0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
DS25BR440TSQX/NOPB

DS25BR440TSQX/NOPB

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    WQFN40_EP

  • 描述:

    缓冲器,转接驱动器 4 通道 3.125Gbps

  • 数据手册
  • 价格&库存
DS25BR440TSQX/NOPB 数据手册
DS25BR440 www.ti.com SNLS258B – FEBRUARY 2008 – REVISED MARCH 2013 DS25BR440 3.125 Gbps Quad LVDS Buffer with Transmit Pre-Emphasis and Receive Equalization Check for Samples: DS25BR440 FEATURES DESCRIPTION • The DS25BR440 is a 3.125 Gbps Quad LVDS buffer optimized for high-speed signal routing and repeating over lossy FR-4 printed circuit board backplanes and balanced cables. Fully differential signal paths ensure exceptional signal integrity and noise immunity. 1 2 • • • • • • DC - 3.125 Gbps Low Jitter, Low Skew, Low Power Operation Pin Selectable Transmit Pre-Emphasis and Receive Equalization Eliminate Data Dependant Jitter Wide Input Common Mode Voltage Range Allows DC-Coupled Interface to LVDS, CML and LVPECL Drivers LOS Circuitry Detects Open Inputs Fault Integrated 100Ω Input and Output Terminations 8 kV ESD on LVDS I/O Pins Protects Adjoining Components Small 6 mm x 6 mm WQFN-40 Space Saving Package APPLICATIONS • • • • Clock and Data Buffering and Repeating Copper Cable Driving and Equalization FR-4 Equalization OC-48 / STM-16 The DS25BR440 features two levels of transmit preemphasis (PE) and two levels of receive equalization (EQ). Both of these features compensate for interconnect losses and ultimately maximize noise margin. A loss-of-signal (LOS) circuit monitors each input channel and a unique LOS pin is asserted when no signal is detected at that input. Wide input common mode range allows the switch to accept signals with LVDS, CML and LVPECL levels; the output levels are LVDS. A very small package footprint requires a minimal space on the board while the flow-through pinout allows easy board layout. Each differential input and output is internally terminated with a 100Ω resistor to lower device return losses, reduce component count and further minimize board space. Typical Application LVDS I/O Cable or Backplane FPGA or ASIC LVDS I/O FPGA or ASIC DS25BR440 1 2 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2008–2013, Texas Instruments Incorporated DS25BR440 SNLS258B – FEBRUARY 2008 – REVISED MARCH 2013 www.ti.com Block Diagram PWDNn 4 EQ0 IN0+ PE0 EQ IN0- OUT0+ PE OUT0+ EQ1 PE1 IN1+ EQ IN1- OUT1+ PE OUT1- EQ2 PE2 IN2+ EQ IN2- OUT2+ PE OUT2- EQ3 PE3 IN3+ EQ IN3- OUT3+ PE OUT3- 4 PWDN LOSn EQ0 EQ1 PWDN LOS1 LOS2 PWDN0 PWDN1 PWDN2 PWDN3 PE0 40 39 38 37 36 35 34 33 32 31 Connection Diagram IN0+ 1 30 VDD IN0- 2 29 OUT0+ VDD 3 28 OUT0- IN1+ 4 27 OUT1+ 26 OUT1- 25 VDD DAP IN1- 5 IN2+ 6 IN2- 7 24 OUT2+ VDD 8 23 OUT2- IN3+ 9 22 OUT3+ IN3- 10 21 OUT3- 11 12 13 14 15 16 17 18 19 20 EQ2 EQ3 LOS3 LOS0 VDD GND NC PE3 PE2 PE1 GND DS25BR440 Pin Diagram 2 Submit Documentation Feedback Copyright © 2008–2013, Texas Instruments Incorporated Product Folder Links: DS25BR440 DS25BR440 www.ti.com SNLS258B – FEBRUARY 2008 – REVISED MARCH 2013 PIN DESCRIPTIONS Pin Name Pin Number