0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
EVM430-F6736

EVM430-F6736

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC16_300MIL

  • 描述:

    EVAL MODULE FOR MSP430F6736

  • 数据手册
  • 价格&库存
EVM430-F6736 数据手册
Product Folder Order Now Technical Documents Tools & Software Support & Community MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 MSP430F673x, MSP430F672x Mixed-Signal Microcontrollers 1 Device Overview 1.1 Features 1 • Low Supply Voltage Range: 3.6 V Down to 1.8 V • Ultra-Low Power Consumption – Active Mode (AM): All System Clocks Active 265 µA/MHz at 8 MHz, 3.0 V, Flash Program Execution (Typical) 140 µA/MHz at 8 MHz, 3.0 V, RAM Program Execution (Typical) – Standby Mode (LPM3): Real-Time Clock (RTC) With Crystal, Watchdog, and Supply Supervisor Operational, Full RAM Retention, Fast Wakeup: 1.7 µA at 2.2 V, 2.5 µA at 3.0 V (Typical) – Off Mode (LPM4): Full RAM Retention, Supply Supervisor Operational, Fast Wakeup: 1.6 µA at 3.0 V (Typical) – Shutdown RTC Mode (LPM3.5): Shutdown Mode, Active Real-Time Clock (RTC) With Crystal: 1.24 µA at 3.0 V (Typical) – Shutdown Mode (LPM4.5): 0.78 µA at 3.0 V (Typical) • Wake up From Standby Mode in 3 µs (Typical) • 16-Bit RISC Architecture, Extended Memory, up to 25-MHz System Clock • Flexible Power Management System – Fully Integrated LDO With Programmable Regulated Core Supply Voltage – Supply Voltage Supervision, Monitoring, and Brownout – System Operation From up to Two Auxiliary Power Supplies • Unified Clock System – FLL Control Loop for Frequency Stabilization – Low-Power Low-Frequency Internal Clock Source (VLO) – Low-Frequency Trimmed Internal Reference Source (REFO) – 32-kHz Crystals (XT1) • One 16-Bit Timer With Three Capture/Compare Registers • Three 16-Bit Timers With Two Capture/Compare Registers Each • Enhanced Universal Serial Communication Interfaces – eUSCI_A0, eUSCI_A1, and eUSCI_A2 – Enhanced UART Supports Automatic BaudRate Detection – IrDA Encoder and Decoder – Synchronous SPI – eUSCI_B0 – I2C With Multiple Slave Addressing – Synchronous SPI • Password-Protected RTC With Crystal Offset Calibration and Temperature Compensation • Separate Voltage Supply for Backup Subsystem – 32-kHz Low-Frequency Oscillator (XT1) – Real-Time Clock – Backup Memory (4 × 16 Bits) • Three 24-Bit Sigma-Delta Analog-to-Digital Converters (ADCs) With Differential PGA Inputs • Integrated LCD Driver With Contrast Control for up to 320 Segments in 8-Mux Mode • Hardware Multiplier Supports 32-Bit Operations • 10-Bit 200-ksps ADC – Internal Reference – Sample-and-Hold, Autoscan Feature – Up to Six External Channels and Two Internal Channels, Including Temperature Sensor • 3-Channel Internal DMA • Serial Onboard Programming, No External Programming Voltage Needed • Single-Phase Electronic Watt-Hour Meter Development Tool (Also See Tools and Software) – EVM430-F6736 - MSP430F6736 EVM for Metering – Energy Measurement Design Center for MSP430™ MCUs • Device Comparison Summarizes the Available Family Members • Available in 100-Pin and 80-Pin LQFP Packages 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 1.2 • • Applications 2-Wire Single-Phase Metering 3-Wire Single-Phase Metering 1.3 www.ti.com • Tamper-Resistant Meters Description The TI MSP family of ultra-low-power microcontrollers consists of several devices featuring different sets of peripherals targeted for various applications. The architecture, combined with extensive low-power modes, is optimized to achieve extended battery life in portable measurement applications. The device features a powerful 16-bit RISC CPU, 16-bit registers, and constant generators that contribute to maximum code efficiency. The digitally controlled oscillator (DCO) allows the device to wake up from lowpower modes to active mode in 3 µs (typical). The MSP430F673x and MSP430F672x microcontrollers feature up to three high-performance 24-bit sigma-delta ADCs, a 10-bit ADC, four enhanced universal serial communication interfaces (three eUSCI_A modules and one eUSCI_B module), four 16-bit timers, a hardware multiplier, a DMA module, an RTC module with alarm capabilities, an LCD driver with integrated contrast control, an auxiliary supply system, and up to 72 I/O pins in the 100-pin devices and 52 I/O pins in the 80-pin devices. For complete module descriptions, see the MSP430F5xx and MSP430F6xx Family User's Guide. Device Information (1) PACKAGE BODY SIZE (2) MSP430F6736IPZ LQFP (100) 14 mm × 14 mm MSP430F6736IPN LQFP (80) 12 mm × 12 mm PART NUMBER (1) (2) 2 For the most current part, package, and ordering information, see the Package Option Addendum in Section 8, or see the TI website at www.ti.com. The sizes shown here are approximations. For the package dimensions with tolerances, see the Mechanical Data in Section 8. Device Overview Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com 1.4 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Functional Block Diagrams DVCC DVSS AVCC AVSS AUXVCC3 XOUT AUXVCC2 XIN AUXVCC1 Figure 1-1 shows the functional block diagram for all device variants in the PZ package. RST/NMI PA P1.x P2.x PB P3.x P4.x PC P5.x P6.x PD P7.x P8.x PE P9.x I/O Ports P1, P2 2×8 I/Os Interrupt and Wakeup I/O Ports P3, P4 2×8 I/Os I/O Ports P5, P6 2×8 I/Os I/O Ports P7, P8 2×8 I/Os I/O Ports P9 1×4 I/O PA 1×16 I/Os PB 1×16 I/Os PC 1×16 I/Os PD 1×16 I/Os PE 1×4 I/O (32kHz) ACLK Unified Clock System SMCLK SYS 128KB 96KB 64KB 32KB 16KB 8KB 4KB 2KB 1KB Flash RAM MCLK Watchdog MPY32 CRC16 Port Mapping Controller CPUXV2 and Working Registers (25 MHz) EEM (S: 3+1) PMM Auxiliary Supplies JTAG, SBW Interface LDO SVM, SVS BOR Port PJ SD24_B ADC10_A LCD_C REF 3 channel 2 channel 10 bit 200 ksps 8-mux Up to 320 Segments Reference 1.5 V, 2.0 V, 2.5 V RTC_C (UART, IrDA,SPI) Timer_A 2 CC Registers Timer_A 3 CC Registers PJ.x eUSCI_A0 eUSCI_A1 eUSCI_A2 TA1 TA2 TA3 TA0 eUSCI_B0 2 (SPI, I C) DMA 3 channel Copyright © 2018, Texas Instruments Incorporated Figure 1-1. Functional Block Diagram - MSP430F673xIPZ and MSP430F672xIPZ DVCC DVSS AVCC AVSS AUXVCC3 XOUT AUXVCC2 XIN AUXVCC1 Figure 1-2 shows the functional block diagram for all device variants in the PN package. RST/NMI PA P1.x P2.x PB P3.x P4.x PC P5.x P6.x I/O Ports P1, P2 2×8 I/Os Interrupt and Wakeup I/O Ports P3, P4 2×8 I/Os I/O Ports P5, P6 2×8 I/Os PA 1×16 I/Os PB 1×16 I/Os PC 1×16 I/Os TA0 TA1 TA2 TA3 eUSCI_A0 eUSCI_A1 eUSCI_A2 Timer_A 3 CC Registers Timer_A 2 CC Registers (UART, IrDA, SPI) (32 kHz) ACLK Unified Clock System SMCLK MCLK 128KB 96KB 64KB 32KB 16KB 8KB 4KB 2KB 1KB Flash RAM SYS DMA Watchdog 3 Channel Port Mapping Controller CRC16 MPY32 CPUXV2 and Working Registers (25 MHz) EEM (S: 3+1) JTAG, SBW Interface Port PJ PMM Auxiliary Supplies LDO SVM, SVS BOR SD24_B ADC10_A LCD_C REF 3 channel 2 channel 10 bit 200 ksps 8-mux Up to 320 segments Reference 1.5 V, 2.0 V, 2.5 V RTC_C eUSCI_B0 (SPI, I2C) PJ.x Copyright © 2018, Texas Instruments Incorporated Figure 1-2. Functional Block Diagram - MSP430F673xIPN and MSP430F672xIPN Device Overview Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 3 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table of Contents 1 2 3 Device Overview ......................................... 1 5.17 REF.................................................. 61 1.1 Features .............................................. 1 5.18 Flash Memory ....................................... 62 1.2 Applications ........................................... 2 5.19 Emulation and Debug ............................... 62 1.3 Description ............................................ 2 1.4 5 Functional Block Diagrams ........................... 3 6.1 CPU 6.2 Instruction Set ....................................... 64 6.3 Operating Modes .................................... 65 Related Products ..................................... 7 6.4 Interrupt Vector Addresses.......................... 66 Terminal Configuration and Functions .............. 8 6.5 Memory Organization ............................... 67 4.1 Pin Diagrams ......................................... 8 6.6 Bootloader (BSL) .................................... 69 ................................................. 4.2 63 Signal Descriptions .................................. 12 6.7 JTAG Operation ..................................... 69 Specifications ........................................... 24 6.8 Flash Memory ....................................... 70 5.1 Absolute Maximum Ratings ......................... 24 6.9 RAM ................................................. 70 5.2 ESD Ratings 24 6.10 Backup RAM ........................................ 70 5.3 5.4 ........................................ Recommended Operating Conditions ............... 24 Active Mode Supply Current Into VCC Excluding External Current ..................................... 26 Low-Power Mode Supply Currents (Into VCC) Excluding External Current.......................... 27 Low-Power Mode With LCD Supply Currents (Into VCC) Excluding External Current .................... 28 6.11 Peripherals 6.12 Input/Output Diagrams .............................. 95 6.13 Device Descriptors (TLV) .......................... 127 5.5 5.6 7 .......................................... 71 Device and Documentation Support .............. 129 ................... 7.1 Getting Started and Next Steps 7.2 Device Nomenclature .............................. 129 129 5.7 Thermal Resistance Characteristics ................ 29 7.3 Tools and Software ................................ 131 5.8 ..................................... Clock Specifications ................................. Power-Management Module (PMM) ................ Auxiliary Supplies ................................... Timer_A ............................................. eUSCI ............................................... LCD Controller ...................................... SD24_B ............................................. ADC10_A ............................................ 30 7.4 Documentation Support ............................ 133 35 7.5 Related Links 38 7.6 Community Resources............................. 134 41 7.7 Trademarks ........................................ 134 44 7.8 Electrostatic Discharge Caution 44 7.9 Export Control Notice .............................. 135 7.10 Glossary............................................ 135 Digital I/O Ports 5.9 5.10 5.11 5.12 5.13 5.14 5.15 5.16 4 Detailed Description ................................... 63 Revision History ......................................... 5 Device Comparison ..................................... 6 3.1 4 6 Table of Contents 50 52 59 8 ...................................... ................... 134 135 Mechanical, Packaging, and Orderable Information ............................................. 136 Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 2 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from February 28, 2013 to September 28, 2018 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • Page Document format and organization changes throughout, including addition of section numbering ....................... 1 Added links to development tool and design center in , Features ............................................................. 1 Added Device Information table .................................................................................................... 2 Corrected the names of the AUXVCC1, AUXVCC2, and AUXVCC3 pins in Section 1.4, Functional Block Diagrams . 3 Added Section 3 and moved Table 3-1 to it ....................................................................................... 6 Added Section 3.1, Related Products ............................................................................................. 7 Added note to RST/NMI/SBWTDIO pin in Table 4-3, Terminal Functions, PZ Package .................................. 17 Added note to RST/NMI/SBWTDIO pin in Table 4-4, Terminal Functions, PN Package .................................. 22 Added typical conditions statements at the beginning of Section 5, Specifications ........................................ 24 Moved all electrical specifications to Section 5, Specifications ............................................................... 24 Added SD24_B input pins and AUXVCCx pins to exception list on "Voltage applied to pins" parameter, and added SD24_B input pin limits in "Diode current at pins" parameter in Section 5.1, Absolute Maximum Ratings ..... 24 Added Section 5.2, ESD Ratings.................................................................................................. 24 Added note on CVCORE in Section 5.3, Recommended Operating Conditions ............................................... 24 Added Section 5.7, Thermal Resistance Characteristics ...................................................................... 29 Added note to RPull in Table 5-1, Schmitt-Trigger Inputs – General-Purpose I/O ........................................... 30 Changed TYP value of CL,eff with Test Conditions of "XTS = 0, XCAPx = 0" from 2 pF to 1 pF in Table 5-7, Crystal Oscillator, XT1, Low-Frequency Mode .................................................................................. 35 Corrected the formula in note (1) [added "/ (85ºC – (–40ºC)"] in Table 5-8, Internal Very-Low-Power LowFrequency Oscillator (VLO) ........................................................................................................ 36 Corrected the formula in note (1) [added "/ (85ºC – (–40ºC)"] in Table 5-9, Internal Reference, Low-Frequency Oscillator (REFO) ................................................................................................................... 36 Changed the MIN value of the V(DVCC_BOR_hys) parameter from 60 mV to 50 mV in Table 5-11, PMM, Brownout Reset (BOR) ........................................................................................................................ 38 Updated notes (1) and (2) and added note (3) in Table 5-17, Wake-up Times From Low-Power Modes and Reset ................................................................................................................................. 40 Corrected the names of the AUXVCC1, AUXVCC2, and AUXVCC3 pins in Auxiliary Supplies section ................ 41 Corrected the name of the AUXCHCx bit in the Test Conditions of Table 5-25, Auxiliary Supplies, Charge Limiting Resistor ..................................................................................................................... 43 Replaced fFrame parameter with fLCD, fFRAME,4mux, and fFRAME,8mux parameters in Table 5-33, LCD_C Recommended Operating Conditions ............................................................................................ 50 Removed ADC10DIV from the formula for the TYP value in the second row of the tCONVERT parameter in Table 544, 10-Bit ADC, Timing Parameters, because ADC10CLK is after division ................................................. 59 Updated Test Conditions for all parameters in Table 5-45, 10-Bit ADC, Linearity Parameters: Changed from "CVREF+ = 20 pF" to "CVeREF+ = 20 pF"; Changed from "(VeREF+ – VeREF–)min ≤ (VeREF+ – VeREF–)" to "1.4 V ≤ (VeREF+ – VeREF–)"; Added "CVeREF+ = 20 pF" to EI Test Conditions ................................................. 60 Added "ADC10SREFx = 11b" to Test Conditions for EG and ET in Table 5-45 ............................................. 60 Throughout document, changed all instances of "bootstrap loader" to "bootloader" ....................................... 69 Corrected spelling of NMIIFG in Table 6-11, System Module Interrupt Vector Registers ................................. 75 Removed mention of real-time clock mode (also called counter mode) in Section 6.11.21, Real-Time Clock (RTC_C) (feature is not supported in this device) .............................................................................. 80 Removed SD24BTRGCTL, SD24BTRGOSR, and SD24BTRGPRE registers (not supported) in Table 6-55, SD24_B Registers................................................................................................................... 93 Added Section 7, Device and Documentation Support, and moved Device and Development Tool Nomenclature and Trademarks sections to it .................................................................................................... 129 Replaced former section Development Tools Support with Section 7.3, Tools and Software .......................... 131 Added Section 8, Mechanical, Packaging, and Orderable Information ..................................................... 136 Revision History Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 5 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com 3 Device Comparison Table 3-1 summarizes the available family members. Table 3-1. Family Members (1) (2) DEVICE FLASH (KB) SRAM (KB) SD24_B CONVERTERS ADC10_A CHANNELS Timer_A (3) eUSCI_A: UART, IrDA, SPI eUSCI_B: SPI, I2C I/Os PACKAGE MSP430F6736IPZ 128 8 3 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6735IPZ 128 4 3 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6734IPZ 96 4 3 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6733IPZ 64 4 3 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6731IPZ 32 2 3 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6730IPZ 16 1 3 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6726IPZ 128 8 2 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6725IPZ 128 4 2 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6724IPZ 96 4 2 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6723IPZ 64 4 2 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6721IPZ 32 2 2 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6720IPZ 16 1 2 6 ext, 2 int 3, 2, 2, 2 3 1 72 100 PZ MSP430F6736IPN 128 8 3 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6735IPN 128 4 3 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6734IPN 96 4 3 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6733IPN 64 4 3 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6731IPN 32 2 3 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6730IPN 16 1 3 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6726IPN 128 8 2 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6725IPN 128 4 2 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6724IPN 96 4 2 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6723IPN 64 4 2 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6721IPN 32 2 2 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN MSP430F6720IPN 16 1 2 3 ext, 2 int 3, 2, 2, 2 3 1 52 80 PN (1) (2) (3) 6 For the most current package and ordering information, see the Package Option Addendum in Section 8, or see the TI website at www.ti.com. Package drawings, thermal data, and symbolization are available at www.ti.com/packaging. Each number in the sequence represents an instantiation of Timer_A with its associated number of capture compare registers and PWM output generators available. For example, a number sequence of 3, 5 would represent two instantiations of Timer_A, the first instantiation having 3 and the second instantiation having 5 capture compare registers and PWM output generators, respectively. Device Comparison Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com 3.1 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Related Products For information about other devices in this family of products or related products, see the following links. Products for TI Microcontrollers TI's low-power and high-performance MCUs, with wired and wireless connectivity options, are optimized for a broad range of applications. Products for MSP430 Ultra-Low-Power Microcontrollers One platform. One ecosystem. Endless possibilities. Enabling the connected world with innovations in ultra-low-power microcontrollers with advanced peripherals for precise sensing and measurement. Companion Products for MSP430F6736 Review products that are frequently purchased or used with this product. Reference Designs for MSP430F6736 The TI Designs Reference Design Library is a robust reference design library that spans analog, embedded processor, and connectivity. Created by TI experts to help you jump start your system design, all TI Designs include schematic or block diagrams, BOMs, and design files to speed your time to market. Search and download designs at ti.com/tidesigns. Device Comparison Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 7 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com 4 Terminal Configuration and Functions 4.1 Pin Diagrams P6.1/S18 P6.2/S17 P6.3/S16 P6.4/S15 P6.5/S14 P6.6/S13 P6.7/S12 P7.0/S11 P7.1/S10 P7.2/S9 P7.3/S8 P7.4/S7 P7.5/S6 P7.6/S5 P7.7/S4 P8.0/S3 P8.1/S2 P8.2/S1 P8.3/S0 TEST/SBWTCK PJ.0/SMCLK/TDO PJ.1/MCLK/TDI/TCLK PJ.2/ADC10CLK/TMS PJ.3/ACLK/TCK RST/NMI/SBWTDIO Figure 4-1 shows the pinout for the 100-pin PZ package. See Table 4-1 for differences between the MSP430F673x and MSP430F672x devices in this package. SD0P0 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 1 75 DVSS SD0N0 2 74 DVSYS SD1P0 3 73 P6.0/S19 SD1N0 4 72 P5.7/S20 SD2P0 5 71 P5.6/S21 SD2N0 6 70 P5.5/S22 VREF 7 69 P5.4/S23 AVSS 8 68 P5.3/S24 AVCC 9 67 P5.2/S25 VASYS 10 66 P5.1/S26 P9.1/A5 11 65 P5.0/S27 P9.2/A4 12 64 P4.7/S28 P9.3/A3 13 63 P4.6/S29 P1.0/PM_TA0.0/VeREF-/A2 14 62 P4.5/S30 P1.1/PM_TA0.1/VeREF+/A1 15 61 P4.4/S31 P1.2/PM_UCA0RXD/PM_UCA0SOMI/A0 16 60 P4.3/S32 P1.3/PM_UCA0TXD/PM_UCA0SIMO/R03 17 59 P4.2/S33 AUXVCC2 18 58 P4.1/S34 AUXVCC1 19 57 P4.0/S35 VDSYS 20 56 P3.7/PM_SD2DIO/S36 DVCC 21 55 P3.6/PM_SD1DIO/S37 DVSS 22 54 P3.5/PM_SD0DIO/S38 VCORE 23 53 P3.4/PM_SDCLK/S39 XIN 24 52 P3.3/PM_TA0.2 P3.2/PM_TACLK/PM_RTCCLK P3.1/PM_TA2.1/BSL_RX P3.0/PM_TA2.0/BSL_TX P2.7/PM_TA1.1 P2.6/PM_TA1.0 P2.5/PM_UCA2CLK P2.4/PM_UCA1CLK P2.3/PM_UCA2TXD/PM_UCA2SIMO P2.2/PM_UCA2RXD/PM_UCA2SOMI P9.0/TACLK/RTCCLK P8.7/TA2.1 P8.6/TA2.0 P2.1/PM_UCB0SIMO/PM_UCB0SDA/COM7 P2.0/PM_UCB0SOMI/PM_UCB0SCL/COM6 P1.7/PM_UCB0CLK/COM5 P1.6/PM_UCA0CLK/COM4 COM3 COM2 COM1 COM0 P8.5/TA1.1 P8.4/TA1.0 LCDCAP/R33 P1.5/PM_UCA1TXD/PM_UCA1SIMO/R23 AUXVCC3 25 51 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 P1.4/PM_UCA1RXD/PM_UCA1SOMI/LCDREF/R13 XOUT NOTE: The secondary digital functions on Ports P1, P2, and P3 are fully mappable. This pinout shows the default mapping. See Table 6-9 for details. NOTE: The pins VDSYS and DVSYS must be connected externally on board for proper device operation. CAUTION: The LCDCAP/R33 pin must be connected to DVSS if not used. Figure 4-1. 100-Pin PZ Package (Top View) 8 Terminal Configuration and Functions Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 4-1. Pinout Differences Between MSP430F673xIPZ and MSP430F672xIPZ (1) PIN NUMBER (1) PIN NAME MSP430F673xIPZ MSP430F672xIPZ 1 SD0P0 SD0P0 2 SD0N0 SD0N0 3 SD1P0 SD1P0 4 SD1N0 SD1N0 5 SD2P0 NC 6 SD2N0 NC 7 VREF VREF 53 P3.4/PM_SDCLK/S39 P3.4/PM_SDCLK/S39 54 P3.5/PM_SD0DIO/S38 P3.5/PM_SD0DIO/S38 55 P3.6/PM_SD1DIO/S37 P3.6/PM_SD1DIO/S37 56 P3.7/PM_SD2DIO/S36 P3.7/PM_NONE/S36 Signal names that differ between devices are indicated by italic typeface. Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 9 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com P5.2/S13 P5.3/S12 P5.4/S11 P5.5/S10 P5.6/S9 P5.7/S8 P6.0/S7 P6.1/S6 P6.2/S5 P6.3/S4 P6.4/S3 P6.5/S2 P6.6/S1 P6.7/S0 TEST/SBWTCK PJ.0/SMCLK/TDO PJ.1/MCLK/TDI/TCLK PJ.2/ADC10CLK/TMS PJ.3/ACLK/TCK RST/NMI/SBWTDIO Figure 4-2 shows the pinout for the 80-pin PN package. See Table 4-2 for differences between the MSP430F673x and MSP430F672x devices in this package. 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 54 P4.5/S18 AVSS 8 53 P4.4/S19 AVCC 9 52 P4.3/S20 VASYS 10 51 P4.2/S21 P1.0/PM_TA0.0/VeREF-/A2 11 50 P4.1/S22 P1.1/PM_TA0.1/VeREF+/A1 12 49 P4.0/S23 P1.2/PM_UCA0RXD/PM_UCA0SOMI/A0 13 48 P3.7/PM_SD2DIO/S24 P1.3/PM_UCA0TXD/PM_UCA0SIMO/R03 14 47 P3.6/PM_SD1DIO/S25 AUXVCC2 15 46 P3.5/PM_SD0DIO/S26 AUXVCC1 16 45 P3.4/PM_SDCLK/S27 VDSYS 17 44 P3.3/PM_TA0.2/S28 DVCC 18 43 P3.2/PM_TACLK/PM_RTCCLK/S29 DVSS 19 42 P3.1/PM_TA2.1/S30/BSL_RX 41 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 P3.0/PM_TA2.0/S31/BSL_TX XIN VCORE P2.7/PM_TA1.1/S32 7 P2.6/PM_TA1.0/S33 P4.6/S17 VREF P2.5/PM_UCA2CLK/S34 55 P2.4/PM_UCA1CLK/S35 6 P2.3/PM_UCA2TXD/PM_UCA2SIMO/S36 P4.7/S16 SD2N0 P2.2/PM_UCA2RXD/PM_UCA2SOMI/S37 56 P2.1/PM_UCB0SIMO/PM_UCB0SDA/COM7/S38 5 P2.0/PM_UCB0SOMI/PM_UCB0SCL/COM6/S39 P5.0/S15 SD2P0 P1.7/PM_UCB0CLK/COM5 57 P1.6/PM_UCA0CLK/COM4 4 COM3 P5.1/S14 SD1N0 COM2 58 COM1 3 COM0 DVSYS SD1P0 LCDCAP/R33 59 P1.5/PM_UCA1TXD/PM_UCA1SIMO/R23 DVSS 2 P1.4/PM_UCA1RXD/PM_UCA1SOMI/LCDREF/R13 60 SD0N0 AUXVCC3 1 XOUT SD0P0 NOTE: The secondary digital functions on Ports P1, P2, and P3 are fully mappable. This pinout shows the default mapping. See Table 6-9 for details. NOTE: The pins VDSYS and DVSYS must be connected externally on board for proper device operation. CAUTION: The LCDCAP/R33 pin must be connected to DVSS if not used. Figure 4-2. 80-Pin PN Package (Top View) 10 Terminal Configuration and Functions Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 4-2. Pinout Differences Between MSP430F673xIPN and MSP430F672xIPN (1) PIN NUMBER (1) PIN NAME MSP430F673xIPN MSP430F672xIPN 1 SD0P0 SD0P0 2 SD0N0 SD0N0 3 SD1P0 SD1P0 4 SD1N0 SD1N0 5 SD2P0 NC 6 SD2N0 NC 7 VREF VREF 45 P3.4/PM_SDCLK/S27 P3.4/PM_SDCLK/S27 46 P3.5/PM_SD0DIO/S26 P3.5/PM_SD0DIO/S26 47 P3.6/PM_SD1DIO/S25 P3.6/PM_SD1DIO/S25 48 P3.7/PM_SD2DIO/S24 P3.7/PM_NONE/S24 Signal names that differ between devices are indicated by italic typeface. Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 11 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 4.2 www.ti.com Signal Descriptions Table 4-3 describes the signals for all device variants in the PZ package. See Table 4-4 for signal descriptions in the PN package. Table 4-3. Terminal Functions, PZ Package TERMINAL NAME NO. I/O (1) DESCRIPTION PZ SD0P0 1 I SD24_B positive analog input for converter 0 (2) SD0N0 2 I SD24_B negative analog input for converter 0 (2) SD1P0 3 I SD24_B positive analog input for converter 1 (2) SD1N0 4 I SD24_B negative analog input for converter 1 (2) SD2P0 5 I SD24_B positive analog input for converter 2 (2) (not available on F672x devices) SD2N0 6 I SD24_B negative analog input for converter 2 (2) (not available on F672x devices) VREF 7 I SD24_B external reference voltage AVSS 8 Analog ground supply AVCC 9 Analog power supply VASYS 10 Analog power supply selected between AVCC, AUXVCC1, AUXVCC2. Connect recommended capacitor value of CVSYS (see Table 5-18). P9.1/A5 11 I/O General-purpose digital I/O Analog input A5 for 10-bit ADC P9.2/A4 12 I/O General-purpose digital I/O Analog input A4 for 10-bit ADC P9.3/A3 13 I/O General-purpose digital I/O Analog input A3 for 10-bit ADC General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: Timer TA0 CCR0 capture: CCI0A input, compare: Out0 output P1.0/PM_TA0.0/VeREF-/A2 14 I/O Negative terminal for the ADC reference voltage for an external applied reference voltage Analog input A2 for 10-bit ADC General-purpose digital I/O with port interrupt and mappable secondary function P1.1/PM_TA0.1/VeREF+/A1 15 I/O Default mapping: Timer TA0 CCR1 capture: CCI1A input, compare: Out1 output Positive terminal for the ADC reference voltage for an external applied reference voltage Analog input A1 for 10-bit ADC General-purpose digital I/O with port interrupt and mappable secondary function P1.2/PM_UCA0RXD/ PM_UCA0SOMI/A0 16 I/O Default mapping: eUSCI_A0 UART receive data; eUSCI_A0 SPI slave out/master in Analog input A0 for 10-bit ADC General-purpose digital I/O with port interrupt and mappable secondary function P1.3/PM_UCA0TXD/ PM_UCA0SIMO/R03 17 AUXVCC2 18 Auxiliary power supply AUXVCC2 AUXVCC1 19 Auxiliary power supply AUXVCC1 I/O Default mapping: eUSCI_A0 UART transmit data; eUSCI_A0 SPI slave in/master out Input/output port of lowest analog LCD voltage (V5) (1) (2) 12 I = input, O = output Short unused analog input pairs and connect them to analog ground. Terminal Configuration and Functions Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 4-3. Terminal Functions, PZ Package (continued) TERMINAL NAME NO. I/O (1) DESCRIPTION PZ 20 Digital power supply selected between DVCC, AUXVCC1, AUXVCC2. Connect recommended capacitor value of CVSYS (see Table 5-18). DVCC 21 Digital power supply DVSS 22 Digital ground supply VCORE (4) 23 XIN 24 I Input terminal for crystal oscillator XOUT 25 O Output terminal for crystal oscillator AUXVCC3 26 VDSYS (3) Regulated core power supply (internal use only, no external current loading) Auxiliary power supply AUXVCC3 for back up subsystem General-purpose digital I/O with port interrupt and mappable secondary function P1.4/PM_UCA1RXD/ PM_UCA1SOMI/LCDREF/R13 27 I/O Default mapping: eUSCI_A1 UART receive data; eUSCI_A1 SPI slave out/master in External reference voltage input for regulated LCD voltage Input/output port of third most positive analog LCD voltage (V3 or V4) General-purpose digital I/O with port interrupt and mappable secondary function P1.5/PM_UCA1TXD/ PM_UCA1SIMO/R23 28 I/O Default mapping: eUSCI_A1 UART transmit data; eUSCI_A1 SPI slave in/master out Input/output port of second most positive analog LCD voltage (V2) LCD capacitor connection LCDCAP/R33 29 I/O Input/output port of most positive analog LCD voltage (V1) CAUTION: This pin must be connected to DVSS if not used. P8.4/TA1.0 30 I/O General-purpose digital I/O Timer TA1 CCR0 capture: CCI0A input, compare: Out0 output General-purpose digital I/O P8.5/TA1.1 31 I/O COM0 32 O LCD common output COM0 for LCD backplane COM1 33 O LCD common output COM1 for LCD backplane COM2 34 O LCD common output COM2 for LCD backplane COM3 35 O LCD common output COM3 for LCD backplane P1.6/PM_UCA0CLK/COM4 36 I/O Timer TA1 CCR1 capture: CCI1A input, compare: Out1 output General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_A0 clock input/output LCD common output COM4 for LCD backplane General-purpose digital I/O with port interrupt and mappable secondary function P1.7/PM_UCB0CLK/COM5 37 I/O Default mapping: eUSCI_B0 clock input/output LCD common output COM5 for LCD backplane General-purpose digital I/O with port interrupt and mappable secondary function P2.0/PM_UCB0SOMI/ PM_UCB0SCL/COM6 38 I/O Default mapping: eUSCI_B0 SPI slave out/master in; eUSCI_B0 I2C clock LCD common output COM6 for LCD backplane (3) (4) The pins VDSYS and DVSYS must be connected externally on the board for proper device operation. VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended capacitor value, CVCORE. Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 13 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 4-3. Terminal Functions, PZ Package (continued) TERMINAL NAME NO. I/O (1) DESCRIPTION PZ General-purpose digital I/O with port interrupt and mappable secondary function P2.1/PM_UCB0SIMO/ PM_UCB0SDA/COM7 39 I/O Default mapping: eUSCI_B0 SPI slave in/master out; eUSCI_B0 I2C data LCD common output COM7 for LCD backplane P8.6/TA2.0 40 I/O General-purpose digital I/O Timer TA2 CCR0 capture: CCI0A input, compare: Out0 output P8.7/TA2.1 41 I/O General-purpose digital I/O Timer TA2 CCR1 capture: CCI1A input, compare: Out1 output General-purpose digital I/O P9.0/TACLK/RTCCLK 42 I/O Timer clock input TACLK for TA0, TA1, TA2, TA3 RTCCLK clock output P2.2/PM_UCA2RXD/ PM_UCA2SOMI 43 P2.3/PM_UCA2TXD/ PM_UCA2SIMO 44 P2.4/PM_UCA1CLK 45 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_A2 UART receive data; eUSCI_A2 SPI slave out/master in I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_A2 UART transmit data; eUSCI_A2 SPI slave in/master out I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_A1 clock input/output P2.5/PM_UCA2CLK 46 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_A2 clock input/output P2.6/PM_TA1.0 47 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: Timer TA1 capture CCR0: CCI0A input, compare: Out0 output P2.7/PM_TA1.1 48 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: Timer TA1 capture CCR1: CCI1A input, compare: Out1 output General-purpose digital I/O with mappable secondary function P3.0/PM_TA2.0/BSL_TX 49 I/O Default mapping: Timer TA2 capture CCR0: CCI0A input, compare: Out0 output Bootloader: Data transmit General-purpose digital I/O with mappable secondary function P3.1/PM_TA2.1/BSL_RX 50 I/O Default mapping: Timer TA2 capture CCR1: CCI1A input, compare: Out1 output Bootloader: Data receive General-purpose digital I/O with mappable secondary function P3.2/PM_TACLK/PM_RTCCLK 51 I/O P3.3/PM_TA0.2 52 I/O Default mapping: Timer clock input TACLK for TA0, TA1, TA2, TA3; RTCCLK clock output General-purpose digital I/O with mappable secondary function Default mapping: Timer TA0 capture CCR2: CCI2A input, compare: Out2 output General-purpose digital I/O with mappable secondary function P3.4/PM_SDCLK/S39 53 I/O Default mapping: SD24_B bitstream clock input/output LCD segment output S39 14 Terminal Configuration and Functions Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 4-3. Terminal Functions, PZ Package (continued) TERMINAL NAME NO. I/O (1) DESCRIPTION PZ General-purpose digital I/O with mappable secondary function P3.5/PM_SD0DIO/S38 54 I/O Default mapping: SD24_B converter-0 bitstream data input/output LCD segment output S38 General-purpose digital I/O with mappable secondary function P3.6/PM_SD1DIO/S37 55 I/O Default mapping: SD24_B converter-1 bitstream data input/output LCD segment output S37 General-purpose digital I/O with mappable secondary function P3.7/PM_SD2DIO/S36 56 I/O Default mapping: SD24_B converter-2 bitstream data input/output (not available on F672x devices) LCD segment output S36 P4.0/S35 57 I/O General-purpose digital I/O LCD segment output S35 P4.1/S34 58 I/O General-purpose digital I/O LCD segment output S34 P4.2/S33 59 I/O General-purpose digital I/O LCD segment output S33 P4.3/S32 60 I/O General-purpose digital I/O LCD segment output S32 P4.4/S31 61 I/O General-purpose digital I/O LCD segment output S31 P4.5/S30 62 I/O General-purpose digital I/O LCD segment output S30 P4.6/S29 63 I/O General-purpose digital I/O LCD segment output S29 P4.7/S28 64 I/O General-purpose digital I/O LCD segment output S28 P5.0/S27 65 I/O General-purpose digital I/O LCD segment output S27 P5.1/S26 66 I/O General-purpose digital I/O LCD segment output S26 P5.2/S25 67 I/O General-purpose digital I/O LCD segment output S25 P5.3/S24 68 I/O General-purpose digital I/O LCD segment output S24 P5.4/S23 69 I/O General-purpose digital I/O LCD segment output S23 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 15 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 4-3. Terminal Functions, PZ Package (continued) TERMINAL NAME P5.5/S22 NO. I/O (1) DESCRIPTION PZ 70 I/O General-purpose digital I/O LCD segment output S22 P5.6/S21 71 I/O General-purpose digital I/O LCD segment output S21 P5.7/S20 72 I/O General-purpose digital I/O LCD segment output S20 I/O General-purpose digital I/O P6.0/S19 73 DVSYS (3) 74 Digital power supply for I/Os DVSS 75 Digital ground supply P6.1/S18 76 LCD segment output S19 I/O General-purpose digital I/O LCD segment output S18 P6.2/S17 77 I/O General-purpose digital I/O LCD segment output S17 P6.3/S16 78 I/O General-purpose digital I/O LCD segment output S16 P6.4/S15 79 I/O General-purpose digital I/O LCD segment output S15 P6.5/S14 80 I/O General-purpose digital I/O LCD segment output S14 P6.6/S13 81 I/O General-purpose digital I/O LCD segment output S13 P6.7/S12 82 I/O General-purpose digital I/O LCD segment output S12 P7.0/S11 83 I/O General-purpose digital I/O LCD segment output S11 P7.1/S10 84 I/O General-purpose digital I/O LCD segment output S10 P7.2/S9 85 I/O General-purpose digital I/O LCD segment output S9 P7.3/S8 86 I/O General-purpose digital I/O LCD segment output S8 P7.4/S7 87 I/O General-purpose digital I/O LCD segment output S7 16 Terminal Configuration and Functions Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 4-3. Terminal Functions, PZ Package (continued) TERMINAL NAME P7.5/S6 NO. I/O (1) DESCRIPTION PZ 88 I/O General-purpose digital I/O LCD segment output S6 P7.6/S5 89 I/O General-purpose digital I/O LCD segment output S5 P7.7/S4 90 I/O General-purpose digital I/O LCD segment output S4 P8.0/S3 91 I/O General-purpose digital I/O LCD segment output S3 P8.1/S2 92 I/O General-purpose digital I/O LCD segment output S2 P8.2/S1 93 I/O General-purpose digital I/O LCD segment output S1 P8.3/S0 94 I/O General-purpose digital I/O LCD segment output S0 TEST/SBWTCK 95 I Test mode pin – select digital I/O on JTAG pins Spy-Bi-Wire input clock General-purpose digital I/O PJ.0/SMCLK/TDO 96 I/O SMCLK clock output Test data output General-purpose digital I/O PJ.1/MCLK/TDI/TCLK 97 I/O MCLK clock output Test data input or Test clock input General-purpose digital I/O PJ.2/ADC10CLK/TMS 98 I/O ADC10_A clock output Test mode select General-purpose digital I/O PJ.3/ACLK/TCK 99 I/O ACLK clock output Test clock Reset input active low (5) RST/NMI/SBWTDIO 100 I/O Nonmaskable interrupt input Spy-Bi-Wire data input/output (5) When this pin is configured as reset, the internal pullup resistor is enabled by default. Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 17 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 4-4 describes the signals for all device variants in the PN package. See Table 4-3 for signal descriptions in the PZ package. Table 4-4. Terminal Functions, PN Package TERMINAL NAME NO. I/O (1) DESCRIPTION PN SD0P0 1 I SD24_B positive analog input for converter 0 (2) SD0N0 2 I SD24_B negative analog input for converter 0 (2) SD1P0 3 I SD24_B positive analog input for converter 1 (2) SD1N0 4 I SD24_B negative analog input for converter 1 (2) SD2P0 5 I SD24_B positive analog input for converter 2 (2) (not available on F672x devices) SD2N0 6 I SD24_B negative analog input for converter 2 (2) (not available on F672x devices) VREF 7 I SD24_B external reference voltage AVSS 8 Analog ground supply AVCC 9 Analog power supply VASYS 10 Analog power supply selected between AVCC, AUXVCC1, AUXVCC2. Connect recommended capacitor value of CVSYS (see Table 5-18). General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: Timer TA0 CCR0 capture: CCI0A input, compare: Out0 output P1.0/PM_TA0.0/VeREF-/A2 11 I/O Negative terminal for the ADC reference voltage for an external applied reference voltage Analog input A2 for 10-bit ADC General-purpose digital I/O with port interrupt and mappable secondary function P1.1/PM_TA0.1/VeREF+/A1 12 I/O Default mapping: Timer TA0 CCR1 capture: CCI1A input, compare: Out1 output Positive terminal for the ADC reference voltage for an external applied reference voltage Analog input A1 for 10-bit ADC General-purpose digital I/O with port interrupt and mappable secondary function P1.2/PM_UCA0RXD/ PM_UCA0SOMI/A0 13 I/O Default mapping: eUSCI_A0 UART receive data; eUSCI_A0 SPI slave out/master in Analog input A0 for 10-bit ADC General-purpose digital I/O with port interrupt and mappable secondary function P1.3/PM_UCA0TXD/ PM_UCA0SIMO/R03 14 AUXVCC2 15 Auxiliary power supply AUXVCC2 AUXVCC1 16 Auxiliary power supply AUXVCC1 VDSYS (3) 17 Digital power supply selected between DVCC, AUXVCC1, AUXVCC2. Connect recommended capacitor value of CVSYS (see Table 5-18). DVCC 18 Digital power supply DVSS 19 Digital ground supply I/O Default mapping: eUSCI_A0 UART transmit data; eUSCI_A0 SPI slave in/master out Input/output port of lowest analog LCD voltage (V5) VCORE (4) 20 Regulated core power supply (internal use only, no external current loading) XIN 21 I Input terminal for crystal oscillator XOUT 22 O Output terminal for crystal oscillator AUXVCC3 23 (1) (2) (3) (4) 18 Auxiliary power supply AUXVCC3 for back up subsystem I = input, O = output Short unused analog input pairs and connect them to analog ground. The pins VDSYS and DVSYS must be connected externally on the board for proper device operation. VCORE is for internal use only. No external current loading is possible. VCORE should only be connected to the recommended capacitor value, CVCORE. Terminal Configuration and Functions Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 4-4. Terminal Functions, PN Package (continued) TERMINAL NAME NO. I/O (1) DESCRIPTION PN General-purpose digital I/O with port interrupt and mappable secondary function P1.4/PM_UCA1RXD/ PM_UCA1SOMI/LCDREF/R13 24 I/O Default mapping: eUSCI_A1 UART receive data; eUSCI_A1 SPI slave out/master in External reference voltage input for regulated LCD voltage Input/output port of third most positive analog LCD voltage (V3 or V4) General-purpose digital I/O with port interrupt and mappable secondary function P1.5/PM_UCA1TXD/ PM_UCA1SIMO/R23 25 I/O Default mapping: eUSCI_A1 UART transmit data; eUSCI_A1 SPI slave in/master out Input/output port of second most positive analog LCD voltage (V2) LCD capacitor connection LCDCAP/R33 26 I/O Input/output port of most positive analog LCD voltage (V1) CAUTION: This pin must be connected to DVSS if not used. COM0 27 O LCD common output COM0 for LCD backplane COM1 28 O LCD common output COM1 for LCD backplane COM2 29 O LCD common output COM2 for LCD backplane COM3 30 O LCD common output COM3 for LCD backplane P1.6/PM_UCA0CLK/COM4 31 I/O General-purpose digital I/O with port interrupt and mappable secondary function Default mapping: eUSCI_A0 clock input/output LCD common output COM4 for LCD backplane General-purpose digital I/O with port interrupt and mappable secondary function P1.7/PM_UCB0CLK/COM5 32 I/O Default mapping: eUSCI_B0 clock input/output LCD common output COM5 for LCD backplane General-purpose digital I/O with port interrupt and mappable secondary function P2.0/PM_UCB0SOMI/ PM_UCB0SCL/COM6/S39 33 I/O Default mapping: eUSCI_B0 SPI slave out/master in; eUSCI_B0 I2C clock LCD common output COM6 for LCD backplane LCD segment output S39 General-purpose digital I/O with port interrupt and mappable secondary function P2.1/PM_UCB0SIMO/ PM_UCB0SDA/COM7/S38 34 I/O Default mapping: eUSCI_B0 SPI slave in/master out; eUSCI_B0 I2C data LCD common output COM7 for LCD backplane LCD segment output S38 General-purpose digital I/O with port interrupt and mappable secondary function P2.2/PM_UCA2RXD/ PM_UCA2SOMI/S37 35 I/O Default mapping: eUSCI_A2 UART receive data; eUSCI_A2 SPI slave out/master in LCD segment output S37 General-purpose digital I/O with port interrupt and mappable secondary function P2.3/PM_UCA2TXD/ PM_UCA2SIMO/S36 36 I/O Default mapping: eUSCI_A2 UART transmit data; eUSCI_A2 SPI slave in/master out LCD segment output S36 General-purpose digital I/O with port interrupt and mappable secondary function P2.4/PM_UCA1CLK/S35 37 I/O Default mapping: eUSCI_A1 clock input/output LCD segment output S35 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 19 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 4-4. Terminal Functions, PN Package (continued) TERMINAL NAME NO. I/O (1) DESCRIPTION PN General-purpose digital I/O with port interrupt and mappable secondary function P2.5/PM_UCA2CLK/S34 38 I/O Default mapping: eUSCI_A2 clock input/output LCD segment output S34 General-purpose digital I/O with port interrupt and mappable secondary function P2.6/PM_TA1.0/S33 39 I/O Default mapping: Timer TA1 capture CCR0: CCI0A input, compare: Out0 output LCD segment output S33 General-purpose digital I/O with port interrupt and mappable secondary function P2.7/PM_TA1.1/S32 40 I/O Default mapping: Timer TA1 capture CCR1: CCI1A input, compare: Out1 output LCD segment output S32 General-purpose digital I/O with mappable secondary function P3.0/PM_TA2.0/S31/BSL_TX 41 I/O Default mapping: Timer TA2 capture CCR0: CCI0A input, compare: Out0 output LCD segment output S31 Bootloader: Data transmit General-purpose digital I/O with mappable secondary function P3.1/PM_TA2.1/S30/BSL_RX 42 I/O Default mapping: Timer TA2 capture CCR1: CCI1A input, compare: Out1 output LCD segment output S30 Bootloader: Data receive General-purpose digital I/O with mappable secondary function P3.2/PM_TACLK/PM_RTCCLK/ S29 43 I/O Default mapping: Timer clock input TACLK for TA0, TA1, TA2, TA3; RTCCLK clock output LCD segment output S29 General-purpose digital I/O with mappable secondary function P3.3/PM_TA0.2/S28 44 I/O Default mapping: Timer TA0 capture CCR2: CCI2A input, compare: Out2 output LCD segment output S28 General-purpose digital I/O with mappable secondary function P3.4/PM_SDCLK/S27 45 I/O Default mapping: SD24_B bitstream clock input/output LCD segment output S27 General-purpose digital I/O with mappable secondary function P3.5/PM_SD0DIO/S26 46 I/O Default mapping: SD24_B converter-0 bitstream data input/output LCD segment output S26 General-purpose digital I/O with mappable secondary function P3.6/PM_SD1DIO/S25 47 I/O Default mapping: SD24_B converter-1 bitstream data input/output LCD segment output S25 General-purpose digital I/O with mappable secondary function P3.7/PM_SD2DIO/S24 48 I/O Default mapping: SD24_B converter-2 bitstream data input/output (not available on F672x devices) LCD segment output S24 20 Terminal Configuration and Functions Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 4-4. Terminal Functions, PN Package (continued) TERMINAL NAME P4.0/S23 NO. I/O (1) DESCRIPTION PN 49 I/O General-purpose digital I/O LCD segment output S23 P4.1/S22 50 I/O General-purpose digital I/O LCD segment output S22 P4.2/S21 51 I/O General-purpose digital I/O LCD segment output S21 P4.3/S20 52 I/O General-purpose digital I/O LCD segment output S20 P4.4/S19 53 I/O General-purpose digital I/O LCD segment output S19 P4.5/S18 54 I/O General-purpose digital I/O LCD segment output S18 P4.6/S17 55 I/O General-purpose digital I/O LCD segment output S17 P4.7/S16 56 I/O General-purpose digital I/O LCD segment output S16 P5.0/S15 57 I/O General-purpose digital I/O LCD segment output S15 P5.1/S14 58 I/O General-purpose digital I/O LCD segment output S14 DVSYS (3) 59 Digital power supply for I/Os DVSS 60 Digital ground supply P5.2/S13 61 I/O General-purpose digital I/O LCD segment output S13 P5.3/S12 62 I/O General-purpose digital I/O LCD segment output S12 P5.4/S11 63 I/O General-purpose digital I/O LCD segment output S11 P5.5/S10 64 I/O General-purpose digital I/O LCD segment output S10 P5.6/S9 65 I/O General-purpose digital I/O LCD segment output S9 P5.7/S8 66 I/O General-purpose digital I/O LCD segment output S8 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 21 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 4-4. Terminal Functions, PN Package (continued) TERMINAL NAME P6.0/S7 NO. I/O (1) DESCRIPTION PN 67 I/O General-purpose digital I/O LCD segment output S7 P6.1/S6 68 I/O General-purpose digital I/O LCD segment output S6 P6.2/S5 69 I/O General-purpose digital I/O LCD segment output S5 P6.3/S4 70 I/O General-purpose digital I/O LCD segment output S4 P6.4/S3 71 I/O General-purpose digital I/O LCD segment output S3 P6.5/S2 72 I/O General-purpose digital I/O LCD segment output S2 P6.6/S1 73 I/O General-purpose digital I/O LCD segment output S1 P6.7/S0 74 I/O General-purpose digital I/O LCD segment output S0 TEST/SBWTCK 75 I Test mode pin – select digital I/O on JTAG pins Spy-Bi-Wire input clock General-purpose digital I/O PJ.0/SMCLK/TDO 76 I/O SMCLK clock output Test data output General-purpose digital I/O PJ.1/MCLK/TDI/TCLK 77 I/O MCLK clock output Test data input or Test clock input General-purpose digital I/O PJ.2/ADC10CLK/TMS 78 I/O ADC10_A clock output Test mode select General-purpose digital I/O PJ.3/ACLK/TCK 79 I/O ACLK clock output Test clock Reset input active low (5) RST/NMI/SBWTDIO 80 I/O Nonmaskable interrupt input Spy-Bi-Wire data input/output (5) 22 When this pin is configured as reset, the internal pullup resistor is enabled by default. Terminal Configuration and Functions Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Terminal Configuration and Functions Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 23 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com 5 Specifications All graphs in this section are for typical conditions, unless otherwise noted. Typical (TYP) values are specified at VCC = 3.3 V and TA = 25°C, unless otherwise noted. 5.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) Voltage applied at DVCC to DVSS MIN MAX –0.3 4.1 UNIT V –0.3 VCC + 0.3 V (3) All pins except VCORE , SD24_B input pins (SD0N0, SD0P0, SD1N0, SD1P0, SD2N0, SD2P0) (4), AUXVCC1, AUXVCC2, and AUXVCC3 (5) Voltage applied to pins (2) All pins except SD24_B input pins (SD0N0, SD0P0, SD1N0, SD1P0, SD2N0, SD2P0) Diode current at pins ±2 SD0N0, SD0P0, SD1N0, SD1P0, SD2N0, SD2P0 (6) Maximum junction temperature, TJ Storage temperature, Tstg (1) (2) (3) (4) (5) (6) (7) mA 2 (7) –55 95 °C 150 °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltages referenced to VSS = V(DVSS) = V(AVSS). VCORE is for internal device use only. Do not apply external DC loading or voltage. See Table 5-35 for SD24_B specifications. See Table 5-18 for AUX specifications. A protection diode is connected to VCC for the SD24_B input pins. No protection diode is connected to VSS. Higher temperature may be applied during board soldering according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels. 5.2 ESD Ratings VALUE V(ESD) (1) (2) 5.3 Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±1000 Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±250 Recommended Operating Conditions Supply voltage during program execution and flash programming, V(AVCC) = V(DVCC) = VCC (1) (2) VCC VSS Supply voltage V(AVSS) = V(DVSS) = VSS TA Operating free-air temperature TJ Operating junction temperature CVCORE Recommended capacitor at VCORE CDVCC/CVCORE Capacitor ratio of DVCC to VCORE (2) (3) 24 V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. Pins listed as ±1000 V may actually have higher performance. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Pins listed as ±250 V may actually have higher performance. MIN (1) UNIT NOM MAX PMMCOREVx = 0 1.8 3.6 PMMCOREVx = 0, 1 2.0 3.6 PMMCOREVx = 0, 1, 2 2.2 3.6 PMMCOREVx = 0, 1, 2, 3 2.4 3.6 0 UNIT V V –40 85 °C –40 85 °C (3) 470 nF 10 TI recommends powering AVCC and DVCC from the same source. A maximum difference of 0.3 V between V(AVCC) and V(DVCC) can be tolerated during power up and operation. The minimum supply voltage is defined by the supervisor SVS levels when it is enabled. See the Table 5-13 threshold parameters for the exact values and further details. A capacitor tolerance of ±20% or better is required. Specifications Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Recommended Operating Conditions (continued) MIN PMMCOREVx = 0, 1.8 V ≤ VCC ≤ 3.6 V (default condition) PMMCOREVx = 1, Processor frequency (maximum MCLK frequency) (4) (5) 2.0 V ≤ VCC ≤ 3.6 V (see Figure 5-1) PMMCOREVx = 2, 2.2 V ≤ VCC ≤ 3.6 V fSYSTEM PMMCOREVx = 3, 2.4 V ≤ VCC ≤ 3.6 V NOM MAX 0 8.0 0 12.0 0 20.0 0 25.0 UNIT MHz ILOAD, DVCCD Maximum load current that can be drawn from DVCC for core and IO (ILOAD = ICORE + IIO) 20 mA ILOAD, AUX1D Maximum load current that can be drawn from AUXVCC1 for core and IO (ILOAD = ICORE + IIO) 20 mA ILOAD, AUX2D Maximum load current that can be drawn from AUXVCC2 for core and IO (ILOAD = ICORE + IIO) 20 mA ILOAD, AVCCA Maximum load current that can be drawn from AVCC for analog modules (ILOAD = IModules) 10 mA ILOAD, AUX1A Maximum load current that can be drawn from AUXVCC1 for analog modules (ILOAD = IModules) 5 mA ILOAD, AUX2A Maximum load current that can be drawn from AUXVCC2 for analog modules (ILOAD = IModules) 5 mA (4) (5) The MSP430 CPU is clocked directly with MCLK. Both the high and low phases of MCLK must not exceed the pulse duration of the specified maximum frequency. Modules may have a different maximum input clock specification. See the specification of the respective module in this data sheet. 25 System Frequency - MHz 3 20 2 2, 3 1 1, 2 1, 2, 3 0, 1 0, 1, 2 0, 1, 2, 3 12 8 0 0 1.8 2.0 2.2 2.4 3.6 Supply Voltage - V The numbers within the fields denote the supported PMMCOREVx settings. Figure 5-1. Maximum System Frequency Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 25 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 5.4 www.ti.com Active Mode Supply Current Into VCC Excluding External Current over recommended operating free-air temperature (unless otherwise noted) (1) (2) (3) FREQUENCY (fDCO = fMCLK = fSMCLK) PARAMETER IAM, IAM, (1) (2) (3) (4) (5) 26 Flash RAM (4) (5) EXECUTION MEMORY Flash RAM VCC 3.0 V 3.0 V PMMCOREVx 1 MHz 8 MHz 12 MHz 20 MHz TYP MAX TYP MAX TYP MAX 0 0.32 0.36 2.10 2.30 1 0.36 2.39 2 0.39 3.54 3.90 2.65 3 0.42 0 0.20 1 0.22 1.30 1.90 2 0.24 1.45 2.15 3.55 3 0.26 1.55 2.30 3.80 2.82 0.22 1.10 25 MHz TYP MAX 3.94 6.54 7.23 4.20 6.96 TYP UNIT MAX mA 8.65 9.54 1.22 2.10 mA 4.0 4.70 5.30 All inputs are tied to 0 or to VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF. Characterized with program executing typical data processing. fACLK = 32786 Hz, fDCO = fMCLK = fSMCLK at specified frequency. XTS = CPUOFF = SCG0 = SCG1 = OSCOFF = SMCLKOFF = 0. Active mode supply current when program executes in flash at a nominal supply voltage of 3 V. Active mode supply current when program executes in RAM at a nominal supply voltage of 3 V. Specifications Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com 5.5 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Low-Power Mode Supply Currents (Into VCC) Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2) TEMPERATURE (TA) PARAMETER VCC PMMCOREVx –40°C TYP ILPM0,1MHz Low-power mode 0 (3) (4) ILPM2 Low-power mode 2 (5) (4) ILPM3,XT1LF Low-power mode 3, crystal mode (6) (4) ILPM3,XT1LF ILPM3,VLO ILPM4 Low-power mode 3, crystal mode (6) (4) Low-power mode 3, VLO mode (7) (4) ILPM4.5 MAX MAX TYP TYP UNIT MAX 0 75 78 87 81 84 96 3 85 89 99 93 98 110 2.2 V 0 5.9 6.2 9 6.9 9.4 17 3.0 V 3 6.9 7.4 10 8.4 11 19 0 1.4 1.7 2.5 4.9 1 1.5 1.9 2.7 5.2 2 1.7 2.0 2.9 5.5 0 2.2 2.5 3.3 5.5 1 2.3 2.7 3.5 5.8 2 2.5 2.9 3.7 6.1 3 2.5 2.9 3.5 3.7 6.1 14.0 0 1.4 1.7 2.2 2.4 4.5 11.5 1 1.5 1.8 2.5 4.7 2 1.6 1.9 2.7 4.9 3 1.6 1.9 2.4 2.7 5.0 12.7 0 1.3 1.6 2.0 2.3 4.4 11.1 1 1.4 1.6 2.4 4.5 2 1.4 1.7 2.5 4.8 2.2 V 3.0 V Low-power mode 4 (8) (4) 3.0 V 1.4 1.7 Low-power mode 3.5, RTC active on AUXVCC3 (9) 2.2 V 0.65 0.80 3.0 V 1.16 1.24 3.0 V 0.70 0.78 Low-power mode 4.5 85°C MAX 3.0 V 3.0 V (10) 60°C TYP 2.2 V 3 ILPM3.5 25°C 3.1 2.2 µA µA µA 12.7 µA µA µA 2.5 4.8 0.90 1.30 12.2 2.05 1.43 1.87 2.71 1.05 0.90 1.20 1.85 µA µA (1) (2) All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF. (3) Current for watchdog timer clocked by SMCLK included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 0, OSCOFF = 0 (LPM0), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 1 MHz (4) Current for brownout, high-side supervisor (SVSH) normal mode included. Low-side supervisor (SVSL) and low-side monitor (SVML) disabled. High-side monitor (SVMH) disabled. RAM retention enabled. (5) Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 0, SCG1 = 1, OSCOFF = 0 (LPM2), fACLK = 32768 Hz, fMCLK = 0 MHz, fSMCLK = fDCO = 0 MHz, DCO setting = 1-MHz operation, DCO bias generator enabled. (6) Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz (7) Current for watchdog timer clocked by ACLK included. RTC is disabled (RTCHOLD = 1). ACLK = VLO. CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = fVLO, fMCLK = fSMCLK = fDCO = 0 MHz (8) CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 1 (LPM4), fDCO = fACLK = fMCLK = fSMCLK = 0 MHz (9) fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 32768 Hz, PMMREGOFF = 1, RTC active on AUXVCC3 supply (10) fDCO = fMCLK = fSMCLK = 0 MHz, fACLK = 0 Hz, PMMREGOFF = 1 Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 27 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 5.6 www.ti.com Low-Power Mode With LCD Supply Currents (Into VCC) Excluding External Current over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) (2) TEMPERATURE (TA) PARAMETER VCC PMMCOREVx –40°C TYP ILPM3 LCD, int. bias Low-power mode 3 (LPM3) current, LCD 4mux mode, internal biasing, charge pump disabled (3) (4) ILPM3 LCD, int. bias Low-power mode 3 (LPM3) current, LCD 4mux mode, internal biasing, charge pump disabled (3) (4) 2.2 V 3.0 V 2.2 V ILPM3 LCD,CP (1) (2) (3) (4) (5) 28 Low-power mode 3 (LPM3) current, LCD 4mux mode, internal biasing, charge pump enabled (3) (5) 3.0 V MAX 25°C 60°C TYP MAX TYP 3.6 85°C MAX UNIT TYP MAX 3.8 5.8 12.2 4.0 6.0 0 2.4 2.9 1 2.5 3.1 2 2.6 3.3 3.9 4.2 6.3 13.4 0 2.8 3.2 3.9 4.1 6.4 13.3 1 2.9 3.4 4.3 6.7 2 3.1 3.6 4.5 7.0 3 3.1 3.6 4.5 7.0 0 3.8 1 3.9 2 4.0 0 4.0 1 4.1 2 4.2 3 4.2 4.5 µA µA 14.7 µA All inputs are tied to 0 V or to VCC. Outputs do not source or sink any current. The currents are characterized with a Micro Crystal MS1V-T1K crystal with a load capacitance of 12.5 pF. The internal and external load capacitance are chosen to closely match the required 12.5 pF. Current for watchdog timer clocked by ACLK and RTC clocked by XT1 included. ACLK = low-frequency crystal operation (XTS = 0, XT1DRIVEx = 0). CPUOFF = 1, SCG0 = 1, SCG1 = 1, OSCOFF = 0 (LPM3), fACLK = 32768 Hz, fMCLK = fSMCLK = fDCO = 0 MHz Current for brownout, high-side supervisor (SVSH) normal mode included. Low-side supervisor (SVSL) and low-side monitor (SVML) disabled. High-side monitor (SVMH) disabled. RAM retention enabled. LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 0 (charge pump disabled), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz) Even segments S0, S2, ... = 0 and odd segments S1, S3, ... = 1. No LCD panel load. LCDMx = 11 (4-mux mode), LCDREXT = 0, LCDEXTBIAS = 0 (internal biasing), LCD2B = 0 (1/3 bias), LCDCPEN = 1 (charge pump enabled), VLCDx = 1000 (VLCD = 3 V, typical), LCDSSEL = 0, LCDPREx = 101, LCDDIVx = 00011 (fLCD = 32768 Hz / 32 / 4 = 256 Hz) Even segments S0, S2, ... = 0 and odd segments S1, S3, ... = 1. No LCD panel load. Specifications Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com 5.7 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Thermal Resistance Characteristics THERMAL METRIC (1) (2) RθJA Junction-to-ambient thermal resistance, still air RθJC(TOP) Junction-to-case (top) thermal resistance RθJC(BOTTOM) Junction-to-case (bottom) thermal resistance RθJB Junction-to-board thermal resistance ΨJT Junction-to-package-top thermal characterization