F280025CPMSR

F280025CPMSR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    LQFP64_10X10MM

  • 描述:

    F280025CPMSR

  • 数据手册
  • 价格&库存
F280025CPMSR 数据手册
www.ti.com TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280025, TMS320F280023, TMS320F280025-Q1 TMS320F280023-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280021-Q1 TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280023C, TMS320F280021, TMS320F280021-Q1 SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 TMS320F28002x Real-Time Microcontrollers 1 Features • • • • • • TMS320C28x 32-bit DSP core at 100 MHz – IEEE 754 Floating-Point Unit (FPU) • Support for Fast Integer Division (FINTDIV) – Trigonometric Math Unit (TMU) • Support for Nonlinear Proportional Integral Derivative (NLPID) control – CRC Engine and Instructions (VCRC) – Ten hardware breakpoints (with ERAD) On-chip memory – 128KB (64KW) of flash (ECC-protected) – 24KB (12KW) of RAM (ECC or parity-protected) – Dual-zone security Clock and system control – Two internal zero-pin 10-MHz oscillators – On-chip crystal oscillator or external clock input – Windowed watchdog timer module – Missing clock detection circuitry – Dual-clock Comparator (DCC) Single 3.3-V supply – Internal VREG generation – Brownout reset (BOR) circuit System peripherals – 6-channel Direct Memory Access (DMA) controller – 39 individually programmable multiplexed General-Purpose Input/Output (GPIO) pins – 16 digital inputs on analog pins – Enhanced Peripheral Interrupt Expansion (ePIE) – Multiple low-power mode (LPM) support – Embedded Real-time Analysis and Diagnostic (ERAD) – Unique Identification (UID) number Communications peripherals – One Power-Management Bus (PMBus) interface – Two Inter-integrated Circuit (I2C) interfaces – One Controller Area Network (CAN) bus port – Two Serial Peripheral Interface (SPI) ports – One UART-compatible Serial Communication Interface (SCI) – Two UART-compatible Local Interconnect Network (LIN) interfaces – Fast Serial Interface (FSI) with one transmitter and one receiver (up to 200Mbps) • • • • • • • • Analog system – Two 3.45-MSPS, 12-bit Analog-to-Digital Converters (ADCs) • Up to 16 external channels • Four integrated Post-Processing Blocks (PPB) per ADC – Four windowed comparators (CMPSS) with 12-bit reference Digital-to-Analog Converters (DACs) • Digital glitch filters Enhanced control peripherals – 14 ePWM channels with eight channels that have high-resolution capability (150-ps resolution) • Integrated dead-band support • Integrated hardware trip zones (TZs) – Three Enhanced Capture (eCAP) modules • High-resolution Capture (HRCAP) available on one of the three eCAP modules – Two Enhanced Quadrature Encoder Pulse (eQEP) modules with support for CW/CCW operation modes Configurable Logic Block (CLB) – Augments existing peripheral capability – Supports position manager solutions Host Interface Controller (HIC) – Access to internal memory from an external host Background CRC (BGCRC) – One cycle CRC computation on 32 bits of data Diagnostic features – Memory Power On Self Test (MPOST) – Hardware Built-in Self Test (HWBIST) Package options: – 80-pin Low-profile Quad Flatpack (LQFP) [PN suffix] – 64-pin LQFP [PM suffix] – 48-pin LQFP [PT suffix] Temperature options: – S: –40°C to 125°C junction – Q: –40°C to 125°C free-air (AEC Q100 qualification for automotive applications) An©IMPORTANT NOTICEIncorporated at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, Copyright 2020 Texas Instruments Submit Document Feedback intellectual property matters and other important disclaimers. PRODUCTION DATA. Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 2 Applications • • • • • • • Appliances – Air conditioner outdoor unit Building automation – Door operator drive control Industrial machine & machine tools – Automated sorting equipment – Textile machine EV charging infrastructure – AC charging (pile) station – DC charging (pile) station – EV charging station power module – Wireless EV charging station Renewable energy storage – Energy storage power conversion system (PCS) Solar energy – Central inverter – Micro inverter – Solar power optimizer – Solar arc protection – Rapid shutdown – Electricity meter – String inverter Hybrids, electric & powertrain systems – DC/DC converter – Inverter & motor control – On-board (OBC) & wireless charger • • • • • • • • Body electronics & lighting – Automotive HVAC compressor module – DC/AC inverter – Headlight AC inverter & VF drives – AC drive control module – AC drive position feedback – AC drive power stage module Linear motor transport systems – Linear motor power stage Single & multi axis servo drives – Servo drive position feedback – Servo drive power stage module Speed controlled BLDC drives – AC-input BLDC motor drive – DC-input BLDC motor drive Industrial power – Industrial AC-DC UPS – Three phase UPS – Single phase online UPS Telecom & server power – Merchant DC/DC – Merchant network & server PSU – Merchant telecom rectifiers 3 Description The TMS320F28002x (F28002x) is a member of the C2000™ real-time microcontroller family of scalable, ultralow latency devices designed for efficiency in power electronics, including but not limited to: high power density, high switching frequencies, and supporting the use of GaN and SiC technologies. These include such applications as: • • • • • • Industrial motor drives Motor control Solar inverters Digital power Electrical vehicles and transportation Sensing and signal processing The real-time control subsystem is based on TI’s 32-bit C28x DSP core, which provides 100 MHz of signalprocessing performance for floating- or fixed-point code running from either on-chip flash or SRAM. The C28x CPU is further boosted by the Trigonometric Math Unit (TMU) and VCRC (Cyclical Redundancy Check) extended instruction sets, speeding up common algorithms key to real-time control systems. High-performance analog blocks are integrated on the F28002x real-time microcontroller (MCU) and are closely coupled with the processing and PWM units to provide optimal real-time signal chain performance. Fourteen PWM channels, all supporting frequency-independent resolution modes, enable control of various power stages from a 3-phase inverter to advanced multi-level power topologies. 2 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 The inclusion of the Configurable Logic Block (CLB) allows the user to add custom logic and potentially integrate FPGA-like functions into the C2000 real-time MCU. Interfacing is supported through various industry-standard communication ports (such as SPI, SCI, I2C, PMBus, LIN, and CAN) and offers multiple pin-muxing options for optimal signal placement. The Fast Serial Interface (FSI) enables up to 200 Mbps of robust communications across an isolation boundary. New to the C2000 platform is the Host Interface Controller (HIC), a high-throughput interface that allows an external host to access the resources of the TMS320F28002x directly. Want to learn more about features that make C2000 MCUs the right choice for your real-time control system? Check out The Essential Guide for Developing With C2000™ Real-Time Microcontrollers and visit the C2000™ real-time control MCUs page. Ready to get started? Check out the TMDSCNCD280025C evaluation board and download C2000Ware. Device Information PART NUMBER(1) TMS320F280025C TMS320F280025 TMS320F280023C CONFIGURABLE LOGIC BLOCK (CLB) 2 Tiles – 2 Tiles TMS320F280023 – TMS320F280021 – (1) FLASH SIZE 128KB 64KB 32KB For more information on these devices, see the Device Comparison table. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 3 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 3.1 Functional Block Diagram The Functional Block Diagram shows the CPU system and associated peripherals. Boot ROM C28x CPU Secure ROM FPU32 FINTDIV TMU VCRC Flash Bank0 16 Sectors 64 KW (128 KB) Secure Memories shown in Red Bus Legend CPU DMA HIC BGCRC CPU Timers DCC DCSM ePIE ERAD M0-M1 RAM 2 KW (4 KB) BGCRC LS4-LS7 RAM 8 KW (16 KB) Crystal Oscillator INTOSC1, INTOSC2 PLL HIC GS0 RAM 2 KW (4 KB) PF1 14x ePWM Chan. (8 Hi-Res Capable) 14x ePWM Chan. 4x CMPSS (8 Hi-Res Capable) 3x eCAP 3x eCAP 2x CLB (1 HRCAP Capable) (1 HRCAP Capable) 2x eQEP (CW/CCW Support) PF3 Result 2x 12-Bit ADC DMA 6 Channles PF4 Data PF2 PF7 PF8 PF9 1x PMBUS 1x CAN 2x LIN 1x SCI 39x GPIO 2x SPI 2x I2C Input XBAR 1x FSI RX Output XBAR 1x FSI TX NMI Watchdog Windowed Watchdog ePWM XBAR CLB XBAR Figure 3-1. Functional Block Diagram 4 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 2 3 Description.......................................................................2 3.1 Functional Block Diagram........................................... 4 4 Revision History.............................................................. 6 5 Device Comparison......................................................... 9 5.1 Related Products...................................................... 10 6 Terminal Configuration and Functions........................ 11 6.1 Pin Diagrams.............................................................11 6.2 Pin Attributes.............................................................14 6.3 Signal Descriptions................................................... 29 6.4 Pin Multiplexing.........................................................39 6.5 Pins With Internal Pullup and Pulldown.................... 46 6.6 Connections for Unused Pins................................... 47 7 Specifications................................................................ 48 7.1 Absolute Maximum Ratings ..................................... 48 7.2 ESD Ratings – Commercial...................................... 48 7.3 ESD Ratings – Automotive....................................... 49 7.4 Recommended Operating Conditions ......................49 Supply Voltages.............................................................. 50 7.5 Power Consumption Summary................................. 51 7.6 Electrical Characteristics ..........................................55 7.7 Thermal Resistance Characteristics for PN Package...................................................................... 56 7.8 Thermal Resistance Characteristics for PM Package...................................................................... 56 7.9 Thermal Resistance Characteristics for PT Package...................................................................... 57 7.10 Thermal Design Considerations..............................57 7.11 System.................................................................... 58 7.12 Analog Peripherals..................................................86 7.13 Control Peripherals............................................... 106 7.14 Communications Peripherals................................ 121 Copyright © 2020 Texas Instruments Incorporated 8 Detailed Description....................................................153 8.1 Overview................................................................. 153 8.2 Functional Block Diagram....................................... 154 8.3 Memory................................................................... 155 8.4 Identification............................................................160 8.5 Bus Architecture – Peripheral Connectivity.............161 8.6 C28x Processor...................................................... 162 8.7 Embedded Real-Time Analysis and Diagnostic (ERAD)...................................................................... 164 8.8 Background CRC-32 (BGCRC).............................. 164 8.9 Direct Memory Access (DMA).................................165 8.10 Device Boot Modes...............................................166 8.11 Dual Code Security Module.................................. 172 8.12 Watchdog.............................................................. 173 8.13 C28x Timers..........................................................174 8.14 Dual-Clock Comparator (DCC)............................. 174 8.15 Configurable Logic Block (CLB)............................176 9 Applications, Implementation, and Layout............... 178 9.1 TI Reference Design............................................... 178 10 Device and Documentation Support........................179 10.1 Getting Started and Next Steps............................ 179 10.2 Device and Development Support Tool Nomenclature............................................................ 179 10.3 Markings............................................................... 180 10.4 Tools and Software............................................... 182 10.5 Documentation Support........................................ 183 10.6 Support Resources............................................... 184 10.7 Trademarks........................................................... 185 10.8 Electrostatic Discharge Caution............................185 10.9 Glossary................................................................185 11 Mechanical, Packaging, and Orderable Information.................................................................. 186 11.1 Packaging Information.......................................... 186 Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 5 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 4 Revision History Changes from October 4, 2020 to December 31, 2020 (from Revision A (October 2020) to Revision B (December 2020)) Page • Global: Added TMS320F280025-Q1, TMS320F280025C-Q1, TMS320F280023-Q1, and TMS320F280021Q1....................................................................................................................................................................... 1 • Table 5-1 (Device Comparison): Added TMS320F280025-Q1, TMS320F280025C-Q1, TMS320F280023-Q1, and TMS320F280021-Q1. Updated table...........................................................................................................1 • Table 6-1 (Pin Attributes): Updated muxed signal names of A7. Updated DESCRIPTION of VDD: Changed recommended total capacitance from 22 µF to 10 µF.......................................................................................11 • Removed Digital Signals by GPIO section (Section 6.3.2 in SPRSP45A)........................................................29 • Section 6.3.2 (Digital Signals): Added section..................................................................................................29 • Table 6-4 (Power and Ground): Updated DESCRIPTION of VDD: Changed recommended total capacitance from 22 µF to 10 µF...........................................................................................................................................29 • Section 7.2 (ESD Ratings – Commercial): Updated device numbers...............................................................48 • Section 7.3 (ESD Ratings – Automotive): Updated device numbers. Added data for 64-pin PM package...... 49 • Section 7.5.1 (System Current Consumption): Updated table..........................................................................51 • Section 7.11.1.1 (Internal 1.2-V LDO Voltage Regulator (VREG)): Updated Configuration 1.......................... 58 • Section 7.11.3.5.1 (INTOSC Characteristics): Updated table........................................................................... 69 • Table 7-5 (Flash Parameters): Changed "Nwec Write/Erase Cycles" to "Nwec Write/Erase Cycles per sector". Added "Nwec Write/Erase Cycles for entire Flash (combined all sectors)"........................................................70 • Section 7.14.8 (Host Interface Controller (HIC)): Updated "The HIC module allows ..." paragraph............... 149 • Figure 7-70 (HIC Block Diagram): Removed "Bus Master Interface" label.....................................................149 • Figure 10-1 (Device Nomenclature): Updated figure...................................................................................... 179 • Section 10.4 (Tools and Software): Added LAUNCHXL-F280025C to Development Tools section............. 182 6 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Changes from March 17, 2020 to October 3, 2020 (from Revision * (March 2020) to Revision A (October 2020)) Page • Global: Updated the numbering format for tables, figures, and cross-references throughout the document.... 1 • Global: This document is now PRODUCTION DATA........................................................................................ 1 • Global: Removed TMS320F280024, TMS320F280024C, and TMS320F280022............................................. 1 • Global: Removed 64 QFP-Q data......................................................................................................................1 • Section 1 (Features): Updated Serial Communication Interface (SCI) feature. Updated Local Interconnect Network (LIN) feature......................................................................................................................................... 1 • Table 5-1 (Device Comparison): Updated table..................................................................................................1 • Section 2 (Applications): Updated section.......................................................................................................... 2 • Section 3 (Description): Updated section........................................................................................................... 2 • Device Information: Updated table..................................................................................................................... 2 • Figure 3-1 (Functional Block Diagram): Updated figure..................................................................................... 4 • Table 6-1 (Pin Attributes): Updated table.......................................................................................................... 11 • Figure 6-2 (64-Pin PM Low-Profile Quad Flatpack (Top View)): Updated figure...............................................11 • Removed "64-Pin PM Low-Profile Quad Flatpack – Q-Temperature (Top View)" figure...................................11 • Removed Digital Signals section (Section 4.3.2 in SPRSP45).........................................................................29 • Digital Signals by GPIO: Added section........................................................................................................... 29 • Table 6-4 (Power and Ground): Updated DESCRIPTION of VDD and VDDIO................................................ 29 • Section 6.4.1.1 (GPIO Muxed Pins Table): Added Note about AIO pins.......................................................... 40 • Table 6-6 (GPIO Muxed Pins): Updated table.................................................................................................. 40 • Section 6.4.4 (GPIO Output X-BAR, CLB X-BAR, CLB Output X-BAR, and ePWM X-BAR): Changed section title from "GPIO Output X-BAR and ePWM X-BAR" to "GPIO Output X-BAR, CLB X-BAR, CLB Output XBAR, and ePWM X-BAR". Updated section..................................................................................................... 44 • Figure 6-5 (Output X-BAR, CLB X-BAR, CLB Output X-BAR, and ePWM X-BAR Sources): Replaced "Output X-BAR and ePWM X-BAR Sources" figure with "Output X-BAR, CLB X-BAR, CLB Output X-BAR, and ePWM X-BAR Sources" figure..................................................................................................................................... 44 • Table 6-9 (Connections for Unused Pins): Added "Analog input pins" in ANALOG section............................. 47 • Section 7 (Specifications): Updated section and tables....................................................................................48 • Section 7.1 (Absolute Maximum Ratings): Updated table................................................................................ 48 • Section 7.4 (Recommended Operating Conditions): Updated SRSUPPLY values and unit................................ 48 • Section 7.6 (Electrical Characteristics): Updated ROH and ROL values............................................................ 48 • Section 7.3 (ESD Ratings – Automotive): Removed F280024, F280024C, and F280022 data....................... 49 • Section 7.5.3 (Current Consumption Graphs): Added section..........................................................................52 • Section 7.5.4 (Reducing Current Consumption): Updated section................................................................... 54 • Section 7.5.4.1 (Typical Current Reduction per Disabled Peripheral): Updated table...................................... 54 • Section 7.7 (Thermal Resistance Characteristics for PN Package): Added section.........................................56 • Section 7.8 (Thermal Resistance Characteristics for PM Package): Added section........................................ 56 • Section 7.9 (Thermal Resistance Characteristics for PT Package): Added section......................................... 57 • Section 7.11.2.2.1 (Reset (XRSn) Timing Requirements): Updated tw(RSL2).................................................... 60 • Section 7.11.2.2.2 (Reset (XRSn) Switching Characteristics): Added tboot-flash................................................ 60 • Figure 7-8 (Power-on Reset): Updated figure...................................................................................................60 • Section 7.11.3.2.1.6 (Internal Clock Frequencies): Updated MAX f(VCOCLK).....................................................65 • Section 7.11.3.5 (Internal Oscillators): Updated section...................................................................................69 • Section 7.11.3.5.1 (INTOSC Characteristics): Updated fINTOSC MIN values and MAX values......................... 69 • Section 7.11.4 (Flash Parameters): Updated section....................................................................................... 70 • Table 7-4 (Minimum Required Flash Wait States with Different Clock Sources and Frequencies): Updated table and footnotes........................................................................................................................................... 70 • Table 7-5 (Flash Parameters): Added "The on-chip flash memory is in an erased state ..." footnote.............. 70 Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 7 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 8 Section 7.11.5 (Emulation/JTAG): Updated link of Hardware Breakpoints and Watchpoints for C28x in CCS.... 72 Figure 7-31 (Analog Group Connections): Added figure.................................................................................. 86 Figure 7-35 (ADC Timings): Updated tINT......................................................................................................... 98 Section 7.14.2.1.1 (I2C Timing Requirements): Updated table...................................................................... 125 Section 7.14.2.1.2 (I2C Switching Characteristics): Updated table................................................................ 125 Figure 7-54 (I2C Timing Diagram): Added figure............................................................................................125 Figure 7-56 (SCI Block Diagram): Updated figure.......................................................................................... 130 Figure 7-59 (SPI Master Mode External Timing (Clock Phase = 1)): Updated parameter 24.........................134 Section 7.14.5.2.1 (SPI Slave Mode Timing Requirements): Updated MIN value of tsu(STE)S........................ 138 Section 7.14.8 (Host Interface Controller (HIC)): Updated list of features......................................................149 Figure 7-70 (HIC Block Diagram): Updated figure..........................................................................................149 Section 7.14.8.1.1 (HIC Timing Requirements): Updated table......................................................................150 Section 7.14.8.1.2 (HIC Switching Characteristics): Updated table................................................................150 Figure 7-71 (Read/Write Operation With nOE and nWE Pins): Added figure.................................................151 Figure 7-72 (Read/Write Operation With RnW Pin): Added figure..................................................................151 Figure 8-1 (Functional Block Diagram): Added "Secure Memories shown in Red" legend box..................... 154 Table 8-2 (Addresses of Flash Sectors): Updated table................................................................................. 156 Table 8-4 (Device Identification Registers): Removed PARTIDH for TMS320F280024, TMS320F280024C, and TMS320F280022..................................................................................................................................... 160 Table 8-4: Added REVID for Revision A silicon.............................................................................................. 160 Table 8-4: Updated ADDRESS of UID_UNIQUE............................................................................................160 Section 8.10 (Device Boot Modes): Updated section..................................................................................... 166 Section 8.10.1 (Device Boot Configurations): Added Note about CAN boot mode turning on the XTAL....... 166 Figure 8-3 (Windowed Watchdog): Removed SCSR.WDOVERRIDE............................................................ 173 Section 9.1 (TI Reference Design): Updated section..................................................................................... 178 Removed Related Links section (Section 10.5 in SPRSP45).........................................................................179 Section 10.1 (Getting Started and Next Steps): Added section......................................................................179 Section 10.2 (Device and Development Support Tool Nomenclature): Updated section................................179 Figure 10-1 (Device Nomenclature): Removed 280024, 280024C, and 280022 from DEVICE..................... 179 Figure 10-2 (Package Symbolization for PM and PN Packages): Updated figure..........................................180 Figure 10-3 (Package Symbolization for PT Package): Updated figure......................................................... 180 Table 10-1 (Revision Identification): Added data for Revision A silicon..........................................................180 Section 10.4 (Tools and Software): Updated section......................................................................................182 Section 10.5 (Documentation Support): Updated section...............................................................................183 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 5 Device Comparison Table 5-1. Device Comparison FEATURE F280025 F280025-Q1 F280025C F280025C-Q1 (1) F280023 F280023-Q1 F280023C F280021 F280021-Q1 PROCESSOR AND ACCELERATORS Frequency (MHz) C28x 100 FPU32 Yes (with new instructions for Fast Integer Division) VCRC Yes TMU – Type 1 Yes (with new instructions supporting NLPID) Fast Integer Division Yes DMA – Type 0 Yes MEMORY Flash 128KB (64KW) Dedicated and Local Shared RAM 32KB (16KW) 20KB (10KW) Global Shared RAM RAM 64KB (32KW) 4KB (2KW) TOTAL RAM 24KB (12KW) Code security for on-chip flash and RAM Yes SYSTEM Configurable Logic Block (CLB) (2) (F280025C-2 tiles) (F280023C-2 tiles) 32-bit CPU timers 3 Watchdog-timer 1 Nonmaskable Interrupt Watchdog (NMIWD) timers 1 Crystal oscillator/External clock input 1 0-pin internal oscillator 2 80-pin PN GPIO pins 39 64-pin PM 26 48-pin PT 16 4 (When cJTAG is used, TDI and TDO can be GPIO; When INTOSC is used as clock source, X1 and X2 can be GPIO) Additional GPIO 80-pin PN AIO inputs - 16 64-pin PM 16 48-pin PT 14 External interrupts 5 ANALOG PERIPHERALS Number of ADCs ADC 12-bit 2 MSPS Conversion-time (ns) ADC channels (single-ended) 3.45 (3) 290 80-pin PN 16 64-pin PM 16 48-pin PT 14 Temperature sensor 1 CMPSS (each has two comparators and two internal DACs) 4 Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 9 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 5-1. Device Comparison (continued) FEATURE (1) F280025 F280025-Q1 F280025C F280025C-Q1 F280023 F280023-Q1 F280023C F280021 F280021-Q1 (4) CONTROL PERIPHERALS eCAP/HRCAP modules – Type 1 3 (1 with HRCAP capability) ePWM/HRPWM channels – Type 4 14 (8 with HRPWM capability) eQEP modules – Type 2 2 COMMUNICATION PERIPHERALS (4) CAN – Type 0 1 I2C – Type 1 2 SCI – Type 0 (UART-Compatible) 1 SPI – Type 2 2 LIN – Type 1 (UART-Compatible) 2 PMBus – Type 0 1 FSI – Type 1 1 (1 RX and 1 TX) PACKAGE, TEMPERATURE, AND QUALIFICATION OPTIONS 80-pin PN S: –40°C to 125°C (TJ) 64-pin PM – F280025 F280025C F280023 F280023C 48-pin PT F280021 80-pin PN (5) Q: –40°C to 125°C (TA) 64-pin PM – F280025-Q1 F280025C-Q1 F280023-Q1 48-pin PT (1) (2) (3) (4) (5) – – F280021-Q1 A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor differences between devices that do not affect the basic functionality of the module. C devices include additional Motor Control libraries in ROM. Contact TI for more information. Time between start of sample-and-hold window to start of sample-and-hold window of the next conversion. For devices that are available in more than one package, the peripheral count listed in the smaller package is reduced because the smaller package has less device pins available. The number of peripherals internally present on the device is not reduced co The letter Q refers to AEC Q100 qualification for automotive applications. 5.1 Related Products TMS320F2803x Real-Time Microcontrollers The F2803x series increases the pin-count and memory size options. The F2803x series also introduces the parallel control law accelerator (CLA) option. TMS320F2807x Real-Time Microcontrollers The F2807x series offers the most performance, largest pin counts, flash memory sizes, and peripheral options. The F2807x series includes the latest generation of accelerators, ePWM peripherals, and analog technology. TMS320F28004x Real-Time Microcontrollers The F28004x series is a reduced version of the F2807x series with the latest generational enhancements. TMS320F2838x Real-Time Microcontrollers The F2838x series offers more performance, larger pin counts, flash memory sizes, peripheral and wide variety of connectivity options. The F2838x series includes the latest generation of accelerators, ePWM peripherals, and analog technology. Configurable logic block (CLB) versions are available. 10 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 6 Terminal Configuration and Functions 6.1 Pin Diagrams GPIO3 GPIO4 GPIO8 GPIO42 GPIO39 VSS GPIO43 VDD VDDIO GPIO19,X1 GPIO18,X2 GPIO32 GPIO35/TDI TMS GPIO37/TDO TCK GPIO27 GPIO26 GPIO25 GPIO24 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 Figure 6-1 shows the pin assignments on the 80-pin PN low-profile quad flatpack (Q temperature). Figure 6-2 shows the pin assignments on the 64-pin PM low-profile quad flatpack. Figure 6-3 shows the pin assignments on the 48-Pin PT low-profile quad flatpack. GPIO2 61 40 GPIO17 GPIO1 62 39 GPIO16 GPIO0 63 38 GPIO33 GPIO40 64 37 GPIO11 GPIO23 65 36 GPIO12 GPIO41 66 35 GPIO13 GPIO22 67 34 FLT1 GPIO7 68 33 FLT2 GPIO44 69 32 VDDIO VSS 70 31 VDD VDD 71 30 VSS VDDIO 72 29 A10,C10 GPIO45 73 28 A9,C8 GPIO5 74 27 A4,C14 20 VREFHI 19 A0,C15 A1 A5,C2 A11,C0 A14,C4 A15,C7 A2,C9 A3,C5 C6 A6 VSS VDD VDDIO GPIO46 XRSn GPIO28 GPIO29 GPIO31 GPIO30 18 VREFLO 17 A12,C1 21 16 22 80 15 79 GPIO6 14 GPIO14 13 A7,C3 12 23 11 78 10 GPIO15 9 A8,C11 8 24 7 77 6 GPIO34 5 VSSA 4 VDDA 25 3 26 76 2 75 1 GPIO9 GPIO10 Not to scale A. Only the GPIO function is shown on GPIO terminals. See Table 6-1 for the complete, muxed signal name. Figure 6-1. 80-Pin PN Low-Profile Quad Flatpack (Top View) Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 11 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com GPIO4 GPIO8 GPIO39 VSS VDD VDDIO GPIO19_X1 GPIO18_X2 GPIO32 GPIO35/TDI TMS GPIO37/TDO TCK GPIO24 GPIO17 GPIO16 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 GPIO40 53 28 VDDIO GPIO23 54 27 VDD GPIO41 55 26 VSS GPIO22 56 25 A10,C10 GPIO7 57 24 A9,C8 VSS 58 23 A4,C14 VDD 59 22 VDDA VDDIO 60 21 VSSA GPIO5 61 20 A8,C11 GPIO9 62 19 A7,C3 GPIO10 63 18 A12,C1 GPIO6 64 17 VREFLO VREFHI A0,C15 A1 A5,C2 A11,C0 A14,C4 A15,C7 A2,C9 A3,C5,VDAC C6 A6 VSS VDD XRSn GPIO28 GPIO29 16 GPIO13 15 29 14 52 13 GPIO0 12 GPIO12 11 30 10 51 9 GPIO1 8 GPIO11 7 31 6 50 5 GPIO2 4 GPIO33 3 32 2 49 1 GPIO3 Not to scale A. Only the GPIO function is shown on GPIO terminals. See Table 6-1 for the complete, muxed signal name. Figure 6-2. 64-Pin PM Low-Profile Quad Flatpack (Top View) 12 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com VDD VDDIO GPIO19_X1 GPIO18_X2 GPIO32 GPIO35/TDI TMS GPIO37/TDO TCK GPIO24 GPIO16 GPIO33 36 35 34 33 32 31 30 29 28 27 26 25 SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 GPIO2 40 21 A10,C10 GPIO1 41 20 A9,C8 GPIO0 42 19 A4,C14 GPIO7 43 18 VDDA VSS 44 17 VSSA VDD 45 16 A8,C11 VDDIO 46 15 A7,C3 GPIO5 47 14 A12,C1 GPIO6 48 13 VREFLO VREFHI A0,C15 A1 A5,C2 A11,C0 A15,C7 A2,C9 A3,C5,VDAC A6,C6 XRSn GPIO28 GPIO29 12 VSS 11 22 10 39 9 GPIO3 8 GPIO13 7 23 6 38 5 GPIO4 4 GPIO12 3 24 2 37 1 VSS Not to scale A. Only the GPIO function is shown on GPIO terminals. See Table 6-1 for the complete, muxed signal name. Figure 6-3. 