 Results Memory Reset on New Channel Select. This bit determines whether the group2 results’ RAM is reset whenever a non-zero value is written to the group2 channel select register. Any operation mode read/write: 0 Group2 results RAM is reset when a non-zero value is written to group2 channel select register, even if group2 conversions are completed. 1 Group2 results RAM is not reset when a non-zero value is written to group2 channel select register, and group2 conversions are completed. If the group2 conversions are ongoing (active or frozen), then writing a nonzero value to the group2 channel select register will always reset the group2 results RAM. Reserved 0 G2_DATA_FMT Reads return zeros, writes have no effect. Group2 Read Data Format. This field is only applicable when the ADC module is configured to be a 12-bit ADC module. This field determines the format in which the conversion results are read out of the group1 results RAM when using the FIFO interface, that is, when reading from the ADG2BUFFER or ADG2EMUBUFFER locations. Any operation mode read/write: Reserved 0 Conversion results are read out in full 12-bit format. This is the default mode. 1h Conversion results are read out in 10-bit format. Bits 11-2 of the 12-bit conversion result are returned as the 10-bit conversion result. 2h Conversion results are read out in 8-bit format. Bits 11-4 of the 12-bit conversion result are returned as the 8-bit conversion result. 3h Reserved. The full 12-bit conversion result is returned if programmed. 0 Reads return zeros, writes have no effect. G2_CHID Enable Channel Id for the Group2 conversion results to be read. This bit only affects the “read from FIFO” mode. The ADC always stores the channel id in the results RAM. Any 16-bit read performed in the “read from RAM” mode will return the 5-bit channel id along with the 10-bit conversion result. Any operation mode read/write: 0 Bits 14-10, the channel id field, of the data read from the Group2 results’ FIFO is read as 00000b. 1 Bits 14-10, the channel id field, of the data read from the Group2 results’ FIFO contains the number of the ADC analog input to which the conversion result belongs. OVR_G2_RAM_IGN This bit allows the ADC module to overwrite the contents of the Group2 results memory under an overrun condition. Any operation mode read/write: 0 The ADC cannot overwrite the contents of the Group2 results memory. When an overrun of this memory occurs, the software needs to read out all the contents of this memory before the ADC is able to write a new conversion result for the Group2. 1 When an overrun of the Group2 results memory occurs, the ADC proceeds to overwrite the contents with any new conversion results for the Group2, starting with the first location in this memory. G2_HW_TRIG Group2 Hardware Triggered. This bit allows the Group2 to be hardware triggered. The Group2 is software triggered by default. For more details on how to trigger a conversion group, please refer to Section 19.3.6. Any operation mode read/write: 0 The Group2 is software-triggered. A Group2 conversion starts whenever the Group2 channel select register (ADG2SEL) is written with a non-zero value. 1 The Group2 is hardware-triggered. A Group2 conversion starts whenever the Group2 channel select register has a non-zero value, and the specified hardware trigger occurs. The hardware trigger for the Group2 is specified in the Group2 Trigger Source register (ADG2SRC). G2_8BIT Group2 8-bit result mode. This bit is only applicable when the ADC module is configured to be a 10-bit ADC module. This bit allows the Group2 conversion results to be read out in an 8-bit format. This bit only applies to the “read from FIFO” mode. The lower 2 bits of the 10-bit conversion result are discarded and the upper 8 bits are shifted right two places to form the 8-bit conversion result. Any operation mode read/write: 0 The Group2 conversion result is read out as a 10-bit value in the “read from Group2 FIFO” mode. 1 The Group2 conversion result is read out as an 8-bit value in the “read from Group2 FIFO” mode. SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 737 ADC Control Registers www.ti.com Table 19-12. ADC Group 2 Operating Mode Control Register (ADG2MODECR) Field Descriptions (continued) Field Value G2_MODE Description Group2 Conversion Mode. This bit defines whether the input channels selected for conversion in the Group2 are converted only once, or are continuously converted. Any operation mode read/write: 0 The channels selected for conversion in the Group2 are converted only once. 1 The channels selected for conversion in the Group2 are converted continuously. FRZ_G2 Group2 Freeze Enable. This bit allows a Group2 conversion sequence to be frozen if an Event Group or a Group1 conversion is requested. The Group2 conversion is kept frozen while the Event Group or Group1 conversion is active, and continues from where it was frozen once the Event Group or Group1 conversions are completed. While the Group2 conversion is frozen, the G2_STOP status flag in the ADG2SR register indicates that the Group2 conversions have stopped. This bit gets cleared when the Group2 conversions resume. Any operation mode read/write: 738 0 Group2 conversions cannot be frozen. All the channels selected for conversion in the Group2 are converted before the ADC can switch over to servicing any other conversion group. 1 Group2 conversions are frozen whenever there is a request for conversion from Event Group or Group1. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com 19.11.8 ADC Event Group Trigger Source Select Register (ADEVSRC) ADC Event Group Trigger Source Select Register (ADEVSRC) is shown in Figure 19-28 and described in Table 19-13. Figure 19-28. ADC Event Group Trigger Source Select Register (ADEVSRC) [offset = 1Ch] 31 8 Reserved R-0 7 4 3 Reserved 5 EV_EDG_BOTH EV_EDG_SEL 2 EV_SRC 0 R-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-13. ADC Event Group Trigger Source Select Register (ADEVSRC) Field Descriptions Bit 31-5 4 Field Value Reserved 0 EV_EDG_BOTH Description Reads return zeros, writes have no effect. EV Group Trigger Edge Polarity Select. This bit configures the event group to be triggered on both rising and falling edge detected on the selected trigger source. Any operation mode read/write: 3 0 The conversion is triggered only upon detecting an edge defined by the EV_EDG_SEL bit. 1 The conversion is triggered upon detecting either a rising or falling edge. EV_EDG_SEL Event Group Trigger Edge Polarity Select. This bit determines the polarity of the transition on the selected source that triggers the Event Group conversion. Any operation mode read/write: 2-0 0 A high-to-low transition on the selected source will trigger the Event Group conversion. 1 A low-to-high transition on the selected source will trigger the Event Group conversion. EV_SRC Event Group Trigger Source. Any operation mode read/write: 0-7h SPNU499C – March 2018 Submit Documentation Feedback The ADC module allows a trigger source to be selected for the Event Group from up to eight options. These options are device-specific and the device specification must be referred to identify the actual trigger sources. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 739 ADC Control Registers www.ti.com 19.11.9 ADC Group1 Trigger Source Select Register (ADG1SRC) ADC Group1 Trigger Source Select Register (ADG1SRC) is shown in Figure 19-29 and described in Table 19-14. Figure 19-29. ADC Group1 Trigger Source Select Register (ADG1SRC) [offset = 20h] 31 8 Reserved R-0 7 4 3 Reserved 5 G1_EDG_BOTH G1_EDG_SEL 2 G1_SRC 0 R-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-14. ADC Group1 Trigger Source Select Register (ADG1SRC) Field Descriptions Bit 31-5 4 Field Reserved Value 0 G1_EDG_BOTH Description Reads return zeros, writes have no effect. Group1 Trigger Edge Polarity Select. This bit configures the group1 to be triggered on both rising and falling edge detected on the selected trigger source. Any operation mode read/write: 3 0 The conversion is triggered only upon detecting an edge defined by the G1_EDG_SEL bit. 1 The conversion is triggered upon detecting either a rising or falling edge. G1_EDG_SEL Group1 Trigger Edge Polarity Select. This bit determines the polarity of the transition on the selected source that triggers the Group1 conversion. Any operation mode read/write: 2-0 0 A high-to-low transition on the selected source will trigger the Group1 conversion. 1 A low-to-high transition on the selected source will trigger the Group1 conversion. G1_SRC Group1 Trigger Source. Any operation mode read/write: 0-7h 740 The ADC module allows a trigger source to be selected for the Group1 from up to eight options. These options are device-specific and the device specification must be referred to identify the actual trigger sources. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com 19.11.10 ADC Group2 Trigger Source Select Register (ADG2SRC) ADC Group2 Trigger Source Select Register (ADG2SRC) is shown in Figure 19-30 and described in Table 19-15. Figure 19-30. ADC Group2 Trigger Source Select Register (ADG2SRC) [offset = 24h] 31 8 Reserved R-0 7 4 3 Reserved 5 G2_EDG_BOTH G2_EDG_SEL 2 G2_SRC 0 R-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-15. ADC Group2 Trigger Source Select Register (ADG2SRC) Field Descriptions Bit 31-5 4 Field Value Reserved 0 G2_EDG_BOTH Description Reads return zeros, writes have no effect. Group2 Trigger Edge Polarity Select. This bit configures the group2 to be triggered on both rising and falling edge detected on the selected trigger source. Any operation mode read/write: 3 0 The conversion is triggered only upon detecting an edge defined by the G2_EDG_SEL bit. 1 The conversion is triggered upon detecting either a rising or falling edge. G2_EDG_SEL Group2 Trigger Edge Polarity Select. This bit determines the polarity of the transition on the selected source that triggers the Group2 conversion. Any operation mode read/write: 2-0 0 A high-to-low transition on the selected source will trigger the Group2 conversion. 1 A low-to-high transition on the selected source will trigger the Group2 conversion. G2_SRC Group2 Trigger Source. Any operation mode read/write: 0-7h SPNU499C – March 2018 Submit Documentation Feedback The ADC module allows a trigger source to be selected for the Group2 from up to eight options. These options are device-specific and the device specification must be referred to identify the actual trigger sources. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 741 ADC Control Registers www.ti.com 19.11.11 ADC Event Interrupt Enable Control Register (ADEVINTENA) ADC Event Group Interrupt Enable Control Register (ADEVINTENA) is shown in Figure 19-31 and described in Table 19-16. Figure 19-31. ADC Event Group Interrupt Enable Control Register (ADEVINTENA) [offset = 28h] 31 8 Reserved R-0 7 3 2 1 0 Reserved 4 EV_END_ INT_EN Reserved EV_OVR_ INT_EN EV_THR_ INT_EN R-0 R/W-0 R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-16. ADC Event Group Interrupt Enable Control Register (ADEVINTENA) Field Descriptions Bit 31-4 3 Field Reserved Value 0 EV_END_INT_EN Description Reads return zeros, writes have no effect. Event Group Conversion End Interrupt Enable. Please refer to Section 19.5.1 for more details on the conversion end interrupts. Any operation mode read/write: 2 Reserved 1 EV_OVR_INT_EN 0 No interrupt is generated when conversion of all the channels selected for conversion in the Event Group is done. 1 An Event Group conversion end interrupt is generated when conversion of all the channels selected for conversion in the Event Group is done. 0 Reads return zeros, writes have no effect. Event Group Memory Overrun Interrupt Enable. A memory overrun occurs when the ADC tries to write a new conversion result to the Event Group results memory that is already full. For more details on the overrun interrupts, please refer to Section 19.5.3. Any operation mode read/write: 0 0 No interrupt is generated if an Event Group memory overrun occurs. 1 An Event Group memory overrun interrupt is generated if an Event Group memory overrun condition occurs. EV_THR_INT_EN Event Group Threshold Interrupt Enable. An Event Group threshold interrupt occurs when the programmed Event Group threshold counter counts down to zero. Please refer to Section 19.5.2 for more details. Any operation mode read/write: 742 0 No interrupt is generated if the Event Group threshold counter reaches zero. 1 An Event Group threshold interrupt is generated if the Event Group threshold counter reaches zero. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com 19.11.12 ADC Group1 Interrupt Enable Control Register (ADG1INTENA) ADC Group1 Interrupt Enable Control Register (ADG1INTENA) is shown in Figure 19-32 and described in Table 19-17. Figure 19-32. ADC Group1 Interrupt Enable Control Register (ADG1INTENA) [offset = 2Ch] 31 8 Reserved R-0 7 3 2 1 0 Reserved 4 G1_END_ INT_EN Reserved G1_OVR_ INT_EN G1_THR_ INT_EN R-0 R/W-0 R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-17. ADC Group1 Interrupt Enable Control Register (ADG1INTENA) Field Descriptions Bit 31-4 3 Field Reserved Value 0 G1_END_INT_EN Description Reads return zeros, writes have no effect. Group1 Conversion End Interrupt Enable. Please refer to Section 19.5.1 for more details on the conversion end interrupts. Any operation mode read/write: 2 Reserved 1 G1_OVR_INT_EN 0 No interrupt is generated when conversion of all the channels selected for conversion in the Group1 is done. 1 A Group1 conversion end interrupt is generated when conversion of all the channels selected for conversion in the Group1 is done. 0 Reads return zeros, writes have no effect. Group1 Memory Overrun Interrupt Enable. A memory overrun occurs when the ADC tries to write a new conversion result to the Group1 results memory that is already full. For more details on the overrun interrupts, please refer to Section 19.5.3. Any operation mode read/write: 0 0 No interrupt is generated if a Group1 memory overrun occurs. 1 A Group1 memory overrun interrupt is generated if a Group1 memory overrun condition occurs. G1_THR_INT_EN Group1 Threshold Interrupt Enable. A Group1 threshold interrupt occurs when the programmed Group1 threshold counter counts down to zero. Please refer to Section 19.5.2 for more details. Any operation mode read/write: SPNU499C – March 2018 Submit Documentation Feedback 0 No interrupt is generated if the Group1 threshold counter reaches zero. 1 A Group1 threshold interrupt is generated if the Group1 threshold counter reaches zero. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 743 ADC Control Registers www.ti.com 19.11.13 ADC Group2 Interrupt Enable Control Register (ADG2INTENA) ADC Group2 Interrupt Enable Control Register (ADG2INTENA) is shown in Figure 19-33 and described in Table 19-18. Figure 19-33. ADC Group2 Interrupt Enable Control Register (ADG2INTENA) [offset = 30h] 31 8 Reserved R-0 7 3 2 1 0 Reserved 4 G2_END_ INT_EN Reserved G2_OVR_ INT_EN G2_THR_ INT_EN R-0 R/W-0 R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-18. ADC Group2 Interrupt Enable Control Register (ADG2INTENA) Field Descriptions Bit 31-4 3 Field Reserved Value 0 G2_END_INT_EN Description Reads return zeros, writes have no effect. Group2 Conversion End Interrupt Enable. Please refer to Section 19.5.1 for more details on the conversion end interrupts. Any operation mode read/write: 2 Reserved 1 G2_OVR_INT_EN 0 No interrupt is generated when conversion of all the channels selected for conversion in the Group2 is done. 1 A Group2 conversion end interrupt is generated when conversion of all the channels selected for conversion in the Group2 is done. 0 Reads return zeros, writes have no effect. Group2 Memory Overrun Interrupt Enable. A memory overrun occurs when the ADC tries to write a new conversion result to the Group2 results memory that is already full. For more details on the overrun interrupts, please refer to Section 19.5.3. Any operation mode read/write: 0 0 No interrupt is generated if a Group2 memory overrun occurs. 1 A Group2 memory overrun interrupt is generated if a Group2 memory overrun condition occurs. G2_THR_INT_EN Group2 Threshold Interrupt Enable. A Group2 threshold interrupt occurs when the programmed Group2 threshold counter counts down to zero. Please refer to Section 19.5.2 for more details. Any operation mode read/write: 744 0 No interrupt is generated if the Group2 threshold counter reaches zero. 1 A Group2 threshold interrupt is generated if the Group2 threshold counter reaches zero. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com 19.11.14 ADC Event Group Interrupt Flag Register (ADEVINTFLG) ADC Event Group Interrupt Enable Control Register (ADEVINTENA) is shown in Figure 19-34 and described in Table 19-19. Figure 19-34. ADC Event Group Interrupt Flag Register (ADEVINTFLG) [offset = 34h] 31 8 Reserved R-0 7 3 2 1 0 Reserved 4 EV_END EV_MEM_ EMPTY EV_MEM_ OVERRUN EV_THR_ INT_FLG R-0 R/W1C-0 R-1 R-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 19-19. ADC Event Group Interrupt Flag Register (ADEVINTFLG) Field Descriptions Bit Field 31-4 Reserved 3 EV_END Value 0 Description Reads return zeros, writes have no effect. Event Group Conversion End. This bit will be set only if the Event Group conversions are configured to be in the single-conversion mode. Any operation mode read: 0 All the channels selected for conversion in the Event Group have not yet been converted. 1 All the channels selected for conversion in the Event Group have been converted. An Event Group conversion end interrupt is generated, if enabled, when this bit gets set. This bit can be cleared by any one of the following ways: • By writing a 1 to this bit • By writing a 1 to the Event Group status register (ADEVSR) bit 0 (EV_END) • By reading one conversion result from the Event Group results’ memory in the “read from FIFO” mode • By writing a new set of channels to the Event Group channel select register 2 EV_MEM_EMPTY Event Group Results Memory Empty. This is a read-only bit; writes have no effect. It is not a source of an interrupt from the ADC module. Any operation mode read: 1 0 The Event Group results memory is not empty. 1 The Event Group results memory is empty. EV_MEM_OVERRUN Event Group Memory Overrun. This is a read-only bit; writes have no effect. Any operation mode read: 0 0 Event Group results memory has not overrun. 1 Event Group results memory has overrun. EV_THR_INT_FLG Event Group Threshold Interrupt Flag. Any operation mode read: 0 The number of conversions completed for the Event Group is smaller than the threshold programmed in the Event Group interrupt threshold register. 1 The number of conversions completed for the Event Group is equal to or greater than the threshold programmed in the Event Group interrupt threshold register. This bit can be cleared by writing a 1 ; writing a 0 has no effect. SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 745 ADC Control Registers www.ti.com 19.11.15 ADC Group1 Interrupt Flag Register (ADG1INTFLG) ADC Group1 Interrupt Flag Register (ADG1INTFLG) is shown in Figure 19-35 and described in Table 1920. Figure 19-35. ADC Group1 Interrupt Flag Register (ADG1INTFLG) [offset = 38h] 31 8 Reserved R-0 7 3 2 1 0 Reserved 4 G1_END G1_MEM_ EMPTY G1_MEM_ OVERRUN G1_THR_ INT_FLG R-0 R/W1C-0 R-1 R-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 19-20. ADC Group1 Interrupt Flag Register (ADG1INTFLG) Field Descriptions Bit Field 31-4 Reserved 3 G1_END Value 0 Description Reads return zeros, writes have no effect. Group1 Conversion End. This bit will be set only if the Group1 conversions are configured to be in the single-conversion mode. Any operation mode read: 0 All the channels selected for conversion in the Group1 have not yet been converted. 1 All the channels selected for conversion in the Group1 have been converted. A Group1 conversion end interrupt is generated, if enabled, when this bit gets set. This bit can be cleared by any one of the following ways: • By writing a 1 to this bit • By writing a 1 to the Group1 status register (ADG1SR) bit 0 (G1_END) • By reading one conversion result from the Group1 results’ memory in the “read from FIFO” mode • By writing a new set of channels to the Group1 channel select register 2 G1_MEM_EMPTY Group1 Results Memory Empty. This is a read-only bit; writes have no effect. It is not a source of an interrupt from the ADC module. Any operation mode read: 1 0 The Group1 results memory is not empty. 1 The Group1 results memory is empty. G1_MEM_OVERRUN Group1 Memory Overrun. This is a read-only bit; writes have no effect. Any operation mode read: 0 0 Group1 results memory has not overrun. 1 Group1 results memory has overrun. G1_THR_INT_FLG Group1 Threshold Interrupt Flag. Any operation mode read: 0 The number of conversions completed for the Group1 is smaller than the threshold programmed in the Group1 interrupt threshold register. 1 The number of conversions completed for the Group1 is equal to or greater than the threshold programmed in the Group1 interrupt threshold register. This bit can be cleared by writing a 1 ; writing a 0 has no effect. 746 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com 19.11.16 ADC Group2 Interrupt Flag Register (ADG2INTFLG) ADC Group2 Interrupt Flag Register (ADG2INTFLG) is shown in Figure 19-36 and described in Table 1921. Figure 19-36. ADC Group2 Interrupt Flag Register (ADG2INTFLG) [offset = 3Ch] 31 8 Reserved R-0 7 3 2 1 0 Reserved 4 G2_END G2_MEM_ EMPTY G2_MEM_ OVERRUN G2_THR_ INT_FLG R-0 R/W1C-0 R-1 R-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 19-21. ADC Group2 Interrupt Flag Register (ADG2INTFLG) Field Descriptions Bit Field 31-4 Reserved 3 G2_END Value 0 Description Reads return zeros, writes have no effect. Group2 Conversion End. This bit will be set only if the Group2 conversions are configured to be in the single-conversion mode. Any operation mode read: 0 All the channels selected for conversion in the Group2 have not yet been converted. 1 All the channels selected for conversion in the Group2 have been converted. A Group2 conversion end interrupt is generated, if enabled, when this bit gets set. This bit can be cleared by any one of the following ways: • By writing a 1 to this bit • By writing a 1 to the Group2 status register (ADG2SR) bit 0 (G2_END) • By reading one conversion result from the Group2 results’ memory in the “read from FIFO” mode • By writing a new set of channels to the Group2 channel select register 2 G2_MEM_EMPTY Group2 Results Memory Empty. This is a read-only bit; writes have no effect. It is not a source of an interrupt from the ADC module. Any operation mode read: 1 0 The Group2 results memory is not empty. 1 The Group2 results memory is empty. G2_MEM_OVERRUN Group2 Memory Overrun. This is a read-only bit; writes have no effect. Any operation mode read: 0 0 Group2 results memory has not overrun. 1 Group2 results memory has overrun. G2_THR_INT_FLG Group2 Threshold Interrupt Flag. Any operation mode read: 0 The number of conversions completed for the Group2 is smaller than the threshold programmed in the Group2 interrupt threshold register. 1 The number of conversions completed for the Group2 is equal to or greater than the threshold programmed in the Group2 interrupt threshold register. This bit can be cleared by writing a 1 ; writing a 0 has no effect. SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 747 ADC Control Registers www.ti.com 19.11.17 ADC Event Group Threshold Interrupt Control Register (ADEVTHRINTCR) ADC Event Group Threshold Interrupt Control Register (ADEVTHRINTCR) is shown in Figure 19-37 and described in Table 19-22. Figure 19-37. ADC Event Group Threshold Interrupt Control Register (ADEVTHRINTCR) [offset = 40h] 31 16 15 9 8 0 Reserved Sign Extension EV_THR R-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-22. ADC Event Group Threshold Interrupt Control Register (ADEVTHRINTCR) Field Descriptions Bit Field Value 0 Description 31-16 Reserved Reads return zeros, writes have no effect. 15-9 Sign Extension These bits always read the same as the bit 8 of this register. 8-0 EV_THR Event Group Threshold Counter. Before ADC conversions begin on the Event Group, this field is initialized to the number of conversion results that the Event Group memory should contain before interrupting the CPU. This counter decrements when the ADC module writes a new conversion result to the Event Group results’ memory. The counter increments for each read of a conversion result from the Event Group results’ memory in the “read from FIFO” mode. The threshold counter is not affected for a direct read from the Event Group results’ memory. Also, a simultaneous ADC write and a CPU/DMA read from the Event Group FIFO will leave the threshold counter unchanged. In case of an Event Group Results’ memory overrun condition, if new conversion results are not allowed to overwrite the existing memory contents, then the Event Group threshold counter is not decremented. Please refer to Section 19.5.2 for more details on the threshold interrupts. 19.11.18 ADC Group1 Threshold Interrupt Control Register (ADG1THRINTCR) ADC Group1 Threshold Interrupt Control Register (ADG1THRINTCR) is shown in Figure 19-38 and described in Table 19-23. Figure 19-38. ADC Group1 Threshold Interrupt Control Register (ADG1THRINTCR) [offset = 44h] 31 16 15 9 8 0 Reserved Sign Extension G1_THR R-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-23. ADC Group1 Threshold Interrupt Control Register (ADG1THRINTCR) Field Descriptions Bit Field Value 0 Description 31-16 Reserved Reads return zeros, writes have no effect. 15-9 Sign Extension These bits always read the same as the bit 8 of this register. 8-0 G1_THR Group1 Threshold Counter. Before ADC conversions begin on the Group1, this field is initialized to the number of conversion results that the Group1 memory should contain before interrupting the CPU. This counter decrements when the ADC module writes a new conversion result to the Group1 results’ memory. The counter increments for each read of a conversion result from the Group1 results’ memory in the “read from FIFO” mode. The threshold counter is not affected for a direct read from the group1 results’ memory. Also, a simultaneous ADC write and a CPU/DMA read from the Group1 FIFO will leave the threshold counter unchanged. In case of an Group1 Results’ memory overrun condition, if new conversion results are not allowed to overwrite the existing memory contents, then the Group1 threshold counter is not decremented. Please refer to Section 19.5.2 for more details on the threshold interrupts. 748 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com 19.11.19 ADC Group2 Threshold Interrupt Control Register (ADG2THRINTCR) The ADC Group2 Threshold Interrupt Control Register (ADG2THRINTCR) is shown in Figure 19-39 and described in Table 19-24. Figure 19-39. ADC Group2 Threshold Interrupt Control Register (ADG2THRINTCR) [offset = 48h] 31 16 15 9 8 0 Reserved Sign Extension G2_THR R-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-24. ADC Group2 Threshold Interrupt Control Register (ADG2THRINTCR) Field Descriptions Bit Field Value 0 Description 31-16 Reserved 15-9 Sign Extension Reads return zeros, writes have no effect. These bits always read the same as the bit 8 of this register. 8-0 G2_THR Group2 Threshold Counter. Before ADC conversions begin on the Group2, this field is initialized to the number of conversion results that the Group2 memory should contain before interrupting the CPU. This counter decrements when the ADC module writes a new conversion result to the Group2 results’ memory. The counter increments for each read of a conversion result from the Group2 results’ memory in the “read from FIFO” mode. The threshold counter is not affected for a direct read from the group2 results’ memory. Also, a simultaneous ADC write and a CPU/DMA read from the Group2 FIFO will leave the threshold counter unchanged. In case of an Group2 Results’ memory overrun condition, if new conversion results are not allowed to overwrite the existing memory contents, then the Group2 threshold counter is not decremented. Please refer to Section 19.5.2 for more details on the threshold interrupts. SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 749 ADC Control Registers www.ti.com 19.11.20 ADC Event Group DMA Control Register (ADEVDMACR) ADC Event Group DMA Control Register (ADEVDMACR) is shown in Figure 19-40 and described in Table 19-25. Figure 19-40. ADC Event Group DMA Control Register (ADEVDMACR) [offset = 4Ch] 31 25 24 16 Reserved EV_BLOCKS R-0 R/W-0 15 8 Reserved R-0 7 4 Reserved 3 2 DMA_EV_END EV_BLK_XFER R-0 R/W-0 R/W-0 1 0 Reserved EV_DMA_EN R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-25. ADC Event Group DMA Control Register (ADEVDMACR) Field Descriptions Bit Field 31-25 Reserved 24-16 EV_BLOCKS Value 0 Description Reads return zeros, writes have no effect. Number of Event Group Result buffers to be transferred using DMA if the ADC module is configured to generate a DMA request. If the Event Group is configured to use the block transfer mode of the DMA module, then the ADC module generates a DMA request after the Event Group results’ memory accumulates EV_BLOCKS number of conversion results. This feature is designed to be used in place of the threshold interrupt for the Event Group. As a result, the EV_THR field of the Event Group Interrupt Threshold Control Register and the EV_BLOCKS field of the Event Group DMA Control Register are the same. Any operation mode read/write: 0 1h-1FFh 15-4 3 Reserved 0 DMA_EV_END No DMA transfer occurs even if EV_BLK_XFER is set to 1. One DMA request is generated if the EV_BLK_XFER is set to ‘1’ and the specified number of Event Group conversion results have been accumulated. Reads return zeros, writes have no effect. Event Group Conversion End DMA Transfer Enable. Any operation mode read: 0 ADC module generates a DMA request for each write to the Event group results RAM if EV_DMA_EN is set. 1 ADC module generates a DMA request when the ADC has completed the conversions for all channels selected for conversion in the event group. If DMA_EV_END bit is set to ‘1’, EV_DMA_EN bit is ignored and DMA requests will be generated every time the DMA_EV_END flag in the event group status register is set. The DMA_EV_END bit must be set before enabling conversions for the event group. 2 EV_BLK_XFER Event Group Block DMA Transfer Enable. Any operation mode read: 0 ADC module generates a DMA request for each write to the Event Group memory if EV_DMA_EN is set. 1 ADC module generates a DMA request when the ADC has written EV_BLOCKS number of buffers into the Event Group memory. If EV_BLK_XFER bit is set to 1, EV_DMA_EN bit is ignored and DMA requests will be generated every time the Threshold Counter reaches 0 from a count value of 1. 1 750 Reserved 0 Reads return zeros, writes have no effect. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com Table 19-25. ADC Event Group DMA Control Register (ADEVDMACR) Field Descriptions (continued) Bit 0 Field Value EV_DMA_EN Description Event Group DMA Transfer Enable. Any operation mode read: SPNU499C – March 2018 Submit Documentation Feedback 0 ADC module does not generate a DMA request when it writes the conversion result to the Event Group memory. 1 ADC module generates a DMA transfer when the ADC has written to the Event Group memory. The EV_BLK_XFER bit must be cleared to ‘0’ for this DMA request to be generated. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 751 ADC Control Registers www.ti.com 19.11.21 ADC Group1 DMA Control Register (ADG1DMACR) ADC Group1 DMA Control Register (ADG1DMACR) is shown in Figure 19-41 and described in Table 1926. Figure 19-41. ADC Group1 DMA Control Register (ADG1DMACR) [offset = 50h] 31 25 24 16 Reserved G1_BLOCKS R-0 R/W-0 15 8 Reserved R-0 7 4 Reserved 3 2 DMA_G1_END G1_BLK_XFER R-0 R/W-0 R/W-0 1 0 Reserved G1_DMA_EN R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-26. ADC Group1 DMA Control Register (ADG1DMACR) Field Descriptions Bit Field 31-25 Reserved 24-16 G1_BLOCKS Value 0 Description Reads return zeros, writes have no effect. Number of Group1 Result buffers to be transferred using DMA if the ADC module is configured to generate a DMA request. If the Group1 is configured to use the block transfer mode of the DMA module, then the ADC module generates a DMA request after the Group1 results’ memory accumulates G1_BLOCKS number of conversion results. This feature is designed to be used in place of the threshold interrupt for the Group1. As a result, the G1_THR field of the Group1 Interrupt Threshold Control Register and the G1_BLOCKS field of the Group1 DMA Control Register are the same. Any operation mode read/write: 0 1h-1FFh 15-4 3 Reserved 0 DMA_G1_END No DMA transfer occurs even if G1_BLK_XFER is set to 1. One DMA request is generated if the G1_BLK_XFER is set to ‘1’ and the specified number of Group1 conversion results have been accumulated. Reads return zeros, writes have no effect. Group1 Conversion End DMA Transfer Enable. Any operation mode read: 0 ADC module generates a DMA request for each write to the group1 results RAM if G1_DMA_EN is set. 1 ADC module generates a DMA request when the ADC has completed the conversions for all channels selected for conversion in the group1. If DMA_G1_END bit is set to ‘1’, G1_DMA_EN bit is ignored and DMA requests will be generated every time the DMA_G1_END flag in the group 1 status register is set. The DMA_G1_END bit must be set before enabling conversions for the group 1. 2 G1_BLK_XFER Group1 Block DMA Transfer Enable. Any operation mode read: 0 ADC module generates a DMA request for each write to the Group1 memory if G1_DMA_EN is set. 1 ADC module generates a DMA request when the ADC has written G1_BLOCKS number of buffers into the Group1 memory. If G1_BLK_XFER bit is set to 1, G1_DMA_EN bit is ignored and DMA requests will be generated every time the Threshold Counter reaches 0 from a count value of 1. 1 752 Reserved 0 Reads return zeros, writes have no effect. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com Table 19-26. ADC Group1 DMA Control Register (ADG1DMACR) Field Descriptions (continued) Bit 0 Field Value G1_DMA_EN Description Group1 DMA Transfer Enable. Any operation mode read: SPNU499C – March 2018 Submit Documentation Feedback 0 ADC module does not generate a DMA request when it writes the conversion result to the Group1 memory. 1 ADC module generates a DMA transfer when the ADC has written to the Group1 memory. The G1_BLK_XFER bit must be cleared to ‘0’ for this DMA request to be generated. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 753 ADC Control Registers www.ti.com 19.11.22 ADC Group2 DMA Control Register (ADG2DMACR) ADC Group2 DMA Control Register (ADG2DMACR) is shown in Figure 19-42 and described in Table 1927. Figure 19-42. ADC Group2 DMA Control Register (ADG2DMACR) [offset = 54h] 31 25 24 16 Reserved G2_BLOCKS R-0 R/W-0 15 8 Reserved R-0 7 4 Reserved 3 2 DMA_G2_END G2_BLK_XFER R-0 R/W-0 R/W-0 1 0 Reserved G2_DMA_EN R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-27. ADC Group2 DMA Control Register (ADG2DMACR) Field Descriptions Bit Field 31-25 Reserved 24-16 G2_BLOCKS Value 0 Description Reads return zeros, writes have no effect. Number of Group2 Result buffers to be transferred using DMA if the ADC module is configured to generate a DMA request. If the Group2 is configured to use the block transfer mode of the DMA module, then the ADC module generates a DMA request after the Group2 results’ memory accumulates G2_BLOCKS number of conversion results. This feature is designed to be used in place of the threshold interrupt for the Group2. As a result, the G2_THR field of the Group2 Interrupt Threshold Control Register and the G2_BLOCKS field of the Group2 DMA Control Register are the same. Any operation mode read/write: 0 1h-1FFh 15-4 3 Reserved 0 DMA_G2_END No DMA transfer occurs even if G2_BLK_XFER is set to 1. One DMA request is generated if the G2_BLK_XFER is set to ‘1’ and the specified number of Group2 conversion results have been accumulated. Reads return zeros, writes have no effect. Group2 Conversion End DMA Transfer Enable. Any operation mode read: 0 ADC module generates a DMA request for each write to the group2 results RAM if G2_DMA_EN is set. 1 ADC module generates a DMA request when the ADC has completed the conversions for all channels selected for conversion in the group2. If DMA_G2_END bit is set to ‘1’, G2_DMA_EN bit is ignored and DMA requests will be generated every time the DMA_G2_END flag in the group 2 status register is set. The DMA_G2_END bit must be set before enabling conversions for the group 2. 2 G2_BLK_XFER Group2 Block DMA Transfer Enable. Any operation mode read: 0 ADC module generates a DMA request for each write to the Group2 memory if G2_DMA_EN is set. 1 ADC module generates a DMA request when the ADC has written G2_BLOCKS number of buffers into the Group2 memory. If G2_BLK_XFER bit is set to 1, G2_DMA_EN bit is ignored and DMA requests will be generated every time the Threshold Counter reaches 0 from a count value of 1. 1 754 Reserved 0 Reads return zeros, writes have no effect. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com Table 19-27. ADC Group2 DMA Control Register (ADG2DMACR) Field Descriptions (continued) Bit 0 Field Value G2_DMA_EN Description Group2 DMA Transfer Enable. Any operation mode read: SPNU499C – March 2018 Submit Documentation Feedback 0 ADC module does not generate a DMA request when it writes the conversion result to the Group2 memory. 1 ADC module generates a DMA transfer when the ADC has written to the Group2 memory. The G2_BLK_XFER bit must be cleared to ‘0’ for this DMA request to be generated. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 755 ADC Control Registers www.ti.com 19.11.23 ADC Results Memory Configuration Register (ADBNDCR) ADC Results Memory Configuration Register (ADBNDCR) [offset = 0x58] is shown in Figure 19-43 and described in Table 19-28. Please refer to Section 19.3.8 for further details on how the conversion results are stored in the ADC results’ RAM. Figure 19-43. ADC Results Memory Configuration Register (ADBNDCR) [offset = 58h] 31 25 24 16 Reserved BNDA R-0 R/W-0 15 9 8 0 Reserved BNDB R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-28. ADC Results Memory Configuration Register (ADBNDCR) Field Descriptions Bit Field 31-25 Reserved 24-16 BNDA Value 0 Description Reads return zeros, writes have no effect. Buffer Boundary A. These bits determine the memory available for the Event Group conversion results. The memory available is specified in terms of pairs of result buffers. Any operation mode read/write: 0 0-1FFh 15-9 Reserved 8-0 BNDB 0 Event Group conversions are not required. If Event Group conversions are performed with the BNDA value of zero, then the Event Group memory size will default to 1024 words. For proper usage of the ADC results memory, configure the BNDA value to be non-zero and lower than the BNDB value. A total of (2 × BNDA) buffers are available in the ADC results memory for storing Event Group conversion results. Reads return zeros, writes have no effect. Buffer Boundary B. These bits specify the number of buffers allocated for the Event Group plus the number of buffers allocated for the Group1. The number of buffer pairs allocated for storing Group1 conversion results can be determined by subtracting BNDA from BNDB. As a result, BNDB must always be specified as greater than or equal to BNDA. Any operation mode read/write: 0 0-1FFh 756 Event Group as well as Group1 conversions are not required. A total of 2 × (BNDB - BNDA) buffers are available in the ADC results memory for storing Group1 conversion results. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com 19.11.24 ADC Results Memory Size Configuration Register (ADBNDEND) ADC Results Memory Size Configuration Register (ADBNDEND) is shown in Figure 19-44 and described in Table 19-29. Figure 19-44. ADC Results Memory Size Configuration Register (ADBNDEND) [offset = 5Ch] 31 17 16 Reserved BUF_INIT_ACTIVE R-0 R-0 15 3 2 0 Reserved BNDEND R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-29. ADC Results Memory Size Configuration Register (ADBNDEND) Field Descriptions Bit 31-17 16 Field Reserved Value 0 BUF_INIT_ACTIVE Description Reads return zeros, writes have no effect. ADC Results Memory Auto-initialization Status. Any operation mode read/write: 15-3 Reserved 2-0 BNDEND 0 ADC Results Memory is currently not being initialized, and the ADC is available. If this bit is read as 0 after triggering an auto-initialization of the ADC results memory, then the ADC results memory has been completely initialized to zeros. For devices requiring parity checking on the ADC results memory, the parity bit in the results memory will also be initialized according to the parity polarity. The parity polarity as well as the auto-initialization process is controlled by the System module. Please refer to Chapter 2 for more details. 1 ADC results memory is being initialized, and the ADC is not available for conversion. 0 Reads return zeros, writes have no effect. Buffer Boundary End. These bits specify the total number of memory buffers available for storing the ADC conversion results. These bits should be programmed to match the number of ADC conversion result buffers required to be used for the application. Any operation mode read/write: 0 16 words available for storing ADC conversion results. 1h 32 words available for storing ADC conversion results. 2h 64 words available for storing ADC conversion results. This is the maximum configuration allowed since the device supports 64 buffers each for ADC1 as well as ADC2. 4h-7h SPNU499C – March 2018 Submit Documentation Feedback Reserved. These combinations must not be used. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 757 ADC Control Registers www.ti.com 19.11.25 ADC Event Group Sampling Time Configuration Register (ADEVSAMP) ADC Event Group Sampling Time Configuration Register (ADEVSAMP) is shown in Figure 19-45 and described in Table 19-30. Figure 19-45. ADC Event Group Sampling Time Configuration Register (ADEVSAMP) [offset = 60h] 31 12 11 0 Reserved EV_ACQ R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-30. ADC Event Group Sampling Time Configuration Register (ADEVSAMP) Field Descriptions Bit Field 31-12 Reserved 11-0 EV_ACQ Value 0 Description Reads return zeros, writes have no effect. Event Group Acquisition Time. These bits define the sampling window (SW) for the Event Group conversions. SW = EV_ACQ + 2 in terms of ADCLK cycles. There are two factors that determine the minimum sampling window value required: First, the ADC module design requires that SW >= 3 ADCLK cycles. Second, the ADC input impedance necessitates a certain minimum sampling time. This needs to be guaranteed by configuring the EV_ACQ value properly considering the frequency of the ADCLK signal. Please refer to the device datasheet to determine the minimum sampling time for this device. 19.11.26 ADC Group1 Sampling Time Configuration Register (ADG1SAMP) ADC Group1 Sampling Time Configuration Register (ADG1SAMP) is shown in Figure 19-46 and described in Table 19-31. Figure 19-46. ADC Group1 Sampling Time Configuration Register (ADG1SAMP) [offset = 64h] 31 12 11 0 Reserved G1_ACQ R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-31. ADC Group1 Sampling Time Configuration Register (ADG1SAMP) Field Descriptions Bit Field 31-12 Reserved 11-0 G1_ACQ Value 0 Description Reads return zeros, writes have no effect. Group1 Acquisition Time. These bits define the sampling window (SW) for the Group1 conversions. SW = G1_ACQ + 2 in terms of ADCLK cycles. There are two factors that determine the minimum sampling window value required: First, the ADC module design requires that SW >= 3 ADCLK cycles. Second, the ADC input impedance necessitates a certain minimum sampling time. This needs to be guaranteed by configuring the G1_ACQ value properly considering the frequency of the ADCLK signal. Please refer to the device datasheet to determine the minimum sampling time for this device. 758 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com 19.11.27 ADC Group2 Sampling Time Configuration Register (ADG2SAMP) ADC Group2 Sampling Time Configuration Register (ADG2SAMP) is shown in Figure 19-47 and described in Table 19-32. Figure 19-47. ADC Group2 Sampling Time Configuration Register (ADG2SAMP) [offset = 68h] 31 12 11 0 Reserved G2_ACQ R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-32. ADC Group2 Sampling Time Configuration Register (ADG2SAMP) Field Descriptions Bit Field 31-12 Reserved 11-0 G2_ACQ Value 0 Description Reads return zeros, writes have no effect. Group2 Acquisition Time. These bits define the sampling window (SW) for the Group2 conversions. SW = G2_ACQ + 2 in terms of ADCLK cycles. There are two factors that determine the minimum sampling window value required: First, the ADC module design requires that SW >= 3 ADCLK cycles. Second, the ADC input impedance necessitates a certain minimum sampling time. This needs to be guaranteed by configuring the G2_ACQ value properly considering the frequency of the ADCLK signal. Please refer to the device datasheet to determine the minimum sampling time for this device. SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 759 ADC Control Registers www.ti.com 19.11.28 ADC Event Group Status Register (ADEVSR) ADC Event Group Status Register (ADEVSR) is shown in Figure 19-48 and described in Table 19-33. Figure 19-48. ADC Event Group Status Register (ADEVSR) [offset = 6Ch] 31 8 Reserved R-0 7 3 2 1 0 Reserved 4 EV_MEM_ EMPTY EV_BUSY EV_STOP EV_END R-0 R-1 R-0 R-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-33. ADC Event Group Status Register (ADEVSR) Field Descriptions Bit 31-4 3 Field Reserved Value 0 EV_MEM_EMPTY Description Reads return zeros, writes have no effect. Event Group Results Memory Empty. This bit can be effectively used only when the conversion results are read out of the Event Group results memory in the "read from FIFO" mode. Any operation mode read: 2 0 The Event Group results memory has valid conversion results. 1 The Event Group results memory is empty, or does not contain any unread conversion results. EV_BUSY Event Group Conversion Busy. Any operation mode read: 1 0 Event Group conversions are neither in progress nor frozen. 1 Event Group conversions are either in progress, or are frozen for servicing some other group. This bit will always be set when the Event Group is configured to be in the continuous conversion mode. EV_STOP Event Group Conversion Stopped. Any operation mode read: 0 0 Event Group conversions are not currently frozen. 1 Event Group conversions are currently frozen. EV_END Event Group Conversions Ended. Any operation mode read: 0 Event Group conversions have either not been started or have not yet completed since the last time this status bit was cleared. 1 The conversion for all the channels selected in the Event Group has completed. This bit can be cleared under the following conditions: • By reading a conversion result from the Event Group results memory in the "read from FIFO" mode. • By writing a new value to the Event Group channel select register (ADEVSEL). • By writing a 1 to this bit. • By disabling the ADC module by clearing the ADC_EN bit in the ADC operating mode control register (ADOPMODECR). 760 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com 19.11.29 ADC Group1 Status Register (ADG1SR) ADC Group1 Status Register (ADG1SR) is shown in Figure 19-49 and described in Table 19-34. Figure 19-49. ADC Group1 Status Register (ADG1SR) [offset = 70h] 31 8 Reserved R-0 7 3 2 1 0 Reserved 4 G1_MEM_ EMPTY G1_BUSY G1_STOP G1_END R-0 R-1 R-0 R-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-34. ADC Group1 Status Register (ADG1SR) Field Descriptions Bit 31-4 3 Field Reserved Value 0 G1_MEM_EMPTY Description Reads return zeros, writes have no effect. Group1 Results Memory Empty. This bit can be effectively used only when the conversion results are read out of the Group1 results memory in the "read from FIFO" mode. Any operation mode read: 2 0 The Group1 results memory has valid conversion results. 1 The Group1 results memory is empty, or does not contain any unread conversion results. G1_BUSY Group1 Conversion Busy. Any operation mode read: 1 0 Group1 conversions are neither in progress nor frozen. 1 Group1 conversions are either in progress, or are frozen for servicing some other group. This bit will always be set when the Group1 is configured to be in the continuous conversion mode. G1_STOP Group1 Conversion Stopped. Any operation mode read: 0 0 Group1 conversions are not currently frozen. 1 Group1 conversions are currently frozen. G1_END Group1 Conversions Ended. Any operation mode read: 0 Group1 conversions have either not been started or have not yet completed since the last time this status bit was cleared. 1 The conversion for all the channels selected in the Group1 has completed. This bit can be cleared under the following conditions: • By reading a conversion result from the Group1 results memory in the "read from FIFO" mode. • By writing a new value to the Group1 channel select register (ADG1SEL). • By writing a 1 to this bit. • By disabling the ADC module by clearing the ADC_EN bit in the ADC operating mode control register (ADOPMODECR). SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 761 ADC Control Registers www.ti.com 19.11.30 ADC Group2 Status Register (ADG2SR) ADC Group2 Status Register (ADG2SR) is shown in Figure 19-50 and described in Table 19-35. Figure 19-50. ADC Group2 Status Register (ADG2SR) [offset = 74h] 31 8 Reserved R-0 7 3 2 1 0 Reserved 4 G2_MEM_ EMPTY G2_BUSY G2_STOP G2_END R-0 R-1 R-0 R-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-35. ADC Group2 Status Register (ADG2SR) Field Descriptions Bit 31-4 3 Field Reserved Value 0 G2_MEM_EMPTY Description Reads return zeros, writes have no effect. Group2 Results Memory Empty. This bit can be effectively used only when the conversion results are read out of the Group2 results memory in the "read from FIFO" mode. Any operation mode read: 2 0 The Group2 results memory has valid conversion results. 1 The Group2 results memory is empty, or does not contain any unread conversion results. G2_BUSY Group2 Conversion Busy. Any operation mode read: 1 0 Group2 conversions are neither in progress nor frozen. 1 Group2 conversions are either in progress, or are frozen for servicing some other group. This bit will always be set when the Group2 is configured to be in the continuous conversion mode. G2_STOP Group2 Conversion Stopped. Any operation mode read: 0 0 Group2 conversions are not currently frozen. 1 Group2 conversions are currently frozen. G2_END Group2 Conversions Ended. Any operation mode read: 0 Group2 conversions have either not been started or have not yet completed since the last time this status bit was cleared. 1 The conversion for all the channels selected in the Group2 has completed. This bit can be cleared under the following conditions: • By reading a conversion result from the Group2 results memory in the "read from FIFO" mode. • By writing a new value to the Group2 channel select register (ADG2SEL). • By writing a 1 to this bit. • By disabling the ADC module by clearing the ADC_EN bit in the ADC operating mode control register (ADOPMODECR). 762 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com 19.11.31 ADC Event Group Channel Select Register (ADEVSEL) ADC Event Group Channel Select Register (ADEVSEL) is shown in Figure 19-51 and described in Table 19-36. NOTE: Clearing ADEVSEL During a Conversion Writing 0x0000 to ADEVSEL stops the Event Group conversions. This does not cause the ADC Event Group results Memory pointer or the Event Group Threshold Register to be reset. NOTE: Writing A Non-Zero Value To ADEVSEL During a Conversion Writing a new value to ADEVSEL while a Channel in Event Group is being converted results in a new conversion sequence starting immediately with the highest priority channel in the new ADEVSEL selection. This also causes the ADC Event Group Results Memory pointer to be reset so that the memory allocated for storing the Event Group conversion results gets overwritten. Care should be taken to re-program the corresponding Interrupt Threshold Counter or DMA Threshold Counter again so that correct number of conversions happen before a Threshold interrupt or Block DMA request is generated. ADC1 supports up to 24 channels and ADC2 supports up to 16 channels on the microcontroller. Figure 19-51. ADC Event Group Channel Select Register (ADEVSEL) [offset = 78h] 31 24 23 0 Reserved EV_SEL R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-36. ADC Event Group Channel Select Register (ADEVSEL) Field Descriptions Bit Field 31-24 Reserved 23-0 EV_SEL Value 0 Description Reads return zeros, writes have no effect. Event Group channels selected. Any operation mode read/write: 0 Non-zero SPNU499C – March 2018 Submit Documentation Feedback No ADC input channel is selected for conversion in the Event Group. The channels marked by the bit positions that are set to ‘1’ will be converted in ascending order when the Event Group is triggered. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 763 ADC Control Registers www.ti.com 19.11.32 ADC Group1 Channel Select Register (ADG1SEL) ADC Group1 Channel Select Register (ADG1SEL) is shown in Figure 19-52 and described in Table 19-37. NOTE: Clearing ADG1SEL During a Conversion Writing 0x0000 to ADG1SEL stops the Group1 conversions. This does not cause the ADC Group1 Results Memory pointer or the Group1 Threshold Register to be reset. NOTE: Writing A Non-Zero Value To ADG1SEL During a Conversion Writing a new value to ADG1SEL while a Channel in Group1 is being converted results in a new conversion sequence starting immediately with the highest priority channel in the new ADG1SEL selection. This also causes the ADC Group1 Results Memory pointer to be reset so that the memory allocated for storing the Group1 conversion results gets overwritten. Care should be taken to re-program the corresponding Interrupt Threshold Counter or DMA Threshold Counter again so that correct number of conversions happen before a Threshold interrupt or Block DMA request is generated. ADC1 supports up to 24 channels and ADC2 supports up to 16 channels on the microcontroller. Figure 19-52. ADC Group1 Channel Select Register (ADG1SEL) [offset = 7Ch] 31 24 23 0 Reserved G1_SEL R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-37. ADC Group1 Channel Select Register (ADG1SEL) Field Descriptions Bit Field 31-24 Reserved 23-0 G1_SEL Value 0 Description Reads return zeros, writes have no effect. Group1 channels selected. Any operation mode read/write: 0 Non-zero 764 No ADC input channel is selected for conversion in the Group1. The channels marked by the bit positions that are set to ‘1’ will be converted in ascending order when the Group1 is triggered. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com 19.11.33 ADC Group2 Channel Select Register (ADG2SEL) ADC Group2 Channel Select Register (ADG2SEL) is shown in Figure 19-53 and described in Table 19-38. NOTE: Clearing ADG2SEL During a Conversion Writing 0x0000 to ADG2SEL stops the Group2 conversions. This does not cause the ADC Group2 Results Memory pointer or the Group2 Threshold Register to be reset. NOTE: Writing A Non-Zero Value To ADG2SEL During a Conversion Writing a new value to ADG2SEL while a Channel in Group2 is being converted results in a new conversion sequence starting immediately with the highest priority channel in the new ADG2SEL selection. This also causes the ADC Group2 Results Memory pointer to be reset so that the memory allocated for storing the Group2 conversion results gets overwritten. Care should be taken to re-program the corresponding Interrupt Threshold Counter or DMA Threshold Counter again so that correct number of conversions happen before a Threshold interrupt or Block DMA request is generated. ADC1 supports up to 24 channels and ADC2 supports up to 16 channels on the microcontroller. Figure 19-53. ADC Group2 Channel Select Register (ADG2SEL) [offset = 80h] 31 24 23 0 Reserved G2_SEL R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-38. ADC Group2 Channel Select Register (ADG2SEL) Field Descriptions Bit Field 31-24 Reserved 23-0 G2_SEL Value 0 Description Reads return zeros, writes have no effect. Group2 channels selected. Any operation mode read/write: 0 Non-zero SPNU499C – March 2018 Submit Documentation Feedback No ADC input channel is selected for conversion in the Group2. The channels marked by the bit positions that are set to ‘1’ will be converted in ascending order when the Group2 is triggered. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 765 ADC Control Registers www.ti.com 19.11.34 ADC Calibration and Error Offset Correction Register (ADCALR) ADC Calibration and Error Offset Correction Register (ADCALR) is shown in Figure 19-54 and Figure 1955, and described in Table 19-39. As shown, the format of the ADCALR is different based on whether the ADC module is configured to be a 12-bit or a 10-bit ADC module. Figure 19-54. 12-bit ADC Calibration and Error Offset Correction Register (ADCALR) [offset = 84h] 31 12 11 0 Reserved ADCALR R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Figure 19-55. 10-bit ADC Calibration and Error Offset Correction Register (ADCALR) [offset = 84h] 31 10 9 0 Reserved ADCALR R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-39. ADC Calibration and Error Offset Correction Register (ADCALR) Field Descriptions Field Value Reserved 0 ADCALR Description Reads return zeros, writes have no effect. ADC Calibration Result and Offset Error Correction Value. The actual size of the ADCALR field is 12 bits or 10 bits depending on whether the ADC is configured to be in 12-bit or 10-bit resolution mode, respectively. Bits 11-10 are reserved when the module is configured as a 10- bit ADC module. The ADC module writes the results of the calibration conversions to this register. The application is required to use these conversion results and determine the ADC offset error. The application can then compute the correction for the offset error and this correction value needs to be written back to the ADCALR register in the 2's complement form. During normal conversion (when calibration is disabled), the ADCALR register contents are automatically added to each digital output from the ADC core before it is stored in the ADC results memory. For more details on error calibration, please refer to Section 19.8.1. 19.11.35 ADC State Machine Status Register (ADSMSTATE) Figure 19-56 and Table 19-40 describe the ADSMSTATE register. Figure 19-56. ADC State Machine Status Register (ADSMSTATE) [offset = 88h] 31 4 3 0 Reserved SMSTATE R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-40. ADC State Machine Status Register (ADSMSTATE) Field Descriptions Bit Field 31-4 Reserved 3-0 SMSTATE Value 0 Description Reads return zeros, writes have no effect. ADC State Machine Current State. These bits reflect the current state of the state machine and are reserved for use by TI for debug purposes. 766 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com 19.11.36 ADC Channel Last Conversion Value Register (ADLASTCONV) ADC Channel Last Conversion Value Register (ADLASTCONV) is shown in Figure 19-57 and described in Table 19-41. Figure 19-57. ADC Channel Last Conversion Value Register (ADLASTCONV) [offset = 8Ch] 31 24 23 0 Reserved LAST_CONV R-0 R-U LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -U = value after reset is unknown Table 19-41. ADC Channel Last Conversion Value Register (ADLASTCONV) Field Descriptions Bit Field 31-24 Reserved 23-0 LAST_CONV Value 0 Description Reads return zeros, writes have no effect. ADC Input Channel's Last Converted Value. This register indicates whether the last converted value for a particular input channel was lower or higher than the mid-point of the reference voltage. In other words, this register acts as a digital input register and can be read by the application to determine the digital level at the input pins. This data is only valid for an input channel if it has been converted at least once. Any operation mode read for each bit of this register: SPNU499C – March 2018 Submit Documentation Feedback 0 A level lower than the midpoint reference voltage was measured at the last conversion for this channel. 1 A level higher than or equal to the midpoint reference voltage was measured at the last conversion for this channel. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 767 ADC Control Registers www.ti.com 19.11.37 ADC Event Group Results' FIFO Register (ADEVBUFFER) ADC Event Group Results' FIFO Register (ADEVBUFFER) is shown in Figure 19-58 and Figure 19-59, and described in Table 19-42. As shown, the format of the data read from the ADEVBUFFER locations is different based on whether the ADC module is configured to be a 12-bit or a 10-bit ADC module. Figure 19-58. 12-bit ADC Event Group Results' FIFO Register (ADEVBUFFER) [offset = 90h-AFh] 31 30 21 20 16 EV_EMPTY Reserved EV_CHID R-1 R-0 R-0 15 12 11 0 Reserved EV_DR R-0 R-U LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -U = value after reset is unknown Figure 19-59. 10-bit ADC Event Group Results' FIFO Register (ADEVBUFFER) [offset = 90h-AFh] 31 16 Reserved R-0 15 14 10 9 0 EV_EMPTY EV_CHID EV_DR R-1 R-0 R-U LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -U = value after reset is unknown Table 19-42. ADC Event Group Results' FIFO Register (ADEVBUFFER) Field Descriptions Field Value Reserved 0 EV_EMPTY Description Reads return zeros, writes have no effect. Event Group FIFO Empty. This bit is applicable only when the "read from FIFO" mode is used for reading the Event Group conversion results. Any operation mode read: 0 The data in the EV_DR field of this buffer is valid. 1 The data in the EV_DR field of this buffer is not valid and there are no valid data in the Event Group results memory. EV_CHID Event Group Channel Id. These bits are also applicable only when the "read from FIFO" mode is used for reading the Event Group conversion results. Any operation mode read: EV_DR 0 The conversion result in the EV_DR field of this buffer is from the ADC input channel 0, or the channel id mode is disabled in the Event Group operating mode control register (ADEVMODECR). 1h-1Fh The conversion result in the EV_DR field of this buffer is from the ADC input channel number denoted by the EV_CHID field. Event Group Digital Conversion Result. The Event Group results’ FIFO location is aliased eight times, so that any word-aligned read from the address range 0x90 to 0xAF results in one conversion result to be read from the Event Group results’ memory. This allows the ARM LDMIA instruction to read out up to 8 conversion results from the Event Group results’ memory with just one instruction. 768 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com 19.11.38 ADC Group1 Results FIFO Register (ADG1BUFFER) ADC Group1 Results FIFO Register (ADG1BUFFER) is shown in Figure 19-60 and Figure 19-61, described in Table 19-43. As shown, the format of the data read from the ADG1BUFFER locations is different based on whether the ADC module is configured to be a 12-bit or a 10-bit ADC module. Figure 19-60. 12-bit ADC Group1 Results FIFO Register (ADG1BUFFER) [offset = B0h-CFh] 31 30 21 20 16 G1_EMPTY Reserved G1_CHID R-1 R-0 R-0 15 12 11 0 Reserved G1_DR R-0 R-U LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -U = value after reset is unknown Figure 19-61. 10-bit ADC Group1 Results' FIFO Register (ADG1BUFFER) [offset = B0h-CFh] 31 16 Reserved R-0 15 14 10 9 0 G1_EMPTY G1_CHID G1_DR R-1 R-0 R-U LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -U = value after reset is unknown Table 19-43. ADC Group1 Results FIFO Register (ADG1BUFFER) Field Descriptions Field Reserved Value 0 G1_EMPTY Description Reads return zeros, writes have no effect. Group1 FIFO Empty. This bit is applicable only when the "read from FIFO" mode is used for reading the Group1 conversion results. Any operation mode read: 0 The data in the G1_DR field of this buffer is valid. 1 The data in the G1_DR field of this buffer is not valid and there are no valid data in the Group1 results memory. G1_CHID Group1 Channel Id. These bits are also applicable only when the "read from FIFO" mode is used for reading the Group1 conversion results. Any operation mode read: 0 The conversion result in the G1_DR field of this buffer is from the ADC input channel 0, or the channel id mode is disabled in the Group1 operating mode control register (ADG1MODECR). 1h-1Fh The conversion result in the G1_DR field of this buffer is from the ADC input channel number denoted by the G1_CHID field. G1_DR Group1 Digital Conversion Result. The Group1 results’ FIFO location is aliased eight times, so that any word-aligned read from the address range 0xB0 to 0xCF results in one conversion result to be read from the Group1 results’ memory. This allows the ARM LDMIA instruction to read out up to 8 conversion results from the Group1 results’ memory with just one instruction. SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 769 ADC Control Registers www.ti.com 19.11.39 ADC Group2 Results FIFO Register (ADG2BUFFER) ADC Group2 Results FIFO Register (ADG2BUFFER) is shown in Figure 19-62 and Figure 19-63, described in Table 19-44. As shown, the format of the data read from the ADG2BUFFER locations is different based on whether the ADC module is configured to be a 12-bit or a 10-bit ADC module. Figure 19-62. 12-bit ADC Group2 Results FIFO Register (ADG2BUFFER) [offset = D0h-EFh] 31 30 21 20 16 G2_EMPTY Reserved G2_CHID R-1 R-0 R-0 15 12 11 0 Reserved G2_DR R-0 R-U LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -U = value after reset is unknown Figure 19-63. 10-bit ADC Group2 Results' FIFO Register (ADG2BUFFER) [offset = D0h-EFh] 31 16 Reserved R-0 15 14 10 9 0 G2_EMPTY G2_CHID G2_DR R-1 R-0 R-U LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -U = value after reset is unknown Table 19-44. ADC Group2 Results FIFO Register (ADG2BUFFER) Field Descriptions Field Value Reserved 0 G2_EMPTY Description Reads return zeros, writes have no effect. Group2 FIFO Empty. This bit is applicable only when the "read from FIFO" mode is used for reading the Group2 conversion results. Any operation mode read: 0 The data in the G2_DR field of this buffer is valid. 1 The data in the G2_DR field of this buffer is not valid and there are no valid data in the Group2 results memory. G2_CHID Group2 Channel Id. These bits are also applicable only when the "read from FIFO" mode is used for reading the Group2 conversion results. Any operation mode read: G2_DR 0 The conversion result in the G2_DR field of this buffer is from the ADC input channel 0, or the channel id mode is disabled in the Group2 operating mode control register (ADG2MODECR). 1h-1Fh The conversion result in the G2_DR field of this buffer is from the ADC input channel number denoted by the G2_CHID field. Group2 Digital Conversion Result. The Group2 results’ FIFO location is aliased eight times, so that any word-aligned read from the address range 0xD0 to 0xEF results in one conversion result to be read from the Group2 results’ memory. This allows the ARM LDMIA instruction to read out up to 8 conversion results from the Group2 results’ memory with just one instruction. 770 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com 19.11.40 ADC Event Group Results Emulation FIFO Register (ADEVEMUBUFFER) ADC Event Group Results Emulation FIFO Register (ADEVEMUBUFFER) is shown in Figure 19-64 and Figure 19-65, and described in Table 19-45. As shown, the format of the data read from the ADEVEMUBUFFER locations is different based on whether the ADC module is configured to be a 12-bit or a 10-bit ADC module. A read from this location also gives out one conversion result from the Event Group results’ memory along with the EV_EMPTY status bit and the optional channel id. However, this read will not affect any of the status flags in the Event Group interrupt flag register or the Event Group status register. This register is useful for debuggers. Figure 19-64. 12-bit ADC Event Group Results Emulation FIFO Register (ADEVEMUBUFFER) [offset = F0h] 31 30 21 20 16 EV_EMPTY Reserved EV_CHID R-1 R-0 R-0 15 12 11 0 Reserved EV_DR R-0 R-U LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -U = value after reset is unknown Figure 19-65. 10-bit ADC Event Group Results Emulation FIFO Register (ADEVEMUBUFFER) [offset = F0h] 31 16 Reserved R-0 15 14 10 9 0 EV_EMPTY EV_CHID EV_DR R-1 R-0 R-U LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -U = value after reset is unknown Table 19-45. ADC Event Group Results Emulation FIFO Register (ADEVEMUBUFFER) Field Descriptions Field Reserved Value 0 EV_EMPTY Description Reads return zeros, writes have no effect. Event Group FIFO Empty. This bit is applicable only when the "read from FIFO" mode is used for reading the Event Group conversion results. Any operation mode read: 0 The data in the EV_DR field of this buffer is valid. 1 The data in the EV_DR field of this buffer is not valid and there are no valid data in the Event Group results memory. EV_CHID Event Group Channel Id. These bits are also applicable only when the "read from FIFO" mode is used for reading the Event Group conversion results. Any operation mode read: 0 The conversion result in the EV_DR field of this buffer is from the ADC input channel 0, or the channel id mode is disabled in the Event Group operating mode control register (ADEVMODECR). 1h-1Fh The conversion result in the EV_DR field of this buffer is from the ADC input channel number denoted by the EV_CHID field. EV_DR Event Group Digital Conversion Result. These bits contain the digital result output from the Event Group FIFO buffer. The result can be presented in an 8-bit, 10-bit, or 12-bit format for a 12-bit ADC module, or in an 8-bit or 10-bit format for a 10-bit ADC module. The conversion result data is automatically shifted right by the appropriate number of bits when using a reduced-size data format with the upper bits reading as zeros. SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 771 ADC Control Registers www.ti.com 19.11.41 ADC Group1 Results Emulation FIFO Register (ADG1EMUBUFFER) ADC Group1 Results Emulation FIFO Register (ADG1EMUBUFFER) is shown in Figure 19-66 and Figure 19-67, described in Table 19-46. As shown, the format of the data read from the ADG1EMUBUFFER locations is different based on whether the ADC module is configured to be a 12-bit or a 10-bit ADC module. A read from this location also gives out one conversion result from the Group1 results’ memory along with the G1_EMPTY status bit and the optional channel id. However, this read will not affect any of the status flags in the Group1 interrupt flag register or the Group1 status register. This register is useful for debuggers. Figure 19-66. 12-bit ADC Group1 Results Emulation FIFO Register (ADG1EMUBUFFER) [offset = F4h] 31 30 21 20 16 G1_EMPTY Reserved G1_CHID R-1 R-0 R-0 15 12 11 0 Reserved G1_DR R-0 R-U LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -U = value after reset is unknown Figure 19-67. 10-bit ADC Group1 Results Emulation FIFO Register (ADG1EMUBUFFER) [offset = F4h] 31 16 Reserved R-0 15 14 10 9 0 G1_EMPTY G1_CHID G1_DR R-1 R-0 R-U LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -U = value after reset is unknown Table 19-46. ADC Group1 Results Emulation FIFO Register (ADG1EMUBUFFER) Field Descriptions Field Value Reserved 0 G1_EMPTY Description Reads return zeros, writes have no effect. Group1 FIFO Empty. This bit is applicable only when the "read from FIFO" mode is used for reading the Group1 conversion results. Any operation mode read: 0 The data in the G1_DR field of this buffer is valid. 1 The data in the G1_DR field of this buffer is not valid and there are no valid data in the Group1 results memory. G1_CHID Group1 Channel Id. These bits are also applicable only when the "read from FIFO" mode is used for reading the Group1 conversion results. Any operation mode read: G1_DR 0 The conversion result in the G1_DR field of this buffer is from the ADC input channel 0, or the channel id mode is disabled in the Group1 operating mode control register (ADG1MODECR). 1h-1Fh The conversion result in the G1_DR field of this buffer is from the ADC input channel number denoted by the G1_CHID field. Group1 Digital Conversion Result. These bits contain the digital result output from the Group 1 FIFO buffer. The result can be presented in an 8-bit, 10-bit, or 12-bit format for a 12-bit ADC module, or in an 8-bit or 10-bit format for a 10-bit ADC module. The conversion result data is automatically shifted right by the appropriate number of bits when using a reduced-size data format with the upper bits reading as zeros. 772 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com 19.11.42 ADC Group2 Results Emulation FIFO Register (ADG2EMUBUFFER) ADC Group2 Results Emulation FIFO Register (ADG2EMUBUFFER) is shown in Figure 19-68 and Figure 19-69, described in Table 19-47. As shown, the format of the data read from the ADG2EMUBUFFER locations is different based on whether the ADC module is configured to be a 12-bit or a 10-bit ADC module. A read from this location also gives out one conversion result from the Group2 results’ memory along with the G2_EMPTY status bit and the optional channel id. However, this read will not affect any of the status flags in the Group2 interrupt flag register or the Group2 status register. This register is useful for debuggers. Figure 19-68. 12-bit ADC Group2 Results Emulation FIFO Register (ADG2EMUBUFFER) [offset = F8h] 31 30 21 20 16 G2_EMPTY Reserved G2_CHID R-1 R-0 R-0 15 12 11 0 Reserved G2_DR R-0 R-U LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -U = value after reset is unknown Figure 19-69. 10-bit ADC Group2 Results Emulation FIFO Register (ADG2EMUBUFFER) [offset = F8h] 31 16 Reserved R-0 15 14 10 9 0 G2_EMPTY G2_CHID G2_DR R-1 R-0 R-U LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -U = value after reset is unknown Table 19-47. ADC Group2 Results Emulation FIFO Register (ADG2EMUBUFFER) Field Descriptions Field Reserved Value 0 G2_EMPTY Description Reads return zeros, writes have no effect. Group2 FIFO Empty. This bit is applicable only when the "read from FIFO" mode is used for reading the Group2 conversion results. Any operation mode read: 0 The data in the G2_DR field of this buffer is valid. 1 The data in the G2_DR field of this buffer is not valid and there are no valid data in the Group2 results memory. G2_CHID Group2 Channel Id. These bits are also applicable only when the "read from FIFO" mode is used for reading the Group2 conversion results. Any operation mode read: 0 The conversion result in the G2_DR field of this buffer is from the ADC input channel 0, or the channel id mode is disabled in the Group2 operating mode control register (ADG2MODECR). 1h-1Fh The conversion result in the G2_DR field of this buffer is from the ADC input channel number denoted by the G2_CHID field. G2_DR Group2 Digital Conversion Result. These bits contain the digital result output from the Group 2 FIFO buffer. The result can be presented in an 8-bit, 10-bit, or 12-bit format for a 12-bit ADC module, or in an 8-bit or 10-bit format for a 10-bit ADC module. The conversion result data is automatically shifted right by the appropriate number of bits when using a reduced-size data format with the upper bits reading as zeros. SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 773 ADC Control Registers www.ti.com 19.11.43 ADC ADEVT Pin Direction Control Register (ADEVTDIR) ADC ADEVT Pin Direction Control Register (ADEVTDIR) is shown in Figure 19-70 and described in Table 19-48. Figure 19-70. ADC ADEVT Pin Direction Control Register (ADEVTDIR) [offset = FCh] 31 1 0 Reserved ADEVT_DIR R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-48. ADC ADEVT Pin Direction Control Register (ADEVTDIR) Field Descriptions Bit 31-1 0 Field Reserved Value 0 ADEVT_DIR Description Reads return zeros, writes have no effect. ADEVT Pin Direction. Any operating mode read/write: 774 0 ADEVT is an input pin; the output buffer is disabled. 1 ADEVT is an output pin; the output buffer is enabled. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com 19.11.44 ADC ADEVT Pin Output Value Control Register (ADEVTOUT) ADC ADEVT Pin Output Value Control Register (ADEVTOUT) is shown in Figure 19-71 and described in Table 19-49. Figure 19-71. ADC ADEVT Pin Output Value Control Register (ADEVTOUT) [offset = 100h] 31 1 0 Reserved ADEVT_OUT R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-49. ADC ADEVT Pin Output Value Control Register (ADEVTOUT) Field Descriptions Bit 31-1 0 Field Value Reserved 0 ADEVT_OUT Description Reads return zeros, writes have no effect. ADEVT Pin Output Value. This bit determines the logic level to be output to the ADEVT pin when the pin is configured to be an output pin. Any operating mode read/write: 0 Output logic LOW on the ADEVT pin. 1 Output logic HIGH on the ADEVT pin. 19.11.45 ADC ADEVT Pin Input Value Register (ADEVTIN) ADC ADEVT Pin Input Value Register (ADEVTIN) is shown in Figure 19-72 and described in Table 19-50. Figure 19-72. ADC ADEVT Pin Input Value Register (ADEVTIN) [offset = 104h] 31 1 0 Reserved ADEVT_IN R-0 R-U LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -U = value after reset is unknown Table 19-50. ADC ADEVT Pin Input Value Register (ADEVTIN) Field Descriptions Bit 31-1 0 Field Value Reserved 0 ADEVT_IN Description Reads return zeros, writes have no effect. ADEVT Pin Input Value. This is a read-only bit which reflects the logic level on the ADEVT pin. Any operating mode read: SPNU499C – March 2018 Submit Documentation Feedback 0 Logic LOW present on the ADEVT pin. 1 Logic HIGH present on the ADEVT pin. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 775 ADC Control Registers www.ti.com 19.11.46 ADC ADEVT Pin Set Register (ADEVTSET) ADC ADEVT Pin Set Register (ADEVTSET) is shown in Figure 19-73 and described in Table 19-51. Figure 19-73. ADC ADEVT Pin Set Register (ADEVTSET) [offset = 108h] 31 1 0 Reserved ADEVT_SET R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-51. ADC ADEVT Pin Set Register (ADEVTSET) Field Descriptions Bit 31-1 0 Field Value Reserved 0 ADEVT_SET Description Reads return zeros, writes have no effect. ADEVT Pin Set. This bit drives the output of the ADEVT pin high. A read from this bit always returns the current state of the ADEVT pin. Any operating mode read/write: 0 Output value on the ADEVT pin is unchanged. 1 Output logic HIGH on the ADEVT pin, if the pin is configured to be an output pin. 19.11.47 ADC ADEVT Pin Clear Register (ADEVTCLR) ADC ADEVT Pin Clear Register (ADEVTCLR) is shown in Figure 19-74 and described in Table 19-52. Figure 19-74. ADC ADEVT Pin Clear Register (ADEVTCLR) [offset = 10Ch] 31 1 0 Reserved ADEVT_CLR R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-52. ADC ADEVT Pin Clear Register (ADEVTCLR) Field Descriptions Bit 31-1 0 Field Reserved Value 0 ADEVT_CLR Description Reads return zeros, writes have no effect. ADEVT Pin Clear. A read from this bit always returns the current state of the ADEVT pin. Any operating mode read/write: 776 0 Output value on the ADEVT pin is unchanged. 1 Output logic LOW on the ADEVT pin, if the pin is configured to be an output pin. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com 19.11.48 ADC ADEVT Pin Open Drain Enable Register (ADEVTPDR) ADC ADEVT Pin Open Drain Enable Register (ADEVTPDR) is shown in Figure 19-75 and described in Table 19-53. Figure 19-75. ADC ADEVT Pin Open Drain Enable Register (ADEVTPDR) [offset = 110h] 31 1 0 Reserved ADEVT_PDR R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-53. ADC ADEVT Pin Open Drain Enable Register (ADEVTPDR) Field Descriptions Bit 31-1 0 Field Value Reserved 0 ADEVT_PDR Description Reads return zeros, writes have no effect. ADEVT Pin Open Drain Enable. This bit enables the open-drain capability for the ADEVT pin if it is configured to be an output and a logic HIGH is being driven on to the pin. Any operating mode read/write: 0 Output value on the ADEVT pin is logic HIGH. 1 The ADEVT pin is tristated. 19.11.49 ADC ADEVT Pin Pull Control Disable Register (ADEVTPDIS) ADC ADEVT Pin Pull Control Disable Register (ADEVTPDIS) is shown in Figure 19-76 and described in Table 19-54. Figure 19-76. ADC ADEVT Pin Pull Control Disable Register (ADEVTPDIS) [offset = 114h] 31 1 0 Reserved ADEVT_PDIS R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-54. ADC ADEVT Pin Pull Control Disable Register (ADEVTPDIS) Field Descriptions Bit 31-1 0 Field Value Reserved 0 ADEVT_PDIS Description Reads return zeros, writes have no effect. ADEVT Pin Pull Control Disable. This bit enables or disables the pull control on the ADEVT pin if it is configured to be an input pin. Any operating mode read/write: SPNU499C – March 2018 Submit Documentation Feedback 0 Pull on ADEVT pin is enabled. 1 Pull on ADEVT pin is disabled. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 777 ADC Control Registers www.ti.com 19.11.50 ADC ADEVT Pin Pull Control Select Register (ADEVTPSEL) ADC ADEVT Pin Pull Control Select Register (ADEVTPSEL) is shown in Figure 19-77 and described in Table 19-55. Figure 19-77. ADC ADEVT Pin Pull Control Select Register (ADEVTPSEL) [offset = 118h] 31 1 0 Reserved ADEVT_PSEL R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-55. ADC ADEVT Pin Pull Control Select Register (ADEVTPSEL) Field Descriptions Bit 31-1 0 Field Value Reserved Description 0 Reads return zeros, writes have no effect. ADEVT_PSEL ADEVT Pin Pull Control Select. This bit selects a pull-down or pull-up on the ADEVT pin if it is configured to be an input pin. Any operating mode read/write: 0 Pull down is selected on ADEVT pin. 1 Pull up is selected on ADEVT pin. 19.11.51 ADC Event Group Sample Cap Discharge Control Register (ADEVSAMPDISEN) ADC Event Group Sample Cap Discharge Control Register (ADEVSAMPDISEN) is shown in Figure 19-78 and described in Table 19-56. Figure 19-78. ADC Event Group Sample Cap Discharge Control Register (ADEVSAMPDISEN) [offset = 11Ch] 31 16 Reserved R-0 15 8 7 1 0 EV_SAMP_DIS_CYC Reserved EV_SAMP_ DIS_EN R/W-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-56. ADC Event Group Sample Cap Discharge Control Register (ADEVSAMPDISEN) Field Descriptions Bit Field 31-16 Reserved 15-8 EV_SAMP_DIS_CYC 7-1 Reserved 0 Value 0 Description Reads return zeros, writes have no effect. Event Group sample cap discharge cycles. These bits specify the duration in terms of ADCLK cycles for which the ADC internal sampling capacitor is allowed to discharge before sampling the input channel voltage. 0 EV_SAMP_DIS_EN Reads return zeros, writes have no effect. Event Group sample cap discharge enable. Any operation mode read/write: 778 0 Event Group sample cap discharge mode is disabled. 1 Event Group sample cap discharge mode is enabled. The ADC internal sampling capacitor is connected to the V REFLO reference voltage for a duration specified by the EV_SAMP_DIS_CYC field. After this discharge time has expired the selected ADC input channel is sampled and converted normally based on the Event Group settings. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com 19.11.52 ADC Group1 Sample Cap Discharge Control Register (ADG1SAMPDISEN) ADC Group1 Sample Cap Discharge Control Register (ADG1SAMPDISEN) is shown in Figure 19-79 and described in Table 19-57. Figure 19-79. ADC Group1 Sample Cap Discharge Control Register (ADG1SAMPDISEN) [offset = 120h] 31 16 Reserved R-0 15 8 7 1 0 G1_SAMP_DIS_CYC Reserved G1_SAMP_ DIS_EN R/W-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-57. ADC Group1 Sample Cap Discharge Control Register (ADG1SAMPDISEN) Field Descriptions Bit Field 31-16 Reserved 15-8 G1_SAMP_DIS_CYC 7-1 Reserved 0 Value 0 Description Reads return zeros, writes have no effect. Group1 sample cap discharge cycles. These bits specify the duration in terms of ADCLK cycles for which the ADC internal sampling capacitor is allowed to discharge before sampling the input channel voltage. 0 G1_SAMP_DIS_EN Reads return zeros, writes have no effect. Group1 sample cap discharge enable. Any operation mode read/write: SPNU499C – March 2018 Submit Documentation Feedback 0 Group1 sample cap discharge mode is disabled. 1 Group1 sample cap discharge mode is enabled. The ADC internal sampling capacitor is connected to the VREFLO reference voltage for a duration specified by the G1_SAMP_DIS_CYC field. After this discharge time has expired the selected ADC input channel is sampled and converted normally based on the Group1 settings. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 779 ADC Control Registers www.ti.com 19.11.53 ADC Group2 Sample Cap Discharge Control Register (ADG2SAMPDISEN) ADC Group2 Sample Cap Discharge Control Register (ADG2SAMPDISEN) is shown in Figure 19-80 and described in Table 19-58. Figure 19-80. ADC Group2 Sample Cap Discharge Control Register (ADG2SAMPDISEN) [offset = 124h] 31 16 Reserved R-0 15 8 7 1 0 G2_SAMP_DIS_CYC Reserved G2_SAMP_ DIS_EN R/W-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-58. ADC Group2 Sample Cap Discharge Control Register (ADG2SAMPDISEN) Field Descriptions Bit Field 31-16 Reserved 15-8 G2_SAMP_DIS_CYC 7-1 Reserved 0 Value 0 Description Reads return zeros, writes have no effect. Group2 sample cap discharge cycles. These bits specify the duration in terms of ADCLK cycles for which the ADC internal sampling capacitor is allowed to discharge before sampling the input channel voltage. 0 G2_SAMP_DIS_EN Reads return zeros, writes have no effect. Group2 sample cap discharge enable. Any operation mode read/write: 780 0 Group2 sample cap discharge mode is disabled. 1 Group2 sample cap discharge mode is enabled. The ADC internal sampling capacitor is connected to the VREFLO reference voltage for a duration specified by the G2_SAMP_DIS_CYC field. After this discharge time has expired the selected ADC input channel is sampled and converted normally based on the Group2 settings. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com 19.11.54 ADC Magnitude Compare Interrupt x Control Registers (ADMAGINTxCR) ADC Magnitude Compare Interrupt x Control Registers (ADMAGINTxCR) are shown in Figure 19-81 and Figure 19-82, and described in Table 19-59. As shown, the format of the ADMAGINTxCR is different based on whether the ADC module is configured to be a 12-bit or a 10-bit ADC module. The ADC module supports up to three magnitude compare interrupts. These registers are at offset addresses 128h, 130h, and 138h. Figure 19-81. 12-bit ADC Magnitude Compare Interrupt x Control Registers (ADMAGINTxCR) [offset = 128h-138h] 31 28 27 16 Reserved MAG_THRx R-0 R/W-0 15 14 13 CHN_THR_ COMPx CMP_GE_LTx Reserved COMP_CHIDx R/W-0 R/W-0 R-0 R/W-0 7 12 5 8 4 0 Reserved MAG_CHIDx R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Figure 19-82. 10-bit ADC Magnitude Compare Interrupt x Control Registers (ADMAGINTxCR) [offset = 128h-138h] 31 30 26 25 16 Rsvd MAG_CHIDx MAG_THRx R-0 R/W-0 R/W-0 15 13 12 8 Reserved COMP_CHIDx R-0 R/W-0 7 1 0 Reserved 2 CHN_THR_ COMPx CMP_GE_LTx R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 781 ADC Control Registers www.ti.com Table 19-59. ADC Magnitude Compare Interrupt x Control Registers (ADMAGINTxCR) Field Descriptions Field Value Reserved 0 Description Reads return zeros, writes have no effect. MAG_CHIDx These bits specify the channel number from 0 to 31 for which the conversion result needs to be monitored by the ADC. MAG_THRx These bits specify the 12-bit or 10-bit compare value that the ADC will use for the comparison with the MAG_CHIDx channel's conversion result. Reserved 0 COMP_CHIDx Reserved Reads return zeros, writes have no effect. These bits specify the channel number from 0 to 31 whose last conversion result is compared with the MAG_CHIDx channel's conversion result. 0 CHN_THR_COMPx Reads return zeros, writes have no effect. Channel OR Threshold comparison. Any operation mode read/write: 0 The ADC module will compare the MAG_CHIDx channel's conversion result with the fixed threshold value specified by the MAG_THRx field 1 The ADC module will compare the MAG_CHIDx channel's conversion result with the last conversion result for the COMP_CHIDx channel. Both the MAG_CHIDx and the COMP_CHIDx channel must have been converted at least once for the ADC to perform the comparison. CMP_GE_LTx "Greater than or equal to" OR "Less than" comparison operator. Any operation mode read/write: 782 0 The ADC module will check if the conversion result is lower than the reference value (fixed threshold or COMP_CHIDx conversion result). 1 The ADC module will check if the conversion result is greater than or equal to the reference value (fixed threshold or COMP_CHIDx conversion result). Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com 19.11.55 ADC Magnitude Compare Interrupt x Mask Register (ADMAGxMASK) ADC Magnitude Compare Interrupt x Mask Register (ADMAGxMASK) is shown in Figure 19-83and Figure 19-84, and described in Table 19-60. As shown, the format of the ADMAGxMASK is different based on whether the ADC module is configured to be a 12-bit or a 10-bit ADC module. There are three mask registers for the three magnitude compare interrupts. These registers are at offset addresses 12Ch, 134h, and 13Ch. Figure 19-83. 12-bit ADC Magnitude Compare Interrupt x Mask Register (ADMAGxMASK) [offset = 12Ch-13Ch] 31 12 11 0 Reserved MAG_INTx_MASK R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Figure 19-84. 10-bit ADC Magnitude Compare Interrupt x Mask Register (ADMAGxMASK) [offset = 12Ch-13Ch] 31 10 9 0 Reserved MAG_INTx_MASK R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-60. ADC Magnitude Compare Interrupt x Mask Register (ADMAGxMASK) Field Descriptions Field Reserved Value 0 MAG_INTx_MASK Description Reads return zeros, writes have no effect. These bits specify the mask for the comparison in order to generate the magnitude compare interrupt # x. Any operation mode read/write: 0 The ADC module will not mask the corresponding bit for the comparison. 1 The ADC module will mask the corresponding bit for the comparison. SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 783 ADC Control Registers www.ti.com 19.11.56 ADC Magnitude Compare Interrupt Enable Set Register (ADMAGINTENASET) ADC Magnitude Compare Interrupt Enable Set Register (ADMAGINTENASET) is shown in Figure 19-85 and described in Table 19-61. Figure 19-85. ADC Magnitude Compare Interrupt Enable Set Register (ADMAGINTENASET) [offset = 158h] 31 3 2 0 Reserved MAG_INT_ENA_SET R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-61. ADC Magnitude Compare Interrupt Enable Set Register (ADMAGINTENASET) Field Descriptions Bit Field 31-3 Reserved 2-0 MAG_INT_ENA_SET Value 0 Description Reads return zeros, writes have no effect. Each of these three bits, when set, enable the corresponding magnitude compare interrupt. Any operation mode read/write for each bit: 0 The enable status of the corresponding magnitude compare interrupt is left unchanged. 1 The corresponding magnitude compare interrupt is enabled. 19.11.57 ADC Magnitude Compare Interrupt Enable Clear Register (ADMAGINTENACLR) ADC Magnitude Compare Interrupt Enable Clear Register (ADMAGINTENACLR) is shown in Figure 19-86 and described in Table 19-62. Figure 19-86. ADC Magnitude Compare Interrupt Enable Clear Register (ADMAGINTENACLR) [offset = 15Ch] 31 3 2 0 Reserved MAG_INT_ENA_CLR R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-62. ADC Magnitude Compare Interrupt Enable Clear Register (ADMAGINTENACLR) Field Descriptions Bit Field 31-3 Reserved 2-0 MAG_INT_ENA_CLR Value 0 Description Reads return zeros, writes have no effect. Each of these three bits, when set, enable the corresponding magnitude compare interrupt. Any operation mode read/write for each bit: 784 0 The enable status of the corresponding magnitude compare interrupt is left unchanged. 1 The corresponding magnitude compare interrupt is disabled. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com 19.11.58 ADC Magnitude Compare Interrupt Flag Register (ADMAGINTFLG) ADC Magnitude Compare Interrupt Flag Register (ADMAGINTFLG) is shown in Figure 19-87 and described in Table 19-63. Figure 19-87. ADC Magnitude Compare Interrupt Flag Register (ADMAGINTFLG) [offset = 160h] 31 3 2 0 Reserved MAG_INT_FLG R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-63. ADC Magnitude Compare Interrupt Flag Register (ADMAGINTFLG) Field Descriptions Bit Field 31-3 Reserved 2-0 MAG_INT_FLG Value 0 Description Reads return zeros, writes have no effect. Magnitude Compare Interrupt Flags. These bits can be polled by the application to determine if the magnitude compares have been evaluated as true. When a magnitude compare interrupt flag is set, the corresponding magnitude compare interrupt will be generated if enabled. Any operation mode, for each bit: 0 Read: The condition for the corresponding magnitude threshold interrupt was false. Write: The corresponding flag is left unchanged. 1 Read: The condition for the corresponding magnitude threshold interrupt was true. Write: The corresponding flag is cleared. The flag can also be cleared by reading from the magnitude compare interrupt offset register. 19.11.59 ADC Magnitude Compare Interrupt Offset Register (ADMAGINTOFF) ADC Magnitude Compare Interrupt Offset Register (ADMAGINTOFF) is shown in Figure 19-88 and described in Table 19-64. Figure 19-88. ADC Magnitude Compare Interrupt Offset Register (ADMAGINTOFF) [offset = 164h] 31 4 3 0 Reserved MAG_INT_OFF R-0 R/C-0 LEGEND: R/W = Read/Write; R = Read only;C = Clear; -n = value after reset Table 19-64. ADC Magnitude Compare Interrupt Offset Register (ADMAGINTOFF) Field Descriptions Bit Field 31-4 Reserved 3-0 MAG_INT_OFF Value 0 Description Reads return zeros, writes have no effect. Magnitude Compare Interrupt Offset. This field indexes the currently highest-priority magnitude compare interrupt. Interrupt 1 has the highest priority and interrupt 3 has the lowest priority among the magnitude compare interrupts. Writes to these bits have no effect. A read from this register clears this register as well as the corresponding magnitude compare interrupt flag in the ADMAGINTFLG register. However, a read from this register in emulation mode does not affect this register or the interrupt status flags. Any operation mode read: 0 No magnitude compare interrupt is pending. 1h Magnitude compare interrupt # 1 is pending. 2h Magnitude compare interrupt # 2 is pending. 3h Magnitude compare interrupt # 3 is pending. 4h-Fh Reserved. These combinations do not occur. SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 785 ADC Control Registers www.ti.com 19.11.60 ADC Event Group FIFO Reset Control Register (ADEVFIFORESETCR) ADC Event Group FIFO Reset Control Register (ADEVFIFORESETCR) is shown in Figure 19-89 and described in Table 19-65. Figure 19-89. ADC Event Group FIFO Reset Control Register (ADEVFIFORESETCR) [offset = 168h] 31 1 0 Reserved EV_FIFO_RESET R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-65. ADC Event Group FIFO Reset Control Register (ADEVFIFORESETCR) Field Descriptions Bit 31-1 0 Field Reserved Value 0 EV_FIFO_RESET Description Reads return zeros, writes have no effect. ADC Event Group FIFO Reset. The application can set this bit in case of an overrun condition. This allows the ADC module to overwrite the contents of the Event Group results memory starting from the first location. When this bit is set to 1, the ADC module resets its internal Event Group results memory pointers. Then this bit automatically gets cleared, so that the ADC module allows the Event Group results memory to be overwritten only once each time this bit is set to 1. As a result, the EV_FIFO_RESET bit will always be read as a 0. The EV_FIFO_RESET bit will only have the desired effect when the Event Group results memory is in an overrun condition. It must be used when the data already available in the results memory can be discarded. If the application needs the Event Group memory to always be overwritten with the latest available conversion results, then the OVR_EV_RAM_IGN bit in the Event Group operating mode control register (ADEVMODECR) needs to be set to 1. 19.11.61 ADC Group1 FIFO Reset Control Register (ADG1FIFORESETCR) ADC Group1 FIFO Reset Control Register (ADG1FIFORESETCR) is shown in Figure 19-90 and described in Table 19-66. Figure 19-90. ADC Group1 FIFO Reset Control Register (ADG1FIFORESETCR) [offset = 16Ch] 31 1 0 Reserved G1_FIFO_RESET R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-66. ADC Group1 FIFO Reset Control Register (ADG1FIFORESETCR) Field Descriptions Bit 31-1 0 Field Reserved G1_FIFO_RESET Value 0 Description Reads return zeros, writes have no effect. ADC Group1 FIFO Reset. The application can set this bit in case of an overrun condition. This allows the ADC module to overwrite the contents of the Group1 results memory starting from the first location. When this bit is set to 1, the ADC module resets its internal Group1 results memory pointers. Then this bit automatically gets cleared, so that the ADC module allows the Group1 results memory to be overwritten only once each time this bit is set to 1. As a result, the G1_FIFO_RESET bit will always be read as a 0. The G1_FIFO_RESET bit will only have the desired effect when the Group1 results memory is in an overrun condition. It must be used when the data already available in the results memory can be discarded. If the application needs the Group1 memory to always be overwritten with the latest available conversion results, then the OVR_G1_RAM_IGN bit in the Group1 operating mode control register (ADG1MODECR) needs to be set to 1. 786 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com 19.11.62 ADC Group2 FIFO Reset Control Register (ADG2FIFORESETCR) ADC Group2 FIFO Reset Control Register (ADG2FIFORESETCR) is shown in Figure 19-91 and described in Table 19-67. Figure 19-91. ADC Group2 FIFO Reset Control Register (ADG2FIFORESETCR) [offset = 170h] 31 1 0 Reserved G2_FIFO_RESET R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-67. ADC Group2 FIFO Reset Control Register (ADG2FIFORESETCR) Field Descriptions Bit 31-1 0 Field Value Reserved 0 G2_FIFO_RESET Description Reads return zeros, writes have no effect. ADC Group2 FIFO Reset. The application can set this bit in case of an overrun condition. This allows the ADC module to overwrite the contents of the Group2 results memory starting from the first location. When this bit is set to 1, the ADC module resets its internal Group2 results memory pointers. Then this bit automatically gets cleared, so that the ADC module allows the Group2 results memory to be overwritten only once each time this bit is set to 1. As a result, the G2_FIFO_RESET bit will always be read as a 0. The G2_FIFO_RESET bit will only have the desired effect when the Group2 results memory is in an overrun condition. It must be used when the data already available in the results memory can be discarded. If the application needs the Group2 memory to always be overwritten with the latest available conversion results, then the OVR_G2_RAM_IGN bit in the Group2 operating mode control register (ADG2MODECR) needs to be set to 1. 19.11.63 ADC Event Group RAM Write Address Register (ADEVRAMWRADDR) ADC Event Group RAM Write Address Register (ADEVRAMWRADDR) is shown in Figure 19-92 and described in Table 19-68. Figure 19-92. ADC Event Group RAM Write Address Register (ADEVRAMWRADDR) [offset = 174h] 31 9 8 0 Reserved EV_RAM_ADDR R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-68. ADC Event Group RAM Write Address Register (ADEVRAMWRADDR) Field Descriptions Bit Field 31-9 Reserved 8-0 EV_RAM_ADDR Value 0 Description Reads return zeros, writes have no effect. Event Group results memory write pointer. This field shows the address of the location where the next Event Group conversion result will be stored. This is specified in terms of the buffer number. The application can read this register to determine the number of valid Event Group conversion results available until that time. SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 787 ADC Control Registers www.ti.com 19.11.64 ADC Group1 RAM Write Address Register (ADG1RAMWRADDR) ADC Group1 RAM Write Address Register (ADG1RAMWRADDR) is shown in Figure 19-93 and described in Table 19-69. Figure 19-93. ADC Group1 RAM Write Address Register (ADG1RAMWRADDR) [offset = 178h] 31 9 8 0 Reserved G1_RAM_ADDR R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-69. ADC Group1 RAM Write Address Register (ADG1RAMWRADDR) Field Descriptions Bit Field 31-9 Reserved 8-0 G1_RAM_ADDR Value 0 Description Reads return zeros, writes have no effect. Group1 results memory write pointer. This field shows the address of the location where the next Group1 conversion result will be stored. This is specified in terms of the buffer number. The application can read this register to determine the number of valid Group1 conversion results available until that time. 19.11.65 ADC Group2 RAM Write Address Register (ADG2RAMWRADDR) ADC Group2 RAM Write Address Register (ADG2RAMWRADDR) is shown in Figure 19-94 and described in Table 19-70. Figure 19-94. ADC Group2 RAM Write Address Register (ADG2RAMWRADDR) [offset = 17Ch] 31 9 8 0 Reserved G2_RAM_ADDR R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-70. ADC Group2 RAM Write Address Register (ADG2RAMWRADDR) Field Descriptions Bit Field 31-9 Reserved 8-0 G2_RAM_ADDR Value 0 Description Reads return zeros, writes have no effect. Group2 results memory write pointer. This field shows the address of the location where the next Group2 conversion result will be stored. This is specified in terms of the buffer number. The application can read this register to determine the number of valid Group2 conversion results available until that time. 788 Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback ADC Control Registers www.ti.com 19.11.66 ADC Parity Control Register (ADPARCR) ADC Parity Control Register (ADPARCR) is shown in Figure 19-95 and described in Table 19-71. Figure 19-95. ADC Parity Control Register (ADPARCR) [offset = 180h] 31 16 Reserved R-0 15 9 8 7 4 3 0 Reserved TEST Reserved PARITY_ENA R-0 R/WP-0 R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 19-71. ADC Parity Control Register (ADPARCR) Field Descriptions Bit 31-9 8 Field Value Reserved 0 TEST Description Reads return zeros, writes have no effect. This bit maps the parity bits into the ADC results' RAM frame so that the application can access them. Any operation mode read, privileged mode write: 7-4 Reserved 3-0 PARITY_ENA 0 The parity bits are not memory-mapped. 1 The parity bits are memory mapped. 0 Reads return zeros, writes have no effect. Enable/disable parity checking. These bits enable/disable the parity check on read operations and the parity calculation on write operations to the ADC results memory. If parity checking is enabled and a parity error is detected the ADC module sends a parity error signal to the System module. Any operation mode read, privileged mode write: 5h Parity check is disabled. Any other Parity check is enabled. SPNU499C – March 2018 Submit Documentation Feedback Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated 789 ADC Control Registers www.ti.com 19.11.67 ADC Parity Error Address Register (ADPARADDR) ADC Parity Error Address Register (ADPARADDR) is shown inFigure 19-96 and described in Table 19-72. Figure 19-96. ADC Parity Error Address Register (ADPARADDR) [offset = 184h] 31 16 Reserved R-0 15 12 11 2 1 0 Reserved ERROR_ADDRESS Reserved R-0 R-U R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; -U = value after reset is unknown Table 19-72. ADC Parity Error Address Register (ADPARADDR) Field Descriptions Bit Field 31-12 Reserved 11-2 ERROR_ADDRESS 1-0 Reserved Value 0 Description Reads return zeros, writes have no effect. These bits hold the address of the first parity error generated in the ADC results' RAM. This error address is frozen from being updated until it is read by the application. In emulation mode, this address is maintained frozen even when read. 0 Reads return zeros, writes have no effect. Reading [11:0] provides the 32-bit aligned address. 19.11.68 ADC Power-Up Delay Control Register (ADPWRUPDLYCTRL) Figure 19-97 and Table 19-73 describe the ADPWRDLYCTRL register. Figure 19-97. ADC Power-Up Delay Control Register (ADPWRUPDLYCTRL) [offset = 188h] 31 10 9 Reserved R-0 0 PWRUP_DLY R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 19-73. ADC Power-Up Delay Control Register (ADPWRUPDLYCTRL) Field Descriptions Bit 31-10 9-0 790 Field Reserved PWRUP_DLY Value 0 Description Reads return zeros, writes have no effect. This register defines the number of VCLK cycles that the ADC state machine has to wait after releasing the ADC core from power down before starting a new conversion. Please refer to Section 19.8.3 for more details. Analog To Digital Converter (ADC) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Chapter 20 SPNU499C – March 2018 High-End Timer (N2HET) Module This chapter provides a general description of the High-End Timer (N2HET). The N2HET is a softwarecontrolled timer with a dedicated specialized timer micromachine and a set of 30 instructions. The N2HET micromachine is connected to a port of up to 32 input/output (I/O) pins. NOTE: This chapter describes a superset implementation of the N2HET module that includes features and functionality that require DMA. Since not all devices have DMA capability, consult your device-specific datasheet to determine the applicability of these features and functions to your device being used. Topic 20.1 20.2 20.3 20.4 20.5 20.6 ........................................................................................................................... Overview ......................................................................................................... N2HET Functional Description ........................................................................... Angle Functions ............................................................................................... N2HET Control Registers ................................................................................... HWAG Registers............................................................................................... Instruction Set.................................................................................................. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated Page 792 796 828 855 882 898 791 Overview www.ti.com 20.1 Overview The N2HET is a fifth-generation Texas Instruments (TI) advanced intelligent timer module. It provides an enhanced feature set compared to previous generations. This timer module provides sophisticated timing functions for real-time applications such as engine management or motor control. The high resolution hardware channels allow greater accuracy for widely used timing functions such as period and pulse measurements, output compare, and PWMs. The reduced instruction set, based mostly on very simple, but comprehensive instructions, improves the definition and development cycle time of an application and its derivatives. The N2HET breakpoint feature, combined with various stop capabilities, makes the N2HET software application easy to debug. 20.1.1 Features • • • • • • • • • • • Programmable timer for input and output timing functions Reduced instruction set (30 instructions) for dedicated time and angle functions Up to maximum of 128 96-bit words of instruction RAM protected by parity. Check your datasheet for the actual number of words implemented. User defined configuration of 25-bit virtual counters for timer, event counters and angle counters 7-bit hardware counters for each pin allow up to 32-bit resolution in conjunction with the 25-bit virtual counters Up to 32 pins usable for input signal measurements or output signal generation Programmable suppression filter for each input pin with adjustable suppression window Low CPU overhead and interrupt load Efficient data transfer to or from the CPU memory with dedicated High-End-Timer Transfer Unit (HTU) or DMA Diagnostic capabilities with different loopback mechanisms and pin status readback functionality Hardware Angle Generator (HWAG) 20.1.2 Major Advantages In addition to classic time functions such as input capture or multiple PWMs, higher-level time functions can be easily implemented in the timer program main loop. Higher-level time functions include angle driven wave forms, angle- and time-driven pulses, and input pulse width modulation (PWM) duty cycle measurement. Because of these high-level functions, data exchanges with the CPU are limited to the fundamental parameters of the application (periods, pulse widths, angle values, etc.); and the real-time constraints for parameter communication are dramatically minimized; for example, few interrupts are required and asynchronous parameter updates are allowed. The reduced instruction set and simple execution flow control make it simple and easy to develop and modify programs. Simple algorithms can embed the entire flow control inside the N2HET program itself. More complex algorithms can take advantage of the CPU access to the N2HET RAM. With this, the CPU program can make calculations and can modify the timer program flow by changing the data and control fields of the N2HET RAM. CPU access to the N2HET RAM also improves the debug and development of timer programs. The CPU program can stop the N2HET and view the contents of the program, control, and data fields that reside in the N2HET RAM. Finally, the modular structure provides maximum flexibility to address a wide range of applications. The timer resolution can be selected from two cascaded prescalers to adjust the loop resolution and HR clocks. The 32 I/O pins can provide any combination of input, period or pulse capture, and output compare, including high resolution for each channel. 792 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Overview www.ti.com 20.1.3 Block Diagram The N2HET module (see Figure 20-1) comprises four separate components: • Host interface • N2HET RAM • Specialized timer micromachine • I/O control (the N2HET is attached to an I/O port of up to 32 pins) Figure 20-1. N2HET Block Diagram Peripheral bus High Resolution prescaler HETPFR.5:0 Shadow Registers Shadow Registers HR clock (to IO PIN CONTROL) Loop resolution prescaler HETPFR.10:8 Address Decode HOST INTERFACE Slave Master HETGCR.16 internal multiN2HET sync Control RAM Program RAM Data RAM N2HET RAM CURRENT INSTRUCTION PROGRAM FIELD Ignore Suspend CONTROL FIELD DATA FIELD OFF Stop ON HETGCR.17 Register A HETGCR.0 SPECIALIZED TIMER MICROMACHINE Register B Register R Register S Register T HETADDR.8:0 To VIM Priority 1 HETFLG. 31:0 HETOFF1.7:0 Compare To VIM 32 ALU Priority 2 HETOFF2.7:0 HETPRY.31:0 Rotate/ Shift by N HETDIN.31:0 HET[31:0] 32 HETDSET.31:0 I/O PIN CONTROL HETDOUT.31:0 HETDIR.31:0 HR clock HETDCLR.31:0 HR block SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 793 Overview www.ti.com 20.1.4 Timer Module Structure and Execution The timer consists of a specialized micromachine that operates a reduced instruction set. Two 25-bit registers and three 32-bit registers are available to manipulate information such as time, event counts, and angle values. System performance is improved by a wide instruction format (96 bits) that allows the N2HET to fetch the instructional operation code and data in one system cycle, thus increasing the speed at which data can be processed. The typical operations performed in the ALU are additions (count), compares, and magnitude compares (higher or same). Each instruction is made up of a 32-bit program field, a 32-bit control field and a 32-bit data field. The N2HET execution unit fetches the complete 96-bit instruction in one cycle and executes it. All instructions include a 9-bit field for specifying the address of the next instruction to be executed. Some instructions also include a 9-bit conditional address, which is used as the next address whenever a particular condition is true. This makes controlling the flow of an N2HET program inexpensive; in many cases a separate branch instruction is not required. The interface to the host CPU is based on both communication memory and control registers. The communication memory includes timer instructions (program and data). This memory is typically initialized by the CPU or DMA after reset before the timer starts execution. Once the timer program is loaded into the memory, the CPU starts the timer execution, and typically data parameters are then read or written into the timer memory. The control registers include bits for selecting timer clock, configuring I/O pins, and controlling the timer module. The programmer implements timer functions by combining instructions in specific sequences. For instance, a single count (CNT) instruction implements a timer. A simple PWM generator can be implemented with a two instruction sequence: CNT and compare (ECMP or MCMP). A complex time function may include many instructions in the sequence. The total timer program is a set of instructions executed sequentially, one after the other. Reaching the end, the program must roll to the first instruction so that it behaves as a loop. The time for a loop to execute is referred to as a loop resolution clock cycle or loop resolution period (LRP). When the N2HET rolls over to the first instruction, the timer waits for the loop resolution clock to restart the execution of the loop to ensure that only one loop is executed for each loop resolution clock. The longest path through an N2HET program must be completed within the loop resolution clock (LRP). Otherwise, the program will execute unpredictably because some instructions will not be executed each time through the loop. This effect creates a strong link between the accuracy of the timer functions and the number of functions (the number of instructions) the timer can perform. High resolution (HR) hardware timer extensions are available for each of the N2HET pins to help overcome this limitation. The high resolution hardware timers operate from the high resolution clock, which may be configured for frequency multiples between 2 and 128 times the loop resolution clock frequency. This extending the resolution of timer events and measurements well beyond what is possible with only loop resolution instructions. Most of the commonly used N2HET instructions can operate either at loop resolution or high resolution; with the restriction that for each pin at most one high resolution instruction can be executed per loop resolution period. Certain instructions (MOV32, ADM32, ...) can modify the data fields of other instructions. This feature enables the N2HET program to implement double buffering on capture and compare functions. For example, an ECMP compare instruction can be followed by a MOV32 instruction that is conditionally executed when the ECMP instruction matches. The host CPU can update the next compare value by writing asynchronously to the data field of the MOV32 instruction instead of writing directly to the data field of the ECMP instruction. The copy from the buffer (MOV32 data field) to the compare register (ECMP data field) will occur when the MOV32 instruction is actually executed which occurs after the ECMP instruction matches its current compare value. This is the same behavior as one would expect from a double buffered hardware compare register. 794 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Overview www.ti.com Other instructions (MOV64, RADM64) can modify both the control and data fields of other instructions. This allows the N2HET to implement toggle functionality. For example, an ECMP instruction can be followed by a pair of MOV64 instructions. The MOV64 instruction updates the data field of the ECMP instruction to implement the double buffering behavior. But it also updates the control field of the ECMP instruction which allows it to change things like pin action and the conditional address. If one MOV64 instruction configures the ECMP pin action to SET while the second changes it to CLEAR, and the two MOV64 instructions update the conditional address to point to each other, then a single ECMP instruction can be used to toggle a pin each time the compare match occurs. 20.1.5 Performance Most instructions execute in one cycle, but a few take two or three cycles. The N2HET can generate many complex output waveforms without CPU interrupts. Where special algorithms are needed following a specific event (for example, missing teeth or a short/long input signal), a minimal number of interrupts to the CPU are needed freeing the CPU for other tasks. 20.1.6 N2HET Compared to NHET N2HET enhancements from NHET include: • Eight new instructions: ADD, ADC, SUB, SBB, AND, OR, XOR, RCNT • Full set of ALU flags Carry (C), Negative (N), Zero (Z), Overflow (V) • Branch instruction (BR) extended to support signed and unsigned arithmetic comparison conditions • Two additional 32-bit temporary working registers R, S. • New HETAND register for AND-Sharing of High Resolution structure between pairs of pins • Improved high resolution PCNT instruction 20.1.7 NHET and N2HET Compared to HET Compared to the HET module, the N2HET contains all of the enhancements described in Section 20.1.6 plus the following additional enhancements: • New Interrupt Enable Set and Clear registers • Capability to generate requests to the DMA module or the HET Transfer Unit (HTU) including new Request Enable Set and Clear registers • N2HET RAM parity error detection • Suppression filters for each of the 32 I/O channel and control register to configure the limiting frequency and counter clock • Enhanced edge detection hardware that does not rely on the previous bit field in the control word of the N2HET instruction. • The next, conditional and remote addresses are extended from 8 to 9 bits • The loop resolution data fields are extended from 20 to 25 bits • The high resolution data fields are extended from 5 to 7 bits • Instructions with an adequate condition are able to specify the number of the request line, which triggers either the HET Transfer Unit (HTU) or the DMA module • The CNT instruction provides a bit, which allows to configure either an equal comparison or a greater or equal comparison when comparing the selected register value with the Max-value • The MOV32 instruction provides a new bit. If set to one the MOV32 will only perform the move, when the Z-flag is set. If set to zero the MOV32 will perform the move whenever it is executed (independent on the state of the Z-flag) • There is a new instruction WCAPE, which is a combination of a time stamp and an edge counter • New Open Drain, Pull Disable, and Pull Select registers SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 795 Overview www.ti.com 20.1.8 Instructions Features The N2HET has the following instructions features: • N2HET uses a RISC-based specialized timer micromachine to carry out a set of 30 instructions • Instructions are implemented in a Very Long Instruction Word (VLIW) format (96-bits wide) • The N2HET program execution is self-driven by external or internal events, branching to special routines based on input edges or output compares • Instructions point to the next instruction executed, eliminating the need for a program counter • Several instructions can change the program flow based on internal or external conditions 20.1.9 Program Usage The N2HET instructions/program can be assembled with the N2HET assembler. The assembler generates a C-structure which can be included into the main application program. The application has to copy the content of the structure into the N2HET RAM, set up necessary registers and start the N2HET program execution. In addition to the C-structure, the assembler generates also a header file which makes it easy for the main application to access the different instructions and change for example the duty cycle of a PWM or read out the captured value of a specific signal edge. 20.2 N2HET Functional Description The N2HET contains RAM into which N2HET code is loaded. The N2HET code is run by the specialized timer micromachine. The host interface and I/O control provide an interface to the CPU and external pins respectively. 20.2.1 Specialized Timer Micromachine The N2HET has its own instruction set, detailed in Section 20.6.1. The timer micromachine reads each instruction from the N2HET RAM. The program and control fields contain the instructions for how the specialized timer micromachine executes the command. For most instructions, the data field stores the information that needs to be manipulated. The specialized timer micromachine executes the instructions stored in the N2HET RAM sequentially. The N2HET program execution is self-driven by external or internal events. This means that input edges or output compares may force the program to branch to special routines using a conditional address. Figure 20-2 shows some of the major operations that the N2HET can carry out, namely compares, captures, angle functions, additions, and shifts. The N2HET contains five registers (A, B, R, S, and T) used to hold compare or counter values and are used by the N2HET instructions. Data may be taken from the registers or the data field for manipulation; likewise, the data may be returned to the registers or the data field. 20.2.1.1 Time Slots and Resolution Loop Each instruction requires a specific number of cycles or time slots to execute. The resolution specified in the prescaler bitfields determines the timer accuracy. All input captures, event counts, and output compares are executed once in each resolution loop. HR captures and compares are possible (up to N2HET clock accuracy) on the HR I/O pins. For more information about the HR I/O structure, see Section 20.2.5. 796 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com Figure 20-2. Specialized Timer Micromachine From N2HET RAM CURRENT INSTRUCTION PROGRAM FIELD Cont. Off Stop On DATA FIELD CONTROL FIELD Register A HETGCR.0 HETGCR.17 Register B Register R Register S Register T HETADDR.8:0 Priority 1 HETFLG. 31:0 Priority 2 HETOFF1.7:0 HETOFF2.7:0 To VIM To VIM Compare 32 Bit ALU HETPRY.31:0 Rotate/ Shift By N Specialized timer micromachine To I/O Control SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 797 N2HET Functional Description www.ti.com 20.2.1.2 Program Loop Time The program loop time is the sum of all cycles used for instruction execution. This time may vary from one loop to another if the N2HET program includes conditionally executed instructions. The timer program restarts on every resolution loop. The start address is fixed at N2HET RAM address 00h. The longest path through a program must fit within one loop resolution period to guarantee complete accuracy. The last instruction of a program must branch back to the fixed start address (next program address = 00h). When an N2HET program branches back to address 00h before the end of a loop resolution period, the N2HET detects this and pauses instruction execution until the beginning of the next loop resolution period. The timing diagram in Figure 20-3 illustrates the program flow execution. Figure 20-3. Program Flow Timings Loop Resolution Period = LRP Time slot ... VCLK2 ... High Res. clock Loop Res. clock Instructions Program loop 1 2 34 N 1 2 34 Next program address=00h 20.2.1.3 Instruction Execution Sequence The execution of a N2HET program begins with the first occurrence of the loop resolution clock, after the N2HET is turned on. At the first and subsequent occurrences of the loop resolution, the instruction at location address 00h is prefetched. The program execution begins at the occurrence of the loop resolution clock and continues executing the instructions until the program branches to 00h location. The instruction is prefetched at location 00h and execution flag is reset. The N2HET pauses instruction execution until the occurrence of the loop resolution clock and resumes normal execution. N2HET programs must be written so that they complete execution and return to address 00h before the occurrence of the next loop resolution clock. If the N2HET program exceeds this execution time limit, then a program overflow condition occurs as described in Section 20.2.1.4. 20.2.1.4 Program Overflow Condition If the number of time slots used in a program loop exceeds the number available time slots in one loop resolution, the timer sets the program overflow interrupt flag located in the HETEXC2 register. To maintain synchronization of the I/Os, this condition should never be allowed to occur in a normal operation. The HETEXC2.PRGMOVRFLFLAG flag provides a mechanism for checking that the condition does not occur during the debug and validation phases. As Figure 20-4 illustrates, when a program overflow occurs, the currently executing N2HET program sequence is interrupted and restarted at N2HETaddress 0 for the beginning of the next loop resolution clock period. Also, HETEXC2.PRGMOVRFLFLAG is set. If the instruction that caused the overflow (instruction at address 0xC in Figure 20-4) has any pin actions selected, these pin actions will not be performed. However other actions of the instruction including register and RAM updates will still be performed. 798 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com Figure 20-4. Use of the Overflow Interrupt Flag (HETEXC2) Loop Resolution clock N2HET Program Address 0 1 2 3 7 8 A B 0 1 2 3 7 8 9 A B C 0 1 2 Program Overflow (HETEXC2 .PRGMOVRFLFLAG) No Overflow. Program returns to address 0 before start of next loop Overflow. Program did not return to address 0 before start of next loop. 20.2.1.5 Architectural Restrictions on N2HET Programs Certain architectural restrictions apply to N2HET programs: 1. The size of an N2HET program must be greater than one instruction. 2. An extra wait state is incurred by any instruction that modifies a field in the next instruction to be executed. 3. Only one instruction (using high resolution) is allowed per high resolution pin. 4. Consecutive break points are not supported. Instructions with break points must have at least a distance of two instructions (for example, at addresses 1, 3, 5, 7, and so on, assuming the program executes linearly) NOTE: While it would be unusual to code an N2HET program that is only one instruction long, it is trivial to modify such a program to meet the requirement of restriction 1. Simply add a second instruction to the program, which may be a simple branch to zero. To enforce restriction 3, the high resolution pin structures respond only to the first instruction that is executed matching their pin number with hr_lr=HIGH, regardless of whether or not the en_pin_action field is ON. Subsequent instructions are ignored by the high resolution pin structure for the remainder of the loop resolution period. 20.2.1.6 Multi-Resolution Scheme The N2HET has the capability to virtually extend the counter width by executing instructions only once every N loop resolution periods. This decreases the timer resolution, but extends the counter range which may be useful when generating or measuring slow signals. Figure 20-5 illustrates how a multi-resolution scheme may be implemented in an N2HET program. An unconditional Branch instruction and an index sequence, using a MOV64 instruction in each low resolution loop, is required to control this particular program flow. NOTE: HR instructions must be placed in the main (full resolution) loop to ensure proper operation. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 799 N2HET Functional Description www.ti.com Figure 20-5. Multi-Resolution Operation Flow Example Instructions with full resolution (2 Ps) Branch on conditional address 0 Instructions with lower resolution (6 Ps) Change conditional address 1 2 Instructions with lower resolution (6 Ps) Change conditional address Instructions with lower resolution (6 Ps) Change conditional address 20.2.1.7 Debug Capability The N2HET supports breakpoints to allow you to more easily debug your N2HET program. Figure 20-6 provides an illustration of the breakpoint mechanism. The steps to enable an N2HET breakpoint are: 1. Make sure the device nTRST pin is high, since N2HET breakpoints are disabled whenever this pin is low. (Normally this is handled automatically when a JTAG debugger is attached). 2. Attach a JTAG debugger and connect to the device that has been already programmed with the N2HET code that needs to debugged. (downloading to on-chip flash is outside the scope of this section). 3. Execute the CPU program at least until the point where the N2HET program RAM has been initialized by the CPU. 4. Open a memory window in the N2HET registers. 5. Make sure HETEXC2.DEBUGSTATUSFLAG bit is cleared. 6. Open a memory window on the N2HET RAM 7. Set bit 22 in the program field of the instruction(s) on which you wish to break. Note that this instruction will be executed before the N2HET is halted - slightly different from how CPU breakpoints behave. 8. Make sure the CPU and N2HET are running, if they are halted then restart the CPU through the JTAG emulator (N2HET will start when the CPU starts). 9. Both the CPU and N2HET will halt when breakpoint is reached. When the N2HET is halted, its state machines are frozen but all of the N2HET control registers can be accessed through the JTAG emulator interface. The current N2HET instruction address can be inspected by reading the HETADDR register; this should be pointing to the instruction that caused the breakpoint. 800 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com The N2HET internal working registers (A,B,R,S,T) are not directly visible through the JTAG emulator interface. If the content of these registers needs to be inspected, it is best to add an instruction like MOV32 which copies the register value to the N2HET RAM. This RAM location can be inspected when the N2HET halts. To 1. 2. 3. restart execution of both the CPU and the N2HET from the halted state: Clear HETEXC2.DEBUGSTATUSFLAG bit. Clear bit 22 in the program field of the instruction on which the breakpoint was reached. Restart the CPU through the normal JTAG emulator procedure (‘Run’ or ‘Go’). The N2HET will automatically start executing when it sees that the CPU has exited the debug state. Figure 20-6. Debug Control Configuration Breakpoint bit (P22) N2HET RAM Device test mode enable (nTRST) nTRST signal = 0: Functional mode nTRST signal = 1: Test/Debug mode Debug mode control Debug request to CPU Debug ack from CPU Debug status bit NOTE: Consecutive break points are not supported. Instructions with break points must have at least a distance of two instructions (for example, at N2HET addresses 1, 3, 5, 7, and so on) 20.2.2 N2HET RAM Organization The N2HET RAM is organized into two sections. The first contains the N2HET program itself. The second contains parity protection bits for the N2HET program. Each N2HET instruction is 96-bits wide but aligned to a 128-bit boundary. Instructions consist of three 32bit fields: Program, Control, and Data. Instructions are separated by a fourth unimplemented address to force alignment to 128-bit boundaries. The integrity of the N2HET program can be protected by Parity. Parity protection is enabled through the N2HET Parity Control Register (HETPCR). Table 20-1 shows the base addresses for N2HET RAM and N2HET Parity RAM. Table 20-1. N2HET RAM Base Addresses N2HET1 Base Address N2HET2 Base Address 0xFF46_0000 0xFF44_0000 Memory N2HET Instruction RAM (Program/Control/Data) 0xFF46_2000 0xFF44_2000 N2HET Parity RAM SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 801 N2HET Functional Description www.ti.com 20.2.2.1 N2HET RAM Banking Because the CPU must make updates to the N2HET RAM while the N2HET is executing, for example to update the duty cycle value of a PWM, it is important to understand how the N2HET RAM organization facilitates simultaneous accesses by both the HOST CPU and the N2HET. The N2HET RAM is implemented as 4 banks of 96-bit wide two port RAM. This means that there a total of 8 ports available; four read and four write. Normally the N2HET will use up to two of these ports at a time. One read port is used to allow the N2HET to prefetch the next N2HET instruction while a write port may be used to update the data or control fields that have changed as a result of executing the current instruction. N2HET accesses to its own internal RAM are given priority over accesses from an external host (CPU or DMA), this makes N2HET program execution deterministic which is a critical requirement for a timer. Most N2HET instructions execute in a single cycle. Cases where a wait state impacts the N2HET program execution time are: • The current N2HET instruction writes data back to the next N2HET in the execution sequence. • The external host reads from an N2HET instruction where the automatic read-clear option is set, while the N2HET is executing from/on the same address (See Section 20.2.4.3). Except for the case of automatic read-clear, the external host is stalled when the host and N2HET have a bank conflict. However this will typically only result in a stall of one cycle, due to the N2HET bank ordering which is organized on the N2HET Address least significant bit boundaries (See Table 20-2). Assuming most of the N2HET program executes linearly through the N2HET Address space; if a bank conflict does exist it is usually resolved in the next cycle as the N2HET program moves to the next bank. N2HET programmers should avoid writing a program that accesses the same bank of N2HET RAM on every cycle, as this could lock the external host out of the N2HET memory completely. Table 20-2 describes the N2HET memory map, as viewed by the N2HET as well as from the memory space of the host CPU and DMA. Table 20-2. N2HET RAM Bank Structure N2HET Address Host CPU or DMA Address Space Instruction Program Field Address Control Field Address Data Field Address Reserved Address N2HET RAM Bank 000h XX0000h XX0004h XX0008h XX000Ch A 001h XX0010h XX0014h XX0018h XX001Ch B 002h XX0020h XX0024h XX0028h XX002Ch C 003h XX0030h XX0034h XX0038h XX003Ch D 004h XX0040h XX0044h XX0048h XX004Ch A : : : : : : 03Fh XX03F0h XX03F4h XX03F8h XX03FCh D 040h XX0400h XX0404h XX0408h XX040Ch A : : : : : : 1FFh XX1FF0h XX1FF4h XX1FF8h XX1FFCh D NOTE: The external host interface supports any access size for reads, but only 32-bit writes to the N2HET RAM are supported. Reserved addresses should not be accessed, the result of doing so is indeterminate. 802 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com 20.2.2.2 Parity Checking The N2HET module can detect parity errors in N2HET RAM. As described in Section 20.2.2 the N2HET allows 32-bit writes only. Therefore N2HET RAM parity checking is implemented using one parity bit per 32-bit field in N2HET RAM. Even or odd parity selection for N2HET parity detection can be configured in the system module. Parity calculation and checking can be enabled/disabled by a 4-bit key in HETPCR. During a read access to the N2HET RAM, the parity is calculated based on the data read from the RAM and compared with the good parity value stored in the parity bits. The parity check is performed when the N2HET execution unit makes a read access to N2HET RAM, but also when a different master (for example, CPU, HTU, DMA) performs the read access. If any 32-bit-word fails the parity check then an error is signaled to the ESM module. The N2HET address, which generated the error is detected and is captured in HETPAR for host system debugging. The address is frozen from being updated until it is read by the bus master. The N2HET execution unit reads the instructions, which are 96-bit wide. They contain the program-, control- and data-field whereby each is 32-bit wide. So when fetching N2HET instructions parity checking is performed on three words in parallel. If a parity error is detected in two or more words in the same cycle then only one address (word at the lower address) is captured. The captured N2HET address is always aligned to a 32-bit word boundary. During debug, parity checking is still performed on accesses originating from the on-chip host CPU and DMA. However, parity errors that are detected during an access initiated by the debugger itself are ignored. 20.2.2.3 Parity Error Detection Actions Detection of a N2HET parity error causes the following actions: 1. An error is signaled to the ESM module. 2. The Parity Address Register (HETPAR) is loaded with the address of the faulty N2HET field. 3. N2HET execution immediately stops. (The instruction that triggered the parity error is not executed.) 4. The Turn-On/Off-Bit in the N2HET Global Configuration Register (HETGCR) is automatically cleared. 5. All N2HET internal flags are cleared. 6. All N2HET pins selected by N2HET Parity Pin Register (HETPPR) enter a predefined safe state. 7. Register HETDOUT is also updated to reflect changes in pin state due to HETPPR. The safe state for N2HET pins selected through the HETPPR register depends on how the pin is configured in the HETDIR, HETPDR, and HETPSL registers. Table 20-3 explains how the safe state is determined. Table 20-3. Pin Safe State Upon Parity Error Detection Safe State HETDIR HETPDR HETPSL Drive Low 1 0 0 Drive High 1 0 1 High Impedance 1 1 x SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 803 N2HET Functional Description www.ti.com 20.2.2.4 Testing Parity Detection Logic To test the parity detection logic, the parity RAM has to be made accessible to the CPU in order to allow a diagnostic program to insert parity errors. The control register bit HETPCR.TEST must be set in order to make the parity RAM accessible. Once HETPCR.TEST is set, the parity bits are accessible as described in Table 20-4. Each 32-bit N2HET field has its own parity bit in the N2HET Parity RAM as shown in Table 20-4. There are no parity bits for the reserved fields, since there is no physical N2HET RAM for these fields. Table 20-4. N2HET Parity Bit Mapping Bits Address N2HET1 Address N2HET2 [31:1] [0] 0xFF46_2000 0xFF44_2000 Reads 0, Writes have no effect Instruction 0 Program Field Parity Bit 0xFF46_2004 0xFF44_2004 Reads 0, Writes have no effect Instruction 0 Control Field Parity Bit 0xFF46_2008 0xFF44_2008 Reads 0, Writes have no effect Instruction 0 Data Field Parity Bit 0xFF46_200C 0xFF44_200C Reads 0, Writes have no effect Read 0 0xFF46_2010 0xFF44_2010 Reads 0, Writes have no effect Instruction 1 Program Field Parity Bit .... .... ... ... 20.2.2.5 Initialization of Parity RAM After device power up, the N2HET RAM contents including the parity bits cannot be guaranteed. In order to avoid false parity failures due to the random state in which RAM powers up, the RAM has to be initialized. Before initializing the N2HET RAM, enable the N2HET parity logic by writing to HETPCR. Then the N2HET Instruction RAM should be initialized. With parity enabled, the N2HET parity RAM will be initialized automatically by N2HET at the same time that the N2HET instruction RAM is initialized by the CPU. Note that loading the N2HET program with parity enabled is also effective. Another possibility to initialize the N2HET memory and its parity bits is, to use the system module to start the automatic initialization of all RAMs on the microcontroller. The RAMs will be initialized to ‘0’. Depending on the even/odd parity selection, the parity bit will be calculated accordingly. 20.2.3 Time Base All N2HET timings are derived from VCLK2 (see Figure 20-7). Internally N2HET instructions execute at the VCLK2 rate; but the timer loop clock and the high-resolution hardware timer clock can be scaled down from VCLK2. Two prescalers are available to adjust the timer loop resolution clock for the program loop, and the high resolution (HR) clock for the HR I/O counters. • Time Slots: The number of cycles available for instruction execution per loop. Time Slots is the number of VCLK2 cycles in a Loop Resolution Clock. • High Resolution Clock: The high resolution clock is the smallest time increment with which a pin can change it’s state or can be measured in the case of input signals. A 6-bit prescaler dividing VCLK2 by a user-defined HR prescale divide rate (hr) stored in the 6-bit HR prescale factor code (HETPFR). See Table 20-5. • Loop Resolution Clock: The loop resolution clock defines the timebase for executing all instructions in a N2HET program. Since instructions can be conditionally executed, the longest path through the N2HET program must fit into one loop resolution clock period (LRP).A 3-bit prescaler dividing the HR clock by a user-defined loop-resolution prescale divide rate (lr) stored in the 3-bit loop-resolution prescale factor code (HETPFR). See Table 20-5. 804 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com Figure 20-7. Prescaler Configuration HR prescaler (6 bits) VCLK2 Loop resolution prescaler (3 bits) Loop resolution clock HR clock The following abbreviations and relations are used in this document: 1. hr: high resolution prescale factor (1, 2, 3, 4,..., 63, 64) 2. lr: loop resolution prescale factor (1, 2, 4, 8, 16, 32, 64,128) 3. ts: Time slots (cycles) available for instruction execution per loop. ts = hr x lr 4. HRP = high resolution clock period HRP = hr × TVCLK2 (ns) 5. LRP = loop resolution clock period LRP = lr × HRP (ns) The loop resolution period (LRP) must be selected to be larger than the number of Time slots (VCLK2 cycles) required to complete the worst-case execution path through the N2HET program. Otherwise a program overflow condition may occur (see Section 20.2.1.4). Because of the relationship of time slots to the hr and lr prescalers as described in item 3 above, increasing either hr or lr increases the number of time slots available for program execution. However, lr would typically be increased first, since increasing hr results in a decrease in timer resolution since it reduces the clock to the High Resolution IO structures. The divide rates hr and lr can be defined in the HETPFR register. Table 20-5 lists the bit field encodings for the prescale options. Table 20-5. Prescale Factor Register Encoding LRPFC - Loop Resolution HRPFC - High Resolution HETPFR[10:8] Prescale Factor lr HETPFR[5:0] Prescale Factor hr 000 /1 000000 /1 001 /2 000001 /2 010 /4 000010 /3 011 /8 000011 /4 100 /16 : : 101 /32 111101 /62 110 /64 111110 /63 111 /128 111111 /64 SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 805 N2HET Functional Description www.ti.com 20.2.3.1 Determining Loop Resolution As an example, consider an application that requires high resolution of HRP = 62.5 ns, and loop resolution of LRP = 8 μs, and needs at least 250 time slots for the N2HET application program. Assuming VCLK2 = 32 MHz, the following shows which divide-by rates and which value in the Prescale Factor Register (HETPFR) is required for the above requirements: 2 hr hr = 2 HRP = -------------------= ------------------ = 62.5ns VCLK2 32MHz lr =128 lr x HRP = 128 x 62.5ns = 8 μs ts = hr x lr = 2 x 128 = 256 hr = 2, lr = 128 HETPFR[31:0] = 0x00000701 (29) In the example above, if the loop resolution period needs to decrease from 8 μs to 4 μs, then only 128 time slots will be available for program execution. The program may need to be restructured as suggested in Section 20.2.1.6. 20.2.3.2 The 7-Bit HR Data Field The instruction execution examples of ECMP (Section 20.2.5.9), MCMP (Section 20.2.5.10), PCNT (Section 20.2.5.12), PWCNT (Section 20.2.5.11), and WCAP (Section 20.2.5.13) show that the 7-bit HR data field can generate or measure high resolution delays (HR delay) relative to the start of an LRP within one N2HET loop LRP. The last section showed that: LRP = lr × HRP There are lr high resolution clock periods (HRP) within the N2HET loop resolution clock period (LRP). If lr = 128 then the HR delay can range from 0 to127 HRP clocks within LRP and all 7 bits of the HR data field are needed. Instead of being limited to measuring and triggering events based on the loop resolution clock period (LRP) the HR extension allows measurements and events to be described in terms fractions of an LRP (down to 1/128 of an LRP). The only limitation is that a maximum of one HR delay can be specified per pin during each loop resolution period. Table 20-6 shows which bits of the HR data field are not used by the high resolution IO structures if lr is less than 128. In this case the non-relevant bits (LSBs) of the HR data fields will be one of the following: • Written as 0 for HR capture (for PCNT, WCAP) • Or interpreted as 0 for HR compare (for ECMP, MCMP. PWCNT) Table 20-6. Interpretation of the 7-Bit HR Data Field Loop Resolution Prescale divide rate (lr) Bits of the HR data field D[6] D[5] D[4] 1 (1) 806 D[3] (1) D[2] D[1] D[0] XXXXXXX 2 1/2 4 1/2 1/4 HRP Cycles delay range 0 XXXXXX 0 to 1 XXXXX 0 to 3 8 1/2 1/4 1/8 16 1/2 1/4 1/8 1/16 XXXX 0 to 7 32 1/2 1/4 1/8 1/16 1/32 64 1/2 1/4 1/8 1/16 1/32 1/64 X 0 to 63 128 1/2 1/4 1/8 1/16 1/32 1/64 1/128 0 to 127 XXX 0 to 15 XX 0 to 31 X = Non-relevant bit (treated as '0') High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com 20.2.3.2.1 Example: Prescale Factor Register (HETPFR) = 0x0300 —> lr = 8 —> LRP = 8 × HRP Assumption: HR data field = 0x50 = 1010000b lr = 8 —> Bits D[3:0] are ignored —> HR delay = 101b = 5 HRPs or by using the calculation with weight factors: HR Delay = lr · (D[6] · 1/2 + D[5] · 1/4 + D[4] · 1/8 + D[3] · 1/16 + D[2] · 1/32 + D[1] · 1/64 + D[0] · 1/128) = 8 · (1 · 1/2 + 0 · 1/4 + 1 · 1/8 + 0 · 1/16 + 0 · 1/32 + 0 · 1/64 + 0 · 1/128) = 5 HRPs 20.2.4 Host Interface The host interface controls all communications between timer-RAM and masters accessing the N2HET RAM. It includes following components: 20.2.4.1 Host Accesses to N2HET RAM The host interface supports the following types of accesses to N2HET RAM: • Read accesses of 8, 16, or 32 bits • Read accesses of 64-bits that follow the shadow register sequence described in Section 20.2.4.2. • Write accesses of 32 bits Writes of 8 or 16 bits to N2HET RAM by an external host are not supported. 20.2.4.2 64-bit Read Access The consecutive read of a control field CF(n) and a data field DF(n) of the same instruction (n) performed by the same master (for example, CPU, DMA, or any other master) is always done as a simultaneous 64bit read access. This means that at the same time CF(n) is read, DF(n) is loaded in a shadow register. So the second access will read DF(n) from the shadow register instead of the N2HET RAM. In general a 64-bit read access of one master could be interrupted by a 64-bit read access of another master. A total of three shadow registers are available. Therefore up to three masters can perform 64-bit reads in an interleaved manner (Master1 CF, Master2 CF, Master3 CF, Master1 DF, Master2 DF, Master3 DF). If all three shadow registers are activated and a 4th master performs a CF or DF read it will result in an address error and the RAM access will not happen. Other access types by a fourth master (reads from the PF field or writes to any of the fields) will occur because these access types do not require an available shadow register resource to complete. 20.2.4.3 Automatic Read Clear Feature The N2HET provides a feature allowing to automatically clear the data field immediately after the data field is read by the external host CPU (or DMA). This feature is implemented via the control bit, which is located in the control field (bit C26). This is a static bit that can be used by any instruction, and specified in the N2HET program by adding the option (control = ON) to the N2HET instruction. The automatic read clear feature works for both 32 and 64 bit reads that follow the sequence described in Section 20.2.4.2. When the host CPU reads the data field of that instruction, the current data value is returned to the host CPU but the field is cleared automatically as a side effect of the read. In case the master reads data from an instruction currently executing, any new capture result is stored and this takes priority over the automatic read clear feature, so that the new capture result is not lost. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 807 N2HET Functional Description www.ti.com As an example of where the automatic read clear feature is useful, consider the PCNT instruction. If this instruction is configured for automatic read clear, then when the host CPU reads the PCNT data field it will be cleared automatically. The host CPU can then poll the PCNT data field again, and as long as the field returns a value of zero the host CPU program knows a new capture event has not occurred. If the data field were not cleared, it would be impossible for the host CPU to determine whether the data field holds data from the previous capture event, or if it happens to be data from a new capture event with the same value. 20.2.4.4 Emulation Mode Emulation mode, used by the software debugger, is specified in the global configuration register. When the host CPU debugger hits a breakpoint, the CPU sends a suspend signal to the modules. Two modes of operation are provided: suspend and ignore suspend. • Suspend When a suspend is issued, the timer operation stops at the end of the current timer instruction. However, the CPU accesses to the timer RAM or control registers are freely executed. • Ignore suspend The timer RAM ignores the suspend signal and operates real time as normal. 20.2.4.5 Power-Down After setting the turn-off bit in the Global Configuration Register (HETGCR), it is required to delay until the end of the timer program loop before putting the N2HET in power-down mode. This can be done by waiting until the N2HET Current Address (HETADDR) becomes zero, before disabling the N2HET clock source in the device’s Global Clock Module (GCM). 20.2.5 I/O Control The N2HET has up to 32 pins. Refer to device specific data sheets for information concerning the number of N2HETIO available. All of the N2HET pins available are programmable as either inputs or outputs. These 32 I/Os have an identical structure connected to pins HET[31] to HET[0]. See Figure 20-8 for an illustration of the I/O control. In addition all 32 I/Os have a special HR structure based on the HR clock. This structure allows any N2HET instruction to use any of these I/Os with an accuracy of either loop resolution or high resolution accuracy. Figure 20-8. I/O Control HETDIN Timer data in Loop Resolution Clock HET[x] HETDSET Timer data out HETDOUT HETDCLR HETDIR High Resolution Structure Pins N2HET [31] to N2HET [0] can be used by the CPU as general-purpose inputs or outputs using the N2HET Data Input Register (HETDIN) for reading and N2HET Data Output Register (HETDOUT), N2HET Data Set Register (HETDSET) or N2HET Data Clear Register (HETDCLR) for writing, depending on the type of action to perform. The N2HET pins used as general-purpose inputs are sampled on each VCLK2 period. 