DS90UB933-Q1
DS90UB933-Q1
SNLS546E – AUGUST 2016 – REVISED
NOVEMBER 2020
SNLS546E – AUGUST 2016 – REVISED NOVEMBER 2020
www.ti.com
DS90UB933-Q1 FPD-Link III Serializer for 1-MP/60-fps Cameras 10/12 Bits,100 MHz
1 Features
3 Description
•
The DS90UB933-Q1 device offers an FPD-Link III
interface with a high-speed forward channel and a
bidirectional control channel for data transmission
over a single coaxial cable or differential pair. The
DS90UB933-Q1 device incorporates differential
signaling on both the high-speed forward channel and
bidirectional control channel data paths. The
serializer/deserializer pair is targeted for connections
between imagers and video processors in an
electronic control unit (ECU). This device is ideally
suited for driving video data requiring up to 12-bit pixel
depth plus two synchronization signals along with
bidirectional control channel bus.
•
•
•
•
•
•
•
•
•
•
AEC-Q100 qualified for automotive applications
with the following results:
– Device temperature grade 2: –40°C to +105°C
ambient operating temperature
37.5-MHz to 100-MHz input pixel clock support
Robust Power-Over-Coaxial (PoC) operation
Programmable data payload:
– 10-Bit payload up to 100-MHz
– 12-Bit payload up to 100-MHz
Continuous low latency bidirectional control
interface channel with I2C support at 400-kHz
Embedded clock with DC-balanced coding to
support AC-coupled interconnects
Capable of driving up to 15-m coaxial or Shielded
Twisted-Pair (STP) cables
4 Dedicated General-Purpose Input/Output (GPIO)
1.8-V, 2.8-V or 3.3-V compatible parallel inputs on
serializer
Single power supply at 1.8-V
ISO 10605 and IEC 61000-4-2 ESD compliant
2 Applications
•
•
•
Automotive
– Surround View Systems (SVS)
– Front Cameras (FC)
– Rear View Cameras (RVC)
– Sensor fusion
– Driver Monitor Cameras (DMS)
– Remote satellite RADAR, ToF, and LIDAR
sensors
Security and surveillance
Machine vision applications
Parallel
Data In
10 or 12
Using TI’s embedded clock technology allows
transparent full-duplex communication over a single
differential pair, carrying asymmetrical-bidirectional
control channel information. This single serial stream
simplifies transferring a wide data bus over PCB
traces and cable by eliminating the skew problems
between parallel data and clock paths. This
significantly saves system cost by narrowing data
paths that in turn reduce PCB layers, cable width, and
connector size and pins. Internal DC-balanced
encoding/decoding is used to support AC-coupled
interconnects.
Device Information
PART NUMBER(1)
DS90UB933-Q1
(1)
PACKAGE
WQFN (32)
HSYNC,
VSYNC
Parallel
Data Out
10 or 12
FPD-Link III
DS90UB933-Q1
Bidirectional
Control Channel
4
GPO
2
Bidirectional
Control Bus
5.00 mm × 5.00 mm
For all available packages, see the orderable addendum at
the end of the data sheet.
2
HD Image
Sensor
BODY SIZE (NOM)
Serializer
DS90UB934-Q1
or
DS90UB964-Q1
2
HSYNC,
VSYNC
4
Image Signal
Processor
(ISP)
GPIO
2
Deserializer
Bidirectional
Control Bus
Simplified Schematic
An©IMPORTANT
NOTICEIncorporated
at the end of this data sheet addresses availability, warranty, changes, use in
safety-critical
applications,
Copyright
2020 Texas Instruments
Submit
Document
Feedback
intellectual property matters and other important disclaimers. PRODUCTION DATA.