48-Pin PT Low-Profile Quad Flatpack (Top View) Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 13 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 6.2 Pin Attributes Table 6-1. Pin Attributes SIGNAL NAME MUX POSITION 80 QFP 64 QFP 48 QFP PIN TYPE DESCRIPTION ANALOG A0 I ADC-A Input 0 C15 I ADC-C Input 15 CMP3_HP2 I CMPSS-3 High Comparator Positive Input 2 19 CMP3_LP2 AIO231 15 11 I CMPSS-3 Low Comparator Positive Input 2 0, 4, 8, 12 I Analog Pin Used For Digital Input 231 15 I HIC Base Address Range Select 1 HIC_BASESEL1 A1 I Analog Input CMP1_HP4 I CMPSS-1 High Comparator Positive Input 4 CMP1_LP4 AIO232 I CMPSS-1 Low Comparator Positive Input 4 0, 4, 8, 12 I Analog Pin Used For Digital Input 232 15 I HIC Base Address Range Select 0 I ADC-A Input 10 18 HIC_BASESEL0 14 10 A10 C10 I ADC-C Input 10 CMP2_HP3 I CMPSS-2 High Comparator Positive Input 3 I CMPSS-2 High Comparator Negative Input 0 I CMPSS-2 Low Comparator Positive Input 3 I CMPSS-2 Low Comparator Negative Input 0 0, 4, 8, 12 I Analog Pin Used For Digital Input 230 15 I HIC Base Address Range Select 2 I ADC-A Input 11 CMP2_HN0 29 CMP2_LP3 25 21 CMP2_LN0 AIO230 HIC_BASESEL2 A11 C0 I ADC-C Input 0 CMP1_HP1 I CMPSS-1 High Comparator Positive Input 1 I CMPSS-1 High Comparator Negative Input 1 I CMPSS-1 Low Comparator Positive Input 1 I CMPSS-1 Low Comparator Negative Input 1 CMP1_HN1 16 CMP1_LP1 12 8 CMP1_LN1 AIO237 0, 4, 8, 12 I Analog Pin Used For Digital Input 237 HIC_A6 15 I HIC Address 6 A12 I ADC-A Input 12 C1 I ADC-C Input 1 CMP2_HP1 I CMPSS-2 High Comparator Positive Input 1 CMP4_HP2 I CMPSS-4 High Comparator Positive Input 2 CMP2_HN1 I CMPSS-2 High Comparator Negative Input 1 22 CMP2_LP1 18 14 I CMPSS-2 Low Comparator Positive Input 1 CMP4_LP2 I CMPSS-4 Low Comparator Positive Input 2 CMP2_LN1 I CMPSS-2 Low Comparator Negative Input 1 0, 4, 8, 12 I Analog Pin Used For Digital Input 238 15 I HIC Chip Select AIO238 HIC_NCS A14 I ADC-A Input 14 C4 I ADC-C Input 4 I CMPSS-3 High Comparator Positive Input 4 I CMPSS-3 Low Comparator Positive Input 4 CMP3_HP4 15 CMP3_LP4 11 AIO239 0, 4, 8, 12 I Analog Pin Used For Digital Input 239 HIC_A5 15 I HIC Address 5 14 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 6-1. Pin Attributes (continued) SIGNAL NAME MUX POSITION 80 QFP 64 QFP 48 QFP PIN TYPE DESCRIPTION A15 I ADC-A Input 15 C7 I ADC-C Input 7 CMP1_HP3 I CMPSS-1 High Comparator Positive Input 3 CMP1_HN0 I CMPSS-1 High Comparator Negative Input 0 I CMPSS-1 Low Comparator Positive Input 3 14 CMP1_LP3 10 7 CMP1_LN0 I CMPSS-1 Low Comparator Negative Input 0 AIO233 0, 4, 8, 12 I Analog Pin Used For Digital Input 233 HIC_A4 15 I HIC Address 4 A2 I ADC-A Input 2 C9 I ADC-C Input 9 CMP1_HP0 13 CMP1_LP0 9 6 I CMPSS-1 High Comparator Positive Input 0 I CMPSS-1 Low Comparator Positive Input 0 AIO224 0, 4, 8, 12 I Analog Pin Used For Digital Input 224 HIC_A3 15 I HIC Address 3 A3 I ADC-A Input 3 C5 I ADC-C Input 5 I Optional external reference voltage for on-chip CMPSS DACs. There is an internal capacitor to VSSA on this pin whether used for ADC input or CMPSS DAC reference which cannot be disabled. If this pin is being used as a reference for the CMPSS DACs, place at least a 1-µF capacitor on this pin. CMP3_HP3 I CMPSS-3 High Comparator Positive Input 3 CMP3_HN0 I CMPSS-3 High Comparator Negative Input 0 CMP3_LP3 I CMPSS-3 Low Comparator Positive Input 3 CMP3_LN0 I CMPSS-3 Low Comparator Negative Input 0 VDAC 12 8 5 AIO242 0, 4, 8, 12 I Analog Pin Used For Digital Input 242 HIC_A2 15 I HIC Address 2 A4 I ADC-A Input 4 C14 I ADC-C Input 14 CMP2_HP0 I CMPSS-2 High Comparator Positive Input 0 CMP4_HP3 I CMPSS-4 High Comparator Positive Input 3 CMP4_HN0 I CMPSS-4 High Comparator Negative Input 0 I CMPSS-2 Low Comparator Positive Input 0 CMP4_LP3 I CMPSS-4 Low Comparator Positive Input 3 CMP4_LN0 I CMPSS-4 Low Comparator Negative Input 0 0, 4, 8, 12 I Analog Pin Used For Digital Input 225 15 27 CMP2_LP0 AIO225 HIC_NWE 23 19 I HIC Data Write Enable A5 I ADC-A Input 5 C2 I ADC-C Input 2 CMP3_HP1 I CMPSS-3 High Comparator Positive Input 1 CMP3_HN1 17 CMP3_LP1 CMP3_LN1 13 9 I CMPSS-3 High Comparator Negative Input 1 I CMPSS-3 Low Comparator Positive Input 1 I CMPSS-3 Low Comparator Negative Input 1 AIO244 0, 4, 8, 12 I Analog Pin Used For Digital Input 244 HIC_A7 15 I HIC Address 7 Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 15 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 6-1. Pin Attributes (continued) SIGNAL NAME MUX POSITION 80 QFP 64 QFP 48 QFP PIN TYPE DESCRIPTION A6 I Analog Input CMP1_HP2 I CMPSS-1 High Comparator Positive Input 2 10 CMP1_LP2 6 4 I CMPSS-1 Low Comparator Positive Input 2 AIO228 0, 4, 8, 12 I Analog Pin Used For Digital Input 228 HIC_A0 15 I HIC Address 0 A7 I ADC-A Input 7 C3 I ADC-C Input 3 CMP4_HP1 I CMPSS-4 High Comparator Positive Input 1 CMP4_HN1 I CMPSS-4 High Comparator Negative Input 1 I CMPSS-4 Low Comparator Positive Input 1 23 CMP4_LP1 19 15 CMP4_LN1 AIO245 I CMPSS-4 Low Comparator Negative Input 1 0, 4, 8, 12 I Analog Pin Used For Digital Input 245 15 O HIC Output Enable I ADC-A Input 8 HIC_NOE A8 C11 I ADC-C Input 11 CMP2_HP4 I CMPSS-2 High Comparator Positive Input 4 I CMPSS-4 High Comparator Positive Input 4 I CMPSS-2 Low Comparator Positive Input 4 I CMPSS-4 Low Comparator Positive Input 4 0, 4, 8, 12 I Analog Pin Used For Digital Input 241 15 I HIC Byte Enable 1 A9 I ADC-A Input 9 C8 I ADC-C Input 8 CMP2_HP2 I CMPSS-2 High Comparator Positive Input 2 I CMPSS-4 High Comparator Positive Input 0 I CMPSS-2 Low Comparator Positive Input 2 I CMPSS-4 Low Comparator Positive Input 0 0, 4, 8, 12 I Analog Pin Used For Digital Input 227 15 I HIC Byte Enable 0 CMP4_HP4 24 CMP2_LP4 20 16 CMP4_LP4 AIO241 HIC_NBE1 CMP4_HP0 28 CMP2_LP2 24 20 CMP4_LP0 AIO227 HIC_NBE0 C6 I Analog Input CMP3_HP0 I CMPSS-3 High Comparator Positive Input 0 CMP3_LP0 I CMPSS-3 Low Comparator Positive Input 0 AIO226 0, 4, 8, 12 I Analog Pin Used For Digital Input 226 HIC_A1 15 I HIC Address 1 11 7 4 VREFHI 20 16 12 I ADC- High Reference. In external reference mode, externally drive the high reference voltage onto this pin. In internal reference mode, a voltage is driven onto this pin by the device. In either mode, place at least a 2.2-µF capacitor on this pin. This capacitor should be placed as close to the device as possible between the VREFHI and VREFLO pins. VREFLO 21 17 13 I ADC- Low Reference 16 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 6-1. Pin Attributes (continued) SIGNAL NAME MUX POSITION 80 QFP 64 QFP 48 QFP PIN TYPE DESCRIPTION GPIO GPIO0 0, 4, 8, 12 I/O General-Purpose Input Output 0 ePWM-1 Output A EPWM1_A 1 O I2CA_SDA 6 I/OD I2C-A Open-Drain Bidirectional Data SPIA_STE 7 I/O SPI-A Slave Transmit Enable (STE) 63 52 42 FSIRXA_CLK 9 I FSIRX-A Input Clock CLB_OUTPUTXBAR8 11 O CLB Output X-BAR Output 8 15 I HIC Base Address Range Select 1 0, 4, 8, 12 I/O General-Purpose Input Output 1 ePWM-1 Output B HIC_BASESEL1 GPIO1 EPWM1_B 1 O I2CA_SCL 6 I/OD SPIA_SOMI 7 I/O SPI-A Slave Out, Master In (SOMI) 62 51 41 I2C-A Open-Drain Bidirectional Clock CLB_OUTPUTXBAR7 11 O CLB Output X-BAR Output 7 HIC_A2 13 I HIC Address 2 FSITXA_TDM_D1 14 I FSITX-A Time Division Multiplexed Additional Data Input HIC_D10 15 I/O GPIO2 HIC Data 10 0, 4, 8, 12 I/O General-Purpose Input Output 2 EPWM2_A 1 O ePWM-2 Output A OUTPUTXBAR1 5 O Output X-BAR Output 1 PMBUSA_SDA 6 I/OD SPIA_SIMO 7 I/O SPI-A Slave In, Master Out (SIMO) PMBus-A Open-Drain Bidirectional Data SCIA_TX 9 O SCI-A Transmit Data FSIRXA_D1 10 I FSIRX-A Data Input 1 I2CB_SDA 11 I/OD HIC_A1 13 I HIC Address 1 CANA_TX 14 O CAN-A Transmit HIC_D9 15 I/O HIC Data 9 GPIO3 0, 4, 8, 12 I/O General-Purpose Input Output 3 EPWM2_B 61 50 40 I2C-B Open-Drain Bidirectional Data 1 O ePWM-2 Output B 2, 5 O Output X-BAR Output 2 PMBUSA_SCL 6 I/OD SPIA_CLK 7 I/O SCIA_RX 9 FSIRXA_D0 10 I I2CB_SCL 11 I/OD HIC_NOE 13 O HIC Output Enable CANA_RX 14 I CAN-A Receive HIC_D4 15 I/O OUTPUTXBAR2 Copyright © 2020 Texas Instruments Incorporated 60 49 39 I PMBus-A Open-Drain Bidirectional Clock SPI-A Clock SCI-A Receive Data FSIRX-A Data Input 0 I2C-B Open-Drain Bidirectional Clock HIC Data 4 Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 17 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 6-1. Pin Attributes (continued) SIGNAL NAME GPIO4 MUX POSITION 80 QFP 64 QFP 48 QFP PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 4 EPWM3_A 1 O ePWM-3 Output A OUTPUTXBAR3 5 O Output X-BAR Output 3 CANA_TX 6 O CAN-A Transmit SPIB_CLK 7 I/O SPI-B Clock I/O eQEP-2 Strobe 59 48 38 EQEP2_STROBE 9 FSIRXA_CLK 10 I FSIRX-A Input Clock CLB_OUTPUTXBAR6 11 O CLB Output X-BAR Output 6 HIC_BASESEL2 13 I HIC Base Address Range Select 2 HIC_NWE 15 I HIC Data Write Enable 0, 4, 8, 12 I/O General-Purpose Input Output 5 EPWM3_B GPIO5 1 O ePWM-3 Output B OUTPUTXBAR3 3 O Output X-BAR Output 3 CANA_RX 6 I CAN-A Receive SPIA_STE 7 I/O SPI-A Slave Transmit Enable (STE) O FSITX-A Data Output 1 O CLB Output X-BAR Output 5 HIC Address 7 74 61 47 FSITXA_D1 9 CLB_OUTPUTXBAR5 10 HIC_A7 13 I HIC_D4 14 I/O HIC Data 4 HIC_D15 15 I/O HIC Data 15 0, 4, 8, 12 I/O General-Purpose Input Output 6 EPWM4_A GPIO6 1 O ePWM-4 Output A OUTPUTXBAR4 2 O Output X-BAR Output 4 SYNCOUT 3 O External ePWM Synchronization Pulse EQEP1_A 5 I eQEP-1 Input A SPIB_SOMI 7 FSITXA_D0 80 64 48 I/O SPI-B Slave Out, Master In (SOMI) 9 O FSITX-A Data Output 0 FSITXA_D1 11 O FSITX-A Data Output 1 HIC_NBE1 13 I HIC Byte Enable 1 CLB_OUTPUTXBAR8 14 O CLB Output X-BAR Output 8 HIC_D14 15 I/O HIC Data 14 0, 4, 8, 12 I/O General-Purpose Input Output 7 EPWM4_B 1 O ePWM-4 Output B OUTPUTXBAR5 3 O Output X-BAR Output 5 EQEP1_B 5 I eQEP-1 Input B SPIB_SIMO 7 FSITXA_CLK GPIO7 68 57 43 I/O SPI-B Slave In, Master Out (SIMO) 9 O FSITX-A Output Clock CLB_OUTPUTXBAR2 10 O CLB Output X-BAR Output 2 HIC_A6 13 I HIC Address 6 HIC_D14 15 I/O 18 Submit Document Feedback HIC Data 14 Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 6-1. Pin Attributes (continued) SIGNAL NAME GPIO8 MUX POSITION 80 QFP 64 QFP 48 QFP PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 8 EPWM5_A 1 O ePWM-5 Output A ADCSOCAO 3 O ADC Start of Conversion A for External ADC EQEP1_STROBE 5 I/O eQEP-1 Strobe SCIA_TX 6 O SCI-A Transmit Data SPIA_SIMO 7 I/O SPI-A Slave In, Master Out (SIMO) I2CA_SCL 9 FSITXA_D1 10 O FSITX-A Data Output 1 CLB_OUTPUTXBAR5 11 O CLB Output X-BAR Output 5 HIC_A0 13 I HIC Address 0 58 47 I/OD FSITXA_TDM_CLK 14 I HIC_D8 15 I/O GPIO9 I2C-A Open-Drain Bidirectional Clock FSITX-A Time Division Multiplexed Clock Input HIC Data 8 0, 4, 8, 12 I/O General-Purpose Input Output 9 EPWM5_B 1 O ePWM-5 Output B OUTPUTXBAR6 3 O Output X-BAR Output 6 EQEP1_INDEX 5 I/O eQEP-1 Index SCIA_RX 6 I SCI-A Receive Data SPIA_CLK 7 I/O SPI-A Clock FSITXA_D0 10 O FSITX-A Data Output 0 LINB_RX 11 I LIN-B Receive HIC_BASESEL0 13 I HIC Base Address Range Select 0 I2CB_SCL 14 I/OD HIC_NRDY 75 62 I2C-B Open-Drain Bidirectional Clock 15 O HIC Ready 0, 4, 8, 12 I/O General-Purpose Input Output 10 EPWM6_A 1 O ePWM-6 Output A ADCSOCBO 3 O ADC Start of Conversion B for External ADC EQEP1_A 5 I eQEP-1 Input A SPIA_SOMI 7 I2CA_SDA 9 FSITXA_CLK 10 O FSITX-A Output Clock LINB_TX 11 O LIN-B Transmit HIC_NWE 13 I HIC Data Write Enable FSITX-A Time Division Multiplexed Data Input GPIO10 FSITXA_TDM_D0 76 63 I/O I/OD SPI-A Slave Out, Master In (SOMI) I2C-A Open-Drain Bidirectional Data 14 I 0, 4, 8, 12 I/O General-Purpose Input Output 11 EPWM6_B 1 O ePWM-6 Output B OUTPUTXBAR7 3 O Output X-BAR Output 7 EQEP1_B 5 I eQEP-1 Input B SPIA_STE 7 FSIRXA_D1 9 LINB_RX EQEP2_A GPIO11 I/O 37 31 SPI-A Slave Transmit Enable (STE) I FSIRX-A Data Input 1 10 I LIN-B Receive 11 I eQEP-2 Input A SPIA_SIMO 13 I/O SPI-A Slave In, Master Out (SIMO) HIC_D6 14 I/O HIC Data 6 HIC_NBE0 15 I Copyright © 2020 Texas Instruments Incorporated HIC Byte Enable 0 Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 19 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 6-1. Pin Attributes (continued) SIGNAL NAME GPIO12 MUX POSITION 80 QFP 64 QFP 48 QFP PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 12 EPWM7_A 1 O ePWM-7 Output A EQEP1_STROBE 5 I/O eQEP-1 Strobe PMBUSA_CTL 7 I/O PMBus-A Control Signal - Slave Input/Master Output FSIRXA_D0 9 I FSIRX-A Data Input 0 LINB_TX 10 O LIN-B Transmit SPIA_CLK 11 I/O SPI-A Clock CANA_RX 13 I HIC_D13 14 I/O HIC Data 13 HIC_INT 15 O HIC Device Interrupt GPIO13 36 30 24 CAN-A Receive 0, 4, 8, 12 I/O General-Purpose Input Output 13 EPWM7_B 1 O ePWM-7 Output B EQEP1_INDEX 5 I/O eQEP-1 Index PMBUSA_ALERT 7 I/OD FSIRXA_CLK 9 I FSIRX-A Input Clock LINB_RX 10 I LIN-B Receive SPIA_SOMI 11 CANA_TX HIC_D11 35 29 23 PMBus-A Open-Drain Bidirectional Alert I/O SPI-A Slave Out, Master In (SOMI) 13 O CAN-A Transmit 14 I/O HIC Data 11 HIC_D5 15 I/O HIC Data 5 GPIO14 General-Purpose Input Output 14 0, 4, 8, 12 I/O I2CB_SDA 5 I/OD OUTPUTXBAR3 6 O PMBUSA_SDA 7 I/OD SPIB_CLK 9 EQEP2_A 10 LINB_TX 79 I/O I2C-B Open-Drain Bidirectional Data Output X-BAR Output 3 PMBus-A Open-Drain Bidirectional Data SPI-B Clock I eQEP-2 Input A 11 O LIN-B Transmit EPWM3_A 13 O ePWM-3 Output A CLB_OUTPUTXBAR7 14 O CLB Output X-BAR Output 7 HIC_D15 15 I/O HIC Data 15 GPIO15 0, 4, 8, 12 I/O General-Purpose Input Output 15 I2CB_SCL 5 I/OD OUTPUTXBAR4 6 O PMBUSA_SCL 7 I/OD SPIB_STE 9 EQEP2_B 10 LINB_RX 78 I/O I2C-B Open-Drain Bidirectional Clock Output X-BAR Output 4 PMBus-A Open-Drain Bidirectional Clock SPI-B Slave Transmit Enable (STE) I eQEP-2 Input B 11 I LIN-B Receive EPWM3_B 13 O ePWM-3 Output B CLB_OUTPUTXBAR6 14 O CLB Output X-BAR Output 6 HIC_D12 15 I/O HIC Data 12 20 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 6-1. Pin Attributes (continued) SIGNAL NAME GPIO16 SPIA_SIMO MUX POSITION 80 QFP 64 QFP 48 QFP PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 16 1 I/O SPI-A Slave In, Master Out (SIMO) OUTPUTXBAR7 3 O Output X-BAR Output 7 EPWM5_A 5 O ePWM-5 Output A SCIA_TX 6 O SCI-A Transmit Data I/O eQEP-1 Strobe EQEP1_STROBE 9 PMBUSA_SCL 10 XCLKOUT 11 EQEP2_B SPIB_SOMI 39 33 26 I/OD PMBus-A Open-Drain Bidirectional Clock O External Clock Output. This pin outputs a divideddown version of a chosen clock signal from within the device. 13 I eQEP-2 Input B 14 I/O SPI-B Slave Out, Master In (SOMI) HIC_D1 15 I/O HIC Data 1 GPIO17 0, 4, 8, 12 I/O General-Purpose Input Output 17 SPIA_SOMI 1 I/O SPI-A Slave Out, Master In (SOMI) OUTPUTXBAR8 3 O Output X-BAR Output 8 EPWM5_B 5 O ePWM-5 Output B SCIA_RX 6 I SCI-A Receive Data EQEP1_INDEX 9 I/O PMBUSA_SDA 10 I/OD 40 34 eQEP-1 Index PMBus-A Open-Drain Bidirectional Data CANA_TX 11 O CAN-A Transmit HIC_D2 15 I/O HIC Data 2 GPIO18_X2 0, 4, 8, 12 I/O General-Purpose Input Output 18_X2 SPIA_CLK 1 I/O SPI-A Clock CANA_RX 3 I CAN-A Receive EPWM6_A 5 O ePWM-6 Output A I2CA_SCL 6 I/OD I2C-A Open-Drain Bidirectional Clock EQEP2_A 9 I PMBUSA_CTL 10 I/O PMBus-A Control Signal - Slave Input/Master Output XCLKOUT 11 O External Clock Output. This pin outputs a divideddown version of a chosen clock signal from within the device. LINB_TX 13 O LIN-B Transmit FSITXA_TDM_CLK 14 I FSITX-A Time Division Multiplexed Clock Input HIC_INT 15 O HIC Device Interrupt O Crystal oscillator output. For more information about the ALT functionality, see the table that is in the External Oscillator (XTAL) section of the System Control chapter in the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual. X2 ALT Copyright © 2020 Texas Instruments Incorporated 50 41 33 eQEP-2 Input A Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 21 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 6-1. Pin Attributes (continued) SIGNAL NAME GPIO19_X1 MUX POSITION 80 QFP 64 QFP 48 QFP PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 19_X1 SPIA_STE 1 I/O SPI-A Slave Transmit Enable (STE) CANA_TX 3 O CAN-A Transmit EPWM6_B 5 O ePWM-6 Output B I2CA_SDA 6 I/OD EQEP2_B 9 I PMBUSA_ALERT 10 I/OD I2C-A Open-Drain Bidirectional Data eQEP-2 Input B PMBus-A Open-Drain Bidirectional Alert CLB_OUTPUTXBAR1 11 O CLB Output X-BAR Output 1 LINB_RX 13 I LIN-B Receive FSITXA_TDM_D0 14 I FSITX-A Time Division Multiplexed Data Input HIC_NBE0 15 I HIC Byte Enable 0 ALT I Crystal oscillator input or single-ended clock input. The device initialization software must configure this pin before the crystal oscillator is enabled. To use this oscillator, a quartz crystal circuit must be connected to X1 and X2. This pin can also be used to feed a single-ended 3.3-V level clock. For more information about the ALT functionality, see the table that is in the External Oscillator (XTAL) section of the System Control chapter in the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual. 0, 4, 8, 12 I/O General-Purpose Input Output 22 EQEP1_STROBE 1 I/O eQEP-1 Strobe SPIB_CLK 6 I/O SPI-B Clock LINA_TX 9 O LIN-A Transmit CLB_OUTPUTXBAR1 10 O CLB Output X-BAR Output 1 LINB_TX 11 O LIN-B Transmit X1 GPIO22 51 67 42 34 56 HIC_A5 13 I HIC Address 5 EPWM4_A 14 O ePWM-4 Output A HIC_D13 15 I/O HIC Data 13 GPIO23 0, 4, 8, 12 I/O General-Purpose Input Output 23 EQEP1_INDEX 1 I/O eQEP-1 Index SPIB_STE 6 I/O LINA_RX 9 I LIN-A Receive LINB_RX 11 I LIN-B Receive HIC_A3 13 I HIC Address 3 EPWM4_B 14 O ePWM-4 Output B HIC_D11 15 I/O HIC Data 11 GPIO24 0, 4, 8, 12 I/O General-Purpose Input Output 24 OUTPUTXBAR1 1 O Output X-BAR Output 1 EQEP2_A 2 I eQEP-2 Input A SPIB_SIMO 6 I/O SPI-B Slave In, Master Out (SIMO) O LIN-B Transmit 65 54 SPI-B Slave Transmit Enable (STE) LINB_TX 9 PMBUSA_SCL 10 SCIA_TX 11 O SCI-A Transmit Data ERRORSTS 13 O Error Status Output. When used, this signal requires an external pulldown. HIC_D3 15 I/O HIC Data 3 22 Submit Document Feedback 41 35 27 I/OD PMBus-A Open-Drain Bidirectional Clock Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 6-1. Pin Attributes (continued) SIGNAL NAME GPIO25 MUX POSITION 80 QFP 64 QFP 48 QFP PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 25 OUTPUTXBAR2 1 O Output X-BAR Output 2 EQEP2_B 2 I eQEP-2 Input B EQEP1_A 5 I eQEP-1 Input A SPIB_SOMI 6 42 I/O SPI-B Slave Out, Master In (SOMI) FSITX-A Data Output 1 FSITXA_D1 9 O PMBUSA_SDA 10 I/OD PMBus-A Open-Drain Bidirectional Data SCIA_RX 11 I SCI-A Receive Data HIC_BASESEL0 14 I HIC Base Address Range Select 0 0, 4, 8, 12 I/O General-Purpose Input Output 26 GPIO26 OUTPUTXBAR3 1, 5 O Output X-BAR Output 3 EQEP2_INDEX 2 I/O eQEP-2 Index SPIB_CLK 6 I/O SPI-B Clock FSITXA_D0 9 O FSITX-A Data Output 0 PMBUSA_CTL 10 I/O PMBus-A Control Signal - Slave Input/Master Output I2CA_SDA 11 I/OD HIC_D0 14 I/O 43 I2C-A Open-Drain Bidirectional Data HIC Data 0 HIC_A1 15 I GPIO27 0, 4, 8, 12 I/O General-Purpose Input Output 27 OUTPUTXBAR4 HIC Address 1 1, 5 O Output X-BAR Output 4 EQEP2_STROBE 2 I/O eQEP-2 Strobe SPIB_STE 6 I/O SPI-B Slave Transmit Enable (STE) O FSITX-A Output Clock FSITXA_CLK 9 PMBUSA_ALERT 10 I/OD PMBus-A Open-Drain Bidirectional Alert I2CA_SCL 11 I/OD I2C-A Open-Drain Bidirectional Clock HIC_D1 14 I/O HIC_A4 15 I GPIO28 44 HIC Data 1 HIC Address 4 0, 4, 8, 12 I/O SCIA_RX 1 I SCI-A Receive Data General-Purpose Input Output 28 EPWM7_A 3 O ePWM-7 Output A OUTPUTXBAR5 5 O Output X-BAR Output 5 EQEP1_A 6 I eQEP-1 Input A I/O eQEP-2 Strobe O LIN-A Transmit EQEP2_STROBE 9 LINA_TX 10 SPIB_CLK 11 I/O SPI-B Clock ERRORSTS 13 O Error Status Output. When used, this signal requires an external pulldown. I2CB_SDA 14 I/OD HIC_NOE 15 O Copyright © 2020 Texas Instruments Incorporated 4 2 2 I2C-B Open-Drain Bidirectional Data HIC Output Enable Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 23 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 6-1. Pin Attributes (continued) SIGNAL NAME MUX POSITION 80 QFP 64 QFP 48 QFP PIN TYPE DESCRIPTION GPIO29 0, 4, 8, 12 I/O General-Purpose Input Output 29 SCIA_TX 1 O SCI-A Transmit Data EPWM7_B 3 O ePWM-7 Output B OUTPUTXBAR6 5 O Output X-BAR Output 6 EQEP1_B 6 I eQEP-1 Input B EQEP2_INDEX 9 LINA_RX 10 SPIB_STE 11 I/O SPI-B Slave Transmit Enable (STE) ERRORSTS 13 O Error Status Output. When used, this signal requires an external pulldown. I2CB_SCL 14 I/OD HIC_NCS 15 I GPIO30 3 1 1 I/O eQEP-2 Index I LIN-A Receive I2C-B Open-Drain Bidirectional Clock HIC Chip Select 0, 4, 8, 12 I/O CANA_RX 1 I SPIB_SIMO 3 I/O SPI-B Slave In, Master Out (SIMO) OUTPUTXBAR7 5 O Output X-BAR Output 7 EQEP1_STROBE 6 I/O eQEP-1 Strobe 1 General-Purpose Input Output 30 CAN-A Receive FSIRXA_CLK 9 I FSIRX-A Input Clock EPWM1_A 11 O ePWM-1 Output A HIC_D8 14 I/O HIC Data 8 GPIO31 0, 4, 8, 12 I/O General-Purpose Input Output 31 CANA_TX 1 O CAN-A Transmit SPIB_SOMI 3 I/O SPI-B Slave Out, Master In (SOMI) OUTPUTXBAR8 5 O Output X-BAR Output 8 EQEP1_INDEX 6 I/O eQEP-1 Index FSIRXA_D1 9 I FSIRX-A Data Input 1 EPWM1_B 11 O ePWM-1 Output B HIC_D10 14 I/O HIC Data 10 GPIO32 0, 4, 8, 12 I/O General-Purpose Input Output 32 I2CA_SDA 1 I/OD SPIB_CLK 3 I/O SPI-B Clock LINA_TX 6 O LIN-A Transmit FSIRXA_D0 9 I FSIRX-A Data Input 0 CANA_TX 10 O CAN-A Transmit ADCSOCBO 13 O ADC Start of Conversion B for External ADC HIC_INT 15 O HIC Device Interrupt GPIO33 General-Purpose Input Output 33 2 49 40 32 I2C-A Open-Drain Bidirectional Data 0, 4, 8, 12 I/O I2CA_SCL 1 I/OD SPIB_STE 3 I/O SPI-B Slave Transmit Enable (STE) OUTPUTXBAR4 5 O Output X-BAR Output 4 LINA_RX 6 I LIN-A Receive 38 32 25 I2C-A Open-Drain Bidirectional Clock FSIRXA_CLK 9 I FSIRX-A Input Clock CANA_RX 10 I CAN-A Receive EQEP2_B 11 I eQEP-2 Input B ADCSOCAO 13 O ADC Start of Conversion A for External ADC HIC_D0 15 I/O HIC Data 0 24 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 6-1. Pin Attributes (continued) SIGNAL NAME GPIO34 OUTPUTXBAR1 MUX POSITION 80 QFP 64 QFP 48 QFP PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 34 1 O Output X-BAR Output 1 PMBUSA_SDA 6 HIC_NBE1 13 I/OD I2CB_SDA 14 I/OD HIC_D9 15 I/O HIC Data 9 GPIO35 0, 4, 8, 12 I/O General-Purpose Input Output 35 77 I PMBus-A Open-Drain Bidirectional Data HIC Byte Enable 1 I2C-B Open-Drain Bidirectional Data SCIA_RX 1 I I2CA_SDA 3 I/OD CANA_RX 5 I PMBUSA_SCL 6 I/OD LINA_RX 7 I LIN-A Receive I eQEP-1 Input A 48 39 31 SCI-A Receive Data I2C-A Open-Drain Bidirectional Data CAN-A Receive PMBus-A Open-Drain Bidirectional Clock EQEP1_A 9 PMBUSA_CTL 10 I/O HIC_NWE 14 I HIC Data Write Enable 15 I JTAG Test Data Input (TDI) - TDI is the default mux selection for the pin. The internal pullup is disabled by default. The internal pullup should be enabled or an external pullup added on the board if this pin is used as JTAG TDI to avoid a floating input. TDI GPIO37 PMBus-A Control Signal - Slave Input/Master Output 0, 4, 8, 12 I/O General-Purpose Input Output 37 OUTPUTXBAR2 1 O Output X-BAR Output 2 I2CA_SCL 3 I/OD SCIA_TX 5 O SCI-A Transmit Data I2C-A Open-Drain Bidirectional Clock CANA_TX 6 O CAN-A Transmit LINA_TX 7 O LIN-A Transmit EQEP1_B 9 I eQEP-1 Input B PMBUSA_ALERT 10 HIC_NRDY 14 TDO GPIO39 46 37 29 I/OD PMBus-A Open-Drain Bidirectional Alert O HIC Ready 15 O JTAG Test Data Output (TDO) - TDO is the default mux selection for the pin. The internal pullup is disabled by default. The TDO function will tristate when there is no JTAG activity, leaving this pin floating; the internal pullup should be enabled or an external pullup added on the board to avoid a floating GPIO input. 0, 4, 8, 12 I/O General-Purpose Input Output 39 FSIRXA_CLK 7 I EQEP2_INDEX 9 I/O eQEP-2 Index 56 46 FSIRX-A Input Clock CLB_OUTPUTXBAR2 11 O CLB Output X-BAR Output 2 SYNCOUT 13 O External ePWM Synchronization Pulse EQEP1_INDEX 14 I/O eQEP-1 Index HIC_D7 15 I/O HIC Data 7 Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 25 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 6-1. Pin Attributes (continued) SIGNAL NAME GPIO40 MUX POSITION 80 QFP 64 QFP 48 QFP PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 40 SPIB_SIMO 1 I/O SPI-B Slave In, Master Out (SIMO) EPWM2_B 5 O ePWM-2 Output B PMBUSA_SDA 6 I/OD FSIRXA_D0 7 EQEP1_A LINB_TX HIC_NBE1 HIC_D5 GPIO41 PMBus-A Open-Drain Bidirectional Data I FSIRX-A Data Input 0 10 I eQEP-1 Input A 11 O LIN-B Transmit 14 I HIC Byte Enable 1 15 I/O HIC Data 5 0, 4, 8, 12 I/O General-Purpose Input Output 41 ePWM-2 Output A 64 53 EPWM2_A 5 O PMBUSA_SCL 6 I/OD FSIRXA_D1 7 EQEP1_B 10 LINB_RX 11 HIC_A4 SPIB_SOMI PMBus-A Open-Drain Bidirectional Clock I FSIRX-A Data Input 1 I eQEP-1 Input B I LIN-B Receive 13 I HIC Address 4 14 I/O SPI-B Slave Out, Master In (SOMI) HIC_D12 15 I/O HIC Data 12 GPIO42 0, 4, 8, 12 I/O General-Purpose Input Output 42 LINA_RX 2 I LIN-A Receive OUTPUTXBAR5 3 O Output X-BAR Output 5 PMBUSA_CTL 5 I/O PMBus-A Control Signal - Slave Input/Master Output I2CA_SDA 6 EQEP1_STROBE 10 66 57 55 I/OD I2C-A Open-Drain Bidirectional Data I/O eQEP-1 Strobe CLB_OUTPUTXBAR3 11 O CLB Output X-BAR Output 3 HIC_D2 14 I/O HIC Data 2 HIC_A6 15 I GPIO43 HIC Address 6 0, 4, 8, 12 I/O General-Purpose Input Output 43 OUTPUTXBAR6 3 O Output X-BAR Output 6 PMBUSA_ALERT 5 I/OD PMBus-A Open-Drain Bidirectional Alert I2CA_SCL 6 I/OD I2C-A Open-Drain Bidirectional Clock EQEP1_INDEX 10 54 I/O eQEP-1 Index CLB_OUTPUTXBAR4 11 O CLB Output X-BAR Output 4 HIC_D3 14 I/O HIC Data 3 HIC_A7 15 I GPIO44 0, 4, 8, 12 I/O General-Purpose Input Output 44 OUTPUTXBAR7 3 O Output X-BAR Output 7 EQEP1_A 5 I eQEP-1 Input A FSITXA_CLK 7 O FSITX-A Output Clock 69 HIC Address 7 CLB_OUTPUTXBAR3 10 O CLB Output X-BAR Output 3 HIC_D7 13 I/O HIC Data 7 HIC_D5 15 I/O HIC Data 5 26 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 6-1. Pin Attributes (continued) SIGNAL NAME GPIO45 OUTPUTXBAR8 MUX POSITION 80 QFP 64 QFP 48 QFP PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 45 3 O Output X-BAR Output 8 73 FSITXA_D0 7 O FSITX-A Data Output 0 CLB_OUTPUTXBAR4 10 O CLB Output X-BAR Output 4 HIC_D6 15 I/O HIC Data 6 GPIO46 0, 4, 8, 12 I/O General-Purpose Input Output 46 LINA_TX 3 O LIN-A Transmit FSITXA_D1 7 O FSITX-A Data Output 1 HIC_NWE 15 I HIC Data Write Enable GPIO61 0, 4, 8, 12 I/O General-Purpose Input Output 61 GPIO62 0, 4, 8, 12 I/O General-Purpose Input Output 62 GPIO63 0, 4, 8, 12 I/O General-Purpose Input Output 63 6 TEST, JTAG, AND RESET FLT1 34 I/O Flash test pin 1. Reserved for TI. Must be left unconnected. FLT2 33 I/O Flash test pin 2. Reserved for TI. Must be left unconnected. TCK 45 TMS 47 XRSn 5 Copyright © 2020 Texas Instruments Incorporated 36 38 3 28 30 3 I JTAG test clock with internal pullup. I/O JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK. This device does not have a TRSTn pin. An external pullup resistor (recommended 2.2 kΩ) on the TMS pin to VDDIO should be placed on the board to keep JTAG in reset during normal operation. I/OD Device Reset (in) and Watchdog Reset (out). During a power-on condition, this pin is driven low by the device. An external circuit may also drive this pin to assert a device reset. This pin is also driven low by the MCU when a watchdog reset occurs. During watchdog reset, the XRSn pin is driven low for the watchdog reset duration of 512 OSCCLK cycles. A resistor between 2.2 kΩ and 10 kΩ should be placed between XRSn and VDDIO. If a capacitor is placed between XRSn and VSS for noise filtering, it should be 100 nF or smaller. These values will allow the watchdog to properly drive the XRSn pin to VOL within 512 OSCCLK cycles when the watchdog reset is asserted. This pin is an open-drain output with an internal pullup. If this pin is driven by an external device, it should be done using an open-drain device. Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 27 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 6-1. Pin Attributes (continued) SIGNAL NAME MUX POSITION 80 QFP 64 QFP 48 QFP PIN TYPE DESCRIPTION POWER AND GROUND VDD VDDA 8, 31, 53, 71 4, 27, 44, 59 36, 45 26 22 18 1.2-V Digital Logic Power Pins. TI recommends placing a decoupling capacitor near each VDD pin with a minimum total capacitance of approximately 10 µF. It is also recommended that all VDD pins be externally connected to each other. 3.3-V Analog Power Pins. Place a minimum 2.2-µF decoupling capacitor on each pin. VDDIO 7, 32, 52, 72 28, 43, 60 35, 46 3.3-V Digital I/O Power Pins. Place a minimum 0.1-µF decoupling capacitor on each pin. It is recommended to place an additional bulk cap of around 20uF shared by all the pins. However, the exact value of this bulk cap will depend on the regulator being used. VSS 9, 30, 55, 70 5, 26, 45, 58 22, 37, 44 Digital Ground 25 21 17 Analog Ground VSSA 28 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 6.3 Signal Descriptions 6.3.1 Analog Signals Table 6-2. Analog Signals SIGNAL NAME A0 PIN TYPE I DESCRIPTION GPIO 80 QFP 64 QFP 48 QFP ADC-A Input 0 19 15 11 A1 I Analog Input 18 14 10 A2 I ADC-A Input 2 13 9 6 A3 I ADC-A Input 3 12 8 5 A4 I ADC-A Input 4 27 23 19 A5 I ADC-A Input 5 17 13 9 A6 I Analog Input 10 6 4 A7 I ADC-A Input 7 23 19 15 A8 I ADC-A Input 8 24 20 16 A9 I ADC-A Input 9 28 24 20 A10 I ADC-A Input 10 29 25 21 A11 I ADC-A Input 11 16 12 8 A12 I ADC-A Input 12 22 18 14 A14 I ADC-A Input 14 15 11 A15 I ADC-A Input 15 14 10 7 AIO224 I Analog Pin Used For Digital Input 224 13 9 6 AIO225 I Analog Pin Used For Digital Input 225 27 23 19 AIO226 I Analog Pin Used For Digital Input 226 11 7 4 AIO227 I Analog Pin Used For Digital Input 227 28 24 20 AIO228 I Analog Pin Used For Digital Input 228 10 6 4 AIO230 I Analog Pin Used For Digital Input 230 29 25 21 AIO231 I Analog Pin Used For Digital Input 231 19 15 11 AIO232 I Analog Pin Used For Digital Input 232 18 14 10 AIO233 I Analog Pin Used For Digital Input 233 14 10 7 AIO237 I Analog Pin Used For Digital Input 237 16 12 8 AIO238 I Analog Pin Used For Digital Input 238 22 18 14 AIO239 I Analog Pin Used For Digital Input 239 15 11 AIO241 I Analog Pin Used For Digital Input 241 24 20 16 AIO242 I Analog Pin Used For Digital Input 242 12 8 5 AIO244 I Analog Pin Used For Digital Input 244 17 13 9 AIO245 I Analog Pin Used For Digital Input 245 23 19 15 C0 I ADC-C Input 0 16 12 8 C1 I ADC-C Input 1 22 18 14 C2 I ADC-C Input 2 17 13 9 C3 I ADC-C Input 3 23 19 15 C4 I ADC-C Input 4 15 11 C5 I ADC-C Input 5 12 8 5 C6 I Analog Input 11 7 4 C7 I ADC-C Input 7 14 10 7 C8 I ADC-C Input 8 28 24 20 C9 I ADC-C Input 9 13 9 6 C10 I ADC-C Input 10 29 25 21 Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 29 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 6-2. Analog Signals (continued) SIGNAL NAME PIN TYPE DESCRIPTION GPIO 80 QFP 64 QFP 48 QFP C11 I ADC-C Input 11 24 20 16 C14 I ADC-C Input 14 27 23 19 C15 I ADC-C Input 15 19 15 11 CMP1_HN0 I CMPSS-1 High Comparator Negative Input 0 14 10 7 CMP1_HN1 I CMPSS-1 High Comparator Negative Input 1 16 12 8 CMP1_HP0 I CMPSS-1 High Comparator Positive Input 0 13 9 6 CMP1_HP1 I CMPSS-1 High Comparator Positive Input 1 16 12 8 CMP1_HP2 I CMPSS-1 High Comparator Positive Input 2 10 6 4 CMP1_HP3 I CMPSS-1 High Comparator Positive Input 3 14 10 7 CMP1_HP4 I CMPSS-1 High Comparator Positive Input 4 18 14 10 CMP1_LN0 I CMPSS-1 Low Comparator Negative Input 0 14 10 7 CMP1_LN1 I CMPSS-1 Low Comparator Negative Input 1 16 12 8 CMP1_LP0 I CMPSS-1 Low Comparator Positive Input 0 13 9 6 CMP1_LP1 I CMPSS-1 Low Comparator Positive Input 1 16 12 8 CMP1_LP2 I CMPSS-1 Low Comparator Positive Input 2 10 6 4 CMP1_LP3 I CMPSS-1 Low Comparator Positive Input 3 14 10 7 CMP1_LP4 I CMPSS-1 Low Comparator Positive Input 4 18 14 10 CMP2_HN0 I CMPSS-2 High Comparator Negative Input 0 29 25 21 CMP2_HN1 I CMPSS-2 High Comparator Negative Input 1 22 18 14 CMP2_HP0 I CMPSS-2 High Comparator Positive Input 0 27 23 19 CMP2_HP1 I CMPSS-2 High Comparator Positive Input 1 22 18 14 CMP2_HP2 I CMPSS-2 High Comparator Positive Input 2 28 24 20 CMP2_HP3 I CMPSS-2 High Comparator Positive Input 3 29 25 21 CMP2_HP4 I CMPSS-2 High Comparator Positive Input 4 24 20 16 CMP2_LN0 I CMPSS-2 Low Comparator Negative Input 0 29 25 21 CMP2_LN1 I CMPSS-2 Low Comparator Negative Input 1 22 18 14 CMP2_LP0 I CMPSS-2 Low Comparator Positive Input 0 27 23 19 30 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 6-2. Analog Signals (continued) SIGNAL NAME PIN TYPE DESCRIPTION GPIO 80 QFP 64 QFP 48 QFP CMP2_LP1 I CMPSS-2 Low Comparator Positive Input 1 22 18 14 CMP2_LP2 I CMPSS-2 Low Comparator Positive Input 2 28 24 20 CMP2_LP3 I CMPSS-2 Low Comparator Positive Input 3 29 25 21 CMP2_LP4 I CMPSS-2 Low Comparator Positive Input 4 24 20 16 CMP3_HN0 I CMPSS-3 High Comparator Negative Input 0 12 8 5 CMP3_HN1 I CMPSS-3 High Comparator Negative Input 1 17 13 9 CMP3_HP0 I CMPSS-3 High Comparator Positive Input 0 11 7 4 CMP3_HP1 I CMPSS-3 High Comparator Positive Input 1 17 13 9 CMP3_HP2 I CMPSS-3 High Comparator Positive Input 2 19 15 11 CMP3_HP3 I CMPSS-3 High Comparator Positive Input 3 12 8 5 CMP3_HP4 I CMPSS-3 High Comparator Positive Input 4 15 11 CMP3_LN0 I CMPSS-3 Low Comparator Negative Input 0 12 8 5 CMP3_LN1 I CMPSS-3 Low Comparator Negative Input 1 17 13 9 CMP3_LP0 I CMPSS-3 Low Comparator Positive Input 0 11 7 4 CMP3_LP1 I CMPSS-3 Low Comparator Positive Input 1 17 13 9 CMP3_LP2 I CMPSS-3 Low Comparator Positive Input 2 19 15 11 CMP3_LP3 I CMPSS-3 Low Comparator Positive Input 3 12 8 5 CMP3_LP4 I CMPSS-3 Low Comparator Positive Input 4 15 11 CMP4_HN0 I CMPSS-4 High Comparator Negative Input 0 27 23 19 CMP4_HN1 I CMPSS-4 High Comparator Negative Input 1 23 19 15 CMP4_HP0 I CMPSS-4 High Comparator Positive Input 0 28 24 20 CMP4_HP1 I CMPSS-4 High Comparator Positive Input 1 23 19 15 CMP4_HP2 I CMPSS-4 High Comparator Positive Input 2 22 18 14 CMP4_HP3 I CMPSS-4 High Comparator Positive Input 3 27 23 19 CMP4_HP4 I CMPSS-4 High Comparator Positive Input 4 24 20 16 CMP4_LN0 I CMPSS-4 Low Comparator Negative Input 0 27 23 19 Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 31 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 6-2. Analog Signals (continued) PIN TYPE DESCRIPTION CMP4_LN1 I CMP4_LP0 SIGNAL NAME GPIO 80 QFP 64 QFP 48 QFP CMPSS-4 Low Comparator Negative Input 1 23 19 15 I CMPSS-4 Low Comparator Positive Input 0 28 24 20 CMP4_LP1 I CMPSS-4 Low Comparator Positive Input 1 23 19 15 CMP4_LP2 I CMPSS-4 Low Comparator Positive Input 2 22 18 14 CMP4_LP3 I CMPSS-4 Low Comparator Positive Input 3 27 23 19 CMP4_LP4 I CMPSS-4 Low Comparator Positive Input 4 24 20 16 HIC_A0 I HIC Address 0 10 6 4 HIC_A1 I HIC Address 1 11 7 4 HIC_A2 I HIC Address 2 12 8 5 HIC_A3 I HIC Address 3 13 9 6 HIC_A4 I HIC Address 4 14 10 7 HIC_A5 I HIC Address 5 15 11 HIC_A6 I HIC Address 6 16 12 8 HIC_A7 I HIC Address 7 17 13 9 HIC_BASESEL0 I HIC Base Address Range Select 0 18 14 10 HIC_BASESEL1 I HIC Base Address Range Select 1 19 15 11 HIC_BASESEL2 I HIC Base Address Range Select 2 29 25 21 HIC_NBE0 I HIC Byte Enable 0 28 24 20 HIC_NBE1 I HIC Byte Enable 1 24 20 16 HIC_NCS I HIC Chip Select 22 18 14 HIC_NOE O HIC Output Enable 23 19 15 HIC_NWE I HIC Data Write Enable 27 23 19 I Optional external reference voltage for on-chip CMPSS DACs. There is an internal capacitor to VSSA on this pin whether used for ADC input or CMPSS DAC reference which cannot be disabled. If this pin is being used as a reference for the CMPSS DACs, place at least a 1-μF capacitor on this pin. 12 8 5 VREFHI I ADC- High Reference. In external reference mode, externally drive the high reference voltage onto this pin. In internal reference mode, a voltage is driven onto this pin by the device. In either mode, place at least a 2.2µF capacitor on this pin. This capacitor should be placed as close to the device as possible between the VREFHI and VREFLO pins. 20 16 12 VREFLO I ADC- Low Reference 21 17 13 VDAC 32 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 6.3.2 Digital Signals Table 6-3. Digital Signals SIGNAL NAME PIN TYPE DESCRIPTION GPIO 80 QFP 64 QFP 48 QFP ADCSOCAO O ADC Start of Conversion A for External ADC 33, 8 38, 58 32, 47 25 ADCSOCBO O ADC Start of Conversion B for External ADC 10, 32 49, 76 40, 63 32 CANA_RX I CAN-A Receive 12, 18, 3, 30, 33, 35, 5 1, 36, 38, 48, 50, 60, 74 30, 32, 39, 41, 49, 61 24, 25, 31, 33, 39, 47 CANA_TX O CAN-A Transmit 13, 17, 19, 2, 2, 35, 40, 46, 29, 34, 37, 31, 32, 37, 4 49, 51, 59, 61 40, 42, 48, 50 23, 29, 32, 34, 38, 40 CLB_OUTPUTXBAR1 O CLB Output X-BAR Output 1 19, 22 51, 67 42, 56 34 CLB_OUTPUTXBAR2 O CLB Output X-BAR Output 2 39, 7 56, 68 46, 57 43 CLB_OUTPUTXBAR3 O CLB Output X-BAR Output 3 42, 44 57, 69 CLB_OUTPUTXBAR4 O CLB Output X-BAR Output 4 43, 45 54, 73 CLB_OUTPUTXBAR5 O CLB Output X-BAR Output 5 5, 8 58, 74 47, 61 47 CLB_OUTPUTXBAR6 O CLB Output X-BAR Output 6 15, 4 59, 78 48 38 CLB_OUTPUTXBAR7 O CLB Output X-BAR Output 7 1, 14 62, 79 51 41 CLB_OUTPUTXBAR8 O CLB Output X-BAR Output 8 6 63, 80 52, 64 42, 48 EPWM1_A O ePWM-1 Output A 30 1, 63 52 42 EPWM1_B O ePWM-1 Output B 1, 31 2, 62 51 41 EPWM2_A O ePWM-2 Output A 2, 41 61, 66 50, 55 40 EPWM2_B O ePWM-2 Output B 3, 40 60, 64 49, 53 39 EPWM3_A O ePWM-3 Output A 14, 4 59, 79 48 38 EPWM3_B O ePWM-3 Output B 15, 5 74, 78 61 47 EPWM4_A O ePWM-4 Output A 22, 6 67, 80 56, 64 48 EPWM4_B O ePWM-4 Output B 23, 7 65, 68 54, 57 43 EPWM5_A O ePWM-5 Output A 16, 8 39, 58 33, 47 26 EPWM5_B O ePWM-5 Output B 17, 9 40, 75 34, 62 EPWM6_A O ePWM-6 Output A 10, 18 50, 76 41, 63 EPWM6_B O ePWM-6 Output B 11, 19 37, 51 31, 42 34 EPWM7_A O ePWM-7 Output A 12, 28 36, 4 2, 30 2, 24 EPWM7_B O ePWM-7 Output B EQEP1_A I eQEP-1 Input A EQEP1_B I eQEP-1 Input B 13, 29 3, 35 1, 29 1, 23 10, 25, 28, 35, 40, 44, 6 4, 42, 48, 64, 69, 76, 80 2, 39, 53, 63, 64 2, 31, 48 11, 29, 37, 41, 3, 37, 46, 66, 7 68 1, 31, 37, 55, 57 1, 29, 43 29, 34, 46, 54, 62 23 EQEP1_INDEX I/O eQEP-1 Index 13, 17, 23, 31, 39, 43, 9 EQEP1_STROBE I/O eQEP-1 Strobe 12, 16, 22, 30, 42, 8 I eQEP-2 Input A EQEP2_A EQEP2_B I 33 2, 35, 40, 54, 56, 65, 75 1, 36, 39, 57, 30, 33, 47, 56 58, 67 11, 14, 18, 24 37, 41, 50, 79 24, 26 31, 35, 41 27, 33 eQEP-2 Input B 15, 16, 19, 25, 33 38, 39, 42, 51, 78 32, 33, 42 25, 26, 34 EQEP2_INDEX I/O eQEP-2 Index 26, 29, 39 3, 43, 56 1, 46 1 EQEP2_STROBE I/O eQEP-2 Strobe 27, 28, 4 4, 44, 59 2, 48 2, 38 ERRORSTS O Error Status Output. When used, this signal requires an external pulldown. 