808 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com 20.2.5.1 Using General-Purpose I/O Data Set and Clear Registers The N2HET Data Clear Register (HETDCLR) and N2HET Data Set Register (HETDSET) can be used to minimize the number of accesses to the peripheral to modify the output register and output pins. When the application needs to set or to reset some N2HET pins without changing the value of the others pins, the first possibility is to read N2HET Data Output Register (HETDOUT), modify the content (AND, OR, and so on), and write the result into N2HET Data Output Register (HETDOUT). However, this read-modify-write sequence could be interrupted by a different function modifying the same register which will result in a data coherency problem. Using the N2HET Data Set Register (HETDSET) or N2HET Data Clear Register (HETDCLR), the application program must write the mask value (same mask value for the first option) to the register to set or reset the desired pins. Any bits written as 0 to HETDSET and HETDCLR are left unchanged, which avoids the possible coherency problem of the read-modify-write approach. Coding Example (C program): Set pins using the 2 methods. unsigned volatile ... *HETDOUT *HETDSET int MASK; unsigned int *HETDOUT,*HETDSET; /* Variable that content the bit mask /* Pointer to HET registers */ */ = *HETDOUT | MASK; = MASK; /* Read-modify-write of HETDOUT */ /* Set the pin without reading HETDOUT */ 20.2.5.2 Loop Resolution Structure The N2HET uses the pins N2HET [31:0] as input and/or output by the way of the instruction set. Actually, each pin could monitor the N2HET program or could be monitored by the N2HET program. By using the I/O register of the N2HET, the CPU is able to interact with the N2HET program flow. When an action (set or reset) is taken on a pin by the N2HET program, the N2HET will modify the pin at the rising edge of the next loop resolution clock. When an event occurs on a N2HET I/O pin, it is taken into account at the next rising edge of the loop resolution clock. The structure of each pin is shown in Figure 20-9. Figure 20-9. N2HET Loop Resolution Structure for Each Bit HETDIN Timer data in Loop Resolution Clock HET[x] HETDSET Timer data out HETDOUT HETDCLR HETDIR The example in Figure 20-10 shows a simple PWM generation with loop resolution accuracy. The corresponding program is: HETPFR[31:0] register = 0x201 --> lr=4 and hr=2 --> ts = 8 N2HET Program: L00 L01 CNT ECMP { next= L01, reg=A, irq=OFF, max = 4 } { next= L00, cond_addr= L00, hr_lr=LOW, en_pin_action=ON, pin=0, action=PULSEHI, reg=A, irq=OFF, data= 1, hr_data = 0x0 } ; 25 bit compare value is 1 and the 7-bit HR compare value is 0 SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 809 N2HET Functional Description www.ti.com The CNT and ECMP instructions are executed once each loop resolution cycle. When the CNT instruction is executed, the specified register (A) and the CNT instruction data field are both incremented by one. Next the ECMP is executed and the data field of the ECMP is compared with the specified register (A). If both values match, then the pin action (PULSEHI in this case) will be performed in the next loop resolution cycle. The CNT continues incrementing each loop resolution cycle. When the data field overflows (max + 1), then the Z-flag is set by the CNT instruction. In the next loop resolution cycle, the Z-flag is evaluated and the opposite pin action is performed if it is set. The Z-flag will only be active for one loop resolution cycle. Figure 20-10. Loop Resolution Instruction Execution Example LRP VCLK2 HR Clock HRP LR Clock Instruction 0 1 0 1 0 1 0 1 0 1 0 1 0 1 Counter 4 0 1 2 3 4 0 1 Pin HET[0] Z-Flag 25-bit ECMP match Pin action in next loop resolution cycle CNT resets Sets Z-Flag Opposite Pin action in next loop resolution cycle 20.2.5.3 High Resolution Structure All 32 I/Os provide the HR structure based on the HR clock. The HR clock frequency is programmed through the Prescale Factor Register (HETPFR). In addition to the standard I/O structure, all pins have HR hardware so that these pins can be used as HR input captures (using the HR instructions PCNT or WCAP) or HR output compares (using the HR instructions ECMP, MCMP, or PWCNT). All five HR instructions (PCNT, WCAP, ECMP, MCMP, and PWCNT) have a dedicated hr_lr bit (high resolution/low resolution; program field bit 8) allowing operation either in HR mode or in standard resolution mode by ignoring the HR field. By default, the hr_lr bit value is 0 which implies HR operation mode. However, setting this bit to one allows the use of several HR instructions on a single HR pin. Only one instruction is allowed to operate in HR mode (bit cleared to 0), but the other instructions can be used in standard resolution mode (bit set to 1). 810 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com 20.2.5.4 HR Block Diagram Each time an HR instruction is executed on a given pin, the HR structure for that pin is programmed and synchronized to the next loop-resolution cycle (which HR function to perform and on which edges it should take an action) with the information given by the instruction. The HR structure for each pin decodes the pin select field of the instruction and programs its HR structure if it matches. NOTE: For each N2HET pin, only one instruction specifying a high resolution operation (hr_lr = HIGH) is allowed to execute per loop resolution period. This includes any instructions where (hr_lr = HIGH) but (en_pin_action = OFF). The first high resolution instruction that executes and specifies a particular pin locks out subsequent high resolution instructions from operating on the same pin until the end fo the current loop resolution period. Figure 20-11. HR I/O Architecture HETDIR HETDIN Timer data in > Loop Resolution Clock HET[x] HETDSET Timer data out HETDOUT HETDCLR HR Structure One Per Pin { HR control logic Timer data in HR prescale driver Resolution clock HR flags HR up/down counter (7 bits) HR compare data HR register SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 811 N2HET Functional Description www.ti.com 20.2.5.5 HR Structures Sharing (Input) The HR Share Control Register (HETHRSH) allows two HR structures to share the same pin for input capture only. If these bits are set, the HR structures N and N+1 are connected to pin N. In this structure, pin N+1 remains available for general-purpose input/output. See Figure 20-12. Figure 20-12. Example of HR Structure Sharing for N2HET Pins 0/1 N2HET HR 0 HET[0] 1 0 HET[1] N2HET HR 1 HR share 1/0 The following program gives an example how the HR share feature (HET[0] HR structure and HET[1] HR structure shared) can be used for the PCNT instruction: L00 PCNT { next=L01, type=rise2fall, pin=0 } L01 PCNT { next=L00, type=fall2rise, pin=1 } The HET[1] HR structure is also connected to the HET[0] pin. The L00_PCNT data field is able to capture a high pulse and the L01_PCNT captures a low pulse on the same pin (N2HET [0] pin). 812 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com 20.2.5.6 AND / XOR-shared HR Structure (Output) Usually the N2HET design allows only one HR structure to generate HR edges on a pin configured as output pin. The HETXOR register allows a logical XOR of the output signals of two consecutive HR structures N (even) and N+1 (odd). See Figure 20-13. In this way, it is possible to generate pulses smaller than the loop resolution clock since both edges can be generated by two independent HR structures. This is especially required for symmetrical PWM. See Figure 20-14. The hardware provides a XOR gate that is connected to the outputs of the HR structure of two consecutive pins. In this structure, pin N+1 remains available for general-purpose input/output. Figure 20-13. XOR-shared HR I/O HETXOR0 0 HET[0] N2HET HR 0 1 0 HET[1] N2HET HR 1 HETXOR0 The following N2HET program gives an example for one channel of the symmetrical PWM. The generated timing is given in Figure 20-14. MAXC .equ 22 A_ .equ 0 ; HR structure HR0 B_ .equ 1 ; HR structure HR1 CN CNT { next=EA, reg=A, max=MAXC } EA ECMP { next=EB, cond_addr=MA, hr_lr=HIGH, en_pin_action=ON, pin=A_, action=PULSELO, reg=A, data=17, hr_data=115 } MA MOV32 { next=EB, remote=EA, type=IMTOREG&REM, reg=NONE, data=17, hr_data=19 } EB ECMP { next=CN, cond_addr=MB, hr_lr=HIGH, en_pin_action=ON, pin=B_, action=PULSELO, reg=A, data=5, hr_data=13 } MB MOV32 { next=CN, remote=EB, type=IMTOREG&REM, reg=NONE, data=5, hr_data=13 } N2HET Settings and output signal calculation for this example program: • Pin HET[0] and HET[1] are XOR-shared. • HETPFR[31:0] register = 0x700: lr=128, hr=1, time slots ts = 128 • PWM period (determined by CNT_max field) = (22+1) · LRP = 2944 HRP • Length of high pulse of (HET[0] XOR HET[1]) = LH = (17·LRP+115·HRP) - (5·LRP+13·HRP) With lr=128 there is LRP = 128 · HRP, so LH = (2291 - 653) · HRP = 1638 HRP • Duty cycle = DC = LH / PWM_period = 1638 HRP / (2944·HRP) = 55.6 % SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 813 N2HET Functional Description www.ti.com Figure 20-14 graphically shows the implementation of the XOR-shared feature. The first 2 waveforms (symmetrical counter and CNT) show a symmetric counter and asymmetric counter. The symmetric counter is shown only to highlight the axis of symmetry and is not implemented in the N2HET. The asymmetric counter, which is implemented with a CNT instruction, needs to be set to the period of the symmetric counter. The next two waveforms (HR [0] and HR [1]) show the output of the HR structures, which are the inputs for the XOR gate to create the PWM output on pin HET[0]. Notice that the pulses of signal HET[0] are centered about the axis of symmetry. Figure 20-14. Symmetrical PWM with XOR-sharing Output Symmetrical counter (not in HET) Asymmetrical counter (CNT) HET[0] HR0 HR1 As an alternative, HR structures may be shared using a logical AND function to combine the effects of the pin structures. The HETAND allows sharing two consecutive HR structures N (even) and N+1 (odd). See Figure 20-15. In this structure, pin N+1 remains available for general-purpose input/output. NOTE: Setting both the HETAND bit and HETXOR bits at the same time for a given pair of N2HET pins is not supported, must be avoided by the application program. Figure 20-15. AND-shared HR I/O HETAND0 HET[0] 0 N2HET HR 0 1 HET[1] 0 N2HET HR 1 HETAND0 814 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com 20.2.5.7 Loop Back Mode The loop back feature can be used by the application to monitor an N2HET output signal. For example, if a PWM is generated by HR structure 0, then a PCNT instruction assigned to HR structure 1 can measure back the pulse length or periods of the PWM output signal. Loopback mode is activated between two high resolution structures by setting LBPSEL[x] to 1 in the HETLBPSEL register for the corresponding structure pair. The direction of the loopback between the two structures in the structure pair is determined by the value of LBPDIR[x] in the HETLBPDIR Register. For example, if bit LBPSEL[0] is set to 1, then HR structures 0 and 1 will be internally connected in loop back mode. If bit LBPDIR[0] is set to 0, then structure 0 will be the input and structure 1 will be the output. Digital Loopback Digital loopback mode is enabled by setting LBPTYPE[x] to 0 in the HETLBPSEL register for the corresponding structure pairs. In digital loopback mode, the structure pairs are connected directly and the output buffers are bypassed. Therefore, the loopback values will NOT be seen on the corresponding pins. Figure 20-16 shows an example of digital loopback between structures HR0 and HR1. LBSEL[0] has been set to 1 to enable loopback between the two structures. LBTYPE[0] has been set to 0 to select digital mode for the loopback pair. The LPBDIR[0] value will determine the direction of the loopback by selecting which of the HR blocks is output, and which is input. The bold lines show the digital loopback path. Figure 20-16. HR0 to HR1 Digital Loopback Logic: LBTYPE[0] = 0 Loopback values will NOT be seen on the pins in Digital Loopback Mode HR 0 LBPDIR [0] value determines which HR block is input and which is output Output Buffer X Pin 0 X Pin 1 LBSEL[0] value determines whether or not loopback is enabled for these two blocks HR 1 Output Buffer SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 815 N2HET Functional Description www.ti.com Analog Loopback Analog loopback mode is enabled by setting LBPTYPE[x] to 1 in the HETLBPSEL register for the corresponding structure pairs. In analog loopback mode, the structure pairs are connected outside of the output buffers. Therefore, the loopback values WILL be seen on the corresponding pins. Figure 20-17 shows an example of analog loopback between structures HR0 and HR1. LBSEL[0] has been set to 1 to enable loopback between the two structures. LBTYPE[0] has been set to 1 to select analog mode for the loopback pair. The LPBDIR[0] value will determine the direction of the loopback by selecting which of the HR blocks is output, and which is input. The bold lines show the analog loopback path. Figure 20-17. HR0 to HR1 Analog Loop Back Logic: LBTYPE[0] = 1 Loopback values WIL L be seen on the pin s in Analog Loopback Mode LBPDIR [0] value determ ines which HR block is input and which is output HR 0 Outpu t Buffer X Pin 0 X Pin 1 LBSEL[0] value determ ines whether or not loopback is enabled for these two block s HR 1 Output Buffer Note: • The loop back direction can be selected independent of the HETDIR register setting. • The pin that is not driven by the N2HET output pin actions can still be used as normal GIO pin. 816 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com 20.2.5.8 Edge Detection Input Timing There are several timing requirements for input signals in order to be captured correctly by N2HET. Figure 20-18 illustrates these requirements, with min and max values described in Table 20-7 (Loop Resolution) and Table 20-8 (High Resolution). Figure 20-18. N2HET Input Edge Detection 1 N2HETx 3 4 2 Table 20-7. Edge Detection Input Timing for Loop Resolution Instructions Parameter # Description 1 Input Signal Period, rising edge to rising edge 2 Input Signal Period, falling edge to falling edge 3 Input Signal, high phase 4 Input Signal, high phase min max > 2 (hr) (lr) tc(VCLK2) < 225 (hr) (lr) tc(VCLK2) > (hr) (lr) tc(VCLK2) Table 20-8. Edge Detection Input Timing for High Resolution Instructions Parameter # Description 1 Input Signal Period, rising edge to rising edge 2 Input Signal Period, falling edge to falling edge 3 Input Signal, high phase 4 Input Signal, high phase min max > (hr) (lr) tc(VCLK2) < 225 (hr) (lr) tc(VCLK2) > 2 (hr) tc(VCLK2) These are the N2HET architectural limitations. Actual limitations will be slightly different due to on chip routing and IO buffer delays, usually by several nanoseconds. Be sure to consult the device datasheet for actual timings that apply to that device. Also, certain devices place additional restrictions on which pins support the high resolution timings of Table 20-8, if present these additional limitations will also be called out in the device datasheet. Note that the max limit in Table 20-7 and Table 20-8 is based on the counter range of a single N2HET instruction. The max value could be extended by employing an additional N2HET instruction to keep track of counter overflows of the input counter / capture instruction. 20.2.5.9 PWM Generation Example 1 (in HR Mode) The following example shows how an ECMP instruction works in high resolution mode. The example assumes a VCLK2 of 32 MHz and the following values for the prescale divide rates (hr and lr), number of time slots (ts), high and loop resolution period (HRP and LRP): hr = 2, lr = 4, ts = hr × lr = 8 HRP = hr / VCLK2 = 2 / 32 MHz = 62.5 ns LRP = (hr × lr) / VCLK2 = 8 / 32 MHz = 250 ns With ts = 8, there are eight time slots available for the program execution, which in this case will consist of one CNT and one ECMP instruction as shown below. The data field of the ECMP instruction is the 32-bit compare value, whereby the lower 7 bits represent the high resolution compare field. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 817 N2HET Functional Description www.ti.com When the 25-bit (loop resolution) compare matches, the HR compare value will be loaded from the 7 lower bits of the instruction data field to the HR counter. At the next loop resolution clock, the HR counter will count down at the HR clock frequency and perform the pin action when it reaches zero. In the example illustrated by Figure 20-19, the 25-bit compare value is 1 and the 7-bit HR compare value is 2. According to Section 20.2.3.2, depending on the loop resolution divide rate (lr), only certain bits of the 7-bit HR compare value are valid. In this example only the upper 2 bits (D[6:5]) are taken into account. The example program below has a setting of hr_data = 100000b. Shifting this value right by 5 bits, results in 10b which equals the two HR clock cycles delay mentioned above. Figure 20-19. ECMP Execution Timings LRP VCLK2 HR Clock HRP LR Clock Instruction 01 LR Counter 4 0 HR Counter 0 0 1 01 1 01 2 2 01 3 1 01 4 01 0 1 0 HR delay Pin HET[0] Z-Flag Pin action in next loop resolution cycle + high resolution delay 25-bit ECMP match CNT resets Sets Z-Flag Opposite Pin action in next loop resolution cycle HETPFR[31:0] register = 0x201 --> lr=4 and hr=2 --> ts = 8 N2HET Program: L00 L01 CNT ECMP { next= L01, reg=A, irq=OFF, max = 4 } { next= L00, cond_addr= L00, hr_lr=HIGH, en_pin_action=ON, pin=0, action=PULSEHI, reg=A, irq=OFF, data= 1, hr_data = 0x40 } ; 25 bit compare value is 1 and the 7-bit HR compare value is 2 ; (Because of lr=4 the D[4:0] of the 7-bit HR field are ignored ) NOTE: ECMP Opposite Actions ECMP opposite pin actions are always synchronized to the loop resolution clock. Changing the duty cycle of a PWM generated by an ECMP instruction, can lead to a missing pulse if the data field of the instruction is updated directly. This can happen when it is changed from a high value to a lower value while the CNT instruction has already passed the new updated lower value. To avoid this a synchronous duty cycle update can be performed with the use of an additional instruction (MOV32). This instruction is only executed when the compare of the ECMP matches. For this the cond_addr of the ECMP needs to point to the MOV32. On execution of the MOV32, it moves its data field into the data field of the ECMP. The update of the duty cycle has to be made to the MOV32 data field instead of the ECMP data field. 818 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com 20.2.5.10 PWM Generation Example 2 (in HR Mode) The MCMP instruction can also be used in HR mode. In this case operation is exactly the same as for the ECMP instruction except that the 25-bit low resolution is now the result of a magnitude compare (greater or equal) rather than an equality compare. When the 25-bit (loop resolution) magnitude compare matches, the HR compare value will be loaded from the 7 lower bits of the instruction data field to the HR counter. At the next loop resolution clock, the HR counter will count down at the HR clock frequency and perform the pin action when it reaches zero. The MCMP instruction avoids the missing pulse problem of the ECMP instruction (see previous example), however the duty cycle of the signal might not be exact for one PWM period. The benefit of the MCMP is that it avoids adding another instruction to do the duty cycle update synchronously. 20.2.5.11 Pulse Generation Example (in HR Mode) The PWCNT instruction may also be used in HR mode to generate pulse outputs with HR width. It generates a single pulse when the data field of the instruction is non-zero. It remains at the opposite pin action when the data field is zero. The PWCNT instruction operates conversely to the ECMP instruction. See Figure 20-20. For PWCNT, the opposite pin action is synchronous with the HR clock and for ECMP the pin action is synchronous with the HR clock. The PWCNT pin action is synchronous with the loop resolution clock. Figure 20-20. High/Low Resolution Modes for ECMP and PWCNT ECMP HR clock Pin action PWCNT LR clock Pin action LR clock Opposite pin action clock HR Opposite pin action 20.2.5.12 Pulse Measurement Example (in HR Mode) The PCNT instruction captures HR measurement of the high/low pulse time or periods of the input. As shown in Figure 20-21, at marker (1) the input goes HIGH and the HR counter immediately begins to count. The counter increments and rolls over until the falling edge on the input pin, where it captures the counter value into the HR capture register (marker (2)). The PCNT instruction begins counting when the synchronized input signal goes HIGH and captures both the 25-bit data field and the HR capture register into RAM when the synchronized input falls (marker (3)). NOTE: The HR capture value written into RAM is shifted appropriately depending on the loop resolution prescale divide rate (lr). (See also Section 20.2.3.2). SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 819 N2HET Functional Description www.ti.com Figure 20-21 shows what happens when the capture edge arrives after the HR counter overflows. This causes the incremented value to be captured by the PCNT instruction. Figure 20-21. PCNT Instruction Timing (With Capture Edge After HR Counter Overflow) HR clock Loop res clock PCNT CF X HR counter 0 0 1 2 3 0 1 1 2 3 2 0 0 HR capt. reg X 1 PCNT DF X 2 Input pin Input pin sync’d 1 2 3 Figure 20-22 shows what happens when the capture edge arrives before the HR counter overflows. This causes the non-incremented value to be captured by the PCNT instruction. Figure 20-22. PCNT Instruction Timing (With Capture Edge Before HR Counter Overflow) HR clock Loop res clock PCNT CF X HR counter 0 0 1 2 3 HR capt. reg X PCNT DF X 0 1 1 2 3 2 0 0 3 1 Input pin Input pin sync’d 1 820 2 High-End Timer (N2HET) Module 3 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com 20.2.5.13 WCAP Execution Example (in HR Mode) The HR capability is enabled for WCAP, if its hr_lr bit is zero. In this case the HR counter is always enabled and is synchronized with the resolution loop. When the specified edge is detected, the current value of the HR counter is captured in the HR capture register and written into the RAM after the next WCAP execution. The WCAP instruction effectively time stamps the free running timer saved in a register (for example, register A shown in Figure 20-23). Figure 20-23. WCAP Instruction Timing LRP HR clock HRP Loop res clock Instruction A register HR counter CNT WCAP CNT WCAP 0 0 CNT WCAP 1 1 2 CNT WCAP 2 3 0 1 2 CNT WCAP 3 3 0 1 2 CNT WCAP 4 3 0 1 2 5 3 0 1 2 6 3 0 1 2 3 Input pin HET[0] sync’d to VCLK2 Input pin HET[0] sampled by LRP HR capt. reg X WCAP DF X 2 4 WCAP Previous bit 0x0240 captured to WCAP DF [31:0] HETPFR_register = 0x0200 --> lr = 4, hr = 1, ts = 4 N2HET Program: L00 CNT {reg=A, max=01ffffffh} L01 WCAP {next=L00, cond_addr=L00, hr_lr=high, reg=A, event= FALL, pin=0, data=0} In the example, the WCAP is configured to capture the counter when a falling edge occurs. The WCAP data field (WCAP_DF) is updated in the loop succeeding the loop in which the edge occurred. The WCAP instruction evaluates an edge by comparing its Previous bit with the sync’d input signal. In Figure 20-23, the current value of the counter (4) is captured to WCAP_DF[31:7] and the value of the HR capture register (2) is transferred to the valid bits (according the lr prescaler) of WCAP_DF[6:0]. Therefore, in the example 0x0240 is captured in WCAP_DF[31:0]. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 821 N2HET Functional Description www.ti.com 20.2.5.14 I/O Pull Control Feature Figure 20-24. I/O Block Diagram Including Pull Control Logic Output enable Data out N2HET pin Data in Input enable Pull control disable Pull select Pull control logic The following apply if the device is under reset: • Pull control: The reset pull control on the pins is enabled and a pulldown is configured. • Input buffer: The input buffer is enabled. • Output buffer: The output buffer is disabled. The following apply if the device is out of reset: • Pull control: The pull control is enabled by clearing the corresponding bit in the N2HET Pull Disable Register (HETPULDIS). In this case, if the corresponding bit in the N2HET Pull Select Register (HETPSL) is set, the pin will have a pull-up; if the bit in the N2HET Pull Select Register (HETPSL) is cleared, the pin will have a pull-down. If the bit in the N2HET Pull Disable Register (HETPULDIS) is set, there is no pull-up or pull-down on the pin. • Input buffer: The input buffer is disabled only if the pin direction is set to input AND the pull control is disabled AND pull down is selected as the pull bias. In all other cases, the input buffer is enabled. NOTE: The pull-disable logic depends on the pin direction. If the pin is configured as output, then the pulls are disabled automatically. If the pin is configured as input, the pulls are enabled or disabled depending on the pull disable register bit. • Output buffer: A pin can be driven as an output pin if the corresponding bit in the N2HET Direction Register (HETDIR) is set AND the open-drain feature (N2HET Open Drain Register (HETPDR)) is not enabled. See Section 20.2.5.15 for more details. The behavior of the input buffer, output buffer, and the pull control is summarized in Table 20-9. When an input buffer is disabled, it appears as a logic low to on-chip logic. 822 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com Table 20-9. Input Buffer, Output Buffer, and Pull Control Behavior (1) Device under Reset? Pin Direction (DIR) (1) Pull Disable (PULDIS) (1) Pull Select (PULSEL) (1) Yes X X No 0 0 No 0 No No No Pull Control Output Buffer Input Buffer X Enabled Disabled Enabled 0 Pull down Disabled Enabled 0 1 Pull up Disabled Enabled 0 1 0 Disabled Disabled Disabled 0 1 1 Disabled Disabled Enabled 1 X X Disabled Enabled Enabled X = Don’t care 20.2.5.15 Open-Drain Feature The following apply if the open-drain feature is enabled on a pin, that is, the corresponding bit in the N2HET Open Drain Register (HETPDR) is set: • Output buffer is enabled if a low signal is being driven internally to the pin. • The output buffer is disabled if a high signal is being driven internally to the pin. 20.2.5.16 N2HET Pin Disable Feature This feature is provided for the safe operation of systems such as power converters and motor drives. It can be used to inform the monitoring software of motor drive abnormalities such as over-voltage, overcurrent, and excessive temperature rise. Table 20-10 shows the conditions for the output buffer to be enabled/disabled. Figure 20-25. N2HET Pin Disable Feature Diagram HETPINDIS HETDIR 0 1 HETDOUT N2HET pin HETDIN to other N2HET pin structures A B nDIS pin* N2HET pin enable *nDIS pin realized by GIOA[5] (N2HET1) and GIOB[2] (N2HET2) High-End Timer (N2HET) Module 823 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com Table 20-10. N2HET Pin Disable Feature HETPINDIS.x nDIS Pin (Input) HET_PIN_ENA (HETGCR.24) HETDIR.x Output Buffer 0 X X 0 Disabled 0 X X 1 Enabled 1 0 X 0 Disabled 1 0 X 1 Disabled 1 1 X 0 Disabled 1 1 0 1 Disabled 1 1 1 1 Enabled An interrupt capable device I/O pin can share the same pin as the N2HET nDIS signal. Normally GIOA[5] serves as nDIS for N2HET1 and GIOB[2] as nDIS for N2HET2. Check the device datasheet for the actual implementation. Sharing a pin with a GIO pin that is Interrupt capable allows the N2HET nDIS input to also generate an interrupt to the CPU. An active low level on nDIS is intended to signal an abnormal situation as described above. All N2HET pins, which are selected with the N2HET Pin Disable Register (HETPINDIS), will be put in the high-impedance state by hardware immediately after the nDIS signal is pulled low. At this time a CPU interrupt is issued, if it is enabled in the GIO pin logic. The bit HET_PIN_ENA is automatically cleared in the failure condition and this state remains as long as the software explicitly sets the bit again. The steps to do this are: • Software detects, by reading the HETDIN register of the GIO pin, that the level on nDIS is inactive (high). • Software sets bit HET_PIN_ENA to deactivate the high impedance state of the pins. 20.2.6 Suppression Filters Each N2HET pin is equipped with a suppression filter. If the pin is configured as an input it enables to filter out pulses shorter than a programmable duration. Each filter consists of a 10-bit down counter, which starts counting at a programmable preloaded value and is decremented using the VCLK2 clock. • The counter starts counting when the filter input signal has the opposite state of the filter output signal. The output signal is preset to the same input signal state after reset, in order to ensure proper operation after device reset. • Once the counter reaches zero without detecting an opposite pin state on the filter input signal, the output signal is set to the opposite state. • When the counter detects an opposite pin action on the filter input signal before reaching zero, the counter is loaded with it's preload value and the opposite pin action on the filter output signal does not take place. The counter resumes at the preload value until it detects an opposite pin action on the input signal again. • Therefore the filter output signal is delayed compared to the filter input signal. The amount of delay depends on the counter clock frequency (VCLK2) and the programmed preload value. • The accuracy of the output signal is +/- the counter clock frequency. Table 20-11 gives examples for a 100 MHz VCLK2 frequency. 824 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com Figure 20-26. Suppression Filter Counter Operation Filter input preload value Counter 0 Filter output Table 20-11. Pulse Length Examples for Suppression Filter Possible values for the suppressed pulse length / frequency resulting from the programmable 10 bit preload value (0,1,..,1023) Divider CCDIV VCLK2 1 100.0 MHz 10 ns, 20 ns, …, 10.22 µs, 10.23 µs 50 MHz, 25 MHz, …, 48.924 kHz, 48.876 kHz 2 50.0 MHz 20 ns, 40 ns, …, 20.44 µs, 20.48 µs 25 MHz, 12.5 MHz, …, 24.462 kHz, 24.414 kHz 3 33.3 MHz 30 ns, 60 ns, …, 30.66 µs, 30.69 µs 16.7 MHz, 8.3 MHz, …, 16.308 kHz, 16.292 kHz 20.2.7 Interrupts and Exceptions N2HET interrupts can be generated by any instruction that has an interrupt enable bit in its instruction format. When the interrupt condition in an instruction is true and the interrupt enable bit of that instruction is set, an interrupt flag is then set in the N2HET Interrupt Flag Register (HETFLG). The address code for this flag is determined by the five LSBs of the current timer program address. The flag in the N2HET Interrupt Flag Register (HETFLG) is set even if the corresponding bit in the N2HET Interrupt Enable Set Register (HETINTENAS) is 0. To generate an interrupt, the corresponding bit in the N2HET Interrupt Enable Set Register (HETINTENAS) must be 1. In the N2HET interrupt service routine, the main CPU must first determine which source inside the N2HET created the interrupt request. This operation is accelerated by the N2HET Offset Index Priority Level 1 Register (HETOFF1) or N2HET Offset Index Priority Level 2 Register (HETOFF2) that automatically provides the number of the highest priority source within each priority level. Reading the offset register will automatically clear the corresponding N2HET interrupt flag that created the request. However, if the offset registers are not used by the N2HET interrupt service routine, the flag should be cleared explicitly by the CPU once the interrupt has been serviced. Table 20-12. Interrupt Sources and Corresponding Offset Values in Registers HETOFFx Source No. Offset Value no interrupt 0 Instruction 0, 32, 64... 1 Instruction 1, 33, 65... 2 : : Instruction 31, 63, 95... 32 Program Overflow 33 APCNT underflow: 34 APCNT overflow 35 SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 825 N2HET Functional Description www.ti.com The instructions capable of generating interrupts are listed in Table 20-75. Figure 20-27. Interrupt Functionality on Instruction Level Interrupt condition Interrupt enable 5 LSB address code 00000 Interrupt Flag 0 Interrupt condition Interrupt enable 5 LSB address code 11111 Interrupt Flag 31 Each interrupt source is associated with a priority level (level 1 or level 2). When multiple interrupts with the same priority level occur during the same loop resolution the lowest flag bit is serviced first. In addition to the interrupts generated by the instructions the N2HET can generate three additional exceptions: • Program overflow • APCNT underflow (see Section 20.3.1.2) • APCNT overflow (see Section 20.3.1.3) 20.2.8 Hardware Priority Scheme If two or more software interrupts are pending on the same priority level, the offset value will show the one with the highest priority. The interrupt with the highest priority is the one with the lower offset value. This scheme is hard-wired in the offset encoder. See Figure 20-28. 826 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Functional Description www.ti.com Figure 20-28. Interrupt Flag/Priority Level Architecture PL bit 0 SW Int flag 0 Offset index encoder for level 1 priority HET interrupt priority 1 offset vector PL bit 1 SW Int flag 1 PL bit 23 SW Int flag 23 PL bit 24 SW Int flag 24 Priority 1 global interrupt request To Vectored Interrupt Manager PL bit 31 SW Int flag 31 Priority 2 global interrupt request PL bit 34 Exc Int En 2 Exc Int flag 2 Offset index encoder for level 2 priority SPNU499C – March 2018 Submit Documentation Feedback HET interrupt priority 2 offset vector High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 827 N2HET Functional Description www.ti.com 20.2.9 N2HET Requests to DMA and HTU As described in Section 20.6.3, the majority of the N2HET instructions are able to generate a transfer request to the High-End Timer Transfer Unit (HTU) and/or to the DMA module when an instruction-specific condition is true. One N2HET instruction can select one of 8 request lines by programming the “reqnum” parameter. The “request” field in an instruction is used to enable, disable, or to generate a quiet request (see Section 20.6.2) on the selected request line. Quiet requests can be used by the HTU, but not by the DMA. For quiet request, refer to the High-End Timer Transfer Unit (HTU) Module chapter (see Section 21.2.4.1). The configuration of the N2HET Request Destination Select Register (HETREQDS) bits determines if a request line triggers an HTU-DCP, a DMA channel or both. This means the register bits will determine whether an N2HET instruction triggers DMAREQ[x], HTUREQ[x] or both signals (shown in Figure 20-29). The request line number x corresponds to the “reqnum” parameter used in the instruction. Figure 20-29. Request Line Assignment Example DMA DMAREQ[0] HTUREQ[0] DMAREQ[1] HTUREQ[1] DMAREQ[2] HTUREQ[2] DMAREQ[3] HTUREQ[3] DMAREQ[4] HTUREQ[4] DMAREQ[5] HTUREQ[5] DMAREQ[6] HTUREQ[6] DMAREQ[7] HTUREQ[7] DCP[0] DCP[1] DCP[2] DCP[3] DCP[4] DCP[5] DCP[6] DCP[7] HTU DMAREQ[20] DMAREQ[21] DMAREQ[24] DMAREQ[25] N2HET 20.3 Angle Functions Engine management systems require an angle-referenced time base to synchronize signals to the engine toothed wheel. The N2HET has a method to provide such a time base for low-end engine systems. The reference is created by the N2HET using three dedicated instructions with fractional angle steps equal to /8, /16, /32, /64. 20.3.1 Software Angle Generator The N2HET provides three specialized count instructions to generate an angle referenced time base synchronized to an external reference signal (the toothed wheel signal) that defines angular reference points. The time base is used to generate fractional angle steps between the reference points. The step width K (= 8, 16, 32, or 64) programmed by the user defines the angle accuracy of the time base. These fractional steps are then accumulated in an angle counter to form the absolute angle value. The first counter, APCNT, incremented on each loop resolution clock measures the periods P(n) of the external signal. The second counter SCNT counts by step K up to the previous period value P(n-1), measured by APCNT, and then recycles. The resulting period of SCNT is the fraction P(n-1) / K. The third counter ACNT accumulates the fractions generated by SCNT. Figure 20-30 illustrates the basic operation of APCNT, SCNT, and ACNT. A N2HET timer program can only have one angle generator. 828 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Angle Functions www.ti.com Figure 20-30. Operation of N2HET Count Instructions HET[2] ext. ref. signal APCNT period counter P(n-1) P(n) SCNT step counter P(n-1) P(n-1) K K ACNT angle generator K counts Due to stepping, the final count of SCNT does not usually exactly match the target value P(n-1). Figure 20-31 illustrates how SCNT compensates for this feature by starting each cycle with the remainder (final count - target) of the previous cycle. Figure 20-31. SCNT Count Operation Final Count = N0+nK Target=P(n-1) Final Count = N1+mK E SCNT step counter N0+3K N1+2K N0+2K N0+K N0 N1+K N1=N0+nK-P(n-1) E SPNU499C – March 2018 Submit Documentation Feedback N2=N1+mK-P(n-1) High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 829 Angle Functions www.ti.com ACNT detects period variations of the external signal measured by APCNT and compensates related counting errors. A period increase is flagged in the deceleration flag. A period decrease is flagged in the acceleration flag. If no variation is flagged, ACNT increments the counter value each time SCNT reaches its target. If acceleration is detected, ACNT increments the counter value on each timer resolution (fast mode). If deceleration is detected, ACNT is stopped. Figure 20-32 illustrates how the compensations for acceleration and deceleration operate. Figure 20-32. ACNT Period Variation Compensations Deceleration Acceleration HET[2] ext. ref. signal P(n) APCNT period counter P(n+1) SCNT step counter ACNT angle generator 0 1 2 K-1 0 1 2 DCF Deceleration flag ACF Acceleration flag 830 High-End Timer (N2HET) Module 0 1 K-1 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Angle Functions www.ti.com 20.3.1.1 Singularities Singularities (gaps, in this case, from missing teeth in a toothed wheel) in the external reference signal can be masked. The start and end of singularities are defined by gap start and gap end values specified in SCNT and ACNT. When ACNT reaches gap start or gap end, it sets/resets the gap flag. While the gap flag is set, new periods of the external reference signal are ignored for angle computation. SCNT uses the last period measured by APCNT just before gap start. Figure 20-33 and Figure 20-34 illustrate the behavior of the angle generator during a gap after a deceleration or acceleration of the N2HET. Figure 20-33. N2HET Timings Associated with the Gap Flag (ACNT Deceleration) Singularity HET[2] ext. ref. signal APCNT period counter DCF Decel flag ACNT angle generator GPF Gap flag Gap End Gap Start SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 831 Angle Functions www.ti.com Figure 20-34. N2HET Timings Associated with the Gap Flag (ACNT Acceleration) Singularity HET[2] ext. ref. signal APCNT period counter ACF Accel. flag ACNT angle generator GPF Gap flag Gap Start Gap End 20.3.1.2 APCNT Underflow The fastest valid external signal APCNT can accept must satisfy the following condition: Step Width K < Period Min. Resolution (LRP) This condition fixes the maximum possible step width once the minimum period and the resolution of an application are specified. If a period value accidentally falls below the minimum allowed, APCNT stops the capture of these periods and sets the APCNT underflow interrupt flag located in the exceptions interrupt control register. In such a situation, SCNT and ACNT continue to be executed using the last valid period captured by APCNT. 20.3.1.3 APCNT Overflow The slowest valid external signal APCNT can measure must satisfy the following condition: Period Max Resolution < 33554431 When this limit is reached (APCNT Count equals all 1’s), APCNT stays at a maximum count (stops counting). APCNT remains in this position until the next specified capture edge is detected on the selected pin and sets the APCNT overflow interrupt flag located in the exceptions interrupt control register. In this situation, SCNT and ACNT continue to be executed using the maximum APCNT period count. 832 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Angle Functions www.ti.com 20.3.2 Hardware Angle Generator (HWAG) 20.3.2.1 Overview More engine control functions require powerful microcontrollers to process the timing. These controllers must generate signals such as dwell time, spark time, and fuel injection, at precise engine angles. These signals must be synchronized with the engine cycle. The hardware angle generator (HWAG) generates angle value from toothed wheels. Because the toothed wheels are inaccurate (the most widely wheel used has 60 teeth with 6°/tooth), the period between two tooth edges (\) interpolates the angle value and the step width gives the number of interpolated angles. For an example of the angle generator principle, see Figure 20-35. The HWAG can complement the high-end timer (NHET) to generate complex angle-angle or angle-time wave forms. To work with the majority of toothed wheels, the HWAG provides registers to allow the CPU to configure step width, singularity, and filtering when initializing. Figure 20-35. Angle Generator Principle Hardware angle generator Toothed wheel Speed Position 20 bit angle value Toothed wheel input Angular value Step width 1/4 - 1/512 20.3.2.1.1 HWAG Features The HWAG provides the following features: • Programmable step width from 1/4 to 1/512 • Automatic synchronization check after first singularity synchronization • Direct interface with the high-end timer • 15 to 10,000 RPM range • Programmable toothed-wheel input filter • Programmable active edge on toothed-wheel • Start bit synchronized to the tooth edge • Pin selection capability for toothed-wheel input SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 833 Angle Functions www.ti.com 20.3.2.1.2 Block Diagram Figure 20-36. Hardware Angle Generator Block Diagram HWAG To CPU Angle Tick Generation Registers Noise Filtering Toothed Wheel ICLK Gap Verification 2 Int Peripheral bus HWAG core HET Interface 4 Angle increment HET Resolution To HET 834 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Angle Functions www.ti.com 20.3.2.2 HWAG Operation 20.3.2.2.1 Angle Tick Generation Algorithm 20.3.2.2.1.1 Angle Tick Generation Principle The angle tick generator is the core kernel of this module. It uses the time-interpolation algorithm to generate angle ticks based on the last toothed wheel period. The angle counter is incremented at each new angle tick. Because the toothed wheel is too inaccurate to fit with actual power-train applications, the algorithm is based on dividing the previous tooth period by K angle steps. The tooth period is the period between two active edges, which the HWAG global control register 2 (HWAGCR2) defines as the falling or the rising edge of the input signal. For an example of the angle tick generation principle, see Figure 20-37. The speed of the toothed wheel varies. This variance in speed creates some discontinuities in the angle counter behavior. When the toothed wheel accelerates, the current period becomes shorter than the previous one and the tooth edge arrives before the last tick has been generated. To compensate for any missed ticks, the HWAG adds them to the angle counter when the active edge of the tooth arrives. The angle value is updated and resynchronized at each new active tooth edge. When the toothed wheel decelerates, the period becomes longer than the previous period and K ticks are already counted before the active edge tooth arrives. After the last tick has been generated, the HWAG generates a tick only after the active tooth edge arrives. Figure 20-37. Angle Tick Generation Principle Toothed wheel Angle Tick K Ticks P(n-1) SPNU499C – March 2018 Submit Documentation Feedback P(n) P(n-1) K High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 835 Angle Functions www.ti.com 20.3.2.2.1.2 Angle Tick Generation Implementation The time-interpolation algorithm, which generates ticks based on the toothed wheel tooth period, consists of the following five main counters linked together: • Tooth counter (TCNT): Current tooth • Period counter (PCNT): Period between two teeth • Step counter (SCNT): Angle step • Tick counter (TCKC): Angle ticks • Angle counter (ACNT): Angle value The algorithm also includes differences comparison, adder, and working registers as shown in Figure 2038. Figure 20-38. New Angle Tick Generation Architecture Teeth Register Toothed wheel Input = Gap Flag TCNT +1 PCNT (n) +1 Teeth’event P(n) > 2 x P ( n-1 ) Criteria PCNT (n-1) £ SCNT Angle Tick + +/Step Register ACNT “1” Tick CNT -1 ACNT Inc. Tickcount0 & teeth’event The TCNT is an 8-bit counter. It counts teeth until it reaches the teeth register value then generates a gap flag signal. The gap flag signal which changes the behavior of the HWAG during the singularity and resets the TCNT on the next active edge of the toothed wheel input. The PCNT calculates the period P(n) between two teeth (two active edges on the toothed wheel input). The active edge (falling or rising) is selected by setting the TED bit in the HWAG global control register 2 (HWAGCR2). On an active edge from the toothed wheel input, the PCNT is saved in the HWAG previous tooth period value register (HWAPCNT1). The SCNT counts by K steps up to the previous period value, which is contained in the HWAPCNT1 register. When the SCNT overflows PCNT(n-1), an angle tick is generated and SCNT is reset to the remainder between the SCNT and PCNT(n-1). The resulting period of the SCNT is the fraction PCNT(n1)/K. The TCKC counts every angle tick until it reaches K and then stops the SCNT. If an active edge occurs before the TCKC has reached K, the remainder is added directly to the ACNT. When encountering an earlier active edge, the ACNT accumulates the fractions (angle ticks) generated by the SCNT and the remainder of the TCKC. For an example of angle generation using the time-based algorithm, see Figure 20-39. 836 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Angle Functions www.ti.com Figure 20-39. Angle Generation Using Time Based Algorithm Input pin P(n-1) PCNT Period counter SCNT Step counter P(n) P(n – 1) P(n – 1) --------------------- --------------------K K ACNT Angle counter K counts Because of stepping, the final count of the SCNT will usually be unequal to the target value PCNT(n-1) and then will overflow. To compensate for this error generated by the algorithm, reset the SCNT to the remainder of the difference between (SCNT - PCNT(n-1)). To see how the SCNT and PCNT(n-1) generate angle ticks and compensate for the error due to the integer fractions, see Figure 20-40. Figure 20-40. SCNT Stepping Compensation Final Count = N0+nK P(n-1) Final Count = N1+mK SCNT N1 +4K N0 +4K N1 +3K N0 +3K N1 +2K N0 +2K N0 +K N1 +K N1=N0+nK-P(n-1) N2=N1+mK-P(n-1) N0 SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 837 Angle Functions www.ti.com 20.3.2.2.1.3 Acceleration and Deceleration Because the toothed wheel speed is inconstant, it creates discontinuities in the angle counter behavior. If the TCKC reaches zero before a new active tooth edge during a deceleration, the angle tick signal is no longer generated by the SCNT and PCNT(n-1). This halts the ACNT until the new active tooth arrives. If the TCKC is unequal to zero when the new active tooth edge arrives during an acceleration (that is, the falling edge on the toothed wheel input in the example below), the rest of the tick counter increments the ACNT. For an example of the ACNT during acceleration and deceleration, see Figure 20-41. Figure 20-41. ACNT During Acceleration and Deceleration Toothed Wheel Toothed Wheel n ACNT ACNT Step Width n Tick CNT Tick CNT Acceleration 0 Deceleration 20.3.2.2.1.4 End of Cycle The HWAG behaves differently during the singularity tooth period of the toothed wheel. During the singularity period, the HWAG counts three virtual teeth (that is, three times the step width is added to the ACNT) to ensure that the ACNT reaches the maximum value (that is, every angle step has been counted) before resetting it. During the singularity period, the HWAG generates angle ticks like for a normal tooth but with three times the value. To generate these angle ticks, the HWAG uses a constant period based on the previous tooth period. Because the period is based on the previous tooth period, the HWAG must recover from a deceleration or acceleration of three teeth when realizing the active edge tooth at the end of the singularity tooth. The HWAG must ensure that the singularity occurs where expected and must verify it. When the singularity tooth arrives, TCNT reaches the teeth register, sets the signal gap flag, and then keeps PCNT(n-1) until the first tooth of the next round has passed. Because of these conditions, angle ticks before the second tooth will be based on the previous singularity tooth period. The tick counter is first loaded with a normal value. When the counter reaches zero, it is reloaded once with twice the step width value if the criteria flag is not set. PCNT(n) continues to be incremented and to check the criteria with PCNT(n-1). For more information on gap verification, see Section 20.3.2.2.4. The SCNT continues to generate angle ticks until the tick counter reaches zero the second time. The criteria flag validates the tooth in order to reset the counters. For an example of how the criteria flag validates the tooth to reset the counters, see Figure 20-42. When the tooth active edge occurs, the ACNT is incremented with the remainder value if the tick counter is not equal to zero. When the ACNT contains a value equals to K times the teeth register, the PCNT, the TCNT and the ACNT are reset to begin a new revolution. 838 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Angle Functions www.ti.com Figure 20-42. Singularity Check, ACNT Reset and Timing Associated 55 56 57 0 Toothed wheel T3 > 2 x T2 T1 Period counter T2 T4 T3 3 1 Gap flag 2 Criteria flag 4 Tick counter P(n-1) T1 T2 T4 5 ACNT 1 When TCNT = teeth register, the Gap flag is raised 2 Tick CNT reloads automatically with 2x the step-width because the Gap flag = ’1’ 3 If PCNT ( n ) > 2 x PCNT ( n-1 ) and the Gap flag = ’1’ then the Criteria flag is raised 4 The tick counter is not reloaded because the Criteria flag is raised 5 The Gap flag and tooth active edge reset, followed by ACNT SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 839 Angle Functions www.ti.com 20.3.2.2.2 Angle Zero Initialization Before any angle operation, initialize the HWAG and then initialize the angle zero as the singularity tooth. To initialize the angle zero as the singularity tooth, the HWAG can send an interrupt at each new tooth to help the software detect the first tooth if the interrupt is set. This allows you to decide which algorithm to apply to detect the zero degree tooth (by enabling the corresponding interrupt, you can also use the wired criteria). When researching which algorithm to apply, the counters ACNT and TCNT are frozen and must be initialized to their start values. The ACNT value is equal to T times the step value (T is the tooth where the start will take effect and the initial value of the tooth counter). The counters PCNT(n) and PCNT(n-1) contain the current period and the previous period respectively. These counters allow you to set a detection criteria. When the application software sets the start bit, the software unfreezes the ACNT and TCNT counters. The counters count from the preloaded values at the next tooth active edge. The ACNT is preloaded with the value of 2 teeth and started synchronously with the next active edge of the toothed wheel. For an example of the HWAG start sequence, see Figure 20-43. Figure 20-43. Example of HWAG Start Sequence TCNT Toothed wheel #0 #0 #0 #1 #2 Start bit ACNT counter 2 x Step Width Angle Tick Synchronization time 840 High-End Timer (N2HET) Module RUN time SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Angle Functions www.ti.com Figure 20-44 is an example of a singularity research initializing the HWAG at the second tooth to start synchronously with the third tooth. The HWAG angle value register (HWAACNT) contains 1024 (2 × 512) and the HWAG current teeth number register (HWATHVL) contains 2. The code is executed in a tooth interrupt subroutine in code using the PCNT(n-2) > PCNT (n-3) + PCNT (n-1) algorithm. Figure 20-44. Code 20.3.2.2.3 Stopping the HWAG The HWAG starts synchronously with the active edge of the toothed wheel, but stops when the start (STRT) bit in the HWAG global control register 2 (HWAGCR2) is reset. Within a tooth, the HWAG can be stopped and parameters can be changed (that is, step width, angle counter, and so on) If this happens, the restart will take effect on the next active tooth edge. NOTE: When stopping the HWAG, stop the angle increment delivered to the NHET and set it to zero. Reload the NHET counter with the same value of the angle counter (± corrections), if restarting the HWAG. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 841 Angle Functions www.ti.com 20.3.2.2.4 Gap Verification After the CPU sets the synchronization and puts the HWAG into RUN time (that is, the start bit is set), the tooth counter counts until reaching the teeth register (the number of real teeth of a full wheel revolution). When the tooth counter reaches the teeth register, the gap flag signal is set. For more information on the end of the cycle, see Section 20.3.2.2.1.4. When the gap flag signal is set, it allows the HWAG to verify if the singularity is in the correct position (last tooth). The module then applies the PCNT(n) > 2 x PCNT(n-1) criteria by comparing PCNT(n) and PCNT(n-1) with one bit left shifted. If the criteria does not match when the tooth arrives, then the HWAG sends an interrupt to the CPU and does not reset the ACNT counter. The application software must recover from such an interrupt to keep the HWAG operating optimally. For an example of gap verification criteria for a 60-2 toothed wheel, see Figure 20-45. Figure 20-45. Gap Verification Criteria For a 60-2 Toothed Wheel Toothed wheel 55 56 T1 T2 57 T3 0 T4 Period counter T3 > 2 x T2 If the hardware criteria is not enabled, you must set the angle reset (ARST) bit in the HWAG global control register 2 (HWAGCR2) to validate the singularity. The HWAGCR2 register must validate the singularity before the active edge of the singularity tooth. If the HWAGCR2 register fails to validate the singularity, the HWAG generates an interrupt and does not clear the ACNT counter when the tooth edge occurs. NOTE: For a 60-2 toothed wheel, set the ARST flag after the reload of the tick counter( when PCNT(n) = PCNT(n-1)). By verifying the criteria, the application software can set the ARST bit after this point. The CPU can read the PCNT counter and make a custom criteria set the ARST bit on time for the HWAG. The application software can use the gap flag interrupt to find the singularity tooth. Alternately, the CPU can verify the validity of the singularity in the second tooth with a more accurate criteria by using the HWAG previous tooth period value register (HWAPCNT1). 842 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Angle Functions www.ti.com 20.3.2.2.4.1 Use of the ARST Bit In Case of a Toothed Wheel Without Singularity If a toothed wheel has no singularity (that is, no missing teeth), the ACNT must be reset when it reaches the angle zero point. To reset the ACNT when it reaches the angle zero point, set the ARST bit to 1. Setting the ARST bit before the reload of the tick counter will cause the HWAG to fail to reload the tick counter. The HWAG will act like a normal tooth but the next active edge on the toothed wheel input will reset the ACNT and TCNT and clear the ARST bit. For an example of using the ARST bit in a toothed wheel without singularity, see Figure 20-46. Figure 20-46. Using the ARST Bit in a Toothed Wheel Without Singularity 55 56 57 0 1 Toothed wheel Gap flag ARST Tick counter ACNT SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 843 Angle Functions www.ti.com 20.3.2.2.5 Input Noise Filtering The toothed wheel input comes from an analog part and is sensitive to external noise. Due to this sensitivity, the input needs to be filtered because of glitches in the signal. The HWAG digitally filters the toothed wheel input signal before it is used inside the core. The filter blocks the signal which negates the effect inside the HWAG. The HWAG provides two filter registers that filter the same way. The filters validate the input signal after n angle ticks. The n angle ticks are like X% of the tick counter. The value of the remaining percentage of the tick counter (1- X%) need to be set because the tick counter is a down counter. Calculate the value to put into the filter registers from the step width value (or angle ticks value per tooth). The toothed wheel input is like a low pass filter with a cut-off frequency that functions like a toothed-wheel speed, but without acceleration and decelerations side effects. For an example of a windowing filter for a toothed wheel input on a falling active edge, see Figure 20-47. NOTE: At any time, the CPU can modify the filter values to fine tune with the application. Figure 20-47. Windowing Filter for Toothed Wheel Input on Falling Active Edge Toothed Input X% X% Filter Output glitch during the window glitch after the window To calculate this number: Step Width × (1 – X%) = Filter Register Value If the step width value is equal to 512 and you want to filter 75% of the tooth, calculate the filter register as follows: 512 × (1 – 0.75) = 128 When the tick counter reaches the filter register value, the toothed wheel input is unblocked. 844 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Angle Functions www.ti.com 20.3.2.2.5.1 Filter During Singularity Tooth During the singularity tooth, the filter acts differently than during a normal tooth. The filter releases the input for a normal tooth. When the tick counter is reloaded, a second filter value is applied to the toothed wheel input. For an example of filtering during a singularity tooth, see Figure 20-48. Figure 20-48. Filtering During Singularity Tooth Toothed wheel 55 56 57 0 1 X% X% Filter Filter 1 X% X% X% Filter 2 Y% The second filter value is set using the same equation as the first filter with the step width multiplied by 3. To calculate this number: (3 × Step Width) × (1 – Y%) = Second Filter Register Value (30) If the step width value is equal to 512 and you want 70% of singularity tooth period to be filtered, calculate the filter register value as follows: 3 × 512 × (1 – 0.70) = 460 20.3.2.2.6 HWAG Interrupts When conditions are set, the HWAG interrupts are generated. When the interrupt condition is true, the corresponding flag is set in the HWAG interrupt flag register (HWAFLG). If the corresponding enable bit in the HWAG interrupt enable set register (HWAENASET) is also set, an interrupt request is sent to the CPU through one of the interrupt lines, depending on the priority of the interrupt (HWAG interrupt level set register (HWALVLSET)). Because the HWAG can set interruptions, the CPU must determine which source created the interrupt request and then execute the interrupt service routine. The CPU reads the offset register (HWAOFFx) that gives the number of the source. If the CPU reads the offset register, it will automatically clear the source flag that created the request. NOTE: If the corresponding enable bit is not set, a read in the offset register will not clear a flag. To set the bit, write a 1 in the corresponding bit within the HWAG interrupt flag register (HWAFLG). The HWAG generates eight different interrupts: • 0 = Overflow period • 1 = Singularity not found • 2 = Tooth interrupt • 3 = ACNT overflow • 4 = PCNT(n) > 2 × PCNT (n-1) during normal tooth • 5 = Bad active edge tooth • 6 = Gap flag • 7 = Angle increment overflow SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 845 Angle Functions www.ti.com For more information on these interrupts, see Table 20-14. Each interrupt source is associated with a low or high priority. When one or more interrupts with the same priority occur, a fixed priority determines the offset vector if the corresponding enable bits are set. The HWAG generates two interrupt request signals for the central interrupt module (CIM). For information on servicing interrupts, see Figure 20-49. For a list offset values, see Table 20-13. Table 20-13. HWAG Interrupt Sources and Offset Values Source Number Offset Value 0 1 1 2 : : 7 8 Figure 20-49. HWAG Interrupt Block Diagram OVRF Period Flag High Priority Interrupt Enable Interrupt Priority Sign. Not Found Low Priority Tooth Interrupt ACNT OVRF Criteria Found Bad active edge tooth Gap flag Angle Inc. OVRF OFFSET A OFFSET B 846 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Angle Functions www.ti.com Table 20-14. HWAG Interrupt Descriptions Interrupt Names Overflow period Singularity not found Interrupt Descriptions Occurs when the PCNT (n) counter reaches the maximum value. Can occur if the toothed wheel input remains stable. May indicate failure of an engine stall or a toothed wheel sensor. When the TCNT counter sets the gap flag, the HWAG waits for the criteria flag to raise before the toothed wheel active edge. If the toothed wheel active edge occurs before the criteria flag, the HWAG raises the singularity not found interrupt flag. New edge tooth This interrupt can sync or let you control the tick generation. This interrupt indicates the new active edge tooth. This interrupt could be filtered or unfiltered (Bit FIL in control register). Angle counter (ACNT) overflow This interrupt occurs when the singularity is unable to be found. The angle counter (ACNT) continues until overflow. Singularity found during normal tooth This interrupt indicates that the period of the current tooth is at least two times longer than the previous one when the HWAG expects a normal tooth. This interrupt can detect the singularity without bit manipulation by the CPU. Bad active edge tooth This interrupt indicates that an active edge has occurred before the end of the filtering (toothed wheel input blocked) but the HWAG remains inactive internally. This interrupt can detect glitches on the toothed wheel input. Gap flag When TCNT reaches the teeth register and the HWAG raises the gap flag , This interrupt is set when the gap flag is raised by the HWAG, Angle increment overflow This interrupt indicates that the number of the angle increment is more than 15 since the last resolution tick. This interrupt can prevent any discrepancies between the NHET and the HWAG. NOTE: Before enabling any interruption, clear the HWAG interrupt flag register (HWAFLG) to ensure that any interrupts have finished. If interrupts are pending, the HWAG could generate an interrupt based on an unrealistic event. 20.3.2.3 Emulation Because the HWAG is designed to synchronize with a real-time environment, the HWAG counters continue during emulation. When the CPU is frozen, the HWAG continues to run and update registers. Only the offset registers remain uncleared when entering debug mode. During debug mode, interrupts can occur and will wait until the CPU enters run mode again. If interrupts occur, they could affect synchronization with the toothed wheel SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 847 Angle Functions www.ti.com 20.3.2.4 Hardware Angle Generator and High-End Timer In the engine management application, the HWAG is usually connected to one or more high-end timers. This connection allows you to perform angle compare and angle/time compare. For an example of the hardware angle generator/high-end timer interface, see Figure 20-50. Figure 20-50. Hardware Angle Generator/High End Timer Interface HWAG Toothed wheel B U S HWAG core To CPU I / F HET Interface Angle increment Resolution HET 20.3.2.4.1 Signal Description To perform a resynchronization, the HWAG interface provides to the NHET at every resolution clock an angle increment value that represents how much the angle counter of the HWAG has been incremented since the last NHET resolution clock. For an example of the angle count within the HWAG, see Figure 2051. Figure 20-51. Angle Count Within the HWAG at Resolution Clock Angle count 10 11 12 HET res. Angle increment 848 1 1 0 High-End Timer (N2HET) Module 1 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Angle Functions www.ti.com When the engine speed increases, the angle count can increment by more than one in a NHET resolution but the HWAG will continue to provide the angle increment value at every resolution.. The NHET can then implement its own angle counter (using a CNT instruction in angle mode) which will be incremented once per resolution by the value given by the angle increment. For an example of an angle count within the NHET with increments, see Figure 20-52. Figure 20-52. Angle Count Within the NHET With Increments Angle counter 9 10 11 12 13 14 15 16 HET Res. Angle increment 3 HET counter 6 4 9 13 CNT position in the loop 20.3.2.4.2 NHET Operation on Angle Functions (ACMP, CNT) 20.3.2.4.2.1 State of the Art Because the angle value can be increased by more than one, the compare value could be in-between the old angle value and the new angle value of the NHET angle counter (where new angle value = old angle value + angle increment). To perform an angle compare that ensures not to miss a compare value, the NHET provides the ACMP instruction. For an example of a compare without ACMP instruction, see Figure 20-53. Figure 20-53. Compare Without ACMP Instruction HET Res. Angle increment HET counter 3 6 Compare value 4 9 13 10 When the HET counter passes from 9 to 13, the equality compare can not match the compare value 10. Consequently, the angle position is missed! SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 849 Angle Functions www.ti.com 20.3.2.4.2.2 ACMP Instruction Advantage The ACMP instruction is more than an equality compare. ACMP instruction performs an in-between comparison (old angle value < compare value ≤ new angle value) to match the position of the toothed wheel. This instruction, where an equality compare executes every resolution, may miss a compare match. For an example of ACMP compare within the NHET, see Figure 20-54. Figure 20-54. Example of ACMP Compare Within the NHET HET Res. Angle increment HET counter 4 9 13 CNT Compare value 3 16 ACMP 10 Associated Pin With the ACMP instruction, the compare that is performed will be: 9 < 10 £ 13 With the ACMP instruction, the compare is: 9 < 10 ≤ 13 NOTE: To avoid multiple matches, the ACMP only matches during a single resolution. Performing the following equations at the same time implements this compare: CMP > NHET angle counter – Angle increment CMP ≤ NHET angle counter 850 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Angle Functions www.ti.com 20.3.2.4.3 NHET Interface 20.3.2.4.3.1 Input Signal Selection The input pin of the toothed-wheel signal is software selectable. In previous generations of NHET/HWAG, this was fixed to HET[2]. On this device, the input pin is programmable to provide more flexibility for the system implementation. However, the implementation is done in a way to be backward compatible. A separate register, HWAG pin select register (HWAPINSEL), is implemented to allow this selection functionality. The HWAPINSEL register should be programmed before the HWAG is turned on. The default selection will be HET[2] (PINSEL = 2h) after reset. The signals will be derived from the input buffer of each pin. This will allow configuring the pin as an output and measure back the output signal with the HWAG. You can change the HWAPINSEL register at any time, but the proper functionality of the HWAG is not assured if the selection is changed while the HWAG is already operational. It is recommended that the input selection is done before the STRT bit in the HWAG global control register 2 (HWAGCR2)) is programmed to 1. 20.3.2.4.3.2 HWAG to NHET Interface The NHET interface is a 11-bit counter sampled by the NHET and reset by the NHET resolution. The counter contains the value of ACNT incremented during the last resolution (see Section 20.3.2.4.1). For the NHET interface block diagram, see Figure 20-55. Figure 20-55. NHET Interface Block Diagram HET Res. counter ACNT Inc. + 11 bits Angle Increment register Angle Tick 4 bits Angle increment [3:0] When the ACNT register is reset to zero, the angle increment register is not reset. The NHET software checks if its own angle register is higher than 360° and either clears it or continues to 720°. If ACNT is reset within the HWAG, the angle increment register gives the NHET the number of angle ticks from the last resolution. During a strong acceleration after a tooth active edge, the number of angle ticks can exceed 15. If the number of ticks exceeds 15, the HWAG delivers to the NHET several angle increments at 15. This allow the NHET to follow without missing any angle positions from the HWAG. When the counter is below 15, the angle increment reflects the counter. When the angle increment overflows, sets to 15, and if the enable bit (bit 7 in the control register) is set, the HWAG can send an interrupt to the CPU. During a strong deceleration, the angle increment can stay null for one or more NHET resolution clocks. To minimize the error between the fly-wheel and NHET angle counter, the step width and the NHET resolution must be set to avoid any overflow of the 11-bit counter of the NHET interface. This can happen if the number of angle ticks always exceeds 15 during one resolution. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 851 Angle Functions www.ti.com 20.3.2.5 Range of Operations 20.3.2.5.1 Intrinsic HWAG Limitation The following factors limit the HWAG: • SYSCLK • PCNT counter (overflow) • Number of teeth • Angle step These factors will influence the engine speed range (RPM limitation) and the maximum accuracy of the angle steps (wheel limitation). • RPM limitation The toothed wheel speed is limited by the period counter (PCNT) and the angle step for a given SYSCLK. RPM minimum is related to PCNT overflow and SYSCLK. Maximum PCNT value × SYSCLK = Maximum tooth period 60 RPM TeethNumber u ToothPeriod PCNT is a 24-bit counter based on SYSCLK. RPM maximum is related to the angle step and SYSCLK. Minimum tooth period > Step Width × SYSCLK The angle ticks period could not be inferior to the SYSCLK. Example: The toothed wheel is a 60-2, SYSCLK is 50 Mhz (20 ns), and step width is 512: RPM minimum ≥ 16 777 215 × 20 ns = 335.5443 ms ≥ ~3 RPM RPM maximum ≥ 512 × 20 ns = 10.24 µs ≥ 97 656 RPM NOTE: With a 60-2 toothed wheel, the tooth period is the reverse of the RPM number. • 852 Wheel Limitation The HWAG is limited by the number of teeth and the increments in a revolution. The maximum number of teeth is 256. This limits the number of increments per revolution to 512 steps × 256 teeth = 131 072 angle increments. High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Angle Functions www.ti.com 20.3.2.5.2 HWAG-NHET Limitation The maximum angle accuracy is a function of the angle step and the NHET loop resolution. The increment per resolution limits the interface between the HWAG and the NHET. The maximum angle increment per NHET resolution is 15 increments/NHET_res, which is an angular speed. If the angle increment overflows 15 during a constant speed, the system is diverging. In the HWAG, the angular speed is given by the relation: Step Width Angular Speed Minimum ToothPeriod To ensure that the values are correct, they must satisfy the following equation: MaxHETresolution u Step Width 15 MinimumToothPeriod Then, MaxHETresolution 15 u MinToothPeriod Step Width Example: For a 60-2 at 10000 RPM, the tooth period is 100 µs and the step width is 512: 15 u 100 MaxHET resolution 2.93 Ps 512 SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 853 Angle Functions www.ti.com 20.3.2.6 Tricks 20.3.2.6.1 Using HWAG Previous Tooth Period Value Register (HWAPCNT1) The HWAG previous tooth period value register (HWAPCNT1) can compensate for errors because of acceleration or deceleration. If there is a variation of the toothed wheel, the ACNT register will have a discontinuity . For an explanation of acceleration and deceleration, see Section 20.3.2.2.1.3. Avoid this discontinuity by giving the HWAPCNT1 register a smaller or larger value, depending of the variation. When HWAPCNT1 is modified, the angle tick period is also be modified which causes faster or slower tick generation and decreases the discontinuity on the next falling edge. Because of this compensation, the NHET interface will not overflow and fewer errors will occur on the NHET angle counter in case of strong acceleration. NOTE: Reading the angle increment will give the application the amount of the acceleration. However, adding the value directly to the NHET counter will result in a discontinuity in the compare sequence. Particularly angle based compare could be missed. 20.3.2.6.2 Using the Singularity During Normal Tooth Interrupt This interrupt detects if the HWAG is desynchronized with the toothed wheel and resynchronizes the HWAG. Because the criteria was set during a tooth other than the singularity tooth, the interrupt occurs. Because the criteria is based on PCNT > 2 × PCNT (n-1), this interrupt is likely due to the singularity. The following steps explain how to resynchronize the HWAG with this interrupt: 1. Stop the HWAG 2. Reset ACNT 3. Reset tooth counter 4. Reset interrupt 5. Set start bit. The HWAG will restart on the tooth zero. 854 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com 20.4 N2HET Control Registers Table 20-15 summarizes all the N2HET registers. The base address for the control registers is FFF7 B800h for N2HET1 and FFF7 B900h for N2HET2. Table 20-15. N2HET Registers Offset Acronym Register Description 00h HETGCR Global Configuration Register Section 20.4.1 Section 04h HETPFR Prescale Factor Register Section 20.4.2 08h HETADDR NHET Current Address Register Section 20.4.3 0Ch HETOFF1 Offset Index Priority Level 1 Register Section 20.4.4 10h HETOFF2 Offset Index Priority Level 2 Register Section 20.4.5 14h HETINTENAS Interrupt Enable Set Register Section 20.4.6 18h HETINTENAC Interrupt Enable Clear Register Section 20.4.7 1Ch HETEXC1 Exception Control Register 1 Section 20.4.8 20h HETEXC2 Exception Control Register 2 Section 20.4.9 24h HETPRY Interrupt Priority Register Section 20.4.10 28h HETFLG Interrupt Flag Register Section 20.4.11 2Ch HETAND AND Share Control Register Section 20.4.12 34h HETHRSH HR Share Control Register Section 20.4.13 38h HETXOR HR XOR-Share Control Register Section 20.4.14 3Ch HETREQENS Request Enable Set Register Section 20.4.15 40h HETREQENC Request Enable Clear Register Section 20.4.16 44h HETREQDS Request Destination Select Register Section 20.4.17 4Ch HETDIR NHET Direction Register Section 20.4.18 50h HETDIN NHET Data Input Register Section 20.4.19 54h HETDOUT NHET Data Output Register Section 20.4.20 58h HETDSET NHET Data Set Register Section 20.4.21 5Ch HETDCLR NHET Data Clear Register Section 20.4.22 60h HETPDR NHET Open Drain Register Section 20.4.23 64h HETPULDIS NHET Pull Disable Register Section 20.4.24 68h HETPSL NHET Pull Select Register Section 20.4.25 74h HETPCR Parity Control Register Section 20.4.26 78h HETPAR Parity Address Register Section 20.4.27 7Ch HETPPR Parity Pin Register Section 20.4.28 80h HETSFPRLD Suppression Filter Preload Register Section 20.4.29 84h HETSFENA Suppression Filter Enable Register Section 20.4.30 8Ch HETLBPSEL Loop Back Pair Select Register Section 20.4.31 90h HETLBPDIR Loop Back Pair Direction Register Section 20.4.32 94h HETPINDIS NHET Pin Disable Register Section 20.4.33 SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 855 N2HET Control Registers www.ti.com 20.4.1 Global Configuration Register (HETGCR) N2HET1: offset = FFF7 B800h; N2HET2: offset = FFF7 B900h Figure 20-56. Global Configuration Register (HETGCR) [offset = 00h] 31 25 23 22 21 24 Reserved HET_PIN_ENA R-0 R/W-1 18 17 16 Reserved MP 20 Reserved 19 PPF IS CMS R-0 R/W-0 R-0 R/W-0 R/W-0 15 R/W-0 1 0 Reserved TO R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-16. Global Configuration Register (HETGCR) Field Descriptions Bit 31-25 24 Field Reserved Value 0 HET_PIN_ENA Description Reads return 0. Writes have no effect. Enables the output buffers of the pin structures depending on the value of nDIS and DIR.x when PINDIS.x is set. Note: This bit will automatically get cleared when nDIS pin (input port) value is 0. 23 22-21 Reserved 0 No affect on the pin output buffer structure. 1 Enables the pin output buffer structure when DIR = output, PINDIS.x is set and nDIS = 1. 0 Reads return 0. Writes have no effect. MP Master Priority The NHET can prioritize master accesses to N2HET RAM between the HET Transfer Unit and another arbiter, which outputs the access of one of the remaining masters. The MP bits allow the following selections: 20-19 18 Reserved 0 The HTU has lower priority to access the N2HET RAM than the arbiter output. 1h The HTU has higher priority to access the N2HET RAM than the arbiter output. 2h The HTU and the arbiter output use a round robin scheme to access the N2HET RAM. 3h Reserved 0 Reads return 0. Writes have no effect. PPF Protect Program Fields The PPF bit together with the Turn On/Off bit (TO) allows to protect the program fields of all instructions in N2HET RAM. When TO = 0: 0 All masters can read and write the program fields. 1 All masters can read and write the program fields. When TO = 1: 17 0 All masters can read and write the program fields. 1 The program fields are readable but not writable for all masters, which could access the N2HET RAM. Possible masters are the CPU, HTU, DMA and a secondary CPU (if available). Writes initiated by these masters are discarded. IS Ignore Suspend When Ignore Suspend = 0, the timer operation is stopped on suspend (the current timer instruction is completed). Timer RAM can be freely accessed during suspend. When set to 1, the suspend is ignored and the N2HET continues operating. 856 0 N2HET stops when in suspend mode. 1 N2HET ignores suspend mode and continues operation. High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com Table 20-16. Global Configuration Register (HETGCR) Field Descriptions (continued) Bit Field 16 CMS Value Description Clk_master/slave This bit is used to synchronize multi-N2HETs. If set (N2HET is master), the N2HET outputs a signal to synchronize the prescalers of the slave N2HET. By default, this bit is reset, which means a slave configuration. Note: This bit must be set to one (1) for single-N2HET configuration. 15-1 0 Reserved 0 N2HET is configured as a slave. 1 N2HET is configured as a master. 0 Reads return 0. Writes have no effect. TO Turn On/Off TO does not affect the state of the pins. You must set/reset the timer pins when they are turned off, or re-initialize the timer RAM and control registers before a reset. After a device reset, the timer is turned off by default. 0 N2HET is OFF. The timer program stops executing. Turn-off is automatically delayed until the current timer program loop is completed. Turn-off does not affect the content of the timer RAM, ALU registers, or control registers. Turn-off resets all flags. 1 N2HET is ON. The timer program execution starts synchronously to the Loop clock. In case of multiple N2HETs configuration, the slave N2HETs are waiting for the loop clock to come from the master before starting execution. Then, the timer address points automatically address 00h (corresponding to program start). SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 857 N2HET Control Registers www.ti.com 20.4.2 Prescale Factor Register (HETPFR) N2HET1: offset = FFF7 B804h; N2HET2: offset = FFF7 B904h Figure 20-57. Prescale Factor Register (HETPFR) 31 17 16 Reserved R-0 15 11 10 8 7 6 5 0 Reserved LRPFC Reserved HRPFC R-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 20-17. Prescale Factor Register (HETPFR) Field Descriptions Bit Field 31-11 Reserved 10-8 LRPFC 7-6 Reserved 5-0 HRPFC 858 Value 0 Description Reads return 0. Writes have no effect. Loop-Resolution Pre-scale Factor Code. LRPFC determines the loop-resolution prescale divide rate (lr). 0 /1 1h /2 2h /4 3h /8 4h /16 5h /32 6h /64 7h /128 0 Reads return 0. Writes have no effect. High-Resolution Pre-scale Factor Code. HRPFC determines the high-resolution prescale divide rate (hr). 0 /1 1h /2 2h /3 3h /4 : : 3Dh /62 3Eh /63 3Fh /64 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com 20.4.3 N2HET Current Address Register (HETADDR) N2HET1: offset = FFF7 B808h; N2HET2: offset = FFF7 B908h Figure 20-58. N2HET Current Address (HETADDR) 31 16 Reserved R-0 15 9 8 0 Reserved HETADDR R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 20-18. N2HET Current Address (HETADDR) Field Descriptions Bit Field Value 31-9 Reserved 0 8-0 HETADDR Description Reads return 0. Writes have no effect. N2HET Current Address Read: Returns the current N2HET program address. Write: Writes have no effect. 20.4.4 Offset Index Priority Level 1 Register (HETOFF1) N2HET1: offset = FFF7 B80Ch; N2HET2: offset = FFF7 B90Ch Figure 20-59. Offset Index Priority Level 1 Register (HETOFF1) 31 16 Reserved R-0 15 6 5 0 Reserved OFFSET1 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 20-19. Offset Index Priority Level 1 Register (HETOFF1) Field Descriptions Bit Field 31-6 Reserved 5-0 OFFSET1 Value 0 Description Reads return 0. Writes have no effect. OFFSET1 indexes the currently pending high-priority interrupt. Offset values and sources are listed in Table 20-20. Read: Read of these bits determines the pending N2HET interrupt. Write: Writes have no effect. Note: In any read operation mode, the corresponding flag (in the HETFLG) is also cleared. In Emulation mode the corresponding flag is not cleared. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 859 N2HET Control Registers www.ti.com Table 20-20. Interrupt Offset Encoding Format Offset Value Source No. 0 No interrupt 1 Instruction 0, 32, 64... 2 Instruction 1, 33, 65... : : 32 Instruction 31, 63, 95... 33 Program Overflow 34 APCNT Underflow 35 APCNT Overflow 20.4.5 Offset Index Priority Level 2 Register (HETOFF2) N2HET1: offset = FFF7 B810h; N2HET2: offset = FFF7 B910h Figure 20-60. Offset Index Priority Level 2 Register (HETOFF2) 31 16 Reserved R-0 15 6 5 0 Reserved OFFSET2 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 20-21. Offset Index Priority Level 2 Register (HETOFF2) Field Descriptions Bit Field 31-6 Reserved 5-0 OFFSET2 Value 0 Description Reads return 0. Writes have no effect. OFFSET2 indexes the currently pending low-priority interrupt. Offset values and sources are listed in Table 20-20. Read: Read of these bits determines the pending N2HET interrupt. Write: Writes have no effect. Note: In any read operation mode, the corresponding flag (in the HETFLG) is also cleared. In Emulation mode, the corresponding flag is not cleared. 860 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com 20.4.6 Interrupt Enable Set Register (HETINTENAS) N2HET1: offset = FFF7 B814h; N2HET2: offset = FFF7 B914h Figure 20-61. Interrupt Enable Set Register (HETINTENAS) 31 16 HETINTENAS R/W-0 15 0 HETINTENAS R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 20-22. Interrupt Enable Set Register (HETINTENAS) Field Descriptions Bit 31-0 Field Value HETINTENAS[n] Description Interrupt Enable Set bits. HETINTENAS is readable and writable in any operation mode. Writing a 1 to bit x enables the interrupts of the N2HET instructions at N2HET addresses x+0, x+32, x+64, and so on. Generating an interrupt requires to set bit x in HETINTENAS and to enable the interrupt bit in one of the instructions at addresses x+0, x+32, x+64, and so on. To avoid ambiguity, only one of the instructions x+0, x+32, x+64, and so on, should have the interrupt enable bit (inside the instruction) set. Writing a 0 to HETINTENAS has no effect. When reading from HETINTENAS bit x gives the information, if N2HET instructions x+0, x+32, x+64, and so on, have the interrupt enabled or disabled. 0 Read: Interrupt is disabled. Write: Writes have no effect. 1 Read: Interrupt is enabled. Write: Interrupt is enabled. 20.4.7 Interrupt Enable Clear Register (HETINTENAC) N2HET1: offset = FFF7 B818h; N2HET2: offset = FFF7 B918h Figure 20-62. Interrupt Enable Clear (HETINTENAC) 31 16 HETINTENAC R/W-0 15 0 HETINTENAC R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-23. NHET Interrupt Enable Clear (HETINTENAC) Field Descriptions Bit 31-0 Field Value HETINTENAC[n] Description Interrupt Enable Clear bits. HETINTENAC is readable and writable in any operation mode. Writing a 1 to bit x disables the interrupts of the N2HET instructions at N2HET addresses x+0, x+32, x+64, and so on. (See also description in Table 20-22). Writing a 0 to HETINTENAC has no effect. When reading from HETINTENAC bit x gives the information, if N2HET instructions x+0, x+32, x+64, and so on, have the interrupt enabled or disabled. 0 Read: Interrupt is disabled. Write: Writes have no effect. 1 Read: Interrupt is enabled. Write: Interrupt is disabled. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 861 N2HET Control Registers www.ti.com 20.4.8 Exception Control Register 1 (HETEXC1) N2HET1: offset = FFF7 B81Ch; N2HET2: offset = FFF7 B91Ch Figure 20-63. Exception Control Register (HETEXC1) 31 25 24 Reserved APCNT_OVRFL_ ENA R-0 R/W-0 23 17 16 Reserved APCNT_UNRFL_ ENA R-0 R/W-0 15 9 8 Reserved PRGM_OVRFL_ ENA R-0 R/W-0 7 2 1 0 Reserved 3 APCNT_OVRFL_ PRY APCNT_UNRFL_ PRY PRGM_OVRFL_ PRY R-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-24. Exception Control Register 1 (HETEXC1) Field Descriptions Bit Field 31-17 Reserved 24 15-9 8 7-3 2 1 0 862 0 APCNT_OVRFL_ENA 23-17 Reserved 16 Value Description APCNT Overflow Enable 0 APCNT overflow exception is not enabled. 1 Enables the APCNT overflow exception. 0 Reads return 0. Writes have no effect. APCNT_UNRFL_ENA Reserved APCNT Underflow Enable 0 APCNT underflow exception is not enabled. 1 Enables the APCNT underflow exception. 0 Reads return 0. Writes have no effect. PRGM_OVRFL_ENA Reserved Reads return 0. Writes have no effect. Program Overflow Enable 0 The program overflow exception is not enabled. 1 Enables the program overflow exception. 0 Reads return 0. Writes have no effect. APCNT_OVRFL_PRY APCNT Overflow Exception Interrupt Priority 0 Exception priority level 2. 1 Exception priority level 1. APCNT_UNRFL_PRY APCNT Underflow Exception Interrupt Priority 0 Exception priority level 2. 1 Exception priority level 1. PRGM_OVRFL_PRY ProgramOverflow Exception Interrupt Priority 0 Exception priority level 2. 1 Exception priority level 1. High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com 20.4.9 Exception Control Register 2 (HETEXC2) N2HET1: offset = FFF7 B820h; N2HET2: offset = FFF7 B920h Figure 20-64. Exception Control Register 2 (HETEXC2) 31 16 Reserved R-0 15 9 8 Reserved DEBUG_STATUS_ FLAG R-0 R/WC-0 7 3 2 1 0 Reserved APCNT_OVRFL_ FLAG APCNT_UNRFL_ FLAG PRGM_OVRFL_ FLAG R-0 R/W1C-0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset Table 20-25. Exception Control Register 2 (HETEXC2) Field Descriptions Bit 31-9 8 Field Reserved Value Description 0 DEBUG_STATUS_FLAG Reads return 0. Writes have no effect. Debug Status Flag. This flag is set when N2HET has stopped at a breakpoint. Also generates a debug request to halt the ARM CPU. 0 Read: N2HET is either running, or stopped, flag cleared but not yet restarted. Write: No effect. 1 Read: N2HET is stopped at a breakpoint. Write: Clears the bit. To restart N2HET clear this bit and then restart the ARM CPU. The N2HET and ARM CPU will start synchronously. 7-3 2 Reserved 0 APCNT_OVRFL_FLAG Reads return 0. Writes have no effect. APCNT Overflow Flag 0 Read: Exception has not occurred since the flag was cleared. Write: No effect. 1 Read: Exception has occurred since the flag was cleared. Write: Clears the bit. 1 APCNT_UNDFL_FLAG APCNT Underflow Flag 0 Read: Exception has not occurred since the flag was cleared. Write: No effect. 1 Read: Exception has occurred since the flag was cleared. Write: Clears the bit. 0 PRGM_OVERFL_FLAG Program Overflow Flag 0 Read: Exception has not occurred since the flag was cleared. Write: No effect. 1 Read: Exception has occurred since the flag was cleared Write: Clears the bit. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 863 N2HET Control Registers www.ti.com 20.4.10 Interrupt Priority Register (HETPRY) N2HET1: offset = FFF7 B824h; N2HET2: offset = FFF7 B924h Figure 20-65. Interrupt Priority Register (HETPRY) 31 16 HETPRY R/WP-0 15 0 HETPRY R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 20-26. Interrupt Priority Register (HETPRY) Field Descriptions Bit 31-0 Field Value HETPRY[n] Description HET Interrupt Priority Level Bits Used to select the priority of any of the 32 potential interrupt sources coming from N2HET instructions. 0 Interrupt priority level 2 (low level). 1 Interrupt priority level 1 (high level). 20.4.11 Interrupt Flag Register (HETFLG) N2HET1: offset = FFF7 B828h; N2HET2: offset = FFF7 B928h Figure 20-66. Interrupt Flag Register (HETFLG) 31 16 HETFLAG R/W1C-0 15 0 HETFLAG R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset; X = Unknown Table 20-27. Interrupt Flag Register (HETFLG) Field Descriptions Bit 31-0 Field Value HETFLAG[n] Description Interrupt Flag Register Bits Bit x is set when an interrupt condition has occurred on one of the instructions x+0, x+32, x+64, and so on. The flag position x (in the register) is decoded from the five LSBs of the instruction address that generated the interrupt. The hardware will set the flag only if the interrupt enable bit (in the corresponding instruction) is set. The flag will be set even if bit x in the Interrupt Enable Set Register (HETINTENAS) is not enabled. Enabling bit x in HETINTENAS is required if an interrupt should be generated. Clearing the flag can be done by writing a one to the flag. Alternatively reading the corresponding Offset Index Priority Level 1 Register (HETOFF1) or Offset Index Priority Level 2 Register (HETOFF2) will automatically clear the flag. 0 Read: No N2HET instruction with an interrupt has been reached since the flag was cleared. Write: No effect. 1 Read: A N2HET instruction with an interrupt has been reached since the flag was cleared. Write: Clears the bit. 864 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com 20.4.12 AND Share Control Register (HETAND) N2HET1: offset = FFF7 B82Ch; N2HET2: offset = FFF7 B92Ch Figure 20-67. AND Share Control Register (HETAND) 31 16 Reserved R-0 15 14 13 12 11 10 9 8 AND SHARE31/30 AND SHARE29/28 AND SHARE27/26 AND SHARE25/24 AND SHARE23/22 AND SHARE21/20 AND SHARE19/18 AND SHARE17/16 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7 6 5 4 3 2 1 0 AND SHARE15/14 AND SHARE13/12 AND SHARE11/10 AND SHARE9/8 AND SHARE7/6 AND SHARE5/4 AND SHARE3/2 AND SHARE1/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-28. AND Share Control Register (HETAND) Field Descriptions Bit Field 31-16 Reserved 15-0 ANDSHARE n+1 / n Value 0 Description Reads return 0. Writes have no effect. AND Share Enable Enable the AND sharing of the same pin for two HR structures. For example, if bit ANDSHARE1/0 is set, the pin HET[0] will then be commanded by a logical AND of both HR structures 0 and 1. Note: If HR AND SHARE bits are used, pins not connected to HR structures (the odd number pin in each pair) can be accessed as general inputs/outputs. 0 HR Output of HET[n+1] and HET[n] are not AND shared. 1 HR Output of HET[n+1] and HET[n] are AND shared onto pin HET[n]. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 865 N2HET Control Registers www.ti.com 20.4.13 HR Share Control Register (HETHRSH) N2HET1: offset = FFF7 B834h; N2HET2: offset = FFF7 B934h Figure 20-68. HR Share Control Register (HETHRSH) 31 16 Reserved R-0 15 14 13 12 11 10 9 8 HR SHARE31/30 HR SHARE29/28 HR SHARE27/26 HR SHARE25/24 HR SHARE23/22 HR SHARE21/20 HR SHARE19/18 HR SHARE17/16 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7 6 5 4 3 2 1 0 HR SHARE15/14 HR SHARE13/12 HR SHARE11/10 HR SHARE9/8 HR SHARE7/6 HR SHARE5/4 HR SHARE3/2 HR SHARE1/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-29. HR Share Control Register (HETHRSH) Field Descriptions Bit Field 31-16 Reserved 15-0 HRSHARE n+1 / n Value 0 Description Reads return 0. Writes have no effect. HR Share Bits Enables the share of the same pin for two HR structures. For example, if bit HRSHARE1/0 is set, the pin HET[0] will then be connected to both HR input structures 0 and 1. Note: If HR share bits are used, pins not connected to HR structures (the odd number pin in each pair) can be accessed as general inputs/outputs. 866 0 HR Input of HET[n+1] and HET[n] are not shared. 1 HR Input of HET[n+1] and HET[n] are shared; both measure pin HET[n]. High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com 20.4.14 XOR Share Control Register (HETXOR) N2HET1: offset = FFF7 B838h; N2HET2: offset = FFF7 B938h Figure 20-69. XOR Share Control Register (HETXOR) 31 16 Reserved R-0 15 14 13 12 11 10 9 8 XOR SHARE31/30 XOR SHARE29/28 XOR SHARE27/26 XOR SHARE25/24 XOR SHARE23/22 XOR SHARE21/20 XOR SHARE19/18 XOR SHARE17/16 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7 6 5 4 3 2 1 0 XOR SHARE15/14 XOR SHARE13/12 XOR SHARE11/10 XOR SHARE9/8 XOR SHARE7/6 XOR SHARE5/4 XOR SHARE3/2 XOR SHARE1/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-30. XOR Share Control Register (HETXOR) Field Descriptions Bit Field 31-16 Reserved 15-0 XORSHARE n+1 / n Value 0 Description Reads return 0. Writes have no effect. XOR Share Enable Enable the XOR-share of the same pin for two output HR structures. For example, if bit XORSHARE1/0 is set, the pin HET[0] will then be commanded by a logical XOR of both HR structures 0 and 1. Note: If XOR share bits are used, pins not connected to HR structures (the odd number pin in each pair) can be accessed as general inputs/outputs. 0 HR Output of HET[n+1] and HET[n] are not XOR shared. 1 HR Output of HET[n+1] and HET[n] are XOR shared onto pin HET[n]. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 867 N2HET Control Registers www.ti.com 20.4.15 Request Enable Set Register (HETREQENS) N2HET1: offset = FFF7 B83Ch; N2HET2: offset = FFF7 B93Ch Figure 20-70. Request Enable Set Register (HETREQENS) 31 8 Reserved R-0 7 6 5 4 3 2 1 0 REQENA7 REQENA6 REQENA5 REQENA4 REQENA3 REQENA2 REQENA1 REQENA0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-31. Request Enable Set Register (HETREQENS) Field Descriptions Bit Field 31-8 Reserved 7-0 REQENAn Value 0 Description Reads return 0. Writes have no effect. Request Enable Bits 0 Read: Returns the information that request line n is disabled. Write: Writing a 0 has no effect. 1 Read: Returns the information that request line n is enabled. Write: Writing a 1 to bit n enables the N2HET request line n. Note: The request line can trigger a DMA control packet (DMA channel), an HTU double control packet (DCP) or both simultaneously. The HETREQDS register determines to which module(s) the N2HET request line n is assigned. Note: A disabled request line does not memorize old requests. So there are no pending requests to service after enabling request line n. 20.4.16 Request Enable Clear Register (HETREQENC) N2HET1: offset = FFF7 B840h; N2HET2: offset = FFF7 B940h Figure 20-71. Request Enable Clear Register (HETREQENC) 31 8 Reserved R-0 7 6 5 4 3 2 1 0 REQDIS7 REQDIS6 REQDIS5 REQDIS4 REQDIS3 REQDIS2 REQDIS1 REQDIS0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-32. Request Enable Clear Register (HETREQENC) Field Descriptions Bit Field 31-8 Reserved 7-0 REQDISn Value 0 Description Reads return 0. Writes have no effect. Request Disable Bits 0 Read: Returns the information that request line n is disabled. Write: Writing a 0 has no effect. 1 Read: Returns the information that request line n is enabled. Write: Writing a 1 to bit n disables the N2HET request line n. 868 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com 20.4.17 Request Destination Select Register (HETREQDS) N2HET1: offset = FFF7 B844h; N2HET2: offset = FFF7 B944h Figure 20-72. Request Destination Select Register (HETREQDS) [offset = FFF7 B844h] 31 23 22 21 20 19 18 17 16 Reserved 24 TDBS7 TDBS6 TDBS5 TDBS4 TDBS3 TDBS2 TDBS1 TDBS0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15 7 6 5 4 3 2 1 0 Reserved 8 TDS7 TDS6 TDS5 TDS4 TDS3 TDS2 TDS1 TDS0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-33. Request Destination Select Register (HETREQDS) Field Descriptions Bit Field 31-24 Reserved 23-16 TDBSn 15-8 Reserved 7-0 TDSn Value 0 Description Reads return 0. Writes have no effect. HTU, DMA or Both Select Bits 0 N2HET request line n is assigned to the module specified by TDS bit n. 1 N2HET request line n is assigned to both DMA and HTU. TDS bit n is ignored in this case. 0 Reads return 0. Writes have no effect. HTU or DMA Select Bits Note: It must be ensured in the N2HET program, that one request line is triggered by only one N2HET instruction. 0 N2HET request line n is assigned to HTU (TDBS bit n is zero). 1 N2HET request line n is assigned to DMA (TDBS bit n is zero). NOTE: Please refer to the device data sheet how each of the 8 N2HET request lines are connected to these modules. See also Section 20.2.9. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 869 N2HET Control Registers www.ti.com 20.4.18 NHET Direction Register (HETDIR) N2HET1: offset = FFF7 B84Ch; N2HET2: offset = FFF7 B94Ch Figure 20-73. N2HET Direction Register (HETDIR) 31 16 HETDIR R/W-0 15 0 HETDIR R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-34. N2HET Direction Register (HETDIR) Field Descriptions Bit 31-0 Field Value HETDIR[n] Description Data direction of NHET pins 0 Pin HET[n] is an input (and its output buffer is tristated). 1 Pin HET[n] is an output. NOTE: Table 20-9 shows how the register bits of DIR, PULDIS and PULSEL are affecting the N2HET pins. 870 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com 20.4.19 N2HET Data Input Register (HETDIN) N2HET1: offset = FFF7 B850h; N2HET2: offset = FFF7 B950h Figure 20-74. N2HET Data Input Register (HETDIN) 31 16 HETDIN R-x 15 0 HETDIN R-x LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; Table 20-35. N2HET Data Input Register (HETDIN) Field Descriptions Bit 31-0 Field Value HETDIN[n] Description Data input. This bit displays the logic state of the pin. 0 Pin HET[n] is at logic low (0). 1 Pin HET[n] is at logic high (1). 20.4.20 N2HET Data Output Register (HETDOUT) N2HET1: offset = FFF7 B854h; N2HET2: offset = FFF7 B954h Figure 20-75. N2HET Data Output Register (HETDOUT) 31 16 HETDOUT R/W-0 15 0 HETDOUT R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-36. N2HET Data Output Register (HETDOUT) Field Descriptions Bit 31-0 Field Value HETDOUT[n] Description Data out write. Writes to this bit will only take effect when the pin is configured as an output. The current logic state of the pin will be displayed by this bit even when the pin state is changed by writing to HETDSET or HETDCLR. 0 Pin HET[n] is at logic low (0). 1 Pin HET[n] is at logic high (1) if the HETPDR[n] bit = 0 or the output is in high-impedance state if the HETPDR[n] bit = 1. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 871 N2HET Control Registers www.ti.com 20.4.21 NHET Data Set Register (HETDSET) N2HET1: offset = FFF7 B858h; N2HET2: offset = FFF7 B958h Figure 20-76. N2HET Data Set Register (HETDSET) 31 16 HETDSET R/WS-0 15 0 HETDSET R/WS-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 20-37. N2HET Data Set Register (HETDSET) Field Descriptions Bit 31-0 Field Value HETDSET[n] Description This register allows bits of HETDOUT to be set while avoiding the pitfalls of a read-modify-write sequence in a multitasking environment. Bits written as a logic 1 set the same bit in the HETDOUT register; while bits written as logic 0 leave the same bit in HETDOUT unchanged. Reads from this address return the value of the HETDOUT register. 0 Write: HETDOUT[n] is unchanged. 1 Write: HETDOUT[n] is set. 20.4.22 N2HET Data Clear Register (HETDCLR) N2HET1: offset = FFF7 B85Ch; N2HET2: offset = FFF7 B95Ch Figure 20-77. N2HET Data Clear Register (HETDCLR) 31 16 HETDCLR R/WC-0 15 0 HETDCLR R/WC-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 20-38. N2HET Data Clear Register (HETDCLR) Field Descriptions Bit 31-0 Field Value HETDCLR[n] Description This register allows bits of HETDOUT to be cleared while avoiding the pitfalls of a read-modify-write sequence in a multitasking environment. Bits written as a logic 1 clear the same bit in the HETDOUT register; while bits written as logic 0 leave the same bit in HETDOUT unchanged. Reads from this address return the value of the HETDOUT register. 872 0 Write: HETDOUT[n] is unchanged. 1 Write: HETDOUT[n] is cleared. High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com 20.4.23 N2HET Open Drain Register (HETPDR) Values in this register enable or disable the open drain capability of the data pins. N2HET1: offset = FFF7 B860h; N2HET2: offset = FFF7 B960h Figure 20-78. N2HET Open Drain Register (HETPDR) 31 16 HETPDR R/W-0 15 0 HETPDR R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-39. N2HET Open Drain Register (HETPDR) Field Descriptions Bit 31-0 Field Value HETPDR[n] Description Open drain control for HET[n] pins 0 The pin is configured in push/pull mode. 1 The pin is configured in open drain mode. The HETDOUT register controls the state of the output buffer: HETDOUT[n] = 0 The output buffer of pin HET[n] is driven low. HETDOUT[n] = 1 The output buffer of pin HET[n] is tristated. 20.4.24 N2HET Pull Disable Register (HETPULDIS) Values in this register enable or disable the pull-up/-down functionality of the pins. N2HET1: offset = FFF7 B864h; N2HET2: offset = FFF7 B964h Figure 20-79. N2HET Pull Disable Register (HETPULDIS) 31 16 HETPULDIS R/W-n 15 0 HETPULDIS R/W-n LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; n is device dependent, see device specific data sheet Table 20-40. N2HET Pull Disable Register (HETPULDIS) Field Descriptions Bit 31-0 Field Value HETPULDIS[n] Description Pull disable for N2HET pins 0 The pull functionality is enabled on pin HET[n]. 1 The pull functionality is disabled on pin HET[n]. NOTE: See device data sheet for which pins provide programmable pullups/pulldowns. Table 20-9 shows how the register bits of HETDIR, HETPULDIS, and HETPSL are affecting the N2HET pins. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 873 N2HET Control Registers www.ti.com 20.4.25 N2HET Pull Select Register (HETPSL) Values in this register select the pull-up or pull-down functionality of the pins. N2HET1: offset = FFF7 B868h; N2HET2: offset = FFF7 B968h Figure 20-80. N2HET Pull Select Register (HETPSL) 31 16 HETPSL R/W-0 15 0 HETPSL R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-41. N2HET Pull Select Register (HETPSL) Field Descriptions Bit 31-0 Field Value HETPSL[n] Description Pull select for NHET pins 0 The pull down functionality is enabled if corresponding bit in HETPULDIS is 0. 1 The pull up functionality is enabled if corresponding bit in HETPULDIS is 0. NOTE: See device data sheet for which pins provide programmable pullups/pulldowns. Table 20-9 shows how the register bits of HETDIR, HETPULDIS and HETPSL are affecting the N2HET pins. The information of this register is also used to define the pin states after a parity error: After a parity error all N2HET pins, which are 1. Defined as output pins in the HETDIR register 2. Not defined as open drain pins (with the HETPDR register) 3. Selected with the HETPPR register, will remain outputs, but automatically change their levels in the following way: • If the HETPSL register specifies 0 for the pin, it will switch to low level. • If the HETPSL register specifies 1 for the pin, it will switch to high level. This behavior is independent of the value, which register HETPULDIS specifies for the corresponding pin. 874 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com 20.4.26 Parity Control Register (HETPCR) N2HET1: offset = FFF7 B874h; N2HET2: offset = FFF7 B974h Figure 20-81. Parity Control Register (HETPCR) 31 16 Reserved R-0 15 9 8 7 4 3 0 Reserved TEST Reserved PARITY_ENA R-0 R/WP-0 R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 20-42. Parity Control Register (HETPCR) Field Descriptions Bit 31-9 8 Field Value Reserved 0 TEST Description Reads return 0. Writes have no effect. Test Bit. When this bit is set, the parity bits are mapped into the peripheral RAM frame to make them accessible by the CPU. 0 Read: Parity bits are not memory mapped. Write: Disable mapping. 1 Read: Parity bits are memory mapped. Write: Enable mapping. 7-4 Reserved 3-0 PARITY_ENA 0 Reads return 0. Writes have no effect. Enable/disable parity checking. This bit field enables or disables the parity check on read operations and the parity calculation on write operations. If parity checking is enabled and a parity error is detected the N2HET_UERR signal is activated. 5h Read: Parity check is disabled. Write: Disable checking. Others Read: Parity check is enabled. Write: Enable checking. NOTE: It is recommended to write Ah to enable error detection, to guard against soft errors flipping PARITY_ENA to a disable state. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 875 N2HET Control Registers www.ti.com 20.4.27 Parity Address Register (HETPAR) N2HET1: offset = FFF7 B878h; N2HET2: offset = FFF7 B978h Figure 20-82. Parity Address Register (HETPAR) 31 16 Reserved R-0 15 13 12 2 1 0 Reserved PAOFF Reserved R-0 R-X R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; X = Value unchanged after reset Table 20-43. Parity Address Register (HETPAR) Field Descriptions Bit Field 31-13 Reserved 12-2 PAOFF Value 0 Description Reads return 0. Writes have no effect. Parity Error Address Offset. This register holds the offset address of the first parity error, which is detected in N2HET RAM. This error address is frozen from being updated until it is read by the CPU. During emulation mode, this address is frozen even when read. In case of a N2HET RAM parity error, PAOFF will contain the offset address of the erroneous 32-bit N2HET RAM field counted from the beginning of the N2HET RAM. Examples: The 32-bit program field of instruction 0 will return 0, the 32-bit control field of instruction 0 will return 1, ..., the 32-bit control field of instruction 1 will return 5, and so on. Read: Returns the offset address of the erroneous 32-bit word in bytes from the beginning of the N2HET RAM. Write: Writes have no effect. 1-0 Reserved 0 Reads return 0. Writes have no effect. NOTE: The Parity Error Address Register will not be reset, neither by PORRST nor by any other reset source. 876 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com 20.4.28 Parity Pin Register (HETPPR) N2HET1: offset = FFF7 B87Ch; N2HET2: offset = FFF7 B97Ch Figure 20-83. Parity Pin Register (HETPPR) 31 16 HETPPR R/W-0 15 0 HETPPR R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-44. Parity Pin Register (HETPPR) Field Descriptions Bit 31-0 Field Value HETPPR[n] Description NHET Parity Pin Select Bits. Allows HET[n] pins to be configured to drive to a known state when an N2HET parity error is detected. 0 Pin HET[n] is not affected by the detection of an N2HET parity error. 1 Pin HET[n] is driven to a known state when an N2HET parity error is detected. The known state is a function of bits HETDIR[n], HETPSL[n], HETPDR[n] as described in Table 20-45 (this state is also independent of HETPULDIS[n]). Table 20-45. Known State on Parity Error HETDIR[n] HETPDR[n] HETPSL[n] Known State on Parity Error 0 x x High Impedance 1 0 0 Drive Logic 0 1 0 1 Drive Logic 1 1 1 x High Impedance SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 877 N2HET Control Registers www.ti.com 20.4.29 Suppression Filter Preload Register (HETSFPRLD) N2HET1: offset = FFF7 B880h; N2HET2: offset = FFF7 B980h Figure 20-84. Suppression Filter Preload Register (HETSFPRLD) 31 18 15 10 17 16 Reserved CCDIV R-0 R/W-0 9 0 Reserved CPRLD R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-46. Suppression Filter Preload Register (HETSFPRLD) Field Descriptions Bit Field 31-18 Reserved 17-16 CCDIV Value Description 0 Reads return 0. Writes have no effect. Counter Clock Divider CCDIV determines the ratio between the counter clock and VCLK2. 15-10 9-0 Reserved 0 CCLK = VCLK2 1h CCLK = VCLK2 / 2 2h CCLK = VCLK2 / 3 3h CCLK = VCLK2 / 4 0 Reads return 0. Writes have no effect. CPRLD Counter Preload Value CPRLD contains the preload value for the counter clock. 20.4.30 Suppression Filter Enable Register (HETSFENA) N2HET1: offset = FFF7 B884h; N2HET2: offset = FFF7 B984h Figure 20-85. Suppression Filter Enable Register (HETSFENA) 31 16 HETSFENA R/W-0 15 0 HETSFENA R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-47. Suppression Filter Enable Register (HETSFENA) Field Descriptions Bit 31-0 Field Value HETSFENA[n] Description Suppression Filter Enable Bits Note: If the pin is configured as an output by the N2HET Direction Register (HETDIR), the filter is automatically disabled independent on the bit in HETSFENA. 878 0 The input noise suppression filter for pin HET[n] is disabled. 1 The input noise suppression filter for pin HET[n] is enabled. High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com 20.4.31 Loop Back Pair Select Register (HETLBPSEL) Refer to Section 20.2.5.7 for a description of loopback test functions. N2HET1: offset = FFF7 B88Ch; N2HET2: offset = FFF7 B98Ch Figure 20-86. Loop Back Pair Select Register (HETLBPSEL) 31 30 29 28 27 26 25 24 LBPTYPE31/30 LBPTYPE29/28 LBPTYPE27/26 LBPTYPE25/24 LBPTYPE23/22 LBPTYPE21/20 LBPTYPE19/18 LBPTYPE17/16 R/W-0 R/W-0 R/W-0 23 22 21 R/W-0 LBPTYPE15/14 LBPTYPE13/12 LBPTYPE11/10 R/W-0 R/W-0 R/W-0 R/W-0 20 19 18 17 16 LBPTYPE9/8 LBPTYPE7/6 LBPTYPE5/4 LBPTYPE3/2 LBPTYPE1/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15 14 13 12 11 10 9 8 LBPSEL31/30 LBPSEL29/28 LBPSEL27/26 LBPSEL25/24 LBPSEL23/22 LBPSEL21/20 LBPSEL19/18 LBPSEL17/16 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7 6 5 4 3 2 1 0 LBPSEL15/14 LBPSEL13/12 LBPSEL11/10 LBPSEL9/8 LBPSEL7/6 LBPSEL5/4 LBPSEL3/2 LBPSEL1/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-48. Loop Back Pair Select Register (HETLBPSEL) Field Descriptions Bit 31-16 15-0 Field Value LBPTYPE n+1 / n Description Loop Back Pair Type Select Bits These bits are valid only when Loopback mode is enabled (HETLBPDIR[19:16] = 1010). 0 Digital loopback is selected for HR structures on pins HET[n+1] and HET[n]. 1 Analog loopback is selected for HR structures on pins HET[n+1] and HET[n]. LBPSEL n+1 / n Loop Back Pair Select Bits These bits are valid only when Loopback mode is enabled (HETLBPDIR[19:16] = 1010). If bit x is set, the HR structures on pins HET[n+1] and HET[n] are connected in a loop back mode. The direction is given by LBPDIR n+1/n and type is selected by LBPTYPE n+1/n. The pin which is not driven by the N2HET pin actions can still be used as normal GIO pin. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 879 N2HET Control Registers www.ti.com 20.4.32 Loop Back Pair Direction Register (HETLBPDIR) Refer to Section 20.2.5.7 for a description of loopback test functions. N2HET1: offset = FFF7 B890h; N2HET2: offset = FFF7 B990h Figure 20-87. Loop Back Pair Direction Register (HETLBPDIR) 31 20 19 16 Reserved LBPTSTENA R-0 R/WP-5h 15 14 13 12 11 10 9 8 LBPDIR31/30 LBPDIR29/28 LBPDIR27/26 LBPDIR25/24 LBPDIR23/22 LBPDIR21/20 LBPDIR19/18 LBPDIR17/16 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 7 6 5 4 3 2 1 0 LBPDIR15/14 LBPDIR13/12 LBPDIR11/10 LBPDIR9/8 LBPDIR7/6 LBPDIR5/4 LBPDIR3/2 LBPDIR1/0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 20-49. Loop Back Pair Direction Register (HETLBPDIR) Field Descriptions Bit Field 31-20 Reserved 19-16 LBPTSTENA 15-0 LBPDIR n+1 / n Value 0 Description Reads return 0. Writes have no effect. Loopback Test Enable Key 5h Loopback Test is disabled. Ah Loopback Test is enabled. Others Loopback Test is disabled. Loop Back Pair Direction Bits 0 The HR structures on pins HET[n+1] and HET[n] are internally connected with HET[n] as input and HET[n+1] as output. 1 The HR structures on pins HET[n+1] and HET[n] connected with HET[n] as output and HET[n+1] as input. NOTE: The loop back direction can be selected independent on the HETDIR register setting. 880 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated N2HET Control Registers www.ti.com 20.4.33 N2HET Pin Disable Register (HETPINDIS) N2HET1: offset = FFF7 B894h; N2HET2: offset = FFF7 B994h Figure 20-88. N2HET Pin Disable Register (HETPINDIS) 31 16 HETPINDIS R/W-0 15 0 HETPINDIS R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-50. NHET Pin Disable Register (HETPINDIS) Field Descriptions Bit 31-0 Field Value HETPINDIS[n] Description N2HET Pin Disable Bits 0 Logic low: No affect on the output buffer enable of the pin (is controlled by the value of the HETDIR[n] bit). 1 Logic high: Output buffer of the pin is enabled if pin nDIS = 1, HET_PIN_ENA = 1, and HETDIR = 1; or disabled if nDIS = 0, HETDIR = 0, or HET_PIN_ENA = 0. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 881 HWAG Registers www.ti.com 20.5 HWAG Registers Table 20-51 lists the HWAG registers. Table 20-51. HWAG Registers Offset 882 Acronym Register Description 9Ch HWAPINSEL HWAG Pin Select Register Section 20.5.1 Section A0h HWAGCR0 HWAG Global Control Register 0 Section 20.5.2 A4h HWAGCR1 HWAG Global Control Register 1 Section 20.5.3 A8h HWAGCR2 HWAG Global Control Register 2 Section 20.5.4 ACh HWAENASET HWAG Interrupt Enable Set Register Section 20.5.5 B0h HWAENACLR HWAG Interrupt Enable Clear Register Section 20.5.6 B4h HWALVLSET HWAG Interrupt Level Set Register Section 20.5.7 B8h HWALVLCLR HWAG Interrupt Level Clear Register Section 20.5.8 BCh HWAFLG HWAG Interrupt Flag Register Section 20.5.9 C0h HWAOFF0 HWAG Interrupt Offset Register 1 Section 20.5.10 C4h HWAOFF1 HWAG Interrupt Offset Register 2 Section 20.5.11 C8h HWAACNT HWAG Angle Value Register Section 20.5.12 CCh HWAPCNT1 HWAG Previous Tooth Period Value Register Section 20.5.13 D0h HWAPCNT HWAG Current Tooth Period Value Register Section 20.5.14 D4h HWASTWD HWAG Step Width Register Section 20.5.15 D8h HWATHNB HWAG Teeth Number Register Section 20.5.16 DCh HWATHVL HWAG Current Teeth Number Register Section 20.5.17 E0h HWAFIL HWAG Filter Register Section 20.5.18 E8h HWAFIL2 HWAG Filter Register 2 Section 20.5.19 F0h HWAANGI HWAG Angle Increment Register Section 20.5.20 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated HWAG Registers www.ti.com 20.5.1 HWAG Pin Select Register (HWAPINSEL) Figure 20-89. HWAG Pin Select Register (HWAPINSEL) 31 16 Reserved R-0 15 5 4 0 Reserved PINSEL R-0 R/W-2h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-52. HWAG Pin Select Register (HWAPINSEL) Field Descriptions Bit Field 31-5 Reserved 4-0 PINSEL Value 0 Description Reads return 0. Writes have no effect. HWAG Pin Select. Selects from which NHET pin input buffer the HWAG toothed-wheel signal is derived. 0 Read: Pin HET[0] is selected. Write: Selects pin HET[0]. 1h Read: Pin HET[1] is selected Write: Selects pin HET[1]. 2h Read: Pin HET[2] is selected Write: Selects pin HET[2]. Default after reset for backwards compatibility : 1Fh : Read: Pin HET[31] selected Write: Selects pin HET[31]. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 883 HWAG Registers www.ti.com 20.5.2 HWAG Global Control Register 0 (HWAGCR0) Figure 20-90. HWAG Global Control Register 0 (HWAGCR0) 31 16 Reserved R-0 15 1 0 Reserved RESET R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-53. HWAG Global Control Register 0 (HWAGCR0) Field Descriptions Bit 31-1 0 Field Reserved Value 0 RESET Description Reads return 0. Writes have no effect. HWAG Module Reset. 0 HWAG module is reset. 1 HWAG module is not in reset. 20.5.3 HWAG Global Control Register 1 (HWAGCR1) Figure 20-91. HWAG Global Control Register 1 (HWAGCR1) 31 16 Reserved R-0 15 1 0 Reserved PPWN R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-54. HWAG Global Control Register 1 (HWAGCR1) Field Descriptions Bit 31-1 0 884 Field Value Description Reserved 0 Reads return 0. Writes have no effect. PPWN 0 HWAG Module Power Down. This bit is implemented for legacy purposes, but has no functionality, however the HWAG module power down is controlled by the NHET power down. The HWAG cannot be powered down separately. High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated HWAG Registers www.ti.com 20.5.4 HWAG Global Control Register 2 (HWAGCR2) Figure 20-92. HWAG Global Control Register 2 (HWAGCR2) 31 17 16 Reserved 25 ARST Reserved TED CRI R-0 R/W-0 R-0 R/W-0 R/W-0 1 0 15 9 24 8 23 18 7 Reserved FIL Reserved STRT R-0 R/W-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-55. HWAG Global Control Register 2 (HWAGCR2) Field Descriptions Bit 31-25 24 Field Value Reserved 0 ARST Description Reads return 0. Writes have no effect. Angle Reset. This bit is used by the HWAG to validate the singularity when the hardware criteria is not used. The bit is cleared when the HWAG angle value register (HWAACNT) is cleared by the HWAG, when the last tooth edge occurs. If this bit is not set before the tooth edge during an singularity tooth, the HWAG generates an interruption “singularity not found”, if the interrupt is enabled. 23-18 17 16 15-9 8 7-1 0 Reserved 0 Do not reset ACNT once it reaches the angle zero point. 1 Reset ACNT once it reaches the angle zero point. 0 Reads return 0. Writes have no effect. TED Tooth Edge. This bit is used to select which edge of the tooth wheel must be considered as active. 0 Falling edge 1 Rising edge CRI Reserved Criteria enable. This bits is used to control whether the criteria are applied. You could set your own criteria filter by disabling the hardwired criteria. 0 Criteria is disabled. 1 Criteria is enabled. 0 Reads return 0. Writes have no effect. FIL Reserved Input Filter Enable. This bit is used to enable the toothed wheel input filter. 0 Filter is disabled. 1 Filter is enabled. 0 Reads return 0. Writes have no effect. STRT Start bit. Put the HWAG into run time. Allows the HWAG to start counting ACNT, TCNT and criteria mechanism (if set). The HWAG starts at the next active edge from the toothed wheel, once set. If the start bit is cleared to 0, the HWAG is stopped immediately. 0 Do not start counting. 1 Start counting. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 885 HWAG Registers www.ti.com 20.5.5 HWAG Interrupt Enable Set Register (HWAENASET) Figure 20-93. HWAG Interrupt Enable Set Register (HWAENASET) 31 8 Reserved R-0 7 6 5 4 3 2 1 0 SETINTENA7 SETINTENA6 SETINTENA5 SETINTENA4 SETINTENA3 SETINTENA2 SETINTENA1 SETINTENA0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-56. HWAG Interrupt Enable Set Register (HWAENASET) Field Descriptions Bit Field 31-8 Reserved 7-0 SETINTENA[n] Value 0 Description Reads return 0. Writes have no effect. Enable interrupt. See Table 20-57. 0 Read: Corresponding interrupt is not enabled. Write: No effect. 1 Read: Corresponding interrupt is enabled. Write: Enable corresponding interrupt. Table 20-57. HWAG Interrupts Bit 886 Interrupt 0 Overflow period 1 Singularity not found 2 Tooth interrupt 3 ACNT overflow 4 PCNT(n) > 2 x PCNT (n-1) during normal tooth 5 Bad active edge tooth 6 Gap flag 7 Angle increment overflow High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated HWAG Registers www.ti.com 20.5.6 HWAG Interrupt Enable Clear Register (HWAENACLR) Figure 20-94. HWAG Interrupt Enable Clear Register (HWAENACLR) 31 8 Reserved R-0 7 6 5 4 3 2 1 0 CLRINTENA7 CLRINTENA6 CLRINTENA5 CLRINTENA4 CLRINTENA3 CLRINTENA2 CLRINTENA1 CLRINTENA0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-58. HWAG Interrupt Enable Clear Register (HWAENACLR) Field Descriptions Bit Field 31-8 Reserved 7-0 CLRINTENA[n] Value 0 Description Reads return 0. Writes have no effect. Disable interrupt. See Table 20-57. 0 Read: Corresponding interrupt is not enabled. Write: No effect. 1 Read: Corresponding interrupt is enabled. Write: Disable corresponding interrupt. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 887 HWAG Registers www.ti.com 20.5.7 HWAG Interrupt Level Set Register (HWALVLSET) Figure 20-95. HWAG Interrupt Level Set Register (HWALVLSET) 31 8 Reserved R-0 7 6 5 4 3 2 1 0 SETINTLVL7 SETINTLVL6 SETINTLVL5 SETINTLVL4 SETINTLVL3 SETINTLVL2 SETINTLVL1 SETINTLVL0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-59. HWAG Interrupt Level Set Register (HWALVLSET) Field Descriptions Bit Field Value 31-8 Reserved 7-0 SETINTLVL[n] 0 Description Reads return 0. Writes have no effect. Set Interrupt Level. See Table 20-57. 0 Read: Low-priority interrupt. Write: No effect. 1 Read: High-priority interrupt. Write: Set interrupt priority to high. 20.5.8 HWAG Interrupt Level Clear Register (HWALVLCLR) Figure 20-96. HWAG Interrupt Level Clear Register (HWALVLCLR) 31 8 Reserved R-0 7 6 5 4 3 2 1 0 CLRINTLVL7 CLRINTLVL6 CLRINTLVL5 CLRINTLVL4 CLRINTLVL3 CLRINTLVL2 CLRINTLVL1 CLRINTLVL0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-60. HWAG Interrupt Level Clear Register (HWALVLCLR) Field Descriptions Bit Field 31-8 Reserved 7-0 CLRINTLVL[n] Value 0 Description Reads return 0. Writes have no effect. Clear Interrupt Level. See Table 20-57. 0 Read: Low-priority interrupt. Write: No effect. 1 Read: High-priority interrupt. Write: Set interrupt priority to low. 888 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated HWAG Registers www.ti.com 20.5.9 HWAG Interrupt Flag Register (HWAFLG) Figure 20-97. HWAG Interrupt Flag Register (HWAFLG) 31 8 Reserved R-0 7 6 5 4 3 2 1 0 INTFLG7 INTFLG6 INTFLG5 INTFLG4 INTFLG3 INTFLG2 INTFLG1 INTFLG0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset Table 20-61. HWAG Interrupt Flag Register (HWAFLG) Field Descriptions Bit Field 31-8 Reserved 7-0 INTFLG[n] Value 0 Description Reads return 0. Writes have no effect. Interrupt Flag. These bit are set when an interrupt condition has occurred inside the HWAG. The interrupt is sent to the CPU if, and only if, the corresponding enable bit is set. HWAFLG is cleared by either reading the HWAOFF0 or HWAOFF1 register (if the corresponding bit is set) or by writing 1 to the bit. If HWAFLG is 1 but the corresponding interrupt is not enabled then it will not generate an interrupt, also the OFFSET index will not be generated for that particular HWAFLG bit. So, a read of HWAOFF registers will not clear a HWAFLG bit that is not enabled. See Table 20-57. 0 Read: No interrupt is pending. Write: No effect. 1 Read: Interrupt is pending. Write: Clear the corresponding interrupt flag. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 889 HWAG Registers www.ti.com 20.5.10 HWAG Interrupt Offset Register 0 (HWAOFF0) This register is a read-only register and provides a numerical value that represents the pending interrupt with a high priority. The index can be used to locate the interrupt routine position in the vector table. A read to this register clears the corresponding interrupt pending bit in the HWAG interrupt flag register (HWAFLG). An interrupt pending bit in the HWAFLG register is the bit for which the corresponding interrupt enable bit is set. During suspend mode, a read to this register does not clear the corresponding interrupt bit. Figure 20-98. HWAG Interrupt Offset Register 0 (HWAOFF0) 31 16 Reserved R-0 15 8 7 0 Reserved OFFSET1 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 20-62. HWAG Interrupt Offset Register 0 (HWAOFF0) Field Descriptions Bit Field 31-8 Reserved 7-0 OFFSET1 890 Value 0 Description Reads return 0. Writes have no effect. High-Priority Interrupt Offset. These bits give the offset for the corresponding interrupts. 0 Phantom interrupt 1 Overflow period 2 Singularity not found 3 Tooth interrupt 4 ACNT overflow 5 PCNT(n) > 2 × PCNT (n-1) during normal tooth 6 Bad active edge tooth 7 Gap flag 8 Angle increment overflow High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated HWAG Registers www.ti.com 20.5.11 HWAG Interrupt Offset Register 1 (HWAOFF1) This register is a read-only register and provides a numerical value that represents the pending interrupt with a low priority. The index can be used to locate the interrupt routine position in the vector table. A read to this register clears the corresponding interrupt pending bit in the HWAG interrupt flag register (HWAFLG). An interrupt pending bit in the HWAFLG register is the bit for which the corresponding interrupt enable bit is set. During suspend mode, a read to this register does not clear the corresponding interrupt bit. Figure 20-99. HWAG Interrupt Offset Register 1 (HWAOFF1) 31 16 Reserved R-0 15 8 7 0 Reserved OFFSET2 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 20-63. HWAG Interrupt Offset Register 1 (HWAOFF1) Field Descriptions Bit Field 31-8 Reserved 7-0 OFFSET2 Value 0 Description Reads return 0. Writes have no effect. Low-Priority Interrupt Offset.. These bits give the offset for the corresponding interrupts. 0 Phantom interrupt 1 Overflow period 2 Singularity not found 3 Tooth interrupt 4 ACNT overflow 5 PCNT(n) > 2 × PCNT (n-1) during normal tooth 6 Bad active edge tooth 7 Gap flag 8 Angle increment overflow SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 891 HWAG Registers www.ti.com 20.5.12 HWAG Angle Value Register (HWAACNT) Figure 20-100. HWAG Angle Value Register (HWAACNT) 31 24 23 16 Reserved ACNT R-0 R/W-0 15 0 ACNT R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-64. HWAG Angle Value Register (HWAACNT) Field Descriptions Bit Field 31-24 Reserved 23-0 ACNT 892 Value 0 0-FF FFFFh Description Reads return 0. Writes have no effect. Angle Value. Provides the current angle value from the toothed wheel. This is equal to step width × teeth value. High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated HWAG Registers www.ti.com 20.5.13 HWAG Previous Tooth Period Value Register (HWAPCNT1) Figure 20-101. HWAG Previous Tooth Period Value Register (HWAPCNT1) 31 24 23 16 Reserved PCNT(n-1) R-0 R/W-0 15 0 PCNT(n-1) R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-65. HWAG Previous Tooth Period Value Register (HWAPCNT1) Field Descriptions Bit Field Value 31-24 Reserved 0 23-0 PCNT(n-1) 0-FF FFFFh Description Reads return 0. Writes have no effect. Period (n-1) Value. Gives the period value of the previous tooth. 20.5.14 HWAG Current Tooth Period Value Register (HWAPCNT) Figure 20-102. HWAG Current Tooth Period Value Register (HWAPCNT) 31 24 23 16 Reserved PCNT(n) R-0 R/W-0 15 0 PCNT(n) R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-66. HWAG Current Tooth Period Value Register (HWAPCNT) Field Descriptions Bit Field Value 31-24 Reserved 0 23-0 PCNT(n) 0-FF FFFFh Description Reads return 0. Writes have no effect. Period (n) Value. Provides the current period since the beginning of the last tooth active edge seen by the HWAG (PCNT (n)). This period would not be accurate due to the fact that the PCNT counter is running at VCLK2 and that the peripheral bus is running at VCLK. Then, the value will have changed when used. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 893 HWAG Registers www.ti.com 20.5.15 HWAG Step Width Register (HWASTWD) Figure 20-103. HWAG Step Width Register (HWASTWD) 31 16 Reserved R-0 15 4 3 0 Reserved STWD R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-67. HWAG Step Width Register (HWASTWD) Field Descriptions Bit Field Value Description 31-4 Reserved Reads return 0. Writes have no effect. 3-0 STWD Step Width. Sets the step width for the tick generation, dividing the period into K steps. (131072, 65536, ..., 8, 4). The step count is decoded from the three LSBs using the following encoding: 0h 4 ticks per period 1h 8 ticks per period 2h 16 ticks per period : 894 : Eh 65536 ticks per period Fh 131072 ticks per period High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated HWAG Registers www.ti.com 20.5.16 HWAG Teeth Number Register (HWATHNB) Figure 20-104. HWAG Teeth Number Register (HWATHNB) 31 16 Reserved R-0 15 8 7 0 Reserved THNB R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-68. HWAG Teeth Number Register (HWATHNB) Field Descriptions Bit Field Value 31-8 Reserved 7-0 THNB 0 0-FFh Description Reads return 0. Writes have no effect. Teeth Number. Sets the teeth number with the maximum value of the toothed wheel. This must be equal to N-1 real teeth (that is, 57 for a 60-2 toothed wheel). 20.5.17 HWAG Current Teeth Number Register (HWATHVL) Figure 20-105. HWAG Current Teeth Number Register (HWATHVL) 31 16 Reserved R-0 15 8 7 0 Reserved THVL R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-69. HWAG Current Teeth Number Register (HWATHVL) Field Descriptions Bit Field 31-8 Reserved 7-0 THVL Value 0 0-FFh Description Reads return 0. Writes have no effect. Teeth Value. Provides the current teeth number. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 895 HWAG Registers www.ti.com 20.5.18 HWAG Filter Register (HWAFIL) Figure 20-106. HWAG Filter Register (HWAFIL) 31 16 Reserved R-0 15 10 9 0 Reserved FIL1 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-70. HWAG Filter Register (HWAFIL) Field Descriptions Bit 31-10 9-0 Field Value Reserved 0 FIL1 Description Reads return 0. Writes have no effect. 0-3FFh Filter Value. Contains the value to be compared to the tick counter. It allows the tooth signal to be taken into account by the HWAG. This function works only if the mode filtering is set. The value is calculated as shown in Section 20.3.2.2.5. 20.5.19 HWAG Filter Register 2 (HWAFIL2) Figure 20-107. HWAG Filter Register 2 (HWAFIL2) 31 16 Reserved R-0 15 12 11 0 Reserved FIL2 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 20-71. HWAG Filter Register 2 (HWAFIL2) Field Descriptions Bit Field 31-12 Reserved 11-0 FIL2 896 Value 0 0-FFFh Description Reads return 0. Writes have no effect. Filter Value 2. Contains the value to be compared to the tick counter during the singularity tooth. It allows the tooth signal to be taken into account by the HWAG. This function works only if the mode filtering is set. The value is calculated as shown in Section 20.3.2.2.5.1. High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated HWAG Registers www.ti.com 20.5.20 HWAG Angle Increment Register (HWAANGI) Figure 20-108. HWAG Angle Increment Register (HWAANGI) 31 16 Reserved R-0 15 10 9 0 Reserved ANGI R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 20-72. HWAG Angle Increment Register (HWAANGI) Field Descriptions Bit 31-10 9-0 Field Reserved ANGI Value 0 0-3FFh Description Reads return 0. Writes have no effect. Angle Increment Value. Provides the current angle increment value. The value is incremented by the tick counter and is decremented by the NHET resolution clock. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 897 Instruction Set www.ti.com 20.6 Instruction Set 20.6.1 Instruction Summary Table 20-73 presents a list of the instructions in the N2HET instruction set. The pages following describe each instruction in detail. Table 20-73. Instruction Summary (1) 898 Abbreviation Instruction Name Opcode Sub-Opcode Cycles (1) ACMP Angle Compare Ch - 1 ACNT Angle Count 9h - 2 ADCNST Add Constant 5h - 2 ADC Add with Carry and Shift 4h C[25:23] = 011, C5 = 1 1-3 ADD Add and Shift 4h C[25:23] = 001, C5 = 1 1-3 ADM32 Add Move 32 4h C[25:23] = 000, C5 = 1 1-2 AND Bitwise AND and Shift 4h C[25:23] = 010, C5 = 1 1-3 APCNT Angle Period Count Eh - 1-2 BR Branch Dh - 1 CNT Count 6h - 1-2 DADM64 Data Add Move 64 2h - 2 DJZ Decrement and Jump if -zero Ah P[7:6] = 10 1 ECMP Equality Compare 0h C[6:5] = 00 1 1 ECNT Event Count Ah P[7:6] = 01 MCMP Magnitude Compare 0h C[6] = 1 1 MOV32 Move 32 4h C[5] = 0 1-2 MOV64 Move 64 1h - 1 OR Bitwise OR 4h C[25:23] = 100, C5 = 1 1-3 PCNT Period/Pulse Count 7h - 1 PWCNT Pulse Width Count Ah P[7:6] = 11 1 RADM64 Register Add Move 64 3h - 1 RCNT Ratio Count Ah P[7:6] = 00, P[0] = 1 3 SBB Subtract with Borrow and Shift 4h C[25:23] =110, C[5] = 1 1-3 SCMP Sequence Compare 0h C[6:5] = 01 1 SCNT Step Count Ah P[7:6] = 00, P[0] = 0 3 SHFT Shift Fh C[3] = 0 1 SUB Subtract and Shift 4h C[25:23] = 101, C[5] = 1 1-3 1 WCAP Software Capture Word Bh - WCAPE Software Capture Word and Event Count 8h - 1 XOR Bitwise Exclusive-Or and Shift 4h C[25:23] = 111, C[5] = 1 1-3 Cycles refers to the clock cycle of the N2HET module; which on most devices is VCLK2. (Check the device datasheet description of clock domains to confirm). If the high-resolution prescale value is set to /1, then this is also the same as the number of HR clock cycles. High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com Table 20-74. FLAGS Generated by Instruction Abbreviation Flag Name Set/Reset by Used by C Carry Flag ADC, ADD, AND, OR, RCNT, SBB, SUB, XOR ADC, BR, SBB N Negative Flag ADC, ADD, AND, OR, SBB, SUB, XOR BR V Overflow Flag ADC, ADD, AND, OR, SBB, SUB, XOR BR Z Zero flag ACNT, ADC, ADD, AND, APCNT, CNT, OR, PCNT, SBB, SCNT, SHFT, SUB, XOR ACMP, ACNT, BR, ECMP, MCMP, MOV32, RCNT, SCMP, SHFT X Angle Compare Match Flag ACMP SCMP SWF 0-1 Step Width flags SCNT ACNT NAF New Angle Flag ACNT NAF_global New Angle Flag (global) HWAG or NAF ACMP, BR, CNT, ECMP, ECNT ,ACNT, SCNT NAF_global ACF Acceleration Flag ACNT DCF Deceleration Flag ACNT ,ACNT, SCNT GPF Gap Flag ACNT ACNT, APCNT The instructions capable of generating software interrupts are listed in Table 20-75. Table 20-75. Interrupt Capable Instructions Interrupt Capable Instructions Non Interrupt Capable Instructions ACMP ADC ACNT ADCNST APCNT ADD BR ADM32 CNT AND DJZ DADM32 ECMP MOV32 ECNT MOV64 MCMP OR PCNT RADM64 PWCNT RCNT SCMP SBB SHFT SCNT WCAP SUB WCAPE XOR SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 899 Instruction Set www.ti.com 20.6.2 Abbreviations, Encoding Formats and Bits Abbreviations marked with a star (*) are available only on specific instructions. U Reading a bit marked with U will return an indeterminate value. BRK Defines the software breakpoint for the device software debugger. Default: OFF Location: Program field [22] next Defines the program address of the next instruction in the program flow. This value may be a label or an 9-bit unsigned integer. Default: Current instruction + 1 Location: Program field [21:13] reqnum* Defines the number of the request line (0,1,..,7) to trigger either the HTU or the DMA. Default: 0 Location: Program field [25:23] request* Allows to select between no request (NOREQ), request (GENREQ) and quiet request (QUIET). See Section 20.2.9. Default: No request Location: Control Field [28:27] Request C[28] C[27] 0 0 1 0 GENREQ 0 1 request request QUIET 1 1 quiet request no request NOREQ To HTU To DMA no request no request remote* Determines the 9-bit address of the remote address for the instruction. Default: Current instruction + 1 Location: Program field [8:0] control Determines whether the immediate data field [31:0] is cleared when it is read. When the bit is not set, reads do not clear the immediate data field. Default: OFF Location: Control field [26] en_pin_action* Determines whether the selected pin is ON so that the action occurs on the chosen pin Default: OFF Location: Control field [22] 900 Cond_addr* Conditional address (optional): Defines the address of the next instruction when the condition occurs. Default: Current address + 1 Location: Control field [21:13] Pin* Pin Select: Selects the pin on which the action occurs. Enter the pin number. Default: pin 0 Location: Control field [12:8] except PCNT High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com The format CC{pin number} is also supported. MSB 0 0 0 0 LSB Description 0 0 0 Select HET[0] 0 0 1 Select HET[1] (Each pin may be selected by writing its number in binary) 1 1 1 1 0 Select HET[30] 1 1 1 1 1 Select HET[31] Reg* Register select: Selects the register for data comparison and storage Default: No register (None) Location: Control field [2:1] except for CNT instruction. Extended Register Select C[7] is available for ACMP, ADC, ADD, ADM32, AND, DADM64, ECMP, ECNT, MCMP, MOV32, MOV64, OR, RADM64, SBB, SHFT, SUB, WCAP, WCAPE instructions. Register Ext Reg. C[7] C[2] C[1] A 0 0 0 B 0 0 1 T 0 1 0 None 0 1 1 R 1 0 0 S 1 0 1 Reserved 1 1 0 Reserved 1 1 1 Action* (2 Action Option) Either sets or clears the pin Default: Clear Location: Control Field [4] Action* Action C[4] Clear 0 Set 1 (4 Action Option) Either sets, clears, pulse high or pulse low on the pin. Set/clear are single pin actions, pulse high/low include the opposite pin action. Default: Clear Location: Control Field [4:3] Action Action Type C[4] C[3] Clear Set low on match 0 0 Set Set high on match 1 0 Pulse Low Set low on match + reset to high on Z=1 (opposite action) 0 1 Pulse High Set high on match + reset to low on Z=1 (opposite action) 1 1 SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 901 Instruction Set www.ti.com hr_lr* 902 Specifies HIGH/LOW data resolution. If the hr_lr field is HIGH, the instruction uses the hr_data field. If the hr_lr field is LOW, the hr_data field is ignored. Default: HIGH Location: Program Field [8] hr_lr Prog. field [8] LOW 1 HIGH 0 prv* Specifies the initial value defining the previous bit (see Section 20.2.5.8). A value of ON sets the previous pin-level bit to 1. A value of OFF sets the initial value of the previous (prv) bit to 0. The prv bit is overwritten (set or reset) by the N2HET the first time the instruction is executed. Default: OFF Location: Control Field [25] cntl_val* Available for DADM64, MOV64, and RADM64, this bit field allows the user to specify the replacement value for the remote control field. comp_mode* Specifies the compare mode. This field is used with the 64-bit move instructions. This field ensures that the sub-opcodes are moved correctly. Default: ECMP Location: Control Field [6:5] Action C[6] C[5] ECMP 0 0 Order SCMP 0 1 MCMP1 1 0 REG_GE_DATA MCMP2 1 1 DATA_GE_REG High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com 20.6.3 Instruction Description The following sections provide information for individual instructions. Parameters in [] are optional. Refer to the N2HET assembler user guide for the default values when parameters are omitted. 20.6.3.1 ACMP (Angle Compare) Syntax ACMP { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer}] [request={NOREQ | GENREQ | QUIET}] [control={OFF | ON}] [en_pin_action={OFF | ON}] [cond_addr={label | 9-bit unsigned integer}] pin={pin number} [action={CLEAR | SET}] reg={A | B | R | S | T | NONE} [irq ={OFF | ON}] data={25-bit unsigned integer} } Figure 20-109. ACMP Program Field (P31:P0) 31 26 25 23 22 21 13 12 9 8 0 0 Request Number BRK Next program address 1100 Reserved 6 3 1 9 4 9 Figure 20-110. ACMP Control Field (C31:C0) 31 29 26 25 Reserved Request type Control Cout prv Reserved En. pin action Conditional address 3 2 1 1 2 1 9 15 13 28 27 12 24 8 23 7 22 21 6 5 16 4 3 Conditional address Pin select Ext. Reg Reserved Pin action Res. Register select 2 1 Int. ena 0 9 5 1 2 1 1 2 1 Figure 20-111. ACMP Data Field (D31:D0) 31 7 6 0 Data Reserved 25 7 Cycles One Register modified Selected register (A, B, R, S, or T) SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 903 Instruction Set www.ti.com The purpose of the comparison is to assert pin action when the angle compare value lies between the old counter value and the new counter value (held in the selected register). Since the angle increment varies from one loop resolution clock to another, an exact equality test cannot be applied. Instead, the following inequality is used to determine the occurrence of a match: Old counter value < Angle compare value ≤ New counter value This is done by performing following comparisons: Selected register value minus angle increment < angle compare value Angle compare value ≤ Selected register value register Register B is recommended for typical applications with ACMP. irq Specifies whether or not an interrupt is generated. Specifying ON generates an interrupt when the edge state is satisfied and the gap flag is set. Specifying OFF prevents an interrupt from being generated. Default: OFF. data Specifies the 25-bit angle compare value. Execution X = 0; If (Data 0) { IR2[31 : 31 - scount + 1] = IR1[31] SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 913 Instruction Set www.ti.com IC2 = IR1[scount-1] } else { IC2 = IC1 } IN2 = IR2[31]; if (IR2 == 0) { IZ2 = 1 } else {IZ2 = 0}; IV2 = (IR2[31] XOR IR1[31]) OR IV1 case 010: // smode = Logical Shift Left IR2[31 : scount] = IR1[31 - scount: 0] if (scount > 0) { IR2[scount - 1 : 0] = 0 } IC2 = IC1 IN2 = IR2[31]; if (IR2 == 0) { IZ2 = 1 } else {IZ2 = 0}; IV2 = (IR2[31] XOR IR1[31]) OR IV1 case 011: // smode = Carry Shift Left IR2[31 : scount] = IR1[31 - scount: 0] if (scount>0) { IR2[scount - 1 : 0] = [IC1,...IC1] IC2 = IR1[31 - scount + 1] } else { IC2 = IC1 } IN2 = IR2[31]; if (IR2 == 0) { IZ2 = 1 } else {IZ2 = 0}; IV2 = (IR2[31] XOR IR1[31]) OR IV1 case 100: // smode = Logical Shift Right IR2[31 - scount : 0] = IR1[31:scount] if (scount>0) { IR2[31 : 31 - scount + 1] = 0 } IC2 = IC1 IN2 = IR2[31]; if (IR2 == 0) { IZ2 = 1 } else {IZ2 = 0}; IV2 = (IR2[31] XOR IR1[31]) OR IV1 case 101: // smode = Carry Shift Right IR2[31 - scount : 0] = IR1[31:scount] if(scount>0) { IR2[31:31-scount + 1] = [IC1,...IC1] IC2 = IR1[scount-1] } else { IC2 = IC1 } IN2 = IR2[31]; IZ2 = Set if IR2 == 0; IV2 = (IR2[31] XOR IR1[31]) OR IV1 case 110: // smode = Rotate Right 914 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com IR2[31 - scount : 0] = IR1[31:scount] if(scount>0) { IR2[31:31-scount+1] = IR1[scount-1:0] IC2 = IR1[scount-1] } else { IC2 = IC1 } IN2 = IR2[31]; if (IR2 == 0) { IZ2 = 1 } else {IZ2 = 0}; IV2 = (IR2[31] XOR IR1[31]) OR IV1 case 111: // smode = Carry Rotate Right IR2[31 - scount : 0] = IR1[31:scount] if (scount == 0) { IC2 = IC1 } else if (scount == 1) { IR2[31] = IC1 IC2 = IR1[0] } else { IR2[31:31-scount+1] = {IR1[scount-2:0],IC1} IC2 = IR1[scount - 1] } IN2 = IR2[31]; if (IR2 == 0) { IZ2 = 1 } else {IZ2 = 0}; IV2 = (IR2[31] XOR IR1[31]) OR IV1 } /********** WRITE REGISTER DESTINATION STAGE ***********/ switch (C7, C2:C1) { case 000:A[24:0] = IR2[31:8] case 001:B[24:0] = IR2[31:8] case 010:T[31:0] = IR2[31:0] case 011:IR2 is not stored in register, immediate case 100:R[31:0] = IR2[31:0] case 101:S[31:0] = IR2[31:0] case 110:Immediate Data Field[31:0] = IR2 case 111:IR2 is not stored in register, immediate } /*********** WRITE REMOTE DESTINATION STAGE ***********/ switch (C4:3) { case case case case 00:IR2 is 01:Remote 10:Remote 11:IR2 is not stored in remote Data Field D[31:0] = Program Field P[8:0] not stored in remote field IR2 = IR2[8:0] field } /***************** UPDATE FLAGS STAGE *****************/ C FLAG = IC2 N FLAG = IN2 Z FLAG = IZ2 V FLAG = IV2 If (Init Flag == 1) { ACF = 0; DCF = 1; GPF = 0; NAF = 0; } else ACF, DCF, GPF, NAF remain unchanged; SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 915 Instruction Set www.ti.com 20.6.3.5 ADM32 (Add Move 32) Syntax ADM32 { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] remote={label | 9-bit unsigned integer} [control={OFF | ON}] [init={OFF | ON}] type={IM®TOREG | REM®TOREG | IM&REMTOREG | IM®TOREM} reg={A | B | R | S | T } data={25-bit unsigned integer} [hr_data={7-bit unsigned integer}] } Figure 20-123. ADM32 Program Field (P31:P0) 31 26 25 23 22 21 13 12 9 8 0 0 Reserved BRK Next program address 0100 Remote address 6 3 1 9 4 9 Figure 20-124. ADM32 Control Field (C31:C0) 31 27 26 25 23 22 16 Reserved Control 000 Reserved 5 1 3 15 15 7 6 5 4 Reserved 8 Ext Reg Init flag 1 Move type 3 Register select 2 1 Res. 0 15 1 1 1 2 2 1 Figure 20-125. ADM32 Data Field (D31:D0) 31 7 0 HR Data 25 7 Cycles One or two cycles (see Table 20-81) Register modified Selected register (A, B, R, S, or T) Description This instruction modifies the selected ALU register or data field values at the remote address depending on the move type. The modified value results from adding the immediate or remote data field to the ALU register or the remote data field, depending on the move type. Table description shows the C2 and C1 bit encoding for determining which register is selected. init 916 6 Data (Optional) Determines whether or not system flags are initialized. A value of ON reinitializes the following system flags to these states: Acceleration flag (ACF) = 0 Deceleration flag (DCF) = 1 Gap flag (GPF) = 0 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com New angle flag (NAF) = 0 A value of OFF results in no change to the system flags. Default: OFF type Specifies the move type to be executed. Table 20-81. Move Types for ADM32 Type C4 C3 Add Destination(s) Cycles Register A, B, R, S, or T 1 IM®TOREG 0 0 Imm. data field + Reg. A, B, R, S, or T REM®TOREG 0 1 Remote data field + Reg. A, B, R, S, or T Register A, B, R, S, or T 2 IM&REMTOREG 1 0 Imm. data field + Remote data field Register A, B, R, S, or T 2 IM®TOREM 1 1 Imm. data field + Reg. A, B, R, S, or T Remote data field 1 If selected register is R, S, or T, the operation is a 32-bit Addition/move. If A or B register is selected, it is limited to 25-bit operation since A and B only support 25-bit. data Specifies the 25-bit integer value for the immediate data field. hr_data Specifies the 7 least significant bits of the immediate data field. Default: 0. Execution switch (C4:C3) { case 00: Selected register case 01: Selected register case 10: Selected register case 11: Remote Data Field } = Selected register + Immediate Data Field; = Selected register + Remote Data Field; = Immediate Data Field + Remote Data Field; = Selected register + Immediate Data Field; If (Init Flag == 1) { ACF = 0; DCF = 1; GPF = 0; NAF = 0; } else All flags remain unchanged; Jump to Next Program Address; Figure 20-126 and Figure 20-127 illustrate the ADM32 operation for various cases. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 917 Instruction Set www.ti.com Figure 20-126. ADM32 Add and Move Operation for IM®TOREG (Case 00) 25/32-bit addition/move LSBs (HR data field) 32 bits HR Immediate DF + HR Register A, B, R, S or T (dashed for R, S, T) = HR Register A, B, R, S or T (dashed for R, S, T) Figure 20-127. ADM32 Add and Move Operation for REM®TOREG (Case 01) 25/32-bit addition/move LSBs (HR data field) 32 bits 918 HR Remote DF + HR Register A, B, R, S, or T (dashed for R, S, T) = HR Register A, B, R, S, or T (dashed for R, S, T) High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com 20.6.3.6 APCNT (Angle Period Count) Syntax APCNT { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer}] [request={NOREQ | GENREQ | QUIET}] [irq={OFF | ON}] type={FALL2FALL | RISE2RISE} [control={OFF | ON}] prv={OFF | ON}}] period={25-bit unsigned integer} data={25-bit unsigned integer} } Figure 20-128. APCNT Program Field (P31:P0) 31 26 25 23 22 21 13 12 9 8 7 6 5 0 0 Request Number BRK Next program address 1110 Int. ena Edge select Reserved 6 3 1 9 4 1 2 6 Figure 20-129. APCNT Control Field (C31:C0) 31 29 28 27 26 Res. Request type Control 3 2 1 25 24 0 Prv. Period Count 1 25 Figure 20-130. APCNT Data Field (D31:D0) 31 7 6 0 Data Reserved 25 7 Cycles One or two cycles • Cycle 1: edge detected (normal operation) • Cycle 2: edge detected and GPF = 1 and underflow condition is true One cycle (normal operation) two cycles (edge detected) Register modified Register A and T (implicitly) Description This instruction is used before SCNT and ACNT to generate an anglereferenced time base synchronized to an external signal (that is, a toothed wheel signal). It is assumed that the pin and edge selections are the same for APCNT and ACNT. APCNT is restricted to pin HET[2]. The toothed wheel must then be connected to pin HET[2]. APCNT uses the gap flag (GPF) defined by ACNT to start or stop captures in the period count field [C24:C0]. When GPF = 1, the previous period value is held in the control field and in register T. When GPF = 0, the current period value is captured in the control field and in register T. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 919 Instruction Set www.ti.com APCNT uses the step width flags (SWF0 and SWF1) defined by SCNT to detect period durations shorter than one step, and then disables capture. The edge select encoding is shown in Table 20-82. irq ON generates an interrupt when the edge state is satisfied. OFF prevents an interrupt from being generated. Default: OFF. type Specifies the edge type that triggers the instruction. Default: Fall2Fall. Table 20-82. Edge Select Encoding for APCNT 920 type P7 P6 Selected Condition Fall2Fall 1 0 Falling edge Rise2Rise 1 1 Rising edge period Contains the 25-bit count value from the previous APCNT period. data 25-bit value serving as a counter. Default: 0. High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com Execution Z = 0; If (Data field register != 1FFFFFFh) { Register A = Data field register + 1; Data field register = Data field register + 1; } elseIf (specified edge not detected on HET[2]) { Register A = 1FFFFFFh; APCNT Ovflw flag = 1; } If (specified edge detected on HET[2]) { Z = 1; If (Data field register == 1FFFFFFh) { Register A = 1FFFFFFh; Register T = 1FFFFFFh;Period count = 1FFFFFFh; Period count = 1FFFFFFh; } elseIf (GPF == 0 AND Data Field register >= Step width) { Register A = Data field register + 1; Register T = Register A; Period count = Register T; If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on request line [P25:P23]; If ([C28:C27] == 11) Generate quiet request on request line [P25:P23]; } If (GPF == 1) Register T = Period count; If (Data Field register < Step width) { Register T = Period count; APCNT Undflw flag = 1; Period Count = 000000h; } Data field register = 000000h; } else { Register T = Period count; } Prv bit = Current Lx value of HET[2] pin; Jump to Next Program Address; The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 20.2.7. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 921 Instruction Set www.ti.com 20.6.3.7 BR (Branch) Syntax BR { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer}] [request={NOREQ | GENREQ | QUIET}] [control={OFF | ON}] [prv={OFF | ON}] cond_addr={label | 9-bit unsigned integer} [pin= {pin number}] event={NOCOND | FALL | RISE | BOTH | ZERO | NAF | LOW | HIGH | C | NC | EQ | Z | NE | NZ | N | PZ | V | NV | ZN | P | GE | LT | GT | LE | LO | HS } [irq={OFF | ON}] } Figure 20-131. BR Program Field (P31:P0) 31 26 25 23 0 Request Number 6 3 22 21 13 12 BRK Next program address 1 9 8 0 1101 Reserved 4 9 9 Figure 20-132. BR Control Field (C31:C0) 31 29 28 27 26 25 Reserved Request type Control Prv 3 2 1 1 15 13 12 24 22 Reserved Pin select 9 5 16 Conditional address 3 8 Conditional address 21 9 7 3 Branch cond. 5 2 1 0 Reserved Int. ena 2 1 Figure 20-133. BR Data Field (D31:D0) 31 0 Reserved 32 Cycles One Register modified None Description This instruction executes a jump to the conditional address [C21:C13] on a pin or a flag condition, and can be used with all pins. Table 20-83 provides the branch condition encoding. event 922 Specifies the event that triggers a jump to the indexed program address. Default: FALL High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com irq ON generates an interrupt when the event occurs that triggers the jump. If irq is set to OFF, no interrupt is generated. Default: OFF. Table 20-83. Branch Condition Encoding for BR Event C7 C6 C5 C4 C3 NOCOND 0 0 0 0 0 Branch Condition Always FALL 0 0 1 0 0 On falling edge on the selected pin RISE 0 1 0 0 0 On rising edge on selected pin BOTH 0 1 1 0 0 On rising or falling edge on selected pin ZERO 1 0 0 0 0 If Zero flag is set NAF 1 0 1 0 0 If NAF_global flag is set LOW 1 1 0 0 0 On LOW level on selected pin HIGH 1 1 1 0 0 On HIGH level on selected pin C 0 0 0 0 1 Carry Set: C==1 Carry Not Set: C==0 NC 0 0 0 1 1 EQ, Z 0 0 1 0 1 Equal or Zero: Z==1 NE, NZ 0 0 1 1 1 Not Equal or Not Zero: Z==0 N 0 1 0 0 1 Negative: N==1 PZ 0 0 1 1 1 Positive or Zero: N==0 V 0 1 1 0 1 Overflow: V==1 NV 0 1 1 1 1 No Overflow: V==0 ZN 1 0 0 0 1 Zero or Negative: (Z OR N) == 1 P 1 0 0 1 1 Positive: (Z OR N) == 0 GE 1 0 1 1 1 Signed Greater Than or Equal: (N XOR V) == 0 L 1 0 1 0 1 Signed Less Than (N XOR V) == 1 G 1 1 0 1 1 Signed Greater Than (Z OR (N XOR V)) == 0 LE 1 1 0 0 1 Signed Less Than (Z OR (N XOR V)) == 1 LO 1 1 1 1 1 Unsigned Less Than: (C OR Z) == 0 HS 1 1 1 0 1 Unsigned Higher or Same (C OR Z) == 1 Execution If (Condition is true) { If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on request line [P25:P23]; If ([C28:C27] == 11) Generate quiet request on request line [P25:P23]; Jump to Conditional Address; } else { Jump to Next Program Address; } Prv bit = Current Lx value of selected pin; (Always Executed) The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 20.2.7. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 923 Instruction Set www.ti.com 20.6.3.8 CNT (Count) Syntax CNT { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer}] [request={NOREQ | GENREQ | QUIET}] [angle_count={OFF | ON}] [reg={A | B | T | NONE}] [comp ={EQ | GE}] [irq={OFF | ON}] [control={OFF | ON}] max={25-bit unsigned integer} [data={25-bit unsigned integer] } Figure 20-134. CNT Program Field (P31:P0) 31 26 25 23 22 0 Request Number BRK 6 3 1 21 13 12 Next program address 9 9 0110 8 Angle count 4 7 6 Register 1 2 5 4 Comp. select 1 Res. 1 4 0 Int. ena 1 Figure 20-135. CNT Control Field (C31:C0) 31 29 28 27 26 Res. Request type Control 3 2 1 25 24 0 Res. Max Count 1 25 Figure 20-136. CNT Data Field (D31:D0) 31 924 7 6 0 Data Reserved 25 7 Cycles One or two One cycle (time mode), two cycles (angle mode) Register modified Selected register (A, B or T) Description This instruction defines a virtual timer. The counter value stored in the data field [D31:7] is incremented unconditionally on each execution of the instruction when in time mode (angle count bit [P8] = 0). When the count reaches the maximum count specified in the control field, the counter is reset. It takes one cycle in this mode. In angle mode (angle count bit [P8] = 1), CNT needs data from the software angle generator (SWAG). When in angle count mode the angle increment value will be 0 or 1. It takes two cycles in this mode. High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com angle_count Specifies when the counter is incremented. A value of ON causes the counter value to be incremented only if the new angle flag is set (NAF_global = 1). A value of OFF increments the counter each time the CNT instruction is executed. Default value for this field is OFF. comp When set to EQ the counter is reset, when it is equal to the maximum count. When set to GE the counter is reset, when it is greater or equal to the maximum count. Default: GE. irq ON generates an interrupt when the counter overflows to zero. The interrupt is not generated until the data field is reset to zero. If irq is set to OFF, no interrupt is generated. Default: OFF. max Specifies the 25-bit integer value that defines the maximum count value allowed in the data field. When the count in the data field is equal to max, the data field is reset to 0 and the Z system flag is set to 1. data Specifies the 25-bit integer value serving as a counter. Default: 0. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 925 Instruction Set www.ti.com Execution Z = 0; If (Angle Count (bit P8 == 1)) { If (NAF_global == 0) { Selected register = immediate data field; Jump to Next Program Address; } else { If ((Immediate Data Field + Angle Increment) >= Max count) { Z = 1; Selected register = ((Immediate Data Field + Angle Inc.) - Max count); Immediate Data Field = ((Immediate Data Field + Angle Inc.) - Max count); If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on request line [P25:P23]; If ([C28:C27] == 11) Generate quiet request on request line [P25:P23]; } else { Selected register = Immediate Data Field + Angle Increment; Immediate Data Field = Immediate Data Field + Angle Increment; } } } else if(Time mode (bit P8 == 0)) { If [(P5==0) AND (Immediate Data Field == Max count)] OR [(P5==1) AND (Immediate Data Field >= Max count)] { Z = 1; Selected register = 00000; Immediate Data Field = 00000; If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on request line [P25:P23]; If ([C28:C27] == 11) Generate quiet request on request line [P25:P23]; } else { Selected register = Immediate Data Field + 1; Immediate Data Field = Immediate Data Field + 1; } } Jump to Next Program Address; The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 20.2.7. 926 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com 20.6.3.9 DADM64 (Data Add Move 64) Syntax DADM64 { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] remote={label | 9-bit unsigned integer} [request={NOREQ | GENREQ | QUIET}] [control={OFF | ON}] [en_pin_action={OFF | ON}] [cond_addr={label | 9-bit unsigned integer}] [pin={pin number}] comp_mode={ECMP | SCMP | MCMP1 | MCMP2} [action={CLEAR | SET | PULSELO | PULSEHI}] [reg={A | B | R | S | T | NONE}] [irq={OFF | ON}] [data={25-bit unsigned integer] [hr_data= {7-bit unsigned integer}] } -orSyntax DADM64 { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] remote={label | 9-bit unsigned integer} cntl_val={29-bit unsigned integer} data={25-bit unsigned integer} [hr_data= {7-bit unsigned integer}] } SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 927 Instruction Set www.ti.com Figure 20-137. DADM64 Program Field (P31:P0) 31 26 25 23 0 Reserved 6 3 22 21 BRK 13 12 Next program address 1 9 9 8 0 0010 Remote Address 4 9 Figure 20-138. DADM64 Control Field (C31:C0) 31 29 28 27 26 Reserved Request type Control 3 2 1 15 13 25 23 Reserved 22 3 12 8 21 16 En. pin action Conditional address 1 7 9 6 5 4 3 2 1 0 Conditional address Pin select Ext Reg Comp. mode Action Register select Int. ena 9 5 1 2 2 2 1 Figure 20-139. DADM64 Data Field (D31:D0) 31 7 6 0 Data HR Data 25 7 Cycles Two Register modified Register T (implicitly) Description This instruction modifies the data field and the control field at the remote address. The remote data field value is not just replaced, but is added with the DADM64 data field. DADM64 has two distinct syntaxes. In the first syntax, bit values may be set by assigning a value to each of the control fields. This syntax is convenient for modifying control fields that are arranged similarly to the format of the DADM64 control field. A second syntax, in which the entire 29-bit control field is specified by the cntl_val field, is convenient when the remote control field is dissimilar to the DADM64 control field. Either syntax may be used, but you must use one or the other but not a combination of syntaxes. Figure 20-140 shows the DADM64 add and move operation. Figure 20-140. DADM64 Add and Move Operation LSBs (HR Data Field) 32 bits Immediate CF Remote CF HR Immediate DF + HR Remote DF = HR Remote DF Table 20-84. DADM64 Control Field Description request control en_pin_action cond_addr maintains the control field for maintains the control field for maintains the control field for maintains the control field for the remote the remote the remote the remote instruction instruction instruction instruction 928 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com Table 20-84. DADM64 Control Field Description (continued) pin register action irq data hr_data cntl_val maintains the control field for the remote instruction maintains the control field for the remote instruction maintains the control field for the remote instruction maintains the control field for the remote instruction Specifies the 25-bit initial value for the data field. Seven least significant bits of the 32 bit data field. Default: 0 Specifies the 29 least significant bits of the Control field. Execution Remote Data Field = Remote Data Field + Immediate Data Field; Register T = Immediate Data Field; Remote Control Field = Immediate Control Field; Jump to Next Program Address; SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 929 Instruction Set www.ti.com 20.6.3.10 DJZ (Decrement and Jump if Zero) DJNZ is also a supported syntax. The functionality of the two instruction names is identical. Syntax DJZ { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer} [request={NOREQ | GENREQ | QUIET}] [control={OFF | ON}] [cond_addr={label | 9-bit unsigned integer}] [reg={A | B | T | NONE}] [irq={OFF | ON}] [data={25-bit unsigned integer] } Figure 20-141. DJZ Program Field (P31:P0) 31 26 25 23 0 Request Number 6 3 22 21 BRK 13 12 Next program address 1 9 9 8 7 6 5 0 1010 Res. 10 Reserved 4 1 2 6 Figure 20-142. DJZ Control Field (C31:C0) 31 29 28 27 26 25 22 21 16 Reserved Request type Control Reserved Conditional address 3 2 1 4 9 15 13 12 8 7 3 2 1 0 Conditional address Reserved Register select Int. ena 9 10 2 1 Figure 20-143. DJZ Data Field (D31:D0) 31 930 7 6 0 Data Reserved 25 7 Cycles One Register modified Selected register (A, B, or T) Description This instruction defines a virtual down counter used for delayed execution of certain instructions (to generate minimum on/off times). When DJZ is executed with counter value not zero, the counter value is decremented. If the counter value is zero, the counter remains zero until it is reloaded with a nonzero value. The program flow can be modified when down counter value is zero by using the conditional address. High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com cond_addr This field is not optional for the DJZ instruction. irq ON generates an interrupt when the data field reaches zero. No interrupt is generated when the bit is OFF. Default: OFF. data Specifies the 25-bit integer value used as a counter. This counter is decremented each time the DJZ instruction is executed until the counter reaches 0. Default: 0. Execution If (Data != 0) { Data = Selected register = Data - 1; Jump to Next Program Address; } else { Selected register = 000000h; If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on request line [P25:P23]; If ([C28:C27] == 11) Generate quiet request on request line [P25:P23]; Jump to conditional Address; } The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 20.2.7. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 931 Instruction Set www.ti.com 20.6.3.11 ECMP (Equality Compare) Syntax ECMP { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer} [request={NOREQ | GENREQ | QUIET}] [hr_lr={HIGH | LOW}] [angle_comp={OFF | ON}] [control={OFF | ON}] [en_pin_action={OFF | ON}] [cond_addr={label | 9-bit unsigned integer}] pin={pin number} [action={CLEAR | SET | PULSELO | PULSEHI}] [reg={A | B | R | S| T | NONE}] [irq={OFF | ON}] [data={25-bit unsigned integer] [hr_data={7-bit unsigned integer}] } Figure 20-144. ECMP Program Field (P31:P0) 31 26 25 23 0 Request Number 6 3 22 21 BRK 13 12 Next program address 1 9 8 7 0000 9 hr_lr Angle comp. 6 Reserved 0 4 1 1 7 Figure 20-145. ECMP Control Field (C31:C0) 31 29 28 27 26 25 23 22 21 16 Reserved Request type Control Reserved En. pin action Conditional address 3 2 1 3 1 9 15 13 12 8 7 6 5 4 3 2 1 0 Conditional address Pin select Ext Reg 00 Action Register select Int. ena 9 5 1 2 2 2 1 Figure 20-146. ECMP Data Field (D31:D0) 31 932 7 6 0 Data HR Data 25 7 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com Cycles One Register modified Register A, B, R, S or T if selected Description ECMP can use all pins. This instruction compares a 25-bit data value stored in the data field (D31–D7) to the value stored in the selected ALU register (A, B, R, S, or T). Register select encoding can be found in Section 20.6.2. If R, S, or T registers are selected, and if the 25-bit data field matches, ECMP updates the register with the 32-bit value (D31-D0). If the hr_lr bit is cleared, the pin action will occur after a high resolution delay from the next loop resolution clock. If the hr_lr bit is set, the delay is ignored. This delay is programmed in the data field (D6–D0). The behavior of the pins is governed by the four action options in bits C4:C3. ECMP uses the zero flag to generate opposite pin action (synchronized to the loop resolution clock). angle_comp Determines if an angle compare is performed. A value of ON causes the comparison to be performed only if the new angle flag is set (NAF = 1). If OFF is specified, the compare is then performed regardless of the state of the new angle flag. Default: OFF. irq Specifies whether or not an interrupt is generated. A value of ON sends an interrupt if register and data field values are equivalent. If OFF is selected, no interrupt is generated. Default: OFF. data Specifies the value for the data field. This value is compared with the selected register. hr_data Specifies the HR delay. Default: 0. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 933 Instruction Set www.ti.com Execution If (Angle Comp. bit == 0 OR (Angle Comp. bit == 1 AND NAF_global == 1)) { If (Selected register value == Immediate data field value) { If (hr_lr bit == 0) { If (Enable Pin action { Selected Pin = Pin } } else { If (Enable Pin action { Selected Pin = Pin } } == 1) Action AT next loop resolution clock + HR delay; == 1) Action AT next loop resolution clock; If (Z == 1 AND Opposite action == 1) { If (Enable Pin action == 1) { Selected Pin = opposite Pin Action AT next loop resolution clock; } If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on request line [P25:P23]; If ([C28:C27] == 11)Generate quiet request on request line [P25:P23]; If (register R is selected) R register = Compare value (32 bit); If (register S is selected) S register = Compare value (32 bit); If (register T is selected) T register = Compare value (32 bit); Jump to Conditional Address; } } elseIf (Z == 1 AND Opposite action == 1) { If (Enable Pin action == 1) { Selected Pin = opposite Pin Action AT next loop resolution clock; } Jump to Next Program Address; } else // Angle Comp. bit == 1 AND NAF_global == 0 { Jump to Next Program Address; } The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 20.2.7. 934 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com 20.6.3.12 ECNT (Event Count) Syntax ECNT { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer} [request={NOREQ | GENREQ | QUIET}] [control={OFF | ON}] [prv={OFF | ON}] [cond_addr={label | 9-bit unsigned integer}] pin={pin number} event={NAF | FALL | RISE | BOTH | ACCUHIGH | ACCULOW} [reg={A | B | R| S | T | NONE}] [irq={OFF | ON}] [data={25-bit unsigned integer] } Figure 20-147. ECNT Program Field (P31:P0) 31 26 25 23 0 Request Number 6 3 22 21 13 12 BRK Next program address 1 9 9 8 7 6 5 0 1010 Res. 01 Reserved 4 1 2 6 Figure 20-148. ECNT Control Field (C31:C0) 31 26 25 Reserved 29 Request type Control Prv. Reserved Conditional address 3 2 1 1 3 9 15 13 28 27 12 24 8 22 7 21 6 16 4 3 2 1 0 Conditional address Pin select Ext Reg Event Res. Register select Int. ena 9 5 1 3 1 2 1 Figure 20-149. ECNT Data Field (D31:D0) 31 7 6 0 Data Reserved 25 7 Cycles One cycle Register modified Selected Register (A, B, R, S, T or none) Description This instruction defines a specialized 25-bit virtual counter used as an event counter or pulse accumulator (see Table 20-85). The counter value is stored in the data field [D31:D7] and the selected register. If one of the 32-bit registers (R,S,T) is selected, the 25 bit count value is stored left justified in the register with zeros in the seven least significant bits. When an event count condition is specified, the counter value is incremented on a pin edge condition or on the NAF condition (NAF is defined in ACNT). This instruction can be used with all pins. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 935 Instruction Set www.ti.com event The event that triggers the counter. Table 20-85. Event Encoding Format for ECNT Event C6 C5 C4 Count Conditions Mode Int. Available NAF 0 0 0 NAF flag is Set Angle counter Y FALL 0 0 1 Falling edge on selected pin Event counter Y RISE 0 1 0 Rising edge on selected pin Event counter Y BOTH 0 1 1 Rising and Falling edge on selected pin Event counter Y ACCUHIGH 1 0 - while pin is high level Pulse accumulation N ACCULOW 1 1 - while pin is low level Pulse accumulation N irq ON generates an interrupt when event in counter mode occurs. No interrupt is generated with OFF. Default: OFF. data 25-bit integer value serving as a counter. Default: 0. Execution If (event occurs) { If (Register A or B Selected) { Selected register = Immediate Data Field + 1; } If (Register R, S or T Selected) { Selected register[31:7] = Immediate Data Field + 1; Selected register[6:0] = 0; } Immediate Data Field = Immediate Data Field + 1; If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on line [P25:P23]; If ([C28:C27] == 11) Generate quiet request on line [P25:P23]; Jump to Conditional Address; } else { Jump to Next Program Address; } Prv bit = Current Logic (Lx) value of selected pin; (Always executed) The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 20.2.7. 936 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com 20.6.3.13 MCMP (Magnitude Compare) Syntax MCMP { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer} [request={NOREQ | GENREQ | QUIET}] [hr_lr={LOW |HIGH}] [angle_comp={OFF | ON}] [savesub={OFF | ON}] [control={OFF | ON}] [en_pin_action={OFF | ON}] [cond_addr={label | 9-bit unsigned integer}] pin={pin number} order={REG_GE_DATA | DATA_GE_REG} [action={CLEAR | SET | PULSELO | PULSEHI}] reg={A | B | R | S | T | NONE} [irq={OFF | ON}] [data={25-bit unsigned integer] [hr_data={7-bit unsigned integer}] } Figure 20-150. MCMP Program Field (P31:P0) 31 26 25 23 0 Request Number 6 3 22 21 BRK 13 12 Next program address 1 9 8 7 6 5 0000 9 hr_lr Angle comp. Res. Save sub. 4 Res. 0 4 1 1 1 1 5 Figure 20-151. MCMP Control Field (C31:C0) 31 29 28 27 26 25 23 22 21 16 Reserved Request type Control Reserved En. pin action Conditional address 3 2 1 3 1 9 15 7 6 5 Conditional address 13 12 Pin select 8 Ext Reg 1 Order 4 Action 3 Register select 2 1 Int. ena 0 9 5 1 1 1 2 2 1 Figure 20-152. MCMP Data Field (D31:D0) 31 7 6 0 Data HR Data 25 7 Cycles One Register modified T (if save sub bit P[5] is set) SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 937 Instruction Set www.ti.com Description This instruction compares the magnitude of the 25-bit data value stored in the data field (D31-D7) and the 25-bit value stored in the selected ALU register (A, B, R, S, or T). If the hr_lr bit is reset, pin action will occur after a delay from the next loop resolution clock. If the hr_lr bit is set, the delay is ignored. This delay is programmed in the data field (D6-D0). When the data value matches, an output pin can be set or reset according to the pin action bit (C[4]). The pin will not change states if the enable pin action bit (C[22]) is reset. MCMP uses the zero flag set to generate opposite pin action (synchronized to the loop resolution clock). The save sub bit (P[5]) provides the option to save the result of a subtraction into register T. NOTE: The Difference Between Compare Values The difference between the two data values must not exceed (224) - 1. angle_comp Determines whether or not an angle compare is performed. A value of ON causes the comparison to be performed only if the new angle flag is set (NAF = 1). If OFF is specified, the compare is then performed regardless of the state of the new angle flag. Default: OFF. savesub When set, the comparison result is saved into the T register (upper 25 bits). Default: OFF. order Specifies the order of the operands for the comparison. Table 20-86. Magnitude Compare Order for MCMP 938 Order C5 Description REG_GE_DATA 0 Evaluates to true if the register value is greater than or equal to the data field value. DATA_GE_REG 1 Evaluates to true if the data field value is greater than or equal to the register value. irq Specifies whether or not an interrupt is generated. A value of ON sends an interrupt if the compare match occurs according to the order selected. If OFF is selected, no interrupt is generated. data Specifies the value for the data field. This value is compared with the selected register. hr_data HR delay. The default value for an unspecified bit is 0. High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com Execution If (Angle Compare P[7] == 0 OR (P[7] == 1 AND NAF_global == 1)) { If( (Order C[5] == 1) AND (Data[31:7]- Selected register[31:7]) >= 0)) OR ( (Order C[5] == 0) AND Selected register[31:7] - Data[31:7]) >= 0)) { If (Order C[5] == 1 AND Save subtract P[5] == 1) { Register T[31:7] = Data[31:7] - Selected register[31:7]; Register T[6:0] = 0; } If (Order C[5] == 0 AND Save subtract P[5] == 1) { Register T[31:7] = Selected register[31:7] - Data[31:7]; Register T[6:0] = 0; } If (Enable Pin Action C[22] == 1) { If (hr_lr P[8] = 0) { Schedule Action on Selected Pin C[12:8] at start of next loop + HR Delay D[6:0]; } else { Schedule Pin Action on Selected Pin C[12:8] at start of next loop; } } If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on request line [P25:P23]; If ([C28:C27] == 11) Generate quiet request on request line [P25:P23]; Jump to Conditional Address; } else if (Z == 1 AND Opposite Action C[3] == 1 ) { If (Enable Pin Action C[22] == 1) { Schedule Opposite Pin Action on Selected Pin C[12:8] at start of next loop; } Jump to Next Program Address; } else Jump to Next Program Address; } else // Angle Comp. bit == 1 AND NAF_global == 0 Jump to Next Program Address; The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 20.2.7. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 939 Instruction Set www.ti.com 20.6.3.14 MOV32 (Data Move 32) Syntax MOV32 { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] remote={label | 9-bit unsigned integer} [control={OFF | ON}] [z_cond={OFF | ON}] [init={OFF | ON}]| ON}] type={IMTOREG | IMTOREG&REM | REGTOREM | REMTOREG} [reg={A | B | R | S | T | NONE}] [data={25-bit unsigned integer] [hr_data={7-bit unsigned integer}] } Figure 20-153. MOV32 Program Field (P31:P0) 31 26 25 23 0 Reserved 6 3 22 21 BRK 13 12 Next program address 1 9 9 8 0 0100 Remote Address 4 9 Figure 20-154. MOV32 Control Field (C31:C0) 31 27 26 Reserved Control 5 1 25 23 Reserved 22 8 Reserved 14 16 Z Fl. Cond. 3 15 21 Reserved 1 14 7 6 5 4 Ext Reg Init flag 0 Move type Register select Res. 1 1 2 2 1 1 3 2 1 0 Figure 20-155. MOV32 Data Field (D31:D0) 31 940 7 6 0 Data HR Data 25 7 Cycles One or two cycles Register modified Selected register (A, B, R, S, or T) Description MOV32 replaces the selected ALU register and/or the data field values at the remote address location depending on the move type. Figure 20-156 through Figure 20-159 illustrate these operations. If no register is selected, the move is not executed, except for configuration C4:C3 = 01, where the remote data field is written with the immediate data field value. High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com remote Determines the location of the remote address. Default: Current instruction + 1. z_cond When set to OFF the MOV32 performs the move operation specified by the move type whenever it is executed (independent on the state of the Z-Flag). When set to ON the MOV32 performs the move operation specified by the move type only when the Z-Flag is set. init (Optional) Determines whether or not system flags are initialized. A value of ON reinitializes the following system flags to these states: Acceleration flag (ACF) = 0 Deceleration flag (DCF) = 1 Gap flag (GPF) = 0 New angle flag (NAF) = 0 A value of OFF results in no change to the system flags. type Specifies the move type to be executed. Table 20-87. Move Type Encoding Selection Move Type C4 C3 Source Destination(s) Cycles IMTOREG 0 0 Immediate data field Register A, B, R, S, or T 1 Remote data field and register A, B, R, S, or T 1 IMTOREG&REM 0 1 Immediate data field REGTOREM 1 0 Register A, B, R, S, or T Remote data field 1 REMTOREG 1 1 Remote data field Register A, B, R, S, or T 2 Figure 20-156. MOV32 Move Operation for IMTOREG (Case 00) 25/32-bit move LSBs (HR data field) 32 bits HR Immediate DF HR Register A, B, or R, S or T (dashed for R, S, T) reg Specifies which register (A, B, T, or NONE) is involved in the move. A register (A, B, or T) must be specified for every move type except IMTOREG&REM. If NONE is used with move type IMTOREG&REM, the MOV32 executes a move from the immediate data field to the remote data field. If NONE is used with any other move type, no move is executed. data Specifies a 25-bit integer value to be written to the remote data field or selected register. hr_data (Optional) HR delay. The default value for an unspecified bit is 0. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 941 Instruction Set www.ti.com Figure 20-157. MOV32 Move Operation for IMTOREG&REM (Case 01) 25/32-bit move LSBs (HR data field) 32 bits HR Immediate DF HR HR Remote DF Register A, B, R, S or T (dashed for R, S, T) Figure 20-158. MOV32 Move Operation for REGTOREM (Case 10) 25/32-bit move HR Register A, B, R, S, or T (dashed for R, S, T) HR Remote DF LSBs (HR data field = 0 if A or B) Figure 20-159. MOV32 Move Operation for REMTOREG (Case 11) LSBs (HR data field) 25/32-bit move 32 bits HR Remote DF HR Register A, B, R, S, or T (dashed for R, S, T) 942 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com Execution If [(z_cond C[22] ==0) OR ((z_cond C[22] == 1) AND (Z Flag == 1))] { switch (type C[4:3]) { case 00: // IMTOREG Selected register = Immediate Data Field; case 01: // IMTOREG&REM Selected register = Immediate Data Field; Remote Data Field = Immediate Data Field; case 10: // REGTOREM Remote Data Field = Selected register; case 11: // REMTOREG Selected register = Remote Data Field; } } If (Init Flag == 1) { ACF = 0; DCF = 1; GPF = 0; NAF = 0; } else All flags remain unchanged; Jump to Next Program Address; SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 943 Instruction Set www.ti.com 20.6.3.15 MOV64 (Data Move 64) Syntax MOV64 { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] remote={label | 9-bit unsigned integer} [request={NOREQ | GENREQ | QUIET}] [control={OFF | ON}] [en_pin_action={OFF | ON}] [cond_addr={label | 9-bit unsigned integer}] [pin={pin number}] comp_mode={ECMP | SCMP | MCMP1 | MCMP2} [action={CLEAR | SET | PULSELO | PULSEHI}] [reg={A | B | R | S | T | NONE}] [irq={OFF | ON}] [data={25-bit unsigned integer] [hr_data= {7-bit unsigned integer} } -orSyntax 944 MOV64 { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] remote={label | 9-bit unsigned integer} cntl_val={29-bit unsigned integer} [data={25-bit unsigned integer] [hr_data= {7-bit unsigned integer} } High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com Figure 20-160. MOV64 Program Field (P31:P0) 31 26 25 23 0 Reserved 6 3 22 21 BRK 13 12 Next program address 1 9 9 8 0 0001 Remote Address 4 9 Figure 20-161. MOV64 Control Field (C31:C0) 31 29 28 27 26 25 23 Reserved Request type Control Reserved 3 2 1 3 15 13 12 8 22 21 16 En. pin action Conditional address 1 7 9 6 5 4 3 2 1 0 Conditional address Pin select Ext Reg Comp. mode Action Register select Int. ena 9 5 1 2 2 2 1 Figure 20-162. MOV64 Data Field (D31:D0) 31 7 6 0 Data HR Data 25 7 Cycles One Register modified None Description This instruction modifies the data field and the control field at the remote address. MOV64 has two distinct syntaxes. In the first syntax, bit values may be set by assigning a value to each of the control fields. This syntax is convenient for modifying control fields that are arranged similarly to the format of the MOV64 control field. A second syntax, in which the entire 29-bit control field is specified by the cntl_val field, is convenient when the remote control field is dissimilar to the MOV64 control field. Either syntax may be used, but you must use one or the either but not a combination of syntaxes. See Figure 20-163. Figure 20-163. MOV64 Move Operation HR Immediate CF + DF HR Remote CF + DF Table 20-88. MOV64 Control Field Descriptions request control en_pin_action cond_addr pin register, ext reg comp_mode Maintains the control field for the remote instruction. Maintains the control field for the remote instruction. Maintains the control field for the remote instruction. Maintains the control field for the remote instruction. Maintains the control field for the remote instruction. Maintains the control field for the remote instruction. Selects the comparison mode type to be used by the remote instruction. High-End Timer (N2HET) Module 945 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com Table 20-88. MOV64 Control Field Descriptions (continued) action irq data hr_data Maintains the control field for the remote instruction. Maintains the control field for the remote instruction. Specifies the 25-bit initial count value for the data field. If omitted, the field defaults to 0. (Optional) HR delay. The default value for an unspecified bit is 0. Table 20-89. Comparison Type Encoding Format comp_mode C[6] C[5] ECMP 0 0 MCMP Order SCMP 0 1 MCMP1 1 0 REG_GE_DATA MCMP2 1 1 DATA_GE_REG Execution Remote Data Field = Immediate Data Field; Remote Control Field = Immediate control Field; Jump to Next Program Address; 946 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com 20.6.3.16 PCNT (Period/Pulse Count) Syntax PCNT { [hr_lr={HIGH | LOW}] [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer} [request={NOREQ | GENREQ | QUIET}] [irq={OFF | ON}] type={FALL2RISE | RISE2FALL | FALL2FALL | RISE2RISE} pin={pin number} [control={OFF | ON}] [prv={OFF | ON}] [period={25-bit unsigned integer}] [data={25-bit unsigned integer] [hr_data= {7-bit unsigned integer} } Figure 20-164. PCNT Program Field (P31:P0) 31 26 25 23 0 Request Number 6 3 22 21 BRK 13 12 Next program address 1 9 9 8 7 6 5 4 0 0111 Int. ena Type select hr_lr Pin select 4 1 2 1 5 Figure 20-165. PCNT Control Field (C31:C0) 31 29 28 27 26 Res. Request type Control 3 2 1 25 24 0 Prv. Period Count 1 25 Figure 20-166. PCNT Data Field (D31:D0) 31 7 6 0 Data HR Data 25 7 Cycles One Register modified Register A Description This instruction detects the edges of the external signal at loop start and measures its period or pulse duration. The counter value stored in the control field C[24:0] and in the register A is incremented each N2HET loop. PCNT uses the HR structure on the pin to measure an HR period/pulse count value. hr_lr (Optional) Specifies whether the PCNT instruction captures the HR delay into the HR data field on the selected edge condition. If hr_lr is 0 (HIGH) then PCNT captures the HR delay. if hr_lr is 1 (LOW) then PCNT only captures at loop resolution. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 947 Instruction Set www.ti.com irq (Optional) Specifies whether or not an interrupt is generated. A value of ON sends an interrupt when a new value is captured. If OFF is selected, no interrupt is generated. type (Optional) Determines the type of counter that is implemented. Table 20-90. Counter Type Encoding Format P7 P6 Period/Pulse Select Reset On Capture On Falling edge Rising edge FALL2RISE 0 0 Count low-pulse duration on selected pin RISE2FALL 0 1 Count high-pulse duration on selected pin Rising edge Falling edge FALL2FALL 1 0 Count period between falling edges on selected pin Falling edge Falling edge RISE2RISE 1 1 Count period between rising edges on selected pin Rising edge Rising edge period Specifies the 25-bit integer value that holds the counter value. The counter value is also stored in register A. Default: 0. data 25-bit integer representing the last captured counter value. Default: 0. hr_data HR delay. Default: 0. If period-measure is selected, PCNT captures the counter value into the period/pulse data field [D31:D7] on the selected edge. The HR structure provides HR capture field [D6:D0]. The counter value [C24:C0] is reset on the same edge. The captured period value is a 32-bit value. If pulse-measure is selected, PCNT captures the counter value into the period/pulse count field [D31:D7] on the selected edge. The HR structure provides HR capture field [D6:D0]. The counter value [C24:C0] is reset on the next opposite edge. The captured pulse value is a 32-bit value. When the overflow count (all 1’s in the counter value) is reached, PCNT stops counting until the next reset edge is detected. Note: For FALL2FALL/RISE2RISE, the user should always discard the first interrupt/HTU request if interrupt/request are enabled before HET_ON. For both the types, reset edge and capture edge are the same and the interrupt or HTU request is triggered on capture edge (which is nothing but the reset edge). Once the execution unit is enabled, the first edge generates an interrupt but the value of the counter is of no use as this is not the period between 2 edges. So first edge after turning on N2HET is used mainly for resetting the counter and start the period count. 948 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com Execution Z = 0; If (Period C[24:0] != 1FF_FFFFh) { Period C[24:0] = Period C[24:0] + 1; } Register A = Period C[24:0]; If (specified capture edge detected on selected pin) { Z = 1; If (Period value != 1FF_FFFFh) { HR Capture Value = selected HR counter; } else { HR Capture Value = 7Fh; } If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on request line [P25:P23]; If ([C28:C27] == 11) Generate quiet request on request line [P25:P23]; } If (specified reset edge detected on selected pin) { Period value = 0000000h; } Prv bit = Current Logic (Lx) value of selected pin; Jump to Next Program Address; The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 20.2.7. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 949 Instruction Set www.ti.com 20.6.3.17 PWCNT (Pulse Width Count) Syntax PWCNT { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer} [request={NOREQ | GENREQ | QUIET}] [hr_lr={HIGH | LOW}] [control={OFF | ON}] [cond_addr={label | 9-bit unsigned integer} [en_pin_action={OFF | ON}] pin ={pin number} [action={CLEAR | SET | PULSELO | PULSEHI}] [reg={A | B | T | NONE}] [irq={OFF | ON}] [data={25-bit unsigned integer] [hr_data={7-bit unsigned integer}] } Figure 20-167. PWCNT Program Field (P31:P0) 31 26 25 23 0 Request Number 6 3 22 21 BRK 13 12 Next program address 1 9 9 8 7 6 5 0 1010 hr_lr 11 Reserved 4 1 2 6 Figure 20-168. PWCNT Control Field (C31:C0) 31 29 28 27 26 25 23 22 21 16 Reserved Request type Control Reserved En. pin action Conditional address 3 2 1 3 1 9 15 13 12 8 7 5 4 3 2 1 0 Conditional address Pin select Reserved Action Register select Int. ena 9 5 3 2 2 1 Figure 20-169. PWCNT Data Field (D31:D0) 31 950 7 6 0 Data HR Data 25 7 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com Cycles One Register modified Selected register (A, B or T) Description This instruction defines a virtual timer used to generate variable length pulses. The counter value stored in the data field is decremented unconditionally on each timer resolution until it reaches zero, and it then stays at zero until it is reloaded with a non-zero value. The specified pin action is performed as long as the count after count value is decremented is greater than 0. The opposite pin action is performed when the count after decrement just reaches 0. If the hr_lr bit is reset, the opposite pin action will be taken after a HR delay from the next loop resolution clock. If the hr_lr bit is set, the delay is ignored. This delay is programmed in bits [D6:D0]. irq ON generates an interrupt when the data field value reaches 0. No interrupt is generated for OFF. Default: OFF. data 25-bit integer value serving as a counter. hr_data HR delay. Default: 0. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 951 Instruction Set www.ti.com Execution If (Data field value == 0) { Selected register = 0; Jump to Next Program Address; } If (Data field value > 1) { Selected register = Data field value - 1; Data field value = Counter value - 1; If (Enable Pin action == 1) { Selected Pin = Pin Action AT next loop resolution clock; } Jump to Next Program Address; } If (Data field value == 1) { Selected register = 0000000h; Data field value = 0000000h; If (Opposite action == 1) { If (hr_lr bit == 0) { If (Enable Pin action == 1) { Selected Pin = Opposite level of Pin Action AT next loop resolution clock + HR delay; } } else { If (Enable Pin action == 1) { Selected Pin = Opposite level of Pin Action AT next loop resolution clock; } } If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on request line [P25:P23]; If ([C28:C27] == 11) Generate quiet request on request line [P25:P23]; } Jump to Conditional Address } The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 20.2.7. 952 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com 20.6.3.18 RADM64 (Register Add Move 64) Syntax RADM64 { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] remote={label | 9-bit unsigned integer} [request={NOREQ | GENREQ | QUIET}] [control={OFF | ON}] [en_pin_action={OFF | ON}] [cond_addr={label | 9-bit unsigned integer}] [pin={pin number}] comp_mode={ECMP | SCMP | MCMP1 | MCMP2} [action={CLEAR | SET | PULSELO | PULSEHI}] [reg={A | B | R | S | T | NONE}] [irq={OFF | ON}] [data={25-bit unsigned integer] [hr_data= {7-bit unsigned integer} } -orSyntax RADM64 { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] remote={label | 9-bit unsigned integer} cntl_val={29-bit unsigned integer} [data={25-bit unsigned integer] [hr_data= {7-bit unsigned integer} } SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 953 Instruction Set www.ti.com Figure 20-170. RADM64 Program Field (P31:P0) 31 26 25 23 0 Reserved 6 3 22 21 13 12 BRK Next program address 1 9 9 8 0 0011 Remote Address 4 9 Figure 20-171. RADM64 Control Field (C31:C0) 31 29 28 27 26 25 23 22 21 16 Reserved Request type Control Reserved En. pin action Conditional address 3 2 1 3 1 9 15 13 12 8 7 6 5 4 3 2 1 0 Conditional address Pin select Ext Reg Comp. mode Action Register select Int. ena 9 5 1 2 2 2 1 Figure 20-172. RADM64 Data Field (D31:D0) 31 7 6 0 Data HR Data 25 7 Cycles Normally One Cycle. Two cycles if writing to remote address that is also the next address. Register modified None Description This instruction modifies the data field, the HR data field and the control field at the remote address. The advantage over DADM64 is that It executes one cycle faster. In case the R, S, or T register is selected, the addition is a 32-bit addition. The table description shows the bit encoding for determining which ALU register is selected. RADM64 has two distinct syntaxes. In the first syntax, bit values may be set by assigning a value to each of the control fields. This syntax is convenient for modifying control fields that are arranged similar to the format of the RADM64 control field. A second syntax, in which the entire 29-bit control field is specified by the cntl_val field, is convenient when the remote control field is dissimilar from the RADM64 control field. Either syntax may be used, but you must use one or the either but not a combination of syntaxes. See Figure 20173. Figure 20-173. RADM64 Add and Move Operation LSBs (HR data field) 32 bits Immediate CF Remote CF comp_mode 954 HR Immediate DF + HR Register A, B, R, S, or T (dashed for R, S, T) = HR Remote DF Selects the comparison mode type to be used. High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com Table 20-91. Comparison Type Encoding Format comp_mode C[6] C[5] ECMP 0 0 MCMP Order SCMP 0 1 MCMP1 1 0 REG_GE_DATA MCMP2 1 1 DATA_GE_REG Table 20-92. RADM64 Control Field Descriptions request Control en_pin_action cond_addr pin register action irq data hr_data cntl_val Maintains the control field for the remote instruction. Maintains the control field for the remote instruction. Maintains the control field for the remote instruction. Maintains the control field for the remote instruction. Maintains the control field for the remote instruction. Maintains the control field for the remote instruction. Maintains the control field for the remote instruction. Maintains the control field for the remote instruction. Specifies the 25-bit initial value for the data field. If omitted, the field defaults to 0. Seven least significant bits of the 32-bit data field. Default: 0. Specifies the 29 least significant bits of the Control field. Execution Remote Data Field = Selected register + Immediate Data Field (including HR field); Remote Control Field = Immediate Control Field; Jump to Next Program Address; SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 955 Instruction Set www.ti.com 20.6.3.19 RCNT (Ratio Count) Syntax RCNT { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [control={OFF | ON}] divisor={25-bit unsigned integer} [data={25-bit unsigned integer] } Figure 20-174. RCNT Program Field (P31:P0) 31 26 25 23 22 21 13 12 9 8 7 6 5 4 3 1 0 0 Reserved BRK Next program address 1010 Res. 00 Step width Res. 1 6 3 1 9 4 1 2 2 3 1 Figure 20-175. RCNT Control Field (C31:C0) 31 27 26 Reserved Control 5 1 25 24 0 Res. Divisor 1 25 Figure 20-176. RCNT Data Field (D31:D0) 31 7 6 0 Data Reserved 25 7 Cycles Two Cycles (One Cycle if T=0) Register modified None Description RCNT is used with other instructions to convert an input period measurement TInput to the form of (Equation 31) where the input period is expressed as a fraction of a reference period TReference. æ N ö T In p u t = T R e fe re n c e · ç ÷ èM ø (31) RCNT computes the numerator N of (Equation 31). The denominator M of (Equation 31) is a constant that is of interest. For example, choosing M = 100 allows the input period to be expressed as a percentage (%) of the reference period. Note that if TInput > TReference , then RCNT will return N > M ; which would be correct if, for example, the input pulse period is 110% of the reference pulse period. RCNT expects that register T is loaded with the value of TReference. The input period TInput is determined by counting the number of loop resolution periods between edges on the input pin. This information is conveyed through the Z flag from a PCNT instruction that precedes the RCNT instruction. The divisor field of the RCNT instruction should be chosen as: Divisor = M · lr , where M is the desired denominator from (Equation 31) and lr is the loop resolution prescale value. 956 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com An example N2HET program that makes use of the RCNT instruction is: L0: MOV32 { remote=dummy,type=IMTOREG,reg=T,data=0x8,hr_data=0}; L1: PCNT { hr_lr=HIGH,brk=OFF,type=FALL2FALL,pin=0}; L2: RCNT { divisor=320,data=0x4}; L3: BR {cond_addr=L5, event = Z} L4: ADC { src1=ZERO,src2=IMM,dest=IMM,next=L0,data=0,hr_data=0}; L5: ADD { src1=REM,src2=ZERO,dest=IMM,remote=L4,data=0,hr_data=0}; L6: ADD { src1=ZERO,src2=ZERO,dest=NONE,rdest=REM, next=L0,remote=L4,data=0,hr_data=0}; dummy In this small program an input signal on pin 0 is measured both in terms of absolute cycles by the PCNT instruction at L1 and as in 1/10ths of the reference period by the RCNT instruction at L2. In this example the reference period is a constant 0x400 cycles; this value is loaded into register T by the MOV32 instruction at L0. (0x400 is data=8, hr_data=0) RCNT follows PCNT and is initialized to a working count of T/2 (0x200) whenever the PCNT instruction detects a falling edge on pin 0. Between falling edges on pin0, RCNT accumulates counts 10x faster than PCNT; so that the working data field of RCNT will reach the reference value of 0x400 in 1/10th the time that a PCNT instruction would. Each time the RCNT instruction passes the reference value, it sets the carry out flag and subtracts the reference value from the working count. By accumulating carry-outs from RCNT, the add with carry instruction at L4 effectively counts in increments of 1/10th of the reference period. Note that the divisor value 320 is 10 times 32; this assumes lr=32. When the next falling edge is detected on pin 0, PCNT sets the Z flag and the RCNT instruction resets again to the initial data field of T/2. RCNT does not modify the Z flag, so that the branch instruction at L3 can execute instructions at L5, L6 instead of L4. The instructions at L5 and L6 capture the final result from L4 and reset the ADC instruction at L4 to zero for the start of the next period measurement. Execution If (register T[31:0] != 00000000h) { C = 0; If (Z == 0) { Data Field[31:0] = Data Field[31:0] + Divisor[24:0]; If (Data Field[31:0] >= Reg T[31:0]) { Data Field[31:0]=Data Field[31:0] - Reg T[31:0]; C = 1; } } else { Data Field[31:0] = T[31:0] >> 1; /* T/2 */ } } Jump to Next Program Address; SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 957 Instruction Set www.ti.com 20.6.3.20 SCMP (Sequence Compare) Syntax SCMP { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer} [request={NOREQ | GENREQ | QUIET}] [control={OFF | ON}] [en_pin_action={OFF | ON}] cond_addr={label | 9-bit unsigned integer} pin ={pin number} [action={CLEAR | SET}] [restart={OFF | ON}] [irq={OFF | ON}] [data={25-bit unsigned integer] } Figure 20-177. SCMP Program Field (P31:P0) 31 26 25 23 0 Request Number 6 3 22 21 BRK 13 12 Next program address 1 9 8 0 0000 Reserved 4 9 9 Figure 20-178. SCMP Control Field (C31:C0) 31 29 Reserved 28 27 Request type 3 2 15 13 26 25 Control Cout prv Reserved En. pin action Conditional address 1 2 1 9 1 12 Conditional address 24 8 Pin select 9 5 23 7 22 21 6 5 16 1 0 Res. 01 Action 4 Reserved 3 2 Restart enable Int. ena 1 2 1 2 1 1 Figure 20-179. SCMP Data Field (D31:D0) 31 958 7 6 0 Data Reserved 25 7 Cycles One Register modified Register T (implicitly) Description This instruction alternately performs angle- and time-based operations to generate pulse sequences, using the angle referenced time base. These pulse sequences last for a relative duration using a free running time base. Generally, register B holds the angle values and register A holds the time values. Bit 0 of the conditional address field (C13) specifies whether the instruction is operating in angle or time operation mode. High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com When the compared values match in angle mode, a pin can be set or reset according to the pin action bit (C4). The pin does not change states if the enable pin action bit (C22) is reset. The restart enable bit (C1) provides the option to unconditionally restart a sequence using the X-flag bit of ACMP. restart If restart is set to ON and the X flag = 1, the assembler writes a value of 1 into the immediate index field, writes the value in register A into the immediate data field, and jumps to the next program address. The X flag is set or cleared by the ACMP instruction. If restart is set to OFF, the X flag is ignored; no special action is performed. Default: OFF. irq ON generates an interrupt if the compare match occurs in angle mode. No interrupt is generated when the field is OFF. Default: OFF. data Specifies the 25-bit compare value. cond_addr Since the LSB of the conditional address is used to select between time mode and angle mode, and since the conditional address is taken only in time mode, the destination for the conditional address must be odd. Execution If (Data field value = 0) { Data field register = Data Field register - register T; Z = 1; } Register A = Gap start value; } Jump to Next Program Address; SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 961 Instruction Set www.ti.com 20.6.3.22 SHFT (Shift) Syntax SHFT { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer} [request={NOREQ | GENREQ | QUIET}] smode={OR0 | OL0 | OR1 | OL1 | ORZ | OLZ | IRM | ILL | IRZ | ILZ} [control={OFF | ON}] [prv={OFF | ON}] [cond_addr={label | 9-bit unsigned integer} cond={UNC | FALL | RISE} pin ={pin number} [reg={A | B | R | S | T | NONE}] [irq={OFF | ON}] [data={25-bit unsigned integer] } Figure 20-183. SHFT Program Field (P31:P0) 31 26 25 23 0 Request Number 6 3 22 21 BRK 13 12 Next program address 1 9 9 8 4 3 0 1111 Reserved Smode 4 5 4 Figure 20-184. SHFT Control Field (C31:C0) 31 29 28 27 Reserved Request type 3 2 15 13 26 25 Control 24 Prv. 1 22 8 16 Conditional address 3 9 1 12 21 Reserved 7 6 5 4 3 2 1 0 Conditional address Pin select Ext Reg Shift condition Res. 0 Register select Int. ena 9 5 1 2 1 1 2 1 Figure 20-185. SHFT Data Field (D31:D0) 31 962 7 6 0 Data Reserved 25 7 Cycles One Register modified Selected register (A, B, R, S or T) Description This instruction shifts the data field of the Instruction. N2HET pins can be used for data in or data out. SHFT includes parameters to select the shift direction (in, out, left, right), shift condition (shift on a defined clock edge on HET[0] or shift always), register for data storage (A, B, R, S or T), and the data pin. High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com smode Shift mode Table 20-94. SHIFT MODE Encoding Format smode P3 P2 P1 P0 Operation OR0 0 0 0 0 Shift Out / Right LSB 1st on HETx / 0 into MSB OL0 0 0 0 1 Shift Out / Left MSB 1st on HETx / 0 into LSB OR1 0 0 1 0 Shift Out / Right LSB 1st on HETx / 1 into MSB OL1 0 0 1 1 Shift Out / Left MSB 1st on HETx / 1 into LSB ORZ 0 1 0 0 Shift Out / Right LSB 1st on HETx / Z into MSB OLZ 0 1 0 1 Shift Out / Left MSB 1st on HETx / Z into LSB IRM 1 0 0 0 Shift In / Right HETx into MSB ILL 1 0 0 1 Shift In / Left HETx into LSB IRZ 1 0 1 0 Shift In / Right HETx in MSB / LSB into Z ILZ 1 0 1 1 Shift In / Left HETx in LSB / MSB into Z cond Specifies the shift condition. Table 20-95. SHIFT Condition Encoding C6 C5 0 X Shift Condition Always 1 0 Rising edge of HET[0] 1 1 Falling edge of HET[0] irq ON generates an interrupt if the Z flag is set. A value of OFF does not generate an interrupt. Default: OFF. data Specifies the 25-bit value for the data field. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 963 Instruction Set www.ti.com Execution If (SHIFT condition == 0X) OR (SHIFT condition == 10 AND HET[0] rising edge) OR (SHIFT condition == 11 AND HET[0] falling edge) { If ([P3:P2] == 00) { If ((Immediate Data Field == all 0’s AND [P3:P0] == 000X) OR (Immediate Data Field == all 1’s AND [P3:P0] == 001X)) { Z = 1; } else { Z = 0; } } else If ([P3:P0] == 1010) { Z = LSB of the Immediate Data Field; } else if ([P3:P0] == 1011) { Z = MSB of the Immediate Data Field; } } If( (Immediate Data Field == all 0’s) OR (Immediate Data Field == all 1’s)) { if (Interrupt Enable == 1) HETFLG[n] = 1; { /* n depends on address */ } Jump to Conditional Address; } else { Jump to Next Program Address; } Prv. bit = HET[0] Pin level; (Always executed) Shift Immediate Data Field once according to P[3:0]; Immediate Data Field = Result of the shift; Selected register = Result of the shift; Jump to Next Program Address; NOTE: The immediate data field evaluates all 0s or all 1s and is performed before the shift operation. The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 20.2.7. 964 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com 20.6.3.23 WCAP (Software Capture Word) Syntax WCAP { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer} [request={NOREQ | GENREQ | QUIET}] [hr_lr={HIGH | LOW}] [control={OFF | ON}] [prv={OFF | ON}] [cond_addr={label | 9-bit unsigned integer}] pin ={pin number} event={NOCOND | FALL | RISE | BOTH} reg={A | B | R | S | T | NONE} [irq={OFF | ON}] [data={25-bit unsigned integer] [hr_data={7-bit unsigned integer}] } Figure 20-186. WCAP Program Field (P31:P0) 31 26 25 23 22 21 13 12 9 8 7 0 0 Request Number BRK Next program address 1011 hr_lr Reserved 6 3 1 9 4 1 8 Figure 20-187. WCAP Control Field (C31:C0) 31 29 28 27 Reserved Request type 3 2 15 13 26 25 Control 24 Prv. 1 1 12 8 22 21 16 Reserved Conditional address 3 9 7 6 5 4 3 2 1 0 Conditional address Pin select Ext Reg Capture condition Reserved Register select Int. ena 9 5 1 2 2 2 1 Figure 20-188. WCAP Data Field (D31:D0) 31 7 6 0 Data HR Data 25 7 Cycles One Register modified None Description This instruction captures the selected register into the data field if the specified capture condition is true on the selected pin. This instruction can be used with all pins. If the hr_lr bit is reset, the WCAP instruction will capture an HR time stamp into the data field on the selected edge condition. If the hr_lr bit is set, the HR capture is ignored. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 965 Instruction Set www.ti.com event Specifies the event that triggers the capture. Table 20-96. Event Encoding Format for WCAP C6 C5 Capture Condition 0 0 Always 0 1 Capture on falling edge 1 0 Capture on rising edge 1 1 Capture on rising and falling edge irq ON generates an interrupt when the capture condition is met. No interrupt is generated for OFF. Default: OFF. data Specifies the 25-bit integer value to be written to the data field or selected register. hr_data HR capture value. Default: 0. NOTE: WCAP in HR Mode: The HR Counter starts on a WCAP instruction execution (in the first loop clock) and will synchronize to the next loop clock. When N2HET is turned on and a capture edge occurs in the first loop clock (where the HR counter hasn’t been synchronized to the loop clock), then the captured HR counter value is wrong and is of no use. So the captured HR data in the first loop clock should be ignored. Execution If (Specified Capture Condition is true on Selected Pin OR Unconditional capture is selected) { Immediate Data Field = Selected register value; If (hr_lr bit == 0) Capture the HR value in Immediate HR Data Field; If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on request line [P25:P23]; If ([C28:C27] == 11) Generate quiet request on request line [P25:P23]; Jump to Conditional Address; } Jump to Next Program Address; Prv bit = Current Logic (Lx) value of selected pin; (always executed) The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 20.2.7. 966 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Instruction Set www.ti.com 20.6.3.24 WCAPE (Software Capture Word and Event Count) Syntax WCAPE { [brk={OFF | ON}] [next={label | 9-bit unsigned integer}] [reqnum={3-bit unsigned integer} [request={NOREQ | GENREQ | QUIET}] [control={OFF | ON}] [prv={OFF | ON}] [cond_addr={label | 9-bit unsigned integer} pin ={pin number} event={NOCOND | FALL | RISE | BOTH} [reg={A | B | R | S | T | NONE}] [irq={OFF | ON}] [ts_data={25-bit unsigned integer] [ec_data={7-bit unsigned integer}] } Figure 20-189. WCAPE Program Field (P31:P0) 31 26 25 23 0 Request Number 6 3 22 21 BRK 13 12 Next program address 1 9 9 8 0 1000 Reserved 4 9 Figure 20-190. WCAPE Control Field (C31:C0) 31 29 28 27 Reserved Request type 3 2 15 13 26 25 Control 24 Prv. 1 1 12 8 23 22 21 16 Reserved Conditional address 3 9 7 6 5 4 3 2 1 0 Conditional address Pin select Ext Reg Capture condition Reserved Register select Int. ena 9 5 1 2 2 2 1 Figure 20-191. WCAPE Data Field (D31:D0) 31 7 6 0 Time Stamp Edge Counter 25 7 Cycles One Register modified None Description This instruction captures the selected register into the data field [D31:D7] and increments an event counter [D6:D0] if the specified capture condition is true on the selected pin. This instruction can be used with all pins, but the time stamp [D31:D7] has loop resolution only. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer (N2HET) Module Copyright © 2018, Texas Instruments Incorporated 967 Instruction Set www.ti.com event Specifies the event that triggers the capture. Table 20-97. Event Encoding Format for WCAPE C6 C5 Capture Condition 0 0 Always 0 1 Capture on falling edge 1 0 Capture on rising edge 1 1 Capture on rising and falling edge irq ON generates an interrupt when the capture condition is met. No interrupt is generated for OFF. Default: OFF. ts_data Specifies the 25-bit integer value for [D31:D7] Default: 0. ec_data Specifies the initial 7-bit integer value for [D6:D0]. Default: 0. Execution If (Specified Capture Condition is true on Selected Pin OR Unconditional capture is selected) { Immediate Data Field[31:7] = Selected register value; Immediate Data Field [6:0] = Immediate Data Field [6:0] + 1; If (Interrupt Enable == 1) HETFLG[n] = 1; /* n depends on address */ If ([C28:C27] == 01) Generate request on request line [P25:P23]; If ([C28:C27] == 11) Generate quiet request on request line [P25:P23]; Jump to Conditional Address; } Jump to Next Program Address; Prv bit = Current Logic (Lx) value of selected pin; (always executed) The specific interrupt flag that is triggered depends on the address from which the instruction is executed, see Section 20.2.7. 968 High-End Timer (N2HET) Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Chapter 21 SPNU499C – March 2018 High-End Timer Transfer Unit (HTU) Module This chapter describes the high-end timer transfer unit (HTU) module. The HTU is similar to the DMA (Direct Memory Access) module, but it is specialized to transfer N2HET (High-End Timer) data to or from the microcontroller RAM. NOTE: This chapter describes a superset implementation of the HTU module that includes features and functionality that require DMA. Since not all devices have DMA capability, consult your device-specific datasheet to determine applicability of these features and functions to your device being used. Topic 21.1 21.2 21.3 21.4 21.5 21.6 ........................................................................................................................... Page Overview ......................................................................................................... 970 Module Operation ............................................................................................. 971 Use Cases ....................................................................................................... 983 HTU Control Registers ...................................................................................... 986 Double Control Packet Configuration Memory .................................................... 1012 Examples ....................................................................................................... 1019 SPNU499C – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 969 Overview www.ti.com 21.1 Overview The HET transfer unit is a dedicated direct memory access controller that transfers data between the N2HET RAM and RAM buffers located in the main memory address range. This eliminates time consuming CPU accesses to the N2HET RAM to gather measurement data or creating output waveforms and thus freeing up the CPU to perform other tasks. 21.1.1 Features • • • • • • • • • 970 Independently transfers data between the N2HET and the main memory 8 double control packets supporting dual buffer configuration Transfer requests generated by N2HET instructions/events One shot, circular and auto switch buffer transfer modes for each double control packet for flexible buffer handling Constant and post-increment addressing modes 32- or 64-bit transactions Programmable memory protection region Parity protect control packet RAM Extensive diagnostic functionality High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Module Operation www.ti.com 21.2 Module Operation The HTU is tightly coupled to the N2HET and is not intended to transfer data from other peripheral modules. It initiates transfers with the help of requests generated by the N2HET program and configurable control packets. Figure 21-1 shows a system block diagram of the HTU and the main path for the data transfer. The tight coupling and the dedicated bus into the SCR (Switched Central Resource) reduces the amount of data transferred on the peripheral bus, which increases the overall system performance. However if the application decides to use the direct CPU access method to the N2HET RAM, it is free to do so. Figure 21-2 shows a more detailed block diagram of the HTU module. Figure 21-1. System Block Diagram RAM0 ARM Main Datapath SCR2 Slave Port RAM1 Main Datapath Master Port SCR Peripheral Bus HTU SPNU499C – March 2018 Submit Documentation Feedback N2HET High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 971 Module Operation www.ti.com Figure 21-2. HTU Block Diagram HTU N2HET Control Data Data FIFO Address Normal Memory Protection 8 SCR2 Request Quiet 8 Request Control Packet RAM with Parity Transfers between N2HET RAM and the main memory are triggered by 8 different normal N2HET requests. Quiet requests are used for specific cases and are discussed in Section 21.2.4.1. Control packets, which store the source and destination addresses, the transfer count and other information (see Section 21.5), are associated with the requests. A FIFO decouples the read- and write-path and allows to do data-packing in the case of different read- and write-data sizes. The application can specify a section of memory into or from which the data is transferred. This serves as memory protection in the case that information in the control packet RAM was unintentionally altered and avoids that the HTU can overwrite important application data. Control packets are implemented as double control packets (DCP) which allow to specify two buffers for the data transfer. This enables the CPU to work with one buffer, while new data is transferred to/from the other buffer. The control packet defines: • the start address of the source/destination buffers • the N2HET instruction address location • how many elements need to be transferred per request • the buffer size as the number of elements times the number of frames • the buffer handling A transfer is triggered when a certain condition (for example, capture, compare condition) is detected by a N2HET instruction. The N2HET instruction specifies which request line to the HTU will be triggered at the event. The DCPs have a fixed assignment to the request lines and the corresponding assignment can be found in the device datasheet. Once a request is triggered, it starts a frame transfer. A frame can contain one or more elements. Elements are defined as 32-bit or 64-bit words of data. Figure 21-3. Example of a HTU Transfer Element Count =2 Frame count =4 Frame 1 Element1 HTUREQ 972 Frame 3 Frame 2 Element2 Element3 HTUREQ Element4 Element5 Frame 4 Element6 HTUREQ High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated Element7 Element8 HTUREQ SPNU499C – March 2018 Submit Documentation Feedback Module Operation www.ti.com 21.2.1 Data Transfers between Main RAM and N2HET RAM 21.2.1.1 Addressing Modes The addressing modes of a control packet need to be distinguished between the main RAM of the CPU and the N2HET RAM. Main RAM For each double control packet (see Section 21.2.1.3), the addressing mode for the main RAM (RAM0/1) can be configured to constant or post-increment mode in register IHADDRCT. • Constant Addressing: In constant mode, the HTU writes/reads the data to/from the same address in the main RAM. • Post-increment Addressing: In post-increment mode, the HTU writes/reads the data to/from the main RAM by incrementing through the addresses after each transfer. If 32-bit transfers are selected it will automatically increment by 4 Byte, if 64-bit transfers are selected, it will increment by 8 Byte. The examples of Use Cases illustrate the post-increment mode, where the elements of consecutive frames are transferred to/from consecutive locations in the main RAM buffer. N2HET RAM How a DCP addresses the N2HET RAM is determined by the initial N2HET address, the initial element counter (IETCOUNT) and the N2HET addressing mode (ADDMH). The main difference to the main RAM addressing mode is that the HET address is reset to the initial HET address for every first element of a frame. To implement constant addressing, the initial element counter needs to be set to 1. Post-increment addressing is selected by programming the initial element counter to a value other than 1. 21.2.1.2 Single Buffer Implementation In a single buffer implementation, the DCP is set up to transfer data to/from a single buffer in the main RAM. With each transfer request, the programmed number of elements is transferred and the buffer pointer is reset to its starting address after the programmed number of frame transfers have completed. Figure 21-4 shows the request on one request line of the HTU and the frame running on the assigned control packet visualized by the element counter. In the diagram, the frame has 5 element transfers (element count = 5). Before the application reads the buffer, it has to disable the control packet to avoid that new data overwrites the buffer while it's being accessed by the application. Regardless of the control packet being disabled at t1 or t2 the last frame will always be completed, since the trigger request has been received already. The application can determine any ongoing transfers by the TIPF flag and the NACP bits. • One Shot Buffer Mode: If TMBA or TMBB is set to one shot buffer mode then the data stream will stop after all elements of buffer A or buffer B have been transferred. This means that the corresponding DCP will be disabled after the last frame was transferred to/from buffer A or B and CFTCTA or CFTCTB decrements to 0. • Circular Buffer Mode: If TMBA or TMBB is set to circular buffer mode, then the data stream will continue back at the start of buffer A or B after all elements of buffer A or B have been transferred. The example of Timing Example for Circular Buffer Mode assumes IETCOUNT = 3 (Initial Element Transfer Count), IFTCOUNT = 3 (Initial Frame Transfer Count, SIZE = 0 (Size of Transfer = 32-bit) and ADDFM = 0 (Addressing Mode Main Memory = Post Increment). So there are in total 9 32-bit values in the buffer. It also assumes IFADDRx = 10h. "U" means uninitialized. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 973 Module Operation www.ti.com Figure 21-4. Single Buffer Timing and Memory Representation t2 t1 TU request (1) Element Counter Element Number X X X 5 4 3 2 1 6 7 8 9 10 5 4 3 2 1 1 2 3 4 5 5 4 3 2 1 11 12 13 14 15 Memory View 15 14 13 12 Increasing Address 11 10 9 1 Buffer 8 7 15 6 15 5 15 4 15 3 15 2 15 1 Figure 21-5. Timing Example for Circular Buffer Mode end of buffer end of buffer request 3 element counter buffer location 2 1 3 2 1 3 1Ch 20h 24h 10h 14h 18h 2 1 3 2 1 3 10h 14h 18h 28h 2Ch 30h 2 1 3 1Ch 20h 24h 2 1 28h 2Ch 30h busy bit frame counter CFTCTx U 2 1 0 2 1 full address CFADDRx U 1Ch 28h 34h 1Ch 28h buffer full flag BFINTFL 974 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Module Operation www.ti.com 21.2.1.3 Dual Buffer Implementation The transfer unit provides double control packets (DCPs) supporting the use of two buffers per data stream (per HTU request source). If one buffer should be read by the CPU or DMA, the data stream is directed to the other buffer and the first buffer is frozen. Switching to the other buffer can be triggered with a write access to the CPENA register or with the DCP configured to automatically switch to the other buffer when the programmed number of frames has been transmitted. Freezing the buffer avoids this buffer to be overwritten with new HET data while the CPU or DMA reads this buffer. Figure 21-6 shows a timing example of two HET instructions 1 and 2, which are the request sources for the HTU (and are controlled by DCP 1 and DCP 2). Each generated frame has 5 element transfers. Request source 1 has two RAM buffers, controlled by two control packets 1A and 1B. Request source 2 has two RAM buffers, controlled by two control packets 2A and 2B. Figure 21-6. Dual Buffer Timing t1 TU request (1) Element Counter 1A Element Counter 1B Element Number X TU request (2) Element Counter 2A Element Counter 2B Element Number X X 5 4 3 2 1 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 X X 5 4 3 2 1 11 12 13 14 15 X 5 4 3 2 1 16 17 18 19 20 X 5 4 3 2 1 5 4 3 2 1 1 2 3 4 5 6 7 8 9 10 X 5 4 3 2 1 11 12 13 14 15 t3 t2 5 4 3 2 1 16 17 18 19 20 SPNU499C – March 2018 Submit Documentation Feedback 10 9 8 7 6 5 4 3 2 1 Buffer 1A Switch Increasing Address Increasing Address Memory View for DCP-1A/B 10 9 8 7 6 5 4 3 2 1 Buffer 1A 20 19 18 17 16 15 14 13 12 11 Buffer 1B High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 975 Module Operation www.ti.com Figure 21-6 shows a switch at time t1, where buffer 1A is frozen and data stream 1 is directed to buffer 1B, but only after the frame has been completed. It also shows the time (t2 or t3) where 2A is frozen and data stream 2 is directed to buffer 2B. If the switch happens between the request and the start of the frame (for example, time t3), then the frame is processed by the new control packet (although the old control packet was active at the time of the request). The delays between the HTU requests and the start of the element transfers result from the fact that the HTU can process only one transfer at a time. Auto Switch Buffer Mode If TMBA is set to auto switch mode, then the data stream will continue at the start of buffer B after all elements of buffer A have been transferred. This means that in the CPENA register, CP A is disabled and CP B is enabled automatically and buffer B uses its initial main memory address and initial frame counter to start. The same principle is valid for TMBB and buffer B. The examples of Figure 21-7 assumes IETCOUNT=3 (Initial Element Transfer Count), IFTCOUNT=3 (Initial Frame Transfer Count, SIZE=0 (Size of Transfer = 32-bit) and ADDFM=0 (Addressing Mode Main Memory = Post Increment). So there are in total 9 32-bit values in buffer A and B. It also assumes IFADDRB=10h and IFADDRA=40h. "U" means uninitialized. Figure 21-7. Timing Example for Auto Switch Buffer Mode auto switch auto switch request element counter 3 buffer location 2 1 3 10h 14h 18h 2 1 3 1Ch 20h 24h 2 1 3 2 1 3 2 1 3 2 1 28h 2Ch 30h busy bit frame counter CFTCTB U 2 1 0 full address CFADDRB U 1Ch 28h 34h buffer full flag BFINTFL buffer location 40h 44h 48h 4Ch 50h 54h 58h 5Ch 60h busy bit frame counter CFTCTA U full address CFADDRA U 976 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 2 1 0 4Ch 58h 64h SPNU499C – March 2018 Submit Documentation Feedback Module Operation www.ti.com 21.2.1.4 General Control Packet Behavior The action defined by the selected mode will be performed at the end of the last frame, which has the frame counter value of 1. The one shot and auto switch mode will automatically update the CPENA register at this time. Note, that for all three modes listed above, it is possible to switch to the other buffer by writing to CPENA before the end of the current buffer is reached. If a write access to CPENA happens while the last frame of DCP x (with frame counter = 1) is transferred then the priority is defined by Table 21-1. Table 21-1. CPENA / TMBx Priority Rules Write access to CPENA bits (2 × x+1) and (2 × x) during the frame with frame counter = 1 (1) Priority Rule Disable: 01 --> 00 or 10 --> 00 Disabling the DCP by the write to CPENA has priority, TMBx is ignored. Stay: 01 --> 01 or 10 --> 10 The write access to CPENA is ignored, TMBx has priority and defines the action. Switch: 01 --> 10 or 10 --> 01 Switching the DCP by the write to CPENA has priority, TMBx is ignored. (1) See read table of CPENA register (Table 21-14) There could be a case where the CPU wants to do main memory operations, but does not want the HTU modifying the main memory. It could happen that a request was already active, but the frame transfer hasn't started yet when the application disabled the control packets. The timing diagram in Figure 21-8 shows this scenario. Figure 21-8. Timing for Disabling Control Packets DCP Disable Request Busy Bit Frame Start Since the request for the transfer was already received before the DCPx is disabled, the HTU will still start the frame transfer. The application would poll the BUSYx bit during the time the DCPx was disabled and before the frame was started and would read a non-busy information. It then would start the main memory operations thinking all transfers have completed, however after some time the HTU will start the outstanding frame transfer and corrupt the main memory. To avoid this, the application can set the VBUSHOLD bit to disable all transactions between the HTU and the main memory. It has to poll the BUSBUSY bit to ensure that no outstanding transactions on the bus are pending. The HTU will still receive all transfer requests from the N2HET, but it will not be able to transfer any data to or from the main memory, while the VBUSHOLD bit is set. 21.2.2 Arbitration of HTU Elements and Frames • • Frames do not interrupt each other. If a request occurs on DCP x while another frame runs on DCP y (and x ≠ y), then the current frame completes before the new frame starts. If two or more request lines are active, the request line with the lower number (specified in the request number field of the corresponding N2HET instruction) is serviced first. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 977 Module Operation www.ti.com 21.2.3 Conditions for Frame Transfer Interruption If a frame is currently transferred on DCP x and one of the events listed below happens, then the event will (1.) clear the element counter of DCP x, (2.) stop new element transfers on DCP x (3.) clear the active busy bit of DCP x and (4.) disable DCP x in the CPENA register. The DCPs other than DCP x will not be affected. • Request Lost Error of DCP x (with CORL bit set to 0). • Parity Error of DCP x (with parity check enabled and COPE bit set to 0). See also Section 21.2.6. • Bus Error of DCP x. • Memory Protection Error of DCP x (with memory protection enabled). See also Section 21.2.5. • Writing a 1 to a BUSY bit (belonging to DCP x) if that bit is 1. There is no effect if the BUSY bit is 0. • Writing a 1 to the HTURES bit. When a memory protection error occurs, the access to the protected address is blocked. The frame is stopped before the element, which caused the violation transfer, starts. All other errors will let the current element transfer finish. In case of the Request Lost and Bus Error, one more element transfer goes on the bus, before the frame is actually stopped. Accordingly, the busy bit is cleared after the element, which follows the element that caused the error. In case of the Bus Error, the counter for the element, which follows the element that caused the error, is captured to the ERRETC register field. NOTE: If the HTUEN bit is cleared during a frame is transferred, then the frame will be completed before the HTU is disabled. 21.2.4 HTU Overload and Request Lost Detection If the number of different HTU request sources is "high", the period between the requests is "short" and/or the initial element counter values are "big", then the HTU could get into a overload situation. In Figure 219, all requests marked with "L" are lost, since their frame is not completed at the time the next request occurs. Each number in the rows "TU request (x)" represents a time, where the associated N2HET instruction generates a request on DCP x. The arrows in Figure 21-9 point to the associated frame, which could be delayed compared to the request. The delays are caused by different frames, which are currently processed. The figure assumes that the CORL bit in the RLBECTRL register is set, which causes the DCP to stay enabled and let the data stream continue after a request lost error occurred on the DCP (see 3-L for TU request (2)). Figure 21-9. Timing Example Including Lost Requests 1 TU request (1) Element Counter 54321 TU request (2) Element Counter 2 3 54321 1 2 3-L 54321 54321 1 TU request (3) ElementCounter 4 54321 54321 2 4 54321 3-L 54321 Lost requests are signaled with the RLOSTFL register, and if enabled, can generate request lost interrupts. If the CORL bit is set, a frame will be completed and the corresponding DCP stays enabled even if a request lost was generated during this frame. In dual buffer mode, the request lost detection works continuously, independent of the CP switches. 978 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Module Operation www.ti.com 21.2.4.1 Requests and Quiet Requests In addition to generating too many transfer requests and thus overloading the HTU and not being able to transfer data at all, it can happen that inconsistent data is transferred. The following examples illustrate such scenarios. In the examples below, the HTU reads a frame of three elements from the datafield of three different instructions. In Figure 21-10, the L3-Instruction generates the HTU request at time t2, t7, and so on. and the according frame (at t3). The frame is delayed because of the HTU load. However, as shown in Figure 21-10, the delay still allows the frame to complete before the datafield of instruction L1 is updated again. However, when the delay is longer (as shown in Figure 21-11), then the frame could fall into the N2HET loop (LRP), in which the N2HET updates the data fields of the L1, L2 and L3 instructions. In this case, the HTU could read inconsistent data as shown in the diagram. A wrong (new) value is read from L1 (at time t3), but correct ("old") values are read from L2 and L3 (at times t4 and t5). Figure 21-10. Timing that Generates No Request Lost Error LRP Signal Quiet Request L1_Instr_DF[31:7] Quiet Request 3 L2_Instr_DF[31:7] 6 1 L3_Instr_DF[31:7] 2 3 2 Delay caused by TU load t1 t2 t3 t4 t5 t6 t7 Frame Request Request Figure 21-11. Timing that Generates a Request Lost Error LRP Signal L1_Instr_DF[31:7] L2_Instr_DF[31:7] L3_Instr_DF[31:7] Quiet Request Quiet Request 3 6 1 2 2 3 Delay caused by TU load t1 t2 t3 t4 t5 t6 t7 Frame Request Request To prevent sending inconsistent data, the N2HET instructions are able to generate a quiet request, which does not originate a transfer but is only used by the HTU for consistency check. If a frame has not completed since the last request (or has not even started) at the time the quiet request occurs, then the HTU signals a request lost error. All instructions, which allow to generate a request can be configured to generate a quiet request instead. So in the examples of Figure 21-10 and Figure 21-11, instruction L1 should be configured to generate a quiet request and instruction L3 to generate a normal request. In the case of Figure 21-11, the corresponding bit in the RLOSTFL register will be set. It is the responsibility of the N2HET software to enable a quiet request for the first instruction of an instruction block, which is addressed by DCP x, and to enable a normal request only for the last instruction of this block. Since enabling the quiet request should enable a proper request lost detection for DCP x, both N2HET instructions need to specify the same DCP x (reqnum=x). SPNU499C – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 979 Module Operation www.ti.com The control fields of the HET instructions provide a 2-bit field to configure one of the following possibilities (as shown in Table 21-2). A 3-bit field in the program field will select which of the 8 Double Control Packets will be triggered by the request. Table 21-2. Triggered Control Packets Request Type Bit 1 Request Type Bit 0 Don't care 0 No request Request Number 0 1 Generate normal request 1 1 Generate quiet request Specify number 0, 1,... or 7, which selects the HTU or DMA request line. In the case of very light HTU load, but higher signal requirements (for example, high frequency), the quiet request could also be used to define periods in which the data read by a control packet is safe. The following HET code will capture counter time stamps to the L1-WCAP data field after rising edges (at pin CC6) and to the L2-WCAP data field after falling edges (at pin CC6): L0 CNT {reg=A, max=0x1FFFFFF} L1 WCAP {reqnum=3, request=GENREQ, event=RISE, reg=A, pin=CC6} L2 WCAP {reqnum=3, request=QUIET, event=FALL, reg=A, pin=CC7} ; HET HRSHARE feature configured to assign both WCAPs to pin CC6 Figure 21-12. Timing Example for Two WCAP Instructions f(n-1) LRP r(n) f(n) r(n+1) Pin CC6 L00-CNT-DF 20 21 22 L01-WCAP-DF 23 24 22 R L02-WCAP-DF 24 21 QR OK QR RL OK RL e1 e2 e2 TU Delay Frame The HTU frame will have two elements: The first gives the time stamp of the rising edge r(n) and the second gives the time stamp of the previous falling edge f(n-1). Using the code above, requests (R) and the quiet requests (QR) will occur at the times shown in Figure 21-12, and a request lost will only be signaled when the frame makes an access during the times marked with RL. So reading [22, 21] as frame elements is correct. If the signal frequency would increase, then a wrong pair [22, 23] could be read, but this will be signaled by a request lost error since at least e2 falls into the RL period. 980 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Module Operation www.ti.com 21.2.5 Memory Protection This feature allows restricting accesses to certain areas in memory in order to protect critical application data from unintentionally being manipulated by the HTU. If the HTU memory protection feature is disabled, the full 4 GB address range can be accessed by the HTU without exception. There are two memory regions that start and end addresses can be configured. With the HTU memory protection feature enabled, read and write accesses by the HTU IFADDRA and IFADDRB registers inside the defined regions are allowed. HTU access to its tightly-coupled memory is independent of the MPU, it routes through the dedicated HTU/N2HET bus using the IHADDR bits in the IHADDRCT register. See Section 21.2 for details on the tightly-coupled bus. For accesses outside the regions, one of two modes is configurable: • Any access performed by the HTU is forbidden and will be signaled to the ESM module. Write accesses will be blocked. • Read access is allowed but write access will be blocked and signaled to the ESM module. To use one region only, REG01ENA must be 0. Bits ACCR01, INTENA01, and register settings of MP1S and MP1E will be ignored. To 1. 2. 3. 4. use both regions, the following rules must be followed: Memory mapped region 0 covers a lower memory area as Memory mapped region 1. REG01ENA is a 1 and REG0ENA is a 0. ACCR01 is set for the desired access type, ACCR0 is ignored. INTENA01 is set for the desired action, INTENA0 is ignored. If an element transfer of DCP x generates a memory protection error, then: 1. The element counter of DCP x is cleared. 2. All new element transfers on DCP x are stopped. 3. The active busy bit of DCP x is cleared. 4. DCP x is disabled in the CPENA register. The DCPs other than DCP x will not be affected. 5. The FT flag will be set. 6. An error is signaled to the ESM module. 21.2.6 Control Packet RAM Parity Checking The HTU module can detect parity errors in the DCP (Double Control Packet) RAM. DCP RAM parity checking is implemented using one parity bit per byte. Even or odd parity checking can be selected in the DEVCR1 register of the system module and can be enabled/disabled by a 4-bit key in the PCR register. During a read access to the DCP RAM, the parity is calculated based on the data read from the RAM and compared with the good parity value stored in the parity bits. The parity check is performed when the HTU or any other master (for example, CPU) makes a read access to the DCP RAM. A read access within the RAM section of an initial or current DCP checks all 16 bytes of the DCP at a time (see also DCP memory map). For example, if a byte read access happens for DCP RAM address 0, but there is a parity error at byte address Ch then the parity error will occur and the captured parity address will be Ch and not 0. The address of the byte in which the error occurred can be read from the PAR register. If successive DCP RAM read accesses generate multiple parity errors, only the address of the first detected error will be captured and the PAR register will not be updated by subsequent errors until it is read by the application. When multiple errors in a 16 byte word are detected, only the address of the lowest byte will be captured. The application can decide whether to stop any transfers when a parity error is detected or to continue transferring data. If the COPE (Continue On Parity Error) bit is 0 and parity checking is enabled, then the HTU will not start the frame and the corresponding DCP will be automatically disabled in the CPENA register. If a master other than the HTU (for example, CPU) reads the RAM section of DCP x and a parity error is detected during this read access, while the parity check is enabled and the COPE bit is 0, then the DCP x will be automatically disabled in the CPENA register. If a frame for this DCP x is ongoing during SPNU499C – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 981 Module Operation www.ti.com this read access, then in addition the element counter of DCP x is cleared, all new element transfers on DCP x are stopped and the active busy bit of DCP x is cleared. With COPE set to 1 and the parity check enabled, the parity checking will still be performed, but the data transfer of an active DCP continues after a parity error was detected for this DCP. So neither the DCP with the parity error will be disabled nor the frame will be stopped. After a DCP is enabled (with CPENA using BIM=0), then at the start of the first frame, the HTU performs the parity check only on the initial DCP, since it does not need the current DCP information. For further frames, the HTU performs the parity check for both initial and current DCP, since it needs both information. On a parity error detection, an error will also be signaled to the ESM module. 21.2.6.1 Parity Bit Mapping and Testing To test the parity checking mechanism, the parity RAM can be made accessible in order to allow manual fault insertion. Once the TEST bit is set, the parity bits are mapped to address FF4E 0200h. When in test mode (the parity RAM is accessible), no parity checking will be done when reading from parity RAM, but parity checking will still be performed for read accesses to the DCP RAM. Table 21-3 and Table 21-4 show how the corresponding parity bits of the DCP RAM bytes are mapped into the memory. Table 21-3. DCP RAM Bit 31 24 23 16 15 8 7 0 FF4E 0000h Byte 0 Byte 1 Byte 2 Byte 3 FF4E 0004h Byte 4 Byte 5 Byte 6 Byte 7 FF4E 0008h Byte 8 Byte 9 Byte 10 Byte 11 FF4E 000Ch Byte 12 Byte 13 Byte 14 Byte 15 Table 21-4. DCP Parity RAM Bit 24 16 8 0 FF4E 0200h P0 P1 P2 P3 FF4E 0204h P4 P5 P6 P7 FF4E 0208h P8 P9 P10 P11 FF4E 020Ch P12 P13 P14 P15 Each byte in DCP RAM has its own parity bit in the DCP Parity RAM. P0 is the parity bit for byte 0, P1 is the parity bit for byte 1, and so on. 21.2.6.2 Initializing Parity Bits After device power up, the DCP RAM content including the parity bit cannot be guaranteed. In order to avoid parity failures, when reading DCP RAM, the RAM has to be initialized first. This can simply be done by writing known values into the RAM by software and the corresponding parity bit will be automatically calculated. Another possibility to initialize the DCP memory and its parity bits is to use the system module, which is an on-chip module external to the HTU. This module can start the automatic initialization of all RAMs on the microcontroller including the HTU DCP RAM. This function initializes the complete DCP RAM to 0 when activated by the system module. Depending on the even/odd parity selection, all parity bits will be calculated accordingly. The HTUEN bit must be cleared and the parity functionality must be enabled (by PARITY_ENA) during the automatic DCP RAM initialization. If HTUEN is 1 when the initialization is triggered by the system module, then the initialization will not be performed and the HTU operation is not affected. If a 1 is written to HTUEN during the initialization, then the HTUEN bit will be set but the HTU will not be enabled before the initialization completes. 982 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Use Cases www.ti.com 21.3 Use Cases 21.3.1 Example: Single Element Transfer with One Trigger Request This example considers the case that the HTU fills a RAM buffer in the main (CPU) data RAM. The HTU reads from the instruction which generates the HTU requests. This example uses a PCNT instruction. Every time the PCNT has captured a new pulse or period value, it will automatically generate a transfer request to the HTU, which then transfers the value from the N2HET RAM to the buffer RAM. So over time consecutive locations in the RAM buffer can be filled with consecutive measurement values captured into the N2HET RAM data field of the same PCNT instruction without loading or interrupting the CPU. 21.3.2 Example: Multiple Element Transfer with One Trigger Request The following example shows how the HTU could be used to fill a RAM buffer with a data stream including different types of measurement values belonging to the same N2HET input signal (on one pin): Time stamp values (WCAP), edge counter values (ECNT) and last period values (PCNT). Figure 21-13 shows the timing and Table 21-5 shows the byte addresses of the program- (PF), control(CF), data- (DF) and reserved field (res) of the WCAP-ECNT-PCNT instruction block. The timing and code example assumes that all three instructions are assigned to the same N2HET pin. Figure 21-13. Timing of the WCAP, ECNT, PCNT Example CNT 2 WCAP 3 5 4 1 9 12 10 3 3 Quiet Request Request 11 10 2 2 PCNT 8 6 3 ECNT 7 6 4 Quiet Request Request Quiet Request Request Table 21-5. Field Addresses of the WCAP, ECNT, PCNT Example PF CF DF Res WCAP 30h 34h 38h 3Ch ECNT 40h 44h 48h 4Ch PCNT 50h 54h 58h 5Ch In the HET code the HTU request is enabled only for the last instruction (PCNT) of the WCAP-ECNTPCNT block. When the PCNT condition is true, it will cause the generated HTU frame to perform three HTU element reads from the data fields of WCAP, ECNT, and PCNT. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 983 Use Cases www.ti.com 32-Bit-Transfer of data fields: Table 21-6 shows how the internal element counter, frame counter and the address registers change over time for the example described above. Every time the PCNT instruction captures a new value it generates a request to the HTU, which starts a frame. At the end of each frame the frame counter decrements. Table 21-6. 32-Bit-Transfer of Data Fields (1) Frame Counter 3 Element Counter 2 1 3 2 1 3 2 1 3 2 1 Source Address (HET) 38h 48h 58h 38h 48h 58h 38h 48h 58h Destination Address (main CPU RAM) 70h 74h 78h 7Ch 80h 84h 88h 8Ch 90h (1) Shows the byte addresses The destination buffer is filled with the WCAP, ECNT, and PCNT data field values as shown in Table 21-7. Table 21-7. Destination Buffer Values Address Frame Count Instruction Value 70h 3 WCAP 3 74h 3 ECNT 1 78h 3 PCNT 2 7Ch 2 WCAP 6 80h 2 ECNT 2 84h 2 PCNT 3 88h 1 WCAP 10 8Ch 1 ECNT 3 90h 1 PCNT 4 The corresponding setup of the HTU control packet for this example is as follows: IHADDR = 0x38 // points to WCAP data field IFADDRA = 0x70 // points to buffer ITCOUNT [frame count = 3] [element count = 3] IHADDRCT = [DIR: Read HET and write to full address] [SIZE: 32 bit] [ADDMH: Increment HET address by 16 bytes] [ADDMF: Post increment full address mode] [Any transfer mode] 984 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Use Cases www.ti.com 21.3.3 Example: 64-Bit-Transfer of Control Field and Data Fields Table 21-8 shows how the internal element counter, frame counter and the address registers change over time assuming the same example as in Section 21.3.2, but now with a transfer size set to 64-bit. The HET address now points to the control field of the instruction, so CF and DF are transferred as 64 bit data. Table 21-8. 64-Bit-Transfer of Control Field and Data Fields (1) Frame Counter Element Counter 3 2 1 3 2 1 3 2 1 3 2 1 HET (Source) Address 34h 44h 54h 34h 44h 54h 34h 44h 54h Full (Destination) Address 70h 78h 80h 88h 90h 98h A0h A8h B0h (1) Shows the byte addresses. The destination buffer is filled with the WCAP, ECNT, and PCNT control and data field values as shown on the right in Table 21-9. Table 21-9. Destination Buffer Values Address Frame Count Instruction Value 70h 3 WCAP Control Field Value 74h 3 WCAP 3 78h 3 ECNT Control Field Value 7Ch 3 ECNT 1 80h 3 PCNT Control Field Value 84h 3 PCNT 2 88h 2 WCAP Control Field Value 8Ch 2 WCAP 6 90h 2 ECNT Control Field Value 94h 2 ECNT 2 Control Field Value 98h 2 PCNT 9Ch 2 PCNT 3 A0h 1 WCAP Control Field Value A4h 1 WCAP 10 A8h 1 ECNT Control Field Value ACh 1 ECNT 3 B0h 1 PCNT Control Field Value B4h 1 PCNT 4 The necessary setup of the HTU control packet (see Section 21.5) for this example is as follows: IHADDR = 0x34 (points to WCAP control field) IFADDR = 0x70 (points to buffer) ITCOUNT [frame count = 3] [element count = 3] IHADDRCT = [DIR: Read HET and write to full address] [SIZE: 64 bit] [ADDMH: Increment HET address by 16 bytes] [ADDMF: post increment full address mode] [Any transfer mode] For different applications, which have the transfer direction set for reading the buffer and writing to HET fields, the 64-bit transfer could be used to change the conditional addresses together with a new data field. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 985 HTU Control Registers www.ti.com 21.4 HTU Control Registers Table 21-10 provides a summary of the registers. The registers support 8-bit, 16-bit, and 32-bit writes. The offset is relative to the associated peripheral select. See the following sections for detailed descriptions of the registers. The base address for the control registers is FFF7 A400h for HTU1 and FFF7 A500h for HTU2. The address locations not listed, are reserved. Table 21-10. HTU Control Registers 986 Offset Acronym Register Description Section 00h HTU GC Global Control Register Section 21.4.1 04h HTU CPENA Control Packet Enable Register Section 21.4.2 08h HTU BUSY0 Control Packet Busy Register 0 Section 21.4.3 0Ch HTU BUSY1 Control Packet Busy Register 1 Section 21.4.4 10h HTU BUSY2 Control Packet Busy Register 2 Section 21.4.5 14h HTU BUSY3 Control Packet Busy Register 3 Section 21.4.6 18h HTU ACPE Active Control Packet and Error Register Section 21.4.7 20h HTU RLBECTRL Request Lost and Bus Error Control Register Section 21.4.8 24h HTU BFINTS Buffer Full Interrupt Enable Set Register Section 21.4.9 28h HTU BFINTC Buffer Full Interrupt Enable Clear Register Section 21.4.10 2Ch HTU INTMAP Interrupt Mapping Register Section 21.4.11 34h HTU INTOFF0 Interrupt Offset Register 0 Section 21.4.12 38h HTU INTOFF1 Interrupt Offset Register 1 Section 21.4.13 3Ch HTU BIM Buffer Initialization Mode Register Section 21.4.14 40h HTU RLOSTFL Request Lost Flag Register Section 21.4.15 44h HTU BFINTFL Buffer Full Interrupt Flag Register Section 21.4.16 48h HTU BERINTFL BER Interrupt Flag Register Section 21.4.17 4Ch HTU MP1S Memory Protection 1 Start Address Register Section 21.4.18 50h HTU MP1E Memory Protection 1 End Address Register Section 21.4.19 54h HTU DCTRL Debug Control Register Section 21.4.20 58h HTU WPR Watch Point Register Section 21.4.21 5Ch HTU WMR Watch Mask Register Section 21.4.22 60h HTU ID Module Identification Register Section 21.4.23 64h HTU PCR Parity Control Register Section 21.4.24 68h HTU PAR Parity Address Register Section 21.4.25 70h HTU MPCS Memory Protection Control and Status Register Section 21.4.26 74h HTU MP0S Memory Protection 0 Start Address Register Section 21.4.27 78h HTU MP0E Memory Protection 0 End Address Register Section 21.4.28 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback HTU Control Registers www.ti.com 21.4.1 Global Control Register (HTU GC) Figure 21-14. Global Control Register (HTU GC) [offset = 00] 31 25 24 23 17 16 Reserved VBUSHOLD Reserved HTUEN R-0 R/WP-0 R-0 R/WP-0 15 9 8 7 1 0 Reserved DEBM Reserved HTURES R-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 21-11. Global Control Register (HTU GC) Field Descriptions Bit 31-25 24 23-17 16 Field Reserved Value 0 VBUSHOLD Reserved Description Reads return 0. Writes have no effect. Hold the VBUS bus 0 The VBUS is not held. 1 The VBUSHOLD bit holds the bus used to transfer data between the HTU and the N2HET module. When the BUS_BUSY bit is 0 then the bus is no longer busy. While the bus is held, requests will still be accepted. They will be acted upon when the VBUSHOLD is 0. Request lost conditions will be detected and interrupts generated if they are enabled. 0 Reads return 0. Writes have no effect. HTUEN Transfer Unit Enable Bit 0 The Transfer Unit is disabled. 1 The Transfer Unit is enabled. The configuration registers and control packets should be set up first before the HTUEN bit is set to 1 to prevent it from carrying out unintended bus transactions. If the HTUEN bit is cleared to 0 during a frame is transferred, then the frame will be completed before the HTU is disabled. The HTUEN bit must be cleared to 0 and the parity functionality must be enabled (by PARITY_ENA) during the automatic DCP RAM initialization (see Initializing Parity Bits). If HTUEN is 1 when the initialization is triggered by the system module, then the initialization will not be performed and the HTU operation is not affected. If a 1 is written to HTUEN during the initialization, then the HTUEN bit will be set but the HTU will not be enabled before the initialization completes. Note: If HTU is disabled during a frame transfer, then the ongoing current frame will be completed before the HTU module is disabled. If enabled again, then the transfer will restart from the initial frame count for the CP programmed. 15-9 8 Reserved 0 DEBM Reads return 0. Writes have no effect. Debug Mode 0 The Transfer Unit is stopped in debug mode. The HTU will complete the current frame, but not start any new frames. It will also ignore all requests from the HET and not generate any request lost signals. 1 The Transfer Unit continues operation in debug mode. Note: Since the HET has also an "ignore suspend" bit, there a several possibilities for the behavior of the HET and HTU in suspend mode. 7-1 Reserved 0 HTURES 0 Reads return 0. Writes have no effect. HTU Software Reset Request 0 Reset request is not issued to the HTU module. Writing a 0 has no effect. 1 Reset request is issued to the HTU module. Ongoing element transfers will be completed, before resetting the complete HTU module, similar to a hardware reset. The HTURES bit will also be cleared. The recommended order of operations is: • • • • SPNU499C – March 2018 Submit Documentation Feedback Set the software reset bit. This also clears HTUEN. Wait for the HTURES bit to clear. Configure the HTU registers and packets. Set the HTUEN bit to begin operation. High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 987 HTU Control Registers www.ti.com 21.4.2 Control Packet Enable Register (HTU CPENA) This register enables or disables the individual double control packets (DCP). Figure 21-15. Control Packet Enable Register (HTU CPENA) [offset = 04h] 31 16 Reserved R-0 15 0 CPENA R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 21-12. Control Packet Enable Register (HTU CPENA) Field Descriptions Bit Field Value 31-16 Reserved 15-0 CPENA 0 Description Reads return 0. Writes have no effect. CP Enable Bits Bits (2*x) and (2*x+1) of CPENA control the double control packet (DCP) x (whereby x must be within 0,1,....,7). See Table 21-13 for write rules. See Table 21-14 for read rules. Table 21-13. CPENA Write Results Control packets (CP) B and A of DCP x are affected as follows: Bit (2*x+1) Bit (2*x) 0 0 CP B and A are not changed. 0 1 CP B is disabled and CP A are enabled simultaneously. 1 0 CP B is enabled and CP A are disabled simultaneously. 1 1 CP B and CP A are both disabled simultaneously. Table 21-14. CPENA Read Results • • • 988 Bit (2*x+1) Bit (2*x) 0 0 State of DCP: The DCP is disabled. 0 1 CP B is disabled and CP A is enabled. 1 0 CP B is enabled and CP A is disabled. 1 1 Cannot be read. The conditions listed in Section 21.2.3 can automatically disable DCP x. In this case, bits (2*x) and (2*x+1) are both automatically set to 0. When bits (2*x) and (2*x+1) change from 00 to 01 or from 00 to 10 caused by a write access to CPENA, then old pending requests on the corresponding request line are cleared. This means only new requests which occur after this write access cause the first HTU transfer for this DCP. This is not the case when switching CPs (from 10 to 01 or from 01 to 10). CP A and/or CP B of a DCP can be configured to one-shot, circular or auto-switch transfer mode via the TMBA or TMBB bits in the IHADDRCT control packet configuration. If a write access to CPENA occurs during the last frame of a buffer (with frame counter = 1) then the action defined by the write access to CPENA and the action defined by TMBx can contradict. The priority rules for this case are given in Table 21-1. High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback HTU Control Registers www.ti.com 21.4.3 Control Packet (CP) Busy Register 0 (HTU BUSY0) This register displays the status of individual control packets. Figure 21-16. Control Packet (CP) Busy Register 0 (HTU BUSY0) [offset = 08h] 31 25 24 23 17 16 Reserved BUSY0A Reserved BUSY0B R-0 R/W1CP-0 R-0 R/W1CP-0 15 9 8 7 1 0 Reserved BUSY1A Reserved BUSY1B R-0 R/W1CP-0 R-0 R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 in privilege mode only to clear the bit; -n = value after reset Table 21-15. Control Packet (CP) Busy Register 0 (HTU BUSY0) Field Descriptions Bit Field 31-25 Reserved 24 BUSY0A 23-17 Reserved 16 BUSY0B 15-9 Reserved 8 BUSY1A 7-1 Reserved 0 BUSY1B Value 0 Description Reads return 0. Writes have no effect. Busy Flag for CP A of DCP 0 0 Reads return 0. Writes have no effect. Busy Flag for CP B of DCP 0 0 Reads return 0. Writes have no effect. Busy Flag for CP A of DCP 1 0 Reads return 0. Writes have no effect. Busy Flag for CP B of DCP 1 The bit is set when the frame on the according control packet starts (as shown in the diagram below, there could be a delay between the request and the start of the frame). The bit is automatically cleared at any of the following conditions: 1. At the end of a frame. 2. Writing a 1 to a BUSY bit (of DCP x) if that bit is 1. This will: a. clear the element counter of DCP x b. stop all new element transfers on DCP x c. clear the busy bit d. and disable DCP x in the CPENA register. There is no effect, if the BUSY bit is 0. 3. At the conditions listed in Section 21.2.3. A write access to the CPENA register can stop a control packet (CP) in single buffer mode or it can switch to the other CP of a DCP in dual buffer mode. If stopping or switching occurs while a frame runs on the currently active control packet, the CPU can poll the busy bit to determine when it is safe to read the buffer. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 989 HTU Control Registers www.ti.com 21.4.4 Control Packet (CP) Busy Register 1 (HTU BUSY1) This register displays the status of individual control packets. Figure 21-17. Control Packet (CP) Busy Register 1 (HTU BUSY1) [offset = 0Ch] 31 25 24 23 17 16 Reserved BUSY2A Reserved BUSY2B R-0 R/W1CP-0 R-0 R/W1CP-0 15 9 8 7 1 0 Reserved BUSY3A Reserved BUSY3B R-0 R/W1CP-0 R-0 R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 in privilege mode only to clear the bit; -n = value after reset Table 21-16. Control Packet (CP) Busy Register 1 (HTU BUSY1) Field Descriptions Bit Field Value 31-25 Reserved 24 BUSY2A 23-17 Reserved 16 BUSY2B 15-9 Reserved 8 BUSY3A 7-1 Reserved 0 BUSY3B 0 Description Reads return 0. Writes have no effect. Busy Flag for CP A of DCP 2 0 Reads return 0. Writes have no effect. Busy Flag for CP B of DCP 2 0 Reads return 0. Writes have no effect. Busy Flag for CP A of DCP 3 0 Reads return 0. Writes have no effect. Busy Flag for CP B of DCP 3 See Section 21.4.3 for more details. 21.4.5 Control Packet (CP) Busy Register 2 (HTU BUSY2) Figure 21-18. Control Packet (CP) Busy Register 2 (HTU BUSY2) [offset = 10h] 31 25 24 23 17 16 Reserved BUSY4A Reserved BUSY4B R-0 R/W1CP-0 R-0 R/W1CP-0 15 9 8 7 1 0 Reserved BUSY5A Reserved BUSY5B R-0 R/W1CP-0 R-0 R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 in privilege mode only to clear the bit; -n = value after reset Table 21-17. Control Packet (CP) Busy Register 2 (HTU BUSY2) Field Descriptions Bit Field 31-25 Reserved 24 BUSY4A 23-17 Reserved 16 BUSY4B 15-9 Reserved 8 BUSY5A 7-1 Reserved 0 BUSY5B 990 Value 0 Description Reads return 0. Writes have no effect. Busy Flag for CP A of DCP 4 0 Reads return 0. Writes have no effect. Busy Flag for CP B of DCP 4 0 Reads return 0. Writes have no effect. Busy Flag for CP A of DCP 5 0 Reads return 0. Writes have no effect. Busy Flag for CP B of DCP 5 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback HTU Control Registers www.ti.com 21.4.6 Control Packet (CP) Busy Register 3 (HTU BUSY3) Figure 21-19. Control Packet (CP) Busy Register 3 (HTU BUSY3) [offset = 14h] 31 25 24 23 17 16 Reserved BUSY6A Reserved BUSY6B R-0 R/W1CP-0 R-0 R/W1CP-0 15 9 8 7 1 0 Reserved BUSY7A Reserved BUSY7B R-0 R/W1CP-0 R-0 R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 in privilege mode only to clear the bit; -n = value after reset Table 21-18. Control Packet (CP) Busy Register 3 (HTU BUSY3) Field Descriptions Bit Field Value 31-25 Reserved 24 BUSY6A 23-17 Reserved 16 BUSY6B 15-9 Reserved 8 BUSY7A 7-1 Reserved 0 BUSY7B Description 0 Reads return 0. Writes have no effect. Busy Flag for CP A of DCP 6 0 Reads return 0. Writes have no effect. Busy Flag for CP B of DCP 6 0 Reads return 0. Writes have no effect. Busy Flag for CP A of DCP 7 0 Reads return 0. Writes have no effect. Busy Flag for CP B of DCP 7 21.4.7 Active Control Packet and Error Register (HTU ACPE) Figure 21-20. Active Control Packet and Error Register (HTU ACPE) [offset = 18h] 31 30 29 28 24 23 20 19 16 ERRF Reserved ERRETC Reserved ERRCPN R/W1CP-0 R-0 R-0 R-0 R-0 15 14 13 TIPF BUSBUSY Rsvd 12 CETCOUNT 8 7 Reserved 4 3 NACP 0 R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 in privilege mode only to clear the bit; -n = value after reset Table 21-19. Active Control Packet and Error Register (HTU ACPE) Field Descriptions Bit Field 31 ERRF 30-29 Value Reserved SPNU499C – March 2018 Submit Documentation Feedback Description Error Flag 0 No error occurred. 1 This bit is set when one of the conditions listed at ERRETC is fulfilled and ERRETC and ERRCPN are captured. Once ERRF is set, it is cleared when reading the upper 16-bit word of the ACPE register or the complete 32-bit register. It is also cleared when writing a 1 to ERRF. ERRF can be used to indicate if ERRETC and ERRCPN contain new unread data. 0 Reads return 0. Writes have no effect. High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 991 HTU Control Registers www.ti.com Table 21-19. Active Control Packet and Error Register (HTU ACPE) Field Descriptions (continued) Bit 28-24 Field Value ERRETC Description Error Element Transfer Count If one of the following conditions happens the current element transfer counter of the control packet (specified by ERRCPN) is captured to ERRETC. Please see Section 21.2.3. • Request Lost Error of control packet specified by ERRCPN. This is independent of the CORL bit. • Parity Error of control packet specified by ERRCPN. This requires the parity check to be enabled, but is independent of the COPE bit. • Bus Error of control packet specified by ERRCPN. • Memory Protection Error of control packet specified by ERRCPN. This requires the memory protection to be enabled. • Writing a 1 to a BUSY bit, which belongs to the control packet specified by ERRCPN, if that bit is 1. There is no effect, if the BUSY bit is 0. ERRETC is frozen from being updated until the upper 16-bit word of the ACPE register or the complete 32-bit register is read by the CPU. After this read, the HTU will update ERRETC if one of the above conditions is fulfilled again. During debugging, ERRETC stays frozen even when reading the upper 16-bit word or the 32-bit register. 23-20 Reserved 19-16 ERRCPN 0 Reads return 0. Writes have no effect. Error Control Packet Number If one of the conditions listed at ERRETC happens the number of the control packet, which caused the condition, is captured to ERRCPN. Control Packet ERRCPN Value CP A of DCP x 2x CP B of DCP x 2 x+1 With x = 0,1,...or 7 ERRCPN is frozen from being updated until the upper 16-bit word of the ACPE register or the complete 32-bit register is read by the CPU. After this read, the HTU will update ERRCPN if one of the above conditions is fulfilled again. During debugging, ERRCPN stays frozen even when reading the upper 16-bit word or the 32-bit register. If one of the conditions is fulfilled, ERRETC and ERRCPN are updated simultaneously. 15 14 13 12-8 TIPF Transfer in Progress Flag 0 No transfers are in progress. 1 A transfer is currently active. This bit is the result of a logical OR function of all BUSYxx flags of the 4 BUSYx registers. BUSBUSY Reserved Bus is Busy 0 Bus between N2HET and HTU is not busy. 1 When BUSBUSY is 1, the bus is busy with a transfer. It is different from TIPF above because BUSBUSY will go low after VBUSHOLD is set to 1 and no transfers are pending between the HTU and the main memory. TIPF will remain 1, if a transfer is still pending and VBUSPHOLD is 1. 0 Reads return 0. Writes have no effect. CETCOUNT Current Element Transfer Count CETCOUNT shows the current element transfer counter for the frame that is currently processed. If the HTU does not currently transfer any frame, CETCOUNT is 0. CETCOUNT is updated after the write part of a transfer. There is a period of up to 7 cycles between the time the CETCOUNT is 0 and the HTU is finished updating the current DCP (and the CPENA registers, if the required conditions are fulfilled). 7-4 Reserved 3-0 NACP 0 Reads return 0. Writes have no effect. Number of Active Control Packet Indicates which CP currently processes a frame. Active or Recent DCP NACP Value CP A of DCP x 2x CP B of DCP x 2 x+1 With x = 0,1,...or 7 NACP is updated at the time the frame starts on the according CP, and it is updated with a new value when a frame starts on a different CP. Note, that there can be a delay between the request and the start of the frame. 992 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback HTU Control Registers www.ti.com 21.4.8 Request Lost and Bus Error Control Register (HTU RLBECTRL) Figure 21-21. Request Lost and Bus Error Control Register (HTU RLBECTRL) [offset = 20h] 31 17 15 9 16 Reserved BERINTENA R-0 R/WP-0 8 7 1 0 Reserved CORL Reserved RLINTENA R-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 21-20. Request Lost and Bus Error Control Register (HTU RLBECTRL) Field Descriptions Bit 31-17 16 15-9 8 7-1 0 Field Reserved Value 0 BERINTENA Reserved Reads return 0. Writes have no effect. Bus Error Interrupt Enable Bit 0 The bus error interrupt is disabled for all DCPs. 1 The bus error interrupt is enabled for all DCPs. 0 Reads return 0. Writes have no effect. CORL Reserved Description Continue On Request Lost Error 0 Stop current frame on request lost detection. Please see Section 21.2.3. 1 If CORL is 1 and DCP x is enabled, then DCP x will stay enabled after a request lost condition on DCP x and element transfers will continue. 0 Reads return 0. Writes have no effect. RLINTENA Request Lost Interrupt Enable Bit 0 The request lost interrupt is disabled for all DCPs. Disabling RLINTENA will not clear the flags in the RLOSTFL register. 1 The request lost interrupt is enabled for all DCPs. If bits are set in the RLOSTFL flag register at the time RLINTENA is (re-) enabled, then the according interrupt(s) will occur (in the order of the priority of the request lines). SPNU499C – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 993 HTU Control Registers www.ti.com 21.4.9 Buffer Full Interrupt Enable Set Register (HTU BFINTS) This registers allows to enable the buffer full interrupts for the different control packets. Reading registers BFINTS and BFINTC will return the same bits indicating the status which interrupt is enabled (1) or disabled (0). Figure 21-22. Buffer Full Interrupt Enable Set Register (HTU BFINTS) [offset = 24h] 31 16 Reserved R-0 15 0 BFINTENA R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 21-21. Buffer Full Interrupt Enable Set Register (HTU BFINTS) Field Descriptions Bit Field Value 31-16 Reserved 15-0 BFINTENA 0 Description Reads return 0. Writes have no effect. Bus Full Interrupt Enable Bits. If the interrupt for CP A of a DCP is enabled, then the interrupt is generated once buffer A is full, that is, once the frame counter CFTCTA decrements to 0. The same applies for CP B (and CFTCTB). 0 Interrupt is disabled. Writing a 0 has no effect. 1 Writing to bit (2*x) enables the interrupt for CP A of DCP x. Writing to bit (2*x+1) enables the interrupt for CP B of DCP x. 21.4.10 Buffer Full Interrupt Enable Clear Register (HTU BFINTC) This registers allows to disable the buffer full interrupts for the different control packets. Reading registers BFINTS and BFINTC will return the same bits indicating the status which interrupt is enabled (1) or disabled (0) Figure 21-23. Buffer Full Interrupt Enable Clear Register (HTU BFINTC) [offset = 28h] 31 16 Reserved R-0 15 0 BFINTDIS R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 21-22. Buffer Full Interrupt Enable Clear Register (HTU BFINTC) Field Descriptions Bit Field 31-16 Reserved 15-0 BFINTDIS Value 0 Description Reads return 0. Writes have no effect. Buffer Full Interrupt Disable Bits 0 Interrupt is disabled. Writing a 0 has no effect. 1 Writing to bit (2*x) disables the interrupt for CP A of DCP x. Writing to bit (2*x+1) disables the interrupt for CP B of DCP x. 994 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback HTU Control Registers www.ti.com 21.4.11 Interrupt Mapping Register (HTU INTMAP) Figure 21-24. Interrupt Mapping Register (HTU INTMAP) [offset = 2Ch] 31 17 16 Reserved MAPSEL R-0 R/WP-0 15 0 CPINTMAP R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 21-23. Interrupt Mapping Register (HTU INTMAP) Field Descriptions Bit Field 31-17 Reserved 16 MAPSEL 15-0 Value 0 Description Reads return 0. Writes have no effect. Interrupt Mapping Select Bit 0 If MAPSEL is 0, then one bit of CPINTMAP selects one of two interrupt priorities 0 or 1 for the buffer full interrupt for the according CP. The request lost and bus error interrupts of all CPs are set to priority 0, independent of CPINTMAP. 1 If MAPSEL is 1, then one bit of CPINTMAP determines if the buffer full, request lost and bus error interrupts of the according CP are assigned either to interrupt line 0 or to 1. CPINTMAP CP Interrupt Mapping Bits 0 Interrupt of CP A (bit 2-x) of DCP x is mapped to interrupt line 0. Interrupt of CP B (bit 2*x+1) of DCP x is mapped to interrupt line 0. 1 Interrupt of CP A (bit 2-x) of DCP x is mapped to interrupt line 1. Interrupt of CP B (bit 2*x+1) of DCP x is mapped to interrupt line 1. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 995 HTU Control Registers www.ti.com 21.4.12 Interrupt Offset Register 0 (HTU INTOFF0) The INTOFF0 register reflects the highest priority interrupt flag bit set in the BERINTFL, RLOSTFL, or BFINTFL flag registers with the appropriate CPINTMAP bit set to 0. The priority order (from high to low) is: BER, RLOST, buffer-full. Interrupts for request lines with lower number have higher priority. Figure 21-25. Interrupt Offset Register 0 (HTU INTOFF0) [offset = 34h] 31 16 Reserved R-0 15 10 9 8 7 4 3 0 Reserved INTTYPE0 Reserved CPOFF0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 21-24. Interrupt Offset Register 0 (HTU INTOFF0) Field Descriptions Bit Field 31-10 Reserved 9-8 INTTYPE0 7-4 Reserved 3-0 CPOFF0 Value 0 Description Reads return 0. Writes have no effect. Interrupt Type of Interrupt Line 0. Indicates whether a buffer-full, RLOST, or BER interrupt, assigned to interrupt line 0, is currently pending. 0 No interrupt. 1h Interrupt caused by full buffer on CP/DCP specified by CPOFF0. 2h RLOST interrupt generated by CP/DCP specified by CPOFF0. 3h BER interrupt generated by CP/DCP specified by bits CPOFF0. 0 Reads return 0. Writes have no effect. CP Offset. Indicates for which control packet the interrupt is pending, which is classified by INTTYPE0 and is assigned to interrupt line 0. 0 DCP 0, CP A 1h DCP 0, CP B 2h DCP 1, CP A 3h DCP 1, CP B 4h DCP 2, CP A 5h DCP 2, CP B 6h DCP 3, CP A 7h DCP 3, CP B 8h DCP 4, CP A 9h DCP 4, CP B Ah DCP 5, CP A Bh DCP 5, CP B Ch DCP 6, CP A Dh DCP 6, CP B Eh DCP 7, CP A Fh DCP 7, CP B NOTE: Reading CPOFF0 will clear the bit generating the current interrupt from appropriate flag register (BERINTFL, RLOSTFL, or BFINTFL), except when in debug mode where reading CPOFF0 will have no effect on the flag registers. In order to read INTTYPE0 and CPOFF0 simultaneously, always read this register using word or half-word but not using byte accesses. 996 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback HTU Control Registers www.ti.com 21.4.13 Interrupt Offset Register 1 (HTU INTOFF1) This register is organized identically to the INTOFF0 register. The difference is that INTOFF1 reflects the highest priority interrupt flag bit set in the BERINTFL, RLOSTFL, or BFINTFL flag registers with the appropriate CPINTMAP bit set to 1. Figure 21-26. Interrupt Offset Register 1 (HTU INTOFF1) [offset = 38h] 31 16 Reserved R-0 15 10 9 8 7 4 3 0 Reserved INTTYPE1 Reserved CPOFF1 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 21-25. Interrupt Offset Register 1 (HTU INTOFF1) Field Descriptions Bit Field 31-10 Reserved 9-8 INTTYPE1 7-4 Reserved 3-0 CPOFF1 Value 0 Description Reads return 0. Writes have no effect. Interrupt Type of Interrupt Line 1. Indicates whether a buffer-full, RLOST, or BER interrupt, assigned to interrupt line 1, is currently pending. 0 No interrupt. 1h Interrupt caused by full buffer on CP/DCP specified by CPOFF1. 2h RLOST interrupt generated by CP/DCP specified by CPOFF1. 3h BER interrupt generated by CP/DCP specified by bits CPOFF1. 0 Reads return 0. Writes have no effect. CP Offset. Indicates for which DCP / CP the interrupt is pending, which is classified by INTTYPE1 and is assigned to interrupt line 1. 0 DCP 0, CP A 1h DCP 0, CP B 2h DCP 1, CP A 3h DCP 1, CP B 4h DCP 2, CP A 5h DCP 2, CP B 6h DCP 3, CP A 7h DCP 3, CP B 8h DCP 4, CP A 9h DCP 4, CP B Ah DCP 5, CP A Bh DCP 5, CP B Ch DCP 6, CP A Dh DCP 6, CP B Eh DCP 7, CP A Fh DCP 7, CP B NOTE: Reading CPOFF1 will clear the bit generating the current interrupt from appropriate flag register (BERINTFL, RLOSTFL, or BFINTFL), except when in debug mode where reading CPOFF1 will have no effect on the flag registers. In order to read INTTYPE1 and CPOFF1 simultaneously, always read this register using word or half-word but not using byte accesses. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 997 HTU Control Registers www.ti.com 21.4.14 Buffer Initialization Mode Register (HTU BIM) This register enables special applications, where one CP is temporarily disabled, but after having reenabled the CP, filling the buffer should not start back at its beginning, but should continue after the last element of the previous run. Table 21-27 shows more details on the BIM usage. Figure 21-27. Buffer Initialization Mode Register (HTU BIM) [offset = 3Ch] 31 16 Reserved R-0 15 8 7 0 Reserved BIM R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 21-26. Buffer Initialization Mode Register (HTU BIM) Field Descriptions Bit Field 31-8 Reserved 7-0 BIM Value 0 Description Reads return 0. Writes have no effect. Buffer Initialization Mode The BIM bits and the TMBx bits determine when a buffer is initialized, that means when its initial full address IFADDRx and its initial frame counter IFTCOUNT is used. When initializing (restarting) a buffer the information in the corresponding initial DCP RAM is loaded to a internal state machine but not to the current DCP RAM (CFADDRx, CFTCTx). The current DCP RAM is updated the first time when the first frame has finished. A buffer is initialized: • In circular buffer transfer mode (defined by TMBx) when the end of the buffer is reached. • When CPs are switched or enabled according to Buffer Initialization. The CPENA bits (2*x+1) and (2*x) are changed by write access to CPENA. For the first two rows of the table, the change of the CPENA bits could also be the result of the auto switch feature (as defined by TMBx). BIM bit x only affects DCP x (with x = 0,1,...or 7). Table 21-27. Buffer Initialization Case Change of CPENA bits (2*x+1) and (2*x) Old state (1) (2) (3) 998 (1) New state Action on buffer A or B (of DCP x) (2) BIM bit x = 0 (normal mode) BIM bit x = 1 (special mode) A 01 10 Switch from CP A to B Next frame starts at the initial address of buffer B (3) Same as for BIM bit x = 0 B 10 01 Switch from CP B to A Next frame starts at the initial address of buffer A (3) Same as for BIM bit x = 0 C 01 01 Stay at CP A Write to CPENA bits (2*x+1) and (2*x) is ignored Same as for BIM bit x = 0 E 10 10 Stay at CP B Write to CPENA bits (2*x+1) and (2*x) is ignored Same as for BIM bit x = 0 E 00 01 Enable CP A Next frame starts at the initial address of buffer A Next frame continues at the current address of buffer A F 00 10 Enable CP B Next frame starts at the initial address of buffer B Next frame continues at the current address of buffer B G xx 11 Disable both CPs Stop DCP x Same as for BIM bit x = 0 See read table of CPENA register (Table 21-14). See write table of CPENA register (Table 21-13). This is regardless of whether the switch is done by a write access to CPENA or by the auto-switch feature. High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback HTU Control Registers www.ti.com NOTE: For cases E and F above, after the last frame of a buffer, the HTU sets CFTCTx to 0 and CFADDRx to the next address after the buffer. If the DCP was disabled during this state, then both CFTCTx and CFADDRx would contain invalid initialization values. Therefore, if a DCP should continue at its current address, then the software should use one of the following two procedures before it (re-) enables the DCP (as per Table 21-27): 1. If CFTCTx ≠ 0 then set BIM=1 2. If CFTCTx = 0 then set BIM=0 If CFTCTx ≠ 0 then set BIM=1 If CFTCTx = 0 then {set BIM=1; set CFTCTx = IFTCOUNT; set CFADDRx = IFADDRx} But note that these procedures are only required for the cases E and F and not for all the other cases shown in Table 21-27. Also, when a buffer reaches its end in circular mode, it uses the initial DCP information to restart independently of the BIM setting (assuming it is not temporarily disabled during CFTCTx = 0). NOTE: Similarly, care needs to be taken when BIM is set to 1 and a DCP is enabled for the very first time. Also, in this case, CFTCTx and CFADDRx usually contain invalid initialization values. The software can either solve this by setting BIM = 0 for the first time or setting CFADDRx to IFADDRx and CFTCTx to IFTCOUNT before the DCP is enabled. NOTE: If • • the HTUEN bit is changed to 1 after the HTU was disabled HTUEN = 0 the CPENA bit pair is 01 or 10 (during this HTUEN change) then the corresponding BIM bit will decide if the corresponding buffer continues at its initial or current address. Cases E and F in Table 21-27 also apply for this situation. The software should use the procedures explained in the first note before setting HTUEN. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 999 HTU Control Registers www.ti.com 21.4.15 Request Lost Flag Register (HTU RLOSTFL) Figure 21-28. Request Lost Flag Register (HTU RLOSTFL) [offset = 40h] 31 16 Reserved R-0 15 0 CPRLFL R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 in privilege mode to clear the bit; -n = value after reset Table 21-28. Request Lost Flag Register (HTU RLOSTFL) Field Descriptions Bit Field 31-16 Reserved 15-0 CPRLFL Value 0 Description Reads return 0. Writes have no effect. CP Request Lost Flags 0 No request was lost. Writing a 0 has no effect. 1 If bit (2*x) is set, a request was lost on CP A of DCP x. If bit (2*x+1) is set, a request was lost on CP B of DCP x. Reading from INTOFFx in case of a RLOST interrupt clears the corresponding flag. The state of the flag bit can be polled even if RLINTENA is cleared. • Reading CPRLFL will not clear the flags or • Reading from INTOFFx clears the corresponding flag. • Writing a 1 clears the corresponding flag. 21.4.16 Buffer Full Interrupt Flag Register (HTU BFINTFL) Figure 21-29. Buffer Full Interrupt Flag Register (HTU BFINTFL) [offset = 44h] 31 16 Reserved R-0 15 0 BFINTFL R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 in privilege mode to clear the bit; -n = value after reset Table 21-29. Buffer Full Interrupt Flag Register (HTU BFINTFL) Field Descriptions Bit Field 31-16 Reserved 15-0 BFINTFL Value 0 Description Reads return 0. Writes have no effect. Buffer Full Interrupt Flags 0 No buffer full condition is detected. Writing a 0 has no effect. 1 If bit (2*x) is set, a buffer full condition on CP A of DCP x has been detected. If bit (2*x+1) is set, a buffer full condition on CP B of DCP x has been detected. The BFINTFL flag is set after the last frame finishes on the corresponding buffer regardless of whether the buffer is configured to one shot, circular or auto-switch mode. If BFINTFL is set in circular mode, then a circular overrun has occurred on the corresponding buffer. This can be used to indicate whether the buffer section after the frozen full address contains valid data or not. Reading from INTOFFx in case of a buffer-full interrupt clears the corresponding flag. The state of the flag bit can be polled even if the corresponding interrupt enable bit is cleared. • Reading BFINTFL will not clear the flags or • Reading INTOFFx will clear the corresponding flags or • Writing a 1 clears the corresponding flag. 1000 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback HTU Control Registers www.ti.com 21.4.17 BER Interrupt Flag Register (HTU BERINTFL) A bus error interrupt results due to an address error or a timeout condition on the main memory access. A bus error will stop the frame transfer. Please see Section 21.2.3. Figure 21-30. BER Interrupt Flag Register (HTU BERINTFL) [offset = 48h] 31 16 Reserved R-0 15 0 BERINTFL R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 in privilege mode to clear the bit; -n = value after reset Table 21-30. BER Interrupt Flag Register (HTU BERINTFL) Field Descriptions Bit Field 31-16 Reserved 15-0 BERINTFL Value 0 Description Reads return 0. Writes have no effect. Bus Error Interrupt Flags 0 No bus error condition is detected. Writing a 0 has no effect. 1 If bit (2*x) is set, then a BER interrupt is pending on CP A of DCP x. If bit (2*x+1) is set, then a BER interrupt is pending on CP B of DCP x. The state of the flag bit can be polled even if BERINTENA is cleared. • Reading BERINTFL will not clear the flags or • Reading from INTOFFx in case of a BER interrupt clears the corresponding flag or • Writing a 1 clears the corresponding flag. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1001 HTU Control Registers www.ti.com 21.4.18 Memory Protection 1 Start Address Register (HTU MP1S) This register configures the start address of memory protection region 1. Figure 21-31. Memory Protection 1 Start Address Register (HTU MP1S) [offset = 4Ch] 31 16 STARTADDRESS1 R/WP-0 15 2 STARTADDRESS1 1 0 0 0 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 21-31. Memory Protection 1 Start Address Register (HTU MP1S) Field Descriptions Bit 31-0 Field Description STARTADDRESS1 The start address defines at which main memory address the region begins. A memory protection error will be triggered, if the HTU accesses an address smaller than STARTADDRESS1 and the MPCS bit REG01ENA register is configured accordingly. The address is 32-bit aligned, so the 2 LSBs are not significant and will always read 0. 21.4.19 Memory Protection 1 End Address Register (HTU MP1E) Figure 21-32. Memory Protection 1 End Address Register (HTU MP1E) [offset = 50h] 31 16 ENDADDRESS1 R/WP-0 15 2 ENDADDRESS1 1 0 0 0 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 21-32. Memory Protection 1 End Address Register (HTU MP1E) Field Descriptions Bit 31-0 1002 Field Description ENDADDRESS1 The end address defines at which address the region ends. A memory protection error will be triggered, if the HTU accesses an address bigger than ENDADDRESS1 and the register bit REG01ENA is configured accordingly. The address is 32-bit aligned, so the 2 LSBs are not significant and will always read 0. The effective end address is rounded up to the nearest word end address, that is, 0x200 = 0x203. High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback HTU Control Registers www.ti.com 21.4.20 Debug Control Register (HTU DCTRL) This register allows to create watch points on access to a certain location. It is intended to help debug the application execution during program development. Figure 21-33. Debug Control Register (HTU DCTRL) [offset = 54h] 31 28 27 24 23 17 16 Reserved CPNUM Reserved HTUDBGS R-0 R-0 R-0 R/W1CS-0 15 1 0 Reserved DBREN R-0 R/WS-0 LEGEND: R/W = Read/Write; R = Read only; W1CS = Write 1 in suspend mode to clear the bit; WS = Write in suspend mode only; -n = value after reset Table 21-33. Debug Control Register (HTU DCTRL) Field Descriptions Bit Field 31-28 Reserved 27-24 CPNUM 23-17 16 Reserved Value 0 Description Reads return 0. Writes have no effect. CP Number. These bit fields indicate the CP that should cause the watch point to match. 0 CP A of DCP0 1h CP B of DCP0 2h CP A of DCP1 3h CP B of DCP1 4h CP A of DCP2 5h CP B of DCP2 6h CP A of DCP3 7h CP B of DCP3 8h CP A of DCP4 9h CP B of DCP4 Ah CP A of DCP5 Bh CP B of DCP5 Ch CP A of DCP6 Dh CP B of DCP6 Eh CP A of DCP7 Fh CP B of DCP7 0 HTUDBGS Reads return 0. Writes have no effect. HTU Debug Status. When the main memory address is equal to the unique address defined by WPR, or lies in the specified range resulting from WMR, then the HTUDBGS is set. If in addition DBREN is set, then the application code execution will be stopped. A 1 must be written to this bit in order to clear it and to release the CPU from debug halting state. 0 Read: No watch point condition was detected. Write: No effect. 1 Read: A watch point condition was detected. Write: Clears the bit. 15-1 0 Reserved 0 DBREN Reads return 0. Writes have no effect. Debug Request Enable If a watch point matches and DBREN is set, then the application code execution will be stopped. This bit can only be set or cleared when in debug mode. This bit and all other bits of the DCTRL, WPR and WMR registers are reset by the test reset (nTRST) but not by the normal device reset. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1003 HTU Control Registers www.ti.com 21.4.21 Watch Point Register (HTU WPR) This register defines the main memory address of the watch point. Figure 21-34. Watch Point Register (HTU WPR) [offset = 58h] 31 16 WP R/WS-0 15 0 WP R/WS-0 LEGEND: R/W = Read/Write; WS = Write in suspend mode only; -n = value after reset Table 21-34. Watch Point Register (HTU WPR) Field Descriptions Bit 31-0 Field Description WP Watch Point Register A 32-bit address can be programmed into this register as a watch point. The WPR register is used along with the Watch Mask Register ( WMR). When the main memory address is equal to the unique address defined by WPR, or lies in the specified range resulting from WMR, then the HTUDBGS is set. If in addition DBREN is set, then the application code execution is stopped. This register can only be programmed during debug mode. This register and all other bits of the DCTRL and WMR registers are reset by the test reset (nTRST) but not by the normal device reset. 21.4.22 Watch Mask Register (HTU WMR) This register defines a mask of the main memory address of the watch point. It can be used to define a memory range in conjunction with the WPR register. Figure 21-35. Watch Mask Register (HTU WMR) [offset = 5Ch] 31 16 WM R/WS-0 15 0 WM R/WS-0 LEGEND: R/W = Read/Write; WS = Write in suspend mode only; -n = value after reset Table 21-35. Watch Mask Register (HTU WMR) Field Descriptions Bit Field Description 31-0 WM Watch Mask Register Setting a bit in the WMR register to 1 has the effect of masking the corresponding bit in of the main memory address, so that this bit is ignored for the address comparison. This register can only be programmed during debug mode. This register and all other bits of the DCTRL and WPR registers are reset by the test reset (nTRST) but not by the normal device reset. 1004 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback HTU Control Registers www.ti.com 21.4.23 Module Identification Register (HTU ID) This register is for TI internal purposes and allows to keep track of the HTU module version on different devices. Figure 21-36. Module Identification Register (HTU ID) [offset = 60h] 31 24 23 16 Reserved CLASS R-0 R - Module Class Number 15 8 7 0 TYPE REV R - Class Subtype Number R - Module Revision Number LEGEND: R = Read only; -n = value after reset Table 21-36. Module Identification Register (HTU ID) Field Descriptions Bit Field 31-24 Reserved 23-16 CLASS Value 0 Description Reads return 0. Writes have no effect. Module Class This field defines the module class number as read-only constant value for the HTU module. Writes have no effect. 15-8 TYPE Subtype within a Class This field defines the subtype within a class as read-only constant value for the HTU module. Writes have no effect. 7-0 REV Module Revision Number This field defines the module revision number as read-only constant value for the HTU module. Writes have no effect. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1005 HTU Control Registers www.ti.com 21.4.24 Parity Control Register (HTU PCR) Figure 21-37. Parity Control Register (HTU PCR) [offset = 64h] 31 17 15 9 16 Reserved COPE R-0 R/WP-0 8 7 4 3 0 Reserved TEST Reserved PARITY_ENA R-0 R/WP-0 R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 21-37. Parity Control Register (HTU PCR) Field Descriptions Bit 31-17 16 Field Reserved Value 0 COPE Description Reads return 0. Writes have no effect. Continue on Parity Error 0 The HTU performs parity checks every time it reads the RAM section of DCP x (with x = 0, 1,... or 7), before the next frame (of DCP x) is started. If a parity error is detected during this read access and if the parity check is enabled, then the frame will not be started and DCP x will be automatically disabled in the CPENA register. If a master different than the HTU (for example, CPU) reads the RAM section of DCP x and a parity error is detected during this read access, while the parity check is enabled, then the DCP x will automatically be disabled in the CPENA register. If a frame is active on DCP x during this read access, then in addition the element counter of DCP x is cleared and all new element transfers on DCP x are stopped and the active busy bit of DCP x is cleared. 15-9 8 Reserved 1 The difference to COPE = 0 is, that the data transfer on a active DCP continues after a parity error was detected on this DCP. So, neither the DCP with the parity error will be disabled nor the frame will be stopped. 0 Reads return 0. Writes have no effect. TEST 7-4 Reserved 3-0 PARITY_ENA Test. When this bit is set, the parity bits are mapped into the peripheral RAM frame to make them accessible by the CPU. 0 Parity bits are not memory-mapped. 1 Parity bits are memory-mapped. 0 Reads return 0. Writes have no effect. Enable/Disable Parity Checking. This bit field enables or disables the parity check on read operations and the parity calculation on write operations. If parity checking is enabled and a parity error is detected, then the PEFT flag is set, PAOFF is captured if it is not currently frozen and an interrupt is generated if it is enabled. 5h Parity check is disabled. All Others Parity check is enabled. Note: It is recommended to write Ah to enable error detection, to guard against single bit changes from flipping PARITY_ENA to a disable state. 1006 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback HTU Control Registers www.ti.com 21.4.25 Parity Address Register (HTU PAR) Figure 21-38. Parity Address Register (HTU PAR) [offset = 68h] 31 17 15 16 Reserved PEFT R-0 R/W1CP-0 9 8 0 Reserved PAOFF R-0 R-X LEGEND: R/W = Read/Write; R = Read only; W1CP = Write 1 in privilege mode to clear the bit; -n = value after reset; X = undefined Table 21-38. Parity Address Register (HTU PAR) Field Descriptions Bit 31-10 16 Field Reserved Value 0 PEFT Description Reads return 0. Writes have no effect. Parity Error Fault Flag. This bit is set, when the HTU detects a parity error and parity checking is enabled. 0 No fault is detected. 1 Fault is detected. Note: Once PEFT is set, a read access to the lower 16 bits or to the complete 32-bit HTUPAR register will clear the PEFT flag in non-debug mode. Another possibility to clear PEFT is to write a 1 to the PEFT bit. 15-9 Reserved 8-0 PAOFF 0 Reads return 0. Writes have no effect. Parity Error Address Offset. This bit field holds the address of the first parity error, which is detected in the DCP RAM. PAOFF provides the offset address of the erroneous byte counted from the beginning of the DCP memory. This error address is frozen from being updated until a read access to the lower 16 bits or to the complete 32-bit HTUPAR register happens. During debug mode, this address is frozen even when read. Note: The Parity Error Address bits will not be reset, neither by PORRST nor by any other reset source. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1007 HTU Control Registers www.ti.com 21.4.26 Memory Protection Control and Status Register (HTU MPCS) Figure 21-39. Memory Protection Control and Status Register (HTU MPCS) [offset = 70h] 31 28 27 24 Reserved CPNUM0 R-0 R-0 23 18 MPEFT1 MPEFT0 R-0 R/W1CP-0 R/W1CP-0 12 11 8 Reserved CPNUM1 R-0 R-0 6 16 Reserved 15 7 17 5 4 3 2 1 0 Reserved INT ENA01 ACCR01 REG01ENA INT ENA0 ACCR0 REG0ENA R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; W1CP = Write 1 in privilege mode to clear the bit; -n = value after reset Table 21-39. Memory Protection Control and Status Register (HTU MPCS) Field Descriptions Bit Field 31-28 Reserved 27-24 CPNUM0 23-18 Reserved 17 MPEFT1 16 1008 Value 0 Description Reads return 0. Writes have no effect. Control Packet Number for single memory protection region configuration. CPNUM0 holds the number of the CP, which has caused the first memory protection error when only one memory protection region is used. This number is not updated for multiple access violations until it is read by the CPU. During debug mode, CPNUM0 is frozen even when read. 0 CP A of DCP0 1h CP B of DCP0 2h CP A of DCP1 3h CP B of DCP1 4h CP A of DCP2 5h CP B of DCP2 6h CP A of DCP3 7h CP B of DCP3 8h CP A of DCP4 9h CP B of DCP4 Ah CP A of DCP5 Bh CP B of DCP5 Ch CP A of DCP6 Dh CP B of DCP6 Eh CP A of DCP7 Fh CP B of DCP7 0 Reads return 0. Writes have no effect. Memory Protection Error Fault Flag 1. This bit is set, when the HTU performs an access outside the region defined by the MP0S and MP0E and the MP1S and MP1E registers, when the access violates the rights defined by ACCR01, and when the REG01ENA bit is set. 0 No fault detected. Writing a 0 has no effect. 1 Fault detected. Writing a 1 will clear the bit. MPEFT0 Memory Protection Error Fault Flag 0. This bit is set, when the HTU performs an access outside the region defined by the MP0S and MP0E registers, when the access violates the rights defined by ACCR, and when the REG0ENA bit is set. 0 No fault detected. Writing a 0 has no effect. 1 Fault detected. Writing a 1 will clear the bit. High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback HTU Control Registers www.ti.com Table 21-39. Memory Protection Control and Status Register (HTU MPCS) Field Descriptions (continued) Bit Field 15-12 Reserved 11-8 CPNUM1 7-6 Reserved 5 INTENA01 4 3 2 1 Value 0 Description Reads return 0. Writes have no effect. Control Packet Number for single memory protection region configuration. CPNUM1 holds the number of the CP, which has caused the first memory protection error when only one memory protection region is used. This number is not updated for multiple access violations until it is read by the CPU. During debug mode, CPNUM1 is frozen even when read. 0 CP A of DCP0 1h CP B of DCP0 2h CP A of DCP1 3h CP B of DCP1 4h CP A of DCP2 5h CP B of DCP2 6h CP A of DCP3 7h CP B of DCP3 8h CP A of DCP4 9h CP B of DCP4 Ah CP A of DCP5 Bh CP B of DCP5 Ch CP A of DCP6 Dh CP B of DCP6 Eh CP A of DCP7 Fh CP B of DCP7 0 Reads return 0. Writes have no effect. Interrupt Enable 01. This bit needs to be set when working with two memory-mapped regions and a error should be generated to the ESM module on an access violation. 0 Error signaling is disabled. 1 Error signaling is enabled. ACCR01 Access Rights 01. This bit defines the access rights for the HTU for accesses outside the region defined by the MP0S and MP0E and the MP1S and MP1E registers. 0 HTU read access is allowed but write access will be signaled. 1 Any access performed by the HTU is forbidden and will be signaled. REG01ENA Region Enable 01. This bit needs to be set when working with two memory-mapped regions. REG0ENA must be cleared to 0 if this bit is set to a 1. Memory region 0 must be less than memory region 1. 0 The protection outside the memory region defined by the MP0S and MP0E and the MP1S and MP1E registers is not enabled. This means the HTU can access any implemented memory space. REG0ENA could still enabled to give protection outside the MP0S:MP0E region. 1 The protection outside the memory region defined by the MP0S and MP0E and the MP1S and MP1E registers is enabled. This means the HTU can perform any access within the regions, but if it attempts to perform a forbidden access outside of both of the regions (according to the ACCR01 configuration), the access is signaled by the MPEFT1 flag. The number of the CP, which has caused the memory protection error, is captured to CPNUM1 if it is not currently frozen and an error is generated if it is enabled. INTENA0 Interrupt Enable 0. This bit needs to be set when working with one memory-mapped region and a error should be generated to the ESM module on an access violation. 0 Error signaling is disabled. 1 Error signaling is enabled. ACCR Access Rights 0. This bit defines the access rights for the HTU for accesses outside the region defined by the MP0S and MP0E registers for a single memory protection region configuration. 0 HTU read access is allowed but write access will be signaled. 1 Any access performed by the HTU is forbidden and will be signaled. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1009 HTU Control Registers www.ti.com Table 21-39. Memory Protection Control and Status Register (HTU MPCS) Field Descriptions (continued) Bit 0 1010 Field Value REG0ENA Description Region Enable 0 0 The protection outside the memory region defined by the MP0S and MP0E registers is not enabled. This means the HTU can access any implemented memory space. 1 The protection outside the memory region defined by the MP0S and MP0E registers is enabled. This means the HTU can perform any access within the region, but if it attempts to perform a forbidden access outside the region (according to the ACCR configuration), the access is signaled by the MPEFT0 flag, the number of the CP, which has caused the memory protection error, is captured to CPNUM0 if it is not currently frozen and an error is generated if it is enabled. High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback HTU Control Registers www.ti.com 21.4.27 Memory Protection Start Address Register 0 (HTU MP0S) This register configures the start address of memory protection region 0 Figure 21-40. Memory Protection Start Address Register 0 (HTU MP0S) [offset = 74h] 31 16 STARTADDRESS0 R/WP-0 15 2 STARTADDRESS0 1 0 0 0 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 21-40. Memory Protection 0 Start Address Register (HTU MP0S) Field Descriptions Bit 31-0 Field Description STARTADDRESS0 The start address defines at which main memory address the region begins. A memory protection error will be triggered, if the HTU accesses an address smaller than STARTADDRESS0 and the MPCS register is configured accordingly. The address is 32-bit aligned, so the 2 LSBs are not significant and will always read 0. 21.4.28 Memory Protection End Address Register (HTU MP0E) Figure 21-41. Memory Protection End Address Register (HTU MP0E) [offset = 78h] 31 16 ENDADDRESS0 R/WP-0 15 2 ENDADDRESS0 1 0 0 0 R/WP-0 LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset Table 21-41. Memory Protection End Address Register (HTU MP0E) Field Descriptions Bit 31-0 Field Description ENDADDRESS0 The end address defines at which address the region ends. A memory protection error will be triggered, if the HTU accesses an address bigger than ENDADDRESS0 and the register bit MPCS register is configured accordingly. The address is 32-bit aligned, so the 2 LSBs are not significant and will always read 0. The effective end address is rounded up to the nearest word end address, that is, 0x200 = 0x203. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1011 Double Control Packet Configuration Memory www.ti.com 21.5 Double Control Packet Configuration Memory All bits marked "reserved' are implemented in RAM and will be initialized to unknown values after power on. Reserved locations can be written and read but should be written with 0 to ensure future compatibility. The HTU RAM can be cleared with the system RAM initialization function. Table 21-42 provides a summary of the memory configuration. There are eight sets of DCP registers and eight sets of CF registers. The base address for the DCP registers is FF4E 0000h for HTU1 and FF4C 0000h for HTU2. Table 21-42. Double Control Packet Memory Map Offset Acronym Register Description 00h HTU DCP0 IFADDRA Initial Full Address A Register Section 21.5.1 04h HTU DCP0 IFADDRB Initial Full Address B Register Section 21.5.2 08h HTU DCP0 IHADDRCT Initial N2HET Address and Control Register Section 21.5.3 0Ch HTU DCP0 ITCOUNT Initial Transfer Count Register Section 21.5.4 10h HTU DCP1 IFADDRA Initial Full Address A Register Section 21.5.1 14h HTU DCP1 IFADDRB Initial Full Address B Register Section 21.5.2 18h HTU DCP1 IHADDRCT Initial N2HET Address and Control Register Section 21.5.3 1Ch HTU DCP1 ITCOUNT Initial Transfer Count Register Section 21.5.4 : : 70h HTU DCP7 IFADDRA Initial Full Address A Register Section 21.5.1 74h HTU DCP7 IFADDRB Initial Full Address B Register Section 21.5.2 78h HTU DCP7 IHADDRCT Initial N2HET Address and Control Register Section 21.5.3 7Ch HTU DCP7 ITCOUNT Initial Transfer Count Register Section 21.5.4 100h HTU CDCP0 CFADDRA Current Full Address A Register Section 21.5.5 104h HTU CDCP0 CFADDRB Current Full Address B Register Section 21.5.6 108h HTU CDCP0 CFCOUNT Current Frame Count Register Section 21.5.7 110h HTU CDCP1 CFADDRA Current Full Address A Register Section 21.5.5 114h HTU CDCP1 CFADDRB Current Full Address B Register Section 21.5.6 118h HTU CDCP1 CFCOUNT Current Frame Count Register Section 21.5.7 : : 170h HTU CDCP7 CFADDRA Current Full Address A Register Section 21.5.5 174h HTU CDCP7 CFADDRB Current Full Address B Register Section 21.5.6 178h HTU CDCP7 CFCOUNT Current Frame Count Register Section 21.5.7 : : 1012 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated Section SPNU499C – March 2018 Submit Documentation Feedback Double Control Packet Configuration Memory www.ti.com 21.5.1 Initial Full Address A Register (HTU IFADDRA) Figure 21-42. Initial Full Address A Register (HTU IFADDRA) 31 16 IFADDRA R/WP-X 15 0 IFADDRA R/WP-X LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset; X = Unknown Table 21-43. Initial Full Address A Register (HTU IFADDRA) Field Descriptions Bit 31-0 Field Description IFADDRA Initial Address of Buffer A in main memory. Initial (byte) address of buffer A placed in the main memory address range. Bits 0 and 1 are ignored by the logic, due to 32-bit alignment. 21.5.2 Initial Full Address B Register (HTU IFADDRB) Figure 21-43. Initial Full Address B Register (HTU IFADDRB) 31 16 IFADDRB R/WP-X 15 0 IFADDRB R/WP-X LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset; X = Unknown Table 21-44. Initial Full Address B Register (HTU IFADDRB) Field Descriptions Bit 31-0 Field Description IFADDRB Initial Address of Buffer B in main memory. Initial (byte) address of buffer B placed in the main memory address range. Bits 0 and 1 are ignored by the logic, due to 32-bit alignment. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1013 Double Control Packet Configuration Memory www.ti.com 21.5.3 Initial N2HET Address and Control Register (HTU IHADDRCT) Figure 21-44. Initial N2HET Address and Control Register (HTU IHADDRCT) 31 24 Reserved R-0 23 22 21 DIR SIZE ADDMH ADDMF TMBA TMBB R/WP-X R/WP-X R/WP-X R/WP-X R/WP-X R/WP-X 15 13 20 19 18 17 12 16 2 1 0 Reserved IHADDR Reserved R-0 R/WP-X R-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset; X = Unknown Table 21-45. Initial N2HET Address and Control Register (HTU IHADDRCT) Field Descriptions Bit 31-24 23 22 Field Reserved Value 0 DIR Description Reads return 0. Writes have no effect. Direction of Transfer 0 N2HET address is read and main memory address is written. 1 Main memory address is read and N2HET address is written. SIZE Size of Transferred Data 0 32-bit transfer 1 64-bit transfer 64-bit transfer examples: If the N2HET address points to the N2HET instruction Control Field (CF), then the CF and Data Field (DF) will be transferred. If the N2HET address points to the Program Field (PF), then the PF and CF will be transferred. 