parameter ΨJB Junction-to-board thermal characterization parameter (1) (2) (3) VALUE LQFP 80 (PN) 46.3 LQFP 100 (PZ) 45.6 LQFP 80 (PN) 11.5 LQFP 100 (PZ) 11.0 LQFP 80 (PN) N/A (3) LQFP 100 (PZ) N/A LQFP 80 (PN) 21.9 LQFP 100 (PZ) 23.4 LQFP 80 (PN) 0.5 LQFP 100 (PZ) 0.4 LQFP 80 (PN) 21.6 LQFP 100 (PZ) 23.0 UNIT °C/W °C/W °C/W °C/W °C/W °C/W For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics. These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RθJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements N/A = not applicable Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 29 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 5.8 www.ti.com Digital I/O Ports Table 5-1 lists the characteristics of the schmitt-trigger Inputs. Table 5-1. Schmitt-Trigger Inputs – General-Purpose I/O over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VIT+ Positive-going input threshold voltage VIT– Negative-going input threshold voltage Vhys Input voltage hysteresis (VIT+ – VIT–) RPull Pullup or pulldown resistor (1) For pullup: VIN = VSS For pulldown: VIN = VCC CI Input capacitance VIN = VSS or VCC (1) VCC MIN TYP 1.8 V 0.80 1.40 3V 1.50 2.10 1.8 V 0.45 1.00 3V 0.75 1.65 1.8 V 0.3 0.85 3V 0.4 1.0 20 35 MAX UNIT V V V 50 kΩ 5 pF Also applies to RST pin when pullup or pulldown resistor is enabled. Table 5-2 lists the characteristics of the P1 and P2 inputs. Table 5-2. Inputs – Ports P1 and P2 (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) t(int) (1) (2) PARAMETER TEST CONDITIONS VCC External interrupt timing (2) Port P1, P2: P1.x to P2.x, External trigger pulse duration to set interrupt flag 2.2 V, 3 V MIN MAX UNIT 20 ns Some devices may contain additional ports with interrupts. See the block diagram and terminal function descriptions. An external signal sets the interrupt flag every time the minimum interrupt pulse duration t(int) is met. It might be set by trigger signals shorter than t(int). Table 5-3 lists the characteristics of the GPIO leakage current. Table 5-3. Leakage Current – General-Purpose I/O over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Ilkg(Px.y) (1) (2) TEST CONDITIONS High-impedance leakage current See VCC (1) (2) MIN 1.8 V, 3 V MAX UNIT ±50 nA The leakage current is measured with VSS or VCC applied to the corresponding pins, unless otherwise noted. The leakage of the digital port pins is measured individually. The port pin is selected for input and the pullup or pulldown resistor is disabled. Table 5-4 lists the characteristics of the full drive strength GPIO output. Table 5-4. Outputs – General-Purpose I/O (Full Drive Strength) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS I(OHmax) = –3 mA (1) VOH High-level output voltage I(OHmax) = –10 mA (1) I(OHmax) = –5 mA (1) I(OHmax) = –15 mA (1) I(OLmax) = 3 mA (2) VOL Low-level output voltage I(OLmax) = 10 mA (3) I(OLmax) = 5 mA (2) (3) 30 1.8 V 3V 1.8 V (2) I(OLmax) = 15 mA (3) (1) VCC 3V MIN MAX VCC – 0.25 VCC VCC – 0.60 VCC VCC – 0.25 VCC VCC – 0.60 VCC VSS VSS + 0.25 VSS VSS + 0.60 VSS VSS + 0.25 VSS VSS + 0.60 UNIT V V The maximum total current, I(OHmax), for all outputs combined should not exceed ±20 mA to hold the maximum voltage drop specified. See Section 5.3 for more details. The maximum total current, I(OLmax), for all outputs combined should not exceed ±48 mA to hold the maximum voltage drop specified. The maximum total current, I(OLmax), for all outputs combined should not exceed ±100 mA to hold the maximum voltage drop specified. Specifications Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com 5.8.1 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Typical Characteristics – General-Purpose I/O (Full Drive Strength) 0 -10 -5 IOH – High-Level Output Current – mA IOH – High-Level Output Current – mA 0 -10 -15 TA = 85°C -20 -20 -30 -40 TA = 85°C -50 TA = 25°C TA = 25°C -60 -25 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 0 1.8 0.5 VCC = 1.8 V Full Drive Strength Figure 5-2. High-Level Output Current vs High-Level Output Voltage 1.5 2 VCC = 3 V 2.5 3 Full Drive Strength Figure 5-3. High-Level Output Current vs High-Level Output Voltage 60 25 50 20 IOL – Low-Level Output Current – mA IOL – Low-Level Output Current – mA 1 VOH – High-Level Output Voltage – V VOH – High-Level Output Voltage – V TA = 25°C TA = 85°C 15 10 5 TA = 25°C TA = 85°C 40 30 20 10 0 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.5 VCC = 1.8 V Full Drive Strength Figure 5-4. Low-Level Output Current vs Low-Level Output Voltage 1 1.5 2 2.5 VCC = 3 V Full Drive Strength Figure 5-5. Low-Level Output Current vs Low-Level Output Voltage Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 3 VOL – Low-Level Output Voltage – V VOL – Low-Level Output Voltage – V 31 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 5-5 lists the characteristics of the reduced drive strength GPIO output. Table 5-5. Outputs – General-Purpose I/O (Reduced Drive Strength) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER TEST CONDITIONS I(OHmax) = –1 mA (2) VOH High-level output voltage I(OHmax) = –3 mA (2) I(OHmax) = –2 mA (2) I(OHmax) = –6 mA (2) I(OLmax) = 1 mA (3) VOL Low-level output voltage I(OLmax) = 3 mA (4) I(OLmax) = 2 mA (3) I(OLmax) = 6 mA (4) (1) (2) (3) (4) 32 VCC 1.8 V 3.0 V 1.8 V 3.0 V MIN MAX VCC – 0.25 VCC VCC – 0.60 VCC VCC – 0.25 VCC VCC – 0.60 VCC VSS VSS + 0.25 VSS VSS + 0.60 VSS VSS + 0.25 VSS VSS + 0.60 UNIT V V Selecting reduced drive strength may reduce EMI. The maximum total current, I(OHmax), for all outputs combined should not exceed ±20 mA to hold the maximum voltage drop specified. See Section 5.3 for more details. The maximum total current, I(OLmax), for all outputs combined, should not exceed ±48 mA to hold the maximum voltage drop specified. The maximum total current, I(OLmax), for all outputs combined, should not exceed ±100 mA to hold the maximum voltage drop specified. Specifications Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com 5.8.2 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Typical Characteristics – General-Purpose I/O (Reduced Drive Strength) 0 0 IOH – High-Level Output Current – mA IOH – High-Level Output Current – mA -1 -2 -3 -4 -5 TA = 85°C -6 -5 -10 -15 TA = 85°C -20 TA = 25°C -7 TA = 25°C -8 -25 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.5 VOH – High-Level Output Voltage – V VCC = 1.8 V Reduced Drive Strength Figure 5-6. High-Level Output Current vs High-Level Output Voltage 1.5 VCC = 3 V 2 2.5 3 Reduced Drive Strength Figure 5-7. High-Level Output Current vs High-Level Output Voltage 8 20 18 7 TA = 25°C TA = 25°C IOL – Low-Level Output Current – mA IOL – Low-Level Output Current – mA 1 VOH – High-Level Output Voltage – V 6 TA = 85°C 5 4 3 2 1 16 TA = 85°C 14 12 10 8 6 4 2 0 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 0 0.5 VCC = 1.8 V Reduced Drive Strength Figure 5-8. Low-Level Output Current vs Low-Level Output Voltage 1 1.5 2 2.5 VCC = 3 V Reduced Drive Strength Figure 5-9. Low-Level Output Current vs Low-Level Output Voltage Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 3 VOL – Low-Level Output Voltage – V VOL – Low-Level Output Voltage – V 33 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 5-6 lists the characteristics of the GPIO output frequency. Table 5-6. Output Frequency – General-Purpose I/O over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fPx.y Port output frequency (with load) fPort_CLK (1) (2) 34 Clock output frequency TEST CONDITIONS See (1) (2) ACLK, SMCLK, MCLK, CL = 20 pF (2) MIN MAX VCC = 1.8 V, PMMCOREVx = 0 16 VCC = 3 V, PMMCOREVx = 3 25 VCC = 1.8 V, PMMCOREVx = 0 16 VCC = 3 V, PMMCOREVx = 3 25 UNIT MHz MHz A resistive divider with 2 × R1 between VCC and VSS is used as load. The output is connected to the center tap of the divider. For full drive strength, R1 = 550 Ω. For reduced drive strength, R1 = 1.6 kΩ. CL = 20 pF is connected to the output to VSS. The output voltage reaches at least 10% and 90% VCC at the specified toggle frequency. Specifications Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com 5.9 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Clock Specifications Table 5-7 lists the characteristics of the XT1 oscillator in low-frequency mode. Table 5-7. Crystal Oscillator, XT1, Low-Frequency Mode (1) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER ΔIDVCC.LF Differential XT1 oscillator crystal current consumption from lowest drive setting, LF mode TEST CONDITIONS VCC MIN fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1, TA = 25°C fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 2, TA = 25°C 3.0 V 0.170 0.290 XTS = 0, XT1BYPASS = 0 32768 XT1 oscillator crystal frequency, LF mode fXT1,LF,SW XT1 oscillator logic-level square-wave input frequency, XTS = 0, XT1BYPASS = 1 (2) LF mode OALF Oscillation allowance for LF crystals (4) (3) 10 fFault,LF tSTART,LF 210 XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 1, fXT1,LF = 32768 Hz, CL,eff = 12 pF 300 (1) (2) (3) (4) (5) (6) (7) (8) XTS = 0, XCAPx = 2 8.5 XTS = 0, XCAPx = 3 12.0 Oscillator fault frequency, LF mode (7) XTS = 0 (8) fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0, TA = 25°C, CL,eff = 6 pF fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 3, TA = 25°C, CL,eff = 12 pF µA Hz 50 kHz 1 5.5 Duty cycle, LF mode UNIT kΩ XTS = 0, XCAPx = 1 XTS = 0, Measured at ACLK, fXT1,LF = 32768 Hz Start-up time, LF mode 32.768 XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 0, fXT1,LF = 32768 Hz, CL,eff = 6 pF XTS = 0, XCAPx = 0 (6) CL,eff MAX 0.075 fOSC = 32768 Hz, XTS = 0, XT1BYPASS = 0, XT1DRIVEx = 3, TA = 25°C fXT1,LF0 Integrated effective load capacitance, LF mode (5) TYP pF 30% 70% 10 10000 Hz 1000 3.0 V ms 500 To improve EMI on the XT1 oscillator, the following guidelines should be observed. • Keep the trace between the device and the crystal as short as possible. • Design a good ground plane around the oscillator pins. • Prevent crosstalk from other clock or data lines into oscillator pins XIN and XOUT. • Avoid running PCB traces underneath or adjacent to the XIN and XOUT pins. • Use assembly materials and processes that avoid any parasitic load on the oscillator XIN and XOUT pins. • If conformal coating is used, make sure that it does not induce capacitive or resistive leakage between the oscillator pins. When XT1BYPASS is set, XT1 circuits are automatically powered down. Input signal is a digital square wave with parametrics defined in the Schmitt-trigger inputs section of this data sheet. Maximum frequency of operation of the entire device cannot be exceeded. Oscillation allowance is based on a safety factor of 5 for recommended crystals. The oscillation allowance is a function of the XT1DRIVEx settings and the effective load. In general, comparable oscillator allowance can be achieved based on the following guidelines, but should be evaluated based on the actual crystal selected for the application: • For XT1DRIVEx = 0, CL,eff ≤ 6 pF. • For XT1DRIVEx = 1, 6 pF ≤ CL,eff ≤ 9 pF. • For XT1DRIVEx = 2, 6 pF ≤ CL,eff ≤ 10 pF. • For XT1DRIVEx = 3, CL,eff ≥ 6 pF. Includes parasitic bond and package capacitance (approximately 2 pF per pin). Because the PCB adds additional capacitance, TI recommends verifying the correct load by measuring the ACLK frequency. For a correct setup, the effective load capacitance should always match the specification of the used crystal. Requires external capacitors at both terminals. Values are specified by crystal manufacturers. Frequencies below the MIN specification set the fault flag. Frequencies above the MAX specification do not set the fault flag. Frequencies between the MIN and MAX specifications might set the flag. Measured with logic-level input frequency but also applies to operation with crystals. Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 35 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 5-8 lists the characteristics of the VLO. Table 5-8. Internal Very-Low-Power Low-Frequency Oscillator (VLO) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER fVLO VLO frequency dfVLO/dT VLO frequency temperature drift dfVLO/dVCC VLO frequency supply voltage drift Duty cycle (1) (2) TEST CONDITIONS Measured at ACLK VCC MIN TYP MAX 6 9.4 15 1.8 V to 3.6 V (1) 1.8 V to 3.6 V 0.5 Measured at ACLK (2) 1.8 V to 3.6 V 4 Measured at ACLK 1.8 V to 3.6 V Measured at ACLK 30% UNIT kHz %/°C %/V 70% Calculated using the box method: (MAX(–40°C to 85ºC) – MIN(–40°C to 85ºC)) / MIN(–40°C to 85ºC) / (85ºC – (–40ºC)) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V) Table 5-9 lists the characteristics of the REFO. Table 5-9. Internal Reference, Low-Frequency Oscillator (REFO) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER IREFO fREFO TEST CONDITIONS VCC MIN TYP TA = 25°C 1.8 V to 3.6 V 3 REFO frequency calibrated Measured at ACLK 1.8 V to 3.6 V 32768 Full temperature range 1.8 V to 3.6 V ±3.5% 3V ±1.5% REFO absolute tolerance calibrated TA = 25°C dfREFO/dT REFO frequency temperature drift (1) 1.8 V to 3.6 V 0.01 dfREFO/dVCC REFO frequency supply voltage drift Measured at ACLK (2) 1.8 V to 3.6 V 1.0 Duty cycle Measured at ACLK 1.8 V to 3.6 V REFO start-up time 40%/60% duty cycle 1.8 V to 3.6 V tSTART (1) (2) 36 MAX REFO oscillator current consumption Measured at ACLK 40% 50% UNIT µA Hz %/°C %/V 60% 25 µs Calculated using the box method: (MAX(–40°C to 85ºC) – MIN(–40°C to 85ºC)) / MIN(–40°C to 85ºC) / (85ºC – (–40ºC)) Calculated using the box method: (MAX(1.8 V to 3.6 V) – MIN(1.8 V to 3.6 V)) / MIN(1.8 V to 3.6 V) / (3.6 V – 1.8 V) Specifications Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 5-10 lists the frequency characteristics of the DCO. Table 5-10. DCO Frequency over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS DCO frequency (0, 0) (1) fDCO(0,0) (1) MAX UNIT DCORSELx = 0, DCOx = 0, MODx = 0 0.07 MIN TYP 0.20 MHz fDCO(0,31) DCO frequency (0, 31) DCORSELx = 0, DCOx = 31, MODx = 0 0.70 1.70 MHz fDCO(1,0) DCO frequency (1, 0) (1) DCORSELx = 1, DCOx = 0, MODx = 0 0.15 0.36 MHz fDCO(1,31) DCO frequency (1, 31) (1) DCORSELx = 1, DCOx = 31, MODx = 0 1.47 3.45 MHz fDCO(2,0) DCO frequency (2, 0) (1) DCORSELx = 2, DCOx = 0, MODx = 0 0.32 0.75 MHz (1) fDCO(2,31) DCO frequency (2, 31) DCORSELx = 2, DCOx = 31, MODx = 0 3.17 7.38 MHz fDCO(3,0) DCO frequency (3, 0) (1) DCORSELx = 3, DCOx = 0, MODx = 0 0.64 1.51 MHz fDCO(3,31) DCO frequency (3, 31) (1) DCORSELx = 3, DCOx = 31, MODx = 0 6.07 14.0 MHz (1) fDCO(4,0) DCO frequency (4, 0) DCORSELx = 4, DCOx = 0, MODx = 0 1.3 3.2 MHz fDCO(4,31) DCO frequency (4, 31) (1) DCORSELx = 4, DCOx = 31, MODx = 0 12.3 28.2 MHz fDCO(5,0) DCO frequency (5, 0) (1) DCORSELx = 5, DCOx = 0, MODx = 0 2.5 6.0 MHz (1) fDCO(5,31) DCO frequency (5, 31) DCORSELx = 5, DCOx = 31, MODx = 0 23.7 54.1 MHz fDCO(6,0) DCO frequency (6, 0) (1) DCORSELx = 6, DCOx = 0, MODx = 0 4.6 10.7 MHz fDCO(6,31) DCO frequency (6, 31) (1) DCORSELx = 6, DCOx = 31, MODx = 0 39.0 88.0 MHz fDCO(7,0) DCO frequency (7, 0) (1) DCORSELx = 7, DCOx = 0, MODx = 0 8.5 19.6 MHz (1) fDCO(7,31) DCO frequency (7, 31) DCORSELx = 7, DCOx = 31, MODx = 0 60 135 MHz SDCORSEL Frequency step between range DCORSEL and DCORSEL + 1 SRSEL = fDCO(DCORSEL+1,DCO)/fDCO(DCORSEL,DCO) 1.2 2.3 ratio SDCO Frequency step between tap DCO and DCO + 1 SDCO = fDCO(DCORSEL,DCO+1)/fDCO(DCORSEL,DCO) 1.02 1.12 ratio 40% Duty cycle Measured at SMCLK dfDCO/dT DCO frequency temperature drift fDCO = 1 MHz 0.1 %/°C dfDCO/dVCORE DCO frequency voltage drift fDCO = 1 MHz 1.9 %/V (1) 50% 60% When selecting the proper DCO frequency range (DCORSELx), the target DCO frequency, fDCO, should be set to reside within the range of fDCO(n, 0),MAX ≤ fDCO ≤ fDCO(n, 31),MIN, where fDCO(n, 0),MAX represents the maximum frequency specified for the DCO frequency, range n, tap 0 (DCOx = 0) and fDCO(n,31),MIN represents the minimum frequency specified for the DCO frequency, range n, tap 31 (DCOx = 31). This ensures that the target DCO frequency resides within the range selected. If the actual fDCO frequency for the selected range causes the FLL or the application to select tap 0 or 31, the DCO fault flag is set to report that the selected range is at its minimum or maximum tap setting. 100 VCC = 3.0 V TA = 25°C fDCO – MHz 10 DCOx = 31 1 0.1 DCOx = 0 0 1 2 3 4 5 6 7 DCORSEL Figure 5-10. Typical DCO Frequency Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 37 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com 5.10 Power-Management Module (PMM) Table 5-11 lists the brownout characteristics of the PMM. Table 5-11. PMM, Brownout Reset (BOR) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS V(DVCC_BOR_IT–) BORH on voltage, DVCC falling level | dDVCC/dt | < 3 V/s V(DVCC_BOR_IT+) BORH off voltage, DVCC rising level | dDVCC/dt | < 3 V/s V(DVCC_BOR_hys) BORH hysteresis tRESET (1) Pulse duration required at RST/NMI pin to accept a reset (1) MIN TYP 0.80 1.30 50 MAX UNIT 1.45 V 1.50 V 250 mV 2 µs Pulse much shorter than 2 µs might trigger reset. Table 5-12 lists the core voltage characteristics of the PMM. Table 5-12. PMM, Core Voltage over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VCORE3(AM) Core voltage, active mode, PMMCOREV = 3 2.4 V ≤ DVCC ≤ 3.6 V 1.93 V VCORE2(AM) Core voltage, active mode, PMMCOREV = 2 2.2 V ≤ DVCC ≤ 3.6 V 1.83 V VCORE1(AM) Core voltage, active mode, PMMCOREV = 1 2.0 V ≤ DVCC ≤ 3.6 V 1.62 V VCORE0(AM) Core voltage, active mode, PMMCOREV = 0 1.8 V ≤ DVCC ≤ 3.6 V 1.42 V VCORE3(LPM) Core voltage, low-current mode, PMMCOREV = 3 2.4 V ≤ DVCC ≤ 3.6 V 1.96 V VCORE2(LPM) Core voltage, low-current mode, PMMCOREV = 2 2.2 V ≤ DVCC ≤ 3.6 V 1.94 V VCORE1(LPM) Core voltage, low-current mode, PMMCOREV = 1 2.0 V ≤ DVCC ≤ 3.6 V 1.74 V VCORE0(LPM) Core voltage, low-current mode, PMMCOREV = 0 1.8 V ≤ DVCC ≤ 3.6 V 1.54 V 38 Specifications Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 5-13 lists the characteristics of the high-side SVS. Table 5-13. PMM, SVS High Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVSHE = 0, DVCC = 3.6 V I(SVSH) SVS current consumption SVSHE = 1, DVCC = 3.6 V, SVSHFP = 0 SVSH on voltage level (1) V(SVSH_IT+) SVSH off voltage level (1) tpd(SVSH) SVSH propagation delay t(SVSH) SVSH on or off delay time dVDVCC/dt DVCC rise time (1) MAX UNIT 0 nA 200 SVSHE = 1, DVCC = 3.6 V, SVSHFP = 1 V(SVSH_IT–) TYP 1.5 µA SVSHE = 1, SVSHRVL = 0 1.60 1.65 1.70 SVSHE = 1, SVSHRVL = 1 1.77 1.84 1.90 SVSHE = 1, SVSHRVL = 2 1.97 2.04 2.10 SVSHE = 1, SVSHRVL = 3 2.09 2.16 2.23 SVSHE = 1, SVSMHRRL = 0 1.68 1.74 1.80 SVSHE = 1, SVSMHRRL = 1 1.89 1.95 2.01 SVSHE = 1, SVSMHRRL = 2 2.08 2.14 2.21 SVSHE = 1, SVSMHRRL = 3 2.21 2.27 2.34 SVSHE = 1, SVSMHRRL = 4 2.35 2.41 2.49 SVSHE = 1, SVSMHRRL = 5 2.65 2.72 2.80 SVSHE = 1, SVSMHRRL = 6 2.96 3.04 3.13 SVSHE = 1, SVSMHRRL = 7 2.96 3.04 3.13 SVSHE = 1, dVDVCC/dt = 10 mV/µs, SVSHFP = 1 2.5 SVSHE = 1, dVDVCC/dt = 1 mV/µs, SVSHFP = 0 20 SVSHE = 0 → 1, SVSHFP = 1 12.5 SVSHE = 0 → 1, SVSHFP = 0 100 0 V V µs µs 1000 V/s The SVSH settings available depend on the VCORE (PMMCOREVx) setting. Refer to the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide on recommended settings and usage. Table 5-14 lists the characteristics of the high-side SVM. Table 5-14. PMM, SVM High Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVMHE = 0, DVCC = 3.6 V I(SVMH) SVMH current consumption SVMH on or off voltage level (1) SVMHE = 1, DVCC = 3.6 V, SVMHFP = 0 SVMH propagation delay t(SVMH) SVMH on or off delay time (1) UNIT nA 200 1.5 µA SVMHE = 1, SVSMHRRL = 0 1.68 1.74 1.80 SVMHE = 1, SVSMHRRL = 1 1.89 1.95 2.01 SVMHE = 1, SVSMHRRL = 2 2.08 2.14 2.21 SVMHE = 1, SVSMHRRL = 3 2.21 2.27 2.34 SVMHE = 1, SVSMHRRL = 4 2.35 2.41 2.49 SVMHE = 1, SVSMHRRL = 5 2.65 2.72 2.80 SVMHE = 1, SVSMHRRL = 6 2.96 3.04 3.13 SVMHE = 1, SVSMHRRL = 7 2.96 3.04 3.13 SVMHE = 1, SVMHOVPE = 1 tpd(SVMH) MAX 0 SVMHE = 1, DVCC = 3.6 V, SVMHFP = 1 V(SVMH) TYP V 3.79 SVMHE = 1, dVDVCC/dt = 10 mV/µs, SVMHFP = 1 2.5 SVMHE = 1, dVDVCC/dt = 1 mV/µs, SVMHFP = 0 20 SVMHE = 0 → 1, SVMHFP = 1 12.5 SVMHE = 0 → 1, SVMHFP = 0 100 µs µs The SVMH settings available depend on the VCORE (PMMCOREVx) setting. Refer to the Power Management Module and Supply Voltage Supervisor chapter in the MSP430x5xx and MSP430x6xx Family User's Guide on recommended settings and usage. Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 39 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 5-15 lists the characteristics of the low-side SVS. Table 5-15. PMM, SVS Low Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVSLE = 0, PMMCOREV = 2 I(SVSL) SVSL current consumption tpd(SVSL) SVSL propagation delay t(SVSL) SVSL on or off delay time TYP MAX 0 SVSLE = 1, PMMCOREV = 2, SVSLFP = 0 200 SVSLE = 1, PMMCOREV = 2, SVSLFP = 1 1.5 SVSLE = 1, dVCORE/dt = 10 mV/µs, SVSLFP = 1 2.5 SVSLE = 1, dVCORE/dt = 1 mV/µs, SVSLFP = 0 20 SVSLE = 0 → 1, SVSLFP = 1 12.5 SVSLE = 0 → 1, SVSLFP = 0 100 UNIT nA µA µs µs Table 5-16 lists the characteristics of the low-side SVM. Table 5-16. PMM, SVM Low Side over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN SVMLE = 0, PMMCOREV = 2 I(SVML) SVML current consumption tpd(SVML) SVML propagation delay t(SVML) SVML on or off delay time TYP MAX 0 SVMLE = 1, PMMCOREV = 2, SVMLFP = 0 200 SVMLE = 1, PMMCOREV = 2, SVMLFP = 1 1.5 SVMLE = 1, dVCORE/dt = 10 mV/µs, SVMLFP = 1 2.5 SVMLE = 1, dVCORE/dt = 1 mV/µs, SVMLFP = 0 20 SVMLE = 0 → 1, SVMLFP = 1 12.5 SVMLE = 0 → 1, SVMLFP = 0 100 UNIT nA µA µs µs Table 5-17 lists the wake-up times. Table 5-17. Wake-up Times From Low-Power Modes and Reset over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT fMCLK ≥ 4 MHz 3 5 1 MHz < fMCLK < 4 MHz 4 6 150 160 µs tWAKE-UP-FAST Wake-up time from LPM2, LPM3, or LPM4 to active mode (1) PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), SVSLFP = 1 tWAKE-UP-SLOW Wake-up time from LPM2, LPM3, or LPM4 to active mode (2) (3) PMMCOREV = SVSMLRRL = n (where n = 0, 1, 2, or 3), SVSLFP = 0 tWAKE-UP-LPM4.5 Wake-up time from LPM4.5 to active mode (4) 2 3 ms tWAKE-UP-RESET Wake-up time from RST or BOR event to active mode (4) 2 3 ms (1) (2) (3) (4) 40 µs This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-FAST is possible with SVSL and SVML in full performance mode or disabled. For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode Selection section in the Power Management Module and Supply Voltage Supervisor chapter of the MSP430x5xx and MSP430x6xx Family User's Guide. This value represents the time from the wake-up event to the first active edge of MCLK. The wake-up time depends on the performance mode of the low-side supervisor (SVSL) and low-side monitor (SVML). tWAKE-UP-SLOW is set with SVSL and SVML in normal mode (low current mode). For specific register settings, see the Low-Side SVS and SVM Control and Performance Mode Selection section in the Power Management Module and Supply Voltage Supervisor chapter of the MSP430x5xx and MSP430x6xx Family User's Guide. The wake-up times from LPM0 and LPM1 to AM are not specified. They are proportional to MCLK cycle time but are not affected by the performance mode settings as for LPM2, LPM3, and LPM4. This value represents the time from the wake-up event to the reset vector execution. Specifications Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 5.11 Auxiliary Supplies Table 5-18 lists the operating conditions of the auxiliary supplies. Table 5-18. Auxiliary Supplies, Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN Supply voltage range for all supplies at pins DVCC, AVCC, AUXVCC1, AUXVCC2, AUXVCC3 VCC Digital system supply voltage range, VDSYS = VCC – RON × ILOAD VDSYS NOM MAX 1.8 3.6 PMMCOREVx = 0 1.8 3.6 PMMCOREVx = 1 2.0 3.6 PMMCOREVx = 2 2.2 3.6 PMMCOREVx = 3 2.4 3.6 See module specifications UNIT V V VASYS Analog system supply voltage range, VASYS = VCC – RON × ILOAD V CVCC, CAUX1/2 Recommended capacitor at pins DVCC, AVCC, AUXVCC1, AUXVCC2 4.7 µF CVSYS Recommended capacitor at pins VDSYS and VASYS 4.7 µF CVCORE Recommended capacitance at VCORE pin 0.47 µF CAUX3 Recommended capacitor at pin AUXVCC3 0.47 µF Table 5-19 lists the current consumption of AUX3. Table 5-19. Auxiliary Supplies, AUXVCC3 (Backup Subsystem) Currents over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS VCC IAUX3,RTCon AUXVCC3 current with RTC enabled RTC and 32-kHz oscillator in backup subsystem enabled 3V IAUX3,RTCoff AUXVCC3 current with RTC disabled RTC and 32-kHz oscillator in backup subsystem disabled 3V TA MIN TYP MAX 25°C 0.83 85°C 0.95 25°C 110 85°C 165 UNIT µA nA Table 5-20 lists the characteristics of the auxiliary supply monitor. Table 5-20. Auxiliary Supplies, Auxiliary Supply Monitor over operating free-air temperature range (unless otherwise noted) PARAMETER ICC,Monitor Average supply current for monitoring circuitry drawn from VDSYS Average current drawn from IMeas,Monitor monitored supply during measurement cycle VMonitor Auxiliary supply threshold level TEST CONDITIONS LOCKAUX = 0, AUXMRx = 0, AUX0MD = 0, AUX1MD = 0, AUX2MD = 1, VDSYS = DVCC, VASYS = AVCC, Current measured at VDSYS pin (also see Figure 5-11) VCC MIN TYP 3V LOCKAUX = 0, AUXMRx = 0, AUX0MD = 0, AUX1MD = 0, AUX2MD = 1, VDSYS = DVCC, VASYS = AVCC, AUXVCC1 = 3 V, Current measured at AUXVCC1 pin (also see Figure 5-12) MAX UNIT 0.70 µA 0.11 µA AUXLVLx = 0 1.67 1.74 1.80 AUXLVLx = 1 1.87 1.95 2.01 AUXLVLx = 2 2.06 2.14 2.21 AUXLVLx = 3 2.19 2.27 2.33 AUXLVLx = 4 2.33 2.41 2.48 AUXLVLx = 5 2.63 2.72 2.79 AUXLVLx = 6 2.91 3.02 3.10 AUXLVLx = 7 2.91 3.02 3.10 Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated V 41 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com 0.7 0.6 ICC, monitor – µA 0.5 0.4 0.3 0.2 0.1 0 1.8 2 2.2 2.4 2.6 2.8 VDSYS Voltage – V 3 3.2 3.4 3.6 3.2 3.4 3.6 Figure 5-11. VDSYS Voltage vs ICC,Monitor 120 Imeas, monitor – nA 100 80 60 40 20 0 1.8 2.0 2.2 2.4 2.6 2.8 AUXVCC1 Voltage – V 3.0 Figure 5-12. AUXVCC1 Voltage vs IMeas,Monitor Table 5-21 lists the ON-resistance characteristics of the auxiliary supplies. Table 5-21. Auxiliary Supplies, Switch ON-Resistance over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT RON,DVCC ON-resistance of switch between DVCC and VDSYS ILOAD = ICORE + IIO = 10 mA + 10 mA = 20 mA 5 Ω RON,DAUX1 ON-resistance of switch between AUXVCC1 and VDSYS ILOAD = ICORE + IIO = 10 mA + 10 mA = 20 mA 5 Ω RON,DAUX2 ON-resistance of switch between AUXVCC2 and VDSYS ILOAD = ICORE + IIO = 10 mA + 10 mA = 20 mA 5 Ω RON,AVCC ON-resistance of switch between AVCC and VASYS ILOAD = IModules = 10 mA 5 Ω RON,AAUX1 ON-resistance of switch between AUXVCC1 and VASYS ILOAD = IModules = 5 mA 20 Ω RON,AAUX2 ON-resistance of switch between AUXVCC2 and VASYS ILOAD = IModules = 5 mA 20 Ω 42 Specifications Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 5-22 lists the switching times of the auxiliary supplies. Table 5-22. Auxiliary Supplies, Switching Time over operating free-air temperature range (unless otherwise noted) PARAMETER MIN tSwitch Time from occurence of trigger (SVM or software) to "new" supply connected to system supplies tRecover "Recovery time" after a switch over took place; during this time, no further switching takes place MAX UNIT 100 ns 200 450 µs TYP MAX UNIT 50 100 nA 450 730 nA UNIT Table 5-23 lists the switch leakage of the auxiliary supplies. Table 5-23. Auxiliary Supplies, Switch Leakage over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS ISW,Lkg Current into DVCC, AVCC, AUXVCC1, or AUXVCC2 if not selected IVmax Current drawn from highest supply MIN Per supply (but not the highest supply) Table 5-24 lists the characteristics of the auxiliary supplies to ADC10_A. Table 5-24. Auxiliary Supplies, Auxiliary Supplies to ADC10_A over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS Supply voltage divider V3 = VSupply/3 V3 RV3 Load resistance tSample,V3 Sampling time required if V3 selected VCC MIN TYP MAX 1.8 V 0.58 0.60 0.62 3.0 V 0.98 1.00 1.02 3.6 V 1.18 1.20 1.22 AUXADCRx = 0 18 AUXADCRx = 1 1.5 AUXADCRx = 2 0.6 AUXADC = 1, ADC10ON = 1, INCH = 0Ch, Error of conversion result ≤ 1 LSB AUXADCRx = 0 1000 AUXADCRx = 1 1000 AUXADCRx = 2 1000 V kΩ ns Table 5-25 lists the charge limiting resistor characteristics of the auxiliary supplies. Table 5-25. Auxiliary Supplies, Charge Limiting Resistor over operating free-air temperature range (unless otherwise noted) PARAMETER RCHARGE Charge limiting resistor TEST CONDITIONS VCC MIN TYP MAX AUXCHCx = 1 3V 5 AUXCHCx = 2 3V 10 AUXCHCx = 3 3V 20 Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated UNIT kΩ 43 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com 5.12 Timer_A Table 5-26 lists the characteristics of the Timer_A. Table 5-26. Timer_A over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC MIN fTA Timer_A input clock frequency Internal: SMCLK or ACLK, External: TACLK, Duty cycle = 50% ±10% 1.8 V, 3 V tTA,cap Timer_A capture timing All capture inputs, minimum pulse duration required for capture 1.8 V, 3 V MAX UNIT 25 MHz 20 ns 5.13 eUSCI Table 5-27. eUSCI (UART Mode) Clock Frequency PARAMETER CONDITIONS feUSCI eUSCI input clock frequency fBITCLK BITCLK clock frequency (equals baud rate in MBaud) VCC MIN Internal: SMCLK or ACLK, External: UCLK, Duty cycle = 50% ±10% MAX UNIT fSYSTEM MHz 5 MHz UNIT Table 5-28 lists the switching characteristics of the eUSCI in UART mode. Table 5-28. eUSCI (UART Mode) Switching Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER tt UART receive deglitch time (1) TEST CONDITIONS MIN TYP MAX UCGLITx = 0 10 15 25 UCGLITx = 1 30 50 85 50 80 150 70 120 200 UCGLITx = 2 UCGLITx = 3 (1) 44 VCC 2 V, 3 V ns Pulses on the UART receive input (UCxRX) shorter than the UART receive deglitch time are suppressed. To ensure that pulses are correctly recognized their duration should exceed the maximum specification of the deglitch time. Specifications Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 5-29 lists the supported clock frequencies of the eUSCI in SPI master mode. Table 5-29. eUSCI (SPI Master Mode) Clock Frequency PARAMETER feUSCI eUSCI input clock frequency CONDITIONS VCC MIN Internal: SMCLK or ACLK, Duty cycle = 50% ±10% MAX UNIT fSYSTEM MHz Table 5-30 lists the switching characteristics of the eUSCI in SPI master mode. Table 5-30. eUSCI (SPI Master Mode) Switching Characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER tSTE,LEAD STE lead time, STE active to clock tSTE,LAG STE lag time, Last clock to STE inactive TEST CONDITIONS VCC MIN UCSTEM = 0, UCMODEx = 01 or 10 2 V, 3 V 150 UCSTEM = 1, UCMODEx = 01 or 10 2 V, 3 V 150 UCSTEM = 0, UCMODEx = 01 or 10 2 V, 3 V 200 UCSTEM = 1, UCMODEx = 01 or 10 2 V, 3 V 200 UCSTEM = 0, UCMODEx = 01 or 10 tSTE,ACC STE access time, STE active to SIMO data out UCSTEM = 1, UCMODEx = 01 or 10 UCSTEM = 0, UCMODEx = 01 or 10 tSTE,DIS STE disable time, STE inactive to SIMO high impedance UCSTEM = 1, UCMODEx = 01 or 10 tSU,MI SOMI input data setup time tHD,MI SOMI input data hold time tVALID,MO SIMO output data valid time (2) UCLK edge to SIMO valid, CL = 20 pF tHD,MO SIMO output data hold time (3) CL = 20 pF (1) (2) (3) MAX ns ns 2V 50 3V 30 2V 50 3V 30 2V 40 3V 25 2V 40 3V UNIT ns ns 25 2V 50 3V 30 2V 0 3V 0 ns ns 2V 9 3V 5 2V 0 3V 0 ns ns fUCxCLK = 1/2tLO/HI with tLO/HI = max(tVALID,MO(eUSCI) + tSU,SI(Slave), tSU,MI(eUSCI) + tVALID,SO(Slave)) For the slave parameters tSU,SI(Slave) and tVALID,SO(Slave), see the SPI parameters of the attached slave. Specifies the time to drive the next valid data to the SIMO output after the output changing UCLK clock edge. See the timing diagrams in Figure 5-13 and Figure 5-14. Specifies how long data on the SIMO output is valid after the output changing UCLK clock edge. Negative values indicate that the data on the SIMO output can become invalid before the output changing clock edge observed on UCLK. See the timing diagrams in Figure 513 and Figure 5-14. Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 45 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tSU,MI tHD,MI SOMI tVALID,MO SIMO Figure 5-13. SPI Master Mode, CKPH = 0 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tHD,MI tSU,MI SOMI tVALID,MO SIMO Figure 5-14. SPI Master Mode, CKPH = 1 46 Specifications Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 5-31 lists the switching characteristics of the eUSCI in SPI slave mode. Table 5-31. eUSCI (SPI Slave Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER TEST CONDITIONS tSTE,LEAD STE lead time, STE active to clock tSTE,LAG STE lag time, Last clock to STE inactive tSTE,ACC STE access time, STE active to SOMI data out tSTE,DIS STE disable time, STE inactive to SOMI high impedance tSU,SI SIMO input data setup time tHD,SI SIMO input data hold time tVALID,SO SOMI output data valid time (2) UCLK edge to SOMI valid, CL = 20 pF tHD,SO SOMI output data hold time (3) CL = 20 pF (1) (2) (3) VCC MIN 2.0 V 4 3.0 V 3 2.0 V 0 3.0 V 0 TYP MAX ns ns 2.0 V 46 3.0 V 24 2.0 V 38 3.0 V 25 2.0 V 2 3.0 V 1 2.0 V 2 3.0 V 2 55 32 3.0 V 16 ns ns 3.0 V 24 ns ns 2.0 V 2.0 V UNIT ns ns fUCxCLK = 1/2tLO/HI with tLO/HI = max(tVALID,MO(Master) + tSU,SI(eUSCI), tSU,MI(Master) + tVALID,SO(eUSCI)) For the master parameters tSU,MI(Master) and tVALID,MO(Master), see the SPI parameters of the attached master. Specifies the time to drive the next valid data to the SOMI output after the output changing UCLK clock edge. See the timing diagrams in Figure 5-15 and Figure 5-16. Specifies how long data on the SOMI output is valid after the output changing UCLK clock edge. See the timing diagrams inFigure 5-15 and Figure 5-16. UCMODEx = 01 tSTE,LEAD STE tSTE,LAG UCMODEx = 10 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tSU,SIMO tLOW/HIGH tHD,SIMO SIMO tACC tVALID,SOMI tDIS SOMI Figure 5-15. SPI Slave Mode, CKPH = 0 Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 47 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com tSTE,LAG tSTE,LEAD STE 1/fUCxCLK CKPL = 0 UCLK CKPL = 1 tLOW/HIGH tLOW/HIGH tHD,SI tSU,SI SIMO tACC tDIS tVALID,SO SOMI Figure 5-16. SPI Slave Mode, CKPH = 1 48 Specifications Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 5-32 lists the switching characteristics of the eUSCI in I2C mode. Table 5-32. eUSCI (I2C Mode) over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (see Figure 5-17) PARAMETER TEST CONDITIONS feUSCI eUSCI input clock frequency fSCL SCL clock frequency Hold time (repeated) START tSU,STA Setup time for a repeated START tHD,DAT Data hold time Data setup time tSU,STO Setup time for STOP fSCL = 100 kHz 2 V, 3 V fSCL > 100 kHz fSCL = 100 kHz 2 V, 3 V fSCL > 100 kHz TYP 0 400 kHz µs µs 5.0 fSCL > 100 kHz 2 V, 3 V 1.3 µs µs 5.2 µs 1.7 UCGLITx = 0 75 220 UCGLITx = 1 35 120 30 60 2 V, 3 V UCGLITx = 2 20 30 UCCLTOx = 2 2 V, 3 V 33 UCCLTOx = 3 tSU,STA tHD,STA ns 35 UCCLTOx = 1 Clock low time-out MHz 1.4 0.4 UCGLITx = 3 tTIMEOUT fSYSTEM 5.1 2 V, 3 V fSCL > 100 kHz UNIT 1.5 2 V, 3 V 2 V, 3 V MAX 5.1 fSCL = 100 kHz fSCL = 100 kHz Pulse duration of spikes suppressed by input filter tSP MIN 2 V, 3 V tHD,STA tSU,DAT VCC Internal: SMCLK, ACLK External: UCLK Duty cycle = 50% ±10% ms 37 tHD,STA tBUF SDA tLOW tHIGH tSP SCL tSU,DAT tSU,STO tHD,DAT Figure 5-17. I2C Mode Timing Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 49 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com 5.14 LCD Controller Table 5-33 lists the recommended operating conditions of the LCD_C. Table 5-33. LCD_C Recommended Operating Conditions MIN NOM MAX UNIT VCC,LCD_C,CP en,3.6 Supply voltage range, charge pump enabled, VLCD ≤ 3.6 V LCDCPEN = 1, 0000 < VLCDx ≤ 1111 (charge pump enabled, VLCD ≤ 3.6 V) 2.2 3.6 V VCC,LCD_C,CP en,3.3 Supply voltage range, charge pump enabled, VLCD ≤ 3.3 V LCDCPEN = 1, 0000 < VLCDx ≤ 1100 (charge pump enabled, VLCD ≤ 3.3 V) 2.0 3.6 V VCC,LCD_C,int. bias Supply voltage range, internal biasing, charge pump disabled LCDCPEN = 0, VLCDEXT = 0 2.4 3.6 V VCC,LCD_C,ext. bias Supply voltage range, external biasing, charge pump disabled LCDCPEN = 0, VLCDEXT = 0 2.4 3.6 V VCC,LCD_C,VLCDEXT Supply voltage range, external LCD voltage, internal or external biasing, charge pump disabled LCDCPEN = 0, VLCDEXT = 1 2.0 3.6 V VLCDCAP/R33 External LCD voltage at LCDCAP/R33, internal or external biasing, charge pump disabled LCDCPEN = 0, VLCDEXT = 1 2.4 3.6 V CLCDCAP Capacitor on LCDCAP when charge pump enabled LCDCPEN = 1, VLCDx > 0000 (charge pump enabled) 10 µF fLCD LCD frequency range fFRAME = 1/(2 × mux) × fLCD with mux = 1 (static) to 8 1024 Hz fFRAME,4mux LCD frame frequency range fFRAME,4mux(MAX) = 1/(2 × 4) × fLCD(MAX) = 1/(2 × 4) × 1024 Hz 128 Hz fFRAME,8mux LCD frame frequency range fFRAME,8mux(MAX) = 1/(2 × 4) × fLCD(MAX) = 1/(2 × 8) × 1024 Hz 64 Hz fACLK,in ACLK input frequency range 40 kHz CPanel Panel capacitance 10000 pF VCC + 0.2 V 4.7 0 30 32 100-Hz frame frequency VR33 Analog input voltage at R33 LCDCPEN = 0, VLCDEXT = 1 VR23,1/3bias Analog input voltage at R23 LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 0 VR13 VR03 + 2/3 × (VR33-VR03) VR33 V VR13,1/3bias Analog input voltage at R13 with 1/3 biasing LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 0 VR03 VR03 + 1/3 × (VR33-VR03) VR23 V VR13,1/2bias Analog input voltage at R13 with 1/2 biasing LCDREXT = 1, LCDEXTBIAS = 1, LCD2B = 1 VR03 VR03 + 1/2 × (VR33-VR03) VR33 V VR03 Analog input voltage at R03 R0EXT = 1 VSS VLCD–VR03 Voltage difference between VLCD and R03 LCDCPEN = 0, R0EXT = 1 2.4 VLCDREF/R13 External LCD reference voltage applied at LCDREF/R13 VLCDREFx = 01 0.8 50 Specifications 2.4 V 1.2 VCC + 0.2 V 1.5 V Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 5-34 lists the characteristics of the LCD_C. Table 5-34. LCD_C Electrical Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER VLCD LCD voltage TEST CONDITIONS VCC MIN TYP VLCDx = 0000, VLCDEXT = 0 2.4 V to 3.6 V VCC LCDCPEN = 1, VLCDx = 0001 2 V to 3.6 V 2.58 LCDCPEN = 1, VLCDx = 0010 2 V to 3.6 V 2.64 LCDCPEN = 1, VLCDx = 0011 2 V to 3.6 V 2.71 LCDCPEN = 1, VLCDx = 0100 2 V to 3.6 V 2.78 LCDCPEN = 1, VLCDx = 0101 2 V to 3.6 V 2.83 LCDCPEN = 1, VLCDx = 0110 2 V to 3.6 V 2.90 LCDCPEN = 1, VLCDx = 0111 2 V to 3.6 V 2.96 LCDCPEN = 1, VLCDx = 1000 2 V to 3.6 V 3.02 LCDCPEN = 1, VLCDx = 1001 2 V to 3.6 V 3.07 LCDCPEN = 1, VLCDx = 1010 2 V to 3.6 V 3.14 LCDCPEN = 1, VLCDx = 1011 2 V to 3.6 V 3.21 LCDCPEN = 1, VLCDx = 1100 2 V to 3.6 V 3.27 LCDCPEN = 1, VLCDx = 1101 2.2 V to 3.6 V 3.32 LCDCPEN = 1, VLCDx = 1110 2.2 V to 3.6 V 3.38 MAX UNIT V LCDCPEN = 1, VLCDx = 1111 2.2 V to 3.6 V 3.44 ICC,Peak,CP Peak supply currents due to charge pump activities 3.6 LCDCPEN = 1, VLCDx = 1111 2.2 V 400 tLCD,CP,on Time to charge CLCD when discharged CLCD = 4.7µF, LCDCPEN = 0→1, VLCDx = 1111 2.2 V 150 ICP,Load Maximum charge pump load current LCDCPEN = 1, VLCDx = 1111 2.2 V RLCD,Seg LCD driver output impedance, segment lines LCDCPEN = 1, VLCDx = 1000, ILOAD = ±10 µA 2.2 V 10 kΩ RLCD,COM LCD driver output impedance, common lines LCDCPEN = 1, VLCDx = 1000, ILOAD = ±10 µA 2.2 V 10 kΩ µA 500 50 µA Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated ms 51 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com 5.15 SD24_B Table 5-35 lists the power supply and recommended operating conditions of the SD24_B. Table 5-35. SD24_B Power Supply and Recommended Operating Conditions MIN AVCC Analog supply voltage AVCC = DVCC, AVSS = DVSS = 0 V TYP MAX 2.4 UNIT 3.6 V MHz fSD Modulator clock frequency (1) 0.03 2.3 VI Absolute input voltage range AVSS – 1 AVCC V VIC Common-mode input voltage range AVSS – 1 AVCC V VID,FS Differential full-scale input voltage Differential input voltage for specified performance (2) VID CREF (1) (2) (3) VID = VI,A+ – VI,A– SD24REFS = 1 VREF load capacitance (3) –VREF/GAIN +VREF/GAIN SD24GAINx = 1 ±910 ±920 SD24GAINx = 2 ±455 ±460 SD24GAINx = 4 ±227 ±230 SD24GAINx = 8 ±113 ±115 SD24GAINx = 16 ±57 ±58 SD24GAINx = 32 ±28 ±29 SD24GAINx = 64 ±14 ±14.5 SD24GAINx = 128 ±7 ±7.2 SD24REFS = 1 mV 100 nF Modulator clock frequency: MIN = 32.768 kHz – 10% ≈ 30 kHz. MAX = 32.768 kHz × 64 + 10% ≈ 2.3 MHz The full-scale range (FSR) is defined by VFS+ = +VREF/GAIN and VFS– = –VREF/GAIN: FSR = VFS+ – VFS– = 2 × VREF / GAIN. If VREF is sourced externally, the analog input range should not exceed 80% of VFS+ or VFS–; that is, VID = 0.8 VFS– to 0.8 VFS+. If VREF is sourced internally, the given VID ranges apply. There is no capacitance required on VREF. However, a capacitance of 100 nF is recommended to reduce any reference voltage noise. Table 5-36 lists the analog input characteristics of the SD24_B. Table 5-36. SD24_B Analog Input PARAMETER CI Input capacitance TEST CONDITIONS (1) VCC MIN 5 SD24GAINx = 2 5 SD24GAINx = 4 5 SD24GAINx = 8 5 SD24GAINx = 16 5 SD24GAINx = 32, 64, 128 ZI ZID (1) 52 Input impedance (Pin A+ or A- to AVSS) Differential input impedance (Pin A+ to pin A-) TYP SD24GAINx = 1 fSD24 = 1 MHz fSD24 = 1 MHz MAX UNIT pF 5 SD24GAINx = 1 3V 200 SD24GAINx = 8 3V 200 SD24GAINx = 32 3V SD24GAINx = 1 3V SD24GAINx = 8 3V SD24GAINx = 32 3V kΩ 200 300 400 400 300 kΩ 400 All parameters pertain to each SD24_B converter. Specifications Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 1600 Input Leakage Current – nA 1400 1200 1000 800 600 400 200 0 -200 -1 -0.5 0 0.5 1 Input Voltage – V 1.5 2 2.5 3 Figure 5-18. Input Leakage Current vs Input Voltage (Modulator OFF) Table 5-37 lists the supply current of the SD24_B. Table 5-37. SD24_B Supply Currents PARAMETER ISD,256 ISD,512 TEST CONDITIONS Analog plus digital supply current per converter (reference not included) fSD24 = 1 MHz, SD24OSR = 256 Analog plus digital supply current per converter (reference not included) fSD24 = 2 MHz, SD24OSR = 512 VCC MIN TYP MAX SD24GAIN: 1 3V 600 675 SD24GAIN: 2 3V 600 675 SD24GAIN: 4 3V 600 675 SD24GAIN: 8 3V 700 750 SD24GAIN: 16 3V 700 750 SD24GAIN: 32 3V 775 850 SD24GAIN: 64 3V 775 850 SD24GAIN: 128 3V 775 850 SD24GAIN: 1 3V 750 800 SD24GAIN: 8 3V 825 900 SD24GAIN: 32 3V 900 1000 TYP MAX UNIT µA µA Table 5-38 lists the performance characteristics of the SD24_B. Table 5-38. SD24_B Performance fSD24 = 1 MHz, SD24OSRx = 256, SD24REFS = 1 PARAMETER INL Gnom Integral nonlinearity, endpoint fit Nominal gain VCC MIN SD24GAIN: 1 TEST CONDITIONS 3V –0.01 0.01 SD24GAIN: 8 3V –0.01 0.01 SD24GAIN: 32 3V –0.01 0.01 SD24GAIN: 1 3V 1 SD24GAIN: 2 3V 2 SD24GAIN: 4 3V 4 SD24GAIN: 8 3V 8 SD24GAIN: 16 3V 16 SD24GAIN: 32 3V 31.7 SD24GAIN: 64 3V 63.4 SD24GAIN: 128 3V 126.8 Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated UNIT % of FSR 53 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 5-38. SD24_B Performance (continued) fSD24 = 1 MHz, SD24OSRx = 256, SD24REFS = 1 PARAMETER TEST CONDITIONS EG Gain error (1) ΔEG/ΔT Gain error temperature coefficient (2), internal reference ΔEG/ΔVCC Gain error vs VCC Offset error (4) EOS[V] Offset error (4) EOS[FS] Offset error temperature coefficient (5) ΔEOS/ΔT ΔEOS/ΔVCC CMRR,DC (1) (2) (3) (4) (5) (6) (7) 54 (3) Offset error vs VCC (6) Common-mode rejection at DC (7) VCC MIN SD24GAIN: 1, with external reference (1.2 V) 3V –1% TYP MAX +1% SD24GAIN: 8, with external reference (1.2 V) 3V –2% +2% SD24GAIN: 32, with external reference (1.2 V) 3V –2% +2% SD24GAIN: 1, 8, or 32 (with internal reference) 3V 50 SD24GAIN: 1 0.15 SD24GAIN: 8 0.15 SD24GAIN: 32 0.4 3V 2.3 SD24GAIN: 8 3V 0.73 SD24GAIN: 32 3V 0.18 SD24GAIN: 1 (with Vdiff = 0 V) 3V –0.2 0.2 SD24GAIN: 8 3V –0.5 0.5 SD24GAIN: 32 3V –0.5 0.5 SD24GAIN: 1 3V 1 SD24GAIN: 8 3V 0.15 SD24GAIN: 32 3V 0.1 600 SD24GAIN: 8 100 SD24GAIN: 32 50 SD24GAIN: 1 3V –110 SD24GAIN: 8 3V –110 SD24GAIN: 32 3V –110 ppm/ °C %/V SD24GAIN: 1 (with Vdiff = 0 V) SD24GAIN: 1 UNIT mV % FS µV/°C µV/V dB The gain error EG specifies the deviation of the actual gain Gact from the nominal gain Gnom: EG = (Gact – Gnom)/Gnom. It covers process, temperature and supply voltage variations. The gain error temperature coefficient ΔEG / ΔT specifies the variation of the gain error EG over temperature (EG(T) = (Gact(T) – Gnom)/Gnom) using the box method (that is, MIN and MAX values): ΔEG/ ΔT = (MAX(EG(T)) – MIN(EG(T) ) / (MAX(T) – MIN(T)) = (MAX(Gact(T)) – MIN(Gact(T)) / Gnom / (MAX(T) – MIN(T)) with T ranging from –40°C to +85°C. The gain error vs VCC coefficient ΔEG/ ΔVCC specifies the variation of the gain error EG over supply voltage (EG(VCC) = (Gact(VCC) – Gnom)/Gnom) using the box method (that is, MIN and MAX values): ΔEG/ ΔVCC = (MAX(EG(VCC)) – MIN(EG(VCC) ) / (MAX(VCC) – MIN(VCC)) = (MAX(Gact(VCC)) – MIN(Gact(VCC)) / Gnom / (MAX(VCC) – MIN(VCC)) with VCC ranging from 2.4 V to 3.6 V. The offset error EOS is measured with shorted inputs in 2s-complement mode with +100% FS = VREF / G and –100% FS = –VREF / G. Conversion between EOS [FS] and EOS [V] is as follows: EOS [FS] = EOS [V]×G/VREF; EOS [V] = EOS [FS]×VREF/G. The offset error temperature coefficient ΔEOS / ΔT specifies the variation of the offset error EOS over temperature using the box method (that is, MIN and MAX values): ΔEOS / ΔT = (MAX(EOS(T)) – MIN(EOS(T) ) / (MAX(T) – MIN(T)) with T ranging from –40°C to +85°C. The offset error vs VCC ΔEOS / ΔVCC specifies the variation of the offset error EOS over supply voltage using the box method (that is, MIN and MAX values): ΔEOS / ΔVCC = (MAX(EOS(VCC)) – MIN(EOS(VCC) ) / (MAX(VCC) – MIN(VCC)) with VCC ranging from 2.4 V to 3.6 V. The DC CMRR specifies the change in the measured differential input voltage value when the common-mode voltage varies: DC CMRR = –20log(ΔMAX/FSR) with ΔMAX being the difference between the minium value and the maximum value measured when sweeping the common-mode voltage (for example, calculating with 16-bit FSR = 65536, a maximum change by 1 LSB results in –20log(1/65536) ≈ –96 dB) . The DC CMRR is measured with both inputs connected to the common-mode voltage (that is, no differential input signal is applied), and the common-mode voltage is swept from –1 V to VCC. Specifications Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 5-38. SD24_B Performance (continued) fSD24 = 1 MHz, SD24OSRx = 256, SD24REFS = 1 PARAMETER CMRR,50Hz AC PSRR,ext AC PSRR,int XT Common-mode rejection at 50 Hz (8) AC power supply rejection ratio, external reference (9) AC power supply rejection ratio, internal reference (9) Crosstalk between converters (10) TEST CONDITIONS VCC MIN TYP SD24GAIN: 1, fCM = 50 Hz, VCM = 930 mV 3V –110 SD24GAIN: 8, fCM = 50 Hz, VCM = 120 mV 3V –110 SD24GAIN: 32, fCM = 50 Hz, VCM = 30 mV 3V –110 SD24GAIN: 1, VCC = 3 V + 50 mV × sin(2π × fVcc × t), fVcc = 50 Hz –61 SD24GAIN: 8, VCC = 3 V + 50 mV × sin(2π × fVcc × t), fVcc = 50 Hz –77 SD24GAIN: 32, VCC = 3 V + 50 mV × sin(2π × fVcc × t), fVcc = 50 Hz –79 SD24GAIN: 1, VCC = 3 V + 50 mV × sin(2π × fVcc × t), fVcc = 50 Hz –61 SD24GAIN: 8, VCC = 3 V + 50 mV × sin(2π × fVcc × t), fVcc = 50 Hz –77 SD24GAIN: 32, VCC = 3 V + 50 mV × sin(2π × fVcc × t), fVcc = 50 Hz –79 Crosstalk source: SD24GAIN: 1, Sine wave with maximum possible Vpp, fIN = 50 Hz or 100 Hz, Converter under test: SD24GAIN: 1 3V –120 Crosstalk source: SD24GAIN: 1, Sine wave with maximum possible Vpp, fIN = 50 Hz or 100 Hz, Converter under test: SD24GAIN: 8 3V –115 Crosstalk source: SD24GAIN: 1, Sine wave with maximum possible Vpp, fIN = 50 Hz or 100 Hz, Converter under test: SD24GAIN: 32 3V –100 MAX UNIT dB dB dB dB (8) The AC CMRR is the difference between a hypothetical signal with the amplitude and frequency of the applied common-mode ripple applied to the inputs of the ADC and the actual common-mode signal spur visible in the FFT spectrum: AC CMRR = Error Spur [dBFS] – 20log(VCM / 1.2 V / G) [dBFS] with a common-mode signal of VCM × sin(2π × fCM × t) applied to the analog inputs. The AC CMRR is measured with the both inputs connected to the common-mode signal (that is, no differential input signal is applied). With the specified typical values the error spur is within the noise floor (as specified by the SINAD values). (9) The AC PSRR is the difference between a hypothetical signal with the amplitude and frequency of the applied supply voltage ripple applied to the inputs of the ADC and the actual supply ripple spur visible in the FFT spectrum: AC PSRR = Error Spur [dBFS] – 20log(50 mV / 1.2 V / G) [dBFS] with a signal of 50 mV × sin(2π × fVcc × t) added to VCC. The AC PSRR is measured with the inputs grounded (that is, no analog input signal is applied). With the specified typical values the error spur is within the noise floor (as specified by the SINAD values). SD24GAIN: 1 → Hypothetical signal: 20log(50 mV / 1.2 V / 1) = –27.6 dBFS SD24GAIN: 8 → Hypothetical signal: 20log(50 mV / 1.2 V / 8) = –9.5 dBFS SD24GAIN: 32 → Hypothetical signal: 20log(50 mV / 1.2 V / 32) = 2.5 dBFS (10) The crosstalk (XT) is specified as the tone level of the signal applied to the crosstalk source seen in the spectrum of the converter under test. It is measured with the inputs of the converter under test being grounded. Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 55 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 5-39 lists the AC performance characteristics of the SD24_B. Table 5-39. SD24_B AC Performance fSD24 = 1 MHz, SD24OSRx = 256, SD24REFS = 1 PARAMETER SINAD Signal-to-noise + distortion ratio VCC MIN TYP SD24GAIN: 1 TEST CONDITIONS 3V 85 87 SD24GAIN: 2 3V SD24GAIN: 4 3V SD24GAIN: 8 3V SD24GAIN: 16 fIN = 50 Hz (1) Total harmonic distortion 84 3V 3V 68 SD24GAIN: 128 3V 62 3V 100 3V 90 3V 80 fIN = 50 Hz (1) dB 80 SD24GAIN: 64 SD24GAIN: 32 (1) 85 82 SD24GAIN: 32 SD24GAIN: 8 UNIT 86 3V SD24GAIN: 1 THD MAX 73 74 dB The following voltages were applied to the SD24_B inputs: VI,A+(t) = 0 V + VPP / 2 × sin(2π × fIN × t) VI,A-(t) = 0 V – VPP / 2 × sin(2π × fIN × t) resulting in a differential voltage of VID = VI,A+(t) – VI,A–(t) = VPP × sin(2π × fIN × t) with VPP being selected as the maximum value allowed for a given range (according to SD24_B recommended operating conditions). Table 5-40 lists the AC performance characteristics of the SD24_B. Table 5-40. SD24_B AC Performance fSD24 = 2 MHz, SD24OSRx = 512, SD24REFS = 1 PARAMETER SINAD (1) 56 Signal-to-noise + distortion ratio TEST CONDITIONS VCC MIN TYP SD24GAIN: 1 3V 87 SD24GAIN: 2 3V 86 SD24GAIN: 4 3V 85 SD24GAIN: 8 3V 84 3V 81 SD24GAIN: 32 3V 76 SD24GAIN: 64 3V 71 SD24GAIN: 128 3V 65 SD24GAIN: 16 fIN = 50 Hz (1) MAX UNIT dB The following voltages were applied to the SD24_B inputs: VI,A+(t) = 0 V + VPP / 2 × sin(2π × fIN × t) VI,A-(t) = 0 V – VPP / 2 × sin(2π × fIN × t) resulting in a differential voltage of VID = VI,A+(t) – VI,A–(t) = VPP × sin(2π × fIN × t) with VPP being selected as the maximum value allowed for a given range (according to SD24_B recommended operating conditions). Specifications Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 5-41 lists the AC performance characteristics of the SD24_B. Table 5-41. SD24_B AC Performance fSD24 = 32 kHz, SD24OSRx = 512, SD24REFS = 1 PARAMETER SINAD (1) TEST CONDITIONS Signal-to-noise + distortion ratio VCC MIN TYP SD24GAIN: 1 3V 89 SD24GAIN: 2 3V 85 SD24GAIN: 4 3V 84 SD24GAIN: 8 3V 86 3V 80 SD24GAIN: 32 3V 76 SD24GAIN: 64 3V 67 SD24GAIN: 128 3V 61 SD24GAIN: 16 fIN = 12 Hz (1) MAX UNIT dB The following voltages were applied to the SD24_B inputs: VI,A+(t) = 0 V + VPP / 2 × sin(2π × fIN × t) VI,A-(t) = 0 V – VPP / 2 × sin(2π × fIN × t) resulting in a differential voltage of VID = VI,A+(t) – VI,A–(t) = VPP × sin(2π × fIN × t) with VPP being selected as the maximum value allowed for a given range (according to SD24_B recommended operating conditions). 95 90 SINAD – dB 85 80 75 70 65 60 55 32 64 128 256 512 1024 SD24OSRx Figure 5-19. SINAD vs OSR (fSD24 = 1 MHz, SD24REFS = 1, SD24GAIN = 1) Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 57 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com 90 85 SINAD – dB 80 75 70 65 60 0.1 0.2 0.3 0.4 0.5 0.6 Vpp/Vref/Gain 0.7 0.8 0.9 1 Figure 5-20. SINAD vs VPP Table 5-42 lists the external reference input requirements of the SD24_B. Table 5-42. SD24_B External Reference Input ensure correct input voltage range according to VREF PARAMETER TEST CONDITIONS VCC MIN TYP MAX 1.0 1.20 1.5 V 50 nA VREF(I) Input voltage SD24REFS = 0 3V IREF(I) Input current SD24REFS = 0 3V 58 Specifications UNIT Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 5.16 ADC10_A Table 5-43 lists the power supply and input range conditions of the ADC10_A. Table 5-43. 10-Bit ADC, Power Supply and Input Range Conditions over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) VCC AVCC Analog supply voltage AVCC and DVCC are connected together, AVSS and DVSS are connected together, V(AVSS) = V(DVSS) = 0 V V(Ax) Analog input voltage range (1) All ADC10_A pins Operating supply current into AVCC terminal, REF module and reference buffer off fADC10CLK = 5 MHz, ADC10ON =1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 00 Operating supply current into AVCC terminal, REF module on, reference buffer on fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 1, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 01 Operating supply current into AVCC terminal, REF module off, reference buffer on MIN TYP MAX 1.8 3.6 V 0 AVCC V 2.2 V 70 105 3V 80 115 3V 130 185 fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 10, VEREF = 2.5 V 3V 108 160 Operating supply current into AVCC terminal, REF module off, reference buffer off fADC10CLK = 5 MHz, ADC10ON = 1, REFON = 0, SHT0 = 0, SHT1 = 0, ADC10DIV = 0, ADC10SREF = 11, VEREF = 2.5 V 3V 74 105 CI Input capacitance Only one terminal Ax can be selected at one time from the pad to the ADC10_A capacitor array including wiring and pad. 2.2 V 3.5 RI Input MUX ON resistance IADC10_A (1) UNIT µA pF AVCC > 2 V, 0 V ≤ VAx ≤ AVCC 36 1.8 V < AVCC < 2 V, 0 V ≤ VAx ≤ AVCC 96 kΩ The analog input voltage range must be within the selected reference voltage range VR+ to VR– for valid conversion results. The external reference voltage requires decoupling capacitors. Two decoupling capacitors, 10 µF and 100 nF, should be connected to VREF to decouple the dynamic current required for an external reference source if it is used for the ADC10_A. Also see the MSP430x5xx and MSP430x6xx Family User's Guide. Table 5-44 lists the timing parameters of the ADC10_A. Table 5-44. 10-Bit ADC, Timing Parameters over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC MIN TYP MAX UNIT For specified performance of ADC10_A linearity parameters 2.2 V, 3 V 0.45 5 5.5 MHz Internal ADC10_A oscillator (1) ADC10DIV = 0, fADC10CLK = fADC10OSC 2.2 V, 3 V 4.4 5.0 5.6 MHz 2.2 V, 3 V 2.4 Conversion time REFON = 0, Internal oscillator, 12 ADC10CLK cycles, 10-bit mode fADC10OSC = 4 MHz to 5 MHz fADC10CLK fADC10OSC tCONVERT TEST CONDITIONS µs External fADC10CLK from ACLK, MCLK or SMCLK, ADC10SSEL ≠ 0 tADC10ON Turnon settling time of the ADC tSample Sampling time (1) (2) (3) See 3.0 12 × 1 / fADC10CLK (2) 100 RS = 1000 Ω, RI = 96 kΩ, CI = 3.5 pF (3) 1.8 V 3 RS = 1000 Ω, RI = 36 kΩ, CI = 3.5 pF (3) 3V 1 ns µs The ADC10OSC is sourced directly from MODOSC inside the UCS. The condition is that the error in a conversion started after tADC10ON is less than ±0.5 LSB. The reference and input signal are already settled. Approximately ei8ght Tau (t) are needed to get an error of less than ±0.5 LSB Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 59 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 5-45. 10-Bit ADC, Linearity Parameters over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TEST CONDITIONS VCC 1.4 V ≤ (VeREF+ – VeREF–) ≤ 1.6 V, CVeREF+ = 20 pF MIN TYP MAX ±1.0 UNIT EI Integral linearity error ED Differential linearity error 1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF 2.2 V, 3 V ±1.0 LSB EO Offset error 1.4 V ≤ (VeREF+ – VeREF–), CVREF+ = 20 pF, Internal impedance of source RS < 100 Ω 2.2 V, 3 V ±1.0 LSB EG Gain error 1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF, ADC10SREFx = 11b 2.2 V, 3 V ±1.0 LSB ET Total unadjusted error 1.4 V ≤ (VeREF+ – VeREF–), CVeREF+ = 20 pF, ADC10SREFx = 11b 2.2 V, 3 V ±2.0 LSB MAX UNIT 2.2 V, 3 V 1.6 V < (VeREF+ – VeREF–) ≤ VAVCC, CVeREF+ = 20 pF ±1.0 ±1.0 LSB Table 5-46 lists the external reference requirements of the ADC10_A. Table 5-46. 