0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
DS160PR410EVM-RSC

DS160PR410EVM-RSC

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

  • 描述:

    DS160 转接驱动器 接口 评估板

  • 数据手册
  • 价格&库存
DS160PR410EVM-RSC 数据手册
www.ti.com Table of Contents User’s Guide DS160PR410EVM-RSC Evaluation Module (EVM) Davor Glisic ABSTRACT The DS160PR410EVM-RSC and DS160PR410EVM-SMA evaluation modules provide a complete highbandwidth platform for evaluating the signal conditioning features of the Texas Instruments DS160PR410 QuadChannel PCI-Express Gen-4 Linear Redriver. These evaluation boards can be used for standard compliance testing, performance evaluation, and initial system prototyping. Figure 1-1. DS160PR410EVM-RSC - Top Side Photo Table of Contents 1 Introduction.............................................................................................................................................................................3 1.1 Features............................................................................................................................................................................. 3 1.2 Applications........................................................................................................................................................................3 1.3 Description......................................................................................................................................................................... 3 1.4 Quick-Start Guide (Pin Mode)............................................................................................................................................ 8 1.5 Quick-Start Guide (SMBus Slave Mode)............................................................................................................................8 2 Test Setup and Results........................................................................................................................................................ 10 3 Board Layout......................................................................................................................................................................... 11 4 Schematics............................................................................................................................................................................12 5 Bill of Materials..................................................................................................................................................................... 20 6 References............................................................................................................................................................................ 24 7 Revision History................................................................................................................................................................... 24 List of Figures Figure 1-1. DS160PR410EVM-RSC - Top Side Photo................................................................................................................ 1 Figure 1-1. SigCon Architect DS160PR410 High Level Page..................................................................................................... 9 Figure 2-1. Example Test Setup................................................................................................................................................ 10 SNLU252B – JANUARY 2020 – REVISED JULY 2021 Submit Document Feedback DS160PR410EVM-RSC Evaluation Module (EVM) Copyright © 2021 Texas Instruments Incorporated 1 Trademarks www.ti.com Figure 2-2. Example Test Results..............................................................................................................................................10 Figure 3-1. Top Layer.................................................................................................................................................................11 Figure 3-2. Bottom Layer........................................................................................................................................................... 11 Figure 4-1. Top Level Schematic Page......................................................................................................................................12 Figure 4-2. Control and Status Schematic Page....................................................................................................................... 13 Figure 4-3. Voltage Regulator Schematic Page.........................................................................................................................14 Figure 4-4. Gold Finger Connector Schematic Page.................................................................................................................15 Figure 4-5. Downstream Devices Schematic Page................................................................................................................... 16 Figure 4-6. Upstream Devices Schematic Page........................................................................................................................17 Figure 4-7. Straddle Connector Schematic Page...................................................................................................................... 18 Figure 4-8. Hardware Page....................................................................................................................................................... 19 List of Tables Table 1-1. 4-Level Control Pin Settings....................................................................................................................................... 3 Table 1-2. Modes of Operation.................................................................................................................................................... 3 Table 1-3. SMBus / I2C Slave Address Settings..........................................................................................................................4 Table 1-4. Equalization Control Settings......................................................................................................................................5 Table 1-5. 4-Level Control Pin Settings....................................................................................................................................... 5 Table 1-6. VOD Control................................................................................................................................................................6 Table 1-7. GAIN Control...............................................................................................................................................................6 Table 1-8. EVM Global Controls.................................................................................................................................................. 