1
DS90UB933-Q1
www.ti.com
SNLS546E – AUGUST 2016 – REVISED NOVEMBER 2020
Table of Contents
1 Features............................................................................1
2 Applications..................................................................... 1
3 Description.......................................................................1
4 Revision History.............................................................. 2
5 Pin Configuration and Functions...................................4
Pin Functions.................................................................... 4
6 Specifications.................................................................. 6
6.1 Absolute Maximum Ratings........................................ 6
6.2 ESD Ratings............................................................... 6
6.3 Recommended Operating Conditions.........................6
6.4 Thermal Information....................................................7
6.5 Electrical Characteristics.............................................7
6.6 Recommended Serializer Timing For PCLK............. 10
6.7 AC Timing Specifications (SCL, SDA) - I2CCompatible.................................................................. 11
6.8 Bidirectional Control Bus DC Timing
Specifications (SCL, SDA) - I2C-Compatible.............. 11
6.9 Serializer Switching Characteristics..........................12
6.10 Timing Diagrams..................................................... 14
6.11 Typical Characteristics............................................ 16
7 Detailed Description......................................................17
7.1 Overview................................................................... 17
7.2 Functional Block Diagram......................................... 17
7.3 Feature Description...................................................17
7.4 Device Functional Modes..........................................21
7.5 Programming............................................................ 26
7.6 Register Maps...........................................................30
8 Application and Implementation.................................. 37
8.1 Application Information............................................. 37
8.2 Typical Applications.................................................. 39
9 Power Supply Recommendations................................42
10 Layout...........................................................................43
10.1 Layout Guidelines................................................... 43
10.2 Layout Example...................................................... 44
11 Device and Documentation Support..........................46
11.1 Documentation Support.......................................... 46
11.2 Receiving Notification of Documentation Updates.. 46
11.3 Support Resources................................................. 46
11.4 Trademarks............................................................. 46
11.5 Electrostatic Discharge Caution.............................. 46
11.6 Glossary.................................................................. 46
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision D (January 2020) to Revision E (November 2020)
Page
• Added register 0x27[3] to register map.............................................................................................................30
• Clarified PDB voltage level for t3 and t4 in Power-Up Sequencing from 90% VPDB to PDB VIH ...................... 37
• Changed Power-Up Sequencing alternative programming steps (t3*) to add NCLK reset............................... 37
• Clarified Power-Up Sequencing alternative programming steps (t3*) to remove delay between I2C commands
..........................................................................................................................................................................37
Changes from Revision C (November 2019) to Revision D (January 2020)
Page
• Clarified GPO2 description by removing statement about leaving pin open if unused ...................................... 4
• Added maximum power up timing constraint between VDD_n and PDB ........................................................ 37
• Added recommended software programming steps if VDD_n to PDB maximum power up timing constraint
can not be met ................................................................................................................................................. 37
Changes from Revision B (September 2018) to Revision C (November 2019)
Page
• Added register 0x27[5] to register map ............................................................................................................30
Changes from Revision A (December 2016) to Revision B (September 2018)
Page
• Added recommendation to ensure GPO2 is low when PDB goes high.............................................................. 4
• Added external clock input frequency range ......................................................................................................6
• Added strap pin input current specification for MODE and IDX pins ................................................................. 7
• Updated TJIT1 PCLK input jitter in the external oscillator mode........................................................................ 10
• Added that 0.45UI TJIT2 maximum is when used with DS90UB934-Q1 and added new foot note ..................10
• Added clarification on MODE pin description in PCLK from imager mode ...................................................... 22
• Updated the MODE setting values to ratio from voltage...................................................................................22
• Updated IDX setting values to ratio from voltage............................................................................................. 27
• Added register "TYPE" column per legend ......................................................................................................30
2
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
www.ti.com
•
•
•
•
•
•
•
•
•
•
DS90UB933-Q1
SNLS546E – AUGUST 2016 – REVISED NOVEMBER 2020
Added type and default value to the reserved register bits that were missing this information........................ 30
Added that register 0x00[7:1] does not auto update IDX strapped address .................................................... 30
Added description for 0x05 bits 1 and 0 (TX_MODE_12b and TX_MODE_10b)............................................. 30
Added reference to Power over Coax Application report..................................................................................37
Clarified description on PDB pin usage during power up ................................................................................ 37
Added paragraph to explain setting registers if GPO2 state is not determined when PDB goes high ............ 37
Added GPO2 to suggested power-up sequencing diagram ............................................................................ 37
timing constraint for PDB to GPO2 delay ........................................................................................................ 37
Revised coax connection diagram to include pulldown resistor for GPO2 ...................................................... 39
Revised STP connection diagram to include pulldown resistor for GPO2 .......................................................41
Changes from Revision * (August 2016) to Revision A (December 2016)
Page
• Changed Product Preview to Production Data release...................................................................................... 1
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
3
DS90UB933-Q1
www.ti.com
SNLS546E – AUGUST 2016 – REVISED NOVEMBER 2020
16
15
GPO[0]
14
VDDCML
13
DOUT+
12
DIN[1]
GPO[1]
DOUT-
11
DIN[2]
GPO[2]/
CLKOUT
DIN[3]
GPO[3]/
CLKIN
DIN[4]
DIN[0]
DIN[5]
17
VDDT
VDDPLL
PDB
DAP = GND
DS90UB933-Q1
Serializer
2
3
4
5
6
7
PCLK
SCL
SDA
ID[x]
RES
8
MODE
1
VSYNC
DIN[11]
18
HSYNC
DIN[10]
19
32
DIN[9]
20
10
DIN[8]
21
9
25
26
27
VDDD
22
29
DIN[7]
23
30
DIN[6]
24
31
VDDIO
28
5 Pin Configuration and Functions
Figure 5-1. RTV Package 32-Pin WQFN Top View
Pin Functions
PIN
NAME
I/O
NO.