IN0+, IN0- , IN1+, IN1-, IN2+, IN2-, IN3+, IN3- I/O, Type Pin Description 1, 2, 4, 5, 6, 7, 9, 10 I, LVDS Inverting and non-inverting high speed LVDS input pins. OUT0+, OUT0-, OUT1+, OUT1-, OUT2+, OUT2-, OUT3+, OUT3- 29, 27, 24, 22, O, LVDS Inverting and non-inverting high speed LVDS output pins. EQ0, EQ1, EQ2, EQ3 40, 39, 11, 12 I, LVCMOS Receive equalization level select pins. PE0, PE1, PE2, PE3 31, 20, 19, 18 I, LVCMOS Transmit pre-emphasis level select pins. PWDN0, PWDN1, PWDN2, PWDN3 35, 34, 33, 32 I, LVCMOS Channel output power down pins. When the PWDNn is set to L, the channel output OUTn is in the power down mode. The LOS circuitry on the corresponding input remains enabled. LOS0, LOS1, LOS2, LOS3 14, 37, 36, 13 O, LVCMOS Loss Of Signal output pins, LOSn report when an open input fault condition is detected at the input, INn. These are open drain outputs. External pull up resistors are required. NC 17 NC NO CONNECT pins. May be left floating. PWDN 38 I, LVCMOS Device power down pin. When the PWDN is set to L, the device is in the power down mode. The LOS circuitry is disabled as well. VDD 3, 8, 15,25, 30 Power Power supply pins. GND 16, DAP Power Ground pin and a pad (DAP - die attach pad). 28, 26, 23, 21 These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. Submit Documentation Feedback Copyright © 2008–2013, Texas Instruments Incorporated Product Folder Links: DS25BR440 3 DS25BR440 SNLS258B – FEBRUARY 2008 – REVISED MARCH 2013 www.ti.com Absolute Maximum Ratings (1) (2) −0.3V to +4V Supply Voltage LVCMOS Input Voltage −0.3V to (VCC + 0.3V) LVCMOS Output Voltage −0.3V to (VCC + 0.3V) −0.3V to +4V LVDS Input Voltage Differential Input Voltage |VID| 1V −0.3V to (VCC + 0.3V) LVDS Output Voltage LVDS Differential Output Voltage 0.0V to +1V LVDS Output Short Circuit Current Duration 5 ms Junction Temperature +150°C −65°C to +150°C Storage Temperature Range Lead Temperature Range Soldering (4 sec.) +260°C Maximum Package Power Dissipation at 25°C RTA0040A Package 2.44W Derate RTA0040A Package 19.49 mW/°C above +25°C Package Thermal Resistance θJA +26.9°C/W θJC +3.8°C/W ESD Susceptibility HBM MM (3) (2) (3) (4) (5) ≥250V (5) CDM (1) ≥8 kV (4) ≥1250V “Absolute Maximum Ratings” indicate limits beyond which damage to the device may occur, including inoperability and degradation of device reliability and/or performance. Functional operation of the device and/or non-degradation at the Absolute Maximum Ratings or other conditions beyond those indicated in the Recommended Operating Conditions is not implied. The Recommended Operating Conditions indicate conditions at which the device is functional and the device should not be operated beyond such conditions. If Military/Aerospace specified devices are required, please contact the TI Sales Office/Distributors for availability and specifications. Human Body Model, applicable std. JESD22-A114C Machine Model, applicable std. JESD22-A115-A Field Induced Charge Device Model, applicable std. JESD22-C101-C Recommended Operating Conditions Supply Voltage (VCC) Receiver Differential