6 Table 1-9. EVM Downstream Devices Controls...........................................................................................................................7 Table 1-10. EVM Upstream Devices Controls............................................................................................................................. 7 Table 5-1. Bill of Materials..........................................................................................................................................................20 Trademarks All trademarks are the property of their respective owners. 2 DS160PR410EVM-RSC Evaluation Module (EVM) Copyright © 2021 Texas Instruments Incorporated SNLU252B – JANUARY 2020 – REVISED JULY 2021 Submit Document Feedback www.ti.com Introduction 1 Introduction The DS160PR410EVM-RSC evaluation module option features eight DS160PR410 linear redrivers that can extend the transmission distance of a PCIe Gen-4 x16 bus. It can directly be plugged into a PCIe slot on a Server / PC motherboard using one end of the board, and paired up with a PCIe Riser Card using the straddle mount connector attached to the other end of the board. The DS160PR410EVM-SMA evaluation board option features a single, standalone DS160PR410 device with the high-speed I/Os routed to SMA connectors. The SMA connectors can interface to multiple connector types through commercially available breakout cables, adaptors, and boards (not included). This document describes the DS160PR410EVM-RSC evaluation module. 1.1 Features • • • • • • • PCIe x16 Riser Card option with eight 4-channel unidirectional linear redrivers operating at rates up to 25 Gbps Linear equalization for seamless support of link training and PCIe channel extension CTLE boosts up to 18 dB at 8 GHz Programmable device configuration through GPIO or I2C / SMBus Onboard 12-V to 3.3-V, 2-A step-down DC-DC converter Industrial temperature range: –40°C to 85°C Flow-through layout in 4 mm × 6 mm, 40-pin, leadless WQFN 0.4-mm pitch package 1.2 Applications • • • • • PCI Express Gen-1, 2, 3, and 4 High-speed interfaces up to 25 Gbps Enterprise server motherboard, workstation Enterprise storage Enterprise add-in card, end-point 1.3 Description 1.3.1 DS160PR410 4-Level I/O Control Inputs Each DS160PR410 has six (GAIN, VOD, EQ1_ADDR1, EQ0_ADDR0, EN_SMB, and RX_DET) 4-level input pins that are used to control the configuration of the device. These 4-level inputs use a resistor divider to help set the four valid levels and provide a wider range of control settings. Table 1-1. 4-Level Control Pin Settings PIN LEVEL PIN SETTING L0 1 kΩ to GND L1 13 kΩ to GND L2 Float L3 59 kΩ to GND 1.3.2 DS160PR410 Modes of Operation Each DS160PR410 can be configured to operate in either Pin Mode, SMBus / I2C Slave Mode, or SMBus / I2C Master Mode. The mode of operation of the DS160PR410 is determined by the pin strap setting on the EN_SMB pin as shown in Table 1-2. Table 1-2. Modes of Operation EN_SMB PIN LEVEL MODE OF OPERATION L0 Pin Mode L1 SMBus / I2C Master Mode L2 Reserved L3 SMBus / I2C Slave Mode SNLU252B – JANUARY 2020 – REVISED JULY 2021 Submit Document Feedback DS160PR410EVM-RSC Evaluation Module (EVM) Copyright © 2021 Texas Instruments Incorporated 3 Introduction www.ti.com 1.3.3 DS160PR410 SMBus / I2C Register Control Interface Each DS160PR410 may be configured through a standard I2C or SMBus interface that may operate up to 1 MHz. The slave address of the DS160PR410 is determined by the pin strap settings on the EQ1_ADDR1 and EQ0_ADDR0 pins. The device can be configured for best signal integrity and power settings in the system using the I2C or SMBus interface. Certain status information is also available through this interface. The possible SMBus/I2C slave addresses are shown in Table 1-3. Table 1-3. SMBus / I2C Slave Address Settings 4 EQ1_ADDR1 PIN LEVEL EQ0_ADDR0 PIN LEVEL 8-BIT WRITE ADDRESS (HEX) 7-BIT ADDRESS (HEX) L0 L0 0x30 0x18 L0 L1 0x32 0x19 L0 L2 0x34 0x1A L0 L3 0x36 0x1B L1 L0 0x38 0x1C L1 L1 0x3A 0x1D L1 L2 0x3C 0x1E L1 L3 0x3E 0x1F L2 L0 0x40 0x20 L2 L1 0x42 0x21 L2 L2 0x44 0x22 L2 L3 0x46 0x23 L3 L0 0x48 0x24 L3 L1 0x4A 0x25 L3 L2 0x4C 0x26 L3 L3 0x4E 0x27 DS160PR410EVM-RSC Evaluation Module (EVM) Copyright © 2021 Texas Instruments Incorporated SNLU252B – JANUARY 2020 – REVISED JULY 2021 Submit Document Feedback www.ti.com Introduction 1.3.4 DS160PR410 Equalization Control Each channel of the DS160PR410 features a continuous-time linear equalizer (CTLE) that applies highfrequency boost and low-frequency attenuation to help equalize the frequency-dependent insertion loss effects of the passive channel. Table 1-4 shows available equalization gain that can be set through EQ0_ADDR0 and EQ1_ADDR1 control pins when operating in Pin Mode. Table 1-4. Equalization Control Settings EQ INDEX EQ1_ADDR1 PIN LEVEL EQ0_ADDR0 PIN LEVEL CTLE BOOST AT 4 GHz (dB) CTLE BOOST AT 8 GHz (dB) 0 L0 L0 –0.3 –0.8 1 L0 L1 0.4 1.3 2 L0 L2 3.3 5.7 3 L0 L3 3.8 7.1 4 L1 L0 4.9 8.4 5 L1 L1 5.2 9.1 6 L1 L2 5.4 9.8 7 L1 L3 6.5 10.7 8 L2 L0 6.7 11.3 9 L2 L1 7.7 12.6 10 L2 L2 8.7 13.6 11 L2 L3 9.1 14.4 12 L3 L0 9.4 15.0 13 L3 L1 10.3 15.9 14 L3 L2 10.6 16.5 15 L3 L3 11.8 17.8 The equalization gain of each channel of each device can also be set by writing to SMBus / I2C registers in Slave or Master Modes. Refer to the DS160PR410 Programming Guide (SNLU255) for details. 1.3.5 DS160PR410 RX Detect State Machine Each DS160PR410 deploys an RX Detect state machine that governs the RX detection cycle as defined in the PCI Express specification. At power up or after a manually triggered event, the redriver determines whether or not a valid PCI Express termination is present at the far end of the link. The RX_DET pin of DS160PR410 provides additional flexibility to system designers to appropriately set the device in their desired mode, according to Table 1-5. Table 1-5. 4-Level Control Pin Settings PWDN PIN LEVEL RXDET PIN LEVEL DESCRIPTION L L0 Reserved L L1 Reserved L L2 PCI Express RX detection state machine is enabled. Recommended for PCI Express use cases. Pre Detect: Hi-Z, Post Detect: 50 Ω. L L3 PCI Express RX detection state machine is disabled. Recommended for non-PCI Express use cases. Inputs are always 50 Ω. H X Manual reset, inputs are Hi-Z SNLU252B – JANUARY 2020 – REVISED JULY 2021 Submit Document Feedback DS160PR410EVM-RSC Evaluation Module (EVM) Copyright © 2021 Texas Instruments Incorporated 5 Introduction www.ti.com 1.3.6 DS160PR410 Equalization DC Gain Control When operating in Pin Mode, the VOD and GAIN pins can be used to set the overall datapath DC (low frequency) gain of the DS160PR410 as shown in Table 1-6 and Table 1-7. Table 1-6. VOD Control VOD PIN LEVEL VOD SETTING L0 –6 dB L1 –3.5 dB L2 0 dB (Recommended for most use cases) L3 –1.6 dB Table 1-7. GAIN Control GAIN PIN LEVEL GAIN SETTING L0 Reserved L1 Reserved L2 0 dB (Recommended for most use cases) L3 3.5 dB The DC gain of each channel of each device can also be set by writing to SMBus / I2C registers in Slave or Master Modes. Refer to the DS160PR410 Programming Guide (SNLU255) for details. 