21 ADDMH Addressing Mode N2HET Address. This bit determines the N2HET address index from one to the next element of a frame. 0 Increment by 16 bytes. Examples: If the initial N2HET address points to data field of instruction (n). Then the N2HET fields to be transferred by the elements of a frame are: data field of instruction (n), data field of instruction (n+1), data field of instruction (n+2) and so on. If the initial N2HET address points to control field of instruction (n), then the N2HET fields to be transferred by the elements of a frame are: control field of instruction (n), control field of instruction (n+1), control field of instruction (n+2) and so on. 1 Increment by 8 bytes. This mode is intended to be used together with the 64-bit transfer size to load short N2HET instruction blocks into the N2HET RAM. So the sequence of transferred 64-bit elements could be: [PF and CF of instruction (n)], [DF and RF of instruction (n)], [PF and CF of instruction (n+1)], [DF and RF of instruction (n+1)] and so on. 20 ADDMF Addressing Mode Main Memory Address 0 Post-increment Note: When post-increment is selected the HTU will automatically increment by 4 bytes for a 32-bit data size and by 8 bytes for a 64-bit data size. 1 19-18 TMBA Transfer Mode for Buffer A 0 One-Shot buffer mode 1h Circular buffer mode 2h-3h 17-16 TMBB Auto Switch mode Transfer Mode for Buffer B 0 One-Shot buffer mode 1h Circular buffer mode 2h-3h 1014 Constant Auto Switch mode High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Double Control Packet Configuration Memory www.ti.com Table 21-45. Initial N2HET Address and Control Register (HTU IHADDRCT) Field Descriptions (continued) Bit Field 15-13 Reserved 12-2 IHADDR Value 0 Description Reads return 0. Writes have no effect. Initial N2HET Address The initial N2HET Address points to the N2HET field, which is the first element of the frame. The N2HET address (bits 12:2) increments by 1 for each 32-bit N2HET field and starts with 0 at the first 32bit field in the N2HET RAM. Note: When the HTU addresses the N2HET RAM it uses only the number of address bits required for the actual N2HET RAM size. If the N2HET address exceeds the actual N2HET RAM size, the unused MSB bits of the address will be ignored and the address rolls over to the start of the N2HET RAM. 1-0 Reserved 0 Reads return 0. Writes have no effect. 21.5.4 Initial Transfer Count Register (HTU ITCOUNT) Figure 21-45. Initial Transfer Count Register (HTU ITCOUNT) 31 21 20 16 Reserved IETCOUNT R-0 R/WP-X 15 8 7 0 Reserved IFTCOUNT R-0 R/WP-X LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset; X = Unknown Table 21-46. Initial Transfer Count Register (HTU ITCOUNT) Field Descriptions Bit Field 31-21 Reserved 20-16 IETCOUNT 15-8 Reserved 7-0 IFTCOUNT Value 0 Description Reads return 0. Writes have no effect. Initial Element Transfer Count Defines the number of element transfers. 0 Reads return 0. Writes have no effect. Initial Frame Transfer Count Defines the number of frame transfers. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1015 Double Control Packet Configuration Memory www.ti.com 21.5.5 Current Full Address A Register (HTU CFADDRA) Figure 21-46. Current Full Address A Register (HTU CFADDRA) 31 16 CFADDRA R/WP-X 15 0 CFADDRA R/WP-X LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset; X = Unknown Table 21-47. Current Full Address A Register (HTU CFADDRA) Field Descriptions Bit 31-0 Field Description CFADDRA Current (byte) Address of Buffer A The current main memory address register is updated at the end of each frame. Therefore it points to the start address of the frame, which is the next to transfer, if currently no frame is transferred on this DCP. For an ongoing frame transfer, it points to the start address of this frame. After the last element of a buffer was transferred it will point to the buffer end address plus 0x4. The main purpose of the current full address registers for buffer A and buffer B (see next section) is to enable the software to find out the recently transferred element in the frozen buffer while the address of the active buffer increments. Note: A frame can be automatically stopped if any of the events listed in Conditions for Frame Transfer Interruption happens. If a frame is stopped before it could complete, then the current full address register is not updated and it will point to the start of the bad frame after the DCP was automatically disabled. To transfer the first frame of buffer x, the information in the corresponding initial DCP RAM (IFADDRx, IHADDRCT, ITCOUNT) is loaded to an internal state machine but not to the current DCP RAM (CFADDRx, CFTCTx). This is valid for all of the following modes: • Buffer x has reached it's end in circular mode and rolls back to its start address. • CP x is enabled by a CPENA access (and corresponding BIM bit is 0). • A CPENA access or auto-switch mode causes a switch from CP y to CP x. This means after starting the transfer to/from buffer x, CFADDRx and CFTCTx is not updated before the end of the first frame. So before the software switches from CP y to CP x using a write access to the CPENA register, it needs to initialize CFADDRx, CFTCTx. This allows the software to find out if the next request on CP x after the switching to CP x was delayed or never occurring. 1016 High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Double Control Packet Configuration Memory www.ti.com 21.5.6 Current Full Address B Register (HTU CFADDRB) Figure 21-47. Current Full Address B Register (HTU CFADDRB) 31 16 CFADDRB R/WP-X 15 0 CFADDRB R/WP-X LEGEND: R/W = Read/Write; WP = Write in privilege mode only; -n = value after reset; X = Unknown Table 21-48. Current Full Address B Register (HTU CFADDRB) Field Descriptions Bit 31-0 Field Description CFADDRB Current (byte) Address of Buffer B The current main memory address register is updated at the end of each frame. Therefore it points to the start address of the frame, which is the next to transfer, if currently no frame is transferred on this DCP. If currently a frame is transferred, then it points to the start address of this frame. After the last element of a buffer was transferred it will point to the buffer end address plus 0x4. The main purpose of the current full address registers for buffer A and buffer B (see next section) is to enable the software to find out the recently transferred element in the frozen buffer while the address of the active buffer increments. Note: A frame can be automatically stopped if any of the events listed in Conditions for Frame Transfer Interruption happens. If a frame is stopped before it could complete, then the current full address register is not updated and it will point to the start of the bad frame after the DCP was automatically disabled. To transfer the first frame of buffer x, the information in the corresponding initial DCP RAM (IFADDRx, IHADDRCT, ITCOUNT) is loaded to an internal state machine but not to the current DCP RAM (CFADDRx, CFTCTx). This is valid for all of the following modes: • Buffer x has reached it's end in circular mode and rolls back to its start address. • CP x is enabled by a CPENA access (and corresponding BIM bit is 0). • A CPENA access or auto-switch mode causes a switch from CP y to CP x. This means after starting the transfer to/from buffer x, CFADDRx and CFTCTx is not updated before the end of the first frame. So before the software switches from CP y to CP x using a write access to the CPENA register, it needs to initialize CFADDRx, CFTCTx. This allows the software to find out if the next request on CP x after the switching to CP x was delayed or never occurring. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1017 Double Control Packet Configuration Memory www.ti.com 21.5.7 Current Frame Count Register (HTU CFCOUNT) The current frame count register enables the software to find out the recent frame in the buffer while the counter of the active buffer decrements. Figure 21-48. Current Frame Count Register (HTU CFCOUNT) 31 24 23 16 Reserved CFTCTA R-0 R/WP-X 15 8 7 0 Reserved CFTCTB R-0 R/WP-X LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset; X = Unknown Table 21-49. Current Frame Count Register (HTU CFCOUNT) Field Descriptions Bit Field 31-24 Reserved 23-16 CFTCTA 15-8 Reserved 7-0 CFTCTB 1018 Value 0 Description Reads return 0. Writes have no effect. Current Frame Transfer Count for CP A. It is updated at the end of each frame. 0 Reads return 0. Writes have no effect. Current Frame Transfer Count for CP B. It is updated at the end of each frame. High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Examples www.ti.com 21.6 Examples 21.6.1 Application Examples for Setting the Transfer Modes of CP A and B of a DCP Table 21-50. Application Examples for Setting the Transfer Modes of CP A and B of a DCP CP A CP B One shot Not used Buffer A can be used as a "one shot" buffer. A buffer full interrupt enabled for CP A can signal reaching the end of the buffer. Auto switch One shot Can double the buffer size for a "one shot" buffer. A buffer full interrupt enabled for CP B can signal reaching the end of the buffer. Circular Circular The CPU can switch the buffers at arbitrary times. It will fill or read the frozen buffer during the other buffer is filled or read by the HTU. Interrupts are not required for this case. Auto switch Auto switch Buffer full interrupts (enabled for CP A and B) signal when the end of a buffer is reached. After one buffer is completed the according CPU interrupt routine will read or refill this buffer. At the same time the other buffer is read or filled by the HTU. Here the time when the buffer must be read is determined by the time of the interrupt (determined by the frequency of the N2HET transfer requests). 21.6.2 Software Example Sequence Assuming Circular Mode for Both CP A and B The example assumes the N2HET address to be read and the main memory address to be written. I1 I2 I3 I4 CPU initializes initial DCP: IFADDRA, IFADDRB, IHADDRCT, ITCOUNT CPU clears current DCP: CFADDRA, CFADDRB, CFTCTA, CFTCTB CPU clears BFINTFL flag of CP A and B Enable CP A with the CPENA register. Now the HTU fills buffer A After some time the CPU intends to read buffer A: A1 A2 A3 A4 A5 A6 A7 A8 CPU enables CP B and disables CP A by writing to the CPENA register. After this switch, the HTU fills buffer B. Filling buffer B starts with its initial full address and initial frame counter. CPU waits for CP A busy bit equals 0 Optional: CPU verifies that the CP A request lost flag is not set. The bus error flag of CP A could also be checked. CPU reads the frozen CFTCTA, which indicates the fill level in the buffer CPU sets current CP A (CFTCTA and/or CFADDRA) to 0. This allows to find out if any request has happened during the next time buffer A is active. CPU reads BFINTFL flag of buffer A CPU clears the BFINTFL flag of buffer A. This is an initialization for the next time buffer A is used. CPU reads valid values of frozen buffer A. After reading the CPU does not need to clear the frozen buffer A. SPNU499C – March 2018 Submit Documentation Feedback High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated 1019 Examples www.ti.com After some time the CPU intends to read buffer B: B1 B2 B3 B4 B5 B6 B7 B8 CPU enables CP A and disables CP B by writing to the CPENA register. After this switch, the HTU fills buffer A. Filling buffer A starts with its initial full address and initial frame counter. CPU waits for CP B busy bit equals 0 Optional: CPU verifies that the CP B request lost flag is not set. The bus error flag of CP B could also be checked. CPU reads the frozen CFTCTB, which indicates the fill level in the buffer CPU sets current CP B (CFTCTB and/or CFADDRB) to 0. This allows to find out if any request has happened during the next time buffer B is active. CPU reads BFINTFL flag of buffer B CPU clears the BFINTFL flag of buffer B. This is an initialization for the next time buffer B is used. CPU reads valid values of frozen buffer B. After reading the CPU does not need to clear the frozen buffer B. After some time the CPU intends to read buffer A: A1) ... see above... NOTE: The buffer full interrupt doesn't need to be enabled. The BFINTFL flag is used to indicate a circular overrun of the buffer. If the BFINTFL flag is set, also the buffer section after the frozen full address could be read. Steps A3 and B3 in the example sequence above imply that request lost interrupts are disabled. The example below assumes that request lost interrupts are enabled. Request lost detection with interrupt enabled. 21.6.3 Example of an Interrupt Dispatch Flow for a Request Lost Interrupt • • • • • 1020 A request lost occurs and the interrupt routine starts. Reading INTOFFx.INTYPEx shows that RLOSTFL is the interrupt source. Reading INTOFFx.CPOFFx = Ah shows that DCP 5 / CP A has caused the RLOSTFL interrupt. The hardware automatically clears bit (2·5+0) in RLOSTFL. Reading RLOSTFL= 84h shows that also another request lost event happened on DCP 1 / CP A [bit (2·1+0)] and on DCP 3 / CP B [bit (2·3+1)] at the same time or after the request lost occurred on DCP 5 / CP A. Writing back 84h to RLOSTFL clears bits 2 and 7 and the according pending interrupts. High-End Timer Transfer Unit (HTU) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Chapter 22 SPNU499C – March 2018 General-Purpose Input/Output (GIO) Module This chapter describes the general-purpose input/output (GIO) module. The GIO module provides the family of devices with input/output (I/O) capability. The I/O pins are bidirectional and bit-programmable. The GIO module also supports external interrupt capability. Topic 22.1 22.2 22.3 22.4 22.5 22.6 ........................................................................................................................... Overview........................................................................................................ Quick Start Guide ........................................................................................... Functional Description of GIO Module ............................................................... Device Modes of Operation .............................................................................. GIO Control Registers ..................................................................................... I/O Control Summary ....................................................................................... SPNU499C – March 2018 Submit Documentation Feedback 1022 1023 1025 1028 1029 1047 General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated Page 1021 Overview www.ti.com 22.1 Overview The GIO module offers general-purpose input and output capability. It supports up to eight 8-bit ports for a total of up to 64 GIO terminals. Each of these 64 terminals can be independently configured as input or output and configured as required by the application. The GIO module also supports generation of interrupts whenever a rising edge or falling edge or any toggle is detected on up to 32 of these GIO terminals. Refer to the device datasheet for identifying the number of GIO ports supported and the GIO terminals capable of generating an interrupt. The main features of the GIO module are summarized as follows: • Allows each GIO terminal to be configured for general-purpose input or output functions • Supports programmable pull directions on each input GIO terminal • Supports GIO output in push/pull or open-drain modes • Allows up to 32 GIO terminals to be used for generating interrupt requests 1022 General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Quick Start Guide www.ti.com 22.2 Quick Start Guide The GIO module comprises two separate components: an input/output (I/O) block and an interrupt generation block. Figure 22-1 and Figure 22-2 show what you should do after reset to configure the GIO module as I/O or for generating interrupts. In GIO interrupt service routine, you shall read the GIO offset register (GIOOFF1 or GIOOFF2, depending on high-/low-level interrupt) to clear the flag and find the pending interrupt GIO channel. Figure 22-1. I/O Function Quick Start Flow Chart Power-On Reset Release Peripheral Reset by setting PENA bit in Clock Control Register (0xFFFFFFD0) Enable clock to GIO through PCR (Check device datasheet for the peripheral select) Bring GIO out of reset by writing 1 to GIOGCR0 Configure as input/output? Input Output Clear corresponding bits in GIODIR to 0 Set corresponding bits in GIODIR to 1 Enable pull? Open drain? Yes No Clear corresponding bits in GIOPULDIS to 0 Set corresponding bits in GIOPULDIS to 1 Yes No Set corresponding bits in GIOPDR to 1 Clear corresponding bits in GIOPDR to 0 Pull up/down? Down Clear corresponding bits in GIOPSL to 0 Output 1 or 0? Set corresponding bits in to GIOPSL to 1 0 1 Write 1 to corresponding bits in GIODSET Write 1 to corresponding bits in GIODCLR Read corresponding bits in GIODIN, getting input value SPNU499C – March 2018 Submit Documentation Feedback General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated 1023 Quick Start Guide www.ti.com Figure 22-2. Interrupt Generation Function Quick Start Flow Chart Power-On Reset Enable Peripherals by setting PENA bit in Clock Control Register (0xFFFFFFD0) Enable GIO through PCR (Check devicedatasheet for the peripheral select) Initialize vector interrupt table - Map GIO low level interrupt and / or high level interrupt service routine to pre-defined device specific interrupt channel. (Check device datasheet) Enable the FIQ/IRQ interrupt in VIM (Check VIM User Guide) Enable the FIQ/IRQ interrupt in CPU (Check CPU User Guide) Bring GIO out of reset (See register GIOGCR0) Both rising and falling edge / single edge trigger interrupt? Both edge Single edge Set corresponding bits in GIOINTDETto 1 Clear corresponding bits in GIOINTDETto 0 Rising/Falling edge? Rising Falling Set corresponding bits in GIOPOL to 1 Clear corresponding bits in GIOPOL to 0 Configure as high /low level interrupt? High level Low level Write 1 to corresponding bits in GIOLVLSET Write 1 to corresponding bits in GIOLVLCLR Write 0xFF to clean the GIO interrupt flag register GIOFLG Write 1 to corresponding bits in GIOENASET to enable interrupt 1024 General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Functional Description of GIO Module www.ti.com 22.3 Functional Description of GIO Module As shown in Figure 22-3, the GIO module comprises of two separate components: an input/output (I/O) block and an interrupt block. Figure 22-3. GIO Module Diagram GIO Module xx xx GIOx[7:0] port PIN CONTROL BLOCK Interrupt Requests INTERRUPT CONTROL BLOCK To Interrupt Manager Host Interface 22.3.1 I/O Functions The I/O block allows each GIO terminal to be configured for use as a general-purpose input or output in the application. The GIO module supports multiple registers to control the various aspects of the input and output functions. These are described as follows. • Data direction (GIODIR) Configures GIO terminal(s) as input (default) or output through the GIODIRx registers. • Data input (GIODIN) Reflects the logic level on GIO terminals in the GIODINx registers. A high voltage (V IH or greater) applied to the pin causes a high value (1) in the data input register (GIODIN[7:0]). When a low voltage (V IL or less) is applied to the pin, the data input register reads a low value (0). The V IH and V IL values are device specific and can be found in the device datasheet. • Data output (GIODOUT) Configures the logic level to be output on GIO terminal(s) configured as outputs. A low value (0) written to the data output register forces the pin to a low output voltage (V OL or lower). A high value (1) written to the data output register (GIODOUTx) forces the pin to a high output voltage (V OH or higher) if the open drain functionality is disabled (GIOPDRx[7:0]). If open drain functionality is enabled, a high value (1) written to the data output register forces the pin to a high-impedance state (Z). • Data set (GIODSET) Allows logic HIGH to be output on GIO terminal(s) configured as outputs by writing 1's to the required bits in the GIODSETx registers. If open drain functionality is enabled, a high value (1) written to the data output register forces the pin to a high-impedance state (Z). The GIODSETx registers eliminate the need for the application to perform a read-modify-write operation when it needs to set one or more GIO pin(s). • Data clear (GIODCLR) Allows logic LOW to be output on GIO terminal(s) configured as outputs by writing 1s to the required bits in the GIODCLRx registers. The GIODCLRx registers eliminate the need for the application to perform a read-modify-write operation when it needs to clear one or more GIO pin(s). • Open drain (GIOPDR) Open drain functionality is enabled or disabled (default) using the open drain register GIOPDR[7:0] register. If open-drain mode output is enabled on a pin, a high value (1) written to the data output register (GIODOUTx[7:0]) forces the pin to a high impedance state (Z). SPNU499C – March 2018 Submit Documentation Feedback General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated 1025 Functional Description of GIO Module • • www.ti.com Pull disable (GIOPULDIS) Disables the internal pull on GIO terminal(s) configured as inputs by writing to the GIOPULDISx registers. Pull select (GIOPSL) Selects internal pull down (default) or pull up on GIO terminal(s) configured as inputs by writing to the GIOPULSELx registers. Refer to the specific device's datasheet to identify the number of GIO ports as well as the input and output functions supported. Some devices may not support the programmable pull controls. In that case, the pull disable and the pull select register controls will not work. 22.3.2 Interrupt Function The GIO module supports up to 32 terminals to be configured for generating an interrupt to the host processor through the Vectored Interrupt Manager (VIM). The main functions of the interrupt block are: • Select the GIO pin(s) that is/are used to generate interrupt(s) This is done via the interrupt enable set and clear registers, GIOENASET and GIOENACLR. • Select the edge on the selected GIO pin(s) that is/are used to generate interrupt(s): rising/falling/both Rising or falling edge can be selected via the GIOPOL register. If interrupt is required to be generated on both rising and falling edges, this can be configured via the GIOINTDET register. • Select the interrupt priority Low- or high-level interrupt can be selected through the GIOLVLSET and GIOLVLCLR registers. • Individual interrupt flags are set in the GIOFLG register The terminals on GIO ports A through D are all interrupt-capable and can be used to handle either general I/O functions or interrupt requests. Each interrupt request can be connected to the VIM at one of two different levels – High (or A) and Low (or B), depending on the VIM channel number. The VIM has an inherent priority scheme so that a request on a lower number channel has a higher priority than a request on a higher number channel. Refer the device datasheet to identify the VIM channel numbers for the GIO level A and level B interrupt requests. Also note that the interrupt priority of level A and level B interrupt handling blocks can be re-programmed in the VIM. 22.3.3 GIO Block Diagram The GIO block diagram (Figure 22-4) represents the flow of information through a pin. The shaded area corresponds to the I/O block; the unshaded area corresponds to the interrupt block. 1026 General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Functional Description of GIO Module www.ti.com Figure 22-4. GIO Block Diagram GIOPSL Pull Select GIOPULDIS Pull Disable GIODIRx GIOPDRx GIODSETx external pin GIODOUTx GIODINx Falling edge Interrupt disable Rising edge Interrupt enable Low-level High-level GIOPOL GIOFLG GIOENASET GIOENACLR GIOLVLSET GIOLVLCLR Low-level (level B) interrupt (1) handling High-level (level A) interrupt GIOINTDET To VIM VBUSP (peripheral bus) GIODCLRx (1) To VIM handling (1) A single low-level-interrupt-handling block and a single high-level-interrupt-handling block service all of the interrupt-capable external pins, but only one pin can be serviced by an interrupt block at a time. SPNU499C – March 2018 Submit Documentation Feedback General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated 1027 Device Modes of Operation www.ti.com 22.4 Device Modes of Operation The GIO module behaves differently in different modes of operation. There are two main modes: • Emulation mode • Power-down mode (low-power mode) 22.4.1 Emulation Mode Emulation mode is used by debugger tools to stop the CPU at breakpoints to read registers. NOTE: Emulation Mode and Emulation Registers Emulation mode is a mode of operation of the device and is separate from the GIO emulation registers (GIOEMU1 and GIOEMU2). The contents of these emulation registers are identical to the contents of GIO offset registers (GIOOFF1 and GIOOFF2). Both emulation registers and GIO offset registers are NOT cleared when they are read in emulation mode. GIO offset registers are cleared when they are read in normal mode (other than emulation mode). The emulation registers are NOT cleared when they are read in normal mode. The intention for the emulation registers is that software can use them without clearing the flags. During emulation mode: • External interrupts are not captured because the VIM is unable to service interrupts. • Any register can be read without affecting the state of the system. • A write to a register still does affect the state of the system. 22.4.2 Power-Down Mode (Low-Power Mode) In power-down mode, the clock signal to the GIO module is disabled. Thus, there is no switching and the only current draw comes from leakage current. In power-down mode, interrupt pins become level-sensitive rather than edge-sensitive. The polarity bit changes function from falling-edge-triggered to low-leveltriggered and rising-edge-triggered to high-level-triggered. A corresponding level on an interrupt pin pulls the module out of low-power mode, if the interrupt is also enabled to wake up the device out of a lowpower mode. 22.4.2.1 Module-Level Power Down The GIO module can be placed into a power down state by disabling the GIO peripheral module via the appropriate bit in the peripheral power down register. Please refer to the Peripheral Central Resource Registers (Section 2.5.3) for details. 22.4.2.2 Device-Level Power Down The entire device can be placed in one of the pre-defined low-power modes: doze, snooze, or sleep using the clock source and clock domain disable registers in the system module. 1028 General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback GIO Control Registers www.ti.com 22.5 GIO Control Registers Table 22-1 shows the summary of the GIO registers. The registers are accessible in 8-, 16-, and 32-bit reads or writes. The start address for the GIO module is FFF7 BC00h. The GIO module supports up to 8 ports. Refer to your device-specific data manual to identify the actual number of GIO ports and the number of pins in each GIO port implemented on this device. The GIO module supports up to 4 interrupt-capable ports. Refer to the device datasheet to identify the actual number of interrupt-capable GIO ports and the number of pins in each GIO port implemented on this device. Table 22-1. GIO Control Registers Offset Acronym Register Description 00h GIOGCR0 GIO Global Control Register Section 22.5.1 Section 08h GIOINTDET GIO Interrupt Detect Register Section 22.5.2 0Ch GIOPOL GIO Interrupt Polarity Register 10h GIOENASET GIO Interrupt Enable Set Register Section 22.5.4.1 14h GIOENACLR GIO Interrupt Enable Clear Register Section 22.5.4.2 Section 22.5.3 18h GIOLVLSET GIO Interrupt Priority Set Register Section 22.5.5.1 1Ch GIOLVLCLR GIO Interrupt Priority Clear Register Section 22.5.5.2 20h GIOFLG GIO Interrupt Flag Register Section 22.5.6 24h GIOOFF1 GIO Offset 1 Register Section 22.5.7 Section 22.5.8 28h GIOOFF2 GIO Offset 2 Register 2Ch GIOEMU1 GIO Emulation 1 Register Section 22.5.9 30h GIOEMU2 GIO Emulation 2 Register Section 22.5.10 34h GIODIRA GIO Data Direction Register Section 22.5.11 38h GIODINA GIO Data Input Register Section 22.5.12 3Ch GIODOUTA GIO Data Output Register Section 22.5.13 40h GIODSETA GIO Data Set Register Section 22.5.14 44h GIODCLRA GIO Data Clear Register Section 22.5.15 48h GIOPDRA GIO Open Drain Register Section 22.5.16 4Ch GIOPULDISA GIO Pull Disable Register Section 22.5.17 50h GIOPSLA GIO Pull Select Register Section 22.5.18 54h GIODIRB GIO Data Direction Register Section 22.5.11 58h GIODINB GIO Data Input Register Section 22.5.12 5Ch GIODOUTB GIO Data Output Register Section 22.5.13 60h GIODSETB GIO Data Set Register Section 22.5.14 64h GIODCLRB GIO Data Clear Register Section 22.5.15 68h GIOPDRB GIO Open Drain Register Section 22.5.16 6Ch GIOPULDISB GIO Pull Disable Register Section 22.5.17 70h GIOPSLB GIO Pull Select Register Section 22.5.18 SPNU499C – March 2018 Submit Documentation Feedback General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated 1029 GIO Control Registers www.ti.com 22.5.1 GIO Global Control Register (GIOGCR0) The GIOGCR0 register contains one bit that controls the module reset status. Writing a 0 to this bit puts the module in a reset state. After system reset, this bit must be set to 1 before configuring any other register of the GIO module. Figure 22-5 and Table 22-2 describe this register. Figure 22-5. GIO Global Control Register (GIOGCR0) [offset = 00h] 31 16 Reserved R-0 15 1 0 Reserved RESET R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 22-2. GIO Global Control Register (GIOGCR0) Field Descriptions Bit 31-1 0 Field Reserved Value 0 RESET Description Reads return 0. Writes have no effect. GIO reset. 0 The GIO is in reset state. 1 The GIO is operating normally. NOTE: Note that putting the GIO module in reset state is not the same as putting it in a low-power state. 1030 General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback GIO Control Registers www.ti.com 22.5.2 GIO Interrupt Detect Register (GIOINTDET) The GIO module supports generation of an interrupt request to CPU when a rising edge, falling edge, or both edges is detected on one or more GIO pin(s). The GIOINTDET register allows both rising and falling edges to be detected, while the GIOPOL register allows the application to define whether a rising edge or a falling edge is to be detected. Figure 22-6 and Table 22-3 describe this register. Figure 22-6. GIO Interrupt Detect Register (GIOINTDET) [offset = 08h] 31 24 23 16 GIOINTDET 3 GIOINTDET 2 R/W-0 R/W-0 15 8 7 0 GIOINTDET 1 GIOINTDET 0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 22-3. GIO Interrupt Detect Register (GIOINTDET) Field Descriptions Bit 31-24 23-16 15-8 7-0 Field Value GIOINTDET 3 Interrupt detection select for pins GIOD[7:0] 0 The flag sets on either a falling or a rising edge on the corresponding pin, depending on the polarity setup in the polarity register (GIOPOL). 1 The flag sets on both the rising and falling edges on the corresponding pin. GIOINTDET 2 Interrupt detection select for pins GIOC[7:0] 0 The flag sets on either a falling or a rising edge on the corresponding pin, depending on the polarity setup in the polarity register (GIOPOL). 1 The flag sets on both the rising and falling edges on the corresponding pin. GIOINTDET 1 Interrupt detection select for pins GIOB[7:0] 0 The flag sets on either a falling or a rising edge on the corresponding pin, depending on the polarity setup in the polarity register (GIOPOL). 1 The flag sets on both the rising and falling edges on the corresponding pin. GIOINTDET 0 SPNU499C – March 2018 Submit Documentation Feedback Description Interrupt detection select for pins GIOA[7:0] 0 The flag sets on either a falling or a rising edge on the corresponding pin, depending on the polarity setup in the polarity register (GIOPOL). 1 The flag sets on both the rising and falling edges on the corresponding pin. General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated 1031 GIO Control Registers www.ti.com 22.5.3 GIO Interrupt Polarity Register (GIOPOL) The GIOPOL register configures the polarity of the edge, rising edge or falling edge, that needs to be detected. When the device is in low-power mode, the GIOPOL register controls the level, high or low, which will be detected by the GIO module. Figure 22-7 and Table 22-4 describe this register. Figure 22-7. GIO Interrupt Polarity Register (GIOPOL) [offset = 0Ch] 31 24 23 16 GIOPOL 3 GIOPOL 2 R/W-0 R/W-0 15 8 7 0 GIOPOL 1 GIOPOL 0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 22-4. GIO Interrupt Polarity Register (GIOPOL) Field Descriptions Bit 31-24 Field Value GIOPOL 3 Description Interrupt polarity select for pins GIOD[7:0] Normal operation (user or privileged mode): 0 The flag is set on the falling edge on the corresponding pin. 1 The flag is set on the rising edge on the corresponding pin. Low-power mode (GIO module clocks off): 23-16 0 The interrupt is triggered on the low level. 1 The interrupt is triggered on the high level. GIOPOL 2 Interrupt polarity select for pins GIOC[7:0] Normal operation (user or privileged mode): 0 The flag is set on the falling edge on the corresponding pin. 1 The flag is set on the rising edge on the corresponding pin. Low-power mode (GIO module clocks off): 15-8 0 The interrupt is triggered on the low level. 1 The interrupt is triggered on the high level. GIOPOL 1 Interrupt polarity select for pins GIOB[7:0] Normal operation (user or privileged mode): 0 The flag is set on the falling edge on the corresponding pin. 1 The flag is set on the rising edge on the corresponding pin. Low-power mode (GIO module clocks off): 7-0 0 The interrupt is triggered on the low level. 1 The interrupt is triggered on the high level. GIOPOL 0 Interrupt polarity select for pins GIOA[7:0] Normal operation (user or privileged mode): 0 The flag is set on the falling edge on the corresponding pin. 1 The flag is set on the rising edge on the corresponding pin. Low-power mode (GIO module clocks off): 1032 0 The interrupt is triggered on the low level. 1 The interrupt is triggered on the high level. General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback GIO Control Registers www.ti.com 22.5.4 GIO Interrupt Enable Registers (GIOENASET and GIOENACLR) The GIOENASET and GIOENACLR registers control which interrupt-capable pins are actually configured as interrupts. If the interrupt is enabled, the rising edge, falling edge, or both edges on the selected pin lead to an interrupt request. 22.5.4.1 GIOENASET Register Figure 22-8 and Table 22-5 describe this register. NOTE: Enabling Interrupt at the Device Level The interrupt channel in the Vectored Interrupt Manager (VIM) must be enabled for the interrupt request to be forwarded to the CPU. Additionally, the ARM CPU (CPSR bit 7 or 6) must be cleared to respond to interrupt requests (IRQ/FIQ). Figure 22-8. GIO Interrupt Enable Set Register (GIOENASET) [offset = 10h] 31 24 23 16 GIOENASET 3 GIOENASET 2 R/W-0 R/W-0 15 8 7 0 GIOENASET 1 GIOENASET 0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 22-5. GIO Interrupt Enable Set Register (GIOENASET) Field Descriptions Bit 31-24 Field Value GIOENASET 3 Description Interrupt enable for pins GIOD[7:0] 0 Read: The interrupt is disabled. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is enabled. Write: Enables the interrupt. 23-16 GIOENASET 2 Interrupt enable for pins GIOC[7:0] 0 Read: The interrupt is disabled. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is enabled. Write: Enables the interrupt. 15-8 GIOENASET 1 Interrupt enable for pins GIOB[7:0] 0 Read: The interrupt is disabled. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is enabled. Write: Enables the interrupt. 7-0 GIOENASET 0 Interrupt enable for pins GIOA[7:0] 0 Read: The interrupt is disabled. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is enabled. Write: Enables the interrupt. SPNU499C – March 2018 Submit Documentation Feedback General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated 1033 GIO Control Registers www.ti.com 22.5.4.2 GIOENACLR Register This register disables the interrupt. Figure 22-9 and Table 22-6 describe this register. Figure 22-9. GIO Interrupt Enable Clear Register (GIOENACLR) [offset = 14h] 31 24 23 16 GIOENACLR 3 GIOENACLR 2 R/W-0 R/W-0 15 8 7 0 GIOENACLR 1 GIOENACLR 0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 22-6. GIO Interrupt Enable Clear Register (GIOENACLR) Field Descriptions Bit 31-24 Field Value GIOENACLR 3 Description Interrupt disable for pins GIOD[7:0] 0 Read: The interrupt is disabled. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is enabled. Write: Disables the interrupt. 23-16 GIOENACLR 2 Interrupt disable for pins GIOC[7:0] 0 Read: The interrupt is disabled. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is enabled. Write: Disables the interrupt. 15-8 GIOENACLR 1 Interrupt disable for pins GIOB[7:0] 0 Read: The interrupt is disabled. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is enabled. Write: Disables the interrupt. 7-0 GIOENACLR 0 Interrupt disable for pins GIOA[7:0] 0 Read: The interrupt is disabled. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is enabled. Write: Disables the interrupt. 1034 General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback GIO Control Registers www.ti.com 22.5.5 GIO Interrupt Priority Registers (GIOLVLSET and GIOLVLCLR) The GIOLVLSET and GIOLVLCLR registers configure the interrupts as high-level (level A) or low-level (level B) going to the Vectored Interrupt Manager (VIM). Each interrupt is individually configured. • The high-level interrupts are recorded to GIOOFF1 and GIOEMU1. • The low-level interrupts are recorded to GIOOFF2 and GIOEMU2. NOTE: The GIO module can generate two interrupt requests. These are connected to two separate channels on the Vectored Interrupt Manager (VIM). The lower-numbered VIM channels are higher priority. The GIO interrupt connected to a lower-number channel is the high-level (also called level A) GIO interrupt, while the GIO interrupt connected to a higher-number channel is the low-level (also called level B) GIO interrupt. 22.5.5.1 GIOLVLSET Register The GIOLVLSET register is used to configure an interrupt as a high-level interrupt going to the VIM. An interrupt can be configured as a high-level interrupt by writing a 1 into the corresponding bit of the GIOLVLSET register. Writing a 0 has no effect. Figure 22-10 and Table 22-7 describe this register. Figure 22-10. GIO Interrupt Priority Register (GIOLVLSET) [offset = 18h] 31 16 GIOLVLSET 3 GIOLVLSET 2 R/W-0 R/W-0 15 8 7 0 GIOLVLSET 1 GIOLVLSET 0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 22-7. GIO Interrupt Priority Register (GIOLVLSET) Field Descriptions Bit 31-24 Field Value GIOLVLSET 3 Description GIO high-priority interrupt for pins GIOD[7:0]. 0 Read: The interrupt is a low-level interrupt. The low-level interrupts are recorded to GIOOFF2 and GIOEMU2. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is set as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1. Write: Sets the interrupt as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1. 23-16 GIOLVLSET 2 GIO high-priority interrupt for pins GIOC[7:0]. 0 Read: The interrupt is a low-level interrupt. The low-level interrupts are recorded to GIOOFF2 and GIOEMU2. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is set as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1. Write: Sets the interrupt as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1. 15-8 GIOLVLSET 1 GIO high-priority interrupt for pins GIOB[7:0]. 0 Read: The interrupt is a low-level interrupt. The low-level interrupts are recorded to GIOOFF2 and GIOEMU2. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is set as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1. Write: Sets the interrupt as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1. SPNU499C – March 2018 Submit Documentation Feedback General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated 1035 GIO Control Registers www.ti.com Table 22-7. GIO Interrupt Priority Register (GIOLVLSET) Field Descriptions (continued) Bit Field 7-0 GIOLVLSET 0 Value Description GIO high-priority interrupt for pins GIOA[7:0]. 0 Read: The interrupt is a low-level interrupt. The low-level interrupts are recorded to GIOOFF2 and GIOEMU2. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is set as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1. Write: Sets the interrupt as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1. 1036 General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback GIO Control Registers www.ti.com 22.5.5.2 GIOLVLCLR Register The GIOLVLCLR register is used to configure an interrupt as a low-level interrupt going to the VIM. An interrupt can be configured as a low-level interrupt by writing a 1 into the corresponding bit of the GIOLVLCLR register. Writing a 0 has no effect. Figure 22-11 and Table 22-8 describe this register. Figure 22-11. GIO Interrupt Priority Register (GIOLVLCLR) [offset = 1Ch] 31 16 GIOLVLCLR 3 GIOLVLCLR 2 R/W-0 R/W-0 15 8 7 0 GIOLVLCLR 1 GIOLVLCLR 0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 22-8. GIO Interrupt Priority Register (GIOLVLCLR) Field Descriptions Bit 31-24 Field Value GIOLVLCLR 3 Description GIO low-priority interrupt for pins GIOD[7:0] 0 Read: The interrupt is a low-level interrupt. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is set as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1. Write: Sets the interrupt as a low-level interrupt. The low-level interrupts are recorded to GIOOFF2 and GIOEMU2. 23-16 GIOLVLCLR 2 GIO low-priority interrupt for pins GIOC[7:0] 0 Read: The interrupt is a low-level interrupt. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is set as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1. Write: Sets the interrupt as a low-level interrupt. The low-level interrupts are recorded to GIOOFF2 and GIOEMU2. 15-8 GIOLVLCLR 1 GIO low-priority interrupt for pins GIOB[7:0] 0 Read: The interrupt is a low-level interrupt. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is set as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1. Write: Sets the interrupt as a low-level interrupt. The low-level interrupts are recorded to GIOOFF2 and GIOEMU2. 7-0 GIOLVLCLR 0 GIO low-priority interrupt for pins GIOA[7:0] 0 Read: The interrupt is a low-level interrupt. Write: Writing a 0 to this bit has no effect. 1 Read: The interrupt is set as a high-level interrupt. The high-level interrupts are recorded to GIOOFF1 and GIOEMU1. Write: Sets the interrupt as a low-level interrupt. The low-level interrupts are recorded to GIOOFF2 and GIOEMU2. SPNU499C – March 2018 Submit Documentation Feedback General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated 1037 GIO Control Registers www.ti.com 22.5.6 GIO Interrupt Flag Register (GIOFLG) The GIOFLG register contains flags indicating that the transition edge (as set in GIOINTDET and GIOPOL registers) has occurred. The flag can be cleared by the CPU writing a 1 to the flag that is set. The flag is also cleared by reading the appropriate interrupt offset register (GIOOFF1 or GIOOFF2). Figure 22-12 and Table 22-9 describe this register. Figure 22-12. GIO Interrupt Flag Register (GIOFLG) [offset = 20h] 31 24 23 16 GIOFLG 3 GIOFLG 2 R/W1C-0 R/W1C-0 15 8 7 0 GIOFLG 1 GIOFLG 0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; W1C = Write 1 to clear; -n = value after reset Table 22-9. GIO Interrupt Flag Register (GIOFLG) Field Descriptions Bit 31-24 Field Value GIOFLG 3 Description GIO flag for pins GIOD[7:0] 0 Read: A transition has not occurred since the last clear. Write: Writing a 0 to this bit has no effect. 1 Read: The selected transition on the corresponding pin has occurred. Write: The corresponding bit is cleared to 0. Note: This bit is also cleared by a read to the corresponding bit in the appropriate offset register. 23-16 GIOFLG 2 GIO flag for pins GIOC[7:0] 0 Read: A transition has not occurred since the last clear. Write: Writing a 0 to this bit has no effect. 1 Read: The selected transition on the corresponding pin has occurred. Write: The corresponding bit is cleared to 0. Note: This bit is also cleared by a read to the corresponding bit in the appropriate offset register. 15-8 GIOFLG 1 GIO flag for pins GIOB[7:0] 0 Read: A transition has not occurred since the last clear. Write: Writing a 0 to this bit has no effect. 1 Read: The selected transition on the corresponding pin has occurred. Write: The corresponding bit is cleared to 0. Note: This bit is also cleared by a read to the corresponding bit in the appropriate offset register. 7-0 GIOFLG 0 GIO flag for pins GIOA[7:0] 0 Read: A transition has not occurred since the last clear. Write: Writing a 0 to this bit has no effect. 1 Read: The selected transition on the corresponding pin has occurred. Write: The corresponding bit is cleared to 0. Note: This bit is also cleared by a read to the corresponding bit in the appropriate offset register. NOTE: An interrupt flag gets set when the selected transition happens on the corresponding GIO pin regardless of whether the interrupt generation is enabled or not. It is recommended to clear a flag before enabling the interrupt generation for a transition on the corresponding GIO pin. 1038 General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback GIO Control Registers www.ti.com 22.5.7 GIO Offset Register 1 (GIOOFF1) The GIOOFF1 register provides a numerical offset value that represents the pending external interrupt with high priority. The offset value can be used to locate the position of the interrupt routine in a vector table in application software. Figure 22-13 and Table 22-10 describe this register. NOTE: Reading this register clears it, GIOEMU1 and the corresponding flag bit in the GIOFLG register. However, in emulation mode, a read to this register does not clear any register or flag. If more than one GIO interrupts are pending, then reading the GIOOFF1 register will change the contents of GIOOFF1 and GIOEMU1 to show the offset value for the next highest-priority pending interrupt. The application can choose to service all GIO interrupts from the same service routine by continuing to read the GIOOFF1 register until it reads zeros. Figure 22-13. GIO Offset 1 Register (GIOOFF1) [offset = 24h] 31 16 Reserved R-0 15 6 5 0 Reserved GIOOFF1 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 22-10. GIO Offset 1 Register (GIOOFF1) Field Descriptions Bit Field 31-6 Reserved 5-0 GIOOFF1 Value 0 Description Reads return 0. Writes have no effect. GIO offset 1. These bits index the currently pending high-priority interrupt. This register and the flag bit (in the GIOFLG register) are also cleared when this register is read, except in emulation mode. 0 No interrupt is pending. 1h Interrupt 0 (corresponding to GIOA0) is pending with a high priority. : 8h Interrupt 7 (corresponding to GIOA7) is pending with a high priority. 9h Interrupt 8 (corresponding to GIOB0) is pending with a high priority. : 10h : 20h 21h-3Fh SPNU499C – March 2018 Submit Documentation Feedback : : Interrupt 16 (corresponding to GIOB7) is pending with a high priority. : Interrupt 32 (corresponding to GIOD7) is pending with a high priority. Reserved General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated 1039 GIO Control Registers www.ti.com 22.5.8 GIO Offset B Register (GIOOFF2) The GIOOFF2 register provides a numerical offset value that represents the pending external interrupt with low priority. The offset value can be used to locate the position of the interrupt routine in a vector table in application software. Figure 22-14 and Table 22-11 describe this register. NOTE: Reading this register clears it, GIOEMU2 and the corresponding flag bit in the GIOFLG register. However, in emulation mode, a read to this register does not clear any register or flag. If more than one GIO interrupts are pending, then reading the GIOOFF1 register will change the contents of GIOOFF2 and GIOEMU2 to show the offset value for the next highest-priority pending interrupt. The application can choose to service all GIO interrupts from the same service routine by continuing to read the GIOOFF1 register until it reads zeros. Figure 22-14. GIO Offset 2 Register (GIOOFF2) [offset = 28h] 31 16 Reserved R-0 15 6 5 0 Reserved GIOOFF2 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 22-11. GIO Offset 2 Register (GIOOFF2) Field Descriptions Bit Field 31-6 Reserved 5-0 GIOOFF2 Value 0 Reads return 0. Writes have no effect. GIO offset 2. These bits index the currently pending low-priority interrupt. This register and the flag bit (in the GIOFLG register) are also cleared when this register is read, except in emulation mode. 0 No interrupt is pending. 1h Interrupt 0 (corresponding to GIOA0) is pending with a low priority. : : 8h Interrupt 7 (corresponding to GIOA7) is pending with a low priority. 9h Interrupt 8 (corresponding to GIOB0) is pending with a low priority. : 10h : 20h 21h-3Fh 1040 Description : Interrupt 16 (corresponding to GIOB7) is pending with a low priority. : Interrupt 32 (corresponding to GIOD7) is pending with a low priority. Reserved General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback GIO Control Registers www.ti.com 22.5.9 GIO Emulation A Register (GIOEMU1) The GIOEMU1 register is a read-only register. The contents of this register are identical to the contents of GIOOFF1. The intention for the this register is that software can use it without clearing the flags. Figure 22-15 and Table 22-12 describe this register. NOTE: The corresponding flag in the GIOFLG register is not cleared when the GIOEMU1 register is read. Figure 22-15. GIO Emulation 1 Register (GIOEMU1) [offset = 2Ch] 31 16 Reserved R-0 15 6 5 0 Reserved GIOEMU1 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 22-12. GIO Emulation 1 Register (GIOEMU1) Field Descriptions Bit Field 31-6 Reserved 5-0 GIOEMU1 Value 0 Description Reads return 0. Writes have no effect. GIO offset emulation 1. These bits index the currently pending high-priority interrupt. No register or flag is cleared by reading this register. 0 No interrupt is pending. 1h Interrupt 0 (corresponding to GIOA0) is pending with a high priority. : 8h Interrupt 7 (corresponding to GIOA7) is pending with a high priority. 9h Interrupt 8 (corresponding to GIOB0) is pending with a high priority. : 10h : 20h 21h-3Fh SPNU499C – March 2018 Submit Documentation Feedback : : Interrupt 16 (corresponding to GIOB7) is pending with a high priority. : Interrupt 32 (corresponding to GIOD7) is pending with a high priority. Reserved General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated 1041 GIO Control Registers www.ti.com 22.5.10 GIO Emulation B Register (GIOEMU2) The GIOEMU2 register is a read-only register. The contents of this register are identical to the contents of GIOOFF2. The intention for the this register is that software can use it without clearing the flags. Figure 22-16 and Table 22-13 describe this register. NOTE: The corresponding flag in the GIOFLG register is not cleared when the GIOEMU2 register is read. Figure 22-16. GIO Emulation 2 Register (GIOEMU2) [offset = 30h] 31 16 Reserved R-0 15 6 5 0 Reserved GIOEMU2 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 22-13. GIO Emulation 2 Register (GIOEMU2) Field Descriptions Bit Field 31-6 Reserved 5-0 GIOEMU2 Value 0 Reads return 0. Writes have no effect. GIO offset emulation 2. These bits index the currently pending low-priority interrupt. No register or flag is cleared by reading this register. 0 No interrupt is pending. 1h Interrupt 0 (corresponding to GIOA0) is pending with a low priority. : : 8h Interrupt 7 (corresponding to GIOA7) is pending with a low priority. 9h Interrupt 8 (corresponding to GIOB0) is pending with a low priority. : 10h : 20h 21h-3Fh 1042 Description : Interrupt 16 (corresponding to GIOB7) is pending with a low priority. : Interrupt 32 (corresponding to GIOD7) is pending with a low priority. Reserved General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback GIO Control Registers www.ti.com 22.5.11 GIO Data Direction Registers (GIODIR[A-B]) The GIODIR register controls whether the pins of a given port are configured as inputs or outputs. Figure 22-17 and Table 22-14 describe this register. Figure 22-17. GIO Data Direction Registers (GIODIR[A-B]) [offset = 34h, 54h] 31 16 Reserved R-0 15 8 7 0 Reserved GIODIR[7:0] R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-14. GIO Data Direction Registers (GIODIR[A-B]) Field Descriptions Bit Field 31-8 Reserved 7-0 GIODIR[n] Value 0 Description Reads return 0. Writes have no effect. GIO data direction of port n, pins [7:0] 0 The GIO pin is an input. Note: If the pin direction is set as an input, the output buffer is tristated. 1 The GIO pin is an output. 22.5.12 GIO Data Input Registers (GIODIN[A-B]) Values in the GIODIN register reflect the current state (high = 1 or low = 0) on the pins of the port. Figure 22-18 and Table 22-15 describe this register. Figure 22-18. GIO Data Input Registers (GIODIN[A-B]) [offset = 38h, 58h] 31 16 Reserved R-0 15 8 7 0 Reserved GIODIN[7:0] R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-15. GIO Data Input Registers (GIODIN[A-B]) Field Descriptions Bit Field 31-8 Reserved 7-0 GIODIN[n] Value SPNU499C – March 2018 Submit Documentation Feedback 0 Description Reads return 0. Writes have no effect. GIO data input for port n, pins [7:0] 0 The pin is at logic low (0). 1 The pin is at logic high (1). General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated 1043 GIO Control Registers www.ti.com 22.5.13 GIO Data Output Registers (GIODOUT[A-B]) Values in the GIODOUT register specify the output state (high = 1 or low = 0) of the pins of the port when they are configured as outputs. Figure 22-19 and Table 22-16 describe this register. NOTE: Values in the GIODSET register set the data output control register bits to 1 regardless of the current value in the GIODOUT bits. Figure 22-19. GIO Data Output Registers (GIODOUT[A-B]) [offset = 3Ch, 5Ch] 31 16 Reserved R-0 15 8 7 0 Reserved GIODOUT[7:0] R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-16. GIO Data Output Registers (GIODOUT[A-B]) Field Descriptions Bit Field 31-8 Reserved 7-0 GIODOUT[n] Value 0 Description Reads return 0. Writes have no effect. GIO data output of port n, pins[7:0]. 0 The pin is driven to logic low (0). 1 The pin is driven to logic high (1). Note: Output is in high impedance state if the GIOPDRx bit = 1 and GIODOUTx bit = 1. Note: GIO pin is placed in output mode by setting the GIODIRx bit to 1. 22.5.14 GIO Data Set Registers (GIODSET[A-B]) Values in this register set the data output control register bits to 1 regardless of the current value in the GIODOUT bits. The contents of this register reflect the contents of GIODOUT. Figure 22-20 and Table 2217 describe this register. Figure 22-20. GIO Data Set Registers (GIODSET[A-B]) [offset = 40h, 60h] 31 16 Reserved R-0 15 8 7 0 Reserved GIODSET[7:0] R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-17. GIO Data Set Registers (GIODSET[A-B]) Field Descriptions Bit Field 31-8 Reserved 7-0 GIODSET[n] Value 0 Description Reads return 0. Writes have no effect. GIO data set for port n, pins[7:0]. This bit drives the output of GIO pin high. 0 Write: Writing a 0 has no effect. 1 Write: The corresponding GIO pin is driven to logic high (1). Note: The current logic state of the GIODOUT bit will also be displayed by this bit. Note: GIO pin is placed in output mode by setting the GIODIRx bit to 1. 1044 General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback GIO Control Registers www.ti.com 22.5.15 GIO Data Clear Registers (GIODCLR[A-B]) Values in this register clear the data output register (GIO Data Output Register [A-H]) bit to 0 regardless of its current value. The contents of this register reflect the contents of GIODOUT. Figure 22-21 and Table 22-18 describe this register. Figure 22-21. GIO Data Clear Registers (GIODCLR[A-B]) [offset = 44h, 64h] 31 16 Reserved R-0 15 8 7 0 Reserved GIODCLR[7:0] R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-18. GIO Data Clear Registers (GIODCLR[A-B]) Field Descriptions Bit Field 31-8 Reserved 7-0 GIODCLR[n] Value 0 Description Reads return 0. Writes have no effect. GIO data clear for port n, pins[7:0]. This bit drives the output of GIO pin low. 0 Write: Writing a 0 has no effect. 1 Write: The corresponding GIO pin is driven to logic low (0). Note: The current logic state of the GIODOUT bit will also be displayed by this bit. Note: GIO pin is placed in output mode by setting the GIODIRx bit to 1. 22.5.16 GIO Open Drain Registers (GIOPDR[A-B]) Values in this register enable or disable the open drain capability of the data pins. Figure 22-22 and Table 22-19 describe this register. Figure 22-22. GIO Open Drain Registers (GIOPDR[A-B]) [offset = 48h, 68h] 31 16 Reserved R-0 15 8 7 0 Reserved GIOPDR[7:0] R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-19. GIO Open Drain Registers (GIOPDR[A-B]) Field Descriptions Bit Field 31-8 Reserved 7-0 GIOPDR[n] Value SPNU499C – March 2018 Submit Documentation Feedback 0 Description Reads return 0. Writes have no effect. GIO open drain for port n, pins[7:0] 0 The GIO pin is configured in push/pull (normal GIO) mode. The output voltage is V GIODOUT bit = 0 and V OH or higher if GIODOUT bit = 1. 1 The GIO pin is configured in open drain mode. The GIODOUTx bit controls the state of the GIO output buffer: GIODOUTx = 0, the GIO output buffer is driven low; GIODOUTx = 1, the GIO output buffer is tristated. OL or lower if General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated 1045 GIO Control Registers www.ti.com 22.5.17 GIO Pull Disable Registers (GIOPULDIS[A-B]) Values in this register enable or disable the pull control capability of the pins. Figure 22-23 and Table 2220 describe this register. Figure 22-23. GIO Pull Disable Registers (GIOPULDIS[A-B]) [offset = 4Ch, 6Ch] 31 16 Reserved R-0 15 8 7 0 Reserved GIOPULDIS[7:0] R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-20. GIO Pull Disable Registers (GIOPULDIS[A-B]) Field Descriptions Bit Field 31-8 Reserved 7-0 GIOPULDIS[n] Value 0 Description Reads return 0. Writes have no effect. GIO pull disable for port n, pins[7:0]. Writes to this bit will only take effect when the GIO pin configured as an input pin. 0 The pull functionality is enabled. 1 The pull functionality is disabled. Note: The GIO pin is placed in input mode by clearing the GIODIRx bit to 0. 22.5.18 GIO Pull Select Registers (GIOPSL[A-B]) Values in this register select the pull up or pull down functionality of the pins. Figure 22-24 and Table 2221 describe this register. Figure 22-24. GIO Pull Select Registers (GIOPSL[A-B]) [offset = 50h, 70h] 31 16 Reserved R-0 15 8 7 0 Reserved GIOPSL[7:0] R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 22-21. GIO Pull Select Registers (GIOPSL[A-B]) Field Descriptions Bit Field 31-8 Reserved 7-0 GIOPSL[n] Value 0 Description Reads return 0. Writes have no effect. GIO pull select for port n, pins[7:0] 0 The pull down functionality is select, when pull up/pull down logic is enabled. 1 The pull up functionality is select, when pull up/pull down logic is enabled. Note: The pull up/pull down functionality is enabled by clearing corresponding bit in GIOPULDIS to 0. 1046 General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback I/O Control Summary www.ti.com 22.6 I/O Control Summary The behavior of the output buffer and the pull control is summarized in Table 22-22. Table 22-22. Output Buffer and Pull Control Behavior for GIO Pins (1) (2) (3) (4) (5) (6) Module under Reset? Pin Direction (GIODIR) (1) (2) Open Drain Enable (GIOPDR) (1) (3) Pull Disable (GIOPULDIS) (1) (4) Pull Select (GIOPSL) (1) (5) Yes X X X No 0 X 0 No 0 X No 0 No 0 No No Pull Control Output Buffer (6) X Enabled Disabled 0 Pull down Disabled 0 1 Pull up Disabled X 1 0 Disabled Disabled X 1 1 Disabled Disabled 1 0 X X Disabled Enabled 1 1 X X Disabled Enabled X = Don't care GIODIR = 0 for input; = 1 for output See Section 22.5.16 GIOPULDIS = 0 for enabling pull control; = 1 for disabling pull control GIOPSL= 0 for pull-down functionality; = 1 for pull-up functionality If open drain is enabled, output buffer will be disabled if a high level (1) is being output. SPNU499C – March 2018 Submit Documentation Feedback General-Purpose Input/Output (GIO) Module Copyright © 2018, Texas Instruments Incorporated 1047 Chapter 23 SPNU499C – March 2018 FlexRay Module This chapter provides the specification for TI’s FlexRay module and its features from the application programmer’s point of view. Topic ........................................................................................................................... 23.1 23.2 23.3 23.4 23.5 23.6 23.7 23.8 23.9 23.10 23.11 23.12 23.13 23.14 23.15 23.16 23.17 23.18 23.19 23.20 23.21 23.22 1048 Overview........................................................................................................ FlexRay Module Block Diagram ........................................................................ FlexRay Module Block Mapping ........................................................................ Transfer Unit Block Diagram ............................................................................ Transfer Unit Functional Description ................................................................. Communication Cycle ..................................................................................... Communication Modes .................................................................................... Clock Synchronization..................................................................................... Error Handling ................................................................................................ Communication Controller States .................................................................... Network Management ..................................................................................... Filtering and Masking ..................................................................................... Transmit Process .......................................................................................... Receive Process ............................................................................................ FIFO Function ............................................................................................... Message Handling ......................................................................................... Module RAMs ................................................................................................ Interrupts ...................................................................................................... FlexRay Module Registers .............................................................................. Minimum Peripheral Clock Frequency ............................................................. Assignment of FlexRay Configuration Parameters ............................................ Emulation/Debug Support .............................................................................. FlexRay Module Page 1049 1050 1053 1054 1055 1064 1065 1066 1067 1069 1081 1081 1083 1085 1086 1088 1095 1103 1108 1242 1243 1244 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Overview www.ti.com 23.1 Overview The FlexRay module performs communication according to the FlexRay protocol specification v2.1 Rev. A. The sample clock bit rate can be programmed to values up to 10 Mbit/s. Additional bus driver (BD) hardware is required for connection to the physical layer. For communication on a FlexRay network, individual message buffers with up to 254 data bytes are configurable. The message storage consists of a single-ported message RAM that holds up to 128 message buffers. All functions concerning the handling of messages are implemented in the message handler. Those functions are the acceptance filtering, the transfer of messages between the two FlexRay Channel Protocol Controllers and the message RAM, maintaining the transmission schedule as well as providing message status information. The register set of the FlexRay module can be accessed directly by the CPU via the VBUS interface. These registers are used to control, configure and monitor the FlexRay channel protocol controllers, message handler, global time unit, system universal control, frame and symbol processing, network management, interrupt control, and to access the message RAM via the input / output buffer. 23.1.1 Feature List • • • • • • • • • • • • Conformance with FlexRay protocol specification v2.1 Rev. A Data rates of up to 10 Mbit/s on each channel Up to 128 message buffers 8 Kbyte of message RAM for storage of, for example, 128 message buffers with maximum of 48-byte data section or up to 30 message buffers with 254-byte data section Configuration of message buffers with different payload lengths One configurable receive FIFO Each message buffer can be configured as receive buffer, as transmit buffer or as part of the receive FIFO CPU access to message buffers via input and output buffer Specialized DMA like FlexRay Transfer Unit (FTU) for automatic data transfer between data memory and message buffers without CPU interaction Filtering for slot counter, cycle counter, and channel Maskable module interrupts Supports Network Management SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1049 FlexRay Module Block Diagram www.ti.com 23.2 FlexRay Module Block Diagram Figure 23-1. Block Diagram FlexRay Module Rx_A Tx_A PRT A TBF A Physical Layer Control GTU Rx_B Tx_B PRT B TBF B SUC Transfer Unit Statemachine FSP IBF Message Handler NEM OBF Direct Access INT VBUS IF (Slave) uC Peripheral Bus VBUS IF (Master) FTU Message RAM BCLK SCLK VBUSCLK 80MHz Interrupts The TI FlexRay module contains the following blocks: • Peripheral Interface (VBUS IF) Interface to the Peripheral Bus of the TMS570 microcontroller architecture. The FlexRay module can either act as a VBUS master or VBUS slave. • FlexRay Transfer Unit (FTU) NOTE: Since the FlexRay module is accessed through the FTU, the FTU must be powered up by the corresponding bit in the Peripheral Power Down Registers of the System Module before accessing any FlexRay module register. For details, refer to the Architecture chapter and the device-specific data manual. • 1050 The internal intelligent state-machine (Transfer Unit State Machine) is able to transfer data between the input buffer (IBF) and output buffer (OBF) of the communication controller and the system memory without CPU interaction. Input Buffer (IBF) For write access to the message buffers configured in the message RAM, the CPU or the FTU can write the header and data section for a specific message buffer to the input buffer. The message handler then transfers the data from the input buffer to the selected message buffer in the message RAM. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Block Diagram www.ti.com • • • • • • Output Buffer (OBF) For read access to a message buffer configured in the message RAM the message handler transfers the selected message buffer to the output buffer. After the transfer has completed, the CPU or the FTU can read the header and data section of the transferred message buffer from the output buffer. Message Handler (MHD) The message handler controls data transfers between the following components: – Input / output buffer and message RAM – Transient buffer RAMs of the two FlexRay protocol controllers and message RAM Message RAM The message RAM stores up to 128 FlexRay message buffers together with the related configuration data (header and data partition). The Transient Buffer RAM (TBF A/B): Stores the data section of two complete messages. FlexRay Channel Protocol Controller (PRT A/B) The FlexRay channel protocol controllers consist of a shift register and the FlexRay protocol FSM (Finite State Machine). They are connected to the transient buffer RAMs for intermediate message storage and to the physical layer via bus drivers (BD). They perform the following functionality: – Control and check of bit timing – Reception / transmission of FlexRay frames and symbols – Check of header CRC – Generation / check of frame CRC – Interfacing to bus driver The FlexRay channel protocol controllers have interfaces to: – Physical layer (bus driver) – Transient buffer RAM – Message handler – Global Time Unit – System universal control – Frame and symbol processing – Network management – Interrupt control Global time unit (GTU) The GTU performs the following functions: – Generation of microtick – Generation of macrotick – Fault tolerant clock synchronization by FTM algorithm • rate and offset correction • offset correction – Cycle counter – Timing control of static segment – Timing control of dynamic segment (minislotting) – Support of external clock correction SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1051 FlexRay Module Block Diagram • • • • • www.ti.com System Universal Control (SUC) The SUC controls the following functions: – Configuration – Wakeup – Startup – Normal Operation – Passive Operation – Monitor Mode Frame and Symbol Processing (FSP) The frame and symbol processing controls the following functions: – Checks the correct timing of frames and symbols – Tests the syntactical and semantic correctness of received frames – Sets the slot status flags Network Management (NEM) Handles the network management vector. Interrupt Control (INT) The interrupt controller performs the following functions: – Provides error and status interrupt flags – Enable / disable interrupt sources – Assignment of interrupt sources to the two module interrupt lines – Enable / disable module interrupt lines – Manages the two interrupt timers – Stop watch time capturing 80MHz Clock Signal NOTE: VCLKA2 is used to provide the 80-MHz clock to the FlexRay Module. The second PLL / Clock Source 6 in the microcontroller is typically used as source for VCLKA2. • 1052 Clock signal for the sample clock (SCLK) of the FlexRay module. Module Clock (VBUSCLK) The FlexRay module clock (BCLK) is derived from the Peripheral Clock VBUSCLK of the microcontroller. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Block Mapping www.ti.com 23.3 FlexRay Module Block Mapping Figure 23-2 shows the different module blocks of the FlexRay module. It is split into 3 sections, the communication controller, the transfer unit and the transfer unit RAM. The RAM of the communication controller is only memory mapped in test mode, where it is mapped to the register set address range. Figure 23-2. FlexRay Module Blocks FlexRay Module Communication Controller offset_TU_RAM Transfer Unit RAM base_TU_RAM offset_TU offset_CC Register Set Register Set base_TU base_CC The address ranges of the three FlexRay blocks are shown in Table 23-1. Table 23-1. FlexRay Address Range Table Module Address Range FlexRay Communication Controller 0xFFF7_C800 - 0xFFF7_CFFF FlexRay TU 0xFFF7_A000 - 0xFFF7_A1FF FlexRay TU RAM 0xFF50_0000 - 0xFF51_FFFF SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1053 Transfer Unit Block Diagram www.ti.com 23.4 Transfer Unit Block Diagram Figure 23-3. Transfer Unit Transfer Unit Peripheral Bus VBUSP Slave Interface VBUSP Master Interface FlexRay Input Buffer (IBF) FlexRay Output Buffer (OBF) Interface Arbiter FlexRay Message Handler Transfer Unit State Machine Transfer Configuration RAM (TCR) Transfer Unit Interrupts The FlexRay Transfer Unit (FTU) has an internal intelligent state-machine (Transfer Unit State Machine) to transfer data between the Input and Output Buffer Interfaces of the FlexRay core module and the system memory of the microcontroller without CPU interaction. It operates in a similar manner to a DMA (Direct Memory Access) module. The FlexRay Input Buffer (IBF) and FlexRay Output Buffer (OBF) can also be accessed directly by the CPU. In this case the IBF and OBF are 8-, 16-, and 32-bit accessible. For transfers using the Transfer Unit State Machine only 4x32-bit data packages (4 word bursts) are supported. The Interface Arbiter controls the access to the IBF and OBF. Direct CPU accesses to IBF and OBF are not possible, if the Transfer Unit State Machine is switched on. Accesses will be ignored and the associated error interrupt will be generated. The Transfer Unit State Machine is the head of all manual, event driven and automatic message transfer activities. It controls the Transfer Unit interrupt generation related to transfer protocol correctness, status and violations of the message transfers. With the Transfer Configuration RAM (TCR) the transfer sequence, executed by the Transfer Unit State Machine, can be configured. The usage of the Transfer Unit allows the user to setup a mirror of the FlexRay message RAM in the fast accessible data RAM of the microcontroller. The Transfer Unit can handle the data transfers between the data RAM and the FlexRay message RAM in the ‘background’ without CPU interaction. 1054 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Transfer Unit Functional Description www.ti.com 23.5 Transfer Unit Functional Description Figure 23-4 shows the principle of the Transfer Unit operation. Figure 23-4. FlexRay Transfer Unit Operation Principle Data RAM FTU Transfer Base Address (TBA) Transfer Configuration RAM FlexRay Message RAM TCR 1 Message Buffer 1 TCR 2 Message Buffer 2 TCR 3 Message Buffer 3 TCR 4 Message Buffer 4 TCR 128 Message Buffer 128 14 bit offset + Header / Data Message Buffer 4 Each FlexRay message buffer of the FlexRay message buffer RAM has one Transfer Configuration RAM (TCR) entry assigned to it, that is, message buffer 1 is assigned to TCR1, message buffer 2 is assigned to TCR2, and so on. The Transfer Base Address (TBA) register of the Transfer Unit holds the message buffer base address in the data RAM. Each Transfer Configuration RAM (TCR) entry contains a 14 bit offset value to the dedicated message buffer area in the data RAM. The following two diagrams show the principle of the Transfer Unit operation including Transfer State Machine (see Figure 23-5) and Event State Machine (see Figure 23-6). SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1055 Transfer Unit Functional Description www.ti.com Figure 23-5. FlexRay Transfer Unit Operation Principle for Transfer FSM (simplified) Module reset active or FTU disabled (GCS.TUE=0) IDLE Wait for FTU being enabled (GCS.TUE=1, GCS.TUH=0) FTU disabled (GCS.TUE=0) 1056 CHECK Find lowest bit set in TTSM and TTCC which corresponds to the next message buffer to be transferred SETUP Set up FTU transfer of the message buffer with help of configuration in Transfer Configuration RAM (TCR) XFER 4 word burst by 4 word burst transfer of message buffer to System Memory (SM) or to Communication Controller (CC) STATUS Reset bit in TTSM or TTCC which corresponds to the transferred message buffer and generate status information FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Transfer Unit Functional Description www.ti.com Figure 23-6. FlexRay Transfer Unit Operation Principle for Event FSM (simplified) Event FSM Module reset active or FTU disabled (GCS.TUE=0) IDLE Wait for FTU being enabled (GCS.TUE=1) WAIT Wait for event signaled from E-Ray that a message buffer has been updated FTU disabled (GCS.TUE=0) UPDATE Set up FTU transfer of the message buffer with help of configuration in Transfer Configuration RAM (TCR) ETESMS/R CESMS/R 0 1 1 0 1 Set bit TTSM Clear bit ETESMS/R False True True False False True 23.5.1 Transfer Control 23.5.1.1 Transfer Start and Halt The Transfer Unit State Machine can be halted, effectively stopping the Transfer Unit transfer sequence (after completion of the current 4 word burst transfer cycle). After releasing from halt state, the Transfer Unit resumes exactly, where it was halted without data loss. NOTE: It is the software’s responsibility to ensure data coherency when the FlexRay module continues to receive data, but the Transfer Unit doesn't transfer it. 23.5.1.2 Transfer Abort A Transfer Unit transfer will be aborted and the Transfer Unit will be disabled automatically in case of: • a parity error while accessing the Transfer Configuration RAM (TCR) • a memory protection error while accessing the data RAM of the microcontroller. In this case, the ongoing transfer is aborted but the TUE bit in GCS/R may not get reset. User shall clear the TUE bit manually by software. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1057 Transfer Unit Functional Description www.ti.com 23.5.1.3 Transfer Reset The Transfer Unit State Machine can be reset by the Transfer Unit Enable (TUE) bit in the Global Control register. Though the Transfer Unit State Machine can be reset with the above, the module register contents and the Transfer Configuration RAM (TCR). So, after re-enabling the Transfer Unit no reconfiguration of the Transfer Unit is required. 23.5.1.4 Transfer Modes Possible transfer sequence modes are: • Manual by triggering the desired transfer by setting the corresponding bit in the Trigger Transfer to System Memory (TTSM) register or the Trigger Transfer to Communication Controller (TTCC) register • Event-Driven (transfers from FlexRay Communication Controller to the System Memory only) using the Enable Transfer on Event to System Memory (ETESM) register. • Single or continuous event driven transfers by using the Clear on Event to System Memory (CESM) The transfer event trigger in general occurs upon completion of a reception or transmission of a frame through the FlexRay bus. Table 23-2 shows more details: Conditions marked with 'X' per row must match to trigger a FTU transfer event as configured in the Transfer Configuration RAM (TCR): Table 23-2. FlexRay Transfer Unit Event Trigger Conditions Event on Channel A Event on Channel B X FTU Event Trigger for Receive Message Buffers Frame belonging to dynamic segment, except first slot of dynamic segment Bus activity detected on Channel A (MBS.ESA = 0) X X Bus activity detected on Channel B (MBS.ESB = 0) X X X X FTU Event Trigger for Transmit Message Buffers Frame belonging to static segment or first slot of dynamic segment X X X X X X X NOTE: By setting the corresponding bit in the Enable Transfer on Event to System Memory (ETESM) register prior to an on-demand transfer to the Communication Controller by way of the Trigger Transfer to Communication Controller (TTCC) register, an event-triggered transmission back to the System Memory can be initiated, once the buffer has been sent out on the FlexRay bus. This mechanism can be used, for instance, to automatically read back the header status information to the system memory after a transmission occurred. The transmission or reception of null frames in the static segment of a FlexRay communication cycle triggers transfers of the transfer unit. The header and/or payload is transferred to the system memory, if the corresponding bits THTSM and/or TPTSM in the Transfer Configuration RAM (TCR) are set. If neither THTSM nor TPTSM bit is set in TCR, neither header nor payload gets transferred. The corresponding bit in the Transfer to System Memory Occurred register (TSMO) gets set in all cases. 1058 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Transfer Unit Functional Description www.ti.com 23.5.1.5 Transfer Size and Types The data transferred by the Transfer Unit can be selected as: • data and header section • header section only • data section only The number of transferred payload words is derived from the Payload Length Configured (PLC) information configured in the Write Header Section 2 (WRHS2) register. As only 4 word bursts are supported for the Transfer Unit transfers, only multiple of 4x32-bit data packets are supported. Additional transferred words are undefined, as indicated in Figure 23-7 and Figure 23-8. Figure 23-7. Example: FTU Read Transfer of 6 Words Output Buffer Registers word x word x word x+1 word x+1 word x+1 word x+2 internal E-Ray Transfer word x+2 word x+3 word x+3 word x+4 word x+5 word x+4 word x+5 word x+2 FTU Transfer word x+3 word x+4 word x+5 word x+6 undefined x undefined x word x+7 undefined x+1 undefined x+2 undefined x+1 undefined x+2 4 word burst Data RAM word x 4 word burst Message RAM Figure 23-8. Example: FTU Write Transfer of 6 Words Input Buffer Registers word x word x+1 word x+2 word x+4 word x+5 undefined x undefined x+1 undefined x+2 FTU Transfer 4 word burst word x+3 4 word burst Data RAM Message Ram word x word x word x+1 word x+1 word x+2 internal E-Ray Transfer word x+2 word x+3 word x+3 word x+4 word x+5 word x+4 word x+5 undefined x undefined x+1 undefined x+2 Physically the FTU continues reading the additional words from the source location it started the burst transfer. Therefore, on reads, the additional transferred words depend on the contents of the Communication Controller Output Buffer Registers as indicated in Figure 23-7. On writes the additional words depend on the contents of the data RAM, as shown in Figure 23-8. The additional data will be written to the Communication Controller's Input Buffer Registers, but not transferred to the message RAM. NOTE: It should be ensured that the allocated data RAM space for FTU transfers ends on 4x32 bit boundary to avoid possible data overwrites or memory protection issues on FTU reads and avoid reading the additional data from the source location on FTU writes. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1059 Transfer Unit Functional Description www.ti.com 23.5.1.6 Transfer Status Indication There are 3 registers indicating the transfer status: • Transfer Status Current Buffer (TSCB) shows the current transfer buffer status • Last Transferred Buffer to Communication Controller (LTBCC) indicates the last completed buffer transfer to the communication controller • Last Transferred Buffer to System Memory (LTBSM) shows the last completed buffer transfer to system memory 23.5.1.7 Transfer Mirror Function In order to efficiently access the transfer unit status registers in the system memory, the following registers can be mirrored to the system memory starting at the base address defined in the Base Address of Mirrored Status (BAMS) register: • Transfer Status Current Buffer (TSCB) • Last Transferred Buffer to Communication Controller (LTBCC) • Last Transferred Buffer to System Memory (LTBSM) • Transfer to System Memory Occurred 1/2/3/4 (TSMO1-4) • Transfer to Communication Controller Occurred 1/2/3/4 (TCCO1-4) • Transfer Occurred OFFset (TOOFF) The mirrored values are updated after completion of a buffer transfer. The mirroring of these registers can be disabled if not needed. Table 23-3. Mirroring Address Mapping Address Register BAMS+0x00 TSCB BAMS+0x04 LTBCC BAMS+0x08 LTBSM BAMS+0x0C TSMO1 BAMS+0x10 TSMO2 BAMS+0x14 TSMO3 BAMS+0x18 TSMO4 BAMS+0x1C TCCO1 BAMS+0x20 TCCO2 BAMS+0x24 TCCO3 BAMS+0x28 TCCO4 BAMS+0x2C TOOFF 23.5.1.8 Endianness Correction For the data transfer by the Transfer Unit an Endianness correction mechanism can be used to switch big Endianness data to little Endianness data and vice versa. For maximum flexibility, 6 bits are available in the Global Control Set/Reset Register (GCS/R) to control. • Header Data byte-order • Payload Data byte-order • Byte-order of the FlexRay Core registers and the Transfer Configuration RAM data of the Transfer Unit independently and in both directions. 1060 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Transfer Unit Functional Description www.ti.com 23.5.1.9 Transfer Data Package Table 23-4 shows the data of a transfer data package. Independent of whether the header gets transferred or not, the buffer address always points to element Header1. Table 23-4. Mirroring Address Mapping Address Register 0x0000 Header1 0x0004 Header2 0x0008 Header3 0x000C Buffer Status (1) 0x0010 Payload1 0x0014 Payload2 : : 0x010C (1) Payload64 Transferred only from Communication Controller to System Memory 23.5.1.10 Transfer Start Address to Message Buffer Number Assignment The assignment of a FlexRay message buffer number to the transfer location in system memory is done by the combination of • the Transfer Start Offset (TSO) field in a Transfer Configuration RAM (TCR) entry • the Transfer Base Address (TBA) register Each entry of the TCR holds a 14 bit offset value (TSO). The TSO offset will be added to the content of the TBA register. The TBA register holds the 32bit base address-pointer to a location of the data RAM. A value written to Next Transfer Base Address (NTBA) will be loaded in the TBA at the next communication cycle start. This allows efficient multi-buffering of the message buffers in the system memory. The Transfer Not Ready (NTR) flag in the Transfer Error Interrupt Flag (TEIF) register can be used to determine, if NTBA can be reloaded by the CPU. NOTE: If a value is written to TBA, NTBA is set to the same value. Figure 23-9. Transfer Start Address to Message Buffer Number Assignment communication cycle start Buffer Addr = TBA NTBA + TSO 23.5.1.11 Transfer Priority The Transfer Unit will transfer the message buffers from low to high message buffer numbers. In case the same buffer is pending in both the Trigger Transfer to Communication (TTCC) register and the Trigger Transfer to System Memory (TTSM) register, the priority between TTCC and TTSM is determined by the Transfer Priority bit (GC.PRIO) in the Transfer Unit Global Control Set/Reset Register (GCS/R). SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1061 Transfer Unit Functional Description www.ti.com 23.5.1.12 Read Transfers A read transfer is the data transfer from FlexRay message buffer RAM to the system memory of the microcontroller. For read transfers, the registers Trigger Transfer to System Memory (TTSM), Enable Transfer on Event to System Memory (ETESM), and Clear on Event to System Memory (CESM) have to be set up. The amount and type of data to be transferred can be selected as: • data and header section • header section only • data section only that can be configured on the Transmit Configuration RAM (TCR). The number of 32 bit words per buffer to be transferred is read from the Payload Length Configured (RDHS2.PLC) configuration information. This information is part of the header section stored in the message RAM of the Communication Controller. 23.5.1.13 Write Transfers A write transfer is the data transfer from the system memory of the microcontroller to the FlexRay message buffer RAM. For write transfers, the Trigger Transfer to Communication (TTCC) register has to be set up. The amount and type of data transferred can be selected as: • data and header section • header section only • data section only that can be configured on the Transmit Configuration RAM (TCR). It can be configured in the TCR, if Set Transmission Request Host (STXRH) bit in the Input Buffer Command Mask (IBCM) of the Communication Controller should be set. This would trigger the transfer to the FlexRay bus. If a data and header section transfer is selected, the number of 32 bit words to be transferred is read from the Payload Length Configured (PLC) configuration information stored in Header2 word in the system memory. If a data section only transfer is selected, the number of 32 bit words to be transferred is read from the Payload Length Configured (RDHS2.PLC) configuration information. This information is part of the header section stored in the message RAM of the Communication Controller. 23.5.1.14 Transfer Unit Event Interface The Transfer Unit Event Control generates transfer trigger signals for transfers in the following cases: • For transmit (TX) message buffers, a write transfer trigger is generated, if a transmit event occurs. The configured TX message buffers generate a transfer trigger, except when a Nullframe in static segment or no frame in the dynamic segment is sent. • For receive (RX) message buffers, a read transfer trigger is generated, if a receive event occurs in the static segment. • For receive (RX) message buffers, a read transfer trigger is generated if a receive event occurs in the dynamic segment, updated in the current cycle and no Nullframe. If a buffer is part of the FIFO, no transfer trigger is generated! When the Transfer Unit is disabled (TUE bit in Global Control Register (GCS/R) is 0), no transfer trigger is generated, whereas if the Transfer Unit is enabled, but in halt mode (TUH bit and TUE bit in Global Control Register (GCS/R) are 1), the occurring triggers remain pending and get executed when the Transfer Unit will be resumed from halt mode. 1062 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Transfer Unit Functional Description www.ti.com 23.5.2 Transfer Configuration RAM The Transfer Configuration RAM (TCR) consists of 128 entries, one entry for each possible FlexRay buffer. Entry 1 is assigned to FlexRay buffer 1, entry 2 to FlexRay buffer 2,..., and entry 128 is assigned to FlexRay buffer 128. Each TCR entry defines: • data transfer size (header + data, header only or data only) • whether the transmit request flag (STRXH) should be set for the data transferred by the FTU to the CC to send out the data to the FlexRay bus. • the 14-bit buffer address offset, which, in combination with the Transfer Base Address defined in TBA, specifies the start of the corresponding FlexRay message buffer in the system memory RAM. NOTE: It is recommended to clear the whole TCR before configuring it, in order to avoid unexpected transfer behavior due to old configuration contents or random TCR RAM contents after power on reset. If a transfer is triggered but no transfer size (header or data) is setup in the TCR, no data will be transferred, but the corresponding flag in the Transfer to Communication Controller Occurred (TCCOx) or the Transfer to System Memory Occurred (TSMOx) will be set. 23.5.2.1 Parity Protection The Transfer Configuration RAM (TCR) is parity protected. The parity error interrupt generation is disabled by default and can be switched on by writing a 4 bit key to dedicated parity lock bits in the Global Control Set/Reset Register (GCS/R). The parity protection supports even and odd parity. The parity information is stored together with the corresponding 19 bit data word entry. The parity is checked each time a data word is read from the TCR RAM. If a parity error is detected, the PE error flag is set in the Transfer Error Interrupt Flag (TEIF) register. Additionally an uncorrectable RAM error interrupt/event will be generated. The uncorrectable RAM error interrupt/event is non maskable and therefore cannot be switched off. The uncorrectable RAM error is hooked up to the ESM module (event). For parity errors the faulty TCR RAM address can be read from the Parity Error Address (PEADR) register. 23.5.3 Memory Protection Mechanism This feature allows to restrict accesses to certain areas in memory in order to protect critical application data from unintentionally being accessed by the Transfer Unit State Machine. One memory section (start- and end address) can be defined, which allows read and write accesses for the Transfer Unit State Machine. If the end address is smaller or equal to the start address, data transfers will be blocked. Any accesses performed outside this memory area by the Transfer Unit State Machine result in no transfers being performed. In case of a protection violation a flag will be set and the Memory Protection Violation interrupt will be activated. The Transfer Unit State Machine will be disabled in this case. The default setting of the Transfer Unit State Machine memory protection address range setup is: • 0x00000000 for start address • 0x00000000 for end address This means a valid address range must be setup, before the Transfer Unit can be used. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1063 Communication Cycle www.ti.com 23.6 Communication Cycle Figure 23-10. Structure of Communication Cycle Time base derived trigger Time base derived trigger t Static segment Communication cycle x-1 A • • • • Dynamic segment Symbol window NIT Communication cycle x Dynamic Static segment segment Communication cycle x+1 communication cycle in FlexRay consists of the following elements: Static segment Dynamic segment Symbol window Network idle time (NIT) Static segment, dynamic segment, and symbol window form the network communication time (NCT). For each communication channel the slot counter starts at 1 and counts up until the end of the dynamic segment is reached. Both channels share the same arbitration grid which means that they use the same synchronized macrotick. 23.6.1 Static Segment The Static Segment is characterized by the following features: • Time slots of fixed length (optionally protected by bus guardian) • Start of frame transmission at action point of the corresponding static slot • Payload length same for all frames on both channels Parameters: number of static slots GTUC7.NSS, static slot length GTUC7.SSL, Payload Length Static MHDC.SFDL, action point offset GTUC9.APO 23.6.2 Dynamic Segment The Dynamic Segment is characterized by the following features: • All controllers have bus access (no bus guardian protection possible) • Variable payload length and duration of slots, different for both channels • Start of transmission at minislot action point Parameters: number of minislots GTUC8.NMS, minislot length GTUC8.MSL, minislot action point offset GTUC9.MAPO, start of latest transmit (last minislot) MHDC.SLT 23.6.3 Symbol Window During the symbol window only one media access test symbol (MTS) may be transmitted per channel. MTS symbols are sent in NORMAL_ACTIVE state to test the bus guardian. The symbol window is characterized by the following features: • Send single symbol • Transmission of the MTS symbol starts at the symbol windows action point 1064 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Communication Cycle www.ti.com Parameters: Symbol Window Action Point Offset GTUC9.APO (same as for static slots), Network Idle Time Start GTUC4.NIT 23.6.4 Network Idle Time (NIT) During network idle time the communication controller has to perform the following tasks: • Calculate clock correction terms (offset and rate) • Distribute offset correction over multiple macroticks after offset correction start • Perform cluster cycle related tasks Parameters: network idle time start GTUC4.NIT, offset correction start GTUC4.OCS 23.6.5 Configuration of NIT Start and Offset Correction Start Figure 23-11. Configuration of NIT Start and Offset Correction Start n 0 n+1 k m+1 k+1 GTUC2.MPC = m GTUC4.NIT = k GTUC4.OCS = NIT+1 Static / Dynamic Segment Symbol Window NIT The number of macroticks per cycle is assumed to be m. It is configured by programming GTUC2.MPC = m in the GTU Configuration register 2. The static / dynamic segment starts with macrotick 0 and ends with macrotick n: n = static segment length + dynamic segment offset + dynamic segment length - 1MT The static segment length is configured by GTUC7.SSL and GTUC7.NSS. The dynamic segment length is configured by GTUC8.MSL and GTUC8.NMS. The dynamic segment offset is ActionPointOffset - MinislotActionPointOffset or 0 MT if the result is negative. For details, refer to the FlexRay Communications System Protocol Specification from the FlexRay Consortium. The NIT starts with macrotick k+1 and ends with the last macrotick of cycle m-1. It has to be configured by setting GTUC4.NIT = k. For this FlexRay module, the offset correction start is required to be: GTUC4.OCS >= GTUC4.NIT + 1 = k+1. The length of symbol window results from the number of macroticks between the end of the static / dynamic segment and the beginning of the NIT. It can be calculated by k - n. 23.7 Communication Modes The FlexRay protocol specification v2.1 Rev. A defines the Time-Triggered Distributed (TT-D) mode. 23.7.1 Time-Triggered Distributed (TT-D) In TT-D mode the following configurations are possible: • Pure static: minimum 2 static slots + symbol window (optional) • Mixed static/dynamic: minimum 2 static slots + dynamic segment + symbol window (optional) A minimum of two coldstart nodes need to be configured for distributed time-triggered operation. Two fault-free coldstart nodes are necessary for the cluster startup. Each startup frame must be a sync frame, therefore all coldstart nodes are sync nodes. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1065 Clock Synchronization www.ti.com 23.8 Clock Synchronization In TT-D mode a distributed clock synchronization is used. Each node individually synchronizes itself to the cluster by observing the timing of received sync frames from other nodes. 23.8.1 Global Time Activities in a FlexRay node, including communication, are based on the concept of a global time, even though each individual node maintains its own view of it. It is the clock synchronization mechanism that differentiates the FlexRay cluster from other node collections with independent clock mechanisms. The global time is a vector of two values; the cycle (cycle counter) and the cycle time (macrotick counter). Cluster specific: • Macrotick (MT) = basic unit of time measurement in a FlexRay network, a macrotick consists of an integer number of microticks (μT) • Cycle length = duration of a communication cycle in units of macroticks (MT) 23.8.2 Local Time Internally, nodes time their behavior with microtick resolution. Microticks are time units derived from the oscillator clock tick of the specific node. Therefore microticks are controller-specific units. They may have different duration in different controllers. The precision of a nodes local time difference measurements is a microtick (μT). Node specific: • Sample clock -> prescaler -> microtick (µT); typically 25ns. • μT = basic unit of time measurement in a communication controller, clock correction is done in units of μTs • Cycle counter + macrotick counter = nodes local view of the global time 23.8.3 Synchronization Process Clock synchronization is performed by means of sync frames. Only preconfigured nodes (sync nodes) are allowed to send sync frames. In a two-channel cluster, a sync node has to send its sync frame on both channels. For synchronization in FlexRay the following constraints have to be considered: • Max. one sync frame per node in one communication cycle • Max. 15 sync frames per cluster in one communication cycle • Every node has to use a preconfigured number of sync frames (GTUC2.SNM) for clock synchronization • Minimum of two sync nodes required for clock synchronization and startup For clock synchronization, the time difference between expected and observed arrival time of sync frames received during the static segment is measured. In a two channel cluster, the sync node has to be configured to send sync frames on both channels. The calculation of correction terms is done during NIT (offset: every cycle, rate: odd cycle) by using a FTA / FTM algorithm. For details, see FlexRay protocol specification v2.1 Rev. A. 23.8.3.1 • • • • • • 1066 Offset (Phase) Correction Only deviation values measured and stored in the current cycle used For a two channel node the smaller value will be taken Calculation during NIT of every communication cycle Offset correction value calculated in even cycles used for error checking only Checked against limit values Correction value is a signed integer number of μTs FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Clock Synchronization www.ti.com • 23.8.3.2 • • • • • • • Correction done in odd numbered cycles, distributed over the macroticks beginning at offset correction start up to cycle end (end of NIT) to shift nodes next start of cycle (MTs lengthened / shortened) Rate (Frequency) Correction Pairs of deviation values measured and stored in even / odd cycle pair used For a two channel node the average of the differences from the two channels is used Calculated during NIT of odd numbered cycles Cluster drift damping is performed using global damping value Checked against limit values Correction value is a signed integer number of μTs Distributed over macroticks comprising the next even/odd cycle pair (MTs lengthened / shortened) 23.8.4 Sync Frame Transmission Sync frame transmission is only possible from buffer 0 and 1. Message buffer 1 may be used for sync frame transmission in case that sync frames should have different payloads on the two channels. In this case bit MRC.SPLM has to be programmed to 1. Message buffers used for sync frame transmission have to be configured with the key slot ID and can be (re)configured in DEFAULT_CONFIG or CONFIG state only. For nodes transmitting sync frames SUCC1.TXSY must be set to 1. 23.8.5 External Clock Synchronization During normal operation, independent clusters can drift significantly. If synchronous operation across independent clusters is desired, external synchronization is necessary; even though the nodes within each cluster are synchronized. This can be accomplished with synchronous application of host-deduced rate and offset correction terms to the clusters. • External offset / rate correction value is a signed integer • External offset / rate correction value is added to calculated offset / rate correction value • Aggregated offset / rate correction term (external + internal) is not checked against configured limits 23.9 Error Handling The implemented error handling concept of the FlexRay protocol is intended to ensure that in the presence of a lower layer protocol error in a single node, communication between non-affected nodes can be maintained. In some cases, higher layer program command activity is required for the communication controller to resume normal operation. A change of the error handling state will set bit EIR.PEMC and can trigger an interrupt to the host if enabled. The current error mode is signaled by CCEV.ERRM. Table 23-5. Error Modes of the POC (Degradation Model) Error Mode Activity ACTIVE Full operation, State: NORMAL_ACTIVE The communication controller is fully synchronized and supports the cluster wide clock synchronization. The host is informed of any error condition(s) or status change by interrupt (if enabled) or by reading the error and status flags from registers EIR and SIR. PASSIVE Reduced operation, State: NORMAL_PASSIVE, communication controller self rescue allowed The communication controller stops transmitting frames and symbols, but received frames are still processed. Clock synchronization mechanisms are continued based on received frames. No active contribution to the cluster wide clock synchronization. The host is informed of any error condition(s) or status change by interrupt (if enabled) or by reading the error and status flags from registers EIR and SIR. COMM_HALT Operation halted, State: HALT, communication controller self rescue not allowed The communication controller stops frame and symbol processing, clock synchronization processing, and the macrotick generation. The host has still access to error and status information by reading the error and status flags from registers EIR and SIR. The bus drivers are disabled. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1067 Error Handling www.ti.com 23.9.1 Clock Correction Failed Counter When the Clock Correction Failed Counter reaches the “maximum without clock correction passive” limit defined by SUCC3.WCP, the POC transits from NORMAL_ACTIVE to NORMAL_PASSIVE state. When it reaches the “maximum without clock correction fatal” limit defined by SUCC3.WCF, it transits NORMAL_ACTIVE or NORMAL_PASSIVE to the HALT state. The Clock Correction Failed Counter CCEV.CCFC allows the host to monitor the duration of the inability of a node to compute clock correction terms after the communication controller passed protocol startup phase. It will be incremented by one at the end of any odd numbered communication cycle where either the Missing Offset Correction flag SFS.MOCS or the Missing Rate Correction flag SFS.MRCS is set. The clock correction failed counter is reset to zero at the end of an odd communication cycle if neither the Missing Offset Correction flag SFS.MOCS nor the Missing Rate Correction flag SFS.MRCS is set. The Clock Correction Failed Counter stops incrementing when the “maximum without clock correction fatal” value SUCC3.WCF is reached (that is, incrementing the counter at its maximum value will not cause it to wraparound back to zero). The clock correction failed counter will be initialized to zero when the communication controller enters READY state or when NORMAL_ACTIVE state is entered. NOTE: The transition to HALT state is prevented if SUCC1.HCSE is not set. 23.9.2 Passive to Active Counter The passive to active counter controls the transition of the POC from NORMAL_PASSIVE to NORMAL_ACTIVE state. SUCC1.SUCC1.PTA defines the number of consecutive even / odd cycle pairs that must have valid clock correction terms before the communication controller is allowed to transit from NORMAL_PASSIVE to NORMAL_ACTIVE state. If SUCC1.PTA is set to zero the communication controller is not allowed to transit from NORMAL_PASSIVE to NORMAL_ACTIVE state. 23.9.3 HALT Command In case the host wants to stop FlexRay communication of the local node it can bring the communication controller into HALT state by asserting the HALT command. This can be done by writing SUCC1.CMD = 0110. In order to shut down communication on an entire FlexRay network, a higher layer protocol is required to assure that all nodes apply the HALT command at the same time. The POC state from which the transition to HALT state took place can be read from CCSV.PSL. When called in NORMAL_ACTIVE or NORMAL_PASSIVE state the POC transits to HALT state at the end of the current cycle. When called in any other state SUCC1.CMD will be reset to 0000 = “command_not_accepted” and bit EIR.CNA in the error interrupt register is set to 1. If enabled an interrupt to the host is generated. 23.9.4 FREEZE Command In case the host detects a severe error condition it can bring the communication controller into HALT state by asserting the FREEZE command. This can be done by writing SUCC1.CMD = 0111. The FREEZE command triggers the entry of the HALT state immediately regardless of the current POC state. The POC state from which the transition to HALT state took place can be read from CCSV.PSL. 1068 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Communication Controller States www.ti.com 23.10 Communication Controller States 23.10.1 Communication Controller State Diagram Figure 23-12. Overall State Diagram of Communication Controller HW Reset Power On T1 DEFAULT_ CONFIG MONITOR MODE T2 T3 T4 T17 CONFIG T5 T6 T16 T7 WAKEUP T8 READY T9 HALT T14 T13 T15 T12 STARTUP T10 NORMAL ACTIVE T11 NORMAL PASSIVE Transition triggered by host command Transition triggered by internal conditions Transition triggered by host command OR internal conditions State transitions are controlled by the reset and FlexRay receive (rxd1, 2) pins, the POC state machine, and by the CHI command vector SUCC1.CMD. The Communication Controller exits from all states to HALT state after application of the FREEZE command (SUCC1.CMD = 0111). FlexRay Module1069 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Communication Controller States www.ti.com Table 23-6. State Transitions of Communication Controller Overall State Machine T# Condition From To 1 Hardware reset All States DEFAULT_CONFIG 2 Command CONFIG, SUCC1.CMD = 0001 DEFAULT_CONFIG CONFIG 3 Unlock sequence followed by command MONITOR_MODE, SUCC1.CMD = 1011 CONFIG MONITOR_MODE 4 Command CONFIG, SUCC1.CMD = 0001 MONITOR_MODE CONFIG 5 Unlock sequence followed by command READY, SUCC1.CMD = 0010 CONFIG READY 6 Command CONFIG, SUCC1.CMD = 0001 READY CONFIG 7 Command WAKEUP, SUCC1.CMD = 0011 READY WAKEUP 8 Complete, non-aborted transmission of wakeup pattern OR received WUP OR received frame header OR command READY, SUCC1.CMD = 0010 WAKEUP READY 9 Command RUN, SUCC1.CMD = 0100 READY STARTUP 10 Successful startup STARTUP NORMAL_ACTIVE 11 Clock correction failed counter reached “maximum without clock correction passive” limit configured by SUCC3.WCP NORMAL_ACTIVE NORMAL_PASSIVE 12 Number of valid correction terms reached the Passive to Active limit configured by SUCC1.PTA NORMAL_PASSIVE NORMAL_ACTIVE 13 Command READY, SUCC1.CMD = 0010 STARTUP, NORMAL_ACTIVE, NORMAL_PASSIVE READY 14 Clock Correction Failed counter reached “maximum without clock correction fatal” limit configured by SUCC3.WCF AND bit SUCC1.HCSE set to 1 OR command HALT, SUCC1.CMD = 0110 NORMAL_ACTIVE HALT 15 Clock Correction Failed counter reached “maximum without clock correction fatal” limit configured by SUCC3.WCF AND bit SUCC1.HCSE set to 1 OR command HALT, SUCC1.CMD = 0110 NORMAL_PASSIVE HALT 16 Command FREEZE, SUCC1.CMD = 0111 All States HALT 17 Command CONFIG, SUCC1.CMD = 0001 HALT DEFAULT_CONFIG 23.10.2 DEFAULT_CONFIG State In DEFAULT_CONFIG state, the communication controller is stopped. All configuration registers are accessible and the pins to the physical layer are in their inactive state. The communication controller enters this state: • When leaving hardware reset • When exiting from HALT state To leave DEFAULT_CONFIG state the host has to write SUCC1.CMD = 0001. The communication controller then transits to CONFIG state. 23.10.3 CONFIG State In CONFIG state, the communication controller is stopped. All configuration registers are accessible and the pins to the physical layer are in their inactive state. This state is used to initialize the communication controller configuration. The communication controller enters this state: • When exiting from DEFAULT_CONFIG state • When exiting from MONITOR_MODE or READY state When the state has been entered by HALT and DEFAULT_CONFIG state, the host can analyze status information and configuration. Before leaving CONFIG state the host has to assure that the configuration is fault-free. 1070 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Communication Controller States www.ti.com To leave CONFIG state, the host has to perform the unlock sequence. Directly after unlocking the CONFIG state the host has to write SUCC1.CMD to enter the next state. NOTE: The message buffer status registers (MHDS, TXRQ[1-4], NDAT[1-4], MBSC[1-4]) and status data stored in the message RAM and are not affected by the transition of the POC from CONFIG to READY state. When the communication controller is in CONFIG state it is also possible to bring the communication controller into a power saving mode by halting the module clocks. To do this the host has to assure that all Message RAM transfers have finished before turning off the clocks. 23.10.4 MONITOR_MODE After unlocking CONFIG state and writing SUCC1.CMD = 1011 the communication controller enters MONITOR_MODE. In this mode the communication controller is able to receive FlexRay frames and to detect wakeup pattern. The temporal integrity of received frames is not checked, and therefore cycle counter filtering is not supported. This mode can be used for debugging purposes in case e.g. that startup of a FlexRay network fails. After writing SUCC1.CMD = 0001 the communication controller transits back to CONFIG state. In MONITOR_MODE the pick first valid mechanism is disabled. This means that a receive message buffer may only be configured to receive on one channel. Received frames are stored into message buffers according to frame ID and receive channel. Null frames are handled like data frames. After frame reception only status bits MBS.VFRA, MBS.VFRB, MBS.MLST, MBS.RCIS, MBS.SFIS, MBS.SYNS, MBS.NFIS, MBS.PPIS, MBS.RESS have valid values. In MONITOR_MODE the communication controller is not able to distinguish between CAS and MTS symbols. In case one of these symbols is received on one or both of the two channels, the flags SIR.MTSA/SIR.MTSB are set. SIR.CAS has no function in MONITOR_MODE. 23.10.5 READY State After unlocking CONFIG state and writing SUCC1.CMD = 0010 the communication controller enters READY state. From this state the communication controller can transit to WAKEUP state and perform a cluster wakeup or to STARTUP state to perform a coldstart or to integrate into a running cluster. The communication controller enters this state: • When exiting from CONFIG, WAKEUP, STARTUP, NORMAL_ACTIVE, or NORMAL_PASSIVE state by writing SUCC1.CMD = 0010 (READY command). The communication controller exits from this state: • To CONFIG state by writing SUCC1.CMD = 0001 (CONFIG command) • To WAKEUP state by writing SUCC1.CMD = 0011 (WAKEUP command) • To STARTUP state by writing SUCC1.CMD = 0100 (RUN command) Internal counters and the communication controller status flags are reset when the communication controller enters STARTUP state. NOTE: Status bits MHDS, registers TXRQ[1-4], and status data stored in the Message RAM are not affected by the transition of the POC from READY to STARTUP state. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1071 Communication Controller States www.ti.com 23.10.6 WAKEUP State The description below is intended to help configuring wakeup for the FlexRay module. A detailed description of the wakeup procedure can be found in the FlexRay protocol specification v2.1 Rev. A. The communication controller enters this state: • When exiting from READY state by writing SUCC1.CMD = 0011 (WAKEUP command). The communication controller exits from this state to READY state: • After complete non-aborted transmission of wakeup pattern • After WUP reception • After detecting a WUP collision • After reception of a frame header • By writing SUCC1.CMD = 0010 (READY command) The communication controller exits from this state to HALT state: • By writing SUCC1.CMD = 0111 (FREEZE command) The cluster wakeup must precede the communication startup in order to ensure that all nodes in a cluster are awake. The minimum requirement for a cluster wakeup is that all bus drivers are supplied with power. A bus driver has the ability to wake up the other components of its node when it receives a wakeup pattern on its channel. At least one node in the cluster needs an external wakeup source. The host completely controls the wakeup procedure. It is informed about the state of the cluster by the bus driver and the communication controller and configures bus guardian (if available) and communication controller to perform the cluster wakeup. The communication controller provides to the host the ability to transmit a special wakeup pattern on each of its available channels separately. The communication controller needs to recognize the wakeup pattern only during wakeup and startup phase. Wakeup may be performed on only one channel at a time. The host has to configure the wakeup channel while the communication controller is in CONFIG state by writing bit WUCS in the SUC configuration register 1. The communication controller ensures that ongoing communication on this channel is not disturbed. The communication controller cannot guarantee that all nodes connected to the configured channel awake upon the transmission of the wakeup pattern, since these nodes cannot give feedback until the startup phase. The wakeup procedure enables single-channel devices in a two-channel system to trigger the wakeup, by only transmitting the wakeup pattern on the single channel to which they are connected. Any coldstart node that deems a system startup necessary will then wake the remaining channel before initiating communication startup. The wakeup procedure tolerates any number of nodes simultaneously trying to wakeup a single channel and resolves this situation such that only one node transmits the pattern. Additionally the wakeup pattern is collision resilient, so even in the presence of a fault causing two nodes to simultaneously transmit a wakeup pattern, the resulting collided signal can still wake the other nodes. After wakeup the communication controller returns to READY state and signals the change of the wakeup status to the host by setting bit SIR.WST in the status interrupt register. The wakeup status vector CCSV.WSV can be read from the communication controller status vector register. If a valid wakeup pattern was received also either bit SIR.WUPA or bit SIR.WUPB in the status interrupt register is set. 1072 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Communication Controller States www.ti.com Figure 23-13. Structure of POC State WAKEUP READY Tenter Texit WAKEUP STANDBY T1 T4 T6 T2 T3 WAKEUP LISTEN T5 WAKEUP SEND WAKEUP DETECT WAKEUP Table 23-7. State Transitions WAKEUP T# Condition From To enter Host commands change to WAKEUP state by writing SUCC1.CMD = 0011 (WAKEUP command) READY WAKEUP 1 CHI command WAKEUP triggers wakeup FSM to transit to WAKEUP_LISTEN state WAKEUP_STANDBY WAKEUP_LISTEN 2 Received WUP on wakeup channel selected by bit SUCC1.WUCS OR frame header on either available channel WAKEUP_LISTEN WAKEUP_STANDBY 3 Timer event WAKEUP_LISTEN WAKEUP_SEND 4 Complete, non-aborted transmission of wakeup pattern WAKEUP_SEND WAKEUP_STANDBY 5 Collision detected WAKEUP_SEND WAKEUP_DETECT 6 Wakeup timer expired OR WUP detected on wakeup channel selected WAKEUP_DETECT by bit SUCC1.WUCS OR frame header received on either available channel WAKEUP_STANDBY exit Wakeup completed (after T2 or T4 or T6) OR host commands change to READY state by writing SUCC1.CMD = 0010 (READY command). This command also resets the wakeup FSM to WAKEUP_STANDBY state. READY WAKEUP The WAKEUP_LISTEN state is controlled by the wakeup timer and the wakeup noise timer. The two timers are controlled by the parameters Listen Timeout SUCC2.LT and Listen Timeout Noise SUCC2.LTN. Listen timeout enables a fast cluster wakeup in case of a noise free environment, while listen timeout noise enables wakeup under more difficult conditions regarding noise interference. In WAKEUP_SEND state the communication controller transmits the wakeup pattern on the configured channel and checks for collisions. After return from wakeup the host has to bring the communication controller into STARTUP state by CHI command RUN. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1073 Communication Controller States www.ti.com In WAKEUP_DETECT state the communication controller attempts to identify the reason for the wakeup collision detected in WAKEUP_SEND state. The monitoring is bounded by the expiration of listen timeout as configured by SUCC2.LT in the SUC configuration register 2. Either the detection of a wakeup pattern indicating a wakeup attempt by another node or the reception of a frame header indication existing communication, causes the direct transition to READY state. Otherwise WAKEUP_DETECT is left after expiration of listen timeout; in this case the reason for wakeup collision is unknown. The host has to be aware of possible failures of the wakeup and act accordingly. It is advisable to delay any potential startup attempt of the node having instigated the wakeup by the minimal time it takes another coldstart node to become awake and to be configured. The FlexRay Protocol Specification recommends that two different communication controllers shall wake the two channels. 23.10.6.1 Host Activities The host must coordinate the wakeup of the two channels and must decide whether, or not, to wake a specific channel. The sending of the wakeup pattern is initiated by the host. The wakeup pattern is detected by the remote BDs and signaled to their local hosts. Wakeup procedure controlled by host (single-channel wakeup): • Configure the communication controller in CONFIG state – Select wakeup channel by programming bit SUCC1.WUCS • Check local BDs whether a WUP was received • Activate BD of selected wakeup channel • Command communication controller to enter READY state • Command communication controller to start wakeup on the configured channel by writing SUCC1.CMD = 0011 – communication controller enters WAKEUP_LISTEN – communication controller returns to READY state and signals status of wakeup attempt to host • Wait predefined time to allow the other nodes to wakeup and configure themselves • Coldstart node: – in dual channel cluster wait for WUP on the other channel – Reset Coldstart Inhibit flag CCSV.CSI by writing SUCC1.CMD = 1001 (ALLOW_COLDSTART command) • Command communication controller to enter startup by writing SUCC1.CMD = 0100 (RUN command) Wakeup procedure triggered by the bus driver: • Wakeup recognized by bus driver • bus driver triggers power-up of host (if required) • bus driver signals wakeup event to host • Host configures its local communication controller • If necessary host commands wakeup of second channel and waits predefined time to allow the other nodes to wakeup and configure themselves • Host commands communication controller to enter STARTUP state by writing SUCC1.CMD = 0100 (RUN command) 1074 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Communication Controller States www.ti.com 23.10.6.2 Wake Up Pattern (WUP) The wake up pattern (WUP) is composed of at least two wakeup symbols (WUS). Wakeup symbol and wakeup pattern are configured by the PRT configuration registers 1,2. • Single channel wakeup, wake up symbol may not be sent on both channels at the same time • Wakeup symbol collision resilient for up to two sending nodes (two overlapping wakeup symbols still recognizable) • Wakeup symbol must be configured identical in all nodes of a cluster • Wakeup symbol transmit low time configured by PRTC2.TXL • Wakeup symbol idle time configured by PRTC2.TXI, used to listen for activity on the bus • A wakeup pattern composed of at least two Tx-wakeup symbols needed for wakeup • Number of repetitions configurable by PRTC1.RWP (2 to 63 repetitions) • Wakeup symbol receive window length configured by PRTC1.RXW • Wakeup symbol receive low time configured by PRTC2.RXL • Wakeup symbol receive idle time configured by PRTC2.RXI Figure 23-14. Timing of Wake Up Pattern TXL = 15-60 bit times TXI = 45-180 bit times Tx-wakeup Symbol Rx-wakeup Pattern (no collision) Rx-wakeup Pattern (collision, worst case) 23.10.7 STARTUP State The description below is intended to help configuring startup for the FlexRay module. A detailed description of the startup procedure can be found in the FlexRay protocol specification v2.1 Rev. A. Any node entering STARTUP state that has coldstart capability should assure that both channels attached have been awakened before initiating coldstart. It cannot be assumed that all nodes and stars need the same amount of time to become completely awake and to be configured. Since at least two nodes are necessary to start up the cluster communication, it is advisable to delay any potential startup attempt of the node having instigated the wakeup by the minimal amount of time it takes another coldstart node to become awake, to be configured and to enter startup. It may require several hundred milliseconds (depending on the hardware used) before all nodes and stars are completely awakened and configured. Startup is performed on all channels synchronously. During startup, a node only transmits startup frames. Startup frames are both sync frames and null frames during startup. A fault-tolerant, distributed startup strategy is specified for initial synchronization of all nodes. In general, a node may enter NORMAL_ACTIVE state by: • Coldstart path initiating the schedule synchronization (leading coldstart node) • Coldstart path joining other coldstart nodes (following coldstart node) • Integration path integrating into an existing communication schedule (all other nodes) See also Figure 23-15 for more information. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1075 Communication Controller States www.ti.com A coldstart attempt begins with the transmission of a collision avoidance symbol (CAS). Only a coldstart node that transmitted the CAS, transmits frames in the first four cycles after the CAS. it is then joined firstly by the other coldstart nodes and afterwards by all other nodes. A coldstart node has bits SUCC1.TXST and SUCC1.TXSY set to 1. Message buffer 0 holds the key slot ID which defines the slot number where the startup frame is sent. The startup frame indicator bit is set in the frame header of the startup frame. In clusters consisting of three or more nodes, at least three nodes shall be configured to be coldstart nodes. In clusters consisting of two nodes, both nodes must be coldstart nodes. At least two fault-free coldstart nodes are necessary for the cluster to startup. Each startup frame must also be a sync frame; therefore each coldstart node will also be a sync node. The number of coldstart attempts is configured by SUCC1.CSA in the SUC configuration register 1. A non-coldstart node requires at least two startup frames from distinct nodes for integration. It may start integration before the coldstart nodes have finished their startup. It will not finish its startup until at least two coldstart nodes have finished their startup. Both non-coldstart nodes and coldstart nodes start passive integration through the integration path as soon as they receive sync frames from which to derive the TDMA schedule information. During integration the node has to adapt its own clock to the global clock (rate and offset) and has to make its cycle time consistent with the global schedule observable at the network. Afterwards, these settings are checked for consistency with all available network nodes. The node can only leave the integration phase and actively participate in communication when these checks are passed. 23.10.7.1 Coldstart Inhibit Mode In coldstart inhibit mode, the node is prevented from initializing the TDMA communication schedule. If the CCSV.CSI bit in the communication controller status vector register is set, the node is not allowed to initialize the cluster communication, that is, entering the coldstart path is prohibited. The node is allowed to integrate to a running cluster or to transmit startup frames after another coldstart node starts the initialization of the cluster communication. The coldstart inhibit bit CCSV.CSI is set whenever the POC enters READY state. The bit has to be cleared under control of the host by CHI command ALLOW_COLDSTART (SUCC1.CMD = 1001). 1076 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Communication Controller States www.ti.com Figure 23-15. State Diagram Time-Triggered Startup Leading coldstart node Following coldstart node Non-coldstart node integrating READY ABORT STARTUP STARTUP PREPARE COLDSTART LISTEN INTEGRATION LISTEN COLDSTART ABORT COLLISION RESOLUTION STARTUP INITIALIZE SCHEDULE COLDSTART ABORT CONSISTENCY CHECK STARTUP INTEGRATION COLDSTART STARTUP CHECK ABORT COLDSTART GAP STARTUP ABORT COLDSTART JOIN STARTUP INTEGRATION ABORT CONSISTENCY STARTUP CHECK ABORT STARTUP NORMAL ACTIVE SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1077 Communication Controller States www.ti.com 23.10.7.2 Startup Timeouts The communication controller supplies two different μT timers supporting two timeout values, startup timeout and startup noise timeout. The two timers are started when the communication controller enters the COLDSTART_LISTEN state. The expiration of either of these timers causes the node to leave the initial sensing phase (COLDSTART_LISTEN state) with the intention of starting up communication. NOTE: The startup and startup noise timers are identical with the wakeup and wakeup noise timers and use the same configuration values SUCC2.LT and SUCC2.LTN from the SUC configuration register 2. 23.10.7.2.1 Startup Timeout The startup timeout limits the listen time used by a node to determine if there is already communication between other nodes or at least one coldstart node actively requesting the integration of others. The startup timer is configured by programming SUCC2.LT in the SUC configuration register 2. The startup timeout time can be calculated from the contents of SUCC2.LT (Refer to the FlexRay Protocol Specification: pdListenTimeout) The startup timer is restarted upon: • Entering the COLDSTART_LISTEN state • Both channels reaching idle state while in COLDSTART_LISTEN state The startup timer is stopped: • If communication channel activity is detected on one of the configured channels while the node is in the COLDSTART_LISTEN state • When the COLDSTART_LISTEN state is left Once the startup timeout expires, neither an overflow nor a cyclic restart of the timer is performed. The timer status is kept for further processing by the startup state machine. 23.10.7.2.2 Startup Noise Timeout At the same time the startup timer is started for the first time (transition from STARTUP_PREPARE state to COLDSTART_LISTEN state), the startup noise timer is started. This additional timeout is used to improve reliability of the startup procedure in the presence of noise. The startup noise timer is configured by programming SUCC2.LTN in the SUC configuration register 2. The startup noise timeout time can be calculated as the product of SUCC2.LT × SUCC2.LTN (Refer to the FlexRay Protocol Specification: pdListenTimeout • gListenNoise) The startup noise timer is restarted upon: • Entering the COLDSTART_LISTEN state • Reception of correctly decoded headers or CAS symbols while the node is in COLDSTART_LISTEN state The startup noise timer is stopped when the COLDSTART_LISTEN state is left. Once the startup noise timeout expires, neither an overflow nor a cyclic restart of the timer is performed. The status is kept for further processing by the startup state machine. Since the startup noise timer won’t be restarted when random channel activity is sensed, this timeout defines the fall-back solution that guarantees that a node will try to start up the communication cluster even in the presence of noise. 23.10.7.3 Path of Leading Coldstart Node (Initiating Coldstart) When a coldstart node enters COLDSTART_LISTEN, it listens to its attached channels. If no communication is detected, the node enters the COLDSTART_COLLISION_RESOLUTION state and commences a coldstart attempt. The initial transmission of a CAS symbol is succeeded by the first regular cycle. This cycle has the number zero. 1078 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Communication Controller States www.ti.com From cycle zero on, the node transmits its startup frame. Since each coldstart node is allowed to perform a coldstart attempt, it may occur that several nodes simultaneously transmit the CAS symbol and enter the coldstart path. This situation is resolved during the first four cycles after CAS transmission. As soon as a node that initiates a coldstart attempt receives a CAS symbol or a frame header during these four cycles, it re-enters the COLDSTART_LISTEN state. Thereby, only one node remains in this path. In cycle four, other coldstart nodes begin to transmit their startup frames. After four cycles in COLDSTART_COLLISION_RESOLUTION state, the node that initiated the coldstart enters the COLDSTART_CONSISTENCY_CHECK state. It collects all startup frames from cycle four and five and performs clock correction. If the clock correction does not deliver any errors and it has received at least one valid startup frame pair, the node leaves COLDSTART_CONSISTENCY_CHECK and enters NORMAL_ACTIVE state. The number of coldstart attempts that a node is allowed to perform is configured by SUCC1.CSA in the SUC configuration register 1. The number of remaining coldstarts attempts can be read from CCSV.RCA of communication controller status vector register. The number of remaining attempts is reduced by one for each attempted coldstart. A node may enter the COLDSTART_LISTEN state only if this value is larger than one and it may enter the COLDSTART_COLLISION_RESOLUTION state only if this value is larger than zero. If the number of coldstart attempts is one, coldstart is inhibited but integration is still possible. 23.10.7.4 Path of Following Coldstart Node (Responding to Leading Coldstart Node) When a coldstart node enters the COLDSTART_LISTEN state, it tries to receive a valid pair of startup frames to derive its schedule and clock correction from the leading coldstart node. As soon as a valid startup frame has been received, the INITIALIZE_SCHEDULE state is entered. If the clock synchronization can successfully receive a matching second valid startup frame and derive a schedule from this, the INTEGRATION_COLDSTART_CHECK state is entered. In INTEGRATION_COLDSTART_CHECK state, it is assured that the clock correction can be performed correctly and that the coldstart node from which this node has initialized its schedule is still available. The node collects all sync frames and performs clock correction in the following double-cycle. If clock correction does not signal any errors and if the node continues to receive sufficient frames from the same node it has integrated on, the COLDSTART_JOIN state is entered. In COLDSTART_JOIN state, following coldstart nodes begin to transmit their own startup frames and continue to do so in subsequent cycles. Thereby, the leading coldstart node and the nodes joining it can check if their schedules agree with each other. If the clock correction signals any error, the node aborts the integration attempt. If a node in this state sees at least one valid startup frame during all even cycles in this state and at least one valid startup frame pair during all double cycles in this state, the node leaves COLDSTART_JOIN state and enters NORMAL_ACTIVE state. Thereby it leaves STARTUP at least one cycle after the node that initiated the coldstart. 23.10.7.5 Path of Non-Coldstart Node When a non-coldstart node enters the INTEGRATION_LISTEN state, it listens to its attached channels. As soon as a valid startup frame has been received the INITIALIZE_SCHEDULE state is entered. If the clock synchronization can successfully receive a matching second valid startup frame and derive a schedule from this, the INTEGRATION_CONSISTENCY_CHECK state is entered. In INTEGRATION_CONSISTENCY_CHECK state it is verified that the clock correction can be performed correctly and that enough coldstart nodes (at least 2) send startup frames that agree with the nodes own schedule. Clock correction is activated, and if any errors are signaled, the integration attempt is aborted. During the first even cycle in this state, either two valid startup frames or the startup frame of the node that this node has integrated on must be received; otherwise the node aborts the integration attempt. During the first double-cycle in this state, either two valid startup frame pairs or the startup frame pair of the node that this node has integrated on must be received; otherwise the node aborts the integration attempt. If after the first double-cycle less than two valid startup frames are received within an even cycle, or less than two valid startup frame pairs are received within a double-cycle, the startup attempt is aborted. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1079 Communication Controller States www.ti.com Nodes in this state need to see two valid startup frame pairs for two consecutive double-cycles each to be allowed to leave STARTUP and enter NORMAL_OPERATION. Consequently, they leave startup at least one double-cycle after the node that initiated the coldstart and only at the end of a cycle with an odd cycle number. 23.10.8 NORMAL_ACTIVE State As soon as the node that transmitted the first CAS symbol (resolving the potential access conflict and entering STARTUP through the coldstart path) and one additional node have entered the NORMAL_ACTIVE state, the startup phase for the cluster has finished. In the NORMAL_ACTIVE state, all configured messages are scheduled for transmission. This includes all data frames as well as the sync frames. Rate and offset measurement is started in all even cycles (even/odd cycle pairs required). In • • • NORMAL_ACTIVE state the communication controller supports regular communication functions: The communication controller performs transmissions and reception on the FlexRay bus as configured Clock synchronization is running The host interface is operational The communication controller exits from that state to: • HALT state by writing SUCC1.CMD = 0110 (HALT command, at the end of the current cycle) • HALT state by writing SUCC1.CMD = 0111 (FREEZE command, immediately) • HALT state due to change of the error state from ACTIVE to COMM_HALT • NORMAL_PASSIVE state due to change of the error state from ACTIVE to PASSIVE • READY state by writing SUCC1.CMD = 0010 (READY command) 23.10.9 NORMAL_PASSIVE State NORMAL_PASSIVE state is entered from NORMAL_ACTIVE state when the error state changes from ACTIVE to PASSIVE. In NORMAL_PASSIVE state, the node is able to receive all frames (node is fully synchronized and performs clock synchronization). Contrary to the NORMAL_ACTIVE state, the node does not actively participate in communication, that is, neither symbols nor frames are transmitted. In • • • • NORMAL_PASSIVE state: The communication controller performs reception on the FlexRay bus The communication controller does not transmit any frames or symbols on the FlexRay bus Clock synchronization is running The host interface is operational The communication controller exits from this state to • HALT state by writing SUCC1.CMD = 0110 (HALT command, at the end of the current cycle) • HALT state by writing SUCC1.CMD = 0111 (FREEZE command, immediately) • HALT state due to change of the error state from PASSIVE to COMM_HALT • NORMAL_ACTIVE state due to change of the error state from PASSIVE to ACTIVE. The transition takes place when CCEV.PTAC equals SUCC1.PTA - 1. • To READY state by writing SUCC1.CMD = 0010 (READY command) 23.10.10 HALT State In this state all communication (reception and transmission) is stopped. The communication controller enters this state: • By writing SUCC1.CMD = 0110 (HALT command) while the communication controller is in NORMAL_ACTIVE or NORMAL_PASSIVE state • By writing SUCC1.CMD = 0111 (FREEZE command) from all states 1080 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Network Management www.ti.com • • When exiting from NORMAL_ACTIVE state because the clock correction failed counter reached the “maximum without clock correction fatal” limit and SUCC1.HCSE is set When exiting from NORMAL_PASSIVE state because the clock correction failed counter reached the “maximum without clock correction fatal” limit and SUCC1.HCSE is set The communication controller exits from this state to DEFAULT_CONFIG state • By writing SUCC1.CMD = 0001 (CONFIG command) When the communication controller transits from HALT state to DEFAULT_CONFIG state all configuration and status data is maintained for analyzing purposes. When the host writes SUCC1.CMD = 0110 (HALT command), the communication controller sets bit CCSV.HRQ and enters HALT state at next end of cycle. When the host writes SUCC1.CMD = 0111 (FREEZE command), the communication controller enters HALT state immediately and sets the CCSV.FSI bit in the communication controller status vector register. The POC state from which the transition to HALT state took place can be read from CCSV.PSL. 23.11 Network Management The accrued network management (NM) vector is located in the Network Management Registers (NMV[13]). The communication controller performs a logical OR operation over all NM vectors out of all received valid NM frames with the Payload Preamble Indicator (PPI) bit set. Only a static frame may be configured to hold NM information. The communication controller updates the NM vector at the end of each cycle. The length of the NM vector can be configured from 0 to 12 bytes by NEMC.NML. The NM vector length must be configured identically in all nodes of a cluster. To configure a transmit buffer to send FlexRay frames with the PPI bit set, the PPIT bit in the header section of the corresponding transmit buffer has to be set WRHS1.PPIT. In addition the host has to write the NM information to the data section of the corresponding transmit buffer. The evaluation of the NM vector has to be done by the application running on the host. NOTE: In case a message buffer is configured for transmission / reception of network management frames, the payload length configured in header 2 of that message buffer should be equal or greater than the length of the NM vector configured by NEMC.NM. When the Communication Controller transits to HALT state, the cycle count is not incremented and therefore the NM vector is not updated. In this case NMV1/2/3 holds the value from the cycle before. 23.12 Filtering and Masking Filtering is done by comparison of the configuration of assigned message buffers against current slot and cycle counter values and channel ID (channel A, B). A message buffer is only updated / transmitted if the required matches occur. Filtering is done on: • Slot counter • Cycle counter • Channel ID The following filter combinations for acceptance / transmit filtering are allowed: • Slot counter + Channel ID • Slot counter + Cycle counter + Channel ID All configured filters must match in order to store a received message in a message buffer. NOTE: For the FIFO the acceptance filter is configured by the FIFO Rejection Filter and the FIFO Rejection Filter mask. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1081 Filtering and Masking www.ti.com A message will be transmitted in the time slot corresponding to the configured frame ID on the configured channel(s). If cycle counter filtering is enabled the configured cycle filter value must also match. 23.12.1 Slot Counter Filtering Every transmit and receive buffer contains a frame ID stored in the header section. This frame ID is compared against the current slot counter value in order to assign receive and transmit buffers to the corresponding slot. If two or more message buffers are configured with the same frame ID and channel ID, and if they have a matching cycle counter filter value for the same slot, then the message buffer with the lowest message buffer number is used. 23.12.2 Cycle Counter Filtering Cycle counter filtering is based on the notion of a cycle set. For filtering purposes, a match is detected if any one of the elements of the cycle set is matched. The cycle set is defined by the cycle code field in the header section 1 of each message buffer. If message buffer 0 or 1 is configured to hold the startup / sync frame or the single slot frame by bits TXST, TXSY, and TSM of SUC Configuration Register 1, cycle counter filtering for message buffer 0 or 1 respectively shall be disabled. NOTE: Sharing of a static time slot by cycle counter filtering between different nodes of a FlexRay network is not allowed. The set of cycle numbers belonging to a cycle set is determined as described in Table 23-8. Table 23-8. Definition of Cycle Set Cycle Code Matching Cycle Counter Values 0b000000x All cycles 0b000001c Every second cycle at (cycle count)mod2 =c 0b00001cc Every fourth cycle at (cycle count)mod4 = cc 0b0001ccc Every eighth cycle at (cycle count)mod8 = ccc 0b001cccc Every sixteenth cycle at (cycle count)mod16 = cccc 0b01ccccc Every thirty-second cycle at (cycle count)mod32 = ccccc 0b1cccccc Every sixty-fourth cycle at (cycle count)mod64 = cccccc Table 23-9 gives some examples for valid cycle sets to be used for cycle counter filtering. Table 23-9. Examples for Valid Cycle Sets Cycle Code Matching Cycle Counter Values 0b0000011 1-3-5-7- …. -63 ↵ 0b0000100 0-4-8-12- …. -60 ↵ 0b0001110 6-14-22-30- …. -62 ↵ 0b0011000 8-24-40-56 ↵ 0b0100011 3-35 ↵ 0b1001001 9↵ The received message is stored only if the cycle counter value of the cycle during which the message is received matches an element of the receive buffer’s cycle set. Other filter criteria must also be met. The content of a transmit buffer is transmitted on the configured channel(s) when an element of the cycle set matches the current cycle counter value. Other filter criteria must also be met. 1082 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Filtering and Masking www.ti.com 23.12.3 Channel ID Filtering There is a 2-bit channel filtering field (CHA, CHB) located in the header section of each message buffer in the message RAM. It serves as a filter for receive buffers, and as a control field for transmit buffers (see Table 23-10). Table 23-10. Channel Filtering Configuration Transmit Buffer Receive Buffer CHA CHB Transmit frame Store valid receive frame 1 1 On both channels (static segment only) Received on channel A or B (store first semantically valid frame, static segment only) 1 0 On channel A Received on channel A 0 1 On channel B Received on channel B 0 0 No transmission Ignore frame The contents of a transmit buffer is transmitted on the channels specified in the channel filtering field when the slot counter filtering and cycle counter filtering criteria are also met. Only in static segment a transmit buffer may be set up for transmission on both channels (CHA and CHB set). Valid received frames are stored if they are received on the channels specified in the channel filtering field when the slot counter filtering and cycle counter filtering criteria are also met. Only in static segment a receive buffer may be setup for reception on both channels (CHA and CHB set). NOTE: If a message buffer is configured for the dynamic segment and both bits of the channel filtering field are set to 1, no frames are transmitted and received frames are ignored (same function as CHA = CHB = 0) 23.12.4 FIFO Filtering For FIFO filtering there is one rejection filter and one rejection filter mask available. The FIFO filter consists of channel filter FRF.CH, frame ID filter FRF.FID, and cycle counter filter FRF.CYF. Registers FRF and FRFM can be configured in DEFAULT_CONFIG or CONFIG state only. The filter configuration in the header section of message buffers belonging to the FIFO is ignored. The 7-bit cycle counter filter determines the cycle set to which frame ID and channel rejection filter are applied. In cycles not belonging to the cycle set specified by FRF.CYF, all frames are rejected. A valid received frame is stored in the FIFO if channel ID, frame ID, and cycle counter are not rejected by the configured rejection filter and rejection filter mask, and if there is no matching dedicated receive buffer. 23.13 Transmit Process 23.13.1 Static Segment For the static segment, if there are several messages pending for transmission, the message with the frame ID corresponding to the next sending slot is selected for transmission. The data section of transmit buffers assigned to the static segment can be updated until the end of the preceding time slot. This means that a transfer from the input buffer has to be started by writing to the Input Buffer Command Request Register latest at this time. 23.13.2 Dynamic Segment In the dynamic segment, if several messages are pending, the message with the highest priority (lowest frame ID) is selected next. In the dynamic segment different slot counter sequences on channel A and channel B are possible (concurrent sending of different frame IDs on both channels). SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1083 Transmit Process www.ti.com The data section of transmit buffers assigned to the dynamic segment can be updated until the end of the preceding slot. This means that a transfer from the input buffer has to be started by writing to the Input Buffer Command Request Register latest at this time. The start of latest transmit configured by MHDC.SLT in the MHD configuration register 1 defines the maximum minislot value allowed before inhibiting new frame transmission in the dynamic segment of the current cycle. 23.13.3 Transmit Buffers Communication Controller message buffers can be configured as transmit buffers by programming bit CFG in the header section of the corresponding message buffer to 1 in WRHS1. There exist the following possibilities to assign a transmit buffer to the communication controller channels: • Static segment: – channel A or channel B – channel A and channel B • Dynamic segment: – channel A or channel B Message buffer 0 or 1 is dedicated to hold the startup frame, the sync frame, or the designated single slot frame as configured by SUCC1.TXST, SUCC1.TXSY, and SUCC1.TSM in the SUC Configuration register 1. In this case it can be reconfigured in DEFAULT_CONFIG or CONFIG state only. This ensures that any node transmits at most one startup / sync frame per communication cycle. Transmission of startup / sync frames from other message buffers is not possible. All other message buffers configured for transmission in static or dynamic segment are reconfigurable during runtime depending on the configuration of MRC.SEC. Due to the organization of the data partition in the message RAM (reference by data pointer), reconfiguration of the configured payload length and the data pointer in the header section of a message buffer may lead to erroneous configurations. If a message buffer is reconfigured (header section updated) during runtime, it may happen that this message buffer is not sent out in the currently active communication cycle. The communication controller does not have the capability to calculate the header CRC. The host is supposed to provide the header CRCs for all transmit buffers. If network management is required the host has to set the PPIT bit in the header section of the corresponding message buffer to 1 and write the network management information to the data section of the message buffer. The payload length field configures the data payload length in 2-byte words. If the configured payload length of a static transmit buffer is shorter than the payload length configured for the static segment by MHDC.SFDL in the message handler configuration register 1, the communication controller generates padding bytes to ensure that frames have proper physical length. The padding pattern is logical zero. NOTE: In case of an odd payload length (PLC = 1,3,5, and so on), the application needs to write zeros to the last 16 bits of the message buffers data section to ensure that the padding pattern is all zero. Each transmit buffer provides a transmission mode flag TXM that allows the host to configure the transmission mode for the transmit buffer. If this bit is set, the transmitter operates in the single-shot mode. If this bit is cleared, the transmitter operates in the continuous mode. In single-shot mode the Communication Controller resets the corresponding TXR flag after transmission has completed after which the host may update the transmit buffer. In continuous mode, the Communication Controller does not reset the corresponding transmission request flag TXR after successful transmission. In this case a frame is sent out each time the filter criteria match. The TXR flag can be reset by the Host by writing the corresponding message buffer number to the IBCR register while bit IBCM.STXRH is set to 0. If two or more transmit buffers meet the filter criteria simultaneously, the transmit buffer with the lowest message buffer number will be transmitted in the corresponding slot. 1084 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Transmit Process www.ti.com 23.13.4 Frame Transmission The following steps are required to prepare a message buffer for transmission: • Configure the transmit buffer in the Message RAM through WRHS1, WRHS2, and WRHS3 • Write the data section of the transmit buffer through WRDSn • Transfer the configuration and message data from Input Buffer to the Message RAM by writing the number of the target message buffer to register IBCR • If configured in the Input Buffer Command Mask (IBCM) register the Transmission request flag (TXR) for the corresponding message buffer will be set as soon as the transfer has completed, and the message buffer is ready for transmission. • Check whether the message buffer has been transmitted by checking the TXR bits (TXR = 0) in the Transmission request 1,2,3,4 registers (single-shot mode only). After transmission has completed, the corresponding TXR flag in the Transmission request 1,2,3,4 register is reset (single- shot mode), and, if bit MBI in the header section of the message buffer is set, flag SIR.TXI in the Status Interrupt register is set to 1. If enabled, an interrupt is generated. 