24, 28, 29 3, 4, 41 1, 2, 35 1, 2, 27 FSIRXA_CLK I FSIRX-A Input Clock 13, 30, 33, 39, 4 1, 35, 38, 56, 59, 63 29, 32, 46, 48, 52 23, 25, 38, 42 Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 33 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 6-3. Digital Signals (continued) SIGNAL NAME PIN TYPE DESCRIPTION GPIO 80 QFP 64 QFP 48 QFP FSIRXA_D0 I FSIRX-A Data Input 0 12, 3, 32, 40 36, 49, 60, 64 30, 40, 49, 53 FSIRXA_D1 I FSIRX-A Data Input 1 11, 2, 31, 41 2, 37, 61, 66 31, 50, 55 40 FSITXA_CLK O FSITX-A Output Clock 10, 27, 44, 7 44, 68, 69, 76 57, 63 43 FSITXA_D0 O FSITX-A Data Output 0 26, 45, 6, 9 43, 73, 75, 80 62, 64 48 FSITXA_D1 O FSITX-A Data Output 1 25, 46, 5, 6, 8 42, 58, 6, 74, 80 47, 61, 64 47, 48 FSITXA_TDM_CLK I FSITX-A Time Division Multiplexed Clock Input 18, 8 50, 58 41, 47 33 FSITXA_TDM_D0 I FSITX-A Time Division Multiplexed Data Input 10, 19 51, 76 42, 63 34 FSITXA_TDM_D1 I FSITX-A Time Division Multiplexed Additional Data Input 1 62 51 41 63 52 42 GPIO0 I/O General-Purpose Input Output 0 24, 32, 39 GPIO1 I/O General-Purpose Input Output 1 1 62 51 41 GPIO2 I/O General-Purpose Input Output 2 2 61 50 40 GPIO3 I/O General-Purpose Input Output 3 3 60 49 39 GPIO4 I/O General-Purpose Input Output 4 4 59 48 38 GPIO5 I/O General-Purpose Input Output 5 5 74 61 47 GPIO6 I/O General-Purpose Input Output 6 6 80 64 48 GPIO7 I/O General-Purpose Input Output 7 7 68 57 43 GPIO8 I/O General-Purpose Input Output 8 8 58 47 GPIO9 I/O General-Purpose Input Output 9 9 75 62 GPIO10 I/O General-Purpose Input Output 10 10 76 63 GPIO11 I/O General-Purpose Input Output 11 11 37 31 GPIO12 I/O General-Purpose Input Output 12 12 36 30 24 GPIO13 I/O General-Purpose Input Output 13 13 35 29 23 GPIO14 I/O General-Purpose Input Output 14 14 79 GPIO15 I/O General-Purpose Input Output 15 15 78 GPIO16 I/O General-Purpose Input Output 16 16 39 33 26 GPIO17 I/O General-Purpose Input Output 17 17 40 34 GPIO18_X2 I/O General-Purpose Input Output 18_X2 18 50 41 33 GPIO19_X1 I/O General-Purpose Input Output 19_X1 19 51 42 34 GPIO22 I/O General-Purpose Input Output 22 22 67 56 GPIO23 I/O General-Purpose Input Output 23 23 65 54 GPIO24 I/O General-Purpose Input Output 24 24 41 35 27 GPIO25 I/O General-Purpose Input Output 25 25 42 GPIO26 I/O General-Purpose Input Output 26 26 43 GPIO27 I/O General-Purpose Input Output 27 27 44 GPIO28 I/O General-Purpose Input Output 28 28 4 2 2 GPIO29 I/O General-Purpose Input Output 29 29 3 1 1 GPIO30 I/O General-Purpose Input Output 30 30 1 GPIO31 I/O General-Purpose Input Output 31 31 2 GPIO32 I/O General-Purpose Input Output 32 32 49 40 32 GPIO33 I/O General-Purpose Input Output 33 33 38 32 25 GPIO34 I/O General-Purpose Input Output 34 34 77 GPIO35 I/O General-Purpose Input Output 35 35 48 39 31 34 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 6-3. Digital Signals (continued) SIGNAL NAME PIN TYPE DESCRIPTION GPIO 80 QFP 64 QFP 48 QFP 29 GPIO37 I/O General-Purpose Input Output 37 37 46 37 GPIO39 I/O General-Purpose Input Output 39 39 56 46 GPIO40 I/O General-Purpose Input Output 40 40 64 53 GPIO41 I/O General-Purpose Input Output 41 41 66 55 GPIO42 I/O General-Purpose Input Output 42 42 57 GPIO43 I/O General-Purpose Input Output 43 43 54 GPIO44 I/O General-Purpose Input Output 44 44 69 GPIO45 I/O General-Purpose Input Output 45 45 73 GPIO46 I/O General-Purpose Input Output 46 46 6 GPIO61 I/O General-Purpose Input Output 61 61 GPIO62 I/O General-Purpose Input Output 62 62 GPIO63 I/O General-Purpose Input Output 63 63 HIC_A0 I HIC Address 0 8 58 47 HIC_A1 I HIC Address 1 2, 26 43, 61 50 40 HIC_A2 I HIC Address 2 1 62 51 41 HIC_A3 I HIC Address 3 23 65 54 HIC_A4 I HIC Address 4 27, 41 44, 66 55 HIC_A5 I HIC Address 5 22 67 56 HIC_A6 I HIC Address 6 42, 7 57, 68 57 43 HIC_A7 I HIC Address 7 43, 5 54, 74 61 47 HIC_BASESEL0 I HIC Base Address Range Select 0 25, 9 42, 75 62 HIC_BASESEL1 I HIC Base Address Range Select 1 63 52 42 HIC_BASESEL2 I HIC Base Address Range Select 2 4 59 48 38 HIC_D0 I/O HIC Data 0 26, 33 38, 43 32 25 HIC_D1 I/O HIC Data 1 16, 27 39, 44 33 26 HIC_D2 I/O HIC Data 2 17, 42 40, 57 34 HIC_D3 I/O HIC Data 3 24, 43 41, 54 35 27 HIC_D4 I/O HIC Data 4 3, 5 60, 74 49, 61 39, 47 HIC_D5 I/O HIC Data 5 13, 40, 44 35, 64, 69 29, 53 23 HIC_D6 I/O HIC Data 6 11, 45 37, 73 31 HIC_D7 I/O HIC Data 7 39, 44 56, 69 46 HIC_D8 I/O HIC Data 8 30, 8 1, 58 47 HIC_D9 I/O HIC Data 9 2, 34 61, 77 50 40 HIC_D10 I/O HIC Data 10 1, 31 2, 62 51 41 HIC_D11 I/O HIC Data 11 13, 23 35, 65 29, 54 23 HIC_D12 I/O HIC Data 12 15, 41 66, 78 55 HIC_D13 I/O HIC Data 13 12, 22 36, 67 30, 56 24 HIC_D14 I/O HIC Data 14 6, 7 68, 80 57, 64 43, 48 HIC_D15 I/O HIC Data 15 14, 5 74, 79 61 47 HIC_INT O HIC Device Interrupt 12, 18, 32 36, 49, 50 30, 40, 41 24, 32, 33 HIC_NBE0 I HIC Byte Enable 0 11, 19 37, 51 31, 42 34 HIC_NBE1 I HIC Byte Enable 1 34, 40, 6 64, 77, 80 53, 64 48 HIC_NCS I HIC Chip Select 29 3 1 1 HIC_NOE O HIC Output Enable 28, 3 4, 60 2, 49 2, 39 HIC_NRDY O HIC Ready 37, 9 46, 75 37, 62 29 Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 35 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 6-3. Digital Signals (continued) SIGNAL NAME PIN TYPE HIC_NWE I DESCRIPTION HIC Data Write Enable GPIO 80 QFP 64 QFP 48 QFP 48, 59, 6, 76 39, 48, 63 31, 38 1, 18, 27, 33, 38, 44, 46, 37, 43, 8 50, 54, 58, 62 10, 35, 4, 46 32, 37, 41, 47, 51 25, 29, 33, 41 I2CA_SCL I/OD I2C-A Open-Drain Bidirectional Clock I2CA_SDA I/OD I2C-A Open-Drain Bidirectional Data 10, 19, 26, 32, 35, 42 43, 48, 49, 51, 57, 63, 76 39, 40, 42, 52, 63 31, 32, 34, 42 I2CB_SCL I/OD I2C-B Open-Drain Bidirectional Clock 15, 29, 3, 9 3, 60, 75, 78 1, 49, 62 1, 39 I2CB_SDA I/OD I2C-B Open-Drain Bidirectional Data 14, 2, 28, 34 4, 61, 77, 79 2, 50 2, 40 3, 38, 48, 57, 65 1, 32, 39, 54 1, 25, 31 4, 46, 49, 6, 67 2, 37, 40, 56 2, 29, 32 LINA_RX I LIN-A Receive 23, 29, 33, 35, 42 LINA_TX O LIN-A Transmit 22, 28, 32, 37, 46 LINB_RX I LIN-B Receive 11, 13, 15, 19, 35, 37, 51, 23, 41, 9 65, 66, 75, 78 29, 31, 42, 54, 55, 62 23, 34 LINB_TX O LIN-B Transmit 10, 12, 14, 36, 41, 50, 18, 22, 24, 40 64, 67, 76, 79 30, 35, 41, 53, 56, 63 24, 27, 33 OUTPUTXBAR1 O Output X-BAR Output 1 2, 24, 34 41, 61, 77 35, 50 27, 40 OUTPUTXBAR2 O Output X-BAR Output 2 25, 3, 37 42, 46, 60 37, 49 29, 39 OUTPUTXBAR3 O Output X-BAR Output 3 14, 26, 4, 5 43, 59, 74, 79 48, 61 38, 47 OUTPUTXBAR4 O Output X-BAR Output 4 15, 27, 33, 6 38, 44, 78, 80 32, 64 25, 48 OUTPUTXBAR5 O Output X-BAR Output 5 28, 42, 7 4, 57, 68 2, 57 2, 43 OUTPUTXBAR6 O Output X-BAR Output 6 29, 43, 9 3, 54, 75 1, 62 1 OUTPUTXBAR7 O Output X-BAR Output 7 11, 16, 30, 44 1, 37, 39, 69 31, 33 26 OUTPUTXBAR8 O Output X-BAR Output 8 PMBUSA_ALERT PMBus-A Open-Drain Bidirectional I/OD Alert PMBus-A Control Signal - Slave Input/Master Output 17, 31, 45 2, 40, 73 34 13, 19, 27, 37, 43 35, 44, 46, 51, 54 29, 37, 42 23, 29, 34 12, 18, 26, 35, 42 36, 43, 48, 50, 57 30, 39, 41 24, 31, 33 PMBUSA_CTL I/O PMBUSA_SCL I/OD PMBus-A Open-Drain Bidirectional Clock 15, 16, 24, 3, 35, 41 39, 41, 48, 60, 66, 78 33, 35, 39, 49, 55 26, 27, 31, 39 PMBUSA_SDA I/OD PMBus-A Open-Drain Bidirectional Data 14, 17, 2, 25, 34, 40 40, 42, 61, 64, 77, 79 34, 50, 53 40 SCIA_RX I SCI-A Receive Data 17, 25, 28, 3, 35, 9 4, 40, 42, 48, 60, 75 2, 34, 39, 49, 62 2, 31, 39 SCIA_TX O SCI-A Transmit Data 16, 2, 24, 29, 37, 8 3, 39, 41, 46, 58, 61 1, 33, 35, 37, 47, 50 1, 26, 27, 29, 40 SPIA_CLK I/O SPI-A Clock 12, 18, 3, 9 36, 50, 60, 75 30, 41, 49, 62 24, 33, 39 SPIA_SIMO I/O SPI-A Slave In, Master Out (SIMO) 11, 16, 2, 8 37, 39, 58, 61 31, 33, 47, 50 26, 40 SPIA_SOMI I/O SPI-A Slave Out, Master In (SOMI) 1, 10, 13, 17 35, 40, 62, 76 29, 34, 51, 63 23, 41 SPIA_STE I/O SPI-A Slave Transmit Enable (STE) 11, 19, 5 37, 51, 63, 74 31, 42, 52, 61 34, 42, 47 SPIB_CLK I/O SPI-B Clock 4, 43, 49, 59, 67, 79 2, 40, 48, 56 2, 32, 38 SPIB_SIMO I/O SPI-B Slave In, Master Out (SIMO) 24, 30, 40, 7 1, 41, 64, 68 35, 53, 57 27, 43 2, 39, 42, 66, 80 33, 55, 64 26, 48 14, 22, 26, 28, 32, 4 SPIB_SOMI I/O SPI-B Slave Out, Master In (SOMI) 16, 25, 31, 41, 6 SPIB_STE I/O SPI-B Slave Transmit Enable (STE) 15, 23, 27, 29, 33 3, 38, 44, 65, 78 1, 32, 54 1, 25 SYNCOUT O External ePWM Synchronization Pulse 39, 6 56, 80 46, 64 48 36 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 6-3. Digital Signals (continued) SIGNAL NAME PIN TYPE DESCRIPTION GPIO 80 QFP 64 QFP 48 QFP I JTAG Test Data Input (TDI) - TDI is the default mux selection for the pin. The internal pullup is disabled by default. The internal pullup should be enabled or an external pullup added on the board if this pin is used as JTAG TDI to avoid a floating input. 35 48 39 31 O JTAG Test Data Output (TDO) - TDO is the default mux selection for the pin. The internal pullup is disabled by default. The TDO function will tristate when there is no JTAG activity, leaving this pin floating; the internal pullup should be enabled or an external pullup added on the board to avoid a floating GPIO input. 37 46 37 29 I Crystal oscillator input or singleended clock input. The device initialization software must configure this pin before the crystal oscillator is enabled. To use this oscillator, a quartz crystal circuit must be connected to X1 and X2. This pin can also be used to feed a single-ended 3.3-V level clock. For more information about the ALT functionality, see the table that is in the External Oscillator (XTAL) section of the System Control chapter in the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual. 19 51 42 34 O Crystal oscillator output. For more information about the ALT functionality, see the table that is in the External Oscillator (XTAL) section of the System Control chapter in the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual. 18 50 41 33 O External Clock Output. This pin outputs a divided-down version of a chosen clock signal from within the device. 16, 18 39, 50 33, 41 26, 33 80 QFP 64 QFP 48 QFP 31, 53, 71, 8 27, 4, 44, 59 36, 45 26 22 18 TDI TDO X1 X2 XCLKOUT 6.3.3 Power and Ground Table 6-4. Power and Ground SIGNAL NAME PIN TYPE DESCRIPTION VDD 1.2-V Digital Logic Power Pins. TI recommends placing a decoupling capacitor near each VDD pin with a minimum total capacitance of approximately 10 µF. It is also recommended that all VDD pins be externally connected to each other. VDDA 3.3-V Analog Power Pins. Place a minimum 2.2-µF decoupling capacitor on each pin. Copyright © 2020 Texas Instruments Incorporated GPIO Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 37 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 6-4. Power and Ground (continued) SIGNAL NAME PIN TYPE DESCRIPTION GPIO 80 QFP 64 QFP 48 QFP VDDIO 3.3-V Digital I/O Power Pins. Place a minimum 0.1-µF decoupling capacitor on each pin. It's recommended to place an additional bulk cap of around 20uF shared by all the pins. However, the exact value of this bulk cap will depend on the regulator being used. 32, 52, 7, 72 28, 43, 60 35, 46 VSS Digital Ground 30, 55, 70, 9 26, 45, 5, 58 22, 37, 44 VSSA Analog Ground 25 21 17 80 QFP 64 QFP 48 QFP 6.3.4 Test, JTAG, and Reset Table 6-5. Test, JTAG, and Reset SIGNAL NAME PIN TYPE DESCRIPTION GPIO FLT1 I/O Flash test pin 1. Reserved for TI. Must be left unconnected. 34 FLT2 I/O Flash test pin 2. Reserved for TI. Must be left unconnected. 33 TCK I JTAG test clock with internal pullup. 45 36 28 I/O JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK. This device does not have a TRSTn pin. An external pullup resistor (recommended 2.2 kΩ) on the TMS pin to VDDIO should be placed on the board to keep JTAG in reset during normal operation. 47 38 30 5 3 3 TMS XRSn 38 Device Reset (in) and Watchdog Reset (out). During a power-on condition, this pin is driven low by the device. An external circuit may also drive this pin to assert a device reset. This pin is also driven low by the MCU when a watchdog reset occurs. During watchdog reset, the XRSn pin is driven low for the watchdog reset duration of 512 OSCCLK cycles. A resistor between 2.2 kΩ and 10 kΩ should be placed between XRSn and I/OD VDDIO. If a capacitor is placed between XRSn and VSS for noise filtering, it should be 100 nF or smaller. These values will allow the watchdog to properly drive the XRSn pin to VOL within 512 OSCCLK cycles when the watchdog reset is asserted. This pin is an open-drain output with an internal pullup. If this pin is driven by an external device, it should be done using an open-drain device. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 6.4 Pin Multiplexing 6.4.1 GPIO Muxed Pins Table 6-6 lists the GPIO muxed pins. The default mode for each GPIO pin is the GPIO function, except GPIO35 and GPIO37, which default to TDI and TDO, respectively. Secondary functions can be selected by setting both the GPyGMUXn.GPIOz and GPyMUXn.GPIOz register bits. The GPyGMUXn register should be configured before the GPyMUXn to avoid transient pulses on GPIOs from alternate mux selections. Columns that are not shown and blank cells are reserved GPIO Mux settings. GPIO ALT functions cannot be configured with the GPyMUXn and GPyGMUXn registers. These are special functions that need to be configured from the module. Note GPIO20, GPIO21, GPIO36 and GPIO38 do not exist on this device. GPIO61 to GPIO63 exist but are not pinned out on any packages. Boot ROM enables pullups on GPIO61 to GPIO63. For more details, see Section 6.5. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 39 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 6.4.1.1 GPIO Muxed Pins Table Table 6-6. GPIO Muxed Pins 0, 4, 8, 12 7 9 GPIO0 EPWM1_A I2CA_SDA SPIA_STE FSIRXA_CLK GPIO1 EPWM1_B I2CA_SCL SPIA_SOMI GPIO2 EPWM2_A OUTPUTXBAR1 PMBUSA_SDA SPIA_SIMO SCIA_TX FSIRXA_D1 I2CB_SDA GPIO3 EPWM2_B OUTPUTXBAR2 PMBUSA_SCL SPIA_CLK SCIA_RX FSIRXA_D0 I2CB_SCL SPIB_CLK EQEP2_STROB E FSIRXA_CLK CLB_OUTPUTX BAR6 HIC_BASESEL2 SPIA_STE FSITXA_D1 CLB_OUTPUTX BAR5 GPIO4 1 2 3 OUTPUTXBAR2 EPWM3_A GPIO5 EPWM3_B GPIO6 EPWM4_A GPIO7 EPWM4_B 5 OUTPUTXBAR3 OUTPUTXBAR3 OUTPUTXBAR4 EQEP1_A SPIB_SOMI FSITXA_D0 OUTPUTXBAR5 EQEP1_B SPIB_SIMO FSITXA_CLK SCIA_TX SPIA_SIMO SCIA_RX SPIA_CLK EPWM5_A ADCSOCAO GPIO9 EPWM5_B OUTPUTXBAR6 EQEP1_INDEX GPIO10 EPWM6_A ADCSOCBO GPIO11 EPWM6_B OUTPUTXBAR7 EPWM7_A EPWM7_B 10 11 I2CA_SCL 13 14 CLB_OUTPUTX BAR8 CLB_OUTPUTX BAR7 SYNCOUT GPIO8 GPIO13 CANA_TX CANA_RX EQEP1_STROB E GPIO12 6 FSITXA_D1 CLB_OUTPUTX BAR2 15 ALT HIC_BASESEL1 FSITXA_TDM_D 1 HIC_D10 HIC_A1 CANA_TX HIC_D9 HIC_NOE CANA_RX HIC_D4 HIC_A2 HIC_NWE HIC_A7 HIC_D4 HIC_D15 HIC_NBE1 CLB_OUTPUTX BAR8 HIC_D14 HIC_A6 FSITXA_D1 CLB_OUTPUTX BAR5 HIC_A0 FSITXA_D0 LINB_RX HIC_D14 FSITXA_TDM_C LK HIC_D8 HIC_BASESEL0 I2CB_SCL HIC_NRDY EQEP1_A SPIA_SOMI I2CA_SDA FSITXA_CLK LINB_TX HIC_NWE FSITXA_TDM_D 0 EQEP1_B SPIA_STE FSIRXA_D1 LINB_RX EQEP2_A SPIA_SIMO HIC_D6 HIC_NBE0 EQEP1_STROB E PMBUSA_CTL FSIRXA_D0 LINB_TX SPIA_CLK CANA_RX HIC_D13 HIC_INT EQEP1_INDEX PMBUSA_ALER T FSIRXA_CLK LINB_RX SPIA_SOMI CANA_TX HIC_D11 HIC_D5 GPIO14 I2CB_SDA OUTPUTXBAR3 PMBUSA_SDA SPIB_CLK EQEP2_A LINB_TX EPWM3_A CLB_OUTPUTX BAR7 HIC_D15 GPIO15 I2CB_SCL OUTPUTXBAR4 PMBUSA_SCL SPIB_STE EQEP2_B LINB_RX EPWM3_B CLB_OUTPUTX BAR6 HIC_D12 PMBUSA_SCL XCLKOUT EQEP2_B SPIB_SOMI HIC_D1 PMBUSA_SDA CANA_TX HIC_INT X2 X1 GPIO16 SPIA_SIMO OUTPUTXBAR7 EPWM5_A SCIA_TX EQEP1_STROB E GPIO17 SPIA_SOMI OUTPUTXBAR8 EPWM5_B SCIA_RX EQEP1_INDEX HIC_D2 GPIO18_X2 SPIA_CLK CANA_RX EPWM6_A I2CA_SCL EQEP2_A PMBUSA_CTL XCLKOUT LINB_TX FSITXA_TDM_C LK GPIO19_X1 SPIA_STE CANA_TX EPWM6_B I2CA_SDA EQEP2_B PMBUSA_ALER T CLB_OUTPUTX BAR1 LINB_RX FSITXA_TDM_D 0 HIC_NBE0 SPIB_CLK LINA_TX CLB_OUTPUTX BAR1 LINB_TX HIC_A5 EPWM4_A HIC_D13 EPWM4_B HIC_D11 GPIO22 EQEP1_STROB E GPIO23 EQEP1_INDEX GPIO24 OUTPUTXBAR1 EQEP2_A GPIO25 OUTPUTXBAR2 EQEP2_B GPIO26 OUTPUTXBAR3 GPIO27 OUTPUTXBAR4 40 SPIB_STE LINA_RX LINB_RX HIC_A3 SPIB_SIMO LINB_TX PMBUSA_SCL SCIA_TX ERRORSTS EQEP1_A SPIB_SOMI FSITXA_D1 PMBUSA_SDA SCIA_RX HIC_BASESEL0 EQEP2_INDEX OUTPUTXBAR3 SPIB_CLK FSITXA_D0 PMBUSA_CTL I2CA_SDA HIC_D0 HIC_A1 EQEP2_STROB E OUTPUTXBAR4 SPIB_STE FSITXA_CLK PMBUSA_ALER T I2CA_SCL HIC_D1 HIC_A4 Submit Document Feedback HIC_D3 Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 6-6. GPIO Muxed Pins (continued) 0, 4, 8, 12 1 2 3 5 6 7 9 10 11 13 14 15 EQEP1_A EQEP2_STROB E LINA_TX SPIB_CLK ERRORSTS I2CB_SDA HIC_NOE LINA_RX SPIB_STE ERRORSTS I2CB_SCL HIC_NCS GPIO28 SCIA_RX EPWM7_A OUTPUTXBAR5 GPIO29 SCIA_TX EPWM7_B OUTPUTXBAR6 EQEP1_B EQEP2_INDEX FSIRXA_CLK CANA_RX SPIB_SIMO OUTPUTXBAR7 EQEP1_STROB E GPIO31 CANA_TX SPIB_SOMI OUTPUTXBAR8 EQEP1_INDEX FSIRXA_D1 GPIO32 I2CA_SDA SPIB_CLK LINA_TX FSIRXA_D0 CANA_TX GPIO33 I2CA_SCL SPIB_STE LINA_RX FSIRXA_CLK CANA_RX GPIO34 OUTPUTXBAR1 GPIO35 SCIA_RX GPIO30 GPIO37 OUTPUTXBAR4 I2CA_SDA OUTPUTXBAR2 I2CA_SCL CANA_RX SCIA_TX PMBUSA_SCL CANA_TX SPIB_SIMO EQEP2_B LINA_RX HIC_D0 I2CB_SDA HIC_D9 EQEP1_A PMBUSA_CTL HIC_NWE TDI LINA_TX EQEP1_B PMBUSA_ALER T HIC_NRDY TDO FSIRXA_CLK EQEP2_INDEX EQEP1_INDEX HIC_D7 CLB_OUTPUTX BAR2 FSIRXA_D0 EQEP1_A LINB_TX EPWM2_A PMBUSA_SCL FSIRXA_D1 EQEP1_B LINB_RX OUTPUTXBAR5 PMBUSA_CTL I2CA_SDA EQEP1_STROB E GPIO43 OUTPUTXBAR6 PMBUSA_ALER T I2CA_SCL EQEP1_INDEX GPIO44 OUTPUTXBAR7 EQEP1_A GPIO45 GPIO46 LINA_RX HIC_INT ADCSOCAO HIC_NBE1 PMBUSA_SDA GPIO42 HIC_D10 ADCSOCBO EPWM2_B GPIO41 HIC_D8 EPWM1_B PMBUSA_SDA GPIO39 GPIO40 EPWM1_A FSITXA_CLK CLB_OUTPUTX BAR3 OUTPUTXBAR8 FSITXA_D0 CLB_OUTPUTX BAR4 LINA_TX FSITXA_D1 ALT SYNCOUT HIC_NBE1 HIC_D5 SPIB_SOMI HIC_D12 CLB_OUTPUTX BAR3 HIC_D2 HIC_A6 CLB_OUTPUTX BAR4 HIC_D3 HIC_A7 HIC_A4 HIC_D7 HIC_D5 HIC_D6 HIC_NWE GPIO61 GPIO62 GPIO63 AIO224 HIC_A3 AIO225 HIC_NWE AIO226 HIC_A1 AIO227 HIC_NBE0 AIO228 HIC_A0 AIO230 HIC_BASESEL2 AIO231 HIC_BASESEL1 AIO232 HIC_BASESEL0 AIO233 HIC_A4 AIO237 HIC_A6 AIO238 HIC_NCS AIO239 HIC_A5 AIO241 HIC_NBE1 AIO242 HIC_A2 AIO244 HIC_A7 Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 41 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 6-6. GPIO Muxed Pins (continued) 0, 4, 8, 12 1 2 3 5 6 7 9 10 11 13 14 AIO245 15 ALT HIC_NOE Note The analog pins that contain AIOs are in analog mode by default. AIO mode is enabled by configuring the AMSEL option of GPIOH for the analog pin. In addition, if using the HIC mux options on the AIO pins, an external pullup is required. 42 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 6.4.2 Digital Inputs on ADC Pins (AIOs) GPIOs on port H (GPIO224–GPIO245) are multiplexed with analog pins. These are also referred to as AIOs. These pins can only function in input mode. By default, these pins will function as analog pins and the GPIOs are in a high-Z state. The GPHAMSEL register is used to configure these pins for digital or analog operation. Note If digital signals with sharp edges (high dv/dt) are connected to the AIOs, cross-talk can occur with adjacent analog signals. The user should therefore limit the edge rate of signals connected to AIOs if adjacent channels are being used for analog functions. 6.4.3 GPIO Input X-BAR The Input X-BAR is used to route signals from a GPIO to many different IP blocks such as the ADCs, eCAPs, ePWMs, and external interrupts (see Figure 6-4). Table 6-7 lists the input X-BAR destinations. For details on configuring the Input X-BAR, see the Crossbar (X-BAR) chapter of the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual. GPIO0 GPIOx Asynchronous Synchronous Sync. + Qual. Input X-BAR Other Sources eCAP Modules 15:0 INPUT16 INPUT15 INPUT14 INPUT13 INPUT12 INPUT11 INPUT10 INPUT9 INPUT8 INPUT7 INPUT6 INPUT5 INPUT4 INPUT3 INPUT2 INPUT1 INPUT[16:1] 127:16 DCCx Clock Source-1 TZ1,TRIP1 TZ2,TRIP2 TZ3,TRIP3 TRIP6 DCCx Clock Source-0 CPU PIE XINT1 XINT2 XINT3 XINT4 XINT5 TRIP4 TRIP5 ePWM X-BAR ePWM Modules TRIP7 TRIP8 TRIP9 TRIP10 TRIP11 TRIP12 Other Sources ADC ADCEXTSOC EXTSYNCIN1 EXTSYNCIN2 ePWM and eCAP Sync Scheme Other Sources Output X-BAR Figure 6-4. Input X-BAR Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 43 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 6-7. Input X-BAR Destinations INPUT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ECAP / HRCAP Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes EPWM X-BAR Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes CLB X-BAR Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes OUTPUT X-BAR Yes Yes Yes CPU XINT EPWM TRIP Yes Yes Yes XINT1 XINT2 XINT3 TZ1, TZ2, TZ3, TRIP1 TRIP2 TRIP3 XINT4 XINT5 TRIP6 ADC START OF CONVERSION ADCEX TSOC EPWM / ECAP SYNC EXTSY NCIN1 EXTSY NCIN2 DCCx CLK1 CLK0 6.4.4 GPIO Output X-BAR, CLB X-BAR, CLB Output X-BAR, and ePWM X-BAR The Output X-BAR has eight outputs that can be selected on the GPIO mux as OUTPUTXBARx. The CLB XBAR has eight outputs that are connected to the CLB global mux as AUXSIGx. The CLB Output X-BAR has eight outputs that can be selected on the GPIO mux as CLB_OUTPUTXBARx. The ePWM X-BAR has eight outputs that are connected to the TRIPx inputs of the ePWM. The sources for the Output X-BAR, CLB X-BAR, CLB Output X-BAR, and ePWM X-BAR are shown in Figure 6-5. For details on the Output X-BAR, CLB X-BAR, CLB Output X-BAR, and ePWM X-BAR, see the Crossbar (X-BAR) chapter of the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual. 44 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 CMPSSx ePWM and eCAP Sync Chain CTRIPOUTH CTRIPOUTL (Output X-BAR only) CTRIPH CTRIPL (ePWM X-BAR only) EXTSYNCOUT ADCSOCA0 Select Circuit ADCSOCA0 ADCSOCB0 Select Circuit ADCSOCB0 eCAPx ECAPxOUT ADCx EVT1 EVT2 EVT3 EVT4 Input X-BAR CLB X-BAR AUXSIG1 AUXSIG2 AUXSIG3 AUXSIG4 AUXSIG5 AUXSIG6 AUXSIG7 AUXSIG8 CLB Global Mux TRIP4 TRIP5 EPWM X-BAR INPUT1-6 INPUT7-14 (ePWM X-BAR only) TRIP7 TRIP8 TRIP9 TRIP10 TRIP11 TRIP12 All ePWM Modules eQEPx Output X-BAR OUTPUTXBAR1 OUTPUTXBAR2 OUTPUTXBAR3 OUTPUTXBAR4 OUTPUTXBAR5 OUTPUTXBAR6 OUTPUTXBAR7 OUTPUTXBAR8 GPIO Mux X-BAR Flags (shared) CLB Input X-BAR CLB TILEx CLB Output X-BAR CLB_OUTPUTXBAR1 CLB_OUTPUTXBAR2 CLB_OUTPUTXBAR3 CLB_OUTPUTXBAR4 CLB_OUTPUTXBAR5 CLB_OUTPUTXBAR6 CLB_OUTPUTXBAR7 CLB_OUTPUTXBAR8 Figure 6-5. Output X-BAR, CLB X-BAR, CLB Output X-BAR, and ePWM X-BAR Sources Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 45 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 6.5 Pins With Internal Pullup and Pulldown Some pins on the device have internal pullups or pulldowns. Table 6-8 lists the pull direction and when it is active. The pullups on GPIO pins are disabled by default and can be enabled through software. To avoid any floating unbonded inputs, the Boot ROM will enable internal pullups on GPIO pins that are not bonded out in a particular package. Other pins noted in Table 6-8 with pullups and pulldowns are always on and cannot be disabled. Table 6-8. Pins With Internal Pullup and Pulldown PIN GPIOx RESET (XRSn = 0) DEVICE BOOT APPLICATION Pullup disabled Pullup disabled(1) Application defined GPIO35/TDI Pullup disabled GPIO37/TDO Pullup disabled Application defined Application defined TCK Pullup active TMS Pullup active XRSn Pullup active Other pins (including AIOs) (1) 46 No pullup or pulldown present Pins not bonded out in a given package will have the internal pullups enabled by the Boot ROM. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 6.6 Connections for Unused Pins For applications that do not need to use all functions of the device, Table 6-9 lists acceptable conditioning for any unused pins. When multiple options are listed in Table 6-9, any option is acceptable. Pins not listed in Table 6-9 must be connected according to Section 6. Table 6-9. Connections for Unused Pins SIGNAL NAME ACCEPTABLE PRACTICE ANALOG VREFHI Tie to VDDA (applies only if ADC is not used in the application) VREFLO Tie to VSSA Analog input pins • • • No Connect Tie to VSSA Tie to VSSA through resistor FLT1 (Flash Test pin 1) • • No Connect Tie to VSS through 4.7-kΩ or larger resistor FLT2 (Flash Test pin 2) • • No Connect Tie to VSS through 4.7-kΩ or larger resistor GPIOx • • • No connection (input mode with internal pullup enabled) No connection (output mode with internal pullup disabled) Pullup or pulldown resistor (any value resistor, input mode, and with internal pullup disabled) GPIO35/TDI When TDI mux option is selected (default), the GPIO is in Input mode. • Internal pullup enabled • External pullup resistor GPIO37/TDO When TDO mux option is selected (default), the GPIO is in Output mode only during JTAG activity; otherwise, it is in a tri-state condition. The pin must be biased to avoid extra current on the input buffer. • Internal pullup enabled • External pullup resistor TCK • • TMS Pullup resistor GPIO19/X1 Turn XTAL off and: • Input mode with internal pullup enabled • Input mode with external pullup or pulldown resistor • Output mode with internal pullup disabled GPIO18/X2 Turn XTAL off and: • Input mode with internal pullup enabled • Input mode with external pullup or pulldown resistor • Output mode with internal pullup disabled VDD All VDD pins must be connected per Section 6.3. Pins should not be used to bias any external circuits. VDDA If a dedicated analog supply is not used, tie to VDDIO. VDDIO All VDDIO pins must be connected per Section 6.3. VSS All VSS pins must be connected to board ground. VSSA If an analog ground is not used, tie to VSS. DIGITAL No Connect Pullup resistor POWER AND GROUND Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 47 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7 Specifications Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device beyond the Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to VSS, unless otherwise noted. 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) Supply voltage Input voltage Output voltage Input clamp current MIN MAX VDDIO with respect to VSS –0.3 4.6 VDDA with respect to VSSA –0.3 4.6 VIN (3.3 V) –0.3 4.6 V V VO –0.3 4.6 Digital/analog input (per pin), IIK (VIN < VSS/VSSA or VIN > VDDIO/VDDA)(2) –20 20 Total for all inputs, IIKTOTAL (VIN < VSS/VSSA or VIN > VDDIO/VDDA) –20 20 UNIT V mA Output current Digital output (per pin), IOUT –20 20 mA Free-Air temperature TA –40 125 °C Operating junction temperature TJ –40 150 °C Storage temperature(1) Tstg –65 150 °C (1) (2) Long-term high-temperature storage or extended use at maximum temperature conditions may result in a reduction of overall device life. For additional information, see the Semiconductor and IC Package Thermal Metrics Application Report. Continuous clamp current per pin is ±2 mA. Do not operate in this condition continuously as VDDIO/VDDA voltage may internally rise and impact other electrical specifications. 7.2 ESD Ratings – Commercial VALUE UNIT F280025, F280025C, F280023, F280023C in 80-pin PN package V(ESD) Electrostatic discharge (ESD) Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 Charged-device model (CDM), per JEDEC specification JESD22-C101 or ANSI/ESDA/JEDEC JS-002(2) ±500 V F280025, F280025C, F280023, F280023C in 64-pin PM package V(ESD) Electrostatic discharge (ESD) Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 Charged-device model (CDM), per JEDEC specification JESD22-C101 or ANSI/ESDA/JEDEC JS-002(2) ±500 V F280025, F280025C, F280023, F280023C, F280021 in 48-pin PT package V(ESD) (1) (2) 48 Electrostatic discharge (ESD) Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 Charged-device model (CDM), per JEDEC specification JESD22-C101 or ANSI/ESDA/JEDEC JS-002(2) ±500 V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.3 ESD Ratings – Automotive VALUE UNIT F280025-Q1, F280025C-Q1, F280023-Q1 in 80-pin PN package V(ESD) Electrostatic discharge Human body model (HBM), per AEC Q100-002(1) All pins ±2000 Charged device model (CDM), per AEC Q100-011 All pins ±500 Corner pins on 80-pin PN: 1, 20, 21, 40, 41, 60, 61, 80 ±750 Human body model (HBM), per AEC Q100-002(1) All pins ±2000 Charged device model (CDM), per AEC Q100-011 All pins ±500 Corner pins on 64-pin PM: 1, 16, 17, 32, 33, 48, 49, 64 ±750 Human body model (HBM), per AEC Q100-002(1) All pins ±2000 Charged device model (CDM), per AEC Q100-011 All pins ±500 Corner pins on 48-pin PT: 1, 12, 13, 24, 25, 36, 37, 48 ±750 V F280025-Q1, F280025C-Q1, F280023-Q1 in 64-pin PM package V(ESD) Electrostatic discharge V F280025-Q1, F280025C-Q1, F280023-Q1, F280021-Q1 in 48-pin PT package V(ESD) (1) Electrostatic discharge V AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification. 7.4 Recommended Operating Conditions Device supply voltage, VDDIO and VDDA Internal BOR enabled(3) Internal BOR disabled MIN NOM (2) 3.3 3.63 2.8 3.3 3.63 VBOR-VDDIO(MAX) + VBOR-GB MAX UNIT V Device ground, VSS 0 V Analog ground, VSSA 0 V SRSUPPLY Supply ramp rate of VDDIO, VDDA with respect to VSS.(4) tVDDIO-RAMP VDDIO supply ramp time from 1 V to VBOR-VDDIO(MAX) Digital input voltage VIN Analog input voltage 20 100 mV/us 10 VSS – 0.3 VDDIO + 0.3 VSSA – 0.3 VDDA + 0.3 ms V V VBOR-GB VDDIO BOR guard band(5) Junction temperature, TJ S version(1) –40 125 °C Free-Air temperature, TA Q version(1) (AEC Q100 qualification) –40 125 °C (1) (2) (3) (4) (5) 0.1 V Operation above TJ = 105°C for extended duration will reduce the lifetime of the device. See Calculating Useful Lifetimes of Embedded Processors for more information. The VDDIO BOR voltage (VBOR-VDDIO[MAX]) in Electrical Characteristics table determines the lower voltage bound for device operation. TI recommends that system designers budget an additional guard band (VBOR-GB) as shown in Supply Voltages figure. Internal BOR is enabled by default. Supply ramp rate faster than this can trigger the on-chip ESD protection. TI recommends VBOR-GB to avoid BOR resets due to normal supply noise or load-transient events on the 3.3-V VDDIO system regulator. Good system regulator design and decoupling capacitance (following the system regulator specifications) are important to prevent activation of the BOR during normal device operation. The value of VBOR-GB is a system-level design consideration; the voltage listed here is typical for many applications. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 49 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Supply Voltages 3.63 V +10% 3.3 V 0% 3.1 V –6.1% 3.0 V –9.1% Recommended System Voltage Regulator Range F28002x VDDIO Operating Range VBOR-GB BOR Guard Band VBOR-VDDIO Internal BOR Threshold 2.81 V 2.80 V –14.8% –15.1% Figure 7-1. Supply Voltages 50 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.5 Power Consumption Summary Current values listed in this section are representative for the test conditions given and not the absolute maximum possible. The actual device currents in an application will vary with application code and pin configurations. Section 7.5.1 lists the system current consumption values. 7.5.1 System Current Consumption over operating free-air temperature range (unless otherwise noted). TYP : Vnom, 30℃ PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 35 72 mA 3 5 mA 16 33 mA 0.01 0.1 mA 8 22 mA 0.01 0.1 mA 1 16 mA 0.01 0.1 mA 72 106 mA 0.1 2.5 mA OPERATING MODE IDDIO VDDIO current consumption during operational usage IDDA VDDA current consumption during operational usage This is an estimation of current for a typical heavily loaded application. Actual currents will vary depending on system activity, I/O electrical loading and switching frequency. IDLE MODE IDDIO VDDIO current consumption while device is in Idle mode IDDA VDDA current consumption while device is in Idle mode - CPU is in IDLE mode - Flash is powered down - XCLKOUT is turned off - Pull up is enabled for IO pins STANDBY MODE IDDIO VDDIO current consumption while device is in Standby mode IDDA VDDA current consumption while device is in Standby mode - CPU is in STANDBY mode - Flash is powered down - XCLKOUT is turned off - Pull up is enabled for IO pins HALT MODE IDDIO VDDIO current consumption while device is in Halt mode IDDA VDDA current consumption while device is in Halt mode - CPU is in HALT mode - Flash is powered down - XCLKOUT is turned off - Pull up is enabled for IO pins FLASH ERASE/PROGRAM IDDIO VDDIO current consumption during Erase/Program cycle(1) IDDA VDDA current consumption during Erase/Program cycle - CPU is running from RAM. - SYSCLK at 100 MHz. - I/Os are inputs with pullups enabled. - Peripheral clocks are turned off. RESET MODE IDDIO VDDIO current consumption while reset is active(2) 8.6 mA IDDA VDDA current consumption while reset is active(2) 0.1 mA (1) (2) Brownout events during flash programming can corrupt flash data and permanently lock the device. Programming environments using alternate power sources (such as a USB programmer) must be capable of supplying the rated current for the device and other system components with sufficient margin to avoid supply brownout conditions. This is the current consumption while reset is active, i.e XRSn is low. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 51 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.5.2 Operating Mode Test Description Section 7.5.1 and Section 7.5.4.1 list the current consumption values for the operational mode of the device. The operational mode provides an estimation of what an application might encounter. The test condition for these measurements has the following properties: • Code is executing from RAM. • FLASH is read and kept in active state. • No external components are driven by I/O pins. • All peripherals have clocks enabled. • All CPUs are actively executing code. • All analog peripherals are powered up. ADCs and DACs are periodically converting. 7.5.3 Current Consumption Graphs Figure 7-2, Figure 7-3, Figure 7-4, Figure 7-5, and Figure 7-6 show a typical representation of the relationship between frequency, temperature, core supply, and current consumption on the device. Actual results will vary based on the system implementation and conditions. Figure 7-3 shows the typical operating current profile across temperature and core supply voltage. Figure 7-4 shows the typical idle current profile across temperature and core supply voltage. Figure 7-5 shows the typical standby current profile across temperature and core supply voltage. Figure 7-6 shows the typical halt current profile across temperature and core supply voltage. 52 Figure 7-2. Operating Current Versus Frequency Figure 7-3. Operating Current Versus Temperature Figure 7-4. Current Versus Temperature – IDLE Mode Figure 7-5. Current Versus Temperature – STANDBY Mode Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Figure 7-6. Current Versus Temperature – HALT Mode Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 53 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.5.4 Reducing Current Consumption The F28002x devices provide some methods to reduce the device current consumption: • One of the two low-power modes—IDLE or STANDBY—could be entered during idle periods in the application. • The flash module may be powered down if the code is run from RAM. • Disable the pullups on pins that assume an output function. • Each peripheral has an individual clock-enable bit (PCLKCRx). Reduced current consumption may be achieved by turning off the clock to any peripheral that is not used in a given application. Section 7.5.4.1 lists the typical current reduction that may be achieved by disabling the clocks using the PCLKCRx register. • To realize the lowest VDDA current consumption in an LPM, see the Analog-to-Digital Converter (ADC) chapter of the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual to ensure each module is powered down as well. 7.5.4.1 Typical Current Reduction per Disabled Peripheral PERIPHERAL IDDIO CURRENT REDUCTION (mA) ADC(1) 0.67 BGCRC 0.26 CAN 1.18 CLB 1.18 CMPSS(1) 0.34 CPU TIMER 0.02 CPUCRC 0.01 DCC 0.18 DMA 0.56 eCAP1 and eCAP2 0.22 eCAP3(2) 0.28 ePWM 0.78 eQEP 0.11 FSI 0.74 HIC 0.21 HRPWM 0.87 I2C 0.24 LIN 0.32 PBIST 0.19 PMBUS 0.26 SCI 0.16 SPI 0.08 (1) (2) 54 This current represents the current drawn by the digital portion of the each module. eCAP3 can also be configured as HRCAP. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.6 Electrical Characteristics over recommended operating conditions (unless otherwise noted) TEST CONDITIONS PARAMETER MIN TYP MAX UNIT Digital and Analog IO VOH High-level output voltage VOL Low-level output voltage IOH High-level output source current for all output pins IOL Low-level output sink current for all output pins ROH High-level output impedance for all output pins IOH = IOH MIN VDDIO * 0.8 IOH = –100 μA VDDIO – 0.2 V IOL = IOL MAX 0.4 IOL = 100 µA 0.2 –4 V mA 4 mA 45 65 100 Ω 60 90 Ω ROL Low-level output impedance for all output pins 45 VIH High-level input voltage 2.0 V VIL Low-level input voltage VHYSTERESIS Input hysteresis 0.8 IPULLDOWN Input current Pins with pulldown VDDIO = 3.3 V VIN = VDDIO 120 µA IPULLUP Input current Digital inputs with pullup VDDIO = 3.3 V enabled(1) VIN = 0 V 160 µA 125 Digital inputs ILEAK Pin leakage Analog pins (except ADCINA3/VDAC) ADCINA3/VDAC CI Input capacitance V mV Pullups and outputs disabled 0 V ≤ VIN ≤ VDDIO 0.1 µA Analog drivers disabled 0 V ≤ VIN ≤ VDDA 0.1 2 Digital inputs 11 2 pF Analog pins(2) VREG and BOR VPOR-VDDIO VDDIO power on reset voltage VBOR-VDDIO VDDIO brown out reset voltage(3) 2.81 VVREG Internal voltage regulator output 1.14 (1) (2) (3) VDDIO power on reset voltage 2.3 1.2 V 3.0 V 1.32 V See Pins With Internal Pullup and Pulldown table for a list of pins with a pullup or pulldown. The analog pins are specified separately; see Per-Channel Parasitic Capacitance table. See the Supply Voltages figure in the Recommended Operating Conditions section. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 55 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.7 Thermal Resistance Characteristics for PN Package °C/W(1) AIR FLOW (lfm)(2) RΘJC Junction-to-case thermal resistance 14.2 N/A RΘJB Junction-to-board thermal resistance 21.9 N/A RΘJA (High k PCB) PsiJT Junction-to-package top PsiJB (1) (2) Junction-to-free air thermal resistance Junction-to-board 49.9 0 38.3 150 36.7 250 34.4 500 0.8 0 1.18 150 1.34 250 1.62 500 21.6 0 20.7 150 20.5 250 20.1 500 These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/ JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements lfm = linear feet per minute 7.8 Thermal Resistance Characteristics for PM Package °C/W(1) AIR FLOW (lfm)(2) RΘJC Junction-to-case thermal resistance 12.4 N/A RΘJB Junction-to-board thermal resistance 25.6 N/A RΘJA (High k PCB) Junction-to-free air thermal resistance 51.8 0 42.2 150 RΘJMA Junction-to-moving air thermal resistance 39.4 250 36.5 500 0.5 0 0.9 150 1.1 250 PsiJT PsiJB (1) (2) 56 Junction-to-package top Junction-to-board 1.4 500 25.1 0 23.8 150 23.4 250 22.7 500 These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/ JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements lfm = linear feet per minute Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.9 Thermal Resistance Characteristics for PT Package °C/W(1) AIR FLOW (lfm)(2) RΘJC Junction-to-case thermal resistance 13.6 N/A RΘJB Junction-to-board thermal resistance 30.6 N/A RΘJA (High k PCB) PsiJT PsiJB (1) (2) Junction-to-free air thermal resistance Junction-to-package top Junction-to-board 64 0 50.4 150 48.2 250 45 500 0.56 0 0.94 150 1.1 250 1.38 500 30.1 0 28.7 150 28.4 250 28 500 These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/ JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements lfm = linear feet per minute 7.10 Thermal Design Considerations Based on the end application design and operational profile, the IDD and IDDIO currents could vary. Systems that exceed the recommended maximum power dissipation in the end product may require additional thermal enhancements. Ambient temperature (TA) varies with the end application and product design. The critical factor that affects reliability and functionality is TJ, the junction temperature, not the ambient temperature. Hence, care should be taken to keep TJ within the specified limits. Tcase should be measured to estimate the operating junction temperature TJ. Tcase is normally measured at the center of the package top-side surface. The thermal application report Semiconductor and IC Package Thermal Metrics helps to understand the thermal metrics and definitions. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 57 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.11 System 7.11.1 Power Management TMS320F28002x real-time MCUs use an internal 1.2-V LDO Voltage Regulator (VREG) to supply the required 1.2 V to the core (VDD). 7.11.1.1 Internal 1.2-V LDO Voltage Regulator (VREG) The internal VREG is supplied by VDDIO and generates the 1.2 V required to power the VDD pins. The internal VREG is always enabled and, as such, is the required supply source for the VDD pins. Although the internal VREG eliminates the need to use an external power supply for VDD, decoupling capacitors are required on each VDD pin for VREG stability. There are two recommended capacitor configurations (described in the list that follows) for the VDD rail when using the internal VREG. The signal description for VDD can be found in Table 6-4. • • Configuration 1: Place a small decoupling capacitor to VSS on each pin as close to the device as possible. In addition, a bulk capacitance must be placed on the VDD node to VSS (one 10-µF capacitor or two parallel 4.7-µF capacitors). Configuration 2: Distribute the total capacitance to VSS evenly across all VDD pins (total capacitance divided by number of available VDD pins). 