1.3.7 DS160PR410EVM-RSC Global Controls and Access Points Table 1-8 shows DS160PR410EVM-RSC global controls that affect all devices on the board. Table 1-8. EVM Global Controls COMPONENT 6 NAME FUNCTION / DESCRIPTION J1 3x2 Header EN_SMB control tied to EN_SMB pins of all 8 DS160PR410 devices on the EVM L0: All devices set to Pin Mode (Default) L1: All devices set to SMBus / I2C Master Mode L2: Reserved L3: SMBus / I2C Slave Mode J2 5x2 Header SMBus / I2C interface. All 8 DS160PR410 devices on the EVM are on the same bus and can be accessed through this interface. J3 3x1 Header PWDN control tied to PWDN1 and PWDN2 pins of all 8 DS160PR410 devices on the EVM PWDN tied to GND: All devices enabled (Default) PWDN tied to 3.3V_REG: All devices disabled. PWDN floating: Tie PCIe system PRSNT signal to PWDN using J5 for the PWDN control (optional for PCIe use case) J4 3x1 Header Access point to the WP (write protect) pin of the onboard EEPROM devices WP tied to GND: I2C Access to the EEPROM enabled WP floating: I2C Access to the EEPROM disabled (default) J5 2x1 Header Alternative PWDN Control PWDN floating: Use J3 for the PWDN control PWDN tied to PRSNT: PRSNT signal controls PWDN (optional for PCIe use case) J6, J7, J8, J9 3x1 Headers PCIe PRSNT Signal Controls Tie pins 1-2 on J6, J7, J8, and J9: Allow support any PCIe bus width (default) Tie pins 2-3 of J6, leave J7, J8, and J9 floating: Force x1 PCIe bus width Tie pins 2-3 of J7, leave J6, J8, and J9 floating: Force x4 PCIe bus width Tie pins 2-3 of J8, leave J6, J7, and J9 floating: Force x8 PCIe bus width Tie pins 2-3 of J9, leave J6, J7, and J8 floating: Force x16 PCIe bus width J10 2x1 Header Onboard regulator input. Apply 12 V when using the EVM as a standalone system. DO NOT APPLY power if plugging the EVM into a system as the power is provided through the gold finger connector (J13). J11 2x1 Header Onboard regulator 3.3-V output. J12 2x1 Header Access point to the GND reference. DS160PR410EVM-RSC Evaluation Module (EVM) Copyright © 2021 Texas Instruments Incorporated SNLU252B – JANUARY 2020 – REVISED JULY 2021 Submit Document Feedback www.ti.com Introduction 1.3.8 DS160PR410EVM-RSC Downstream Devices Control Table 1-9 shows DS160PR410EVM-RSC downstream devices controls that affect DS1-DS4 devices on the board. Table 1-9. EVM Downstream Devices Controls COMPONENT J14 J15 J16 NAME FUNCTION / DESCRIPTION 12x2 Header EQ1_ADDR1 controls for each downstream device. Use pins 1-6 for configuring EQ1_ADDR1 pin of DS1 device. Use pins 7-12 for configuring EQ1_ADDR1 pin of DS2 device. Use pins 13-18 for configuring EQ1_ADDR1 pin of DS3 device. Use pins 19-24 for configuring EQ1_ADDR1 pin of DS4 device. Install a shunt to achieve L0, L1, or L3 level on the pin. Leave floating to achieve L2 level on the pin. 12x2 Header EQ0_ADDR0 controls for each downstream device. Use pins 1-6 for configuring EQ0_ADDR0 pin of DS1 device. Use pins 7-12 for configuring EQ0_ADDR0 pin of DS2 device. Use pins 13-18 for configuring EQ0_ADDR0 pin of DS3 device. Use pins 19-24 for configuring EQ0_ADDR0 pin of DS4 device. Install a shunt to achieve L0, L1, or L3 level on the pin. Leave floating to achieve L2 level on the pin. 5x2 Header Downstream Devices Global Controls VOD: L0 (pins 1-2): –6 dB VOD Setting on all downstream devices VOD: L1 (pins 3-4): –3.5 dB VOD Setting on all downstream devices VOD: L2 (floating pins 1-6): 0 dB VOD Setting on all downstream devices (default) VOD: L3 (pins 5-6): –1.6 dB VOD Setting on all downstream devices GAIN: L2 (floating pins 7-8): 0 dB GAIN Setting on all downstream devices (default) GAIN: L3 (pins 7-8): 3.5 dB GAIN Setting on all downstream devices RX_DET: L2 (floating pins 9-10):RX Detect state machine enabled on all downstream devices (default) RX_DET: L3 (pins 9-10): RX Detect state machine disabled on all downstream devices Install a shunt to achieve L0, L1, or L3 level on the pin. Leave floating to achieve L2 level on the pin. 1.3.9 DS160PR410EVM-RSC Upstream Devices Control Table 1-10 shows DS160PR410EVM-RSC upstream devices controls that affect US1-US4 devices on the board. Table 1-10. EVM Upstream Devices Controls COMPONENT J17 J18 NAME FUNCTION / DESCRIPTION 12x2 Header EQ1_ADDR1 controls for each upstream device. Use pins 1-6 for configuring EQ1_ADDR1 pin of US1 device. Use pins 7-12 for configuring EQ1_ADDR1 pin of US2 device. Use pins 13-18 for configuring EQ1_ADDR1 pin of US3 device. Use pins 19-24 for configuring EQ1_ADDR1 pin of US4 device. Install a shunt to achieve L0, L1, or L3 level on the pin. Leave floating to achieve L2 level on the pin. 12x2 Header EQ0_ADDR0 controls for each upstream device. Use pins 1-6 for configuring EQ0_ADDR0 pin of US1 device. Use pins 7-12 for configuring EQ0_ADDR0 pin of US2 device. Use pins 13-18 for configuring EQ0_ADDR0 pin of US3 device. Use pins 19-24 for configuring EQ0_ADDR0 pin of US4 device. Install a shunt to achieve L0, L1, or L3 level on the pin. Leave floating to achieve L2 level on the pin. SNLU252B – JANUARY 2020 – REVISED JULY 2021 Submit Document Feedback DS160PR410EVM-RSC Evaluation Module (EVM) Copyright © 2021 Texas Instruments Incorporated 7 Introduction www.ti.com Table 1-10. EVM Upstream Devices Controls (continued) COMPONENT J19 NAME FUNCTION / DESCRIPTION Upstream Devices Global Controls VOD: L0 (pins 1-2): –6 dB VOD Setting on all upstream devices VOD: L1 (pins 3-4): –3.5 dB VOD Setting on all upstream devices VOD: L2 (floating pins 1-6): 0 dB VOD Setting on all upstream devices (default) VOD: L3 (pins 5-6): –1.6 dB VOD Setting on all upstream devices GAIN: L2 (floating pins 7-8): 0 dB GAIN Setting on all upstream devices (default) GAIN: L3 (pins 7-8): 3.5 dB GAIN Setting on all upstream devices RX_DET: L2 (floating pins 9-10):RX Detect state machine enabled on all upstream devices (default) RX_DET: L3 (pins 9-10): RX Detect state machine disabled on all upstream devices Install a shunt to achieve L0, L1, or L3 level on the pin. Leave floating to achieve L2 level on the pin. 5x2 Header 1.4 Quick-Start Guide (Pin Mode) 1. Check that the shunts are at the following positions as shown in Figure 1-1. • The redrivers are configured to operate in Pin Mode (EN_SMB pins tied to L0 using J1 header). • The redrivers are enabled (PWDN pins tied to GND using J3 header). Alternatively, for PCIe applications, the PWDN pins may be driven by PCIe Present (PRSNT) signal by leaving J3 open and placing a shunt across pins 1 and 2 of J5. • The board is configured for any PCIe bus width (PRSNT signal controls set as shown in Figure 1-1 using J6, J7, J8, and J9 headers). • DC Gain of the RX CTLEs of all redrivers is set to 0 dB by leaving J16 (pins 7-8) open for the downstream redrivers and by leaving J19 (pins 7-8) open for the upstream redrivers. • VOD of all redrivers is set to 0 dB by leaving J16 (pins 1-2, 3-4, and 5-6) open for the downstream redrivers and by leaving J19 (pins 1-2, 3-4, and 5-6) open for the upstream redrivers. • RX_Detect state machine of all redrivers is enabled by leaving J16 (pins 9-10) open for the downstream redrivers and by leaving J19 (pins 9-10) open for the upstream redrivers. • EQ level of the RX CTLEs of all redrivers is set to 8.4 dB at 8 GHz by using J14 and J15 for the downstream redrivers, and J17 and J18 for the upstream redrivers. 