23.13.5 Null Frame Transmission If in static segment the host does not set the transmission request flag before transmit time, and if there is no other transmit buffer with matching filter criteria, the communication controller transmits a null frame with the null frame indication bit set and the payload data set to zero. In the following cases the communication controller transmits a null frame: • If the message buffer with the lowest message buffer number matching the filter criteria does not have its transmission request flag set (TXR = 0). • No transmit buffer configured for the slot has a cycle counter filter that matches the current cycle. In this case, no message buffer status MBS is updated. Null frames are not transmitted in the dynamic segment. 23.14 Receive Process 23.14.1 Dedicated Receive Buffers A portion of the Communication Controller message buffers can be configured as dedicated receive buffers by programming bit CFG in the header section of the corresponding message buffer to 0. This can be done through the Write Header Section 1 register. The following possibilities exist to assign a receive buffer to the Communication Controller channels: • Static segment: – channel A or channel B – channel A and channel B (the communication controller stores the first semantically valid frame) • Dynamic segment: – channel A or channel B The communication controller transfers payload data of valid received messages from the shift registers of the FlexRay protocol controller (channel A or B) to the receive buffer with the matching filter configuration. A receive buffer stores all frame elements except the frame CRC. All message buffers configured for reception in static or dynamic segment are reconfigurable during runtime depending on the configuration of MRC.SEC of the Message RAM Configuration register. If a message buffer is reconfigured (header section updated) during runtime it may happen that in the currently active communication cycle a received message is lost. If two or more receive buffers meet the filter criteria simultaneously, the receive buffer with the lowest message buffer number is updated with the received message. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1085 Receive Process www.ti.com 23.14.2 Frame Reception The following steps are required to prepare a dedicated message buffer for reception: • Configure the receive buffer in the Message RAM through WRHS1, WRHS2, and WRHS3 • Transfer the configuration from input buffer to the message RAM by writing the number of the target message buffer to the Input Buffer Command Request (IBCR) register. Once these steps are performed, the message buffer functions as an active receive buffer and participates in the internal acceptance filtering process, which takes place every time the communication controller receives a message. The first matching receive buffer is updated from the received message. If a valid payload segment was stored in the data section of a message buffer, the corresponding ND flag in the NDAT[1-4] registers is set, and, if bit MBI in the header section of that message buffer is set, flag SIR.RXI in the Status Interrupt Register is set to 1. If enabled, an interrupt is generated. In case that bit ND was already set when the Message Handler updates the message buffer, bit MBS.MLST of the corresponding message buffer is set and the unprocessed message data is lost. If no frame, a null frame, or a corrupted frame is received in a slot, the data section of the message buffer configured for this slot is not updated. In this case only the flags in the corresponding message buffer status (MBS) is updated. When the Message Handler changes the message buffer status MBS in the header section of a message buffer, the corresponding MBC flag in the Message Buffer Status Changed 1,2,3 or 4 register is set, and if bit MBI in the header section of that message buffer is set, flag SIR.MBSI in the Status Interrupt Register is set to 1. If enabled an interrupt is generated. If the payload length of a received frame PLR is longer than the value programmed by PLC in the header section of the corresponding message buffer, the data field stored in the message buffer is truncated to that length. NOTE: The ND and MBS flags are automatically cleared by the message handler when the payload data and the header of a received message have been transferred to the output buffer, respectively. 23.14.3 Null Frame Reception The payload segment of a received null frame is not copied into the matching dedicated receive buffer. If a null frame has been received, only the message buffer status MBS of the matching message buffer is updated from the received null frame. All bits in header 2 and 3 of the matching message buffer remain unchanged. They are updated from received data frames only. 23.15 FIFO Function 23.15.1 Description A group of the message buffers can be configured as a cyclic First-In-First-Out (FIFO) buffer. The group of message buffers belonging to the FIFO is contiguous in the register map starting with the message buffer referenced by MRC.FFB and ending with the message buffer referenced by MRC.LCB in the message RAM configuration register. Up to 128 message buffers can be assigned to the FIFO. 1086 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FIFO Function www.ti.com Every valid incoming message not matching with any dedicated receive buffer but passing the programmable FIFO filter is stored into the FIFO. In this case frame ID, payload length, receive cycle count, and the message buffer status MBS of the addressed FIFO message buffer are overwritten with frame ID, payload length, receive cycle count, and the status from the received frame. Bit SIR.RFNE in the status interrupt register shows that the FIFO is not empty, bit SIR.RFCL is set when the receive FIFO fill level FSR.RFFL is equal or greater than the critical level as configured by FCL.CL, bit EIR.RFO shows that a FIFO overrun has been detected. If enabled, interrupts are generated. If null frames are not rejected by the FIFO rejection filter, the null frames will be treated like data frames when they are stored into the FIFO. There are two index registers associated with the FIFO. The PUT Index register (PIDX) is an index to the next available location in the FIFO. When a new message has been received it is written into the message buffer addressed by the PIDX register. The PIDX register is then incremented and addresses the next available message buffer. If the PIDX register is incremented past the highest numbered message buffer of the FIFO, the PIDX register is loaded with the number of the first (lowest numbered) message buffer in the FIFO chain. The GET Index register (GIDX) is used to address the next message buffer of the FIFO to be read. The GIDX register is incremented after transfer of the contents of a message buffer belonging to the FIFO to the output buffer. The PUT Index register and the GET Index register are not memory mapped and are not accessible by the host CPU. The FIFO is completely filled when the PUT index (PIDX) reaches the value of the GET index (GIDX). When the next message is written to the FIFO before the oldest message has been read, both PUT index and GET index are incremented and the new message overwrites the oldest message in the FIFO. This will set FIFO overrun flag EIR.RFO in the error interrupt register. A FIFO not empty status is detected when the PUT index (PIDX) differs from the GET index (GIDX). In this case flag SIR.RFNE is set. This indicates that there is at least one received message in the FIFO. The FIFO empty, FIFO not empty, and the FIFO overrun states are explained in Figure 23-16 for a three message buffer FIFO. The programmable FIFO Rejection Filter register (FRF) defines a filter pattern for messages to be rejected. The FIFO rejection filter consists of channel filter, frame ID filter, and cycle counter filter. If bit FRF.RSS is set to 1 (default), all messages received in the static segment are rejected by the FIFO. If bit FRF.RNF is set to 1 (default), received null frames are not stored in the FIFO. The FIFO Rejection Filter mask register (FRFM) specifies which bits of the frame ID filter in the FIFO Rejection Filter register are marked don’t care for rejection filtering. Figure 23-16. FIFO Status: Empty, Not Empty, and Overrun FIFO empty PIDX (store next) FIFO not empty FIFO overrun PIDX (store next) PIDX (store next) Buffers 1 2 3 Buffers 1 2 3 Buffers 1 2 3 Messages - - - Messages A - - Messages A D B C GIDX (read oldest) GIDX (read oldest) SPNU499C – March 2018 Submit Documentation Feedback GIDX (read oldest) - PIDX incremented last - Next received message will be stored into buffer 1 - If buffer 1 has not been read before message A is lost FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1087 FIFO Function www.ti.com 23.15.2 Configuration of the FIFO (Re)configuration of message buffers belonging to the FIFO is only possible when the Communication Controller is in DEFAULT_CONFIG or CONFIG state. While the Communication Controller is in DEFAULT_CONFIG or CONFIG state, the FIFO function is not available. For all message buffers belonging to the FIFO should have the same payload length configured in WRHS2.PLC of the Write Header Section 2 register. The data pointer to the first 32-bit word in the data section of the corresponding message buffer has to be configured by WRHS3.DP. All information required for acceptance filtering is taken from the FIFO rejection filter and the FIFO rejection filter mask. With the exception of DP and PLC, the values configured in the header sections of the message buffers belonging to the FIFO are irrelevant. NOTE: It is recommended to program the MBI bits of the message buffers belonging to the FIFO to 0 by WRHS1.MBI to avoid RX interrupts to be generated. If the payload length of a received frame is longer than the value programmed by WRHS2.PLC in the header section of the corresponding message buffer, the data field stored in a message buffer of the FIFO is truncated to that length. 23.15.3 Access to the FIFO For FIFO access outside DEFAULT_CONFIG and CONFIG state, the Host has to trigger a transfer from the Message RAM to the Output Buffer by writing the number of the first message buffer of the FIFO (referenced by MRC.FFB) to the Output Buffer Command Request (OBCR) register. The message handler then transfers the message buffer addressed by the GET Index register (GIDX) to the output buffer. After this transfer the GET Index register (GIDX) is incremented. 23.16 Message Handling The message handler controls data transfers between the input / output buffer and the message RAM and between the message RAM and the two transient buffer RAMs. All accesses to the internal RAMs are 32 bit accesses. Access to the message buffers stored in the message RAM is done under control of the message handler state machine. This avoids conflicts between accesses of the two protocol controllers and the host CPU to the message RAM. Frame IDs of message buffers assigned to the static segment have to be in the range from 1 to GTU7.NSS as configured in the GTU configuration register 7. Frame IDs of message buffers assigned to the dynamic segment have to be in the range from GTU7.NSS + 1 to 2047. Received messages with no matching dedicated receive buffer (static or dynamic segment) are stored in the receive FIFO (if configured) if they pass the FIFO rejection filter. 23.16.1 Reconfiguration of Message Buffers In case that an application needs to operate with more than 128 different messages, static and dynamic message buffers may be reconfigured during FlexRay operation. This is done by updating the header section of the corresponding message buffer through Input Buffer registers WRHS[1-3]. Reconfiguration has to be enabled through control bits MRC.SEC in the Message RAM Configuration register. If a message buffer has not been transmitted / updated from a received frame before reconfiguration starts, the corresponding message is lost. The point in time when a reconfigured message buffer is ready for transmission / reception according to the reconfigured frame ID depends on the current state of the slot counter when the update of the header section has completed. Therefore it may happen that a reconfigured message buffer is not transmitted / updated from a received frame in the cycle where it was reconfigured. The Message RAM is scanned according to Table 23-11. 1088 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Message Handling www.ti.com Table 23-11. Scan of Message RAM Start of Scan in Slot Scan for Slots 1 2...15, 1 (next cycle) 8 16...23, 1 (next cycle) 16 24...31, 1 (next cycle) 24 32...39, 1 (next cycle) .... ... A Message RAM scan is terminated with the start of NIT irrespective of its completion. The scan of the Message RAM for slots 2 to 15 starts at the beginning of slot 1 of the current cycle. The scan of the Message RAM for slot 1 is done in the cycle before by checking in parallel to each scan of the Message RAM whether there is a message buffer configured for slot 1 of the next cycle. The number of the first dynamic message buffer is configured by MRC.FDB in the Message RAM Configuration register. In case a Message RAM scan starts while the Communication Controller is in dynamic segment, the scan starts with the message buffer number configured by MRC.FDB. In case a message buffer needs to be reconfigured to be used in slot 1 of the next cycle, the following has to be considered: • If the message buffer to be reconfigured for slot 1 is part of the Static Buffers, it will only be found if it is reconfigured before the last Message RAM scan in the static segment of the current cycle evaluates this message buffer. • If the message buffer to be reconfigured for slot 1 is part of the Static + Dynamic Buffers, it will be found if it is reconfigured before the last Message RAM scan in the current cycle evaluates this message buffer. • The start of NIT terminates the Message RAM scan. In case the Message RAM scan has not evaluated the reconfigured message buffer until this point in time, the message buffer will not be considered for the next cycle. NOTE: Reconfiguration of message buffers may lead to the loss of messages and therefore has to be used very carefully. In worst case (reconfiguration in consecutive cycles) it may happen that a message buffer is never transmitted / updated from a received frame. 23.16.2 Host Access to Message RAM The message transfer between input buffer and message RAM as well as between message RAM and output buffer is triggered by the host CPU by writing the number of the target / source message buffer to be accessed to the input or output buffer command request register (IBCR/OBCR). The input / output buffer command mask registers can be used to write / read header and data section of the selected message buffer separately. If bit IBCM.STXR in the input buffer command mask register is set (STXR = 1), the transmission request flag TXR of the selected message buffer is automatically set after the message buffer has been updated. If bit IBCM.STXR in the input buffer command mask register is reset (STXR = 0), the transmission request flag TXR of the selected message buffer is reset. This can be used to stop transmission from message buffers operated in continuous mode. Input buffer (IBF) and the output buffer (OBF) are built up as a double buffer structure. One half of this double buffer structure is accessible by the host CPU (IBF host / OBF host), while the other half (IBF shadow / OBF shadow) is accessed by the message handler for data transfers between IBF / OBF and message RAM. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1089 Message Handling www.ti.com Figure 23-17. Host Access to Message RAM AddressDecoder and Control Data(31-0) Output Buffer [Shadow] Control Address Data(31-0) Input Buffer [Shadow] Address Data(31-0) Host CPU Address Data(31-0) Message handler Header Partition Data Partition Message RAM 23.16.2.1 Data Transfer from Input Buffer to Message RAM To configure / update a message buffer in the message RAM, the host has to write the data to WRDSn and the header to WRHS[1-3]. The specific action is selected by configuring the input buffer command mask IBCM. When the host writes the number of the target message buffer in the message RAM to IBCR.IBRH in the input buffer command request register IBCR, IBF host and IBF shadow are swapped (see Figure 23-18). With this write operation the IBCR.IBSYS bit in the input buffer command request register is set to 1. The message handler then starts to transfer the contents of IBF shadow to the message buffer in the message RAM selected by IBCR.IBRS. While the message handler transfers the data from IBF shadow to the target message buffer in the message RAM, the host may write the next message to IBF host. After the transfer between IBF shadow and the message RAM has completed, the IBCR.IBSYS bit is set back to 0 and the next transfer to the message RAM may be started by the host by writing the corresponding target message buffer number to IBCR.IBRH in the input buffer command request register. 1090 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Message Handling www.ti.com Figure 23-18. Double Buffer Structure Input Buffer FlexRay IBF Shadow IBF Host Host Message RAM IBF = Input Buffer Figure 23-19. Swapping of IBCM and IBCR Bits IBCM IBCR 18 17 16 2 1 0 swap 31 22 21 20 19 18 17 16 15 6 5 4 3 2 1 0 swap If a write access to IBCR.IBRH occurs while IBCR.IBSYS is 1, IBCR.IBSYH is set to 1. After completion of the ongoing data transfer from IBF shadow to the message RAM, IBF host and IBF shadow are swapped, IBCR.IBSYH is reset to 0, IBCR.IBSYS remains set to 1, and the next transfer to the message RAM is started. In addition the message buffer numbers stored under IBCR.IBRH and IBCR.IBRS and the command mask flags are also swapped. Example of a 8/16/32-bit host access sequence: • Configure / update n-th message buffer through IBF • Wait until IBCR.IBSYH is reset • Write data section to WRDSn • Write header section to WRHS[1-3] • Write command mask: write IBCM.STXRH, IBCM.LHSH, IBCM.LDSH • Demand data transfer to target message buffer: write IBCR.IBRH Configure / update further message buffer through IBF in the same way. NOTE: Any write access to IBF while IBCR.IBSYH is 1 will set error flag EIR.IIBA in the Error Interrupt Register to 1. In this case, the write access has no effect. FlexRay Module1091 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Message Handling www.ti.com Table 23-12. Assignment of Input Buffer Command Mask Bits Position Access Bit 18 r STXRS Function 17 r LDSS Load Data Section shadow ongoing or finished Load Header Section shadow ongoing or finished Set Transmission Request shadow ongoing or finished 16 r LHSS 2 r/w STXRH 1 r/w LDSH Load Data Section Host 0 r/w LHSH Load Header Section Host Set Transmission Request Host Table 23-13. Assignment of Input Buffer Command Request Bits Position Access Bit 31 r IBSYS 22…16 r IBRS 15 r IBSYH 6…0 r/w IBRH Function IBF Busy Shadow, signals ongoing transfer from IBF shadow to message RAM IBF Request Shadow, number of message buffer currently / last updated IBF Busy Host, transfer request pending for message buffer referenced by IBRH IBF Request Host, number of message buffer to be updated next 23.16.2.2 Data Transfer from Message RAM to Output Buffer To read out a message buffer from the message RAM, the host has to write to the output buffer command mask and command request register to trigger the data transfer. After a transfer has completed the host can read the transferred data from the RDDSn, RDHS[1-3], and MBS. Figure 23-20. Double Buffer Structure Output Buffer FlexRay Host OBF Host OBF Shadow Message RAM OBF = Output Buffer OBF host and OBF shadow as well as bits OBCM.RHSS, OBCM.RDSS, OBCM.RHSH, OBCM.RDSH from the output buffer command mask register and bits OBCM.OBRS, OBCM.OBRH from the output buffer command request register are swapped under control of bits OBCR.VIEW and OBCR.REQ from the output buffer command request register. Writing bit OBCR.REQ in the output buffer command request register to 1 copies bits OBCM.RHSS, OBCM.RDSS from the output buffer command mask register and bits OBCR.OBRS from the output buffer command request register to an internal storage (see Figure 23-21). 1092 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Message Handling www.ti.com After setting OBCR.REQ to 1, OBCR.OBSYS is set to 1, and the transfer of the message buffer selected by OBCR.OBRS from the message RAM to OBF shadow is started. After the transfer between the message RAM and OBF shadow has completed, the OBCR.OBSYS bit is set back to 0. Bits OBCR.REQ and OBCR.VIEW can only be set to 1 while OBCR.OBSYS is 0. Figure 23-21. Swapping of OBCM and OBCR Bits OBCM 17 16 view internal storage 1 0 1 0 request OBCR 22 21 20 19 18 17 16 internal storage view 6 5 4 3 2 1 0 15 9 8 6 5 4 3 2 1 0 request OBF host and OBF shadow are swapped by setting bit OBCR.VIEW in the output buffer command request register to 1 while bit OBCR.OBSYS is 0 (see Figure 23-20). In addition bits OBCR.OBRH are swapped with the output buffer command request registers internal storage and bits OBCM.RHSH, OBCM.RDSH are swapped with the output buffer command mask registers internal storage thus assuring that the message buffer number stored in OBCR.OBRH and the mask configuration stored in OBCM.RHSH, OBCM.RDSH matches the transferred data stored in OBF host (see Figure 23-21). Now the host can read the transferred message buffer from OBF host while the message handler may transfer the next message from the message RAM to OBF shadow. NOTE: If bits REQ and VIEW are set to 1 with the same write access while OBSYS is 0, OBSYS is automatically set to 1 and OBF shadow and OBF host are swapped. Additionally mask bits OBCM.RDSH and OBCM.RHSH are swapped with the registers internal storage to keep them attached to the corresponding Output Buffer transfer. Afterwards OBRS is copied to the register internal storage, mask bits OBCM.RDSS and OBCM.RHSS are copied to register OBCM internal storage, and the transfer of the selected message buffer from the Message RAM to OBF shadow is started. While the transfer is ongoing the Host can read the message buffer transferred by the previous transfer from OBF Host. When the current transfer between Message RAM and OBF shadow has completed, this is signaled by setting OBSYS back to 0. Example of an 8/16/32-bit host access to a single message buffer: If a single message buffer has to be read out, two separate write accesses to OBCR.REQ and OBCR.VIEW are necessary: • Wait until OBCR.OBSYS is reset • Write Output Buffer Command Mask OBCM.RHSS, OBCM.RDSS • Request transfer of message buffer to OBF Shadow by writing OBCR.OBRS and OBCR.REQ (in case of and 8-bit Host interface, OBCR.OBRS has to be written before OBCR.REQ) • Wait until OBCR.OBSYS is reset • Toggle OBF Shadow and OBF Host by writing OBCR.VIEW = 1 • Read out transferred message buffer by reading RDDSn, RDHS[1-3], and MBS SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1093 Message Handling www.ti.com Example of an 8/16/32-bit host access sequence: Request transfer of 1st message buffer to OBF shadow • Wait until OBCR.OBSYS is reset • Write Output Buffer Command Mask OBCM.RHSS, OBCM.RDSS for 1st message buffer • Request transfer of 1st message buffer to OBF Shadow by writing OBCR.OBRS and OBCR.REQ (in case of an 8-bit Host interface, OBCR.OBRS has to be written before OBCR.REQ). Toggle OBF Shadow and OBF Host to read out 1st transferred message buffer and request transfer of 2nd message buffer: Request transfer of 2nd message buffer to OBF shadow, read out 1st message buffer from OBF host • Wait until OBCR.OBSYS is reset • Write Output Buffer Command Mask OBCM.RHSS, OBCM.RDSS for 2nd message buffer • Toggle OBF Shadow and OBF Host and start transfer of 2nd message buffer to OBF Shadow simultaneously by writing OBCR.OBRS of 2nd message buffer, OBCR.REQ, and OBCR.VIEW (in case of and 8-bit Host interface, OBCR.OBRS has to be written before OBCR.REQ and OBCR.VIEW). • Read out 1st transferred message buffer by reading RDDSn, RDHS[1-3], and MBS For further transfers continue the same way. Demand access to last requested message buffer without request of another message buffer: • Wait until OBCR.OBSYS is reset • Demand access to last transferred message buffer by writing OBCR.VIEW • Read out last transferred message buffer by reading RDDSn, RDHS[1-3], and MBS Table 23-14. Assignment of Output Buffer Command Mask Bits Position Access Bit Function 17 r RDSH Read Data Section Host access 16 r RHSH Read Header Section Host access 1 r/w RDSS Read Data Section Shadow 0 r/w RHSS Read Header Section Shadow Table 23-15. Assignment of Output Buffer Command Request Bits Position Access Bit 22…16 r OBRH Function OBF Request Host, number of message buffer available for host access 15 r OBSYS OBF Busy Shadow, signals ongoing transfer from message RAM to OBF Shadow 9 r/w REQ Request Transfer from message RAM to OBF Shadow 8 r/w VIEW View OBF Shadow, swap OBF Shadow and OBF Host 6…0 r/w OBRS OBF Request Shadow, number of message buffer for next request 23.16.3 FlexRay Protocol Controller Access to Message RAM The two transient buffer RAMs (TBF A,B) are used to buffer the data for transfer between the two FlexRay channel protocol controllers and the message RAM. Each transient buffer RAM is built up as a double buffer, able to store two complete FlexRay messages. There is always one buffer assigned to the corresponding protocol controller while the other one is accessible by the message handler. 1094 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module RAMs www.ti.com If for example, the message handler writes the next message to be sent to transient buffer Tx, the FlexRay Channel protocol controller can access transient buffer Rx to store the message it is currently receiving. During transmission of the message stored in transient buffer Tx, the message handler transfers the last received message stored in transient buffer Rx to the message RAM (if it passes acceptance filtering) and updates the corresponding message buffer. Data transfers between the transient buffer RAMs and the shift registers of the FlexRay channel protocol controllers are done in words of 32 bit. This enables the use of a 32 bit shift register independent of the length of the FlexRay messages. Figure 23-22. Access to Transient Buffer RAMs Txd2 Shift Register Shift Register Control Control Transient Buffer Rx Transient Buffer Rx Transient Buffer Tx Data(31-0) Transient Buffer Tx Data(31-0) FlexRay PRT B Data(31-0) FlexRay PRT A Data(31-0) Address-Decoder Address TBF A Rxd2 Address-Decoder Txd1 TBF B Address Rxd1 Message Handler 23.17 Module RAMs The FlexRay module contains the following RAM portions: • Message RAM • Transient Buffer RAM Channel A (TBF A) • Transient Buffer RAM Channel B (TBF B) • Input Buffer (IBF) • Input Buffer Shadow (IBFS) • Output Buffer (OBF) • Output Buffer Shadow (OBFS) • Transfer Configuration RAM (TCR) All RAMs except the TCR are part of the Communication Controller core. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1095 Module RAMs www.ti.com 23.17.1 Message RAM To avoid conflicts between host access to the message RAM and FlexRay message reception / transmission, the host CPU cannot directly access the message buffers in the message RAM. These accesses are handled through the input and output buffers. The message RAM is able to store up to 128 message buffers depending on the configured payload length. The message RAM has a structure as shown in Figure 23-23. The data partition is allowed to start at Message RAM word number: (MRC.LCB + 1) × 4 Figure 23-23. Configuration Example of Message Buffers in the Message RAM Message RAM Header MB0 Header MB1 ‚ ‚ ‚ Header Partition Header MBn Data MB0 2048 words Data MB1 ‚ ‚ ‚ Data Partition Data MBn unused 32 bit Header Partition Stores header segments of FlexRay frames: • Supports a maximum of 128 message buffers • Each message buffer has a header of four 32 bit words • Header 3 of each message buffer holds the 11-bit data pointer to the corresponding data section in the data partition Data Partition Flexible storage of data sections with different length. Some maximum values are: • 30 message buffers with 254 byte data section each • Or 56 message buffers with 128 byte data section each • Or 128 message buffers with 48 byte data section each Restriction: header partition + data partition may not occupy more than 2048 × 32 bit words. 1096 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module RAMs www.ti.com 23.17.1.1 Header Partition The elements used for configuration of a message buffer as well as the current message buffer status are stored in the header partition of the message RAM as listed in Figure 23-24. Configuration of the header sections of the message buffers is done through IBF (Write Header Section 1,2,3). Read access to the header sections is done through OBF (read header section 1,2,3 + message buffer status). The data pointer has to be calculated by the programmer to define the starting point of the data section for the corresponding message buffer in the data partition of the message RAM. The data pointer should not be modified during runtime. For message buffers belonging to the receive FIFO (re)configuration should be done in DEFAULT_CONFIG or CONFIG state only. The header section of each message buffer occupies four 32 bit words in the header partition of the message RAM. The header of message buffer 0 starts with the first word in the message RAM. For transmit buffers the Header CRC has to be calculated by the host CPU. Payload length received (PLR), receive cycle count (RCC), Received on Channel Indication (RCI), Startup Frame Indication bit (SFI), sync bit (SYN), null frame indication bit (NFI), payload preamble indication bit (PPI), and reserved bit (RES) are only updated from received valid data frames only. Header word 3 of each configured message buffer holds the corresponding message buffer status MBS. Figure 23-24. Header Section of Message Buffer in Message RAM Bit Word 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 M T B X I M 0 P P I T C F G C H B C H A Payload Length Received 1 R E S P P I N F I S Y N S F I R C I 3 R E S S P P I S N F I S S Y N S S F I S R C I S 7 Cycle Code 6 5 4 3 2 1 0 V F R B V F R A Frame ID Payload Length Configured 2 8 Tx Buffer: Header CRC Configured Rx Buffer: Header CRC Received Receive Cycle Count Data Pointer F T B Cycle Count Status : : : : F T A M L S T E S B E S A T C I B T C I A S V O B S V O A C E O B C E O A S E O B S E O A Frame Configuration Filter Configuration Message Buffer Control Message RAM Configuration Updated from received Frame Message Buffer Status unused SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1097 Module RAMs www.ti.com Header 1 (Word 0) Write access through WRHS1, read access through RDHS1: • Frame ID- Slot counter filtering configuration • Cycle Code- Cycle counter filtering configuration • CHA, CHB- Channel filtering configuration • CFG- Message buffer configuration: receive / transmit • PPIT- Payload Preamble Indicator Transmit • TXM- Transmit mode configuration: single-shot / continuous • MBI- Message buffer receive / transmit interrupt enable Header 2 (Word 1) Write access through WRHS2, read access through RDHS2: • Header CRC Transmit Buffer: Configured by the host (calculated from frame header) – Receive Buffer: Updated from received frame • Payload Length Configured: Length of data section (2-byte words) as configured by the host • Payload Length Received: Length of payload segment (2-byte words) stored from received frame Header 3 (Word 2) Write access through WRHS3, read access through RDHS3: • Data Pointer- Pointer to the beginning of the corresponding data section in the data partition Read access through RDHS3, valid for receive buffers only, updated from received frames: • Receive Cycle Count - Cycle count from received frame • RCI- Received on Channel Indicator • SFI- Startup Frame Indicator • SYN- Sync Frame Indicator • NFI- Null Frame Indicator • PPI- Payload Preamble Indicator • RES- REServed bit Message Buffer Status MBS (Word 3) Read access through MBS, updated by the communication controller at the end of the configured slot. • VFRA- Valid Frame received on channel A • VFRB- Valid Frame received on channel B • SEOA- Syntax Error Observed on channel A • SEOB- Syntax Error Observed on channel B • CEOA- Content Error Observed on channel A • CEOB- Content Error Observed on channel B • SVOA- Slot Boundary Violation Observed on channel A • SVOB- Slot Boundary Violation Observed on channel B • TCIA- Transmission Conflict Indication channel A • TCIB- Transmission Conflict Indication channel B • ESA- Empty Slot Channel A • ESB- Empty Slot Channel B • MLST- Message Lost • FTA- Frame Transmitted on Channel A • FTB- Frame Transmitted on Channel B • Cycle Count Status- Current cycle count when status was updated 1098 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module RAMs www.ti.com • • • • • • RCIS- Received on Channel Indicator Status SFIS- Startup Frame Indication Status SYNS- Sync Frame Indicator Status NFIS- Null Frame Indicator Status PPIS- Payload Preamble Indicator Status RESS- Reserved Bit Status 23.17.1.2 Data Partition The data partition of the message RAM stores the data sections of the message buffers configured for reception / transmission as defined in the header partition. The number of data bytes for each message buffer can vary from 0 to 254. In order to optimize the data transfer between the shift registers of the two FlexRay protocol controllers and the message RAM as well as between the host interface and the message RAM, the physical width of the message RAM is word wise (4 bytes). The data partition starts right after the last word of the header partition. When configuring the message buffers in the message RAM the programmer has to assure that the data pointers point to addresses within the data partition. Figure 23-25 shows an example how the payload of the configured message buffers can be stored in the data partition of the message RAM. Message buffers 0 to 2 are static buffers with a payload of 3, whereas message buffers 3 to n are dynamic buffers with variable payload. The beginning of a message buffer’s data section is determined by the data pointer and the payload length configured in the message buffer’s header section. This enables a flexible usage of the available RAM space for storage of message buffers with different data lengths. The storage of the payload data is word aligned. If the size of a message buffer payload is an odd number of 2-byte words, the remaining 16 bits in the last 32-bit word are unused (see Figure 23-25). Figure 23-25. Example Structure of Data Partition in Message RAM Bit / Word : : : : : : : : : : : : : : : 2046 2047 31 24 MB0 Data3 unused MB1 Data3 unused MB2 Data3 unused MB3 Data3 º MB3 Data(k) MBn Data3 º º MBn Data(m) unused unused unused unused 23 16 MB0 Data2 unused MB1 Data2 unused MB2 Data2 unused MB3 Data2 º MB3 Data(k-1) MBn Data2 º º MBn Data(m-1) unused unused unused unused 15 8 MB0 MB0 MB1 MB1 MB2 MB2 MB3 Data1 Data5 Data1 Data5 Data1 Data5 Data1 º MB3 Data(k-2) MBn Data1 º º MBn Data(m-2) unused unused unused unused 7 0 MB0 MB0 MB1 MB1 MB2 MB2 MB3 Data0 Data4 Data0 Data4 Data0 Data4 Data0 º MB3 Data(k-3) MBn Data0 º º MBn Data(m-3) unused unused unused unused 23.17.2 Parity Check In order to assure the integrity of the data stored in the different RAM blocks of the module (message RAM, 2 transient buffer RAMs, 2 input buffer RAMs, 2 output buffer RAMs, Transfer Configuration RAM), the FlexRay module RAMs are parity protected. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1099 Module RAMs www.ti.com The RAM blocks are parity protected and the parity protection cannot be disabled. Only the Transfer Configuration RAM has the exceptional functionality that parity protection can either be switched on or off by writing a 4 bit key to the dedicated parity lock bits (PEL) in the Global Control Register (GCS/R) of the Transfer Unit register frame. By default the parity protection of the TCR is switched off. Figure 23-26 shows the structure of the parity concerning enabling/disabling and error indication. Figure 23-26. Parity Structure PERRE (EIES/R) PERRL (EILS) CC_int1 CC_int0 EIR PERR flag FlexRay RAMs E-Ray Parity check PEL(3-0) (GCS/R1) TCR Parity off • Message RAM • Transient Buffer RAM A • Transient Buffer RAM B • Input Buffer RAM • Input Buffer Shadow RAM • Output Buffer RAM • Output Buffer Shadow RAM Parity/ECC failure TCR Parity on faulty frame indication faulty address indication Transfer Unit FMB(6-0) (MHDS) ADR(8-0) (PEADR) Parity/ECC failure • Transfer Configuration RAM (TCR) TEIF PE flag TU_PE_int NOTE: For the seven RAM blocks of the Communication Controller portion (message RAM, 2 transient buffer RAMs, 2 input buffer RAMs and 2 output buffer RAMs) parity protection is switched on, which can be selected by the parity lock bits (PEL). Parity protection cannot be switched off completely. For the TCR of the Transfer Unit actually the parity error generation will be switched on and off by the parity lock bits, the parity generation itself remains always on. The following sections describe the protection for the Communication Controller related RAM blocks. All the RAM blocks have a parity generator and a parity checker attached as shown in Figure 23-27. When data is written to a RAM block, the local parity generator generates the corresponding parity information. The parity is checked each time a data word is read from any of the RAM blocks. The module internal data buses have a width of 32 bits. If a parity error is detected, the PERR error flag is set in the error interrupt register (EIR). Additionally a parity error interrupt can be generated, if enabled by the PERRE bit in the error interrupt enable register (EIES/EIER). The faulty message buffer number together with the information of the failing RAM can be read from the message handler status (MHDS) register. Figure 23-27 shows the data paths between the RAM blocks and the parity generators and parity checkers. 1100 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module RAMs www.ti.com Figure 23-27. Parity Generation and Check Input Buffer RAM 1,2 GEN CHK Message RAM CHK GEN Transient Buffer RAM A CHK GEN PRT A Transient Buffer RAM B Output Buffer RAM 1,2 CHK GEN CHK GEN PRT B GEN Parity Generator CHKI Parity Checker NOTE: The parity generator and parity checker are not part of the RAM blocks, but of the RAM access logic. For parity generation, the FlexRay module uses an even parity (with an even number of ones in the 32-bit data word a zero parity bit is generated). When a parity error has been detected the following actions will be performed: In all cases • The corresponding error flag in the message handler status (MHDS) register is set and the faulty message buffer is indicated. • The error flag EIR.PERR in the error interrupt register is set, and if enabled, a module interrupt to the CPU will be generated. Additionally in specific cases of parity errors: 1. Parity error during data transfer from input buffer RAM 1,2 ⇒ message RAM a. Transfer of header and/or data section and parity error occurs during header and/or data section transfer to message RAM: • MHDS.PIBF bit is set • MHDS.FMBD bit is set to indicate that MHDS.FMB points to a faulty message buffer • MHDS.FMB indicates the number of the faulty message buffer • Header and/or data section of the corresponding message buffer is updated • Transmission request for the corresponding message buffer is not set (no transfer to the FlexRay bus) SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1101 Module RAMs 2. 3. 4. 5. 6. 7. 8. 9. 1102 www.ti.com b. Transfer of data section only and parity error occurs when reading header section of the corresponding message buffer from the message RAM. • MHDS.PMR bit is set • MHDS.FMBD bit is set to indicate that MHDS.FMB points to a faulty message buffer • MHDS.FMB indicates the number of the faulty message buffer • The data section of the corresponding message buffer is not updated • Transmission request for the corresponding message buffer is not set (no transfer to the FlexRay bus) Parity error during host CPU reading input buffer RAM 1,2 • MHDS.PIBF bit is set Parity error during scan of header sections in message RAM • MHDS.PMR bit is set • MHDS.FMBD bit is set to indicate that MHDS.FMB points to a faulty message buffer • MHDS.FMB indicates the number of the faulty message buffer • Ignore message buffer (the transfer of the message buffer is skipped) Parity error during data transfer from message RAM to transient buffer RAM 1,2 • MHDS.PMR bit is set • MHDS.FMBD bit is set to indicate that MHDS.FMB points to the faulty message buffer • MHDS.FMB indicates the number of the faulty message buffer • Frame not transmitted, frames already in transmission are invalidated by setting the frame CRC to zero Parity error during data transfer from transient buffer RAM 1,2 to protocol controller 1, 2 • MHDS.PTBF1,2 bit is set • Frames already in transmission are invalidated by setting the frame CRC to zero Parity error during data transfer from transient buffer RAM 1,2 to message RAM a. Parity error when reading header section of corresponding message buffer from message RAM • MHDS.PMR bit is set • MHDS.FMBD bit is set to indicate that MHDS.FMB points to a faulty message buffer • MHDS.FMB indicates the number of the faulty message buffer • The data section of the corresponding message buffer is not updated b. Parity error when reading transient buffer RAM 1,2: • MHDS.PTBF1,2 bit is set • MHDS.FMBD bit is set to indicate that MHDS.FMB points to a faulty message buffer • MHDS.FMB indicates the number of the faulty message buffer • The data section of the corresponding message buffer is updated Parity error during data transfer from message RAM to output buffer RAM • MHDS.PMR bit is set • MHDS.FMBD bit is set to indicate that MHDS.FMB points to faulty message buffer • MHDS.FMB indicates the number of the faulty message buffer • Header and/or data section of the output buffer is updated, but should not be used by the host CPU Parity error during host CPU reading output buffer RAM 1,2 • MHDS.POBF bit is set Parity error during data read of transient buffer RAM 1,2. When a parity error occurs during when the Message Handler reads a frame, with network management information (PPI = 1), from the transient buffer RAM 1,2, the corresponding network management vector register NMV[1-3] is not updated from that frame. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Interrupts www.ti.com 23.17.2.1 Host Handling of Parity Errors Parity errors caused by transient bit flips can be fixed by: Self-healing Parity errors located in: • Input Buffer RAM 1,2 • Output Buffer RAM 1,2 • Data Section of Message RAM • Transient Buffer RAM A • Transient Buffer RAM B • Transfer Configuration RAM (TCR) are overwritten with the next write access to the disturbed bit(s) caused by host access or by FlexRay communication. CLEAR_RAMS Command When called in DEFAULT_CONFIG or CONFIG state POC command CLEAR_RAMS initializes all module-internal RAMs to zero and the parity bits are initialized accordingly, depending what mode is enabled. Temporary Unlocking of Header Section A parity error in the header section of a locked message buffer can be fixed by a transfer from the input buffer to the locked buffer header section. For this transfer, the write-access to the IBCR (specifying the message buffer number) must be immediately preceded by the unlock sequence normally used to leave CONFIG state. For that single transfer the corresponding message buffer header is unlocked, regardless whether it belongs to the FIFO or whether its locking is controlled by MRC.SEC, and will be updated with new data. NOTE: In case above methods do not work, it is recommended to execute the PBIST test at device level to confirm a hard error in the module internal RAMs. 23.18 Interrupts This section describes the transfer unit interrupts and the communication controller interrupts. 23.18.1 Transfer Unit Interrupts 23.18.1.1 Interrupt Structure For transfer interrupts, one enable bit is provided for each bit in the transfer occurred status registers. Maskable error interrupts are possible for all error conditions except parity error and memory protection error. The parity error and the memory protection error have separate non-maskable lines. Both turn off the Transfer Unit after finishing the current word access cycle. Figure 23-28 shows the interrupt structure of the FlexRay Transfer Unit. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1103 Interrupts www.ti.com Figure 23-28. Transfer Unit (TU) Interrupt Structure Flags (TSMO 0/1/2/3, TCCO 0/1/2/3) Transfer Interrupts Interrupt Mask (TSMIES/R 0/1/2/3, TCCIES/R 0/1/2/3) Transf er Transfer Buffer 1 Transf er Transfer Buffer 2 Global Interrupt Mask (GCS/R) Transfer Tran sfe r Buffer 128 Buffer TU_Int0 to VIM Error Interrupt Flags (TEIF) Error Interrupts Error Interrupt Mask (TEIRES/R) TU_Int1 to VIM Forbidden Access Acces s Transfer Transf er not ready VBUS read VBUS write Uncorrectable Uncorrectable 1104 TCR error TCR TU_UCT_err to ESM Memor Memoryy Protection Violation TU_MPV_err to ESM FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Interrupts www.ti.com 23.18.1.2 Enable Interrupts The TSMIES/TSMIER and TCCIES/TCCIER registers control the buffer transfer interrupts for each buffer in both directions. The TEIRES/TEIRER registers control the maskable error interrupt sources that are: • VBUS transaction errors If an error occurs during VBUS read or write transfer a error interrupt will be generated. • Forbidden access to IBF or OBF Since host accesses to communication controller through the IBF and the OBF (0x400-0x7FF) are forbidden, as long as the Transfer Unit State Machine is enabled, accesses will be ignored and an error interrupt will be generated. • Transfer not ready when TBA should be loaded When a transfer is ongoing/pending during base address reload on FlexRay communication cycle start (only occurs if NTBA != TBA) the TBA will not be loaded and an error interrupt will be generated. The transfer interrupts use a separate interrupt line (TU_int0) than the error interrupts (TU_int1). 23.18.1.3 Interrupt Flags The TSMO and TCCO flags indicate buffer transfer status interrupts whereas the TEIF flags indicate interrupt sources for maskable and non-maskable error interrupts. The error interrupt flags are set by the Transfer Unit State Machine and can be cleared by the CPU by writing a 1. If the CPU clears the flag, while the Transfer Unit State Machine sets it at the same time, the flag remains set. 23.18.1.4 Non Maskable Error Indication Memory protection violation and uncorrectable TCR error have their own non maskable error lines, which can be connected to the Vectored Interrupt Module (VIM) and/or the Error Signaling Module (ESM). Please refer to the device-specific data manual on the hookup. • If a memory protection violation occurs the Memory Protection Violation Error (TU_MPV_err) line will be activated. • If a uncorrectable TCR error occurs while accessing the TCR, the Parity Error (TU_UCT_err) line will be activated. 23.18.2 Communication Controller Interrupts In general, interrupts provide a close link to the protocol timing as they are triggered almost immediately when an error or status change is detected by the controller, a frame is received or transmitted, a configured timer interrupt is activated, or a stop watch event occurred. This enables the host CPU to react very quickly on specific error conditions, status changes, or timer events. To remain flexible though, the communication controller supports disable / enable controls for each individual interrupt source separately. An interrupt may be triggered, for example when: • a frame is received or transmitted • an error was detected • a status flag is set • a timer reaches a preconfigured value • a message transfer from input buffer to message RAM or from message RAM to output buffer has completed • a stop watch event occurred SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1105 Interrupts www.ti.com Figure 23-29. Communication Controller (CC) Interrupt Structure Interrupt Source 1 Status/Error Interrupt Enable Set/Clear (SIES/EIES, SIER/ EIER Status/Error Interrupt Line Select (SILS/EILS) 0 Interrupt Line Enable EINT0 CC_int0 EINT1 Interrupt Line 1 1 Interrupt Source 2 0 1 Interrupt Line 0 CC_int1 Status/Error Interrupt Register (SIR/EIR Source 1 Flag Source 2 Flag Timer 0 Interrupt CC_tint0 Timer 1 Interrupt CC_tint1 Tracking status and generating interrupts when a status change or an error occurs are two independent tasks. Independent of an interrupt being enabled, the corresponding status is tracked and indicated by the Communication Controller. The host has access to the current status and error information by reading the error interrupt register and the status interrupt register. The interrupt lines to the host, CC_int0 and CC_int1, are controlled by the enabled interrupts. In addition each of the two interrupt lines to the host CPU can be enabled / disabled separately by programming bit EINT0 and EINT1 in the Interrupt Line Enable register. The two timer interrupts generated by interrupt timer 0 and 1 are available on pins CC_tint0 and CC_tint1. They can be configured via the timer 0 and timer 1 configuration register. When a transfer between IBF / OBF and the Message RAM has completed bit SIR.TIBC or SIR.TOBC is set. 1106FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Interrupts www.ti.com Table 23-16. Module Interrupt Flags and Interrupt Line Enable Register Bit Function EIR PEMC Protocol error Mode Changed CNA Command Not Valid SFBM Sync Frames Below Minimum SFO Sync Frame Overflow CCF Clock Correction Failure CCL CHI Command Locked PERR Parity error RFO Receive FIFO Overrun EFA Empty FIFO Access IIBA Illegal Input Buffer Access IOBA Illegal Output Buffer Access MHF Message Handler Constraints Flag EDA Error Detected on Channel A LTVA Latest Transmit Violation Channel A TABA Transmission Across Boundary Channel A EDB Error Detected on Channel B LTVB Latest Transmit Violation Channel B TABB Transmission Across Boundary Channel B WST Wakeup Status CAS Collision Avoidance Symbol CYCS Cycle Start Interrupt TXI Transmit Interrupt RXI Receive Interrupt RFNE Receive FIFO not Empty RFCL Receive FIFO Critical Level NMVC Network Management Vector Changed TI0 Timer Interrupt 0 TI1 Timer Interrupt 1 TIBC Transfer Input Buffer Completed TOBC Transfer Output Buffer Completed SWE Stop Watch Event SUCS Startup Completed Successfully MBSI Message Buffer Status Interrupt SDS Start of Dynamic Segment WUPA Wakeup Pattern Channel A MTSA MTS Received on Channel A WUPB Wakeup Pattern Channel B MTSB MTS Received on Channel B EINT0 Enable Interrupt Line 0 EINT1 Enable Interrupt Line 1 SIR ILE SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1107 FlexRay Module Registers www.ti.com 23.19 FlexRay Module Registers 23.19.1 Transfer Unit Registers Table 23-17 provides a summary of the registers. All registers are organized as 32-bit registers. 32/16/8bit accesses are supported. For FlexRayTU transfers only, 4 × 32-bit data packages are supported. The base address for the Transfer Unit registers is FFF7 A000h. The Transfer Unit State Machine registers use the offset address range 00 to 1FCh. Transfer Configuration RAM uses the offset address range 00 to 1FCh in normal mode and 00 to 3FCh in parity test mode from the base address of FF50 0000h. Table 23-17. Transfer Unit Registers Offset Address Acronym Register Description Section 00h GSN0 Global Static Number 0 Section 23.19.1.1 04h GSN1 Global Static Number 1 Section 23.19.1.2 Reserved Reserved 10h GCS Global Control Set Section 23.19.1.3 14h GCR Global Control Reset Section 23.19.1.3 18h TSCB Transfer Status Current Buffer Section 23.19.1.4 1Ch LTBCC Last Transferred Buffer to Communication Controller Section 23.19.1.5 20h LTBSM Last Transferred Buffer to System Memory Section 23.19.1.6 24h TBA Transfer Base Address Section 23.19.1.7 28h NTBA Next Transfer Base Address Section 23.19.1.8 2Ch BAMS Base Address of Mirrored Status Section 23.19.1.9 30h SAMP Start Address of Memory Protection Section 23.19.1.10 34h EAMP End Address of Memory Protection Section 23.19.1.11 Reserved Reserved 40h TSMO1 Transfer to System Memory Occurred 1 Section 23.19.1.12 44h TSMO2 Transfer to System Memory Occurred 2 Section 23.19.1.12 48h TSMO3 Transfer to System Memory Occurred 3 Section 23.19.1.12 4Ch TSMO4 Transfer to System Memory Occurred 4 Section 23.19.1.12 50h TCCO1 Transfer to Communication Controller Occurred 1 Section 23.19.1.13 54h TCCO2 Transfer to Communication Controller Occurred 2 Section 23.19.1.13 08h-0Ch 38h-3Ch 58h TCCO3 Transfer to Communication Controller Occurred 3 Section 23.19.1.13 5Ch TCCO4 Transfer to Communication Controller Occurred 4 Section 23.19.1.13 60h TOOFF Transfer Occurred Offset Section 23.19.1.14 Reserved Reserved 70h PEADR Parity Error Address Section 23.19.1.15 74h TEIF Transfer Error Interrupt Section 23.19.1.16 78h TEIRES Transfer Error Interrupt Enable Set Section 23.19.1.17 7Ch TEIRER Transfer Error Interrupt Enable Reset Section 23.19.1.17 80h TTSMS1 Trigger Transfer to System Memory Set 1 Section 23.19.1.18 84h TTSMR1 Trigger Transfer to System Memory Reset 1 Section 23.19.1.18 64h-6Ch 88h TTSMS2 Trigger Transfer to System Memory Set 2 Section 23.19.1.18 8Ch TTSMR2 Trigger Transfer to System Memory Reset 2 Section 23.19.1.18 90h TTSMS3 Trigger Transfer to System Memory Set 3 Section 23.19.1.18 94h TTSMR3 Trigger Transfer to System Memory Reset 3 Section 23.19.1.18 98h TTSMS4 Trigger Transfer to System Memory Set 4 Section 23.19.1.18 9Ch TTSMR4 Trigger Transfer to System Memory Reset 4 Section 23.19.1.18 A0h TTCCS1 Trigger Transfer to Communication Controller Set 1 Section 23.19.1.19 1108FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 23-17. Transfer Unit Registers (continued) Offset Address Acronym Register Description Section A4h TTCCR1 Trigger Transfer to Communication Controller Reset 1 Section 23.19.1.19 A8h TTCCS2 Trigger Transfer to Communication Controller Set 2 Section 23.19.1.19 ACh TTCCR2 Trigger Transfer to Communication Controller Reset 2 Section 23.19.1.19 B0h TTCCS3 Trigger Transfer to Communication Controller Set 3 Section 23.19.1.19 B4h TTCCR3 Trigger Transfer to Communication Controller Reset 3 Section 23.19.1.19 B8h TTCCS4 Trigger Transfer to Communication Controller Set 4 Section 23.19.1.19 BCh TTCCR4 Trigger Transfer to Communication Controller Reset 4 Section 23.19.1.19 C0h ETESMS1 Enable Transfer on Event to System Memory Set 1 Section 23.19.1.20 C4h ETESMR1 Enable Transfer on Event to System Memory Reset 1 Section 23.19.1.20 C8h ETESMS2 Enable Transfer on Event to System Memory Set 2 Section 23.19.1.20 CCh ETESMR2 Enable Transfer on Event to System Memory Reset 2 Section 23.19.1.20 D0h ETESMS3 Enable Transfer on Event to System Memory Set 3 Section 23.19.1.20 D4h ETESMR3 Enable Transfer on Event to System Memory Reset 3 Section 23.19.1.20 D8h ETESMS4 Enable Transfer on Event to System Memory Set 4 Section 23.19.1.20 DCh ETESMR4 Enable Transfer on Event to System Memory Reset 4 Section 23.19.1.20 E0h CESMS1 Clear on Event to System Memory Set 1 Section 23.19.1.21 E4h CESMR1 Clear on Event to System Memory Reset 1 Section 23.19.1.21 E8h CESMS2 Clear on Event to System Memory Set 2 Section 23.19.1.21 ECh CESMR2 Clear on Event to System Memory Reset 2 Section 23.19.1.21 F0h CESMS3 Clear on Event to System Memory Set 3 Section 23.19.1.21 F4h CESMR3 Clear on Event to System Memory Reset 3 Section 23.19.1.21 F8h CESMS4 Clear on Event to System Memory Set 4 Section 23.19.1.21 FCh CESMR4 Clear on Event to System Memory Reset 4 Section 23.19.1.21 100h TSMIES1 Transfer to System Memory Interrupt Enable Set 1 Section 23.19.1.22 104h TSMIER1 Transfer to System Memory Interrupt Enable Reset 1 Section 23.19.1.22 108h TSMIES2 Transfer to System Memory Interrupt Enable Set 2 Section 23.19.1.22 10Ch TSMIER2 Transfer to System Memory Interrupt Enable Reset 2 Section 23.19.1.22 110h TSMIES3 Transfer to System Memory Interrupt Enable Set 3 Section 23.19.1.22 114h TSMIER3 Transfer to System Memory Interrupt Enable Reset 3 Section 23.19.1.22 118h TSMIES4 Transfer to System Memory Interrupt Enable Set 4 Section 23.19.1.22 11Ch TSMIER4 Transfer to System Memory Interrupt Enable Reset 4 Section 23.19.1.22 120h TCCIES1 Transfer to Communication Controller Interrupt Enable Set 1 Section 23.19.1.23 124h TCCIER1 Transfer to Communication Controller Interrupt Enable Reset 1 Section 23.19.1.23 128h TCCIES2 Transfer to Communication Controller Interrupt Enable Set 2 Section 23.19.1.23 12Ch TCCIER2 Transfer to Communication Controller Interrupt Enable Reset 2 Section 23.19.1.23 130h TCCIES3 Transfer to Communication Controller Interrupt Enable Set 3 Section 23.19.1.23 134h TCCIER3 Transfer to Communication Controller Interrupt Enable Reset 3 Section 23.19.1.23 138h TCCIES4 Transfer to Communication Controller Interrupt Enable Set 4 Section 23.19.1.23 13Ch TCCIER4 Transfer to Communication Controller Interrupt Enable Reset 4 Section 23.19.1.23 140h-1FCh Reserved Reserved TCR Transfer Configuration RAM Section 23.19.1.24 TCR Parity TCR Parity Test Mode Section 23.19.1.25 0-1FCh 200h-3FCh SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1109 FlexRay Module Registers www.ti.com 23.19.1.1 Global Static Number 0 (GSN0) This register contains a constant to check correctness of data transfers. Figure 23-30. Global Static Number 0 (GSN0) [offset_TU = 00h] 31 16 Data_A R-0x5432 15 0 Data_B R-0xABCD LEGEND: R = Read only; -n = value after reset Table 23-18. Global Static Number 0 (GSN0) Field Descriptions Bit Field Value Description 31-16 Data_A 0-FFFFh Data_A 15-0 Data_B 0-FFFFh Complement of Data_A 23.19.1.2 Global Static Number 1 (GSN1) This register contains a constant to check correctness of data transfers. Figure 23-31. Global Static Number 1 (GSN1) [offset_TU = 04h] 31 16 Data_C R-0xABCD 15 0 Data_D R-0x5432 LEGEND: R = Read only; -n = value after reset Table 23-19. Global Static Number 1 (GSN1) Field Descriptions Bit Field Value Description 31-16 Data_C 0-FFFFh Data_C 15-0 Data_D 0-FFFFh Complement of Data_C 1110 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.1.3 Global Control Set/Reset (GCS/GCR) The GCx Registers reflects the configuration mode and allows to configure the basic Transfer Unit behavior. The GCx registers consist of a set register (GCS) and a reset register (GCR). Bits are set by writing 1 to GCS and reset by writing 1 to GCR. Writing a 0 has no effect. Reading from both addresses will result in the same value. Figure 23-32. Global Control Set (GCS) [offset_TU = 10h] 31 30 ENDVBM ENDVBS 29 ENDR 28 27 ENDH 26 25 ENDP R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0 23 22 21 20 Reserved PRIO PEFT PEL R-0 R/W1S-0 R/W1S-0 R/W1S-5h 24 19 16 15 14 13 12 Reserved CETESM CTTCC CTTSM Reserved ETSM R-0 R/W1S-0 R/W1S-0 R/W1S-0 R-0 R/W1S-0 7 6 11 9 3 2 8 5 4 1 0 Reserved SILE EILE Reserved TUH TUE R-0 R/W1S-0 R/W1S-0 R-0 R/W1S-0 R/W1S-0 LEGEND: R/W = Read/Write; R = Read only; W1S = Write 1 to set (writing a 0 has no effect); -n = value after reset NOTE: For Global Control Reset (GCR) bit descriptions, see Table 23-20. Figure 23-33. Global Control Reset (GCR) [offset_TU = 14h] 31 30 29 28 27 26 25 ENDVBM ENDVBS ENDR ENDH ENDP R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0 R/W1S-0 23 22 21 20 Reserved PRIO PEFT PEL R-0 R/W1S-0 R/W1S-0 R/W1S-5h 24 19 16 15 14 13 12 Reserved CETESM CTTCC CTTSM 11 Reserved 9 ETSM R-0 R/W1S-0 R/W1S-0 R/W1S-0 R-0 R/W1S-0 7 6 5 4 3 2 8 1 0 Reserved SILE EILE Reserved TUH TUE R-0 R/W1S-0 R/W1S-0 R-0 R/W1S-0 R/W1S-0 LEGEND: R/W = Read/Write; R = Read only; W1S = Write 1 to set (writing a 0 has no effect); -n = value after reset SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1111 FlexRay Module Registers www.ti.com Table 23-20. Global Control Set/Reset (GCS/GCR) Field Descriptions Bit Field 31 ENDVBM 30 29-28 Value Description Endianness Correction on VBusp Master 0 Endianness correction switched off (Endianness is default: Little Endianness equal to Big Endian word invariant (ARM:BE-32), same as all other peripherals) (Example 32 Bit Word = ABCD). 1 Endianness correction switched on (E-Ray Register, Header and Payload Endianness is according the configuration of bits ENDR0/1 ENDH0/1, ENDP0/1). ENDVBS Endianness correction on VBusp Slave 0 Endianness correction switched off (Endianness is default: Little Endianness equal to Big Endian word invariant (ARM:BE-32), same as all other peripherals) Example 32 Bit Word = ABCD. 1 Endianness correction switched on (E-Ray Register, Header and Payload Endianness is according the configuration of bits ENDR0/1, ENDH0/1, ENDP0/1). ENDRx Endianness Correction for No (header or payload) Data Sink Access Byte-order control of CPU access to E-Ray register, Transfer Unit register and Transfer Unit ram data. Data transferred between CPU and data sink will be corrected. 27-26 25-24 23-22 21 20 19-16 0 Remapped to ABCDh. 1h Remapped to BADCh. 2h Remapped to CDABh. 3h Remapped to DCBAh. ENDHx Endianness Correction for Header 0 Remapped to ABCDh. 1h Remapped to BADCh. 2h Remapped to CDABh. 3h Remapped to DCBAh. ENDPx Reserved Endianness Correction for Payload 0 Remapped to ABCDh. 1h Remapped to BADCh. 2h Remapped to CDABh. 3h Remapped to DCBAh. 0 Reads return 0. Writes have no effect. PRIO Transfer Priority 0 TTSM gets higher priority than TTCC. 1 TTCC gets higher priority than TTSM. PEFT Parity for Test 0 Do not use parity test feature. TCRP not readable and writable. 1 Use test feature for testing parity mechanism. TCRP is readable and writable. PEL Parity Lock 5h Others Parity protection for TCR is switched off. Parity protection remains activated for message RAM, transient buffer RAMs, input buffer RAMs and output buffer RAMs. Parity protection for TCR is switched on. Parity protection is activated for message RAM, transient buffer RAMs, input buffer RAMs and output buffer RAMs. Note: For TCR, PEL enables/disables the parity error interrupt generation. While the parity feature is disabled the parity generation is still ongoing and the error indication by the parity interrupt flag (PE) in the Transfer Error Interrupt Flag register (TEIF) remains active. Only the parity interrupt generation gets disabled. 15 Reserved 14 CETESM 0 Reads return 0. Writes have no effect. Clear ETESM Register Clear all bits of Enable Transfer on Event to System Memory register. 13 1112 0 Do not clear the register. 1 Clear the register when bit is set from 0 to 1. CTTCC Clear TTCC Register 0 Do not clear the register. 1 Clear the register when bit is set from 0 to 1. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 23-20. Global Control Set/Reset (GCS/GCR) Field Descriptions (continued) Bit Field 12 CTTSM 11-9 8 Value Reserved Description Clear TTSM Register 0 Do not clear the register. 1 Clear the register when bit is set from 0 to 1. 0 Reads return 0. Writes have no effect. ETSM Enable Transfer Status Mirrored Mirror technique must be adjustable. 7-6 5 Reserved 0 Disable mirror function for TSCB, LTBCC, LTBSM, TSMO1-4, TCCO1-4, and TOOFF. 1 Enable mirror function for TSCB, LTBCC, LTBSM, TSMO1-4, TCCO1-4, and TOOFF. 0 Reads return 0. Writes have no effect. SILE Status Interrupt Line Enable Enable/Disable status line interrupt. 4 0 TU_Int0 is disabled. 1 TU_Int0 is enabled. EILE Error Interrupt Line Enable Enable/Disable error interrupt line. 3-2 1 Reserved 0 TU_Int1 is disabled. 1 TU_Int1 is enabled. 0 Reads return 0. Writes have no effect. TUH Transfer Unit Halted When halted, the Transfer Unit State Machine finishes the ongoing VBUSM access before it stops working. After deassertion, the Transfer Unit State Machine continues at the point it was halted before. No reconfiguration is required. 0 Transfer Unit is not halted. 1 Transfer Unit is halted. Note: If the Transfer Unit State Machine halts, all mirroring registers contained the last transfer not the current transfer information. 0 TUE Transfer Unit Enabled Enable/Disable transfer unit. 0 Transfer Unit is disabled, reset Transfer Unit State Machine, completion of the current VBUS transfer cycle but data could be corrupt. 1 Transfer Unit is enabled. Note: Before switching on the Transfer Unit, the registers must be set up. After re-enabling of the Transfer Unit State Machine the contents of the module registers and the TCR is still valid (assuming it was continuously powered). SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1113 FlexRay Module Registers www.ti.com 23.19.1.4 Transfer Status Current Buffer (TSCB) The Transfer Status Current Buffer displays the current buffer in progress and indicates if the Transfer Unit State Machine is idle and is halt. The IDLE flag is cleared by writing a 1 to it. Figure 23-34. Transfer Status Current Buffer (TSCB) [offset_TU = 18h] 31 21 15 13 12 20 16 Reserved TSMS R-0 R-0 8 7 Reserved STUH 11 Reserved 9 IDLE Rsvd 6 BN 0 R-0 R-0 R-0 R/W1 C-1 R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear (writing 0 has no effect); -n = value after reset Table 23-21. Transfer Status Current Buffer (TSCB) Field Descriptions Bit Field 31-21 Reserved 20-16 TSMS Value 0 Description Reads return 0. Writes have no effect. Transfer State Machine Status Reflects the current status of the transfer state machine for debug purpose (only available in debug mode in combination with a debugger). In Normal Operation Mode the value of TSMS is always read as 0. 1h IDLE state Transfer Trigger to System Memory: 2h Start state (TTSM_START) 3h Output Buffer Command Mask access state (TTSM_OBCM) 4h Request state (TTSM_REQ) 5h View state (TTSM_VIEW) 6h Check state (TTSM_CHECK) 7h Read Header Section access state (TTSM_RDHS) 8h Read Data Section access state (TTSM_RDDS) Transfer Trigger to Communication Controller: 9h Start state (TTCC_START) Ah Busy state (TTCC_IBUSY) Bh Check state (TTCC_CHECK) Ch Write Header Section access state (TTCC_WRHS) Dh Payload Read state (TTCC_PLC_READ) Eh Payload Calculation state (TTCC_PLC_CALC) Fh Write Data Section access state (TTCC_WRDS) 10h Input Buffer Command Mask access state (TTCC_IBCM) 11h Input Buffer Command Request access state (TTCC_IBCR) 12h Mirror state (TTCC_MIRROR) 13h End state (TTSM_END) 14h-1Eh 1Fh 15-13 12 11-9 1114 Reserved 0 STUH Reserved Reserved Undefined state Reads return 0. Writes have no effect. Status of Transfer Unit State Machine for Halt Detection 0 Not in HALT status. 1 In HALT status. 0 Reads return 0. Writes have no effect. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 23-21. Transfer Status Current Buffer (TSCB) Field Descriptions (continued) Bit Field 8 IDLE Value Description Detects Transfer State Machine State IDLE Will be set if the transfer unit state machine is in IDLE state and ready to start the next transfer, but nothing is requested. 7 6-0 Reserved BN 0 IDLE state is not reached since last clear. 1 IDLE state is reached. 0 Reads return 0. Writes have no effect. 0-7Fh Buffer Number 7-bit value of buffer number, which is currently in transfer. If state machine enters IDLE mode, the last transferred buffer number is shown. 23.19.1.5 Last Transferred Buffer to Communication Controller (LTBCC) Shows the number of the last completely transferred message buffer from system memory to the communication controller. Figure 23-35. Last Transferred Buffer to Communication Controller (LTBCC) [offset_TU = 1Ch] 31 7 6 0 Reserved BN R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 23-22. Last Transferred Buffer to Communication Controller (LTBCC) Field Descriptions Bit Field Value 31-7 Reserved 6-0 BN 0 0-7Fh Description Reads return 0. Writes have no effect. Buffer number. 7-bit value of last completely transferred message buffer from system memory to the communication controller. 23.19.1.6 Last Transferred Buffer to System Memory (LTBSM) Shows the number of the last completely transferred message buffer from communication controller to the system memory. Figure 23-36. Last Transferred Buffer to System Memory (LTBSM) [offset_TU = 20h] 31 7 6 0 Reserved BN R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 23-23. Last Transferred Buffer to System Memory (LTBSM) Field Descriptions Bit Field 31-7 Reserved 6-0 BN Value 0 0-7Fh Description Reads return 0. Writes have no effect. Buffer number. 7-bit value of last completely transferred message buffer from system memory to the communication controller to the system memory. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1115 FlexRay Module Registers www.ti.com 23.19.1.7 Transfer Base Address (TBA) The Transfer Base Address register holds a 32-bit aligned 32-bit base-pointer, which defines the base address for the data to be transferred. NOTE: A write to this register also modifies the NTBA register. Figure 23-37. Transfer Base Address (TBA) [offset_TU = 24h] 31 16 TBA R/W-0 15 0 TBA R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 23-24. Transfer Base Address (TBA) Field Descriptions Bit Field Value 31-0 TBA 0-FFFF FFFFh Description Transfer Base Address. 32-bit base pointer, 2 LSBs are not significant (32-bit accesses only) and will always be 0. 23.19.1.8 Next Transfer Base Address (NTBA) The Next Transfer Base Address holds a 32-bit aligned 32-bit base-pointer to be loaded into TBA during next cycle start. NOTE: A write on TBA register also modifies the NTBA register. Figure 23-38. Next Transfer Base Address (NTBA) [offset_TU = 28h] 31 16 NTBA R/W-0 15 0 NTBA R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 23-25. Next Transfer Base Address (NTBA) Field Descriptions Bit Field Value 31-0 NTBA 0-FFFF FFFFh 1116 Description Next Transfer Base Address. 32-bit base pointer, 2 LSBs are not significant (32-bit accesses only) and will always be 0. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.1.9 Base Address of Mirrored Status (BAMS) The Base Address of Mirrored Status holds a 32-bit aligned 32-bit base-pointer to be use for mirror transactions. Further details about the transfer mirror mechanism can be found in Section 23.5.1.7. Figure 23-39. Base Address of Mirrored Status (BAMS) [offset_TU = 2Ch] 31 16 BAMS R/W-0 15 0 BAMS R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 23-26. Base Address of Mirrored Status (BAMS) Field Descriptions Bit Field Value 31-0 BAMS 0-FFFF FFFFh Description Base Address of Mirrored Status. 32-bit base pointer, 2 LSBs are not significant (32-bit accesses only) and will always be 0. 23.19.1.10 Start Address of Memory Protection (SAMP) The Start Address of Memory Protection hold a 32bit address. Figure 23-40. Start Address of Memory Protection (SAMP) [offset_TU = 30h] 31 16 SAMP R/W-0 15 0 SAMP R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 23-27. Start Address of Memory Protection (SAMP) Field Descriptions Bit Field Value 31-0 SAMP 0-FFFF FFFFh Description Start Address Memory Protection. Start address of the memory area, which allows read and write accesses for the Transfer Unit State Machine. 32-bit base pointer, 2 LSBs are not significant (32-bit accesses only) and will always be 0. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1117 FlexRay Module Registers www.ti.com 23.19.1.11 End Address of Memory Protection (EAMP) The End Address of Memory Protection hold a 32bit address. Figure 23-41. End Address of Memory Protection (EAMP) [offset_TU = 34h] 31 16 EAMP R/W-0 15 0 EAMP R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 23-28. End Address of Memory Protection (EAMP) Field Descriptions Bit Field Value 31-0 EAMP 0-FFFF FFFFh Description End Address Memory Protection. End address of the memory area, which allows read and write accesses for the Transfer Unit State Machine. 32-bit address, 2 LSBs are not significant (32-bit accesses only) and will always be 0. 1118 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.1.12 Transfer to System Memory Occurred (TSMO[1-4]) The Transfer to System Memory Occurred register reflects the message buffer transfer status for a transfer transaction to the system memory. Four 32-bit registers reflect all possible 128 message buffers. NOTE: Writing 1 will clear a bit. Writing 0 will leave a bit unchanged. Figure 23-42. Transfer to System Memory Occurred 1 (TSMO1) [offset_TU = 40h] 31 16 TSMO1[31-16] R/W1C-0 15 0 TSMO1[15-0] R/W1C-0 LEGEND: R/W = Read/Write; W1C = Write 1 to clear (writing 0 has no effect); -n = value after reset Figure 23-43. Transfer to System Memory Occurred 2 (TSMO2) [offset_TU = 44h] 31 16 TSMO2[63-48] R/W1C-0 15 0 TSMO2[47-32] R/W1C-0 LEGEND: R/W = Read/Write; W1C = Write 1 to clear (writing 0 has no effect); -n = value after reset Figure 23-44. Transfer to System Memory Occurred 3 (TSMO3) [offset_TU = 48h] 31 16 TSMO3[95-80] R/W1C-0 15 0 TSMO3[79-64] R/W1C-0 LEGEND: R/W = Read/Write; W1C = Write 1 to clear (writing 0 has no effect); -n = value after reset Figure 23-45. Transfer to System Memory Occurred 4 (TSMO4) [offset_TU = 4Ch] 31 16 TSMO4[127-112] R/W1C-0 15 0 TSMO4[111-96] R/W1C-0 LEGEND: R/W = Read/Write; W1C = Write 1 to clear (writing 0 has no effect); -n = value after reset SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1119 FlexRay Module Registers www.ti.com Table 23-29. Transfer to System Memory Occurred (TSMOn) Field Descriptions Bit 31-0 Field Value TSMO(1-4)[n] Description Transfer to System Memory Occurred Register The register bits correspond to message buffers 0 to 127. Each bit of the register reflects a finished message buffer transfer to the system memory. 1120 0 No transfer occurred. 1 Transfer occurred. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.1.13 Transfer to Communication Controller Occurred (TCCO[1-4]) The Transfer to Communication Controller Occurred reflects the message buffer transfer status for a VBUSP master transfer transaction from the system memory. Four 32-bit registers reflect all possible 128 message buffers. NOTE: Writing 1 will clear a bit. Writing 0 will leave a bit unchanged. Figure 23-46. Transfer to Communication Controller Occurred 1 (TCCO1) [offset_TU = 50h] 31 16 TCCO1[31-16] R/W1C-0 15 0 TCCO1[15-0] R/W1C-0 LEGEND: R/W = Read/Write; W1C = Write 1 to clear (writing 0 has no effect); -n = value after reset Figure 23-47. Transfer to Communication Controller Occurred 2 (TCCO2) [offset_TU = 54h] 31 16 TCCO2[63-48] R/W1C-0 15 0 TCCO2[47-32] R/W1C-0 LEGEND: R/W = Read/Write; W1C = Write 1 to clear (writing 0 has no effect); -n = value after reset Figure 23-48. Transfer to Communication Controller Occurred 3 (TCCO3) [offset_TU = 58h] 31 16 TCCO3[95-80] R/W1C-0 15 0 TCCO3[79-64] R/W1C-0 LEGEND: R/W = Read/Write; W1C = Write 1 to clear (writing 0 has no effect); -n = value after reset Figure 23-49. Transfer to Communication Controller Occurred 4 (TCCO4) [offset_TU = 5Ch] 31 16 TCCO4[127-112] R/W1C-0 15 0 TCCO4[111-96] R/W1C-0 LEGEND: R/W = Read/Write; W1C = Write 1 to clear (writing 0 has no effect); -n = value after reset SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1121 FlexRay Module Registers www.ti.com Table 23-30. Transfer to Communication Controller Occurred (TCCOn) Field Descriptions Bit 31-0 Field Value TCCO(1-4)[n] Description Transfer to Communication Controller Occurred Register The register bits correspond to message buffers 0 to 127. Each bit of the register reflects a finished message buffer transfer from the system memory. 1122 0 No transfer occurred. 1 Transfer occurred. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.1.14 Transfer Occurred Offset (TOOFF) The Transfer Occurred Offset register contains the offset vector to the highest prior pending transfer occurred interrupt and the transfer direction. After a read access, the transfer occurred flag is cleared and the register contents are updated automatically. Figure 23-50. Transfer Occurred Offset (TOOFF) [offset_TU = 60h] 31 16 Reserved R-0 15 9 8 7 0 Reserved TDIR OFF R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 23-31. Transfer Occurred Offset (TOOFF) Field Descriptions Bit 31-9 8 7-0 Field Value Reserved 0 TDIR Description Reads return 0. Writes have no effect. Transfer Direction. In case the same interrupt occurs for communication controller and Transfer Unit State Machine transfers the PRIO bit in the Global Control register decides about the higher priority. 0 A transfer to System Memory occurred. 1 A transfer to the Communication Controller occurred. OFF Offset Vector 0 Offset is not valid (no transfer occurred, interrupt is pending). 1h Interrupt is pending for buffer 0. 2h Interrupt is pending for buffer 1. 3h Interrupt is pending for buffer 2. : 80h 81h-FFh : Interrupt is pending for buffer 127. Reserved SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1123 FlexRay Module Registers www.ti.com 23.19.1.15 Parity Error Address (PEADR) After a parity error in the Transfer Configuration RAM occurred, the affected address is stored in this not resettable register. The contents of the Parity Error Address register as well as the PE bit in the Transfer Error Interrupt Flag (TEIF) register is cleared automatically when reading the Parity Error Address register. NOTE: A parity error can only be indicated by the PE bit of TEIF register when the PEADR register is cleared. Since the contents of PEADR are undefined after reset, it is recommended to clear the register by reading it. Figure 23-51. Parity Error Address (PEADR) [offset_TU = 70h] 31 9 8 0 Reserved ADR R-0 RC-U LEGEND: R = Read only; RC = Clear on read; U = Undefined; -n = value after reset Table 23-32. Parity Error Address (PEADR) Field Descriptions Bit Field 31-9 Reserved 8-0 ADR Value 0 Description Reads return 0. Writes have no effect. 0-1FFh Address of failing TCR location. ADR(8-2) is the TCR word address were the parity error occurred. ADR(1-0) can be used to find the failing byte in the TCR word the parity error occurred. Table 23-33. Coding of Parity Error Address Parity Error in Byte 2 Parity Error in Byte 1 Parity Error in Byte 0 (LSB) ADR1 ADR0 - - 1 0 1 NOTE: 1124 - 1 0 1 0 1 0 0 1 1 0 0 0 0 0 No Byte 3 is defined in TCR. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.1.16 Transfer Error Interrupt Flag (TEIF) The Transfer Error Interrupt Flag register includes the Transfer Unit error flags. The bits in the TEIF are cleared by writing a 1. NOTE: Memory Protection Violation (MPV) and Parity Error (PE) interrupts are nonmaskable and cannot be disabled. Therefore, the bits MPV and PE are not part of the Transfer Error Interrupt Enable Set/Reset (TEIRES/TEIRER) registers. Figure 23-52. Transfer Error Interrupt Flag (TEIF) [offset_TU = 74h] 31 18 15 11 17 16 Reserved MPV PE R-0 R/W1C-0 R/W1C-0 1 0 Reserved 10 RSTAT 8 Rsvd 7 6 WSTAT 4 3 Reserved 2 TNR FAC R-0 R/W1C-0 R-0 R/W1C-0 R-0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear (writing 0 has no effect); -n = value after reset Table 23-34. Transfer Error Interrupt Flag (TEIF) Field Descriptions Bit 31-18 17 16 Field Value Reserved 0 MPV Reserved 10-8 RSTAT Reads return 0. Writes have no effect. Memory Protection Violation. 0 No MPV occurred. 1 MPV occurred. PE 15-11 Description Parity Error. The flag signals a parity error to the host. The flag is set when a parity error in TCR is detected. 0 No parity error occurred. 1 Parity error occurred. 0 Reads return 0. Writes have no effect. Status of VBUS on read transfers. 0 Success. 1h Addressing error. 2h Protection error. 3h Timeout error. 4h Data error. 5h Unsupported addressing mode error. 6h Reserved 7h Exclusive read failure. Note: Any value other than 000 indicates a VBUS read error. The information of the specific VBUS fault is for debug reasons only and is not relevant for normal usage. 7 Reserved 0 Reads return 0. Writes have no effect. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1125 FlexRay Module Registers www.ti.com Table 23-34. Transfer Error Interrupt Flag (TEIF) Field Descriptions (continued) Bit Field 6-4 WSTAT Value Description Status of VBUS on write transfers. 0 Success. 1h Addressing error. 2h Protection error. 3h Timeout error. 4h Reserved. 5h Unsupported addressing mode error. 6h Reserved. 7h Exclusive write failure. Note: Any value other than 000 indicates a VBUS read error. The information of the specific VBUS fault is for debug reasons only and is not relevant for normal usage. 3-2 1 0 1126 Reserved 0 TNR Reads return 0. Writes have no effect. Transfer Not Ready. 0 Transfer started and NTBA is loaded to TBA. 1 Transfer is not ready on communication cycle start and therefore NTBA is not loaded to TBA. FAC Forbidden Access. 0 No forbidden access occurred. 1 A forbidden CPU access to IBF or OBF occurred when the Transfer Unit State Machine is enabled. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.1.17 Transfer Error Interrupt Enable Set/Reset (TEIRES/TEIRER) The Transfer Error Interrupt Enable Set controls the interrupt activation of interrupt line TU_Int1. An interrupt is generated if both the interrupt flag in TEIF and the corresponding bit in TEIRES are set. Exceptions are the memory protection violation (MPV) and the parity (PE) error, which are related to nonmaskable interrupts and therefore are not part of the TEIRES/TEIRER registers. Those errors have private error lines (TU_MPV_err and TU_UCT_err), which can be connected to the Vectored Interrupt Module (VIM) and/or the Error Signaling Module (ESM). Please refer to the device-specific data manual for more details about the signal hookup. A Transfer Error Interrupt is enabled by writing 1 to TEIRES register and disabled by writing 1 to TIERER register. Writing 0 has no effect. Reading from both addresses will result in the same value. Figure 23-53. Transfer Error Interrupt Enable Set (TEIRES) [offset_TU = 78h] 31 16 Reserved R-0 15 1 0 Reserved 11 10 RSTATE 8 Rsvd 7 6 WSTATE 4 3 Reserved 2 TNRE FACE R-0 R/S-0 R-0 R/S-0 R-0 R/S-0 R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 23-35. Transfer Error Interrupt Enable Set (TEIRES) Field Descriptions Bit Field 31-11 Reserved 10-8 RSTATE Value 0 Description Reads return 0. Writes have no effect. Read Error Interrupt Generation (interrupt generation on VBUS read transfer errors). 0 Interrupt generation on VBUS read transfer error is disabled. 7h Interrupt generation on VBUS read transfer error is enabled. Note: Any value different from 7h does not assure the interrupt error generation of all possible VBUS read errors. 7 Reserved 6-4 WSTATE 0 Reads return 0. Writes have no effect. Write Error Interrupt Generation (interrupt generation on VBUS write transfer errors). 0 Interrupt generation on VBUS write transfer error is disabled. 7h Interrupt generation on VBUS write transfer error is enabled. Note: Any value different from 7h does not assure the interrupt error generation of all possible VBUS read errors. 3-2 1 0 Reserved 0 TNRE Reads return 0. Writes have no effect. Transfer Not Ready Enable. 0 TNR interrupt is disabled. 1 TNR interrupt is enabled. FACE Forbidden Access Enable. 0 FAC interrupt is disabled. 1 FAC interrupt is enabled. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1127 FlexRay Module Registers www.ti.com Figure 23-54. Transfer Error Interrupt Enable Reset (TEIRER) [offset_TU = 7Ch] 31 16 Reserved R-0 15 1 0 Reserved 11 10 RSTATE 8 Rsvd 7 6 WSTATE 4 3 Reserved 2 TNRE FACE R-0 R/C-0 R-0 R/C-0 R-0 R/C-0 R/C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; S = Set; -n = value after reset Table 23-36. Transfer Error Interrupt Enable Reset (TEIRER) Field Descriptions Bit Field 31-11 Reserved 10-8 RSTATE Value 0 Description Reads return 0. Writes have no effect. Read Error Interrupt Generation (interrupt generation on VBUS read transfer errors). 0 Interrupt generation on VBUS read transfer error is disabled. 7h Interrupt generation on VBUS read transfer error is enabled. Note: Any value different from 7h does not assure the interrupt error generation of all possible VBUS read errors. 7 Reserved 6-4 WSTATE 0 Reads return 0. Writes have no effect. Write Error Interrupt Generation (interrupt generation on VBUS write transfer errors). 0 Interrupt generation on VBUS write transfer error is disabled. 7h Interrupt generation on VBUS write transfer error is enabled. Note: Any value different from 7h does not assure the interrupt error generation of all possible VBUS read errors. 3-2 1 0 1128 Reserved 0 TNRE Reads return 0. Writes have no effect. Transfer Not Ready Enable. 0 TNR interrupt is disabled. 1 TNR interrupt is enabled. FACE Forbidden Access Enable. 0 FAC interrupt is disabled. 1 FAC interrupt is enabled. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.1.18 Trigger Transfer to System Memory Set/Reset (TTSMS[1-4]/TTSMR[1-4]) The Trigger Transfer to System Memory register selects the current message buffer for a Transfer Unit State Machine transfer transaction to system memory. Four 32-bit registers reflect all possible 128 message buffers. The bits are set by writing 1 to TTSMS[1-4] and reset by writing 1 to TTSMR[1-4] or after the transfer occurred. Writing 0 has no effect. Reading from both addresses will result in the same value. Figure 23-55. Trigger Transfer to System Memory Set 1 (TTSMS1) [offset_TU = 80h] 31 16 TTSMS1[31-16] R/S-0 15 0 TTSMS1[15-0] R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 23-37. Trigger Transfer to System Memory Set 1 (TTSMS1) Field Descriptions Bit Field 31-0 Value TTSMS1[n] Description Trigger Transfer to System Memory Set 1. The register bits 0 to 31 correspond to message buffers 0 to 31. Each bit of the register controls the message buffer transfer to the system memory in the following manner (note that only the least-significant bit of all four combined TTSM registers will be currently scheduled for transmission). 0 No transfer request. 1 Transfer is based on address defined in TBA. Figure 23-56. Trigger Transfer to System Memory Reset 1 (TTSMR1) [offset_TU = 84h] 31 16 TTSMR1 R/C-0 15 0 TTSMR1 R/C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 23-38. Trigger Transfer to System Memory Reset 1 (TTSMR1) Field Descriptions Bit 31-0 Field TTSMR1 Value 0-FFFF FFFFh Description Trigger Transfer to System Memory Reset 1. The TTSMR1 register shows the identical values to TTSMS1 if read. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1129 FlexRay Module Registers www.ti.com Figure 23-57. Trigger Transfer to System Memory Set 2 (TTSMS2) [offset_TU = 88h] 31 16 TTSMS2[63-48] R/S-0 15 0 TTSMS2[47-32] R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 23-39. Trigger Transfer to System Memory Set 2 (TTSMS2) Field Descriptions Bit Field 31-0 Value TTSMS2[n] Description Trigger Transfer to System Memory Set 2. The register bits 0 to 31 correspond to message buffers 32 to 63. Each bit of the register controls the message buffer transfer to the system memory in the following manner (note that only the least-significant bit of all four combined TTSM registers will be currently scheduled for transmission). 0 No transfer request. 1 Transfer is based on address defined in TBA. Figure 23-58. Trigger Transfer to System Memory Reset 2 (TTSMR2) [offset_TU = 8Ch] 31 16 TTSMR2 R/C-0 15 0 TTSMR2 R/C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 23-40. Trigger Transfer to System Memory Reset 2 (TTSMR2) Field Descriptions Bit 31-0 1130 Field TTSMR2 Value 0-FFFF FFFFh Description Trigger Transfer to System Memory Reset 2. The TTSMR2 register shows the identical values to TTSMS2 if read. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Figure 23-59. Trigger Transfer to System Memory Set 3 (TTSMS3) [offset_TU = 90h] 31 16 TTSMS3[95-80] R/S-0 15 0 TTSMS3[79-64] R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 23-41. Trigger Transfer to System Memory Set 3 (TTSMS3) Field Descriptions Bit Field 31-0 Value TTSMS3[n] Description Trigger Transfer to System Memory Set 3. The register bits 0 to 31 correspond to message buffers 64 to 95. Each bit of the register controls the message buffer transfer to the system memory in the following manner (note that only the least-significant bit of all four combined TTSM registers will be currently scheduled for transmission). 0 No transfer request. 1 Transfer is based on address defined in TBA. Figure 23-60. Trigger Transfer to System Memory Reset 3 (TTSMR3) [offset_TU = 94h] 31 16 TTSMR3 R/C-0 15 0 TTSMR3 R/C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 23-42. Trigger Transfer to System Memory Reset 3 (TTSMR3) Field Descriptions Bit 31-0 Field TTSMR3 Value 0-FFFF FFFFh Description Trigger Transfer to System Memory Reset 3. The TTSMR3 register shows the identical values to TTSMS3 if read. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1131 FlexRay Module Registers www.ti.com Figure 23-61. Trigger Transfer to System Memory Set 4 (TTSMS4) [offset_TU = 98h] 31 16 TTSMS4[127-112] R/S-0 15 0 TTSMS4[111-96] R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 23-43. Trigger Transfer to System Memory Set 4 (TTSMS4) Field Descriptions Bit Field 31-0 Value TTSMS4[n] Description Trigger Transfer to System Memory Set 4. The register bits 0 to 31 correspond to message buffers 96 to 127. Each bit of the register controls the message buffer transfer to the system memory in the following manner (note that only the least-significant bit of all four combined TTSM registers will be currently scheduled for transmission). 0 No transfer request. 1 Transfer is based on address defined in TBA. Figure 23-62. Trigger Transfer to System Memory Reset 4 (TTSMR4) [offset_TU = 9Ch] 31 16 TTSMR4 R/C-0 15 0 TTSMR4 R/C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 23-44. Trigger Transfer to System Memory Reset 4 (TTSMR4) Field Descriptions Bit 31-0 1132 Field TTSMR4 Value 0-FFFF FFFFh Description Trigger Transfer to System Memory Reset 4. The TTSMR4 register shows the identical values to TTSMS4 if read. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.1.19 Trigger Transfer to Communication Controller Set/Reset (TTCCS[1-4]/TTCCR[1-4]) The Trigger Transfer to Communication Controller registers select the current message buffer for a Transfer Unit State Machine transfer transaction from system memory. Four 32-bit registers reflect all possible 128 message buffers. The bits are set by writing 1 to TTCCS[1-4] and reset by writing 1 to TTCCR[1-4] or after the transfer occurred. Writing 0 has no effect. Reading from both addresses will result in the same value. Figure 23-63. Trigger Transfer to Communication Controller Set 1 (TTCCS1) [offset_TU = A0h] 31 16 TTCCS1[31-16] R/S-0 15 0 TTCCS1[15-0] R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 23-45. Trigger Transfer to Communication Controller Set 1 (TTCCS1) Field Descriptions Bit Field 31-0 Value TTCCS1[n] Description Trigger Transfer to Communication Controller Set 1. The register bits 0 to 31 correspond to message buffers 0 to 31. Each bit of the register controls the message buffer transfer to the communication controller in the following manner. 0 No transfer request. 1 Transfer is based on address defined in TBA. Figure 23-64. Trigger Transfer to Communication Controller Reset 1 (TTCCR1) [offset_TU = A4h] 31 16 TTCCR1 R/C-0 15 0 TTCCR1 R/C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 23-46. Trigger Transfer to Communication Controller Reset 1 (TTCCR1) Field Descriptions Bit 31-0 Field TTCCR1 Value 0-FFFF FFFFh Description Trigger Transfer to Communication Controller Reset 1The TTCCR1 register shows the identical values to TTCCS1 if read. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1133 FlexRay Module Registers www.ti.com Figure 23-65. Trigger Transfer to Communication Controller Set 2 (TTCCS2) [offset_TU = A8h] 31 16 TTCCS2[63-48] R/S-0 15 0 TTCCS2[47-32] R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 23-47. Trigger Transfer to Communication Controller Set 2 (TTCCS2) Field Descriptions Bit Field 31-0 Value TTCCS2[n] Description Trigger Transfer to Communication Controller Set 2. The register bits 0 to 31 correspond to message buffers 32 to 63. Each bit of the register controls the message buffer transfer to the communication controller in the following manner. 0 No transfer request. 1 Transfer is based on address defined in TBA. Figure 23-66. Trigger Transfer to Communication Controller Reset 2 (TTCCR2) [offset_TU = ACh] 31 16 TTCCR2 R/C-0 15 0 TTCCR2 R/C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 23-48. Trigger Transfer to Communication Controller Reset 2 (TTCCR2) Field Descriptions Bit 31-0 1134 Field TTCCR2 Value 0-FFFF FFFFh Description Trigger Transfer to Communication Controller Reset 2. The TTCCR2 register shows the identical values to TTCCS2 if read. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Figure 23-67. Trigger Transfer to Communication Controller Set 3 (TTCCS3) [offset_TU = B0h] 31 16 TTCCS3[95-80] R/S-0 15 0 TTCCS3[79-64] R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 23-49. Trigger Transfer to Communication Controller Set 3 (TTCCS3) Field Descriptions Bit Field 31-0 Value TTCCS3[n] Description Trigger Transfer to Communication Controller Set 3. The register bits 0 to 31 correspond to message buffers 64 to 95. Each bit of the register controls the message buffer transfer to the communication controller in the following manner. 0 No transfer request. 1 Transfer is based on address defined in TBA. Figure 23-68. Trigger Transfer to Communication Controller Reset 3 (TTCCR3) [offset_TU = B4h] 31 16 TTCCR3 R/C-0 15 0 TTCCR3 R/C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 23-50. Trigger Transfer to Communication Controller Reset 3 (TTCCR3) Field Descriptions Bit 31-0 Field TTCCR3 Value 0-FFFF FFFFh Description Trigger Transfer to Communication Controller Reset 3. The TTCCR3 register shows the identical values to TTCCS3 if read. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1135 FlexRay Module Registers www.ti.com Figure 23-69. Trigger Transfer to Communication Controller Set 4 (TTCCS4) [offset_TU = B8h] 31 16 TTCCS4[127-112] R/S-0 15 0 TTCCS4[111-96] R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 23-51. Trigger Transfer to Communication Controller Set 4 (TTCCS4) Field Descriptions Bit Field 31-0 Value TTCCS4[n] Description Trigger Transfer to Communication Controller Set 4. The register bits 0 to 31 correspond to message buffers 96 to 127. Each bit of the register controls the message buffer transfer to the communication controller in the following manner. 0 No transfer request. 1 Transfer is based on address defined in TBA. Figure 23-70. Trigger Transfer to Communication Controller Reset 4 (TTCCR4) [offset_TU = BCh] 31 16 TTCCR4 R/C-0 15 0 TTCCR4 R/C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 23-52. Trigger Transfer to Communication Controller Reset 4 (TTCCR4) Field Descriptions Bit 31-0 1136 Field TTCCR4 Value 0-FFFF FFFFh Description Trigger Transfer to Communication Controller Reset 4. The TTCCR4 register shows the identical values to TTCCS4 if read. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.1.20 Enable Transfer on Event to System Memory Set/Reset (ETESMS[1-4]/ETESMR[1-4]) The Enable Transfer on Event to System Memory Set registers enable a message buffer transfer to the system memory after a receive or transmit event. Four 32-bit registers reflect all possible 128 message buffers. The bits are set by writing 1 to ETESMS[1-4] and reset by writing 1 to ETESMR[1-4]. Writing 0 has no effect. Reading from both addresses will result in the same value. Figure 23-71. Enable Transfer on Event to System Memory Set 1 (ETESMS1) [offset_TU = C0h] 31 16 ETESMS1[31-16] R/S-0 15 0 ETESMS1[15-0] R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 23-53. Enable Transfer on Event to System Memory Set 1 (ETESMS1) Field Descriptions Bit Field 31-0 Value ETESMS1[n] Description Enable Transfer on Event to System Memory Set 1. The register bits 0 to 31 correspond to message buffers 0 to 31. Each bit of the register enables a message buffer transfer on event to the system memory. 0 Transfer on event is disabled. 1 Transfer on event is enabled. Figure 23-72. Enable Transfer on Event to System Memory Reset 1 (ETESMR1) [offset_TU = C4h] 31 16 ETESMR1 R/C-0 15 0 ETESMR1 R/C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 23-54. Enable Transfer on Event to System Memory Reset 1 (ETESMR1) Field Descriptions Bit 31-0 Field ETESMR1 Value 0-FFFF FFFFh Description Enable Transfer on Event to System Memory Reset 1. The ETESMR1 register shows the identical values to ETESMS1 if read. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1137 FlexRay Module Registers www.ti.com Figure 23-73. Enable Transfer on Event to System Memory Set 2 (ETESMS2) [offset_TU = C8h] 31 16 ETESMS2[63-48] R/S-0 15 0 ETESMS2[47-32] R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 23-55. Enable Transfer on Event to System Memory Set 2 (ETESMS2) Field Descriptions Bit Field 31-0 Value ETESMS2[n] Description Enable Transfer on Event to System Memory Set 2. The register bits 0 to 31 correspond to message buffers 32 to 63. Each bit of the register enables a message buffer transfer on event to the system memory. 0 Transfer on event is disabled. 1 Transfer on event is enabled. Figure 23-74. Enable Transfer on Event to System Memory Reset 2 (ETESMR2) [offset_TU = CCh] 31 16 ETESMR2 R/C-0 15 0 ETESMR2 R/C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 23-56. Enable Transfer on Event to System Memory Reset 2 (ETESMR2) Field Descriptions Bit 31-0 1138 Field ETESMR2 Value 0-FFFF FFFFh Description Enable Transfer on Event to System Memory Reset 2. The ETESMR2 register shows the identical values to ETESMS2 if read. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Figure 23-75. Enable Transfer on Event to System Memory Set 3 (ETESMS3) [offset_TU = D0h] 31 16 ETESMS3[95-80] R/S-0 15 0 ETESMS3[79-64] R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 23-57. Enable Transfer on Event to System Memory Set 3 (ETESMS3) Field Descriptions Bit Field 31-0 Value ETESMS3[n] Description Enable Transfer on Event to System Memory Set 3. The register bits 0 to 31 correspond to message buffers 64 to 95. Each bit of the register enables a message buffer transfer on event to the system memory. 0 Transfer on event is disabled. 1 Transfer on event is enabled. Figure 23-76. Enable Transfer on Event to System Memory Reset 3 (ETESMR3) [offset_TU = D4h] 31 16 ETESMR3 R/C-0 15 0 ETESMR3 R/C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 23-58. Enable Transfer on Event to System Memory Reset 3 (ETESMR3) Field Descriptions Bit 31-0 Field ETESMR3 Value 0-FFFF FFFFh Description Enable Transfer on Event to System Memory Reset 3. The ETESMR3 register shows the identical values to ETESMS3 if read. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1139 FlexRay Module Registers www.ti.com Figure 23-77. Enable Transfer on Event to System Memory Set 4 (ETESMS4) [offset_TU = D8h] 31 16 ETESMS4[127-112] R/S-0 15 0 ETESMS4[111-96] R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 23-59. Enable Transfer on Event to System Memory Set 4 (ETESMS4) Field Descriptions Bit Field 31-0 Value ETESMS4[n] Description Enable Transfer on Event to System Memory Set 4. The register bits 0 to 31 correspond to message buffers 96 to 127. Each bit of the register enables a message buffer transfer on event to the system memory. 0 Transfer on event is disabled. 1 Transfer on event is enabled. Figure 23-78. Enable Transfer on Event to System Memory Reset 4 (ETESMR4) [offset_TU = DCh] 31 16 ETESMR4 R/C-0 15 0 ETESMR4 R/C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 23-60. Enable Transfer on Event to System Memory Reset 4 (ETESMR4) Field Descriptions Bit 31-0 1140 Field ETESMR4 Value 0-FFFF FFFFh Description Enable Transfer on Event to System Memory Reset 4. The ETESMR4 register shows the identical values to ETESMS4 if read. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.1.21 Clear on Event to System Memory Set/Reset (CESMS[1-4]/CESMR[1-4]) The Clear on Event to System Memory registers disables an enabled transfer on event (enabled in ETESM) after a receive or transmit event. Four 32-bit registers reflect all possible 128 message buffers. The bits are set by writing 1 to CESMS[1-4] and reset by writing 1 to CESMR[1-4]. Writing 0 has no effect. Reading from both addresses will result in the same value. Figure 23-79. Clear on Event to System Memory Set 1 (CESMS1) [offset_TU = E0h] 31 16 CESMS1[31-16] R/S-0 15 0 CESMS1[15-0] R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 23-61. Clear on Event to System Memory Set 1 (CESMS1) Field Descriptions Bit Field 31-0 Value CESMS1[n] Description Clear on Event to System Memory Set 1. The register bits 0 to 31 correspond to message buffers 0 to 31. Each bit of the register enables an automatic clear of the corresponding ETESM1 bit after a receive or transmit event. 0 No clear. 1 Activate clear. Figure 23-80. Clear on Event to System Memory Reset 1 (CESMR1) [offset_TU = E4h] 31 16 CESMR1 R/C-0 15 0 CESMR1 R/C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 23-62. Clear on Event to System Memory Reset 1 (CESMR1) Field Descriptions Bit 31-0 Field CESMR1 Value 0-FFFF FFFFh Description Clear on Event to System Memory Reset 1. The CESMR1 register shows the identical values to CESMS1 if read. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1141 FlexRay Module Registers www.ti.com Figure 23-81. Clear on Event to System Memory Set 2 (CESMS2) [offset_TU = E8h] 31 16 CESMS2[63-48] R/S-0 15 0 CESMS2[47-32] R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 23-63. Clear on Event to System Memory Set 2 (CESMS2) Field Descriptions Bit Field 31-0 Value CESMS2[n] Description Clear on Event to System Memory Set 2. The register bits 0 to 31 correspond to message buffers 32 to 63. Each bit of the register enables an automatic clear of the corresponding ETESM2 bit after a receive or transmit event. 0 No clear. 1 Activate clear. Figure 23-82. Clear on Event to System Memory Reset 2 (CESMR2) [offset_TU = ECh] 31 16 CESMR2 R/C-0 15 0 CESMR2 R/C-0 LLEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 23-64. Clear on Event to System Memory Reset 2 (CESMR2) Field Descriptions Bit 31-0 1142 Field CESMR2 Value 0-FFFF FFFFh Description Clear on Event to System Memory Reset 2. The CESMR2 register shows the identical values to CESMS2 if read. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Figure 23-83. Clear on Event to System Memory Set 3 (CESMS3) [offset_TU = F0h] 31 16 CESMS3[95-80] R/S-0 15 0 CESMS3[79-64] R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 23-65. Clear on Event to System Memory Set 3 (CESMS3) Field Descriptions Bit Field 31-0 Value CESMS3[n] Description Clear on Event to System Memory Set 3. The register bits 0 to 31 correspond to message buffers 64 to 95. Each bit of the register enables an automatic clear of the corresponding ETESM3 bit after a receive or transmit event. 0 No clear. 1 Activate clear. Figure 23-84. Clear on Event to System Memory Reset 3 (CESMR3) [offset_TU = F4h] 31 16 CESMR3 R/C-0 15 0 CESMR3 R/C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 23-66. Clear on Event to System Memory Reset 3 (CESMR3) Field Descriptions Bit 31-0 Field CESMR3 Value 0-FFFF FFFFh Description Clear on Event to System Memory Reset 3. The CESMR3 register shows the identical values to CESMS3 if read. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1143 FlexRay Module Registers www.ti.com Figure 23-85. Clear on Event to System Memory Set 4 (CESMS4) [offset_TU = F8h] 31 16 CESMS4[127-112] R/S-0 15 0 CESMS4[111-96] R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 23-67. Clear on Event to System Memory Set 4 (CESMS4) Field Descriptions Bit Field 31-0 Value CESMS4[n] Description Clear on Event to System Memory Set 4. The register bits 0 to 31 correspond to message buffers 96 to 127. Each bit of the register enables an automatic clear of the corresponding ETESM4 bit after a receive or transmit event. 0 No clear. 1 Activate clear. Figure 23-86. Clear on Event to System Memory Reset 4 (CESMR4) [offset_TU = FCh] 31 16 CESMR4 R/C-0 15 0 CESMR4 R/C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 23-68. Clear on Event to System Memory Reset 4 (CESMR4) Field Descriptions Bit 31-0 1144 Field CESMR4 Value 0-FFFF FFFFh Description Clear on Event to System Memory Reset 4. The CESMR4 register shows the identical values to CESMS4 if read. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.1.22 Transfer to System Memory Interrupt Enable Set/Reset (TSMIES[1-4]/TSMIER[1-4]) The Transfer to System Memory Interrupt Enable registers enable the interrupt generation on interrupt line TU_Int0, after a transfer to the system memory occurred (flagged in TSMO). Four 32-bit Registers reflect all 128 MB’s. The bits are set by writing 1 to TSMIES[1-4] and reset by writing 1 to TSMIER[1-4]. Writing 0 has no effect. Reading from both addresses will result in the same value. Figure 23-87. Transfer to System Memory Interrupt Enable Set 1 (TSMIES1) [offset_TU = 100h] 31 16 TSMIES1[31-16] R/S-0 15 0 TSMIES1[15-0] R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 23-69. Transfer to System Memory Interrupt Enable Set 1 (TSMIES1) Field Descriptions Bit Field 31-0 Value TSMIES1[n] Description Transfer to System Memory Interrupt Enable Set 1. The register bits 0 to 31 correspond to message buffers 0 to 31. Each bit of the register enables a potential interrupt, which occurs if the corresponding TSMO1 bit is set. 0 No interrupt. 1 Interrupt is generated. Figure 23-88. Transfer to System Memory Interrupt Enable Reset 1 (TSMIER1) [offset_TU = 104h] 31 16 TSMIER1 R/C-0 15 0 TSMIER1 R/C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 23-70. Transfer to System Memory Interrupt Enable Reset 1 (TSMIER1) Field Descriptions Bit 31-0 Field TSMIER1 Value 0-FFFF FFFFh Description Transfer to System Memory Interrupt Enable Reset 1. The TSMIER1 register shows the identical values to TSMIES1 if read. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1145 FlexRay Module Registers www.ti.com Figure 23-89. Transfer to System Memory Interrupt Enable Set 2 (TSMIES2) [offset_TU = 108h] 31 16 TSMIES2[63-48] R/S-0 15 0 TSMIES2[47-32] R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 23-71. Transfer to System Memory Interrupt Enable Set 2 (TSMIES2) Field Descriptions Bit Field 31-0 Value TSMIES2[n] Description Transfer to System Memory Interrupt Enable Set 2. The register bits 0 to 31 correspond to message buffers 32 to 63. Each bit of the register enables a potential interrupt, which occurs if the corresponding TSMO2 bit is set. 0 No interrupt. 1 Interrupt is generated. Figure 23-90. Transfer to System Memory Interrupt Enable Reset 2 (TSMIER2) [offset_TU = 10Ch] 31 16 TSMIER2 RC-0 15 0 TSMIER2 R/C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 23-72. Transfer to System Memory Interrupt Enable Reset 2 (TSMIER2) Field Descriptions Bit 31-0 1146 Field TSMIER2 Value 0-FFFF FFFFh Description Transfer to System Memory Interrupt Enable Reset 2. The TSMIER2 register shows the identical values to TSMIES2 if read. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Figure 23-91. Transfer to System Memory Interrupt Enable Set 3 (TSMIES3) [offset_TU = 110h] 31 16 TSMIES3[95-80] R/S-0 15 0 TSMIES3[79-64] R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 23-73. Transfer to System Memory Interrupt Enable Set 3 (TSMIES3) Field Descriptions Bit Field 31-0 Value TSMIES3[n] Description Transfer to System Memory Interrupt Enable Set 3. The register bits 0 to 31 correspond to message buffers 64 to 95. Each bit of the register enables a potential interrupt, which occurs if the corresponding TSMO3 bit is set. 0 No interrupt. 1 Interrupt is generated. Figure 23-92. Transfer to System Memory Interrupt Enable Reset 3 (TSMIER3) [offset_TU = 114h] 31 16 TSMIER3 R/C-0 15 0 TSMIER3 R/C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 23-74. Transfer to System Memory Interrupt Enable Reset 3 (TSMIER3) Field Descriptions Bit 31-0 Field TSMIER3 Value 0-FFFF FFFFh Description Transfer to System Memory Interrupt Enable Reset 3. The TSMIER3 register shows the identical values to TSMIES3 if read. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1147 FlexRay Module Registers www.ti.com Figure 23-93. Transfer to System Memory Interrupt Enable Set 4 (TSMIES4) [offset_TU = 118h] 31 16 TSMIES4[127-112] R/S-0 15 0 TSMIES4[111-96] R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 23-75. Transfer to System Memory Interrupt Enable Set 4 (TSMIES4) Field Descriptions Bit Field 31-0 Value TSMIES4[n] Description Transfer to System Memory Interrupt Enable Set 4. The register bits 0 to 31 correspond to message buffers 96 to 127. Each bit of the register enables a potential interrupt, which occurs if the corresponding TSMO4 bit is set. 0 No interrupt. 1 Interrupt is generated. Figure 23-94. Transfer to System Memory Interrupt Enable Reset 4 (TSMIER4) [offset_TU = 11Ch] 31 16 TSMIER4 R/C-0 15 0 TSMIER4 R/C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 23-76. Transfer to System Memory Interrupt Enable Reset 4 (TSMIER4) Field Descriptions Bit 31-0 1148 Field TSMIER4 Value 0-FFFF FFFFh Description Transfer to System Memory Interrupt Enable Reset 4. The TSMIER4 register shows the identical values to TSMIES4 if read. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.1.23 Transfer to Communication Controller Interrupt Enable Set/Reset (TCCIES[1-4]/TCCIER[1-4]) The Transfer to Communication Controller Interrupt Enable registers enables the interrupt generation on interrupt line TU_Int0, after a transfer to the communication controller occurred (flagged in TCCO). Four 32-bit Registers reflect all 128 MBs. The bits are set by writing 1 to TCCIES[1-4] and reset by writing 1 to TCCIER[1-4]. Writing 0 has no effect. Reading from both addresses will result in the same value. Figure 23-95. Transfer to Communication Controller Interrupt Enable Set 1 (TCCIES1) [offset_TU = 120h] 31 16 TCCIES1[31-16] R/S-0 15 0 TCCIES1[15-0] R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 23-77. Transfer to Communication Controller Interrupt Enable Set 1 (TCCIES1) Field Descriptions Bit Field 31-0 Value TCCIES1[n] Description Transfer to Communication Controller Interrupt Enable Set 1. The register bits 0 to 31 correspond to message buffers 0 to 31. Each bit of the register enables a potential interrupt, which occurs if the corresponding TCCO1 bit is set. 0 No interrupt. 1 Interrupt is generated. Figure 23-96. Transfer to Communication Controller Interrupt Enable Reset 1 (TCCIER1) [offset_TU = 124h] 31 16 TCCIER1 R/C-0 15 0 TCCIER1 R/C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 23-78. Transfer to Communication Controller Interrupt Enable Reset 1 (TCCIER1) Field Descriptions Bit 31-0 Field TCCIER1 Value 0-FFFF FFFFh Description Transfer to Communication Controller Interrupt Enable Reset 1. The TCCIER1 register shows the identical values to TCCIES1 if read. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1149 FlexRay Module Registers www.ti.com Figure 23-97. Transfer to Communication Controller Interrupt Enable Set 2 (TCCIES2) [offset_TU = 128h] 31 16 TCCIES2[63-48] R/S-0 15 0 TCCIES2[47-32] R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 23-79. Transfer to Communication Controller Interrupt Enable Set 2 (TCCIES2) Field Descriptions Bit Field 31-0 Value TCCIES2[n] Description Transfer to Communication Controller Interrupt Enable Set 2. The register bits 0 to 31 correspond to message buffers 32 to 63. Each bit of the register enables a potential interrupt, which occurs if the corresponding TCCO2 bit is set. 0 No interrupt. 1 Interrupt is generated. Figure 23-98. Transfer to Communication Controller Interrupt Enable Reset 2 (TCCIER2) [offset_TU = 12Ch] 31 16 TCCIER2 R/C-0 15 0 TCCIER2 R/C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 23-80. Transfer to Communication Controller Interrupt Enable Reset 2 (TCCIER2) Field Descriptions Bit 31-0 1150 Field TCCIER2 Value 0-FFFF FFFFh Description Transfer to Communication Controller Interrupt Enable Reset 2. The TCCIER2 register shows the identical values to TCCIES2 if read. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Figure 23-99. Transfer to Communication Controller Interrupt Enable Set 3 (TCCIES3) [offset_TU = 130h] 31 16 TCCIES3[95-80] R/S-0 15 0 TCCIES3[79-64] R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 23-81. Transfer to Communication Controller Interrupt Enable Set 3 (TCCIES3) Field Descriptions Bit Field 31-0 Value TCCIES3[n] Description Transfer to Communication Controller Interrupt Enable Set 3. The register bits 0 to 31 correspond to message buffers 64 to 95. Each bit of the register enables a potential interrupt, which occurs if the corresponding TCCO3 bit is set. 0 No interrupt. 1 Interrupt is generated. Figure 23-100. Transfer to Communication Controller Interrupt Enable Reset 3 (TCCIER3) [offset_TU = 134h] 31 16 TCCIER3 R/C-0 15 0 TCCIER3 R/C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 23-82. Transfer to Communication Controller Interrupt Enable Reset 3 (TCCIER3) Field Descriptions Bit 31-0 Field TCCIER3 Value 0-FFFF FFFFh Description Transfer to Communication Controller Interrupt Enable Reset 3. The TCCIER3 register shows the identical values to TCCIES3 if read. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1151 FlexRay Module Registers www.ti.com Figure 23-101. Transfer to Communication Controller Interrupt Enable Set 4 (TCCIES4) [offset_TU = 138h] 31 16 TCCIES4[127-112] R/S-0 15 0 TCCIES4[111-96] R/S-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 23-83. Transfer to Communication Controller Interrupt Enable Set 4 (TCCIES4) Field Descriptions Bit Field 31-0 Value TCCIES4[n] Description Transfer to Communication Controller Interrupt Enable Set 4. The register bits 0 to 31 correspond to message buffers 96 to 127. Each bit of the register enables a potential interrupt, which occurs if the corresponding TCCO4 bit is set. 0 No interrupt. 1 Interrupt is generated. Figure 23-102. Transfer to Communication Controller Interrupt Enable Reset 4 (TCCIER4) [offset_TU = 13Ch] 31 16 TCCIER4 R/C-0 15 0 TCCIER4 R/C-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; -n = value after reset Table 23-84. Transfer to Communication Controller Interrupt Enable Reset 4 (TCCIER4) Field Descriptions Bit 31-0 1152 Field TCCIER4 Value 0-FFFF FFFFh Description Transfer to Communication Controller Interrupt Enable Reset 4. The TCCIER4 register shows the identical values to TCCIES4 if read. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.1.24 Transfer Configuration RAM (TCR) The TCR consists of 128 entries, each 19 bit wide. The TCR is parity protected. The parity protection can be switched on/off by the 4-bit key (PEL) in the Global Control Set/Reset (GCS/GCR) registers. Figure 23-103. Transfer Configuration RAM (TCR) [offset_TU_RAM = 0h-1FFh] 31 18 17 16 Reserved 19 STXR THTSM TPTSM R-0 R/W-0 R/W-0 R/W-0 15 14 THTCC TPTCC 13 TSO 0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-85. Transfer Configuration RAM (TCR) Field Descriptions Bit 31-19 18 Field Value Reserved 0 STXR Description Reads return 0. Writes have no effect. Set Transmit Request. Control set/reset of buffer transmit requests in the communication controller. 17 16 15 14 13-0 0 Transfer Unit State Machine will set IBCM.STXRH to 0 during a transfer to the communication controller. 1 Transfer Unit State Machine will set IBCM.STXRH to 1 during a transfer to the communication controller. THTSM Transfer Header to System Memory. 0 Transfer Unit State Machine will not transfer buffer header to system memory. 1 Transfer Unit State Machine will transfer buffer header to system memory. TPTSM Transfer Payload to System Memory. 0 Transfer Unit State Machine will not transfer buffer payload to system memory. 1 Transfer Unit State Machine will transfer buffer payload to system memory. THTCC Transfer Header to Communication Controller. 0 Transfer Unit State Machine will not transfer buffer header to the communication controller. 1 Transfer Unit State Machine will transfer buffer header to the communication controller. TPTCC TSO Transfer Payload to Communication Controller. 0 Transfer Unit State Machine will not transfer buffer payload to the communication controller. 1 Transfer Unit State Machine will transfer buffer payload to the communication controller. Transfer Start Offset. 14-bit buffer address offset in system memory. The resulting address in system memory is computed by adding the 32-bit aligned buffer address offset (TSO = buffer address offset bits 15:2) to the base address defined in the TBA register. Example: A TSO contents of 0x40 results in a Transfer Start Offset of 0x40 × 4 = 0x100 SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1153 FlexRay Module Registers www.ti.com 23.19.1.25 TCR Parity Test Mode In parity test mode (PEFT bit is set in Global Control Register (GC)) the parity information are visible and can be read or written. The corresponding TCR entry can be found by subtracting 0x200 from the TCR offset. Figure 23-104. Parity Information in TCR Parity Test Mode [offset_TU_RAM = 200h-3FFh] 31 16 15 9 Reserved PAB2 R-0 R/W-0 8 7 1 0 Reserved PAB1 Reserved PAB0 R-0 R/W-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-86. Parity Information in TCR Parity Test Mode Field Descriptions Bit 31-17 16 15-9 8 7-1 0 1154 Field Reserved Value 0 PAB2 Reserved PAB0 Reads return 0. Writes have no effect. Parity Bit for TCRx Byte 2. Parity information for byte 2 of TCRx(18-16). Reserved TCR bits are ignored for parity calculation. 0 PAB1 Reserved Description Reads return 0. Writes have no effect. Parity Bit for TCRx Byte 1. Parity information for byte 1 of TCRx(15:8). 0 Reads return 0. Writes have no effect. Parity Bit for Byte 0. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2 Communication Controller Registers The FlexRay Communication Controller module allocates an address space of 2 Kbytes (0000h to 07FFh). The registers are organized as 32-bit registers. 8/16-bit accesses are also supported. CPU access to the message RAM is done through the input and output buffers. They buffer data to be transferred to and from the message RAM under control of the message handler, avoiding conflicts between CPU accesses and message reception / transmission. Alternatively to increase performance the Transfer Unit can be used for transferring buffer data. The test registers located on address 0010h and 0014h are writable only under the conditions. The assignment of the message buffers is done according to the scheme shown in Figure 23-105. The number N of available message buffers depends on the payload length of the configured message buffers. The maximum number of message buffers is 128. The maximum payload length supported is 254 bytes. The message buffers are separated into three consecutive groups; see Figure 23-105: • Static buffers - Transmit / receive buffers assigned to static segment • Static + Dynamic buffers - Transmit / receive buffers assigned to static or dynamic segment • FIFO - Receive FIFO The message buffer separation configuration can be changed in DEFAULT_CONFIG or CONFIG state only by programming register MRC. The first group starts with message buffer 0 and consists of static message buffers only. Message buffer 0 is dedicated to hold the startup / sync frame or the single slot frame, if the node transmits one, as configured by SUCC1.TXST, SUCC1.TXSY, and SUCC1.TSM. In addition, message buffer 1 may be used for sync frame transmission in case that sync frames or single-slot frames should have different payloads on the two channels. In this case bit MRC.SPLM has to be programmed to 1 and message buffers 0 and 1 have to be configured with the key slot ID and can be (re)configured in DEFAULT_CONFIG or CONFIG state only. The second group consists of message buffers assigned to the static or to the dynamic segment. Message buffers belonging to this group may be reconfigured during run time from dynamic to static or vice versa depending on the state of MRC.SEC. The message buffers belonging to the third group are concatenated to a single receive FIFO. Figure 23-105. Message Buffer Assignment Message Buffer 0 Message Buffer 1 ⇓ Static Buffers ⇓ Static + Dynamic Buffers ... ⇓ FIFO Message Buffer N-1 Message Buffer N Table 23-87 provides a summary of the registers. The base address for the Communication Controller registers is FFF7 C800h. FlexRay Module1155 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 23-87. Communication Controller Registers Offset Acronym Register Description Section Special Registers 0-0Ch Reserved Reserved 10h TEST1 Test Register 1 Section 23.19.2.1.1 14h TEST2 Test Register 2 Section 23.19.2.1.2 18h Reserved Reserved 1Ch LCK Lock Register 20h EIR Error Interrupt Register Section 23.19.2.2.1 24h SIR Status Interrupt Register Section 23.19.2.2.2 28h EILS Error Interrupt Line Select Register Section 23.19.2.2.3 2Ch SILS Status Interrupt Line Select Register Section 23.19.2.2.4 30h EIES Error Interrupt Enable Set Register Section 23.19.2.2.5 34h EIER Error Interrupt Enable Reset Register Section 23.19.2.2.5 38h SIES Status Interrupt Enable Set Register Section 23.19.2.2.6 3Ch SIER Status Interrupt Enable Reset Register Section 23.19.2.2.6 40h ILE Interrupt Line Enable Register Section 23.19.2.2.7 44h T0C Timer 0 Configuration Register Section 23.19.2.2.8 48h T1C Timer 1 Configuration Register Section 23.19.2.2.9 4Ch STPW1 Stop Watch Register 1 Section 23.19.2.2.10 50h STPW2 Stop Watch Register 2 Section 23.19.2.2.11 Reserved Reserved 80h SUCC1 SUC Configuration Register 1 Section 23.19.2.3.1 84h SUCC2 SUC Configuration Register 2 Section 23.19.2.3.2 88h SUCC3 SUC Configuration Register 3 Section 23.19.2.3.3 8Ch NEMC NEM Configuration Register Section 23.19.2.3.4 90h PRTC1 PRT Configuration Register 1 Section 23.19.2.3.5 94h PRTC2 PRT Configuration Register 2 Section 23.19.2.3.6 Section 23.19.2.3.7 Section 23.19.2.1.3 Interrupt Registers 54h-7Ch Communication Controller Control Registers 98h MHDC MHD Configuration Register 1 9Ch Reserved Reserved A0h GTUC1 GTU Configuration Register 1 A4h GTUC2 GTU Configuration Register 2 Section 23.19.2.3.9 A8h GTUC3 GTU Configuration Register 3 Section 23.19.2.3.10 ACh GTUC4 GTU Configuration Register 4 Section 23.19.2.3.11 B0h GTUC5 GTU Configuration Register 5 Section 23.19.2.3.12 B4h GTUC6 GTU Configuration Register 6 Section 23.19.2.3.13 B8h GTUC7 GTU Configuration Register 7 Section 23.19.2.3.14 BCh GTUC8 GTU Configuration Register 8 Section 23.19.2.3.15 C0h GTUC9 GTU Configuration Register 9 Section 23.19.2.3.16 C4h GTUC10 GTU Configuration Register 10 Section 23.19.2.3.17 C8h GTUC11 GTU Configuration Register 11 Section 23.19.2.3.18 CCh-FCh Reserved Reserved 100h CCSV Communication Controller Status Vector Register Section 23.19.2.4.1 104h CCEV Communication Controller Error Vector Register Section 23.19.2.4.2 Reserved Reserved SCV Slot Counter Value Register Section 23.19.2.3.8 Communication Controller Status Registers 108h-10Ch 110h 1156 FlexRay Module Section 23.19.2.4.3 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 23-87. Communication Controller Registers (continued) Offset Acronym Register Description 114h MTCCV Macrotick and Cycle Counter Value Register Section 23.19.2.4.4 Section 118h RCV Rate Correction Value Register Section 23.19.2.4.5 11Ch OCV Offset Correction Value Register Section 23.19.2.4.6 120h SFS Sync Frame Status Register Section 23.19.2.4.7 124h SWNIT Symbol Window and NIT Status Register Section 23.19.2.4.8 128h ACS Aggregated Channel Status Register Section 23.19.2.4.9 12Ch Reserved Reserved ESIDn Even Sync ID Register [1-15] Reserved Reserved OSIDn Odd Sync ID Register [1-15] Reserved Reserved 1B0h-1B8h NMVn Network Management Vector Register [1-3] 1BCh-2FCh Reserved Reserved 130h-168h 16Ch 170h-1A8h 1ACh Section 23.19.2.4.10 Section 23.19.2.4.11 Section 23.19.2.4.12 Message Buffer Control Registers 300h MRC Message RAM Configuration Register Section 23.19.2.5.1 304h FRF FIFO Rejection Filter Register Section 23.19.2.5.2 308h FRFM FIFO Rejection Filter Mask Register Section 23.19.2.5.3 30Ch FCL FIFO Critical Level Register Section 23.19.2.5.4 310h MHDS Message Handler Status Section 23.19.2.6.1 314h LDTS Last Dynamic Transmit Slot Section 23.19.2.6.2 Message Buffer Status Registers 318h FSR FIFO Status Register Section 23.19.2.6.3 31Ch MHDF Message Handler Constraints Flags Section 23.19.2.6.4 320h TXRQ1 Transmission Request Register 1 Section 23.19.2.6.5 324h TXRQ2 Transmission Request Register 2 Section 23.19.2.6.5 328h TXRQ3 Transmission Request Register 3 Section 23.19.2.6.5 32Ch TXRQ4 Transmission Request Register 4 Section 23.19.2.6.5 330h NDAT1 New Data Register 1 Section 23.19.2.6.6 334h NDAT2 New Data Register 2 Section 23.19.2.6.6 338h NDAT3 New Data Register 3 Section 23.19.2.6.6 33Ch NDAT4 New Data Register 4 Section 23.19.2.6.6 340h MBSC1 Message Buffer Status Changed Register 1 Section 23.19.2.6.7 344h MBSC2 Message Buffer Status Changed Register 2 Section 23.19.2.6.7 348h MBSC3 Message Buffer Status Changed Register 3 Section 23.19.2.6.7 34Ch MBSC4 Message Buffer Status Changed Register 4 Section 23.19.2.6.7 Reserved Reserved 350h-3ECh Identification Registers 3F0h CREL Core Release Register Section 23.19.2.7.1 3F4h ENDN Endian Register Section 23.19.2.7.2 Reserved Reserved 3F8h-3FCh SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1157 FlexRay Module Registers www.ti.com Table 23-87. Communication Controller Registers (continued) Offset Acronym Register Description Section Input Buffer 400h-4FCh WRDSn Write Data Section Register [1-64] Section 23.19.2.8.1 500h WRHS1 Write Header Section Register 1 Section 23.19.2.8.2 504h WRHS2 Write Header Section Register 2 Section 23.19.2.8.3 508h WRHS3 Write Header Section Register 3 Section 23.19.2.8.4 50Ch Reserved Reserved 510h IBCM Input Buffer Command Mask Register Section 23.19.2.8.5 514h IBCR Input Buffer Command Request Register Section 23.19.2.8.6 518h-5FCh Reserved Reserved 600h-6FCh RDDSn Read Data Section Register [1-64] Section 23.19.2.9.1 700h RDHS1 Read Header Section Register 1 Section 23.19.2.9.2 704h RDHS2 Read Header Section Register 2 Section 23.19.2.9.3 708h RDHS3 Read Header Section Register 3 Section 23.19.2.9.4 70Ch MBS Message Buffer Status Register Section 23.19.2.9.5 710h OBCM Output Buffer Command Mask Register Section 23.19.2.9.6 714h OBCR Output Buffer Command Request Register Section 23.19.2.9.7 Reserved Reserved Output Buffer 718h-7FCh 1158 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.1 Special Registers 23.19.2.1.1 Test Register 1 (TEST1) Test register 1 holds the control bits to configure the test modes of the FlexRay module. Write access to these bits is only possible if the WRTEN bit is set. Figure 23-106 and Table 23-88 illustrate this register. When the FlexRay module is operated in one of its test modes that requires WRTEN to be set (RAM Test Mode, I/O Test Mode, Asynchronous Transmit Mode, and Loop Back Mode) only the selected test mode functionality is available. NOTE: To return from test mode operation to regular FlexRay operation we strongly recommend to apply a hardware reset (Power on Reset or nReset) to reset all FlexRay internal state machines to their initial state. The test functions are not available in addition to the normal operational mode functions, they change the functions of parts of the FlexRay module. Therefore normal operation as specified outside this chapter and as required by the FlexRay protocol specification and the FlexRay conformance test is not possible. Test mode functions may not be combined with each other or with FlexRay protocol functions. NOTE: The FlexRay module should be kept in CONFIG state, while RAM Test Mode TMC = 01 is enabled. The test mode features are intended for hardware testing or for FlexRay bus analyzer tools. They are not intended to be used in FlexRay applications. Figure 23-106. Test Register 1 (TEST1) [offset_CC = 10h] 31 21 20 19 18 17 16 CERB 28 27 CERA Reserved TXENB TXENA TXB TXA RXB RXA R-0 R-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R-0 5 4 3 2 15 24 10 Reserved R-0 9 8 AOB AOA 23 22 7 1 0 Reserved TMC Reserved ELBE WRTEN R-0 R/W-0 R-0 R/W-0 R/W-0 R/W-1 6 LEGEND: R = Read only; R/W = Read/Write; -n = value after reset Table 23-88. Test Register 1 (TEST1) Field Descriptions Bit Field 31-28 CERB Value Description Coding Error Report Channel B Set when a coding error is detected on channel B. Reset to zero when register TEST1 is read or written. Once the CERB is set it will remain unchanged until the Host accesses the TEST1 register 0 No coding error is detected. 1h Header CRC error is detected. 2h Frame CRC error is detected. 3h Frame Start Sequence FSS too long. 4h First bit of Byte Start Sequence BSS seen LOW. 5h Second bit of Byte Start Sequence BSS seen HIGH. 6h First bit of Frame End Sequence FES seen HIGH. 7h Second bit of Frame End Sequence FES seen LOW. 8h CAS / MTS symbol seen too short. 9h CAS / MTS symbol seen too long. Ah-Fh Reserved SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1159 FlexRay Module Registers www.ti.com Table 23-88. Test Register 1 (TEST1) Field Descriptions (continued) Bit Field 27-24 CERA Value Description Coding Error Report Channel A Set when a coding error is detected on channel A. Reset to zero when register TEST1 is read or written. Once the CERA is set it will remain unchanged until the Host accesses the TEST1 register 0 No coding error is detected. 1h Header CRC error is detected. 2h Frame CRC error is detected. 3h Frame Start Sequence FSS too long. 4h First bit of Byte Start Sequence BSS seen LOW. 5h Second bit of Byte Start Sequence BSS seen HIGH. 6h First bit of Frame End Sequence FES seen HIGH. 7h Second bit of Frame End Sequence FES seen LOW. 8h CAS / MTS symbol seen too short. 9h CAS / MTS symbol seen too long. Ah-Fh Reserved Note: Coding errors are also signaled when the communication controller is in MONITOR_MODE. The error codes regarding CAS / MTS symbols concern only the monitored bit pattern, irrelevant whether those bit patterns occurred in the symbol window or elsewhere. 23-22 21 20 19 18 17 16 15-10 9 8 7-6 1160 Reserved 0 TXENB Control of channel B transmit enable pin. 0 txen2 pin drives a 0 1 txen2 pin drives a 1 TXENA Control of channel A transmit enable pin. 0 txen1 pin drives a 0 1 txen1 pin drives a 1 TXB Control of channel B transmit pin. 0 txd2 pin drives a 0 1 txd2 pin drives a 1 TXA Control of channel A transmit pin. 0 txd1 pin drives a 0 1 txd1 pin drives a 1 RXB Monitor channel B receive pin. 0 rxd2 = 0 1 rxd2 = 1 RXA Reserved Monitor channel A receive pin. 0 rxd1 = 0 1 rxd1 = 1 0 Reads return 0. Writes have no effect. AOB Activity on B. The channel idle condition is specified in the FlexRay protocol spec v2.1, BITSTRB process. 0 No activity is detected, channel B is idle. 1 Activity is detected, channel B is not idle. AOA Reserved Reads return 0. Writes have no effect. Activity on A. The channel idle condition is specified in the FlexRay protocol spec v2.1, BITSTRB process. 0 No activity is detected, channel A is idle. 1 Activity is detected, channel A is not idle. 0 Reads return 0. Writes have no effect. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 23-88. Test Register 1 (TEST1) Field Descriptions (continued) Bit Field 5-4 TMC 3-2 1 0 Reserved Value Description Test mode control. 0 Normal operation mode, default. 1h RAM test mode - All RAM blocks of the FlexRay module are directly accessible by the host. This mode is intended to enable testing of the embedded RAM blocks during production testing. 2h I/O test mode - The output pins txd1, txd2, txen1, txen2 are driven to the values defined by bits TXA, TXB, TXENA, TXENB. The values applied to the input pins rxd1, rxd2 can be read from register bits RXA, RXB 3h Unused - mapped to normal operation mode. 0 Reads return 0. Writes have no effect. ELBE External Loop Back Enable. There are two possibilities to perform a loop back test. External loop back via physical layer or internal loop back for in-system self-test (default). In case of an internal loop back pins txen1,2 are in their inactive state, pins txd1,2 are set to HIGH, pins rxd1,2 are not evaluated. Bit ELBE is evaluated only when POC is in loop back mode and test mode control is in normal operation mode TMC = 00. 0 Internal loop back (default) 1 External loop back WRTEN Write test register enable. Enables write access to the test registers. To set the bit from 0 to 1 the test mode key has to be written as defined in Lock Register (LCK). The unlock sequence is not required when WRTEN is kept at 1 while other bits of the register are changed. The bit can be reset to 0 at any time. 0 Write access to the test register is disabled. 1 Write access to the test register is enabled. 23.19.2.1.1.1 Asynchronous Transmit Mode (ATM) The asynchronous transmit mode is entered by writing 1110 to the controller host interface command vector CMD in the SUC configuration register 1 (controller host interface command: ATM) while the communication controller is in CONFIG state and bit WRTEN in the test register 1 is set to 1. When called in any other state or when bit WRTEN is not set, CMD will be reset to 0000 = command_not_accepted. POCS in the communication controller status vector will show 00 1110 while the FlexRay module is in ATM mode. Asynchronous transmit mode can be left by writing 0001 (controller host interface command: CONFIG) to the controller host interface command vector CMD in the SUC configuration register 1. In ATM mode transmission of a FlexRay frame is triggered by writing the number of the corresponding message buffer to the input buffer command request register while bit STXR in the input buffer command mask register is set to 1. In this mode wakeup, startup, and clock synchronization are bypassed, the controller host interface command SEND_MTS results in the immediate transmission of a MTS symbol. MTS symbols received while operating in ATM mode will set the status interrupt flags MTSA,B in the Status Interrupt Register like in monitor mode. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1161 FlexRay Module Registers www.ti.com 23.19.2.1.1.2 Loop Back Mode The loop back mode is entered by writing 1111 to the controller host interface command vector CMD in the SUC configuration register 1 (controller host interface command: LOOP_BACK) while the communication controller is in CONFIG state and bit WRTEN in the test register 1 is set to 1. This write operation has to be directly preceded by two consecutive write accesses to the Configuration Lock Key (unlock sequence). When called in any other state or when bit WRTEN is not set, CMD will be reset to 0000 = command_not_accepted. POCS in the communication controller status vector will show 00 1101 while the FlexRay module is in loop back mode. Loop back mode can be left by writing 0001 (controller host interface command: CONFIG) to the controller host interface command vector CMD in the SUC configuration register 1. The loop back mode is intended to check the modules internal data paths. Normal, time triggered operation is not possible in loop back mode. There are two possibilities to perform a loop back test. External loop back through the physical layer (TEST1.ELBE = 1) or internal loop back for in-system self-test (TEST1.ELBE = 0). In case of an internal loop back pins txen1,2_n are in their inactive state, pins txd1,2 are set, pins rxd1,2 are not evaluated. When the communication controller is in loop back mode, a loop back test is started by the host writing a message to the input buffer and requesting the transmission by writing to the input buffer command request register. The message handler will transfer the message into the message RAM and then into the transient buffer of the selected channel. The channel protocol controller (PRT) will read (in 32-bit words) the message from the transmit part of the transient buffer and load it into its Rx / Tx shift register. The serial transmission is looped back into the shift register; its content is written into the receive part of the channels transient buffer before the next word is loaded. The PRT and the message handler will then treat this transmitted message like a received message, perform an acceptance filtering on frame ID and receive channel, and store the message into the message RAM (assuming the message passed the acceptance filter, thus testing the acceptance filter logic). The loop back test ends with the host requesting this received message from the message RAM and then checking the contents of the output buffer. Each FlexRay channel is tested separately. The FlexRay module cannot receive messages from the FlexRay bus while it is in the loop back mode. The cycle counter value of frames used in loop back mode can be programmed by writing to the CCV bits of the MTCCV register (writable in ATM and loop back mode only). NOTE: In case of an odd payload, the last two bytes of the looped-back payload will be right aligned (shifted by 16 bits to the right) inside the last 32-bit data word. The controller host interface command SEND_MTS results in the immediate transmission of an MTS symbol. Transmitted MTS symbols will not cause status interrupt flags MTSA,B to be set in the Status Interrupt Register. MTS symbols received while operating in loop back mode will set status interrupt flags MTSA,B in System Interrupt Register like in monitor mode. The reception of an MTS symbol can be emulated by driving the FlexRay receive pins RxD1,2 to low for the duration of the symbol in external loop back mode, or by driving the FlexRay pins TxD1,2 and TxEN1,2 to low using the TXA,B and TXENA,B of Test Register1 in internal or external loop back mode. 1162 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.1.2 Test Register 2 (TEST2) Test register 2 holds all bits required for RAM test of the seven embedded RAM blocks of the communication controller. Write access to this register is only possible when bit WRTEN in the test register 1 is set. Figure 23-107 and Table 23-89 illustrate this register. Figure 23-107. Test Register 2 (TEST2) [offset_CC = 14h] 31 16 Reserved R-0 15 14 RDPB WRPB 13 Reserved 7 6 SSEL 4 Rsvd 3 1 RS 0 R-0 R/W-0 R-0 R/W-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-89. Test Register 2 (TEST2) Field Descriptions Bit 31-16 Field Reserved Value 0 Description Reads return 0. Writes have no effect. 15 RDPB 0-1 Read parity bit. Value of parity bit read from the selected RAM location. 14 WRPB 0-1 Write parity bit. Value of parity bit to be written to the selected RAM location 13-7 Reserved 6-4 SSEL 3 2-0 Reserved 0 Reads return 0. Writes have no effect. Segment select. To enable access to the complete message RAM (8192 byte addresses) the message RAM is segmented. 0 Access to RAM bytes 0000h to 03FFh is enabled. 1h Access to RAM bytes 0400h to 07FFh is enabled. 2h Access to RAM bytes 0800h to 0BFFh is enabled. 3h Access to RAM bytes 0C00h to 0FFFh is enabled. 4h Access to RAM bytes 1000h to 13FFh is enabled. 5h Access to RAM bytes 1400h to 17FFh is enabled. 6h Access to RAM bytes 1800h to 1BFFh is enabled. 7h Access to RAM bytes 1C00h to 1FFFh is enabled. 0 Reads return 0. Writes have no effect. RS RAM select. In RAM test mode the RAM blocks selected by RS are mapped to module address 400h to 7FFh (1024 byte addresses). 0 Input buffer RAM 1 1h Input buffer RAM 2 2h Output buffer RAM 1 3h Output buffer RAM 2 4h Transient buffer RAM A 5h Transient buffer RAM B 6h Message RAM 7h Reserved SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1163 FlexRay Module Registers www.ti.com 23.19.2.1.2.1 RAM Test Mode In RAM test mode (TEST1.TMC = 01), one of the seven RAM blocks can be selected for direct read and write access by programming RS to the corresponding value; see Figure 23-108. For external RAM access in RAM test mode, the selected RAM block is mapped to the address range offset_CC 400h to 7FFh, which is the address space for the input and output buffer register sets in normal operation. Hence, the functionality of the input and output buffer register sets is not available in RAM test mode. With the available address space (offset_CC 400h to 7FFh) in RAM test mode, 1024 bytes of RAM can be addressed for direct access. Since the length of the Message RAM exceeds the available address space, the Message RAM is segmented into segments of 1024 bytes. The segments can be selected by programming the bits SSEL of test register 2. Figure 23-108. Test Mode Access to Communication Controller RAM Blocks offset_CC Normal Operation RAM Test 000h RS(2-0) = 000 001 010 011 100 101 110 SSEL(2-0) = 3FCh 400h Input and Output Register Set IBF1 IBF2 OBF1 OBF2 TBF1 7FCh TBF2 000 001 010 011 100 101 110 111 MBF 1164 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.1.3 Lock Register (LCK) The lock register is write-only. Reading the register will return 00. Figure 23-109 and Table 23-90 illustrate this register. Figure 23-109. Lock Register (LCK) [offset_CC = 1Ch] 31 16 Reserved R-0 15 8 7 0 TMK CLK W-0 W-0 LEGEND: R = Read only; W = Write only; -n = value after reset Table 23-90. Lock Register (LCK) Field Descriptions Bit Field 31-16 Reserved 15-8 TMK Value 0 0-1FFh Description Reads return 0. Writes have no effect. Test mode key. To write bit WRTEN in the test register to 1, the write operation has to be directly preceded by two consecutive write accesses to the test mode key (unlock sequence). If this write sequence is interrupted by other write accesses, bit WRTEN is not set to 1 and the sequence has to be repeated. First write (LCK.TMK): 75h = 0111 0101 Second write (LCK.TMK): 8Ah = 1000 1010 Third write: TEST1.WRTEN = 1 7-0 CLK 0-FFh Configuration lock key. To leave CONFIG state by writing to CMD in the SUC configuration register 1 (commands READY; MONITOR_MODE; ATM; LOOP_BACK), the write operation has to be directly preceded by two consecutive write accesses to the configuration lock key (unlock sequence). If this write sequence is interrupted by other write accesses, the communication controller remains in CONFIG state and the sequence has to be repeated. First write (LCK.CLK): CEh = 1100 1110 Second write (LCK.CLK): 31h = 0011 0001 Third write (SUCC.CMD) NOTE: In case that the Host uses 8/16-bit accesses to write the listed bit fields, the programmer has to ensure that no "dummy accesses" (for example, the remaining register bytes / words) are inserted by the compiler. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1165 FlexRay Module Registers www.ti.com 23.19.2.2 Interrupt Registers 23.19.2.2.1 Error Interrupt Register (EIR) The flags are set when the communication controller detects one of the listed error conditions. They remain set until the host clears them. A flag is cleared by writing a 1 to the corresponding bit position. Writing a 0 has no effect on the flag. A reset will also clear the register. Figure 23-110 and Table 23-91 illustrate this register. Figure 23-110. Error Interrupt Register (EIR) [offset_CC = 20h] 31 26 25 24 18 17 16 Reserved 27 TABB LTVB EDB Reserved TABA LTVA EDA R-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 15 12 23 19 11 10 9 8 7 6 5 4 3 2 1 0 Reserved MHF IOBA IIBA EFA RFO PERR CCL CCF SFO SFBM CNA PEMC R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-91. Error Interrupt Register (EIR) Field Descriptions Bit 31-27 26 25 24 23-19 18 17 16 15-12 11 1166 Field Reserved Value 0 TABB 0 No transmission across slot boundary is detected on channel B. 1 Transmission across slot boundary is detected on channel B. Latest transmit violation channel B. The flag signals a latest transmit violation on channel B to the host. 0 No latest transmit violation is detected on channel B. 1 Latest transmit violation is detected on channel B. EDB Error detected on channel B. This bit is set whenever one of the flags SEDB, CEDB, CIB, SBVB in the Aggregated channel status register is set. 0 No error is detected on channel B. 1 Error is detected on channel B. 0 Reads return 0. Writes have no effect. TABA Transmission Across Boundary Channel A. The flag signals to the Host that a transmission across a slot boundary occurred for channel A. 0 No transmission across slot boundary is detected on channel A. 1 Transmission across slot boundary is detected on channel A. LTVA Latest transmit violation channel A. The flag signals a latest transmit violation on channel A to the host. 0 No latest transmit violation is detected on channel A. 1 Latest transmit violation is detected on channel A. EDA Reserved Reads return 0. Writes have no effect. Transmission Across Boundary Channel B. The flag signals to the Host that a transmission across a slot boundary occurred for channel B. LTVB Reserved Description Error detected on channel A. This bit is set whenever one of the flags SEDA, CEDA, CIA, SBVA in the Aggregated channel status register is set. 0 No error is detected on channel A. 1 Error is detected on channel A. 0 Reads return 0. Writes have no effect. MHF Message Handler Constraints Flag. The flag signals a Message Handler constraints violation condition. It is set whenever one of the flags MHDF.SNUA, MHDF.SNUB, MHDF.FNFA, MHDF.FNFB, MHDF.TBFA, MHDF.TBFB, MHDF.WAHP changes from 0 to 1. 0 No Message Handler failure is detected. 1 Message Handler failure is detected. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 23-91. Error Interrupt Register (EIR) Field Descriptions (continued) Bit Field 10 IOBA 9 Value Description Illegal Output buffer Access. This flag is set by the communication controller when the Host requests the transfer of a message buffer from the Message RAM to the Output Buffer while OBCR.OBSYS is set to 1. 0 No illegal Host access to Output Buffer occurred. 1 Illegal Host access to Output Buffer occurred. IIBA Illegal Input Buffer Access. This flag is set by the communication controller when the Host wants to modify a message buffer via Input Buffer and one of the following conditions applies: • The communication controller is not in CONFIG or DEFAULT_CONFIG state and the Host writes to the Input Buffer Command Request register to modify the following: – the Header section of message buffer 0, 1 if configured for transmission in key slot – the Header section of static message buffers with buffer number < MRC.FDB while MRC.SEC = 01 – the Header section of any static or dynamic message buffer while MRC.SEC = 1x – Header and / or data section of any message buffer belonging to the receive FIFO • The Host writes to any register of the Input Buffer while IBCR.IBSYH is set to 1. 8 7 6 0 No illegal Host access to Input Buffer occurred. 1 Illegal Host access to Input Buffer occurred. EFA Empty FIFO Access. This flag is set by the communication controller when the Host requests the transfer of a message from the receive FIFO via Output Buffer while the receive FIFO is empty. 0 No Host access to empty FIFO occurred. 1 Host access to empty FIFO occurred. RFO Receive FIFO overrun. This flag is set by the communication controller when a receive FIFO overrun was detected. The flag is cleared by the next FIFO read access of the host. After this read access one position in the FIFO is empty again. 0 No receive FIFO overrun is detected. 1 A receive FIFO overrun has been detected. PERR Parity error. The flag signals a parity error to the host. The flag is set by the parity logic of the communication controller when it detects a parity error while reading from one of the FlexRay RAM blocks. Note: Parity Error in the TCR RAM is an exception indicated by the PE flag in Transfer Error Interrupt Flag (TEIF) register 5 4 0 No parity error is detected. 1 Parity error is detected. CCL CHI Command Locked. The flag signals that the write access to the CHI command vector SUCC1.CMD was not successful because it coincided with a POC state change triggered by protocol functions. In this case bit CNA is also set to 1. 0 CHI command is accepted. 1 CHI command is not accepted. CCF Clock correction failure. This flag is set at the end of the cycle whenever one of the following errors occurred: • Missing rate correction signal • Missing offset correction signal • Clock correction Failed counter stopped at 15 • Clock correction Limit Reached The clock correction status is monitored in the communication controller error vector and sync frame status register. 3 0 No clock correction error. 1 Clock correction failed. SFO Sync frame overflow. Set when either the number of sync frames received during the last communication cycle or the total number of different sync frame IDs received during the last double cycle exceeds the maximum number of sync frames as defined by SNM in the GTU configuration register 2. 0 Number of received sync frames in the configured range. 1 More sync frames received than configured by SNM. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1167 FlexRay Module Registers www.ti.com Table 23-91. Error Interrupt Register (EIR) Field Descriptions (continued) Bit Field 2 SFBM 1 0 Value Description Sync frames below minimum. This flag signals that the number of sync frames received during the last communication cycle was below the limit required by the FlexRay protocol. The minimum number of sync frames per communication cycle is 2. 