DESCRIPTION
LVCMOS PARALLEL INTERFACE
19,20,21,22,
23,24,26,27,
29,30,31,32
Inputs,
LVCMOS
w/ pulldown
Parallel data Inputs. For 10-bit MODE, parallel inputs DIN[0:9] are active. DIN[10:11] are
inactive and should not be used. Any unused inputs (including DIN[10:11]) must be No
Connect. For 12-bit MODE, parallel inputs DIN[0:11] are active. Any unused inputs must be
No Connect.
HSYNC
1
Input,
LVCMOS
w/ pulldown
Horizontal SYNC input. Note: HS transition restrictions: 1. 12-bit mode: No HS restrictions
(raw) 2. 10-bit mode: HS restricted to no more than one transition per 10 PCLK cycles.
Leave open if unused.
VSYNC
2
Input,
LVCMOS
w/ pulldown
Vertical SYNC input. Note: VS transition restrictions: 1. 12-bit mode: No VS restrictions (raw)
2. 10-bit mode: VS restricted to no more than one transition per 10 PCLK cycles. Leave
open if unused.
PCLK
3
Input,
LVCMOS
w/ pulldown
Pixel clock input pin. Strobe edge set by TRFB control register 0x03[0].
DIN[0:11]
GENERAL PURPOSE OUTPUT (GPO)
GPO[1:0]
GPO[2]/
CLKOUT
4
16,15
17
Output,
LVCMOS
General-purpose output pins can be configured as outputs, used to control and respond to
various commands. GPO[1:0] can be configured to be the outputs for input signals coming
from GPIO[1:0] pins on the deserializer or can be configured to be outputs of the local
register on the serializer. Leave open if unused.
Output,
LVCMOS
GPO[2] pin can be configured to be the output for input signal coming from the GPIO[2] pin
on the deserializer or can be configured to be the output of the local register on the
Serializer. It can also be configured to be the output clock pin when the DS90UB933-Q1
device is used in the external oscillator mode. See Section 7.4 for a detailed description of
External Oscillator mode. It is recommended to pull GPO2 to GND with a minimum 40-kΩ
resistor to ensure GPO2=LOW when PDB transitions from LOW to HIGH.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
DS90UB933-Q1
www.ti.com
SNLS546E – AUGUST 2016 – REVISED NOVEMBER 2020
PIN
NAME
GPO[3]/
CLKIN
I/O
NO.
18
DESCRIPTION
GPO[3] can be configured to be the output for input signals coming from the GPIO[3] pin on
the deserializer or can be configured to be the output of the local register setting on the
Input/Output,
serializer. It can also be configured to be the input clock pin when the DS90UB933-Q1
LVCMOS
serializer is working with an external oscillator. See Section 7.4 for a detailed description of
external oscillator mode. Leave open if unused.
BIDIRECTIONAL CONTROL BUS - I2C-COMPATIBLE
SCL
4
Input/Output, Clock line for the bidirectional control bus communication
Open Drain SCL requires an external pullup resistor to V(VDDIO).
SDA
5
Input/Output, Data line for the bidirectional control bus communication
Open Drain SDA requires an external pullup resistor to V(VDDIO).
MODE
8
Device mode select
Resistor (Rmode) to ground and 10-kΩ pullup to 1.8 V rail. MODE pin on the serializer can
Input, analog
be used to select whether the system is running off the PCLK from the imager or an external
oscillator. See details in Table 7-2.
IDX
6
Device ID Address Select
Input, analog The IDX pin on the serializer is used to assign the I2C device address. Resistor (RID) to
Ground and 10-kΩ pullup to 1.8 V rail. See Table 7-6.
CONTROL AND CONFIGURATION
PDB
9
Input,
LVCMOS
w/ pulldown
RES
7
Input,
LVCMOS
w/ pulldown
Power-down mode input pin
PDB = H, Serializer is enabled and is ON.
PDB = L, Serializer is in power down mode. When the serializer is in power down, the PLL is
shut down, and IDD is minimized. Programmed control register data is NOT retained and
reset to default values.
Reserved
This pin MUST be tied LOW.
FPD–Link III INTERFACE
DOUT+
DOUT-
13
Input/Output, Non-inverting differential output, bidirectional control channel input. The interconnect must
CML
be AC coupled with a 0.1-µF capacitor.