10-Bit ADC, External Reference over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) (1) PARAMETER TEST CONDITIONS VCC MIN TYP VeREF+ Positive external reference VeREF+ > VeREF– voltage input (2) 1.4 AVCC V VeREF– Negative external reference voltage input VeREF+ > VeREF– (3) 0 1.2 V (VeREF+ – VeREF–) Differential external reference voltage input VeREF+ > VeREF– (4) 1.4 AVCC V ±26 µA ±1 µA IVeREF+, IVeREF– CVeREF+/(1) (2) (3) (4) (5) 60 Static input current Capacitance at VeREF+ or VeREF- terminal 1.4 V ≤ VeREF+ ≤ VAVCC , VeREF– = 0 V, fADC10CLK = 5 MHz, ADC10SHTx = 0x0001, Conversion rate 200 ksps 2.2 V, 3 V 1.4 V ≤ VeREF+ ≤ VAVCC , VeREF– = 0 V, fADC10CLK = 5 MHz, ADC10SHTX = 0x1000, Conversion rate 20 ksps 2.2 V, 3 V See (5) ±8.5 10 µF The external reference is used during ADC conversion to charge and discharge the capacitance array. The input capacitance, CI, is also the dynamic load for an external reference during conversion. The dynamic impedance of the reference supply should follow the recommendations on analog-source impedance to allow the charge to settle for 10-bit accuracy. The accuracy limits the minimum positive external reference voltage. Lower reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits the maximum negative external reference voltage. Higher reference voltage levels may be applied with reduced accuracy requirements. The accuracy limits minimum external differential reference voltage. Lower differential reference voltage levels may be applied with reduced accuracy requirements. Two decoupling capacitors, 10 µF and 100 nF, should be connected to VeREF to decouple the dynamic current required for an external reference source if it is used for the ADC10_A. Also see the MSP430x5xx and MSP430x6xx Family User's Guide. Specifications Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 5.17 REF Table 5-47 lists the characteristics of the REF. Table 5-47. REF, Built-In Reference over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER Positive built-in reference voltage VREF+ AVCC minimum voltage, Positive built-in reference active AVCC(min) Operating supply current into AVCC terminal (1) IREF+ TEST CONDITIONS VCC MIN TYP MAX REFVSEL = {2} for 2.5 V, REFON = 1 3V 2.47 2.51 2.55 REFVSEL = {1} for 2.0 V, REFON = 1 3V 1.95 1.99 2.03 REFVSEL = {0} for 1.5 V, REFON = 1 2.2 V, 3 V 1.46 1.50 1.54 REFVSEL = {0} for 1.5 V 1.8 REFVSEL = {1} for 2.0 V 2.2 REFVSEL = {2} for 2.5 V 2.7 UNIT V V fADC10CLK = 5 MHz, REFON = 1, REFBURST = 0, REFVSEL = {2} for 2.5 V 3V 23 30 fADC10CLK = 5 MHz, REFON = 1, REFBURST = 0, REFVSEL = {1} for 2.0 V 3V 21 27 fADC10CLK = 5 MHz, REFON = 1, REFBURST = 0, REFVSEL = {0} for 1.5 V 3V 19 25 10 50 µA TCREF+ Temperature coefficient of built-in reference (2) REFVSEL = {0, 1, 2}, REFON = 1 ISENSOR Operating supply current into AVCC terminal REFON = 1, ADC10ON = 1, INCH = 0Ah, TA = 30°C 2.2 V 145 220 3V 170 245 VSENSOR See REFON = 1, ADC10ON = 1, INCH = 0Ah, TA = 30°C 2.2 V 780 3V 780 VMID AVCC divider at channel 11 ADC10ON = 1, INCH = 0Bh, VMID is ~0.5 × VAVCC 2.2 V 1.08 1.1 1.12 3V 1.48 1.5 1.52 tSENSOR(sample) Sample time required if channel 10 is selected (4) REFON = 1, ADC10ON = 1, INCH = 0Ah, Error of conversion result ≤ 1 LSB tVMID(sample) Sample time required if channel 11 is selected (5) ADC10ON = 1, INCH = 0Bh, Error of conversion result ≤ 1 LSB PSRR_DC Power supply rejection ratio (DC) AVCC = AVCC (min) to AVCC(max), TA = 25°C, REFVSEL = {0, 1, 2}, REFON = 1 120 PSRR_AC Power supply rejection ratio (AC) AVCC = AVCC (min) to AVCC(max), TA = 25°C, f = 1 kHz, ΔVpp = 100 mV REFVSEL = {0, 1, 2}, REFON = 1 1 mV/V tSETTLE Settling time of reference voltage (6) AVCC = AVCC (min) to AVCC(max), REFVSEL = {0, 1, 2}, REFON = 0→1 75 µs VSD24REF SD24_B internal reference voltage SD24REFS = 1 3V tON SD24_B internal reference turnon time (7) SD24REFS = 0→1, CREF = 100 nF 3V (1) (2) (3) (4) (5) (6) (7) (3) ppm/ °C µA mV V 30 µs 1 µs 1.137 1.151 300 1.165 200 µV/V V µs The internal reference current is supplied through the AVCC terminal. Consumption is independent of the ADC10ON control bit, unless a conversion is active. The REFON bit enables to settle the built-in reference before starting an A/D conversion. Calculated using the box method: (MAX(–40°C to 85°C) – MIN(–40°C to 85°C)) / MIN(–40°C to 85°C)/(85°C – (–40°C)). The temperature sensor offset can be significant. TI recommends a single-point calibration to minimize the offset error of the built-in temperature sensor. The typical equivalent impedance of the sensor is 51 kΩ. The sample time required includes the sensor-on time tSENSOR(on). The on-time tVMID(on) is included in the sampling time tVMID(sample); no additional on time is needed. The condition is that the error in a conversion started after tREFON is ≤ 1 LSB. The condition is that SD24_B conversion started after tON should guarantee specified SINAD values for the selected Gain, OSR and fSD24. Specifications Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 61 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com 5.18 Flash Memory Table 5-48 lists the characteristics of the flash memory. Table 5-48. Flash Memory over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER TJ MIN TYP Program and erase supply voltage IPGM Average supply current from DVCC during program 3 5 mA IERASE Average supply current from DVCC during erase 6 11 mA IMERASE, IBANK Average supply current from DVCC during mass erase or bank erase 6 11 mA Cumulative program time (1) 16 104 Program and erase endurance tRetention Data retention duration tWord 3.6 UNIT DVCC(PGM/ERASE) tCPT 1.8 MAX ms cycles 100 years 64 85 µs 0 Block program time for first byte or word (2) 49 65 µs tBlock, 1–(N–1) Block program time for each additional byte or word, except for last byte or word (2) 37 49 µs tBlock, N Block program time for last byte or word (2) 55 73 µs tErase Erase time for segment erase, mass erase, and bank erase when available (2) 23 32 ms fMCLK,MGR MCLK frequency in marginal read mode (FCTL4.MGR0 = 1 or FCTL4. MGR1 = 1) 0 1 MHz tBlock, (1) (2) Word or byte program time 25°C (2) 105 V The cumulative program time must not be exceeded when writing to a 128-byte flash block. This parameter applies to all programming methods: individual word- or byte-write and block-write modes. These values are hardwired into the state machine of the flash controller. 5.19 Emulation and Debug Table 5-49 lists the characteristics of the JTAG and Spy-Bi-Wire interface. Table 5-49. JTAG and Spy-Bi-Wire Interface over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted) PARAMETER VCC MIN TYP MAX UNIT fSBW Spy-Bi-Wire input frequency 2.2 V, 3 V 0 20 MHz tSBW,Low Spy-Bi-Wire low clock pulse duration 2.2 V, 3 V 0.025 15 µs tSBW, En Spy-Bi-Wire enable time (TEST high to acceptance of first clock edge) (1) 2.2 V, 3 V 1 µs tSBW,Rst Spy-Bi-Wire return to normal operation time 100 µs fTCK TCK input frequency for 4-wire JTAG (2) Rinternal Internal pulldown resistance on TEST (1) (2) 62 15 2.2 V 0 5 3V 0 10 2.2 V, 3 V 45 60 80 MHz kΩ Tools that access the Spy-Bi-Wire interface must wait for the minimum tSBW,En time after pulling the TEST/SBWTCK pin high before applying the first SBWTCK clock edge. fTCK may be restricted to meet the timing requirements of the module selected. Specifications Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 6 Detailed Description 6.1 CPU The MSP430 CPU has a 16-bit RISC architecture that is highly transparent to the application. All operations, other than program-flow instructions, are performed as register operations in conjunction with seven addressing modes for source operand and four addressing modes for destination operand. The CPU is integrated with 16 registers that provide reduced instruction execution time. The register-toregister operation execution time is one cycle of the CPU clock. Four of the registers, R0 to R3, are dedicated as program counter, stack pointer, status register, and constant generator, respectively. The remaining registers are general-purpose registers (see Figure 6-1). Peripherals are connected to the CPU using data, address, and control buses. Peripherals can be managed with all instructions. Program Counter PC/R0 Stack Pointer SP/R1 Status Register Constant Generator SR/CG1/R2 CG2/R3 General-Purpose Register R4 General-Purpose Register R5 General-Purpose Register R6 General-Purpose Register R7 General-Purpose Register R8 General-Purpose Register R9 General-Purpose Register R10 General-Purpose Register R11 General-Purpose Register R12 General-Purpose Register R13 General-Purpose Register R14 General-Purpose Register R15 Figure 6-1. Integrated CPU Registers Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 63 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 6.2 www.ti.com Instruction Set The instruction set consists of the original 51 instructions with three formats and seven address modes and additional instructions for the expanded address range. Each instruction can operate on word and byte data. Table 6-1 lists examples of the three types of instruction formats. Table 6-2 lists the address modes. Table 6-1. Instruction Word Formats INSTRUCTION WORD FORMAT EXAMPLE OPERATION Dual operands, source and destination ADD R4,R5 R4 + R5 → R5 Single operands, destination only CALL R8 PC → (TOS), R8 → PC Relative jump, unconditional or conditional JNE Jump-on-equal bit = 0 Table 6-2. Address Mode Descriptions ADDRESS MODE S (1) D (1) SYNTAX EXAMPLE Register + + MOV Rs,Rd MOV R10,R11 R10 → R11 Indexed + + MOV X(Rn),Y(Rm) MOV 2(R5),6(R6) M(2+R5) → M(6+R6) Symbolic (PC relative) + + MOV EDE,TONI Absolute + + MOV & MEM, & TCDAT Indirect + MOV @Rn,Y(Rm) MOV @R10,Tab(R6) M(R10) → M(Tab+R6) Indirect autoincrement + MOV @Rn+,Rm MOV @R10+,R11 M(R10) → R11 R10 + 2 → R10 Immediate + MOV #X,TONI MOV #45,TONI #45 → M(TONI) (1) S = source, D = destination 64 Detailed Description OPERATION M(EDE) → M(TONI) M(MEM) → M(TCDAT) Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com 6.3 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Operating Modes These microcontrollers have one active mode and seven software-selectable low-power modes of operation. An interrupt event can wake up the device from any of the low-power modes, service the request, and restore back to the low-power mode on return from the interrupt program. Software can configure the following operating modes: • Active mode (AM) – All clocks are active • Low-power mode 0 (LPM0) – CPU is disabled – ACLK and SMCLK remain active, MCLK is disabled – FLL loop control remains active • Low-power mode 1 (LPM1) – CPU is disabled – FLL loop control is disabled – ACLK and SMCLK remain active, MCLK is disabled • Low-power mode 2 (LPM2) – CPU is disabled – MCLK and FLL loop control and DCOCLK are disabled – DC generator of the DCO remains enabled – ACLK remains active • Low-power mode 3 (LPM3) – CPU is disabled – MCLK, FLL loop control, and DCOCLK are disabled – DC generator of the DCO is disabled – ACLK remains active • Low-power mode 4 (LPM4) – CPU is disabled – ACLK is disabled – MCLK, FLL loop control, and DCOCLK are disabled – DC generator of the DCO is disabled – Crystal oscillator is stopped – Complete data retention • Low-power mode 3.5 (LPM3.5) – Internal regulator disabled – No RAM retention, Backup RAM retained – I/O pad state retention – RTC clocked by low-frequency oscillator – Wake-up input from RST/NMI, RTC_C events, Ports P1 and P2 • Low-power mode 4.5 (LPM4.5) – Internal regulator disabled – No RAM retention, Backup RAM retained – RTC is disabled – I/O pad state retention – Wake-up input from RST/NMI, Ports P1 and P2 Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 65 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 6.4 www.ti.com Interrupt Vector Addresses The interrupt vectors and the power-up start address are in the address range 0FFFFh to 0FF80h (see Table 6-3). The vector contains the 16-bit address of the appropriate interrupt-handler instruction sequence. Table 6-3. Interrupt Sources, Flags, and Vectors of MSP430F67xx Configurations INTERRUPT SOURCE INTERRUPT FLAG SYSTEM INTERRUPT WORD ADDRESS PRIORITY System Reset Power up External reset Watchdog time-out, key violation Flash memory key violation WDTIFG, KEYV (SYSRSTIV) (1) (2) Reset 0FFFEh 63, highest System NMI PMM Vacant memory access JTAG mailbox SVMLIFG, SVMHIFG, DLYLIFG, DLYHIFG, VLRLIFG, VLRHIFG, VMAIFG, JMBNIFG, JMBOUTIFG (SYSSNIV) (1) (3) (Non)maskable 0FFFCh 62 User NMI NMI Oscillator fault Flash memory access violation Supply switch NMIIFG, OFIFG, ACCVIFG, AUXSWNMIFG (SYSUNIV) (1) (3) (Non)maskable 0FFFAh 61 Watchdog Timer_A interval timer mode WDTIFG Maskable 0FFF8h 60 eUSCI_A0 receive or transmit UCA0RXIFG, UCA0TXIFG (UCA0IV) (1) (4) Maskable 0FFF6h 59 eUSCI_B0 receive or transmit UCB0RXIFG, UCB0TXIFG (UCB0IV) (1) (4) Maskable 0FFF4h 58 ADC10_A ADC10IFG0, ADC10INIFG, ADC10LOIFG, ADC10HIIFG, ADC10TOVIFG, ADC10OVIFG (ADC10IV) (1) (4) Maskable 0FFF2h 57 SD24_B SD24_B Interrupt Flags (SD24IV) (1) (4) Maskable 0FFF0h 56 Timer TA0 TA0CCR0 CCIFG0 (4) Maskable 0FFEEh 55 Timer TA0 TA0CCR1 CCIFG1, TA0CCR2 CCIFG2, TA0IFG (TA0IV) (1) (4) Maskable 0FFECh 54 eUSCI_A1 receive or transmit UCA1RXIFG, UCA1TXIFG (UCA1IV) (1) (4) Maskable 0FFEAh 53 eUSCI_A2 receive or transmit UCA2RXIFG, UCA2TXIFG (UCA2IV) (1) (4) Maskable 0FFE8h 52 (1) (4) Maskable 0FFE6h 51 DMA DMA0IFG, DMA1IFG, DMA2IFG (DMAIV) (1) (4) Maskable 0FFE4h 50 Timer TA1 TA1CCR0 CCIFG0 (4) Maskable 0FFE2h 49 Timer TA1 TA1CCR1 CCIFG1, TA1IFG (TA1IV) (1) (4) Maskable 0FFE0h 48 Maskable 0FFDEh 47 Maskable 0FFDCh 46 Maskable 0FFDAh 45 Auxiliary supplies I/O port P1 P1IFG.0 to P1IFG.7 (P1IV) Timer TA2 TA2CCR0 CCIFG0 (4) Timer TA2 TA2CCR1 CCIFG1, TA2IFG (TA2IV) (1) (4) I/O port P2 (1) (2) (3) (4) 66 Auxiliary Supplies Interrupt Flags (AUXIV) P2IFG.0 to P2IFG.7 (P2IV) (1) (4) (1) (4) Maskable 0FFD8h 44 Timer TA3 TA3CCR0 CCIFG0 (4) Maskable 0FFD6h 43 Timer TA3 TA3CCR1 CCIFG1, TA3IFG (TA3IV) (1) (4) Maskable 0FFD4h 42 LCD_C LCD_C Interrupt Flags (LCDCIV) (1) (4) Maskable 0FFD2h 41 RTC_C RTCOFIFG, RTCRDYIFG, RTCTEVIFG, RTCAIFG, RT0PSIFG, RT1PSIFG (RTCIV) (1) (4) Maskable 0FFD0h 40 Multiple source flags A reset is generated if the CPU tries to fetch instructions from within peripheral space or vacant memory space. (Non)maskable: the individual interrupt enable bit can disable an interrupt event, but the general interrupt enable bit cannot disable it. Interrupt flags are in the module. Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 6-3. Interrupt Sources, Flags, and Vectors of MSP430F67xx Configurations (continued) (5) INTERRUPT SOURCE INTERRUPT FLAG Reserved Reserved (5) SYSTEM INTERRUPT WORD ADDRESS PRIORITY 0FFCEh 39 ⋮ ⋮ 0FF80h 0, lowest Reserved interrupt vectors at addresses are not used in this device and can be used for regular program code if necessary. To maintain compatibility with other devices, TI recommends reserving these locations. 6.5 Memory Organization Table 6-4 and Table 6-5 summarize the memory map for the devices. Table 6-4. Memory Organization Main Memory (flash) MSP430F6730 MSP430F6720 MSP430F6731 MSP430F6721 MSP430F6733 MSP430F6723 16KB 32KB 64KB 00FFFFh to 00FF80h 00FFFFh to 00FF80h 00FFFFh to 00FF80h Bank 3 not available not available not available Bank 2 not available not available not available Bank 1 not available 16KB 00FFFFh to 00C000h 32KB 013FFFh to 00C000h Bank 0 16KB 00FFFFh to 00C000h 16KB 00BFFFh to 008000h 32KB 00BFFFh to 004000h Total Size Main: Interrupt vector Main: code memory Total Size 1KB 2KB 4KB Sector 3 not available not available not available Sector 2 not available not available not available Sector 1 not available not available 2KB 002BFFh to 002400h Sector 0 1KB 001FFFh to 001C00h 2KB 0023FFh to 001C00h 2KB 0023FFh to 001C00h Info A 128 B 0019FFh to 001980h 128 B 0019FFh to 001980h 128 B 0019FFh to 001980h Info B 128 B 00197Fh to 001900h 128 B 00197Fh to 001900h 128 B 00197Fh to 001900h Info C 128 B 0018FFh to 001880h 128 B 0018FFh to 001880h 128 B 0018FFh to 001880h Info D 128 B 00187Fh to 001800h 128 B 00187Fh to 001800h 128 B 00187Fh to 001800h BSL 3 512 B 0017FFh to 001600h 512 B 0017FFh to 001600h 512 B 0017FFh to 001600h BSL 2 512 B 0015FFh to 001400h 512 B 0015FFh to 001400h 512 B 0015FFh to 001400h BSL 1 512 B 0013FFh to 001200h 512 B 0013FFh to 001200h 512 B 0013FFh to 001200h BSL 0 512 B 0011FFh to 001000h 512 B 0011FFh to 001000h 512 B 0011FFh to 001000h 4KB 000FFFh to 0h 4KB 000FFFh to 0h 4KB 000FFFh to 0h RAM Information memory (flash) Bootloader (BSL) memory (flash) Peripherals Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 67 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 6-5. Memory Organization MSP430F6734 MSP430F6724 MSP430F6735 MSP430F6725 MSP430F6736 MSP430F6726 96KB 128KB 128KB 00FFFFh to 00FF80h 00FFFFh to 00FF80h 00FFFFh to 00FF80h Bank 3 not available 32KB 023FFFh to 01C000h 32KB 023FFFh to 01C000h Bank 2 32KB 01BFFFh to 014000h 32KB 01BFFFh to 014000h 32KB 01BFFFh to 014000h Bank 1 32KB 013FFFh to 00C000h 32KB 013FFFh to 00C000h 32KB 013FFFh to 00C000h Bank 0 32KB 00BFFFh to 004000h 32KB 00BFFFh to 004000h 32KB 00BFFFh to 004000h 4KB 4KB 8KB Sector 3 not available not available 2KB 003BFFh to 003400h Sector 2 not available not available 2KB 0033FFh to 002C00h Sector 1 2KB 002BFFh to 002400h 2KB 002BFFh to 002400h 2KB 002BFFh to 002400h Sector 0 2KB 0023FFh to 001C00h 2KB 0023FFh to 001C00h 2KB 0023FFh to 001C00h Info A 128 B 0019FFh to 001980h 128 B 0019FFh to 001980h 128 B 0019FFh to 001980h Info B 128 B 00197Fh to 001900h 128 B 00197Fh to 001900h 128 B 00197Fh to 001900h Info C 128 B 0018FFh to 001880h 128 B 0018FFh to 001880h 128 B 0018FFh to 001880h Info D 128 B 00187Fh to 001800h 128 B 00187Fh to 001800h 128 B 00187Fh to 001800h BSL 3 512 B 0017FFh to 001600h 512 B 0017FFh to 001600h 512 B 0017FFh to 001600h BSL 2 512 B 0015FFh to 001400h 512 B 0015FFh to 001400h 512 B 0015FFh to 001400h BSL 1 512 B 0013FFh to 001200h 512 B 0013FFh to 001200h 512 B 0013FFh to 001200h BSL 0 512 B 0011FFh to 001000h 512 B 0011FFh to 001000h 512 B 0011FFh to 001000h 4KB 000FFFh to 0h 4KB 000FFFh to 0h 4KB 000FFFh to 0h Total Size Main Memory (flash) Main: Interrupt vector Main: code memory Total Size RAM Information memory (flash) Bootloader (BSL) memory (flash) Peripherals 68 Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com 6.6 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Bootloader (BSL) The BSL enables users to program the flash memory or RAM using various serial interfaces. Access to the device memory through the BSL is protected by an user-defined password. BSL entry requires a specific entry sequence on the RST/NMI/SBWTDIO and TEST/SBWTCK pins. For complete description of the features of the BSL and its implementation, see MSP430™ Flash Device Bootloader (BSL) User's Guide. Table 6-6 lists the BSL pin requirements. Table 6-6. UART BSL Pin Requirements and Functions 6.7 6.7.1 DEVICE SIGNAL BSL FUNCTION RST/NMI/SBWTDIO Entry sequence signal TEST/SBWTCK Entry sequence signal P3.0 Data transmit P3.1 Data receive DVCC Power supply DVSS Ground supply JTAG Operation JTAG Standard Interface The MSP430 family supports the standard JTAG interface, which requires four signals for sending and receiving data. The JTAG signals are shared with general-purpose I/O. The TEST/SBWTCK pin is used to enable the JTAG signals. In addition to these signals, the RST/NMI/SBWTDIO is required to interface with MSP430 development tools and device programmers. Table 6-7 lists the JTAG pin requirements. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide and MSP430 Programming With the JTAG Interface. Table 6-7. JTAG Pin Requirements and Functions DEVICE SIGNAL DIRECTION FUNCTION PJ.3/ACLK/TCK IN JTAG clock input PJ.2/ADC10CLK/TMS IN JTAG state control PJ.1/MCLK/TDI/TCLK IN JTAG data input and TCLK input PJ.0/SMCLK/TDO OUT JTAG data output TEST/SBWTCK IN Enable JTAG pins RST/NMI/SBWTDIO IN External reset DVCC Power supply DVSS Ground supply Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 69 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 6.7.2 www.ti.com Spy-Bi-Wire Interface In addition to the standard JTAG interface, the MSP430 family supports the 2-wire Spy-Bi-Wire interface. Spy-Bi-Wire can be used to interface with MSP430 development tools and device programmers. Table 6-8 lists the Spy-Bi-Wire interface pin requirements. For further details on interfacing to development tools and device programmers, see the MSP430 Hardware Tools User's Guide and MSP430 Programming With the JTAG Interface. Table 6-8. Spy-Bi-Wire Pin Requirements and Functions 6.8 DEVICE SIGNAL DIRECTION FUNCTION TEST/SBWTCK IN Spy-Bi-Wire clock input RST/NMI/SBWTDIO IN, OUT Spy-Bi-Wire data input and output DVCC Power supply DVSS Ground supply Flash Memory The flash memory can be programmed through the JTAG port, Spy-Bi-Wire (SBW), the BSL, or in-system by the CPU. The CPU can perform single-byte, single-word, and long-word writes to the flash memory. Features of the flash memory include: • Flash memory has n segments of main memory and four segments of information memory (A to D) of 128 bytes each. Each segment in main memory is 512 bytes in size. • Segments 0 to n may be erased in one step, or each segment may be individually erased. • Segments A to D can be erased individually, or as a group with segments 0 to n. Segments A to D are also called information memory. • Segment A can be locked separately. 6.9 RAM The RAM is made up of n sectors. Each sector can be completely powered down to save leakage; however, all data are lost. Features of the RAM include: • RAM has n sectors of 2KB each. • Each sector 0 to n can be complete disabled; however, data retention is lost. • Each sector 0 to n automatically enters low-power retention mode when possible. 6.10 Backup RAM The backup RAM provides a limited number of bytes of RAM that are retained during LPMx.5. This backup RAM is part of the Backup subsystem in MSP430F67xx that operates on dedicated power supply AUXVCC3. There are 8 bytes of backup RAM available in this device. The backup RAM can be word-wise accessed through the registers BAKMEM0, BAKMEM1, BAKMEM2, and BAKMEM3. The backup RAM registers cannot be accessed by the CPU when the high-side SVS is disabled by the user. 70 Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 6.11 Peripherals Peripherals are connected to the CPU through data, address, and control buses. Peripherals can be managed using all instructions. For complete module descriptions, see the MSP430x5xx and MSP430x6xx Family User's Guide. 6.11.1 Oscillator and System Clock The Unified Clock System (UCS) module includes support for a 32768-Hz watch crystal oscillator, an internal very-low-power low-frequency oscillator (VLO), an internal trimmed low-frequency oscillator (REFO), and an integrated internal digitally controlled oscillator (DCO). The UCS module is designed to meet the requirements of both low system cost and low power consumption. The UCS module features digital frequency-locked loop (FLL) hardware that, in conjunction with a digital modulator, stabilizes the DCO frequency to a programmable multiple of the selected FLL reference frequency. The internal DCO provides a fast turnon clock source and stabilizes in 3 µs (typical). The UCS module provides the following clock signals: • Auxiliary clock (ACLK), sourced from a 32768-Hz watch crystal, the internal low-frequency oscillator (VLO), or the trimmed low-frequency oscillator (REFO). • Main clock (MCLK), the system clock used by the CPU. MCLK can be sourced by same sources made available to ACLK. • Sub-Main clock (SMCLK), the subsystem clock used by the peripheral modules. SMCLK can be sourced by same sources made available to ACLK. • ACLK/n, the buffered output of ACLK, ACLK/2, ACLK/4, ACLK/8, ACLK/16, ACLK/32. 6.11.2 Power Management Module (PMM) The PMM includes an integrated voltage regulator that supplies the core voltage to the device and contains programmable output levels to provide for power optimization. The PMM also includes supply voltage supervisor (SVS) and supply voltage monitor (SVM) circuitry, as well as brownout protection. The brownout circuit is implemented to provide the proper internal reset signal to the device during power on and power off. The SVS and SVM circuitry detects if the supply voltage drops below a user-selectable level and supports both supply voltage supervision (the device is automatically reset) and supply voltage monitoring (the device is not automatically reset). SVS and SVM circuitry is available on the primary supply and core supply. 6.11.3 Auxiliary Supply System The auxiliary supply system provides the possibility to operate the device from auxiliary supplies when the primary supply fails.There are two auxililary supplies AUXVCC1 and AUXVCC2 supported in MSP430F67xx. This module supports automatic and manual switching from primary supply to auxiliary suppllies while maintaining full functionality. It allows threshold based monitoring of primary and auxiliary supplies. The device can be started from primary supply or from AUXVCC1, whichever is higher. The auxiliary supply system enables internal monitoring of voltage levels on the primary and auxiliary supplies using ADC10_A. This module also implements a simple charger for the backup supplies. 6.11.4 Backup Subsystem The backup subsystem operates on a dedicated power supply, AUXVCC3. This subsystem includes lowfrequency oscillator (XT1), RTC module, and backup RAM. The functionality of backup subsystem is retained during LPM3.5. The backup subsystem module registers cannot be accessed by CPU when the high-side SVS is disabled by the user. Keep the high-side SVS enabled (SVSHMD = 1 and SVSMHACE = 0) to turn off the low-frequency oscillator (XT1) in LPM4. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 71 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com 6.11.5 Digital I/O Up to nine 8-bit I/O ports are implemented. For 100-pin options, Ports P1 to P8 are complete, and P9 is reduced to 4-bit I/O. For 80-pin options, Ports P1 to P6 are complete, and P7, P8, and P9 are completely removed. Port PJ contains four individual I/O pins, common to all devices. All I/O bits are individually programmable. • Any combination of input, output, and interrupt conditions is possible. • Pullup or pulldown on all ports is programmable. • Programmable drive strength on all ports. • Edge-selectable interrupt and LPM3.5 or LPM4.5 wake-up input are available for all bits of ports P1 and P2. • Read and write access to port-control registers is supported by all instructions. • Ports can be accessed byte-wise (P1 through P9) or word-wise in pairs (PA through PE). 6.11.6 Port Mapping Controller The port mapping controller allows flexible and reconfigurable mapping of digital functions to P1, P2, and P3 (see Table 6-9). Table 6-10 lists the default settings for all pins that support port mapping. Table 6-9. Port Mapping Mnemonics and Functions VALUE PxMAPy MNEMONIC INPUT PIN FUNCTION OUTPUT PIN FUNCTION 0 PM_NONE None DVSS 1 2 3 4 5 6 eUSCI_A0 UART RXD (direction controlled by eUSCI – Input) PM_UCA0SOMI eUSCI_A0 SPI slave out master in (direction controlled by eUSCI) PM_UCA0TXD eUSCI_A0 UART TXD (direction controlled by eUSCI – Output) PM_UCA0SIMO eUSCI_A0 SPI slave in master out (direction controlled by eUSCI) PM_UCA0CLK eUSCI_A0 clock input/output (direction controlled by eUSCI) PM_UCA0STE eUSCI_A0 SPI slave transmit enable (direction controlled by eUSCI) PM_UCA1RXD eUSCI_A1 UART RXD (direction controlled by eUSCI – Input) PM_UCA1SOMI eUSCI_A1 SPI slave out master in (direction controlled by eUSCI) PM_UCA1TXD eUSCI_A1 UART TXD (direction controlled by eUSCI – Output) PM_UCA1SIMO eUSCI_A1 SPI slave in master out (direction controlled by eUSCI) 7 PM_UCA1CLK eUSCI_A1 clock input/output (direction controlled by eUSCI) 8 PM_UCA1STE eUSCI_A1 SPI slave transmit enable (direction controlled by eUSCI) 9 10 PM_UCA2RXD eUSCI_A2 UART RXD (direction controlled by eUSCI – Input) PM_UCA2SOMI eUSCI_A2 SPI slave out master in (direction controlled by eUSCI) PM_UCA2TXD eUSCI_A2 UART TXD (direction controlled by eUSCI – Output) PM_ UCA2SIMO eUSCI_A2 SPI slave in master out (direction controlled by eUSCI) 11 PM_UCA2CLK eUSCI_A2 clock input/output (direction controlled by eUSCI) 12 PM_UCA2STE eUSCI_A2 SPI slave transmit enable (direction controlled by eUSCI) 13 14 72 PM_UCA0RXD PM_UCB0SIMO eUSCI_B0 SPI slave in master out (direction controlled by eUSCI) PM_UCB0SDA eUSCI_B0 I2C data (open drain and direction controlled by eUSCI) PM_UCB0SOMI eUSCI_B0 SPI slave out master in (direction controlled by eUSCI) PM_UCB0SCL eUSCI_B0 I2C clock (open drain and direction controlled by eUSCI) 15 PM_UCB0CLK eUSCI_B0 clock input/output (direction controlled by eUSCI) 16 PM_UCB0STE eUSCI_B0 SPI slave transmit enable (direction controlled by eUSCI) 17 PM_TA0.0 TA0 CCR0 capture input CCI0A TA0 CCR0 compare output Out0 18 PM_TA0.1 TA0 CCR1 capture input CCI1A TA0 CCR1 compare output Out1 19 PM_TA0.2 TA0 CCR2 capture input CCI2A TA0 CCR2 compare output Out2 20 PM_TA1.0 TA1 CCR0 capture input CCI0A TA1 CCR0 compare output Out0 21 PM_TA1.1 TA1 CCR1 capture input CCI1A TA1 CCR1 compare output Out1 Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 6-9. Port Mapping Mnemonics and Functions (continued) VALUE PxMAPy MNEMONIC INPUT PIN FUNCTION OUTPUT PIN FUNCTION 22 PM_TA2.0 TA2 CCR0 capture input CCI0A TA2 CCR0 compare output Out0 23 PM_TA2.1 TA2 CCR1 capture input CCI1A TA2 CCR1 compare output Out1 24 PM_TA3.0 TA3 CCR0 capture input CCI0A TA3 CCR0 compare output Out0 25 PM_TA3.1 TA3 CCR1 capture input CCI1A TA3 CCR1 compare output Out1 PM_TACLK Timer_A clock input to TA0, TA1, TA2, TA3 None None RTC_C clock output 26 PM_RTCCLK (1) 27 PM_SDCLK SD24_B bitstream clock input/output (direction controlled by SD24_B) 28 PM_SD0DIO SD24_B converter-0 bitstream data input/output (direction controlled by SD24_B) 29 PM_SD1DIO SD24_B converter-1 bitstream data input/output (direction controlled by SD24_B) 30 PM_SD2DIO SD24_B converter-2 bitstream data input/output (direction controlled by SD24_B) 31 (0FFh) (1) PM_ANALOG Disables the output driver and the input Schmitt-trigger to prevent parasitic cross currents when applying analog signals. The value of the PM_ANALOG mnemonic is set to 0FFh. The port mapping registers are only 5 bits wide, and the upper bits are ignored, which results in a read value of 31. Table 6-10. Default Mapping PIN NAME PZ PN PxMAPy MNEMONIC INPUT PIN FUNCTION OUTPUT PIN FUNCTION P1.0/PM_TA0.0/ VeREF-/A2 P1.0/PM_TA0.0/ VeREF-/A2 PM_TA0.0 TA0 CCR0 capture input CCI0A TA0 CCR0 compare output Out0 P1.1/PM_TA0.1/ VeREF+/A1 P1.1/PM_TA0.1/ VeREF+/A1 PM_TA0.1 TA0 CCR1 capture input CCI1A TA0 CCR1 compare output Out1 P1.2/PM_UCA0RXD/ PM_UCA0SOMI/A0 P1.2/PM_UCA0RXD/ PM_UCA0SOMI/A0 PM_UCA0RXD, PM_UCA0SOMI eUSCI_A0 UART RXD (direction controlled by eUSCI – input), eUSCI_A0 SPI slave out master in (direction controlled by eUSCI) P1.3/PM_UCA0TXD/ PM_UCA0SIMO/R03 P1.3/PM_UCA0TXD/ PM_UCA0SIMO/R03 PM_UCA0TXD, PM_UCA0SIMO eUSCI_A0 UART TXD (direction controlled by eUSCI – output), eUSCI_A0 SPI slave in master out (direction controlled by eUSCI) P1.4/PM_UCA1RXD/ PM_UCA1SOMI/ LCDREF/R13 P1.4/PM_UCA1RXD/ PM_UCA1SOMI/ LCDREF/R13 PM_UCA1RXD, PM_UCA1SOMI eUSCI_A1 UART RXD (direction controlled by eUSCI – input), eUSCI_A1 SPI slave out master in (direction controlled by eUSCI) P1.5/PM_UCA1TXD/ PM_UCA1SIMO/R23 P1.5/PM_UCA1TXD/ PM_UCA1SIMO/R23 PM_UCA1TXD, PM_UCA1SIMO eUSCI_A1 UART TXD (direction controlled by eUSCI – output), eUSCI_A1 SPI slave in master out (direction controlled by eUSCI) P1.6/PM_UCA0CLK/ COM4 P1.6/PM_UCA0CLK/ COM4 PM_UCA0CLK eUSCI_A0 clock input/output (direction controlled by eUSCI) P1.7/PM_UCB0CLK/ COM5 P1.7/PM_UCB0CLK/ COM5 PM_UCB0CLK eUSCI_B0 clock input/output (direction controlled by eUSCI) P2.0/PM_UCB0SOMI/ PM_UCB0SCL/COM6 P2.0/PM_UCB0SOMI/ PM_UCB0SCL/COM6/S39 PM_UCB0SOMI, PM_UCB0SCL eUSCI_B0 SPI slave out master in (direction controlled by eUSCI), eUSCI_B0 I2C clock (open drain and direction controlled by eUSCI) P2.1/PM_UCB0SIMO/ PM_UCB0SDA/COM7 P2.1/PM_UCB0SIMO/ PM_UCB0SDA/COM7/S38 PM_UCB0SIMO, PM_UCB0SDA eUSCI_B0 SPI slave in master out (direction controlled by eUSCI), eUSCI_B0 I2C data (open drain and direction controlled by eUSCI) P2.2/PM_UCA2RXD/ PM_UCA2SOMI P2.2/PM_UCA2RXD/ PM_UCA2SOMI/S37 PM_UCA2RXD, PM_UCA2SOMI eUSCI_A2 UART RXD (direction controlled by eUSCI – input), eUSCI_A2 SPI slave out master in (direction controlled by eUSCI) P2.3/PM_UCA2TXD/ PM_UCA2SIMO P2.3/PM_UCA2TXD/ PM_UCA2SIMO/S36 PM_UCA2TXD, PM_UCA2SIMO eUSCI_A2 UART TXD (direction controlled by eUSCI – output), eUSCI_A2 SPI slave in master out (direction controlled by eUSCI) P2.4/PM_UCA1CLK P2.4/PM_UCA1CLK/S35 PM_UCA1CLK eUSCI_A1 clock input/output (direction controlled by eUSCI) Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 73 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 6-10. Default Mapping (continued) PIN NAME PZ PN PxMAPy MNEMONIC INPUT PIN FUNCTION PM_UCA2CLK OUTPUT PIN FUNCTION P2.5/PM_UCA2CLK P2.5/PM_UCA2CLK/S34 P2.6/PM_TA1.0 P2.6/PM_TA1.0/S33 PM_TA1.0 TA1 CCR0 capture input CCI0A eUSCI_A2 clock input/output (direction controlled by eUSCI) TA1 CCR0 compare output Out0 P2.7/PM_TA1.1 P2.7/PM_TA1.1/S32 PM_TA1.1 TA1 CCR1 capture input CCI1A TA1 CCR1 compare output Out1 P3.0/PM_TA2.0 P3.0/PM_TA2.0/S31 PM_TA2.0 TA2 CCR0 capture input CCI0A TA2 CCR0 compare output Out0 P3.1/PM_TA2.1 P3.1/PM_TA2.1/S30 PM_TA2.1 TA2 CCR1 capture input CCI1A TA2 CCR1 compare output Out1 P3.2/PM_TACLK/ PM_RTCCLK P3.2/PM_TACLK/ PM_RTCCLK/S29 PM_TACLK, PM_RTCCLK Timer_A clock input to TA0, TA1, TA2, TA3 RTC_C clock output P3.3/PM_TA0.2 P3.3/PM_TA0.2/S28 PM_TA0.2 TA0 CCR2 capture input CCI2A TA0 CCR2 compare output Out2 P3.4/PM_SDCLK/S39 P3.4/PM_SDCLK/S27 PM_SDCLK SD24_B bitstream clock input/output (direction controlled by SD24_B) P3.5/PM_SD0DIO/S38 P3.5/PM_SD0DIO/S26 PM_SD0DIO SD24_B converter-0 bitstream data input/output (direction controlled by SD24_B) P3.6/PM_SD1DIO/S37 P3.6/PM_SD1DIO/S25 PM_SD1DIO SD24_B converter-1 bitstream data input/output (direction controlled by SD24_B) P3.7/PM_SD2DIO/S36 P3.7/PM_SD2DIO/S24 PM_SD2DIO SD24_B converter-2 bitstream data input/output (direction controlled by SD24_B) 6.11.7 System Module (SYS) The SYS module handles many of the system functions within the device. These include power-on reset (POR) and power-up clear (PUC) handling, NMI source selection and management, reset interrupt vector generators, bootloader entry mechanisms, as well as, configuration management (device descriptors). It also includes a data exchange mechanism through JTAG called a JTAG mailbox that can be used in the application. Table 6-11 lists the SYS module interrupt vector registers. Table 6-11. System Module Interrupt Vector Registers INTERRUPT VECTOR REGISTER SYSRSTIV, System Reset 74 Detailed Description INTERRUPT EVENT WORD ADDRESS OFFSET No interrupt pending 00h Brownout (BOR) 02h RST/NMI (POR) 04h DoBOR (BOR) 06h Wakeup from LPMx.5 (BOR) 08h Security violation (BOR) 0Ah SVSL (POR) 0Ch SVSH (POR) 0Eh SVML_OVP (POR) SVMH_OVP (POR) 019Eh PRIORITY Highest 10h 12h DoPOR (POR) 14h WDT time-out (PUC) 16h WDT key violation (PUC) 18h KEYV flash key violation (PUC) 1Ah Reserved 1Ch Peripheral area fetch (PUC) 1Eh PMM key violation (PUC) 20h Reserved 22h to 3Eh Lowest Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 6-11. System Module Interrupt Vector Registers (continued) INTERRUPT VECTOR REGISTER INTERRUPT EVENT WORD ADDRESS OFFSET No interrupt pending 00h SVMLIFG 02h SVMHIFG 04h DLYLIFG 06h DLYHIFG SYSSNIV, System NMI Highest 08h VMAIFG 019Ch 0Ah JMBINIFG 0Ch JMBOUTIFG 0Eh VLRLIFG 10h VLRHIFG 12h Reserved 14h to 1Eh No interrupt pending 00h NMIIFG 02h OFIFG SYSUNIV, User NMI PRIORITY 019Ah ACCVIFG Lowest Highest 04h 06h AUXSWNMIFG 08h Reserved 0Ah to 1Eh Lowest 6.11.8 Watchdog Timer (WDT_A) The primary function of the WDT_A module is to perform a controlled system restart after a software problem occurs. If the selected time interval expires, a system reset is generated. If the watchdog function is not needed in an application, the timer can be configured as an interval timer and can generate interrupts at selected time intervals. 6.11.9 DMA Controller The DMA controller allows movement of data from one memory address to another without CPU intervention. For example, the DMA controller can be used to move data from the ADC10_A conversion memory to RAM. Using the DMA controller can increase the throughput of peripheral modules. The DMA controller reduces system power consumption by allowing the CPU to remain in sleep mode, without having to awaken to move data to or from a peripheral. Table 6-12 lists the triggers that are available to start DMA transfer. Table 6-12. DMA Trigger Assignments (1) TRIGGER (1) CHANNEL 0 1 0 DMAREQ 1 TA0CCR0 CCIFG 2 TA0CCR2 CCIFG 3 TA1CCR0 CCIFG 4 Reserved 5 TA2CCR0 CCIFG 6 Reserved 7 TA3CCR0 CCIFG 8 Reserved 2 Reserved DMA triggers may be used by other devices in the family. Reserved DMA triggers do not cause a DMA trigger event when selected. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 75 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 6-12. DMA Trigger Assignments(1) (continued) TRIGGER CHANNEL 0 1 9 Reserved 10 Reserved 11 Reserved 12 Reserved 13 SD24IFG 14 Reserved 15 Reserved 16 UCA0RXIFG 17 UCA0TXIFG 18 UCA1RXIFG 19 UCA1TXIFG 20 UCA2RXIFG 21 UCA2TXIFG 22 UCB0RXIFG0 23 UCB0TXIFG0 24 ADC10IFG0 25 Reserved 26 Reserved 27 Reserved 28 Reserved 29 30 31 2 MPY ready DMA2IFG DMA0IFG DMA1IFG Reserved 6.11.10 CRC16 The CRC16 module produces a signature based on a sequence of entered data values and can be used for data checking purposes. The CRC16 module signature is based on the CRC-CCITT standard. 6.11.11 Hardware Multiplier The multiplication operation is supported by a dedicated peripheral module. The module performs operations with 32-, 24-, 16-, and 8-bit operands. The module supports signed and unsigned multiplication as well as signed and unsigned multiply-and-accumulate operations. 6.11.12 Enhanced Universal Serial Communication Interface (eUSCI) The eUSCI module is used for serial data communication. The eUSCI module supports synchronous communication protocols such as SPI (3- or 4-pin) and I2C, and asynchronous communication protocols such as UART, enhanced UART with automatic baudrate detection, and IrDA. The eUSCI_An module supports for SPI (3- or 4-pin), UART, enhanced UART, or IrDA. The eUSCI_Bn module supports for SPI (3- or 4-pin) or I2C. Three eUSCI_A and one eUSCI_B modules are implemented in MSP430F67xx devices. 76 Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 6.11.13 ADC10_A The ADC10_A module supports fast 10-bit analog-to-digital conversions. The module implements a 10-bit SAR core, sample select control, reference generator, and a conversion results buffer. A window comparator with a lower and upper limits allows CPU-independent result monitoring with three window comparator interrupt flags. 6.11.14 SD24_B The SD24_B module integrates up to three independent 24-bit sigma-delta analog-to-digital converters. Each converter is designed with a fully differential analog input pair and programmable gain amplifier input stage. The converters are based on second-order over-sampling sigma-delta modulators and digital decimation filters. The decimation filters are comb type filters with selectable oversampling ratios of up to 1024. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 77 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com 6.11.15 TA0 TA0 is a 16-bit timer/counter (Timer_A type) with three capture/compare registers. TA0 can support multiple capture/compares, PWM outputs, and interval timing (see Table 6-13). TA0 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 6-13. TA0 Signal Connections DEVICE INPUT SIGNAL MODULE INPUT NAME PM_TACLK TACLK MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer NA NA ACLK (internal) ACLK SMCLK (internal) SMCLK PM_TACLK INCLK PM_TA0.0 CCI0A DVSS CCI0B DVSS GND DVCC VCC PM_TA0.1 CCI1A PM_TA0.1 ACLK (internal) CCI1B ADC10_A (internal) ADC10SHSx = {1} DVSS GND PM_TA0.0 CCR0 TA0 CCR1 DVCC VCC PM_TA0.2 CCI2A DVSS CCI2B DVSS GND DVCC VCC TA1 SD24_B (internal) SD24SCSx = {1} PM_TA0.2 CCR2 TA2 6.11.16 TA1 TA1 is a 16-bit timer/counter (Timer_A type) with two capture/compare registers. TA1 can support multiple capture/compares, PWM outputs, and interval timing (see Table 6-14). TA1 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 6-14. TA1 Signal Connections DEVICE INPUT SIGNAL MODULE INPUT NAME PM_TACLK TACLK 78 ACLK (internal) ACLK SMCLK (internal) SMCLK PM_TACLK INCLK PM_TA1.0 CCI0A DVSS CCI0B DVSS GND DVCC VCC PM_TA1.1 CCI1A ACLK (internal) CCI1B DVSS GND DVCC VCC Detailed Description MODULE BLOCK Timer MODULE OUTPUT SIGNAL NA DEVICE OUTPUT SIGNAL PZ NA PM_TA1.0 CCR0 TA0 PM_TA1.1 CCR1 TA1 Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 6.11.17 TA2 TA2 is a 16-bit timer/counter (Timer_A type) with two capture/compare registers. TA2 can support multiple capture/compares, PWM outputs, and interval timing (see Table 6-15). TA2 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 6-15. TA2 Signal Connections DEVICE INPUT SIGNAL MODULE INPUT NAME PM_TACLK TACLK MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Timer NA NA ACLK (internal) ACLK SMCLK (internal) SMCLK PM_TACLK INCLK PM_TA2.0 CCI0A DVSS CCI0B DVSS GND DVCC VCC PM_TA2.1 CCI1A PM_TA2.1 ACLK (internal) CCI1B SD24_B (internal) SD24SCSx = {2} DVSS GND DVCC VCC PM_TA2.0 CCR0 TA0 CCR1 TA1 6.11.18 TA3 TA3 is a 16-bit timer/counter (Timer_A type) with two capture/compare registers. TA3 can support multiple capture/compares, PWM outputs, and interval timing (see Table 6-16). TA3 also has extensive interrupt capabilities. Interrupts may be generated from the counter on overflow conditions and from each of the capture/compare registers. Table 6-16. TA3 Signal Connections DEVICE INPUT SIGNAL MODULE INPUT NAME PM_TACLK TACLK MODULE BLOCK MODULE OUTPUT SIGNAL Timer NA DEVICE OUTPUT SIGNAL ACLK (internal) ACLK SMCLK (internal) SMCLK PM_TACLK INCLK PM_TA3.0 CCI0A PM_TA3.0 DVSS CCI0B TA0 ADC10_A (internal) ADC10SHSx = {2} DVSS GND TA1 CCR0 DVCC VCC PM_TA3.1 CCI1A PM_TA3.1 ACLK (internal) CCI1B SD24_B (internal) SD24SCSx = {3} DVSS GND DVCC VCC CCR1 Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 79 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com 6.11.19 SD24_B Triggers Table 6-17 lists the input trigger connections to SD24_B converters from Timer_A modules and output trigger pulse connection from SD24_B to ADC10_A. Table 6-17. SD24_B Input/Output Trigger Connections DEVICE INPUT SIGNAL MODULE INPUT SIGNAL TA0.1 (internal) SD24_B SD24SCSx = {1} TA2.1 (internal) SD24_B SD24SCSx = {2} TA3.1 (internal) SD24_B SD24SCSx = {3} MODULE BLOCK MODULE OUTPUT SIGNAL DEVICE OUTPUT SIGNAL Trigger Pulse ADC10_A (internal) ADC10SHSx = {3} SD24_B 6.11.20 ADC10_A Triggers Table 6-18 lists the input trigger connections to ADC10_A from Timer_A modules and SD24_B. Table 6-18. ADC10_A Input Trigger Connections DEVICE INPUT SIGNAL MODULE INPUT SIGNAL TA0.1 (internal) ADC10_A ADC10SHSx = {1} TA3.0 (internal) ADC10_A ADC10SHSx = {2} SD24_B trigger pulse (internal) ADC10_A ADC10SHSx = {3} MODULE BLOCK ADC10_A 6.11.21 Real-Time Clock (RTC_C) The RTC_C module can be configured for calendar mode providing seconds, hours, day of week, day of month, month, and year. The RTC_C control and configuration registers are password protected to ensure clock integrity against runaway code. Calendar mode integrates an internal calendar that compensates for months with less than 31 days and includes leap year correction. The RTC_C also supports flexible alarm functions, offset calibration, and temperature compensation. The RTC_C on this device operates on dedicated AUXVCC3 supply and supports operation in LPM3.5. 6.11.22 Reference (REF) Module Voltage Reference The REF module generates all critical reference voltages that can be used by the various analog peripherals in the device. These include the ADC10_A, LCD_C, and SD24_B modules. 6.11.23 LCD_C The LCD_C driver generates the segment and common signals required to drive a liquid crystal display (LCD). The LCD_C controller has dedicated data memories to hold segment drive information. Common and segment signals are generated as defined by the mode. Static, 2-mux, 3-mux, 4-mux, up to 8-mux LCDs are supported. The module can provide a LCD voltage independent of the supply voltage with its integrated charge pump. It is possible to control the level of the LCD voltage, and thus contrast, by software. The module also provides an automatic blinking capability for individual segments in static, 2‑mux, 3-mux, and 4-mux modes. 80 Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 6.11.24 Embedded Emulation Module (EEM) (S Version) The EEM supports real-time in-system debugging. The S version of the EEM has the following features: • Three hardware triggers or breakpoints on memory access • One hardware trigger or breakpoint on CPU register write access • Up to four hardware triggers can be combined to form complex triggers or breakpoints • One cycle counter • Clock control on module level Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 81 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com 6.11.25 Peripheral File Map Table 6-19 lists the base address for the registers of each supported peripheral. Table 6-19. Peripherals BASE ADDRESS OFFSET ADDRESS RANGE Special Functions (see Table 6-20) 0100h 000h to 01Fh PMM (see Table 6-21) 0120h 000h to 01Fh Flash Control (see Table 6-22) 0140h 000h to 00Fh CRC16 (see Table 6-23) 0150h 000h to 007h RAM Control (see Table 6-24) 0158h 000h to 001h Watchdog (see Table 6-25) 015Ch 000h to 001h UCS (see Table 6-26) 0160h 000h to 01Fh SYS (see Table 6-27) 0180h 000h to 01Fh Shared Reference (see Table 6-28) 01B0h 000h to 001h Port Mapping Control (see Table 6-29) 01C0h 000h to 007h Port Mapping Port P1 (see Table 6-30) 01C8h 000h to 007h Port Mapping Port P2 (see Table 6-31) 01D0h 000h to 007h Port Mapping Port P3 (see Table 6-32) 01D8h 000h to 007h Port P1 and P2 (see Table 6-33) 0200h 000h to 01Fh Port P3 and P4 (see Table 6-34) 0220h 000h to 00Bh Port P5 and P6 (see Table 6-35) 0240h 000h to 00Bh Port P7 and P8 (see Table 6-36) (Port P7 and P8 not available in MSP430F67xxIPN) 0260h 000h to 00Bh Port P9 (Port P9 not available in MSP430F67xxIPN) (see Table 6-37) 0280h 000h to 00Bh Port PJ (refer toTable 6-38) 0320h 000h to 01Fh Timer TA0 (see Table 6-39) 0340h 000h to 03Fh Timer TA1 (see Table 6-40) 0380h 000h to 03Fh Timer TA2 (see Table 6-41) 0400h 000h to 03Fh Timer TA3 (see Table 6-42) 0440h 000h to 03Fh Backup Memory (see Table 6-43) 0480h 000h to 00Fh RTC_C (see Table 6-44) 04A0h 000h to 01Fh 32-Bit Hardware Multiplier (see Table 6-45) 04C0h 000h to 02Fh DMA General Control (see Table 6-46) 0500h 000h to 00Fh DMA Channel 0 (see Table 6-47) 0500h 010h to 01Fh DMA Channel 1 (see Table 6-48) 0500h 020h to 02Fh DMA Channel 2 (see Table 6-49) 0500h 030h to 03Fh eUSCI_A0 (see Table 6-50) 05C0h 000h to 01Fh eUSCI_A1 (see Table 6-51) 05E0h 000h to 01Fh eUSCI_A2 (see Table 6-52) 0600h 000h to 01Fh eUSCI_B0 (see Table 6-53) 0640h 000h to 02Fh ADC10_A (see Table 6-54) 0740h 000h to 01Fh SD24_B(see Table 6-55) 0800h 000h to 06Fh Auxiliary Supply (see Table 6-49) 09E0h 000h to 01Fh LCD_C (see Table 6-57) 0A00h 000h to 05Fh MODULE NAME 82 Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 6-20. Special Function Registers (Base Address: 0100h) REGISTER DESCRIPTION REGISTER OFFSET SFR interrupt enable SFRIE1 00h SFR interrupt flag SFRIFG1 02h SFR reset pin control SFRRPCR 04h Table 6-21. PMM Registers (Base Address: 0120h) REGISTER DESCRIPTION REGISTER OFFSET PMM control 0 PMMCTL0 00h PMM control 1 PMMCTL1 02h SVS high-side control SVSMHCTL 04h SVS low-side control SVSMLCTL 06h PMM interrupt flags PMMIFG 0Ch PMM interrupt enable PMMIE 0Eh PMM power mode 5 control 0 PM5CTL0 10h Table 6-22. Flash Control Registers (Base Address: 0140h) REGISTER DESCRIPTION REGISTER OFFSET Flash control 1 FCTL1 00h Flash control 3 FCTL3 04h Flash control 4 FCTL4 06h Table 6-23. CRC16 Registers (Base Address: 0150h) REGISTER DESCRIPTION REGISTER OFFSET CRC data input CRC16DI 00h CRC data input reverse byte CRC16DIRB 02h CRC result CRCINIRES 04h CRC result reverse byte CRCRESR 06h Table 6-24. RAM Control Registers (Base Address: 0158h) REGISTER DESCRIPTION RAM control 0 REGISTER RCCTL0 OFFSET 00h Table 6-25. Watchdog Registers (Base Address: 015Ch) REGISTER DESCRIPTION Watchdog timer control REGISTER WDTCTL OFFSET 00h Table 6-26. UCS Registers (Base Address: 0160h) REGISTER DESCRIPTION REGISTER OFFSET UCS control 0 UCSCTL0 00h UCS control 1 UCSCTL1 02h UCS control 2 UCSCTL2 04h UCS control 3 UCSCTL3 06h UCS control 4 UCSCTL4 08h UCS control 5 UCSCTL5 0Ah UCS control 6 UCSCTL6 0Ch UCS control 7 UCSCTL7 0Eh Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 83 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 6-26. UCS Registers (Base Address: 0160h) (continued) REGISTER DESCRIPTION UCS control 8 REGISTER UCSCTL8 OFFSET 10h Table 6-27. SYS Registers (Base Address: 0180h) REGISTER DESCRIPTION REGISTER OFFSET System control SYSCTL 00h Bootloader configuration area SYSBSLC 02h JTAG mailbox control SYSJMBC 06h JTAG mailbox input 0 SYSJMBI0 08h JTAG mailbox input 1 SYSJMBI1 0Ah JTAG mailbox output 0 SYSJMBO0 0Ch JTAG mailbox output 1 SYSJMBO1 0Eh Bus error vector generator SYSBERRIV 18h User NMI vector generator SYSUNIV 1Ah System NMI vector generator SYSSNIV 1Ch Reset vector generator SYSRSTIV 1Eh Table 6-28. Shared Reference Registers (Base Address: 01B0h) REGISTER DESCRIPTION Shared reference control REGISTER REFCTL OFFSET 00h Table 6-29. Port Mapping Controller (Base Address: 01C0h) REGISTER DESCRIPTION REGISTER OFFSET Port mapping password PMAPPWD 00h Port mapping control PMAPCTL 02h Table 6-30. Port Mapping for Port P1 (Base Address: 01C8h) REGISTER DESCRIPTION REGISTER OFFSET Port P1.0 mapping P1MAP0 00h Port P1.1 mapping P1MAP1 01h Port P1.2 mapping P1MAP2 02h Port P1.3 mapping P1MAP3 03h Port P1.4 mapping P1MAP4 04h Port P1.5 mapping P1MAP5 05h Port P1.6 mapping P1MAP6 06h Port P1.7 mapping P1MAP7 07h Table 6-31. Port Mapping for Port P2 (Base Address: 01D0h) REGISTER DESCRIPTION REGISTER OFFSET Port P2.0 mapping P2MAP0 00h Port P2.1 mapping P2MAP2 01h Port P2.2 mapping P2MAP2 02h Port P2.3 mapping P2MAP3 03h Port P2.4 mapping P2MAP4 04h Port P2.5 mapping P2MAP5 05h Port P2.6 mapping P2MAP6 06h Port P2.7 mapping P2MAP7 07h 84 Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 6-32. Port Mapping for Port P3 (Base Address: 01D8h) REGISTER DESCRIPTION REGISTER OFFSET Port P3.0 mapping P3MAP0 00h Port P3.1 mapping P3MAP3 01h Port P3.2 mapping P3MAP2 02h Port P3.3 mapping P3MAP3 03h Port P3.4 mapping P3MAP4 04h Port P3.5 mapping P3MAP5 05h Port P3.6 mapping P3MAP6 06h Port P3.7 mapping P3MAP7 07h Table 6-33. Port P1 and P2 Registers (Base Address: 0200h) REGISTER DESCRIPTION REGISTER OFFSET Port P1 input P1IN 00h Port P1 output P1OUT 02h Port P1 direction P1DIR 04h Port P1 resistor enable P1REN 06h Port P1 drive strength P1DS 08h Port P1 selection P1SEL 0Ah Port P1 interrupt vector word P1IV 0Eh Port P1 interrupt edge select P1IES 18h Port P1 interrupt enable P1IE 1Ah Port P1 interrupt flag P1IFG 1Ch Port P2 input P2IN 01h Port P2 output P2OUT 03h Port P2 direction P2DIR 05h Port P2 resistor enable P2REN 07h Port P2 drive strength P2DS 09h Port P2 selection P2SEL 0Bh Port P2 interrupt vector word P2IV 1Eh Port P2 interrupt edge select P2IES 19h Port P2 interrupt enable P2IE 1Bh Port P2 interrupt flag P2IFG 1Dh Table 6-34. Port P3 and P4 Registers (Base Address: 0220h) REGISTER DESCRIPTION REGISTER OFFSET Port P3 input P3IN 00h Port P3 output P3OUT 02h Port P3 direction P3DIR 04h Port P3 resistor enable P3REN 06h Port P3 drive strength P3DS 08h Port P3 selection P3SEL 0Ah Port P4 input P4IN 01h Port P4 output P4OUT 03h Port P4 direction P4DIR 05h Port P4 resistor enable P4REN 07h Port P4 drive strength P4DS 09h Port P4 selection P4SEL 0Bh Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 85 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 6-35. Port P5 and P6 Registers (Base Address: 0240h) REGISTER DESCRIPTION REGISTER OFFSET Port P5 input P5IN 00h Port P5 output P5OUT 02h Port P5 direction P5DIR 04h Port P5 resistor enable P5REN 06h Port P5 drive strength P5DS 08h Port P5 selection P5SEL 0Ah Port P6 input P6IN 01h Port P6 output P6OUT 03h Port P6 direction P6DIR 05h Port P6 resistor enable P6REN 07h Port P6 drive strength P6DS 09h Port P6 selection P6SEL 0Bh Table 6-36. Port P7 and P8 Registers (Base Address: 0260h) REGISTER DESCRIPTION REGISTER OFFSET Port P7 input P7IN 00h Port P7 output P7OUT 02h Port P7 direction P7DIR 04h Port P7 resistor enable P7REN 06h Port P7 drive strength P7DS 08h Port P7 selection P7SEL 0Ah Port P8 input P8IN 01h Port P8 output P8OUT 03h Port P8 direction P8DIR 05h Port P8 resistor enable P8REN 07h Port P8 drive strength P8DS 09h Port P8 selection P8SEL 0Bh Table 6-37. Port P9 Registers (Base Address: 0280h) REGISTER DESCRIPTION REGISTER OFFSET Port P9 input P9IN 00h Port P9 output P9OUT 02h Port P9 direction P9DIR 04h Port P9 resistor enable P9REN 06h Port P9 drive strength P9DS 08h Port P9 selection P9SEL 0Ah Table 6-38. Port J Registers (Base Address: 0320h) REGISTER DESCRIPTION REGISTER OFFSET Port PJ input PJIN 00h Port PJ output PJOUT 02h Port PJ direction PJDIR 04h Port PJ resistor enable PJREN 06h Port PJ drive strength PJDS 08h Port PJ selection PJSEL 0Ah 86 Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 6-39. TA0 Registers (Base Address: 0340h) REGISTER DESCRIPTION REGISTER OFFSET TA0 control TA0CTL 00h Capture/compare control 0 TA0CCTL0 02h Capture/compare control 1 TA0CCTL1 04h Capture/compare control 2 TA0CCTL2 06h TA0 counter TA0R 10h Capture/compare 0 TA0CCR0 12h Capture/compare 1 TA0CCR1 14h Capture/compare 2 TA0CCR2 16h TA0 expansion 0 TA0EX0 20h TA0 interrupt vector TA0IV 2Eh Table 6-40. TA1 Registers (Base Address: 0380h) REGISTER DESCRIPTION REGISTER OFFSET TA1 control TA1CTL 00h Capture/compare control 0 TA1CCTL0 02h Capture/compare control 1 TA1CCTL1 04h TA1 counter TA1R 10h Capture/compare 0 TA1CCR0 12h Capture/compare 1 TA1CCR1 14h TA1 expansion 0 TA1EX0 20h TA1 interrupt vector TA1IV 2Eh Table 6-41. TA2 Registers (Base Address: 0400h) REGISTER DESCRIPTION REGISTER OFFSET TA2 control TA2CTL 00h Capture/compare control 0 TA2CCTL0 02h Capture/compare control 1 TA2CCTL1 04h TA2 counter TA2R 10h Capture/compare 0 TA2CCR0 12h Capture/compare 1 TA2CCR1 14h TA2 expansion 0 TA2EX0 20h TA2 interrupt vector TA2IV 2Eh Table 6-42. TA3 Registers (Base Address: 0440h) REGISTER DESCRIPTION REGISTER OFFSET TA3 control TA3CTL 00h Capture/compare control 0 TA3CCTL0 02h Capture/compare control 1 TA3CCTL1 04h TA3 counter TA3R 10h Capture/compare 0 TA3CCR0 12h Capture/compare 1 TA3CCR1 14h TA3 expansion 0 TA3EX0 20h TA3 interrupt vector TA3IV 2Eh Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 87 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 6-43. Backup Memory Registers (Base Address: 0480h) REGISTER DESCRIPTION REGISTER OFFSET Backup memory 0 BAKMEM0 00h Backup memory 1 BAKMEM1 02h Backup memory 2 BAKMEM2 04h Backup memory 3 BAKMEM3 06h Table 6-44. RTC_C Registers (Base Address: 04A0h) REGISTER DESCRIPTION REGISTER OFFSET RTC control 0 RTCCTL0 00h RTC password RTCPWD 01h RTC control 1 RTCCTL1 02h RTC control 3 RTCCTL3 03h RTC offset calibration RTCOCAL 04h RTC temperature compensation RTCTCMP 06h RTC prescaler 0 control RTCPS0CTL 08h RTC prescaler 1 control RTCPS1CTL 0Ah RTC prescaler 0 RTCPS0 0Ch RTC prescaler 1 RTCPS1 0Dh RTC interrupt vector word RTCIV 0Eh RTC seconds RTCSEC 10h RTC minutes RTCMIN 11h RTC hours RTCHOUR 12h RTC day of week RTCDOW 13h RTC days RTCDAY 14h RTC month RTCMON 15h RTC year RTCYEAR 16h RTC alarm minutes RTCAMIN 18h RTC alarm hours RTCAHOUR 19h RTC alarm day of week RTCADOW 1Ah RTC alarm days RTCADAY 1Bh Binary-to-BCD conversion BIN2BCD 1Ch BCD-to-binary conversion BCD2BIN 1Eh 88 Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 6-45. 