2. If necessary, adjust EQ levels of the downstream and/or upstream redrivers by arranging shunts on J14 and J15 for the downstream redrivers, and J17 and J18 for the upstream redrivers. 3. Plug the EVM into a PCIe x16 server motherboard slot. 4. Install a compatible PCIe end point card into the EVM's straddle connector. 1.5 Quick-Start Guide (SMBus Slave Mode) 1. Configure all devices to operate in the SMBus Slave Mode by setting their EN_SMB pins to the L3 level. This is accomplished by placing a shunt on J1 to L3 location. 2. Set a unique SMBus Slave address for each device by placing shunts in the following arrangement: • On J14 connector, place shunts in L0 locations for all downstream devices (DS1-DS4). • On J15 connector, place a shunt to L0 location for the device DS1, to L1 location for DS2, to L3 location for DS4; no shunt for the DS3 sets its EQ0_ADD0 pin to the L2 level. • On J17 connector, place shunts in L1 locations for all upstream devices (US1-US4). • On J18 connector, place a shunt to L0 location for the device US1, to L1 location for US2, to L3 location for US4; no shunt for the US3 sets its EQ0_ADD0 pin to the L2 level. 3. Enable all devices by pulling their PWDN pins to GND. This is accomplished by placing a shunt on J3 between PWDN and GND. 4. Connect USB2ANY Adapter to J2 (Note that the USB2ANY Adapter is not supplied with the DS160PR410EVM-RSC). 5. Install SigCon Architect Version 3.0.0.10 application. It comes with the DS160PR410 profile. 6. Plug the EVM into a PCIe x16 server motherboard slot. 7. Install a compatible PCIe end point card into the EVM' s straddle connector. 8. Start the SigCon Architect application. 9. In the DS160PR410 Configuration Page, click on "Auto Detect" box to detect the EVM Model. If necessary, edit devices addresses in the Edit Device Addresses box. 8 DS160PR410EVM-RSC Evaluation Module (EVM) Copyright © 2021 Texas Instruments Incorporated SNLU252B – JANUARY 2020 – REVISED JULY 2021 Submit Document Feedback www.ti.com Introduction 10. Select Low Level Page to initialize the register map tree in the application. Failure to perform this step may cause the application to crash. 11. In the DS160PR410 High Level Page, select Block Diagram as shown in Figure 1-1. 12. Select desired EQ Settings and Driver VOD. 13. Select device(s) to which you want to apply the selected settings and click Apply to All Channels. Figure 1-1. SigCon Architect DS160PR410 High Level Page SNLU252B – JANUARY 2020 – REVISED JULY 2021 Submit Document Feedback DS160PR410EVM-RSC Evaluation Module (EVM) Copyright © 2021 Texas Instruments Incorporated 9 Test Setup and Results www.ti.com 2 Test Setup and Results Figure 2-1 shows a typical system setup with the DS160PR410EVM-RSC placed between a CPU on a server motherboard and an PCIe end point (Network Interface Card or NIC). Additional "Extender" cards are inserted to increase the channel loss and demonstrate the redriver's ability to extend the reach. NIC 6´ ([WHQGHU &DUG 10´ ([WHQGHU &DUG DS160PR410 Riser Card PCIe Gen - 4 CPU Server Motherboard 8´ ([WHQGHU &DUG Figure 2-1. Example Test Setup Figure 2-2 is a typical test result achieved with a system shown in Figure 2-1. As the result indicates, the end point (Mellanox NIC) with the DS160PR410EVM-RSC placed in the datapath achieves a stable Gen4, x16 PCIe link. Figure 2-2. Example Test Results 10 DS160PR410EVM-RSC Evaluation Module (EVM) Copyright © 2021 Texas Instruments Incorporated SNLU252B – JANUARY 2020 – REVISED JULY 2021 Submit Document Feedback www.ti.com Board Layout 3 Board Layout Figure 3-1. Top Layer Figure 3-2. Bottom Layer SNLU252B – JANUARY 2020 – REVISED JULY 2021 Submit Document Feedback DS160PR410EVM-RSC Evaluation Module (EVM) Copyright © 2021 Texas Instruments Incorporated 11 Board Layout www.ti.com 4 Schematics CoverSheet HSDC058A_CoverSheet.SchDoc U_HSDC058A_GoldFinger_Conn HSDC058A_GoldFinger_Conn.SchDoc PERST# REFCLK_P REFCLK_N SMCLK SMDAT PERST# REFCLK_P REFCLK_N SMCLK SMDAT Hardware HSDC058A_Hardware.SchDoc WAKE CLKREQ JTAG1 JTAG2 JTAG3 JTAG4 JTAG5 VoltageRegulator HSDC058A_VoltageRegulator.SchDoc RSVD RSVD1 RSVD2 RSVD3 RSVD4 RSVD5 PGOOD PGOOD WAKE CLKREQ JTAG1 JTAG2 JTAG3 JTAG4 JTAG5 RSVD RSVD1 RSVD2 RSVD3 RSVD4 RSVD5 PET0_P PET0_N PET1_P PET1_N PET2_P PET2_N PET3_P PET3_N PET4_P PET4_N PET5_P PET5_N PET6_P PET6_N PET7_P PET7_N PET8_P PET8_N PET9_P PET9_N PET10_P PET10_N PET11_P PET11_N PET12_P PET12_N PET13_P PET13_N PET14_P PET14_N PET15_P PET15_N HSDC058A_4x_DS HSDC058A_4x_DS.SchDoc PET0_P PET0_N PET1_P PET1_N PET2_P PET2_N PET3_P PET3_N PET4_P PET4_N PET5_P PET5_N PET6_P PET6_N PET7_P PET7_N PET8_P PET8_N PET9_P PET9_N PET10_P PET10_N PET11_P PET11_N PET12_P PET12_N PET13_P PET13_N PET14_P PET14_N PET15_P PET15_N PET0_P PET0_N PET1_P PET1_N PET2_P PET2_N PET3_P PET3_N PET4_P PET4_N PET5_P PET5_N PET6_P PET6_N PET7_P PET7_N PET8_P PET8_N PET9_P PET9_N PET10_P PET10_N PET11_P PET11_N PET12_P PET12_N PET13_P PET13_N PET14_P PET14_N PET15_P PET15_N PWDN ENSMB SDA SCL READ_EN_N PRSNT1 PRSNT2_1 PRSNT2_2 PRSNT2_3 PRSNT2_4 PRSNT2_1_C PRSNT2_2_C PRSNT2_3_C PRSNT2_4_C SMDAT SMCLK PGOOD PRSNT1 PRSNT2_1 PRSNT2_2 PRSNT2_3 PRSNT2_4 PWDN ENSMB PRSNT2_1_C PRSNT2_2_C PRSNT2_3_C PRSNT2_4_C SDA SCL READ_EN_N ALL_DONE_N PRSNT1 PRSNT2_1 PRSNT2_2 PRSNT2_3 PRSNT2_4 PWDN ENSMB SDA SCL READ_EN_N ALL_DONE_N U_HSDC058A_SMA_Card HSDC058A_SMA_Card.SchDoc PWDN ENSMB SDA SCL PWDN ENSMB ALL_DONE_N_SA1 SDA SCL ALL_DONE_N_DS PET0_C_P PET0_C_N PET1_C_P PET1_C_N PET2_C_P PET2_C_N PET3_C_P PET3_C_N PET4_C_P PET4_C_N PET5_C_P PET5_C_N PET6_C_P PET6_C_N PET7_C_P PET7_C_N PET8_C_P PET8_C_N PET9_C_P PET9_C_N PET10_C_P PET10_C_N PET11_C_P PET11_C_N PET12_C_P PET12_C_N PET13_C_P PET13_C_N PET14_C_P PET14_C_N PET15_C_P PET15_C_N ALL_DONE_N_DS PERST# REFCLK_P REFCLK_N SMCLK SMDAT WAKE CLKREQ JTAG1 JTAG2 JTAG3 JTAG4 JTAG5 RSVD RSVD1 RSVD2 RSVD3 RSVD4 RSVD5 PERST# REFCLK_P REFCLK_N SMCLK SMDAT WAKE CLKREQ JTAG1 JTAG2 JTAG3 JTAG4 JTAG5 RSVD RSVD1 RSVD2 RSVD3 RSVD4 RSVD5 READ_EN_N HSDC058A_4x_US HSDC058A_4x_US.SchDoc U_HSDC058A_Control_Status HSDC058A_Control_Status.SchDoc SMDAT SMCLK PWDN ENSMB SDA SCL U_HSDC058A_Straddle_Conn HSDC058A_Straddle_Conn.SchDoc PET0_C_P PET0_C_N PET1_C_P PET1_C_N PET2_C_P PET2_C_N PET3_C_P PET3_C_N PET4_C_P PET4_C_N PET5_C_P PET5_C_N PET6_C_P PET6_C_N PET7_C_P PET7_C_N PET8_C_P PET8_C_N PET9_C_P PET9_C_N PET10_C_P PET10_C_N PET11_C_P PET11_C_N PET12_C_P PET12_C_N PET13_C_P PET13_C_N PET14_C_P PET14_C_N PET15_C_P PET15_C_N PET0_C_P PET0_C_N PET1_C_P PET1_C_N PET2_C_P PET2_C_N PET3_C_P PET3_C_N PET4_C_P PET4_C_N PET5_C_P PET5_C_N PET6_C_P PET6_C_N PET7_C_P PET7_C_N PET8_C_P PET8_C_N PET9_C_P PET9_C_N PET10_C_P PET10_C_N PET11_C_P PET11_C_N PET12_C_P PET12_C_N PET13_C_P PET13_C_N PET14_C_P PET14_C_N PET15_C_P PET15_C_N READ_EN_N R1 DNP 0 ALL_DONE_N PRSNT1 PRSNT2_1 PRSNT2_2 PRSNT2_3 PRSNT2_4 PER0_C_P PER0_C_N PER1_C_P PER1_C_N PER2_C_P PER2_C_N PER3_C_P PER3_C_N PER4_C_P PER4_C_N PER5_C_P PER5_C_N PER6_C_P PER6_C_N PER7_C_P PER7_C_N PER8_C_P PER8_C_N PER9_C_P PER9_C_N PER10_C_P PER10_C_N PER11_C_P PER11_C_N PER12_C_P PER12_C_N PER13_C_P PER13_C_N PER14_C_P PER14_C_N PER15_C_P PER15_C_N PER0_C_P