12
Inverting differential output, bidirectional control channel input. The interconnect must be AC
Input/Output, coupled with a 0.1-µF capacitor. For applications using single-ended coaxial interconnect,
CML
place a 0.047-µF AC-coupling capacitor in series with a 50-Ω resistor before terminating to
GND.
POWER AND GROUND(1)
VDDPLL
10
Power,
Analog
PLL power, 1.8 V ±5%.
VDDT
11
Power,
Analog
Tx analog power, 1.8 V ±5%.
VDDCML
14
Power,
Analog
CML and bidirectional channel driver power, 1.8 V ±5%.
VDDD
28
Power, Digital Digital Power, 1.8 V ±5%.
VDDIO
25
Power, Digital
Power for I/O stage. The single-ended inputs and SDA, SCL are powered from V(VDDIO).
VDDIO can be connected to a 1.8 V ±5% or 2.8 V ±10% or 3.3 V ±10%.
DAP
Ground, DAP
DAP must be grounded. DAP is the large metal contact at the bottom side, located at the
center of the WQFN package. Connected to the ground plane (GND) with at least 9 vias.
VSS
(1)
See Section 8.1.2.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
5
DS90UB933-Q1
www.ti.com
SNLS546E – AUGUST 2016 – REVISED NOVEMBER 2020
6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)(1)
MIN
MAX
UNIT
Supply voltage – V(VDD_n) (V(VDDPLL), V(VDDT), V(VDDCML), V(VDDD))
–0.3
2.5
V
Supply voltage – V(VDDIO)
−0.3
4
V
LVCMOS input voltage
−0.3
V(VDDIO) + 0.3
V
FPD-Link III I/O voltage – V(VDD_n)
–0.3
V(VDD_n) + 0.3
V
150
°C
150
°C
Junction temperature
Storage temperature, Tstg
(1)
−65
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Section 6.3.
Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
6.2 ESD Ratings
VALUE
Human body model (HBM), per AEC
HBM ESD Classification Level 3B
Q100-002(1)
Charged device model (CDM), per AEC
Q100-011
CDM ESD Classification Level C6
V(ESD)
Electrostatic
discharge
(IEC 61000-4-2)
D R = 330 Ω, Cs = 150 pF
(ISO10605)
RD = 330 Ω, Cs = 150/330 pF
RD = 2 KΩ, Cs = 150/330 pF
(1)
UNIT
±8000
Corner pins (1, 8, 9, 16, 17, 24, 25, 32)
±1000
Other pins
Air Discharge
(DOUT+, DOUT-, RIN+, RIN-)
±25000
Contact Discharge
(DOUT+, DOUT-, RIN+, RIN-)
±7000
Air Discharge
(DOUT+, DOUT-, RIN+, RIN-)
±15000
Contact Discharge
(DOUT+, DOUT-, RIN+, RIN-)
±8000
V
AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.
6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)
Supply voltage, V(VDD_n)
LVCMOS supply voltage
Supply noise(1)
Power-Over-Coax Supply
Noise
V(VDDIO)= 1.8 V
NOM
MAX
UNIT
1.71
1.8
1.89
V
1.71
1.8
1.89
V
V(VDDIO)= 3.3 V
3
3.3
3.6
V(VDDIO)= 2.8 V
2.52
2.8
3.08
V(VDD_n) = 1.8 V
25
V(VDDIO) = 1.8 V
25
mVp-p
V(VDDIO) = 3.3 V
50
ƒ = 30 Hz - 1 KHz, trise > 100 µs
Measured differentially between DOUT+ and DOUT–
(coax mode only)
35
mVp-p
ƒ = 1 KHz - 50 MHz
Measured differentially between DOUT+ and DOUT(coax mode only)
35
mVp-p
Operating free air temperature, TA
6
MIN
105
°C
PCLK clock frequency - 10-bit mode
50
100
MHz
PCLK clock frequency - 12-bit mode
37.5
100
MHz
Submit Document Feedback
–40
25
Copyright © 2020 Texas Instruments Incorporated
DS90UB933-Q1
www.ti.com
SNLS546E – AUGUST 2016 – REVISED NOVEMBER 2020
over operating free-air temperature range (unless otherwise noted)
MIN
NOM
MAX
UNIT
External clock input frequency to GPO3 - 10-bit mode
25
50
MHz
External clock input frequency to GPO3 - 12-bit mode
25
66.67
MHz
(1)
Supply noise testing was done with minimum capacitors (as shown on Figure 8-9, Figure 8-5 on the PCB. A sinusoidal signal is AC
coupled to the V(VDD_n) (1.8 V) supply with amplitude = 25 mVp-p measured at the device V(VDD_n) pins. Bit error rate testing of input to
the serializer and output of the deserializer with 10-meter cable shows no error when the noise frequency on the serializer is less than