32-Bit Hardware Multiplier Registers (Base Address: 04C0h) REGISTER DESCRIPTION REGISTER OFFSET 16-bit operand 1 – multiply MPY 00h 16-bit operand 1 – signed multiply MPYS 02h 16-bit operand 1 – multiply accumulate MAC 04h 16-bit operand 1 – signed multiply accumulate MACS 06h 16-bit operand 2 OP2 08h 16 × 16 result low word RESLO 0Ah 16 × 16 result high word RESHI 0Ch 16 × 16 sum extension SUMEXT 0Eh 32-bit operand 1 – multiply low word MPY32L 10h 32-bit operand 1 – multiply high word MPY32H 12h 32-bit operand 1 – signed multiply low word MPYS32L 14h 32-bit operand 1 – signed multiply high word MPYS32H 16h 32-bit operand 1 – multiply accumulate low word MAC32L 18h 32-bit operand 1 – multiply accumulate high word MAC32H 1Ah 32-bit operand 1 – signed multiply accumulate low word MACS32L 1Ch 32-bit operand 1 – signed multiply accumulate high word MACS32H 1Eh 32-bit operand 2 – low word OP2L 20h 32-bit operand 2 – high word OP2H 22h 32 × 32 result 0 – least significant word RES0 24h 32 × 32 result 1 RES1 26h 32 × 32 result 2 RES2 28h 32 × 32 result 3 – most significant word RES3 2Ah MPY32 control 0 MPY32CTL0 2Ch Table 6-46. DMA General Control Registers (Base Address: 0500h) REGISTER DESCRIPTION REGISTER OFFSET DMA module control 0 DMACTL0 00h DMA module control 1 DMACTL1 02h DMA module control 2 DMACTL2 04h DMA module control 3 DMACTL3 06h DMA module control 4 DMACTL4 08h DMA interrupt vector DMAIV 0Eh Table 6-47. DMA Channel 0 Registers (Base Address: 0500h) REGISTER DESCRIPTION REGISTER OFFSET DMA channel 0 control DMA0CTL 10h DMA channel 0 source address low DMA0SAL 12h DMA channel 0 source address high DMA0SAH 14h DMA channel 0 destination address low DMA0DAL 16h DMA channel 0 destination address high DMA0DAH 18h DMA channel 0 transfer size DMA0SZ 1Ah Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 89 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 6-48. DMA Channel 1 Registers (Base Address: 0500h) REGISTER DESCRIPTION REGISTER OFFSET DMA channel 1 control DMA1CTL 20h DMA channel 1 source address low DMA1SAL 22h DMA channel 1 source address high DMA1SAH 24h DMA channel 1 destination address low DMA1DAL 26h DMA channel 1 destination address high DMA1DAH 28h DMA channel 1 transfer size DMA1SZ 2Ah Table 6-49. DMA Channel 2 Registers (Base Address: 0500h) REGISTER DESCRIPTION REGISTER OFFSET DMA channel 2 control DMA2CTL 30h DMA channel 2 source address low DMA2SAL 32h DMA channel 2 source address high DMA2SAH 34h DMA channel 2 destination address low DMA2DAL 36h DMA channel 2 destination address high DMA2DAH 38h DMA channel 2 transfer size DMA2SZ 3Ah Table 6-50. eUSCI_A0 Registers (Base Address: 05C0h) REGISTER DESCRIPTION REGISTER OFFSET eUSCI_A control word 0 UCA0CTLW0 00h eUSCI _A control word 1 UCA0CTLW1 02h eUSCI_A baud rate 0 UCA0BR0 06h eUSCI_A baud rate 1 UCA0BR1 07h eUSCI_A modulation control UCA0MCTLW 08h eUSCI_A status UCA0STAT 0Ah eUSCI_A receive buffer UCA0RXBUF 0Ch eUSCI_A transmit buffer UCA0TXBUF 0Eh eUSCI_A LIN control UCA0ABCTL 10h eUSCI_A IrDA transmit control UCA0IRTCTL 12h eUSCI_A IrDA receive control UCA0IRRCTL 13h eUSCI_A interrupt enable UCA0IE 1Ah eUSCI_A interrupt flags UCA0IFG 1Ch eUSCI_A interrupt vector word UCA0IV 1Eh 90 Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 6-51. eUSCI_A1 Registers (Base Address:05E0h) REGISTER DESCRIPTION REGISTER OFFSET eUSCI_A control word 0 UCA1CTLW0 00h eUSCI _A control word 1 UCA1CTLW1 02h eUSCI_A baud rate 0 UCA1BR0 06h eUSCI_A baud rate 1 UCA1BR1 07h eUSCI_A modulation control UCA1MCTLW 08h eUSCI_A status UCA1STAT 0Ah eUSCI_A receive buffer UCA1RXBUF 0Ch eUSCI_A transmit buffer UCA1TXBUF 0Eh eUSCI_A LIN control UCA1ABCTL 10h eUSCI_A IrDA transmit control UCA1IRTCTL 12h eUSCI_A IrDA receive control UCA1IRRCTL 13h eUSCI_A interrupt enable UCA1IE 1Ah eUSCI_A interrupt flags UCA1IFG 1Ch eUSCI_A interrupt vector word UCA1IV 1Eh Table 6-52. eUSCI_A2 Registers (Base Address:0600h) REGISTER DESCRIPTION REGISTER OFFSET eUSCI_A control word 0 UCA2CTLW0 00h eUSCI _A control word 1 UCA2CTLW1 02h eUSCI_A baud rate 0 UCA2BR0 06h eUSCI_A baud rate 1 UCA2BR1 07h eUSCI_A modulation control UCA2MCTLW 08h eUSCI_A status UCA2STAT 0Ah eUSCI_A receive buffer UCA2RXBUF 0Ch eUSCI_A transmit buffer UCA2TXBUF 0Eh eUSCI_A LIN control UCA2ABCTL 10h eUSCI_A IrDA transmit control UCA2IRTCTL 12h eUSCI_A IrDA receive control UCA2IRRCTL 13h eUSCI_A interrupt enable UCA2IE 1Ah eUSCI_A interrupt flags UCA2IFG 1Ch eUSCI_A interrupt vector word UCA2IV 1Eh Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 91 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 6-53. eUSCI_B0 Registers (Base Address: 0640h) REGISTER DESCRIPTION REGISTER OFFSET eUSCI_B control word 0 UCB0CTLW0 00h eUSCI_B control word 1 UCB0CTLW1 02h eUSCI_B bit rate 0 UCB0BR0 06h eUSCI_B bit rate 1 UCB0BR1 07h eUSCI_B status word UCB0STATW 08h eUSCI_B byte counter threshold UCB0TBCNT 0Ah eUSCI_B receive buffer UCB0RXBUF 0Ch eUSCI_B transmit buffer UCB0TXBUF 0Eh eUSCI_B I2C own address 0 UCB0I2COA0 14h eUSCI_B I2C own address 1 UCB0I2COA1 16h eUSCI_B I2C own address 2 UCB0I2COA2 18h eUSCI_B I2C own address 3 UCB0I2COA3 1Ah eUSCI_B received address UCB0ADDRX 1Ch eUSCI_B address mask UCB0ADDMASK 1Eh eUSCI I2C slave address UCB0I2CSA 20h eUSCI interrupt enable UCB0IE 2Ah eUSCI interrupt flags UCB0IFG 2Ch eUSCI interrupt vector word UCB0IV 2Eh Table 6-54. ADC10_A Registers (Base Address: 0740h) REGISTER DESCRIPTION REGISTER OFFSET ADC10_A control 0 ADC10CTL0 00h ADC10_A control 1 ADC10CTL1 02h ADC10_A control 2 ADC10CTL2 04h ADC10_A window comparator low threshold ADC10LO 06h ADC10_A window comparator high threshold ADC10HI 08h ADC10_A memory control 0 ADC10MCTL0 0Ah ADC10_A conversion memory ADC10MCTL0 12h ADC10_A interrupt enable ADC10IE 1Ah ADC10_A interrupt flags ADC10IGH 1Ch ADC10_A interrupt vector word ADC10IV 1Eh 92 Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 6-55. SD24_B Registers (Base Address: 0800h) REGISTER DESCRIPTION REGISTER OFFSET SD24_B control 0 SD24BCTL0 00h SD24_B control 1 SD24BCTL1 02h SD24_B interrupt flag SD24BIFG 0Ah SD24_B interrupt enable SD24BIE 0Ch SD24_B interrupt vector SD24BIV 0Eh SD24_B converter 0 control SD24BCCTL0 10h SD24_B converter 0 input control SD24BINCTL0 12h SD24_B converter 0 OSR control SD24BOSR0 14h SD24_B converter 0 preload SD24BPRE0 16h SD24_B converter 1 control SD24BCCTL1 18h SD24_B converter 1 input control SD24BINCTL1 1Ah SD24_B converter 1 OSR control SD24BOSR1 1Ch SD24_B converter 1 preload SD24BPRE1 1Eh SD24_B converter 2 control SD24BCCTL2 20h SD24_B converter 2 input control SD24BINCTL2 22h SD24_B converter 2 OSR control SD24BOSR2 24h SD24_B converter 2 preload SD24BPRE2 26h SD24_B converter 0 conversion memory low word SD24BMEML0 50h SD24_B converter 0 conversion memory high word SD24BMEMH0 52h SD24_B converter 1 conversion memory low word SD24BMEML1 54h SD24_B converter 1 conversion memory high word SD24BMEMH1 56h SD24_B converter 2 conversion memory low word SD24BMEML2 58h SD24_B converter 2 conversion memory high word SD24BMEMH2 5Ah Table 6-56. Auxiliary Supplies Registers (Base Address: 09E0h) REGISTER DESCRIPTION REGISTER OFFSET Auxiliary supply control 0 AUXCTL0 00h Auxiliary supply control 1 AUXCTL1 02h Auxiliary supply control 2 AUXCTL2 04h AUX2 charger control AUX2CHCTL 12h AUX3 charger control AUX3CHCTL 14h AUX ADC control AUXADCCTL 16h AUX interrupt flag AUXIFG 1Ah AUX interrupt enable AUXIE 1Ch AUX interrupt vector word AUXIV 1Eh Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 93 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 6-57. LCD_C Registers (Base Address: 0A00h) REGISTER DESCRIPTION REGISTER OFFSET LCD_C control 0 LCDCCTL0 000h LCD_C control 1 LCDCCTL1 002h LCD_C blinking control LCDCBLKCTL 004h LCD_C memory control LCDCMEMCTL 006h LCD_C voltage control LCDCVCTL 008h LCD_C port control 0 LCDCPCTL0 00Ah LCD_C port control 1 LCDCPCTL1 00Ch LCD_C port control 2 LCDCPCTL2 00Eh LCD_C charge pump control LCDCCPCTL 012h LCD_C interrupt vector LCDCIV 01Eh LCD_C memory 1 LCDM1 020h LCD_C memory 2 LCDM2 021h Static and 2- to 4-mux modes ⋮ ⋮ ⋮ LCD_C memory 20 LCDM20 033h LCD_C blinking memory 1 LCDBM1 040h LCD_C blinking memory 2 LCDBM2 041h ⋮ ⋮ LCD_C blinking memory 20 ⋮ LCDBM20 053h LCD_C memory 1 LCDM1 020h LCD_C memory 2 LCDM2 021h 5- to 8-mux modes ⋮ ⋮ LCD_C memory 40 94 Detailed Description ⋮ LCDM40 047h Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 6.12 Input/Output Diagrams 6.12.1 Port P1 (P1.0 and P1.1) Input/Output With Schmitt Trigger (MSP430F67xxIPZ and MSP430F67xxIPN) Figure 6-2 shows the port diagram. Table 6-58 summarizes the selection of the pin functions. Pad Logic To and from Reference To ADC10_A INCHx = y P1REN.x P1MAP.x = PMAP_ANALOG P1DIR.x 0 From Port Mapping 1 P1OUT.x 0 From Port Mapping 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P1DS.x 0: Low drive 1: High drive P1SEL.x P1.0/PM_TA0.0/VeREF-/A2 P1.1/PM_TA0.1/VeREF+/A1 P1IN.x Bus Keeper EN To Port Mapping D P1IE.x EN P1IRQ.x Q P1IFG.x P1SEL.x P1IES.x Set Interrupt Edge Select Figure 6-2. Port P1 (P1.0 and P1.1) Diagram (MSP430F67xxIPZ and MSP430F67xxIPN) Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 95 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 6-58. Port P1 (P1.0 and P1.1) Pin Functions (MSP430F67xxIPZ and MSP430F67xxIPN) PIN NAME (P1.x) x FUNCTION P1DIR.x P1SEL.x I: 0; O: 1 0 X 0 1 default TA0.TA0 1 1 default VeREF-/A2 (2) X 1 = 31 I: 0; O: 1 0 X TA0.CCI1A 0 1 default TA0.TA1 1 1 default VeREF+/A1 (2) X 1 = 31 P1.0 (I/O) P1.0/PM_TA0.0/ VeREF-/A2 0 TA0.CCI0A P1.1 (I/O) P1.1/PM_TA0.1/ VeREF+/A1 (1) (2) 96 1 CONTROL BITS OR SIGNALS (1) P1MAPx X = Don't care Setting P1SEL.x bit together with P1MAPx = PM_ANALOG disables the output driver and the input Schmitt trigger. Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 6.12.2 Port P1 (P1.2) Input/Output With Schmitt Trigger (MSP430F67xxIPZ and MSP430F67xxIPN) Figure 6-3 shows the port diagram. Table 6-59 summarizes the selection of the pin functions. Pad Logic To ADC10_A INCHx = y P1REN.x P1MAP.x = PMAP_ANALOG P1DIR.x 0 From Port Mapping 1 P1OUT.x 0 From Port Mapping 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P1.2/PM_UCA0RXD/PM_UCA0SOMI/A0 P1DS.x 0: Low drive 1: High drive P1SEL.x P1IN.x Bus Keeper EN To Port Mapping D P1IE.x EN P1IRQ.x Q P1IFG.x P1SEL.x P1IES.x Set Interrupt Edge Select Figure 6-3. Port P1 (P1.2) Pin Functions (MSP430F67xxIPZ and MSP430F67xxIPN) Table 6-59. Port P1 (P1.2) Pin Functions (MSP430F67xxIPZ and MSP430F67xxIPN) PIN NAME (P1.x) x FUNCTION P1DIR.x P1SEL.x P1MAPx I: 0; O: 1 0 X UCA0RXD/UCA0SOMI X 1 default A0 (2) X 1 = 31 P1.2 (I/O) P1.2/PM_UCA0RXD/ PM_UCA0SOMI/A0 (1) (2) 2 CONTROL BITS OR SIGNALS (1) X = Don't care Setting P1SEL.x bit together with P1MAPx = PM_ANALOG disables the output driver and the input Schmitt trigger. Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 97 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com 6.12.3 Port P1 (P1.3 to P1.5) Input/Output With Schmitt Trigger (MSP430F67xxIPZ and MSP430F67xxIPN) Figure 6-4 shows the port diagram. Table 6-60 summarizes the selection of the pin functions. To LCD_C Pad Logic P1REN.x P1MAP.x = PMAP_ANALOG P1DIR.x 0 From Port Mapping 1 P1OUT.x 0 From Port Mapping 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P1DS.x 0: Low drive 1: High drive P1SEL.x P1.3/PM_UCA0TXD/PM_UCA0SIMO/R03 P1.4/PM_UCA1RXD/PM_UCA1SOMI/LCDREF/R13 P1.5/PM_UCA1TXD/PM_UCA1SIMO/R23 P1IN.x Bus Keeper EN To Port Mapping D P1IE.x EN P1IRQ.x Q P1IFG.x P1SEL.x P1IES.x Set Interrupt Edge Select Figure 6-4. Port P1 (P1.3 to P1.5) Diagram (MSP430F67xxIPZ and MSP430F67xxIPN) Table 6-60. Port P1 (P1.3 to P1.5) Pin Functions (MSP430F67xxIPZ and MSP430F67xxIPN) PIN NAME (P1.x) x P1.3/PM_UCA0TXD/ PM_UCA0SIMO/R03 3 FUNCTION P1.3 (I/O) P1.4/PM_UCA1RXD/ PM_UCA1SOMI/ LCDREF/R13 (1) (2) 98 P1MAPx 0 X X 1 default R03 (2) X 1 = 31 I: 0; O: 1 0 X X 1 default UCA1RXD/UCA1SOMI LCDREF/R13 (2) 5 P1SEL.x I: 0; O: 1 X 1 = 31 I: 0; O: 1 0 X UCA1TXD/UCA1SIMO X 1 default R23 (2) X 1 = 31 P1.5 (I/O) P1.5/PM_UCA1TXD/ PM_UCA1SIMO/R23 P1DIR.x UCA0TXD/UCA0SIMO P1.4 (I/O) 4 CONTROL BITS OR SIGNALS (1) X = Don't care Setting P1SEL.x bit together with P1MAPx = PM_ANALOG disables the output driver and the input Schmitt trigger. Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 6.12.4 Port P1 (P1.6 and P1.7) (MSP430F67xxIPZ and MSP430F67xxIPN), Port P2 (P2.0 and P2.1) (MSP430F67xxIPZ Only) Input/Output With Schmitt Trigger Figure 6-5 shows the port diagram. Table 6-61 and Table 6-62 summarize the selection of the pin functions. COM4 to COM7 From LCD_C Pad Logic PyREN.x PyMAP.x = PMAP_ANALOG PyDIR.x 0 From Port Mapping 1 PyOUT.x 0 From Port Mapping 1 DVSS 0 DVCC 1 Direction 0: Input 1: Output PyDS.x 0: Low drive 1: High drive PySEL.x PyIN.x P1.6/PM_UCA0CLK/COM4 P1.7/PM_UCB0CLK/COM5 P2.0/PM_UCB0SOMI/PM_UCB0SCL/COM6 P2.1/PM_UCB0SIMO/PM_UCB0SDA/COM7 Bus Keeper EN To Port Mapping 1 D PyIE.x EN PyIRQ.x Q PyIFG.x PySEL.x PyIES.x Set Interrupt Edge Select Figure 6-5. Port P1 (P1.6 and P1.7) (MSP430F67xxIPZ and MSP430F67xxIPN), Port P2 (P2.0 and P2.1) (MSP430F67xxIPZ Only) Diagram Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 99 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 6-61. Port P1 (P1.6 and P1.7) Pin Functions (MSP430F67xxIPZ and MSP430F67xxIPN) CONTROL BITS OR SIGNALS (1) PIN NAME (P1.x) P1.6/PM_UCA0CLK/COM4 x 6 FUNCTION P1DIR.x P1SEL.x P1MAPx COM4, COM5 Enable Signal P1.6 (I/O) I: 0; O: 1 0 X 0 UCA0CLK X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 COM4 P1.7/PM_UCB0CLK/COM5 (1) 7 X X X 1 P1.7 (I/O) I: 0; O: 1 0 X 0 UCB0CLK X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 COM5 X X X 1 X = Don't care Table 6-62. Port P2 (P2.0 and P2.1) Pin Functions (MSP430F67xxIPZ Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P2.x) x FUNCTION P2DIR.x P2SEL.x P2MAPx COM6, COM7 Enable Signal I: 0; O: 1 0 X 0 UCB0SOMI/UCB0SCL X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 P2.0 (I/O) P2.0/PM_UCB0SOMI/ PM_UCB0SCL/COM6 0 COM6 X X X 1 I: 0; O: 1 0 X 0 UCB0SIMO/UCB0SDA X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 COM7 X X X 1 P2.1 (I/O) P2.1/PM_UCB0SIMO/ PM_UCB0SDA/COM7 (1) 100 1 X = Don't care Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 6.12.5 Port P2 (P2.2 to P2.7) Input/Output With Schmitt Trigger (MSP430F67xxIPZ Only) Figure 6-6 shows the port diagram. Table 6-63 summarizes the selection of the pin functions. Pad Logic P2REN.x P2MAP.x = PMAP_ANALOG P2DIR.x 0 From Port Mapping 1 P2OUT.x 0 From Port Mapping 1 DVSS 0 DVCC 1 Direction 0: Input 1: Output P2DS.x 0: Low drive 1: High drive P2SEL.x P2IN.x Bus Keeper EN To Port Mapping 1 P2.2/PM_UCA2RXD/PM_UCA2SOMI P2.3/PM_UCA2TXD/PM_UCA2SIMO P2.4/PM_UCA1CLK P2.5/PM_UCA2CLK P2.6/PM_TA1.0 P2.7/PM_TA1.1 D P2IE.x EN P2IRQ.x Q P2IFG.x P2SEL.x P2IES.x Set Interrupt Edge Select Figure 6-6. Port P2 (P2.2 to P2.7) Diagram (MSP430F67xxIPZ Only) Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 101 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 6-63. Port P2 (P2.2 to P2.7) Pin Functions (MSP430F67xxIPZ Only) PIN NAME (P2.x) x FUNCTION P2.2 (I/O) P2.2/PM_UCA2RXD/ PM_UCA2SOMI 2 UCA2RXD/UCA2SOMI Output driver and input Schmitt trigger disabled P2.3 (I/O) P2.3/PM_UCA2TXD/ PM_UCA2SIMO 3 UCA2TXD/UCA2SIMO Output driver and input Schmitt trigger disabled P2.4/PM_UCA1CLK 4 5 6 (1) 102 P2MAPx X X 1 default = 31 X 1 I: 0; O: 1 0 X X 1 default = 31 1 0 X UCA1CLK X 1 default = 31 X 1 P2.5 (I/O) I: 0; O: 1 0 X UCA2CLK X 1 default Output driver and input Schmitt trigger disabled X 1 = 31 I: 0; O: 1 0 X TA1.CC10A 0 1 default TA1.TA0 1 1 default = 31 X 1 I: 0; O: 1 0 X 0 1 default TA1.TA1 1 1 default Output driver and input Schmitt trigger disabled X 1 = 31 P2.7 (I/O) 7 0 X Output driver and input Schmitt trigger disabled P2.7/PM_TA1.1 P2SEL.x I: 0; O: 1 P2.6 (I/O) P2.6/PM_TA1.0 P2DIR.x I: 0; O: 1 P2.4 (I/O) Output driver and input Schmitt trigger disabled P2.5/PM_UCA2CLK CONTROL BITS OR SIGNALS (1) TA1.CCI1A X = Don't care Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 6.12.6 Port P3 (P3.0 to P3.3) Input/Output With Schmitt Trigger (MSP430F67xxIPZ Only) Figure 6-7 shows the port diagram. Table 6-64 summarizes the selection of the pin functions. Pad Logic P3REN.x P3MAP.x = PMAP_ANALOG P3DIR.x 0 From Port Mapping 1 P3OUT.x 0 From Port Mapping 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P3.0/PM_TA2.0 P3.1/PM_TA2.1 P3.2/PM_TACLK/PM_RTCCLK P3.3/PM_TA0.2 P3DS.x 0: Low drive 1: High drive P3SEL.x P3IN.x Bus Keeper EN To Port Mapping D Figure 6-7. Port P3 (P3.0 to P3.3) Diagram (MSP430F67xxIPZ Only) Table 6-64. Port P3 (P3.0 to P3.3) Pin Functions (MSP430F67xxIPZ Only) PIN NAME (P3.x) x FUNCTION P3.0 (I/O) P3.0/PM_TA2.0 0 2 0 X 1 default TA2.TA0 1 1 default = 31 X 1 I: 0; O: 1 0 X 0 1 default TA2.TA1 1 1 default Output driver and input Schmitt trigger disabled X 1 = 31 I: 0; O: 1 0 X 0 1 default RTCCLK 1 1 default Output driver and input Schmitt trigger disabled X 1 = 31 I: 0; O: 1 0 X TA0.CCI2A 0 1 default TA0.TA2 1 1 default Output driver and input Schmitt trigger disabled X 1 = 31 TA2.CCI1A TACLK P3.3 (I/O) P3.3/PM_TA0.2 (1) 3 P3MAPx 0 P3.2 (I/O) P3.2/PM_TACLK/ PM_RTCCLK P3SEL.x I: 0; O: 1 P3.1 (I/O) 1 P3DIR.x TA2.CC10A Output driver and input Schmitt trigger disabled P3.1/PM_TA2.1 CONTROL BITS OR SIGNALS (1) X = Don't care Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 103 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com 6.12.7 Port P3 (P3.4 to P3.7) Input/Output With Schmitt Trigger (MSP430F67xxIPZ Only) Figure 6-8 shows the port diagram. Table 6-65 summarizes the selection of the pin functions. S39 to S37 LCDS39 to LCDS37 Pad Logic P3REN.x P3MAP.x = PMAP_ANALOG P3DIR.x 0 From Port Mapping 1 P3OUT.x 0 From Port Mapping 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P3DS.x 0: Low drive 1: High drive P3SEL.x P3.4/PM_SDCLK/S39 P3.5/PM_SD0DIO/S38 P3.6/PM_SD1DIO/S37 P3.7/PM_SD2DIO/S36 P3IN.x EN To Port Mapping Bus Keeper D Figure 6-8. Port P3 (P3.4 to P3.7) Diagram (MSP430F67xxIPZ Only) 104 Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 6-65. Port P3 (P3.4 to P3.7) Pin Functions (MSP430F67xxIPZ Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P3.x) x FUNCTION P3DIR.x P3SEL.x P3MAPx LCDS39... LCDS36 I: 0; O: 1 0 X 0 SDCLK X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 P3.4 (I/O) P3.4/PM_SDCLK/S39 4 S39 X X X 1 I: 0; O: 1 0 X 0 SD0DIO X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 P3.5 (I/O) P3.5/PM_SD0DIO/S38 5 S38 X X X 1 I: 0; O: 1 0 X 0 SD1DIO X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S37 X X X 1 P3.6 (I/O) P3.6/PM_SD1DIO/S37 6 P3.7 (I/O) P3.7/PM_SD2DIO/S36 (1) 7 I: 0; O: 1 0 X 0 SD2DIO X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S36 X X X 1 X = Don't care Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 105 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com 6.12.8 Port P4 (P4.0 to P4.7), Port P5 (P5.0 to P5.7), Port P6 (P6.0 to P6.7), Port P7 (P7.0 to P7.7), Port P8 (P8.0 to P8.3) Input/Output With Schmitt Trigger (MSP430F67xxIPZ Only) Figure 6-9 shows the port diagram. Table 6-66 through Table 6-70 summarize the selection of the pin functions. Sz LCDSz Pad Logic PyREN.x PyDIR.x 0 0 DVSS 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 PyOUT.x DVSS PyDS.x 0: Low drive 1: High drive PySEL.x Py.x/Sz PyIN.x EN Not Used Bus Keeper D Figure 6-9. Port P4 (P4.0 to P4.7), Port P5 (P5.0 to P5.7), Port P6 (P6.0 to P6.7), Port P7 (P7.0 to P7.7), Port P8 (P8.0 to P8.3) Diagram (MSP430F67xxIPZ Only) 106 Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 6-66. Port P4 (P4.0 to P4.7) Pin Functions (MSP430F67xxIPZ Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P4.x) x FUNCTION P4DIR.x P4SEL.x LCDS35... LCDS28 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S35 X X 1 P4.0 (I/O) P4.0/S35 0 P4.1 (I/O) P4.1/S34 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S34 X X 1 P4.2 (I/O) P4.2/S33 2 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S33 P4.3 (I/O) P4.3/S32 3 N/A 4 5 6 (1) 7 1 0 1 1 0 X 1 I: 0; O: 1 0 0 0 1 0 N/A DVSS 1 1 0 S31 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S30 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S29 X X 1 P4.7 (I/O) P4.7/S28 0 0 X P4.6 (I/O) P4.6/S29 1 0 S32 P4.5 (I/O) P4.5/S30 X DVSS P4.4 (I/O) P4.4/S31 X I: 0; O: 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S28 X X 1 X = Don't care Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 107 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 6-67. Port P5 (P5.0 to P5.7) Pin Functions (MSP430F67xxIPZ Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P5.x) x FUNCTION P5DIR.x P5SEL.x LCDS27... LCDS20 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S27 X X 1 P5.0 (I/O) P5.0/S27 0 P5.1 (I/O) P5.1/S26 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S26 X X 1 P5.2 (I/O) P5.2/S25 2 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S25 P5.3 (I/O) P5.3/S24 3 N/A 4 5 6 (1) 108 7 1 0 1 1 0 X 1 I: 0; O: 1 0 0 0 1 0 N/A DVSS 1 1 0 S23 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S22 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S21 X X 1 P5.7 (I/O) P5.7/S20 0 0 X P5.6 (I/O) P5.6/S21 1 0 S24 P5.5 (I/O) P5.5/S22 X DVSS P5.4 (I/O) P5.4/S23 X I: 0; O: 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S20 X X 1 X = Don't care Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 6-68. Port P6 (P6.0 to P6.7) Pin Functions (MSP430F67xxIPZ Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P6.x) x FUNCTION P6DIR.x P6SEL.x LCDS19... LCDS12 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S19 X X 1 P6.0 (I/O) P6.0/S19 0 P6.1 (I/O) P6.1/S18 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S18 X X 1 P6.2 (I/O) P6.2/S17 2 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S17 P6.3 (I/O) P6.3/S16 3 N/A 4 5 6 (1) 7 1 0 1 1 0 X 1 I: 0; O: 1 0 0 0 1 0 N/A DVSS 1 1 0 S15 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S14 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S13 X X 1 P6.7 (I/O) P6.7/S12 0 0 X P6.6 (I/O) P6.6/S13 1 0 S16 P6.5 (I/O) P6.5/S14 X DVSS P6.4 (I/O) P6.4/S15 X I: 0; O: 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S12 X X 1 X = Don't care Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 109 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 6-69. Port P7 (P7.0 to P7.7) Pin Functions (MSP430F67xxIPZ Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P7.x) x FUNCTION P7DIR.x P7SEL.x LCDS11... LCDS4 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S11 X X 1 P7.0 (I/O) P7.0/S11 0 P7.1 (I/O) P7.1/S10 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S10 X X 1 P7.2 (I/O) P7.2/S9 2 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S9 P7.3 (I/O) P7.3/S8 3 N/A 4 5 6 (1) 110 7 1 0 1 1 0 X 1 I: 0; O: 1 0 0 0 1 0 N/A DVSS 1 1 0 S7 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S6 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S5 X X 1 P7.7 (I/O) P7.7/S4 0 0 X P7.6 (I/O) P7.6/S5 1 0 S8 P7.5 (I/O) P7.5/S6 X DVSS P7.4 (I/O) P7.4/S7 X I: 0; O: 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S4 X X 1 X = Don't care Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 6-70. Port P8 (P8.0 to P8.3) Pin Functions (MSP430F67xxIPZ Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P8.x) x FUNCTION P8DIR.x P8SEL.x LCDS3... LCDS0 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S3 X X 1 P8.0 (I/O) P8.0/S3 0 P8.1 (I/O) P8.1/S2 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S2 X X 1 P8.2 (I/O) P8.2/S1 2 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S1 P8.3 (I/O) P8.3/S0 (1) 3 N/A X X 1 I: 0; O: 1 0 0 0 1 0 DVSS 1 1 0 S0 X X 1 X = Don't care Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 111 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com 6.12.9 Port P8 (P8.4 to P8.7) Input/Output With Schmitt Trigger (MSP430F67xxIPZ Only) Figure 6-10 shows the port diagram. Table 6-71 summarizes the selection of the pin functions. Pad Logic P8REN.x P8DIR.x 0 0 DVCC 1 1 Direction 0: Input 1: Output 1 P8OUT.x DVSS 0 1 Module X OUT P8.4/TA1.0 P8.5/TA1.1 P8.6/TA2.0 P8.7/TA2.1 P8DS.x 0: Low drive 1: High drive P8SEL.x P8IN.x EN Module X IN D Figure 6-10. Port P8 (P8.4 to P8.7) Diagram (MSP430F67xxIPZ Only) Table 6-71. Port P8 (P8.4 to P8.7) Pin Functions (MSP430F67xxIPZ Only) PIN NAME (P8.x) x FUNCTION P8DIR.x P8SEL.x I: 0; O: 1 0 TA1.CCI0A 0 1 TA1.TA0 1 1 P8.5 (I/O) P8.4 (I/O) P8.4/TA1.0 P8.5/TA1.1 P8.6/TA2.0 P8.7/TA2.1 112 Detailed Description 4 5 6 7 CONTROL BITS OR SIGNALS I: 0; O: 1 0 TA1.CCI1A 0 1 TA1.TA1 1 1 P8.6 (I/O) I: 0; O: 1 0 TA2.CCI0A 0 1 TA2.TA0 1 1 P8.7 (I/O) I: 0; O: 1 0 TA2.CCI1A 0 1 TA2.TA1 1 1 Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 6.12.10 Port P9 (P9.0) Input/Output With Schmitt Trigger (MSP430F67xxIPZ Only) Figure 6-11 shows the port diagram. Table 6-72 summarizes the selection of the pin functions. Pad Logic P9REN.x P9DIR.x 0 Module X OUT 0 DVCC 1 1 Direction 0: Input 1: Output 1 P9OUT.x DVSS 0 1 P9.0/TACLK/RTCCLK P9DS.x 0: Low drive 1: High drive P9SEL.x P9IN.x EN Module X IN D Figure 6-11. Port P9 (P9.0) Diagram (MSP430F67xxIPZ Only) Table 6-72. Port P9 (P9.0) Pin Functions (MSP430F67xxIPZ Only) PIN NAME (P9.x) x FUNCTION P9.0 (I/O) P9.0/TACLK/RTCCLK 0 CONTROL BITS OR SIGNALS P9DIR.x P9SEL.x I: 0; O: 1 0 TACLK 0 1 RTCCLK 1 1 Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 113 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com 6.12.11 Port P9 (P9.1 to P9.3) Input/Output With Schmitt Trigger (MSP430F67xxIPZ Only) Figure 6-12 shows the port diagram. Table 6-73 summarizes the selection of the pin functions. Pad Logic To ADC10 INCHx = y P9REN.x DVSS 0 DVCC 1 1 P9DIR.x P9OUT.x P9.1/A5 P9.2/A4 P9.3/A3 P9DS.x 0: Low drive 1: High drive P9SEL.x P9IN.x Bus Keeper Figure 6-12. Port P9 (P9.1 to P9.3) Diagram (MSP430F67xxIPZ Only) Table 6-73. Port P9 (P9.1 to P9.3) Pin Functions (MSP430F67xxIPZ Only) PIN NAME (P9.x) P9.1/A5 x 1 P9.2/A4 2 P9.3/A3 3 (1) (2) 114 FUNCTION P9.1 (I/O) A5 (2) P9.2 (I/O) A4 (2) P9.3 (I/O) A3 (2) CONTROL BITS OR SIGNALS (1) P9DIR.x P9SEL.x I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 I: 0; O: 1 0 X 1 X = Don't care Setting P9SEL.x bit disables the output driver and the input Schmitt trigger. Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 6.12.12 Port P2 (P2.0 and P2.1) Input/Output With Schmitt Trigger (MSP430F67xxIPN Only) Figure 6-13 shows the port diagram. Table 6-74 summarizes the selection of the pin functions. S39, S38 LCDS39, LCDS38 COM6, COM7 From LCD_C Pad Logic P2REN.x P2MAP.x = PMAP_ANALOG P2DIR.x 0 From Port Mapping 1 P2OUT.x 0 From Port Mapping 1 DVSS 0 DVCC 1 1 Direction 0: Input 1: Output P2DS.x 0: Low drive 1: High drive P2SEL.x P2.0/PM_UCB0SOMI/PM_UCB0SCL/COM6/S39 P2.1/PM_UCB0SIMO/PM_UCB0SDA/COM7/S38 P2IN.x Bus Keeper EN To Port Mapping D P2IE.x EN P2IRQ.x Q P2IFG.x P2SEL.x P2IES.x Set Interrupt Edge Select Figure 6-13. Port P2 (P2.0 and P2.1) Diagram (MSP430F67xxIPN Only) Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 115 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 6-74. Port P2 (P2.0 and P2.1) Pin Functions (MSP430F67xxIPN Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P2.x) x FUNCTION P2.0 (I/O) P2.0/PM_UCB0SOMI/ PM_UCB0SCL/COM6/ S39 0 (1) 116 1 P2SEL.x P2MAPx LCDS39, LCDS38 COM6, COM7 Enable Signal I: 0; O: 1 0 X 0 0 UCB0SOMI/UCB0SCL X 1 default 0 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 0 COM6 X X X X 1 S39 X X X 1 0 P2.1 (I/O) P2.1/PM_UCB0SIMO/ PM_UCB0SDA/COM7/ S38 P2DIR.x I: 0; O: 1 0 X 0 0 UCB0SIMO/UCB0SDA X 1 default 0 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 0 COM7 X X X X 1 S38 X X X 1 0 X = Don't care Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 6.12.13 Port P2 (P2.2 to P2.7) Input/Output With Schmitt Trigger (MSP430F67xxIPN Only) Figure 6-14 shows the port diagram. Table 6-75 summarizes the selection of the pin functions. S37...S32 LCDS37...LCDS32 Pad Logic P2REN.x P2MAP.x = PMAP_ANALOG P2DIR.x 0 From Port Mapping 1 P2OUT.x 0 From Port Mapping 1 DVSS 0 DVCC 1 Direction 0: Input 1: Output P2DS.x 0: Low drive 1: High drive P2SEL.x P2IN.x Bus Keeper EN To Port Mapping 1 P2.2/PM_UCA2RXD/PM_UCA2SOMI/S37 P2.3/PM_UCA2TXD/PM_UCA2SIMO/S36 P2.4/PM_UCA1CLK/S35 P2.5/PM_UCA2CLK/S34 P2.6/PM_TA1.0/S33 P2.7/PM_TA1.1/S32 D P2IE.x EN P2IRQ.x Q P2IFG.x P2SEL.x P2IES.x Set Interrupt Edge Select Figure 6-14. Port P2 (P2.2 to P2.7) Diagram (MSP430F67xxIPN Only) Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 117 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 6-75. Port P2 (P2.2 to P2.7) Pin Functions (MSP430F67xxIPN Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P2.x) x FUNCTION P2DIR.x P2SEL.x P2MAPx LCDS37... LCDS32 I: 0; O: 1 0 X 0 UCA2RXD/UCA2SOMI X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 P2.2 (I/O) P2.2/PM_UCA2RXD/ PM_UCA2SOMI/S37 2 S37 X X X 1 I: 0; O: 1 0 X 0 UCA2TXD/UCA2SIMO X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 P2.3 (I/O) P2.3/PM_UCA2TXD/ PM_UCA2SIMO/S36 3 S36 P2.4/PM_UCA1CLK/S35 P2.5/PM_UCA2CLK/S34 4 5 X X X 1 P2.4 (I/O) I: 0; O: 1 0 X 0 UCA1CLK X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S35 X X X 1 P2.5 (I/O) I: 0; O: 1 0 X 0 UCA2CLK X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S34 X X X 1 I: 0; O: 1 0 X 0 TA1.CCI0A 0 1 default 0 TA1.TA0 1 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 P2.6 (I/O) P2.6/PM_TA1.0/S33 6 S33 X X X 1 I: 0; O: 1 0 X 0 TA1.CCI1A 0 1 default 0 TA1.TA1 1 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S32 X X X 1 P2.7 (I/O) P2.7/PM_TA1.1/S32 (1) 118 7 X = Don't care Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 6.12.14 Port P3 (P3.0 to P3.7) Input/Output With Schmitt Trigger (MSP430F67xxIPN Only) Figure 6-15 shows the port diagram. Table 6-76 summarizes the selection of the pin functions. S31 to S24 LCDS31 to LCDS24 Pad Logic P3REN.x P3MAP.x = PMAP_ANALOG P3DIR.x 0 From Port Mapping 1 P3OUT.x 0 From Port Mapping 1 DVSS 0 DVCC 1 Direction 0: Input 1: Output P3DS.x 0: Low drive 1: High drive P3SEL.x P3IN.x EN To Port Mapping 1 Bus Keeper P3.0/PM_TA2.0/S31 P3.1/PM_TA2.1/S30 P3.2/PM_TACLK/PM_RTCCLK/S29 P3.3/PM_TA0.2/S28 P3.4/PM_SDCLK/S27 P3.5/PM_SD0DIO/S26 P3.6/PM_SD1DIO/S25 P3.7/PM_SD2DIO/S24 D Figure 6-15. Port P3 (P3.0 to P3.7) Diagram (MSP430F67xxIPN Only) Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 119 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 6-76. Port P3 (P3.0 to P3.7) Pin Functions (MSP430F67xxIPN Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P3.x) x FUNCTION P3DIR.x P3SEL.x P3MAPx LCDS31... LCDS24 I: 0; O: 1 0 X 0 TA2.CCI0A 0 1 default 0 TA2.TA0 1 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 P3.0 (I/O) P3.0/PM_TA2.0/S31 0 S31 X X X 1 I: 0; O: 1 0 X 0 TA2.CCI1A 0 1 default 0 TA2.TA1 1 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 P3.1 (I/O) P3.1/PM_TA2.1/S30 1 S30 X X X 1 I: 0; O: 1 0 X 0 TACLK 0 1 default 0 RTCCLK 1 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S29 X X X 1 P3.2 (I/O) P3.2/PM_TACLK/ PM_RTCCLK/S29 2 P3.3 (I/O) P3.3/PM_TA0.2/S28 3 I: 0; O: 1 0 X 0 TA0.CCI2A 0 1 default 0 TA0.TA2 1 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S28 X X X 1 I: 0; O: 1 0 X 0 SDCLK X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 P3.4 (I/O) P3.4/PM_SDCLK/S27 4 S27 X X X 1 I: 0; O: 1 0 X 0 SD0DIO X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 P3.5 (I/O) P3.5/PM_SD0DIO/S26 5 S26 X X X 1 I: 0; O: 1 0 X 0 SD1DIO X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S25 X X X 1 P3.6 (I/O) P3.6/PM_SD1DIO/S25 6 P3.7 (I/O) P3.7/PM_SD2DIO/S24 (1) 120 7 I: 0; O: 1 0 X 0 SD2DIO X 1 default 0 Output driver and input Schmitt trigger disabled X 1 = 31 0 S24 X X X 1 X = Don't care Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 6.12.15 Port P4 (P4.0 to P4.7), Port P5 (P5.0 to P5.7), Port P6 (P6.0 to P6.7) Input/Output With Schmitt Trigger (MSP430F67xxIPN Only) Figure 6-16 shows the port diagram. Table 6-77 through Table 6-79 summarize the selection of the pin functions. Sz LCDSz Pad Logic PyREN.x PyDIR.x 0 0 DVSS 1 0 DVCC 1 1 Direction 0: Input 1: Output 1 PyOUT.x DVSS PyDS.x 0: Low drive 1: High drive PySEL.x Py.x/Sz PyIN.x EN Not Used Bus Keeper D Figure 6-16. Port P4 (P4.0 to P4.7), Port P5 (P5.0 to P5.7), Port P6 (P6.0 to P6.7) Diagram (MSP430F67xxIPN Only) Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 121 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 6-77. Port P4 (P4.0 to P4.7) Pin Functions (MSP430F67xxIPN Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P4.x) x FUNCTION P4DIR.x P4SEL.x LCDS23... LCDS16 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S23 X X 1 P4.0 (I/O) P4.0/S23 0 P4.1 (I/O) P4.1/S22 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S22 X X 1 P4.2 (I/O) P4.2/S21 2 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S21 P4.3 (I/O) P4.3/S20 3 N/A 4 5 6 (1) 122 7 1 0 1 1 0 X 1 I: 0; O: 1 0 0 0 1 0 N/A DVSS 1 1 0 S19 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S18 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S17 X X 1 P4.7 (I/O) P4.7/S16 0 0 X P4.6 (I/O) P4.6/S17 1 0 S20 P4.5 (I/O) P4.5/S18 X DVSS P4.4 (I/O) P4.4/S19 X I: 0; O: 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S16 X X 1 X = Don't care Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Table 6-78. Port P5 (P5.0 to P5.7) Pin Functions (MSP430F67xxIPN Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P5.x) x FUNCTION P5DIR.x P5SEL.x LCDS15... LCDS8 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S15 X X 1 P5.0 (I/O) P5.0/S15 0 P5.1 (I/O) P5.1/S14 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S14 X X 1 P5.2 (I/O) P5.2/S13 2 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S13 P5.3 (I/O) P5.3/S12 3 N/A 4 5 6 (1) 7 1 0 1 1 0 X 1 I: 0; O: 1 0 0 0 1 0 N/A DVSS 1 1 0 S11 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S10 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S9 X X 1 P5.7 (I/O) P5.7/S8 0 0 X P5.6 (I/O) P5.6/S9 1 0 S12 P5.5 (I/O) P5.5/S10 X DVSS P5.4 (I/O) P5.4/S11 X I: 0; O: 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S8 X X 1 X = Don't care Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 123 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 6-79. Port P6 (P6.0 to P6.7) Pin Functions (MSP430F67xxIPN Only) CONTROL BITS OR SIGNALS (1) PIN NAME (P6.x) x FUNCTION P6DIR.x P6SEL.x LCDS7... LCDS0 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S7 X X 1 P6.0 (I/O) P6.0/S7 0 P6.1 (I/O) P6.1/S6 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S6 X X 1 P6.2 (I/O) P6.2/S5 2 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S5 P6.3 (I/O) P6.3/S4 3 N/A 4 5 6 (1) 124 7 1 0 1 1 0 X 1 I: 0; O: 1 0 0 0 1 0 N/A DVSS 1 1 0 S3 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S2 X X 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S1 X X 1 P6.7 (I/O) P6.7/S0 0 0 X P6.6 (I/O) P6.6/S1 1 0 S4 P6.5 (I/O) P6.5/S2 X DVSS P6.4 (I/O) P6.4/S3 X I: 0; O: 1 I: 0; O: 1 0 0 N/A 0 1 0 DVSS 1 1 0 S0 X X 1 X = Don't care Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 6.12.16 Port PJ (PJ.0) JTAG Pin TDO, Input/Output With Schmitt Trigger or Output Figure 6-17 shows the port diagram. Table 6-80 summarizes the selection of the pin functions. Pad Logic PJREN.x PJDIR.x 0 DVCC 1 PJOUT.x 00 From JTAG 01 SMCLK 10 DVSS 0 DVCC 1 PJDS.0 0: Low drive 1: High drive 11 1 PJ.0/SMCLK/TDO PJSEL.x From JTAG PJIN.x Bus Holder EN D Figure 6-17. Port PJ (PJ.0) Diagram Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 125 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com 6.12.17 Port PJ (PJ.1 to PJ.3) JTAG Pins TMS, TCK, TDI/TCLK, Input/Output With Schmitt Trigger or Output Figure 6-18 shows the port diagram. Table 6-80 summarizes the selection of the pin functions. Pad Logic PJREN.x PJDIR.x DVSS DVSS 0 DVCC 1 1 0 1 PJOUT.x 00 From JTAG 01 MCLK/ADC10CLK/ACLK 10 PJ.1/MCLK/TDI/TCLK PJ.2/ADC10CLK/TMS PJ.3/ACLK/TCK PJDS.x 0: Low drive 1: High drive 11 PJSEL.x From JTAG PJIN.x Bus Holder EN D To JTAG Figure 6-18. Port PJ (PJ.1 to PJ.3) Diagram Table 6-80. Port PJ (PJ.0 to PJ.3) Pin Functions CONTROL BITS OR SIGNALS (1) PIN NAME (PJ.x) x FUNCTION PJ.0 (I/O) (2) PJ.0/SMCLK/TDO 0 1 0 0 1 1 0 TDO (3) X X 1 I: 0; O: 1 0 0 1 1 0 X X 1 I: 0; O: 1 0 0 1 1 0 X X 1 I: 0; O: 1 0 0 1 1 0 X X 1 (2) MCLK PJ.2 (I/O) 2 ACLK TCK (1) (2) (3) (4) 126 (2) (3) (4) PJ.3 (I/O) 3 (3) (4) ADC10CLK TMS PJ.3/ACLK/TCK JTAG Mode Signal I: 0; O: 1 TDI/TCLK PJ.2/ADC10CLK/TMS PJSEL.x SMCLK PJ.1 (I/O) PJ.1/MCLK/TDI/TCLK PJDIR.x (3) (4) (2) X = Don't care Default condition The pin direction is controlled by the JTAG module. In JTAG mode, pullups are activated automatically on TMS, TCK, and TDI/TCLK. PJREN.x are don't care. Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 6.13 Device Descriptors (TLV) Table 6-81 and Table 6-82 list the contents of the device descriptor tag-length-value (TLV) structure for each device type. Table 6-81. MSP430F673x Device Descriptors DESCRIPTION Info Block Die Record ADC10 Calibration ADDRESS SIZE (bytes) VALUE F6736PZ F6736PN F6735PZ F6735PN F6734PZ F6734PN F6733PZ F6733PN F6731PZ F6731PN F6730PZ F6730PN 06h Info length 01A00h 1 06h 06h 06h 06h 06h CRC length 01A01h 1 06h 06h 06h 06h 06h 06h CRC value 01A02h 2 Per unit Per unit Per unit Per unit Per unit Per unit Device ID 01A04h 1 6Ch 6Bh 6Ah 65h 63h 62h Device ID 01A05h 1 81h 81h 81h 80h 80h 80h Hardware revision 01A06h 1 Per unit Per unit Per unit Per unit Per unit Per unit Firmware revision 01A07h 1 Per unit Per unit Per unit Per unit Per unit Per unit Die record tag 01A08h 1 08h 08h 08h 08h 08h 08h Die record length 01A09h 1 0Ah 0Ah 0Ah 0Ah 0Ah 0Ah Lot/wafer ID 01A0Ah 4 Per unit Per unit Per unit Per unit Per unit Per unit Die X position 01A0Eh 2 Per unit Per unit Per unit Per unit Per unit Per unit Die Y position 01A10h 2 Per unit Per unit Per unit Per unit Per unit Per unit Test results 01A12h 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC10 calibration tag 01A14h 1 13h 13h 13h 13h 13h 13h ADC10 calibration length 01A15h 1 10h 10h 10h 10h 10h 10h ADC gain factor 01A16h 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC offset 01A18h 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC 1.5-V reference Temperature sensor 30°C 01A1Ah 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC 1.5-V reference Temperature sensor 85°C 01A1Ch 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC 2.0-V reference Temperature sensor 30°C 01A1Eh 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC 2.0-V reference Temperature sensor 85°C 01A20h 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC 2.5-V reference Temperature sensor 30°C 01A22h 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC 2.5-V reference Temperature sensor 85°C 01A24h 2 Per unit Per unit Per unit Per unit Per unit Per unit Detailed Description Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 127 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Table 6-82. MSP430F672x Device Descriptors DESCRIPTION Info Block Die Record ADC10 Calibration 128 ADDRESS SIZE (bytes) VALUE F6726PZ F6726PN F6725PZ F6725PN F6724PZ F6724PN F6723PZ F6723PN F6721PZ F6721PN F6720PZ F6720PN 06h Info length 01A00h 1 06h 06h 06h 06h 06h CRC length 01A01h 1 06h 06h 06h 06h 06h 06h CRC value 01A02h 2 Per unit Per unit Per unit Per unit Per unit Per unit Device ID 01A04h 1 6Fh 6Eh 6Dh 61h 59h 58h Device ID 01A05h 1 81h 81h 81h 80h 80h 80h Hardware revision 01A06h 1 Per unit Per unit Per unit Per unit Per unit Per unit Firmware revision 01A07h 1 Per unit Per unit Per unit Per unit Per unit Per unit Die record tag 01A08h 1 08h 08h 08h 08h 08h 08h Die record length 01A09h 1 0Ah 0Ah 0Ah 0Ah 0Ah 0Ah Lot/wafer ID 01A0Ah 4 Per unit Per unit Per unit Per unit Per unit Per unit Die X position 01A0Eh 2 Per unit Per unit Per unit Per unit Per unit Per unit Die Y position 01A10h 2 Per unit Per unit Per unit Per unit Per unit Per unit Test results 01A12h 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC10 calibration tag 01A14h 1 13h 13h 13h 13h 13h 13h ADC10 calibration length 01A15h 1 10h 10h 10h 10h 10h 10h ADC gain factor 01A16h 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC offset 01A18h 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC 1.5-V reference Temperature sensor 30°C 01A1Ah 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC 1.5-V reference Temperature sensor 85°C 01A1Ch 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC 2.0-V reference Temperature sensor 30°C 01A1Eh 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC 2.0-V reference Temperature sensor 85°C 01A20h 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC 2.5-V reference Temperature sensor 30°C 01A22h 2 Per unit Per unit Per unit Per unit Per unit Per unit ADC 2.5-V reference Temperature sensor 85°C 01A24h 2 Per unit Per unit Per unit Per unit Per unit Per unit Detailed Description Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 7 Device and Documentation Support 7.1 Getting Started and Next Steps For more information on the MSP430™ family of devices and the tools and libraries that are available to help with your development, visit the Getting Started page. 7.2 Device Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all MSP MCU devices. Each MSP MCU commercial family member has one of two prefixes: MSP or XMS. These prefixes represent evolutionary stages of product development from engineering prototypes (XMS) through fully qualified production devices (MSP). XMS – Experimental device that is not necessarily representative of the final device's electrical specifications MSP – Fully qualified production device XMS devices are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." MSP devices have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (XMS) have a greater failure rate than the standard production devices. TI recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. TI device nomenclature also includes a suffix with the device family name. This suffix indicates the temperature range, package type, and distribution format. Figure 7-1 provides a legend for reading the complete device name. Device and Documentation Support Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 129 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com MSP 430 F 5 438 A I ZQW T -EP Processor Family Optional: Additional Features MCU Platform Optional: Tape and Reel Device Type Packaging Series Feature Set Processor Family MCU Platform Optional: Temperature Range Optional: A = Revision CC = Embedded RF Radio MSP = Mixed-Signal Processor XMS = Experimental Silicon PMS = Prototype Device 430 = MSP430 low-power microcontroller platform Device Type Memory Type C = ROM F = Flash FR = FRAM G = Flash or FRAM (Value Line) L = No Nonvolatile Memory Specialized Application AFE = Analog Front End BQ = Contactless Power CG = ROM Medical FE = Flash Energy Meter FG = Flash Medical FW = Flash Electronic Flow Meter Series 1 = Up to 8 MHz 2 = Up to 16 MHz 3 = Legacy 4 = Up to 16 MHz with LCD 5 = Up to 25 MHz 6 = Up to 25 MHz with LCD 0 = Low-Voltage Series Feature Set Various levels of integration within a series Optional: A = Revision N/A Optional: Temperature Range S = 0°C to 50°C C = 0°C to 70°C I = –40°C to 85°C T = –40°C to 105°C Packaging http://www.ti.com/packaging Optional: Tape and Reel T = Small reel R = Large reel No markings = Tube or tray Optional: Additional Features -EP = Enhanced Product (–40°C to 105°C) -HT = Extreme Temperature Parts (–55°C to 150°C) -Q1 = Automotive Q100 Qualified Figure 7-1. Device Nomenclature 130 Device and Documentation Support Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com 7.3 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Tools and Software All MSP microcontrollers are supported by a wide variety of software and hardware development tools. Tools are available from TI and various third parties. See them all at MSP430 Ultra-Low-Power MCUs – Tools & software. Table 7-1 lists the debug features of the MSP430F673x and MSP430F672x MCUs. See the Code Composer Studio for MSP430 User's Guide for details on the available features. Table 7-1. Hardware Debug Features MSP430 ARCHITECTURE 4-WIRE JTAG 2-WIRE JTAG BREAKPOINTS (N) RANGE BREAKPOINTS CLOCK CONTROL STATE SEQUENCER TRACE BUFFER LPMX.5 DEBUGGING SUPPORT MSP430Xv2 Yes Yes 3 Yes Yes No No No Design Kits and Evaluation Modules MSP-TS430PZ100B - 100-pin Target Development Board for MSP430F6x MCUs The MSPTS430PZ100B is a stand-alone 100-pin ZIF socket target board used to program and debug the MSP430 MCU in-system through the JTAG interface or the Spy Bi-Wire (2-wire JTAG) protocol. 100-pin Target Development Board and MSP-FET Programmer Bundle for MSP430F6x MCUs The MSP-FET is a powerful flash emulation tool to quickly begin application development on the MSP430 MCU. It includes USB debugging interface used to program and debug the MSP430 in-system through the JTAG interface or the pin saving Spy Bi-Wire (2-wire JTAG) protocol. EVM430-F6736 - MSP430F6736 EVM for Metering This EVM430-F6736 is a single-phase electricity meter evaluation module based on the MSP430F6736 device. The E-meter can be connected to the main power lines and has inputs for voltage and current, as well as a third connection to setup anti-tampering. Software MSP430Ware™ Software MSP430Ware software is a collection of code examples, data sheets, and other design resources for all MSP430 devices delivered in a convenient package. In addition to providing a complete collection of existing MSP430 design resources, MSP430Ware software also includes a high-level API called MSP Driver Library. This library makes it easy to program MSP430 hardware. MSP430Ware software is available as a component of CCS or as a stand-alone package. Energy Measurement Design Center for MSP430 MCUs The Energy Measurement Design Center is a rapid development tool that enables energy measurement using TI MSP430i20xx and MSP430F67xx flash-based microcontrollers (MCUs). It includes a graphical user interface (GUI), documentation, software library, and examples that can simplify development and accelerate designs in a wide range of power monitoring and energy measurement applications, including smart grid and building automation. Using the Design Center, you can configure, calibrate, and view results without writing a single line of code. MSP Driver Library The abstracted API of MSP Driver Library provides easy-to-use function calls that free you from directly manipulating the bits and bytes of the MSP430 hardware. Thorough documentation is delivered through a helpful API Guide, which includes details on each function call and the recognized parameters. Developers can use Driver Library functions to write complete projects with minimal overhead. IEC60730 Software Package The IEC60730 MSP430 software package was developed to help customers comply with IEC 60730-1:2010 (Automatic Electrical Controls for Household and Similar Use – Part 1: General Requirements) for up to Class B products, which includes home appliances, arc detectors, power converters, power tools, e-bikes, and many others. The IEC60730 MSP430 software package can be embedded in customer applications running on MSP430s to help simplify the customer’s certification efforts of functional safetycompliant consumer devices to IEC 60730-1:2010 Class B. MSP430F673x, MSP430F672x Code Examples C code examples are available for every MSP device that configures each of the integrated peripherals for various application needs. Device and Documentation Support Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 131 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com Capacitive Touch Software Library Free C libraries for enabling capacitive touch capabilities on MSP430 MCUs. The MSP430 MCU version of the library features several capacitive touch implementations including the RO and RC method. MSP EnergyTrace™ Technology EnergyTrace technology for MSP430 microcontrollers is an energybased code analysis tool that measures and displays the energy profile of the application and helps to optimize it for ultra-low-power consumption. ULP (Ultra-Low Power) Advisor ULP Advisor™ software is a tool for guiding developers to write more efficient code to fully use the unique ultra-low-power features of MSP and MSP432 microcontrollers. Aimed at both experienced and new microcontroller developers, ULP Advisor checks your code against a thorough ULP checklist to help minimize the energy consumption of your application. At build time, ULP Advisor provides notifications and remarks to highlight areas of your code that can be further optimized for lower power. Fixed Point Math Library for MSP The MSP IQmath and Qmath Libraries are a collection of highly optimized and high-precision mathematical functions for C programmers to seamlessly port a floating-point algorithm into fixed-point code on MSP430 and MSP432 devices. These routines are typically used in computationally intensive real-time applications where optimal execution speed, high accuracy, and ultra-low energy are critical. By using the IQmath and Qmath libraries, it is possible to achieve execution speeds considerably faster and energy consumption considerably lower than equivalent code written using floating-point math. Floating Point Math Library for MSP430 Continuing to innovate in the low-power and low-cost microcontroller space, TI provides MSPMATHLIB. Leveraging the intelligent peripherals of our devices, this floating-point math library of scalar functions that are up to 26 times faster than the standard MSP430 math functions. Mathlib is easy to integrate into your designs. This library is free and is integrated in both Code Composer Studio IDE and IAR Embedded Workbench IDE. Development Tools Code Composer Studio™ Integrated Development Environment for MSP Microcontrollers Code Composer Studio (CCS) integrated development environment (IDE) supports all MSP microcontroller devices. CCS comprises a suite of embedded software utilities used to develop and debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler, and many other features. Command-Line Programmer MSP Flasher is an open-source shell-based interface for programming MSP microcontrollers through a FET programmer or eZ430 using JTAG or Spy-Bi-Wire (SBW) communication. MSP Flasher can download binary files (.txt or .hex) directly to the MSP microcontroller without an IDE. MSP MCU Programmer and Debugger The MSP-FET is a powerful emulation development tool – often called a debug probe – which lets users quickly begin application development on MSP lowpower MCUs. Creating MCU software usually requires downloading the resulting binary program to the MSP device for validation and debugging. MSP-GANG Production Programmer The MSP Gang Programmer is an MSP430 or MSP432 device programmer that can program up to eight identical MSP430 or MSP432 flash or FRAM devices at the same time. The MSP Gang Programmer connects to a host PC using a standard RS-232 or USB connection and provides flexible programming options that let the user fully customize the process. 132 Device and Documentation Support Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com 7.4 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Documentation Support The following documents describe the MSP430F673x and MSP430F672x MCUs. Copies of these documents are available on the Internet at www.ti.com. Receiving Notification of Document Updates To receive notification of documentation updates—including silicon errata—go to the product folder for your device on ti.com (for links to the product folders, see Section 7.5). In the upper right corner, click the "Alert me" button. This registers you to receive a weekly digest of product information that has changed (if any). For change details, check the revision history of any revised document. Errata MSP430F6736 Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F6735 Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F6734 Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F6733 Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F6731 Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F6730 Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F6726 Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F6725 Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F6724 Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F6723 Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F6721 Device Erratasheet Describes the known exceptions to the functional specifications. MSP430F6720 Device Erratasheet Describes the known exceptions to the functional specifications. User's Guides MSP430x5xx and MSP430x6xx Family User's Guide peripherals available in this device family. Detailed information on the modules and MSP430 Flash Device Bootloader (BSL) User's Guide The MSP430 bootloader (BSL) (formerly known as the bootstrap loader) lets users communicate with embedded memory in the MSP430 microcontroller during the prototyping phase, final production, and in service. Both the programmable memory (flash memory) and the data memory (RAM) can be modified as required. Do not confuse the bootloader with the bootstrap loader programs found in some digital signal processors (DSPs) that automatically load program code (and data) from external memory to the internal memory of the DSP. MSP430 Programming With the JTAG Interface This document describes the functions that are required to erase, program, and verify the memory module of the MSP430 flash-based and FRAM-based microcontroller families using the JTAG communication port. In addition, it describes how to program the JTAG access security fuse that is available on all MSP430 devices. This document describes device access using both the standard 4-wire JTAG interface and the 2-wire JTAG interface, which is also referred to as Spy-Bi-Wire (SBW). MSP430 Hardware Tools User's Guide This manual describes the hardware of the TI MSP-FET430 Flash Emulation Tool (FET). The FET is the program development tool for the MSP430 ultralow-power microcontroller. Both available interface types, the parallel port interface and the USB interface, are described. Application Reports MSP430 32-kHz Crystal Oscillators Selection of the correct crystal, correct load circuit, and proper board layout are important for a stable crystal oscillator. This application report summarizes crystal oscillator function and explains the parameters to select the correct crystal for MSP430 ultra-low-power operation. In addition, hints and examples for correct board layout are given. The document also contains detailed information on the possible oscillator tests to ensure stable oscillator operation in mass production. Device and Documentation Support Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 133 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com MSP430 System-Level ESD Considerations System-Level ESD has become increasingly demanding with silicon technology scaling towards lower voltages and the need for designing costeffective and ultra-low-power components. This application report addresses three different ESD topics to help board designers and OEMs understand and design robust system-level designs. Designing With MSP430 and Segment LCDs Segment liquid crystal displays (LCDs) are needed to provide information to users in a wide variety of applications from smart meters to electronic shelf labels (ESLs) to medical equipment. Several MSP430 microcontroller families include built-in low-power LCD driver circuitry that allows the MSP430 MCU to directly control the segmented LCD glass. This application note helps explain how segmented LCDs work, the different features of the various LCD modules across the MSP430 MCU family, LCD hardware layout tips, guidance on writing efficient and easy-to-use LCD driver software, and an overview of the portfolio of MSP430 devices that include different LCD features to aid in device selection. 7.5 Related Links Table 7-2 lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 7-2. Related Links 7.6 PARTS PRODUCT FOLDER ORDER NOW TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY MSP430F6736 Click here Click here Click here Click here Click here MSP430F6735 Click here Click here Click here Click here Click here MSP430F6734 Click here Click here Click here Click here Click here MSP430F6733 Click here Click here Click here Click here Click here MSP430F6731 Click here Click here Click here Click here Click here MSP430F6730 Click here Click here Click here Click here Click here MSP430F6726 Click here Click here Click here Click here Click here MSP430F6725 Click here Click here Click here Click here Click here MSP430F6724 Click here Click here Click here Click here Click here MSP430F6723 Click here Click here Click here Click here Click here MSP430F6721 Click here Click here Click here Click here Click here MSP430F6720 Click here Click here Click here Click here Click here Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas, and help solve problems with fellow engineers. TI Embedded Processors Wiki Texas Instruments Embedded Processors Wiki. Established to help developers get started with embedded processors from Texas Instruments and to foster innovation and growth of general knowledge about the hardware and software surrounding these devices. 7.7 Trademarks MSP430, MSP430Ware, EnergyTrace, ULP Advisor, Code Composer Studio, E2E are trademarks of Texas Instruments. All other trademarks are the property of their respective owners. 134 Device and Documentation Support Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 www.ti.com 7.8 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 7.9 Export Control Notice Recipient agrees to not knowingly export or re-export, directly or indirectly, any product or technical data (as defined by the U.S., EU, and other Export Administration Regulations) including software, or any controlled product restricted by other applicable national regulations, received from disclosing party under nondisclosure obligations (if any), or any direct product of such technology, to any destination to which such export or re-export is restricted or prohibited by U.S. or other applicable laws, without obtaining prior authorization from U.S. Department of Commerce and other competent Government authorities to the extent required by those laws. 7.10 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. Device and Documentation Support Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 Copyright © 2011–2018, Texas Instruments Incorporated 135 MSP430F6736, MSP430F6735, MSP430F6734, MSP430F6733, MSP430F6731, MSP430F6730 MSP430F6726, MSP430F6725, MSP430F6724, MSP430F6723, MSP430F6721, MSP430F6720 SLAS731D – DECEMBER 2011 – REVISED SEPTEMBER 2018 www.ti.com 8 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 136 Mechanical, Packaging, and Orderable Information Copyright © 2011–2018, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: MSP430F6736 MSP430F6735 MSP430F6734 MSP430F6733 MSP430F6731 MSP430F6730 MSP430F6726 MSP430F6725 MSP430F6724 MSP430F6723 MSP430F6721 MSP430F6720 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) MSP430F6720IPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6720 MSP430F6720IPNR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6720 MSP430F6720IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6720 MSP430F6720IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6720 MSP430F6721IPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6721 MSP430F6721IPNR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6721 MSP430F6721IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6721 MSP430F6721IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6721 MSP430F6723IPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6723 MSP430F6723IPNR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6723 MSP430F6723IPNR-S ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6723 MSP430F6723IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6723 MSP430F6723IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6723 MSP430F6724IPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6724 MSP430F6724IPNR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6724 MSP430F6724IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6724 MSP430F6724IPZR ACTIVE LQFP PZ 100 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6724 MSP430F6725IPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6725 MSP430F6725IPNR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6725 MSP430F6725IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6725 Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 10-Dec-2020 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) MSP430F6725IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6725 MSP430F6726IPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6726 MSP430F6726IPNR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6726 MSP430F6726IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6726 MSP430F6726IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6726 MSP430F6730IPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6730 MSP430F6730IPNR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6730 MSP430F6730IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6730 MSP430F6731IPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6731 MSP430F6731IPNR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6731 MSP430F6733IPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6733 MSP430F6733IPNR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6733 MSP430F6733IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR F6733 MSP430F6733IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR F6733 MSP430F6734IPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6734 MSP430F6734IPNR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6734 MSP430F6734IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6734 MSP430F6734IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6734 MSP430F6735IPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6735 MSP430F6735IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6735 MSP430F6736IPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6736 Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 10-Dec-2020 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) MSP430F6736IPNR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6736 MSP430F6736IPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6736 MSP430F6736IPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6736 SN0806723IPNR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 85 F6723 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
EVM430-F6736 价格&库存

很抱歉,暂时无法提供与“EVM430-F6736”相匹配的价格&库存,您可以联系我们找货

免费人工找货