PER0_C_N PER1_C_P PER1_C_N PER2_C_P PER2_C_N PER3_C_P PER3_C_N PER4_C_P PER4_C_N PER5_C_P PER5_C_N PER6_C_P PER6_C_N PER7_C_P PER7_C_N PER8_C_P PER8_C_N PER9_C_P PER9_C_N PER10_C_P PER10_C_N PER11_C_P PER11_C_N PER12_C_P PER12_C_N PER13_C_P PER13_C_N PER14_C_P PER14_C_N PER15_C_P PER15_C_N PER0_C_P PER0_C_N PER1_C_P PER1_C_N PER2_C_P PER2_C_N PER3_C_P PER3_C_N PER4_C_P PER4_C_N PER5_C_P PER5_C_N PER6_C_P PER6_C_N PER7_C_P PER7_C_N PER8_C_P PER8_C_N PER9_C_P PER9_C_N PER10_C_P PER10_C_N PER11_C_P PER11_C_N PER12_C_P PER12_C_N PER13_C_P PER13_C_N PER14_C_P PER14_C_N PER15_C_P PER15_C_N PWDN ENSMB SDA SCL READ_EN_N ALL_DONE_N_DS PER0_P PER0_N PER1_P PER1_N PER2_P PER2_N PER3_P PER3_N PER4_P PER4_N PER5_P PER5_N PER6_P PER6_N PER7_P PER7_N PER8_P PER8_N PER9_P PER9_N PER10_P PER10_N PER11_P PER11_N PER12_P PER12_N PER13_P PER13_N PER14_P PER14_N PER15_P PER15_N PER0_P PER0_N PER1_P PER1_N PER2_P PER2_N PER3_P PER3_N PER4_P PER4_N PER5_P PER5_N PER6_P PER6_N PER7_P PER7_N PER8_P PER8_N PER9_P PER9_N PER10_P PER10_N PER11_P PER11_N PER12_P PER12_N PER13_P PER13_N PER14_P PER14_N PER15_P PER15_N PER0_P PER0_N PER1_P PER1_N PER2_P PER2_N PER3_P PER3_N PER4_P PER4_N PER5_P PER5_N PER6_P PER6_N PER7_P PER7_N PER8_P PER8_N PER9_P PER9_N PER10_P PER10_N PER11_P PER11_N PER12_P PER12_N PER13_P PER13_N PER14_P PER14_N PER15_P PER15_N PRSNT1 PRSNT2_1_C PRSNT2_2_C PRSNT2_3_C PRSNT2_4_C PRSNT1 PRSNT2_1_C PRSNT2_2_C PRSNT2_3_C PRSNT2_4_C PWDN ENSMB SDA SCL ALL_DONE_N_DS ALL_DONE_N ALL_DONE_N Figure 4-1. Top Level Schematic Page 12 DS160PR410EVM-RSC Evaluation Module (EVM) SNLU252B – JANUARY 2020 – REVISED JULY 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Board Layout J1 J5 2 R6 4 R7 6 R8 1 3 5 ENSMB 124 1.62k 7.32k PRSNT1 PWDN PRSNT1 3_3V_REG U1 J2 SCL SCL 1 3 5 7 9 2 4 6 8 10 GND SDA SDA GND J6 1 A0 VCC 8 2 A1 WP 7 EEPROM_WP C1 3 A2 SCL 6 SCL 1uF 4 VSS SDA 5 SDA GND PRSNT2_1_C PRSNT2_1 1 2 3 PRSNT1 PRSNT2_2_C PRSNT2_2 J7 AT24C02D-SSHM-T GND J3 J8 1 2 3 PRSNT1 1 2 3 PRSNT1 PRSNT2_3_C PRSNT2_3 1 2 3 PRSNT1 PRSNT2_4_C PRSNT2_4 J9 3_3V_REG 1 2 3 PWDN PWDN GND 3_3V_REG J4 R9 1 2 3 249 EEPROM_WP 3_3V_REG GND R115 4.70k U2E 3_3V_REG 14 VCC GND 7 READ_EN_N SW1 C2 1uF GND 1 U2A PGOOD 3_3V_REG SMDAT R2 DNP 0 2 ALL_DONE_N 6 SMCLK 1 R12 GND D2 1 2 330 10 3_3V_REG U2C 9 R3 DNP 0 2 U2B 5 SDA D3 8 R13 2 1 330 3_3V_REG 3_3V_REG R11 330 4 R4 2.2k D1 3 GND R5 2.2k 13 SCL 12 U2D 11 R10 10.0k GND GND Figure 4-2. Control and Status Schematic Page SNLU252B – JANUARY 2020 – REVISED JULY 2021 Submit Document Feedback DS160PR410EVM-RSC Evaluation Module (EVM) Copyright © 2021 Texas Instruments Incorporated 13 Board Layout www.ti.com J10 12V+/-20% 12V U3 28 R14 165k C4 C5 C6 C7 C8 100uF 22uF 22uF 4.7uF 1uF 21 22 23 24 25 R15 120k 4 GND PVIN PVIN PVIN PVIN PVIN 35 PGOOD 34 MODE C17 32 FS EL 4.7uF 33 VSEL 36 ILIM 37 RESV_TRK R22 165k R19 100k R23 37.4k R20 100k R17 105k R24 42.2k R25 2.05k PGOOD 1 NU 2 NU 3 NU 29 30 DRGND AGND TPS548B22RVFR 40 VSENSE trace goes to furthest DS160PR410 3_3V_REG J11 3.3V, 2A MAX 5 C3 PGOOD SW SW SW SW SW 8 9 10 11 12 NC NC NC NC 6 7 26 27 RSP 39 RSN 38 PGND PGND PGND PGND PGND PGND PGND PGND 13 14 15 16 17 18 19 20 PAD 41 EN_UVLO BP R18 100k VOSNS BOOT 31 J12 GND VDD 0.1uF PGOOD L1 3_3V_REG 6.8uH R16 10.0k C9 C10 C11 C12 C13 C14 C15 C16 100uF 100uF 47uF 10uF 4.7uF 1µF 470nF 100nF R21 5.76k GND Figure 4-3. Voltage Regulator Schematic Page 14 DS160PR410EVM-RSC Evaluation Module (EVM) SNLU252B – JANUARY 2020 – REVISED JULY 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated PRSNT2_2 C50 PRSNT2_3 C53 PRSNT2_4 C56 1pF 1pF 1pF R26 R29 R32 GND 43 43 43 RSVD5 C51 C54 C57 C59 1pF RSVD2 1pF RSVD3 1pF RSVD4 1pF R27 R30 43 R33 43 GND 43 C60 RSVD C52 1pF CLKREQ C55 1pF 43 PRSNT2_1 C58 1pF R35 RSVD1 1pF P ET8_P SNLU252B – JANUARY 2020 – REVISED JULY 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated DS160PR410EVM-RSC Evaluation Module (EVM) RS VD GND P RS NT2_4 P ET15_N GND P ET15_P P ET14_N GND P ET14_P P ET13_N GND P ET13_P P ET12_N GND P ET12_P P ET11_N GND P ET11_P P ET10_N GND P ET10_P P ET9_N GND P ET9_P GND P ET8_N B82 RS VD B80 B79 B78 B77 B76 B75 B74 B73 B72 B71 B70 B69 B68 B67 B66 B65 B64 B63 B62 B61 B60 B59 B58 B57 B56 B55 B54 B53 B52 B51 B50 B49 B48 B47 B46 B45 B44 B43 B42 B41 B40 B39 B38 B37 B36 B35 B34 B33 B32 B31 B30 B29 B28 B27 B26 B25 B24 B23 B22 B21 B20 B19 B18 B17 B16 B15 B14 B13 B12 B11 B10 B9 B8 B7 B6 B5 B4 B81 GND P RS NT2_4 P RS NT2_3 GND P RS NT2_3 P ET7_N GND P ET7_P P ET6_N GND P ET6_P P ET5_N GND P ET5_P P ET4_N GND P ET4_P P RS NT2_2 P RS NT2_2 RS VD2 GND RS VD2 P ET3_N GND P ET3_P P ET2_N GND P ET2_P GND P ET1_P GND P ET1_N P RS NT2_1 GND P RS NT2_1 P ET0_N 12V P ET0_P 3_3VAUX CLKREQ 3_3V CLKREQ GND B3 TOP BOT 0.22uF C42 GND 0.22uF C44 GND 0.22uF C46 GND 0.22uF C48 0.22uF C49 GND A82 A81 A80 A79 0.22uF C47 GND A78 A77 A76 A75 0.22uF C45 GND A74 A73 A72 A71 0.22uF C43 GND A70 A69 A68 GND A67 C40 0.22uF C41 GND 0.22uF A66 A65 A64 GND A63 C38 0.22uF C39 GND 0.22uF A62 A61 A60 GND A59 C36 0.22uF C37 GND 0.22uF A58 A57 A56 GND A55 C34 0.22uF C35 GND A54 A53 0.22uF GND A51 A52 RS VD5 A50 C32 0.22uF C33 GND 0.22uF A49 A48 A47 GND A46 C30 0.22uF C31 GND 0.22uF A45 A44 A43 GND A42 C28 0.22uF C29 GND A41 A40 0.22uF GND A38 A39 0.22uF C27 GND A37 A36 C26 GND A34 0.22uF RS VD4 A33 A35 RS VD3 A32 C24 0.22uF C25 GND 0.22uF A31 A30 A29 GND A28 C22 0.22uF C23 GND 0.22uF A27 A26 A25 GND A24 C20 GND 0.22uF C21 GND 0.22uF C18 C19 GND RS VD1 0.22uF 0.22uF GND GND GND A23 A22 A21 A20 A19 A18 A17 A16 A15 A14 A13 A12 A11 A10 A9 A8 A7 A6 A5 A4 A3 A2 A1 12V WAKE GND J TAG1 S MDAT S MCLK B1 B2 P ER15_C_N P ER15_C_P P ER14_C_N P ER14_C_P P ER13_C_N P ER13_C_P P ER12_C_N P ER12_C_P P ER11_C_N P ER11_C_P P ER10_C_N P ER10_C_P P ER9_C_N P ER9_C_P P ER8_C_N P ER8_C_P RS VD5 P ER7_C_N P ER7_C_P P ER6_C_N P ER6_C_P P ER5_C_N P ER5_C_P P ER4_C_N P ER4_C_P RS VD4 RS VD3 P ER3_C_N P ER3_C_P P ER2_C_N P ER2_C_P P ER1_C_N P ER1_C_P RS VD1 P ER0_C_N P ER0_C_P REFCLK_N REFCLK_P P ERS T# J TAG5 J TAG4 J TAG3 J TAG2 P RS NT1 www.ti.com Board Layout 3_3V J13 R28 43 R31 43 R34 43 R36 43 GND Figure 4-4. Gold Finger Connector Schematic Page 15 Board Layout www.ti.com DS1 VREG_DS1 11 18 VREG VREG 31 34 35 38 VDD VDD VDD VDD PET0_P PET0_N 29 30 RX0P RX0N PET1_P PET1_N 32 33 RX1P RX1N PET2_P PET2_N 36 37 RX2P RX2N PET3_P PET3_N 39 40 RX3P RX3N 3_3V_REG ENSMB SCL SDA 2 3 4 26 RSVD 24 SCL SDA 5 GAIN EQ1_AD1_DS1 EQ0_AD0_DS1 6 7 EQ1_ADDR1 EQ0_ADDR0 ALL_DONE_DS1 8 ALL_DONE_N RXDET_DS VREG_DS3 11 18 VREG VREG 31 34 35 38 VDD VDD VDD VDD PET8_P PET8_N 29 30 RX0P RX0N PET9_P PET9_N 32 33 RX1P RX1N PET10_P PET10_N 36 37 RX2P RX2N PET11_P PET11_N 39 40 RX3P RX3N 3_3V_REG VOD 23 VOD_DS READ_EN_N 22 READ_EN_N PWDN1 PWDN2 21 25 PWDN PWDN TX0P TX0N 20 19 PET0_C_P PET0_C_N TX1P TX1N 17 16 PET1_C_P PET1_C_N TX2P TX2N 13 12 PET2_C_P PET2_C_N TX3P TX3N 10 9 PET3_C_P PET3_C_N NC NC NC NC NC 1 14 15 27 28 GND 41 EN_SMB GAIN_DS R37 4.70k DS3 RX_DET GND GND DS160PR410 3_3V_REG ENSMB 2 SCL SDA 3 4 DS4 26 RSVD 24 5 GAIN 6 7 EQ1_ADDR1 EQ0_ADDR0 ALL_DONE_DS3 8 ALL_DONE_N VREG_DS4 11 18 VREG VREG 31 34 35 38 VDD VDD VDD VDD PET12_P PET12_N 29 30 RX0P RX0N PET13_P