1 MHz. The deserializer, on the other hand, shows no error when the noise frequency is less than 750 kHz.
6.4 Thermal Information
DS90UB933-Q1
THERMAL METRIC(1)
RTV (WQFN)
UNIT
32 PINS
RθJA
Junction-to-ambient thermal resistance
34.9
°C/W
RθJC(top)
Junction-to-case (top) thermal resistance
8.8
°C/W
RθJC(bot)
Junction-to-case (bottom) thermal resistance
3.4
°C/W
RθJB
Junction-to-board thermal resistance
23.4
°C/W
ψJT
Junction-to-top characterization parameter
0.3
°C/W
ψJB
Junction-to-board characterization parameter
8.8
°C/W
(1)
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report (SPRA953).
6.5 Electrical Characteristics
Over recommended operating supply and temperature ranges unless otherwise specified.(1) (2) (3)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
LVCMOS DC SPECIFICATIONS 3.3 V I/O (SER INPUTS, GPIO, CONTROL INPUTS AND OUTPUTS)
VIH
High level input voltage
VIN = 3 V to 3.6 V
2
VIL
Low level input voltage
VIN = 3 V to 3.6 V
GND
IIN
Input current
VIN = 0 V or 3.6 V, VIN = 3 V to 3.6 V
VOH
High level output voltage V(VDDIO) = 3 V to 3.6 V, IOH = −4 mA
VOL
Low level output voltage V(VDDIO) = 3 V to 3.6 V, IOL = 4 mA
IOS
Output short-circuit
current
VOUT = 0 V
Serializer
GPO outputs
IOZ
Tri-state output current
PDB = 0 V,
VOUT = 0 V or V(VDDIO)
Serializer
GPO outputs
CGPO
Pin capacitance
GPO [3:0]
–20
VIN
±1
V
0.8
V
20
µA
2.4
V(VDDIO)
V
GND
0.4
V
–15
–20
mA
20
1.5
µA
pF
LVCMOS DC SPECIFICATIONS 1.8 V I/O (SER INPUTS, GPIO, CONTROL INPUTS AND OUTPUTS)
VIH
High level input voltage
VIN = 1.71 V to 1.89 V
0.65 VIN
VIN
VIL
Low level input voltage
VIN = 1.71 V to 1.89 V
GND
0.35 VIN
IIN
Input current
VIN = 0 V or 1.89 V, VIN = 1.71 V to 1.89 V
VOH
High level output voltage V(VDDIO) = 1.71 V to 1.89 V, IOH = −4 mA
VOL
Low level output voltage V(VDDIO) = 1.71 V to 1.89 V IOL = 4 mA
IOS
Output short-circuit
current
VOUT = 0 V
Serializer
GPO outputs
IOZ
Tri-state output current
PDB = 0 V,
VOUT = 0 V or V(VDDIO)
Serializer
GPO outputs
CGPO
Pin capacitance
GPO [3:0]
IIN_STRAP
Strap pin input current
VIN = 0 V to VDD_n
–20
±1
20
µA
V(VDDIO) –
0.45
V(VDDIO)
V
GND
0.45
V
–11
–20
mA
20
1.5
MODE, IDX
V
–1
µA
pF
1
µA
LVCMOS DC SPECIFICATIONS 2.8 V I/O (SER INPUTS, GPIO, CONTROL INPUTS AND OUTPUTS)
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
7
DS90UB933-Q1
www.ti.com
SNLS546E – AUGUST 2016 – REVISED NOVEMBER 2020
Over recommended operating supply and temperature ranges unless otherwise specified.(1) (2) (3)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
VIH
High level input voltage
VIN = 2.52 V to 3.08 V
0.7 VIN
VIN
VIL
Low level input voltage
VIN = 2.52 V to 3.08 V
GND
0.3 VIN
IIN
Input current
VIN = 0 V or 3.08 V, VIN = 2.52 V to 3.08 V
VOH
High level output voltage V(VDDIO) = 2.52 V to 3.08 V, IOH = −4 mA
VOL
Low level output voltage V(VDDIO) =2.52 V to 3.08V IOL = 4 mA
IOS
Output short-circuit
current
VOUT = 0 V
Serializer
GPO outputs
IOZ
Tri-state output current
PDB = 0 V,
VOUT = 0 V or V(VDDIO)
Serializer
GPO outputs
CGPO
Pin capacitance
GPO [3:0]
–20
±1
UNIT
V
20
µA
V(VDDIO) - 0.4
V(VDDIO)
V
GND
0.4
V
–11
–20
mA