7.11.1.2 Power Sequencing Signal Pin Requirements: Before powering the device, no voltage larger than 0.3 V above VDDIO can be applied to any digital pin, and no voltage larger than 0.3 V above VDDA can be applied to any analog pin (including VREFHI). VDDIO and VDDA Requirements: The 3.3-V supplies VDDIO and VDDA should be powered up together and kept within 0.3 V of each other during functional operation. VDD Requirements: The VDD sequencing requirements are handled by the device. 7.11.1.3 Power-On Reset (POR) An internal power-on reset (POR) circuit holds the device in reset and keeps the I/Os in a high-impedance state during power up. The POR is in control and forces XRSn low internally until the voltage on VDDIO crosses the POR threshold. When the voltage crosses the POR threshold, the internal brownout-reset (BOR) circuit takes control and holds the device in reset until the voltage crosses the BOR threshold (for internal BOR details, see Section 7.11.1.4). 7.11.1.4 Brownout Reset (BOR) An internal BOR circuit monitors the VDDIO rail for dips in voltage which result in the supply voltage dropping out of operational range. When the VDDIO voltage drops below the BOR threshold, the device is forced into reset, and XRSn is pulled low. XRSn will remain in reset until the voltage returns to the operational range. The BOR is enabled by default. To disable the BOR, set the BORLVMONDIS bit in the VMONCTL register. The internal BOR circuit monitors only the VDDIO rail. See Section 7.6 for BOR characteristics. External supply voltage supervisor (SVS) devices can be used to monitor the voltage on the 3.3-V rail and to drive XRSn low if supplies fall outside operational specifications. 58 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.11.2 Reset Timing XRSn is the device reset pin. It functions as an input and open-drain output. The device has a built-in power-on reset (POR). During power up, the POR circuit drives the XRSn pin low. A watchdog or NMI watchdog reset will also drive the pin low. An external open-drain circuit may drive the pin to assert a device reset. A resistor with a value from 2.2 kΩ to 10 kΩ should be placed between XRSn and VDDIO. A capacitor should be placed between XRSn and VSS for noise filtering, it should be 100 nF or smaller. These values will allow the watchdog to properly drive the XRSn pin to VOL within 512 OSCCLK cycles when the watchdog reset is asserted. Figure 7-7 shows the recommended reset circuit. VDDIO 2.2 kW to 10 kW Optional open-drain Reset source XRSn £100 nF Figure 7-7. Reset Circuit 7.11.2.1 Reset Sources Table 7-1 summarizes the various reset signals and their effect on the device. Table 7-1. Reset Signals RESET SOURCE CPU CORE RESET (C28x, FPU, VCU) PERIPHERALS RESET JTAG/ DEBUG LOGIC RESET I/Os XRSn OUTPUT Yes Yes Yes Hi-Z Yes POR XRSn Pin Yes Yes No Hi-Z – WDRS Yes Yes No Hi-Z Yes NMIWDRS Yes Yes No Hi-Z Yes SYSRS (Debugger Reset) Yes Yes No Hi-Z No SCCRESET Yes Yes No Hi-Z No The parameter th(boot-mode) must account for a reset initiated from any of these sources. See the Resets section of the System Control chapter in the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual. CAUTION Some reset sources are internally driven by the device. Some of these sources will drive XRSn low, use this to disable any other devices driving the boot pins. The SCCRESET and debugger reset sources do not drive XRSn; therefore, the pins used for boot mode should not be actively driven by other devices in the system. The boot configuration has a provision for changing the boot pins in OTP; for more details, see the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 59 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.11.2.2 Reset Electrical Data and Timing Section 7.11.2.2.1 lists the reset (XRSn) timing requirements. Section 7.11.2.2.2 lists the reset (XRSn) switching characteristics. Figure 7-8 shows the power-on reset. Figure 7-9 shows the warm reset. 7.11.2.2.1 Reset (XRSn) Timing Requirements MIN th(boot-mode) Hold time for boot-mode pins 1.5 All cases Pulse duration, XRSn low on Low-power modes used in warm reset application and SYSCLKDIV > 16 3.2 tw(RSL2) MAX UNIT ms µs 3.2 * (SYSCLKDIV/16) 7.11.2.2.2 Reset (XRSn) Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER MIN tw(RSL1) Pulse duration, XRSn driven low by device after supplies are stable tw(WDRS) Pulse duration, reset pulse generated by watchdog tboot-flash Boot-ROM execution time to first instruction fetch in flash TYP MAX 100 UNIT µs 512tc(OSCCLK) cycles 900 µs 7.11.2.2.3 Reset Timing Diagrams VDDIO VDDA (3.3V) VDD (1.2V) tw(RSL1) XRSn(A) tboot-flash Boot ROM CPU Execution Phase User code th(boot-mode)(B) Boot-Mode Pins User code dependent GPIO pins as input Peripheral/GPIO function Based on boot code Boot-ROM execution starts GPIO pins as input (pullups are disabled) I/O Pins User code dependent A. The XRSn pin can be driven externally by a supervisor or an external pullup resistor, see Table 6-1. On-chip POR logic will hold this pin low until the supplies are in a valid range. B. After reset from any source (see Section 7.11.2.1), the boot ROM code samples Boot Mode pins. Based on the status of the Boot Mode pin, the boot code branches to destination memory or boot code function. If boot ROM code executes after power-on conditions (in debugger environment), the boot code execution time is based on the current SYSCLK speed. The SYSCLK will be based on user environment and could be with or without PLL enabled. Figure 7-8. Power-on Reset 60 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 tw(RSL2) XRSn User code CPU Execution Phase Boot ROM User code Boot ROM execution starts (initiated by any reset source) Boot-Mode Pins Peripheral/GPIO function GPIO Pins as Input th(boot-mode)(A) Peripheral/GPIO function User-Code Execution Starts I/O Pins User-Code Dependent GPIO Pins as Input (Pullups are Disabled) User-Code Dependent A. After reset from any source (see Section 7.11.2.1), the Boot ROM code samples BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code branches to destination memory or boot code function. If Boot ROM code executes after power-on conditions (in debugger environment), the Boot code execution time is based on the current SYSCLK speed. The SYSCLK will be based on user environment and could be with or without PLL enabled. Figure 7-9. Warm Reset Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 61 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.11.3 Clock Specifications 7.11.3.1 Clock Sources Table 7-2 lists clock sources. Figure 7-10 shows the clocking system. Figure 7-11 shows the PLL. Table 7-2. Possible Reference Clock Sources CLOCK SOURCE DESCRIPTION INTOSC1 Internal oscillator 1. Zero-pin overhead 10-MHz internal oscillator. INTOSC2(1) Internal oscillator 2. Zero-pin overhead 10-MHz internal oscillator. X1 (XTAL) External crystal or resonator connected between the X1 and X2 pins or single-ended clock connected to the X1 pin. (1) 62 On reset, internal oscillator 2 (INTOSC2) is the default clock source for the PLL (OSCCLK). Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 SYSCLKDIVSEL Watchdog Timer SYSPLL INTOSC1 INTOSC2 OSCCLK PLLSYSCLK NMIWD SYS Divider PLLRAWCLK FPU TMU Flash CPUCLK SYSPLLCLKEN X1 (XTAL) OSCCLKSRCSEL CPU SYSCLK SYSCLK One per SYSCLK peripheral PCLKCRx PERx.SYSCLK ePIE GPIO Mx RAMs Lx RAMs GSx RAMs Boot ROM DCSM System Control WD XINT CPUTIMERs CLB ECAP EQEP EPWM HRCAL PMBUS LIN FSI I2C ADC CMPSS CAN HIC DCC HWBIST BGCRC ERAD One per LSPCLK peripheral LOSPCP PCLKCRx LSP Divider LSPCLK PERx.LSPCLK SCI SPI CLKSRCCTL2.CANxBCLKSEL CAN Bit Clock Figure 7-10. Clocking System Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 63 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 SYSPLL OSCCLK ÷ (REFDIV+1) INTCLK VCOCLK VCO ÷ (ODIV+1) PLLRAWCLK ÷ IMULT Figure 7-11. System PLL In Figure 7-11, f PLLRAWCLK 64 Submit Document Feedback f OSCCLK REFDIV 1 u IMULT ODIV 1 Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.11.3.2 Clock Frequencies, Requirements, and Characteristics This section provides the frequencies and timing requirements of the input clocks, PLL lock times, frequencies of the internal clocks, and the frequency and switching characteristics of the output clock. 7.11.3.2.1 Input Clock Frequency and Timing Requirements, PLL Lock Times Section 7.11.3.2.1.1 lists the frequency requirements for the input clocks. Section 7.11.3.2.1.2 lists the XTAL oscillator characteristics. Section 7.11.3.2.1.3 lists the X1 timing requirements. Section 7.11.3.2.1.4 lists the APLL characteristics. Section 7.11.3.2.1.5 lists the switching characteristics of the output clock, XCLKOUT. Section 7.11.3.2.1.6 provides the clock frequencies for the internal clocks. 7.11.3.2.1.1 Input Clock Frequency MIN MAX UNIT f(XTAL) Frequency, X1/X2, from external crystal or resonator 10 20 MHz f(X1) Frequency, X1, from external oscillator 10 25 MHz 7.11.3.2.1.2 XTAL Oscillator Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER MIN X1 VIL Valid low-level input voltage X1 VIH Valid high-level input voltage TYP MAX UNIT –0.3 0.3 * VDDIO V 0.7 * VDDIO VDDIO + 0.3 V 7.11.3.2.1.3 X1 Timing Requirements MIN tf(X1) Fall time, X1 MAX UNIT 6 ns 6 ns tr(X1) Rise time, X1 tw(X1L) Pulse duration, X1 low as a percentage of tc(X1) 45% 55% tw(X1H) Pulse duration, X1 high as a percentage of tc(X1) 45% 55% 7.11.3.2.1.4 APLL Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER MIN TYP MAX UNIT PLL Lock time SYS PLL Lock Time(1) (1) 5µs + (1024 * (REFDIV + 1) * tc(OSCCLK)) us The PLL lock time here defines the typical time that takes for the PLL to lock once PLL is enabled (SYSPLLCTL1[PLLENA]=1). Additional time to verify the PLL clock using Dual Clock Comparator (DCC) is not accounted here. TI recommends using the latest example software from C2000Ware for initializing the PLLs. For the system PLL, see InitSysPll() or SysCtl_setClock(). 7.11.3.2.1.5 XCLKOUT Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER(1) MIN MAX UNIT tf(XCO) Fall time, XCLKOUT 5 ns tr(XCO) Rise time, XCLKOUT 5 ns tw(XCOL) Pulse duration, XCLKOUT low H – 2(2) H + 2(2) ns tw(XCOH) Pulse duration, XCLKOUT high H – 2(2) H + 2(2) ns f(XCO) Frequency, XCLKOUT (1) (2) 50 MHz A load of 40 pF is assumed for these parameters. H = 0.5tc(XCO) Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 65 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.11.3.2.1.6 Internal Clock Frequencies MIN NOM MAX UNIT f(SYSCLK) Frequency, device (system) clock 2 100 MHz tc(SYSCLK) Period, device (system) clock 10 500 ns f(INTCLK) Frequency, system PLL going into VCO (after REFDIV) 10 20 MHz f(VCOCLK) Frequency, system PLL VCO (before ODIV) 220 600 MHz f(PLLRAWCLK) Frequency, system PLL output (before SYSCLK divider) 6 200 MHz f(PLL) Frequency, PLLSYSCLK 2 f(PLL_LIMP) Frequency, PLL Limp Frequency (1) f(LSP) Frequency, LSPCLK tc(LSPCLK) Period, LSPCLK f(OSCCLK) Frequency, OSCCLK (INTOSC1 or INTOSC2 or XTAL or X1) f(EPWM) Frequency, EPWMCLK f(HRPWM) Frequency, HRPWMCLK (1) 66 100 45/(ODIV+1) MHz MHz 2 100 MHz 10 500 ns See respective clock 60 MHz 100 MHz 100 MHz PLL output frequency when OSCCLK is dead (Loss of OSCCLK causes PLL to Limp). Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.11.3.3 Input Clocks and PLLs In addition to the internal 0-pin oscillators, three types of external clock sources are supported: • A single-ended 3.3-V external clock. The clock signal should be connected to X1, as shown in Figure 7-12, with the XTALCR.SE bit set to 1. • An external crystal. The crystal should be connected across X1 and X2 with its load capacitors connected to VSS as shown in Figure 7-13. • An external resonator. The resonator should be connected across X1 and X2 with its ground connected to VSS as shown in Figure 7-14. Microcontroller VSS Microcontroller GPIO19 GPIO18* X1 X2 GPIO19 GPIO18 X1 X2 * Available as a GPIO when X1 is used as a clock +3.3 V VDD VSS Out 3.3-V Oscillator Gnd Figure 7-13. External Crystal Figure 7-12. Single-ended 3.3-V External Clock Microcontroller VSS GPIO19 GPIO18 X1 X2 Figure 7-14. External Resonator Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 67 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.11.3.4 Crystal Oscillator When using a quartz crystal, it may be necessary to include a damping resistor (RD) in the crystal circuit to prevent overdriving the crystal (drive level can be found in the crystal data sheet). In higher-frequency applications (10 MHz or greater), RD is generally not required. If a damping resistor is required, RD should be as small as possible because the size of the resistance affects start-up time (smaller RD = faster start-up time). TI recommends that the crystal manufacturer characterize the crystal with the application board. Section 7.11.3.4.1 lists the crystal oscillator parameters. Table 7-3 lists the crystal equivalent series resistance (ESR) requirements. Section 7.11.3.4.2 lists the crystal oscillator electrical characteristics. 7.11.3.4.1 Crystal Oscillator Parameters CL1, CL2 Load capacitance C0 Crystal shunt capacitance MIN MAX 12 24 UNIT pF 7 pF For Table 7-3: 1. Crystal shunt capacitance (C0) should be less than or equal to 7 pF. 2. ESR = Negative Resistance/3 Table 7-3. Crystal Equivalent Series Resistance (ESR) Requirements CRYSTAL FREQUENCY (MHz) MAXIMUM ESR (Ω) (CL1 = CL2 = 12 pF) MAXIMUM ESR (Ω) (CL1 = CL2 = 24 pF) 10 55 110 12 50 95 14 50 90 16 45 75 18 45 65 20 45 50 7.11.3.4.2 Crystal Oscillator Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS f = 20 MHz ESR MAX = 50 Ω CL1 = CL2 = 24 pF C0 = 7 pF Start-up time(1) MIN TYP MAX 2 Crystal drive level (DL) (1) 68 UNIT ms 1 mW Start-up time is dependent on the crystal and tank circuit components. TI recommends that the crystal vendor characterize the application with the chosen crystal. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.11.3.5 Internal Oscillators To reduce production board costs and application development time, all F28002x devices contain two independent internal oscillators, referred to as INTOSC1 and INTOSC2. By default, INTOSC2 is set as the source for the system reference clock (OSCCLK) and INTOSC1 is set as the backup clock source. Applications requiring tighter clock tolerance can use the SCI baud tuning example available in C2000Ware (C2000Ware_3_03_00_00\driverlib\f28002x\examples\sci\baud_tune_via_uart) to enable baud matching better than 1% accuracy. Section 7.11.3.5.1 provides the electrical characteristics of the internal oscillators. 7.11.3.5.1 INTOSC Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER fINTOSC Frequency, INTOSC1 and INTOSC2 fINTOSC-STABILITY Frequency stability tINT0SC-ST Start-up and settling time Copyright © 2020 Texas Instruments Incorporated TEST CONDITIONS MIN TYP MAX UNIT -40°C to 125°C 9.8 (–2.0%) 10 10.15 (1.5%) MHz -30°C to 90°C 9.85 (–1.5%) 10 10.15 (1.5%) MHz 30°C, Nominal VDDIO ±0.1 % 20 µs Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 69 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.11.4 Flash Parameters Table 7-4 lists the minimum required Flash wait states with different clock sources and frequencies. Wait state is the value set in register FRDCNTL[RWAIT]. Table 7-4. Minimum Required Flash Wait States with Different Clock Sources and Frequencies EXTERNAL OSCILLATOR OR CRYSTAL CPUCLK (MHz) NORMAL OPERATION 97 < CPUCLK ≤ 100 80 < CPUCLK ≤ 97 77 < CPUCLK ≤ 80 60 < CPUCLK ≤ 77 58 < CPUCLK ≤ 60 40 < CPUCLK ≤ 58 38 < CPUCLK ≤ 40 20 < CPUCLK ≤ 38 19 < CPUCLK ≤ 20 CPUCLK ≤ 19 (1) INTOSC1 OR INTOSC2 BANK OR PUMP SLEEP(1) BANK OR PUMP SLEEP(1) NORMAL OPERATION 4 4 3 3 2 2 1 1 0 0 5 4 4 3 3 2 2 1 1 0 Flash SLEEP operations require an extra wait state when using INTOSC as the clock source for the frequency ranges indicated. Any wait state FRDCNTL[RWAIT] change must be made before beginning a SLEEP mode operation. This setting impacts both flash banks. The F28002x devices have an improved 128-bit prefetch buffer that provides high flash code execution efficiency across wait states. Figure 7-15 and Figure 7-16 illustrate typical efficiency across wait-state settings compared to previous-generation devices with a 64-bit prefetch buffer. Wait-state execution efficiency with a prefetch buffer will depend on how many branches are present in application software. Two examples of linear code and if-thenelse code are provided. 100% 100% 95% 90% Efficiency (%) Efficiency (%) 90% 80% 70% 60% Flash with 64-Bit Prefetch Flash with 128-Bit Prefetch 50% 80% 75% Flash with 64-Bit Prefetch Flash with 128-Bit Prefetch 70% 65% 40% 60% 30% 55% 0 1 2 3 Wait State 4 5 D005 Figure 7-15. Application Code With Heavy 32-Bit Floating-Point Math Instructions 70 85% Submit Document Feedback 0 1 2 3 Wait State 4 5 D006 Figure 7-16. Application Code With 16-Bit If-Else Instructions Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 7-5 lists the Flash parameters. Table 7-5. Flash Parameters PARAMETER MIN 128 data bits + 16 ECC bits Program Time(1) 8KB sector TYP MAX UNIT 150 300 µs 50 100 ms EraseTime(2) (3) at < 25 cycles 8KB sector 15 100 ms EraseTime(2) (3) at 1000 cycles 8KB sector 25 350 ms EraseTime(2) (3) 8KB sector 30 600 ms 8KB sector 120 4000 ms 20000 cycles 100000 cycles at 2000 cycles EraseTime(2) (3) at 20K cycles Nwec Write/Erase Cycles per sector Nwec Write/Erase Cycles for entire Flash (combined all sectors) tretention Data retention duration at TJ = 85oC (1) (2) (3) 20 years Program time is at the maximum device frequency. Program time includes overhead of the flash state machine but does not include the time to transfer the following into RAM: • Code that uses flash API to program the flash • Flash API itself • Flash data to be programmed In other words, the time indicated in this table is applicable after all the required code/data is available in the device RAM, ready for programming. The transfer time will significantly vary depending on the speed of the JTAG debug probe used. Program time calculation is based on programming 144 bits at a time at the specified operating frequency. Program time includes Program verify by the CPU. The program time does not degrade with write/erase (W/E) cycling, but the erase time does. Erase time includes Erase verify by the CPU and does not involve any data transfer. Erase time includes Erase verify by the CPU. The on-chip flash memory is in an erased state when the device is shipped from TI. As such, erasing the flash memory is not required prior to programming, when programming the device for the first time. However, the erase operation is needed on all subsequent programming operations. Note The Main Array flash programming must be aligned to 64-bit address boundaries and each 64-bit word may only be programmed once per write/erase cycle. The DCSM OTP programming must be aligned to 128-bit address boundaries and each 128-bit word may only be programmed once. The exceptions are: 1. The DCSM Zx-LINKPOINTER1 and Zx-LINKPOINTER2 values in the DCSM OTP should be programmed together, and may be programmed 1 bit at a time as required by the DCSM operation. 2. The DCSM Zx-LINKPOINTER3 values in the DCSM OTP may be programmed 1 bit at a time on a 64-bit boundary to separate it from Zx-PSWDLOCK, which must only be programmed once. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 71 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.11.5 Emulation/JTAG The JTAG (IEEE Standard 1149.1-1990 Standard Test Access Port and Boundary Scan Architecture) port has four dedicated pins: TMS, TDI, TDO, and TCK. The cJTAG (IEEE Standard 1149.7-2009 for Reduced-Pin and Enhanced-Functionality Test Access Port and Boundary-Scan Architecture) port is a compact JTAG interface requiring only two pins (TMS and TCK), which allows other device functionality to be muxed to the traditional GPIO35 (TDI) and GPIO37 (TDO) pins. Typically, no buffers are needed on the JTAG signals when the distance between the MCU target and the JTAG header is smaller than 6 inches (15.24 cm), and no other devices are present on the JTAG chain. Otherwise, each signal should be buffered. Additionally, for most JTAG debug probe operations at 10 MHz, no series resistors are needed on the JTAG signals. However, if high emulation speeds are expected (35 MHz or so), 22-Ω resistors should be placed in series on each JTAG signal. The PD (Power Detect) terminal of the JTAG debug probe header should be connected to the board's 3.3-V supply. Header GND terminals should be connected to board ground. TDIS (Cable Disconnect Sense) should also be connected to board ground. The JTAG clock should be looped from the header TCK output terminal back to the RTCK input terminal of the header (to sense clock continuity by the JTAG debug probe). This MCU does not support the EMU0 and EMU1 signals that are present on 14-pin and 20-pin emulation headers. These signals should always be pulled up at the emulation header through a pair of board pullup resistors ranging from 2.2 kΩ to 4.7 kΩ (depending on the drive strength of the debugger ports). Typically, a 2.2-kΩ value is used. Header terminal RESET is an open-drain output from the JTAG debug probe header that enables board components to be reset through JTAG debug probe commands (available only through the 20-pin header). Figure 7-17 shows how the 14-pin JTAG header connects to the MCU’s JTAG port signals. Figure 7-18 shows how to connect to the 20-pin JTAG header. The 20-pin JTAG header terminals EMU2, EMU3, and EMU4 are not used and should be grounded. For more information about hardware breakpoints and watchpoints, see Hardware Breakpoints and Watchpoints for C28x in CCS. For more information about JTAG emulation, see the XDS Target Connection Guide. Note JTAG Test Data Input (TDI) is the default mux selection for the pin. The internal pullup is disabled by default. If this pin is used as JTAG TDI, the internal pullup should be enabled or an external pullup added on the board to avoid a floating input. In the cJTAG option, this pin can be used as GPIO. JTAG Test Data Output (TDO) is the default mux selection for the pin. The internal pullup is disabled by default. The TDO function will be in a tri-state condition when there is no JTAG activity, leaving this pin floating. The internal pullup should be enabled or an external pullup added on the board to avoid a floating GPIO input. In the cJTAG option, this pin can be used as GPIO. 72 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Distance between the header and the target should be less than 6 inches (15.24 cm). 3.3 V 4.7 kΩ 1 TMS TMS TRST TDI TDIS PD KEY 2 3.3 V 10 kΩ 3 (A) TDI MCU 3.3 V 100 Ω 3.3 V 5 4 GND 6 10 kΩ (A) TDO 7 TDO GND 9 RTCK GND 10 TCK GND 12 11 TCK 4.7 kΩ 3.3 V 8 4.7 kΩ 13 EMU0 EMU1 14 3.3 V A. TDI and TDO connections are not required for cJTAG option and these pins can be used as GPIOs instead. Figure 7-17. Connecting to the 14-Pin JTAG Header Distance between the header and the target should be less than 6 inches (15.24 cm). 3.3 V 4.7 kΩ 1 TMS 3.3 V 10 kΩ 3 (A) MCU TDI 3.3 V 100 Ω 3.3V 10 kΩ 5 7 (A) TDO 9 11 TCK 4.7 kΩ 3.3 V 13 15 Open Drain 17 19 A low pulse from the JTAG debug probe can be tied with other reset sources to reset the board. GND TMS TRST TDI TDIS PD KEY TDO GND RTCK GND TCK GND EMU0 EMU1 RESET GND EMU2 EMU3 EMU4 GND 2 4 GND 6 8 10 12 4.7 kΩ 14 3.3 V 16 18 20 GND A. TDI and TDO connections are not required for cJTAG option and these pins can be used as GPIOs instead. Figure 7-18. Connecting to the 20-Pin JTAG Header Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 73 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.11.5.1 JTAG Electrical Data and Timing Section 7.11.5.1.1 lists the JTAG timing requirements. Section 7.11.5.1.2 lists the JTAG switching characteristics. Figure 7-19 shows the JTAG timing. 7.11.5.1.1 JTAG Timing Requirements NO. MIN MAX UNIT 1 tc(TCK) Cycle time, TCK 66.66 ns 1a tw(TCKH) Pulse duration, TCK high (40% of tc) 26.66 ns 26.66 ns 1b 3 4 tw(TCKL) Pulse duration, TCK low (40% of tc) tsu(TDI-TCKH) Input setup time, TDI valid to TCK high 13 tsu(TMS-TCKH) Input setup time, TMS valid to TCK high 13 th(TCKH-TDI) Input hold time, TDI valid from TCK high 7 th(TCKH-TMS) Input hold time, TMS valid from TCK high 7 ns ns 7.11.5.1.2 JTAG Switching Characteristics over recommended operating conditions (unless otherwise noted) NO. 2 PARAMETER td(TCKL-TDO) Delay time, TCK low to TDO valid MIN MAX 6 25 UNIT ns 7.11.5.1.3 JTAG Timing Diagram 1 1a 1b TCK 2 TDO 3 4 TDI/TMS Figure 7-19. JTAG Timing 74 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.11.5.2 cJTAG Electrical Data and Timing Section 7.11.5.2.1 lists the cJTAG timing requirements. Section 7.11.5.2.2 lists the cJTAG switching characteristics. Figure 7-20 shows the cJTAG timing. 7.11.5.2.1 cJTAG Timing Requirements NO. MIN MAX UNIT 1 tc(TCK) Cycle time, TCK 100 ns 1a tw(TCKH) Pulse duration, TCK high (40% of tc) 40 ns 1b 3 4 tw(TCKL) Pulse duration, TCK low (40% of tc) 40 ns tsu(TMS-TCKH) Input setup time, TMS valid to TCK high 15 ns tsu(TMS-TCKL) Input setup time, TMS valid to TCK low 15 ns th(TCKH-TMS) Input hold time, TMS valid from TCK high 2 ns th(TCKL-TMS) Input hold time, TMS valid from TCK low 2 ns 7.11.5.2.2 cJTAG Switching Characteristics over recommended operating conditions (unless otherwise noted) NO. PARAMETER 2 td(TCKL-TMS) Delay time, TCK low to TMS valid 5 tdis(TCKH-TMS) Delay time, TCK high to TMS disable MIN MAX 6 UNIT 20 ns 20 ns 7.11.5.2.3 cJTAG Timing Diagram 1 1a TCK TMS 1b 3 4 TMS Input 3 4 TMS Input 2 5 TMS Output Figure 7-20. cJTAG Timing Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 75 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.11.6 GPIO Electrical Data and Timing The peripheral signals are multiplexed with general-purpose input/output (GPIO) signals. On reset, GPIO pins are configured as inputs. For specific inputs, the user can also select the number of input qualification cycles to filter unwanted noise glitches. The GPIO module contains an Output X-BAR which allows an assortment of internal signals to be routed to a GPIO in the GPIO mux positions denoted as OUTPUTXBARx. The GPIO module also contains an Input X-BAR which is used to route signals from any GPIO input to different IP blocks such as the ADCs, eCAPs, ePWMs, and external interrupts. For more details, see the X-BAR chapter in the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual. 7.11.6.1 GPIO – Output Timing Section 7.11.6.1.1 lists the general-purpose output switching characteristics. Figure 7-21 shows the generalpurpose output timing. 7.11.6.1.1 General-Purpose Output Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER MIN MAX UNIT tr(GPIO) Rise time, GPIO switching low to high All GPIOs 8(1) tf(GPIO) Fall time, GPIO switching high to low All GPIOs 8(1) ns fGPIO Toggling frequency, all GPIOs 25 MHz (1) ns Rise time and fall time vary with load. These values assume a 40-pF load. GPIO tr(GPIO) tf(GPIO) Figure 7-21. General-Purpose Output Timing 76 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.11.6.2 GPIO – Input Timing Section 7.11.6.2.1 lists the general-purpose input timing requirements. Figure 7-22 shows the sampling mode. 7.11.6.2.1 General-Purpose Input Timing Requirements MIN tw(SP) Sampling period tw(IQSW) Input qualifier sampling window tw(GPI) (2) Pulse duration, GPIO low/high (1) (2) QUALPRD = 0 1tc(SYSCLK) QUALPRD ≠ 0 2tc(SYSCLK) * QUALPRD MAX UNIT cycles tw(SP) * (n(1) – 1) Synchronous mode cycles 2tc(SYSCLK) With input qualifier cycles tw(IQSW) + tw(SP) + 1tc(SYSCLK) "n" represents the number of qualification samples as defined by GPxQSELn register. For tw(GPI), pulse width is measured from VIL to VIL for an active low signal and VIH to VIH for an active high signal. 7.11.6.2.2 Sampling Mode (A) GPIO Signal GPxQSELn = 1,0 (6 samples) 1 1 0 0 0 0 0 0 0 1 tw(SP) 0 0 0 1 1 1 1 Sampling Window 1 1 1 1 Sampling Period determined by GPxCTRL[QUALPRD] tw(IQSW) 1 (SYSCLK cycle * 2 * QUALPRD) * 5 (B) (C) SYSCLK QUALPRD = 1 (SYSCLK/2) (D) Output From Qualifier A. This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It can vary from 00 to 0xFF. If QUALPRD = 00, then the sampling period is 1 SYSCLK cycle. For any other value "n", the qualification sampling period in 2n SYSCLK cycles (that is, at every 2n SYSCLK cycles, the GPIO pin will be sampled). B. The qualification period selected through the GPxCTRL register applies to groups of eight GPIO pins. C. The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is used. D. In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLK cycles or greater. In other words, the inputs should be stable for (5 × QUALPRD × 2) SYSCLK cycles. This would ensure 5 sampling periods for detection to occur. Because external signals are driven asynchronously, an 13-SYSCLK-wide pulse ensures reliable recognition. Figure 7-22. Sampling Mode Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 77 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.11.6.3 Sampling Window Width for Input Signals The following section summarizes the sampling window width for input signals for various input qualifier configurations. Sampling frequency denotes how often a signal is sampled with respect to SYSCLK. Sampling frequency = SYSCLK/(2 × QUALPRD), if QUALPRD ≠ 0 Sampling frequency = SYSCLK, if QUALPRD = 0 Sampling period = SYSCLK cycle × 2 × QUALPRD, if QUALPRD ≠ 0 In the previous equations, SYSCLK cycle indicates the time period of SYSCLK. Sampling period = SYSCLK cycle, if QUALPRD = 0 In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of the signal. This is determined by the value written to GPxQSELn register. Case 1: Qualification using 3 samples Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 2, if QUALPRD ≠ 0 Sampling window width = (SYSCLK cycle) × 2, if QUALPRD = 0 Case 2: Qualification using 6 samples Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 5, if QUALPRD ≠ 0 Sampling window width = (SYSCLK cycle) × 5, if QUALPRD = 0 Figure 7-23 shows the general-purpose input timing. SYSCLK GPIOxn tw(GPI) Figure 7-23. General-Purpose Input Timing 78 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.11.7 Interrupts The C28x CPU has fourteen peripheral interrupt lines. Two of them (INT13 and INT14) are connected directly to CPU timers 1 and 2, respectively. The remaining twelve are connected to peripheral interrupt signals through the enhanced Peripheral Interrupt Expansion (ePIE) module. The ePIE multiplexes up to sixteen peripheral interrupts into each CPU interrupt line. It also expands the vector table to allow each interrupt to have its own ISR. This allows the CPU to support a large number of peripherals. An interrupt path is divided into three stages—the peripheral, the ePIE, and the CPU. Each stage has its own enable and flag registers. This system allows the CPU to handle one interrupt while others are pending, implement and prioritize nested interrupts in software, and disable interrupts during certain critical tasks. Figure 7-24 shows the interrupt architecture for this device. TIMER0 LPM Logic WD LPMINT WDINT TINT0 WAKEINT NMI module ERAD GPIO0 to GPIOx INPUTXBAR4 INPUTXBAR5 Input INPUTXBAR6 X-BAR INPUTXBAR13 INPUTXBAR14 XINT1 Control XINT2 Control XINT3 Control XINT4 Control XINT5 Control Peripherals See ePIE Table NMI RTOSINT CPU ePIE INT1 to INT12 TIMER1 INT13 TIMER2 INT14 Figure 7-24. Device Interrupt Architecture Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 79 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.11.7.1 External Interrupt (XINT) Electrical Data and Timing Section 7.11.7.1.1 lists the external interrupt timing requirements. Section 7.11.7.1.2 lists the external interrupt switching characteristics. Figure 7-25 shows the external interrupt timing. For an explanation of the input qualifier parameters, see Section 7.11.6.2.1. 7.11.7.1.1 External Interrupt Timing Requirements MIN tw(INT) Pulse duration, INT input low/high Synchronous 2tc(SYSCLK) With qualifier tw(IQSW) + tw(SP) + 1tc(SYSCLK) MAX UNIT cycles 7.11.7.1.2 External Interrupt Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER td(INT) Delay time, INT low/high to interrupt-vector fetch(1) (1) MIN MAX UNIT tw(IQSW) + 14tc(SYSCLK) tw(IQSW) + tw(SP) + 14tc(SYSCLK) cycles This assumes that the ISR is in a single-cycle memory. 7.11.7.1.3 External Interrupt Timing tw(INT) XINT1, XINT2, XINT3, XINT4, XINT5 td(INT) Address bus (internal) Interrupt Vector Figure 7-25. External Interrupt Timing 80 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.11.8 Low-Power Modes This device has HALT, IDLE and STANDBY as clock-gating low-power modes. Further details, as well as the entry and exit procedure, for all of the low-power modes can be found in the Low Power Modes section of the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual. 7.11.8.1 Clock-Gating Low-Power Modes IDLE and HALT modes on this device are similar to those on other C28x devices. Table 7-6 describes the effect on the system when any of the clock-gating low-power modes are entered. Table 7-6. Effect of Clock-Gating Low-Power Modes on the Device MODULES/ CLOCK DOMAIN IDLE STANDBY HALT SYSCLK Active Gated Gated CPUCLK Gated Gated Gated Clock to modules connected to PERx.SYSCLK Active Gated Gated WDCLK Active Active Gated if CLKSRCCTL1.WDHALTI = 0 PLL Powered Powered Software must power down PLL before entering HALT. INTOSC1 Powered Powered Powered down if CLKSRCCTL1.WDHALTI = 0 INTOSC2 Powered Powered Powered down if CLKSRCCTL1.WDHALTI = 0 Flash(1) Powered Powered Powered XTAL(2) Powered Powered Powered (1) (2) The Flash module is not powered down by hardware in any LPM. It may be powered down using software if required by the application. For more information, see the Flash and OTP Memory section of the System Control chapter in the TMS320F28002x RealTime Microcontrollers Technical Reference Manual. The XTAL is not powered down by hardware in any LPM. It may be powered down by software setting the XTALCR.OSCOFF bit to 1. This can be done at any time during the application if the XTAL is not required. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 81 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.11.8.2 Low-Power Mode Wake-up Timing Section 7.11.8.2.1 lists the IDLE mode timing requirements, Section 7.11.8.2.2 lists the IDLE mode switching characteristics, and Figure 7-26 shows the timing diagram for IDLE mode. For an explanation of the input qualifier parameters, see Section 7.11.6.2.1. 7.11.8.2.1 IDLE Mode Timing Requirements MIN tw(WAKE) Pulse duration, external wake-up signal Without input qualifier With input qualifier MAX 2tc(SYSCLK) UNIT cycles 2tc(SYSCLK) + tw(IQSW) 7.11.8.2.2 IDLE Mode Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS From Flash (active state) td(WAKE-IDLE) Delay time, external wake signal to program execution resume(1) From Flash (sleep state) From RAM (1) (2) Without input qualifier With input qualifier MIN MAX UNIT 40tc(SYSCLK) cycles 40tc(SYSCLK) + tw(WAKE) cycles Without input qualifier 6700tc(SYSCLK) (2) cycles 6700tc(SYSCLK) (2) + cycles tw(WAKE) With input qualifier Without input qualifier With input qualifier 25tc(SYSCLK) cycles 25tc(SYSCLK) + tw(WAKE) cycles This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered by the wake-up signal) involves additional latency. This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and FPAC1[PSLEEP]. This value can be realized when SYSCLK is 200 MHz, RWAIT is 3, and FPAC1[PSLEEP] is 0x860. 7.11.8.2.3 IDLE Entry and Exit Timing Diagram td(WAKE-IDLE) Address/Data (internal) XCLKOUT tw(WAKE) WAKE (A) A. WAKE can be any enabled interrupt, WDINT or XRSn. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted. Figure 7-26. IDLE Entry and Exit Timing Diagram 82 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Section 7.11.8.2.4 lists the STANDBY mode timing requirements, Section 7.11.8.2.5 lists the STANDBY mode switching characteristics, and Figure 7-27 shows the timing diagram for STANDBY mode. 7.11.8.2.4 STANDBY Mode Timing Requirements MIN tw(WAKE-INT) (1) Pulse duration, external wake-up signal QUALSTDBY = 0 | 2tc(OSCCLK) MAX UNIT 3tc(OSCCLK) QUALSTDBY > 0 | (2 + QUALSTDBY)tc(OSCCLK) (1) cycles (2 + QUALSTDBY) * tc(OSCCLK) QUALSTDBY is a 6-bit field in the LPMCR register. 7.11.8.2.5 STANDBY Mode Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER td(IDLE-XCOS) TEST CONDITIONS (2) UNIT 16tc(INTOSC1) cycles Delay time, external wake signal to program execution resume(1) td(WAKE-STBY) (1) MAX Delay time, IDLE instruction executed to XCLKOUT stop td(WAKE-STBY) td(WAKE-STBY) MIN Wakeup from flash (Flash module in active state) 175tc(SYSCLK) + tw(WAKE-INT) cycles Wakeup from flash (Flash module in sleep state) 6700tc(SYSCLK) (2) + tw(WAKE-INT) cycles Wakeup from RAM 3tc(OSC) + 15tc(SYSCLK) + tw(WAKE-INT) cycles This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered by the wake-up signal) involves additional latency. This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and FPAC1[PSLEEP]. This value can be realized when SYSCLK is 200 MHz, RWAIT is 3, and FPAC1[PSLEEP] is 0x860. 7.11.8.2.6 STANDBY Entry and Exit Timing Diagram (C) (A) (B) Device Status (F) (D)(E) STANDBY STANDBY (G) Normal Execution Flushing Pipeline Wake-up Signal tw(WAKE-INT) td(WAKE-STBY) OSCCLK XCLKOUT td(IDLE-XCOS) A. IDLE instruction is executed to put the device into STANDBY mode. B. The LPM block responds to the STANDBY signal, SYSCLK is held for a maximum 16 INTOSC1 clock cycles before being turned off. This delay enables the CPU pipeline and any other pending operations to flush properly. C. Clock to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in STANDBY mode. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted. D. The external wake-up signal is driven active. E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal must be free of glitches. If a noisy signal is fed to a GPIO pin, the wakeup behavior of the device will not be deterministic and the device may not exit low-power mode for subsequent wakeup pulses. F. After a latency period, the STANDBY mode is exited. G. Normal execution resumes. The device will respond to the interrupt (if enabled). Figure 7-27. STANDBY Entry and Exit Timing Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 83 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Section 7.11.8.2.7 lists the HALT mode timing requirements, Section 7.11.8.2.8 lists the HALT mode switching characteristics, and Figure 7-28 shows the timing diagram for HALT mode. 7.11.8.2.7 HALT Mode Timing Requirements MIN signal(1) tw(WAKE-GPIO) Pulse duration, GPIO wake-up tw(WAKE-XRS) Pulse duration, XRS wake-up signal(1) (1) MAX UNIT toscst + 2tc(OSCCLK) cycles toscst + 8tc(OSCCLK) cycles For applications using X1/X2 for OSCCLK, the user must characterize their specific oscillator start-up time as it is dependent on circuit/ layout external to the device. See Crystal Oscillator Electrical Characteristics table for more information. For applications using INTOSC1 or INTOSC2 for OSCCLK, see Internal Oscillators section for toscst. Oscillator start-up time does not apply to applications using a single-ended crystal on the X1 pin, as it is powered externally to the device. 7.11.8.2.8 HALT Mode Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER td(IDLE-XCOS) MAX UNIT 16tc(INTOSC1) cycles Wakeup from Flash - Flash module in active state 75tc(OSCCLK) cycles Wakeup from Flash - Flash module in sleep state 17500tc(OSCCLK) (1) Delay time, IDLE instruction executed to XCLKOUT stop MIN Delay time, external wake signal end to CPU1 program execution resume td(WAKE-HALT) Wakeup from RAM (1) 84 75tc(OSCCLK) This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and FPAC1[PSLEEP]. This value can be realized when SYSCLK is 200 MHz, RWAIT is 3, and FPAC1[PSLEEP] is 0x860. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.11.8.2.9 HALT Entry and Exit Timing Diagram (C) (A) (B) Device Status (F) (D)(E) HALT (G) HALT Flushing Pipeline Normal Execution GPIOn td(WAKE-HALT) tw(WAKE-GPIO) OSCCLK Oscillator Start-up Time XCLKOUT td(IDLE-XCOS) A. IDLE instruction is executed to put the device into HALT mode. B. The LPM block responds to the HALT signal, SYSCLK is held for a maximum 16 INTOSC1 clock cycles before being turned off. This delay enables the CPU pipeline and any other pending operations to flush properly. C. Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as the clock source, the internal oscillator is shut down as well. The device is now in HALT mode and consumes very little power. It is possible to keep the zero-pin internal oscillators (INTOSC1 and INTOSC2) and the watchdog alive in HALT MODE. This is done by writing 1 to CLKSRCCTL1.WDHALTI. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before the wakeup signal could be asserted. D. When the GPIOn pin (used to bring the device out of HALT) is driven low, the oscillator is turned on and the oscillator wake-up sequence is initiated. The GPIO pin should be driven high only after the oscillator has stabilized. This enables the provision of a clean clock signal during the PLL lock sequence. Because the falling edge of the GPIO pin asynchronously begins the wake-up procedure, care should be taken to maintain a low noise environment before entering and during HALT mode. E. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the device will not be deterministic and the device may not exit low-power mode for subsequent wake-up pulses. F. When CLKIN to the core is enabled, the device will respond to the interrupt (if enabled), after some latency. The HALT mode is now exited. G. Normal operation resumes. H. The user must relock the PLL upon HALT wakeup to ensure a stable PLL lock. Figure 7-28. HALT Entry and Exit Timing Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 85 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.12 Analog Peripherals The analog subsystem module is described in this section. The analog modules on this device include the ADC, temperature sensor, and CMPSS. The analog subsystem has the following features: • Flexible voltage references – The ADCs are referenced to VREFHI and VSSA pins • VREFHI pin voltage can be driven in externally or can be generated by an internal bandgap voltage reference • The internal voltage reference range can be selected to be 0V to 3.3V or 0V to 2.5V – The comparator DACs are referenced to VDDA and VSSA • Alternately, these DACs can be referenced to the VDAC pin and VSSA • Flexible pin usage – Comparator subsystem inputs and digital inputs are multiplexed with ADC inputs – Internal connection to VREFLO on all ADCs for offset self-calibration Figure 7-29 shows the Analog Subsystem Block Diagram for the 80-pin PN and 64-pin PM LQFPs. Figure 7-30 shows the Analog Subsystem Block Diagram for the 48-pin PT LQFP. Table 7-7 lists the analog pins and internal connections. Table 7-8 lists descriptions of analog signals.Figure 7-31 shows the analog group connections. Figure 7-29. Analog Subsystem Block Diagram (80-Pin PN and 64-Pin PM LQFPs) 86 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Figure 7-30. Analog Subsystem Block Diagram (48-Pin PT LQFP) Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 87 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 CMPSSx Input MUX CMPxHPMX CMPx_HP0 CMPx_HP1 CMPx_HP2 CMPx_HP3 CMPx_HP4 0 1 2 3 CMPx_HP 4 CMPxHNMX 0 CMPx_HN1 1 CMPx_LN0 0 CMPx_LN1 1 CMPx_HN CMPxLNMX To CMPSSx CMPx_HN0 CMPx_LN CMPxLPMX CMPx_LP0 CMPx_LP1 CMPx_LP2 CMPx_LP3 CMPx_LP4 0 1 2 3 CMPx_LP 4 Gx_ADCA Gx_ADCA AIO To ADCs Gx_ADCC Gx_ADCC AIO Figure 7-31. Analog Group Connections 88 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Analog Pins and Internal Connections Table 7-7. Analog Pins and Internal Connections Package Pin Pin Name ADC 80 QFP 64 QFP 48 QFN VREFHI 20 16 12 VREFLO 21 17 13 Comparator Subsystem (MUX) A C A13 C13 High Positive High Negative Analog Group 1 Low Positive Low Negative AIO Input CMP1 A6 10 6 4(3) A6 - CMP1 (HPMXSEL=2) CMP1 (LPMXSEL=2) AIO228 A2/C9 13 9 6 A2 C9 CMP1 (HPMXSEL=0) CMP1 (LPMXSEL=0) AIO224 A15/C7 14 10 7 A15 C7 CMP1 (HPMXSEL=3) CMP1 (HNMXSEL=0) CMP1 (LPMXSEL=3) CMP1 (LNMXSEL=0) AIO233 A11/C0 16 12 8 A11 C0 CMP1 (HPMXSEL=1) CMP1 (HNMXSEL=1) CMP1 (LPMXSEL=1) CMP1 (LNMXSEL=1) AIO237 A1 18 14 10 A1 - CMP1 (HPMXSEL=4) CMP1 (LPMXSEL=4) Analog Group 2 A10/C10 29 25 21 A10 C10 CMP2 (HPMXSEL=3) CMP2 (HNMXSEL=0) Analog Group 3 CMP2 (LPMXSEL=3) CMP2 (LNMXSEL=0) AIO230 CMP3 (LNMXSEL=0) AIO242 CMP3 (LNMXSEL=1) AIO244 CMP3 C6 11 7 4(3) - C6 CMP3 (HPMXSEL=0) A3/C5/VDAC(1) 12 8 5 A3 C5 CMP3 (HPMXSEL=3) A14/C4 15 11 - A14 C4 CMP3 (HPMXSEL=4) A5/C2 17 13 9 A5 C2 CMP3 (HPMXSEL=1) A0/C15 19 15 11 A0 C15 CMP3 (HPMXSEL=2) CMP3 (LPMXSEL=0) CMP3 (HNMXSEL=0) CMP3 (LPMXSEL=3) CMP3 (HNMXSEL=1) CMP3 (LPMXSEL=1) AIO226 CMP3 (LPMXSEL=4) AIO239 CMP3 (LPMXSEL=2) Analog Group 4 A7/C3 AIO232 CMP2 AIO231 CMP4 23 19 15 A7 C3 CMP4 (HPMXSEL=1) CMP4 (HNMXSEL=1) Combined Analog Group 2/4 CMP4 (LPMXSEL=1) CMP4 (LNMXSEL=1) AIO245 CMP2 (LNMXSEL=1) AIO238 CMP2/4 A12/C1 22 18 14 A12 C1 CMP2 (HPMXSEL=1) CMP4 (HPMXSEL=2) A8/C11 24 20 16 A8 C11 CMP2 (HPMXSEL=4) CMP4 (HPMXSEL=4) A4/C14 27 23 19 A4 C14 CMP2 (HPMXSEL=0) CMP4 (HPMXSEL=3) A9/C8 28 24 20 A9 C8 CMP2 (HPMXSEL=2) CMP4 (HPMXSEL=0) Copyright © 2020 Texas Instruments Incorporated CMP2 (HNMXSEL=1) CMP2 (LPMXSEL=1) CMP4 (LPMXSEL=2) CMP2 (LPMXSEL=4) CMP4 (LPMXSEL=4) CMP4 (HNMXSEL=0) CMP2 (LPMXSEL=0) CMP4 (LPMXSEL=3) AIO241 CMP4 (LNMXSEL=0) CMP2 (LPMXSEL=2) CMP4 (LPMXSEL=0) AIO225 AIO227 Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 89 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 7-7. Analog Pins and Internal Connections (continued) Package Pin Pin Name ADC Comparator Subsystem (MUX) 80 QFP 64 QFP 48 QFN A C - - - - C12 High Positive High Negative Low Positive Low Negative AIO Input Other Analog TempSensor(2) (1) (2) (3) 90 Optional external reference voltage for on-chip COMPDACs. There is an internal capacitance to VSSA on this pin whether used for ADC input or COMPDAC reference. If used as a VDAC reference, place at least a 1-µF capacitor on this pin. Internal connection only; does not come to a device pin. A6 and C6 is double bonded as pin # 4. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Analog Signal Descriptions Table 7-8. Analog Signal Descriptions SIGNAL NAME DESCRIPTION AIOx Digital input on ADC pin Ax ADC A Input Cx ADC C Input CMPx_HNy Comparator subsystem high comparator negative input CMPx_HPy Comparator subsystem high comparator positive input CMPx_LNy Comparator subsystem low comparator negative input CMPx_LPy Comparator subsystem low comparator positive input TempSensor Internal temperature sensor VDAC Optional external reference voltage for on-chip COMPDACs. There is an internal capacitance to VSSA on this pin whether used for ADC input or COMPDAC reference which cannot be disabled. If this pin is being used as a reference for the on-chip COMPDACs, place at least a 1-uF capacitor on this pin. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 91 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.12.1 Analog-to-Digital Converter (ADC) The ADC module described here is a successive approximation (SAR) style ADC with resolution of 12 bits. This section refers to the analog circuits of the converter as the “core,” and includes the channel-select MUX, the sample-and-hold (S/H) circuit, the successive approximation circuits, voltage reference circuits, and other analog support circuits. The digital circuits of the converter are referred to as the “wrapper” and include logic for programmable conversions, result registers, interfaces to analog circuits, interfaces to the peripheral buses, post-processing circuits, and interfaces to other on-chip modules. Each ADC module consists of a single sample-and-hold (S/H) circuit. The ADC module is designed to be duplicated multiple times on the same chip, allowing simultaneous sampling or independent operation of multiple ADCs. The ADC wrapper is start-of-conversion (SOC)-based (see the SOC Principle of Operation section of the Analog-to-Digital Converter (ADC) chapter in the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual). Each ADC has the following features: • Resolution of 12 bits • Ratiometric external reference set by VREFHI/VREFLO • Selectable internal reference of 2.5 V or 3.3 V • Single-ended signaling • Input multiplexer with up to 16 channels • 16 configurable SOCs • 16 individually addressable result registers • Multiple trigger sources – S/W: software immediate start – All ePWMs: ADCSOC A or B – GPIO XINT2 – CPU Timers 0/1/2 – ADCINT1/2 • Four flexible PIE interrupts • Burst-mode triggering option • Four post-processing blocks, each with: – Saturating offset calibration – Error from setpoint calculation – High, low, and zero-crossing compare, with interrupt and ePWM trip capability – Trigger-to-sample delay capture Note Not every channel may be pinned out from all ADCs. See Section 6 to determine which channels are available. 92 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 The block diagram for the ADC core and ADC wrapper are shown in Figure 7-32. Analog-to-Digital Wrapper Logic Input Circuit SOC Arbitration & Control ADCSOC [15:0] ACQPS u DOUT1 xV 2 IN- SOCxSTART[15:0] xV 1 IN+ EOCx[15:0] [15:0] CHSEL ADCCOUNTER TRIGGER[15:0] SOC Delay Timestamp Converter S/H Circuit ... RESULT Trigger Timestamp - + ADCRESULT 0±15 Regs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 [15:0] ... ADCIN0 ADCIN1 ADCIN2 ADCIN3 ADCIN4 ADCIN5 ADCIN6 ADCIN7 ADCIN8 ADCIN9 ADCIN10 ADCIN11 ADCIN12 ADCIN13 ADCIN14 ADCIN15 TRIGSEL SOCx (0-15) CHSEL Triggers Analog-to-Digital Core ADCPPBxOFFCAL saturate ADCPPBxOFFREF + ADCPPBxRESULT ADCEVT VREFHI CONFIG Bandgap Reference Circuit 1.65-V Output (3.3-V Range) or 2.5-V Output (2.5-V Range) 1 Event Logic ADCEVTINT Post Processing Block (1-4) 0 Interrupt Block (1-4) ADCINT1-4 VREFLO Analog System Control ANAREFSEL ANAREFx2PSSEL Reference Voltage Levels Figure 7-32. ADC Module Block Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 93 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.12.1.1 ADC Configurability Some ADC configurations are individually controlled by the SOCs, while others are globally controlled per ADC module. Table 7-9 summarizes the basic ADC options and their level of configurability. Table 7-9. ADC Options and Configuration Levels OPTIONS CONFIGURABILITY Clock Per module(1) Resolution Not configurable (12-bit resolution only) Signal mode Not configurable (single-ended signal mode only) Reference voltage source Common for both ADC modules Trigger source Per SOC(1) Converted channel Per SOC Acquisition window duration Per SOC(1) EOC location Per module Burst mode Per module(1) (1) Writing these values differently to different ADC modules could cause the ADCs to operate asynchronously. For guidance on when the ADCs are operating synchronously or asynchronously, see the Ensuring Synchronous Operation section of the Analog-to-Digital Converter (ADC) chapter in the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual. 7.12.1.1.1 Signal Mode The ADC supports single-ended signaling. The input voltage to the converter is sampled through a single pin (ADCINx), referenced to VREFLO. Figure 7-33 shows the single-ended signaling mode. Pin Voltage VREFHI VREFHI ADCINx ADCINx ADC VREFHI/2 VREFLO VREFLO (VSSA) Digital Output 2n - 1 ADC Vin 0 Figure 7-33. Single-ended Signaling Mode 94 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.12.1.2 ADC Electrical Data and Timing Section 7.12.1.2.1 lists the ADC operating conditions. Section 7.12.1.2.2 lists the ADC electrical characteristics. Note The ADC inputs should be kept below VDDA + 0.3 V during operation. If an ADC input exceeds this level, the VREF internal to the device may be disturbed, which can impact results for other ADC inputs using the same VREF.   Note The VREFHI pin must be kept below VDDA + 0.3 V to ensure proper functional operation. If the VREFHI pin exceeds this level, a blocking circuit may activate, and the internal value of VREFHI may float to 0 V internally, giving improper ADC conversion.   7.12.1.2.1 ADC Operating Conditions over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS ADCCLK (derived from PERx.SYSCLK) MIN 100-MHz SYSCLK Sample window duration (set by ACQPS and PERx.SYSCLK)(1) With 50 Ω or less Rs 75 VREFHI External Reference 2.4 VREFHI - VREFLO Internal Reference = 3.3 V Range Internal Reference = 2.5 V Range External Reference (1) (2) UNIT MHz MSPS ns 2.5 or 3.0 VDDA 1.65 Internal Reference = 2.5V Range VREFLO 50 3.45 Internal Reference = 3.3V Range Conversion range MAX 5 Sample rate VREFHI(2) TYP V V 2.5 V VSSA VSSA V 2.4 VDDA V 0 3.3 V 0 2.5 V VREFLO VREFHI V The sample window must also be at least as long as 1 ADCCLK cycle for correct ADC operation. In internal reference mode, the reference voltage is driven out of the VREFHI pin by the device. The user should not drive a voltage into the pin in this mode. 7.12.1.2.2 ADC Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT General ADCCLK Conversion Cycles Power Up Time 100-MHz SYSCLK 10.1 11 ADCCLKs External Reference mode 500 µs Internal Reference mode 5000 µs Internal Reference mode, when switching between 2.5-V range and 3.3-V range. 5000 µs VREFHI input current(1) 130 µA Internal Reference Capacitor Value(2) 2.2 µF External Reference Capacitor Value(2) 2.2 µF Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 95 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.12.1.2.2 ADC Characteristics (continued) over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT DC Characteristics Gain Error Internal reference –45 External reference –5 ±3 5 –5 ±2 5 Offset Error Channel-to-Channel Gain Error(4) Channel-to-Channel Offset Error(4) ADC-to-ADC Gain Error(5) ADC-to-ADC Offset Error(5) Identical VREFHI and VREFLO for all ADCs Identical VREFHI and VREFLO for all ADCs DNL Error INL Error ADC-to-ADC Isolation VREFHI = 2.5 V, synchronous ADCs 45 LSB LSB 2 LSB 2 LSB 4 LSB 2 LSB >–1 ±0.5 1 –2 ±1.0 2 LSB 1 LSBs –1 LSB AC Characteristics VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1 68.8 SNR(3) VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from INTOSC 60.1 THD(3) VREFHI = 2.5 V, fin = 100 kHz –80.6 dB SFDR(3) VREFHI = 2.5 V, fin = 100 kHz 79.2 dB VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1 68.5 VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from INTOSC 60.0 VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1, Single ADC 11.0 VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1, synchronous ADCs 11.0 VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1, asynchronous ADCs Not Supported SINAD(3) ENOB(3) PSRR (1) (2) (3) (4) (5) 96 VDD = 1.2-V DC + 100mV DC up to Sine at 1 kHz 60 VDD = 1.2-V DC + 100 mV DC up to Sine at 300 kHz 57 VDDA = 3.3-V DC + 200 mV DC up to Sine at 1 kHz 60 VDDA = 3.3-V DC + 200 mV Sine at 900 kHz 57 dB dB bits dB Load current on VREFHI increases when ADC input is greater than VDDA. This causes inaccurate conversions. A ceramic capacitor with package size of 0805 or smaller is preferred. Up to ±20% tolerance is acceptable. IO activity is minimized on pins adjacent to ADC input and VREFHI pins as part of best practices to reduce capacitive coupling and crosstalk. Variation across all channels belonging to the same ADC module. Worst case variation compared to other ADC modules. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.12.1.2.3 ADC Input Model The ADC input characteristics are given by Table 7-10 and Figure 7-34. Table 7-10. Input Model Parameters DESCRIPTION Cp Ron REFERENCE MODE VALUE Parasitic input capacitance All Sampling switch resistance External Reference, 2.5-V Internal Reference 500 Ω 3.3-V Internal Reference 860 Ω Ch Sampling capacitor Rs Nominal source impedance See Table 7-11 External Reference, 2.5-V Internal Reference 12.5 pF 3.3-V Internal Reference 7.5 pF All 50 Ω ADC Rs ADCINx Switch AC Ron Cp Ch VREFLO Figure 7-34. Input Model This input model should be used with actual signal source impedance to determine the acquisition window duration. For more information, see the Choosing an Acquisition Window Duration section of the Analog-toDigital Converter (ADC) chapter in the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual. Table 7-11 lists the parasitic capacitance on each channel. Table 7-11. Per-Channel Parasitic Capacitance ADC CHANNEL (1) Cp (pF) COMPARATOR DISABLED COMPARATOR ENABLED ADCINA0/ADCINC15 3.3 15.8 ADCINA1 2.4 4.9 ADCINA2/ADCINC9 2.9 5.4 ADCINA3/ADCINC5(1) 71.4 73.9 ADCINA4/ADCINC14 4.5 7 ADCINA5/ADCINC2 2.7 5.2 ADCINA6 2.6 5.1 ADCINA7/ADCINC3 4.2 6.7 ADCINA8/ADCINC11 4.5 7 ADCINA9/ADCINC8 3.4 5.9 ADCINA10/ADCINC10 2.9 5.4 ADCINA11/ADCINC0 2.9 5.4 ADCINA12/ADCINC1 4.7 7.2 ADCINA14/ADCINC4 2.5 5 ADCINA15/ADCINC7 3.3 5.8 ADCINC6 2.9 5.4 Pin also used to supply reference voltage for COMPDAC and includes an internal decoupling capacitor. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 97 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.12.1.2.4 ADC Timing Diagrams Figure 7-35 shows the ADC conversion timings for two SOCs given the following assumptions: • SOC0 and SOC1 are configured to use the same trigger. • No other SOCs are converting or pending when the trigger occurs. • The round-robin pointer is in a state that causes SOC0 to convert first. • ADCINTSEL is configured to set an ADCINT flag upon end of conversion for SOC0 (whether this flag propagates through to the CPU to cause an interrupt is determined by the configurations in the PIE module). Table 7-12 lists the descriptions of the ADC timing parameters. Table 7-13 lists the ADC timings. Sample n Input on SOC0.CHSEL Input on SOC1.CHSEL Sample n+1 ADC S+H SOC0 SOC1 SYSCLK ADCCLK ADCTRIG ADCSOCFLG.SOC0 ADCSOCFLG.SOC1 ADCRESULT0 (old data) ADCRESULT1 (old data) Sample n Sample n+1 ADCINTFLG.ADCINTx tSH tLAT tEOC tINT Figure 7-35. ADC Timings 98 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 7-12. ADC Timing Parameters PARAMETER DESCRIPTION The duration of the S+H window. At the end of this window, the value on the S+H capacitor becomes the voltage to be converted into a digital value. The duration is given by (ACQPS + 1) SYSCLK cycles. ACQPS can be configured individually for each SOC, so tSH will not necessarily be the same for different SOCs. tSH Note: The value on the S+H capacitor will be captured approximately 5 ns before the end of the S+H window regardless of device clock settings. The time from the end of the S+H window until the ADC results latch in the ADCRESULTx register. tLAT If the ADCRESULTx register is read before this time, the previous conversion results will be returned. The time from the end of the S+H window until the S+H window for the next ADC conversion can begin. The subsequent sample can start before the conversion results are latched. tEOC The time from the end of the S+H window until an ADCINT flag is set (if configured). If the INTPULSEPOS bit in the ADCCTL1 register is set, tINT will coincide with the conversion results being latched into the result register. If the INTPULSEPOS bit is 0, tINT will coincide with the end of the S+H window. If tINT triggers a read of the ADC result register (directly through DMA or indirectly by triggering an ISR that reads the result), care must be taken to ensure the read occurs after the results latch (otherwise, the previous results will be read). tINT If the INTPULSEPOS bit is 0, and the OFFSET field in the ADCINTCYCLE register is not 0, then there will be a delay of OFFSET SYSCLK cycles before the ADCINT flag is set. This delay can be used to enter the ISR or trigger the DMA at exactly the time the sample is ready. Table 7-13. ADC Timings ADCCLK PRESCALE SYSCLK CYCLES ADCCLK CYCLES ADCCTL2 [PRESCALE] RATIO ADCCLK:SYSCLK tEOC 0 1 11 13 1 11 11 2 2 21 23 1 21 10.5 4 3 31 34 1 31 10.3 6 4 41 44 1 41 10.3 8 5 51 55 1 51 10.2 10 6 61 65 1 61 10.2 12 7 71 76 1 71 10.1 14 8 81 86 1 81 10.1 (1) (2) tLAT (1) tINT(EARLY) (2) tINT(LATE) tEOC Refer to the "ADC: DMA Read of Stale Result" advisory in the TMS320F28002x Real-Time MCUs Silicon Errata. By default, tINT occurs one SYSCLK cycle after the S+H window if INTPULSEPOS is 0. This can be changed by writing to the OFFSET field in the ADCINTCYCLE register. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 99 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.12.2 Temperature Sensor 7.12.2.1 Temperature Sensor Electrical Data and Timing The temperature sensor can be used to measure the device junction temperature. The temperature sensor is sampled through an internal connection to the ADC and translated into a temperature through TI-provided software. When sampling the temperature sensor, the ADC must meet the acquisition time in Section 7.12.2.1.1. 7.12.2.1.1 Temperature Sensor Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER Tacc Temperature Accuracy tstartup Start-up time (TSNSCTL[ENABLE] to sampling temperature sensor) tacq ADC acquisition time 100 Submit Document Feedback TEST CONDITIONS MIN External reference TYP MAX UNIT ±15 °C 500 µs 450 ns Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.12.3 Comparator Subsystem (CMPSS) Each CMPSS contains two comparators, two reference 12-bit DACs, two digital filters, and one ramp generator. Comparators are denoted "H" or "L" within each module, where “H” and “L” represent high and low, respectively. Each comparator generates a digital output that indicates whether the voltage on the positive input is greater than the voltage on the negative input. The positive input of the comparator can be driven from an external pin or by the PGA . The negative input can be driven by an external pin or by the programmable reference 12-bit DAC. Each comparator output passes through a programmable digital filter that can remove spurious trip signals. An unfiltered output is also available if filtering is not required. A ramp generator circuit is optionally available to control the reference 12-bit DAC value for the high comparator in the subsystem. There are two outputs from each CMPSS module. These two outputs pass through the digital filters and crossbar before connecting to the ePWM modules or GPIO pin. Figure 7-36 shows the CMPSS connectivity. CMP1_ HP CMP1_HN Comparator Subsystem 1 VDDA or VDAC CTRIP1H Digital Filter CTRIP1H CTRIPOUT1H Digital Filter CTRIP1L CTRIPOUT1L DAC12 CMP1_LN CMP1_LP CMP2_HP CMP2_HN Comparator Subsystem 2 Digital Filter VDDA or VDAC DAC12 CTRIP2L ePWM X- BAR ePWMs Output X- BAR GPIO Mux CTRIP2H CTRIPOUT2H DAC12 CMP2_LN CMP2_LP CTRIP1L CTRIP2H DAC12 CTRIP4H Digital Filter CTRIP2L CTRIPOUT2L CTRIP4L CTRIPOUT1H CTRIPOUT1L CTRIPOUT2H CMP4_ HP CMP4_ HN Comparator Subsystem 4 VDDA or VDAC Digital Filter CTRIP4H CTRIPOUT4H Digital Filter CTRIP4L CTRIPOUT4L CTRIPOUT2L DAC12 DAC12 CMP4_LN CMP4_ LP CTRIPOUT4H CTRIPOUT4L Figure 7-36. CMPSS Connectivity Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 101 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.12.3.1 CMPSS Electrical Data and Timing Section 7.12.3.1.1 lists the comparator electrical characteristics. Figure 7-37 shows the CMPSS comparator input referred offset. Figure 7-38 shows the CMPSS comparator hysteresis. 7.12.3.1.1 Comparator Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TPU TEST CONDITIONS MIN TYP Power-up time Comparator input (CMPINxx) range Low common mode, inverting input set to 50mV Input referred offset error Hysteresis(1) MAX UNIT 500 µs 0 VDDA V –20 20 1x 12 2x 24 3x 36 4x 48 Step response 21 mV LSB 60 Response time (delay from CMPINx input change to output on ePWM X-BAR or Output Ramp response (1.65V/µs) X-BAR) Ramp response (8.25mV/µs) 30 ns PSRR Power Supply Rejection Ratio Up to 250 kHz 46 dB CMRR Common Mode Rejection Ratio (1) 26 40 ns dB The CMPSS DAC is used as the reference to determine how much hysteresis to apply. Therefore, hysteresis will scale with the CMPSS DAC reference voltage. Hysteresis is available for all comparator input source configurations. CMPSS Comparator Input Referred Offset and Hysteresis Note The CMPSS inputs must be kept below VDDA + 0.3 V to ensure proper functional operation. If a CMPSS input exceeds this level, an internal blocking circuit isolates the internal comparator from the external pin until the external pin voltage returns below VDDA + 0.3 V. During this time, the internal comparator input is floating and can decay below VDDA within approximately 0.5 µs. After this time, the comparator could begin to output an incorrect result depending on the value of the other comparator input. Input Referred Offset CTRIPx Logic Level CTRIPx = 1 CTRIPx = 0 0 CMPINxN or DACxVAL COMPINxP Voltage Figure 7-37. CMPSS Comparator Input Referred Offset 102 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Hysteresis CTRIPx Logic Level CTRIPx = 1 CTRIPx = 0 0 CMPINxN or DACxVAL COMPINxP Voltage Figure 7-38. CMPSS Comparator Hysteresis Section 7.12.3.1.2 lists the CMPSS DAC static electrical characteristics. 7.12.3.1.2 CMPSS DAC Static Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER CMPSS DAC output range TEST CONDITIONS TYP MAX UNIT 0 VDDA External reference 0 VDAC(4) –25 25 mV Static offset error(1) Static gain MIN Internal reference error(1) V –2 2 % of FSR Static DNL Endpoint corrected >–1 4 LSB Static INL Endpoint corrected –16 16 LSB Settling time Settling to 1LSB after full-scale output change 1 µs Resolution 12 CMPSS DAC output disturbance(2) Error induced by comparator trip or CMPSS DAC code change within the same CMPSS module –100 CMPSS DAC disturbance time(2) VDAC reference voltage VDAC (1) (2) (3) (4) load(3) bits 100 LSB 200 ns When VDAC is reference 2.4 2.5 or 3.0 VDDA V When VDAC is reference 6 8 10 kΩ Includes comparator input referred errors. Disturbance error may be present on the CMPSS DAC output for a certain amount of time after a comparator trip. Per active CMPSS module. The maximum output voltage is VDDA when VDAC > VDDA. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 103 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.12.3.1.3 CMPSS Illustrative Graphs Figure 7-39 shows the CMPSS DAC static offset. Figure 7-40 shows the CMPSS DAC static gain. Figure 7-41 shows the CMPSS DAC static linearity. Offset Error Figure 7-39. CMPSS DAC Static Offset Ideal Gain Actual Gain Actual Linear Range Figure 7-40. CMPSS DAC Static Gain 104 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Linearity Error Figure 7-41. CMPSS DAC Static Linearity Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 105 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.13 Control Peripherals 7.13.1 Enhanced Pulse Width Modulator (ePWM) The ePWM peripheral is a key element in controlling many of the power electronic systems found in both commercial and industrial equipment. The ePWM type-4 module is able to generate complex pulse width waveforms with minimal CPU overhead by building the peripheral up from smaller modules with separate resources that can operate together to form a system. Some of the highlights of the ePWM type-4 module include complex waveform generation, dead-band generation, a flexible synchronization scheme, advanced tripzone functionality, and global register reload capabilities. Figure 7-42 shows the ePWM module. Figure 7-43 shows the ePWM trip input connectivity. 106 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Time-Base (TB) TBPRD Shadow (24) ePWM SYNC Scheme EXTSYNCIN TBPRDHR (8) TBPRD Active (24) EXTSYNCOUT CTR=PRD EPWMxSYNCI TBCTL[PHSEN] TBCTL[SWFSYNC] Counter Up/Down (16 bit) DCAEVT1/sync(A) DCBEVT1/sync(A) CTR=ZERO TBCTR Active (16) CTR=PRD CTR=ZERO CTR_Dir TBPHSHR (8) 16 Phase Control Event Trigger And Interrupt (ET) CTR=CMPD CTR_Dir Counter Compare (CC) CTR=CMPA EPWMxSOCA CTR=PRD or ZERO CTR=CMPA CTR=CMPB CTR=CMPC 8 TBPHS Active (24) EPWMx_INT Action Qualifier (AQ) EPWMxSOCB On-chip ADC ADCSOCOUTSELECT DCAEVT1.soc(A) DCBEVT1.soc(A) Select and pulse stretch for external ADC CMPAHR (8) 16 HiRes PWM (HRPWM) CMPAHR (8) ADCSOCAO ADCSOCBO CMPA Active (24) CMPA Shadow (24) EPWMA ePWMxA Dead Band (DB) CTR=CMPB CMPBHR (8) PWM Chopper (DB) Trip Zone (TZ) 16 CMPB Active (16) EPWMB ePWMxB CMPB Shadow (16) CMPBHR (8) TBCNT (16) CTR=CMPC CTR=ZERO DCAEVT1.inter CMPC[15-0] DCBEVT1.inter 16 DCAEVT2.inter CMPC Active (16) DCBEVT2.inter CMPC Shadow (16) EPWMx_TZ_INT TZ1 to TZ3 EMUSTOP CLOCKFAIL EQEPxERR DCAEVT1.force(A) DCBEVT1.force(A) TBCNT (16) CTR=CMPD DCAEVT2.force(A) DCBEVT2.force(A) CMPD[15-0] 16 CMPD Active (16) CMPD Shadow (16) A. These events are generated by the ePWM digital compare (DC) submodule based on the levels of the TRIPIN inputs. Figure 7-42. ePWM Submodules and Critical Internal Signal Interconnects Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 107 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 GPIO0 Async/ Sync/ Sync+Filter GPIOx Input X-Bar INPUT7 INPUT8 INPUT9 INPUT10 INPUT11 INPUT12 INPUT13 INPUT14 INPUT15 INPUT16 INPUT1 INPUT2 INPUT3 INPUT4 INPUT5 INPUT6 Other Sources 16:127 eCAPx INPUT[1:16] 0:15 XINT1 XINT2 ADC XINT3 Wrapper(s) ePWM eCAP Sync Mux XINT4 INPUT[1:14] CMPSSx.TRIPH CMPSSx.TRIPHORL CMPSSx.TRIPL ADCx.EVT1-4 ECAPx.OUT PIE XINT5 EXTSYNCIN1 EXTSYNCIN2 ePWM X-Bar TZ1 TZ2 TZ3 TRIP1 TRIP2 TRIP3 TRIP6 TRIP4 TRIP5 TRIP7 TRIP8 TRIP9 TRIP10 TRIP11 TRIP12 EPWMINT TZINT EPWMx.EPWMCLK PCLKCR2[EPWMx] TBCLKSYNC PCLKCR0[TBCLKSYNC] All ePWM Modules ADCSOCAO Select ADCSOCBO Select EXTSYNCOUT ADCSOCx SOCA Reserved ECCERR PIEVECTERROR EQEPERR CLKFAIL EMUSTOP TRIP13 TRIP14 TRIP15 TZ4 TZ5 TZ6 SOCB EPWMSYNCPER Blanking Window ADC Wrapper(s) CMPSS Figure 7-43. ePWM Trip Input Connectivity 108 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.13.1.1 Control Peripherals Synchronization The ePWM and eCAP synchronization scheme on the device provides flexibility in partitioning the ePWM and eCAP modules and allows localized synchronization within the modules. Like the other peripherals, the partitioning of the ePWM and eCAP modules needs to be done using the CPUSELx registers. Figure 7-44 shows the synchronization scheme. CTR=CMPD CLR One Shot Latch DCAEVT1.sync DCBEVT1.sync 0 EPWMSYNCOUTEN TBCTL2[OSHTSYNCMODE] CTR=CMPC TBCTL3[OSSFRCEN] CTR=ZERO CTR=CMPB :ULWH ³1´ WR TBCTL2[OSHTSYNC] :ULWH ³1´ WR GLDCTL2[OSHTLD] TBCTL SWFSYNC Set Q 1 SWEN ZEROEN 0 CMPBEN 1 OR CMPCEN 0 EPWMxSYNCOUT 1 0 CMPDEN DCARVT1EN TBCTL2[SELFCLRTRREM] DCBEVT1EN Clear Register Disable 0 EPWM1SYNCOUT | | | EPWMxSYNCOUT EPWMxSYNCIN ECAP1SYNCOUT HRPCTL[PWMSYNCSELX] CTR=CMPC UP | | | CTR=CMPC DOWN ECAPySYNCOUT CTR=CMPD UP Other Sources CTR=CMPD DOWN HRPCTL[PWMSYNCSEL] EPWMSYNCINSEL EPWMxSYNCPER CMPSS DAC CTR=PRD CTR=ZERO Note: SYNCO and SYNCOUT are used interchangeably Figure 7-44. Synchronization Chain Architecture Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 109 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.13.1.2 ePWM Electrical Data and Timing Section 7.13.1.2.1 lists the ePWM timing requirements and Section 7.13.1.2.2 lists the ePWM switching characteristics. For an explanation of the input qualifier parameters, see Section 7.11.6.2.1. 7.13.1.2.1 ePWM Timing Requirements MIN tw(SYNCIN) Sync input pulse width Asynchronous 2tc(EPWMCLK) Synchronous 2tc(EPWMCLK) With input qualifier MAX UNIT cycles 1tc(EPWMCLK) + tw(IQSW) 7.13.1.2.2 ePWM Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER tw(PWM) Pulse duration, PWMx output high/low tw(SYNCOUT) Sync output pulse width td(TZ-PWM) Delay time, trip input active to PWM forced high Delay time, trip input active to PWM forced low Delay time, trip input active to PWM Hi-Z MIN MAX 20 UNIT ns 8tc(SYSCLK) cycles 25 ns 7.13.1.2.3 Trip-Zone Input Timing Section 7.13.1.2.3.1 lists the trip-zone input timing requirements. Figure 7-45 shows the PWM Hi-Z characteristics. For an explanation of the input qualifier parameters, see Section 7.11.6.2.1. 7.13.1.2.3.1 Trip-Zone Input Timing Requirements MIN Asynchronous tw(TZ) Pulse duration, TZx input low 1tc(EPWMCLK) Synchronous With input qualifier MAX UNIT cycles 2tc(EPWMCLK) cycles 1tc(EPWMCLK) + tw(IQSW) cycles EPWMCLK tw(TZ) (A) TZ td(TZ-PWM) (B) PWM A. TZ: TZ1, TZ2, TZ3, TRIP1–TRIP12 B. PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery software. Figure 7-45. PWM Hi-Z Characteristics 110 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.13.1.3 External ADC Start-of-Conversion Electrical Data and Timing Section 7.13.1.3.1 lists the external ADC start-of-conversion switching characteristics. Figure 7-46 shows the ADCSOCAO or ADCSOCBO timing. 7.13.1.3.1 External ADC Start-of-Conversion Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER tw(ADCSOCL) MIN Pulse duration, ADCSOCxO low MAX 32tc(SYSCLK) UNIT cycles tw(ADCSOCL) ADCSOCAO or ADCSOCBO Figure 7-46. ADCSOCAO or ADCSOCBO Timing Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 111 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.13.2 High-Resolution Pulse Width Modulator (HRPWM) The HRPWM combines multiple delay lines in a single module and a simplified calibration system by using a dedicated calibration delay line. For each ePWM module, there are two HR outputs: • HR Duty and Deadband control on Channel A • HR Duty and Deadband control on Channel B The HRPWM module offers PWM resolution (time granularity) that is significantly better than what can be achieved using conventionally derived digital PWM methods. The key points for the HRPWM module are: • Significantly extends the time resolution capabilities of conventionally derived digital PWM • This capability can be used in both single edge (duty cycle and phase-shift control) as well as dual edge control for frequency/period modulation. • Finer time granularity control or edge positioning is controlled through extensions to the Compare A, B, phase, period and deadband registers of the ePWM module. Note The minimum HRPWMCLK frequency allowed for HRPWM is 60 MHz. 7.13.2.1 HRPWM Electrical Data and Timing Section 7.13.2.1.1 lists the high-resolution PWM switching characteristics. 7.13.2.1.1 High-Resolution PWM Characteristics PARAMETER Micro Edge Positioning (MEP) step size(1) (1) MIN TYP 150 MAX UNIT 310 ps The MEP step size will be largest at high temperature and minimum voltage on VDD. MEP step size will increase with higher temperature and lower voltage and decrease with lower temperature and higher voltage. Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI software libraries for details of using SFO functions in end applications. SFO functions help to estimate the number of MEP steps per SYSCLK period dynamically while the HRPWM is in operation. 7.13.3 Enhanced Capture and High-Resolution Capture (eCAP, HRCAP) The eCAP module can be used in systems where accurate timing of external events is important. eCAP/HRCAP on this device is Type-2. Applications for eCAP include: • Speed measurements of rotating machinery (for example, toothed sprockets sensed through Hall sensors) • Elapsed time measurements between position sensor pulses • Period and duty cycle measurements of pulse train signals • Decoding current or voltage amplitude derived from duty cycle encoded current/voltage sensors The eCAP module includes the following features: • 4-event time-stamp registers (each 32 bits) • Edge-polarity selection for up to four sequenced time-stamp capture events • Interrupt on either of the four events • Single shot capture of up to four event timestamps • Continuous mode capture of timestamps in a four-deep circular buffer • Absolute time-stamp capture • Difference (Delta) mode time-stamp capture • All of the above resources dedicated to a single input pin • When not used in capture mode, the eCAP module can be configured as a single-channel PWM output (APWM). 