PET13_N 32 33 RX1P RX1N PET14_P PET14_N 36 37 RX2P RX2N PET15_P PET15_N 39 40 RX3P RX3N 3_3V_REG VOD 23 VOD_DS 22 ALL_DONE_DS2 PWDN1 PWDN2 21 25 PWDN PWDN TX0P TX0N 20 19 SCL SDA EQ1_AD1_DS3 EQ0_AD0_DS3 RXDET_DS READ_EN_N PET8_C_P PET8_C_N TX1P TX1N 17 16 PET9_C_P PET9_C_N TX2P TX2N 13 12 PET10_C_P PET10_C_N TX3P TX3N 10 9 PET11_C_P PET11_C_N NC NC NC NC NC 1 14 15 27 28 GND 41 EN_SMB GAIN_DS R39 4.70k RX_DET ENSMB SCL SDA GND 3 4 3_3V_REG 24 5 GAIN 6 7 EQ1_ADDR1 EQ0_ADDR0 RXDET_DS VOD_DS VOD 23 READ_EN_N 22 ALL_DONE_DS3 PWDN1 PWDN2 21 25 PWDN PWDN TX0P TX0N 20 19 PET12_C_P PET12_C_N TX1P TX1N 17 16 PET13_C_P PET13_C_N TX2P TX2N 13 12 PET14_C_P PET14_C_N TX3P TX3N 10 9 PET15_C_P PET15_C_N NC NC NC NC NC 1 14 15 27 28 GND 41 SCL SDA EQ1_AD1_DS4 EQ0_AD0_DS4 R40 4.70k 26 RSVD EN_SMB GAIN_DS ALL_DONE_N_DS 8 GND DS160PR410 2 RX_DET ALL_DONE_N GND GND DS160PR410 3_3V_REG DS2 VREG_DS2 11 18 VREG VREG 31 34 35 38 VDD VDD VDD VDD 3_3V_REG PET4_P PET4_N 29 30 RX0P RX0N PET5_P PET5_N 32 33 RX1P RX1N PET6_P PET6_N 36 37 RX2P RX2N PET7_P PET7_N 39 40 RX3P RX3N ENSMB 2 3 4 SCL SDA GAIN_DS 5 GAIN EQ1_AD1_DS2 EQ0_AD0_DS2 6 7 EQ1_ADDR1 EQ0_ADDR0 ALL_DONE_DS2 8 ALL_DONE_N R38 4.70k 26 RSVD 24 VOD 23 VOD_DS READ_EN_N 22 ALL_DONE_DS1 DS160PR410 PWDN PWDN PWDN1 PWDN2 21 25 TX0P TX0N 20 19 PET4_C_P PET4_C_N TX1P TX1N 17 16 PET5_C_P PET5_C_N TX2P TX2N 13 12 PET6_C_P PET6_C_N TX3P TX3N 10 9 PET7_C_P PET7_C_N NC NC NC NC NC 1 14 15 27 28 GND 41 EN_SMB SCL SDA RXDET_DS RX_DET ENSMB ENSMB SCL SCL SDA SDA PWDN PWDN GAIN_DS RXDET_DS READ_EN_N READ_EN_N ALL_DONE_N_DS ALL_DONE_N_DS EQ1_AD1_DS3 EQ1_AD1_DS4 1 3 5 7 9 11 13 15 17 19 21 23 2 4 6 8 10 R58 R60 R62 R64 R66 249 3.24k 14.7k 14.7k 14.7k GND 3_3V_REG 2 4 6 8 10 12 14 16 18 20 22 24 R41 R42 R43 R44 R45 R46 R47 R48 R49 R50 R51 R52 1.00k 13.0k 59.0k 1.00k 13.0k 59.0k 1.00k 13.0k 59.0k 1.00k 13.0k 59.0k 2 4 6 8 10 12 14 16 18 20 22 24 R53 R54 R55 R56 R57 R59 R61 R63 R65 R67 R68 R69 1.00k 13.0k 59.0k 1.00k 13.0k 59.0k 1.00k 13.0k 59.0k 1.00k 13.0k 59.0k GND VREG_DS1 C61 0.1uF C62 0.1uF C67 0.1uF C68 0.1uF C73 0.1uF C74 0.1uF C79 0.1uF C80 0.1uF C63 0.1uF C64 0.1uF C65 0.1uF C66 0.1uF C69 0.1uF C70 0.1uF C71 0.1uF C72 0.1uF C75 0.1uF C76 0.1uF C77 0.1uF C78 0.1uF C81 0.1uF C82 0.1uF C83 0.1uF C84 0.1uF GND GND VREG_DS2 GND GND 3_3V_REG 1 3 5 7 9 J14 EQ1_AD1_DS1 EQ1_AD1_DS2 GND J16 VOD_DS EQ0_AD0_DS2 EQ0_AD0_DS3 EQ0_AD0_DS4 1 3 5 7 9 11 13 15 17 19 21 23 GND VREG_DS3 J15 EQ0_AD0_DS1 GND GND VREG_DS4 GND GND GND Figure 4-5. Downstream Devices Schematic Page 16 DS160PR410EVM-RSC Evaluation Module (EVM) SNLU252B – JANUARY 2020 – REVISED JULY 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Board Layout US1 VREG_US1 11 18 VREG VREG 31 34 35 38 VDD VDD VDD VDD PER0_P PER0_N 29 30 RX0P RX0N PER1_P PER1_N 32 33 RX1P RX1N PER2_P PER2_N 36 37 RX2P RX2N PER3_P PER3_N 39 40 RX3P RX3N 3_3V_REG ENSMB SCL SDA 2 3 4 26 RSVD 24 SCL SDA 5 GAIN EQ1_AD1_US1 EQ0_AD0_US1 6 7 EQ1_ADDR1 EQ0_ADDR0 ALL_DONE_US1 8 ALL_DONE_N RXDET_US VREG_US3 VOD 23 VOD_US 22 ALL_DONE_N_DS PWDN1 PWDN2 21 25 PWDN TX0P TX0N 20 19 PER0_C_P PER0_C_N TX1P TX1N 17 16 PER1_C_P PER1_C_N TX2P TX2N 13 12 PER2_C_P PER2_C_N TX3P TX3N 10 9 PER3_C_P PER3_C_N NC NC NC NC NC 1 14 15 27 28 GND 41 GND 31 34 35 38 VDD VDD VDD VDD PER8_P PER8_N 29 30 RX0P RX0N PER9_P PER9_N 32 33 RX1P RX1N PER10_P PER10_N 36 37 RX2P RX2N PER11_P PER11_N 39 40 RX3P RX3N ENSMB 2 SCL SDA US4 RX_DET 26 RSVD 24 5 GAIN EQ1_AD1_US3 EQ0_AD0_US3 6 7 EQ1_ADDR1 EQ0_ADDR0 ALL_DONE_US3 8 ALL_DONE_N 11 18 VREG VREG 31 34 35 38 VDD VDD VDD VDD PER12_P PER12_N 29 30 RX0P RX0N PER13_P PER13_N 32 33 RX1P RX1N PER14_P PER14_N 36 37 RX2P RX2N PER15_P PER15_N 39 40 RX3P RX3N 3_3V_REG VOD 23 VOD_US 22 ALL_DONE_US2 PWDN1 PWDN2 21 25 PWDN SCL SDA GAIN_US VREG_US4 READ_EN_N TX0P TX0N 20 19 PER8_C_P PER8_C_N TX1P TX1N 17 16 PER9_C_P PER9_C_N TX2P TX2N 13 12 PER10_C_P PER10_C_N TX3P TX3N 10 9 PER11_C_P PER11_C_N NC NC NC NC NC 1 14 15 27 28 GND 41 EN_SMB 3 4 RXDET_US ENSMB SCL SDA GND US2 VREG VREG 31 34 35 38 VDD VDD VDD VDD PER4_P PER4_N 29 30 RX0P RX0N PER5_P PER5_N 32 33 RX1P RX1N PER6_P PER6_N 36 37 RX2P RX2N PER7_P PER7_N 39 40 RX3P RX3N 3_3V_REG ENSMB 2 EN_SMB SCL SDA 3 4 SCL SDA GAIN_US 5 GAIN EQ1_AD1_US2 EQ0_AD0_US2 6 7 EQ1_ADDR1 EQ0_ADDR0 ALL_DONE_US2 8 ALL_DONE_N RX_DET 26 RXDET_US RSVD 24 VOD 23 VOD_US READ_EN_N 22 ALL_DONE_US1 PWDN1 PWDN2 21 25 PWDN TX0P TX0N 20 19 PER4_C_P PER4_C_N TX1P TX1N 17 16 PER5_C_P PER5_C_N TX2P TX2N 13 12 PER6_C_P PER6_C_N TX3P TX3N 10 9 PER7_C_P PER7_C_N NC NC NC NC NC 1 14 15 27 28 GND 41 DS160PR410 3 4 RX_DET 26 RSVD 24 VOD 23 VOD_US READ_EN_N 22 ALL_DONE_US3 PWDN1 PWDN2 21 25 PWDN TX0P TX0N 20 19 PER12_C_P PER12_C_N TX1P TX1N 17 16 PER13_C_P PER13_C_N TX2P TX2N 13 12 PER14_C_P PER14_C_N TX3P TX3N 10 9 PER15_C_P PER15_C_N NC NC NC NC NC 1 14 15 27 28 GND 41 EN_SMB SCL SDA 5 GAIN EQ1_AD1_US4 EQ0_AD0_US4 6 7 EQ1_ADDR1 EQ0_ADDR0 ALL_DONE_N 8 RXDET_US ALL_DONE_N GND GND DS160PR410 3_3V_REG ENSMB ENSMB SCL SCL SDA SDA PWDN PWDN J19 VOD_US GAIN_US RXDET_US ALL_DONE_N_DS ALL_DONE_N_DS ALL_DONE_N ALL_DONE_N 1 3 5 7 9 2 4 6 8 10 R91 R93 R95 R97 R99 249 3.24k 14.7k 14.7k 14.7k GND 3_3V_REG J17 EQ1_AD1_US1 EQ1_AD1_US2 EQ1_AD1_US3 EQ1_AD1_US4 1 3 5 7 9 11 13 15 17 19 21 23 VREG_US1 2 4 6 8 10 12 14 16 18 20 22 24 R74 R75 R76 R77 R78 R79 R80 R81 R82 R83 R84 R85 1.00k 13.0k 59.0k 1.00k 13.0k 59.0k 1.00k 13.0k 59.0k 1.00k 13.0k 59.0k 2 4 6 8 10 12 14 16 18 20 22 24 R86 R87 R88 R89 R90 R92 R94 R96 R98 R100 R101 R102 1.00k 13.0k 59.0k 1.00k 13.0k 59.0k 1.00k 13.0k 59.0k 1.00k 13.0k 59.0k GND EQ0_AD0_US1 EQ0_AD0_US2 3_3V_REG EQ0_AD0_US3 EQ0_AD0_US4 1 3 5 7 9 11 13 15 17 19 21 23 C85 0.1uF C86 0.1uF C91 0.1uF C92 0.1uF C97 0.1uF C98 0.1uF C103 0.1uF C104 0.1uF C87 0.1uF C88 0.1uF C89 0.1uF C90 0.1uF C93 0.1uF C94 0.1uF C95 0.1uF C96 0.1uF C99 0.1uF C100 0.1uF C101 0.1uF C102 0.1uF C105 0.1uF C106 0.1uF C107 0.1uF C108 0.1uF GND GND VREG_US2 GND GND VREG_US3 GND J18 GND 2 GAIN_US R73 4.70k GND DS160PR410 3_3V_REG 11 18 R71 4.70k VREG VREG R72 4.70k GND DS160PR410 3_3V_REG VREG_US2 11 18 3_3V_REG READ_EN_N EN_SMB GAIN_US R70 4.70k US3 RX_DET GND GND VREG_US4 GND GND GND Figure 4-6. Upstream Devices Schematic Page SNLU252B – JANUARY 2020 – REVISED JULY 2021 Submit Document Feedback DS160PR410EVM-RSC Evaluation Module (EVM) Copyright © 2021 Texas Instruments Incorporated 17 18 P RS NT2_4_C RS VD GND DS160PR410EVM-RSC Evaluation Module (EVM) Copyright © 2021 Texas Instruments Incorporated GND GND GND P ET15_C_P P ET15_C_N GND P ET14_C_P P ET14_C_N GND P ET13_C_P P ET13_C_N GND P ET12_C_P P ET12_C_N GND GND P ET11_C_P P ET11_C_N GND P ET10_C_P P ET10_C_N GND P ET9_C_P P ET9_C_N P RS NT2_3_C GND P ET8_C_P P ET8_C_N GND P ET7_C_P P ET7_C_N GND P ET6_C_P P ET6_C_N GND P ET5_C_P P ET5_C_N GND P ET4_C_P P ET4_C_N RS VD2 P RS NT2_2_C GND GND P ET3_C_P P ET3_C_N GND P ET2_C_P P ET2_C_N P RS NT2_1_C GND P ET1_C_P P ET1_C_N P ET0_C_P P ET0_C_N WAKE GND CLKREQ 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF 0.22uF B12 B13 C140 C124 C139 C123 C138 C122 C137 C121 C136 C120 C135 C119 C134 C118 C133 C117 C132 C116 C131 C115 C130 C114 C129 C113 C128 C112 C127 C111 C126 C110 C125 