20
1.5
µA
pF
CML DRIVER DC SPECIFICATIONS (DOUT+, DOUT–)
VOD
Differential output
voltage
RL = 100 Ω (Figure 6-6)
640
824
VOUT
Single-ended output
voltage
RL = 50 Ω (Figure 6-6)
320
412
ΔVOD
Differential output
voltage unbalance
RL = 100 Ω
VOS
Output offset voltage
RL = 100 Ω (Figure 6-6)
ΔVOS
Offset voltage unbalance RL = 100 Ω
IOS
Output short-circuit
current
DOUT+ = 0 V or DOUT– = 0 V
Differential internal
termination resistance
Differential across DOUT+ and DOUT–
80
100
120
Single-ended
termination resistance
DOUT+ or DOUT–
40
50
60
RT
VID-BC
VIN-BC
Back channel differential
input voltage
Back channel singleended input voltage
mV
1
50
V(VDD_n) –
(VOD /2)
1
mV
V
50
–26
mV
mA
Ω
260
mV
130
mV
Back Channel Frequency = 5.5 MHz(4)
SERIALIZER SUPPLY CURRENT
IDDT
IDDT
8
Serializer (Tx)
V(VDD_n) supply current
(includes load current)
Serializer (Tx)
V(VDD_n) supply current
(includes load current)
Submit Document Feedback
RL = 100 Ω
WORST CASE pattern
(Figure 6-2)
RL = 100 Ω
RANDOM PRBS-7
pattern
V(VDD_n) = 1.89 V
V(VDDIO) = 3.6 V
ƒ = 100 MHz, 12-bit
mode
Default registers
76
95
mA
V(VDD_n) = 1.89 V
V(VDDIO) = 3.6 V
ƒ = 75 MHz, 12-bit
mode
Default registers
61
80
mA
V(VDD_n) = 1.89 V
V(VDDIO) = 3.6 V
ƒ = 100 MHz, 12-bit
mode
Default Registers
80
V(VDD_n) = 1.89 V
V(VDDIO) = 3.6 V
ƒ = 75 MHz, 12-bit
mode
Default Registers
64
mA
Copyright © 2020 Texas Instruments Incorporated
DS90UB933-Q1
www.ti.com
SNLS546E – AUGUST 2016 – REVISED NOVEMBER 2020
Over recommended operating supply and temperature ranges unless otherwise specified.(1) (2) (3)
PARAMETER
I(VDDIO)T
IDDTZ
I(VDDIO)TZ
(1)
(2)
(3)
(4)
Serializer (Tx)
V(VDDIO) supply current
(includes load current)
TEST CONDITIONS
RL = 100 Ω
WORST CASE pattern
(Figure 6-2)
Serializer (Tx) supply
current power down
PDB = 0 V; All other
LVCMOS inputs = 0 V
Serializer (Tx) V(VDDIO)
supply current power
down
PDB = 0 V; All other
LVCMOS inputs = 0 V
TYP
MAX
V(VDDIO) = 1.89 V
ƒ = 75 MHz, 12-bit
mode
Default Registers
MIN
UNIT
1.5
3
V(VDDIO) = 3.6 V
ƒ = 75 MHz, 12-bit
mode
Default registers
5
8
V(VDDIO)=1.89 V
Default registers
300
1000
µA
V(VDDIO) = 3.6 V
Default registers
300
1000
µA
V(VDDIO) = 1.89 V
Default registers
15
100
µA
V(VDDIO) = 3.6 V
Default registers
15
100
µA
mA
The Electrical Characteristics tables list verified specifications under the listed Section 6.3 except as otherwise modified or specified by
the Electrical Characteristics Conditions and/or Notes. Typical specifications are estimations only and are not verified.
Current into device pins is defined as positive. Current out of a device pin is defined as negative. Voltages are referenced to ground
except VOD and ΔVOD which are differential voltages.
Typical values represent most likely parametric norms at 1.8 V or 3.3 V, TA = 25°C, and at the Section 6.3 at the time of product
characterization and are not verified.
The back channel frequency (MHz) listed is the frequency of the internal clock used to generate the encoded back channel data
stream. The data rate (Mbps) of the encoded back channel stream is the back channel frequency divided by 2.