112 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 The capture functionality of the Type-1 eCAP is enhanced from the Type-0 eCAP with the following added features: • • • • • Event filter reset bit – Writing a 1 to ECCTL2[CTRFILTRESET] will clear the event filter, the modulo counter, and any pending interrupts flags. Resetting the bit is useful for initialization and debug. Modulo counter status bits – The modulo counter (ECCTL2 [MODCTRSTS]) indicates which capture register will be loaded next. In the Type-0 eCAP, it was not possible to know current state of modulo counter. DMA trigger source – eCAPxDMA is added as a DMA trigger. CEVT[1–4] can be configured as the source for eCAPxDMA. Input multiplexer – ECCTL0 [INPUTSEL] selects one of 128 input signals. EALLOW protection – EALLOW protection is added to critical registers. To maintain software compatibility with the Type-0 eCAP, configure DEV_CFG_REGS.ECAPTYPE to make these registers unprotected. The capture functionality of the Type-2 eCAP is enhanced from the Type-1 eCAP with the following added features: • ECAPxSYNCINSEL register – The ECAPSxYNCINSEL register is added for each eCAP to select an external SYNCIN. Every eCAP can have a separate SYNCIN signal. The eCAP inputs connect to any GPIO input through the Input X-BAR. The APWM outputs connect to GPIO pins through the Output X-BAR to OUTPUTx positions in the GPIO mux. See Section 6.4.3 and Section 6.4.4. The eCAP module is clocked by PERx.SYSCLK. The clock enable bits (ECAP1–ECAP3) in the PCLKCR3 register turn off the eCAP module individually (for lowpower operation). Upon reset, ECAP1ENCLK is set to low, indicating that the peripheral clock is off. 7.13.3.1 High-Resolution Capture (HRCAP) The eCAP3 module can be configured as high-resolution capture (HRCAP) submodules. The HRCAP submodule measures the difference, in time, between pulses asynchronously to the system clock. This submodule is new to the eCAP Type 1 module, and features many enhancements over the Type 0 HRCAP module. Applications for the HRCAP include: • Capacitive touch applications • High-resolution period and duty-cycle measurements of pulse train cycles • Instantaneous speed measurements • Instantaneous frequency measurements • Voltage measurements across an isolation boundary • Distance/sonar measurement and scanning • Flow measurements The HRCAP submodule includes the following features: • Pulse-width capture in either non-high-resolution or high-resolution modes • Absolute mode pulse-width capture • Continuous or "one-shot" capture • Capture on either falling or rising edge • Continuous mode capture of pulse widths in 4-deep buffer • Hardware calibration logic for precision high-resolution capture • All of the resources in this list are available on any pin using the Input X-BAR. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 113 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 The HRCAP submodule includes one high-resolution capture channel in addition to a calibration block. The calibration block allows the HRCAP submodule to be continually recalibrated, at a set interval, with no “down time”. Because the HRCAP submodule now uses the same hardware as its respective eCAP, if the HRCAP is used, the corresponding eCAP will be unavailable. Each high-resolution-capable channel has the following independent key resources. • All hardware of the respective eCAP • High-resolution calibration logic • Dedicated calibration interrupt eCAP and HRCAP Block Diagram Figure 7-47 shows the eCAP and HRCAP block diagram. 114 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 ECCTL2 [ SYNCI_EN, SYNCOSEL, SWSYNC] ECCTL2[CAP/APWM] SYNC CTRPHS (phase register−32 bit) ECAPxSYNCIN APWM Mode OVF TSCTR (counter−32 bit) ECAPxSYNCOUT RST CTR_OVF CTR [0−31] Delta−Mode PRD [0−31] PWM Compare Logic Output X-Bar CMP [0−31] 32 CTR=PRD CTR [0−31] CTR=CMP 32 PRD [0−31] ECCTL1 [ CAPLDEN, CTRRSTx] HRCTRL[HRE] 32 32 APRD shadow HRCTRL[HRE] LD1 CAP1 (APRD Active) Polarity Select LD 32 CMP [0−31] 32 HRCTRL[HRE] 32 32 CAP2 (ACMP Active) 32 Polarity Select LD2 LD Other Sources [127:16] Event qualifier ACMP shadow HRCTRL[HRE] Event Prescale 16 ECCTL1[PRESCALE] [15:0] Input X-Bar 32 32 Polarity Select LD3 CAP3 (APRD Shadow) LD CAP4 (ACMP Shadow) LD HRCTRL[HRE] 32 32 LD4 Polarity Select 4 Capture Events 4 Edge Polarity Select ECCTL1[CAPxPOL] CEVT[1:4] ECAPxDMA_INT ECCTL2[CTRFILTRESET] ECCTL2[DMAEVTSEL] ECAPx (to ePIE) Interrupt Trigger and Flag Control Continuous / Oneshot Capture Control CTR_OVF MODCNTRSTS CTR=PRD CTR=CMP ECCTL2 [ REARM, CONT_ONESHT, STOP_WRAP] Registers: ECEINT, ECFLG, ECCLR, ECFRC Capture Pulse SYSCLK HRCLK HR Submodule (A) HR Input ECAPx_HRCAL (to ePIE) Copyright © 2018, Texas Instruments Incorporated A. The HRCAP submodule is not available on all eCAP modules; in this case, the high-resolution muxes and hardware are not implemented. Figure 7-47. eCAP and HRCAP Block Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 115 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.13.3.2 eCAP/HRCAP Synchronization The eCAP modules can be synchronized with each other by selecting a common SYNCIN source. SYNCIN source for eCAP can be either software sync-in or external sync-in. The external sync-in signal can come from EPWM, eCAP, or X-Bar. The SYNC signal is defined by the selection in the ECAPxSYNCINSEL[SEL] bit for ECAPx as shown in Figure 7-48. ECAPx Disable EPWM[1..7]SYNCOUT 0x0 0x1 ECAP[1..3]SYNCOUT INPUT5 (Input X-Bar) INPUT6 (Input X-Bar) ECAPxSYNCIN ECCTL2[SWSYNC] CTR=PRD Disable Disable EPWMxSYNCOUT EXTSYNCOUT ECAPxSYNCOUT SYNCSELECT[SYNCOUT] 0x19 ECCTL2[SYNCOSEL] ECAPSYNCINSEL[SEL] Figure 7-48. eCAPSynchronization Scheme 116 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.13.3.3 eCAP Electrical Data and Timing Section 7.13.3.3.1 lists the eCAP timing requirements and Section 7.13.3.3.2 lists the eCAP switching characteristics. 7.13.3.3.1 eCAP Timing Requirements MIN tw(CAP) Capture input pulse width Asynchronous 2tc(SYSCLK) Synchronous 2tc(SYSCLK) With input qualifier NOM MAX UNIT ns 1tc(SYSCLK) + tw_(IQSW) 7.13.3.3.2 eCAP Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER tw(APWM) MIN Pulse duration, APWMx output high/low TYP MAX UNIT 20 ns 7.13.3.4 HRCAP Electrical Data and Timing Section 7.13.3.4.1 lists the HRCAP switching characteristics. Figure 7-49 shows the HRCAP accuracy precision and resolution. Figure 7-50 shows the HRCAP standard deviation characteristics. 7.13.3.4.1 HRCAP Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS Input pulse width Measurement length ≤ 5 µs Measurement length > 5 µs Standard deviation Resolution (4) TYP MAX ±390 540 ps ±450 1450 ps 110 Accuracy(1) (2) (3) (4) (1) (2) (3) MIN UNIT ns See HRCAP Standard Deviation Characteristics figure 300 ps Value obtained using an oscillator of 100 PPM, oscillator accuracy directly affects the HRCAP accuracy. Measurement is completed using rising-rising or falling-falling edges Opposite polarity edges will have an additional inaccuracy due to the difference between VIH and VIL. This effect is dependent on the signal’s slew rate. Accuracy only applies to time-converted measurements. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 117 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 HRCAP Figure and Graph HRCAP’s Mean HRCAP Result Probability Accuracy Resolution (Step Size) Precision (Standard Deviation) Actual Input Signal A. The HRCAP has some variation in performance, this results in a probability distribution which is described using the following terms: • Accuracy: The time difference between the input signal and the mean of the HRCAP’s distribution. • Precision: The width of the HRCAP’s distribution, this is given as a standard deviation. • Resolution: The minimum measurable increment. Figure 7-49. HRCAP Accuracy Precision and Resolution 2 7.4 1.8 6.66 1.6 5.92 1.4 5.18 1.2 4.44 1 3.7 0.8 2.96 0.6 2.22 0.4 1.48 0.2 0 1000 2000 3000 4000 5000 6000 Time Between Edges(nS) 7000 8000 9000 Standard Deviation (Steps) Standard Deviation (nS) Typical Core Conditions Noisy Core Supply 0.74 10000 A. Typical core conditions: All peripheral clocks are enabled. B. Noisy core supply: All core clocks are enabled and disabled with a regular period during the measurement. C. Fluctuations in current and voltage on the 1.2-V rail cause the standard deviation of the HRCAP to rise. Care should be taken to ensure that the 1.2-V supply is clean, and that noisy internal events, such as enabling and disabling clock trees, have been minimized while using the HRCAP. Figure 7-50. HRCAP Standard Deviation Characteristics 118 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.13.4 Enhanced Quadrature Encoder Pulse (eQEP) The eQEP module on this device is Type-2. The eQEP interfaces directly with linear or rotary incremental encoders to obtain position, direction, and speed information from rotating machines used in high-performance motion and position control systems. The eQEP peripheral contains the following major functional units (see Figure 7-51): • Programmable input qualification for each pin (part of the GPIO MUX) • Quadrature decoder unit (QDU) • Position counter and control unit for position measurement (PCCU) • Quadrature edge-capture unit for low-speed measurement (QCAP) • Unit time base for speed/frequency measurement (UTIME) • Watchdog timer for detecting stalls (QWDOG) • Quadrature Mode Adapter (QMA) System control registers To CPU EQEPxENCLK Data bus SYSCLK QCPRD QCTMR QCAPCTL 16 Enhanced QEP (eQEP) peripheral 16 16 Quadrature capture unit (QCAP) QCTMRLAT QCPRDLAT QUTMR QUPRD Registers used by multiple units QWDTMR QWDPRD 32 QEPCTL QEPSTS QFLG UTIME 16 UTOUT QDECCTL 16 QWDOG WDTOUT PIE QCLK QDIR QI QS PHE EQEPxINT 32 Position counter/ control unit (PCCU) QPOSLAT QPOSSLAT QPOSILAT QMA Quadrature decoder (QDU) QPOSCNT QPOSINIT QPOSMAX 32 QPOSCMP EQEPx_A EQEPxBIN EQEPx_B EQEPxIIN EQEPxIOUT EQEPxIOE EQEPxSIN EQEPxSOUT EQEPxSOE PCSOUT 32 EQEPxAIN 16 GPIO MUX EQEPx_INDEX EQEPx_STROBE QEINT QFRC QCLR QPOSCTL Copyright © 2017, Texas Instruments Incorporated Figure 7-51. eQEP Block Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 119 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.13.4.1 eQEP Electrical Data and Timing Section 7.13.4.1.1 lists the eQEP timing requirements and Section 7.13.4.1.2 lists the eQEP switching characteristics. For an explanation of the input qualifier parameters, see Section 7.11.6.2.1. 7.13.4.1.1 eQEP Timing Requirements MIN Synchronous(1) tw(QEPP) QEP input period tw(INDEXH) QEP Index Input High time tw(INDEXL) QEP Index Input Low time tw(STROBH) QEP Strobe High time tw(STROBL) QEP Strobe Input Low time (1) Synchronous with input qualifier 2tc(SYSCLK) 2tc(SYSCLK) Synchronous with input qualifier 2tc(SYSCLK) 2tc(SYSCLK) cycles 2tc(SYSCLK) + tw(IQSW) Synchronous(1) Synchronous with input qualifier cycles 2tc(SYSCLK) + tw(IQSW) Synchronous(1) Synchronous with input qualifier cycles 2tc(SYSCLK) + tw(IQSW) Synchronous(1) UNIT cycles 2[1tc(SYSCLK) + tw(IQSW)] Synchronous(1) Synchronous with input qualifier MAX 2tc(SYSCLK) cycles 2tc(SYSCLK) + tw(IQSW) The GPIO GPxQSELn Asynchronous mode should not be used for eQEP module input pins. 7.13.4.1.2 eQEP Switching Characteristics over recommended operating conditions (unless otherwise noted) MAX UNIT td(CNTR)xin Delay time, external clock to counter increment PARAMETER 5tc(SYSCLK) cycles td(PCS-OUT)QEP Delay time, QEP input edge to position compare sync output 7tc(SYSCLK) cycles 120 Submit Document Feedback MIN Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.14 Communications Peripherals 7.14.1 Controller Area Network (CAN) Note The CAN module uses the IP known as DCAN. This document uses the names CAN and DCAN interchangeably to reference this peripheral. The CAN module implements the following features: • Complies with ISO11898-1 ( Bosch® CAN protocol specification 2.0 A and B) • Bit rates up to 1 Mbps • Multiple clock sources • 32 message objects (mailboxes), each with the following properties: – Configurable as receive or transmit – Configurable with standard (11-bit) or extended (29-bit) identifier – Supports programmable identifier receive mask – Supports data and remote frames – Holds 0 to 8 bytes of data – Parity-checked configuration and data RAM • Individual identifier mask for each message object • Programmable FIFO mode for message objects • Programmable loopback modes for self-test operation • Suspend mode for debug support • Software module reset • Automatic bus on after bus-off state by a programmable 32-bit timer • Two interrupt lines • DMA support Note For a CAN bit clock of 100 MHz, the smallest bit rate possible is 3.90625 kbps. Note The accuracy of the on-chip zero-pin oscillator is in Section 7.11.3.5.1. Depending on parameters such as the CAN bit timing settings, bit rate, bus length, and propagation delay, the accuracy of this oscillator may not meet the requirements of the CAN protocol. In this situation, an external clock source must be used. Figure 7-52 shows the CAN block diagram. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 121 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 CAN_H CAN Bus CAN_L External connections Device 3.3V CAN Transceiver CANx RX pin CANx TX pin CAN CAN Core Message RAM Message Handler Message RAM Interface 32 Message Objects (Mailboxes) Register and Message Object Access (IFx) Test Modes Only Module Interface CANINT0 CANINT1 DMA CPU Bus Figure 7-52. CAN Block Diagram 122 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.14.2 Inter-Integrated Circuit (I2C) The I2C module has the following features: • Compliance with the NXP Semiconductors I2C-bus specification (version 2.1): – Support for 8-bit format transfers – 7-bit and 10-bit addressing modes – General call – START byte mode – Support for multiple master-transmitters and slave-receivers – Support for multiple slave-transmitters and master-receivers – Combined master transmit/receive and receive/transmit mode – Data transfer rate from 10 kbps up to 400 kbps (Fast-mode) • One 16-byte receive FIFO and one 16-byte transmit FIFO • Supports two ePIE interrupts – I2Cx interrupt – Any of the below conditions can be configured to generate an I2Cx interrupt: • Transmit Ready • Receive Ready • Register-Access Ready • No-Acknowledgment • Arbitration-Lost • Stop Condition Detected • Addressed-as-Slave – I2Cx_FIFO interrupts: • Transmit FIFO interrupt • Receive FIFO interrupt • Module enable and disable capability • Free data format mode Figure 7-53 shows how the I2C peripheral module interfaces within the device. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 123 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 I2C module I2CXSR I2CDXR TX FIFO FIFO Interrupt to CPU/PIE SDA RX FIFO Peripheral bus I2CRSR SCL Clock synchronizer I2CDRR Control/status registers CPU Prescaler Noise filters Interrupt to CPU/PIE I2C INT Arbitrator Figure 7-53. I2C Peripheral Module Interfaces 124 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.14.2.1 I2C Electrical Data and Timing Section 7.14.2.1.1 lists the I2C timing requirements. Section 7.14.2.1.2 lists the I2C switching characteristics. Figure 7-54 shows the I2C timing diagram. Note To meet all of the I2C protocol timing specifications, the I2C module clock must be configured in the range from 7 MHz to 12 MHz.   7.14.2.1.1 I2C Timing Requirements NO. MIN MAX UNIT 7 12 MHz Standard mode T0 fmod I2C module frequency T1 th(SDA-SCL)START Hold time, START condition, SCL fall delay after SDA fall 4.0 µs T2 tsu(SCL-SDA)START Setup time, Repeated START, SCL rise before SDA fall delay 4.7 µs 0 µs 250 ns T3 th(SCL-DAT) Hold time, data after SCL fall T4 tsu(DAT-SCL) Setup time, data before SCL rise T5 tr(SDA) Rise time, SDA 1000 ns T6 tr(SCL) Rise time, SCL 1000 ns T7 tf(SDA) Fall time, SDA 300 ns T8 tf(SCL) Fall time, SCL 300 ns T9 tsu(SCL-SDA)STOP Setup time, STOP condition, SCL rise before SDA rise delay 4.0 T10 tw(SP) Pulse duration of spikes that will be suppressed by filter 0 T11 Cb capacitance load on each bus line T0 fmod I2C module frequency T1 th(SDA-SCL)START Hold time, START condition, SCL fall delay after SDA fall 0.6 µs T2 tsu(SCL-SDA)START Setup time, Repeated START, SCL rise before SDA fall delay 0.6 µs 0 µs 100 ns µs 50 ns 400 pF 12 MHz Fast mode 7 T3 th(SCL-DAT) Hold time, data after SCL fall T4 tsu(DAT-SCL) Setup time, data before SCL rise T5 tr(SDA) Rise time, SDA 20 300 ns T6 tr(SCL) Rise time, SCL 20 300 ns T7 tf(SDA) Fall time, SDA 11.4 300 ns T8 tf(SCL) Fall time, SCL 11.4 300 ns T9 tsu(SCL-SDA)STOP Setup time, STOP condition, SCL rise before SDA rise delay 0.6 T10 tw(SP) Pulse duration of spikes that will be suppressed by filter 0 T11 Cb capacitance load on each bus line Copyright © 2020 Texas Instruments Incorporated µs 50 ns 400 pF Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 125 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.14.2.1.2 I2C Switching Characteristics over recommended operating conditions (unless otherwise noted) NO. PARAMETER TEST CONDITIONS MIN MAX UNIT 0 100 kHz Standard mode S1 fSCL SCL clock frequency S2 TSCL SCL clock period S3 tw(SCLL) Pulse duration, SCL clock low 4.7 µs S4 tw(SCLH) Pulse duration, SCL clock high 4.0 µs S5 tBUF Bus free time between STOP and START conditions 4.7 µs 10 µs S6 tv(SCL-DAT) Valid time, data after SCL fall 3.45 µs S7 tv(SCL-ACK) Valid time, Acknowledge after SCL fall 3.45 µs S8 II Input current on pins –10 10 µA 0 400 kHz 0.1 Vbus < Vi < 0.9 Vbus Fast mode S1 fSCL SCL clock frequency S2 TSCL SCL clock period S3 tw(SCLL) Pulse duration, SCL clock low 1.3 µs S4 tw(SCLH) Pulse duration, SCL clock high 0.6 µs S5 tBUF Bus free time between STOP and START conditions 1.3 µs S6 tv(SCL-DAT) Valid time, data after SCL fall 0.9 µs S7 tv(SCL-ACK) Valid time, Acknowledge after SCL fall 0.9 µs S8 II Input current on pins 10 µA 2.5 0.1 Vbus < Vi < 0.9 Vbus µs –10 7.14.2.1.3 I2C Timing Diagram STOP START SDA ACK T5 S6 T7 Contd... S7 T10 S3 Contd... S4 SCL T6 Repeated START SDA 9th clock T8 S2 STOP S5 ACK T2 T9 T1 SCL 9th clock Figure 7-54. I2C Timing Diagram 126 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.14.3 Power Management Bus (PMBus) Interface The PMBus module has the following features: • Compliance with the SMI Forum PMBus Specification (Part I v1.0 and Part II v1.1) • Support for master and slave modes • Support for I2C mode • Support for two speeds: – Standard Mode: Up to 100 kHz – Fast Mode: 400 kHz • Packet error checking • CONTROL and ALERT signals • Clock high and low time-outs • Four-byte transmit and receive buffers • One maskable interrupt, which can be generated by several conditions: – Receive data ready – Transmit buffer empty – Slave address received – End of message – ALERT input asserted – Clock low time-out – Clock high time-out – Bus free Figure 7-55 shows the PMBus block diagram. PCLKCR20 SYSCLK Div PMBCTRL ALERT DMA Bit clock Other registers CTL GPIO Mux CPU PMBTXBUF SCL Shift register PMBRXBUF SDA PMBUSA_INT PIE PMBus Module Figure 7-55. PMBus Block Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 127 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.14.3.1 PMBus Electrical Data and Timing Section 7.14.3.1.1 lists the PMBus electrical characteristics. Section 7.14.3.1.2 lists the PMBUS fast mode switching characteristics. Section 7.14.3.1.3 lists the PMBUS standard mode switching characteristics. 7.14.3.1.1 PMBus Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS VIL Valid low-level input voltage VIH Valid high-level input voltage VOL Low-level output voltage At Ipullup = 4 mA IOL Low-level output current VOL ≤ 0.4 V tSP Pulse width of spikes that must be suppressed by the input filter Ii Input leakage current on each pin Ci Capacitance on each pin MIN TYP 2.1 0.1 Vbus < Vi < 0.9 Vbus MAX UNIT 0.8 V VDDIO V 0.4 V 4 mA 0 50 ns –10 10 µA 10 pF 7.14.3.1.2 PMBus Fast Mode Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 400 kHz fSCL SCL clock frequency 10 tBUF Bus free time between STOP and START conditions 1.3 µs tHD;STA START condition hold time -- SDA fall to SCL fall delay 0.6 µs tSU;STA Repeated START setup time -- SCL rise to SDA fall delay 0.6 µs tSU;STO STOP condition setup time -- SCL rise to SDA rise delay 0.6 µs tHD;DAT Data hold time after SCL fall 300 ns tSU;DAT Data setup time before SCL rise 100 ns tTimeout Clock low time-out 25 tLOW Low period of the SCL clock 1.3 tHIGH High period of the SCL clock 0.6 tLOW;SEXT Cumulative clock low extend time (slave device) tLOW;MEXT 35 ms µs 50 µs From START to STOP 25 ms Cumulative clock low extend time (master device) Within each byte 10 ms tr Rise time of SDA and SCL 5% to 95% 20 300 ns tf Fall time of SDA and SCL 95% to 5% 20 300 ns 128 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.14.3.1.3 PMBus Standard Mode Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 100 kHz fSCL SCL clock frequency 10 tBUF Bus free time between STOP and START conditions 4.7 µs tHD;STA START condition hold time -- SDA fall to SCL fall delay 4 µs tSU;STA Repeated START setup time -- SCL rise to SDA fall delay 4.7 µs tSU;STO STOP condition setup time -- SCL rise to SDA rise delay 4 µs tHD;DAT Data hold time after SCL fall 300 ns tSU;DAT Data setup time before SCL rise 250 ns tTimeout Clock low time-out 25 tLOW Low period of the SCL clock 4.7 tHIGH High period of the SCL clock 4 tLOW;SEXT Cumulative clock low extend time (slave device) tLOW;MEXT Cumulative clock low extend time (master device) tr tf 35 ms 50 µs From START to STOP 25 ms Within each byte 10 ms Rise time of SDA and SCL 1000 ns Fall time of SDA and SCL 300 ns Copyright © 2020 Texas Instruments Incorporated µs Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 129 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.14.4 Serial Communications Interface (SCI) The SCI is a 2-wire asynchronous serial port, commonly known as a UART. The SCI module supports digital communications between the CPU and other asynchronous peripherals that use the standard non-return-to-zero (NRZ) format The SCI receiver and transmitter each have a 16-level-deep FIFO for reducing servicing overhead, and each has its own separate enable and interrupt bits. Both can be operated independently for half-duplex communication, or simultaneously for full-duplex communication. To specify data integrity, the SCI checks received data for break detection, parity, overrun, and framing errors. The bit rate is programmable to different speeds through a 16-bit baud-select register. Features of the SCI module include: • Two external pins: – SCITXD: SCI transmit-output pin – SCIRXD: SCI receive-input pin – Baud rate programmable to 64K different rates • Data-word format – 1 start bit – Data-word length programmable from 1 to 8 bits – Optional even/odd/no parity bit – 1 or 2 stop bits • Four error-detection flags: parity, overrun, framing, and break detection • Two wake-up multiprocessor modes: idle-line and address bit • Half- or full-duplex operation • Double-buffered receive and transmit functions • Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms with status flags. – Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX EMPTY flag (transmitter-shift register is empty) – Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag (break condition occurred), and RX ERROR flag (monitoring four interrupt conditions) • Separate enable bits for transmitter and receiver interrupts (except BRKDT) • NRZ format • Auto baud-detect hardware logic • 16-level transmit and receive FIFO Note All registers in this module are 8-bit registers. When a register is accessed, the register data is in the lower byte (bits 7–0), and the upper byte (bits 15–8) is read as zeros. Writing to the upper byte has no effect. Figure 7-56 shows the SCI block diagram. 130 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 TXENA SCICTL1.1 TXSHF Register Frame Format and Mode SCITXD 8 Parity Even/Odd 0 TXEMPTY 1 SCICCR.6 SCICTL2.6 8 Enable TX FIFO_0 SCICCR.5 88 TX FIFO_1 TX Interrupt Logic TX FIFO Interrupts TXINT To CPU TX FIFO_N TXINTENA 8 0 TXWAKE SCICTL2.0 TXRDY 1 SCICTL2.7 SCICTL1.3 SCI TX Interrupt Select Logic 8 WUT Transmit Data Buffer Register SCITXBUF.7-0 Auto Baud Detect Logic RXENA LSPCLK Baud Rate MSB/LSB Registers SCICTL1.0 RXSHF Register SCIHBAUD.15-8 SCIRXD RXWAKE 8 SCILBAUD.7-0 SCIRXST.1 0 1 8 SCIFFENA RX FIFO_0 SCIFFTX.14 8 RX FIFO_1 RX FIFO Interrupts RX Interrupt Logic RXINT To CPU RX FIFO_N RXFFOVF 8 0 SCIFFRX.15 1 RXBKINTENA SCICTL2.1 RXRDY SCIRXST.6 RXENA BRKDT SCICTL1.0 RXERRINTENA SCIRXST.5 8 SCICTL1.6 SCI RX Interrupt Select Logic SCIRXST.5-2 Receive Data Buffer Register SCIRXBUF.7-0 BRKDT FE OE PE RXERROR SCIRXST.7 Figure 7-56. SCI Block Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 131 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.14.5 Serial Peripheral Interface (SPI) The serial peripheral interface (SPI) is a high-speed synchronous serial input and output (I/O) port that allows a serial bit stream of programmed length (1 to 16 bits) to be shifted into and out of the device at a programmed bittransfer rate. The SPI is normally used for communications between the MCU controller and external peripherals or another controller. Typical applications include external I/O or peripheral expansion through devices such as shift registers, display drivers, and analog-to-digital converters (ADCs). Multidevice communications are supported by the master or slave operation of the SPI. The port supports a 16-level, receive and transmit FIFO for reducing CPU servicing overhead. The SPI module features include: • SPISOMI: SPI slave-output/master-input pin • SPISIMO: SPI slave-input/master-output pin • SPISTE: SPI slave transmit-enable pin • SPICLK: SPI serial-clock pin • Two operational modes: Master and Slave • Baud rate: 125 different programmable rates. The maximum baud rate that can be employed is limited by the maximum speed of the I/O buffers used on the SPI pins. • Data word length: 1 to 16 data bits • Four clocking schemes (controlled by clock polarity and clock phase bits) include: – Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal. – Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the falling edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal. – Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal. – Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the rising edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal. • Simultaneous receive and transmit operation (transmit function can be disabled in software) • Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithm • 16-level transmit/receive FIFO • DMA support • High-speed mode • Delayed transmit control • 3-wire SPI mode • SPISTE inversion for digital audio interface receive mode on devices with two SPI modules Figure 7-57 shows the SPI CPU interfaces. 132 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 PCLKCR8 LSPCLK Low-Speed Prescaler SYSCLK CPU Bit Clock Peripheral Bus SYSRS SPISIMO SPISOMI SPI GPIO MUX SPICLK SPIINT SPITXINT PIE SPISTE SPIRXDMA SPITXDMA DMA Figure 7-57. SPI CPU Interface Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 133 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.14.5.1 SPI Master Mode Timings The following section contains the SPI Master Mode Timings. For more information about the SPI in High-Speed mode, see the Serial Peripheral Interface (SPI) chapter of the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual. Section 7.14.5.1.1 lists the SPI master mode timing requirements. Section 7.14.5.1.2 lists the SPI master mode switching characteristics where the clock phase = 0. Figure 7-58 shows the SPI master mode external timing where the clock phase = 0. Section 7.14.5.1.3 lists the SPI master mode switching characteristics where the clock phase = 1. Figure 7-59 shows the SPI master mode external timing where the clock phase = 1. Note All timing parameters for SPI High-Speed Mode assume a load capacitance of 5 pF on SPICLK, SPISIMO, and SPISOMI. 7.14.5.1.1 SPI Master Mode Timing Requirements (BRR + 1) (1) NO. MIN MAX UNIT High-Speed Mode 8 tsu(SOMI)M Setup time, SPISOMI valid before SPICLK Even, Odd 1 ns 9 th(SOMI)M Hold time, SPISOMI valid after SPICLK Even, Odd 5 ns Normal Mode 8 tsu(SOMI)M Setup time, SPISOMI valid before SPICLK Even, Odd 15 ns 9 th(SOMI)M Hold time, SPISOMI valid after SPICLK Even, Odd 0 ns (1) 134 The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is greater than 3. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.14.5.1.2 SPI Master Mode Switching Characteristics (Clock Phase = 0) over recommended operating conditions (unless otherwise noted) NO. PARAMETER (BRR + 1)(1) MIN MAX UNIT Even 4tc(LSPCLK) 128tc(LSPCLK) Odd 5tc(LSPCLK) 127tc(LSPCLK) 0.5tc(SPC)M – 1 0.5tc(SPC)M + 1 0.5tc(SPC)M + 0.5tc(LSPCLK) – 1 0.5tc(SPC)M + 0.5tc(LSPCLK) + 1 0.5tc(SPC)M – 1 0.5tc(SPC)M + 1 0.5tc(SPC)M – 0.5tc(LSPCLK) – 1 0.5tc(SPC)M – 0.5tc(LSPCLK) + 1 Even 1.5tc(SPC)M – 3tc(SYSCLK) – 3 1.5tc(SPC)M – 3tc(SYSCLK) + 3 Odd 1.5tc(SPC)M – 4tc(SYSCLK) – 3 1.5tc(SPC)M – 4tc(SYSCLK) + 3 0.5tc(SPC)M – 3 0.5tc(SPC)M + 3 0.5tc(SPC)M – 0.5tc(LSPCLK) – 3 0.5tc(SPC)M – 0.5tc(LSPCLK) + 3 ns 1 ns General 1 tc(SPC)M Cycle time, SPICLK 2 tw(SPC1)M Pulse duration, SPICLK, first pulse 3 tw(SPC2)M Pulse duration, SPICLK, second pulse Even Odd Even 23 td(SPC)M Odd Delay time, SPISTE active to SPICLK Even 24 tv(STE)M Valid time, SPICLK to SPISTE inactive Odd ns ns ns ns High-Speed Mode 4 td(SIMO)M Delay time, SPICLK to SPISIMO valid Even, Odd 5 tv(SIMO)M Valid time, SPISIMO valid after SPICLK Even Odd 0.5tc(SPC)M – 3 ns 0.5tc(SPC)M – 0.5tc(LSPCLK) – 3 Normal Mode 4 td(SIMO)M Delay time, SPICLK to SPISIMO valid Even, Odd 5 tv(SIMO)M Valid time, SPISIMO valid after SPICLK Even (1) Odd 1 0.5tc(SPC)M – 3 0.5tc(SPC)M – 0.5tc(LSPCLK) – 3 ns ns The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is greater than 3. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 135 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.14.5.1.3 SPI Master Mode Switching Characteristics (Clock Phase = 1) over recommended operating conditions (unless otherwise noted) NO. PARAMETER (BRR + 1) MIN MAX UNIT General 1 tc(SPC)M Cycle time, SPICLK 2 tw(SPCH)M Pulse duration, SPICLK, first pulse 3 tw(SPC2)M Pulse duration, SPICLK, second pulse 23 td(SPC)M Delay time, SPISTE valid to SPICLK 24 td(STE)M Delay time, SPICLK to SPISTE invalid Even 4tc(LSPCLK) 128tc(LSPCLK) Odd 5tc(LSPCLK) 127tc(LSPCLK) 0.5tc(SPC)M – 1 0.5tc(SPC)M + 1 0.5tc(SPC)M – 0.5tc(LSPCLK) – 1 0.5tc(SPC)M – 0.5tc(LSPCLK) + 1 0.5tc(SPC)M – 1 0.5tc(SPC)M + 1 0.5tc(SPC)M + 0.5tc(LSPCLK) – 1 0.5tc(SPC)M + 0.5tc(LSPCLK) + 1 2tc(SPC)M – 3tc(SYSCLK) – 3 2tc(SPC)M – 3tc(SYSCLK) + 2 Even –3 2 Odd –3 2 Even Odd Even Odd Even, Odd ns ns ns ns ns High-Speed Mode 4 td(SIMO)M Delay time, SPISIMO valid to SPICLK 5 tv(SIMO)M Valid time, SPISIMO valid after SPICLK Even Odd Even Odd 0.5tc(SPC)M – 2 0.5tc(SPC)M + 0.5tc(LSPCLK) – 2 0.5tc(SPC)M – 3 0.5tc(SPC)M – 0.5tc(LSPCLK) – 3 ns ns Normal Mode 4 td(SIMO)M Delay time, SPISIMO valid to SPICLK 5 tv(SIMO)M Valid time, SPISIMO valid after SPICLK 136 Submit Document Feedback Even Odd Even Odd 0.5tc(SPC)M – 2 0.5tc(SPC)M + 0.5tc(LSPCLK) – 2 0.5tc(SPC)M – 3 0.5tc(SPC)M – 0.5tc(LSPCLK) – 3 ns ns Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.14.5.1.4 SPI Master Mode Timing Diagrams 1 SPICLK (clock polarity = 0) 2 3 SPICLK (clock polarity = 1) 4 5 SPISIMO Master Out Data Is Valid 8 9 Master In Data Must Be Valid SPISOMI 24 23 (A) SPISTE A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO modes. Figure 7-58. SPI Master Mode External Timing (Clock Phase = 0) 1 SPICLK (clock polarity = 0) 2 3 SPICLK (clock polarity = 1) 4 5 Master Out Data Is Valid SPISIMO 8 9 Master In Data Must Be Valid SPISOMI (A) 24 23 SPISTE A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO modes. Figure 7-59. SPI Master Mode External Timing (Clock Phase = 1) Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 137 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.14.5.2 SPI Slave Mode Timings The following section contains the SPI Slave Mode Timings. For more information about the SPI in High-Speed mode, see the Serial Peripheral Interface (SPI) chapter of the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual. Section 7.14.5.2.1 lists the SPI slave mode timing requirements. Section 7.14.5.2.2 lists the SPI slave mode switching characteristics. Figure 7-60 shows the SPI slave mode external timing where the clock phase = 0. Figure 7-61 shows the SPI slave mode external timing where the clock phase = 1. 7.14.5.2.1 SPI Slave Mode Timing Requirements NO. MIN MAX UNIT 12 tc(SPC)S Cycle time, SPICLK 4tc(SYSCLK) ns 13 tw(SPC1)S Pulse duration, SPICLK, first pulse 2tc(SYSCLK) – 1 ns 14 tw(SPC2)S Pulse duration, SPICLK, second pulse 2tc(SYSCLK) – 1 ns 19 tsu(SIMO)S Setup time, SPISIMO valid before SPICLK 1.5tc(SYSCLK) ns 20 th(SIMO)S Hold time, SPISIMO valid after SPICLK 25 26 tsu(STE)S th(STE)S 1.5tc(SYSCLK) ns Setup time, SPISTE valid before SPICLK (Clock Phase = 0) 2tc(SYSCLK) + 3 ns Setup time, SPISTE valid before SPICLK (Clock Phase = 1) 2tc(SYSCLK) + 23 ns 1.5tc(SYSCLK) ns Hold time, SPISTE invalid after SPICLK 7.14.5.2.2 SPI Slave Mode Switching Characteristics over recommended operating conditions (unless otherwise noted) NO. PARAMETER 15 td(SOMI)S Delay time, SPICLK to SPISOMI valid 16 tv(SOMI)S Valid time, SPISOMI valid after SPICLK 138 Submit Document Feedback MIN MAX 12 0 UNIT ns ns Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.14.5.2.3 SPI Slave Mode Timing Diagrams 12 SPICLK (clock polarity = 0) 13 14 SPICLK (clock polarity = 1) 15 SPISOMI 16 SPISOMI Data Is Valid 19 20 SPISIMO Data Must Be Valid SPISIMO 25 26 SPISTE Figure 7-60. SPI Slave Mode External Timing (Clock Phase = 0) 12 SPICLK (clock polarity = 0) 13 14 SPICLK (clock polarity = 1) 15 SPISOMI Data Valid SPISOMI Data Is Valid Data Valid 16 19 20 SPISIMO Data Must Be Valid SPISIMO 26 25 SPISTE Figure 7-61. SPI Slave Mode External Timing (Clock Phase = 1) Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 139 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.14.6 Local Interconnect Network (LIN) This device contains one Local Interconnect Network (LIN) module. The LIN module adheres to the LIN 2.1 standard as defined by the LIN Specification Package Revision 2.1. The LIN is a low-cost serial interface designed for applications where the CAN protocol may be too expensive to implement, such as small subnetworks for cabin comfort functions like interior lighting or window control in an automotive application. The LIN standard is based on the SCI (UART) serial data link format. The communication concept is singlemaster and multiple-slave with a message identification for multicast transmission between any network nodes. The LIN module can be programmed to work either as an SCI or as a LIN as the core of the module is an SCI. The hardware features of the SCI are augmented to achieve LIN compatibility. The SCI module is a universal asynchronous receiver-transmitter (UART) that implements the standard non-return-to-zero format. Though the registers are common for LIN and SCI, the register descriptions have notes to identify the register/bit usage in different modes. Because of this, code written for this module cannot be directly ported to the standalone SCI module and vice versa. The LIN module has the following features: • Compatibility with LIN 1.3, 2.0 and 2.1 protocols • Configurable baud rate up to 20 kbps (as per LIN 2.1 protocol) • Two external pins: LINRX and LINTX • Multibuffered receive and transmit units • Identification masks for message filtering • Automatic master header generation – Programmable synchronization break field – Synchronization field – Identifier field • Slave automatic synchronization – Synchronization break detection – Optional baud rate update – Synchronization validation • 231 programmable transmission rates with 7 fractional bits • Wakeup on LINRX dominant level from transceiver • Automatic wakeup support – Wakeup signal generation – Expiration times on wakeup signals • Automatic bus idle detection • Error detection – Bit error – Bus error – No-response error – Checksum error – Synchronization field error – Parity error • Capability to use direct memory access (DMA) for transmit and receive data • Two interrupt lines with priority encoding for: – Receive – Transmit – ID, error, and status • Support for LIN 2.0 checksum • Enhanced synchronizer finite state machine (FSM) support for frame processing • Enhanced handling of extended frames 140 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com • • SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Enhanced baud rate generator Update wakeup/go to sleep Figure 7-62 shows the LIN block diagram. READ DATA BUS WRITE DATA BUS ADDRESS BUS CHECKSUM CALCULATOR INTERFACE ID PARTY CHECKER BIT MONITOR TXRX ERROR DETECTOR (TED) TIME-OUT CONTROL COUNTER LINRX/ SCIRX COMPARE LINTX/ SCITX FSM MASK FILTER SYNCHRONIZER 8 RECEIVE BUFFERS DMA CONTROL 8 TRANSMIT BUFFERS Figure 7-62. LIN Block Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 141 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.14.7 Fast Serial Interface (FSI) The Fast Serial Interface (FSI) module is a serial communication peripheral capable of reliable and robust highspeed communications. The FSI is designed to ensure data robustness across many system conditions such as chip-to-chip as well as board-to-board across an isolation barrier. Payload integrity checks such as CRC, startand end-of-frame patterns, and user-defined tags, are encoded before transmit and then verified after receipt without additional CPU interaction. Line breaks can be detected using periodic transmissions, all managed and monitored by hardware. The FSI is also tightly integrated with other control peripherals on the device. To ensure that the latest sensor data or control parameters are available, frames can be transmitted on every control loop period. An integrated skew-compensation block has been added on the receiver to handle skew that may occur between the clock and data signals due to a variety of factors, including trace-length mismatch and skews induced by an isolation chip. With embedded data robustness checks, data-link integrity checks, skew compensation, and integration with control peripherals, the FSI can enable high-speed, robust communication in any system. These and many other features of the FSI follow. The FSI module includes the following features: • Independent transmitter and receiver cores • Source-synchronous transmission • Dual data rate (DDR) • One or two data lines • Programmable data length • Skew adjustment block to compensate for board and system delay mismatches • Frame error detection • Programmable frame tagging for message filtering • Hardware ping to detect line breaks during communication (ping watchdog) • Two interrupts per FSI core • Externally triggered frame generation • Hardware- or software-calculated CRC • Embedded ECC computation module • Register write protection • DMA support • SPI compatibility mode (limited features available) Operating the FSI at maximum speed (50 MHz) at dual data rate (100 Mbps) may require the integrated skew compensation block to be configured according to the specific operating conditions on a case-by-case basis. The Fast Serial Interface (FSI) Skew Compensation Application Report provides example software on how to configure and set up the integrated skew compensation block on the Fast Serial Interface. The FSI consists of independent transmitter (FSITX) and receiver (FSIRX) cores. The FSITX and FSIRX cores are configured and operated independently. The features available on the FSITX and FSIRX are described in Section 7.14.7.1 and Section 7.14.7.2, respectively. 