Input Voltage (VID) Operating Free Air Temperature (TA) Min Typ Max Units 3.0 3.3 3.6 V 1 V +85 °C 0 −40 +25 Electrical Characteristics Over recommended operating supply and temperature ranges unless otherwise specified. Symbol Parameter Conditions (1) (2) (3) Min Typ Max Units V LVCMOS DC SPECIFICATIONS VIH High Level Input Voltage 2.0 VDD VIL Low Level Input Voltage GND 0.8 V IIH High Level Input Current ±10 μA (1) (2) (3) 4 VIN = 3.6V VCC = 3.6V 0 The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed. Current into device pins is defined as positive. Current out of device pins is defined as negative. All voltages are referenced to ground except VOD and ΔVOD. Typical values represent most likely parametric norms for VCC = +3.3V and TA = +25°C, and at the Recommended Operation Conditions at the time of product characterization and are not guaranteed. Submit Documentation Feedback Copyright © 2008–2013, Texas Instruments Incorporated Product Folder Links: DS25BR440 DS25BR440 www.ti.com SNLS258B – FEBRUARY 2008 – REVISED MARCH 2013 Electrical Characteristics (continued) Over recommended operating supply and temperature ranges unless otherwise specified. (1) (2) (3) Symbol Parameter Conditions Min Typ Max Units 0 ±10 μA IIL Low Level Input Current VIN = GND VCC = 3.6V VCL Input Clamp Voltage ICL = −18 mA, VCC = 0V −0.9 −1.5 V VOL Low Level Output Voltage IOL= 4 mA 0.26 0.4 V 1 V 0 +100 mV LVDS INPUT DC SPECIFICATIONS VID Input Differential Voltage VTH Differential Input High Threshold 0 VTL Differential Input Low Threshold VCMR Common Mode Voltage Range VID = 100 mV IIN Input Current VIN = +3.6V or 0V VCC = 3.6V or 0V CIN Input Capacitance Any LVDS Input Pin to GND 1.7 pF RIN Input Termination Resistor Between IN+ and IN- 100 Ω VCM = +0.05V or VCC-0.05V −100 0 0.05 ±1 mV VCC 0.05 V ±10 μA LVDS OUTPUT DC SPECIFICATIONS VOD Differential Output Voltage ΔVOD Change in Magnitude of VOD for Complimentary Output States 250 VOS Offset Voltage ΔVOS Change in Magnitude of VOS for Complimentary Output States IOS Output Short Circuit Current RL = 100Ω -35 1.05 (4) 350 RL = 100Ω 1.2 -35 450 mV 35 mV 1.375 V 35 mV OUT to GND -35 -55 mA OUT to VCC 7 55 mA COUT Output Capacitance Any LVDS Output Pin to GND 1.2 pF ROUT Output Termination Resistor Between OUT+ and OUT- 100 Ω SUPPLY CURRENT ICC Supply Current PE = OFF, EQ = OFF PWDN = H 162 190 mA ICCZ Power Down Supply Current PWDN = L 55 63 mA Typ Max Units 390 600 ps 400 600 ps 10 50 ps (4) Output short circuit current (IOS) is specified as magnitude only, minus sign indicates direction only. AC Electrical Characteristics (1) (2) Over recommended operating supply and temperature ranges unless otherwise specified. Symbol Parameter Conditions Min LVDS OUTPUT AC SPECIFICATIONS tPLHD Differential Propagation Delay Low to High (3) tPHLD Differential Propagation Delay High to Low (3) tSKD1 Pulse Skew |tPLHD − tPHLD| (1) (2) (3) (4) RL = 100Ω (3) (4) The Electrical Characteristics tables list guaranteed specifications under the listed Recommended Operating Conditions except as otherwise