0 Two or more sync frames received during last communication cycle. 1 Less than two sync frame received during last communication cycle. CNA Command not accepted. The flag signals that the controller host interface command vector CMD in the SUC configuration register 1 was reset to 0000 due to an unaccepted controller host interface command. 0 Controller host interface command is accepted. 1 Controller host interface command is not accepted. PEMC POC error mode changed. This flag is set whenever the error mode signaled by ERRM in the communication controller error vector register has changed. 0 Error mode has not changed. 1 Error mode has changed. 23.19.2.2.2 Status Interrupt Register (SIR) The flags are set by the communication controller when a corresponding event occurs. They remain set until the host clears them. If enabled, an interrupt is pending while one of the bits is set. A flag is cleared by writing a 1 to the corresponding bit position. Writing a 0 has no effect on the flag. A hardware reset will also clear the register. Figure 23-111 and Table 23-92 illustrate this register. Figure 23-111. Status Interrupt Register (SIR) [offset_CC = 24h] 31 25 24 17 16 Reserved 26 MTSB WUPB 23 Reserved 18 MTSA WUPA R-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SDS MBSI SUCS SWE TOBC TIBC TI1 TI0 NMVC RFCL RFNE RXI TXI CYCS CAS WST R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-92. Status Interrupt Register (SIR) Field Descriptions Bit 31-26 25 24 23-18 17 1168 Field Reserved Value 0 MTSB Reads return 0. Writes have no effect. MTS received on channel B. Media access test symbol received on channel B during the last symbol window. Updated by the communication controller for each channel at the end of the symbol window. 0 No MTS symbol is received. 1 MTS symbol is received. WUPB Reserved Description Wakeup pattern channel B. This flag is set by the communication controller when a wakeup pattern was received on channel B. 0 No wakeup pattern is on channel B. 1 Wakeup pattern is on channel B. 0 Reads return 0. Writes have no effect. MTSA MTS received on channel A. Media access test symbol received on channel A during the last symbol window. Updated by the communication controller for each channel at the end of the symbol window. 0 No MTS symbol is received. 1 MTS symbol is received. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 23-92. Status Interrupt Register (SIR) Field Descriptions (continued) Bit Field 16 WUPA 15 14 Value Description Wakeup pattern channel A. This flag is set by the communication controller when a wakeup pattern was received on channel A. 0 No wakeup pattern is on channel A. 1 Wakeup pattern is on channel A. SDS Start of Dynamic Segment. This flag is set by the communication controller when the dynamic segment starts. 0 Dynamic segment is not yet started. 1 Dynamic segment is started. MBSI Message buffer status interrupt. This flag is set by the communication controller if bit MBI of a dedicated receive buffer is set to 1 and when the status of that message buffer has been updated due to reception of a: • valid frame with payload • valid frame with payload zero • null frame • corrupted frame or an empty slot 13 12 11 10 9 8 7 6 0 No message buffer status has been updated. 1 Message buffer status of at least one receive buffer has been updated. SUCS Startup completed successfully. This flag is set whenever a startup completed successfully and the communication controller entered NORMAL_ACTIVE state. 0 No startup is completed successfully. 1 Startup is completed successfully. SWE Stop watch event. If enabled by the respective control bits located in the Stop watch register, a detected edge on external stop watch pin or a software trigger event will generate a stop watch event. 0 No stop watch event. 1 Stop watch event occurred. TOBC Transfer output buffer completed. This flag is set whenever a transfer from the message RAM to the output buffer has completed and bit OBSYS in the output buffer command request register has been reset by the message handler. 0 No transfer completed since bit was reset. 1 Transfer between message RAM and output buffer is completed. TIBC Transfer input buffer completed. This flag is set whenever a transfer from input buffer to the message RAM has completed and bit IBSYS in the input buffer command request register has been reset by the message handler. 0 No transfer completed since bit was reset. 1 Transfer between input buffer and message RAM is completed. TI1 Timer interrupt 1. This flag is set whenever the conditions programmed in the timer interrupt 1 configuration register are met. A timer interrupt 1 is also signaled on pin CC_tint1. 0 No timer interrupt 1. 1 Timer interrupt 1 occurred. TI0 Timer interrupt 0. This flag is set whenever the conditions programmed in the timer interrupt 0 configuration register are met. A timer interrupt 0 is also signaled on pin CC_tint0. 0 No timer interrupt 0. 1 Timer interrupt 0 occurred. NMVC Network management vector changed. This interrupt flag signals a change in the Network management vector visible to the host. 0 No change in the network management vector. 1 Network management vector is changed. RFCL Receive FIFO critical level. This flag is set when the receive FIFO fill level FSR.RFFL is equal or greater than the critical level as configured by FCL.CL. 0 Receive FIFO is below critical level. 1 Receive FIFO critical level is reached. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1169 FlexRay Module Registers www.ti.com Table 23-92. Status Interrupt Register (SIR) Field Descriptions (continued) Bit Field 5 RFNE 4 3 2 1 0 1170 Value Description Receive FIFO not empty. This flag is set by the communication controller when a received valid frame was stored into the empty receive FIFO. The actual state of the receive FIFO is monitored in register FSR. 0 Receive FIFO is empty. 1 Receive FIFO is not empty. RXI Receive interrupt. This flag is set by the communication controller when the payload segment of a received valid frame was stored into the data section of a matching dedicated receive buffer and if bit MBI of that message buffer is set to 1. 0 No data section has been updated. 1 At least one data section has been updated. TXI Transmit interrupt. This flag is set by the communication controller after successful frame transmission if bit MBI in the respective message buffer is set to 1. 0 No frame is transmitted. 1 At least one frame was transmitted successfully. CYCS Cycle start interrupt. This flag is set by the communication controller when a communication cycle starts. 0 No communication cycle is started. 1 Communication cycle is started. CAS Collision avoidance symbol. This flag is set by the communication controller when a CAS was received. 0 No CAS symbol is received. 1 CAS symbol is received. WST This flag is set when WSV in the communication controller status vector register changes to a value other than UNDEFINED. 0 Wakeup status is unchanged. 1 Wakeup status is changed. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.2.3 Error Interrupt Line Select (EILS) The settings in the error interrupt line select register assigns an interrupt generated by a specific error interrupt flag to one of the two module interrupt lines (CC_int0 or CC_int1). Figure 23-112 and Table 23-93 illustrate this register. Figure 23-112. Error Interrupt Line Select Register (EILS) [offset_CC = 28h] 31 27 Reserved R-0 15 12 26 25 24 23 19 TABBL LTVBL EDBL Reserved R/W-0 R/W-0 R-0 R/W-0 18 17 16 TABAL LTVAL EDAL R/W-0 R/W-0 R/W-0 11 10 9 8 7 6 5 4 3 2 1 0 Reserved MHFL IOBAL IIBAL EFAL RFOL PERRL CCLL CCFL SFOL SFBML CNAL PEMCL R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-93. Error Interrupt Line Select Register (EILS) Field Descriptions Bit 31-27 26 25 24 23-19 18 17 16 15-12 11 10 9 8 Field Value Reserved 0 TABBL Transmission Across Boundary Channel B Interrupt Line. Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. Latest Transmit Violation Channel B Interrupt Line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. EDBL Error Detected on Channel B Interrupt Line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. 0 Reads return 0. Writes have no effect. TABAL Transmission Across Boundary Channel A Interrupt Line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. LTVAL Latest Transmit Violation Channel A Interrupt Line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. EDAL Reserved Reads return 0. Writes have no effect. 0 LTVBL Reserved Description Error Detected on Channel A Interrupt Line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. 0 Reads return 0. Writes have no effect. MHFL Message Handler Constraints Flag Interrupt Line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. IOBAL Illegal Output Buffer Access Interrupt Line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. IIBAL Illegal Input Buffer Access Interrupt Line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. EFAL Empty FIFO Access Interrupt Line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1171 FlexRay Module Registers www.ti.com Table 23-93. Error Interrupt Line Select Register (EILS) Field Descriptions (continued) Bit Field 7 RFOL 6 5 4 3 2 1 0 1172 Value Description Receive FIFO Overrun Interrupt Line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. PERRL Parity Error Interrupt Line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. CCLL CHI Command Locked Interrupt Line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. CCFL Clock Correction Failure Interrupt Line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. SFOL Sync Frame Overflow Interrupt Line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. SFBML Sync Frames Below Minimum Interrupt Line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. CNAL Command Not Accepted Interrupt Line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. PEMCL POC Error Mode Changed Interrupt Line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.2.4 Status Interrupt Line Select (SILS) The settings in the status interrupt line select register assign an interrupt generated by a specific status interrupt flag to one of the two module interrupt lines (CC_int0 or CC_int1). Figure 23-113 and Table 23-94 illustrate this register. Figure 23-113. Status Interrupt Line Select Register (SILS) [offset_CC = 2Ch] 31 25 24 17 16 Reserved 26 MTSBL WUPBL 23 Reserved 18 MTSAL WUPAL R-0 R/W-1 R/W-1 R-0 R/W-1 R/W-1 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SDSL MBSIL SUCSL SWEL TOBCL TIBCL TI1L TI0L NMVCL RFFL RFNEL RXIL TXIL CYCSL CASL WSTL R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-94. Status Interrupt Line Select Register (SILS) Field Descriptions Bit 31-26 25 24 23-18 17 16 15 14 13 12 11 10 Field Value Reserved 0 MTSBL Reads return 0. Writes have no effect. Media access test symbol channel B interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. WUPBL Reserved Description Wakeup pattern channel B interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. 0 Reads return 0. Writes have no effect. MTSAL Media access test symbol channel A interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. WUPAL Wakeup pattern channel A interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. SDSL Start of Dynamic Segment interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. MBSIL Message buffer status interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. SUCSL Startup completed Successfully interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. SWEL Stop watch event interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. TOBCL Transfer output buffer completed interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. TIBCL Transfer input buffer completed interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1173 FlexRay Module Registers www.ti.com Table 23-94. Status Interrupt Line Select Register (SILS) Field Descriptions (continued) Bit Field 9 TI1L 8 7 6 5 4 3 2 1 0 1174 Value Description Timer interrupt 1 line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. TI0L Timer interrupt 0 line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. NMVCL Network management vector changed interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. RFCLL Receive FIFO full interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. RFNEL Receive FIFO not empty interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. RXIL Receive interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. TXIL Transmit interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. CYCSL Cycle start interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. CASL Collision Avoidance symbol interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. WSTL Wakeup status interrupt line. 0 Interrupt is assigned to interrupt line CC_int0. 1 Interrupt is assigned to interrupt line CC_int1. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.2.5 Error Interrupt Enable Set/Reset (EIES/EIER) The settings in the error interrupt enable register determine which status changes in the error interrupt register will result in an interrupt. The enable bits are set by writing to EIES (address 30h) and reset by writing to EIER (address 34h). Writing 1 sets or resets the specific enable bit, writing 0 has no effect. Figure 23-114 and Table 23-95 illustrate this register. Figure 23-114. Error Interrupt Enable Set/Reset Register (EIES/EIER) [offset_CC = 30h/34h] 31 26 25 24 18 17 16 Reserved 27 TABBE LTVBE EDBE Reserved TABAE LTVAE EDAE R-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 15 12 23 19 11 10 9 8 7 6 5 4 3 2 1 0 Reserved MHFE IOBAE IIBAE EFAE RFOE PERRE CCLE CCFE SFOE SFBME CNAE PEMCE R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-95. Error Interrupt Set/Reset Register (EIES/EIER) Field Descriptions Bit 31-27 26 25 24 23-19 18 17 16 15-12 11 10 9 8 Field Value Reserved 0 TABBE 0 Interrupt is disabled. 1 Transmission across boundary channel B interrupt is enabled. Latest transmit violation channel B interrupt enable. 0 Interrupt is disabled. 1 Latest transmit violation channel B interrupt is enabled. EDBE Error detected on channel B interrupt enable. 0 Interrupt is disabled. 1 Error detected on channel B interrupt is enabled. 0 Reads return 0. Writes have no effect. TABAE Transmission across boundary channel A interrupt enable. 0 Interrupt is disabled. 1 Transmission across boundary channel A interrupt is enabled. LTVAE Latest transmit violation channel A interrupt enable. 0 Interrupt is disabled. 1 Latest transmit violation channel A interrupt is enabled. EDAE Reserved Reads return 0. Writes have no effect. Transmission across boundary channel B interrupt enable. LTVBE Reserved Description Error detected on channel A interrupt enable. 0 Interrupt is disabled. 1 Error detected on channel A interrupt is enabled. 0 Reads return 0. Writes have no effect. MHFE Message handler constraints flag interrupt enable. 0 Interrupt is disabled. 1 Message handler constraints flag interrupt is enabled. IOBAE Illegal output buffer access interrupt enable. 0 Interrupt is disabled. 1 Illegal output buffer access interrupt is enabled. IIBAE Illegal input buffer access interrupt enable. 0 Interrupt is disabled. 1 Illegal input buffer access interrupt is enabled. EFAE Empty FIFO access interrupt enable. 0 Interrupt is disabled. 1 Empty FIFO access interrupt is enabled. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1175 FlexRay Module Registers www.ti.com Table 23-95. Error Interrupt Set/Reset Register (EIES/EIER) Field Descriptions (continued) Bit Field 7 RFOE 6 5 4 3 2 1 0 1176 Value Description Receive FIFO overrun interrupt enable. 0 Interrupt is disabled. 1 Receive FIFO overrun interrupt is enabled. PERRE Parity error interrupt enable. 0 Interrupt is disabled. 1 Parity error interrupt is enabled. CCLE CHI command locked interrupt enable. 0 Interrupt is disabled. 1 CHI command locked interrupt is enabled. CCFE Clock correction failure interrupt enable. 0 Interrupt is disabled. 1 Clock correction failure interrupt is enabled. SFOE Sync frame overflow interrupt enable. 0 Interrupt is disabled. 1 Sync frame overflow interrupt is enabled. SFBME Sync frames below minimum interrupt enable. 0 Interrupt is disabled. 1 Sync frames below minimum interrupt is enabled. CNAE Command not Accepted interrupt enable. 0 Interrupt is disabled. 1 Command not valid interrupt is enabled. PEMCE POC error mode changed interrupt enable. 0 Interrupt is disabled. 1 Protocol error mode changed interrupt is enabled. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.2.6 Status Interrupt Enable Set/Reset Register (SIES/SIER) The settings in the status interrupt enable register determine which status changes in the status interrupt register will result in an interrupt. The enable bits are set by writing to SIES (address 38h) and reset by writing to SIER (address 3Ch). Writing 1 sets or resets the specific enable bit, writing 0 has no effect. Figure 23-115 and Table 23-96 illustrate this register. Figure 23-115. Status Interrupt Enable Set/Reset Register (SIES/SIER) [offset_CC = 38h/3Ch] 31 26 Reserved 25 24 23 18 MTSBE WUPBE R-0 R/W-0 Reserved R/W-0 17 16 MTSAE WUPAE R-0 R/W-0 R/W-0 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 SDSE MBSIE SUCSE SWEE TOBCE TIBCE TI1E TI0E NMVCE RFFE RFNEE RXIE TXIE CYCSE CASE WSTE R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-96. Status Interrupt Enable Set/Reset Register (SIES/SIER) Field Descriptions Bit 31-26 25 24 23-18 17 16 15 14 13 12 11 10 Field Value Reserved 0 MTSBE Reads return 0. Writes have no effect. MTS received on channel B interrupt enable. 0 Interrupt is disabled. 1 MTS received on channel B interrupt is enabled. WUPBE Reserved Description Wakeup pattern channel B interrupt enable. 0 Interrupt is disabled. 1 Wakeup pattern channel B interrupt is enabled. 0 Reads return 0. Writes have no effect. MTSAE MTS received on channel A interrupt enable 0 Interrupt is disabled. 1 MTS received on channel A interrupt is enabled. WUPAE Wakeup pattern channel A interrupt enable. 0 Interrupt is disabled. 1 Wakeup pattern channel A interrupt is enabled. SDSE Start of dynamic segment interrupt enable. 0 Interrupt is disabled. 1 Start of dynamic segment interrupt is enabled. MBSIE Message buffer status interrupt enable. 0 Interrupt is disabled. 1 Message buffer status interrupt is enabled. SUCSE Startup completed successfully interrupt enable. 0 Interrupt is disabled. 1 Startup completed successfully interrupt is enabled. SWEE Stop watch event interrupt enable. 0 Interrupt is disabled. 1 Stop watch event interrupt is enabled. TOBCE Transfer output buffer completed interrupt enable. 0 Interrupt is disabled. 1 Transfer output buffer completed interrupt is enabled. TIBCE Transfer input buffer completed interrupt enable. 0 Interrupt is disabled. 1 Transfer input buffer completed interrupt is enabled. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1177 FlexRay Module Registers www.ti.com Table 23-96. Status Interrupt Enable Set/Reset Register (SIES/SIER) Field Descriptions (continued) Bit Field 9 TI1E 8 7 6 5 4 3 2 1 0 1178 Value Description Timer interrupt 1 enable. 0 Interrupt is disabled. 1 Timer interrupt is 1 is enabled. TI0E Timer interrupt 0 enable. 0 Interrupt is disabled. 1 Timer interrupt is 0 is enabled. NMVCE Network management vector changed interrupt enable. 0 Interrupt is disabled. 1 Network management vector changed interrupt is enabled. RFCLE Receive FIFO full interrupt enable. 0 Interrupt is disabled. 1 Receive FIFO overrun interrupt is enabled. RFNEE Receive FIFO not empty interrupt enable. 0 Interrupt is disabled. 1 Receive FIFO not empty interrupt is enabled. RXIE Receive interrupt enable. 0 Interrupt is disabled. 1 Receive interrupt is enabled. TXIE Transmit interrupt enable. 0 Interrupt is disabled. 1 Transmit interrupt is enabled. CYCSE Cycle start interrupt enable. 0 Interrupt is disabled. 1 Cycle start interrupt is enabled. CASE Collision avoidance symbol interrupt enable. 0 Interrupt is disabled. 1 Collision Avoidance symbol interrupt is enabled. WSTE Wakeup status interrupt enable. 0 Interrupt is disabled. 1 Wakeup status interrupt is enabled. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.2.7 Interrupt Line Enable Register (ILE) Each of the two interrupt lines (CC_int0, CC_int1) can be enabled and disabled separately by programming bit EINT0 and EINT1. Figure 23-116 and Table 23-97 illustrate this register. Figure 23-116. Interrupt Line Enable Register (ILE) [offset_CC = 40h] 31 16 Reserved R-0 15 2 1 0 Reserved EINT R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-97. Interrupt Line Enable Register (ILE) Field Descriptions Bit Field 31-2 Reserved 1-0 EINT Value 0 Description Reads return 0. Writes have no effect. Enable interrupt line (1-0). 0 Interrupt line CC_int1 and CC_int0 are disabled. 1h Interrupt line CC_int1 is disabled and CC_int0 is enabled. 2h Interrupt line CC_int1 is enabled and CC_int0 is disabled. 3h Interrupt line CC_int1 and CC_int0 are enabled. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1179 FlexRay Module Registers www.ti.com 23.19.2.2.8 Timer 0 Configuration Register (T0C) This absolute timer specifies, in terms of cycle count and macrotick, the point in time when the timer 0 interrupt occurs. The timer 0 interrupt generates a non maskable interrupt signal on CC_tint0. Timer 0 can be activated as long as the POC is either in NORMAL_ACTIVE state or in NORMAL_PASSIVE state. Timer 0 is deactivated when leaving NORMAL_ACTIVE state or NORMAL_PASSIVE state except for transitions between the two states. Before reconfiguration of the timer, the timer has to be halted first by writing bit T0RC to 0. Figure 23-117 and Table 23-98 illustrate this register. Figure 23-117. Timer 0 Configuration Register (T0C) [offset_CC = 44h] 31 30 29 16 Reserved T0MO R-0 R/W-0 1 0 Rsvd 15 14 T0CC 8 7 Reserved 2 T0MS T0RC R-0 R/W-0 R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-98. Timer 0 Configuration Register (T0C) Field Descriptions Bit Field 31-30 Reserved 29-16 T0MO 15 Reserved 14-8 T0CC 7-2 Reserved 1 0 1180 Value 0 0-3FFFh 0 0-FFh 0 T0MS Description Reads return 0. Writes have no effect. Timer 0 macrotick offset. Configures the macrotick offset from the beginning of the cycle where the interrupt is to occur. The Timer 0 interrupt occurs at this offset for each cycle in the cycle set. Reads return 0. Writes have no effect. Timer 0 cycle code. The 7-bit timer 0 cycle code determines the cycle set used for generation of the timer 0 interrupt. Reads return 0. Writes have no effect. Timer 0 mode select. 0 Single-shot mode 1 Continuous mode T0RC Timer 0 run control. 0 Timer 0 is halted. 1 Timer 0 is running. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.2.9 Timer 1 Configuration Register (T1C) This relative timer generates an interrupt on the non maskable interrupt signal CC_tint1 after the specified number of macroticks has expired. Timer 1 can be activated as long as the POC is either in NORMAL_ACTIVE state or in NORMAL_PASSIVE state. Timer 1 is deactivated when leaving NORMAL_ACTIVE state or NORMAL_PASSIVE state except for transitions between the two states. Before reconfiguration of the timer, the timer has to be halted first by writing a 0 to bit T1RC. Figure 23-118 and Table 23-99 illustrate this register. Figure 23-118. Timer 1 Configuration Register (T1C) [offset_CC = 48h] 31 30 29 16 Reserved T1MC R-0 R/W-2 15 2 Reserved R-0 1 0 T1MS T1RC R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-99. Timer 1 Configuration Register (T1C) Field Descriptions Bit Field 31-30 Reserved 29-16 T1MC 15-2 1 0 Reserved Value 0 Description Reads return 0. Writes have no effect. Timer 1 macrotick count. When the configured macrotick count is reached, the timer 1 interrupt is generated. In case the configured macrotick count is not within the valid range, timer 1 will not start. 2h-3FFFh 2 to 16383 macroticks in continuous mode. 1h-3FFFh 1 to 16383 macroticks in single-shot mode. 0 T1MS Reads return 0. Writes have no effect. Timer 1 mode select. 0 Single-shot mode 1 Continuous mode T1RC Timer 1 run control. 0 Timer 1 is halted. 1 Timer 1 is running. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1181 FlexRay Module Registers www.ti.com 23.19.2.2.10 Stop Watch Register 1 Register (STPW1) The stop watch is activated by an interrupt event (CC_int0 or CC_int1), by writing bit SSWT to 1, or by an external event. With the macrotick counter increment following next to the stop watch activation the actual cycle counter and macrotick value is stored in the stop watch register 1 (stop watch event) and the slot counter values for channel A and channel B are stored in stop watch register 2. Figure 23-119 and Table 23-100 illustrate this register. Figure 23-119. Stop Watch Register 1 (STPW1) [offset_CC = 4Ch] 31 30 29 16 Reserved SMTV R-0 R-0 15 7 6 5 4 3 Reserved 14 13 SCCV 8 Rsvd EINT1 EINT0 EETP SSWT EDGE SWMS ESWT 2 1 R-0 R-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-100. Stop Watch Register 1 (STPW1) Field Descriptions Bit Field 31-30 Reserved 29-16 SMTV 15-14 Reserved 13-8 SCCV 7 Reserved 6 EINT1 5 4 3 2 1 0 1182 Value 0 0-3E80h 0 0-3Fh 0 Description Reads return 0. Writes have no effect. Stopped macrotick value. State of the macrotick counter when the stop watch event occurred. Reads return 0. Writes have no effect. Stopped cycle counter value. State of the cycle counter when the stop watch event occurred. Reads return 0. Writes have no effect. Enable interrupt 1 trigger. Enables stop watch trigger by CC_int1 event if ESWT = 1. 0 Stop watch trigger by CC_int1 is disabled. 1 CC_int1 event triggers stop watch. EINT0 Enable interrupt 0 trigger. Enables stop watch trigger by CC_int0 event if ESWT = 1. 0 Stop watch trigger by CC_int0 is disabled. 1 CC_int0 event triggers stop watch. EETP Enable external trigger pin. Enables stop watch trigger event from external pin, if ESWT = 1. 0 External trigger is disabled. 1 Stop watch activated by external trigger. SSWT Software stop watch trigger. When the host writes this bit to 1 the stop watch is activated. After the actual cycle counter and macrotick value are stored in the stop watch register this bit is reset to 0. The bit is only writable while ESWT = 0. 0 Software trigger reset. 1 Stop watch activated by software trigger. EDGE Stop watch trigger edge select. 0 Falling edge 1 Rising edge SWMS Stop watch mode select. 0 Single-shot mode 1 Continuous mode ESWT External stop watch trigger. If enabled an external event activates the stop watch. In single-shot mode this bit is reset to 0 after the stop watch event occurred. 0 External stop watch trigger is disabled. 1 External stop watch trigger is enabled. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com NOTE: Bits ESWT and SSWT cannot be set to 1 simultaneously. In this case the write access to the register is ignored, and both bits keep their previous values. Either the external stop watch trigger or the software stop watch trigger may be used. The availability of an external stop watch pin is device dependant. Please refer to the device data sheet for details. 23.19.2.2.11 Stop Watch Register 2 Register (STPW2) Figure 23-120 and Table 23-101 illustrate this register. Figure 23-120. Stop Watch Register 2 (STPW2) [offset_CC = 50h] 31 27 26 16 Reserved SSCVB R-0 R-0 15 11 10 0 Reserved SSCVA R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-101. Stop Watch Register 2 (STPW2) Field Descriptions Bit Field 31-27 Reserved 26-16 SSCVB 15-11 Reserved 10-0 SSCVA Value 0 0-7FFh 0 0-7FFh Description Reads return 0. Writes have no effect. Stop watch captured slot counter value channel B. State of the slot counter for channel B when the stop watch event occurred. Reads return 0. Writes have no effect. Stop watch captured slot counter value channel A. State of the slot counter for channel A when the stop watch event occurred. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1183 FlexRay Module Registers www.ti.com 23.19.2.3 Control Registers This section describes the registers provided by the communication controller to allow the host to control the operation of the communication controller. The FlexRay protocol specification requires the host to write application configuration data in CONFIG state only. NOTE: Be aware that the configuration registers are not locked for writing in DEFAULT_CONFIG state. The configuration data is reset when DEFAULT_CONFIG state is entered from hardware reset. To change POC state from DEFAULT_CONFIG to CONFIG state the host has to apply the controller host interface command CONFIG. If the host wants the communication controller to leave CONFIG state, the host has to proceed as described in Lock Register (LCK). NOTE: All bits marked with an asterisk (*) can be updated in DEFAULT_CONFIG or CONFIG state only. 23.19.2.3.1 SUC Configuration Register 1 (SUCC1) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 23-121 and Table 23-102 illustrate this register. Figure 23-121. SUC Configuration Register 1 (SUCC1) [offset_CC = 80h] 31 27 26 25 Reserved 28 CCHB* CCHA* MTSB* R-0 R/W-1 R/W-1 R/W-0 R/W-0 R/W-0 R/W-1 15 11 10 CSA* Rsvd R/W-2h R-0 9 24 MTSA* 8 TXSY* TXST* R/W-0 R/W-0 23 22 HCSE* TSM* 7 21 20 16 WUCS* PTA* R/W-0 R/W-0 6 4 3 0 PBSY Reserved CMD* R-1 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 23-102. SUC Configuration Register 1 (SUCC1) Field Descriptions Bit 31-28 27 26 25 Field Reserved Value 0 CCHB Description Reads return 0. Writes have no effect. Connected to channel B. Configures whether the node is connected to channel B. 0 Node is not connected to channel B. 1 Node is connected to channel B (default by hardware reset). CCHA Connected to channel A. Configures whether the node is connected to channel A. 0 Node is not connected to channel A. 1 Node is connected to channel A (default by hardware reset). MTSB Select channel B for MTS Transmission. The bit selects channel B for MTS symbol transmission if requested by writing CMD = 8h. The flag is reset by default and may be modified only in DEFAULT_CONFIG or CONFIG state. 0 Channel B is not selected for MTS transmission. 1 Channel B is selected for MTS transmission. Note: MTSB may also be changed outside DEFAULT_CONFIG or CONFIG state when the write to SUC Configuration Register 1 (SUCC1) is directly preceded by the unlock sequence for the Configuration Lock Key as described in the Lock Register (LCK). This may be combined with CHI command SEND_MTS. If both bits MTSA and MTSB are set to 1 an MTS symbol will be transmitted on both channels when requested by writing CMD = 8h. 1184 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 23-102. SUC Configuration Register 1 (SUCC1) Field Descriptions (continued) Bit Field 24 MTSA Value Description Select channel A for MTS Transmission. The bit selects channel A for MTS symbol transmission if requested by writing CMD = 8h. The flag is reset by default and may be modified only in DEFAULT_CONFIG or CONFIG state. 0 Channel A is not selected for MTS transmission. 1 Channel A is selected for MTS transmission. Note: MTSA may also be changed outside DEFAULT_CONFIG or CONFIG state when the write to SUC Configuration Register 1 (SUCC1) is directly preceded by the unlock sequence for the Configuration Lock Key as described in the Lock Register (LCK). This may be combined with CHI command SEND_MTS. If both bits MTSA and MTSB are set to 1 an MTS symbol will be transmitted on both channels when requested by writing CMD = 8h. 23 22 21 HCSE Halt due to clock sync error. Controls reaction of the communication controller to a clock synchronization error. The bit can be modified in DEFAULT_CONFIG or CONFIG state only. 0 Communication controller will enter/remain in NORMAL_PASSIVE. 1 Communication controller will enter HALT state. TSM Transmission slot mode. Selects the initial transmission slot mode. In SINGLE slot mode the communication controller may only transmit in the pre-configured key slot. This slot is defined by the key slot ID, which is configured in the header section of message buffer 0. In all slot mode the communication controller may transmit in all slots. The bit can be written in DEFAULT_CONFIG or CONFIG state only. The communication controller changes to all slot mode when the host successfully applied the ALL_SLOTS command by writing CMD = 5h in POC states NORMAL_ACTIVE or NORMAL_PASSIVE. The actual slot mode is monitored by SLM in register CCSV. 0 All slot mode 1 Single slot mode (default by hardware reset) WUCS Wakeup channel select. With this bit the host selects the channel on which the communication controller sends the Wakeup pattern. The communication controller ignores any attempt to change the status of this bit when not in DEFAULT_CONFIG or CONFIG state. 0 Send wakeup pattern on channel A. 1 Send wakeup pattern on channel B. 20-16 PTA 0-1Fh even/odd cycle pairs Passive to active. Defines the number of consecutive even/odd cycle pairs that must have valid clock correction terms before the communication controller is allowed to transit from NORMAL_PASSIVE to NORMAL_ACTIVE state. If set to 0 the communication controller is not allowed to transit from NORMAL_PASSIVE to NORMAL_ACTIVE state. It can be modified in DEFAULT_CONFIG or CONFIG state only. 15-11 CSA 2h-1Fh Cold start attempts. Configures the maximum number of attempts that a cold starting node is permitted to try to start up the network without receiving any valid response from another node. It can be modified in DEFAULT_CONFIG or CONFIG state only. Must be identical in all nodes of a cluster. 10 Reserved 9 TXSY 0 Reads return 0. Writes have no effect. Transmit sync frame in key slot. Defines whether the key slot is used to transmit a sync frame. The bit can be modified in DEFAULT_CONFIG or CONFIG state only. Note: The protocol requires that both bits TXST and TXSY are set for coldstart nodes. 8 0 No sync frame transmission in key slot, node is neither sync nor coldstart node. 1 Key slot used to transmit sync frame, node is sync node. TXST Transmit startup frame in key slot. Defines whether the key slot is used to transmit a startup frame. The bit can be modified in DEFAULT_CONFIG or CONFIG state only. Note: The protocol requires that both bits TXST and TXSY are set for coldstart nodes. 7 6-4 0 No startup frame transmitted in key slot, node is non-coldstarter. 1 Key slot used to transmit startup frame, node is leading or following coldstarter. PBSY Reserved POC busy. Signals that the POC is busy and cannot accept a command from the host. CMD is locked against write accesses. 0 POC is not busy, CMD(3-0) is writable. 1 POC is busy, CMD(3-0) is locked. 0 Reads return 0. Writes have no effect. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1185 FlexRay Module Registers www.ti.com Table 23-102. SUC Configuration Register 1 (SUCC1) Field Descriptions (continued) Bit Field 3-0 CMD Value Description The controller host interface command vector. The host may write any controller host interface command at any time, but certain commands are enabled only in certain POC states. If a command is not enabled, it will not be executed, the controller host interface command vector CMD will be reset to 0000 = command_not_accepted, and flag CNA in the error interrupt register will be set to 1. In case the previous controller host interface (CHI) command has not yet completed, EIR.CCL is set to 1 together with EIR.CNA; the CHI command needs to be repeated. Except for HALT state, a POC state change command applied while the communication controller is already in the requested POC state neither causes a state change nor will EIR.CNA be set. 0 command_not_accepted 1h CONFIG 2h READY 3h WAKEUP 4h RUN 5h ALL_SLOTS 6h HALT 7h FREEZE 8h SEND_MTS 9h ALLOW_COLDSTART Ah RESET_STATUS_INDICATORS Bh MONITOR_MODE Ch CLEAR_RAMS Dh-Eh Fh Reserved LOOPBACK MODE Controller Host Interface Command Vector: The following gives more information about the controller host interface commands. • Reading CMD shows whether the last controller host interface command was accepted. • The actual POC state is monitored by POCS in the communication controller status vector • In most cases the Host must check SUCC1.PBSY before writing a new CHI command. command_not_accepted CMD is reset to 0000 due to one of the following conditions: • Illegal command applied by the host • Host applied command to leave CONFIG state without preceding configuration lock key • Host applied new command while execution of the previous host command has not completed • Host writes command_not_accepted When CMD is reset to 0000 due to an unaccepted command, bit CNA in the error interrupt register is set, and, if enabled, an interrupt is generated. Commands which are not accepted are not executed. CONFIG Go to POC state CONFIG when called in POC states DEFAULT_CONFIG, READY, or in MONITOR_MODE. When called in HALT state the communication controller transits to POC state DEFAULT_CONFIG. When called in any other state, CMD will be reset to 0000 = command_not_accepted. READY Go to POC state READY when called in POC states CONFIG, NORMAL_ACTIVE, NORMAL_PASSIVE, STARTUP, or WAKEUP. When called in any other state, CMD will be reset to 0000 = command_not_accepted. 1186 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com WAKEUP Go to POC state WAKEUP when called in POC state READY. When called in any other state, CMD will be reset to 0000 = command_not_accepted. RUN Go to POC state STARTUP when called in POC state READY. When called in any other state, CMD will be reset to 0000 = command_not_accepted. ALL_SLOTS Leave single slot mode after successful startup / integration at the next end of cycle when called in POC states NORMAL_ACTIVE or NORMAL_PASSIVE. When called in any other state, CMD will be reset to 0000 = command_not_accepted. HALT Set the Halt request HRQ bit in the communication controller status vector register and go to POC state HALT at the next end of cycle when called in POC states NORMAL_ACTIVE or NORMAL_PASSIVE. When called in any other state, CMD will be reset to 0000 = command_not_accepted. FREEZE Go to POC state HALT immediately and set the Freeze status Indicator FSI bit in the communication controller status vector register. Can be called from any state. SEND_MTS Send single MTS symbol during the symbol window of the following cycle on the channel configured by MTSA, MTSB, when called in POC state NORMAL_ACTIVE. When called in any other state, CMD will be reset to 0000 = command_not_accepted. ALLOW_COLDSTART The command resets bit CSI in the CCSV register to enable coldstarting of the node when called in any POC state except DEFAULT_CONFIG, CONFIG or HALT. When called in these states, CMD will be reset to 0000 = command_not_accepted. RESET_STATUS_INDICATORS Reset status flags FSI, HRQ, CSNI, and CSAI in the communication controller status vector register. CLEAR_RAMS Sets bit CRAM in the message handler status register when called in DEFAULT_CONFIG or CONFIG state. When called in any other state, CMD will be reset to 0000 = command_not_accepted. Bit CRAM is also set when the communication controller leaves hardware reset. By setting bit CRAM all internal RAM blocks are initialized to zero. During the initialization of the RAMs, PBSY will show POC busy. Access to the configuration and status registers is possible during execution of CHI command CLEAR_RAMS. The initialization of the Communication Controller internal RAM blocks takes 2048 VBUS clock cycles. There should be no host access to IBF or OBF during initialization of the internal RAM blocks after hardware reset or after assertion of controller host interface command CLEAR_RAMS. Before asserting controller host interface command CLEAR_RAMS the host should be aware that no transfer between message RAM and IBF / OBF or the transient buffer RAMs is ongoing. This command also resets the message buffer status registers (MHDS, TXRQ[1-4], NDAT[1-4], MBSC[1-4]). NOTE: All accepted commands with exception of CLEAR_RAMS and SEND_MTS will cause a change of the POC state in the VBUS clock domain after at most 8 cycles of the slower of the two clocks VBUS clock and 80MHz sample clock coming from the PLL. It is assumed that POC was not busy when the command was applied and that no POC state change was forced by bus activity in that time frame. Reading register Communication Controller Status Vector (CCSV) will show data that is additionally delayed by synchronization from sample clock to VBUS clock domain and by the CPU interface. The maximum additional delay is 12 cycles of the slower of the two clocks VBUS clock and sample clock. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1187 FlexRay Module Registers www.ti.com MONITOR_MODE Enter MONITOR_MODE when called in POC state CONFIG. In this mode the communication controller is able to receive FlexRay frames and CAS / MTS symbols. It is also able to detect coding errors. The temporal integrity of received frames is not checked. This mode can be used for debugging purposes, for example, in case that the startup of a FlexRay network fails. When called in any other state, CMD will be reset to 0000 = command_not_accepted. 23.19.2.3.2 SUC Configuration Register 2 (SUCC2) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 23-122 and Table 23-103 illustrate this register. Figure 23-122. SUC Configuration Register 2 (SUCC2) [offset_CC = 84h] 31 28 27 24 23 21 20 16 Reserved LTN* Reserved LT* R-0 R/W-1h R-0 R/W-504h 15 0 LT* R/W-504h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only. Table 23-103. SUC Configuration Register 2 (SUCC2) Field Descriptions Bit Field 31-28 Reserved. 27-24 LTN 23-21 Reserved. 20-0 LT Value 0 2h-Fh Description Reads return 0. Writes have no effect. Listen timeout noise. Configures the upper limit for the startup and wakeup listen timeout in the presence of noise. Must be identical in all nodes of a cluster. The wakeup / startup noise timeout is calculated as follows: LT × (LTN + 1) 1188 0 Reads return 0. Writes have no effect. 504h-139706h µT Listen timeout. Configures the upper limit of the startup and wakeup listen timeout. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.3.3 SUC Configuration Register 3 (SUCC3) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 23-123 and Table 23-104 illustrate this register. Figure 23-123. SUC Configuration Register 3 (SUCC3) [offset_CC = 88h] 31 16 Reserved R-0 15 8 7 4 3 0 Reserved WCF* WCP* R-0 R/W-1h R/W-1h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only. Table 23-104. SUC Configuration Register 3 (SUCC3) Field Descriptions Bit Field 31-8 Reserved 7-4 WCF Value 0 1h-Fh Description Reads return 0. Writes have no effect. Maximum without clock correction fatal. These bits define the number of consecutive even/odd cycle pairs with missing clock correction terms that will cause a transition from NORMAL_ACTIVE or NORMAL_PASSIVE state. These must be identical in all nodes of a cluster. Note: The transition to HALT state is prevented if SUCC1.HCSE is not set. 3-0 WCP 1h-Fh Maximum without clock correction passive. These bits define the number of consecutive even/odd cycle pairs with missing clock correction terms that will cause a transition from NORMAL_ACTIVE to NORMAL_PASSIVE to HALT state. These must be identical in all nodes of a cluster. 23.19.2.3.4 NEM Configuration Register (NEMC) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 23-124 and Table 23-105 illustrate this register. Figure 23-124. NEM Configuration Register (NEMC) [offset_CC = 8Ch] 31 16 Reserved R-0 15 4 3 0 Reserved NML* R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 23-105. NEM Configuration Register (NEMC) Field Descriptions Bit Field 31-4 Reserved. 3-0 NML Value 0 0-Ch bytes Description Reads return 0. Writes have no effect. Network management vector length (in bytes). These bits configure the length of the NM vector. The configured length must be identical in all nodes of a cluster. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1189 FlexRay Module Registers www.ti.com 23.19.2.3.5 PRT Configuration Register 1 (PRTC1) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 23-125 and Table 23-106 illustrate this register. Figure 23-125. PRT Configuration Register 1 (PRTC1) [offset_CC = 90h] 31 26 15 14 25 24 16 RWP* Rsvd RXW* R/W-2h R-0 R/W-4Ch 13 12 11 10 4 3 0 BRP* SPP* Rsvd CASM* TSST* R/W-0 R/W-0 R-0 R/W-23h R/W-3h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 23-106. PRT Configuration Register 1 (PRTC1) Field Descriptions Bit Field Value Description 31-26 RWP 2h-3Fh Repetition of transmission wakeup pattern. These bits configure the number of repetitions (sequences) of the transmission wakeup symbol. 25 Reserved 24-16 RXW 15-14 BRP 0 4Ch-12Dh Wakeup symbol receive window length. Configures the number of bit times used by the node to test the duration of the received wakeup pattern. Must be identical in all nodes of a cluster. Baud rate prescaler. These bits configure the baud rate on the FlexRay bus. The baud rates listed below are valid with a sample clock of 80 MHz. One bit time always consists of 8 samples independent of the configured baud rate. 0 10 Mbit/s (Sample Clock Period = 12.5ns; 1 µT = 25ns; Samples per µT = 2) 1h 5 Mbit/s (Sample Clock Period = 25ns; 1 µT = 25ns; Samples per µT = 1) 2h, 3h 13-12 Reads return 0. Writes have no effect. SPP 2.5 Mbit/s (Sample Clock Period = 50ns; 1 µT = 50ns; Samples per µT = 1) Strobe Point Position. Defines the sample count value for strobing. The strobed bit value is set to the voted value when the sample count is incremented to the value configured by SPP. Note: The current revision 2.1 of the FlexRay protocol requires that SPP = 00. The alternate strobe point positions could be used to compensate for asymmetries in the physical layer. 11 Reserved 10-4 CASM 3-0 TSST 1190 0, 3h Sample 5 1h Sample 4 2h Sample 6 0 Reads return 0. Writes have no effect. 43h-63h bit times Collision avoidance symbol max (in bit times). These bits configure the upper limit of the acceptance window for a collision avoidance symbol (CAS). CASM6 is always 1. 3h-Fh bit times Transmission start sequence transmitter (in bit times). These bits configure the duration of the transmission start sequence (TSS) in terms of bit times (1 bit time = 4 µT = 100ns @ 10Mbps). Must be identical in all nodes of a cluster. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.3.6 PRT Configuration Register 2 (PRTC2) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 23-126 and Table 23-107 illustrate this register. Figure 23-126. PRT Configuration Register 2 (PRTC2) [offset_CC = 94h] 31 30 29 24 23 16 Reserved TXL* TXI* R-0 R/W-Fh R/W-2Dh 15 14 13 8 7 6 5 0 Reserved RXL* Reserved RXI* R-0 R/W-Ah R-0 R/W-Eh LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 23-107. PRT Configuration Register 2 (PRTC2) Field Descriptions Bit Field 31-30 Reserved 29-24 TXL 23-16 TXI 15-14 Reserved 13-8 RXL 7-6 Reserved 5-0 RXI Value 0 Fh-3Ch bit times Description Reads return 0. Writes have no effect. Wakeup symbol transmit low (in bit times). These bits configure the active low phase of the wakeup symbol. The duration must be identical in all nodes of a cluster. 2Dh-B4h bit times Wakeup symbol transmit idle (in bit times). These bits configure the number of bit times used by the node to transmit the idle phase of the wakeup symbol. Durations must be identical in all nodes of a cluster. 0 Ah-37h bit times 0 Eh-37h bit times Reads return 0. Writes have no effect. Wakeup symbol receive low (in bit times). These bits configure the number of bit times used by the node to test the duration of the low phase of the received wakeup symbol. Must be identical in all nodes of a cluster. Reads return 0. Writes have no effect. Wakeup symbol receive idle (in bit times). These bits configure the number of bit times used by the node to test the duration of the idle phase of the received wakeup symbol. Must be identical in all nodes of a cluster. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1191 FlexRay Module Registers www.ti.com 23.19.2.3.7 MHD Configuration Register (MHDC) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 23-127 and Table 23-108 illustrate this register. Figure 23-127. MHD Configuration Register (MHDC) [offset_CC = 98h] 31 29 28 16 Reserved SLT* R-0 R/W-2h 15 7 6 0 Reserved SFDL* R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 23-108. MHD Configuration Register (MHDC) Field Descriptions Bit Field 31-29 Reserved 28-16 SLT 15-7 Reserved 6-0 SFDL 1192 Value 0 0-1F2Dh minislots 0 0-7Fh Description Reads return 0. Writes have no effect. Start of latest transmit (in minislots). These bits configure the maximum minislot value allowed before inhibiting new frame transmissions in the Dynamic Segment of the cycle. There is no transmission in dynamic segment if SLT is cleared to 0. Reads return 0. Writes have no effect. Static frame data length. These bits configure the cluster-wide payload length for all frames sent in the static segment in double bytes. The payload length must be identical in all nodes of a cluster. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.3.8 GTU Configuration Register 1 (GTUC1) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 23-128 and Table 23-109 illustrate this register. Figure 23-128. GTU Configuration Register 1 (GTUC1) [offset_CC = A0h] 31 20 19 16 Reserved UT* R-0 R/W-0 15 0 UT* R/W-0280h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 23-109. GTU Configuration Register 1 (GTUC1) Field Descriptions Bit Field Value 31-20 Reserved. 19-0 UT 0 280h-9C400h µT Description Reads return 0. Writes have no effect. Microtick per cycle (in microticks). These bits configure the duration of the communication cycle in microticks. 23.19.2.3.9 GTU Configuration Register 2 (GTUC2) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 23-129 and Table 23-110 illustrate this register. Figure 23-129. GTU Configuration Register 2 (GTUC2) [offset_CC = A4h] 31 20 15 14 19 16 Reserved SNM* R-0 R/W-2h 13 0 Reserved MPC* R-0 R/W-Ah LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 23-110. GTU Configuration Register 2 (GTUC2) Field Descriptions Bit Field 31-20 Reserved 19-16 SNM 15-14 Reserved 13-0 MPC Value 0 2h-Fh frames 0 Ah-3E80h MT Description Reads return 0. Writes have no effect. Sync node max (in frames). These bits configure the maximum number of frames within a cluster with sync frame indicator bit SYN set. The number of frames must be identical in all nodes of a cluster. Reads return 0. Writes have no effect. Macrotick per cycle (in macroticks). These bits configure the duration of one communication cycle in macroticks. The cycle length must be identical in all nodes of a cluster. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1193 FlexRay Module Registers www.ti.com 23.19.2.3.10 GTU Configuration Register 3 (GTUC3) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 23-130 and Table 23-111 illustrate this register. Figure 23-130. GTU Configuration Register 3 (GTUC3) [offset_CC = A8h] 31 30 24 23 22 16 Rsvd MIOB* Rsvd MIOA* R-0 R/W-2h R-0 R/W-2h 15 8 7 0 UIOB* UIOA* R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only. Table 23-111. GTU Configuration Register 3 (GTUC3) Field Descriptions Bit Field 31 Reserved 30-24 23 MIOB Reserved Value 0 2h-48h MT 0 Description Reads return 0. Writes have no effect. Macrotick initial offset channel B (in macroticks). These bits configure the number of macroticks between the static slot boundary and the subsequent macrotick boundary of the secondary time reference point based on the nominal macrotick duration. Must be identical in all nodes of a cluster. Reads return 0. Writes have no effect. 22-16 MIOA 2h-48h MT 15-8 UIOB 0-F0h µT Microtick initial offset channel B (in microticks). These bits configure the number of microticks between the actual time reference point on channel B and the subsequent macrotick boundary of the secondary time reference point. The parameter has to be set for each channel independently. 7-0 UIOA 0-F0h µT Microtick initial offset channel A (in microticks). These bits configure the number of microticks between the actual time reference point on channel A and the subsequent macrotick boundary of the secondary time reference point. The parameter has to be set for each channel independently. 1194 Macrotick initial offset channel A (in macroticks). These bits configure the number of macroticks between the static slot boundary and the subsequent macrotick boundary of the secondary time reference point based on the nominal macrotick duration. Must be identical in all nodes of a cluster. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.3.11 GTU Configuration Register 4 (GTUC4) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 23-131 and Table 23-112 illustrate this register. Figure 23-131. GTU Configuration Register 4 (GTUC4) [offset_CC = ACh] 31 30 29 16 Reserved OCS* R-0 R/W-Ah 15 14 13 0 Reserved NIT* R-0 R/W-9h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 23-112. GTU Configuration Register 4 (GTUC4) Field Descriptions Bit Field 31-30 Reserved 29-16 OCS 15-14 Reserved 13-0 NIT Value 0 8h-3E7Eh MT 0 7h-3E7Dh MT Description Reads return 0. Writes have no effect. Offset correction start (in macroticks). These bits determine the start of the offset correction within the NIT phase, calculated from start of cycle. Must be identical in all nodes of a cluster. Reads return 0. Writes have no effect. Network idle time start (in macroticks). These bits configure the starting point of the network idle time (NIT) at the end of the communication cycle expressed in terms of macroticks from the beginning of the cycle. The number must be identical in all nodes of a cluster. 23.19.2.3.12 GTU Configuration Register 5 (GTUC5) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 23-132 and Table 23-113 illustrate this register. Figure 23-132. GTU Configuration Register 5 (GTUC5) [offset_CC = B0h] 31 24 23 21 20 16 DEC* Reserved CDD* R/W-Eh R-0 R/W-0 15 8 7 0 DCB* DCA* R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 23-113. GTU Configuration Register 5 (GTUC5) Field Descriptions Bit Field Value 31-24 DEC Eh-8Fh µT 23-21 Reserved. 20-16 CDD 0-14h µT Cluster drift damping (in microticks). These bits configure the cluster drift damping value used in clock synchronization to minimize accumulation of rounding errors. 15-8 DCB 0-C8h µT Delay compensation channel B (in microticks). These bits are used to compensate for reception delays on the indicated channel. This compensates propagation delays for microticks in the range of 0.0125 to 0.05s. In practice, the minimum propagation delay of all sync nodes should be applied. 7-0 DCA 0-C8h µT Delay compensation channel A (in microticks). These bits are used to compensate for reception delays on the indicated channel. This compensates propagation delays for microticks in the range of 0.0125 to 0.05s. In practice, the minimum propagation delay of all sync nodes should be applied. 0 Description Decoding correction (in microticks). These bits configure the decoding correction value used to determine the primary time reference point. Reads return 0. Writes have no effect. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1195 FlexRay Module Registers www.ti.com 23.19.2.3.13 GTU Configuration Register 6 (GTUC6) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 23-133 and Table 23-114 illustrate this register. Figure 23-133. GTU Configuration Register 6 (GTUC6) [offset_CC = B4h] 31 27 26 16 Reserved MOD* R-0 R/W-2h 15 11 10 0 Reserved ASR* R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 23-114. GTU Configuration Register 6 (GTUC6) Field Descriptions Bit Field 31-27 Reserved 26-16 MOD 15-11 Reserved 10-0 ASR Value 0 2h-783h µT 0 0-753h µT Description Reads return 0. Writes have no effect. Maximum oscillator drift (in microticks). Maximum drift offset between two nodes that operate with unsynchronized clocks over one communication cycle in µT. Reads return 0. Writes have no effect. Accepted startup range (in microticks). Number of microticks constituting the expanded range of measured deviation for startup frames during integration. 23.19.2.3.14 GTU Configuration Register 7 (GTUC7) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 23-134 and Table 23-115 illustrate this register. Figure 23-134. GTU Configuration Register 7 (GTUC7) [offset_CC = B8h] 31 26 25 16 Reserved NSS* R-0 R/W-2h 15 10 9 0 Reserved SSL* R-0 R/W-4h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 23-115. GTU Configuration Register 7 (GTUC7) Field Descriptions Bit Field 31-26 Reserved. 25-16 NSS 15-10 Reserved. 9-0 1196 SSL Value 0 2h-3FFh MT 0 4h-293h MT Description Reads return 0. Writes have no effect. Number of static slots (in macroticks). These bits configure the number of static slots in a cycle. At least two coldstart nodes must be configured to startup a FlexRay network. The number of static slots must be identical in all nodes of a cluster. Reads return 0. Writes have no effect. Static slot length (in macroticks). These bits configure the duration of a static slot. The static slot length must be identical in all nodes of a cluster. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.3.15 GTU Configuration Register 8 (GTUC8) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 23-135 and Table 23-116 illustrate this register. Figure 23-135. GTU Configuration Register 8 (GTUC8) [offset_CC = BCh] 31 29 28 16 Reserved NMS* R-0 R/W-0 15 6 5 0 Reserved MSL* R-0 R/W-2h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 23-116. GTU Configuration Register 8 (GTUC8) Field Descriptions Bit Field 31-29 Reserved 28-16 NMS 15-6 Reserved 5-0 MSL Value 0 0-1F32h 0 2h-3Fh MT Description Reads return 0. Writes have no effect. Number of minislots. These bits configure the number of minislots in the dynamic segment of a cycle. The number of minislots must be identical in all nodes of a cluster. Reads return 0. Writes have no effect. Minislot length (in macroticks). These bits configure the duration of a minislot. The minislot length must be identical in all nodes of a cluster. 23.19.2.3.16 GTU Configuration Register 9 (GTUC9) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 23-136 and Table 23-117 illustrate this register. Figure 23-136. GTU Configuration Register 9 (GTUC9) [offset_CC = C0h] 31 18 15 13 12 17 16 Reserved DSI* R-0 R/W-0 8 7 6 5 0 Reserved MAPO* Reserved APO* R-0 R/W-1h R-0 R/W-1h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 23-117. GTU Configuration Register 9 (GTUC9) Field Descriptions Bit Field 31-18 Reserved 17-16 DSI 15-13 Reserved 12-8 MAPO 7-6 Reserved 5-0 APO Value 0 0-2h 0 1h-1Fh MT 0 1h-3Fh MT Description Reads return 0. Writes have no effect. Dynamic slot idle phase (in minislots). The duration of the dynamic slot idle phase has to be greater or equal than the idle detection time. Must be identical in all nodes of a cluster. Reads return 0. Writes have no effect. Minislot action point offset (in macroticks). These bits configure the minislot action point offset within the minislots of the dynamic segment. The minislot action point offset must be identical in all nodes of a cluster. Reads return 0. Writes have no effect. Action point offset (in macroticks). These bits configure the action point offset within static slots and symbol window. The action point offset must be identical in all nodes of a cluster. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1197 FlexRay Module Registers www.ti.com 23.19.2.3.17 GTU Configuration Register 10 (GTUC10) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 23-137 and Table 23-118 illustrate this register. Figure 23-137. GTU Configuration Register 10 (GTUC10) [offset_CC = C4h] 31 27 15 26 16 Reserved MRC* R-0 R/W-2h 14 13 0 Reserved MOC* R-0 R/W-5h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 23-118. GTU Configuration Register 10 (GTUC10) Field Descriptions Bit Field 31-27 Reserved 26-16 MRC 15-14 Reserved 13-0 MOC 1198 Value 0 2h-783h µT 0 Description Reads return 0. Writes have no effect. Maximum rate correction (in microticks). Holds the maximum permitted rate correction value to be applied by the internal clock synchronization algorithm. The communication controller checks the internal rate correction value against the maximum rate correction value (absolute value). Reads return 0. Writes have no effect. 5h-3BA2h µT Maximum offset correction (in microticks). Holds the maximum permitted offset correction value to be applied by the internal clock synchronization algorithm (absolute value). The communication controller checks the internal offset correction value against the maximum offset correction value. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.3.18 GTU Configuration Register 11 (GTUC11) Figure 23-138 and Table 23-119 illustrate this register. Figure 23-138. GTU Configuration Register 11 (GTUC11) [offset_CC = C8h] 31 27 26 24 23 19 18 16 Reserved ERC* Reserved EOC* R-0 R/W-0 R-0 R/W-0 15 10 9 8 7 2 1 0 Reserved ERCC* Reserved EOCC* R-0 R/W-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 23-119. GTU Configuration Register 11 (GTUC11) Field Descriptions Bit Field 31-27 Reserved 26-24 ERC 23-19 Reserved 18-16 EOC 15-10 Reserved 9-8 Value 0 0-7h µT 0 0-7h µT 0 ERCC Reserved 1-0 EOCC Reads return 0. Writes have no effect. External rate correction (in microticks). Holds the external clock rate correction value to be applied by the internal clock synchronization algorithm. The value is subtracted/added from/to the calculated rate correction value. The value is applied during NIT. May be modified in DEFAULT_CONFIG or CONFIG state only. Reads return 0. Writes have no effect. External offset correction (in microticks). Holds the external clock offset correction value to be applied by the internal clock synchronization algorithm. The value is subtracted/added from/to the calculated offset correction value. The value is applied during NIT. May be modified in DEFAULT_CONFIG or CONFIG state only. Reads return 0. Writes have no effect. External rate correction control. By writing to ERCC, the external rate correction is enabled as specified below. Should be modified only outside NIT. 0, 1h 7-2 Description No external rate correction. 2h External rate correction value is subtracted from calculated rate correction value. 3h External rate correction value is added to calculated rate correction value. 0 Reads return 0. Writes have no effect. External offset correction control. By writing to EOCC, the external offset correction is enabled as specified below. Should be modified only outside NIT. 0, 1h No external offset correction. 2h External offset correction value is subtracted from calculated offset correction value. 3h External offset correction value is added to calculated offset correction value. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1199 FlexRay Module Registers www.ti.com 23.19.2.4 Status Registers During 8/16-bit accesses to status variables coded with more than 8/16-bit, the variable might be updated by the communication controller between two accesses (non-atomic read accesses). All internal counters and the communication controller status flags are reset when the communication controller transits from CONFIG to READY state. 23.19.2.4.1 Communication Controller Status Vector (CCSV) Figure 23-139 and Table 23-120 illustrate this register. Figure 23-139. Communication Controller Status Vector Register (CCSV) [offset_CC = 100h] 31 30 29 24 23 19 18 16 Reserved PSL RCA WSV R-0 R-0 R-2 R-0 15 14 13 12 7 6 Rsvd CSI CSAI CSNI 11 Reserved 10 9 SLM 8 HRQ FSI 5 POCS 0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 23-120. Communication Controller Status Vector Register (CCSV) Field Descriptions Bit Field 31-30 Reserved 29-24 PSL 23-19 RCA 18-16 WSV 15 Reserved 14 CSI 13 1200 CSAI Value 0 Description Reads return 0. Writes have no effect. POC Status Log. Status of POCS immediately before entering HALT state. Set when entering HALT state. Set to HALT when FREEZE command is applied during HALT state and FSI is not already set, that is, the HALT state was not reached by FREEZE command. Reset to 0 when leaving HALT state. 0-1Fh Remaining coldstart attempts. Indicates the number of remaining coldstart attempts. The maximum number of coldstart attempts is configured by CSA in the SUC configuration register 1. Wakeup status. Indicates the status of the current wakeup attempt. Reset by CHI command RESET_STATUS_INDICATORS or by transition from HALT to EFAULT_CONFIG state. 0 UNDEFINED. No wakeup attempt since CONFIG state was left. 1h RECEIVED_HEADER. Set when the communication controller finishes wakeup due to the reception of a frame header without coding violation on either channel in WAKEUP_LISTEN or WAKEUP_DETECT state. 2h RECEIVED_WUP. Set when the communication controller finishes wakeup due to the reception of a valid wakeup pattern on the configured wakeup channel in WAKEUP_LISTEN or WAKEUP_DETECT state. 3h COLLISION_HEADER. Set when the communication controller stops wakeup due to a detected collision during wakeup pattern transmission by receiving a valid header on either channel. 4h COLLISION_WUP. Set when the communication controller stops wakeup due to a detected collision during wakeup pattern transmission by receiving a valid wakeup pattern on the configured wakeup channel. 5h COLLISION_UNKNOWN. Set when the communication controller stops wakeup by leaving WAKEUP_DETECT state after expiration of the wakeup timer without receiving a valid wakeup pattern or a valid frame header. 6h TRANSMITTED. Set when the communication controller has successfully completed the transmission of the wakeup pattern. 7h Reserved 0 Reads return 0. Writes have no effect. Cold start inhibit. Indicates that the node is disabled from cold starting. The flag is set whenever the POC enters READY state. The flag has to be reset under control of the host by the controller host interface command ALLOW_COLDSTART (CMD = 1001). 0 Cold starting of node is enabled. 1 Cold starting of node is disabled. Coldstart abort indicator. Coldstart aborted. Reset by CHI command RESET_STATUS_INDICATORS or by transition from HALT to DEFAULT_CONFIG state or from READY to STARTUP state. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 23-120. Communication Controller Status Vector Register (CCSV) Field Descriptions (continued) Bit Field 12 CSNI 11-10 9-8 Reserved Value Description Coldstart noise indicator. Indicates that the cold start procedure occurred under noisy conditions. Reset by CHI command RESET_STATUS_INDICATORS or by transition from HALT to DEFAULT_CONFIG state or from READY to STARTUP state. 0 SLM Reads return 0. Writes have no effect. Slot mode. Indicates the actual slot mode of the POC in states READY, WAKEUP, STARTUP, NORMAL_ACTIVE, and NORMAL_PASSIVE. Default is SINGLE. Changes to ALL, depending on SUCC1.TSM. In NORMAL_ACTIVE or NORMAL_PASSIVE state the CHI command ALL_SLOTS will change the slot mode from SINGLE over ALL_PENDING to ALL. Set to SINGLE in all other states. 0 SINGLE 1h Reserved 2h ALL_PENDING 3h ALL 7 HRQ 0-1 Halt request. Indicates that a request from the Host has been received to halt the POC at the end of the communication cycle. Reset by CHI command RESET_STATUS_INDICATORS or by transition from HALT to DEFAULT_CONFIG state or when entering READY state. 6 FSI 0-1 Freeze status indicator. Indicates that the POC has entered the HALT state due to CHI command FREEZE or due to an error condition requiring an immediate POC halt. Reset by CHI command RESET_STATUS_INDICATORS or by transition from HALT to DEFAULT_CONFIG state. 5-0 POCS Protocol operation control status. Indicates the actual state of operation of the Communication Controller Protocol Operation Control: 0 DEFAULT_CONFIG state 1h READY state 2h NORMAL_ACTIVE state 3h NORMAL_PASSIVE state 4h HALT state 5h MONITOR_MODE state 6h-Ch Reserved Dh LOOPBACK MODE state Eh Reserved Fh CONFIG state Indicates the actual state of operation of the POC in the wakeup path: 10h WAKEUP_STANDBY state 11h WAKEUP_LISTEN state 12h WAKEUP_SEND state 13h WAKEUP_DETECT state 14h-1Fh Reserved Indicates the actual state of operation of the POC in the startup path: 20h STARTUP_PREPARE state 21h COLDSTART_LISTEN state 22h COLDSTART_COLLISION_RESOLUTION state 23h COLDSTART_CONSISTENCY_CHECK state 24h COLDSTART_GAP state 25h COLDSTART_JOIN state 26h INTEGRATION_COLDSTART_CHECK state 27h INTEGRATION_LISTEN state 28h INTEGRATION_CONSISTENCY_CHECK state 29h INITIALIZE_SCHEDULE state 2Ah ABORT_STARTUP state 2Bh-3Fh Reserved SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1201 FlexRay Module Registers www.ti.com NOTE: CHI command RESET_STATUS_INDICATORS (SUCC1.CMD = Ah) resets flags FSI, HRQ, CSNI, CSAI, the slot mode SLM, and the wakeup status WSV. 23.19.2.4.2 Communication Controller Error Vector (CCEV) Reset by CHI command RESET_STATUS_INDICATORS or by transition from HALT to DEFAULT_CONFIG state or when entering READY state. Figure 23-140 and Table 23-121 illustrate this register. Figure 23-140. Communication Controller Error Vector Register (CCEV) [offset_CC = 104h] 31 16 Reserved R-0 15 13 12 8 7 6 5 4 3 0 Reserved PTAC ERRM Reserved CCFC R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 23-121. Communication Controller Error Vector Register (CCEV) Field Descriptions Bit Field 31-13 Reserved 12-8 PTAC 7-6 ERRM 5-4 Reserved 3-0 CCFC 1202 Value 0 0-1Fh Description Reads return 0. Writes have no effect. Passive to active count. Indicates the number of consecutive even / odd cycle pairs that have passed with valid rate and offset correction terms, while the node is waiting to transit from NORMAL_PASSIVE state to NORMAL_ACTIVE state. The transition takes place when PTAC equals PTA - 1 as defined in the SUC configuration register 1. Error mode. Indicates the actual error mode of the POC. 0 ACTIVE 1h PASSIVE 2h COMM_HALT 3h Reserved 0 Reads return 0. Writes have no effect. 0-Fh Clock correction failed counter. The clock correction failed counter is incremented by one at the end of any odd communication cycle where either the missing offset correction error or missing rate correction error are active. The clock correction failed counter is reset to 0 at the end of an odd communication cycle if neither the offset correction failed nor the rate correction failed errors are active. The clock correction failed counter stops at 15. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.4.3 Slot Counter Value (SCV) This register is reset when the Communication Controller leaves CONFIG state or enters STARTUP state. Figure 23-141 and Table 23-122 illustrate this register. Figure 23-141. Slot Counter Vector Register (SCV) [offset_CC = 110h] 31 27 26 16 Reserved SCCB R-0 R-0 15 11 10 0 Reserved SCCA R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 23-122. Slot Counter Vector Register (SCV) Field Descriptions Bit Field 31-27 Reserved 26-16 SCCB 15-11 Reserved 10-0 SCCA Value 0 1h-7FFh 0 1h-7FFh Description Reads return 0. Writes have no effect. Slot counter channel B. Current slot counter value channel B. The value is incremented by the communication controller and reset at the start of a communication cycle. Reads return 0. Writes have no effect. Slot counter channel A. Current slot counter value channel A. The value is incremented by the communication controller and reset at the start of a communication cycle. 23.19.2.4.4 Macrotick and Cycle Counter Value (MTCCV) Figure 23-142 and Table 23-123 illustrate this register. Figure 23-142. Macrotick and Cycle Counter Register (MTCCV) [offset_CC = 114h] 31 22 15 14 21 16 Reserved CCV R-0 R-0 13 0 Reserved MTV R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 23-123. Macrotick and Cycle Counter Register (MTCCV) Field Descriptions Bit Field 31-22 Reserved 21-16 CCV 15-14 Reserved 13-0 MTV Value 0 0-3Fh 0 0-3E80h Description Reads return 0. Writes have no effect. Cycle counter value. Current cycle counter value. The value is incremented by the communication controller at the start of a communication cycle. Reads return 0. Writes have no effect. Macrotick value. Current macrotick value. The value is incremented by the communication controller and reset at the start of a communication cycle. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1203 FlexRay Module Registers www.ti.com 23.19.2.4.5 Rate Correction Value (RCV) This register is reset when the Communication Controller leaves CONFIG state or enters STARTUP state. Figure 23-143 and Table 23-124 illustrate this register. Figure 23-143. Rate Correction Value Register (RCV) [offset_CC = 118h] 31 16 Reserved R-0 15 12 11 0 Reserved RCV R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 23-124. Rate Correction Value Register (RCV) Field Descriptions Bit Field 31-12 Reserved 11-0 RCV Value 0 Description Reads return 0. Writes have no effect. Rate correction value (in microticks). Rate correction value (two's complement). Calculated internal rate correction value before limitation. If the RCV value exceeds the limits defined by GTUC10.MRC, flag SFS.RCLR is set to 1. NOTE: The external rate correction value is added to the limited rate correction value. 23.19.2.4.6 Offset Correction Value (OCV) Figure 23-144 and Table 23-125 illustrate this register. Figure 23-144. Offset Correction Value Register (OCV) [offset_CC = 11Ch] 31 20 19 16 Reserved OCV R-0 R-0 15 0 OCV R-0 LEGEND: R = Read only; -n = value after reset Table 23-125. Offset Correction Value Register (OCV) Field Descriptions Bit Field 31-20 Reserved 19-0 OCV Value 0 Description Reads return 0. Writes have no effect. Offset correction value (in microticks). Offset correction value (two's complement). Calculated internal offset correction value before limitation. If the OCV value exceeds the limits defined by GTUC10.MOC, flag SFS.OCLR is set to 1. NOTE: The external offset correction value is added to the limited offset correction value. 1204 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.4.7 Sync Frame Status (SFS) This register is reset when the Communication Controller leaves CONFIG state or enters STARTUP state. Figure 23-145 and Table 23-126 illustrate this register. Figure 23-145. Sync Frame Status Register (SFS) [offset_CC = 120h] 31 20 15 12 19 18 17 16 Reserved RCLR MRCS OCLR MOCS R-0 R-0 R-0 R-0 R-0 11 8 7 4 3 0 VSBO VSBE VSAO VSAE R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 23-126. Sync Frame Status Register (SFS) Field Descriptions Bit 31-20 19 18 17 16 Field Reserved Value 0 RCLR Description Reads return 0. Writes have no effect. Rate correction limit reached. The Rate Correction Limit Reached flag signals to the Host, that the rate correction value has exceeded its limit as defined by GTUC10.MRC. The flag is updated by the communication controller at start of offset correction phase. 0 Rate correction limit is below limit. 1 Rate correction limit is reached. MRCS Missing rate correction signal. The missing rate correction signal signals to the host that no rate correction can be performed because no pairs of even/odd sync frames were received. The flag is updated by the communication controller at start of offset correction phase. 0 Rate correction signal is valid. 1 Missing rate correction signal. OCLR Offset correction limit reached. The offset correction limit reached flag signals to the host that the offset correction value has reached its limit as defined by GTUC10.MOC. The flag is updated by the communication controller at start of offset correction phase. 0 Offset correction limit is below limit. 1 Offset correction limit is reached. MOCS Missing offset correction signal. The missing offset correction signal signals to the host that no rate correction can be performed because no pairs of even / odd sync frames were received. The flag is updated by the communication controller at start of offset correction phase. 0 Offset correction signal is valid. 1 Missing offset correction signal. 15-12 VSBO 0-Fh Valid sync frames channel B, odd communication cycle. Holds the number of valid sync frames received on channel B in the odd communication cycle. If transmission of sync frames is enabled by SUCC1.TXSY the value is incremented by one. The value is updated during the NIT of each odd communication cycle. 11-8 VSBE 0-Fh Valid synch frames channel B, even communication cycle. Holds the number of valid sync frames received and transmitted on channel B in the even communication cycle. If transmission of sync frames is enabled by SUCC1.TXSY the value is incremented by one. The value is updated during the NIT of each even communication cycle. 7-4 VSAO 0-Fh Valid synch frames channel A, odd communication cycle. Holds the number of valid sync frames received and transmitted on channel A in the odd communication cycle. If transmission of sync frames is enabled by SUCC1.TXSY the value is incremented by one. The value is updated during the NIT of each odd communication cycle. 3-0 VSAE 0-Fh Valid synch frames channel A, even communication cycle. Holds the number of valid sync frames received and transmitted on channel A in the even communication cycle. If transmission of sync frames is enabled by SUCC1.TXSY the value is incremented by one. The value is updated during the NIT of each even communication cycle. NOTE: The bit fields VSBO, VSBE, VSAO, VSAE are only valid if the respective channel is assigned to the communication controller by SUCC1.CCHA or SUCC1.CCHB. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1205 FlexRay Module Registers www.ti.com 23.19.2.4.8 Symbol Window and NIT Status (SWNIT) Symbol window related status information. Updated by the communication controller at the end of the symbol window for each channel. During startup the status data is not updated. This register is reset when the Communication Controller leaves CONFIG state or enters STARTUP state. Figure 23-146 and Table 23-127 illustrate this register. Figure 23-146. Symbol Window and NIT Status Register (SWNIT) [offset_CC = 124h] 31 16 Reserved R-0 15 11 10 9 8 7 6 5 4 3 2 1 0 Reserved 12 SBNB SENB SBNA SENA MTSB MTSA TCSB SBSB SESB TCSA SBSA SESA R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 23-127. Symbol Window and NIT Status Register (SWNIT) Field Descriptions Bit 31-12 11 10 9 8 7 6 5 4 3 1206 Field Reserved Value 0 SBNB Description Reads return 0. Writes have no effect. Slot boundary violation during NIT channel B. 0 No slot boundary violation is detected. 1 Slot boundary violation during NIT is detected on channel B. SENB Syntax error during NIT channel B. 0 No syntax error is detected. 1 Syntax error during NIT is detected on channel B. SBNA Slot boundary violation during NIT channel A. 0 No slot boundary violation is detected. 1 Slot boundary violation during NIT is detected on channel A. SENA Syntax error during NIT channel A. 0 No syntax error is detected. 1 Syntax error during NIT is detected on channel A. MTSB MTS Received on Channel B. Media Access Test symbol received on channel B during the last symbol window. Updated by the communication controller for each channel at the end of the symbol window. When this bit is set to 1, also interrupt flag SIR.MTSB is set to 1. 0 No MTS symbol is received on channel B. 1 MTS symbol is received on channel B. MTSA MTS Received on Channel A. Media Access Test symbol received on channel A during the last symbol window. Updated by the communication controller for each channel at the end of the symbol window. When this bit is set to 1, also interrupt flag SIR.MTSB is set to 1. 0 No MTS symbol is received on channel A. 1 MTS symbol is received on channel A. TCSB Transmission conflict in symbol window channel B. 0 No transmission conflict is detected. 1 Transmission conflict in symbol window is detected on channel B. SBSB Slot boundary violation in symbol window channel B. 0 No slot boundary violation is detected. 1 Slot boundary violation during symbol window is detected on channel B. SESB Syntax error in symbol window channel B. 0 No syntax error is detected. 1 Syntax error during symbol window is detected on channel B. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 23-127. Symbol Window and NIT Status Register (SWNIT) Field Descriptions (continued) Bit Field 2 TCSA 1 0 Value Description Transmission conflict in symbol window channel A. 0 No transmission conflict is detected. 1 Transmission conflict in symbol window is detected on channel A. SBSA Slot boundary violation in symbol window channel A. 0 No slot boundary violation is detected. 1 Slot boundary violation during symbol window is detected on channel A. SESA Syntax error in symbol window channel A. 0 No syntax error is detected. 1 Syntax error during symbol window is detected on channel A. 23.19.2.4.9 Aggregated Channel Status (ACS) The aggregated channel status provides the host with an accrued status of channel activity for all communication slots regardless of whether they are assigned for transmission or subscribed for reception. The aggregated channel status also includes status data from the symbol phase and the network idle time. The status data is updated (set) after each slot and aggregated until it is reset by the host. During startup the status data is not updated. A flag is cleared by writing a 1 to the corresponding bit position. Writing a 0 has no effect on the flag. This register is reset when the Communication Controller leaves CONFIG state or enters STARTUP state. Figure 23-147 and Table 23-128 illustrate this register. Figure 23-147. Aggregated Channel Status Register (ACS) [offset_CC = 128h] 31 16 Reserved R-0 15 12 11 10 9 8 4 3 2 1 0 Reserved 13 SBVB CIB CEDB SEDB VFRB 7 Reserved 5 SBVA CIA CEDA SEDA VFRA R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-128. Aggregated Channel Status Register (ACS) Field Descriptions Bit 31-13 12 11 10 Field Reserved Value 0 SBVB Description Reads return 0. Writes have no effect. Slot boundary violation on channel B. One or more slot boundary violations were observed on channel B at any time during the observation period (static or dynamic slots including symbol window and NIT). 0 No slot boundary violation is observed. 1 Slot boundary violation(s) is observed on channel B. CIB Communication indicator channel B. One or more valid frames were received on channel B in slots that also contained any additional communication during the observation period, that is, one or more slots received a valid frame AND had any combination of either syntax error OR content error OR slot boundary violation. 0 No valid frame(s) is received in slots containing any additional communication. 1 Valid frame(s) is received on channel B in slots containing any additional communication. CEDB Content error detected on channel B. One or more frames with a content error were received on channel B in any static or dynamic slot during the observation period. 0 No frame with content error is received. 1 Frame(s) with content error is received on channel B. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1207 FlexRay Module Registers www.ti.com Table 23-128. Aggregated Channel Status Register (ACS) Field Descriptions (continued) Bit Field 9 SEDB 8 7-5 4 3 2 1 0 1208 Value Syntax error detected on channel B. One or more syntax errors in static or dynamic slots including symbol window and NIT were observed on channel B. 0 No syntax error is observed. 1 Syntax error(s) is observed on channel B. VFRB Reserved Description Valid frame received on channel B. One or more valid frames were received on channel B in any static or dynamic slot during the observation period. Reset is under control of the host. 0 No valid frame is received. 1 Valid frame(s) is received on channel B. 0 Reads return 0. Writes have no effect. SBVA Slot boundary violation on channel A. One or more slot boundary violations were observed on channel A at any time during the observation period (static or dynamic slots including symbol window and NIT). 0 No slot boundary violation is observed. 1 Slot boundary violation(s) is observed on channel A. CIA Communication indicator channel A. One or more valid frames were received on channel A in slots that also contained any additional communication during the observation period, that is, one or more slots received a valid frame AND had any combination of either syntax error OR content error OR slot boundary violation. 0 No valid frame(s) is received in slots containing any additional communication. 1 Valid frame(s) is received on channel A in slots containing any additional communication. CEDA Content error detected on channel A. One or more frames with a content error were received on channel A in any static or dynamic slot during the observation period. 0 No frame with content error is received. 1 Frame(s) with content error is received on channel A. SEDA Syntax error detected on channel A. One or more syntax errors in static or dynamic slots including symbol window and NIT were observed on channel A. 0 No syntax error is observed. 1 Syntax error(s) is observed on channel A. VFRA Valid frame received on channel A. One or more valid frames were received on channel A in any static or dynamic slot during the observation period. 0 No valid frame is received. 1 Valid frame(s) is received on channel A. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.4.10 Even Sync ID Registers (ESID[1-15]) Registers ESID1 to ESID15 hold the frame IDs of the sync frames received in even communication cycles, assorted in ascending order, with register ESID1 holding the lowest received sync frame ID. If the node transmits a sync frame in an even communication cycle by itself, register ESID1 holds the respective sync frame ID as configured in message buffer 0. The value is updated during the NIT of each even communication cycle. This register is reset when the Communication Controller leaves CONFIG state or enters STARTUP state. Figure 23-148 and Table 23-129 illustrate this register. Figure 23-148. Even Sync ID Registers (ESIDn) [offset_CC = 130h-168h] 31 16 Reserved R-0 15 14 RXEB RXEA 13 Reserved 10 9 EID 0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 23-129. Even Sync ID Registers (ESIDn) Field Descriptions Bit 31-16 15 14 13-10 9-0 Field Reserved Value 0 RXEB Reads return 0. Writes have no effect. Received even sync ID on channel B. A sync frame corresponding to the stored even sync ID was received on channel B. 0 Sync frame is not received on channel B. 1 Sync frame is received on channel B. RXEA Reserved Description Received even sync ID on channel A. A sync frame corresponding to the stored even sync ID was received on channel A. 0 Sync frame is not received on channel A. 1 Sync frame is received on channel A. 0 Reads return 0. Writes have no effect. EID Even Sync ID. Sync frame ID even communication cycle. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1209 FlexRay Module Registers www.ti.com 23.19.2.4.11 Odd Sync ID Registers (OSID[1-15]) Registers OSID1 to OSID15 hold the frame IDs of the sync frames received in odd communication cycles, assorted in ascending order, with register OSID1 holding the lowest received sync frame ID. If the node transmits a sync frame in an odd communication cycle by itself, register OSID1 holds the respective sync frame ID as configured in message buffer 0. The value is updated during the NIT of each odd communication cycle. This register is reset when the Communication Controller leaves CONFIG state or enters STARTUP state. Figure 23-149 and Table 23-130 illustrate this register. Figure 23-149. Odd Sync ID Registers (OSIDn) [offset_CC = 170h-1A8h] 31 16 Reserved R-0 15 14 RXOB RXOA 13 Reserved 10 9 OID 0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 23-130. Odd Sync ID Registers (OSIDn) Field Descriptions Bit 31-16 15 14 13-10 9-0 1210 Field Reserved Value 0 RXOB OID Reads return 0. Writes have no effect. Received odd sync ID on channel B. A sync frame corresponding to the stored even sync ID was received on channel B. 0 Sync frame is not received on channel B. 1 Sync frame is received on channel B. RXOA Reserved Description Received odd sync ID on channel A. A sync frame corresponding to the stored even sync ID was received on channel A. 0 Sync frame is not received on channel A. 1 Sync frame is received on channel A. 0 Reads return 0. Writes have no effect. Odd Sync ID. Sync frame ID odd communication cycle. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.4.12 Network Management Vector Registers (NMV[1-3]) The three network management registers hold the accrued NM vector (configurable 0-12 bytes). The accrued NM vector is generated by the communication controller by bit-wise ORing each NM vector received (valid frames with PPI = 1) on each channel. The communication controller updates the NM vector at the end of each communication cycle as long as the communication controller is either in NORMAL_ACTIVE or NORMAL_PASSIVE state. NMVn-bytes exceeding the configured NM vector length are not valid. Figure 23-150 illustrates these registers and Table 23-131 shows the assignment of the data bytes to the network management vector. Figure 23-150. Network Management Registers (NMVn) [offset_CC = 1B0h-1B8h] 31 16 NMI R-0 15 0 NMI R-0 LEGEND: R = Read only; -n = value after reset Table 23-131. Assignment of Data Bytes to Network Management Vector Bit Word NMV1 31 24 Data3 23 16 15 8 7 0 Data2 Data1 Data0 NMV2 Data7 Data6 Data5 Data4 NMV3 Data11 Data10 Data9 Data8 SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1211 FlexRay Module Registers www.ti.com 23.19.2.5 Message Buffer Control Registers 23.19.2.5.1 Message RAM Configuration (MRC) The message RAM Configuration register defines the number of message buffers assigned to the static segment, dynamic segment, and FIFO. The register can be written during DEFAULT_CONFIG or CONFIG state only. Figure 23-151 and Table 23-132 illustrate this register. Figure 23-151. Message RAM Configuration Register (MRC) [offset_CC = 300h] 31 27 26 25 24 23 16 Reserved SPLM* SEC* LCB* R-0 R-1 R-0 R/W-80h 15 8 7 0 FFB* FDB* R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 23-132. Message RAM Configuration Register (MRC) Field Descriptions Bit 31-27 26 25-24 23-16 15-8 Field Reserved Value 0 SPLM 0 Only message buffer 0 is locked against reconfiguration. 1 Both message buffers 0 and 1 are locked against reconfiguration. SEC Secure Buffers. Not evaluated when the communication controller is in DEFAULT_CONFIG or CONFIG state. 0 Reconfiguration of message buffers enabled with numbers < FFBh enabled Exception: In nodes configured for sync frame transmission or for single slot mode operation message buffer 0 (and if SPLM = 1, also message buffer 1) is always locked 1h Reconfiguration of message buffers with numbers < FDB and with numbers FFB locked and transmission of message buffers for static segment with numbers FDB are disabled. 2h Reconfiguration of all message buffers is locked. 3h Reconfiguration of all message buffers locked and transmission of message buffers for static segment with numbers FDB are disabled. LCB Last configured buffer. 0-7Fh Number of message buffers is LCB + 1. ≥ 80h No message buffer is configured. FFB First buffer of FIFO. All message buffers are assigned to the FIFO. 0-7Fh Message buffers from FFB to LCB are assigned to the FIFO. ≥ 80h No message buffer is assigned to the FIFO. FDB First dynamic buffer. 0 1212 Reads return 0. Writes have no effect. Sync Frame Payload Multiplex. This bit is only evaluated if the node is configured as sync node (SUCC1.TXSY = 1) or for single slot mode operation (SUCC1.TSM = 1). When this bit is set to 1 message buffers 0 and 1 are dedicated for sync frame transmission with different payload data on channel A and B. When this bit is set to 0, sync frames are transmitted from message buffer 0 with the same payload data on both channels. Note that the channel filter configuration for message buffer 0 resp. message buffer 1 has to be chosen accordingly. 0 7-0 Description No group of pure static buffers are configured. 0-7Fh Message buffers 0 to FDB - 1 are reserved for static segment. ≥ 80h No dynamic buffers are configured. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com NOTE: In case the node is configured as sync node (SUCC1.TXSY = 1) or for single slot mode operation (SUCC1.TSM = 1), message buffer 0 resp. 1 is reserved for sync frames or single slot frames and have to be configured with the node-specific key slot ID. In case the node is neither configured as sync node nor for single slot operation, message buffer 0 resp. 1 is treated like all other message buffers. Table 23-133. Buffer Configuration Message Buffer 0 ↓ Static Buffers Message Buffer 1 ... ↓ Static + Dynamic Buffers ← FDB ↓ FIFO ← FFB FIFO configured: FBB > FDB No FIFO configured: FFB ≥ 128 ← LCB LCB ≥ FDB, LCB ≥ FFB Message Buffer N-1 Message Buffer N The programmer must ensure that the configuration defined by FDB, FFB, and LCB is valid. NOTE: The communication controller does not check for erroneous configurations. NOTE: Maximum Number of Header Sections The maximum number of header sections is 128. This means a maximum of 128 message buffers can be configured. The maximum length of the data sections is 254 bytes. The length of the data section may be configured different for each message buffer. In case two or more message buffers are assigned to slot 1 by use of cycle filtering, all of them must be located either in the "Static Buffers" or at the beginning of the "Static + Dynamic Buffers" section. The FlexRay protocol specification requires that each node has to send a frame in its key slot. Therefore at least message buffer 0 is reserved for transmission in the key slot. Due to this requirement a maximum number of 127 message buffers can be assigned to the FIFO. Nevertheless, a non protocol conform configuration without a transmission slot in the static segment would still be operational. The payload length configured and the length of the data sections need to be configured identical for all message buffers belonging to the FIFO via WRHS2.PLC and WRHS3.DP. When the communication controller is not in DEFAULT_CONFIG or CONFIG state reconfiguration of message buffers belonging to the FIFO is locked. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1213 FlexRay Module Registers www.ti.com 23.19.2.5.2 FIFO Rejection Filter (FRF) The FIFO rejection filter defines a user specified sequence of bits with which channel, frame ID, and cycle count of the incoming frames are compared. Together with the FIFO rejection filter mask (FRFM), this register determines whether a message is rejected by the FIFO. The FRF register can be written during DEFAULT_CONFIG or CONFIG state only. Figure 23-152 and Table 23-134 illustrate this register. Figure 23-152. FIFO Rejection Filter Register (FRF) [offset_CC = 304h] 31 25 15 13 24 23 Reserved RNF* RSS* 22 CYF* R-0 R-1 R-1 R/W-0 12 16 2 1 0 Reserved FID* CH* R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 23-134. FIFO Rejection Filter Register (FRF) Field Descriptions Bit 31-25 24 23 Field Reserved Value 0 RNF CYF 15-13 Reserved 12-2 FID 1-0 CH Reads return 0. Writes have no effect. Reject null frames. If this bit is set, received null frames are not stored in the FIFO. 0 Null frames are stored in the FIFO. 1 Reject all null frames. RSS 22-16 Description Reject in static segment. If this bit is set, the FIFO is used only for the dynamic segment. 0 FIFO also used in static segment. 1 Reject messages in static segment. Cycle counter filter. The 7-bit cycle counter filter determines the cycle set to which the frame ID FIFO rejection filter and the channel FIFO rejection filter are applied. In cycles not belonging to the cycle set specified by CYF, all frames are rejected. For details about the configuration of the cycle counter filter. 0 0-7FFh Reads return 0. Writes have no effect. Frame ID filter. A frame ID filter value of zero means that no frame ID is rejected. Channel filter. Note: If reception on both channels is configured, also in the static segment both frames (from channel A and B) are always stored in the FIFO, even if they are identical. 1214 0 Receive on both channels. 1h Receive only on channel B. 2h Receive only on channel A. 3h No reception. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.5.3 FIFO Rejection Filter Mask (FRFM) The FIFO rejection filter mask specifies which of the corresponding frame ID filter bits are relevant for rejection filtering. If a bit is set, it indicates that the state of the corresponding bit in the FRF register will not be considered for rejection filtering. The FRFM register can be written during DEFAULT_CONFIG or CONFIG state only. Figure 23-153 and Table 23-135 illustrate this register. Figure 23-153. FIFO Rejection Filter Mask Register (FRFM) [offset_CC = 308h] 31 16 Reserved R-0 15 13 12 2 1 0 Reserved MFID* Reserved R-0 R/W-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 23-135. FIFO Rejection Filter Mask Register (FRFM) Field Descriptions Bit Field 31-13 Reserved 12-2 MFID 1-0 Reserved Value 0 Description Reads return 0. Writes have no effect. Mask Frame ID Filter 0 Corresponding frame ID filter bit is used for rejection filtering. 1 Ignore corresponding frame ID filter bit. 0 Reads return 0. Writes have no effect. 23.19.2.5.4 FIFO Critical Level (FCL) The communication controller accepts modifications of the register in DEFAULT_CONFIG or CONFIG state only. Figure 23-154 and Table 23-136 illustrate this register. Figure 23-154. FIFO Critical Level Register (FCL) [offset_CC = 30Ch] 31 16 Reserved R-0 15 8 7 0 Reserved CL* R-0 R/W-81h LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 23-136. FIFO Critical Level Register (FCL) Field Descriptions Bit Field 31-8 Reserved 7-0 CL Value 0 Description Reads return 0. Writes have no effect. Critical Level. When the receive FIFO fill level FSR.RFFL is equal or greater than the critical level configured by CL, the receive FIFO critical level flag FSR.RFCL is set. If CL is programmed to values greater than 128, bit FSR.RFCL is never set. When FSR.RFCL changes from 0 to 1, bit SIR.RFCL is set to 1, and if enabled, an interrupt is generated. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1215 FlexRay Module Registers www.ti.com 23.19.2.6 Message Buffer Status Registers 23.19.2.6.1 Message Handler Status (MHDS) A flag is cleared by writing a 1 to the corresponding bit position. Writing a 0 has no effect on the flag. A hardware reset will also clear the register. Figure 23-155 and Table 23-137 illustrate this register. Figure 23-155. Message Handler Status (MHDS) [offset_CC = 310h] 31 30 24 23 22 16 Rsvd MBU Rsvd MBT R-0 R-0 R-0 R-0 15 14 8 Rsvd FMB R-0 R-0 7 6 CRAM MFMB R-1 R/W-0 5 4 3 FMBD PTFB2 PTFB1 R/W-0 R/W-0 R/W-0 2 1 0 PMR POBF PIBF R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-137. Message Handler Status (MHDS) Field Descriptions Bit Field 31 Reserved 30-24 MBU Value 0 0-7Fh Description Reads return 0. Writes have no effect. Message buffer updated. Number of the message buffer that was updated last by the communication controller. For this message buffer, the respective ND and/or MBC flag in the new data register (NDAT[1-4]) and the message buffer status changed register (MBSC[1-4]) are also set. Note: MBU are reset when the communication controller leaves CONFIG state or enters STARTUP state. 23 22-16 Reserved MBT 0 0-7Fh Reads return 0. Writes have no effect. Message buffer transmitted. Number of the last successfully transmitted message buffer. If the message buffer is configured for single-shot mode, the respective TXR flag in the Transmission request register (TXRQ[1-4]) was reset. Note: MBT are reset when the communication controller leaves CONFIG state or enters STARTUP state. 15 14-8 7 6 5 4 3 1216 Reserved FMB 0 0-7Fh CRAM Reads return 0. Writes have no effect. Faulty message buffer. A parity error occurred when reading from a message buffer or when transferring data from Input Buffer or Transient Buffer 1,2 to the message buffer referenced by FMB(6-0). This value is only valid when one of the flags PIBF, PMR, PTBF1, PTBF2, and flag FMBD is set. Is not updated while flag FMBD is set. Clear all internal RAMs. Signals that execution of the controller host interface command CLEAR_RAMS is ongoing (all bits of all internal RAM blocks are written to 0). The bit is set by hardware reset or by the controller host interface command CLEAR_RAMS. 0 No execution of the controller host interface command CLEAR_RAMS. 1 Execution of the controller host interface command CLEAR_RAMS is ongoing. MFMB Multiple faulty message buffers detected. 0 No additional faulty message buffer. 1 Another faulty message buffer was detected while flag FMBD is set. FMBD Faulty message buffer detected. 0 No faulty message buffer. 1 Message buffer referenced by FMB(6-0) holds faulty data due to a parity error. PTBF2 Parity error transient buffer RAM B. 0 No parity error. 1 Parity error occurred when reading transient buffer RAM B. PTBF1 Parity error transient buffer RAM A. 0 No parity error. 1 Parity error occurred when reading transient buffer RAM A. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 23-137. Message Handler Status (MHDS) Field Descriptions (continued) Bit Field 2 PMR 1 0 Value Description Parity error message RAM. 0 No parity error. 1 Parity error occurred when reading message RAM. POBF Parity error output buffer RAM 1, 2. 0 No parity error. 1 Parity error occurred when message handler read output buffer RAM 1,2. PIBF Parity error input buffer RAM 1, 2. 0 No parity error. 1 Parity error occurred when message handler read input buffer RAM 1,2. NOTE: When one of the flags PIBF, POBF, PMR, PTBF1, PTBF2 changes from 0 to 1, the PERR flag in the Error Interrupt Register (EIR) is set to 1. 23.19.2.6.2 Last Dynamic Transmit Slot (LDTS) The register is reset when the communication controller leaves CONFIG state or enters STARTUP state Figure 23-156 and Table 23-138 illustrate this register. Figure 23-156. Last Dynamic Transmit Slot (LDTS) [offset_CC = 314h] 31 27 26 16 Reserved LDTB R-0 R-0 15 11 10 0 Reserved LDTA R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 23-138. Last Dynamic Transmit Slot (LDTS) Field Descriptions Bit Field 31-27 Reserved 26-16 LDTB 15-11 Reserved 10-0 LDTA Value 0 Description Reads return 0. Writes have no effect. Last Dynamic Transmission Channel B. Value of Slot Counter B at the time of the last frame transmission on channel A in the dynamic segment of this node. It is updated at the end of the dynamic segment and is reset to 0, if no frame was transmitted during the dynamic segment. 0 Reads return 0. Writes have no effect. Last Dynamic Transmission Channel A. Value of Slot Counter A at the time of the last frame transmission on channel A in the dynamic segment of this node. It is updated at the end of the dynamic segment and is reset to 0, if no frame was transmitted during the dynamic segment. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1217 FlexRay Module Registers www.ti.com 23.19.2.6.3 FIFO Status Register (FSR) The register is reset when the communication controller leaves CONFIG state, enters STARTUP state, or by CHI command CLEAR_RAMS.. Figure 23-157 and Table 23-139 illustrate this register. Figure 23-157. FIFO Status Register (FSR) [offset_CC = 318h] 31 16 Reserved R-0 15 2 1 0 RFFL 8 7 Reserved 3 RFO RFCL RFNE R-0 R-0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 23-139. FIFO Status Register (FSR) Field Descriptions Bit Field 31-16 Reserved 15-8 RFFL 7-3 Reserved 2 1 0 1218 Value 0 0-7Fh 0 RFO Description Reads return 0. Writes have no effect. Receive FIFO Fill Level. Number of FIFO buffers filled with new data not yet read by the Host. Reads return 0. Writes have no effect. Receive FIFO Overrun. The flag is set by the communication controller when a receive FIFO overrun is detected. When a receive FIFO overrun occurs, the oldest message is overwritten with the actual received message. In addition, interrupt flag RFO in the Error Interrupt Register (EIR) is set. The flag is cleared by the next FIFO read access issued by the Host. 0 No receive FIFO overrun is detected. 1 A receive FIFO overrun has been detected. RFCL Receive FIFO Critical Level. This flag is set when the receive FIFO fill level RFFL is equal or greater than the critical level as configured by CL in the FIFO Critical Level register (FCL). The flag is cleared by the communication controller as soon as RFFL drops below FCL.CL. When RFCL changes from 0 to 1, the RFCL flag in the Status Interrupt register (SIR) is set to 1, and if enabled, an interrupt is generated. 0 Receive FIFO is below critical level. 1 Receive FIFO critical level is reached. RFNE Receive FIFO Not Empty. This flag is set by the communication controller when a received valid frame (data or null frame depending on rejection mask) was stored in the FIFO. In addition, interrupt flag RFNE in the Status Interrupt register (SR) is set. The bit is reset after the Host has read all message from the FIFO. 0 Receive FIFO is empty. 1 Receive FIFO is not empty. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.6.4 Message Handler Constraints Flags (MHDF) Some constraints exist for the Message Handler regarding VBUSclk frequency, Message RAM configuration, and FlexRay bus traffic. In order to simplify software development, constraints violations are reported by setting flags in the MHDF. A flag is cleared by writing a 1 to the corresponding bit position. Writing 0 has no effect on the flag. A hardware reset will also clear the register. The register is reset when the communication controller leaves CONFIG state, enters STARTUP state, or by CHI command CLEAR_RAMS. Figure 23-158 and Table 23-140 illustrate this register. Figure 23-158. Message Handler Constraints Flags (MHDF) [offset_CC = 31Ch] 31 16 Reserved R-0 15 8 7 6 5 4 3 2 1 0 Reserved 9 WAHP TNSA TNSB TBFB TBFA FNFB FNFA SNUB SNUA R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-140. Message Handler Constraint Flags (MHDF) Field Descriptions Bit 31-9 8 7 6 5 4 3 2 Field Reserved Value 0 WAHP Description Reads return 0. Writes have no effect. Write attempt to header partition. This flag is set by the communication controller when the message handler tries to write message data into the header partition of the Message RAM due to faulty configuration of a message buffer. The write attempt is not executed, to protect the header partition from unintended write accesses. 0 No write attempt to header partition. 1 Write attempt to header partition. TNSA Transmission Not Started Channel A. This flag is set by the CC when the Message Handler was not ready to start a scheduled transmission on channel A at the action point of the configured slot. 0 No transmission is not started on channel A. 1 Transmission is not started on channel A. TNSB Transmission Not Started Channel B. This flag is set by the CC when the Message Handler was not ready to start a scheduled transmission on channel B at the action point of the configured slot. 0 No transmission is not started on channel B. 1 Transmission is not started on channel B. TBFB Transient buffer access failure B. This flag is set by the communication controller when a read or write access to TBF B requested by PRT B could not complete within the available time. 0 No TBF B access failure. 1 TBF B access failure. TBFA Transient buffer access failure A. This flag is set by the communication controller when a read or write access to TBF A requested by PRT A could not complete within the available time. 0 No TBF A access failure. 1 TBF A access failure. FNFB Find sequence not finished channel B. This flag is set by the communication controller when the Message Handler, due to overload condition, was not able to finish a find sequence (scan of Message RAM for matching message buffer) with respect to channel B. 0 No find sequence is not finished for channel B. 1 Find sequence is not finished for channel B. FNFA Find sequence not finished channel A. This flag is set by the communication controller when the Message Handler, due to overload condition, was not able to finish a find sequence (scan of Message RAM for matching message buffer) with respect to channel A. 0 No find sequence is not finished for channel A. 1 Find sequence is not finished for channel A. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1219 FlexRay Module Registers www.ti.com Table 23-140. Message Handler Constraint Flags (MHDF) Field Descriptions (continued) Bit Field 1 SNUB 0 Value Description Status not updated channel B. This flag is set by the communication controller when the Message Handler, due to overload condition, was not able to update a message buffer's status MBS with respect to channel B. 0 No overload condition occurred when updating MBS for channel B. 1 MBS for channel B is not updated. SNUA Status not updated channel A. This flag is set by the communication controller when the Message Handler, due to overload condition, was not able to update a message buffer's status MBS with respect to channel A. 0 No overload condition occurred when updating MBS for channel A. 1 MBS for channel A is not updated. NOTE: When one of the flags SNUA, SNUB, FNFA, FNFB, TBFA, TBFB, WAHP changes from 0 to 1, interrupt flag MHF in the Error Interrupt Register (EIR) is set to 1. 1220 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.6.5 Transmission Request Registers (TXRQ[1-4]) These four registers reflect the state of the TXR flags of all configured message buffers. The flags are evaluated for transmit buffers only. If the number of configured message buffers is less than 128, the remaining TXR flags have no meaning. Figure 23-162 through Figure 23-159 and Table 23-141 illustrate these registers. Figure 23-159. Transmission Request Register 1 (TXRQ1) [offset_CC = 320h] 31 16 TXR[31:16] R-0 15 0 TXR[15:0] R-0 LEGEND: R = Read only; -n = value after reset Figure 23-160. Transmission Request Register 2 (TXRQ2) [offset_CC = 324h] 31 16 TXR[63:48] R-0 15 0 TXR[47:32] R-0 LEGEND: R = Read only; -n = value after reset Figure 23-161. Transmission Request Register 3 (TXRQ3) [offset_CC = 328h] 31 16 TXR[95:80] R-0 15 0 TXR[79:64] R-0 LEGEND: R = Read only; -n = value after reset Figure 23-162. Transmission Request Register 4 (TXRQ4) [offset_CC = 32Ch] 31 16 TXR[127:112] R-0 15 0 TXR[111:96] R-0 LEGEND: R = Read only; -n = value after reset Table 23-141. Transmission Request Registers (TXRQn) Field Descriptions Bit 127-0 Field Value TXR[n] Description Transmission request. 0 The respective message buffer is not ready for transmission. 1 If the flag is set, the respective message buffer is ready for transmission. Respectively, transmission of this message buffer is in progress. In single-shot mode the flags are reset after transmission has completed. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1221 FlexRay Module Registers www.ti.com 23.19.2.6.6 New Data Registers (NDAT[1-4]) The four registers reflect the state of the ND flags of all configured message buffers. ND flags corresponding to transmit buffers have no meaning. If the number of configured message buffers is less than 128, the remaining ND flags have no meaning. The registers are reset when the communication controller leaves CONFIG state or enters STARTUP state. Figure 23-166 through Figure 23-163 and Table 23-142 illustrate these registers. Figure 23-163. New Data Register 1 (NDAT1) [offset_CC = 330h] 31 16 ND[31:16] R-0 15 0 ND[15:0] R-0 LEGEND: R = Read only; -n = value after reset Figure 23-164. New Data Register 2 (NDAT2) [offset_CC = 334h] 31 16 ND[63:48] R-0 15 0 ND[47:32] R-0 LEGEND: R = Read only; -n = value after reset Figure 23-165. New Data Register 3 (NDAT3) [offset_CC = 338h] 31 16 ND[95:80] R-0 15 0 ND[79:64] R-0 LEGEND: R = Read only; -n = value after reset Figure 23-166. New Data Register 4 (NDAT4) [offset_CC = 33Ch] 31 16 ND[127:112] R-0 15 0 ND[111:96] R-0 LEGEND: R = Read only; -n = value after reset 1222 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com Table 23-142. New Data Registers (NDATn) Field Descriptions Bit Field 127-0 ND[n] Value Description New data. 0 The flags are reset when the header section of the corresponding message buffer is reconfigured or when the data section has been transferred to the output buffer. 1 The flags are set when a valid received data frame matches the message buffer's filter configuration, independent of the payload length received or the payload length configured for that message buffer. The flags are not set after reception of null frames except for message buffers belonging to the receive FIFO. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1223 FlexRay Module Registers www.ti.com 23.19.2.6.7 Message Buffer Status Changed Registers (MBSC[1-4]) The four registers reflect the state of the MBC flags of all configured message buffers. If the number of configured message buffers is less than 128, the remaining MBC flags have no meaning. Figure 23-170 through Figure 23-167 and Table 23-143 illustrate these registers. Figure 23-167. Message Buffer Status Changed Register 1 (MBSC1) [offset_CC = 340h] 31 16 MBS[31:16] R-0 15 0 MBS[15:0] R-0 LEGEND: R = Read only; -n = value after reset Figure 23-168. Message Buffer Status Changed Register 2 (MBSC2) [offset_CC = 344h] 31 16 MBS[63:48] R-0 15 0 MBS[47:32] R-0 LEGEND: R = Read only; -n = value after reset Figure 23-169. Message Buffer Status Changed Register 3 (MBSC3) [offset_CC = 348h] 31 16 MBS[95:80] R-0 15 0 MBS[79:64] R-0 LEGEND: R = Read only; -n = value after reset Figure 23-170. Message Buffer Status Changed Register 4 (MBSC4) [offset_CC = 34Ch] 31 16 MBS[127:112] R-0 15 0 MBS[111:96] R-0 LEGEND: R = Read only; -n = value after reset Table 23-143. Message Buffer Status Changed Register (MBSCn) Field Descriptions Bit 127-0 1224 Field Value MBS[n] Description Message buffer status changed. 0 A flag is reset when the header section of the corresponding message buffer is reconfigured or when it has been transferred to the Output Buffer. 1 The flag is set whenever the Message Handler changes one of the status flags VFRA, VFRB, SEOA, SEOB, CEOA, CEOB, SVOA, SVOB, TCIA, TCIB, ESA, ESB, MLST, FTA, FTB in the header section (see Message Buffer Status (MBS)Message Buffer Status (MBS)) of the respective message buffer. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.7 Identification Registers 23.19.2.7.1 Core Release Register (CREL) Figure 23-171 and Table 23-144 illustrate this register. Table 23-145 shows the release coding in register CREL. Figure 23-171. Core Release Register (CREL) [offset_CC = 3F0h] 31 28 27 20 19 16 REL STEP YEAR R-release info R-release info R-release info 15 8 7 0 MON DAY R-release info R-release info LEGEND: R = Read only; -n = value after reset Table 23-144. Core Release Register (CREL) Field Descriptions Bit Field Value Description 31-28 REL 27-20 STEP 0-FFh 19-16 YEAR 0-Fh 15-8 MON 0-FFh Design Time Stamp, Month. Two digits, BCD-coded. 7-0 DAY 0-FFh Design Time Stamp, Day. Two digits, BCD-coded. 0-Fh Core Release. One digit, BCD-coded. Step of Core Release. Two digits, BCD-coded. Design Time Stamp, Year. One digit, BCD-coded. Table 23-145. Release Coding Release Step Sub-Step Core Release Register Contents Name 1 0 0 1006 0519 Revision 1.0.0 1 0 1 1016 1211 Revision 1.0.1 1 0 2 10271031 Revision 1.0.2 1 0 3 10390206 Revision 1.0.3 23.19.2.7.2 Endian Register (ENDN) Figure 23-172 and Table 23-146 illustrate this register. Figure 23-172. Endian Register (ENDN) [offset_CC = 3F4h] 31 16 ETV R-8765h 15 0 ETV R-4321h LEGEND: R = Read only; -n = value after reset Table 23-146. Endian Register (ENDN) Field Descriptions Bit Field Description 31-0 ETV Endianness Test Value. The Endianness test value is 87654321h. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1225 FlexRay Module Registers www.ti.com 23.19.2.8 Input Buffer Double buffer structure consisting of input buffer host and input buffer shadow. While the host can write to input buffer host, the transfer to the message RAM is done from input buffer shadow. The input buffer holds the header and data sections to be transferred to the selected message buffer in the message RAM. It is used to configure the message buffers in the message RAM and to update the data sections of transmit buffers. When updating the header section of a message buffer in the Message RAM from the Input Buffer, the Message Buffer Status as described in Message Buffer Status (MBS), Message Buffer Status (MBS) is automatically reset to zero. The header sections of message buffers belonging to the receive FIFO can only be (re)configured when the communication controller is in DEFAULT_CONFIG or CONFIG state. For those message buffers only the payload length configured and the data pointer need to be configured by bits PLC of the Write Header Section 2 (WRHS2) and by bits DP of Write Header Section 3 (WRHS3). All information required for acceptance filtering is taken from the FIFO rejection filter and the FIFO rejection filter mask. 23.19.2.8.1 Write Data Section Registers (WRDS[1-64]) Holds the data words to be transferred to the data section of the addressed message buffer. The data words (DWn) are written to the message RAM in transmission order from DW1 (byte0, byte1) to DWPL (DWPL= number of data words as defined by the payload length configured in PLC of the Write Header Section 2 (WRHS2)). Figure 23-173 and Table 23-147 illustrate this register. Figure 23-173. Write Data Section Registers (WRDSn) [offset_CC = 400h-4FCh] 31 16 MD R/W-0 15 0 MD R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 23-147. Write Data Section Registers (WRDSn) Field Descriptions Bit 31-0 Field MD Value 0-FFFF FFFFh Description Message data. Note: DW127 is located on WRDS64.MD[15:0]. In this case, WRDS64.MD[31:16] is unused (no valid data).The input buffer RAMs are initialized to 0 when leaving hardware reset or by the controller host interface command CLEAR_RAMS. MD(31-24) = DW 2n, byte 4n-1 MD(23-16) = DW 2n, byte 4n-2 MD(15-8) = DW 2n-1, byte 4n-3 MD(7-0) = DW 2n-1, byte 4n-4 1226 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.8.2 Write Header Section 1 (WRHS1) Figure 23-174 and Table 23-148 illustrate this register. Figure 23-174. Write Header Section Register 1 (WRHS1) [offset_CC = 500h] 31 30 29 28 27 26 25 24 23 22 16 Reserved MBI TXM PPIT CFG CHB CHA Rsvd CYC R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0 11 10 15 0 Reserved FID R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-148. Write Header Section Register 1 (WRHS1) Field Descriptions Bit 31-30 29 28 27 26 25-24 Field Reserved Value 0 MBI Reads return 0. Writes have no effect. Message buffer interrupt. This bit enables the receive/transmit interrupt for the corresponding message buffer. After a dedicated receive buffer has been updated by the message handler, flag RXI and/or MBSI in the status interrupt register are set. After successful transmission the TXI flag in the status interrupt register is set. 0 The corresponding message buffer interrupt is enabled. 1 The corresponding message buffer interrupt is disabled. TXM Transmission mode. This bit is used to select the transmission mode. 0 Continuous mode 1 Single-shot mode PPIT Payload preamble indicator transmit. This bit is used to control the state of the Payload Preamble Indicator in transmit frames. If the bit is set in a static message buffer, the respective message buffer holds network management information. If the bit is set in a dynamic message buffer, the first two bytes of the payload segment may be used for message ID filtering by the receiver. Message ID filtering of received FlexRay frames is not supported by the FlexRay module, but can be done by the host CPU. 0 Payload Preamble Indicator is not set. 1 Payload Preamble Indicator is set. CFG CHB, CHA Description Message buffer configuration bit. This bit is used to configure the corresponding buffer as Transmit buffer or as receive buffer. For message buffers belonging to the receive FIFO the bit is not evaluated. 0 The corresponding buffer is configured as Receive buffer. 1 The corresponding buffer is configured as Transmit buffer. 0-3h Channel filter control. The 2-bit channel filtering field associated with each buffer serves as a filter for receive buffers and as a control field for transmit buffers. See Table 23-149 for bit descriptions. Note: If a message buffer is configured for the dynamic segment and both bits of the channel filtering field are set to 1, no frames are transmitted resp. received frames are ignored (same function as CHA = CHB = 0) 23 Reserved 22-16 CYC 15-11 Reserved 10-0 FID 0 0-7Fh 0 0-7FFh Reads return 0. Writes have no effect. Cycle code. The 7-bit cycle code determines the cycle set used for cycle counter filtering. Reads return 0. Writes have no effect. Frame ID. Frame ID of the selected message buffer. The frame ID defines the slot number for transmission / reception of the respective message. Note: Message buffers with frame ID = 0 are considered not valid. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1227 FlexRay Module Registers www.ti.com Table 23-149. Channel Filter Control Bit Descriptions CHB CHA Transmit Buffer transmit frame on Receive Buffer store frame received from 0 0 no transmission ignore frame 0 1 channel A channel A 1 0 channel B channel B 1 both channels (static segment only) channel A or B (store first semantically valid frame, static segment only) 1 23.19.2.8.3 Write Header Section 2 (WRHS2) Figure 23-175 and Table 23-150 illustrate this register. Figure 23-175. Write Header Section Register 2 (WRHS2) [offset_CC = 504h] 31 23 22 16 Reserved PLC R-0 R/W-0 15 11 10 0 Reserved CRC R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-150. Write Header Section Register 2 (WRHS2) Field Descriptions Bit Field 31-23 Reserved 22-16 PLC 15-11 Reserved 10-0 CRC 1228 Value 0 0-7Fh 0 0-7FFh Description Reads return 0. Writes have no effect. Payload length configured. Length of data section (number of 2-byte words) as configured by the host. During static segment the static frame data length as configured by SFDL in the MHD configuration register defines the payload length for all static frames. If the payload length configured by PLC is shorter than this value padding bytes are inserted to ensure that frames have proper physical length. The padding pattern is logical zero. Reads return 0. Writes have no effect. Header CRC. Receive Buffer: configuration not required. Transmit buffer: Header CRC calculated and configured by the host. For calculation of the header CRC the payload length of the frame send on the bus has to be considered. In static segment the payload length of all frames is configured by MHDC.SFDL. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.8.4 Write Header Section 3 (WRHS3) Figure 23-176 and Table 23-151 illustrate this register. Figure 23-176. Write Header Section Register 3 (WRHS3) [offset_CC = 508h] 31 16 Reserved R-0 15 11 10 0 Reserved DP R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-151. Write Header Section Register 3 (WRHS3) Field Descriptions Bit Field 31-11 Reserved 10-0 DP Value 0 1-7FFh Description Reads return 0. Writes have no effect. Data pointer. Pointer to the first 32-bit word of the data section of the addressed message buffer in the message RAM. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1229 FlexRay Module Registers www.ti.com 23.19.2.8.5 Input Buffer Command Mask (IBCM) Configures how the message buffer in the message RAM selected by the input buffer command request register is updated. When IBF host and IBF shadow are swapped, also mask bits LHSH, LDSH, and STXRH are swapped with bits LHSS, LDSS, and STXRS to keep them attached to the respective input buffer transfer. Figure 23-177 and Table 23-152 illustrate this register. Figure 23-177. Input Buffer Command Mask Register (IBCM) [offset_CC = 510h] 31 19 18 17 16 Reserved STXRS LDSS LHSS R-0 R-0 R-0 R-0 15 2 1 0 Reserved 3 STXRH LDSH LHSH R-0 R/W-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-152. Input Buffer Command Mask Register (IBCM) Field Descriptions Bit 31-19 18 17 16 15-3 2 1 0 1230 Field Reserved Value 0 STXRS Reads return 0. Writes have no effect. Set transmission request shadow. 0 Reset TXR flag. 1 Set TXR flag, transmit buffer released for transmission (operation ongoing or finished). LDSS Load data section shadow. 0 Data section is not updated. 1 Data section is selected for transfer from input buffer to the message RAM (transfer ongoing or finished). LHSS Reserved Description Load header section shadow. 0 Header section is not updated. 1 Header section is selected for transfer from input buffer to the message RAM (transfer ongoing or finished) 0 Reads return 0. Writes have no effect. STXRH Set transmission request host. If this bit is set to 1, the transmission request flag TXR for the selected message buffer is set in the transmission request registers to release the message buffer for transmission. In single-shot mode the flag is cleared by the communication controller after transmission has completed. The flags is evaluated for transmit buffers only. 0 Reset transmission request flag. 1 Set transmission request flag; transmit buffer released for transmission. LDSH Load data section host 0 Data section is not updated. 1 Data section is selected for transfer from input buffer to the message RAM. LHSH Load header section host 0 Header section is not updated. 1 Header section is selected for transfer from input buffer to the message RAM. FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.8.6 Input Buffer Command Request (IBCR) When the host writes the number of a target message buffer in the message RAM to IBRH in the input buffer command request register, IBF host and IBF shadow are swapped. In addition the message buffer numbers stored under IBRH and IBRS are also swapped. With this write operation the IBSYS bit in the input buffer command request register is set to 1. The message handler then starts to transfer the contents of IBF shadow to the message buffer in the message RAM selected by IBRS. While the message handler transfers the data from IBF shadow to the target message buffer in the message RAM, the host may configure the next message in the IBF host. After the transfer between IBF shadow and the message RAM has completed, the IBSYS bit is set back to 0 and the next transfer to the message RAM may be started by the host by writing the respective target message buffer number to IBRH. If a write access to IBRH occurs while IBSYS is 1, IBSYH is set to 1. After completion of the ongoing data transfer from IBF shadow to the message RAM, IBF host and IBF shadow are swapped, IBSYH is reset to 0. IBSYS remains set to 1, and the next transfer to the message RAM is started. In addition the message buffer numbers stored under IBRH and IBRS are also swapped. Any write access to an Input Buffer Register while both IBSYS and IBSYH are set will cause the error flag IIBA in the Error Interrupt Register (EIR) to be set. In this case the Input Buffer will not be changed. Figure 23-178 and Table 23-153 illustrate this register. Figure 23-178. Input Buffer Command Request Register (IBCR) [offset_CC = 514h] 31 30 23 22 16 IBSYS Reserved IBRS R-0 R-0 R-0 15 14 7 6 0 IBSYH Reserved IBRH R-0 R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset; *These bits can be updated in DEFAULT_CONFIG or CONFIG state only Table 23-153. Input Buffer Command Request Register (IBCR) Field Descriptions Bit Field 31 IBSYS 30-23 Reserved 22-16 IBRS 15 Value Input buffer busy shadow. Set to 1 after writing IBRH. When the transfer between IBF shadow and the message RAM has completed, IBSYS is set back to 0. 0 Transfer between IBF shadow and message RAM is completed. 1 Transfer between IBF shadow and message RAM is in progress. 0 Reads return 0. Writes have no effect. 0-7Fh IBSYH 14-7 Reserved 6-0 IBRH Description Input buffer request shadow. Number of the target message buffer actually updated / lately updated. Input buffer busy host. Set to 1 by writing IBRH while IBSYS is still 1. After the ongoing transfer between IBF shadow and the message RAM has completed, the IBSYH is set back to 0. 0 No request is pending. 1 Request while transfer between IBF shadow and message RAM is in progress. 0 Reads return 0. Writes have no effect. 0-7Fh Input buffer request host. Selects the target message buffer in the Message RAM for data transfer from Input Buffer. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1231 FlexRay Module Registers www.ti.com 23.19.2.9 Output Buffer Double buffer structure consisting of output buffer host and output buffer shadow. While the host can read from output buffer host, the transfer from the message RAM is done to output buffer shadow. The output buffer holds the header and data sections of requested message buffers transferred from the message RAM. Used to read out message buffers from the message RAM. 23.19.2.9.1 Read Data Section Registers (RDDS[1-64]) Holds the data words read from the data section of the addressed message buffer. The data words (DWn) are read from the message RAM in reception order from DW1 (byte0, byte1) to DWPL (DWPL= number of data words as defined by the payload length configured in bits PLC of the Read Header Section 2 (RDHS2)). Figure 23-179 and Table 23-154 illustrate this register. Figure 23-179. Read Data Section Registers (RDDSn) [offset_CC = 600h-6FCh] 31 16 MD R/W-0 15 0 MD R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 23-154. Read Data Section Registers (RDDSn) Field Descriptions Bit 31-0 Field MD Value 0-FFFF FFFFh Description Message data. Note: DW127 is located on RDDS64.MD[15:0]. In this case, RDDS64.MD[31:16] is unused (no valid data).The input buffer RAMs are initialized to 0 when leaving hardware reset or by the controller host interface command CLEAR_RAMS. MD(31-24) = DW 2n, byte 4n-1 MD(23-16) = DW 2n, byte 4n-2 MD(15-8) = DW 2n-1, byte 4n-3 MD(7-0) = DW 2n-1, byte 4n-4 1232 FlexRay Module SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated FlexRay Module Registers www.ti.com 23.19.2.9.2 Read Header Section Register 1 (RDHS1) Figure 23-180 and Table 23-155 illustrate this register. Figure 23-180. Read Header Section Register 1 (RDHS1) [offset_CC = 700h] 31 30 29 28 27 26 25 24 23 22 16 Reserved MBI TXM PPIT CFG CHB CHA Rsvd CYC R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R-0 R/W-0 11 10 15 0 Reserved FID R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-155. Read Header Section Register 1 (RDHS1) Field Descriptions Bit 31-30 29 28 27 26 Field Reserved Value 0 MBI 0 The corresponding message buffer interrupt is enabled. 1 The corresponding message buffer interrupt is disabled. Transmission mode. This bit is used to select the transmission mode. 0 Continuous mode 1 Single-shot mode PPIT Payload preamble indicator transmit. 0 Payload Preamble Indicator is not set. 1 Payload Preamble Indicator is set. CFG CHB, CHA 23 Reserved Reads return 0. Writes have no effect. Message buffer interrupt. TXM 25-24 Description Message buffer configuration bit. 0 The corresponding buffer is configured as Receive buffer. 1 The corresponding buffer is configured as Transmit buffer. Channel filter control. See Table 23-149 for bit descriptions. 22-16 CYC 15-11 Reserved 10-0 FID 0 0-7Fh 0 0-7FFh Reads return 0. Writes have no effect. Cycle code. The 7-bit cycle code determines the cycle set used for cycle counter filtering. Reads return 0. Writes have no effect. Frame ID. Frame ID of the selected message buffer. Note: Message buffers with frame ID = 0 are considered not valid. NOTE: In case the message buffer read from the message RAM belongs to the receive FIFO, FID, CHA, and CHB were updated from the received frame while CYC, CFG, PPIT, TXM, and MBI are reset to zero. For bit description, see also Section 23.19.2.8.2. SPNU499C – March 2018 Submit Documentation Feedback FlexRay Module Copyright © 2018, Texas Instruments Incorporated 1233 FlexRay Module Registers www.ti.com 23.19.2.9.3 Read Header Section Register 2 (RDHS2) Figure 23-181 and Table 23-156 illustrate this register. Figure 23-181. Read Header Section Register 2 (RDHS2) [offset_CC = 704h] 31 30 24 23 22 16 Rsvd PLR Rsvd PLC R-0 R-0 R-0 R-0 15 11 10 0 Reserved CRC R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 23-156. Read Header Section Register 2 (RDHS2) Field Descriptions Bit Field 31 Reserved 30-24 PLR Value 0 0-7Fh Description Reads return 0. Writes have no effect. Payload length received. Payload length value updated from received frame (exception: if message buffer belongs to the receive FIFO PLR is also updated from received null frames). When a message is stored into a message buffer the following behavior with respect to payload length received and payload length configured is implemented: PLR > PLC: The payload data stored in the message buffer is truncated to the payload length configured if PLC even or else truncated to PLC + 1. PLR VCLK Period = 40ns; C2TDELAY = 07h; > tC2TDELAY = 360 ns When the chip select signal becomes active, the slave has to prepare data transfer within 360 ns. Note: If phase = 1, the delay between SPICS falling edge to the first edge of SPICLK will have an additional 0.5 SPICLK period delay. This delay is as per the SPI protocol. SPNU499C – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1377 Control Registers www.ti.com Table 25-27. SPI Delay Register (SPIDELAY) Field Descriptions (continued) Bit 23-16 Field Value Description T2CDELAY 0-FFh Transmit-end-to-chip-select-inactive-delay. See Figure 25-46 for an example. T2CDELAY is used only in master mode. It defines a hold time for the slave device that delays the chip select deactivation by a multiple of VCLK cycles after the last bit is transferred. The hold time value is calculated as follows: tT2CDELAY = (T2CDELAY +1) × VCLK Period Example: VCLK = 25 MHz -> VCLK Period = 40ns; T2CDELAY = 03h; > tT2CDELAY = 160 ns After the last data bit (or parity bit) is being transferred the chip select signal is held active for 160 ns. Note: If phase = 0, then between the last edge of SPICLK and rise-edge of SPICS there will be an additional delay of 0.5 SPICLK period. This is as per the SPI protocol. Both C2TDELAY and T2CDELAY counters do not have any dependency on the SPIENA pin value. Even if the SPIENA pin is asserted by the slave, the master will continue to delay the start of SPICLK until the C2TDELAY counter overflows. Similarly, even if the SPIENA pin is deasserted by the slave, the master will continue to hold the SPICS pins active until the T2CDELAY counter overflows. In this way, it is assured that the setup and hold times of the SPICS pins are determined by the delay timers alone. To achieve better throughput, it should be ensured that these two timers are kept at the minimum possible values. 15-8 T2EDELAY 0-FFh Transmit-data-finished to ENA-pin-inactive time-out. T2EDELAY is used in master mode only. It defines a time-out value as a multiple of SPI clock before SPIENA signal has to become inactive and after SPICS becomes inactive. SPICLK depends on which data format is selected. If the slave device is missing one or more clock edges, it becomes de-synchronized. In this case, although the master has finished the data transfer, the slave is still waiting for the missed clock pulses and the ENA signal is not disabled. The T2EDELAY defines a time-out value that triggers the DESYNC flag, if the SPIENA signal is not deactivated in time. The DESYNC flag is set to indicate that the slave device did not de-assert its SPIENA pin in time to acknowledge that it received all bits of the sent word. See Figure 25-47 for an example of this condition. Note: DESYNC is also set if the SPI detects a de-assertion of SPIENA before the end of the transmission. The time-out value is calculated as follows: tT2EDELAY = T2EDELAY/SPIclock Example: SPIclock = 8 Mbit/s; T2EDELAY = 10h; > tT2EDELAY = 2 µs The slave device has to disable the ENA signal within 2 µs, otherwise DESYNC is set and an interrupt is asserted (if enabled). 7-0 C2EDELAY 0-FFh Chip-select-active to ENA-signal-active time-out. C2EDELAY is used only in master mode and it applies only if the addressed slave generates an ENA signal as a hardware handshake response. C2EDELAY defines the maximum time between when the SPI activates the chip-select signal and the addressed slave has to respond by activating the ENA signal. C2EDELAY defines a time-out value as a multiple of SPI clocks. The SPI clock depends on whether data format 0 or data format 1 is selected. See Figure 25-48 for an example of this condition. Note: If the slave device does not respond with the ENA signal before the time-out value is reached, the TIMEOUT flag in the SPIFLG register is set and a interrupt is asserted (if enabled). If a time-out occurs, the SPI clears the transmit request of the timed-out buffer, sets the TIMEOUT flag for the current buffer, and continues with the transfer of the next buffer in the sequence that is enabled. The timeout value is calculated as follows: tC2EDELAY = C2EDELAY/SPIclock Example: SPIclock = 8 Mbit/s; C2EDELAY = 30h; > tC2EDELAY = 6 ms The slave device has to activate the ENA signal within 6 ms after the SPI has activated the chip select signal (SPICS), otherwise the TIMEOUT flag is set and an interrupt is asserted (if enabled). 1378 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers www.ti.com Figure 25-45. Example: tC2TDELAY= 8 VCLK Cycles SPICS SPICLK SPISOMI VCLK tC2TDELAY Figure 25-46. Example: tT2CDELAY= 4 VCLK Cycles SPICS SPICLK SPISOMI VCLK tT2CDELAY Figure 25-47. Transmit-Data-Finished-to-ENA-Inactive-Timeout SPICS SPIENA SPICLK SPISOMI tT2EDELAY Figure 25-48. Chip-Select-Active-to-ENA-Signal-Active-Timeout SPICS SPIENA SPICLK SPISOMI tC2EDELAY SPNU499C – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1379 Control Registers www.ti.com 25.9.20 SPI Default Chip Select Register (SPIDEF) Figure 25-49. SPI Default Chip Select Register (SPIDEF) [offset = 4Ch] 31 16 Reserved R-0 15 8 7 0 Reserved CSDEF R-0 R/W-FFh LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 25-28. SPI Default Chip Select Register (SPIDEF) Field Descriptions Bit Field 31-8 Reserved 7-0 CDEF Value 0 0-FFh Description Reads return 0. Writes have no effect. Chip select default pattern. Master-mode only. The CSDEF bits are output to the SPICS pins when no transmission is being performed. It allows the user to set a programmable chip-select pattern that deselects all of the SPI slaves. 1380 0 SPICS is cleared to 0 when no transfer is active. 1 SPICS is set to 1 when no transfer is active. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers www.ti.com 25.9.21 SPI Data Format Registers (SPIFMT) Figure 25-50. SPI Data Format Registers (SPIFMT[3:0]) [offset = 5Ch-50h] 31 24 WDELAY R/WP-0 23 22 21 20 19 18 17 16 PARPOL PARITYENA WAITENA SHIFTDIR HDUPLEX_ ENAx DIS_CS_ TIMERS POLARITY PHASE R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 15 8 7 5 4 0 PRESCALE Reserved CHARLEN R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 25-29. SPI Data Format Registers (SPIFMT) Field Descriptions Bit Field 31-24 WDELAY Value Description 0-FFh Delay in between transmissions for data format x (x= 0,1,2,3).Idle time that will be applied at the end of the current transmission if the bit WDEL is set in the current buffer. The delay to be applied is equal to: WDELAY × PVCLK + 2 × PVCLK P VCLK -> Period of VCLK. 23 22 PARPOL Parity polarity: even or odd. PARPOLx can be modified in privilege mode only. It can be used for data format x (x= 0,1,2,3). 0 An even parity flag is added at the end of the transmit data stream. 1 An odd parity flag is added at the end of the transmit data stream. PARITYENA Parity enable for data format x. No parity generation/ verification is performed for this data format. 21 20 0 A parity bit is transmitted at the end of each transmitted word. At the end of a transfer the parity generator compares the received parity bit with the locally-calculated parity flag. If the parity bits do not match, the RXERR flag is set in the corresponding control field. The parity type (even or odd) can be selected via the PARPOL bit. 1 Note: If an uncorrectable error flag is set in a slave-mode SPI, then the wrong parity bit will be transmitted to indicate to the master that there has been some issue with the data parity. The SPISOMI pins will be forced to transmit all 0s, and the parity bit will be transmitted as 1 if even parity is selected and as 0 if odd parity is selected (using the PARPOLx bit of this register). This behavior occurs regardless of an uncorrectable parity error on either TXRAM or RXRAM. WAITENA The master waits for the ENA signal from slave for data format x. WAITENA is valid in master mode only. WAITENA enables a flexible SPI network where slaves with ENA signal and slaves without ENA signal can be mixed. WAITENA defines, for each transferred word, whether the addressed slave generates the ENA signal or not. 0 The SPI does not wait for the ENA signal from the slave and directly starts the transfer. 1 Before the SPI starts the data transfer it waits for the ENA signal to become low. If the ENA signal is not pulled down by the addressed slave before the internal time-out counter (C2EDELAY) overflows, then the master aborts the transfer and sets the TIMEOUT error flag. SHIFTDIR SPNU499C – March 2018 Submit Documentation Feedback Shift direction for data format x. With bit SHIFTDIRx, the shift direction for data format x (x=0,1,2,3) can be selected. 0 MSB is shifted out first. 1 LSB is shifted out first. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1381 Control Registers www.ti.com Table 25-29. SPI Data Format Registers (SPIFMT) Field Descriptions (continued) Bit Field 19 HDUPLEX_ENAx Value Description Half Duplex transfer mode enable for Data Format x. This bit controls the I/O function of SOMI/SIMO lines for a specific requirement where in the case of Master mode, TX pin SIMO will act as an RX pin, and in the case of Slave mode, RX pin - SIMO will act as a TX pin. 0 Normal Full Duplex transfer. 1 If MASTER = 1, SPISIMO pin will act as an RX pin (No TX possible) If MASTER = 0, SPISIMO pin will act as a TX pin (No RX possible). For all normal operations, HDUPLEX_ENAx bits should always remain 0. It is intended for the usage when the SPISIMO pin is used for both TX and RX operations at different times. 18 17 DIS CS TIMERS Disable chip-select timers for this format. The C2TDELAY and T2CDELAY timers are by default enabled for all the data format registers. Using this bit, these timers can be disabled for a particular data format, if they are not required. When a master is handling multiple slaves, with varied set-up hold requirement, the application can selectively choose to include or not include the chip-select delay timers for any slaves. 0 Both C2TDELAY and T2CDELAY counts are inserted for the chip selects. 1 No C2TDELAY or T2CDELAY is inserted in the chip select timings. POLARITY SPI data format x clock polarity. POLARITYx defines the clock polarity of data format x. The following restrictions apply when switching clock phase and/or polarity: • In 3-pin/4-pin with SPIENA pin configuration of a slave SPI, the clock phase and polarity cannot be changed on-the-fly between two transfers. The slave should be reset and reconfigured if clock phase/polarity needs to be switched. In summary, SPI format switching is not fully supported in slave mode. • Even while using chip select pins, the polarity of SPICLK can be switched only while the slave is not selected by a valid chip select. The master SPI should ensure that while switching SPICLK polarity, it has deselected all of its slaves. Otherwise, the switching of SPICLK polarity may be incorrectly treated as a clock edge by some slaves. 16 15-8 0 If POLARITYx is cleared to 0, the SPI clock signal is low-inactive, that is, before and after data transfer the clock signal is low. 1 If POLARITYx is set to 1, the SPI clock signal is high-inactive, that is, before and after data transfer the clock signal is high. PHASE SPI data format x clock delay. PHASEx defines the clock delay of data format x. 0 If PHASEx is cleared to 0, the SPI clock signal is not delayed versus the transmit/receive data stream. The first data bit is transmitted with the first clock edge and the first bit is received with the second (inverse) clock edge. 1 If PHASEx is set to 1, the SPI clock signal is delayed by a half SPI clock cycle versus the transmit/receive data stream. The first transmit bit has to output prior to the first clock edge. The master and slave receive the first bit with the first edge. PRESCALE SPI data format x prescaler. PRESCALEx determines the bit transfer rate of data format x if the SPI is the network master. PRESCALEx is use to derive SPICLK from VCLK. If the SPI is configured as slave, PRESCALEx does not need to be configured. The clock rate for data format x can be calculated as: BRFormatx = VCLK / (PRESCALEx + 1) Note: When PRESCALEx is cleared to 0, the SPI clock rate defaults to VCLK/2. 7-5 Reserved 0 4-0 CHARLEN 0-1Fh 1382 Reads return 0. Writes have no effect. SPI data format x data-word length. CHARLENx defines the word length of data format x. Legal values are 0x02 (data word length = 2 bit) to 10h (data word length = 16). Illegal values, such as 00 or 1Fh are not allowed; their effect is indeterminate. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers www.ti.com 25.9.22 Interrupt Vector 0 (INTVECT0) NOTE: The TG interrupt is not available in MibSPI in compatibility mode. Therefore, there is no possibility to access this register in compatibility mode. Figure 25-51. Interrupt Vector 0 (NTVECT0) [offset = 60h] 31 16 Reserved R-0 15 6 5 1 0 Reserved INTVECT0 SUSPEND0 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 25-30. Transfer Group Interrupt Vector 0 (INTVECT0) Bit Field 31-6 Reserved 5-1 INTVECT0 Value 0 Description Reads return 0. Writes have no effect. INTVECT0. Interrupt vector for interrupt line INT0. Returns the vector of the pending interrupt at interrupt line INT0. If more than one interrupt is pending, INTVECT0 always references the highest prior interrupt source first. Note: This field reflects the status of the SPIFLG register in vector format. Any updates to the SPIFLG register will automatically cause updates to this field. 0 There is no pending interrupt. 1h + x Transfer group x (x = 0 to 15) has a pending interrupt. SUSPEND0 reflects the type of interrupt (suspend or finished). 11h Error Interrupt pending. The lower half of SPIFLG contains more details about the type of error. 13h The pending interrupt is a Receive Buffer Overrun interrupt. 12h SPI mode: The pending interrupt is a Receive Buffer Full interrupt. Mib mode: Reserved. This bit combination should not occur. 14h SPI mode: The pending interrupt is a Transmit Buffer Empty interrupt. Mib mode: Reserved. This bit combination should not occur. All Other SPI mode: Reserved. These bit combinations should not occur. Combinations 0 SUSPEND0 Transfer suspended / Transfer finished interrupt flag. Every time INTVECT0 is read by the host, the corresponding interrupt flag of the referenced transfer group is cleared and INTVECT0 is updated with the vector coming next in the priority chain. 0 The interrupt type is a transfer finished interrupt. In other words, the buffer array referenced by INTVECT0 has asserted an interrupt because all of data from the transfer group has been transferred. 1 The interrupt type is a transfer suspended interrupt. In other words, the transfer group referenced by INTVECT0 has asserted an interrupt because the buffer to be transferred next is in suspend-towait mode. NOTE: Reading from the INTVECT0 register when Transmit Empty is indicated does not clear the TXINTFLG flag in the SPI Flag Register (SPIFLG). Writing a new word to the SPIDATx register clears the Transmit Empty interrupt. SPNU499C – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1383 Control Registers www.ti.com NOTE: In multi-buffer mode, INTVECT0 contains the interrupt for the highest priority transfer group. A read from INTVECT0 automatically causes the next-highest priority transfer group's interrupt status to get loaded into INTVECT0 and its corresponding SUSPEND flag to get loaded into SUSPEND0. The transfer group with the lowest number has the highest priority, and the transfer group with the highest number has the lowest priority. Reading the INTVECT0 register when the RXOVRN interrupt is indicated in multi-buffer mode does not clear the RXOVRN flag and hence does not clear the vector. The RXOVRN interrupt vector may be cleared in multi-buffer mode either by write-clearing the RXOVRN flag in the SPI Flag Register (SPIFLG) or by reading the RXRAM Overrun Buffer Address Register (RXOVRN_BUF_ADDR). 25.9.23 Interrupt Vector 1 (INTVECT1) NOTE: The TG interrupt is not available in SPI in compatibility mode compatibility mode. Therefore, there is no possibility to access this register in compatibility mode. Figure 25-52. Interrupt Vector 1 (INTVECT1) [offset = 64h] 31 16 Reserved R-0 15 6 5 1 0 Reserved INTVECT1 SUSPEND1 R-0 R-0 R-0 LEGEND: R = Read only; -n = value after reset Table 25-31. Transfer Group Interrupt Vector 1 (INTVECT1) Bit Field 31-6 Reserved 5-1 INTVECT1 Value 0 Description Reads return 0. Writes have no effect. INTVECT1. Interrupt vector for interrupt line INT1. Returns the vector of the pending interrupt at interrupt line INT1. If more than one interrupt is pending, INTVECT1 always references the highest prior interrupt source first. Note: This field reflects the status of the SPIFLG register in vector format. Any updates to the SPIFLG register will automatically cause updates to this field. 0 There is no pending interrupt. SPI mode only. 11h Error Interrupt pending. The lower half of SPIINT1 contains more details about the type of error. SPI mode only. 13h The pending interrupt is a Receive Buffer Overrun interrupt. SPI mode only. 12h The pending interrupt is a Receive Buffer Full interrupt. SPI mode only. 14h The pending interrupt is a Transmit Buffer Empty interrupt. SPI mode only. All Other Reserved. These bit combinations should not occur. SPI mode only. Combinations 0 SUSPEND1 Transfer suspended / Transfer finished interrupt flag. Every time INTVECT1 is read by the host, the corresponding interrupt flag of the referenced transfer group is cleared and INTVECT1 is updated with the vector coming next in the priority chain. 1384 0 The interrupt type is a transfer finished interrupt. In other words, the buffer array referenced by INTVECT1 has asserted an interrupt because all of data from the transfer group has been transferred. 