B15 B16 B17 B18 B19 B20 B21 B22 B23 B24 B25 B26 B27 B28 B29 B30 B31 B32 B33 B34 B35 B36 B37 B38 B39 B40 B41 B42 B43 B44 B45 B46 B47 B48 B49 B50 B51 B52 B53 B54 B55 B56 B57 B58 B59 B60 B61 B62 B63 B64 B65 B66 B67 B68 B69 B70 B71 B72 B73 B74 B75 B76 B77 B78 B79 B80 B81 B82 C109 B14 TOP BOT A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30 A31 A32 A33 A34 A35 A36 A37 A38 A39 A40 A41 A42 A43 A44 A45 A46 A47 A48 A49 A50 A51 A52 A53 A54 A55 A56 A57 A58 A59 A60 A61 A62 A63 A64 A65 A66 A67 A68 A69 A70 A71 A72 A73 A74 A75 A76 A77 A78 A79 A80 A81 A82 A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND GND 12V J TAG1 S MCLK S MDAT 12V GND B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 B11 RS VD5 RS VD1 P ERS T# J TAG2 J TAG3 J TAG4 J TAG5 P RS NT1 RS VD3 RS VD4 P ER15_P P ER15_N P ER14_P P ER14_N P ER13_P P ER13_N P ER12_P P ER12_N P ER11_P P ER11_N P ER10_P P ER10_N P ER9_P P ER9_N P ER8_P P ER8_N P ER7_P P ER7_N P ER6_P P ER6_N P ER5_P P ER5_N P ER4_P P ER4_N P ER3_P P ER3_N P ER2_P P ER2_N P ER1_P P ER1_N P ER0_P P ER0_N REFCLK_P REFCLK_N Board Layout www.ti.com 3_3V J20 3_3V GND 3_3VAUX Figure 4-7. Straddle Connector Schematic Page SNLU252B – JANUARY 2020 – REVISED JULY 2021 Submit Document Feedback www.ti.com Board Layout SH-J1 H2 H4 1 H6 1 DNP 1 DNP NY PMS 440 0025 PH H1 H8 1 DNP NY PMS 440 0025 PH H3 DNP NY PMS 440 0025 PH H5 NY PMS 440 0025 PH H7 DNP DNP DNP DNP 1902C 1902C 1902C 1902C SH-J2 SH-J3 SH-J4 DNP DNP DNP DNP DNP DNP FID1 FID2 FID3 FID4 FID5 FID6 SH-J5 PCB Number: HSDC058 PCB Rev: A ZZ5 Assembly Note Place accross pins 1-2 of J1 P CB LOGO Texas Instruments CE Mark P CB LOGO P CB LOGO FCC dis claimer WEEE logo SH-J6 ZZ6 Assembly Note Place accross pins 1-2 of J5 ZZ7 Assembly Note Place accross pins 1-2 of J6 ZZ8 Assembly Note Place accross pins 1-2 of J7 ZZ9 Assembly Note Place accross pins 1-2 of J8 ZZ10 Assembly Note Place accross pins 1-2 of J9 SH-J11 SH-J12 SH-J13 SH-J14 SH-J15 SH-J16 SH-J17 SH-J18 Varia nt/Label Ta ble Variant LBL1 P CB Label THT-14-423-10 Size: 0.65" x 0.20 " ZZ15 Assembly Note Place accross pins 1-2 of J14 ZZ16 Assembly Note Place accross pins 7-8 of J14 ZZ17 Assembly Note Place accross pins 13-14 of J14 ZZ18 Assembly Note Place accross pins 19-20 of J14 ZZ19 Assembly Note Place accross pins 5-6 of J15 ZZ20 Assembly Note Place accross pins 11-12 of J15 ZZ21 Assembly Note Place accross pins 17-18 of J15 ZZ22 Assembly Note Place accross pins 23-24 of J15 SH-J19 SH-J20 SH-J21 SH-J22 SH-J23 SH-J24 SH-J25 SH-J26 ZZ23 Assembly Note Place accross pins 1-2 of J17 ZZ24 Assembly Note Place accross pins 7-8 of J17 ZZ25 Assembly Note Place accross pins 13-14 of J17 ZZ26 Assembly Note Place accross pins 19-20 of J17 ZZ27 Assembly Note Place accross pins 5-6 of J18 ZZ28 Assembly Note Place accross pins 11-12 of J18 ZZ29 Assembly Note Place accross pins 17-18 of J18 ZZ30 Assembly Note Place accross pins 23-24 of J18 Label Text 001 DS160PR410EVM-RSC 002 DS160PR410EVM-SMA ZZ1 Label Assembly Note This Assembly Note is for PCB labels only SH-J7 DNP SH-J8 DNP ZZ2 Assembly Note These assemblie s are ESD sens itive, ESD precautions shall be observed. ZZ3 Assembly Note These assemblie s must be clean and free from flux and all contaminants. Use of no clean flux is not acceptable. ZZ4 Assembly Note These assemblie s must comply with workmanship standards IPC-A-610 Class 2, unless otherwis e specifie d. SH-J9 DNP SH-J10 DNP ZZ11 DNPNote Assembly Place accross pins 2-3 of J3 ZZ12 DNPNote Assembly Place accross pins 1-2 of J29 ZZ13 DNPNote Assembly Place accross pins 11-12 of J29 ZZ14 DNPNote Assembly Place accross pins 19-20 of J29 MP1 H9 PMSSS 440 0025 PH H10 9B90-0000A PMSSS 440 0025 PH Figure 4-8. Hardware Page SNLU252B – JANUARY 2020 – REVISED JULY 2021 Submit Document Feedback DS160PR410EVM-RSC Evaluation Module (EVM) Copyright © 2021 Texas Instruments Incorporated 19 Board Layout www.ti.com 5 Bill of Materials Table 5-1. Bill of Materials VALUE PACKAGE REFERENCE DESIGNATOR QTY DESCRIPTION PART NUMBER MANUFACTURER !PCB1 1 HSDC058 Any C1, C2, C8 3 1uF CAP, CERM, 1 uF, 25 V, +/- 10%, X5R, 0402 C3 1 0.1uF CAP, CERM, 0.1 uF, 25 V, +/- 10%, X5R, 0402 0402 C1005X5R1E105K050BC TDK 0402 GRM155R61E104KA87D MuRata C4 1 100uF C5, C6 2 22uF CAP, TA, 100 uF, 25 V, +/- 10%, 0.1 ohm, SMD 7360-38 T495E107K025ATE100 Kemet CAP, CERM, 22 uF, 25 V, +/- 20%, X5R, 1206_190 1206_190 TMK316BBJ226ML-T Taiyo Yuden C7, C17 2 C9, C10 2 4.7uF CAP, CERM, 4.7 uF, 25 V, +/- 10%, X6S, 0603 0603 GRM188C81E475KE11D MuRata 100uF CAP, CERM, 100 uF, 6.3 V, +/- 20%, X5R, 0805 0805 GRM21BR60J107M MuRata C11 C12 1 47uF CAP, CERM, 47 uF, 6.3 V, +/- 20%, X5R, 0805 0805 GRM219R60J476ME44D MuRata 1 10uF CAP, CERM, 10 uF, 6.3 V, +/- 10%, X5R, 0805 0805 GRM219R60J106KE19D MuRata C13 1 4.7uF CAP, CERM, 4.7 uF, 6.3 V, +/- 10%, X5R, 0603 0603 GRM188R60J475KE19D MuRata C14 1 1uF CAP, CERM, 1 uF, 6.3 V, +/- 10%, X7R, 0603 0603 GRM188R70J105KA01D MuRata C15 1 0.47uF CAP, CERM, 0.47 uF, 6.3 V, +/- 10%, X7R, 0603 0603 GRM188R70J474KA01D MuRata C16 1 Printed Circuit Board 0.1uF CAP, CERM, 0.1 uF, 6.3 V, +/- 10%, X7R, 0603 0603 GRM188R70J104KA01D MuRata C18, C19, C20, C21, C22, C23, C24, 64 C25, C26, C27, C28, C29, C30, C31, C32, C33, C34, C35, C36, C37, C38, C39, C40, C41, C42, C43, C44, C45, C46, C47, C48, C49, C109, C110, C111, C112, C113, C114, C115, C116, C117, C118, C119, C120, C121, C122, C123, C124, C125, C126, C127, C128, C129, C130, C131, C132, C133, C134, C135, C136, C137, C138, C139, C140 0.22uF CAP, CERM, 0.22 uF, 10 V, +/- 20%, X5R, 0201 0201 LMK063BJ224MP-F Taiyo Yuden C50, C51, C52, C53, C54, C55, C56, C57, C58, C59, C60 11 1pF CAP, CERM, 1 pF, 50 V, +/- 10%, C0G/NP0, 0402 0402 GJM1555C1H1R0BB01D MuRata C61, C62, C63, C64, C65, C66, C67, C68, C69, C70, C71, C72, C73, C74, C75, C76, C77, C78, C79, C80, C81, C82, C83, C84, C85, C86, C87, C88, C89, C90, C91, C92, C93, C94, C95, C96, C97, C98, C99, C100, C101, C102, C103, C104, C105, C106, C107, C108 48 0.1uF CAP, CERM, 0.1 uF, 6.3 V, +/- 10%, X5R, 0201 0201 C0603X5R0J104K030BC TDK D1, D2, D3 3 Green LED, Green, SMD 2x1.4mm LG M67K-G1J2-24-Z OSRAM DS1, DS2, DS3, DS4, US1, US2, US3, US4 8 DS160PR410, RNQ0040A (WQFN-40) RNQ0040A DS160PR410 Texas Instruments 20 DS160PR410EVM-RSC Evaluation Module (EVM) SNLU252B – JANUARY 2020 – REVISED JULY 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Board Layout Table 5-1. Bill of Materials (continued) VALUE PACKAGE REFERENCE DESIGNATOR QTY PART NUMBER MANUFACTURER H9, H10 2 MACHINE SCREW PAN PHILLIPS 4-40 Machine Screw, 4-40, 1/4 inch PMSSS 440 0025 PH B and F Fastener Supply J1 1 Header, 100mil, 3x2, Gold, TH 3x2 Header TSW-103-07-G-D Samtec J2, J16, J19 J3, J4, J6, J7, J8, J9 3 Header, 100mil, 5x2, Gold, TH 5x2 Header TSW-105-07-G-D Samtec 6 Header, 2.54mm, 3x1, Gold, TH Header, 2.54mm, 3x1, TH 961103-6804-AR 3M J5, J10, J11, J12 4 Header, 2.54mm, 2x1, TH Header, 2.54mm, 2x1, TH 961102-6404-AR 3M J14, J15, J17, J18 4 Header, 100mil, 12x2, Gold, TH 12x2 Header TSW-112-07-G-D Samtec J20 1 Receptacle, 1mm, 82x2, Gold, SMT Receptacle, 1mm, 82x2, SMT GWE82DHRN-T9410 Sullins Connector Solutions L1 1 Inductor, Drum Core, Ferrite, 6.8 uH, 