modified or specified by the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not guaranteed. Typical values represent most likely parametric norms for VCC = +3.3V and TA = +25°C, and at the Recommended Operation Conditions at the time of product characterization and are not guaranteed. Specification is guaranteed by characterization and is not tested in production. tSKD1, |tPLHD − tPHLD|, Pulse Skew, is the magnitude difference in differential propagation delay time between the positive going edge and the negative going edge of the same channel. Submit Documentation Feedback Copyright © 2008–2013, Texas Instruments Incorporated Product Folder Links: DS25BR440 5 DS25BR440 SNLS258B – FEBRUARY 2008 – REVISED MARCH 2013 www.ti.com AC Electrical Characteristics (1) (2) (continued) Over recommended operating supply and temperature ranges unless otherwise specified. Symbol Parameter Conditions Min Typ Max Units tSKD2 Channel to Channel Skew 18 65 ps tSKD3 Part to Part Skew 50 170 ps tLHT Rise Time 80 160 ps 80 160 ps 8 20 μs 5 12 ns (3) (5) (3) (6) (3) RL = 100Ω (3) tHLT Fall Time tON Any PWDN to Output Active Time tOFF Any PWDN to Output Inactive Time JITTER PERFORMANCE WITH EQ = Off, PE = Off tRJ1 tRJ2 tDJ2 Random Jitter (RMS Value) No Test Channels VID = 350 mV VCM = 1.2V Clock (RZ) 2.5 Gbps 0.5 1 ps 3.125 Gbps 0.5 1 ps Deterministic Jitter (Peak to Peak) No Test Channels VID = 350 mV VCM = 1.2V K28.5 (NRZ) 2.5 Gbps 6 22 ps 3.125 Gbps 10 29 ps Total Jitter (Peak to Peak) No Test Channels VID = 350 mV VCM = 1.2V PRBS-23 (NRZ) 2.5 Gbps 0.04 0.09 UIP-P 3.125 Gbps 0.06 0.14 UIP-P (8) tTJ1 tTJ2 (9) JITTER PERFORMANCE WITH EQ = Off, PE = On tRJ1B tRJ2B tDJ1B tDJ2B tTJ1B tTJ2B tRJ1D tRJ2D tDJ1D tDJ2D tTJ1D tTJ2D tRJ2BD 2.5 Gbps 0.5 1 ps 3.125 Gbps 0.5 1 ps Deterministic Jitter (Peak to Peak) Test Channel B VID = 350 mV VCM = 1.2V K28.5 (NRZ) 2.5 Gbps 7 15 ps 4 23 ps Total Jitter (Peak to Peak) Test Channel B VID = 350 mV VCM = 1.2V PRBS-23 (NRZ) 2.5 Gbps 0.05 0.10 UIP-P 3.125 Gbps 0.06 0.14 UIP-P (7) (8) (10) (9) (10) (11) (12) (13) 6 (11) 3.125 Gbps (Figure 7, Figure 9) Random Jitter (RMS Value) Test Channel D VID = 350 mV VCM = 1.2V Clock (RZ) 2.5 Gbps 0.5 1 ps 3.125 Gbps 0.5 1 ps Deterministic Jitter (Peak to Peak) Test Channel D VID = 350 mV VCM = 1.2V K28.5 (NRZ) 2.5 Gbps 14 30 ps 3.125 Gbps 15 30 ps Total Jitter (Peak to Peak) Test Channel D VID = 350 mV VCM = 1.2V PRBS-23 (NRZ) 2.5 Gbps 0.08 0.15 UIP-P 3.125 Gbps 0.10 0.17 UIP-P 2.5 Gbps 0.5 1 ps 3.125 Gbps 0.5 1 ps (12) (13) (10) Random Jitter (RMS Value) Input Test Channel D Output Test Channel B (12) (7) (8) (Figure 6, Figure 9) VID = 350 mV VCM = 1.2V Clock (RZ) JITTER PERFORMANCE WITH EQ = On, PE = On tRJ1BD (3) Random Jitter (RMS Value) Test Channel B JITTER PERFORMANCE WITH EQ = On, PE = Off (6) (Figure 5) (7) tDJ1 (5) (3) (11) (Figure 8, Figure 9) VID = 350 mV VCM = 1.2V Clock (RZ) tSKD2, Channel to Channel Skew, is the difference in propagation delay (tPLHD or tPHLD) among all output channels in Broadcast mode (any one input to all outputs). tSKD3, Part