Copyright © 2020 Texas Instruments Incorporated
Submit Document Feedback
9
DS90UB933-Q1
www.ti.com
SNLS546E – AUGUST 2016 – REVISED NOVEMBER 2020
6.6 Recommended Serializer Timing For PCLK
Over recommended operating supply and temperature ranges unless otherwise specified.(1) (2)
PARAMETER
tTCP
Transmit clock period
TEST CONDITIONS
PIN / FREQ
10-bit mode
50 MHz – 100 MHz
12-bit mode
37.5 MHz - 100 MHz
MIN
NOM
MAX
7.52
T
20
ns
10
T
26.67
ns
tTCIH
Transmit clock
input high time
0.4T
0.5T
0.6T
tTCIL
Transmit clock
input low time
0.4T
0.5T
0.6T
10-bit mode
50 MHz – 100 MHz
0.05T
0.25T
0.3T
tCLKT
PCLK input transition time
(Figure 6-7)
12-bit mode
37.5 MHz – 100 MHz
0.05T
0.25T
0.3T
tJIT0
PCLK input jitter (3)
(PCLK from imager mode)
LPF = ƒ/20, CDR PLL Loop BW = ƒPCLK = 37.5
ƒ/15, BER = 1E-10
– 100 MHz(5)
tJIT1
PCLK input jitter(3)
(External oscillator mode)
LPF = ƒ/20, CDR PLL Loop BW = ƒPCLK = 37.5
ƒ/15, BER = 1E-10
– 100 MHz(5)
tJIT2
LPF = ƒ/20, CDR PLL Loop BW = ƒOSC = 25 –
External oscillator jitter(3) (4) ƒ/15, BER = 1E-10, paired with
66.67 MHz(6)
DS90UB934-Q1 deserializer
ΔOSC
External Oscillator
Frequency Stability
ƒOSC = 25 –
66.67 MHz(6)
tDC
CLKOUT duty cycle
(external oscillator mode)
ƒOSC = 25 –
66.67 MHz(6)
(1)
(2)
(3)
(4)
(5)
(6)
10
UNIT
0.45
UI
0.45
UI
1T
±50
45%
50%
ppm
55%
Recommended input timing requirements are input specifications and not tested in production.
T is the period of the PCLK.
Typical values represent most likely parametric norms at 1.8 V or 3.3 V, TA = 25°C, and at Section 6.3 at the time of product
characterization and are not verified.
0.45UI maximum when used with DS90UB934-Q1 deserializer. When used with DS90UB914A-Q1 deserializer, the maximum is 0.3UI.
ƒPCLK denotes input PCLK frequency to the device.
ƒOSC denotes input external oscillator frequency to the device (GPO3/CLKIN).
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
DS90UB933-Q1
www.ti.com
SNLS546E – AUGUST 2016 – REVISED NOVEMBER 2020
6.7 AC Timing Specifications (SCL, SDA) - I2C-Compatible
Over recommended supply and temperature ranges unless otherwise specified. (Figure 6-1)
PARAMETER
TEST CONDITIONS
MIN
NOM
MAX
UNIT
100
kHz
400
kHz
RECOMMENDED INPUT TIMING REQUIREMENTS
ƒSCL
Standard mode
SCL Clock Frequency
tLOW
Fast mode
SCL Low Period
tHIGH
SCL high period
Standard mode
4.7
µs
Fast mode
1.3
µs
Standard mode
4.0
µs
Fast mode
0.6
µs
Standard mode
4.0
µs
tHD:STA
Hold time for a start or a repeated start
condition
0.6
µs
tSU:STA
Setup time for a start or a repeated start Standard mode
condition
Fast mode
4.7
µs
0.6
µs
tHD:DAT
Data hold time
Standard mode
0
3.45
µs
Fast mode
0
900
ns
tSU:DAT
Data setup time
tSU:STO
Setup time for stop condition
tBUF
Bus free time between stop and start
tr
SCL and SDA rise time
tf
SCL and SDA fall time
Fast mode
Standard mode
250
ns
Fast mode
100
ns
Standard mode
4.0
µs
Fast mode
0.6
µs
Standard mode
4.7
µs
Fast mode
1.3
µs
Standard mode
1000
ns
Fast mode
300
ns
Standard mode
300
ns
Fast mode
300
ns
6.8 Bidirectional Control Bus DC Timing Specifications (SCL, SDA) - I2C-Compatible
Over recommended supply and temperature ranges unless otherwise specified(1)
PARAMETER
TEST CONDITIONS
MIN
NOM
MAX
UNIT
RECOMMENDED INPUT TIMING REQUIREMENTS
VIH
Input high level
SDA and SCL
0.7 × V(VDDIO)
VIL
Input low level
SDA and SCL
GND
VHY
Input hysteresis
VOL
Output low level(2)
IIN
Input current
tR
SDA rise time-READ
tF
SDA fall time-READ
CIN
(1)
(2)
V(VDDIO)
0.3 × V(VDDIO)
> 50
SDA, V(VDDIO) = 1.8 V, IOL= 0.9 mA
0
0.36
0
0.4
SDA, RPU = 10 kΩ, Cb ≤ 400 pF
(Figure 6-1)
SDA or SCL
−10
V
mV
SDA, V(VDDIO) = 3.3 V, IOL= 1.6 mA
SDA or SCL, VIN= V(VDDIO) OR GND
V
10
430
V
µA
ns
20
ns
10ms after the power
sequence is complete (V PDB > PDB V IH) with no delay between write commands. This step will cause a brief
restart of the forward channel output:
•
•
•
Write Register 0x27 = 0x28
Write Register 0x27 = 0x20
Write Register 0x27 = 0x00
8.1.3 AC Coupling
The SER/DES supports only AC-coupled interconnects through an integrated DC-balanced decoding scheme.