3.2 A, 0.04 ohm, SMD SDR0805 SDR0805-6R8ML Bourns LBL1 1 Thermal Transfer Printable Labels, 0.650" W x 0.200" H - 10,000 PCB Label per roll 0.650 x 0.200 inch THT-14-423-10 Brady MP1 1 PCI bracket PCI_BRCKT_N 9B90-0000A PTH_2 Gompf Brackets, Inc. R4, R5 2 2.2k RES, 2.2 k, 5%, 0.063 W, AEC-Q200 Grade 0, 0402 0402 CRCW04022K20JNED Vishay-Dale R6 1 124 RES, 124, 1%, 0.063 W, AEC-Q200 Grade 0, 0402 0402 CRCW0402124RFKED Vishay-Dale R7 1 1.62k RES, 1.62 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402 0402 CRCW04021K62FKED Vishay-Dale R8 1 7.32k RES, 7.32 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402 0402 CRCW04027K32FKED Vishay-Dale R9, R58, R91 3 249 RES, 249, 1%, 0.1 W, AEC-Q200 Grade 0, 0402 0402 ERJ-2RKF2490X Panasonic R10 1 10.0k RES, 10.0 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402 0402 AC0402FR-0710KL Yageo America R11, R12, R13 3 330 RES, 330, 5%, 0.063 W, AEC-Q200 Grade 0, 0402 0402 CRCW0402330RJNED Vishay-Dale R14 1 165k RES, 165 k, 1%, 0.1 W, 0603 0603 RC0603FR-07165KL Yageo R15 1 120k RES, 120 k, 1%, 0.1 W, 0603 0603 RC0603FR-07120KL Yageo R16 1 10.0k RES, 10.0 k, 1%, 0.063 W, 0402 0402 RC0402FR-0710KL Yageo America R17 1 105k RES, 105 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402 0402 CRCW0402105KFKED Vishay-Dale R18, R19, R20 3 100k RES, 100 k, 1%, 0.0625 W, 0402 0402 RC0402FR-07100KL Yageo America R21 1 5.76k RES, 5.76 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402 0402 CRCW04025K76FKED Vishay-Dale R22 1 165k RES, 165 k, 1%, 0.1 W, AEC-Q200 Grade 0, 0402 0402 ERJ-2RKF1653X Panasonic R23 1 37.4k RES, 37.4 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402 0402 CRCW040237K4FKED Vishay-Dale R24 1 42.2k RES, 42.2 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402 0402 CRCW040242K2FKED Vishay-Dale 6.8uH DESCRIPTION SNLU252B – JANUARY 2020 – REVISED JULY 2021 Submit Document Feedback DS160PR410EVM-RSC Evaluation Module (EVM) Copyright © 2021 Texas Instruments Incorporated 21 Board Layout www.ti.com Table 5-1. Bill of Materials (continued) DESIGNATOR QTY VALUE DESCRIPTION PACKAGE REFERENCE PART NUMBER MANUFACTURER R25 1 2.05k RES, 2.05 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402 0402 CRCW04022K05FKED Vishay-Dale R26, R27, R28, R29, R30, R31, R32, R33, R34, R35, R36 11 43 RES, 43, 5%, 0.063 W, AEC-Q200 Grade 0, 0402 0402 CRCW040243R0JNED Vishay-Dale R37, R38, R39, R40, R70, R71, R72, R73 8 4.70k RES, 4.70 k, 1%, 0.063 W, 0402 0402 CRG0402F4K7 TE Connectivity R41, R44, R47, R50, R53, R56, R61, R67, R74, R77, R80, R83, R86, R89, R94, R100 16 1.00k RES, 1.00 k, 1%, 0.063 W, 0402 0402 MCR01MZPF1001 Rohm R42, R45, R48, R51, R54, R57, R63, R68, R75, R78, R81, R84, R87, R90, R96, R101 16 13.0k RES, 13.0 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402 0402 CRCW040213K0FKED Vishay-Dale R43, R46, R49, R52, R55, R59, R65, R69, R76, R79, R82, R85, R88, R92, R98, R102 16 59.0k RES, 59.0 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402 0402 CRCW040259K0FKED Vishay-Dale R60, R93 2 3.24k RES, 3.24 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402 0402 CRCW04023K24FKED Vishay-Dale R62, R64, R66, R95, R97, R99 6 14.7k RES, 14.7 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402 0402 CRCW040214K7FKED Vishay-Dale 1x2 Shunt, 100mil, Flash Gold, Black Closed Top 100mil Shunt SPC02SYAN Sullins Connector Solutions SH-J1, SH-J2, SH-J3, SH-J4, SH-J5, 22 SH-J6, SH-J11, SH-J12, SH-J13, SHJ14, SH-J15, SH-J16, SH-J17, SHJ18, SH-J19, SH-J20, SH-J21, SHJ22, SH-J23, SH-J24, SH-J25, SHJ26 SW1 1 Switch, Tactile, SPST-NO, 0.02A, 15V, TH 6.0x5.0x6mm EVQ-21505R Panasonic U1 1 I2C-Compatible (2-wire) Serial EEPROM 2-Kbit (256 x 8), SOIC-8 SOIC-8 AT24C02D-SSHM-T Atmel U2 1 Quadruple Bus Buffer Gate With 3-State Outputs, PW0014A, LARGE T and R PW0014A SN74LVC125APWRG3 Texas Instruments U3 1 1.5-V to 16-V VIN, 4.5-V to 22-V VDD, 25-A SWIFT Synchronous Step-Down Converter with Full Differential Sense, RVF0040A (LQFN-CLIP-40) RVF0040A TPS548B22RVFR Texas Instruments C141, C142, C143, C144, C145, C146, C147, C148, C155, C156, C157, C158, C159, C160, C161, C162 0 0.22uF CAP, CERM, 0.22 uF, 10 V, +/- 20%, X5R, 0201 0201 LMK063BJ224MP-F Taiyo Yuden C149, C150, C151, C152, C153, C154 0 0.1uF CAP, CERM, 0.1 uF, 6.3 V, +/- 10%, X5R, 0201 0201 C0603X5R0J104K030BC TDK FID1, FID2, FID3, FID4, FID5, FID6 0 Fiducial mark. There is nothing to buy or mount. N/A N/A N/A H1, H3, H5, H7 0 Standoff, Hex, 0.5"L #4-40 Nylon Standoff 1902C Keystone H2, H4, H6, H8 0 Machine Screw, Round, #4-40 x 1/4, Nylon, Philips panhead Screw NY PMS 440 0025 PH B and F Fastener Supply 22 DS160PR410EVM-RSC Evaluation Module (EVM) SNLU252B – JANUARY 2020 – REVISED JULY 2021 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated www.ti.com Board Layout Table 5-1. Bill of Materials (continued) DESIGNATOR QTY J21, J22, J27, J28, J30, J31, J32, J33, J38, J39, J40, J41 0 VALUE PACKAGE REFERENCE DESCRIPTION PART NUMBER MANUFACTURER SMA, Straight Jack, SMT SMA Connector, SMT 732511352 Molex J23, J24, J25, J26, J34, J35, J36, J37 0 SMA JACK 50 OHM, R/A, SMT SMA JACK, R/A, SMT 32K243-40ML5 Rosenberger J29 0 Header, 100mil, 12x2, Gold, TH 12x2 Header TSW-112-07-G-D Samtec R103 0 4.70k RES, 4.70 k, 1%, 0.063 W, 0402 0402 CRG0402F4K7 TE Connectivity R104, R107, R110 0 1.00k RES, 1.00 k, 1%, 0.063 W, 0402 0402 MCR01MZPF1001 Rohm R105, R108, R111 0 13.0k RES, 13.0 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402 0402 CRCW040213K0FKED Vishay-Dale R106, R109, R112, R113, R114 0 59.0k RES, 59.0 k, 1%, 0.063 W, AEC-Q200 Grade 0, 0402 0402 CRCW040259K0FKED Vishay-Dale SA1 0 DS160PR410, RNQ0040A (WQFN-40) RNQ0040A DS160PR410 Texas Instruments SH-J7, SH-J8, SH-J9, SH-J10 0 Shunt, 100mil, Flash Gold, Black Closed Top 100mil Shunt SPC02SYAN Sullins Connector Solutions 1x2 SNLU252B – JANUARY 2020 – REVISED JULY 2021 Submit Document Feedback DS160PR410EVM-RSC Evaluation Module (EVM) Copyright © 2021 Texas Instruments Incorporated 23 References www.ti.com 6 References For references, see the following: 1. Texas Instruments, DS160PR410 4-Channel PCI-Express Gen-4 Linear Redriver Datasheet (SNLS645) 2. Texas Instruments, DS160PR410 Programming Guide (SNLU255) 3. Texas Instruments, Understanding EEPROM Programming for DS160PR410 PCI-Express Gen-4 Redriver (SNLA320) 7 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision A (January 2020) to Revision B (July 2021) Page • Updated the numbering format for tables, figures and cross-references throughout the document...................3 24 DS160PR410EVM-RSC Evaluation Module (EVM) Copyright © 2021 Texas Instruments Incorporated SNLU252B – JANUARY 2020 – REVISED JULY 2021 Submit Document Feedback IMPORTANT NOTICE AND DISCLAIMER TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS” AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements. These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources. TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for TI products. TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2022, Texas Instruments Incorporated
DS160PR410EVM-RSC 价格&库存

很抱歉,暂时无法提供与“DS160PR410EVM-RSC”相匹配的价格&库存,您可以联系我们找货

免费人工找货