to Part Skew, is defined as the difference between the minimum and maximum differential propagation delays. This specification applies to devices at the same VCC and within 5°C of each other within the operating temperature range. Measured on a clock edge with a histogram and an accumulation of 1500 histogram hits. Input stimulus jitter is subtracted geometrically. Tested with a combination of the 1100000101 (K28.5+ character) and 0011111010 (K28.5- character) patterns. Input stimulus jitter is subtracted algebraically. Measured on an eye diagram with a histogram and an accumulation of 3500 histogram hits. Input stimulus jitter is subtracted. Measured on an eye diagram with a histogram and an accumulation of 3500 histogram hits. Input stimulus jitter is subtracted. Specification is guaranteed by characterization and is not tested in production. Measured on a clock edge with a histogram and an accumulation of 1500 histogram hits. Input stimulus jitter is subtracted geometrically. Tested with a combination of the 1100000101 (K28.5+ character) and 0011111010 (K28.5- character) patterns. Input stimulus jitter is subtracted algebraically. Submit Documentation Feedback Copyright © 2008–2013, Texas Instruments Incorporated Product Folder Links: DS25BR440 DS25BR440 www.ti.com SNLS258B – FEBRUARY 2008 – REVISED MARCH 2013 AC Electrical Characteristics (1) (2) (continued) Over recommended operating supply and temperature ranges unless otherwise specified. Symbol tDJ1BD tDJ2BD Parameter tTJ2BD Min Typ Max Units Deterministic Jitter (Peak to Peak) Input Test Channel D Output Test Channel B VID = 350 mV VCM = 1.2V K28.5 (NRZ) 2.5 Gbps 11 23 ps 3.125 Gbps 5 24 ps Total Jitter (Peak to Peak) Input Test Channel D Output Test Channel B VID = 350 mV VCM = 1.2V PRBS-23 (NRZ) 2.5 Gbps 0.08 0.14 UIP-P 3.125 Gbps 0.10 0.20 UIP-P (13) tTJ1BD Conditions (10) Submit Documentation Feedback Copyright © 2008–2013, Texas Instruments Incorporated Product Folder Links: DS25BR440 7 DS25BR440 SNLS258B – FEBRUARY 2008 – REVISED MARCH 2013 www.ti.com DC TEST CIRCUITS ¼ DS25BR440 Power Supply VOH OUT+ IN+ R D RL Power Supply IN- OUTVOL Figure 1. Differential Driver DC Test Circuit AC Test Circuits and Timing Diagrams ¼ DS25BR440 OUT+ IN+ R Signal Generator D RL IN- OUT- Figure 2. Differential Driver AC Test Circuit Figure 3. Propagation Delay Timing Diagram Figure 4. LVDS Output Transition Times Pre-Emphasis and Equalization Test Circuits DS25BR440 CHARACTERIZATION BOARD 50: Microstrip ¼ DS25BR440 50: Microstrip L=4" L=4" L=4" L=4" 50: Microstrip 50: Microstrip PATTERN GENERATOR OSCILLOSCOPE Figure 5. Jitter Performance Test Circuit 8 Submit Documentation Feedback Copyright © 2008–2013, Texas Instruments Incorporated Product Folder Links: DS25BR440 DS25BR440 www.ti.com SNLS258B – FEBRUARY 2008 – REVISED MARCH 2013 DS25BR440 CHARACTERIZATION BOARD TEST CHANNEL ¼ DS25BR440 50: MS 50: MS L=4" L=4" PATTERN GENERATOR OSCILLOSCOPE L=4" L=4" 50: MS 50: MS Figure 6. Pre-emphasis Performance Test Circuit TEST CHANNEL DS25BR440 CHARACTERIZATION BOARD ¼ DS25BR440 