1 The interrupt type is a transfer suspended interrupt. In other words, the transfer group referenced by INTVECT1 has asserted an interrupt because the buffer to be transferred next is in suspend-towait mode. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers www.ti.com NOTE: Reading from the INTVECT1 register when Transmit Empty is indicated does not clear the TXINTFLG flag in the SPI Flag Register (SPIFLG). Writing a new word to the SPIDATx register clears the Transmit Empty interrupt. NOTE: In multi-buffer mode, INTVECT1 contains the interrupt for the highest priority transfer group. A read from INTVECT1 automatically causes the next-highest priority transfer group's interrupt status to get loaded into INTVECT1 and its corresponding SUSPEND flag to get loaded into SUSPEND1. The transfer group with the lowest number has the highest priority, and the transfer group with the highest number has the lowest priority. Reading the INTVECT1 register when the RXOVRN interrupt is indicated in multi-buffer mode does not clear the RXOVRN flag and hence does not clear the vector. The RXOVRN interrupt vector may be cleared in multi-buffer mode either by write-clearing the RXOVRN flag in the SPI Flag Register (SPIFLG) or by reading the RXOVERN_BUF_ADDR register. SPNU499C – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1385 Control Registers www.ti.com 25.9.24 SPI Pin Control Register 9 (SPIPC9) SPIPC9 only applies to SPI2. Figure 25-53. SPI Pin Control Register 9 (SPIPC9) [offset = 68h] 31 25 24 23 17 16 Reserved SOMISRS0 Reserved SIMOSRS0 R-0 R/W-0 R-0 R/W-0 15 11 10 9 Reserved 12 SOMISRS0 SIMOSRS0 CLKSRS 8 Reserved 0 R-0 R/W-0 R/W-0 R/W-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 25-32. SPI Pin Control Register 9 (SPIPC9) Field Descriptions Bit 31-25 24 Field Reserved Value 0 SOMISRS0 Description Reads return the value that was last written. Writes have no effect. SPI2 SOMI[0] slew control. This bit controls between the fast or slow slew mode. Note: Duplicate Control Bits for SPI2 SOMI[0]. Bit 24 is not physically implemented. It is a mirror of bit 11. Any write to bit 24 will be reflected on bit 11. When bit 24 and bit 11 are simultaneously written, the value of bit 11 will control the SPI2 SOMI[0] pin. The read value of bit 24 always reflects the value of bit 11. 23-17 16 Reserved 0 Fast mode is enabled; the normal output buffer is used for this pin. 1 Slow mode is enabled; slew rate control is used for this pin. 0 Reads return the value that was last written. Writes have no effect. SIMOSRS0 SPI2 SIMO[0] slew control. This bit controls between the fast or slow slew mode. Note: Duplicate Control Bits for SPI2 SIMO[0]. Bit 16 is not physically implemented. It is a mirror of bit 10. Any write to bit 16 will be reflected on bit 10. When bit 16 and bit 10 are simultaneously written, the value of bit 10 will control the SPI2 SIMO[0] pin. The read value of bit 16 always reflects the value of bit 10. 15-12 11 10 9 8-0 1386 Reserved 0 Fast mode is enabled; the normal output buffer is used for this pin. 1 Slow mode is enabled; slew rate control is used for this pin. 0 Reads return 0. Writes have no effect. SOMISRS0 SPI2 SOMI[0] slew control. This bit controls between the fast or slow slew mode. 0 Fast mode is enabled; the normal output buffer is used for this pin. 1 Slow mode is enabled; slew rate control is used for this pin. SIMOSRS0 SPI2 SIMO[0] slew control. This bit controls between the fast or slow slew mode. 0 Fast mode is enabled; the normal output buffer is used for this pin. 1 Slow mode is enabled; slew rate control is used for this pin. CLKSRS Reserved SPI2 CLK slew control. This bit controls between the fast or slow slew mode. 0 Fast mode is enabled; the normal output buffer is used for this pin. 1 Slow mode is enabled; slew rate control is used for this pin. 0 Reads return the value that was last written. Writes have no effect. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers www.ti.com 25.9.25 Parallel/Modulo Mode Control Register (SPIPMCTRL) NOTE: Do not configure MODCLKPOLx and MMODEx bits since this device does not support modulo mode. NOTE: The bits of this register are used in conjunction with the SPIFMTx registers. Each byte of this register corresponds to one of the SPIFMTx registers. 1. Byte0 (Bits 7:0) are used when SPIFMT0 register is selected by DFSEL[1:0] = 00 in the control field of a buffer. 2. Byte1 (Bits 15:8) are used when SPIFMT1 register is selected by DFSEL[1:0] = 01 in the control field of a buffer. 3. Byte2 (Bits 23:16) are used when SPIFMT2 register is selected by DFSEL[1:0] = 10 in the control field of a buffer. 4. Byte3 (Bits 31:24) are used when SPIFMT3 register is selected by DFSEL[1:0] = 11 in the control field of a buffer. Figure 25-54. Parallel/Modulo Mode Control Register (SPIPMCTRL) [offset = 6Ch] 31 30 29 28 26 25 24 Reserved MODCLKPOL3 MMODE3 PMODE3 R-0 R/WP-0 R/WP-0 R/WP-0 23 22 21 20 18 17 16 Reserved MODCLKPOL2 MMODE2 PMODE2 R-0 R/WP-0 R/WP-0 R/WP-0 15 14 13 12 10 9 8 Reserved MODCLKPOL1 MMODE1 PMODE1 R-0 R/WP-0 R/WP-0 R/WP-0 7 6 5 4 2 1 0 Reserved MODCLKPOL0 MMODE0 PMODE0 R-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 25-33. SPI Parallel/Modulo Mode Control Register (SPIPMCTRL) Field Descriptions Bit 31-30 29 28-26 Field Reserved Value 0 MODCLKPOL3 Reads return 0. Writes have no effect. Modulo mode SPICLK polarity. This bit determines the polarity of the SPICLK in modulo mode only. If the MMODE3 bits are 000, this bit will be ignored. 0 Normal SPICLK in all the modes. 1 Polarity of the SPICLK will be inverted if Modulo mode is selected. MMODE3 These bits determine whether the SPI/MibSPI operates with 1, 2, 4, 5, or 6 data lines (if modulo option is supported by the module). 0 Normal single data line mode - default (PMODE3 should be set to 00) 1h 2-data line mode (PMODE3 should be set to 00) 2h 3-data line mode (PMODE3 should be set to 00) 3h 4-data line mode (PMODE3 should be set to 00) 4h 5-data line mode (PMODE3 should be set to 00) 5h 6-data line mode (PMODE3 should be set to 01) 6h-7h SPNU499C – March 2018 Submit Documentation Feedback Description Reserved Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1387 Control Registers www.ti.com Table 25-33. SPI Parallel/Modulo Mode Control Register (SPIPMCTRL) Field Descriptions (continued) Bit 25-24 23-22 21 20-18 Field Value PMODE3 Reserved Parallel mode bits determine whether the SPI/MibSPI operates with 1, 2, 4, or 8 data lines. 0 Normal operation/1-data line (MMODE3 should be set to 000) 1h 2-data line mode (MMODE3 should be set to 000) 2h 4-data line mode (MMODE3 should be set to 000) 3h 8-data line mode (MMODE3 should be set to 000) 0 Reads return 0. Writes have no effect. MODCLKPOL2 Modulo mode SPICLK polarity. This bit determines the polarity of the SPICLK in modulo mode only. If the MMODE2 bits are 000, this bit will be ignored. 0 Normal SPICLK in all the modes. 1 Polarity of the SPICLK will be inverted if Modulo mode is selected. MMODE2 These bits determine whether the SPI/MibSPI operates with 1, 2, 4, 5, or 6 data lines (if modulo option is supported by the module). 0 1-data line Mode - default (PMODE2 should be set to 00) 1h 2-data line Mode (PMODE2 should be set to 00) 2h 3-data line mode (PMODE2 should be set to 00) 3h 4-data line mode (PMODE2 should be set to 00) 4h 5-data line mode (PMODE2 should be set to 00) 5h 6-data line mode (PMODE2 should be set to 01) 6h-7h 17-16 15-14 13 12-10 PMODE2 Reserved 7-6 Parallel mode bits determine whether the SPI/MibSPI operates with 1, 2, 4, or 8 data lines. Normal operation/1-data line (MMODE2 should be set to 000) 1h 2-data line mode (MMODE2 should be set to 000) 2h 4-data line mode (MMODE2 should be set to 000) 3h 8-data line mode (MMODE2 should be set to 000) 0 Reads return 0. Writes have no effect. MODCLKPOL1 Modulo mode SPICLK polarity. This bit determines the polarity of the SPICLK in modulo mode only. If the MMODE1 bits are 000, this bit will be ignored. 0 Normal SPICLK in all the modes. 1 Polarity of the SPICLK will be inverted if Modulo mode is selected. MMODE1 These bits determine whether the SPI/MibSPI operates with 1, 2, 4, 5, or 6 data lines (if modulo option is supported by the module). 0 1-data line mode - default (PMODE1 should be set to 00) 1h 2-data line mode (PMODE1 should be set to 00) 2h 3-data line mode (PMODE1 should be set to 00) 3h 4-data line mode (PMODE1 should be set to 00) 4h 5-data line mode (PMODE1 should be set to 00) 5h 6-data line mode (PMODE1 should be set to 01) 5 1388 PMODE1 Reserved Reserved 0 6h-7h 9-8 Description Reserved Parallel mode bits determine whether the SPI/MibSPI operates with 1, 2, 4, or 8 data lines. 0 Normal operation/1-data line (MMODE1 should be set to 000) 1h 2-data line mode (MMODE1 should be set to 000) 2h 4-data line mode (MMODE1 should be set to 000) 3h 8-data line mode (MMODE1 should be set to 000) 0 Reads return 0. Writes have no effect. MODCLKPOL0 Modulo mode SPICLK polarity. This bit determines the polarity of the SPICLK in modulo mode only. If the MMODE0 bits are 000, this bit will be ignored. 0 Normal SPICLK in all the modes. 1 Polarity of the SPICLK will be inverted if Modulo mode is selected. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers www.ti.com Table 25-33. SPI Parallel/Modulo Mode Control Register (SPIPMCTRL) Field Descriptions (continued) Bit Field 4-2 MMODE0 Value These bits determine whether the SPI/MibSPI operates with 1, 2, 4, 5, or 6 data lines (if modulo option is supported by the module). 0 1-data line mode - default (PMODE0 should be set to 00) 1h 2-data line mode (PMODE0 should be set to 00) 2h 3-data line mode (PMODE0 should be set to 00) 3h 4-data line mode (PMODE0 should be set to 00) 4h 5-data line mode (PMODE0 should be set to 00) 5h 6-data line mode (PMODE0 should be set to 01) 6h-7h 1-0 PMODE0 SPNU499C – March 2018 Submit Documentation Feedback Description Reserved Parallel mode bits determine whether the SPI/MibSPI operates with 1, 2, 4, or 8 data lines. 0 Normal operation/1-data line (MMODE0 should be set to 000) 1h 2-data line mode (MMODE0 should be set to 000) 2h 4-data line mode (MMODE0 should be set to 000) 3h 8-data line mode (MMODE0 should be set to 000) Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1389 Control Registers www.ti.com 25.9.26 Multi-buffer Mode Enable Register (MIBSPIE) NOTE: Accessibility of Multi-Buffer RAM The multi-buffer RAM is not accessible unless the MSPIENA bit set to 1. The only exception to this is in test mode, where, by setting RXRAMACCESS to 1, the multi-buffer RAM can be fully accessed for both read and write. Figure 25-55. Multi-buffer Mode Enable Register (MIBSPIE) [offset = 70h] 31 17 16 Reserved RXRAM_ACCESS R-0 R/WP-0 15 1 0 Reserved MSPIENA R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 25-34. Multi-buffer Mode Enable Register (MIBSPIE) Field Descriptions Bit 31-17 16 Field Value Reserved 0 RXRAM ACCESS Description Reads return 0. Writes have no effect. Receive-RAM access control. During normal operating mode of SPI, the receive data/status portion of multi-buffer RAM is read-only. To enable testing of receive RAM, direct read/write access is enabled by setting this bit. 0 The RX portion of multi-buffer RAM is not writable by the CPU. 1 The whole of multi-buffer RAM is fully accessible for read/write by the CPU. Note: The RX RAM ACCESS bit remains 0 after reset and it should remain cleared to 0 at all times, except when testing the RAM. SPI should be given a local reset by using the nRESET (SPIGCR0[0]) bit after RAM testing is performed so that the multi-buffer RAM gets re-initialized. 15-1 Reserved 0 MSPIENA 0 Reads return 0. Writes have no effect. Multi-buffer mode enable. After power-up or reset, MSPIENA remains cleared, which means that the SPI runs in compatibility mode by default. If multi-buffer mode is desired, this register should be configured first after configuring the SPIGCR0 register. If MSPIENA is not set to 1, the multi-buffer mode registers are not writable. 0 The SPI runs in compatibility mode, that is, in this mode the MibSPI is fully code-compliant to the standard device SPI. No multi-buffered-mode features are supported. 1 The SPI is configured to run in multi-buffer mode. NOTE: Accessibility of Registers Registers from this offset address onwards are not accessible in SPI compatibility mode. They are accessible only in the multi-buffer mode. 1390 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers www.ti.com 25.9.27 TG Interrupt Enable Set Register (TGITENST) The register TGITENST contains the TG interrupt enable flags for transfer-finished and for transfersuspended events. Each of the enable bits in the higher half-word and the lower half-word of TGITENST belongs to one TG. The register map shown in Figure 25-56 and Table 25-35 represents a super-set device with the maximum number of TGs (16) assumed. The actual number of bits available varies per device. Figure 25-56. TG Interrupt Enable Set Register (TGITENST) [offset = 74h] 31 16 SETINTENRDY[15:0] R/W-0 15 0 SETINTENSUS[15:0] R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 25-35. TG Interrupt Enable Set Register (TGITENST) Field Descriptions Bit 31-16 Field Value SETINTENRDY[n] Description TG interrupt set (enable) when transfer finished. Bit 16 corresponds to TG0, bit 17 corresponds to TG1, and so on. 0 Read: The TGx-completed interrupt is disabled. This interrupt does not get generated when TGx completes. Write: A write of 0 to this bit has no effect. 1 Read: The TGx-completed interrupt is enabled. The interrupt gets generated when TGx completes. Write: Enable the TGx-completed interrupt. The interrupt gets generated when TGx completes. 15-0 SETINTENSUS[n] TG interrupt set (enabled) when transfer suspended. Bit 0 corresponds to TG0, bit 1 corresponds to TG1, and so on. 0 Read: The TGx-completed interrupt is disabled. This interrupt does not get generated when TGx is suspended. Write: A write of 0 to this bit has no effect. 1 Read: The TGx-completed interrupt is enabled. The interrupt gets generated when TGx is suspended. Write: Enable the TGx-completed interrupt. The interrupt gets generated when TGx is suspended. SPNU499C – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1391 Control Registers www.ti.com 25.9.28 TG Interrupt Enable Clear Register (TGITENCR) The register TGITENCR is used to clear the interrupt enables for the TG-completed interrupt and the TGsuspended interrupts. The register map shown in Figure 25-57 and Table 25-36 represents a super-set device with the maximum number of TGs (16) assumed. The actual number of bits available varies per device. Figure 25-57. TG Interrupt Enable Clear Register (TGITENCR) [offset = 78h] 31 16 CLRINTENRDY[15:0] R/W-0 15 0 CLRINTENSUS[15:0] R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 25-36. TG Interrupt Enable Clear Register (TGITENCR) Field Descriptions Bit 31-16 Field Value CLRINTENRDY[n] Description TG interrupt clear (disabled) when transfer finished. Bit 16 corresponds to TG0, bit 17 corresponds to TG1, and so on. 0 Read: The TGx-completed interrupt is disabled. This interrupt does not get generated when TGx completes. Write: A write of 0 to this bit has no effect. 1 Read: The TGx-completed interrupt is enabled. The interrupt gets generated when TGx completes. Write: Disable the TGx-completed interrupt. The interrupt does not get generated when TGx completes. 15-0 CLRINTENSUS[n] TG interrupt clear (disabled) when transfer suspended. Bit 0 corresponds to TG0, bit 1 corresponds to TG1, and so on. 0 Read: The TGx-completed interrupt is disabled. This interrupt does not get generated when TGx is suspended. Write: A write of 0 to this bit has no effect. 1 Read: The TGx-completed interrupt is enabled. The interrupt gets generated when TGx is suspended. Write: Disable the TGx-completed interrupt. The interrupt does not get generated when TGx is suspended. 1392 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers www.ti.com 25.9.29 Transfer Group Interrupt Level Set Register (TGITLVST) The register TGITLVST sets the level of interrupts for transfer completed interrupt and for transfer suspended interrupt to level 1. The register map shown in Figure 25-58 andTable 25-37 represents a super-set device with the maximum number of TGs (16) assumed. The actual number of bits available varies per device. Figure 25-58. Transfer Group Interrupt Level Set Register (TGITLVST) [offset = 7Ch] 31 16 SETINTLVLRDY[15:0] R/W-0 15 0 SETINTLVLSUS[15:0] R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 25-37. Transfer Group Interrupt Level Set Register (TGITLVST) Field Descriptions Bit 31-16 Field Value SETINTLVLRDY[n] Description Transfer-group completed interrupt level set. Bit 16 corresponds to TG0, bit 17 corresponds to TG1, and so on. 0 Read: The TGx-completed interrupt is set to INT0. Write: A write of 0 to this bit has no effect. 1 Read: The TGx-completed interrupt is set to INT1. Write: Set the TGx-completed interrupt to INT1. 15-0 SETINTLVLSUS[n] Transfer-group suspended interrupt level set. Bit 0 corresponds to TG0, bit 1 corresponds to TG1, and so on. 0 Read: The TGx-suspended interrupt is set to INT0. Write: A write of 0 to this bit has no effect. 1 Read: The TGx-suspended interrupt is set to INT1. Write: Set the TGx-suspended interrupt to INT1. SPNU499C – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1393 Control Registers www.ti.com 25.9.30 Transfer Group Interrupt Level Clear Register (TGITLVCR) The register TGITLVCR clears the level of interrupts for transfer completed interrupt and for transfer suspended interrupt to level 0. The register map shown in Figure 25-59 and Table 25-38 represents a super-set device with the maximum number of TGs (16) assumed. The actual number of bits available varies per device. Figure 25-59. Transfer Group Interrupt Level Clear Register (TGITLVCR) [offset = 80h] 31 16 CLRINTLVLRDY[15:0] R/W-0 15 0 CLRINTLVLSUS[15:0] R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 25-38. Transfer Group Interrupt Level Clear Register (TGITLVCR) Field Descriptions Bit 31-16 Field Value CLRINTLVLRDY[n] Description Transfer-group completed interrupt level clear. Bit 16 corresponds to TG0, bit 17 corresponds to TG1, and so on. 0 Read: The TGx-completed interrupt is set to INT0. Write: A write of 0 to this bit has no effect. 1 Read: The TGx-completed interrupt is set to INT1. Write: Clear the TGx-completed interrupt to INT0. 15-0 CLRINTLVLSUS[n] Transfer group suspended interrupt level clear. Bit 0 corresponds to TG0, bit 1 corresponds to TG1, and so on. 0 Read: The TGx-suspended interrupt is set to INT0. Write: A write of 0 to this bit has no effect. 1 Read: The TGx-suspended interrupt is set to INT1. Write: Clear the TGx-suspended interrupt to INT0. 1394 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers www.ti.com 25.9.31 Transfer Group Interrupt Flag Register (TGINTFLG) The TGINTFLG register comprises the transfer group interrupt flags for transfer-completed interrupts (INTFLGRDYx) and for transfer-suspended interrupts (INTFLGSUSx). Each of the interrupt flags in the higher half-word and the lower half-word of TGINTFLG belongs to one TG. The register map shown in Figure 25-60 and Table 25-39 represents a super-set device with the maximum number of TGs (16) assumed. The actual number of bits available varies per device. Figure 25-60. Transfer Group Interrupt Flag Register (TGINTFLG) [offset = 84h] 31 16 INTFLGRDY[15:0] R/W1C-0 15 0 INTFLGSUS[15:0] R/W1C-0 LEGEND: R/W = Read/Write; W1C = Write 1 to clear; -n = value after reset Table 25-39. Transfer Group Interrupt Flag Register (TGINTFLG) Field Descriptions Bit 31-16 Field Value INTFLGRDY[ n] Description Transfer-group interrupt flag for a transfer-completed interrupt. Bit 16 corresponds to TG0, bit 17 corresponds to TG1, and so on. Note: Read Clear Behavior. Reading the interrupt vector registers TGINTVECT0 or TGINTVECT1 automatically clears the interrupt flag bit INTFLGRDYx referenced by the vector number given by INTVECT0/INTVECT1 bits, if the SUSPEND[0:1] bit in the vector registers is 0. 0 Read: No transfer-completed interrupt occurred since last clearing of the INTFLGRDYx flag. Write: A write of 0 to this bit has no effect. 1 Read: A transfer finished interrupt from transfer group x occurred. No matter whether the interrupt is enabled or disabled (INTENRDYx = don't care) or whether the interrupt is mapped to INT0 or INT1, INTFLGRDYx is set right after the transfer from TGx is finished. Write: The corresponding bit flag is cleared. 15-0 INTFLGSUS[ n] Transfer-group interrupt flag for a transfer-suspend interrupt. Bit 0 corresponds to TG0, bit 1 corresponds to TG1, and so on. Note: Read Clear Behavior. Reading the interrupt vector registers TGINTVECT0 or TGINTVECT1 automatically clears the interrupt flag bit INTFLGSUSx referenced by the vector number given by INTVECT0/INTVECT1 bits, if the SUSPEND[0:1] bit in the corresponding vector registers is 1. 0 Read: No transfer-suspended interrupt occurred since the last clearing of the INTFLGSUSx flag. Write: A write of 0 to this bit has no effect. 1 Read: A transfer-suspended interrupt from TGx occurred. No matter whether the interrupt is enabled or disabled (INTENSUSx = don't care) or whether the interrupt is mapped to INT0 or INT1, INTFLGSUSx is set right after the transfer from transfer group x is suspended. Write: The corresponding bit flag is cleared. SPNU499C – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1395 Control Registers www.ti.com 25.9.32 Tick Count Register (TICKCNT) One of the trigger sources for TGs is an internal periodic time trigger. This time trigger is called a tick counter and is basically a down-counter with a preload/reload value. Every time the tick counter detects an underflow it reloads the initial value and toggles the trigger signal provided to the TGs. The trigger signal, shown in Figure 25-61 as a square wave, illustrates the different trigger event types for the TGs (for example, rising edge, falling edge, and both edges). Figure 25-61. Tick Counter Operation Tick counter Trigger signal Counter reload This register is shown in Figure 25-62 and described in Table 25-40. Figure 25-62. Tick Count Register (TICKCNT) [offset = 90h] 31 30 TICKENA RELOAD 29 CLKCTRL 28 27 Reserved 16 R/W-0 R/S-0 R/W-0 R-0 15 0 TICKVALUE R/W-0 LEGEND: R/W = Read/Write; R = Read only; S = Set; -n = value after reset Table 25-40. Tick Count Register (TICKCNT) Field Descriptions Bit Field 31 TICKENA Value Description Tick counter enable. 0 The internal tick counter is disabled. The counter value remains unchanged. Note: When the tick counter is disabled, the trigger signal is forced low. 1 30 RELOAD The internal tick counter is enabled and is clocked by the clock source selected by CLKCTRL. When TICKENA goes from 0 to 1, the tick counter is automatically loaded with the contents of TICKVALUE. Pre-load the tick counter. RELOAD is a set-only bit; writing a 1 to it reloads the tick counter with the value stored in TICKVALUE. Reading RELOAD always returns a 0. Note: When the tick counter is reloaded by the RELOAD bit, the trigger signal is not toggled. 29-28 CLKCTRL 27-16 Reserved 15-0 TICKVALUE 1396 Tick counter clock source control. CLKCTRL defines the clock source that is used to clock the internal tick counter. 0 SPICLK of data word format 0 is selected as the clock source of the tick counter. 1h SPICLK of data word format 1 is selected as the clock source of the tick counter. 2h SPICLK of data word format 2 is selected as the clock source of the tick counter. 3h SPICLK of data word format 3 is selected as the clock source of the tick counter. 0 Reads return 0. Writes have no effect. 0-FFFFh Initial value for the tick counter. TICKVALUE stores the initial value for the tick counter. The tick counter is loaded with the contents of TICKVALUE every time an underflow condition occurs and every time the RELOAD flag is set by the host. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers www.ti.com 25.9.33 Last TG End Pointer (LTGPEND) Figure 25-63. Last TG End Pointer (LTGPEND) [offset = 94h] 31 15 29 28 24 23 16 Reserved TG_IN_SERVICE Reserved R-0 R-0 R-0 14 8 7 0 Rsvd LPEND Reserved R-0 R/W-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 25-41. Last TG End Pointer (LTGPEND) Field Descriptions Bit Field 31-29 Reserved 28-24 TG_IN_SERVICE Value 0 Description Reads return 0. Writes have no effect. The TG number currently being serviced by the sequencer. These bits indicate the current TG that is being serviced. This field can generally be used for code debugging. 0 No TG is being serviced by the sequencer. 1h TG0 is being serviced by the sequencer. : 10h : TG15 is being serviced by the sequencer. Note: The number of transfer groups varies by device. 11h-1Fh 23-15 Reserved 14-8 LPEND 0 0-7Fh Invalid values. Reads return 0. Writes have no effect. Last TG end pointer. Usually the TG end address (PEND) is inherently defined by the start value of the starting pointer of the subsequent TG (PSTART). The TG ends one word before the next TG starts (PEND[x] = PSTART[x+1] - 1). For a full configuration of MibSPI, the last TG has no subsequent TG, that is, no end address is defined. Therefore, LPEND has to be programmed to specify explicitly the end address of the last TG. Note: When using all 8 transfer groups, program the LPEND bits to define the end of the last transfer group. When using less than 8 transfer groups, leave the LPEND bits programmed to point to the end of the buffer and create a dummy transfer group that defines the end of your last intentional transfer group and occupies all the remaining buffer space. 7-0 Reserved SPNU499C – March 2018 Submit Documentation Feedback 0 Reads return 0. Writes have no effect. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1397 Control Registers www.ti.com 25.9.34 TGx Control Registers (TGxCTRL) Each TG can be configured via one dedicated control register. The register description shows one control register (x) that is identical for all TGs. For example, the control register for TG2 is named TG2CTRL and is located at base address + 98h + 4 × 2. The actual number of available control registers varies by device. Figure 25-64. MibSPI TG Control Registers (TGxCTRL) [offsets = 98h-D4h] 31 30 29 28 TGENA ONESHOT PRST TGTD Reserved R/W-0 R/W-0 R/W-0 R-0 R-0 23 15 27 20 24 19 16 TRIGEVT TRIGSRC R/W-0 R/W-0 14 8 7 6 0 Rsvd PSTART Rsvd PCURRENT R-0 R/W-0 R-0 R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 25-42. TG Control Registers (TGxCTRL) Field Descriptions Bit Field 31 TGENA Value Description TGx enable. If the correct event (TRIGEVTx) occurs at the selected source (TRIGSRCx), a group transfer is initiated if no higher-priority TG is in active-transfer mode or if one or more higher-priority TGs are in transfer-suspend mode. Disabling a TG while a transfer is ongoing will finish the ongoing word transfer but not the whole group transfer. 30 29 0 TGx is disabled. 1 TGx is enabled. ONESHOTx Single transfer for TGx. 0 TGx initiates a transfer every time a trigger event occurs and TGENA is set. 1 A transfer from TGx will be performed only once (one shot) after a valid trigger event at the selected trigger source. After the transfer is finished the TGENAx control bit will be cleared and therefore no additional transfer can be triggered before the host enables the TG again. This one shot mode ensures that after one group transfer the host has enough time to read the received data and to provide new transmit data. PRSTx TGx pointer reset mode. Configures the way to resolve trigger events during an ongoing transfer. This bit is meaningful only for level-triggered TGs. Edge-triggered TGs cannot be restarted before their completion by another edge. The PRST bit will have no effect on this behavior. Note: When the PRST bit is set, if the buffer being transferred at the time of a new trigger event is a LOCK, CSHOLD or NOBRK buffer, then only after finishing those transfers, the TG will be restarted. This means that even if the TG is retriggered, the TG will only be restarted after finishing the transfer of the first non-LOCK or non-CSHOLD buffer. In the case of the NOBRK buffer, after completing the ICOUNT number of transfers, the TG will be restarted from its PSTART. This means that TX control fields such as LOCK and CSHOLD, and DMA control fields such as NOBRK have higher priority over anything else. They have the capability to delay the restart of the TG even if it is retriggered when PRST is 1. 28 1398 0 If a trigger event occurs during a transfer from TGx, the event is ignored and is not stored internally. The TGx transfer has priority over additional trigger events. 1 The TGx pointer (PCURRENTx) will be reset to the start address (PSTARTx) when a valid trigger event occurs at the selected trigger source while a transfer from the same TG is ongoing. Every trigger event resets PCURRENTx no matter whether the concerned TG is in transfer mode or not. The trigger events have priority over the ongoing transfer. TGTDx TG triggered. 0 TGx has not been triggered or is no longer waiting for service. 1 TGx has been triggered and is either currently being serviced or waiting for servicing. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers www.ti.com Table 25-42. TG Control Registers (TGxCTRL) Field Descriptions (continued) Bit Field 27-24 Reserved 23-20 TRIGEVTx Value 0 Description Reads return 0. Writes have no effect. Type of trigger event. A level-triggered TG can be stopped by de-activating the level trigger. However, the following restrictions apply. • Deactivating the level trigger for a TG during a NOBRK transfer does not stop the transfers until all of the ICOUNT number of buffers are transferred for the NOBRK buffer. Once a NOBRK buffer is prefetched, the trigger event loses control over the TG until the NOBRK buffer transfer is completed. • Once the transfer of a buffer with CSHOLD or LOCK bit set starts, deactivating the trigger level does not stop the transfer until the sequencer completes the transfer of the next non-CSHOLD or non-LOCK buffer in the same TG. • Once the last buffer in a TG is pre-fetched, de-activating the trigger level does not stop the transfer group until the last buffer transfer is completed. This means even if the trigger level is deactivated at the beginning of the penultimate (one-before-last) buffer transfer, the sequencer continues with the same TG until it is completed. 0 never Never trigger TGx. This is the default value after reset. 1h rising edge A rising edge (0 to 1) at the selected trigger source (TRIGSRCx) initiates a transfer for TGx 2h falling edge A falling edge (1 to 0) at the selected trigger source (TRIGSRCx) initiates a transfer for TGx 3h both edges Rising and falling edges at the selected trigger source (TRIGSRCx) initiates a transfer for TGx 4h Rsvd Reserved 5h highactive While the selected trigger source (TRIGSRCx) is at a logic-high level (1), the group transfer is continued and at the end of one group, transfer is restarted at the beginning. If the logic level changes to low (0) during an ongoing group transfer, the whole group transfer will be stopped. 6h lowactive 7h always Note: If ONESHOTx is set, the transfer is performed only once. While the selected trigger source (TRIGSRCx) is at a logic-low level (0), the group transfer is continued and at the end of one group, transfer is restarted at the beginning. If the logic level changes to high (1) during an ongoing group transfer, the whole group transfer will be stopped. Note: If ONESHOTx is set, the transfer is performed only once. A repetitive group transfer will be performed. Note: By setting the TRIGSRC to 0, the TRIGEVT to 7h (ALWAYS), and the ONESHOTx bit to 1, software can trigger this TG. Upon setting the TGENA bit, the TG is immediately triggered. Note: If ONESHOTx is set, the transfer is performed only once. 8h-Fh SPNU499C – March 2018 Submit Documentation Feedback Rsvd Reserved Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1399 Control Registers www.ti.com Table 25-42. TG Control Registers (TGxCTRL) Field Descriptions (continued) Bit Field 19-16 Value TRIGSRCx Description Trigger source. After reset, the trigger sources of all TGs are disabled. 0 Disabled 1h EXT0 External trigger source 0. The actual source varies per device (for example, HET I/O channel, event pin). 2h EXT1 External trigger source 1. The actual source varies per device (for example, HET I/O channel, event pin). 3h EXT2 External trigger source 2. The actual source varies per device (for example, HET I/O channel, event pin). 4h EXT3 External trigger source 3. The actual source varies per device (for example, HET I/O channel, event pin). 5h EXT4 External trigger source 4. The actual source varies per device (for example, HET I/O channel, event pin). 6h EXT5 External trigger source 5. The actual source varies per device (for example, HET I/O channel, event pin). 7h EXT6 External trigger source 6. The actual source varies per device (for example, HET I/O channel, event pin). 8h EXT7 External trigger source 7. The actual source varies per device (for example, HET I/O channel, event pin). 9h EXT8 External trigger source 8. The actual source varies per device (for example, HET I/O channel, event pin). Ah EXT9 External trigger source 9. The actual source varies per device (for example, HET I/O channel, event pin). Bh EXT10 External trigger source 10. The actual source varies per device (for example, HET I/O channel, event pin). Ch EXT11 External trigger source 11. The actual source varies per device (for example, HET I/O channel, event pin). Dh EXT12 External trigger source 12. The actual source varies per device (for example, HET I/O channel, event pin). Eh EXT13 External trigger source 13. The actual source varies per device (for example, HET I/O channel, event pin). Fh 15 Reserved 0 14-8 PSTARTx 0-7Fh TICK Internal periodic event trigger. The tick counter can initiate periodic group transfers. Reads return 0. Writes have no effect. TG start address. PSTARTx stores the start address of the corresponding TG. The corresponding end address is inherently defined by the subsequent TG start address minus 1 (PENDx[TGx] = PSTARTx[TGx+1]-1). PSTARTx is copied into PCURRENTx when: • The TG is enabled • The end of the TG is reached during a transfer • A trigger event occurs while PRST is set to 1 7 6-0 Reserved 0 PCURRENTx 0-7Fh Reads return 0. Writes have no effect. Pointer to current buffer. PCURRENT is read-only. PCURRENTx stores the address (0...127) of the buffer that corresponds to this TG. If the TG switches from active-transfer mode to suspend-towait mode, PCURRENTx contains the address of the currently suspended word. After the TG resumes from suspend-to-wait mode, the next buffer will be transferred; that is, no buffer data is transferred because of suspend-to-wait mode. NOTE: Register bits vary by device TG0 has the highest priority and TG15 has the lowest priority. Under the following conditions, a lower-priority TG cannot be interrupted by a higher-priority TG: 1. When there is a CSHOLD or LOCK buffer, until the completion of the next buffer transfer that is a non-CSHOLD or non-LOCK buffer. 2. An entire sequence of words transferred for a NOBRK DMA buffer. 3. Once the last word in a TG is pre-fetched. 1400 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers www.ti.com 25.9.35 DMA Channel Control Register (DMAxCTRL) Each DMA channel can be configured via one dedicated control register. The register description below shows one exemplary control register that is identical for all DMA channels; for example, the control register for DMA channel 0 is named DMA0CTRL. The MibSPI supports up to 8 bidirectional DMA channels. The number of bidirectional DMA channels varies by device. The number of DMA channels and hence the number of DMA channel control registers may vary. Figure 25-65. DMA Channel Control Register (DMAxCTRL) [offset = D8h-F4h] 31 30 24 23 20 19 16 ONESHOT BUFID RXDMA_MAP TXDMA_MAP R/W-0 R/W-0 R/W-0 R/W-0 15 14 13 RXDMAENA TXDMAENA NOBRK 12 ICOUNT 8 R/W-0 R/W-0 R/W-0 R/W-0 7 6 5 Reserved COUNT_BIT17 COUNT R-0 R-0 R-0 0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 25-43. DMA Channel Control Register (DMAxCTRL) Field Descriptions Bit Field 31 ONESHOT Value Description Auto-disable of DMA channel after ICOUNT + 1 transfers. Note: This ONESHOT applies to the DMA channel identified by x and will autodisable based on ICOUNTx. 0 The length of the block transfer is fully controlled by the DMA controller. The enable bits RXDMAENAx and TXDMAENAx are not modified by the MibSPI. 1 ONESHOT allows a block transfer of defined length (ICOUNTx + 1), mainly controlled by the MibSPI and not by the DMA controller. After ICOUNTx + 1 transfers, the enable bits RXDMAENAx and TXDMAENAx are automatically cleared by the MibSPI, hence no more DMA requests are generated. In conjunction with NOBRKx, a burst transfer can be initiated without any other transfer through another buffer. 30-24 BUFIDx 0-7Fh Buffer utilized for DMA transfer. BUFIDx defines the buffer that is utilized for the DMA transfer. In order to synchronize the transfer with the DMA controller with the NOBRK condition the "suspend to wait until..." modes must be used. 23-20 RXDMA_MAPx 0-Fh Each MibSPI DMA channel can be linked to two physical DMA Request lines of the DMA controller. One request line for receive data and the other for request line for transmit data. RXDMA_MAPx defines the number of the physical DMA Request line that is connected to the receive path of the MibSPI DMA channel. If RXDMAENAx and TXDMAENAx are both set to 1, then RXDMA_MAPx shall differ from TXDMA_MAPx and shall differ from any other used physical DMA Request line. Otherwise, unexpected interference may occur. 19-16 TXDMA_MAPx 0-Fh Each MibSPI DMA channel can be linked to two physical DMA Request lines of the DMA controller. One request line for receive data and the other for request line for transmit data. TXDMA_MAPx defines the number of the physical DMA Request line that is connected to the transmit path of the MibSPI DMA channel. If RXDMAENAx and TXDMAENAx are both set to 1, then TXDMA_MAPx shall differ from RXDMA_MAPx and shall differ from any other used physical DMA Request line. Otherwise, unexpected interference may occur. 15 RXDMAENAx SPNU499C – March 2018 Submit Documentation Feedback Receive data DMA channel enable. 0 No DMA request upon new receive data. 1 The physical DMA channel for the receive path is enabled. The first DMA request pulse is generated after the first transfer from the referenced buffer (BUFIDx) is finished. The buffer should be configured in as "skip until RXEMPTY is set" or "suspend to wait until RXEMPTY is set" in order to ensure synchronization between the DMA controller and the MibSPI sequencer. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1401 Control Registers www.ti.com Table 25-43. DMA Channel Control Register (DMAxCTRL) Field Descriptions (continued) Bit Field 14 TXDMAENAx 13 Value Description Transmit data DMA channel enable. 0 No DMA request upon new transmit data. 1 The physical DMA channel for the transmit path is enabled. The first DMA request pulse is generated right after setting TXDMAENAx to load the first transmit data. The buffer should be configured in the as "skip until TXFULL is set" or "suspend to wait until TXFULL is set" in order to ensure synchronization between the DMA controller and the MibSPI sequencer. NOBRKx Non-interleaved DMA block transfer. This bit is available in master mode only. Note: Special Conditions during a NOBRK Buffer Transfer. If a NOBRK DMA buffer is currently being serviced by the sequencer, then it is not allowed to be disabled prematurely. During a NOBRK transfer, the following operations are not allowed: • • • • Clearing the NOBRKx bit to 0 Clearing the RXDMAENAx to 0 (if it is already 1) Clearing the TXDMAENAx to 0 (if it is already 1) Clearing the BUFMODE[2:0] bits in TXRAM to 000 Note: Any attempts to perform these actions during a NOBRK transfer will produce unpredictable results. 0 DMA transfers through the buffer referenced by BUFIDx are interleaved by data transfers from other active buffers or TGs. Every time the sequencer checks the DMA buffer, it performs one transfer and then steps to the next buffer. 1 NOBRKx ensures that ICOUNTx + 1 data transfers are performed from the buffer referenced by BUFIDx without a data transfer from any other buffer. The sequencer remains at the DMA buffer until ICOUNTx + 1 transfers have been processed. For example, this can be used to generate a burst transfer to one device without disabling the chip select signal in-between (the concerned buffer has to be configured with CSHOLD = 1). Another example would be to have a defined block data transfer in slave mode, synchronous to the master SPI. Note: Triggering of higher priority TGs or enabling of higher priority DMA channels will not interrupt a NOBRK block transfer. 12-8 ICOUNTx 0-1Fh Initial count of DMA transfers. ICOUNTx is used to preset the transfer counter COUNTx. Every time COUNTx hits 0, it is reloaded with ICOUNTx. The real number of transfers equals ICOUNTx plus 1. If ONESHOTx is set, ICOUNTx defines the number of DMA transfers that are performed before the MibSPI automatically disables the DMA channels. If NOBRKx is set, ICOUNTx defines the number of DMA transfers that are performed in one sequence without a transfer from any other buffer. If ONESHOTx and NOBRKx are not set, ICOUNTx should be 0. Note: See Section 25.9.36 (ICOUNT) and Section 25.9.37 (DMACNTLEN) about how to increase the ICOUNT to a 16-bit value. With this extended capability, MibSPI can transfer a block of up to 65535 (65K) words without interleaving (if NOBRK is used) or without deasserting the chip select between the buffers (if CSHOLD is used). 7 Reserved 6 COUNT_BIT17x 5-0 COUNTx 0 Reads return 0. Writes have no effect. The 17th bit of the COUNT field of DMAxCOUNT register. 0-3Fh Actual number of remaining DMA transfers. This field contains the actual number of DMA transfers that remain, until the DMA channel is disabled, if ONESHOTx is set. Note: If the TX and RX DMA requests are enabled, the COUNT register will be decremented when the RX has been serviced. 1402 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers www.ti.com 25.9.36 DMAxCOUNT Register (ICOUNT) NOTE: These registers are used only if the LARGE COUNT bit in the DMACNTLEN register is set. The number of bidirectional DMA channels varies by device. The number of DMA channels and hence the number of DMA registers varies by device. Figure 25-66. DMAxCOUNT Register (ICOUNT) [offset = F8h-114h] 31 16 ICOUNTx R/W-0 15 0 COUNTx R-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 25-44. MibSPI DMAxCOUNT Register (ICOUNT) Field Descriptions Bit Field Value Description 31-16 ICOUNTx 0-FFFFh Initial number of DMA transfers. ICOUNTx is used to preset the transfer counter COUNTx. Every time COUNTx hits 0, it is reloaded with ICOUNTx. The real number of transfer equals ICOUNTx plus 1. If ONESHOTx is set, ICOUNTx defines the number of DMA transfers that are performed before the MibSPI automatically disables the corresponding DMA channel. If NOBRKx is set, ICOUNTx defines the number of DMA transfers that are performed in one sequence without a transfer from any other buffer. 15-0 COUNTx 0-FFFFh Actual number of remaining DMA transfers. COUNTx Contains the actual number of DMA transfers that remain, until the DMA channel is disabled, if ONESHOTx is set. Since the real counter value is always ICOUNTx +1, the 17th bit of COUNTx is available on DMACTRLx[6] bit. Note: Usage Tip for Block Transfer Using a Single DMA Request. It is possible to use the multi-buffer RAM to transfer chunks of data to/from an external SPI. A DMA Controller can be used to handle the data in bursts. Suppose a chunk of 64 bytes of data needs to be transferred and a single DMA request needs to be generated at the end of transferring the 64 bytes. This can be easily achieved by configuring a TG register for the 64 buffer locations and using the DMAxCTRL/DMAxCOUNT registers to configure the last buffer (64th) of the TG as the BUFID and enable RXDMA (NOBRK = 0). At the end of the transfer of the 64th buffer, a DMA request will be generated on the selected DMA request channel. The DMA controller can do a burst read of all 64 bytes from RXRAM and/or then do a burst write to all 64 bytes to the TXRAM for the next chunk. SPNU499C – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1403 Control Registers www.ti.com 25.9.37 DMA Large Count (DMACNTLEN) Figure 25-67. DMA Large Count Register (DMACNTLEN) [offset = 118h] 31 16 Reserved R-0 15 1 0 Reserved LARGE_COUNT R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 25-45. MibSPI DMA Large Count Register (DMACNTLEN) Field Descriptions Bit 31-1 0 Field Value Reserved 0 LARGE_COUNT Description Reads return 0. Writes have no effect. Select either the 16-bit DMAxCOUNT counters or the smaller counters in DMAxCTRL. 0 Select the DMAxCTRL counters. Writes to the DMAxCTRL register will modify the ICOUNT value. Reading ICOUNT and COUNT can be done from the DMAxCTRL register. The DMAxCOUNT register should not be used since any write to this register will be overwritten by a subsequent write to the DMAxCTRL register to set the TXDMAENA or RXDMAENA bits. 1 Select the DMAxCOUNT counters. Writes to the DMAxCTRL register will not modify the ICOUNT value. The ICOUNT value must be written to in the DMAxCOUNT register before the RXDMAENA or TXDMAENA bits are set in the DMAxCTRL register. The DMAxCOUNT register should be used for reading COUNT or ICOUNT. 25.9.38 Multi-buffer RAM Uncorrectable Parity Error Control Register (UERRCTRL) Figure 25-68. Multi-buffer RAM Uncorrectable Parity Error Control Register (UERRCTRL) [offset = 120h] 31 16 Reserved R-0 15 9 8 7 4 3 0 Reserved PTESTEN Reserved EDEN R-0 R/WP-0 R-0 R/WP-5h LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 25-46. Multi-buffer RAM Uncorrectable Parity Error Control Register (UERRCTRL) Field Descriptions Bit Field 31-9 Reserved 8 PTESTEN 7-4 Reserved 3-0 EDEN Value 0 Description Reads return 0. Writes have no effect. Parity memory test enable. This bit maps the parity bits corresponding to multi-buffer RAM locations into the peripheral RAM frame to make them accessible by the CPU. See Section 25.11 for further details about parity memory testing. 0 Parity bits are not memory-mapped. 1 Parity bits are memory-mapped. 0 Reads return 0. Writes have no effect. Error detection enable. These bits enable parity error detection. 5h All Other Values Parity error detection logic (default) is disabled. Parity error detection logic is enabled. Note: It is recommended to write a 1010 to enable error detection, to guard against a soft error from disabling parity error detect 1404 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers www.ti.com 25.9.39 Multi-buffer RAM Uncorrectable Parity Error Status Register (UERRSTAT) Figure 25-69. Multi-buffer RAM Uncorrectable Parity Error Status Register (UERRSTAT) [offset = 124h] 31 16 Reserved R-0 15 1 0 Reserved 2 EDFLG1 EDFLG0 R-0 R/W1C-0 R/W1C-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; -n = value after reset Table 25-47. Multi-buffer RAM Uncorrectable Parity Error Status Register (UERRSTAT) Field Descriptions Bit Field 31-2 Reserved 1 EDFLG1 Value 0 Description Reads return 0. Writes have no effect. Uncorrectable parity error detection flag. This flag indicates if a parity error occurred in the RXRAM. Note: Reading the UERRADDR1 register clears the EDFLG1 bit. 0 Read: No error has occurred. Write: Writing a 0 to this bit has no effect. 1 Read: An error was detected and the address is captured in the UERRADDR1 register. Write: The bit is cleared to 0. 0 EDFLG0 Uncorrectable parity error detection flag. This flag indicates if a parity error occurred in the TXRAM. Note: Reading the UERRADDR0 register clears the EDFLG0 bit. 0 Read: No error has occurred. Write: Writing a 0 to this bit has no effect. 1 Read: An error was detected and the address is captured in the UERRADDR0 register. Write: The bit is cleared to 0. SPNU499C – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1405 Control Registers www.ti.com 25.9.40 RXRAM Uncorrectable Parity Error Address Register (UERRADDR1) Figure 25-70. RXRAM Uncorrectable Parity Error Address Register (UERRADDR1) [offset = 128h] 31 16 Reserved R-0 15 10 9 0 Reserved OVERADDR1 R-0 R/C-x LEGEND: R = Read only; C = Clear; -n = value after reset Table 25-48. RXRAM Uncorrectable Parity Error Address Register (UERRADDR1) Field Descriptions Bit Field 31-10 Reserved 9-0 OVERADDR1 Value 0 200h-3FFh Description Reads return 0. Writes have no effect. Uncorrectable parity error address for RXRAM. This register holds the address where a parity error is generated while reading RXRAM. Only the CPU or DMA can read from RXRAM locations. The address captured is byte-aligned. This error address is frozen from being updated until it is read by the CPU. The offset address of RXRAM varies from 200h3FFh. The register does not clear its contents during or after module-level reset, system-level reset or even power-on reset. A read operation to this register clears its contents to the default value 200h. After a power-on reset the contents will be unpredictable. A read operation can be performed after power-up to keep the register at its default value, if required. However, the contents of this register are meaningful only when EDFLG1 is set to 1. Note: A read of the UERRADDR1 register will clear EDFLG1 in the UERRSTAT register. However, in emulation mode when the SUSPEND signal is high, a read from the UERRADDR1 register does not clear EDFLG1. 1406 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers www.ti.com 25.9.41 TXRAM Uncorrectable Parity Error Address Register (UERRADDR0) Figure 25-71. TXRAM Uncorrectable Parity Error Address Register (UERRADDR0) [offset = 12Ch] 31 16 Reserved R-0 15 9 8 0 Reserved UERRADDR0 R-0 R/C-x LEGEND: R = Read only; C = Clear; -n = value after reset Table 25-49. TXRAM Uncorrectable Parity Error Address Register (UERRADDR0) Field Descriptions Bit Field 31-9 Reserved 8-0 UERRADDR0 Value 0 0-1FFh Description Reads return 0. Writes have no effect. Uncorrectable parity error address for TXRAM. This register holds the address where a parity error is generated while reading from TXRAM. The TXRAM can be read either by CPU or by the MibSPI sequencer logic for transmission. The address captured is bytealigned. This error address is frozen from being updated until it is read by the CPU. The offset address of TXRAM varies from 0-1FFh. The register does not clear its contents during or after module-level reset, system-level reset, or even power-on reset. A read operation to this register clears its contents to all 0s. After a power-on reset, the contents of this register will be unpredictable. A read operation can be performed after power-up to clear the this register's contents, if required. However, the contents of this register are meaningful only when EDFLG0 is set to 1. Note: A read from the UERRADDR0 register will clear EDFLG0 in the UERRSTAT register. However, in emulation mode when the SUSPEND signal is high, a read from the UERRADDR0 register does not clear EDFLG0. SPNU499C – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1407 Control Registers www.ti.com 25.9.42 RXRAM Overrun Buffer Address Register (RXOVRN_BUF_ADDR) In multi-buffer mode, if a particular RXRAM location is written by the MibSPI sequencer logic after the completion of a new transfer when that location already contains valid data, the RX_OVR bit will be set to 1 while the data is being written. The RXOVRN_BUF_ADDR register captures the address of the RXRAM location for which a receiver overrun condition occurred. Figure 25-72. RXRAM Overrun Buffer Address Register (RXOVRN_BUF_ADDR) [offset = 130h] 31 16 Reserved R-0 15 10 9 0 Reserved RXOVRN_BUF_ADDR R-0 R-200h LEGEND: R = Read only; -n = value after reset Table 25-50. RXRAM Overrun Buffer Address Register (RXOVRN_BUF_ADDR) Field Descriptions Bit Field 31-10 Reserved 9-0 RXOVRN_BUF_ADDR Value Description 0 Reads return 0. Writes have no effect. 200h-3FCh Address in RXRAM at which an overwrite occurred. This address value will show only the offset address of the RAM location in the multi-buffer RAM address space. Refer to the device-specific data sheet for the actual absolute address of RXRAM. This word-aligned address can vary from 200h-3FCh. Contents of this register are valid only when any of the INTVECT0 or INTVECT1 and SPIFLG registers show an RXOVRN error vector while in multi-buffer mode. If there are multiple overrun errors, then this register holds the address of first overrun address until it is read. Note: Reading this register clears the RXOVRN interrupt flag in the SPIFLG register and the TGINTVECTx. Note: Receiver overrun errors in multi-buffer mode can be completely avoided by using the SUSPEND until RXEMPTY feature, which can be programmed into each buffer of any TG. However, using the SUSPEND until RXEMPTY feature will make the sequencer wait until the current RXRAM location is read by the VBUS master before it can start the transfer for the same buffer location again. This may affect the overall throughput of the SPI transfer. By enabling the interrupt on RXOVRN in multi-buffer mode, the user can rely on interrupts to know if a receiver overrun has occurred. The address of the overrun in RXRAM is indicated in this RXOVRN_BUF_ADDR register. 1408 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers www.ti.com 25.9.43 I/O-Loopback Test Control Register (IOLPBKTSTCR) This register controls test mode for I/O pins. It also controls whether loop-back should be digital or analog. In addition, it contains control bits to induce error conditions into the module. These are to be used only for module testing. All of the control/status bits in this register are valid only when the IOLPBKTSTENA field is set to Ah. Figure 25-73. I/O-Loopback Test Control Register (IOLPBKTSTCR) [offset = 134h] 31 25 23 21 24 Reserved SCS_FAIL_ FLG R-0 R/W1C-0 20 19 18 17 16 Reserved CTRL_ BITERR CTRL_ DESYNC CTRL_ PARERR CTRL_ TIMEOUT CTRL_ DLENERR R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 12 11 15 7 8 Reserved IOLPBKTSTENA R-0 R/WP-0 2 1 0 Reserved 6 5 ERR_SCS_PIN 3 CTRL_SCS_ PIN_ERR LPBKTYPE RXPENA R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; W1C = Write 1 to clear; WP = Write in privilege mode only; -n = value after reset Table 25-51. I/O-Loopback Test Control Register (IOLPBKTSTCR) Field Descriptions Bit Field 31-25 Reserved 24 Value 0 SCS FAIL FLG Description Reads return 0. Writes have no effect. Bit indicating a failure on SPICS pin compare during analog loopback. 0 Read: No miscompares occurred on any of the eight chip select pins (vs. the internal chip select number CSNR during transfers). Write: Writing a 0 to this bit has no effect. 1 Read: A comparison between the internal CSNR field and the analog looped-back value of one or more of the SPICS pins failed. A stuck-at fault is detected on one of the SPICS pins. Comparison is done only on the pins that are configured as functional and during transfer operation. Write: This flag bit is cleared. 23-21 Reserved 20 19 18 17 0 CTRL BITERR Controls inducing of BITERR during I/O loopback test mode. 0 Do not interfere with looped-back data. 1 Induces bit errors by inverting the value of the incoming data during loopback. CTRL DESYNC Controls inducing of the desync error during I/O loopback test mode. 0 Do not cause a desync error. 1 Induce a desync error by forcing the incoming SPIENA pin (if functional) to remain 0 even after the transfer is complete. This forcing will be retained until the kernel reaches the idle state. CTRL PARERR Controls inducing of the parity errors during I/O loopback test mode. 0 Do not cause a parity error. 1 Induce a parity error by inverting the polarity of the parity bit. CTRL TIMEOUT SPNU499C – March 2018 Submit Documentation Feedback Reads return 0. Writes have no effect. Controls inducing of the timeout error during I/O loopback test mode. 0 Do not cause a timeout error. 1 Induce a timeout error by forcing the incoming SPIENA pin (if functional) to remain 1 when transmission is initiated. The forcing will be retained until the kernel reaches the idle state. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1409 Control Registers www.ti.com Table 25-51. I/O-Loopback Test Control Register (IOLPBKTSTCR) Field Descriptions (continued) Bit Field 16 CTRL DLENERR Value Description Controls inducing of the data length error during I/O loopback test mode. 0 Do not cause a data-length error. 1 Induce a data-length error. Master mode: The SPIENA pin (if functional) is forced to 1 when the module starts shifting data. Slave mode: The incoming SPICS pin (if functional) is forced to 1 when the module starts shifting data. 15-12 Reserved 11-8 0 IOLPBKSTENA 7-6 Reserved 5-3 ERR SCS PIN Module I/O loopback test enable key. Ah Enable I/O loopback test mode. All Other Values Disable I/O loopback test mode. 0 0 Select SPICS[0] for injecting error. 1h Select SPICS[1] for injecting error. 7h 1 0 Reads return 0. Writes have no effect. Inject error on chip-select pin number x. The value in this field is decoded as the number of the chip select pin on which to inject an error. During analog loopback, if CTRL SCS PIN ERR bit is set to 1, then the chip select pin selected by this field is forced to the opposite of its value in the CSNR. : 2 Reads return 0. Writes have no effect. CTRL SCS PIN ERR : Select SPICS[7] for injecting error. Enable/disable the injection of an error on the SPICS pins. The individual SPICS pins can be chosen using the ERR SCS PIN field. 0 Disable the SPICS error-inducing logic. 1 Enable the SPICS error-inducing logic. LPBK TYPE Module I/O loopback type (analog/digital). See Figure 25-22 for the different types of loopback modes. 0 Enable Digital loopback when IOLPBKTSTENA = 1010. 1 Enable Analog loopback when IOLPBKTSTENA = 1010. RXPENA Enable analog loopback through the receive pin. Note: This bit is valid only when LPBK TYPE = 1, which chooses analog loopback mode. 1410 0 Analog loopback is through the transmit pin. 1 Analog loopback is through the receive pin. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers www.ti.com 25.9.44 SPI Extended Prescale Register 1 (EXTENDED_PRESCALE1 for SPIFMT0 and SPIFMT1) This register provides an extended Prescale values for SPICLK generation to be able to interface with much slower SPI Slaves. This is an extension of SPIFMT0 and SPIFMT1 registers. For example, EPRESCALE_FMT1[7:0] of EXTENDED_PRESCALE1 and PRESCALE1 of SPIFMT1 register will always reflect the same contents. Similarly, EPRESCALE_FMT0[7:0] and PRESCALE0 of SPIFMT0 reflect the same contents. Figure 25-74. SPI Extended Prescale Register 1 (EXTENDED_PRESCALE1 for SPIFMT0 and SPIFMT1) [offset = 138h] 31 27 26 16 Reserved EPRESCALE_FMT1 R-0 R/WP-0 15 11 10 0 Reserved EPRESCALE_FMT0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 25-52. SPI Extended Prescale Register 1 (EXTENDED_PRESCALE1) Field Descriptions Bit Field 31-27 Reserved 26-16 EPRESCALE_FMT1 Value 0 0-7FFh Description Reads return 0. Writes have no effect. EPRESCALE_FMT1. Extended Prescale value for SPIFMT1. EPRESCALE_FMT1 determines the bit transfer rate of data format 1 if the SPI/MibSPI is the network master. EPRESCALE_FMT1 is use to derive SPICLK from VCLK. If the SPI is configured as slave, EPRESCALE_FMT1 does not need to be configured. These EPRESCALE_FMT1[7:0] bits and PRESCALE1 bits of SPIFMT1 register will point to the same physically implemented register. The clock rate for data format 1 can be calculated as: BRFormat1 = VCLK / (EPRESCALE_FMT1 + 1) Write: This register field should be written if a SPICLK prescaler of more VCLK/256 is required. This field provides a prescaler of up to VCLK/2048 for SPICLK. Writing to this register field will also get reflected in the PRESCALE1 bits of SPIFMT1 register. Read: Reading this field will reflect the PRESCALE value based on the last written register field, that is, EXTENDED_PRESCALE1[26:16] or SPIFMT1[15:8] register. Note: If Extended Prescaler is required, it should be ensured that EXTENDED_PRESCALE1 register is programmed after SPIFMT1 register is programmed. This is to ensure that the final SPICLK prescale value is controlled by EXTENDED_PRESCALE1 register when a prescale of more 256 is intended on SPICLK. Writing to PRESCALE1 field of SPIFMT1 will automatically clear EPRESCALE_FMT1[10:8] bits to 000 so that the integrity of PRESCALE value is maintained. 15-11 Reserved SPNU499C – March 2018 Submit Documentation Feedback 0 Reads return 0. Writes have no effect. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1411 Control Registers www.ti.com Table 25-52. SPI Extended Prescale Register 1 (EXTENDED_PRESCALE1) Field Descriptions (continued) Bit 10-0 Field Value Description EPRESCALE_FMT0 0-7FFh EPRESCALE_FMT0. Extended Prescale value for SPIFMT0. EPRESCALE_FMT0 determines the bit transfer rate of data format 0 if the SPI/MibSPI is the network master. EPRESCALE_FMT0 is use to derive SPICLK from VCLK. If the SPI is configured as slave, EPRESCALE_FMT0 does not need to be configured. These EPRESCALE_FMT0[7:0] bits and PRESCALE0 bits of SPIFMT0 register will point to the same physically implemented register. The clock rate for data format 0 can be calculated as: BRFormat0 = VCLK / (EPRESCALE_FMT0 + 1) Write: This register field should be written if a SPICLK prescaler of more VCLK/256 is required. This field provides a prescaler of up to VCLK/2048 for SPICLK. Writing to this register field will also get reflected in the PRESCALE0 bits of SPIFMT0 register. Read: Reading this field will reflect the PRESCALE value based on the last written register field, that is, EXTENDED_PRESCALE0[10:0] or SPIFMT0[15:8] register. Note: If Extended Prescaler is required, it should be ensured that EXTENDED_PRESCALE1 register is programmed after SPIFMT0 register is programmed. This is to ensure that the final SPICLK prescale value is controlled by EXTENDED_PRESCALE1 register when a prescale of more 256 is intended on SPICLK. Writing to PRESCALE0 field of SPIFMT0 will automatically clear EPRESCALE_FMT0[10:8] bits to 000 so that the integrity of PRESCALE value is maintained. 1412 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Control Registers www.ti.com 25.9.45 SPI Extended Prescale Register 2 (EXTENDED_PRESCALE2 for SPIFMT2 and SPIFMT3) This register provides an extended Prescale values for SPICLK generation to be able to interface with much slower SPI Slaves. This is an extension of SPIFMT2 and SPIFMT3 registers. For example, EPRESCALE_FMT3[7:0] of EXTENDED_PRESCALE2 and PRESCALE3 of SPIFMT3 register will always reflect the same contents. Similarly, EPRESCALE_FMT2[7:0] and PRESCALE2 of SPIFMT2 reflect the same contents. Figure 25-75. SPI Extended Prescale Register 2 (EXTENDED_PRESCALE2 for SPIFMT2 and SPIFMT3) [offset = 13Ch] 31 27 26 16 Reserved EPRESCALE_FMT3 R-0 R/WP-0 15 11 10 0 Reserved EPRESCALE_FMT2 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privilege mode only; -n = value after reset Table 25-53. SPI Extended Prescale Register 2 (EXTENDED_PRESCALE2) Field Descriptions Bit Field 31-27 Reserved 26-16 EPRESCALE_FMT3 Value 0 0-7FFh Description Reads return 0. Writes have no effect. EPRESCALE_FMT3. Extended Prescale value for SPIFMT3. EPRESCALE_FMT3 determines the bit transfer rate of data format 3 if the SPI/MibSPI is the network master. EPRESCALE_FMT3 is use to derive SPICLK from VCLK. If the SPI is configured as slave, EPRESCALE_FMT3 does not need to be configured. These EPRESCALE_FMT3[7:0] bits and PRESCALE3 bits of SPIFMT3 register will point to the same physically implemented register. The clock rate for data format 1 can be calculated as: BRFormat3 = VCLK / (EPRESCALE_FMT3 + 1) Write: This register field should be written if a SPICLK prescaler of more VCLK/256 is required. This field provides a prescaler of up to VCLK/2048 for SPICLK. Writing to this register field will also get reflected in the PRESCALE3 bits of SPIFMT3 register. Read: Reading this field will reflect the PRESCALE value based on the last written register field, that is, EXTENDED_PRESCALE3[26:16] or SPIFMT3[15:8] register. Note: If Extended Prescaler is required, it should be ensured that EXTENDED_PRESCALE2 register is programmed after SPIFMT3 register is programmed. This is to ensure that the final SPICLK prescale value is controlled by EXTENDED_PRESCALE2 register when a prescale of more 256 is intended on SPICLK. Writing to PRESCALE3 field of SPIFMT3 will automatically clear EPRESCALE_FMT3[10:8] bits to 000 so that the integrity of PRESCALE value is maintained. 15-11 Reserved SPNU499C – March 2018 Submit Documentation Feedback 0 Reads return 0. Writes have no effect. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1413 Control Registers www.ti.com Table 25-53. SPI Extended Prescale Register 2 (EXTENDED_PRESCALE2) Field Descriptions (continued) Bit 10-0 Field Value Description EPRESCALE_FMT2 0-7FFh EPRESCALE_FMT2. Extended Prescale value for SPIFMT2. EPRESCALE_FMT2 determines the bit transfer rate of data format 2 if the SPI/MibSPI is the network master. EPRESCALE_FMT2 is use to derive SPICLK from VCLK. If the SPI is configured as slave, EPRESCALE_FMT2 does not need to be configured. These EPRESCALE_FMT2[7:0] bits and PRESCALE2 bits of SPIFMT2 register will point to the same physically implemented register. The clock rate for data format 0 can be calculated as: BRFormat2 = VCLK / (EPRESCALE_FMT2 + 1) Write: This register field should be written if a SPICLK prescaler of more VCLK/256 is required. This field provides a prescaler of up to VCLK/2048 for SPICLK. Writing to this register field will also get reflected in the PRESCALE2 bits of SPIFMT2 register. Read: Reading this field will reflect the PRESCALE value based on the last written register field, that is, EXTENDED_PRESCALE2[10:0] or SPIFMT2[15:8] register. Note: If Extended Prescaler is required, it should be ensured that EXTENDED_PRESCALE2 register is programmed after SPIFMT2 register is programmed. This is to ensure that the final SPICLK prescale value is controlled by EXTENDED_PRESCALE2 register when a prescale of more 256 is intended on SPICLK. Writing to PRESCALE2 field of SPIFMT2 will automatically clear EPRESCALE_FMT2[10:8] bits to 000 so that the integrity of PRESCALE value is maintained. 1414 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Multi-Buffer RAM www.ti.com 25.10 Multi-Buffer RAM The multi-buffer RAM is used for holding transit and received data, control and status information. The multi-buffer RAM contains two banks of up to 128 32-bit words for a maximum configuration. One bank (TXRAM) contains entries for transmit data (replicating the SPIDAT1 register). The other bank (RXRAM) contains received data (replicating the SPIBUF register). The buffers can be partitioned into multiple TGs, each containing a programmable number of buffers. Each of the buffers can be subdivided into 16-bit transmit field, 16-bit receive field, 16-bit control field, and 16-bit status field, as displayed in Figure 25-76. A 4-bit parity field per word is also included in each bank of RAM. Figure 25-76. Multi-Buffer RAM Configuration TXRAM Bank 35 Buffer 0 1 2 3 ... 126 127 RXRAM Bank 32 31 16 15 Control0 Transmit0 Parity0 Parity1 Control1 Transmit1 Parity2 Control2 Transmit2 Parity3 Control3 Transmit3 Parity126 Parity127 Optional Control126 Control127 Transmit126 Transmit127 0 35 Parity0 Parity1 Parity2 Parity3 32 31 Parity126 Parity127 16 15 Status0 Status1 Status2 Status3 Receive0 Receive1 Receive2 Receive3 Status126 Status127 Receive126 Receive127 0 Optional All fields can be read and written with 8-bit, 16-bit, or 32-bit accesses. The transmit fields can be written and read in the address range 000h to 1FFh. The transmit words contain data and control fields. The receive RAM fields are read-only and can be accessed through the address range 200h to 3FCh. The receive words contain data and status fields. The chip select number (CSNR) bit field of the control field for a given word is mirrored into the corresponding receive-buffer status field after transmission. The Parity is automatically calculated and copied to Parity location NOTE: Please refer to the specific device datasheet for the actual number of transmit and receive buffers. Write to unimplemented buffer is overwriting the corresponding implemented buffer. In MIBSPI, if the RAM SIZE specified is 32 buffers, write to 33rd buffer overwrites 1st buffer, write to 34th buffer overwrites 2st buffer and so on. SPNU499C – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1415 Multi-Buffer RAM www.ti.com 25.10.1 Multi-Buffer RAM Auto Initialization When the MIBSPI is out of reset mode, auto initialization of multi-buffer RAM starts. The application code must check for BUFINITACTIVE bit to be 0 (Multi-buffer RAM initialization is complete) before configuring multi-buffer RAM. Besides the default auto initialization after reset, the auto-initialization sequence can also be done by: 1. Enable the global hardware memory initialization key by programming a value of 1010b to the bits [3:0] of the MINITGCR register of the System module. 2. Set the control bit for the multi-buffer RAM in the MSINENA System module register. This bit is devicespecific for each memory that support auto-initialization. Please refer to the device datasheet to identify the control bit for the multi-buffer RAM. This starts the initialization process. The BUFINITACTIVE bit will get set to reflect that the initialization is ongoing. 3. When the memory initialization is completed, the corresponding status bit in the MINISTAT register will be set. Also, the BUFINITACTIVE bit will get cleared. 4. Disable the global hardware memory initialization key by programming a value of 0101 to the bits [3:0] of the MINITGCR register of the System module. Please refer to the Architecture chapter for more details on the memory auto-initialization process. NOTE: During Auto Initialization process, all the Multi-buffer mode registers (except MIBSPIE) will be reset to their default values. So, it should be ensured that Auto Initialization is completed before configuring the Multi-buffer mode registers. 25.10.2 Multi-Buffer RAM Register Summary This section describes the multi-buffer RAM control and transmit-data fields of each word of TXRAM, and the status and receive-data fields of each word of RXRAM. The base address for multi-buffer RAM is FF0E 0000h for MibSPI1 RAM, FF0C 000h for MibSPI3 RAM, and FF0A 0000h for MibSPI5 RAM. Table 25-54. Multi-Buffer RAM Register Summary Offset 1416 Acronym Register Description Base + 0h-1FFh TXRAM Multi-Buffer RAM Transmit Data Register Section 25.10.3 Base + 200h-3FFh RXRAM Multi-Buffer RAM Receive Buffer Register Section 25.10.4 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated Section SPNU499C – March 2018 Submit Documentation Feedback Multi-Buffer RAM www.ti.com 25.10.3 Multi-Buffer RAM Transmit Data Register (TXRAM) Each word of TXRAM is a transmit-buffer register. NOTE: Writing to only the control fields, bits 28 through 16, does not initiate any SPI transfer in master mode. This feature can be used to set up SPICLK phase or polarity before actually starting the transfer by only updating the DFSEL bit field to select the required phase and polarity combination. Figure 25-77. Multi-Buffer RAM Transmit Data Register (TXRAM) [offset = RAM Base + 0h-1FFh] 31 28 27 26 BUFMODE 29 CSHOLD LOCK WDEL 25 DFSEL 24 23 CSNR 16 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 15 0 TXDATA R/W-0 LEGEND: R/W = Read/Write; -n = value after reset Table 25-55. Multi-Buffer RAM Transmit Data Register (TXRAM) Field Descriptions Bit 31-29 Field Value BUFMODE Description Specify conditions that are recognized by the sequencer to initiate transfers of each buffer word. When one of the "skip" modes is selected, the sequencer checks the buffer status every time it reads from this buffer. If the current buffer status (TXFULL, RXEMPTY) does not match, the buffer is skipped without a data transfer. When one of the "suspend" modes is selected, the sequencer checks the buffer status when it reads from this buffer. If TXFULL and/or RXEMPTY do not match, the sequencer waits until a match occurs. No data transfer is initiated until the status condition of this buffer changes. 28 0 disabled. The buffer is disabled. 1h skip single-transfer mode. Skip this buffer until the corresponding TXFULL flag is set (new transmit data is available). 2h skip overwrite-protect mode. Skip this buffer until the corresponding RXEMPTY flag is set (new receive data can be stored in RXDATA without data loss). 3h skip single-transfer overwrite-protect mode. Skip this buffer until both of the corresponding TXFULL and RXEMPTY flags are set. (new transmit data available and previous data received by the host). 4h continuous mode. Initiate a transfer each time the sequencer checks this buffer. Data words are retransmitted if the buffer has not been updated. Receive data is overwritten, even if it has not been read. 5h suspend single-transfer mode. Suspend-to-wait until the corresponding TXFULL flag is set (the sequencer stops at the current buffer until new transmit data is written in the TXDATA field). 6h suspend overwrite-protect mode. Suspend-to-wait until the corresponding RXEMPTY flag is set (the sequencer stops at the current buffer until the previously-received data is read by the host. 7h suspend single-transfer overwrite-protect mode. Suspend-to-wait until the corresponding TXFULL and RXEMPTY flags are set (the sequencer stops at the current buffer until new transmit data is written into the TXDATA field and the previously-received data is read by the host). CSHOLD Chip select hold mode. The CSHOLD bit is supported in master mode only, it is ignored in slave mode. CSHOLD defines the behavior of the chip select line at the end of a data transfer. 0 The chip select signal is deactivated at the end of a transfer after the T2CDELAY time has passed. If two consecutive transfers are dedicated to the same chip select this chip select signal will be deactivated for at least 2VCLK cycles before it is activated again. 1 The chip select signal is held active at the end of a transfer until a control field with new data and control information is loaded into SPIDAT1. If the new chip select number equals the previous one, the active chip select signal is extended until the end of transfer with CSHOLD cleared, or until the chip-select number changes. SPNU499C – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1417 Multi-Buffer RAM www.ti.com Table 25-55. Multi-Buffer RAM Transmit Data Register (TXRAM) Field Descriptions (continued) Bit Field 27 LOCK 26 Value Description Lock two consecutive buffer words. Do not allow interruption by TGs with higher priority. 0 Any higher-priority TG can begin at the end of the current transaction. 1 A higher-priority TG cannot occur until after the next unlocked buffer word is transferred. WDEL Enable the delay counter at the end of the current transaction. Note: The WDEL bit is supported in master mode only. In slave mode, this bit is ignored. 0 No delay will be inserted. However, SPICS pins will still be de-activated for at least for 2VCLK cycles if CSHOLD = 0. Note: The duration for which the SPICS pin remains deactivated also depends upon the time taken to supply a new word after completing the shift operation (in compatibility mode). If TXBUF is already full, then the SPICS pin will be deasserted for at least two VCLK cycles (if WDEL = 0). 1 25-24 23-16 DFSEL CSNR After a transaction, WDELAY of the corresponding data format will be loaded into the delay counter. No transaction will be performed until the WDELAY counter overflows. The SPICS pins will be de-activated for at least (WDELAY + 2) × VCLK_Period duration. Data word format select. 0 Data word format 0 is selected. 1h Data word format 1 is selected. 2h Data word format 2 is selected. 3h Data word format 3 is selected. 0-FFh Chip select (CS) number. CSNR defines the chip select pins that will be activated during the data transfer. CSNR is a bit-mask that controls all chip select pins. See Table 25-56. Note: If your MibSPI has less than 8 chip select pins, all unused upper bits will be 0. For example, MiBSPI3 has 6 chip select pins, if you write FFh to CSNR, the actual number stored in CSNR is 3Fh. 15-0 TXDATA 0-7FFFh Transfer data. When written, these bits are copied to the shift register if it is empty. If the shift register is not empty, then they are held in TXBUF. SPIEN must be set to 1 before this register can be written to. Writing a 0 to SPIEN forces the lower 16 bits of TXDATA to 0. A write to this register (or to the TXDATA field only) drives the contents of the CSNR field on the SPICS pins, if the pins are configured as functional pins (automatic chip select, see Section 25.2). When this register is read, the contents of TXBUF, which holds the latest data written, will be returned. Note: Regardless of the character length, the transmit data should be right-justified before writing to the SPIDAT1 register. 1418 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Multi-Buffer RAM www.ti.com Table 25-56. Chip Select Number Active CSNR Value Chip Select Active: CS[5] (1) CS[4] (1) CS[3] (1) CS[2] (1) CS[1] (1) 0h No chip select pin is active. 1h x 2h x 3h x 4h x 5h x 6h x x x x 7h (1) CS[0] 8h x 9h x Ah x x x x x x Bh x Ch x x x Dh x x Eh x x x Fh x x x x x 10h x 11h x 12h x 13h x 14h x x 15h x x 16h x x x 17h x x x 18h x x 19h x x 1Ah x x x x x x x x x x x 1Bh x x 1Ch x x x x 1Dh x x x 1Eh x x x x 1Fh x x x x x x x CSNR Value Chip Select Active: CS[5] (1) CS[4] (1) CS[3] (1) CS[2] (1) CS[1] (1) 20h x 21h x 22h x x 23h x x 24h x x 25h x x 26h x x x 27h x x x 28h x x CS[0] x 29h x x 2Ah x x x x x x x 2Bh x x 2Ch x x x x 2Dh x x x 2Eh x x x x 2Fh x x x x 30h x x 31h x x 32h x x 33h x x 34h x x x 35h x x x 36h x x x x 37h x x x x 38h x x x 39h x x x 3Ah x x x x x x x x x x x x x x 3Bh x x x 3Ch x x x x x 3Dh x x x x 3Eh x x x x x 3Fh x x x x x x x x If your MibSPI does not have this chip select pin, this bit is 0. SPNU499C – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1419 Multi-Buffer RAM www.ti.com 25.10.4 Multi-Buffer RAM Receive Buffer Register (RXRAM) Each word of RXRAM is a receive-buffer register. Figure 25-78. Multi-Buffer RAM Receive Buffer Register (RXRAM) [offset = RAM Base + 200h-3FFh] 31 30 29 28 27 26 25 24 RXEMPTY RXOVR TXFULL BITERR DESYNC PARITYERR TIMEOUT DLENERR RS-1 RC-0 R-0 RC-0 RC-0 RC-0 RC-0 RC-0 23 16 LCSNR R-0 15 0 RXDATA R/W-0 LEGEND: R/W = Read/Write; R = Read only; C = Clear; S = Set; -n = value after reset Table 25-57. Multi-Buffer Receive Buffer Register (RXRAM) Field Descriptions Bit Field 31 RXEMPTY Value Description Receive data buffer empty. When the host reads the RXDATA field or the entire RXRAM register, it automatically sets the RXEMPTY flag. When a data transfer is completed, the received data is copied into RXDATA, and the RXEMPTY flag is cleared. 0 New data has been received and copied into RXDATA. 1 No data has been received since the last read of RXDATA. This flag gets set to 1 under the following conditions: • Reading the RXDATA field of the RXRAM register • Writing a 1 to clear the RXINTFLG bit in the SPI Flag Register (SPIFLG) Write-clearing the RXINTFLG bit before reading RXDATA indicates the received data is being ignored. Conversely, RXINTFLG can be cleared by reading the RXDATA field of RXRAM (or the entire register). 30 RXOVR Receive data buffer overrun. When a data transfer is completed and the received data is copied into RXBUF while it is already full, RXOVR is set. Overruns always occur to RXBUF, not to RXRAM; the contents of RXRAM are overwritten only after it is read by the Peripheral (VBUSP) master (CPU, DMA, or other host processor). If enabled, the RXOVRN interrupt is generated when RXBUF is overwritten, and reading either SPI Flag Register (SPIFLG) or SPIVECTx shows the RXOVRN condition. Two read operations from the RXRAM register are required to reach the overwritten buffer word (one to read RXRAM, which then transfers RXDATA into RXRAM for the second read). Note: This flag is cleared to 0 when the RXDATA field of the RXRAM register is read. Note: A special condition under which RXOVR flag gets set. If both RXRAM and RXBUF are already full and while another buffer receive is underway, if any errors such as TIMEOUT, BITERR, and DLEN_ERR occur, then RXOVR in RXBUF and SPI Flag Register (SPIFLG) registers will be set to indicate that the status flags are getting overwritten by the new transfer. This overrun should be treated like a normal receive overrun. 29 1420 0 No receive data overrun condition occurred since last read of the data field. 1 A receive data overrun condition occurred since last read of the data field. TXFULL Transmit data buffer full. This flag is a read-only flag. Writing into the SPIDAT0 or SPIDAT1 field while the TX shift register is full will automatically set the TXFULL flag. Once the word is copied to the shift register, the TXFULL flag will be cleared. Writing to SPIDAT0 or SPIDAT1 when both TXBUF and the TX shift register are empty does not set the TXFULL flag. 0 The transmit buffer is empty; SPIDAT0/SPIDAT1 is ready to accept a new data. 1 The transmit buffer is full; SPIDAT0/SPIDAT1 is not ready to accept new data. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Multi-Buffer RAM www.ti.com Table 25-57. Multi-Buffer Receive Buffer Register (RXRAM) Field Descriptions (continued) Bit Field 28 BITERR Value Description Bit error. There was a mismatch of internal transmit data and transmitted data. Note: This flag is cleared to 0 when the RXDATA field of the RXRAM register is read. 27 0 No bit error occurred. 1 A bit error occurred. The SPI samples the signal of the transmit pins (master: SIMOx, slave: SOMIx) at the receive point (one-half clock cycle after the transmit point). If the sampled value differs from the transmitted value, a bit error is detected and the BITERR flag is set. Possible reasons for a bit error include noise, an excessively high bit rate, capacitive load, or another master/slave trying to transmit at the same time. DESYNC Desynchronization of slave device. This bit is valid in master mode only. The master monitors the ENA signal coming from the slave device and sets the DESYNC flag if ENA is deactivated before the last reception point or after the last bit is transmitted plus tT2EDELAY. If DESYNCENA is set, an interrupt is asserted. Desynchronization can occur if a slave device misses a clock edge coming from the master. Note: In the Compatibility Mode MibSPI, under some circumstances it is possible for a desync error detected for the previous buffer to be visible in the current buffer. This is because the receive completion flag/interrupt is generated when the buffer transfer is completed. But desynchronization is detected after the buffer transfer is completed. So, if the VBUS master reads the received data quickly when an RXINT is detected, then the status flag may not reflect the correct desync condition. In multi-buffer mode, the desync flag is always guaranteed to be for the current buffer. Note: This flag is cleared to 0 when the RXDATA field of the RXRAM register is read. 26 0 No slave desynchronization is detected. 1 A slave device is desynchronized. PARITYERR Parity error. The calculated parity differs from the received parity bit. If the parity generator is enabled (selected individually for each buffer) an even or odd parity bit is added at the end of a data word. During reception of the data word, the parity generator calculates the reference parity and compares it to the received parity bit. If a mismatch is detected, the PARITYERR flag is set. Note: This flag is cleared to 0 when the RXDATA field of the RXRAM register is read. 25 0 No parity error is detected. 1 A parity error occurred. TIMEOUT Time-out because of non-activation of SPIENA pin. The SPI generates a time-out when the slave does not respond in time by activating the ENA signal after the chip select signal has been activated. If a time-out condition is detected, the corresponding chip select is deactivated immediately and the TIMEOUT flag is set. In addition, the TIMEOUT flag in the status field of the corresponding buffer and in the SPI Flag Register (SPIFLG) is set. Note: This bit is valid only in master mode. Note: This flag is cleared to 0 when the RXDATA field of the RXRAM register is read. 24 0 No SPIENA pin time-out occurred. 1 An SPIENA signal time-out occurred. DLENERR Data length error flag. Note: This flag is cleared to 0 when the RXDATA field of the RXRAM register is read. 23-16 LCSNR 15-0 RXDATA 0 No data-length error occurred. 1 A data length error occurred. 0-FFh Last chip select number. LCSNR in the status field is a copy of CSNR in the corresponding control field. It contains the chip select number that was activated during the last word transfer. 0-FFFFh SPI receive data. This is the received word, transferred from the receive shift-register at the end of a transfer. Regardless of the programmed character length and the direction of shifting, the received data is stored right-justified in the register. SPNU499C – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1421 Parity Memory www.ti.com 25.11 Parity Memory The parity portion of multi-buffer RAM is not accessible by the CPU during normal operating modes. However, each read or write operation to the control/data/status portion of the multi-buffer RAM causes reads/writes to the parity portion as well. • Each write to the multi-buffer RAM (either from the Peripheral interface or by the MibSPI itself) causes a write operation to the parity portion of RAM simultaneously to update the equivalent parity bits. • Each read operation from the multi-buffer RAM (either from the Peripheral interface or by the MibSPI itself) causes a read operation from the parity portion of the RAM for parity comparison purpose. • Reads/Writes to multi-buffer RAM can either be caused by any CPU/DMA accesses or by the sequencer logic of MibSPI itself. • Incase of Parity error ESM module is notified to generate MIBSPI Parity ESM interrupt. User can check the error status and address location captured in the UERRSTAT and UERRADDRx registers respectively. For testing the parity portion of the multi-buffer RAM, which is a 4-bit field per word address (1 bit per byte), a separate parity memory test mode is available. Parity memory test mode can be enabled and disabled by the PTESTEN bit in the UERRCTRL register. During the parity test mode, the parity locations are addressable at the address between RAM_BASE_ADDR + 0x400h and RAM_BASE_ADDR + 0x7FFh. Each location corresponds, sequentially, to each TXRAM word, then to each RXRAM word. See Figure 25-79 for a diagram of the memory map of parity memory during normal operating mode and during parity test mode. During parity test mode, after writing the data/control portion of the RAM, the parity locations can be written with incorrect parity bits to intentionally cause parity errors. See the device-specific data sheet to get the actual base address of the multi-buffer RAM. NOTE: The RX_RAM_ACCESS bit can also be set to 1 during the parity test mode to be enable writes to RXRAM locations. Both parity RAM testing and RXRAM testing can be done together. There are 4 bits of parity corresponding to each of the 32-bit multi-buffer locations. Individual bits in the parity memory are byte-addressable in parity test mode. See the example in Figure 25-80 for further details. NOTE: Polarity of the parity (odd/even) varies by device. In some devices, a control register in the system module can be used to select odd or even parity. 1422 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Parity Memory www.ti.com Figure 25-79. Memory Map for Parity Locations During Normal and Test Mode Memory Map During Normal Operation (Parity locations are not accessible by CPU) Address 3 BASE+0x000h 0 31 Parity0 TXBUF0 Parity1 Parity126 TXBUF1 . . . TXBUF126 Parity127 TXBUF127 . . BASE+0x1FFh 3 BASE+0x200h 0 31 Address BASE+0x000h 0 31 TXBUF0 TXBUF1 . . . TXBUF126 BASE+0x1FFh TXBUF127 BASE+0x200h RXBUF0 0 Parity0 RXBUF0 Parity1 Parity126 RXBUF1 . . . RXBUF126 Parity127 RXBUF127 . . BASE+0x3FFh 0 Memory Map During Parity Test Mode (Parity locations are accessible by CPU) RXBUF1 . . . RXBUF126 BASE+0x3FFh RXBUF127 Multi-Buffer RAM Multi-Buffer RAM 31 24 16 BASE+0x400h 8 0 TX Parity0 TX Parity1 TX Parity126 BASE+0x5FFh TX Parity127 BASE+0x600h RX Parity0 RX Parity1 RX Parity126 BASE+0x7FFh RX Parity127 Parity Memory * BASE - Base Address of Multi-Buffer RAM Refer to specific Device Data sheet for the actual value of BASE. SPNU499C – March 2018 Submit Documentation Feedback * Shaded areas indicate they are physically not present. Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1423 Parity Memory www.ti.com 25.11.1 Example of Parity Memory Organization Suppose TXBUF5 (6th location in TXRAM) in the multi-buffer RAM is written with a value of A001_AA55. If the polarity of the parity is set to odd, the corresponding parity location parity5 will get updated with equivalent parity of 1011 in its field. During parity-memory test mode, these bits can be individually byte addressed. The return data will be a byte adjusted with actual parity bit in the LSB of the byte. If a word is read from the word-boundary address of parity locations, then each bit of the 4-bit parity is byte-adjusted and a 32-bit word is returned. 0s will be padded into the parity bits to get each byte. See Figure 25-80 for a diagram. Figure 25-80. Example of Memory-Mapped Parity Locations During Test Mode 3 0 31 1 0 1 1 BASE+014h 0 A001AA55 TXBUF5 Parity5 Memory organization during normal mode 31 BASE+014h 0 A001AA55 TXBUF5 31 BASE+ 400h + 014h 0000000 24 16 1 0000000 0 0000000 8 0 1 0000000 1 Parity5 Parity memory locations during test mode (memory mapped) 1 Shadedareas indicate reads return 0, writes have no effect. These registers are not physically present. NOTE: Read Access to Parity Memory Locations Parity memory locations can be read even without entering into parity memory test mode. Their address remains as in memory test mode. It is only to enter parity-memory test mode to enable write access to the parity memory locations. 1424 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback MibSPI Pin Timing Parameters www.ti.com 25.12 MibSPI Pin Timing Parameters The pin timings of SPI can be classified based on its mode of operation. In each mode, different configurations like Phase and Polarity affect the pin timings. The pin directions are based on the mode of operation. Master mode SPI: • SPICLK (SPI Clock) - Output • SPISIMO (SPI Slave In Master Out) - Output • SPICS (SPI Slave Chip Selects) - Output • SPISOMI (SPI Slave Out Master In) - Input • SPIENA (SPI slave ready Enable) - Input Slave mode SPI: • SPICLK - Input • SPISIMO - Input • SPICS - Input • SPISOMI - Output • SPIENA - Output NOTE: All the timing diagrams given below are with Phase = 0 and Polarity = 0. unless explicitly stated otherwise. 25.12.1 Master Mode Timings for SPI/MibSPI Figure 25-81. SPI/MibSPI Pins During Master Mode 3-pin Configuration VCLK Write to SPIDAT SPICLK SPISIMO SPISOMI * Dotted vertical lines indicate the receive edges Figure 25-82. SPI/MibSPI Pins During Master Mode 4-pin with SPICS Configuation VCLK Write to SPIDAT SPICS SPICLK SPISIMO SPISOMI * Dotted vertical lines indicate the receive edges SPNU499C – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1425 MibSPI Pin Timing Parameters www.ti.com Figure 25-83. SPI/MibSPI Pins During Master Mode 4-pin with SPIENA Configuration VCLK Write to SPIDAT SPIENA SPICLK SPISIMO SPISOMI * De-activation of SPIENA pin is controlled by the Slave. * Dotted vertical lines indicate the receive edges Figure 25-84. SPI/MibSPI Pins During Master/Slave Mode with 5-pin Configuration VCLK Master Write to SPIDAT SPICS SPICLK SPISIMO Slave Write to SPIDAT SPIENA SPISOMI * Dotted vertical lines indicate the receive edges for the Master * ENABLE_HIGHZ is cleared to 0 in Slave SPI 1426 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback MibSPI Pin Timing Parameters www.ti.com 25.12.2 Slave Mode Timings for SPI/MibSPI Figure 25-85. SPI/MibSPI Pins During Slave Mode 3-pin Configuration Write to SPIDAT VCLK SPICLK SPISOMI SPISIMO * Dotted vertical lines indicate the receive edges Figure 25-86. SPI/MibSPI Pins During Slave Mode 4-pin with SPIENA Configuration Write to SPIDAT SPIENA VCLK SPICLK * Diagram shows a relationship between the SPIENA from Slave and SPICLK from Master Figure 25-87. SPI/MibSPI Pins During Slave Mode in 5-pin Configuration - (Single Slave) SPICS Write to SPIDAT VCLK SPIENA SPICLK * ENABLE_HIGHZ is cleared to 0 in Slave SPI * Diagram shows relationship between the SPICS from a Master to SPIENA from Slave SPI when SPIENA is configured in Push-Pull mode Figure 25-88. SPI/MibSPI Pins During Slave Mode in 5-pin Configuration - (Single/Multi Slave) SPICS Write to SPIDAT VCLK SPIENA SPICLK * ENABLE_HIGHZ is set to 1 in Slave SPI * Diagram shows relationship between the SPICS from a Master to SPIENA from Slave SPI when SPIENA is configured in High-Impedance mode SPNU499C – March 2018 Submit Documentation Feedback Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated 1427 MibSPI Pin Timing Parameters www.ti.com 25.12.3 Master Mode Timing Parameter Details In case of Master, the module drives out SPICLK. It also drives out the Transmit data on SPISIMO with respect to its internal SPICLK. In case of Master mode, the RX data on the SPISOMI pin is registered with respect to SPICLK received through the input buffer from the I/O pad. If the chip select pin is functional, then the Master will drive out the SPICS pins before starting the SPICLK. If the SPIENA pin is functional, then the Master will wait for an active low from the Slave on the input pin to start the SPICLK. 25.12.4 Slave Mode Timing Parameter Details In case of Slave mode, the module will drive only the SPISOMI and SPIENA pins. All other pins are inputs to it. The RX data on the SPISIMO pin will be registered with respect to the SPICLK pin. The Slave will use the SPICS pin to drive out the SPIENA pin if both are functional. If 4-pin with SPIENA is configured, then the Slave will drive out an active-low signal on the SPIENA pin when new data is written to the TX Shift Register. Irrespective of 4-pin with SPIENA or 5-pin configuration, the Slave will deassert the SPIENA pin after the last bit is received. If ENABLE_HIGHZ (SPIINT0.24) bit is 0, the de-asserted value of the SPIENA pin will be 1. Otherwise, it will depend upon the internal pull up or pull down resistor (if implemented) depending upon the Specification of the Chip. 1428 Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Chapter 26 SPNU499C – March 2018 Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module This chapter describes the serial communication interface (SCI) / local interconnect network (LIN) module. The SCI/LIN is compliant to the LIN 2.1 protocol specified in the LIN Specification Package. This module can be configured to operate in either SCI (UART) or LIN mode. NOTE: This chapter describes a superset implementation of the LIN/SCI module that includes features and functionality that require DMA. Since not all devices have DMA capability, consult your device-specific datasheet to determine applicability of these features and functions to your device being used. Topic ........................................................................................................................... 26.1 26.2 26.3 26.4 26.5 26.6 26.7 26.8 26.9 26.10 26.11 26.12 26.13 26.14 Introduction and Features ................................................................................ SCI Communication Formats ............................................................................ SCI Interrupts ................................................................................................. SCI DMA Interface ........................................................................................... SCI Configurations .......................................................................................... SCI Low-Power Mode ...................................................................................... LIN Communication Formats ............................................................................ LIN Interrupts ................................................................................................. LIN DMA Interface ........................................................................................... LIN Configurations......................................................................................... Low-Power Mode ........................................................................................... Emulation Mode ............................................................................................ SCI/LIN Control Registers ............................................................................... GPIO Functionality......................................................................................... SPNU499C – March 2018 Submit Documentation Feedback 1430 1435 1443 1446 1447 1449 1450 1468 1468 1469 1471 1473 1474 1523 Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module Copyright © 2018, Texas Instruments Incorporated Page 1429 Introduction and Features www.ti.com 26.1 Introduction and Features The SCI/LIN module can be programmed to work either as an SCI or as a LIN. The core of the module is an SCI. The SCI’s hardware features are augmented to achieve LIN compatibility. The SCI module is a universal asynchronous receiver-transmitter that implements the standard nonreturn to zero format. The SCI can be used to communicate, for example, through an RS-232 port or over a Kline. The LIN standard is based on the SCI (UART) serial data link format. The communication concept is single-master/multiple-slave with a message identification for multi-cast transmission between any network nodes. Throughout the chapter Compatibility Mode refers to SCI Mode functionary of SCI/LIN Module. The initial part of the chapter explains about the SCI functionality and later part about the LIN functionality. Though the register are common for LIN and SCI, the register descriptions has notes to identify the register / bit usage in different modes. 26.1.1 SCI Features The following are the features of the SCI module: • Standard universal asynchronous receiver-transmitter (UART) communication • Supports full- or half-duplex operation • Standard nonreturn to zero (NRZ) format • Double-buffered receive and transmit functions in compatibility mode • Supports two individually enabled interrupt lines: level 0 and level 1 • Configurable frame format of 3 to 13 bits per character based on the following: – Data word length programmable from one to eight bits – Additional address bit in address-bit mode – Parity programmable for zero or one parity bit, odd or even parity – Stop programmable for one or two stop bits • Asynchronous or isosynchronous communication modes • Two multiprocessor communication formats allow communication between more than two devices • Sleep mode is available to free CPU resources during multiprocessor communication and then wake up to receive an incoming message • The 24-bit programmable baud rate supports 224 different baud rates provide high accuracy baud rate selection • At 100MHz Peripheral Clock, 3.125 Mbits/s is the Max Baud Rate achievable • Capability to use Direct Memory Access (DMA) for transmit and receive data • Five error flags and Seven status flags provide detailed information regarding SCI events • Two external pins: LINRX and LINTX • Multi-buffered receive and transmit units NOTE: SCI/LIN module does not support UART hardware flow control. This feature can be implemented in software using a general purpose I/O pin. 1430 Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Introduction and Features www.ti.com 26.1.2 LIN Features The following are the features of the LIN module: • Compatibility with LIN 1.3, 2.0 and 2.1protocols • Configurable Baud Rate up to 20 Kbits/s • Two external pins: LINRX and LINTX. • Multi-buffered receive and transmit units • Identification masks for message filtering • Automatic master header generation – Programmable synchronization break field – Synchronization field – Identifier field • Slave automatic synchronization – Synchronization break detection – Optional baud rate update – Synchronization validation • 231 programmable transmission rates with 7 fractional bits • Wakeup on LINRX dominant level from transceiver • Automatic wakeup support – Wakeup signal generation – Expiration times on wakeup signals • Automatic bus idle detection • Error detection – Bit error – Bus error – No-response error – Checksum error – Synchronization field error – Parity error • Capability to use Direct Memory Access (DMA) for transmit and receive data. • 2 Interrupt lines with priority encoding for: – Receive – Transmit – ID, error, and status • Support for LIN 2.0 checksum • Enhanced synchronizer finite state machine (FSM) support for frame processing • Enhanced handling of extended frames • Enhanced baud rate generator • Update wakeup/go to sleep SPNU499C – March 2018 Submit Documentation Feedback Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module Copyright © 2018, Texas Instruments Incorporated 1431 Introduction and Features www.ti.com 26.1.3 Block Diagram The SCI/LIN module contains core SCI block with added sub-blocks to support LIN protocol. Three Major components of the SCI Module are: • Transmitter • Baud Clock Generator • Receiver Transmitter (TX) contains two major registers to perform the double- buffering: • The transmitter data buffer register (SCITD) contains data loaded by the CPU to be transferred to the shift register for transmission. • The transmitter shift register (SCITXSHF) loads data from the data buffer (SCITD) and shifts data onto the LINTX pin, one bit at a time. Baud Clock Generator • A programmable baud generator produces either a baud clock scaled from VBUSP CLK. Receiver (RX) contains two major registers to perform the double- buffering: • The receiver shift register (SCIRXSHF) shifts data in from the LINRX pin one bit at a time and transfers completed data into the receive data buffer. • The receiver data buffer register (SCIRD) contains received data transferred from the receiver shift register The SCI receiver and transmitter are double-buffered, and each has its own separate enable and interrupt bits. The receiver and transmitter may each be operated independently or simultaneously in full duplex mode. To ensure data integrity, the SCI checks the data it receives for breaks, parity, overrun, and framing errors. The bit rate (baud) is programmable to over 16 million different rates through a 24-bit baud-select register. Figure 26-1 shows the detailed SCI block diagram. The SCI/LIN module is based on the standalone SCI with the addition of an error detector (parity calculator, checksum calculator, and bit monitor), a mask filter, a synchronizer, and a multi-buffered receiver and transmitter. The SCI interface, the DMA control subblocks and the baud generator are modified as part of the hardware enhancements for LIN compatibility. Figure 26-2 shows the SCI/LIN block diagram. 1432 Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback Introduction and Features www.ti.com Figure 26-1. Detailed SCI Block Diagram TRANSMITTER SCITXSHF Shift register Address bit† LINTX TX EMPTY SCIFLR.11 1 TXWAKE SCIFLR.10 VCLK Peripheral 8 TXRDY SCIFLR.8 Transmit buffer SCITD Baud clock generator TX INT ENA SCISETINT.8 TX INT TXENA SCIGCR1.25 CLOCK SCIGCR1.5 SCI Baud rate registers SCIBAUD RECEIVER SCIRXSHF Shift register BRKDT SCIFLR.0 RXENA SCIGCR1.24 8 RXWAKE SCIFLR.12 Receive buffer SCIRD SPNU499C – March 2018 Submit Documentation Feedback WAKEUP SCIFLR.1 LINRX BRKDT INT ENA SCISETINT.0 ERR INT WAKEUP INT ENA SCISETINT.1 PE OE FE SCIFLR24:26 RXRDY SCIFLR.9 RX INT ENA SCISETINT.9 RX INT Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module Copyright © 2018, Texas Instruments Incorporated 1433 Introduction and Features www.ti.com Figure 26-2. SCI/LIN Block Diagram 1434 Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback SCI Communication Formats www.ti.com 26.2 SCI Communication Formats The SCI module can be configured to meet the requirements of many applications. Because communication formats vary depending on the specific application, many attributes of the SCI/LIN are user configurable. The list below describes these configuration options: • SCI Frame format • SCI Timing modes • SCI Baud rate • SCI Multiprocessor modes 26.2.1 SCI Frame Formats The SCI uses a programmable frame format. All frames consist of the following: • One start bit • One to eight data bits • Zero or one address bit • Zero or one parity bit • One or two stop bits The frame format for both the transmitter and receiver is programmable through the bits in the SCIGCR1 register. Both receive and transmit data is in nonreturn to zero (NRZ) format, which means that the transmit and receive lines are at logic high when idle. Each frame transmission begins with a start bit, in which the transmitter pulls the SCI line low (logic low). Following the start bit, the frame data is sent and received least significant bit first (LSB). An address bit is present in each frame if the SCI is configured to be in address-bit mode but is not present in any frame if the SCI is configured for idle-line mode. The format of frames with and without the address bit is illustrated in Figure 26-3. A parity bit is present in every frame when the PARITY ENA bit is set. The value of the parity bit depends on the number of one bits in the frame and whether odd or even parity has been selected via the PARITY ENA bit. Both examples in Figure 26-3 have parity enabled. All frames include one stop bit, which is always a high level. This high level at the end of each frame is used to indicate the end of a frame to ensure synchronization between communicating devices. Two stop bits are transmitted if the STOP bit in SCIGCR1 register is set. The examples shown in Figure 26-3 use one stop bit per frame. Figure 26-3. Typical SCI Data Frame Formats Idle-line mode Start 0 (LSBit) 1 2 3 4 5 6 7 Parity (MSBit) 6 7 (MSBit) Stop Address bit mode Start 0 (LSBit) 1 2 3 4 5 Addr Parity Stop Address bit SPNU499C – March 2018 Submit Documentation Feedback Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module Copyright © 2018, Texas Instruments Incorporated 1435 SCI Communication Formats www.ti.com 26.2.2 SCI Timing Mode The SCI can be configured to use asynchronous or isosynchronous timing using TIMING MODE bit in SCIGCR1 register. 26.2.2.1 Asynchronous Timing Mode The asynchronous timing mode uses only the receive and transmit data lines to interface with devices using the standard universal asynchronous receiver- transmitter (UART) protocol. In the asynchronous timing mode, each bit in a frame has a duration of 16 SCI baud clock periods. Each bit therefore consists of 16 samples (one for each clock period). When the SCI is using asynchronous mode, the baud rates of all communicating devices must match as closely as possible. Receive errors result from devices communicating at different baud rates. With the receiver in the asynchronous timing mode, the SCI detects a valid start bit if the first four samples after a falling edge on the LINRX pin are of logic level 0. As soon as a falling edge is detected on LINRX, the SCI assumes that a frame is being received and synchronizes itself to the bus. To prevent interpreting noise as Start bit SCI expects LINRX line to be low for at least four contiguous SCI baud clock periods to detect a valid start bit. The bus is considered idle if this condition is not met. When a valid start bit is detected, the SCI determines the value of each bit by sampling the LINRX line value during the seventh, eighth, and ninth SCI baud clock periods. A majority vote of these three samples is used to determine the value stored in the SCI receiver shift register. By sampling in the middle of the bit, the SCI reduces errors caused by propagation delays and rise and fall times and data line noises. Figure 26-4 illustrates how the receiver samples a start bit and a data bit in asynchronous timing mode. The transmitter transmits each bit for a duration of 16 SCI baud clock periods. During the first clock period for a bit, the transmitter shifts the value of that bit onto the LINTX pin. The transmitter then holds the current bit value on LINTX for 16 SCI baud clock periods. Figure 26-4. Asynchronous Communication Bit Timing Majority vote Falling edge detected 1 2 3 4 5 6 7 8 9 10 11 1213 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 161 2 3 4 5 LINRX Start bit LSB of data 16 SCI baud clock periods/bit 26.2.2.2 Isosynchronous Timing Mode In isosynchronous timing mode, each bit in a frame has a duration of exactly 1 baud clock period and therefore consists of a single sample. With this timing configuration, the transmitter and receiver are required to make use of the SCICLK pin to synchronize communication with other SCI. This mode is not supported on this device because SCICLK pin is not available. 26.2.3 SCI Baud Rate The SCI/LIN has an internally-generated serial clock determined by the peripheral VCLK and the prescalers P and M in this register. The SCI uses the 24-bit integer prescaler P value of the BRS register to select the required baud rates. The additional 4-bit fractional divider M refines the baud rate selection. 1436 Serial Communication Interface (SCI)/ Local Interconnect Network (LIN) Module Copyright © 2018, Texas Instruments Incorporated SPNU499C – March 2018 Submit Documentation Feedback SCI Communication Formats www.ti.com In asynchronous timing mode, the SCI generates a baud clock according to the following formula: VCLK Frequency SCICLK Frequency = ---------------------------------------------------M P + 1 + -----16 SCICLK Frequency ---------------------------------------------------------16 Asynchronous baud value = For P = 0, Asynchronous baud value = VCLK Frequency ------------------------------------------------32 (41) 26.2.3.1 Superfractional Divider, SCI Asynchronous Mode The superfractional divider is available in SCI asynchronous mode (idle-line and address-bit mode). Building on the 4-bit fractional divider M (BRS[27:24]), the super fractional divider uses an additional 3-bit modulating value, illustrated in Table 26-2. The bits with a 1 in the table will have an additional VCLK period added to their Tbit. If the character length is more than 10, then the modulation table will be a rolledover version of the original table (Table 26-1), as shown in Table 26-2. The baud rate will vary over a data field to average according to the BRS[30:28] value by a “d” fraction of the peripheral internal clock: 0 16 20 --> 20 28 --> 28 44 --> 44 4 8 --> 8 10 --> 10 14 --> 14 22 --> 22 8 4 --> 4 5 --> 5 7 --> 7 11 --> 11 16 2 --> 2 2.5 --> 3 3.5 --> 4 5.5 --> 6 Example: For a 16-bit port and with data of 16-bit, the last transfer has to be padded with eight 0s. This effectively results in a transfer of 48 bits instead of 40. However the whole transfer is completed in 3 RTPCLK cycles. For a detailed description of the representation of the packet on the RTP port pins, please refer to Section 31.2.5. 1782 RAM Trace Port (RTP) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 31.2.2 Direct Data Mode (DDM) In this mode, data is written directly by the CPU or other master to a dedicated capture register (RTPDDMW). The data is then transferred from the capture register to the FIFO. In a different configuration the module traces the data on read operations on the RAM directly into the FIFOs. In Direct Data Mode, no information other than the actual data is transmitted. The address of the written data can only be determined by the order of writes or reads by the CPU or other master. This mode is especially useful if a block of data on consecutive addresses has to be transmitted. The transfer size (8, 16, or 32 bit) is programmable, but cannot be dynamically changed. Data not written/read in the correct transfer size will be truncated/extended. For example, if the transfer size is programmed to 16 bits and a 32-bit write operation is performed, the data written to the FIFO will be 32-bit wide, however only the upper 16 bits of the FIFO will be transmitted. If an 8-bit operation is performed, bits 8-15 of the FIFO will be indeterminate, so the upper 8 bits of the data transmitted are dependent on the previous contents of the FIFO RAM. When the module is configured in Direct Data Mode (TM_DDM = 1) to trace write operations (DDM_RW = 1) to the RTPDDMW register, the programming of the trace regions for all FIFOs will be ignored and data tracing, when accessing the addresses defined by the regions, will not occur. If the module is configured in read mode (DDM_RW = 0), and if the read access to a RAM block falls into a valid trace region, the data will be traced into the corresponding FIFO for this RAM block. Since no address information is transmitted in Direct Data Mode, the executing program has to make sure that one FIFO is completely empty (RTPGSR), before new data is traced into the next FIFO. NOTE: Direct Data Mode read operation is not supported on devices with a Cortex-R4 CPU, due to the bus protocol of the TCM interface and certain performance enhancements (for example, data packing) implemented in the core. 31.2.2.1 Packet Format in Direct Data Mode In Direct Data Mode write or read operations, only the data written to the RTPDDMW register or the data read from RAM, and therefore captured into the FIFO, will be transmitted. The packet length is programmable (8, 16, or 32 bits). Figure 31-4 illustrates this format. Figure 31-4. Packet Format in Direct Data Mode 8, 16, or 32 bit WR_DATA[xx:0] 31.2.3 Trace Regions To limit the amount of data to be trace, two trace regions per RAM or peripheral are implemented. These can be programmed to specific start addresses and block sizes. Depending on the device configuration (number of RAM blocks), not all regions might be implemented. Trace regions are used in Trace Mode for read or write trace and in Direct Data Mode for read trace. In Direct Data Mode write configuration, the data has to be written directly to RTPDDMW. The RAM and peripherals start at fixed addresses in the devices memory map. With this the start address of a region does not need to be specified with its full 32-bit address. For RAM regions, only the lower 18bit need to be programmed. The peripheral address frame covers a wider range and the start address needs to be programmed with the lower 24-bit. The trace regions do not support a programmable end address; however, a block size needs to be specified for each region. The block size can be chosen from as low as 256 Bytes up to 256 kBytes (128 kBytes for peripherals). SPNU499C – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 1783 Module Operation www.ti.com 31.2.3.1 Inverse Trace Regions The RTP can be configured to trace accesses which fall into, or are made outside of the specified regions. This can be accomplished by the INV_RGN bit. If this bit is 0, all access which are made inside a region are traced. If the bit is 1, all accesses outside the region are traced. The INV_RGN bit affects all regions of the RTP (see RTPGLBCTRL). There are certain restrictions when using INV_RGN = 1: • In this mode up to 2 regions can be excluded from tracing accesses to a particular RAM. • Inverse trace regions with one or both regions of a RAM programmed with blocksize = 0 is not supported. If only one address range should be excluded from the trace, either the address range has to be covered by both regions (for example, excluding 1kB range with two 512B regions), or both regions have to be programmed with the same start address and region size. If the whole RAM should be traced, inverse region mode should not be used, instead the 2 regions could be programmed to cover the entire address range with INV_RGN = 0. • Both regions have to define the same access rights (bits CPU_DMA and RW; see Section 31.4.4) for accesses outside of the region of each RAM block, otherwise the result is undefined. • Peripheral trace in inverse region mode is not supported. The 16 MByte peripheral address range cannot be covered entirely by the 17 bit address definition of the RTP protocol. 31.2.3.2 Overlapping Trace Regions When in INV_RGN = 0 mode with both regions overlapping and an access is done into the overlapping address range, both regions will be checked for their access rights and if one or both is satisfied, the access will be traced. In the case that both regions would allow the data to be traced, there will still be only one entry into the FIFO. If accesses to peripherals are done within overlapping regions, the REG bit in the protocol will be 0, denoting Region 1 (see Section 31.2.1.1). Figure 31-5. Example for Trace Region Setup 4GB Address Space 2 Trace Regions • Region 1 – starts at 0x08001000 with size of 1kB – CPU write access are traced • Region 2 0x08003800 – starts at 0x08003800 with size of 2kB – CPU and other master write accesses are traced 0x080013FF 0x08001000 RTPRAM1REG1 = 0x33001000 2kB Region 2 1kB Region 1 0x08000000 RTPRAM1REG2 = 0x74003800 1784 0x08003FFF RAM Trace Port (RTP) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 31.2.3.3 Cortex-R4 Specifics Due to the bus system used on Cortex-R4, special considerations have to be taken into account. Figure 31-1 shows the block diagram of the RTP connected to the Cortex-R4 RAM interface. Both interfaces to RAM0 and RAM1 are 64-bit wide. RAM0 and RAM1 are building a consecutive address range, where the 64-bit addresses 00, 10h, 20h, ... reside in RAM0 and 08h, 18h, 28h, ... reside in RAM1. Considerations/Restrictions • To trace a certain address range, the regions of both RAM0 (Section 31.4.4) and RAM1 (Section 31.4.5) need to be set up for the same start address and region size. Otherwise only every other 64-bit access will be traced. • Direct Data Mode read operation is not supported on Cortex-R4. This is because the CPU uses 64-bit accesses for read operations even though the intended accesses is sub-64-bit wide. Since Direct Data Mode only supports 32-bit data transfers and the Cortex-R4 RAM interface does not provide information about which byte out of the 64-bit is accessed with the read operation, the RTP cannot determine the correct data value. • If the RAM is protected by ECC, only 64-bit write accesses can be traced. Every 64-bit word in the RAM is protected by a corresponding 8-bit ECC checksum. When a sub-64-bit write access is performed, the Cortex-R4 has to do a read-modify-write operation of the 64-bit word to be modified in order to calculate the corresponding checksum and then write it back to memory. External hardware can still determine which portion of the 64-bit word has been modified, since the other bytes in this word did not change. 31.2.4 Overflow/Empty Handling In case the application does RAM accesses faster than the FIFO can be emptied via the external pin interface, the FIFO can overflow. The user can choose whether the program execution/data transfer should be suspended, or an overflow should be signaled in the status bits of the next, to be transmitted, message of this particular FIFO. If program execution is resumed, the data will be lost. The overflow will not be signaled in the message that is already in the serializer and being transmitted when the overflow occurs. NOTE: The status information will only be transmitted in Trace Mode, since the Direct Data Mode packet does not contain any status information. When an overflow in a FIFO occurs, the corresponding bit in RTPGSR will be set. Figure 31-6. FIFO Overflow Handling overflow CTRL CTRL 00 CTRL 00 SPNU499C – March 2018 Submit Documentation Feedback 11 RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 1785 Module Operation www.ti.com 31.2.5 Signal Description RTPCLK This clock signal is used to clock out the data of the serializer. Depending on the CONTCLK bit, the clock can be suspended between packets or it can be free running. The RTPCLK frequency can be adjusted by the PRESCALER bits (see Section 31.4.1). RTPSYNC The module provides a packet-sync signal. This signal will go high on the rising edge of RTPCLK and will be valid for one RTPCLK cycle to synchronize external hardware to the data stream. The RTPSYNC pulse will be generated for each new packet. RTPENA This signal is an input and can be used by external hardware to stop the data transmission between packets. When the RTPENA signal goes high, the RTP will finish the current packet transmission and then stop. Once the signal is pulled low again, the RTP will resume the transfer if data is still present in the serializer or FIFOs. The RTPENA signal does not have to be used for proper module operation. It can be used in GIO mode if the external hardware cannot generate this signal. Overflows of the external system cannot be handled in this case. RTPDATA[15:0] These pins are used to do the actual data transfer. Data changes with the rising edge of RTPCLK. The port can be configured for different widths (PW[1:0]). The minimum port width supported is 2 pins. See Table 31-9 which pins are used for the port. Figure 31-7 shows an example of multiple packet transmissions in Trace Mode with an interruption between packets because of RTPENA pulled high. Figure 31-7. RTP Packet Transfer with Sync Signal RTPENA RTPCLK RTPSYNC RTPDATA Packet1 Packet2 Packet4 Packet3 Packet1 Packet2 Figure 31-8 shows an example of a 4-bit data port with 8-bit write data (A5h) written into RAM1 (address 12345h) with no overflow in trace mode. Figure 31-8. Packet Format in Trace Mode RTPCLK RTPSYNC 1786 RTPDATA[0] DEST[1] SIZE[1] ADDR[15] ADDR[11] ADDR[7] ADDR[3] DATA[7] DATA[3] RTPDATA[1] DEST[0] SIZE[0] ADDR[14] ADDR[10] ADDR[6] ADDR[2] DATA[6] DATA[2] RTPDATA[2] STAT[1] ADDR[17] ADDR[13] ADDR[9] ADDR[5] ADDR[1] DATA[5] DATA[1] RTPDATA[3] STAT[0] ADDR[16] ADDR[12] ADDR[8] ADDR[4] ADDR[0] DATA[4] DATA[0] RAM Trace Port (RTP) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Module Operation www.ti.com 31.2.6 Data Rate The module is configurable to support different RTPCLK frequencies. Please see the device datasheet for the maximum supported frequency. HCLK will be prescaled to achieve the desired RTPCLK frequency. The prescaler supports prescale values from 1 to 8 (Section 31.4.1). The effective bandwidth depends on the configuration of the module and the average data width transmitted in the packets. 31.3 GIO Function Pins which are not used for RTP functionality can be used as normal GIO pins. If pins should be used in functional mode or GIO mode, they can be programmed in RTPPC0. The direction of the pins can be chosen in RTPPC1. Module pins can have either an internal pullup or active pulldown that makes it possible to leave the pins unconnected externally when configured as inputs. The pins can be programmed to have the active pull capability by writing a 0 to the corresponding bit in the RTPPC7 register. Writing a 1 to the corresponding bit disables the active pull functionality of the pin. A pull up can be configured by writing 1 to the corresponding bit in the RTPPC8 register. Writing 0 will activate the pulldown capability. The pullup/pulldown is deactivated when a bidirectional pin is configured as an output. The GIO pin can be configured to include an open drain functionality when they are configured as output pins. This is done by writing a 1 into the corresponding bit of the RTPPC6 register. When the open drain functionality is enabled, a zero written to the data output register (RTPPC3) forces the pin to a low output voltage (VOL or lower), whereas writing a 1 to the data output register (RTPPC3) forces the pin to a high impedance state. The open drain functionality is disabled when the pin is configured as an input pin. 31.4 Control Registers This section describes the RTP module registers. The registers support 8-bit, 16-bit, and 32-bit writes. The base address of the RTP module registers is FFFF FA00h. Table 31-6. RTP Module Registers Offset Acronym Register Description 00h RTPGLBCTRL RTP Global Control Register Section 31.4.1 Section 04h RTPTRENA RTP Trace Enable Register Section 31.4.2 08h RTPGSR RTP Global Status Register Section 31.4.3 0Ch, 10h RTPRAM1REG RTP RAM 1 Trace Region Register Section 31.4.4 14h, 18h RTPRAM2REG RTP RAM 2 Trace Region Register Section 31.4.5 24h, 28h RTPPERREG RTP Peripheral Trace Region Register Section 31.4.6 2Ch RTPDDMW RTP Direct Data Mode Write Register Section 31.4.7 34h RTPPC0 RTP Pin Control 0 Register Section 31.4.8 38h RTPPC1 RTP Pin Control 1 Register Section 31.4.9 3Ch RTPPC2 RTP Pin Control 2 Register Section 31.4.10 40h RTPPC3 RTP Pin Control 3 Register Section 31.4.11 44h RTPPC4 RTP Pin Control 4 Register Section 31.4.12 48h RTPPC5 RTP Pin Control 5 Register Section 31.4.13 4Ch RTPPC6 RTP Pin Control 6 Register Section 31.4.14 50h RTPPC7 RTP Pin Control 7 Register Section 31.4.15 54h RTPPC8 RTP Pin Control 8 Register Section 31.4.16 SPNU499C – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 1787 Control Registers www.ti.com 31.4.1 RTP Global Control Register (RTPGLBCTRL) The configuration of the module can be changed with this register. Figure 31-9 and Table 31-7 illustrate this register. Figure 31-9. RTP Global Control Register (RTPGLBCTRL) [offset = 00h] 31 25 24 Reserved R-0 15 23 19 TEST R/WP-0 14 13 12 18 16 Reserved PRESCALER R-0 R/WP-7h 11 10 Reserved DDM_WIDTH DDM_RW TM_DDM 9 PW R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 7 6 5 4 RESET CONTCLK HOVF INV_RGN ON/OFF R/WP-0 R/WP-0 R/WP-0 R/WP-0 R/WP-5h 8 3 0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 31-7. RTP Global Control Register (RTPGLBCTRL) Field Descriptions Bit 31-25 24 Field Reserved Value 0 TEST Description Read returns 0. Writes have no effect. By setting the bit, the FIFO RAM will be mapped into the SYSTEM Peripheral frame starting at address FFF8 3000h. Each FIFO will start at a 1k boundary. Each FIFO entry will be aligned to a 128 bit boundary. See Table 31-8 for a listing of the FIFOs and their corresponding addresses. User and privilege mode (read): 0 The FIFO RAM is not accessible in the memory map. 1 The FIFO RAM is mapped to address FFF8 3000h. Privilege mode (write): 18-16 0 Disables mapping of the FIFO RAM. 1 Enables mapping of the FIFO RAM into address FFF8 3000h. PRESCALER The prescaler divides HCLK down to the desired RTPCLK frequency. The maximum RTPCLK frequency specified in the device datasheet must not be exceeded. No dynamic change of RTPCLK is supported. The module should be switched off by the ON/OFF bits in this register before changing the prescaler. User and privilege mode read, privilege mode write: 15-14 Reserved 13-12 DDM_WIDTH 0 The prescaler is HCLK/1. 1h The prescaler is HCLK/2. 2h The prescaler is HCLK/3. 3h The prescaler is HCLK/4. 4h The prescaler is HCLK/5. 5h The prescaler is HCLK/6. 6h The prescaler is HCLK/7. 7h The prescaler is HCLK/8. 0 Read returns 0. Writes have no effect. Direct data mode word size width. This bit field configures the number of bits that will be transmitted in Direct Data Mode. User and privilege mode read, privilege mode write: 1788 0 The word size width is 8 bits. 1h The word size width is 16 bits. 2h The word size width is 32 bits. 3h Reserved RAM Trace Port (RTP) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com Table 31-7. RTP Global Control Register (RTPGLBCTRL) Field Descriptions (continued) Bit Field 11 DDM_RW Value Description Direct Data Mode User and privilege mode (read): 0 Read tracing in Direct Data Mode is enabled. 1 Write tracing in Direct Data Mode to DDMW register is enabled. Privilege mode (write): 10 0 Enable read tracing in Direct Data Mode. The RW bits in the RTPRAMxREGy registers to be ignored. 1 Write tracing in Direct Data Mode to DDMW register is enabled. The RW bits in the RTPRAMxREGy registers to be ignored (Section 31.4.4). TM_DDM Trace Mode or Direct Data Mode User and privilege mode (read): 0 Module is configured in Trace Mode. 1 Module is configured in Direct Data Mode. Privilege mode (write): 9-8 7 0 Configure module to Trace Mode. 1 Configure module to Direct Data Mode. PW Port width. This bit field configures the RTP to the desired port width. Pins that are not used for functional mode can be used as GIO pins. See Table 31-9 for which pins are used for the port. 0 The RTP is 2 pins wide. 1h The RTP is 4 pins wide. 2h The RTP is 8 pins wide. 3h The RTP is 16 pins wide. RESET This bit resets the state machine and the registers to their reset value. This reset ensures that no data left in the FIFOs is shifted out after switching on the module with the ON/OFF bit. User and privilege mode (read): 0 The RTP module is out of reset. 1 The RTP module is in reset. Privilege mode (write): 6 0 Do not reset the module. 1 Reset the module. CONTCLK Continuous RTPCLK enable. User and privilege mode (read): 0 The RTPCLK is stopped between transmissions. 1 The RTPCLK is free running. Privilege mode (write): 5 0 Stop RTPCLK between transmissions. 1 Configure RTPCLK as free running. HOVF Halt on overflow. This bit indicates whether the CPU or DMA is halted while only one location in the FIFO is empty in Trace Mode or Direct Data Mode (read). User and privilege mode (read): 0 The current data transfer to the FIFO will not be suspended in case of a full FIFO. 1 The current data transfer to the FIFO will be suspended in case of a full FIFO. Privilege mode (write): 0 The halt on FIFO overflow will be disabled. The data transfer will not be suspended and will be discarded. Data written to the RTPDDMW register will overwrite the RTPDDMW register. 1 The halt on FIFO overflow will be enabled. Data written to the already full FIFO will be written once the FIFO is emptied again. The data transfer to the FIFO will be suspended and signaled to the CPU or other master while there is still data to be shifted out. When there is an empty FIFO location again, the transfer of the data to the FIFO will be finished. SPNU499C – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 1789 Control Registers www.ti.com Table 31-7. RTP Global Control Register (RTPGLBCTRL) Field Descriptions (continued) Bit 4 Field Value Description INV_RGN Trace inside or outside of defined trace regions. User and privilege mode (read): 0 Accesses inside the trace regions are traced. 1 Accesses outside the trace regions are traced. Privilege mode (write): 3-0 0 Allow tracing of accesses inside the regions set in RTPRAMxREGy 1 Allow tracing of accesses outside the regions set in RTPRAMxREGy (Section 31.4.4) ON/OFF ON/Off switch. User and privilege mode (read): Ah Tracing of data is enabled. All Others Tracing of data is disabled. Privilege mode (write): Ah Enable Tracing of data. If there is any previous captured data remaining, it will be shifted out. All Others Disable tracing of data. If there is still data left in the shift register, it will be shifted out before disabling the shift operations. The data captured in the FIFO remains there until the ON/OFF bits are set to Ah. NOTE: It is recommended to write 5h to disable the module to prevent a soft error from enabling the module inadvertently by a single bit flip. Table 31-8. FIFO Corresponding Addresses FIFO Address 1 FFF8 3000h 2 FFF8 3400h 4 FFF8 3C00h Table 31-9. Pins Used for Data Communication 1790 Port Width (PW) Pins Used 00 RTPDATA[1:0] 01 RTPDATA[3:0] 10 RTPDATA[7:0] 11 RTPDATA[15:0] RAM Trace Port (RTP) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 31.4.2 RTP Trace Enable Register (RTPTRENA) This register enables/disables tracing of the different RAM blocks or the peripherals individually. Figure 31-10 and Table 31-10 illustrate this register. Figure 31-10. RTP Trace Enable Register (RTPTRENA) [offset = 04h] 31 25 24 23 22 16 Reserved ENA4 Reserved R-0 R/WP-0 R-0 15 9 8 7 1 0 Reserved ENA2 Reserved ENA1 R-0 R/WP-0 R-0 R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 31-10. RTP Trace Enable Register (RTPTRENA) Field Descriptions Bit 31-25 24 Field Reserved Value 0 ENA4 Description Read returns 0. Writes have no effect. Enable tracing for peripherals. This bit enables tracing into FIFO4 in trace mode (read/write) or direct data mode (read) operations. In Direct Data Mode write operations, this bit will be ignored and tracing into FIFO4 will be disabled. User and privilege mode (read): 0 Tracing is disabled. 1 Tracing is enabled. Privilege mode (write): 23-9 8 Reserved 0 Disable tracing. If RTPGLBCTRL.ON/OFF = Ah, data already captured in FIFO4 will still be transmitted (Section 31.4.1). 1 Enable tracing. 0 Read returns 0. Writes have no effect. ENA2 Enable tracing for RAM block 2. This bit enables tracing into FIFO2 in Trace Mode (read/write) or Direct Data Mode (read) operations. In Direct Data Mode write operations, this bit will be ignored and tracing into FIFO2 will be disabled. User and privilege mode (read): 0 Tracing is disabled. 1 Tracing is enabled. Privilege mode (write): 7-1 0 Reserved 0 Disable tracing. If RTPGLBCTRL.ON/OFF = Ah, data already captured in FIFO2 will still be transmitted. 1 Enable tracing. 0 Read returns 0. Writes have no effect. ENA1 Enable tracing for RAM block 1. This bit enables tracing into FIFO1 in Trace Mode (read/write) or Direct Data Mode (read) operations. In Direct Data Mode write operations, this bit will be ignored and tracing into FIFO1 will be disabled. User and privilege mode (read): 0 Tracing is disabled. 1 Tracing is enabled. Privilege mode (write): 0 Disable tracing. If RTPGLBCTRL.ON/OFF = Ah, data already captured in FIFO1 will still be transmitted. 1 Enable tracing. SPNU499C – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 1791 Control Registers www.ti.com 31.4.3 RTP Global Status Register (RTPGSR) This register provides status information of the module. Figure 31-11 and Table 31-11 illustrate this register. Figure 31-11. RTP Global Status Register (RTPGSR) [offset = 08h] 31 16 Reserved R-0 15 12 11 10 9 8 Reserved 13 EMPTYSER EMPTYPER Reserved EMPTY2 EMPTY1 R-0 R-1 R-1 R-0 R-1 R-1 7 3 2 1 0 Reserved 4 OVFPER Reserved OVF2 OVF1 R-0 R/W1CP-0 R-0 R/W1CP-0 R/W1CP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 31-11. RTP Global Status Register (RTPGSR) [offset = 08h] Field Descriptions Bit 31-13 12 11 Field Reserved 0 EMPTYSER Reserved 9 EMPTY2 Reserved 3 OVFPER Read returns 0. Writes have no effect. 0 Serializer holds data that is shifted out. 1 Serializer is empty. Peripheral FIFO empty. This bit determines if there are entries left in the FIFO. 0 FIFO4 contains entries. 1 FIFO4 is empty. 0 Read returns 0. Writes have no effect. RAM block 2 FIFO empty. This bit determines if there are entries left in the FIFO. 0 FIFO2 contains entries. 1 FIFO2 is empty. EMPTY1 7-4 Description Serializer empty. This bit determines if there is data left in the serializer. EMPTYPER 10 8 Value RAM block 1 FIFO empty. This bit determines if there are entries left in the FIFO. 0 FIFO1 contains entries. 1 FIFO1 is empty. 0 Read returns 0. Writes have no effect. Overflow peripheral FIFO. This flag indicates that FIFO4 had all locations full and another attempt to write data to it occurred. The bit will not be cleared automatically if the FIFO is emptied again. The bit will stay set until the CPU clears it. User and privilege mode (read): 0 No overflow occurred. 1 An overflow occurred. Privilege mode (write): 2 1792 Reserved 0 Writing a zero to this bit has no effect. 1 The bit is cleared. 0 Read returns 0. Writes have no effect. RAM Trace Port (RTP) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com Table 31-11. RTP Global Status Register (RTPGSR) [offset = 08h] Field Descriptions (continued) Bit Field 1 OVF2 Value Description Overflow RAM block 2 FIFO. This flag indicates that FIFO2 had all locations full and another attempt to write data to it occurred. The bit will not be cleared automatically if the FIFO is emptied again. The bit will stay set until the CPU clears it. User and privilege mode (read): 0 No overflow occurred. 1 An overflow occurred. Privilege mode (write): 0 0 Writing a zero to this bit has no effect. 1 The bit is cleared. OVF1 Overflow RAM block 1 FIFO. This flag indicates that FIFO1 had all locations full and another attempt to write data to it occurred. The bit will not be cleared automatically if the FIFO is emptied again. The bit will stay set until the CPU clears it. User and privilege mode (read): 0 No overflow occurred. 1 An overflow occurred. Privilege mode (write): 0 Writing a zero to this bit has no effect. 1 The bit is cleared. SPNU499C – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 1793 Control Registers www.ti.com 31.4.4 RTP RAM 1 Trace Region [1:2] Register (RTPRAM1REG[1:2]) Figure 31-12 and Table 31-12 illustrate these registers. Figure 31-12. RTP RAM 1 Trace Region [1:2] Register (RTPRAM1REG[1:2]) [offset = 0Ch, 10h] 31 30 29 28 27 24 23 18 17 16 Rsvd CPU_DMA RW BLOCKSIZE Reserved STARTADDR R-0 R/WP-0 R/WP-0 R/WP-0 R-0 R/WP-0 15 0 STARTADDR R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 31-12. RTP RAM 1 Trace Region [1:2] Register (RTPRAM1REG[1:2]) Field Descriptions Bit Field 31 Reserved 30-29 Value 0 CPU_DMA Description Read returns 0. Writes have no effect. CPU and/or other master access. This bit field indicates if read or write operations are traced either coming from the CPU and/or from the other master. User and privilege mode read, privilege mode write: 28 0 Read or write operations are traced when coming from the CPU and the other master. 1h Read or write operations are traced only when coming from the CPU. 2h Read or write operations are traced only when coming from the other master. 3h Reserved RW Read/Write. This bit indicates if read or write operations are traced in Trace Mode or Direct Data Mode (read operation). If configured for write in Direct Data Mode (RTPGLBCTRL), the data captured will be discarded. A write operation in Direct Data Mode has to be directly to the RTPDDMW register instead of to RAM. Depending on the INV_RGN bit setting, accesses into or outside the region will be traced. User and privilege mode (read): 0 Read operations will be captured. 1 Write operations will be captured. Privilege mode (write): 27-24 0 Trace read accesses. 1 Trace write accesses. BLOCKSIZE These bits define the length of the trace region. Depending on the setting of INV_RGN (Section 31.4.1), accesses inside or outside the region defined by the start address and blocksize will be traced. If all bits of BLOCKSIZE are 0, the region is disabled and no data will be captured. Region size (in bytes): 0 0 1h 256 2h 512 3h 1K 4h 2K Ah 128K Bh 256K Ch-Fh 23-18 Reserved 17-0 STARTADDR 1794 0 0-3 FFFFh Reserved Read returns 0. Writes have no effect. These bits define the starting address of the address region that should be traced. The start address has to be a multiple of the block size chosen. If the start address is not a multiple of the block size, the start of the region will begin at the next lower block size boundary. RAM Trace Port (RTP) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 31.4.5 RTP RAM 2 Trace Region [1:2] Register (RTPRAM2REG[1:2]) Figure 31-13 and Table 31-13 illustrate these registers. Figure 31-13. RTP RAM 2 Trace Region [1:2] Register (RTPRAM2REG[1:2]) [offset = 14h, 18h] 31 30 29 28 27 24 23 18 17 16 Rsvd CPU_DMA RW BLOCKSIZE Reserved STARTADDR R-0 R/WP-0 R/WP-0 R/WP-0 R-0 R/WP-0 15 0 STARTADDR R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 31-13. RTP RAM 2 Trace Region [1:2] Register (RTPRAM2REG[1:2]) Field Descriptions Bit Field 31 Reserved 30-29 Value 0 CPU_DMA Description Read returns 0. Writes have no effect. CPU and/or other master access. This bit field indicates if read or write operations are traced either coming from the CPU and/or from the other master. User and privilege mode read, privilege mode write: 28 0 Read or write operations are traced when coming from the CPU and the other master. 1h Read or write operations are traced only when coming from the CPU. 2h Read or write operations are traced only when coming from the other master. 3h Reserved RW Read/Write. This bit indicates if read or write operations are traced in Trace Mode or Direct Data Mode (read operation). If configured for write in Direct Data Mode (RTPGLBCTRL), the data captured will be discarded. A write operation in Direct Data Mode has to be directly to the RTPDDMW register instead of to RAM. Depending on the INV_RGN bit setting, accesses into or outside the region will be traced. User and privilege mode (read): 0 Read operations will be captured. 1 Write operations will be captured. Privilege mode (write): 27-24 0 Trace read accesses. 1 Trace write accesses. BLOCKSIZE These bits define the length of the trace region. Depending on the setting of INV_RGN (Section 31.4.1), accesses inside or outside the region defined by the start address and blocksize will be traced. If all bits of BLOCKSIZE are 0, the region is disabled and no data will be captured. Region size (in bytes): 0 0 1h 256 2h 512 3h 1K 4h 2K Ah 128K Bh 256K Ch-Fh 23-18 Reserved 17-0 STARTADDR 0 0-3 FFFFh Reserved Read returns 0. Writes have no effect. These bits define the starting address of the address region that should be traced. The start address has to be a multiple of the block size chosen. If the start address is not a multiple of the block size, the start of the region will begin at the next lower block size boundary. SPNU499C – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 1795 Control Registers www.ti.com 31.4.6 RTP Peripheral Trace Region [1:2] Registers (RTPPERREG[1:2]) FIFO4 is dedicated for tracing the peripheral accesses. Since the peripheral frame is 16 Mbytes, the start address has to be defined as a 24-bit value. However, only bits 16 to 0 will be transmitted in the protocol. Bit REG (Section 31.2.1.1) in the protocol will be 0 if there was an access to the range defined by RTPPERREG1. REG will be 1 if the access was into the range defined by RTPPERREG2. Figure 31-14 and Table 31-14 illustrate these registers. Figure 31-14. RTP Peripheral Trace Region [1:2] Register (RTPPERREG[1:2]) [offset = 24h, 28h] 31 30 29 28 27 24 23 16 Rsvd CPU_DMA RW BLOCKSIZE STARTADDR R-0 R/WP-0 R/WP-0 R/WP-0 R/WP-0 15 0 STARTADDR R/WP-0 LEGEND: R/W = Read/Write; R = Read only; WP = Write in privileged mode only; -n = value after reset Table 31-14. RTP Peripheral Trace Region [1:2] Register (RTPPERREG[1:2]) Field Descriptions Bit Field 31 Reserved 30-29 Value 0 CPU_DMA Description Read returns 0. Writes have no effect. CPU and/or other master access. This bit field indicates if read or write operations are traced either coming from the CPU and/or from the other master. User and privilege mode read, privilege mode write: 28 0 Read or write operations are traced when coming from the CPU and the other master. 1h Read or write operations are traced only when coming from the CPU. 2h Read or write operations are traced only when coming from the other master. 3h Reserved RW Read/Write. This bit indicates if read or write operations are traced in Trace Mode or Direct Data Mode (read operation). If configured for write in Direct Data Mode (RTPGLBCTRL), the data captured will be discarded. A write operation in Direct Data Mode has to be directly to the RTPDDMW register instead of to RAM. Depending on the INV_RGN bit setting, accesses into or outside the region will be traced. User and privilege mode (read): 0 Read operations will be captured. 1 Write operations will be captured. Privilege mode (write): 27-24 0 Trace read accesses. 1 Trace write accesses. BLOCKSIZE These bits define the length of the trace region. Depending on the setting of INV_RGN (Section 31.4.1), accesses inside or outside the region defined by the start address and blocksize will be traced. If all bits of BLOCKSIZE are 0, the region is disabled and no data will be captured. Region size (in bytes): 0 0 1h 256 2h 512 3h 1K 4h 2K Ah 128K Bh 256K Ch-Fh 23-0 1796 STARTADDR Reserved 0-FF FFFFh These bits define the starting address of the address region that should be traced. The start address has to be a multiple of the block size chosen. If the start address is not a multiple of the block size, the start of the region will begin at the next lower block size boundary. RAM Trace Port (RTP) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 31.4.7 RTP Direct Data Mode Write Register (RTPDDMW) The CPU has to write data to this register if the module is used in Direct Data Mode write configuration. Figure 31-15 and Table 31-15 illustrate this register. Figure 31-15. RTP Direct Data Mode Write Register (RTPDDMW) [offset = 2Ch] 31 16 DATA R/W-0 15 0 DATA R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-15. RTP Direct Data Mode Write Register (RTPDDMW) Field Descriptions Bit Field Value 31-0 DATA 0-FFFF FFFFh Description This register must be written to in a Direct Data Mode write operation to store the data into FIFO1. Data written must be right-aligned. If the FIFO is full, the reaction depends on the setting of the HOVF bit (Section 31.4.1). If the bit is set, the master writing the data will be waitstated. If the bit is cleared, previous data written to the register will be overwritten. Reads of this register always return 0. SPNU499C – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 1797 Control Registers www.ti.com 31.4.8 RTP Pin Control 0 Register (RTPPC0) This register configures the RTP pins as functional or GIO pins. Once the pin is configured in functional mode, it overrides the settings in the RTPPC1 register. Writing to RTPPC3, RTPPC4 and RTPPC5 will have no effect for pins configured as functional pins. Figure 31-16 and Table 31-16 illustrate this register. Figure 31-16. RTP Pin Control 0 Register (RTPPC0) [offset = 34h] 31 18 17 16 Reserved 19 ENAFUNC CLKFUNC SYNCFUNC R-0 R/W-0 R/W-0 R/W-0 15 0 DATAFUNC[15:0] R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-16. RTP Pin Control 0 Register (RTPPC0) Field Descriptions Bit Field 31-19 Reserved 18 ENAFUNC Value 0 Description Read returns 0. Writes have no effect. Functional mode of RTPENA pin. User and privilege mode (read): 0 Pin is used in GIO mode. 1 Pin is used in functional mode. User and privilege mode (write): 17 0 Configure pin to GIO mode. 1 Configure pin to functional mode. CLKFUNC Functional mode of RTPCLK pin. User and privilege mode (read): 0 Pin is used in GIO mode. 1 Pin is used in functional mode. User and privilege mode (write): 16 0 Configure pin to GIO mode. 1 Configure pin to functional mode. SYNCFUNC Functional mode of RTPSYNC pin. User and privilege mode (read): 0 Pin is used in GIO mode. 1 Pin is used in functional mode. User and privilege mode (write): 15-0 0 Configure pin to GIO mode. 1 Configure pin to functional mode. DATAFUNC[n] Functional mode of RTPDATA[15:0] pins. These bits define whether the pins are used in functional mode or in GIO mode. Each bit [n] represents a single pin. User and privilege mode (read): 0 Pin is used in GIO mode. 1 Pin is used in functional mode. User and privilege mode (write): 1798 0 Configure pin to GIO mode. 1 Configure pin to functional mode. RAM Trace Port (RTP) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 31.4.9 RTP Pin Control 1 Register (RTPPC1) Once the pin is configured in functional mode (RTPPC0, Section 31.4.8), configuring the corresponding bit in RTPPC1 to 0 will not disable the output driver. Figure 31-17 and Table 31-17 illustrate this register. Figure 31-17. RTP Pin Control 1 Register (RTPPC1) [offset = 38h] 31 18 17 16 Reserved 19 ENADIR CLKDIR SYNCDIR R-0 R/W-0 R/W-0 R/W-0 15 0 DATADIR[15:0] R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-17. RTP Pin Control 1 Register (RTPPC1) Field Descriptions Bit Field 31-19 Reserved 18 ENADIR Value 0 Description Read returns 0. Writes have no effect. Direction of RTPENA pin. This bit defines whether the pin is used as input or output in GIO mode. This bit has no effect when the pin is configured in functional mode. User and privilege mode (read): 0 Pin is used as input. 1 Pin is used as output. User and privilege mode (write): 17 0 Configure pin to input mode. 1 Configure pin to output mode. CLKDIR Direction of RTPCLK pin. This bit defines whether the pin is used as input or output in GIO mode. This bit has no effect when the pin is configured in functional mode. User and privilege mode (read): 0 Pin is used as input. 1 Pin is used as output. User and privilege mode (write): 16 0 Configure pin to input mode. 1 Configure pin to output mode. SYNCDIR Direction of RTPSYNC pin. This bit defines whether the pin is used as input or output in GIO mode. This bit has no effect when the pin is configured in functional mode. User and privilege mode (read): 0 Pin is used as input. 1 Pin is used as output. User and privilege mode (write): 15-0 0 Configure pin to input mode. 1 Configure pin to output mode. DATADIR[n] Direction of RTPDATA[15:0] pins. These bits define whether the pins are used as input or output in GIO mode. These bits have no effect when the pins are configured in functional mode. Each bit [n] represents a single pin. User and privilege mode (read): 0 Pin is used as input. 1 Pin is used as output. User and privilege mode (write): 0 Configure pin to input mode. 1 Configure pin to output mode. SPNU499C – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 1799 Control Registers www.ti.com 31.4.10 RTP Pin Control 2 Register (RTPPC2) This register represents the input value of the pins if when in GIO or functional mode. Figure 31-18 and Table 31-18 illustrate this register. Figure 31-18. RTP Pin Control 2 Register (RTPPC2) [offset = 3Ch] 31 18 17 16 Reserved 19 ENAIN CLKIN SYNCIN R-0 R-x R-x R-x 15 0 DATAIN[15:0] R-x LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-18. RTP Pin Control 2 Register (RTPPC2) Field Descriptions Bit 31-19 18 Field Reserved Value 0 ENAIN Description Read returns 0. Writes have no effect. RTPENA input. This bit reflects the state of the pin in all modes. Writes to this bit have no effect. User and privilege mode (read): 17 0 The pin is at logic low (0) (input voltage is V IL or lower). 