142 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.14.7.1 FSI Transmitter The FSI transmitter module handles the framing of data, CRC generation, signal generation of TXCLK, TXD0, and TXD1, as well as interrupt generation. The operation of the transmitter core is controlled and configured through programmable control registers. The transmitter control registers let the CPU program, control, and monitor the operation of the FSI transmitter. The transmit data buffer is accessible by the CPU and the DMA. The transmitter has the following features: • Automated ping frame generation • Externally triggered ping frames • Externally triggered data frames • Software-configurable frame lengths • 16-word data buffer • Data buffer underrun and overrun detection • Hardware-generated CRC on data bits • Software ECC calculation on select data • DMA support Figure 7-63 shows the FSITX CPU interface. Figure 7-64 shows the high-level block diagram of the FSITX. Not all data paths and internal connections are shown. This diagram provides a high-level overview of the internal modules present in the FSITX. PLLRAWCLK PCLKCR18 SYSCLK SYSRSN C28x ePIE FSITXyINT1 FSITXyINT2 FSITX FSITXyD1 FSITXyDMA Trigger Muxes(A) 32 FSITXyD0 GPIO MUX Registers Register Interface DMA FSITXyCLK A. The signals connected to the trigger muxes are described in the External Frame Trigger Mux section of the Fast Serial Interface (FSI) chapter in the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual. Figure 7-63. FSITX CPU Interface Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 143 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 PLLRAWCLK FSITX SYSRSN SYSCLK Transmit Clock Generator TXCLKIN Register Interface FSI Mode: TXCLK = TXCLKIN/2 SPI Signaling Mode: TXCLK = TXCLKIN Core Reset FSITXINT1 FSITXINT2 Control Registers, Interrupt Management TXCLK Ping Time-out Counter FSITX_DMA_EVT Transmitter Core External Frame Triggers TXD0 TXD1 Transmit Data Buffer ECC Logic Figure 7-64. FSITX Block Diagram 7.14.7.1.1 FSITX Electrical Data and Timing Section 7.14.7.1.1.1 lists the FSITX switching characteristics. Figure 7-65 shows the FSITX timings. 7.14.7.1.1.1 FSITX Switching Characteristics over operating free-air temperature range (unless otherwise noted) NO. PARAMETER 1 tc(TXCLK) Cycle time, TXCLK 2 tw(TXCLK) Pulse width, TXCLK low or TXCLK high 3 td(TXCLK–TXD) Delay time, TXCLK rising or falling toTXD valid TDM1 tskew(TDM_CLK-TDM_Dx ) Delay skew introduced between TXCLKTDM_CLK delay and TXDx-TDM_Dx delays MIN MAX 20 UNIT ns (0.5tc(TXCLK)) – 1 (0.5tc(TXCLK)) + 1 ns (0.25tc(TXCLK)) – 2 (0.25tc(TXCLK)) + 2 ns -2 2 ns 7.14.7.1.1.2 FSITX Timings 1 2 FSITXCLK FSITXD0 FSITXD1 3 Figure 7-65. FSITX Timings 144 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.14.7.2 FSI Receiver The receiver module interfaces to the FSI clock (RXCLK), and data lines (RXD0 and RXD1) after they pass through an optional programmable delay line. The receiver core handles the data framing, CRC computation, and frame-related error checking. The receiver bit clock and state machine are run by the RXCLK input, which is asynchronous to the device system clock. The receiver control registers let the CPU program, control, and monitor the operation of the FSIRX. The receive data buffer is accessible by the CPU, HIC, and the DMA. The receiver core has the following features: • 16-word data buffer • Multiple supported frame types • Ping frame watchdog • Frame watchdog • CRC calculation and comparison in hardware • ECC detection • Programmable delay line control on incoming signals • DMA support • SPI compatibility mode Figure 7-66 shows the FSIRX CPU interface. Figure 7-67 provides a high-level overview of the internal modules present in the FSIRX. Not all data paths and internal connections are shown. PCLKCR18 SYSCLK SYSRSN C28x ePIE FSIRXyINT1 FSIRXyINT2 FSIRX FSIRXyD0 FSIRXyD1 GPIO MUX Registers Register Interface DMA FSIRXyCLK FSIRXyDMA Figure 7-66. FSIRX CPU Interface Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 145 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 FSIRX SYSRSn SYSCLK Frame Watchdog Register Interface Core Reset FSIRXINT1 FSIRXINT2 Control Registers, Interrupt Management RXCLK Ping Watchdog FSIRX_DMA_EVT Receiver Core Skew Control RXD0 RXD1 Receive Data Buffer ECC Check Logic Figure 7-67. FSIRX Block Diagram 7.14.7.2.1 FSIRX Electrical Data and Timing Section 7.14.7.2.1.1 lists the FSIRX timing requirements. Section 7.14.7.2.1.2 lists the FSIRX switching characteristics. Figure 7-68 shows the FSIRX Timings. 7.14.7.2.1.1 FSIRX Timing Requirements NO. MIN 1 tc(RXCLK) Cycle time, RXCLK 2 tw(RXCLK) Pulse width, RXCLK low or RXCLK high. 3 tsu(RXCLK–RXD) Setup time with respect to RXCLK, applies to both edges of the clock 4 th(RXCLK–RXD) Hold time with respect to RXCLK, applies to both edges of the clock MAX 20 0.35tc(RXCLK) UNIT ns 0.65tc(RXCLK) ns 1.7 ns 2 ns 7.14.7.2.1.2 FSIRX Switching Characteristics NO. PARAMETER MIN MAX UNIT 10 30 ns 1 td(RXCLK) RXCLK delay compensation at RX_DLYLINE_CTRL[RXCLK_DLY]=31 2 td(RXD0) RXD0 delay compensation at RX_DLYLINE_CTRL[RXD0_DLY]=31 10 30 ns 3 td(RXD1) RXD1 delay compensation at RX_DLYLINE_CTRL[RXD1_DLY]=31 10 30 ns 4 td(DELAY_ELEMENT) Incremental delay of each delay line element for RXCLK, RXD0, and RXD1 0.3 1 ns 146 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.14.7.2.1.3 FSIRX Timings 1 2 FSIRXCLK FSIRXD0 FSIRXD1 3 4 Figure 7-68. FSIRX Timings Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 147 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.14.7.3 FSI SPI Compatibility Mode The FSI supports a SPI compatibility mode to enable communication with programmable SPI devices. In this mode, the FSI transmits its data in the same manner as a SPI in a single clock configuration mode. While the FSI is able to physically interface with a SPI in this mode, the external device must be able to encode and decode an FSI frame to communicate successfully. This is because the FSI transmits all SPI frame phases with the exception of the preamble and postamble. The FSI provides the same data validation and frame checking as if it was in standard FSI mode, allowing for more robust communication without consuming CPU cycles. The external SPI is required to send all relevant information and can access standard FSI features such as the ping frame watchdog on the FSIRX, frame tagging, or custom CRC values. The list of features of SPI compatibility mode follows: • Data will transmit on rising edge and receive on falling edge of the clock. • Only 16-bit word size is supported. • TXD1 will be driven like an active-low chip-select signal. The signal will be low for the duration of the full frame transmission. • No receiver chip-select input is required. RXD1 is not used. Data is shifted into the receiver on every active clock edge. • No preamble or postamble clocks will be transmitted. All signals return to the idle state after the frame phase is finished. • It is not possible to transmit in the SPI slave configuration because the FSI TXCLK cannot take an external clock source. 7.14.7.3.1 FSITX SPI Signaling Mode Electrical Data and Timing Section 7.14.7.3.1.1 lists the FSITX SPI signaling mode switching characteristics. Figure 7-69 shows the FSITX SPI signaling mode timings. Special timings are not required for the FSIRX in SPI signaling mode. FSIRX timings listed in Section 7.14.7.2.1.1 are applicable in SPI compatibility mode. Setup and Hold times are only valid on the falling edge of FSIRXCLK because this is the active edge in SPI signaling mode. 7.14.7.3.1.1 FSITX SPI Signaling Mode Switching Characteristics over operating free-air temperature range (unless otherwise noted) NO. PARAMETER MIN MAX 20 UNIT 1 tc(TXCLK) Cycle time, TXCLK 2 tw(TXCLK) Pulse width, TXCLK low or TXCLK high 3 td(TXCLKH–TXD0) Delay time, TXD0 valid after TXCLK high 4 td(TXD1-TXCLK) Delay time, TXCLK high after TXD1 low tw(TXCLK) – 3 ns 5 td(TXCLK-TXD1) Delay time, TXD1 high after TXCLK low tw(TXCLK) ns (0.5tc(TXCLK)) – 1 ns (0.5tc(TXCLK)) + 1 ns 3 ns 7.14.7.3.1.2 FSITX SPI Signaling Mode Timings 1 2 FSITXCLK 3 FSITXD0 5 4 FSITXD1 Figure 7-69. FSITX SPI Signaling Mode Timings 148 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.14.8 Host Interface Controller (HIC) The HIC module allows an external host controller to directly access resources of the device by emulating the ASRAM protocol. It has two modes of operation: direct access and mailbox access. In direct access mode, device resources is written to and read from directly by the external host. In mailbox access mode, external host and device write to and read from a buffer and notify each other when the buffer write/read is complete. For security reasons, the HIC has to be enabled by the device before the external host can access it. Figure 7-70 shows the block diagram of the HIC. Features of the HIC include: • • • • • • • • Configurable I/O data lines of 8 bits and 16 bits Direct and mailbox access modes 8 address lines and 8 configurable base addresses for a total of 2048 possible addressable regions Two 64-byte buffers for external host and device when using mailbox access mode Interrupt generation on buffer full/empty High throughput Trigger HIC activity from other peripherals Error indicators to the system or interface Legend HIC Pins HIC Registers HIC I/O Interface A[7:0] D[15:0] A[31:0] H2DINT to PIE Memory Mapped HIC Configuration Interface nBE[1:0] nCS D2HINT to Pin Host To Device CTRL Regs STATUS Regs WDATA[31:0] RDATA[31:0] Device To Host nWE nOE BASESEL[2:0] Mailbox Buffer BASE_ADDR0 BASE_ADDR1 . . BASE_ADDRn Mailbox Buffer nRDY EVT_TRIGGER[15:0] Figure 7-70. HIC Block Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 149 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.14.8.1 HIC Electrical Data and Timing Section 7.14.8.1.1 lists the HIC timing requirements. Section 7.14.8.1.2 lists the HIC switching characteristics. Figure 7-71 shows the read/write operation with nOE and nWE pins. Figure 7-72 shows the read/write operation with RnW pin. 7.14.8.1.1 HIC Timing Requirements over operating free-air temperature range (unless otherwise noted) REFID MIN MAX UNIT Read/Write Parameters with nOE and nWE pins - Dual Read/Write pins T1 tsu(ABBV-OEV) Setup time, A/BASESEL/nBE before nOE active 0 ns T2 tsu(ABBV-WEV) Setup time, A/BASESEL/nBE before nWE active 0 ns T3 tsu(CSV-OEV) Setup time, nCS active before nOE active 0.5tc(SYSCLK) ns T4 tsu(CSV-WEV) Setup time, nCS active before nWE active 0.5tc(SYSCLK) ns T5 th(ABBV-OEIV) Hold time, A/BASESEL/nBE/nCS after nOE inactive 6 ns T6 th(ABBV-WEIV) Hold time, A/BASESEL/nBE/nCS after nWE inactive 6 ns 4tc(SYSCLK) ns 4tc(SYSCLK) ns (Read)(1) T7 tw(OEV) Active pulse width of nOE T8 tw(WEV) Active pulse width of nWE (Write) nCS(2) T9 tw(CSIV) Inactive pulse width of 3tc(SYSCLK) ns T10 tw(OEIV) Inactive Read pulse width of nOE(2) 3tc(SYSCLK) ns T11 tw(WEIV) Inactive Write pulse width of nWE(2) 3tc(SYSCLK) ns T12 tsu(DV-WEV) Setup time, D before nWE active 0 ns T13 th(DV-WEIV) Hold time, D after nWE inactive 6 ns Read/Write Parameters with RnW pin - Single Read/Write pin T14 tsu(ABBV-CSV) Setup time, A/BASESEL/nBE before nCS active T15 tsu(RNWV-CSV) Setup time, RnW before nCS active T16 th(ABBV-CSIV) Hold time, A/BASESEL/nBE/RnW after nCS inactive T17 tw(CSV_RD) Active pulse width of nCS for read operation(1) 0 ns 0.5tc(SYSCLK) ns 6 ns 4tc(SYSCLK) ns T18 tw(CSV_WR) Active pulse width of nCS for write operation 4tc(SYSCLK) ns T19 tw(CSIV) Inactive pulse width of nCS(2) 3tc(SYSCLK) ns RnW(2) T20 tw(RNWIV) Inactive pulse width of 3tc(SYSCLK) ns T21 tsu(DV-CSV) Setup time, D before nCS active 0 ns T22 th(DV-CSIV) Hold time, D after nCS inactive 5 ns (1) (2) 150 For accesses to the device region, additional 2 SYSCLK cycles are required. For accesses to the device region with nRDY pin, additional SYSCLK cycle is required. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 7.14.8.1.2 HIC Switching Characteristics over operating free-air temperature range (unless otherwise noted) REFID PARAMETER MIN MAX UNIT Read/Write Parameters with nOE and nWE pins S1 td(OEV-DV) Output data delay time : nOE to D output valid (1) 3tc(SYSCLK) 4tc(SYSCLK) + 14 ns S2 td(OEIV-DIV) Output data hold time : nOE invalid to D output invalid (tri-state) 1tc(SYSCLK) 2tc(SYSCLK) + 14 ns S3 td(OEV-RDYV) Read Ready delay time : nOE to nRDY output valid 0 11 ns S4 td(WEV-RDYV) Write Ready delay time : nWE to nRDY output valid 0 11 ns -3 3 S5 td(RDYV-DV) Ready to Data delay time : nRDY output valid to D output valid S6 tw(RDYACT) Active pulse width of nRDY output 2tc(SYSCLK) ns ns Read/Write Parameters with RnW pin td(CSV-DV) Output delay time : nCS active to D output valid (1) 3tc(SYSCLK) 4tc(SYSCLK) + 14 ns S8 td(CSIV-DIV) Output hold time : nCS inactive to D output invalid (tri-state) 1tc(SYSCLK) 2tc(SYSCLK) + 14 ns S9 td(CSV-RDYV) Output delay time : nCS to nRDY output valid 0 11 ns -3 3 ns S7 S10 td(RDYV-DV) Ready to Data delay time : nRDY output valid to D output valid S11 tw(RDYACT) Active pulse width of nRDY output (1) 2tc(SYSCLK) ns Applicable to mailbox accesses only. Direct memory map (Device) accesses are qualified with nRDY pin. 7.14.8.1.3 HIC Timing Diagrams SETUP SIGNALS T9 nCS A[7:0] BASESEL[2:0] nBE[3:0] READ SIGNALS T1 T5 T3 T10 nOE T7 S2 S1 D[15:0] 7 WRITE SIGNALS T6 T2 T4 T11 nWE T8 T12 T13 D[15:0] S3 nRDY READY/WAIT SIGNAL S5 S6 S4 Figure 7-71. Read/Write Operation With nOE and nWE Pins Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 151 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 SETUP SIGNALS T19 nCS T17 or T18 A[7:0] BASESEL[2:0] nBE[3:0] T16 T14 READ SIGNALS RnW (Read) T15 T20 S8 S7 D[15:0] S10 WRITE SIGNALS RnW (Write) T20 T15 T21 T22 D[15:0] nRDY READY/WAIT SIGNAL S9 S11 Figure 7-72. Read/Write Operation With RnW Pin 152 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 8 Detailed Description 8.1 Overview C2000™ 32-bit microcontrollers are optimized for processing, sensing, and actuation to improve closed-loop performance in real-time control applications such as industrial motor drives; solar inverters and digital power; electrical vehicles and transportation; motor control; and sensing and signal processing. The TMS320F28002x (F28002x) is a powerful 32-bit floating-point microcontroller unit (MCU) that lets designers incorporate crucial control peripherals, differentiated analog, and nonvolatile memory on a single device. The real-time control subsystem is based on TI’s 32-bit C28x CPU, which provides 100 MHz of signal processing performance. The C28x CPU is further boosted by the new TMU extended instruction set, which enables fast execution of algorithms with trigonometric operations commonly found in transforms and torque loop calculations; and the VCRC extended instruction set, which reduces the latency for complex math operations commonly found in encoded applications. The F28002x supports up to 128KB (64KW) of flash memory in one bank. Up to 24KB (12KW) of on-chip SRAM is also available in blocks of 4KB (2KW) for efficient system partitioning. Flash ECC, SRAM ECC/parity, and dual-zone security are also supported. High-performance analog blocks are integrated on the F28002x real-time MCU to further enable system consolidation. Two separate 12-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. Four analog comparator modules provide continuous monitoring of input voltage levels for trip conditions. The TMS320C2000™ devices contain industry-leading control peripherals with frequency-independent ePWM/ HRPWM and eCAP allow for a best-in-class level of control to the system. Connectivity is supported through various industry-standard communication ports (such as SPI, SCI, I2C, PMBus, LIN, and CAN) and offers multiple muxing options for optimal signal placement in a variety of applications. New to the C2000™ platform is Host Interface Controller (HIC), a high throughput interface that allows an external host to access resources of the TMS320F28002x. Additionally, in an industry first, the FSI enables high-speed, robust communication to complement the rich set of peripherals that are embedded in the device. A specially enabled device variant, TMS320F28002xC, allows access to the Configurable Logic Block (CLB) for additional interfacing features and allows access to the secure ROM, which includes a library to enable InstaSPIN-FOC™. See Table 5-1 for more information. The Embedded Real-Time Analysis and Diagnostic (ERAD) module enhances the debug and system analysis capabilities of the device by providing additional hardware breakpoints and counters for profiling. To learn more about the C2000 real-time MCUs, visit the C2000™ real-time control MCUs page. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 153 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 8.2 Functional Block Diagram Figure 8-1 shows the CPU system and associated peripherals. Boot ROM C28x CPU Secure ROM FPU32 FINTDIV TMU VCRC Flash Bank0 16 Sectors 64 KW (128 KB) Secure Memories shown in Red Bus Legend CPU DMA HIC BGCRC CPU Timers DCC DCSM ePIE ERAD M0-M1 RAM 2 KW (4 KB) BGCRC LS4-LS7 RAM 8 KW (16 KB) Crystal Oscillator INTOSC1, INTOSC2 PLL HIC GS0 RAM 2 KW (4 KB) PF1 14x ePWM Chan. (8 Hi-Res Capable) 14x ePWM Chan. 4x CMPSS (8 Hi-Res Capable) 3x eCAP 3x eCAP 2x CLB (1 HRCAP Capable) (1 HRCAP Capable) 2x eQEP (CW/CCW Support) PF3 Result 2x 12-Bit ADC DMA 6 Channles PF4 Data PF2 PF7 PF8 PF9 1x PMBUS 1x CAN 2x LIN 1x SCI 39x GPIO 2x SPI 2x I2C Input XBAR 1x FSI RX Output XBAR 1x FSI TX NMI Watchdog Windowed Watchdog ePWM XBAR CLB XBAR Figure 8-1. Functional Block Diagram 154 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 8.3 Memory 8.3.1 Memory Map The Memory Map table describes the memory map. See the Memory Controller Module section of the System Control chapter in the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual. Table 8-1. Memory Map SIZE START ADDRESS END ADDRESS HIC ACCESS DMA ACCESS ECC/ PARITY ACCESS PROTECTION SECURITY M0 RAM 1K x 16 0x0000 0000 0x0000 03FF - - ECC Yes - M1 RAM 1K x 16 0x0000 0400 0x0000 07FF - - ECC Yes - PieVectTable 512 x 16 0x0000 0D00 0x0000 0EFF - - - - - LS4 RAM 2K x 16 0x0000 A000 0x0000 A7FF - - ECC Yes Yes LS5 RAM 2K x 16 0x0000 A800 0x0000 AFFF - - ECC Yes Yes LS6 RAM 2K x 16 0x0000 B000 0x0000 B7FF - - ECC Yes Yes LS7 RAM 2K x 16 0x0000 B800 0x0000 BFFF - - ECC Yes Yes GS0 RAM 2K x 16 0x0000 C000 0x0000 C7FF Yes Yes Parity Yes - CAN A Message RAM 2K x 16 0x0004 9000 0x0004 97FF - - Parity - - TI OTP(1) 1K x 16 0x0007 0000 0x0007 03FF - - ECC - - User OTP 1K x 16 0x0007 8000 0x0007 83FF - - ECC - Yes Flash 64K x 16 0x0008 0000 0x0008 FFFF - - ECC - Yes Secure ROM 32K x 16 0x003E 8000 0x003E FFFF - - Parity - Yes Boot ROM 64K x 16 0x003F 0000 0x003F FFFF - - Parity - - Pie Vector Fetch Error (part of Boot ROM) 1 x 16 0x003F FFBE 0x003F FFBF - - Parity - - Default Vectors (part of Boot ROM) 64 x 16 0x003F FFC0 0x003F FFFF - - Parity - - MEMORY (1) TI OTP is for TI internal use only. 8.3.1.1 Dedicated RAM (Mx RAM) The CPU subsystem has two dedicated ECC-capable RAM blocks: M0 and M1. These memories are small nonsecure blocks that are tightly coupled with the CPU (that is, only the CPU has access to them). 8.3.1.2 Local Shared RAM (LSx RAM) Local shared RAMs (LSx RAMs) are accessible to the CPU, HIC, and BGCRC. All LSx RAM blocks have ECC. These memories are secure and have CPU access protection (CPU write/CPU fetch). 8.3.1.3 Global Shared RAM (GSx RAM) Global shared RAMs (GSx RAMs) are accessible from the CPU, HIC, and DMA. The CPU, HIC, and DMA have full read and write access to these memories. All GSx RAM blocks have parity. The GSx RAMs have access protection (CPU write/CPU fetch/DMA write/HIC write). Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 155 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 8.3.2 Flash Memory Map On the F28002x devices one flash bank (128KB [64KW]) is available. Code to program the flash should be executed out of RAM, there should not be any kind of access to the flash bank when an erase or program operation is in progress. Table 8-2 lists the addresses of flash sectors available for each part number. 8.3.2.1 Addresses of Flash Sectors Table 8-2. Addresses of Flash Sectors PART NUMBER SECTOR ADDRESS SIZE ECC ADDRESS START END SIZE START END OTP Sectors All F28002x TI OTP 1K x 16 0x0007 0000 0x0007 03FF 128 x 16 0x0107 0000 0x0107 007F DCSM OTP 1K x 16 0x0007 8000 0x0007 83FF 128 x 16 0x0107 1000 0x0107 107F Sector 0 4K x 16 0x0008 0000 0x0008 0FFF 512 x 16 0x0108 0000 0x0108 01FF Sector 1 4K x 16 0x0008 1000 0x0008 1FFF 512 x 16 0x0108 0200 0x0108 03FF Sector 2 4K x 16 0x0008 2000 0x0008 2FFF 512 x 16 0x0108 0400 0x0108 05FF Sector 3 4K x 16 0x0008 3000 0x0008 3FFF 512 x 16 0x0108 0600 0x0108 07FF Sector 4 4K x 16 0x0008 4000 0x0008 4FFF 512 x 16 0x0108 0800 0x0108 09FF Sector 5 4K x 16 0x0008 5000 0x0008 5FFF 512 x 16 0x0108 0A00 0x0108 0BFF Sector 6 4K x 16 0x0008 6000 0x0008 6FFF 512 x 16 0x0108 0C00 0x0108 0DFF Sector 7 4K x 16 0x0008 7000 0x0008 7FFF 512 x 16 0x0108 0E00 0x0108 0FFF Sector 8 4K x 16 0x0008 8000 0x0008 8FFF 512 x 16 0x0108 1000 0x0108 11FF Sector 9 4K x 16 0x0008 9000 0x0008 9FFF 512 x 16 0x0108 1200 0x0108 13FF Sector 10 4K x 16 0x0008 A000 0x0008 AFFF 512 x 16 0x0108 1400 0x0108 15FF Sector 11 4K x 16 0x0008 B000 0x0008 BFFF 512 x 16 0x0108 1600 0x0108 17FF Sector 12 4K x 16 0x0008 C000 0x0008 CFFF 512 x 16 0x0108 1800 0x0108 19FF Sector 13 4K x 16 0x0008 D000 0x0008 DFFF 512 x 16 0x0108 1A00 0x0108 1BFF Sector 14 4K x 16 0x0008 E000 0x0008 EFFF 512 x 16 0x0108 1C00 0x0108 1DFF Sector 15 4K x 16 0x0008 F000 0x0008 FFFF 512 x 16 0x0108 1E00 0x0108 1FFF Bank 0 Sectors All F28002x F280025, F280023 F280025 156 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 8.3.3 Peripheral Registers Memory Map The Peripheral Registers Memory Map (C28x) table lists the peripheral registers. Table 8-3. Peripheral Registers Memory Map (C28x) Bit Field Name Instance Structure DriverLib Name Base Address Pipeline Protected DMA Access HIC Access Peripheral Frame 0 (PF0) AdcaResultRegs ADC_RESULT_REGS ADCARESULT_BASE 0x0000_0B00 - YES YES AdccResultRegs ADC_RESULT_REGS ADCCRESULT_BASE 0x0000_0B40 - YES YES CpuTimer0Regs CPUTIMER_REGS CPUTIMER0_BASE 0x0000_0C00 - - - CpuTimer1Regs CPUTIMER_REGS CPUTIMER1_BASE 0x0000_0C08 - - - CpuTimer2Regs CPUTIMER_REGS CPUTIMER2_BASE 0x0000_0C10 - - - PieCtrlRegs PIE_CTRL_REGS PIECTRL_BASE 0x0000_0CE0 - - - DmaRegs DMA_REGS DMA_BASE 0x0000_1000 - - - Dmach1Regs DMA_CH_REGS DMA_CH1_BASE 0x0000_1020 - - - Dmach2Regs DMA_CH_REGS DMA_CH2_BASE 0x0000_1040 - - - Dmach3Regs DMA_CH_REGS DMA_CH3_BASE 0x0000_1060 - - - Dmach4Regs DMA_CH_REGS DMA_CH4_BASE 0x0000_1080 - - - Dmach5Regs DMA_CH_REGS DMA_CH5_BASE 0x0000_10A0 - - - Dmach6Regs DMA_CH_REGS DMA_CH6_BASE 0x0000_10C0 - - - YES Peripheral Frame 1 (PF1) Clb1LogicCfgRegs CLB_LOGIC_CONFIG_REGS CLB1_LOGICCFG_BASE 0x0000_3000 - YES Clb1LogicCtrlRegs CLB_LOGIC_CONTROL_REGS CLB1_LOGICCTRL_BASE 0x0000_3100 - YES YES Clb1DataExchRegs CLB_DATA_EXCHANGE_REGS CLB1_DATAEXCH_BASE 0x0000_3180 - YES YES Clb2LogicCfgRegs CLB_LOGIC_CONFIG_REGS CLB2_LOGICCFG_BASE 0x0000_3200 - YES YES Clb1DataExchRegs CLB_DATA_EXCHANGE_REGS CLB1_DATAEXCH_BASE 0x0000_3300 - YES YES Clb2LogicCfgRegs CLB_LOGIC_CONFIG_REGS CLB2_LOGICCFG_BASE 0x0000_3380 - YES YES EPwm1Regs EPWM_REGS EPWM1_BASE 0x0000_4000 YES YES YES EPwm2Regs EPWM_REGS EPWM2_BASE 0x0000_4100 YES YES YES EPwm3Regs EPWM_REGS EPWM3_BASE 0x0000_4200 YES YES YES EPwm4Regs EPWM_REGS EPWM4_BASE 0x0000_4300 YES YES YES EPwm5Regs EPWM_REGS EPWM5_BASE 0x0000_4400 YES YES YES EPwm6Regs EPWM_REGS EPWM6_BASE 0x0000_4500 YES YES YES EPwm7Regs EPWM_REGS EPWM7_BASE 0x0000_4600 YES YES YES EQep1Regs EQEP_REGS EQEP1_BASE 0x0000_5100 YES YES YES EQep2Regs EQEP_REGS EQEP2_BASE 0x0000_5140 YES YES YES ECap1Regs ECAP_REGS ECAP1_BASE 0x0000_5200 YES YES YES ECap2Regs ECAP_REGS ECAP2_BASE 0x0000_5240 YES YES YES ECap3Regs ECAP_REGS ECAP3_BASE 0x0000_5280 YES YES YES Hrcap3Regs HRCAP_REGS HRCAP3_BASE 0x0000_52A0 YES YES YES Cmpss1Regs CMPSS_REGS CMPSS1_BASE 0x0000_5C80 YES YES YES Cmpss2Regs CMPSS_REGS CMPSS2_BASE 0x0000_5CA0 YES YES YES Cmpss3Regs CMPSS_REGS CMPSS3_BASE 0x0000_5CC0 YES YES YES Cmpss4Regs CMPSS_REGS CMPSS4_BASE 0x0000_5CE0 YES YES YES Peripheral Frame 2 (PF2) SpiaRegs SPI_REGS SPIA_BASE 0x0000_6100 YES YES YES SpibRegs SPI_REGS SPIB_BASE 0x0000_6110 YES YES YES BGCRC_REGS BGCRC_CPU_BASE 0x0000_6340 YES YES YES BgcrcCpuRegs PmbusaRegs PMBUS_REGS PMBUSA_BASE 0x0000_6400 YES YES YES HIC_CFG_REGS HIC_BASE 0x0000_6500 YES YES YES FsiTxaRegs FSI_TX_REGS FSITXA_BASE 0x0000_6600 YES YES YES FsiRxaRegs FSI_RX_REGS FSIRXA_BASE 0x0000_6680 YES YES YES HicRegs Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 157 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 8-3. Peripheral Registers Memory Map (C28x) (continued) Bit Field Name Instance Structure DriverLib Name Base Address Pipeline Protected DMA Access HIC Access Peripheral Frame 3 (PF3) AdcaRegs ADC_REGS ADCA_BASE 0x0000_7400 YES - - AdccRegs ADC_REGS ADCC_BASE 0x0000_7500 YES - - - Peripheral Frame 4 (PF4) InputXbarRegs INPUT_XBAR_REGS INPUTXBAR_BASE 0x0000_7900 YES - XBAR_REGS XBAR_BASE 0x0000_7920 YES - - SYNC_SOC_REGS SYNCSOC_BASE 0x0000_7940 YES - - INPUT_XBAR_REGS INPUTXBAR2_BASE 0x0000_7960 YES - - DMA_CLA_SRC_SEL_REGS DMACLASRCSEL_BASE 0x0000_7980 YES - - EPWM_XBAR_REGS EPWMXBAR_BASE 0x0000_7A00 YES - - CLB_XBAR_REGS CLBXBAR_BASE 0x0000_7A40 YES - - OutputXbarRegs OUTPUT_XBAR_REGS OUTPUTXBAR_BASE 0x0000_7A80 YES - - OutputXbar2Regs OUTPUT_XBAR_REGS OUTPUTXBAR2_BASE 0x0000_7BC0 YES - - GPIO_CTRL_REGS GPIOCTRL_BASE 0x0000_7C00 YES - - GPIO_DATA_REGS GPIODATA_BASE 0x0000_7F00 YES - - GPIO_DATA_READ_REGS GPIODATAREAD_BASE 0x0000_7F80 YES - YES XbarRegs SyncSocRegs InputXbar2Regs DmaClaSrcSelRegs EPwmXbarRegs ClbXbarRegs GpioCtrlRegs GpioDataRegs GpioDataReadRegs Peripheral Frame 5 (PF5) DevCfgRegs DEV_CFG_REGS DEVCFG_BASE 0x0005_D000 YES - - ClkCfgRegs CLK_CFG_REGS CLKCFG_BASE 0x0005_D200 YES - - CpuSysRegs CPU_SYS_REGS CPUSYS_BASE 0x0005_D300 YES - - PeriphAcRegs PERIPH_AC_REGS PERIPHAC_BASE 0x0005_D500 YES - - AnalogSubsysRegs ANALOG_SUBSYS_REGS ANALOGSUBSYS_BASE 0x0005_D700 YES - - DcsmBank0Z1Regs DCSM_BANK0_Z1_REGS DCSM_BANK0_Z1_BASE 0x0005_F000 YES - - DcsmBank0Z2Regs DCSM_BANK0_Z2_REGS DCSM_BANK0_Z2_BASE 0x0005_F040 YES - - DcsmCommonRegs DCSM_COMMON_REGS DCSMCOMMON_BASE 0x0005_F070 YES - - DcsmCommon2Regs DCSM_COMMON2_REGS DCSMCOMMON2_BASE 0x0005_F080 YES - - Peripheral Frame 6 (PF6) MemCfgRegs MEM_CFG_REGS MEMCFG_BASE 0x0005_F400 YES - - ACCESSPROTECTION_REGS ACCESSPROTECTION_BASE 0x0005_F500 YES - - MemoryErrorRegs MEMORY_ERROR_REGS MEMORYERROR_BASE 0x0005_F540 YES - - RomWaitStateRegs ROM_WAIT_STATE_REGS ROMWAITSTATE_BASE 0x0005_F580 YES - - RomPrefetchRegs ROM_PREFETCH_REGS ROMPREFETCH_BASE 0x0005_F588 YES - - Flash0CtrlRegs FLASH_CTRL_REGS FLASH0CTRL_BASE 0x0005_F800 YES - - Flash0EccRegs FLASH_ECC_REGS FLASH0ECCREGS_BASE 0x0005_FB00 YES - - AccessProtectionRegs Peripheral Frame 7 (PF7) CanaRegs CAN_REGS CANA_BASE 0x0004_8000 YES YES YES CanaMboxRegs CAN_MBOX CANAMBOX_BASE 0x0004_9000 YES YES YES HwbistRegs HWBIST_REGS HWBIST_BASE 0x0005_E000 YES - - MpostRegs MPOST_REGS MPOST_BASE 0x0005_E200 YES - - Dcc0Regs DCC_REGS DCC0_BASE 0x0005_E700 YES - - Dcc1Regs DCC_REGS DCC1_BASE 0x0005_E740 YES - - ERAD_GLOBAL_REGS ERADGLOBAL_BASE 0x0005_E800 YES - - EradHWBP1Regs ERAD_HWBP_REGS ERADHWBP1_BASE 0x0005_E900 YES - - EradHWBP2Regs ERAD_HWBP_REGS ERADHWBP2_BASE 0x0005_E908 YES - - EradHWBP3Regs ERAD_HWBP_REGS ERADHWBP3_BASE 0x0005_E910 YES - - EradHWBP4Regs ERAD_HWBP_REGS ERADHWBP4_BASE 0x0005_E918 YES - - EradHWBP5Regs ERAD_HWBP_REGS ERADHWBP5_BASE 0x0005_E920 YES - - EradHWBP6Regs ERAD_HWBP_REGS ERADHWBP6_BASE 0x0005_E928 YES - - EradHWBP7Regs ERAD_HWBP_REGS ERADHWBP7_BASE 0x0005_E930 YES - - EradGlobalRegs 158 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 8-3. Peripheral Registers Memory Map (C28x) (continued) Bit Field Name Instance Structure DriverLib Name Base Address Pipeline Protected DMA Access HIC Access EradHWBP8Regs ERAD_HWBP_REGS ERADHWBP8_BASE 0x0005_E938 YES - - EradCounter1Regs ERAD_COUNTER_REGS ERADCOUNTER1_BASE 0x0005_E980 YES - - EradCounter2Regs ERAD_COUNTER_REGS ERADCOUNTER2_BASE 0x0005_E990 YES - - EradCounter3Regs ERAD_COUNTER_REGS ERADCOUNTER3_BASE 0x0005_E9A0 YES - - EradCounter4Regs ERAD_COUNTER_REGS ERADCOUNTER4_BASE 0x0005_E9B0 YES - - ERAD_CRC_GLOBAL_REGS ERADCRCGLOBAL_BASE 0x0005_EA00 YES - - EradCRC1Regs ERAD_CRC_REGS ERADCRC1_BASE 0x0005_EA10 YES - - EradCRC2Regs ERAD_CRC_REGS ERADCRC2_BASE 0x0005_EA20 YES - - EradCRC3Regs ERAD_CRC_REGS ERADCRC3_BASE 0x0005_EA30 YES - - EradCRC4Regs ERAD_CRC_REGS ERADCRC4_BASE 0x0005_EA40 YES - - EradCRC5Regs ERAD_CRC_REGS ERADCRC5_BASE 0x0005_EA50 YES - - EradCRC6Regs ERAD_CRC_REGS ERADCRC6_BASE 0x0005_EA60 YES - - EradCRC7Regs ERAD_CRC_REGS ERADCRC7_BASE 0x0005_EA70 YES - - EradCRC8Regs ERAD_CRC_REGS ERADCRC8_BASE 0x0005_EA80 YES - - EradCRCGlobalRegs Peripheral Frame 8 (PF8) LinaRegs LIN_REGS LINA_BASE 0x0000_6A00 YES YES YES LinbRegs LIN_REGS LINB_BASE 0x0000_6B00 YES YES YES WD_BASE 0x0000_7000 YES - YES Peripheral Frame 9 (PF9) WdRegs NmiIntruptRegs WD_REGS NMI_INTRUPT_REGS NMI_BASE 0x0000_7060 YES - YES XintRegs XINT_REGS XINT_BASE 0x0000_7070 YES - YES SciaRegs SCI_REGS SCIA_BASE 0x0000_7200 YES - YES I2caRegs I2C_REGS I2CA_BASE 0x0000_7300 YES - YES I2cbRegs I2C_REGS I2CB_BASE 0x0000_7340 YES - YES Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 159 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 8.4 Identification Table 8-4 lists the Device Identification Registers. Additional information on these device identification registers can be found in the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual. Table 8-4. Device Identification Registers NAME ADDRESS SIZE (x16) DESCRIPTION Device part identification number PARTIDH 0x0005 D00A 2 TMS320F280025 0x04FF 0500 TMS320F280025C 0x04FF 0500 TMS320F280023 0x04FD 0500 TMS320F280023C 0x04FD 0500 TMS320F280021 0x04FB 0500 Silicon revision number REVID UID_UNIQUE 160 0x0005 D00C 0x0007 01F4 Submit Document Feedback 2 2 Revision 0 0x0000 0000 Revision A 0x0000 0001 Unique identification number. This number is different on each individual device with the same PARTIDH. This unique number can be used as a serial number in the application. This number is present only on TMS devices. Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 8.5 Bus Architecture – Peripheral Connectivity The Peripheral Connectivity table lists a broad view of the peripheral and configuration register accessibility from each bus master. Table 8-5. Peripheral Connectivity PERIPHERAL C28 DMA HIC BGCRC SYSTEM PERIPHERALS CPU Timers Y ERAD Y GPIO Data Y GPIO Pin Mapping and Configuration Y XBAR Configuration Y System Configuration Y DCC Y Y MEMORY M0/M1 Y Y LSx Y Y GS0 Y ROM Y FLASH Y Y Y Y Y CONTROL PERIPHERALS ePWM/HRPWM Y Y Y eCAP Y Y Y Y Y Y CMPSS(1) Y Y Y ADC Configuration Y Y Y eQEP(1) ANALOG PERIPHERALS ADC Results(1) Y COMMUNICATION PERIPHERALS CAN Y Y Y FSITX/FSIRX Y Y Y I2C Y LIN Y Y Y PMBus Y Y Y SCI Y SPI Y (1) Y Y Y Y These modules are accessible from DMA but cannot trigger a DMA transfer. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 161 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 8.6 C28x Processor The CPU is a 32-bit fixed-point processor. This device draws from the best features of digital signal processing; reduced instruction set computing (RISC); and microcontroller architectures, firmware, and tool sets. The CPU features include a modified Harvard architecture and circular addressing. The RISC features are single-cycle instruction execution, register-to-register operations, and modified Harvard architecture. The microcontroller features include ease of use through an intuitive instruction set, byte packing and unpacking, and bit manipulation. The modified Harvard architecture of the CPU enables instruction and data fetches to be performed in parallel. The CPU can read instructions and data while it writes data simultaneously to maintain the single-cycle instruction operation across the pipeline. The CPU does this over six separate address/data buses. For more information on CPU architecture and instruction set, see the TMS320C28x CPU and Instruction Set Reference Guide. For more information on the C28x Floating Point Unit (FPU), Trigonometric Math Unit, and Cyclic Redundancy Check (VCRC) instruction sets, see the TMS320C28x Extended Instruction Sets Technical Reference Manual. A brief overview of the FPU, TMU, and VCRC are provided here. 8.6.1 Floating-Point Unit (FPU) The C28x plus floating-point (C28x+FPU) processor extends the capabilities of the C28x fixed-point CPU by adding registers and instructions to support IEEE single-precision floating-point operations. Devices with the C28x+FPU include the standard C28x register set plus an additional set of floating-point unit registers. The additional floating-point unit registers are the following: • Eight floating-point result registers, RnH (where n = 0–7) • Floating-point Status Register (STF) • Repeat Block Register (RB) All of the floating-point registers, except the RB, are shadowed. This shadowing can be used in high-priority interrupts for fast context save and restore of the floating-point registers. 8.6.2 Fast Integer Division Unit The Fast Integer Division (FINTDIV) unit of the C28x CPU uniquely supports three types of integer division (Truncated, Modulus, Euclidean) of varying data type sizes (16/16, 32/16, 32/32, 64/32, 64/64) in unsigned or signed formats. • Truncated integer division is naturally supported by C language (/, % operators). • Modulus and Euclidean divisions are variants that are more efficient for control algorithms and are supported by C intrinsics. All three types of integer division produce both a quotient and remainder component, are interruptible, and execute in a minimum number of deterministic cycles (10 cycles for a 32/32 division). In addition, the Fast Division capabilities of the C28x CPU uniquely support fast execution of floating-point 32-bit (in 5 cycles) and 64bit (in 20 cycles) division. For more information about fast integer division, see the Fast Integer Division – A Differentiated Offering From C2000™ Product Family Application Report. 162 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 8.6.3 Trigonometric Math Unit (TMU) The TMU extends the capabilities of a C28x+FPU by adding instructions and leveraging existing FPU instructions to speed up the execution of common trigonometric and arithmetic operations listed in Table 8-6. Table 8-6. TMU Supported Instructions INSTRUCTIONS C EQUIVALENT OPERATION PIPELINE CYCLES MPY2PIF32 RaH,RbH a = b * 2pi 2/3 DIV2PIF32 RaH,RbH a = b / 2pi 2/3 DIVF32 RaH,RbH,RcH a = b/c 5 SQRTF32 RaH,RbH a = sqrt(b) 5 SINPUF32 RaH,RbH a = sin(b*2pi) 4 COSPUF32 RaH,RbH a = cos(b*2pi) 4 ATANPUF32 RaH,RbH a = atan(b)/2pi 4 QUADF32 RaH,RbH,RcH,RdH Operation to assist in calculating ATANPU2 5 No changes have been made to existing instructions, pipeline or memory bus architecture. All TMU instructions use the existing FPU register set (R0H to R7H) to carry out their operations. Exponent instruction IEXP2F32 and logarithmic instruction LOG2F32 have been added to support computation of floating-point power function for the non-linear proportional integral derivative control (NLPID) component of the C2000 Digital Control Library. These two added instructions reduce the power function calculations from a typical of 300 cycles using library emulation to less than 10 cycles. 