50: MS 50: MS L=4" L=4" PATTERN GENERATOR OSCILLOSCOPE L=4" L=4" 50: MS 50: MS Figure 7. Equalization Performance Test Circuit TEST CHANNEL DS25BR440 CHARACTERIZATION BOARD 50: Microstrip TEST CHANNEL 50: Microstrip ¼ DS25BR440 L=4" L=4" L=4" L=4" 50: Microstrip 50: Microstrip PATTERN GENERATOR OSCILLOSCOPE Figure 8. Pre-emphasis and Equalization Performance Test Circuit 50: MS 50: MS L = A, B or C L=1" L=1" L=1" 50: MS L=1" 100: Diff. Stripline 50: MS Figure 9. Test Channel Block Diagram Test Channel Loss Characteristics The test channel was fabricated with Polyclad PCL-FR-370-Laminate/PCL-FRP-370 Prepreg materials (Dielectric constant of 3.7 and Loss Tangent of 0.02). The edge coupled differential striplines have the following geometries: Trace Width (W) = 5 mils, Gap (S) = 5 mils, Height (B) = 16 mils. Submit Documentation Feedback Copyright © 2008–2013, Texas Instruments Incorporated Product Folder Links: DS25BR440 9 DS25BR440 SNLS258B – FEBRUARY 2008 – REVISED MARCH 2013 Test Channel Length (inches) www.ti.com Insertion Loss (dB) 500 MHz 750 MHz 1000 MHz 1250 MHz 1500 MHz 1560 MHz A 10 -1.2 -1.7 -2.0 -2.4 -2.7 -2.8 B 20 -2.6 -3.5 -4.1 -4.8 -5.5 -5.6 C 30 -4.3 -5.7 -7.0 -8.2 -9.4 -9.7 D 15 -1.6 -2.2 -2.7 -3.2 -3.7 -3.8 E 30 -3.4 -4.5 -5.6 -6.6 -7.7 -7.9 F 60 -7.8 -10.3 -12.4 -14.5 -16.6 -17.0 Functional Description The DS25BR440 is a 3.125 Gbps Quad LVDS buffer optimized for high-speed signal routing and repeating over lossy FR-4 printed circuit board backplanes and balanced cables. The DS25BR440 has a pre-emphasis control pin for each output for switching the transmit pre-emphasis to ON and OFF setting and an equalization control pin for each input for switching the receive equalization to ON and OFF setting. The following are the transmit pre-emphasis and receive equalization truth tables. Table 1. Transmit Pre-Emphasis Truth Table (1) OUTPUT OUTn, n = {0, 1, 2, 3} (1) CONTROL Pin (PEn) State Pre-emphasis Level 0 OFF 1 ON Transmit Pre-emphasis Level Selection for an Output OUTn Table 2. Receive Equalization Truth Table (1) INPUT INn, n = {0, 1, 2, 3} (1) CONTROL Pin (EQn) State Equalization Level 0 OFF 1 ON Receive Equalization Level Selection for an Input INn Input Interfacing The DS25BR440 accepts differential signals and allows simple AC or DC coupling. With a wide common mode range, the DS25BR440 can be DC-coupled with all common differential drivers (i.e. LVPECL, LVDS, CML). The following three figures illustrate typical DC-coupled interface to common differential drivers. Note that the DS25BR440 inputs are internally terminated with a 100Ω resistor. LVDS Driver DS25BR440 Receiver 100: Differential T-Line OUT+ IN+ 100: OUT- IN- Figure 10. Typical LVDS Driver DC-Coupled Interface to an DS25BR440 Input 10 Submit Documentation Feedback Copyright © 2008–2013, Texas Instruments Incorporated Product Folder Links: DS25BR440 DS25BR440 www.ti.com SNLS258B – FEBRUARY 2008 – REVISED MARCH 2013 CML3.3V or CML2.5V Driver VCC 50: DS25BR440 Receiver 100: Differential T-Line 50: OUT+ IN+ 100: IN- OUT- Figure 11. Typical CML