External AC-coupling capacitors must be placed in series in the FPD-Link III signal path as shown in Figure 8-2.
For applications utilizing single-ended 50-Ω coaxial cable, the unused data pin (DOUT–, RIN–) must utilize a
0.047-µF capacitor and must be terminated with a 50-Ω resistor. For high-speed FPD–Link III transmissions, the
smallest available package should be used for the AC-coupling capacitor. This helps minimize degradation of
signal quality due to package parasitics.
DOUT+
RIN+
DOUT-
RIN-
SER
DES
Copyright © 2016, Texas Instruments Incorporated
Figure 8-2. AC-Coupled Connection (STP)
DOUT+
RIN+
SER
DES
DOUT-
50Q
50Q
RIN-
Copyright © 2016, Texas Instruments Incorporated
Figure 8-3. AC-Coupled Connection (Coaxial)
8.1.4 Transmission Media
The DS90UB933/934/964 chipset is intended to be used in a point-to-point configuration through a shielded
coaxial cable. The serializer and deserializer provide internal termination to minimize impedance discontinuities.
The interconnect (cable and connectors) must have a differential impedance of 100 Ω, or a single-ended
impedance of 50 Ω. The maximum length of cable that can be used is dependent on the quality of the cable
(gauge, impedance), connector, board(discontinuities, power plane), the electrical environment (for example,
power stability, ground noise, input clock jitter, PCLK frequency, etc.). The resulting signal quality at the receiving
end of the transmission media may be assessed by monitoring the differential eye opening of the serial data
stream. A differential probe should be used to measure across the termination resistor at the CMLOUTP/N pins.
38
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
DS90UB933-Q1
www.ti.com
SNLS546E – AUGUST 2016 – REVISED NOVEMBER 2020
Contact TI for a channel specification regarding cable loss parameters and further details on adaptive equalizer
loss compensation.
8.2 Typical Applications
8.2.1 Coax Application
DS90UB933-Q1
VDDIO
VDDIO
C8
1.8 V
VDDT
C3
C4
C13
C9
1.8 V
DIN0
DIN1
DIN2
DIN3
DIN4
DIN5
DIN6
LVCMOS
Parallel
Bus
DIN7
DIN8
DIN9
DIN10
DIN11
HS
VS
PCLK
1.8 V
VDDPLL
C5
FB1
1.8 V
VDDCML
C6
C11
C15
C7
C12
FB2
1.8 V
VDDD
C1
Serial
FPD-Link III
Interface
DOUT+
DOUTC2
1.8 V
R1
VDDIO
C14
C10
RTERM
MODE
R2
R3
10 kQ
ID[X]
PDB
R4
C18
GPO[0]
GPO[1]
GPO[2]
GPO[3]
GPO
Control
Interface
RPD
VDDIO
RPU
I2C
Bus
Interface
RPU
SCL
FB3
SDA
FB4
C16
C17
Optional
Optional
RES
DAP (GND)
NOTE:
C1 = 0.1 µF (50 WV)
C2 = 0.047 µF (50 WV)
C3:C7 = 0.01 µF
C8:C12 = 0.1 µF
C13, C14 = 4.7 µF
C15 = 22 µF
C16 - C17 = >100 pF
C18 = 1 µF
RTERM = 50 Ÿ
RPU = 1 kŸ to 4.7 kŸ
RPD minimum =40 kŸ
R1, R2 (see MODE Setting Table)
R3, R4 (see ID[x] Setting Table)
FB1:FB4: Impedance = 1 kŸ (@ 100 MHz)
low DC resistance (100 pF
C18 = 1 µF
RPU = 1 kŸ to 4.7 kŸ
RPD minimum =40 kŸ
R1, R2 (see MODE Setting Table)
R3, R4 (see ID[x] Setting Table)
FB1:FB4: Impedance = 1 kŸ (@ 100 MHz)
low DC resistance (