1 The pin is at logic high (1) (input voltage is V IH or higher). CLKIN RTPCLK input. This bit reflects the state of the pin in all modes. Writes to this bit have no effect. User and privilege mode (read): 16 0 The pin is at logic low (0) (input voltage is V 1 The pin is at logic high (1) (input voltage is V IH or higher). SYNCIN IL or lower). RTPSYNC input. This bit reflects the state of the pin in all modes. Writes to this bit have no effect. User and privilege mode (read): 15-0 0 The pin is at logic low (0) (input voltage is V 1 The pin is at logic high (1) (input voltage is V IH or higher). DATAIN[n] IL or lower). RTPDATA[15:0] input. These bits reflect the state of the pins in all modes. Each bit [n] represents a single pin. Writes to this bit have no effect. User and privilege mode (read): 1800 0 The pin is at logic low (0) (input voltage is V 1 The pin is at logic high (1) (input voltage is V IH or higher). IL or lower). RAM Trace Port (RTP) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 31.4.11 RTP Pin Control 3 Register (RTPPC3) The bits in this register define the state of the pins when configured in GIO mode as output pins. Once a pin is configured in functional mode (RTPPC0), changing the state of the corresponding bit in RTPPC3 will not affect the pin's state. Figure 31-19 and Table 31-19 illustrate this register. Figure 31-19. RTP Pin Control 3 Register (RTPPC3) [offset = 40h] 31 18 17 16 Reserved 19 ENAOUT CLKOUT SYNCOUT R-0 R/W-0 R/W-0 R/W-0 15 0 DATAOUT[15:0] R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-19. RTP Pin Control 3 Register (RTPPC3) Field Descriptions Bit Field 31-19 Reserved 18 ENAOUT Value 0 Description Read returns 0. Writes have no effect. RTPENA output. This pin sets the output state of the RTPENA pin. User and privilege mode (read): 0 The pin is configured to output logic low (0) (output voltage is V OL or lower). 1 The pin is configured to output logic high (1) (output voltage is V OH or higher). User and privilege mode (write): 17 0 Set pin to logic low (0) (output voltage is V OL or lower). 1 Set pin to logic high (1) (output voltage is V CLKOUT OH or higher). RTPCLK output. This pin sets the output state of the RTPCLK pin. User and privilege mode (read): 0 The pin is configured to output logic low (0) (output voltage is V OL or lower). 1 The pin is configured to output logic high (1) (output voltage is V OH or higher). User and privilege mode (write): 16 0 Set pin to logic low (0) (output voltage is V OL or lower). 1 Set pin to logic high (1) (output voltage is V SYNCOUT OH or higher). RTPSYNC output. This pin sets the output state of the RTPSYNC pin. User and privilege mode (read): 0 The pin is configured to output logic low (0) (output voltage is V 1 The pin is configured to output logic high (1) (output voltage is V OH or higher). OL or lower). User and privilege mode (write): 15-0 0 Set pin to logic low (0) (output voltage is V OL or lower). 1 Set pin to logic high (1) (output voltage is V DATAOUT[n] OH or higher). RTPDATA[15:0] output. These bits set the output state of the RTPDATA[15:0] pins. Each bit [n] represents a single pin. User and privilege mode (read): 0 The pin is configured to output logic low (0) (output voltage is V 1 The pin is configured to output logic high (1) (output voltage is V OL or lower). OH or higher). User and privilege mode (write): 0 Set pin to logic low (0) (output voltage is V OL or lower). 1 Set pin to logic high (1) (output voltage is V OH or higher). SPNU499C – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 1801 Control Registers www.ti.com 31.4.12 RTP Pin Control 4 Register (RTPPC4) This register provides the option to set pins to a logic 1 level without influencing the state of other pins. It eliminates the read-modify-write operation necessary with RTPPC3. Once the pin is configured in functional mode (RTPPC0), setting the corresponding bit to one in RTPPC4 will not affect the pin's state. Figure 31-20 and Table 31-20 illustrate this register. Figure 31-20. RTP Pin Control 4 Register (RTPPC4) [offset = 44h] 31 18 17 16 Reserved 19 ENASET CLKSET SYNCSET R-0 R/W-0 R/W-0 R/W-0 15 0 DATASET[15:0] R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-20. RTP Pin Control 4 Register (RTPPC4) Field Descriptions Bit Field 31-19 Reserved 18 ENASET Value 0 Description Read returns 0. Writes have no effect. Sets the output state of RTPENA pin to logic high. Value in the ENASET bit sets the data output control register bit to 1, regardless of the current value in the ENAOUT bit . User and privilege mode (read): 0 The pin is configured to output a logic low (0) (output voltage is V OL or lower). 1 The pin is configured to output logic high (1) (output voltage is V OH or higher). User and privilege mode (write): 17 0 Writing a zero to this bit has no effect. 1 Set pin to logic high (1) (output voltage is V CLKSET OH or higher). Sets the output state of RTPCLK pin to logic high. Value in the CLKSET bit sets the data output control register bit to 1, regardless of the current value in the CLKOUT bit. User and privilege mode (read): 0 The pin is configured to output a logic low (0) (output voltage is V OL or lower). 1 The pin is configured to output logic high (1) (output voltage is V OH or higher). User and privilege mode (write): 16 0 Writing a zero to this bit has no effect. 1 Set pin to logic high (1) (output voltage is V SYNCSET OH or higher). Sets output state of RTPSYNC pin logic high. Value in the SYNCSET bit sets the data output control register bit to 1, regardless of the current value in the SYNCOUT bit. User and privilege mode (read): 0 The pin is configured to output a logic low (0) (output voltage is V OL or lower). 1 The pin is configured to output logic high (1) (output voltage is V OH or higher). User and privilege mode (write): 15-0 0 Writing a zero to this bit has no effect. 1 Set pin to logic high (1) (output voltage is V DATASET[n] OH or higher). Sets output state of RTPDATA[15:0] pins to logic high. Value in the DATAxSET bit sets the data output control register bit to 1, regardless of the current value in the DATAxOUT bit. Each bit [n] represents a single pin. User and privilege mode (read): 0 The pin is configured to output a logic low (0) (output voltage is V OL or lower). 1 The pin is configured to output logic high (1) (output voltage is V OH or higher). User and privilege mode (write): 1802 0 Writing a zero to this bit has no effect. 1 Set pin to logic high (1) (output voltage is V OH or higher). RAM Trace Port (RTP) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 31.4.13 RTP Pin Control 5 Register (RTPPC5) This register provides the option to set pins to a logic 0 level without influencing the state of other pins. It eliminates the read-modify-write operation necessary with RTPPC3. Once the pin is configured in functional mode (RTPPC0), setting the corresponding bit to one in RTPPC5 will not affect the pinstate. Figure 31-21 and Table 31-21 illustrate this register. Figure 31-21. RTP Pin Control 5 Register (RTPPC5) [offset = 48h] 31 18 17 16 Reserved 19 ENACLR CLKCLR SYNCCLR R-0 R/W-0 R/W-0 R/W-0 15 0 DATACLR[15:0] R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-21. RTP Pin Control 5 Register (RTPPC5) Field Descriptions Bit Field 31-19 Reserved 18 ENACLR Value 0 Description Read returns 0. Writes have no effect. Sets the output state of RTPENA pin to logic low. Value in the ENASET bit sets the data output control register bit to 0, regardless of the current value in the ENAOUT bit . User and privilege mode (read): 0 The pin is configured to output a logic low (0) (output voltage is V OL or lower). 1 The pin is configured to output logic high (1) (output voltage is V OH or higher). User and privilege mode (write): 17 0 Writing a zero to this bit has no effect. 1 Set pin to logic low (0) (output voltage is V OL or lower). CLKCLR Sets output state of RTPCLK pin to logic low. Value in the CLKCLR bit sets the data output control register bit to 0, regardless of the current value in the CLKOUT bit User and privilege mode (read): 0 The pin is configured to output a logic low (0) (output voltage is V OL or lower). 1 The pin is configured to output logic high (1) (output voltage is V OH or higher). User and privilege mode (write): 16 0 Writing a zero to this bit has no effect. 1 Set pin to logic low (0) (output voltage is V OL or lower). SYNCCLR Sets output state of RTPSYNC pin logic low. Value in the SYNCCLR bit clears the data output control register bit to 0, regardless of the current value in the SYNCOUT bit. User and privilege mode (read): 0 The pin is configured to output a logic low (0) (output voltage is V OL or lower). 1 The pin is configured to output logic high (1) (output voltage is V OH or higher). User and privilege mode (write): 15-0 0 Writing a zero to this bit has no effect. 1 Set pin to logic low (0) (output voltage is V OL or lower). DATACLR[n] Sets output state of RTPDATA[15:0] pins to logic low. Value in the DATAxCLR bit clears the data output control register bit to 0, regardless of the current value in the DATAxOUT bit. Each bit [n] represents a single pin. User and privilege mode (read): 0 The pin is configured to output a logic low (0) (output voltage is V OL or lower). 1 The pin is configured to output logic high (1) (output voltage is V OH or higher). User and privilege mode (write): 0 Writing a zero to this bit has no effect. 1 Set pin to logic low (0) (output voltage is V OL or lower). SPNU499C – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 1803 Control Registers www.ti.com 31.4.14 RTP Pin Control 6 Register (RTPPC6) These bits configure the pins in push-pull or open-drain functionality. If configured to be open-drain, the module only drives a logic low level on the pin. An external pull-up resistor needs to be connected to the pin to pull it high when the pin is in high-impedance mode. Figure 31-22 and Table 31-22 illustrate this register. Figure 31-22. RTP Pin Control 6 Register (RTPPC6) [offset = 4Ch] 31 18 17 16 Reserved 19 ENAPDR CLKPDR SYNCPDR R-0 R/W-0 R/W-0 R/W-0 15 0 DATAPDR[15:0] R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-22. RTP Pin Control 6 Register (RTPPC6) Field Descriptions Bit Field 31-19 Reserved 18 ENAPDR Value 0 Description Read returns 0. Writes have no effect. RTPENA Open drain enable. This bit enables open-drain functionality on the pin if it is configured as GIO output (RTPPC0[18]=0; RTPPC1[18]=1). If the pin is configured as a functional pin (RTPPC0[18]=1), the open-drain functionality is disabled. User and privilege mode (read): 0 Pin behaves as normal push/pull pin. 1 Pin operates in open drain mode. User and privilege mode (write): 17 0 Configures the pin as push/pull. 1 Configures the pin as open drain. CLKPDR RTPCLK Open drain enable. This bit enables open-drain functionality on the pin if it is configured as GIO output (RTPPC0[17]=0; RTPPC1[17]=1). If the pin is configured as functional pin (RTPPC0[17]=1), the open-drain functionality is disabled. User and privilege mode (read): 0 Pin behaves as normal push/pull pin. 1 Pin operates in open drain mode. User and privilege mode (write): 16 0 Configures the pin as push/pull. 1 Configures the pin as open drain. SYNCPDR RTPSYNC Open drain enable. This bit enables open-drain functionality on the pin if it is configured as GIO output (RTPPC0[16]=0; RTPPC1[16]=1). If pin is configured as functional pin (RTPPC0[16]=1), the open-drain functionality is disabled. User and privilege mode (read): 0 Pin behaves as normal push/pull pin. 1 Pin operates in open drain mode. User and privilege mode (write): 1804 0 Configures the pin as push/pull. 1 Configures the pin as open drain. RAM Trace Port (RTP) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com Table 31-22. RTP Pin Control 6 Register (RTPPC6) Field Descriptions (continued) Bit 15-0 Field Value DATAPDR[n] Description RTPDATA[15:0] Open drain enable. These bits enable open-drain functionality on the pins, if they are configured as GIO output (RTPPC0[15:0]=0; RTPPC1[15:0]=1). If the pins are configured as functional pins (RTPPC0[15:0]=1), the open-drain functionality is disabled. Each bit [n] represents a single pin. User and privilege mode (read): 0 Pin behaves as normal push/pull pin. 1 Pin operates in open drain mode. User and privilege mode (write): 0 Configures the pin as push/pull. 1 Configures the pin as open drain. SPNU499C – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 1805 Control Registers www.ti.com 31.4.15 RTP Pin Control 7 Register (RTPPC7) The bits in register control the pullup/down functionality of a pin. The internal pullup/down can be enabled or disabled by this register. The reset configuration of these bits is device implementation dependent. Please consult the device datasheet this information. Figure 31-23 and Table 31-23 illustrate this register. Figure 31-23. RTP Pin Control 7 Register (RTPPC7) [offset = 50h] 31 18 17 16 Reserved 19 ENADIS CLKDIS SYNCDIS R-0 R/W-x R/W-x R/W-x 15 0 DATADIS[15:0] R/W-x LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-23. RTP Pin Control 7 Register (RTPPC7) Field Descriptions Bit Field 31-19 Reserved 18 ENADIS Value 0 Description Read returns 0. Writes have no effect. RTPENA Pull disable. This bit removes the internal pullup/pulldown functionality from the pin, when it is configured as an input pin (RTPPC1[18]=0). User and privilege mode (read): 0 Pullup/pulldown functionality is enabled. 1 Pullup/pulldown functionality is disabled. User and privilege mode (write): 17 0 Enables pullup/pulldown functionality. 1 Disables pullup/pulldown functionality. CLKDIS RTPCLK Pull disable. This bit removes the internal pullup/pulldown functionality from the pin, when it is configured as an input pin (RTPPC1[17]=0). User and privilege mode (read): 0 Pullup/pulldown functionality is enabled. 1 Pullup/pulldown functionality is disabled. User and privilege mode (write): 16 0 Enables pullup/pulldown functionality. 1 Disables pullup/pulldown functionality. SYNCDIS RTPSYNC Pull disable. This bit removes the internal pullup/pulldown functionality from the pin, when configured as an input pin (RTPPC1[16]=0). User and privilege mode (read): 0 Pullup/pulldown functionality is enabled. 1 Pullup/pulldown functionality is disabled. User and privilege mode (write): 15-0 0 Enables pullup/pulldown functionality. 1 Disables pullup/pulldown functionality. DATADIS[n] RTPDATA[15:0] Pull disable. This bit removes the internal pullup/pulldown functionality from the pins, when configured as input pins (RTPPC1[15:0]=0). Each bit [n] represents a single pin. User and privilege mode (read): 0 Pullup/pulldown functionality is enabled. 1 Pullup/pulldown functionality is disabled. User and privilege mode (write): 1806 0 Enables pullup/pulldown functionality. 1 Disables pullup/pulldown functionality. RAM Trace Port (RTP) SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Control Registers www.ti.com 31.4.16 RTP Pin Control 8 Register (RTPPC8) These bits control if the internal pullup or pulldown is configured on the input pin. Figure 31-24 and Table 31-24 illustrate this register. Figure 31-24. RTP Pin Control 8 Register (RTPPC8) [offset = 54h] 31 18 17 16 Reserved 19 ENAPSEL CLKPSEL SYNCPSEL R-0 R/W-1 R/W-1 R/W-1 15 0 DATAPSEL[15:0] R/W-1 LEGEND: R/W = Read/Write; R = Read only; -n = value after reset Table 31-24. RTP Pin Control 8 Register (RTPPC8) Field Descriptions Bit Field 31-19 Reserved 18 ENAPSEL Value 0 Description Read returns 0. Writes have no effect. RTPENA Pull select. This bit configures pullup or pulldown functionality, if RTPPC7[18]=0. User and privilege mode (read): 0 Pulldown functionality is enabled. 1 Pullup functionality is enabled. User and privilege mode (write): 17 0 Enables pulldown functionality. 1 Enables pullup functionality. CLKPSEL RTPCLK Pull select. This bit configures pullup or pulldown functionality, if RTPPC7[17]=0. User and privilege mode (read): 0 Pulldown functionality is enabled. 1 Pullup functionality is enabled. User and privilege mode (write): 16 0 Enables pulldown functionality. 1 Enables pullup functionality. SYNCPSEL RTPSYNC Pull select. This bit configures pullup or pulldown functionality, if RTPPC7[16]=0. User and privilege mode (read): 0 Pulldown functionality is enabled. 1 Pullup functionality is enabled. User and privilege mode (write): 15-0 0 Enables pulldown functionality. 1 Enables pullup functionality. DATAPSEL[n] RTPDATA[15:0] Pull select. These bits configure pullup or pulldown functionality, if RTPPC7[15:0]=0. Each bit [n] represents a single pin. User and privilege mode (read): 0 Pulldown functionality is enabled. 1 Pullup functionality is enabled. User and privilege mode (write): 0 Enables pulldown functionality. 1 Enables pullup functionality. SPNU499C – March 2018 Submit Documentation Feedback RAM Trace Port (RTP) Copyright © 2018, Texas Instruments Incorporated 1807 Chapter 32 SPNU499C – March 2018 eFuse Controller This chapter describes the eFuse controller. Topic 32.1 32.2 32.3 32.4 1808 ........................................................................................................................... Overview........................................................................................................ Introduction ................................................................................................... eFuse Controller Testing ................................................................................. eFuse Controller Registers .............................................................................. eFuse Controller Page 1809 1809 1809 1812 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Overview www.ti.com 32.1 Overview Electrically programmable fuses (eFuses) are used to configure the device after deassertion of PORRST. The eFuse values are read and loaded into internal registers as part of the power-on-reset sequence. The eFuse values are protected with single bit error correction, double bit error detection (SECDED) codes. These fuses are programmed during the initial factory test of the device. The eFuse controller is designed so that the state of the eFuses cannot be changed once the device is packaged. 32.2 Introduction The eFuse controller automatically reads the values of the eFuses and shifts them into registers during the power-on reset sequence. No action is required from the application code. However, in a safety critical application, the user code should check to see if a correctable or an uncorrectable error was detected during the reset sequence and then preform a self-test on the eFuse controller ECC logic. 32.3 eFuse Controller Testing 32.3.1 eFuse Controller Connections to ESM There are three connections from the eFuse controller to the Error Signaling Module (ESM). If an uncorrectable error occurs during the loading of the eFuse values after reset, a group three, channel one error and a group one channel 40 error are sent to the ESM. The group three error will cause the ERROR pin to go low. If during the eFuse loading a correctable error occurs, only a group one channel 40 error is sent to the ESM. If an error occurs during the eFuse controller self test, then a group one channel 41 error and a group one channel 40 error are sent to the ESM. After reset, by default, the group one errors do not affect the ERROR pin. If the software enables the appropriate bit in the appropriate ESM Influence Error Pin Set/Status Register (ESMIEPSRn) while the group one error is set, the ERROR pin will go low. Table 32-1. ESM Signals Set by eFuse Controller Self Test ESM Signal Uncorrected Load Failure Group 3 Channel 1 X Group 1 Channel 40 X Correctable Load Error eFuse Self Test X X eFuse stuck at 0 Test Version a: with Error pin Version b: without Error pin X Group 1 Channel 41 X X X 32.3.2 Checking for eFuse Errors After Power Up For safety critical systems, it is required that you check the status of the eFuse controller after a device reset. A suggested flow chart for checking the eFuse controller after device reset is shown in Figure 32-1. Failures during the eFuse self test can be grouped into three levels of severity. Depending on the safety critical application, the error handling for each error type may be different. 32.3.2.1 Class 1 Error A class 1 error of the eFuse controller means that there was a failure during the autoload sequence. The values read from the eFuses cannot be relied on. All device operation is suspect. A class 1 error is indicated by a signal to group 3 channel 1 of the ESM. This will cause the ERROR pin to go active low. 32.3.2.2 Class 2 Errors A class 2 error is an indication that the safety checks of the eFuse controller did not work. These are also serious errors because you can no longer guarantee that a more severe error did not occur. SPNU499C – March 2018 Submit Documentation Feedback eFuse Controller Copyright © 2018, Texas Instruments Incorporated 1809 eFuse Controller Testing www.ti.com 32.3.2.3 Class 3 Error A class 3 error indicates that there was a single bit failure reading the eFuses that was corrected by ECC bits. Proper operation is still likely, but the system is now at a higher risk for a future non-correctable error. When a correctable error occurs, ESM group 1, channel 40 will be set. In the suggested flow chart shown in Figure 32-1 below, the single bit error is determined by directly reading the eFuse error status register, and not depending on the integrity of the connections between the eFuse controller and the ESM. 32.3.2.4 Stuck at Zero Test The purpose of the stuck at zero test is to verify that the eFuse controller could signal the ESM if an autoload error did occur. It basically verifies the path through the eFuse controller and to the ESM. This is done by writing a special instruction to the eFuse controller boundary register, then verifying that the proper bits are set in the eFuse controller pins register. Upon successful completion of this test ESM group 1 channel 41 and ESM group 3 channel 1 will be set. This will force the ERROR pin low. • Version A – Write boundary register (address 0xFFF8C01C) with 0x003FC000 to set the error signals. – Read pins register (address 0xFFF8C02C) and verify that bits 14, 12, 11 and 10 are set. – Write boundary register (address 0xFFF8C01C) with 0x003C0000, to clear the error signals. – Verify that ESM group 1 channel 41 and group 3 channel 1 are set, then clear them. If the system cannot support a test which causes the ERROR pin to go low, then the stuck at zero test can be modified as follows: • Version B – Write boundary register (address 0xFFF8C01C) with 0x003BC000. – Read pins register (address 0xFFF8C02C) and verify that bits 14, 12, and 11 are set. – Write boundary register (address 0xFFF8C01C) with 0x003C0000, to clear the error signals. – Verify that ESM group 1 channel 41 is set, then clear it. This alternate method provides less test coverage because the path from the uncorrectable error signal from the eFuse controller to the ESM is not specifically tested. However, even if this path is broken, reading the five eFuse error status bits will indicate that an error occurred. 32.3.2.5 eFuse ECC Logic Self Test The eFuse controller self test performs extensive validation of the ECC logic in the eFuse controller. This test should only be performed once for every device PORRST cycle. Perform the self test by following these steps: • Write 0x00000258 to the self test cycles register (EFCSTCY) at address 0xFFF8C048. • Write 0x5362F97F to the self test signature register (EFCSTSIG) at address 0xFFF8C04C. • Write 0x0000200F to the boundary register at address 0xFFF8C01C. This triggers the self test. The test takes 610 VCLK cycles to complete. The application can poll bit 15 of the pins register at address 0xFFF8C02C to wait for the test to complete. • Check ESM group 1 channels 40 and 41 for any errors, neither should be set. • Verify that bits 4 to 0 of the eFuse Error Status register at address 0xFFF8C03C are zero. 1810 eFuse Controller SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated eFuse Controller Testing www.ti.com Figure 32-1. eFuse Self Test Flow Chart eFuse Controller Test Is ESM group 3 channel 1 set? Class 1 error routine Y N Test bits 4-0 of eFuse Error status register Are all 5 bits zero? N Y Run stuck at zero test Are the 5 bits = 0x15? N Stuck at zero test pass? Y Run eFuse self test N Did self test pass? Y Run eFuse self test Did self test pass? Y N Y Class 3 error routine N Class 2 error routine PASS SPNU499C – March 2018 Submit Documentation Feedback eFuse Controller Copyright © 2018, Texas Instruments Incorporated 1811 eFuse Controller Registers www.ti.com 32.4 eFuse Controller Registers All registers in the eFuse Controller module are 32-bit, word-aligned; 8-bit, 16-bit and 32-bit accesses are allowed. Table 32-2 provides a quick reference to each of these registers. Specific bit descriptions are discussed in the following subsections. The base address for the control registers is FFF8 C000h. Table 32-2. eFuse Controller Registers Offset Acronym Register Description 1Ch EFCBOUND EFC Boundary Control Register Section 32.4.1 Section 2Ch EFCPINS EFC Pins Register Section 32.4.2 3Ch EFCERRSTAT EFC Error Status Register Section 32.4.3 48h EFCSTCY EFC Self Test Cycles Register Section 32.4.4 4Ch EFCSTSIG EFC Self Test Signature Register Section 32.4.5 32.4.1 EFC Boundary Control Register (EFCBOUND) Figure 32-2 and Table 32-3 describe the EFCBOUND register. The eFuse Boundary Control Register is used to test the connections between the eFuse controller and the ESM module. The eFuse Boundary Control Register is also used to initiate an eFuse controller ECC self-test. Figure 32-2. EFC Boundary Control Register (EFCBOUND) [offset = 1Ch] 31 24 Reserved R-0 23 21 20 19 18 17 16 Reserved 22 EFC Self Test Error EFC Single Bit Error EFC Instruction Error EFC Autoload Error Self Test Error OE Single Bit Error OE R-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 12 15 14 13 Instruction Error OE Autoload Error OE EFC ECC Selftest Enable Reserved R/W-0 R/W-0 R/W-0 R-0 7 4 8 3 0 Reserved Input Enable R-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after power-on reset (nPORRST) Table 32-3. EFC Boundary Register (EFCBOUND) Field Descriptions Bit 31-22 21 20 1812 Field Reserved Value 0 EFC Self Test Error Description Read returns 0. Writes have no effect. This bit drives the self test error signal when bit 17 (Self Test Error OE) is high. This signal is attached to ESM error Group 1, Channel 41. 0 Drives the self test error signal low, if Self Test OE is high. 1 Drives the self test error signal high, if Self Test OE is high. EFC Single Bit Error This bit drives the single bit error signal when bit 16 (Single bit Error OE) is high. This signal is attached to ESM error Group 1, Channel 40. 0 Drives the self test error signal low, if Single Bit Error OE is high. 1 Drives the self test error signal high, if Single Bit Error OE is high. eFuse Controller SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated eFuse Controller Registers www.ti.com Table 32-3. EFC Boundary Register (EFCBOUND) Field Descriptions (continued) Bit Field 19 EFC Instruction Error 18 17 16 15 14 13 Value This bit drives the instruction error signal when bit 15 (Instruction Error OE) is high. This signal is used to denote an error occurred during e-fuse programming. This signal is not attached to the ESM. 0 Drives the Instruction Error signal low, if Instruction Error OE is high. 1 Drives the Instruction Error signal high, if Instruction Error OE is high. EFC Autoload Error This bit drives the Autoload Error signal when bit 14 (Autoload Error OE) is high. This signal is attached to ESM error Group 3, Channel 1. 0 Drives the Autoload Error signal low, if Autoload Error OE is high. 1 Drives the Autoload Error signal high, if Autoload Error OE is high. Self Test Error OE The Self Test Error Output Enable bit determines if the EFC Self Test signal comes from the eFuse controller or from bit 21 of the boundary register. 0 EFC Self Test Error comes from eFuse controller. 1 EFC Self Test Error comes from the boundary register. Single Bit Error OE The single bit error output enable signal determines if the EFC Single Bit Error signal comes from the eFuse controller or from bit 20 of the boundary register. 0 EFC Single Bit Error comes from eFuse controller. 1 EFC Single Bit Error comes from the boundary register. Instruction Error OE The instruction error output enable signal determines if the EFC Instruction Error signal comes from the eFuse controller or from bit 19 of the boundary register. 0 EFC Instruction Error comes from eFuse controller. 1 EFC Instruction Error comes from the boundary register. Autoload Error OE The autoload error output enable signal determines if the EFC Autoload Error signal comes from the eFuse controller or from bit 18 of the boundary register. 0 EFC Autoload Error comes from eFuse controller. 1 EFC Autoload Error comes from the boundary register. EFC ECC Selftest Enable 12-4 Reserved 3-0 Input Enable Description The eFuse Controller ECC Selftest Enable bit starts the selftest of the ECC logic if the four input enable bits (EFCBOUND[3:0) are all 1s. 0 No action 1 Start ECC selftest if EFCBOUND[3:0] are Fh. 0 Read returns 0. Writes have no effect. The eFuse Controller ECC Selftest Enable bit starts the selftest of the ECC logic if the four input enable bits (EFCBOUND[3:0) are all 1s. Fh All others ECC selftest can be started if EFC ECC Selftest Enable, bit 13, is set ECC selftest cannot be started. SPNU499C – March 2018 Submit Documentation Feedback eFuse Controller Copyright © 2018, Texas Instruments Incorporated 1813 eFuse Controller Registers www.ti.com 32.4.2 EFC Pins Register (EFCPINS) Figure 32-3 and Figure 32-3 describe the EFCPINS register. Figure 32-3. EFC Pins Register (EFCPINS) [offset = 2Ch] 31 16 Reserved R-0 15 14 13 12 11 10 EFC Selftest Done EFC Selftest Error Reserved EFC Single Bit Error EFC Instruction Error EFC Autoload Error 9 Reserved 8 R-0 R-0 R-0 R-x R-0 R-x R-x 7 0 Reserved R-x LEGEND: R = Read only; -n = value after power-on reset (nPORRST); x = Indeterminate Table 32-4. EFC Pins Register (EFCPINS) Field Descriptions Bit 31–16 15 14 Name Reserved 12 EFC Single Bit Error 9-0 1814 Reads return zeros, writes have no effect. 0 EFC ECC selftest is not complete. 1 EFC ECC selftest is complete. This bit indicates the pass/fail status of the EFC ECC Selftest once the EFC Selftest Done bit (bit 15) is set. 0 EFC ECC Selftest passed. 1 EFC ECC Selftest failed. 0 Reads return zeros. Do NOT write a 1 to this bit. This bit indicates if a single bit error was corrected by the ECC logic during the autoload after reset. 0 No single bit error was detected. 1 A single bit error was detected and corrected. EFC Instruction Error This bit indicates an error occurred during a factory test or program operation. This bit should not be set from normal use. 0 No instruction error detected. 1 An error occurred during a factory test or program operation. EFC Autoload Error Reserved Description This bit can be polled to determine when the EFC ECC selftest is complete EFC Selftest Error Reserved 10 0 EFC Selftest Done 13 11 Value This bit indicates that some non-correctable error occurred during the autoload sequence after reset. This bit also sets ESM group 3, channel 1. 0 The autoload function completed successfully. 1 There were non-correctable errors during the autoload sequence. 0-1 After reset, these bits are indeterminate and reads return either a 1 or 0. eFuse Controller SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated eFuse Controller Registers www.ti.com 32.4.3 EFC Error Status Register (EFCERRSTAT) Figure 32-4 and Table 32-5 describe the EFCERRSTAT register. Figure 32-4. EFC Error Status Register (EFCERRSTAT) [offset = 3Ch] 31 8 Reserved R-0 7 6 5 4 0 Reserved Instruc Done Error Code R-0 R/W-0 R/W-0 LEGEND: R/W = Read/Write; R = Read only; -n = value after power-on reset (nPORRST) Table 32-5. EFC Error Status Register (EFCERRSTAT) Field Descriptions Bit 31–6 5 4-0 Name Value Reserved 0 Instruc Done Description Reads return zeros, writes have no effect. Instruction done. Used to indicate that the eFuse self test has completed 0 The eFuse controller is still executing. 1 The eFuse controller has completed executing. Error Code The error status of the last instruction executed by the eFuse Controller 0 No error. 5h An uncorrectable (multibit) error was detected during the power-on autoload sequence. 15h At least one single bit error was detected and corrected during the power-on autoload sequence. 18h The signature generated by the ECC self-test logic did not match the golden signature written in the EFCSTSIG register. The EDAC circuitry might have a fault. All other values All other values are reserved for e-fuse system tests and are not expected to occur in normal system use. 32.4.4 EFC Self Test Cycles Register (EFCSTCY) Figure 32-5 and Table 32-6 describe the EFCSTCY register. Figure 32-5. EFC Self Test Cycles Register (EFCSTCY) [offset = 48h] 31 16 Cycles R/W-0 15 0 Cycles R/W-0 LEGEND: R/W = Read/Write; -n = value after power-on reset (nPORRST) Table 32-6. EFC Self Test Cycles Register (EFCSTCY) Field Descriptions Bit Name Description 31–0 Cycles This register is used to determine the number of cycles to run the eFuse controller ECC logic self test. It is recommended to use a value of 600 (0x00000258). SPNU499C – March 2018 Submit Documentation Feedback eFuse Controller Copyright © 2018, Texas Instruments Incorporated 1815 eFuse Controller Registers www.ti.com 32.4.5 EFC Self Test Signature Register (EFCSTSIG) Figure 32-6 and Table 32-7 describe the EFCSTSIG register. Figure 32-6. EFC Self Test Cycles Register (EFCSTSIG) [offset = 4Ch] 31 16 Signature R/W-0 15 0 Signature R/W-0 LEGEND: R/W = Read/Write; -n = value after power-on reset (nPORRST) Table 32-7. EFC Self Test Cycles Register (EFCSTSIG) Field Descriptions Bit 31–0 1816 Name Description Signature This register is used to hold the expected signature for the eFuse ECC logic self test. It is recommended to write a value of 0x5362F97F to this register and a value of 600 (0x00000258) to the EFCSTCY register. If after running the eFuse ECC logic self test, the calculated signature does not match the expected signature in the EFCSTSIG register, then a value of 18h is stored in the EFCERRSTAT register. eFuse Controller SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Revision History www.ti.com Revision History Changes from August 3, 2013 to February 28, 2018 ...................................................................................................... Page • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Chapter 1: Introduction ............................................................................................................... 93 Figure 1-1: Added MIBSPI5_CLK signal ............................................................................................. 96 Figure 1-1: Deleted EMIF_RnW signal ............................................................................................... 96 Chapter 2: Architecture ............................................................................................................... 98 Table 2-1: Rearranged sequence of terms ......................................................................................... 100 Table 2-2: Changed table. Added Access Mode column ......................................................................... 102 Section 2.2.3.2: In fourth paragraph, corrected starting address of bank 7 ECC from 0xF0200000 to 0xF010 0000 .... 109 Table 2-6: Changed table. Corrected value in Valid RINFO Register Value column ......................................... 111 Table 2-7: Changed NHET2 RAM Address Range End to 0xFF45FFFF ....................................................... 114 Table 2-7: Added Ethernet RAM (CPPI Memory Slave) .......................................................................... 114 Table 2-7: Deleted table footnote (3). Subsequent footnotes renumbered ..................................................... 114 Section 2.3.1: Updated third sentence in second paragraph. Changed to minimum of 32 peripheral clock (VCLK) cycles .................................................................................................................................... 115 Table 2-8: Updated Description of Debug reset. Changed DBG RST bit to WDRST bit ..................................... 115 Table 2-8: Updated Description of Watchdog reset ............................................................................... 115 Table 2-9: Changed Description of LF LPO and HF LPO ........................................................................ 118 Figure 2-4: Added SEL_GIO_PIN field to CLKTEST register .................................................................... 123 Table 2-12: Changed signals on ECLK ............................................................................................. 123 Section 2.4.5: Added Embedded Trace Macrocell (ETM-R4) subsection. Subsequent subsections, figures, and tables renumbered ............................................................................................................................. 124 Section 2.5.1: Updated paragraph ................................................................................................... 127 Table 2-31: Changed Description of bits for Value = 0 (Read) to enabled ..................................................... 136 Section 2.5.1.13: Added second paragraph to NOTE ............................................................................. 137 Figure 2-18: Changed bit 10 to Reserved........................................................................................... 137 Table 2-32: Changed bit 10 to Reserved ........................................................................................... 137 Figure 2-19: Corrected register bit name for bits 4, 3, 2, 1, and 0 ............................................................... 139 Figure 2-19: Changed bit 10 to Reserved........................................................................................... 139 Table 2-33: Changed bit 10 to Reserved ........................................................................................... 139 Figure 2-20: Changed bit 10 to Reserved........................................................................................... 140 Table 2-34: Changed bit 10 to Reserved ........................................................................................... 141 Table 2-35: Changed Description of GHVSRC bit. Removed "on wakeup" .................................................... 143 Table 2-41: Updated MSTGENA and MINITGENA values to Ah for MSIENA = 1 ............................................ 149 Table 2-44: Corrected Description of PLLMUL bit. Value = 0h is ×1, Value = 100h is ×2 ................................... 152 Figure 2-33: Corrected register bit fields ............................................................................................ 155 Table 2-47: Changed table to reflect updated register bit fields ................................................................. 155 Figure 2-34: Corrected register bit fields ............................................................................................ 155 Table 2-48: Changed table to reflect updated register bit fields ................................................................. 155 Table 2-49: Changed Description of OSCFRQCONFIGCNT bit. Writes have no effect ...................................... 156 Table 2-50: Changed Description of SEL_GIO_PIN and SEL_ECP_PIN bits ................................................. 159 Figure 2-37: Updated reset value of DFTWRITE and DFTREAD bits to 2h.................................................... 161 Figure 2-39: Corrected register bit name for bits 19-16 ........................................................................... 163 Table 2-53: Changed Description of PLL1_FBSLIP_FILTER_ COUNT and PLL1_FBSLIP_FILTER_ KEY bits .......... 163 Section 2.5.1.43: Changed paragraph............................................................................................... 171 Section 2.5.1.43: Added NOTE....................................................................................................... 171 Section 2.5.1.44: Changed NOTE ................................................................................................... 172 Table 2-63: Added Note to VCLK2R and VCLKR bits ............................................................................ 172 Table 2-64: Deleted Note from the ECPDIV bit .................................................................................... 173 Section 2.5.1.47: Added NOTE....................................................................................................... 174 Section 2.5.1.48: Updated paragraph. (Clarified description of how system exception status bits behave through reset) ..................................................................................................................................... 175 SPNU499C – March 2018 Submit Documentation Feedback Revision History Copyright © 2018, Texas Instruments Incorporated 1817 Revision History • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • www.ti.com Figure 2-53: Updated Read/Write value of bits 14, 13, 5, 4, and 3 to R/WC-X* ............................................... Figure 2-53: Changed Reserved bits to 2-0 ........................................................................................ Figure 2-53: Deleted MPMODE bit .................................................................................................. Table 2-67: Changed Description of PORST and EXTRST bits ................................................................. Table 2-67: Changed Description of WDRST bit. Added (DBGRST) ........................................................... Table 2-67: Changed Reserved bits to 2-0 ......................................................................................... Table 2-67: Deleted MPMODE bit ................................................................................................... Figure 2-55: Updated Read/Write value of FBSLIP, RFSLIP, and OSCFAIL bits to R/W1C-n .............................. Figure 2-55: Changed LEGEND ..................................................................................................... Table 2-69: Changed Description of FBSLIP, RFSLIP, and OSCFAIL bits .................................................... Section 2.5.2: Updated paragraph ................................................................................................... Figure 2-62: Changed bits 10-8 and 4-0 to Reserved ............................................................................. Table 2-77: Changed bits 10-8 and 4-0 to Reserved .............................................................................. Table 2-77: Changed Value column of Reserved bits 15-0 to 109h............................................................. Table 2-77: Changed Description of VCLKA4S bit for Value = 8h-Fh .......................................................... Figure 2-63: Changed register bit names for bits 13-8 and bits 3-0 ............................................................. Table 2-78: Changed register bit names for bits 13-8 and bits 3-0 .............................................................. Table 2-78: Changed Description of PLL1_RFSLIP_FILTER_COUNT and PLL1_RFSLIP_FILTER_KEY bits ........... Section 2.5.2.7: Changed paragraph ................................................................................................ Figure 2-65: Corrected register bit fields ............................................................................................ Table 2-80: Changed table to reflect updated register bit fields ................................................................. Section 2.5.2.8: Changed paragraph ................................................................................................ Figure 2-66: Corrected register bit fields ............................................................................................ Table 2-81: Changed table to reflect updated register bit fields ................................................................. Table 2-82: Changed Description of DIEIDL2 bit. Added last sentence ........................................................ Table 2-83: Changed Description of DIEIDH2 bit. Added last sentence ........................................................ Section 2.5.3: Updated paragraph ................................................................................................... Figure 2-73: Changed register bit name to PS[7-0]QUAD[3-0]PROTSET...................................................... Table 2-89: Changed register bit name to PS[7-0]QUAD[3-0]PROTSET ...................................................... Table 2-89: Corrected register names in Description of PROTSET bit for Value = 1 (Write) ................................ Figure 2-74: Changed register bit name to PS[15-8]QUAD[3-0]PROTSET .................................................... Table 2-90: Changed register bit name to PS[15-8]QUAD[3-0]PROTSET ..................................................... Table 2-90: Corrected register names in Description of PROTSET bit for Value = 1 (Write) ................................ Figure 2-75: Changed register bit name to PS[23-16]QUAD[3-0]PROTSET................................................... Table 2-91: Changed register bit name to PS[23-16]QUAD[3-0]PROTSET ................................................... Table 2-91: Corrected register names in Description of PROTSET bit for Value = 1 (Write) ................................ Figure 2-76: Changed register bit name to PS[31-24]QUAD[3-0]PROTSET................................................... Table 2-92: Changed register bit name to PS[31-24]QUAD[3-0]PROTSET ................................................... Table 2-92: Corrected register names in Description of PROTSET bit for Value = 1 (Write) ................................ Figure 2-77: Changed register bit name to PS[7-0]QUAD[3-0]PROTCLR ..................................................... Table 2-93: Changed register bit name to PS[7-0]QUAD[3-0]PROTCLR ...................................................... Table 2-93: Corrected register names in Description of PROTCLR bit for Value = 1 (Write) ................................ Figure 2-78: Changed register bit name to PS[15-8]QUAD[3-0]PROTCLR .................................................... Table 2-94: Changed register bit name to PS[15-8]QUAD[3-0]PROTCLR ..................................................... Table 2-94: Corrected register names in Description of PROTCLR bit for Value = 1 (Write) ................................ Figure 2-79: Changed register bit name to PS[23-16]QUAD[3-0]PROTCLR .................................................. Table 2-95: Changed register bit name to PS[23-16]QUAD[3-0]PROTCLR ................................................... Table 2-95: Corrected register names in Description of PROTCLR bit for Value = 1 (Write) ................................ Figure 2-80: Changed register bit name to PS[31-24]QUAD[3-0]PROTCLR .................................................. Table 2-96: Changed register bit name to PS[31-24]QUAD[3-0]PROTCLR ................................................... Table 2-96: Corrected register names in Description of PROTCLR bit for Value = 1 (Write) ................................ Chapter 3: Power Management Module (PMM) ................................................................................. Figure 3-2: Added MIBSPI5_CLK signal ............................................................................................ 1818 Revision History 175 175 175 175 175 175 175 177 177 177 181 184 184 184 184 185 185 185 186 186 186 187 187 187 187 188 189 192 192 192 193 193 193 193 193 193 194 194 194 194 194 194 195 195 195 195 195 195 196 196 196 204 207 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Revision History www.ti.com • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Section 3.3.5.1: Changed steps 2 and 3 in first paragraph ....................................................................... 208 Section 3.3.5.1: Changed step 2 in second paragraph ........................................................................... 208 Section 3.3.5.2: Changed paragraph to include registers......................................................................... 209 Section 3.3.8.3: Changed paragraph ................................................................................................ 210 Table 3-1: Corrected acronym for PDCLKDISREG, PDCLKDISSETREG, and PDCLKDISCLRREG registers ........... 211 Figure 3-18: Updated Read/Write value of LCMPE bits to R/W1CP-0 .......................................................... 226 Figure 3-20: Changed bits 18-16 to MCMPE ....................................................................................... 228 Figure 3-20: Updated Read/Write value of MCMPE bits to R/W1CP-0 ......................................................... 228 Section 3.4.20: Deleted first paragraph ............................................................................................. 230 Chapter 4: I/O Multiplexing and Control Module (IOMM) ..................................................................... 231 Section 4.2: Deleted second bullet................................................................................................... 232 Section 4.4.2: Deleted subsection Master ID Check. Subsequent subsection renumbered ................................. 236 Section 4.5: Updated paragraph to include base address ........................................................................ 237 Section 4.5.3: Changed paragraph .................................................................................................. 239 Figure 4-6: Updated Read/Write value of KICK0 bits to R/W-0 .................................................................. 239 Figure 4-6: Changed LEGEND ....................................................................................................... 239 Section 4.5.4: Changed paragraph .................................................................................................. 239 Figure 4-7: Updated Read/Write value of KICK1 bits to R/W-0 .................................................................. 239 Figure 4-7: Changed LEGEND ....................................................................................................... 239 Table 4-8: Changed Description of ADDR_ERR and PROT_ERR bits ......................................................... 240 Section 4.5.6: Changed paragraph .................................................................................................. 241 Figure 4-12: Changed FAULT_ADDR bits to 8-0 .................................................................................. 243 Figure 4-12: Added Reserved bits 31-9 ............................................................................................. 243 Table 4-12: Added Reserved bits 31-9 .............................................................................................. 243 Table 4-12: Changed FAULT_ADDR bits to 8-0 ................................................................................... 243 Table 4-13: Changed Description of FAULT_TYPE bit for Value = 4h, 8h, and 10h.......................................... 244 Table 4-16: Corrected Control Register at address FFFF EB34h for Alternate Function 2 GIOB[2] Selection Bit to PINMMR9[18] ........................................................................................................................... 246 Table 4-16: Corrected Control Register at address FFFF EB48h for Selection Bit PINMMR14[17] Alternate Function 1 to RESERVED ............................................................................................................................. 246 Chapter 5: F021 Flash Module Controller........................................................................................ 250 Section 5.1.2: Added definition for ATCM........................................................................................... 251 Table 5-1: Updated footnote 2. XOR of all the address and data bits .......................................................... 254 Table 5-1: Updated format ............................................................................................................ 254 Section 5.4.1: Updated paragraph. Corrected starting address of flash ECC to 0xF0400000 ............................... 257 Figure 5-1: Changed figure ........................................................................................................... 257 Figure 5-2: Added BX_NUM_Sectors and BX_Sector_Size. Deleted Bx bits .................................................. 258 Table 5-4: Changed table. ............................................................................................................ 258 Section 5.4.2.4: Deleted table. Subsequent tables renumbered ................................................................. 260 Section 5.4.2.5: Added Deliberate ECC Errors for FMC ECC Checking subsection. Subsequent figures renumbered . 260 Section 5.6.2: Updated second paragraph.......................................................................................... 261 Table 5-8: Updated Description of test modes ..................................................................................... 261 Section 5.6.2.1: Updated eighth sentence in second paragraph. Changed ECC_MUL_ERR to ERR_PRF_FLG ........ 262 Section 5.6.2.3: Deleted last sentence in first paragraph ......................................................................... 263 Section 5.6.2.3: Updated third paragraph ........................................................................................... 263 Section 5.6.2.3: Deleted fourth paragraph .......................................................................................... 263 Section 5.6.2.4: Updated first and second paragraphs............................................................................ 263 Section 5.6.2.4: Deleted second and fourth paragraphs .......................................................................... 263 Section 5.6.2.4: Deleted ECC Malfunction Test Logic figure. Subsequent figures renumbered ............................. 263 Section 5.6.2.5: Added NOTE ........................................................................................................ 263 Section 5.6.2.5: Updated second paragraph ....................................................................................... 263 Section 5.6.2.6: Updated second sentence in second paragraph. Corrected the value. ..................................... 264 Section 5.6.2.6: Deleted last sentence in fourth paragraph ...................................................................... 264 Section 5.6.2.6: Updated first sentence in fourth paragraph. Changed ECC_MUL_ERR to B1_UNC_ERR .............. 264 SPNU499C – March 2018 Submit Documentation Feedback Revision History Copyright © 2018, Texas Instruments Incorporated 1819 Revision History • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • www.ti.com Section 5.6.2.6: Updated steps in fifth paragraph.................................................................................. 264 Table 5-9: Updated Name of test modes ........................................................................................... 265 Table 5-9: Updated test mode 7. Changed ECC_MUL_ERR to B1_UNC_ERR .............................................. 265 Table 5-10: Updated Name of test modes .......................................................................................... 266 Table 5-10: Updated test mode 1. Deleted D_MUL_ERR ........................................................................ 266 Table 5-10: Updated test mode 1. Changed ERR_MUL_FLG to ERR_PRF_FLG ............................................ 266 Table 5-10: Updated test mode 1. Deleted EE_D_MUL_ERR ................................................................... 266 Table 5-10: Updated test mode 1. Changed EE_ERR_MUL_FLG to EE_ERR_PRF_FLG .................................. 266 Table 5-10: Updated test mode 3. Changed EE_MAL_ERR to EE_CME ...................................................... 266 Table 5-10: Updated test mode 4. Changed EE_COM_MAL_GOOD to EE_CMG and EE_MAL_ERR to EE_CME .... 266 Table 5-11: Updated Name of test modes .......................................................................................... 267 Table 5-14: Changed Description of EDACMODE bit ............................................................................. 270 Figure 5-13: Corrected bit 3 to D_COR_ERR ...................................................................................... 275 Table 5-19: Changed Description of D_COR_ERR bit ............................................................................ 275 Table 5-24: Changed Description of PROTL1DIS bit ............................................................................. 281 Table 5-26: Changed Description of BUSY bit for Value = 1. (The corresponding bank is busy) ........................... 282 Section 5.7.22: Added paragraph .................................................................................................... 290 Table 5-34: Changed Description of EMU_DMSW bit ............................................................................ 290 Section 5.7.23: Added paragraph .................................................................................................... 290 Table 5-35: Changed Description of EMU_DLSW bit ............................................................................. 290 Section 5.7.24: Added paragraph .................................................................................................... 291 Table 5-36: Changed Description of EMU_ECC bit ............................................................................... 291 Section 5.7.25: Added paragraph .................................................................................................... 292 Table 5-37: Changed Description of EMU_ADDR bit ............................................................................. 292 Section 5.7.26: Deleted second paragraph ......................................................................................... 293 Table 5-38: Updated Description of DIAG_MODE bit ............................................................................. 293 Table 5-39: Changed Description of RAW_DATA bits ............................................................................ 295 Table 5-40: Changed Description of RAW_DATA bits ............................................................................ 295 Table 5-41: Changed Description of RAW_ECC bits .............................................................................. 296 Section 5.7.30: Deleted paragraph .................................................................................................. 297 Figure 5-39: Corrected name of FSM_SECTOR register figure heading ....................................................... 299 Table 5-45: Corrected name of FSM_SECTOR register table heading ......................................................... 299 Section 5.7.35: Changed paragraph ................................................................................................. 301 Table 5-47: Updated Description of Reserved bits 31-20. (Reads return 050h.) .............................................. 301 Table 5-47: Changed Description of EE_EDACMODE bit ........................................................................ 301 Figure 5-46: Corrected bit 3 to EE_D_COR_ERR ................................................................................. 306 Table 5-52: Changed Description of EE_CMG bit ................................................................................. 306 Table 5-52: Added Description for bit 4, EE_CME................................................................................. 306 Chapter 6: Tightly-Coupled RAM (TCRAM) Module ........................................................................... 309 Figure 6-1: Deleted ATCM block. .................................................................................................... 310 Figure 6-1: Deleted interface signals to TCRAMW1 and TCRAMW2 ........................................................... 310 Section 6.4: Updated paragraph to include INIT_DOMAIN register ............................................................. 313 Section 6.7: Updated paragraph to clarify base addresses for even and odd RAM ECC .................................... 314 Table 6-1: Added Power Domain Enable Register (INIT_DOMAIN REG) ...................................................... 314 Table 6-2: Updated Description of EMU_TRACE_DIS bit. Tracing of read data to RAM Trace Port (RTP) module during emulation mode access ............................................................................................................... 315 Table 6-2: Updated Note in ADDR_PARITY_DISABLE bit ....................................................................... 315 Table 6-5: Changed Reserved bits to 31-1 ......................................................................................... 317 Figure 6-7: Updated Read/Write value of bits to R/W1CP-0 ..................................................................... 318 Figure 6-7: Updated LEGEND to include W1CP ................................................................................... 318 Section 6.7.6: Added NOTE .......................................................................................................... 319 Table 6-8: Changed Description of UNCORRECTABLE_ERROR_ADDRESS bit ............................................ 320 Table 6-9: Changed Description of TRIGGER bit .................................................................................. 321 Section 6.7.11: Added subsection ................................................................................................... 323 1820 Revision History SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Revision History www.ti.com • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Chapter 7: Programmable Built-In Self-Test (PBIST) Module................................................................ Section 7.3.1: Changed step 6. Deleted ROM interface clock ................................................................... Section 7.3.1: Changed step 12. Deleted ROM clock ............................................................................. Section 7.5: Changed second paragraph (write 1h) ............................................................................... Section 7.5.3: Updated paragraph to remove bit [1] ............................................................................... Section 7.5.3: Deleted PACT1 bullet ................................................................................................ Figure 7-5: Deleted bit [1] ............................................................................................................. Table 7-4: Deleted bit [1] .............................................................................................................. Section 7.6.1: Changed step 5. Deleted ROM interface clock ................................................................... Section 7.6.1: Changed step 12. Deleted ROM clock ............................................................................. Section 7.6.2: Changed step 5. Deleted ROM interface clock ................................................................... Section 7.6.2: Changed step 11. Deleted ROM clock ............................................................................. Chapter 8: CPU Self-Test Controller (STC) Module ............................................................................ Section 8.4.3: Changed NOTE ....................................................................................................... Section 8.4.4: Changed NOTE ....................................................................................................... Section 8.4.5: Changed NOTE ....................................................................................................... Section 8.4.6: Changed NOTE ....................................................................................................... Section 8.4.7: Changed NOTE ....................................................................................................... Section 8.4.10: Changed paragraph. (RS_CNT bit in STCGCR0 to 1 to restart the self-test.) .............................. Chapter 9: CPU Compare Module for Cortex-R4F (CCM-R4F) ............................................................... Section 9.2: Added last sentences about the signals compared by the CCM-R4F ........................................... Section 9.4: Updated paragraph to include base address ........................................................................ Chapter 10: Oscillator and PLL .................................................................................................... Section 10.1: Changed second paragraph.......................................................................................... Section 10.3: Changed second paragraph in bullet 1 ............................................................................. Section 10.4: Changed frequency and frequency range in second paragraph ................................................ Section 10.4.1: Changed frequency and frequency range in first paragraph .................................................. Section 10.4.1: Changed frequency formulas in table............................................................................. Section 10.4.2: Corrected third bullet in second paragraph to clock source 5 ................................................. Section 10.4.6: Changed frequency in first paragraph ............................................................................ Section 10.5: Updated third paragraph. Changed f(HCLK) to f(GCLK) ................................................................. Table 10-1: Updated Frequency Limit value to f(GCLK) for fPLL CLK .................................................................. Table 10-2: Updated formula for NF ................................................................................................. Section 10.5: Changed AVCLK to VCLK2 in NOTE ............................................................................... Section 10.5.2.1: Changed table of step 2. Updated lock phase time formula to (512 × TOSCIN) ............................. Section 10.5.2.2: Added formula to last sentence of second paragraph: TEnable = 150 × TOSCIN .............................. Section 10.5.2.2: Deleted table ....................................................................................................... Section 10.5.2.3: Added formula to last sentence of paragraph: TODPLL = 3 × TOSCIN ........................................... Section 10.5.2.3: Deleted table ....................................................................................................... Section 10.5.2.3: Changed AVCLK to VCLK2 in NOTE .......................................................................... Table 10-3: Changed table title. Changed table format ........................................................................... Table 10-3: Updated lock phase time formula to (512 × TOSCIN) .................................................................. Section 10.5.4: Changed first sentence in first paragraph ........................................................................ Section 10.5.4: Added last sentence to step 3 in both paragraphs .............................................................. Section 10.6.1: Added second sentence ............................................................................................ Section 10.6.2: Added second sentence ............................................................................................ Section 10.6.3: Added second sentence ............................................................................................ Figure 10-11: Corrected symbols in figure .......................................................................................... Figure 10-11: Changed PF block to CP ............................................................................................. Section 10.8: Changed step 2, second sentence .................................................................................. Section 10.8: Changed step 3, second sentence .................................................................................. Section 10.8: Changed step 5 ........................................................................................................ Section 10.8: Changed step 6 ........................................................................................................ SPNU499C – March 2018 Submit Documentation Feedback Revision History Copyright © 2018, Texas Instruments Incorporated 324 328 328 331 334 334 334 334 344 344 345 345 346 354 354 355 356 357 360 362 363 367 370 371 373 375 375 375 375 377 378 378 379 379 381 382 382 382 382 382 383 383 385 385 389 390 391 393 393 394 394 395 395 1821 Revision History • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • www.ti.com Section 10.8: Changed step 7 ........................................................................................................ Section 10.8: Changed step 8 ........................................................................................................ Chapter 11: Dual-Clock Comparator (DCC) Module ........................................................................... Section 11.4: Updated paragraph to include base addresses.................................................................... Figure 11-12: Updated Read/Write value of DONE and ERR bits to R/W1CP-0 .............................................. Figure 11-12: Updated LEGEND to include W1CP ................................................................................ Table 11-8: Corrected table title ...................................................................................................... Table 11-11: Corrected table title .................................................................................................... Table 11-11: Changed Description of KEY bit for Value = Any other value .................................................... Chapter 12: Error Signaling Module (ESM) ...................................................................................... Chapter 12: Changed paragraph ..................................................................................................... Section 12.1.2: Changed first paragraph ............................................................................................ Figure 12-1: Deleted footnote ........................................................................................................ Table 12-1: Changed table ............................................................................................................ Figure 12-2: Moved error_group2 signal path ...................................................................................... Figure 12-3: Deleted Memory mapped register interface signal path ........................................................... Figure 12-3: Deleted CPU clock (GCLK) signal path .............................................................................. Section 12.2.2: Deleted third sentence in first paragraph ......................................................................... Section 12.2.2: Added Example 6. Subsequent example renumbered ......................................................... Section 12.4: Changed titles of Set/Status registers. .............................................................................. Section 12.4: Changed titles of Clear/Status registers. ........................................................................... Figure 12-17: Updated Read/Write value of bits to R/W1CP-X/0 ................................................................ Figure 12-18: Updated Read/Write value of bits to R/W1CP-0 .................................................................. Figure 12-19: Updated Read/Write value of bits to R/W1CP-X/0 ................................................................ Table 12-14: Changed Description of INTOFFL bit for values 21h to 60h ..................................................... Figure 12-24: Updated reset value of LTCP bit to 3FFFh ........................................................................ Table 12-16: Changed Description of LTCP bit. ................................................................................... Figure 12-26: Updated Read/Write value of bits to R/W1CP-X/0 ................................................................ Table 12-20: Changed Description of IEPCLR bit. (corresponding set bit in the ESMIEPSR4) ............................. Table 12-22: Changed Description of INTENCLR bit. (corresponding set bit in the ESMIESR4) ........................... Figure 12-33: Updated Read/Write value of bits to R/W1CP-X/0 ................................................................ Chapter 13: Real-Time Interrupt (RTI) Module .................................................................................. Equation 24: Corrected first eqution (if RTICPUCy ≠ 0) .......................................................................... Figure 13-3: Added register bit numbers for DMA and INT requests ........................................................... Section 13.2.5.1: Changed first paragraph ......................................................................................... Figure 13-18: Updated Read/Write value of bits to R/WP-0 ...................................................................... Figure 13-18: Updated LEGEND to include WP ................................................................................... Table 13-8: Changed Description of CPUC0 bit when CPUC0 = 0 ............................................................. Table 13-13: Changed Description of CPUC1 bit when CPUC1 = 0 ............................................................ Figure 13-38: Updated Read/Write value of bits to R/W1CP-0 .................................................................. Figure 13-41: Updated Read/Write value of bits to R/W1CP-0 .................................................................. Chapter 14: Cyclic Redundancy Check (CRC) Controller Module .......................................................... Section 14.1.2: Updated NOTE. (Added cross-reference) ........................................................................ Figure 14-3: Changed MCRC Controller to CRC Controller ...................................................................... Figure 14-4: Changed MCRC Controller to CRC Controller ...................................................................... Section 14.2.11.1: Added subsection ................................................................................................ Section 14.4: Updated paragraph to include base address ...................................................................... Table 14-7: Added last sentence in Description of CH1_TRACEEN bit ........................................................ Table 14-8: Updated Description of all bits ......................................................................................... Table 14-9: Updated Description of all bits ......................................................................................... Figure 14-14: Updated Read/Write value of bits to R/W1CP-0 .................................................................. Figure 14-14: Updated LEGEND to include W1CP ................................................................................ Table 14-10: Updated Description of all bits ........................................................................................ 1822 Revision History 395 395 396 403 407 407 408 410 410 412 412 413 413 414 414 414 414 416 417 420 420 424 424 425 427 428 428 429 430 431 433 434 438 439 443 452 452 452 455 466 469 476 478 483 483 489 493 495 496 498 500 500 500 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Revision History www.ti.com • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Chapter 15: Vectored Interrupt Manager (VIM) Module ....................................................................... 515 Section 15.4: Added NOTE ........................................................................................................... 523 Section 15.8: Updated paragraphs .................................................................................................. 530 Table 15-1: Deleted Reserved address locations .................................................................................. 530 Figure 15-13: Corrected reset value of Interrupt Vector Table offset bits 15-9 ................................................ 532 Table 15-4: Corrected table title ...................................................................................................... 532 Table 15-4: Corrected Description of Interrupt Vector Table offset bits. Reads are always FFF8 2xxxh .................. 532 Section 15.8.8: Corrected subsection title .......................................................................................... 535 Section 15.8.8: Updated LEGEND to include WP ................................................................................. 535 Table 15-9: Corrected table title ...................................................................................................... 535 Section 15.8.9: Corrected subsection title .......................................................................................... 536 Section 15.8.9: Updated Read/Write value of bits to R/W1CP-0 ................................................................ 536 Section 15.8.9: Updated LEGEND to include W1CP .............................................................................. 536 Table 15-10: Corrected table title .................................................................................................... 536 Section 15.8.10: Corrected subsection title ......................................................................................... 537 Section 15.8.10: Updated LEGEND to include WP ................................................................................ 537 Table 15-11: Corrected table title .................................................................................................... 537 Section 15.8.11: Corrected subsection title ......................................................................................... 538 Section 15.8.11: Updated LEGEND to include WP ................................................................................ 538 Table 15-12: Corrected table title .................................................................................................... 538 Section 15.8.12: Corrected subsection title ......................................................................................... 539 Section 15.8.12: Updated LEGEND to include WP ................................................................................ 539 Table 15-13: Corrected table title .................................................................................................... 539 Section 15.8.13: Corrected subsection title ......................................................................................... 540 Section 15.8.13: Updated LEGEND to include WP ................................................................................ 540 Table 15-14: Corrected table title .................................................................................................... 540 Section 15.8.17: Corrected subsection title ......................................................................................... 543 Figure 15-38: Corrected figure title .................................................................................................. 543 Table 15-19: Corrected table title .................................................................................................... 543 Table 15-19: Updated Description of Value = 5Fh to Interrupt request 95. .................................................... 543 Chapter 16: Direct Memory Access Controller (DMA) Module .............................................................. 545 Chapter 16: Global: Changed index pointer to offset value ...................................................................... 545 Section 16.2.1: Added last sentence to paragraph ................................................................................ 547 Section 16.2.2: Changed second bullet ............................................................................................. 547 Section 16.2.3: Deleted last sentence in second paragraph ..................................................................... 548 Figure 16-5: Updated figure (changed Index Pointer to Offset Value) .......................................................... 549 Section 16.2.7: Added last two paragraphs ......................................................................................... 557 Table 16-2: Added table. Subsequent tables renumbered ....................................................................... 557 Section 16.2.9: Deleted fifth bullet (Bus error (BER) interrupt)................................................................... 559 Section 16.2.9: Added fifth bullet (External imprecise error on read) ........................................................... 559 Section 16.2.9: Added sixth bullet (External imprecise error on write) .......................................................... 559 Section 16.2.9: Changed NOTE. Deleted BER references ....................................................................... 559 Figure 16-14: MPU and PAR error signals corrected. Deleted BERA error signal. Added SCR block ..................... 560 Figure 16-15: Corrected to Frame Transfer. ........................................................................................ 560 Figure 16-15: Changed output of OR gate to FTCA ............................................................................... 560 Figure 16-15: Changed footnote. Deleted BER reference ........................................................................ 560 Section 16.2.12Changed fourth paragraph ......................................................................................... 561 Section 16.2.16: Updated second sentence in first paragraph ................................................................... 565 Section 16.2.17: Changed second paragraph ...................................................................................... 565 Section 16.3: Changed paragraph. Added base address for control packets .................................................. 566 Section 16.3: Deleted second NOTE ................................................................................................ 566 Table 16-8: Deleted BER Interrupt Mapping Register (BERMAP), BERA Interrupt Channel Offset Register (BERAOFFSET), and BERB Interrupt Channel Offset Register (BERBOFFSET). Subsequent subsections, figures, and tables renumbered ..................................................................................................................... 566 SPNU499C – March 2018 Submit Documentation Feedback Revision History Copyright © 2018, Texas Instruments Incorporated 1823 Revision History • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • www.ti.com Figure 16-19 to Figure 16-28: Updated register bit names to clarify that each register bit number corresponds to one channel number ........................................................................................................................ 568 Table 16-11 to Table 16-20: Updated bit Descriptions to clarify register bit number corresponding to channel number 568 Figure 16-35 to Figure 16-51: Updated register bit names to clarify that each register bit number corresponds to one channel number ........................................................................................................................ 568 Table 16-27 to Table 16-43: Updated bit Descriptions to clarify register bit number corresponding to channel number 568 Table 16-10: Updated Description of DMA_RES bit. (Writing a zero to this bit has no effect.) .............................. 568 Table 16-21: Updated Value column for all bits. Added 20h-3Fh = Reserved ................................................. 575 Table 16-22: Updated Value column for all bits. Added 20h-3Fh = Reserved ................................................. 576 Table 16-23: Updated Value column for all bits. Added 20h-3Fh = Reserved ................................................. 577 Table 16-24: Updated Value column for all bits. Added 20h-3Fh = Reserved ................................................. 578 Table 16-33: Changed Description of LFSINTENA bit = 1h to channel is enabled ........................................... 584 Table 16-38: Changed Description of BTCINTDIS bit for Value = 0 (Read). Channel is disabled .......................... 586 Table 16-38: Changed Description of BTCINTDIS bit for Value = 1 (Read). Channel is enabled........................... 586 Table 16-39: Updated Description of GINT bit. Deleted BER references....................................................... 587 Figure 16-48: Updated Read/Write value of bits to R/W1CP-0 .................................................................. 587 Figure 16-49: Updated Read/Write value of bits to R/W1CP-0 .................................................................. 588 Figure 16-50: Updated Read/Write value of bits to R/W1CP-0 .................................................................. 588 Figure 16-51: Updated Read/Write value of bits to R/W1CP-0 .................................................................. 589 Section 16.3.1.35: Added paragraph ................................................................................................ 589 Section 16.3.1.35: Deleted BER Interrupt Flag Register (BERFLAG) figure and BER Interrupt Flag Register (BERFLAG) Field Descriptions table. Subsequent figures and tables renumbered .......................................................... 589 Table 16-44: Updated Value column of FTCA bit. Added 11h-3Fh = Reserved ............................................... 590 Table 16-45: Updated Value column of LFSA bit. Added 11h-3Fh = Reserved ............................................... 590 Table 16-46: Updated Value column of HBCA bit. Added 11h-3Fh = Reserved .............................................. 592 Table 16-47: Updated Value column of BTCA bit. Added 11h-3Fh = Reserved ............................................... 592 Table 16-48: Updated Value column of FTCB bit. Added 11h-3Fh = Reserved ............................................... 594 Table 16-49: Updated Value column of LFSB bit. Added 11h-3Fh = Reserved ............................................... 594 Table 16-50: Updated Value column of HBCB bit. Added 11h-3Fh = Reserved .............................................. 596 Table 16-51: Updated Value column of BTCB bit. Added 11h-3Fh = Reserved ............................................... 596 Figure 16-69: Updated Read/Write value of EDFLAG bit to R/W1C-0 .......................................................... 605 Figure 16-69: Updated LEGEND to include W1C.................................................................................. 605 Table 16-62: Corrected Value column of INT2AB and INT2ENA bits ........................................................... 606 Figure 16-71: Updated Read/Write value of bits to R/W1C-0 .................................................................... 608 Figure 16-71: Updated LEGEND to include W1C.................................................................................. 608 Table 16-63: Changed Description of bits. Added 0 (Write) = No effect ........................................................ 608 Table 16-64: Updated Description of STARTADDRESS bit. Added last sentence ............................................ 609 Table 16-65: Updated Description of ENDADDRESS bit. Added last two sentences ........................................ 609 Table 16-65: Added Note ............................................................................................................. 609 Table 16-66: Updated Description of STARTADDRESS bit. Added last sentence ............................................ 610 Table 16-67: Updated Description of ENDADDRESS bit. Added last two sentences ........................................ 610 Table 16-67: Added Note ............................................................................................................. 610 Table 16-68: Updated Description of STARTADDRESS bit. Added last sentence ............................................ 611 Table 16-69: Updated Description of ENDADDRESS bit. Added last two sentences ........................................ 611 Table 16-69: Added Note ............................................................................................................. 611 Table 16-70: Updated Description of STARTADDRESS bit. Added last sentence ............................................ 612 Table 16-71: Updated Description of ENDADDRESS bit. Added last two sentences ........................................ 612 Table 16-71: Added Note ............................................................................................................. 612 Table 16-75: Updated Value column and Description of CHAIN bit ............................................................. 615 Table 16-75: Changed Description of TTYPE bit. (A request triggers).......................................................... 615 Chapter 17: External Memory Interface (EMIF) ................................................................................. 619 Figure 17-1: Corrected pin names ................................................................................................... 621 Figure 17-1: Deleted EMIF_RNW pin ............................................................................................... 621 Table 17-3: Deleted EMIF_RNW pin ................................................................................................ 623 1824 Revision History SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Revision History www.ti.com • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Figure 17-18: Updated reset value of RR bit to 60h ............................................................................... 657 Figure 17-24: Changed bit 1 to LT_MASK_SET ................................................................................... 663 Figure 17-25: Changed bit 1 to LT_MASK_CLR ................................................................................... 664 Figure 17-27: Corrected pin names .................................................................................................. 667 Chapter 18: Parameter Overlay Module (POM) ................................................................................. 675 Section 18.1: Deleted last two sentences in second paragraph ................................................................. 676 Section 18.1.2: Added subsection. Subsequent subsection renumbered ...................................................... 676 Figure 18-3: Updated LEGEND to include WP ..................................................................................... 680 Figure 18-6: Updated Read/Write value of TO bit to R/W1CP-0................................................................. 682 Figure 18-6: Updated LEGEND to include W1CP ................................................................................. 682 Table 18-5: Changed Description of TO bit ......................................................................................... 682 Figure 18-7: Updated LEGEND to include WP ..................................................................................... 683 Chapter 19: Analog To Digital Converter (ADC) Module ..................................................................... 695 Section 19.1: Changed first bullet .................................................................................................... 696 Section 19.1: Added third bullet in second paragraph............................................................................. 696 Figure 19-1: Changed bottom box to ADC2 ........................................................................................ 696 Section 19.2.3: Updated third and fifth sentences in third paragraph ........................................................... 698 Section 19.3.3: Added last sentence (reference) to fourth paragraph .......................................................... 700 Figure 19-4: Corrected register bit 20-16 name in ADG1BUFFER to G1_CHID .............................................. 702 Figure 19-5: Updated figure to show Reserved bits ............................................................................... 703 Figure 19-5: Corrected register bit 15 names in ADG1BUFFER and ADG2BUFFER ........................................ 703 Figure 19-10: Corrected Offset Address and register name for ADEVSR. ..................................................... 706 Section 19.7.3: Corrected register names in first sentence. (ADMAGINTENASET and ADMAGINTENACLR) ........... 712 Section 19.11.5: Changed paragraph ............................................................................................... 730 Figure 19-22: Changed bit 2 to Reserved and R-0 ................................................................................ 730 Figure 19-23: Added figure. Subsequent figures renumbered ................................................................... 730 Table 19-10: Deleted Bit column ..................................................................................................... 731 Table 19-10: Changed Description of EV_DATA_FMT bit. (This field is only applicable when the ADC module is configured to be a 12-bit ADC module.) ............................................................................................. 731 Table 19-10: Corrected bit 2 name to EV_8BIT .................................................................................... 731 Table 19-10: Changed Description of EV_8BIT bit. (This bit is only applicable when the ADC module is configured to be a 10-bit ADC module.) ................................................................................................................... 731 Table 19-10: Changed Description of FRZ_EV bit. (The Event Group conversion is kept frozen while the Group1 or Group2 conversion is active,) ......................................................................................................... 731 Table 19-10: Changed Description of FRZ_EV bit. Corrected ADEVST register to ADEVSR register ..................... 731 Section 19.11.6: Changed paragraph ............................................................................................... 733 Figure 19-24: Changed bit 2 to Reserved and R-0 ................................................................................ 733 Figure 19-25: Added figure. Subsequent figures renumbered ................................................................... 733 Table 19-11: Deleted Bit column ..................................................................................................... 734 Table 19-11: Changed Description of G1_DATA_FMT bit. (This field is only applicable when the ADC module is configured to be a 12-bit ADC module.) ............................................................................................. 734 Table 19-11: Corrected bit 2 name to G1_8BIT .................................................................................... 734 Table 19-11: Changed Description of G1_8BIT bit. (This bit is only applicable when the ADC module is configured to be a 10-bit ADC module.) ................................................................................................................... 734 Table 19-11: Changed Description of FRZ_G1 bit. (The Group1 conversion is kept frozen while the Event Group or Group2 conversion is active,) ......................................................................................................... 734 Table 19-11: Changed Description of FRZ_G1 bit. Corrected ADG1ST register to ADG1SR register ..................... 734 Section 19.11.7: Changed paragraph ............................................................................................... 736 Figure 19-26: Changed bit 2 to Reserved and R-0 ................................................................................ 736 Figure 19-26: Changed bit 0 to FRZ_G2 ............................................................................................ 736 Figure 19-27: Added figure. Subsequent figures renumbered ................................................................... 736 Table 19-12: Deleted Bit column ..................................................................................................... 737 Table 19-12: Changed Description of G2_DATA_FMT bit. (This field is only applicable when the ADC module is configured to be a 12-bit ADC module.) ............................................................................................. 737 Table 19-12: Corrected bit 2 name to G2_8BIT .................................................................................... 737 SPNU499C – March 2018 Submit Documentation Feedback Revision History Copyright © 2018, Texas Instruments Incorporated 1825 Revision History • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • www.ti.com Table 19-12: Changed Description of G2_8BIT bit. (This bit is only applicable when the ADC module is configured to be a 10-bit ADC module.) ................................................................................................................... 737 Table 19-12: Changed Description of FRZ_G2 bit. (The Group2 conversion is kept frozen while the Event Group or Group1 conversion is active,) ......................................................................................................... 737 Table 19-12: Changed Description of FRZ_G2 bit. Corrected ADG2ST register to ADG2SR register ..................... 737 Table 19-25: Updated Value column and changed Description for DMA_EV_END bit ....................................... 750 Table 19-26: Updated Value column and changed Description for DMA_G1_END bit ....................................... 752 Table 19-27: Updated Value column and changed Description for DMA_G2_END bit ....................................... 754 Table 19-33: Changed last bullet in Description of EV_END bit ................................................................. 760 Table 19-34: Changed last bullet in Description of G1_END bit ................................................................. 761 Table 19-35: Changed last bullet in Description of G2_END bit ................................................................. 762 Table 19-36: Changed Reserved bits to 31-24 and EV_SEL bits to 23-0 ...................................................... 763 Table 19-37: Changed Reserved bits to 31-24 and G1_SEL bits to 23-0 ...................................................... 764 Table 19-38: Changed Reserved bits to 31-24 and G2_SEL bits to 23-0 ...................................................... 765 Section 19.11.34: Changed paragraph .............................................................................................. 766 Figure 19-55: Added figure. Subsequent figures renumbered ................................................................... 766 Table 19-39: Deleted Bit column ..................................................................................................... 766 Table 19-39: Changed Description of ADCALR bit ................................................................................ 766 Table 19-41: Changed Description of LAST_CONV bit for Value = 1. (A level higher than or equal to the midpoint reference voltage) ...................................................................................................................... 767 Section 19.11.37: Changed paragraph .............................................................................................. 768 Table 19-42: Deleted Bit column ..................................................................................................... 768 Table 19-42: Changed Value column range of the EV_CHID bit to 1h-1Fh .................................................... 768 Section 19.11.38: Changed paragraph .............................................................................................. 769 Figure 19-61: Corrected register bit names ......................................................................................... 769 Table 19-43: Deleted Bit column ..................................................................................................... 769 Table 19-43: Changed Value column range of the G1_CHID bit to 1h-1Fh .................................................... 769 Section 19.11.39: Changed paragraph .............................................................................................. 770 Figure 19-63: Corrected register bit names ......................................................................................... 770 Table 19-44: Deleted Bit column ..................................................................................................... 770 Table 19-44: Changed Value column range of the G2_CHID bit to 1h-1Fh .................................................... 770 Section 19.11.40: Added first paragraph ............................................................................................ 771 Figure 19-64: Added figure. Subsequent figures renumbered ................................................................... 771 Figure 19-65: Added figure. Subsequent figures renumbered ................................................................... 771 Table 19-45: Added table. Subsequent tables renumbered ...................................................................... 771 Section 19.11.41: Added first paragraph ............................................................................................ 772 Figure 19-66: Added figure. Subsequent figures renumbered ................................................................... 772 Figure 19-67: Added figure. Subsequent figures renumbered ................................................................... 772 Table 19-46: Added table. Subsequent tables renumbered ...................................................................... 772 Section 19.11.42: Added first paragraph ............................................................................................ 773 Figure 19-68: Added figure. Subsequent figures renumbered ................................................................... 773 Figure 19-69: Added figure. Subsequent figures renumbered ................................................................... 773 Table 19-47: Added table. Subsequent tables renumbered ...................................................................... 773 Section 19.11.54: Changed paragraph .............................................................................................. 781 Figure 19-81: Added figure. Subsequent figures renumbered ................................................................... 781 Table 19-59: Deleted Bit column ..................................................................................................... 782 Table 19-59: Changed Description of MAG_THRx bit ............................................................................ 782 Section 19.11.55: Changed paragraph .............................................................................................. 783 Figure 19-83: Added figure. Subsequent figures renumbered ................................................................... 783 Table 19-60: Deleted Bit column ..................................................................................................... 783 Chapter 20: High-End Timer (N2HET) Module .................................................................................. 791 Section 20.2.5.4: Changed first sentence ........................................................................................... 811 Table 20-9: Changed Pull Control and Input Buffer = Enabled when device is under reset ................................. 823 Section 20.2.6: Corrected second bulleted item ................................................................................... 824 1826 Revision History SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Revision History www.ti.com • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Section 20.2.9: Updated first paragraph ............................................................................................ 828 Section 20.3.2: Added Hardware Angle Generator (HWAG) subsection. Subsequent figures and tables renumbered .. 833 Figure 20-56: Changed format ....................................................................................................... 856 Table 20-16: Updated Description of PPF and TO bits ........................................................................... 856 Table 20-17: Updated Description of LRPFC and HRPFC bits .................................................................. 858 Table 20-23: Updated Description of Write = 1. (Interrupt will be disabled.) ................................................... 861 Table 20-26: Changed Description of HETPRY bit ................................................................................ 864 Section 20.5: Added HWAG Registers section. Subsequent section, figures, and tables renumbered .................... 882 Table 20-73: Added cross references to instruction descriptions ................................................................ 898 Table 20-73: Added OR instruction .................................................................................................. 898 Table 20-73: Corrected sub-opcodes for ADC, ADD, and XOR instructions ................................................... 898 Table 20-74: Added SUB to Set/Reset column for Zero flag (Z) ................................................................. 899 Figure 20-121: Corrected register bit name for bit 6 (Init flag) ................................................................... 910 Section 20.6.3.8: Updated Description of CNT instruction. The data field [D31:7] is incremented unconditionally on each execution of the instruction ........................................................................................................... 924 Table 20-87: Changed registers in Source and Destination(s) columns to register A, B, R, S, or T ........................ 941 Section 20.6.3.19: Updated Description of RCNT instruction. For example, choosing M = 100 allows the input period to be expressed as a percentage (%) of the reference period .......................................................................... 956 Chapter 21: High-End Timer Transfer Unit (HTU) Module .................................................................... 969 Section 21.2: Updated third bullet in fifth paragraph. Added per request....................................................... 972 Section 21.2: Added fourth bullet in fifth paragraph ............................................................................... 972 Section 21.2.4.1: Updated first sentence in third paragraph ..................................................................... 979 Section 21.2.4.1: Updated fourth sentence in seventh paragraph. If the signal frequency would increase, then a wrong pair [22,23] could be read ............................................................................................................. 980 Section 21.2.5: Updated second paragraph ........................................................................................ 981 Figure 21-13: Changed position of third rising edge in waveform ............................................................... 983 Section 21.4: Updated paragraph to include base addresses.................................................................... 986 Table 21-24: Corrected bit range of the Reserved bit to 31-10 and the INTTYPE0 bit to 9-8 ............................... 996 Table 21-25: Corrected bit range of the Reserved bit to 31-10 and the INTTYPE1 bit to 9-8 ............................... 997 Figure 21-31: Changed 2 LSBs to 0 ............................................................................................... 1002 Table 21-31: Updated Description of STARTADDRESS1 bit. Added last sentence ......................................... 1002 Figure 21-32: Changed 2 LSBs to 0 ............................................................................................... 1002 Table 21-32: Updated Description of ENDADDRESS1 bit. Added last sentences........................................... 1002 Table 21-33: Updated Description of CPNUM bit ................................................................................ 1003 Table 21-39: Updated Description of CPNUM0 and CPNUM1 bits ............................................................ 1008 Figure 21-40: Changed 2 LSBs to 0 ............................................................................................... 1011 Table 21-40: Updated Description of STARTADDRESS0 bit. Added last sentence ......................................... 1011 Figure 21-41: Changed 2 LSBs to 0 ............................................................................................... 1011 Table 21-41: Updated Description of ENDADDRESS0 bit. Added last sentences........................................... 1011 Section 21.5: Updated second paragraph to include base addresses ........................................................ 1012 Section 21.5.7: Updated paragraph ................................................................................................ 1018 Table 21-49: Corrected table title ................................................................................................... 1018 Chapter 22: General-Purpose Input/Output (GIO) Module .................................................................. 1021 Section 22.2: Corrected register names in second paragraph to GIOOFF1 and GIOOFF2 ................................ 1023 Figure 22-3: Moved figure location. Subsequent figures renumbered ......................................................... 1025 Section 22.3.1: Changed description of Data direction in first bullet ........................................................... 1025 Section 22.3.1: Changed description of Open drain in sixth bullet ............................................................. 1025 Section 22.3.1: Changed description of Pull select in eighth bullet ............................................................ 1026 Section 22.4.2: Changed last sentence ............................................................................................ 1028 Section 22.5: Changed third and fourth paragraph............................................................................... 1029 Table 22-1: Updated Offset column ................................................................................................ 1029 Table 22-1: Deleted GIODIN[C-H], GIODOUT[C-H], GIODSET[C-H], GIODCLR[C-H], GIOPDR[C-H], GIOPULDIS[C-H], and GIOPSL[C-H] ..................................................................................................................... 1029 Section 22.5.1: Chnaged third sentence ........................................................................................... 1030 SPNU499C – March 2018 Submit Documentation Feedback Revision History Copyright © 2018, Texas Instruments Incorporated 1827 Revision History • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • www.ti.com Section 22.5.2: Changed paragraph ............................................................................................... 1031 Section 22.5.3: Changed paragraph ............................................................................................... 1032 Section 22.5.4: Changed paragraph ............................................................................................... 1033 Section 22.5.4.1: Changed NOTE. Deleted first sentence ...................................................................... 1033 Table 22-5: Updated Description of Read = 1 and Write = 1 for all bits ....................................................... 1033 Table 22-6: Updated Description of Read = 1 and Write = 1 for all bits ....................................................... 1034 Section 22.5.5: Changed paragraph ............................................................................................... 1035 Section 22.5.5: Added NOTE ....................................................................................................... 1035 Table 22-7: Updated Description of Read = 1 and Write = 1 for all bits ....................................................... 1035 Table 22-8: Updated Description of Write = 1 for all bits ........................................................................ 1037 Section 22.5.6: Added second sentence .......................................................................................... 1038 Figure 22-12: Updated Read/Write value of bits to R/W1C-0................................................................... 1038 Figure 22-12: Updated LEGEND to include W1C ................................................................................ 1038 Table 22-22: Changed Pull Control = Enabled when device is under reset .................................................. 1047 Chapter 23: FlexRay Module ...................................................................................................... 1048 Figure 23-28: Updated figure to include where interrupts are sent ............................................................ 1104 Figure 23-29: Updated title .......................................................................................................... 1106 Section 23.19.1: Updated first paragraph to include base address ............................................................ 1108 Section 23.19.1: Updated third paragraph to include base address of Transfer Configuration RAM ..................... 1108 Figure 23-32: Updated Read/Write value of bits to R/W1S-0 ................................................................... 1111 Figure 23-32: Updated LEGEND ................................................................................................... 1111 Figure 23-33: Updated Read/Write value of bits to R/W1S-0 ................................................................... 1111 Figure 23-33: Updated LEGEND ................................................................................................... 1111 Figure 23-34: Updated Read/Write value of IDLE bit to R/W1C-1 ............................................................. 1114 Figure 23-34: Updated LEGEND ................................................................................................... 1114 Section 23.19.1.12: Updated register bit names to reflect corresponding message buffer number ....................... 1119 Section 23.19.1.12: Updated Read/Write value of bits to R/W1C-0 ........................................................... 1119 Section 23.19.1.12: Updated LEGEND ............................................................................................ 1119 Table 23-29: Combined Transfer to System Memory Occurred (TSMO[1-4]) Field Descriptions tables into a single table .................................................................................................................................... 1120 Section 23.19.1.13: Updated register bit names to reflect corresponding message buffer number ....................... 1121 Section 23.19.1.13: Updated Read/Write value of bits to R/W1C-0 ........................................................... 1121 Section 23.19.1.13: Updated LEGEND ............................................................................................ 1121 Table 23-30: Combined Transfer to Communication Controller Occurred (TCCO[1-4]) Field Descriptions tables into a single table. ............................................................................................................................ 1122 Section 23.19.1.15: Corrected NOTE .............................................................................................. 1124 Figure 23-52: Updated Read/Write value of bits to R/W1C-0................................................................... 1125 Figure 23-52: Updated LEGEND ................................................................................................... 1125 Figure 23-53: Corrected register bit name for bits 10-8 and bits 6-4 .......................................................... 1127 Figure 23-54: Corrected register bit name for bits 10-8 and bits 6-4 .......................................................... 1128 Section 23.19.1.18: Updated register bit names to reflect corresponding message buffer number ....................... 1129 Section 23.19.1.19: Updated register bit names to reflect corresponding message buffer number ....................... 1133 Section 23.19.1.20: Updated register bit names to reflect corresponding message buffer number ....................... 1137 Section 23.19.1.21: Updated register bit names to reflect corresponding message buffer number ....................... 1141 Section 23.19.1.22: Updated register bit names to reflect corresponding message buffer number ....................... 1145 Section 23.19.1.23: Updated register bit names to reflect corresponding message buffer number ....................... 1149 Table 23-85: Updated register bit name for TSO bits 13-0. Corrected Value column for TSO bit ......................... 1153 Section 23.19.2: Added last paragraph to include base address .............................................................. 1155 Table 23-87: Updated table to add subsection cross-reference to Transmission Request Registers, New Data Registers, and Message Buffer Status Changed Registers.................................................................................. 1156 Section 23.19.2.2.5: Updated paragraph .......................................................................................... 1175 Section 23.19.2.2.6: Updated paragraph .......................................................................................... 1177 Section 23.19.2.3.1: Corrected ALLOW_COLDSTART description after table ............................................... 1187 Section 23.19.2.3.1: Corrected RESET_STATUS_INDICATORS description after table ................................... 1187 1828 Revision History SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Revision History www.ti.com • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Table 23-121: Corrected Value column for CCFC bit. ........................................................................... Table 23-131: Updated table format ............................................................................................... Table 23-132: Corrected Value column for SEC bit .............................................................................. Table 23-134: Corrected Value column for CH bit ............................................................................... Figure 23-154: Corrected Reset value of CL bit to 81h.......................................................................... Figure 23-155: Updated Read/Write value of POBF bit to R/W-0 .............................................................. Table 23-146: Deleted Value column .............................................................................................. Table 23-148: Corrected Value column for CHB, CHA bit ...................................................................... Table 23-149: Updated table. Changed order of CHA and CHB columns .................................................... Chapter 24: Controller Area Network (DCAN) Module ....................................................................... Equation 36: Corrected maximum tolerance of equation for condition I ....................................................... Equation 37: Updated equation ..................................................................................................... Equation 38: Updated equation ..................................................................................................... Section 24.3.2.3: Changed tq = 1 µs ............................................................................................... Equation 39: Updated equation ..................................................................................................... Equation 40: Updated equation ..................................................................................................... Table 24-2: Updated Description of DLC, Value = 0-8: Data Frame has 0-8 data bytes ................................... Section 24.5.2: Changed first paragraph in NOTE. Added: At address 0x0000, message object number 64 is located.................................................................................................................................. Section 24.16: Changed subsection ............................................................................................... Section 24.17: Updated first paragraph to include base addresses ........................................................... Table 24-6: Added Core Release Register ........................................................................................ Figure 24-20: Updated Read/Write value of PER bit to R/C-0 .................................................................. Table 24-9: Updated Description of REC bit (Values from 0 to 127) .......................................................... Table 24-11: Corrected Value column range of Int1ID and Int0ID bits to 1h-40h ............................................ Table 24-13: Corrected Value column range of Message Number bit to 1h-FFh ............................................ Table 24-13: Updated Description of Message Number bit. Only values 1h-40h are valid. Values 41h-FFh are invalid ................................................................................................................................... Section 24.17.8: Added subsection. Subsequent subsections, figures, and tables renumbered .......................... Figure 24-27: Corrected register bit name to ABO_TIME ....................................................................... Table 24-15: Corrected register bit name to ABO_TIME ........................................................................ Table 24-21: Corrected Value column range of Message Number bit to 1h-40h ............................................ Table 24-24: Updated Description of EoB bit ..................................................................................... Section 24.17.24: Changed sixth paragraph ...................................................................................... Section 24.17.30: Changed first paragraph in NOTE. Writable only if Init bit of CAN Control Register is set ........... Section 24.17.31: Changed first paragraph in NOTE. Writable only if Init bit of CAN Control Register is set ........... Table 24-31: Changed the Func Bit description for Value = 1. (as an input to receive CAN data) ........................ Chapter 25: Multi-Buffered Serial Peripheral Interface Module (MibSPI) with Parallel Pin Option (MibSPIP) .... Chapter 25: Global: Changed SPISCS to SPICS ................................................................................ Section 25.1: Changed third and seventh bullets in second paragraph ....................................................... Section 25.2: Changed first sentence in second paragraph .................................................................... Section 25.2: Added NOTE.......................................................................................................... Table 25-1: Changed SPIENA enabled description in Slave Mode ............................................................ Figure 25-6: Corrected figure title .................................................................................................. Figure 25-6: Corrected bits D11-D8 to 1110 ...................................................................................... Figure 25-7: Corrected figure title .................................................................................................. Section 25.2.9: Updated first two paragraphs..................................................................................... Section 25.2.11.2: Added subsection The CSHOLD Bit in Slave Mode (Multi-buffered Mode) ............................ Section 25.2.12: Changed sixth sentence. Added T2EDELAY ................................................................. Section 25.2.13: Changed second sentence. Added C2EDELAY ............................................................. Section 25.8.1: Changed second sentence ....................................................................................... Section 25.8.1: Changed second sentence ....................................................................................... Section 25.9: Updated paragraph to include base addresses .................................................................. Section 25.9: Global: Updated all VBUSPCLK signals to VCLK ............................................................... SPNU499C – March 2018 Submit Documentation Feedback Revision History Copyright © 2018, Texas Instruments Incorporated 1202 1211 1212 1214 1215 1216 1225 1227 1228 1245 1250 1252 1252 1252 1252 1252 1255 1257 1280 1280 1280 1284 1286 1288 1290 1290 1290 1291 1291 1301 1306 1308 1315 1316 1316 1318 1318 1319 1320 1320 1321 1327 1327 1327 1331 1332 1332 1333 1347 1348 1349 1349 1829 Revision History • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • www.ti.com Table 25-7: Added SPIPC9 at address offset 68h ............................................................................... 1349 Table 25-9: Updated second bullet in Description of SPIEN bit. Added SPIDAT0 and SPIDAT1 ......................... 1351 Table 25-9: Changed Description of CLKMOD bit for Value = 1. (SPIENA is an input.) .................................... 1351 Figure 25-30: Updated Read/Write value of RXINTFLG, RXOVRNINTFLG, BITERRFLG, DESYNCFLG, PARERRFLG, TIMEOUTFLG, and DLENERRFLG bits to R/W1C .............................................................................. 1355 Figure 25-30: Updated LEGEND to include W1C ................................................................................ 1355 Table 25-12: Corrected bit 2 name to PARERRFLG............................................................................. 1355 Table 25-14: Corrected Description of SIMODIR0 bit............................................................................ 1359 Table 25-20: Updated Description of all bits to clarify that bit is a pull control disable ...................................... 1368 Table 25-21: Updated Description of CLKPSEL, ENAPSEL, and SCSPSEL bits. 1 = Pull up ............................. 1369 Table 25-22: Changed Description of TXDATA bit. Added last Note .......................................................... 1371 Section 25.9.16: Added NOTE ...................................................................................................... 1372 Table 25-23: Updated Description of CSNR and TXDATA bits ................................................................ 1372 Table 25-24: Added table. Subsequent tables renumbered .................................................................... 1374 Table 25-25: Corrected Description of RXEMPTY bit. (SPIBUF to RXDATA) ................................................ 1375 Table 25-27: Corrected Value column for all bits to 0-FFh ...................................................................... 1377 Table 25-27: Updated Description of C2TDELAY bit. Deleted first NOTE .................................................... 1377 Table 25-27: Updated Description of T2CDELAY bit. Deleted first and third NOTE......................................... 1377 Figure 25-49: Updated reset value of CSDEF bit to FFh ........................................................................ 1380 Table 25-29: Updated formula in Description of PRESCALE bit. (PRESCALEx + 1) ....................................... 1381 Section 25.9.24: Added subsection. Subsequent subsections, figures, and tables renumbered .......................... 1386 Table 25-35: Updated bit Descriptions to clarify register bit number corresponding to TG number ....................... 1391 Table 25-36: Updated bit Descriptions to clarify register bit number corresponding to TG number ....................... 1392 Table 25-36: Changed Description of CLRINTENRDY and CLRINTENSUS bits for Value = 1 (Write). The interrupt does not get generated ..................................................................................................................... 1392 Table 25-37: Updated bit Descriptions to clarify register bit number corresponding to TG number ....................... 1393 Table 25-38: Updated bit Descriptions to clarify register bit number corresponding to TG number ....................... 1394 Table 25-38: Changed Description of CLRINTLVLRDY and CLRINTLVLSUS bits for Value = 1 (Write). Clear the TGx interrupt INT0 .......................................................................................................................... 1394 Table 25-39: Updated bit Descriptions to clarify register bit number corresponding to TG number ....................... 1395 Table 25-40: Changed Description of TICKENA bit for Value = 1. Deleted second sentence ............................. 1396 Table 25-40: Corrected Value column of CLKCTRL bit ......................................................................... 1396 Table 25-41: Changed Note in LPEND bit ........................................................................................ 1397 Table 25-43: Updated Description of ONESHOT bit. Added Note ............................................................. 1401 Table 25-43: Updated Description of ICOUNTx bit. Added last sentence to second paragraph ........................... 1401 Figure 25-73: Updated Read/Write value of SCS_FAIL_FLG bit to R/W1C .................................................. 1409 Figure 25-73: Updated LEGEND to include W1C ................................................................................ 1409 Figure 25-74: Changed format ...................................................................................................... 1411 Figure 25-75: Changed format ...................................................................................................... 1413 Table 25-53: Corrected Description of EPRESCALE_FMT3 bit ................................................................ 1413 Section 25.10.2: Updated paragraph to include base addresses .............................................................. 1416 Section 25.10.3: Added NOTE ...................................................................................................... 1417 Table 25-55: Updated Description of CSHOLD and TXDATA bits ............................................................. 1417 Table 25-55: Updated Description of CSNR bit................................................................................... 1417 Table 25-56: Added table. Subsequent tables renumbered .................................................................... 1419 Table 25-57: Corrected bits descriptions (SPIBUF to RXRAM) ................................................................ 1420 Section 25.12.3: Deleted table from subsection .................................................................................. 1428 Section 25.12.4: Deleted table from subsection .................................................................................. 1428 Chapter 26: Serial Communication Interface (SCI)/Local Interconnect Network (LIN) Module ..................... 1429 Section 26.4.1: Changed third paragraph ......................................................................................... 1446 Section 26.4.2: Changed second sentence in second paragraph .............................................................. 1446 Section 26.5: Updated both paragraphs ........................................................................................... 1447 Section 26.5: Updated procedure in second paragraph ......................................................................... 1447 Section 26.5.1.1: Updated first and last paragraphs ............................................................................. 1447 1830 Revision History SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated Revision History www.ti.com • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Section 26.5.1.2: Updated paragraph .............................................................................................. 1448 Section 26.5.2.1: Updated first and last paragraphs ............................................................................. 1448 Section 26.5.2.1: Changed number 2 in second paragraph to Transmit Interrupt ........................................... 1448 Section 26.5.2.2: Updated paragraph .............................................................................................. 1448 Section 26.10: Updated paragraph ................................................................................................. 1469 Section 26.10: Updated procedure ................................................................................................. 1469 Section 26.10.1.1: Updated first and last paragraphs............................................................................ 1469 Section 26.10.1.2: Updated paragraph ............................................................................................ 1470 Section 26.10.2.1: Updated first and last paragraphs............................................................................ 1470 Section 26.10.2.1: Changed number 2 in second paragraph to Transmit Interrupt .......................................... 1470 Section 26.10.2.2: Updated paragraph ............................................................................................ 1471 Section 26.13: Updated second paragraph to include base address .......................................................... 1474 Table 26-11: Updated Value column of COMM MODE bit, SCI mode 0 = Idle-line mode is used.; 1 = Address-bit mode is used .................................................................................................................................... 1476 Table 26-15: Updated Description of SET RX DMA bit .......................................................................... 1482 Figure 26-31: Corrected SCICLEARINT register bit name for bit 30. (CLR PBE INT) ...................................... 1485 Table 26-27: Corrected bit name in Note to SET TX INT ....................................................................... 1507 Figure 26-48: Corrected SCIPIO6 register bit names for bits 2 and 1 (PDR) ................................................ 1513 Figure 26-58: Updated Read/Write value of MBR bit to R/WL-0DACh ........................................................ 1520 Section 26.14.2: Changed first bullet............................................................................................... 1523 Table 26-48: Changed Pull Control = Enabled when device is under reset .................................................. 1524 Chapter 27: Serial Communication Interface (SCI) Module ................................................................. 1525 Section 27.1.1: Changed seventh bullet (deleted isosynchronous mode) .................................................... 1526 Section 27.1.2: Changed Baud Clock Generator bullet to VCLK ............................................................... 1526 Figure 27-1: Changed signals to SCITX and SCIRX............................................................................. 1527 Equation 56: Updated equation. Changed VBUSPCLK to VCLK .............................................................. 1530 Equation 57: Updated equation. Changed VBUSPCLK to VCLK .............................................................. 1530 Section 27.3.4: Updated first sentence in second paragraph ................................................................... 1535 Section 27.5: Updated both paragraphs ........................................................................................... 1537 Section 27.5: Updated procedure in second paragraph ......................................................................... 1537 Section 27.5.1: Updated last paragraph ........................................................................................... 1537 Section 27.5.2: Updated last paragraph ........................................................................................... 1538 Section 27.5.2: Changed number 2 in second paragraph to Transmit Interrupt ............................................. 1538 Section 27.7: Updated paragraph to include base address ..................................................................... 1540 Equation 58: Updated equation. Changed VBUSPLCK to VCLK .............................................................. 1558 Equation 59: Updated equation. Changed VBUSPLCK to VCLK .............................................................. 1558 Section 27.7.22: Deleted first sentence in paragraph. Moved NOTE .......................................................... 1568 Section 27.8.2: Changed first bullet ................................................................................................ 1570 Table 27-33: Changed Pull Control = Enabled when device is under reset .................................................. 1571 Chapter 28: Inter-Integrated Circuit (I2C) Module ............................................................................ 1572 Section 28.6: Updated paragraph to include base address ..................................................................... 1588 Section 28.6: Deleted NOTE ........................................................................................................ 1588 Figure 28-15: Updated Read/Write value of SDIR, NACKSNT, SCD, RXRDY, ARDY, NACK, and AL bits to R/W1C0 ......................................................................................................................................... 1591 Figure 28-15: Updated LEGEND to include W1C ................................................................................ 1591 Table 28-7: Changed fourth paragraph in Description of XSMT bit ............................................................ 1591 Section 28.6.21: Changed paragraph .............................................................................................. 1605 Section 28.6.22: Changed paragraph .............................................................................................. 1606 Section 28.6.23: Changed paragraph .............................................................................................. 1606 Table 28-32: Updated Description of SDAPDR and SCLPDR bits. 0 = disabled; 1 = enabled ............................ 1606 Table 28-32: Updated Description of SDAPDR and SCLPDR bits. 0 = enabled; 1 = disabled ............................ 1606 Section 28.6.24: Changed paragraph .............................................................................................. 1607 Section 28.6.25: Changed paragraph .............................................................................................. 1607 Table 28-35: Changed Pull Control = Enabled when device is under reset .................................................. 1608 SPNU499C – March 2018 Submit Documentation Feedback Revision History Copyright © 2018, Texas Instruments Incorporated 1831 Revision History • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • www.ti.com Chapter 29: EMAC/MDIO Module................................................................................................. Figure 29-7: Added figure. Subsequent figures renumbered ................................................................... Figure 29-8: Added figure. Subsequent figures renumbered ................................................................... Figure 29-9: Added figure. Subsequent figures renumbered ................................................................... Figure 29-28: Changed default value of REV bit to 0007 0105h ............................................................... Table 29-25: Changed Value column of REV bit to 0007 0105h ............................................................... Table 29-68: Changed Description of GMIIEN bit ................................................................................ Chapter 30: Data Modification Module (DMM) ................................................................................. Figure 30-22: Updated Read/Write value of all bits to R/WP-0 ................................................................. Figure 30-22: Updated LEGEND to includ e WP ................................................................................. Table 30-22: Changed Description of all bits to Privilege mode (write) ....................................................... Figure 30-23: Updated Read/Write value of all bits to R/WP-0 ................................................................. Figure 30-23: Updated LEGEND to include WP .................................................................................. Table 30-23: Changed Description of all bits to Privilege mode (write) ....................................................... Figure 30-24: Updated Read/Write value of all bits to R/WP-0 ................................................................. Figure 30-24: Updated LEGEND to include WP .................................................................................. Figure 30-25: Updated Read/Write value of all bits to R/WP-0 ................................................................. Figure 30-25: Updated LEGEND to include WP .................................................................................. Table 30-25: Changed Description of all bits to Privilege mode (write) ....................................................... Figure 30-26: Updated Read/Write value of all bits to R/WP-0 ................................................................. Figure 30-26: Updated LEGEND to include WP .................................................................................. Table 30-26: Changed Description of all bits to Privilege mode (write) ....................................................... Figure 30-27: Updated Read/Write value of all bits to R/WP-0 ................................................................. Figure 30-27: Updated LEGEND to include WP .................................................................................. Table 30-27: Changed Description of all bits to Privilege mode (write) ....................................................... Table 30-27: Changed Description of CLKCLR and SYNCCLR bits. Corrected bits to CLKOUT and SYNCOUT ...... Figure 30-28: Updated Read/Write value of all bits to R/WP-0 ................................................................. Figure 30-28: Updated LEGEND to include WP .................................................................................. Table 30-28: Changed Description of all bits to Privilege mode (write) ....................................................... Figure 30-29: Updated Read/Write value of all bits to R/WP-x ................................................................. Figure 30-29: Updated LEGEND to include WP .................................................................................. Table 30-29: Changed Description of all bits to Privilege mode (write) ....................................................... Figure 30-30: Updated Read/Write value of all bits to R/WP-1 ................................................................. Figure 30-30: Updated LEGEND to include WP .................................................................................. Table 30-30: Changed Description of all bits to Privilege mode (write) ....................................................... Chapter 31: RAM Trace Port (RTP) .............................................................................................. Figure 31-11: Updated Read/Write value of OVFPER, OVF2, and OVF1 bits to R/W1CP-0 .............................. Table 31-16: Updated Description of bits 15-0 ................................................................................... Table 31-17: Updated Description of bits 15-0 ................................................................................... Table 31-18: Updated Description of bits 15-0 ................................................................................... Table 31-19: Updated Description of DATAOUT bits 15-0 ...................................................................... Table 31-20: Updated Description of DATASET bits 15-0 ...................................................................... Table 31-21: Updated Description of ENACLR bit ............................................................................... Table 31-21: Updated Description of DATACLR bits 15-0 ...................................................................... Table 31-22: Updated Description of DATAPDR bits 15-0 ...................................................................... Table 31-23: Updated Description of DATADIS bits 15-0 ....................................................................... Table 31-24: Updated Description of DATAPSEL bits 15-0..................................................................... Chapter 32: eFuse Controller ..................................................................................................... Section 32.4: Changed all register LEGENDs. Value of reset n changed from "after reset" to "after power-on reset (nPORRST)" ........................................................................................................................... Figure 32-3: Updated Read/Write value of Reserved bits 9-0 to R-x .......................................................... Table 32-4: Changed Description of Reserved bits 9-0 ......................................................................... 1832 Revision History 1610 1622 1623 1624 1673 1673 1710 1733 1766 1766 1766 1767 1767 1767 1769 1769 1770 1770 1770 1771 1771 1771 1773 1773 1773 1773 1774 1774 1774 1776 1776 1776 1777 1777 1777 1779 1792 1798 1799 1800 1801 1802 1803 1803 1804 1806 1807 1808 1812 1814 1814 SPNU499C – March 2018 Submit Documentation Feedback Copyright © 2018, Texas Instruments Incorporated IMPORTANT NOTICE FOR TI DESIGN INFORMATION AND RESOURCES Texas Instruments Incorporated (‘TI”) technical, application or other design advice, services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, “TI Resources”) are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using any particular TI Resource in any way, you (individually or, if you are acting on behalf of a company, your company) agree to use it solely for this purpose and subject to the terms of this Notice. TI’s provision of TI Resources does not expand or otherwise alter TI’s applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. You understand and agree that you remain responsible for using your independent analysis, evaluation and judgment in designing your applications and that you have full and exclusive responsibility to assure the safety of your applications and compliance of your applications (and of all TI products used in or for your applications) with all applicable regulations, laws and other applicable requirements. You represent that, with respect to your applications, you have all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. You agree that prior to using or distributing any applications that include TI products, you will thoroughly test such applications and the functionality of such TI products as used in such applications. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource. You are authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. TI RESOURCES ARE PROVIDED “AS IS” AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING TI RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY YOU AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. You agree to fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of your noncompliance with the terms and provisions of this Notice. This Notice applies to TI Resources. Additional terms apply to the use and purchase of certain types of materials, TI products and services. These include; without limitation, TI’s standard terms for semiconductor products http://www.ti.com/sc/docs/stdterms.htm), evaluation modules, and samples (http://www.ti.com/sc/docs/sampterms.htm). Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2018, Texas Instruments Incorporated
DRV8301-LS12-KIT 价格&库存

很抱歉,暂时无法提供与“DRV8301-LS12-KIT”相匹配的价格&库存,您可以联系我们找货

免费人工找货