Driver DC-Coupled Interface to an DS25BR440 Input LVPECL Driver OUT+ 100: Differential T-Line LVDS Receiver IN+ 100: OUT150-250: IN150-250: Figure 12. Typical LVPECL Driver DC-Coupled Interface to an DS25BR440 Input Output Interfacing The DS25BR440 outputs signals compliant to the LVDS standard. Its outputs can be DC-coupled to most common differential receivers. The following figure illustrates typical DC-coupled interface to common differential receivers and assumes that the receivers have high impedance inputs. While most differential receivers have a common mode input range that can accommodate LVDS compliant signals, it is recommended to check the respective receiver's data sheet prior to implementing the suggested interface implementation. DS25BR440 Driver Differential Receiver 100: Differential T-Line OUT+ IN+ CML or LVPECL or LVDS 100: : IN- OUT- Figure 13. Typical DS25BR440 Output DC-Coupled Interface to an LVDS, CML or LVPECL Receiver Submit Documentation Feedback Copyright © 2008–2013, Texas Instruments Incorporated Product Folder Links: DS25BR440 11 DS25BR440 SNLS258B – FEBRUARY 2008 – REVISED MARCH 2013 www.ti.com Typical Performance 60 150 VCC = 3.3V TA = 25°C NRZ PRBS-7 EQ = Off PE = Off 40 30 20 100 20" FR4 Stripline 75 50 10 25 0 0 0 0.8 TA = 25°C NRZ PRBS7 EQ = On 125 RESIDUAL JITTER (ps) 50 TOTAL JITTER (ps) VCC = 3.3V 1.6 2.4 3.2 10" FR4 Stripline 0 4.0 0.8 DATA RATE (Gbps) 2.4 3.2 4.0 DATA RATE (Gbps) Figure 14. Total Jitter as a Function of Data Rate Figure 15. Residual Jitter as a Function of Data Rate, FR4 Stripline Length and EQ Level 150 240 VCC = 3.3V VCC = 3.3V TA = 25°C NRZ PRBS7 PEM = On 100 40" FR4 Stripline 75 30" FR4 Stripline 50 TA = 25°C NRZ PRBS7 220 SUPPLY CURRENT (mA) 125 RESIDUAL JITTER (ps) 1.6 25 200 PE = On 180 160 PE = Off 140 20" FR4 Stripline 0 120 0 0.8 1.6 2.4 3.2 4.0 0 1.6 2.4 3.2 4.0 DATA RATE (Gbps) DATA RATE (Gbps) Figure 16. Residual Jitter as a Function of Data Rate, FR4 Stripline Length and PE Level 12 0.8 Figure 17. Supply Current as a Function of Data Rate and PE Level Submit Documentation Feedback Copyright © 2008–2013, Texas Instruments Incorporated Product Folder Links: DS25BR440 DS25BR440 www.ti.com SNLS258B – FEBRUARY 2008 – REVISED MARCH 2013 REVISION HISTORY Changes from Revision A (March 2013) to Revision B • Page Changed layout of National Data Sheet to TI format .......................................................................................................... 12 Submit Documentation Feedback Copyright © 2008–2013, Texas Instruments Incorporated Product Folder Links: DS25BR440 13 PACKAGE OPTION ADDENDUM www.ti.com 6-Feb-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) DS25BR440TSQ/NOPB ACTIVE WQFN RTA 40 250 Green (RoHS & no Sb/Br) SN Level-3-260C-168 HR DS25BR440TSQX/NOPB ACTIVE WQFN RTA 40 2500 Green (RoHS & no Sb/Br) SN Level-3-260C-168 HR Op Temp (°C) Device Marking (4/5) 2BR440SQ -40 to 85 2BR440SQ (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
DS25BR440TSQX/NOPB 价格&库存

很抱歉,暂时无法提供与“DS25BR440TSQX/NOPB”相匹配的价格&库存,您可以联系我们找货

免费人工找货