8.6.4 VCRC Unit Cyclic redundancy check (CRC) algorithms provide a straightforward method for verifying data integrity over large data blocks, communication packets, or code sections. The C28x+VCRC can perform 8-bit, 16-bit, 24-bit, and 32-bit CRCs. For example, the VCRC can compute the CRC for a block length of 10 bytes in 10 cycles. A CRC result register contains the current CRC, which is updated whenever a CRC instruction is executed. The following are the CRC polynomials used by the CRC calculation logic of the VCRC: • CRC8 polynomial = 0x07 • CRC16 polynomial 1 = 0x8005 • CRC16 polynomial 2 = 0x1021 • CRC24 polynomial = 0x5d6dcb • CRC32 polynomial 1 = 0x04c11db7 • CRC32 polynomial 2 = 0x1edc6f41 This module can calculate CRCs for a byte of data in a single cycle. The CRC calculation for CRC8, CRC16, CRC24, and CRC32 is done byte-wise (instead of computing on a complete 16-bit or 32-bit data read by the C28x core) to match the byte-wise computation requirement mandated by various standards. The VCRC Unit also allows the user to provide the size (1b-32b) and value of any polynomial to fit custom CRC requirements. The CRC execution time increases to three cycles when using a custom polynomial. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 163 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 8.7 Embedded Real-Time Analysis and Diagnostic (ERAD) The ERAD module enhances the debug and system-analysis capabilities of the device. The debug and systemanalysis enhancements provided by the ERAD module is done outside of the CPU. The ERAD module consists of the Enhanced Bus Comparator units and the System Event Counter units. The Enhanced Bus Comparator units are used to generate hardware breakpoints, hardware watch points, and other output events. The System Event Counter units are used to analyze and profile the system. The ERAD module is accessible by the debugger and by the application software, which significantly increases the debug capabilities of many real-time systems, especially in situations where debuggers are not connected. In the TMS320F28002x devices, the ERAD module contains eight Enhanced Bus Comparator units (which increases the number of Hardware breakpoints from two to ten) and four Benchmark System Event Counter units. 8.8 Background CRC-32 (BGCRC) The Background CRC (BGCRC) module computes a CRC-32 on a configurable block of memory. It accomplishes this by fetching the specified block of memory during idle cycles (when the CPU, HIC, or DMA is not accessing the memory block). The calculated CRC-32 value is compared against a golden CRC-32 value to indicate a pass or fail. In essence, the BGCRC helps identify memory faults and corruption. The BGCRC module has the following features: • One cycle CRC-32 computation on 32 bits of data • No CPU bandwidth impact for zero wait state memory • Minimal CPU bandwidth impact for non-zero wait state memory • Dual operation modes (CRC-32 mode and scrub mode) • Watchdog timer to time CRC-32 completion • Ability to pause and resume CRC-32 computation 164 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 8.9 Direct Memory Access (DMA) The DMA module provides a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Additionally, the DMA has the capability to orthogonally rearrange the data as it is transferred as well as “ping-pong” data between buffers. These features are useful for structuring data into blocks for optimal CPU processing. Figure 8-2 shows a device-level block diagram of the DMA. DMA features include: • Six channels with independent PIE interrupts • Peripheral interrupt trigger sources – ADC interrupts and EVT signals – External Interrupts – ePWM SOC signals – CPU timers – eCAP – SPI transmit and receive – CAN transmit and receive – LIN transmit and receive • Data sources and destinations: – GSx RAM – ADC result registers – Control peripheral registers (ePWM, eQEP, eCAP) – SPI, LIN, CAN, and PMBus registers • Word Size: 16-bit or 32-bit (SPI limited to 16-bit) • Throughput: Four cycles per word without arbitration CAN LIN ADC WRAPPER ADC RESULTS XINT TIMER Global Shared (GS0) RAM C28x bus CMPSS eQEP TINT(0-2) XINT(1-5) ADCx.INT(1-5), ADCx.EVT CANxIF(1-3) ECAP(1-3)DMA EPWM(1-7).SOCA, EPWM(1-7.SOCB SPITXDMA(A-B), SPIRXDMA(A-B) FSITXADMA, FSIRXADMA eCAP EPWM SPI PMBUS DMA Trigger Source Selection DMACHSRCSEL1.CHx DMACHSRCSEL2.CHx CHx.MODE.PERINTSEL (x = 1 to 6) DMA DMA_CHx(1-6) DMA bus C28x PIE FSI Figure 8-2. DMA Block Diagram Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 165 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 8.10 Device Boot Modes This section explains the default boot modes, as well as all the available boot modes supported on this device. The boot ROM uses the boot mode select, general-purpose input/output (GPIO) pins to determine the boot mode configuration. Table 8-7 shows the boot mode options available for selection by the default boot mode select pins. Users have the option to program the device to customize the boot modes selectable in the boot-up table as well as the boot mode select pin GPIOs used. All the peripheral boot modes that are supported use the first instance of the peripheral module (SCIA, SPIA, I2CA, CANA, and so forth). Whenever these boot modes are referred to in this chapter, such as SCI boot, it is actually referring to the first module instance, which means the SCI boot on the SCIA port. The same applies to the other peripheral boots. See Section 7.11.2.2.2 and Figure 7-8 for tboot-flash, the boot ROM execution time to first instruction fetch in flash. Table 8-7. Device Default Boot Modes BOOT MODE GPIO24 (DEFAULT BOOT MODE SELECT PIN 1) GPIO32 (DEFAULT BOOT MODE SELECT PIN 0) Parallel IO 0 0 SCI / Wait (1) Boot(1) 0 1 CAN 1 0 Flash 1 1 SCI boot mode can be used as a wait boot mode as long as SCI continues to wait for an 'A' or 'a' during the SCI autobaud lock process. 8.10.1 Device Boot Configurations This section details what boot configurations are available and how to configure them. This device supports from 0 boot mode select pins up to 3 boot mode select pins as well as from 1 configured boot mode up to 8 configured boot modes. To change and configure the device from the default settings to custom settings for your application, use the following process: 1. Determine all the various ways you want application to be able to boot. (For example: Primary boot option of Flash boot for your main application, secondary boot option of CAN boot for firmware updates, tertiary boot option of SCI boot for debugging, etc) 2. Based on the number of boot modes needed, determine how many boot mode select pins (BMSPs) are required to select between your selected boot modes. (For example: 2 BMSPs are required to select between 3 boot mode options) 3. Assign the required BMSPs to a physical GPIO pin. (For example, BMSP0 to GPIO10, BMSP1 to GPIO51, and BMSP2 left as default which is disabled). Refer to Section 8.10.1.1 for all the details on performing these configurations. 4. Assign the determined boot mode definitions to indexes in your custom boot table that correlate to the decoded value of the BMSPs. For example, BOOTDEF0=Boot to Flash, BOOTDEF1=CAN Boot, BOOTDEF2=SCI Boot; all other BOOTDEFx are left as default/nothing). Refer to Section 8.10.1.2 for all the details on setting up and configuring the custom boot mode table. Additionally, the Boot Mode Example Use Cases section of the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual provides some example use cases on how to configure the BMSPs and custom boot tables. Note The CAN boot mode turns on the XTAL. Be sure an XTAL is installed in the application before using CAN boot mode. 166 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 8.10.1.1 Configuring Boot Mode Pins This section explains how the boot mode select pins can be customized by the user, by programming the BOOTPIN-CONFIG location (refer to Table 8-8) in the user-configurable dual-zone security module (DCSM) OTP. The location in the DCSM OTP is Z1-OTP-BOOTPIN-CONFIG or Z2-OTP-BOOTPIN-CONFIG. When debugging, EMU-BOOTPIN-CONFIG is the emulation equivalent of Z1-OTP-BOOTPIN-CONFIG/Z2-OTPBOOTPIN-CONFIG, and can be programmed to experiment with different boot modes without writing to OTP. The device can be programmed to use 0, 1, 2, or 3 boot mode select pins as needed. Note When using Z2-OTP-BOOTPIN-CONFIG, the configurations programmed in this location will take priority over the configurations in Z1-OTP-BOOTPIN-CONFIG. It is recommended to use Z1-OTPBOOTPIN-CONFIG first and then if OTP configurations need to be altered, switch to using Z2-OTPBOOTPIN-CONFIG. Table 8-8. BOOTPIN-CONFIG Bit Fields BIT NAME DESCRIPTION 31:24 Key 23:16 Boot Mode Select Pin 2 (BMSP2) Refer to BMSP0 description except for BMSP2 15:8 Boot Mode Select Pin 1 (BMSP1) Refer to BMSP0 description except for BMSP1 Boot Mode Select Pin 0 (BMSP0) Set to the GPIO pin to be used during boot (up to 255): - 0x0 = GPIO0 - 0x01 = GPIO1 - and so on Writing 0xFF disables BMSP0 and this pin is no longer used to select the boot mode. 7:0 Write 0x5A to these 8-bits to indicate the bits in this register are valid The following GPIOs cannot be used as a BMSP. If selected for a particular BMSP, the boot ROM automatically selects the factory default GPIO (the factory default for BMSP2 is 0xFF, which disables the BMSP). • GPIO 20 and GPIO 21 • GPIO 36 and GPIO 38 • GPIO 47 to GPIO 60 • GPIO 63 to GPIO 223 Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 167 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 8-9. Standalone Boot Mode Select Pin Decoding BOOTPIN_CONFIG KEY BMSP0 BMSP1 BMSP2 != 0x5A Don’t Care Don’t Care Don’t Care 0xFF 0xFF 0xFF Boot as defined in the boot table for boot mode 0 (All BMSPs disabled) Valid GPIO 0xFF 0xFF Boot as defined by the value of BMSP0 (BMSP1 and BMSP2 disabled) 0xFF Valid GPIO 0xFF Boot as defined by the value of BMSP1 (BMSP0 and BMSP2 disabled) 0xFF 0xFF Valid GPIO Boot as defined by the value of BMSP2 (BMSP0 and BMSP1 disabled) Valid GPIO Valid GPIO 0xFF Boot as defined by the values of BMSP0 and BMSP1 (BMSP2 disabled) Valid GPIO 0xFF Valid GPIO Boot as defined by the values of BMSP0 and BMSP2 (BMSP1 disabled) 0xFF Valid GPIO Valid GPIO Boot as defined by the values of BMSP1 and BMSP2 (BMSP0 disabled) Valid GPIO Valid GPIO Valid GPIO Boot as defined by the values of BMSP0, BMSP1, and BMSP2 = 0x5A REALIZED BOOT MODE Boot as defined by the factory default BMSPs Invalid GPIO Valid GPIO Valid GPIO BMSP0 is reset to the factory default BMSP0 GPIO Boot as defined by the values of BMSP0, BMSP1, and BMSP2 Valid GPIO Invalid GPIO Valid GPIO BMSP1 is reset to the factory default BMSP1 GPIO Boot as defined by the values of BMSP0, BMSP1, and BMSP2 Invalid GPIO BMSP2 is reset to the factory default state, which is disabled Boot as defined by the values of BMSP0 and BMSP1 Valid GPIO Valid GPIO Note When decoding the boot mode, BMSP0 is the least-significant-bit and BMSP2 is the most-significantbit of the boot table index value. It is recommended when disabling BMSPs to start with disabling BMSP2. For example, in an instance when only using BMSP2 (BMSP1 and BMSP0 are disabled), then only the boot table indexes of 0 and 4 will be selectable. In the instance when using only BMSP0, then the selectable boot table indexes are 0 and 1. 168 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 8.10.1.2 Configuring Boot Mode Table Options This section explains how to configure the boot definition table, BOOTDEF, for the device and the associated boot options. The 64-bit location is located in user-configurable DCSM OTP in the Z1-OTP-BOOTDEF-LOW and Z1-OTP-BOOTDEF-HIGH locations. When debugging, EMU-BOOTDEF-LOW and EMU-BOOTDEF-HIGH are the emulation equivalents of Z1-OTP-BOOTDEF-LOW and Z1-OTP-BOOTDEF-HIGH, and can be programmed to experiment with different boot mode options without writing to OTP. The range of customization to the boot definition table depends on how many boot mode select pins (BMSP) are being used. For example, 0 BMSPs equals to 1 table entry, 1 BMSP equals to 2 table entries, 2 BMSPs equals to 4 table entries, and 3 BMSPs equals to 8 table entries. Refer to the TMS320F28002x Real-Time Microcontrollers Technical Reference Manual for examples on how to set up the BOOTPIN_CONFIG and BOOTDEF values. Note The locations Z2-OTP-BOOTDEF-LOW and Z2-OTP-BOOTDEF-HIGH will be used instead of Z1OTP-BOOTDEF-LOW and Z1-OTP-BOOTDEF-HIGH locations when Z2-OTP-BOOTPIN-CONFIG is configured. Refer to Configuring Boot Mode Pins for more details on BOOTPIN_CONFIG usage. Table 8-10. BOOTDEF Bit Fields BOOTDEF NAME BYTE POSITION NAME DESCRIPTION Set the boot mode for index 0 of the boot table. BOOT_DEF0 7:0 BOOT_DEF0 Mode/Options Different boot modes and their options can include, for example, a boot mode that uses different GPIOs for a specific bootloader or a different flash entry point address. Any unsupported boot mode will cause the device to either go to wait boot or boot to flash. Refer to GPIO Assignments for valid BOOTDEF values to set in the table. BOOT_DEF1 15:8 BOOT_DEF1 Mode/Options BOOT_DEF2 23:16 BOOT_DEF2 Mode/Options BOOT_DEF3 31:24 BOOT_DEF3 Mode/Options BOOT_DEF4 39:32 BOOT_DEF4 Mode/Options BOOT_DEF5 47:40 BOOT_DEF5 Mode/Options BOOT_DEF6 55:48 BOOT_DEF6 Mode/Options BOOT_DEF7 63:56 BOOT_DEF7 Mode/Options Copyright © 2020 Texas Instruments Incorporated Refer to BOOT_DEF0 description Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 169 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 8.10.2 GPIO Assignments This section details the GPIOs and boot option values used for boot mode set in the BOOT_DEF memory location located at Z1-OTP-BOOTDEF-LOW/ Z2-OTP-BOOTDEF-LOW and Z1-OTP-BOOTDEF-HIGH/ Z2-OTPBOOTDEF-HIGH. Refer to Configuring Boot Mode Table Options on how to configure BOOT_DEF. When selecting a boot mode option, make sure to verify that the necessary pins are available in the pin mux options for the specific device package being used. Table 8-11. SCI Boot Options OPTION BOOTDEF VALUE SCITXDA GPIO SCIRXDA GPIO 0 (default) 0x01 GPIO29 GPIO28 1 0x21 GPIO16 GPIO17 2 0x41 GPIO8 GPIO9 3 0x61 GPIO2 GPIO3 4 0x81 GPIO16 GPIO3 OPTION BOOTDEF VALUE CANTXA GPIO CANRXA GPIO 0 (default) 0x02 GPIO4 GPIO5 1 0x22 GPIO32 GPIO33 2 0x42 GPIO2 GPIO3 OPTION BOOTDEF VALUE SDAA GPIO SCLA GPIO Table 8-12. CAN Boot Options Table 8-13. I2C Boot Options 0 0x07 GPIO32 GPIO33 1 0x27 GPIO0 GPIO1 2 0x47 GPIO10 GPIO8 Table 8-14. RAM Boot Options OPTION BOOTDEF VALUE RAM ENTRY POINT (ADDRESS) 0 0x05 0x0000 0000 Table 8-15. Flash Boot Options BOOTDEF VALUE FLASH ENTRY POINT (ADDRESS) 0 (default) 0x03 0x0008 0000 Bank0 Sector 0 1 0x23 0x0008 4000 Bank 0 Sector 4 2 0x43 0x0008 8000 Bank 0 Sector 8 3 0x63 0x0008 EFF0 Bank 0, End of Sector 14 OPTION FLASH SECTOR Table 8-16. Wait Boot Options 170 OPTION BOOTDEF VALUE 0 0x04 Enabled 1 0x24 Disabled Submit Document Feedback WATCHDOG Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 8-17. SPI Boot Options OPTION BOOTDEF VALUE SPISIMOA SPISOMIA SPICLKA SPISTEA 0 0x06 GPIO2 GPIO1 GPIO3 GPIO5 1 0x26 GPIO16 GPIO1 GPIO3 GPIO0 2 0x46 GPIO8 GPIO10 GPIO9 GPIO11 3 0x66 GPIO8 GPIO17 GPIO9 GPIO11 Table 8-18. Parallel Boot Options OPTION BOOTDEF VALUE D0-D7 GPIO 28x(DSP) CONTROL GPIO HOST CONTROL GPIO 0 (default) 0x00 D0 - GPIO28 GPIO16 GPIO29 GPIO16 GPIO11 D1 - GPIO1 D2 - GPIO2 D3 - GPIO3 D4 - GPIO4 D5 - GPIO5 D6 - GPIO6 D7 - GPIO7 1 0x20 D0 - GPIO0 D1 - GPIO1 D2 - GPIO2 D3 - GPIO3 D4 - GPIO4 D5 - GPIO5 D6 - GPIO6 D7 - GPIO7 Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 171 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 8.11 Dual Code Security Module The dual code security module (DCSM) prevents access to on-chip secure memories. The term “secure” means access to secure memories and resources is blocked. The term “unsecure” means access is allowed; for example, through a debugging tool such as Code Composer Studio™ (CCS). The code security mechanism offers protection for two zones, Zone 1 (Z1) and Zone 2 (Z2). The security implementation for both the zones is identical. Each zone has its own dedicated secure resource (OTP memory and secure ROM) and allocated secure resource (LSx RAM and flash sectors). The security of each zone is ensured by its own 128-bit password (CSM password). The password for each zone is stored in an OTP memory location based on a zone-specific link pointer. The link pointer value can be changed to program a different set of security settings (including passwords) in OTP. Code Security Module Disclaimer   THE CODE SECURITY MODULE (CSM) INCLUDED ON THIS DEVICE WAS DESIGNED TO PASSWORD PROTECT THE DATA STORED IN THE ASSOCIATED MEMORY AND IS WARRANTED BY TEXAS INSTRUMENTS (TI), IN ACCORDANCE WITH ITS STANDARD TERMS AND CONDITIONS, TO CONFORM TO TI'S PUBLISHED SPECIFICATIONS FOR THE WARRANTY PERIOD APPLICABLE FOR THIS DEVICE. TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE CSM CANNOT BE COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED MEMORY CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER, EXCEPT AS SET FORTH ABOVE, TI MAKES NO WARRANTIES OR REPRESENTATIONS CONCERNING THE CSM OR OPERATION OF THIS DEVICE, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INDIRECT, INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN ANY WAY OUT OF YOUR USE OF THE CSM OR THIS DEVICE, WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO LOSS OF DATA, LOSS OF GOODWILL, LOSS OF USE OR INTERRUPTION OF BUSINESS OR OTHER ECONOMIC LOSS. 172 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 8.12 Watchdog The watchdog module is the same as the one on previous TMS320C2000 devices, but with an optional lower limit on the time between software resets of the counter. This windowed countdown is disabled by default, so the watchdog is fully backward-compatible. The watchdog generates either a reset or an interrupt. It is clocked from the internal oscillator with a selectable frequency divider. Figure 8-3 shows the various functional blocks within the watchdog module. WDCR.WDPRECLKDIV WDCR.WDPS WDCR.WDDIS WDCNTR WDCLK (INTOSC1) Overflow WDCLK Divider 8-bit Watchdog Counter Watchdog Prescaler 1-count delay SYSRSn Clear Count WDWCR.MIN WDKEY (7:0) WDCR(WDCHK(2:0)) Watchdog Key Detector 55 + AA Good Key Out of Window Watchdog Window Detector Bad Key WDRSTn 1 0 1 WDINTn Generate 512-WDCLK Output Pulse Watchdog Time-out SCSR.WDENINT Figure 8-3. Windowed Watchdog Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 173 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 8.13 C28x Timers CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock prescaling. The timers have a 32-bit count-down register that generates an interrupt when the counter reaches zero. The counter is decremented at the CPU clock speed divided by the prescale value setting. When the counter reaches zero, it is automatically reloaded with a 32-bit period value. CPU-Timer 0 is for general use and is connected to the PIE block. CPU-Timer 1 is also for general use and is connected to INT13 of the CPU. CPU-Timer 2 is reserved for TI-RTOS. It is connected to INT14 of the CPU. If TI-RTOS is not being used, CPU-Timer 2 is available for general use. CPU-Timer 2 can be clocked by any one of the following: • SYSCLK (default) • Internal zero-pin oscillator 1 (INTOSC1) • Internal zero-pin oscillator 2 (INTOSC2) • X1 (XTAL) 8.14 Dual-Clock Comparator (DCC) There are three Dual-Clock Comparators (DCC0 and DCC1) on the device. All three DCCs are only accessible through CPU1. The DCC module is used for evaluating and monitoring the clock input based on a second clock, which can be a more accurate and reliable version. This instrumentation is used to detect faults in clock source or clock structures, thereby enhancing the system's safety metrics. 8.14.1 Features The DCC has the following features: • Allows the application to ensure that a fixed ratio is maintained between frequencies of two clock signals. • Supports the definition of a programmable tolerance window in terms of the number of reference clock cycles. • Supports continuous monitoring without requiring application intervention. • Supports a single-sequence mode for spot measurements. • Allows the selection of a clock source for each of the counters, resulting in several specific use cases. 8.14.2 Mapping of DCCx (DCC0 and DCC1) Clock Source Inputs Table 8-19. DCCx Clock Source0 Table DCCxCLKSRC0[3:0] 174 CLOCK NAME 0x0 XTAL/X1 0x1 INTOSC1 0x2 INTOSC2 0x5 CPU1.SYSCLK 0xC INPUT XBAR (Output16 of input-xbar) others Reserved Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Table 8-20. DCCx Clock Source1 Table DCCxCLKSRC1[4:0] CLOCK NAME 0x0 PLLRAWCLK 0x2 INTOSC1 0x3 INTOSC2 0x6 CPU1.SYSCLK 0x9 Input XBAR (Output15 of the input-xbar) 0xB EPWMCLK 0xC LSPCLK 0xD ADCCLK 0xE WDCLK 0xF CAN0BITCLK others Reserved Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 175 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 8.15 Configurable Logic Block (CLB) The C2000 configurable logic block (CLB) is a collection of blocks that can be interconnected using software to implement custom digital logic functions or enhance existing on-chip peripherals. The CLB is able to enhance existing peripherals through a set of crossbar interconnections, which provide a high level of connectivity to existing control peripherals such as enhanced pulse width modulators (ePWM), enhanced capture modules (eCAP), and enhanced quadrature encoder pulse modules (eQEP). The crossbars also allow the CLB to be connected to external GPIO pins. In this way, the CLB can be configured to interact with device peripherals to perform small logical functions such as comparators, or to implement custom serial data exchange protocols. Through the CLB, functions that would otherwise be accomplished using external logic devices can now be implemented inside the MCU. The CLB peripheral is configured through the CLB tool. For more information on the CLB tool, available examples, application reports and users guide, please refer to the following location in your C2000Ware package (C2000Ware_2_00_00_03 and higher): C2000WARE_INSTALL_LOCATION\utilities\clb_tool\clb_syscfg\doc CLB Tool User Guide How to Design with the C2000™ CLB Application Report How to Migrate Custom Logic From an FPGA/CPLD to C2000™ CLB Application Report The CLB module and its interconnections are shown in Figure 8-4. 176 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 Figure 8-4. CLB Overview Absolute encoder protocol interfaces are now provided as Position Manager solutions in the C2000Ware MotorControl SDK. Configuration files, application programmer interface (API), and use examples for such solutions are provided with C2000Ware MotorControl SDK. In some solutions, the TI-configured CLB is used with other on-chip resources, such as the SPI port or the C28x CPU, to perform more complex functionality. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 177 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 9 Applications, Implementation, and Layout Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. 9.1 TI Reference Design The TI Reference Design Library is a robust reference design library spanning analog, embedded processor, and connectivity. Created by TI experts to help you jump start your system design, all reference designs include schematic or block diagrams, BOMs, and design files to speed your time to market. Check out our latest reference design based on F28002x, targeted for digital power applications: Two Phase Interleaved LLC Resonant Converter Reference Design Using C2000™ MCUs. Search and download other TI reference designs at Select TI reference designs. 178 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 10 Device and Documentation Support 10.1 Getting Started and Next Steps For a quick overview of the device, features, roadmap, comparisons to other devices, and package details, see Texas Instruments C2000™ F28002x Real-Time Controller Series. 10.2 Device and Development Support Tool Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all TMS320 MCU devices and support tools. Each TMS320™ MCU commercial family member has one of three prefixes: TMX, TMP, or TMS (for example, TMS320F280025C). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (with TMX for devices and TMDX for tools) through fully qualified production devices and tools (with TMS for devices and TMDS for tools). Device development evolutionary flow: TMX Experimental device that is not necessarily representative of the final device's electrical specifications and may not use production assembly flow. TMP Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical specifications. TMS Production version of the silicon die that is fully qualified. Support tool development evolutionary flow: TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing. TMDS Fully-qualified development-support product. TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." Production devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (X or P) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, PN) and temperature range (for example, S). For device part numbers and further ordering information, see the TI website (www.ti.com) or contact your TI sales representative. For additional description of the device nomenclature markings on the die, see the TMS320F28002x Real-Time MCUs Silicon Errata. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 179 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 320 F 280025C (blank) F 280025C Generic Part Number: TMS Orderable Part Number: X -Q1 PN Q R (A) PREFIX TMX (X) = experimental device TMS (blank) = qualified device SHIPPING OPTIONS (blank) = Tray R = Tape and Reel QUALIFICATION (in Generic Part Number) blank = Non-Automotive -Q1 = Q1 refers to Automotive AEC Q100 Grade 1 qualification. DEVICE FAMILY 320 = TMS320 MCU Family TEMPERATURE RANGE (in Orderable Part Number) S = −40°C to 125°C (TJ) Q = −40°C to 125°C (T ) TECHNOLOGY F = Flash A PACKAGE TYPE 80-Pin PN Low-Profile Quad Flatpack (LQFP) 64-Pin PM LQFP 48-Pin PT LQFP DEVICE 280025 280023 280021 280025C 280023C A. Prefix X is used in orderable part numbers. Figure 10-1. Device Nomenclature 10.3 Markings Figure 10-2 and Figure 10-3 show the package symbolization. Table 10-1 lists the silicon revision codes. F280025CPMS $$#−YMLLLLS G4 Package Pin 1 F280025CPNS $$#−YMLLLLS G4 Package Pin 1 YMLLLLS = Lot Trace Code YM LLLL S $$ # = = = = = 2-Digit Year/Month Code Assembly Lot Assembly Site Code Wafer Fab Code (one or two characters) as applicable Silicon Revision Code G4 = Green (Low Halogen and RoHS-compliant) Figure 10-2. Package Symbolization for PM and PN Packages 180 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 YMLLLLS = Lot Trace Code 980 PTS F280025C YMLLLLS $$# G4 YM LLLL S 980 $$ # = = = = = = 2-Digit Year/Month Code Assembly Lot Assembly Site Code TI E.I.A. Code Wafer Fab Code (one or two characters) as applicable Silicon Revision Code G4 = Green (Low Halogen and RoHS-compliant) Package Pin 1 Figure 10-3. Package Symbolization for PT Package Table 10-1. Revision Identification SILICON REVISION CODE SILICON REVISION REVID(1) ADDRESS: 0x5D00C Blank 0 0x0000 0000 This silicon revision is available as TMX. A A 0x0000 0001 This silicon revision is available as TMX and TMS. (1) COMMENTS Silicon Revision ID Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 181 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 10.4 Tools and Software TI offers an extensive line of development tools. Some of the tools and software to evaluate the performance of the device, generate code, and develop solutions follow. To view all available tools and software for C2000™ real-time control MCUs, visit the C2000 real-time control MCUs – Design & development page. Development Tools LAUNCHXL-F280025C LAUNCHXL-F280025C is a low-cost development board for TI C2000™ Real-Time Controllers series of F28002x devices. Ideal for initial evaluation and prototyping, it provides a standardized and easy-to-use platform to develop your next application. This extended version LaunchPad™ development kit offers extra pins for evaluation and supports the connection of two BoosterPack™ plug-in modules. F280025 controlCARD The F280025 controlCARD is an HSEC180 controlCARD based evaluation and development tool for the C2000™ F28002x series of microcontroller products. controlCARDs are ideal to use for initial evaluation and system prototyping. controlCARDs are complete board-level modules that utilize one of two standard form factors (100-pin DIMM or 180-pin HSEC ) to provide a low-profile single-board controller solution. For first evaluation controlCARDs are typically purchased bundled with a baseboard or bundled in an application kit. TI Resource Explorer To enhance your experience, be sure to check out the TI Resource Explorer to browse examples, libraries, and documentation for your applications. Software Tools C2000Ware for C2000 MCUs C2000Ware for C2000™ MCUs is a cohesive set of software and documentation created to minimize development time. It includes device-specific drivers, libraries, and peripheral examples. Digital Power SDK Digital Power SDK is a cohesive set of software infrastructure, tools, and documentation designed to minimize C2000 MCU-based digital power system development time targeted for various AC-DC, DC-DC and DC-AC power supply applications. The software includes firmware that runs on C2000 digital power evaluation modules (EVMs) and TI designs (TIDs), which are targeted for solar, telecom, server, electric vehicle chargers and industrial power delivery applications. Digital Power SDK provides all the needed resources at every stage of development and evaluation in a digital power applications. Motor Control SDK Motor Control SDK is a cohesive set of software infrastructure, tools, and documentation designed to minimize C2000 MCU-based motor control system development time targeted for various three-phase motor control applications. The software includes firmware that runs on C2000 motor control evaluation modules (EVMs) and TI designs (TIDs), which are targeted for industrial drive and other motor control, Motor Control SDK provides all the needed resources at every stage of development and evaluation for high-performance motor control applications. Code Composer Studio™ (CCS) Integrated Development Environment (IDE) for C2000 microcontrollers Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller and Embedded Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking the user through each step of the application development flow. Familiar tools and interfaces allow users to get started faster than ever before. Code Composer Studio combines the advantages of the Eclipse software framework with advanced embedded debug capabilities from TI resulting in a compelling feature-rich development environment for embedded developers. 182 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 SysConfig System configuration tool SysConfig is a comprehensive collection of graphical utilities for configuring pins, peripherals, radios, subsystems, and other components. SysConfig helps you manage, expose and resolve conflicts visually so that you have more time to create differentiated applications. The tool's output includes C header and code files that can be used with software development kit (SDK) examples or used to configure custom software. The SysConfig tool automatically selects the pinmux settings that satisfy the entered requirements. The SysConfig tool is delivered integrated in CCS, as a standalone installer, or can be used via the dev.ti.com cloud tools portal. For more information about the SysConfig system configuration tool, visit the System configuation tool page. Models Various models are available for download from the product Design & development pages. These models include I/O Buffer Information Specification (IBIS) Models and Boundary-Scan Description Language (BSDL) Models. To view all available models, visit the Design tools & simulation section of the Design & development page for each device. Training To help assist design engineers in taking full advantage of the C2000 microcontroller features and performance, TI has developed a variety of training resources. Utilizing the online training materials and downloadable handson workshops provides an easy means for gaining a complete working knowledge of the C2000 microcontroller family. These training resources have been designed to decrease the learning curve, while reducing development time, and accelerating product time to market. For more information on the various training resources, visit the C2000™ real-time control MCUs – Support & training site. The architecture and many of the peripherals of the F28002x are similar to those of the F28004x. The following Workshop material and the Migration Between TMS320F28004x and TMS320F28002x Application Report will cover the technical details of the TMS320F28004x architecture and highlight the device differences, which will be helpful to users of the F28002x device. Specific TMS320F28004x hands-on training resources can be found at C2000™ MCU Device Workshops. Technical Introduction to the New C2000 TMS320F28004x Device Family Many of the peripherals and architecture of the F28002x are similar to the F28004x. This presentation will cover the technical details of the TMS320F28004x architecture and highlight the new improvements to various key peripherals which will be helpful to users of the F28002x device. 10.5 Documentation Support To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Subscribe to updates to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. The current documentation that describes the processor, related peripherals, and other technical collateral follows. Errata TMS320F28002x Real-Time MCUs Silicon Errata describes known advisories on silicon and provides workarounds. Technical Reference Manual TMS320F28002x Real-Time Microcontrollers Technical Reference Manual details the integration, the environment, the functional description, and the programming models for each peripheral and subsystem in the F28002x real-time microcontrollers. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 183 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 CPU User's Guides TMS320C28x CPU and Instruction Set Reference Guide describes the central processing unit (CPU) and the assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). This Reference Guide also describes emulation features available on these DSPs. TMS320C28x Extended Instruction Sets Technical Reference Manual describes the architecture, pipeline, and instruction set of the TMU, VCU-II, and FPU accelerators. Peripheral Guides C2000 Real-Time Control Peripherals Reference Guide describes the peripheral reference guides of the 28x DSPs. Tools Guides TMS320C28x Assembly Language Tools v20.8.0.STS User's Guide describes the assembly language tools (assembler and other tools used to develop assembly language code), assembler directives, macros, common object file format, and symbolic debugging directives for the TMS320C28x device. TMS320C28x Optimizing C/C++ Compiler v20.8.0.STS User's Guide describes the TMS320C28x C/C++ compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly language source code for the TMS320C28x device. Application Reports The SMT & packaging application notes website lists documentation on TI’s surface mount technology (SMT) and application notes on a variety of packaging-related topics. Semiconductor Packing Methodology describes the packing methodologies employed to prepare semiconductor devices for shipment to end users. Calculating Useful Lifetimes of Embedded Processors provides a methodology for calculating the useful lifetime of TI embedded processors (EPs) under power when used in electronic systems. It is aimed at general engineers who wish to determine if the reliability of the TI EP meets the end system reliability requirement. An Introduction to IBIS (I/O Buffer Information Specification) Modeling discusses various aspects of IBIS including its history, advantages, compatibility, model generation flow, data requirements in modeling the input/ output structures, and future trends. Serial Flash Programming of C2000™ Microcontrollers discusses using a flash kernel and ROM loaders for serial programming a device. Fast Integer Division – A Differentiated Offering From C2000™ Product Family provides an overview of the different division and modulo (remainder) functions and its associated properties. C2000™ Key Technology Guide provides a deeper look into the components that differentiate the C2000 Microcontroller Unit (MCU) as it pertains to Real-Time Control Systems. Migration Between TMS320F28004x and TMS320F28002x describes the hardware and software differences to be aware of when moving between F28004x and F28002x C2000™ MCUs. TMS320F2802x/TMS320F2803x to TMS320F28002x Migration Overview describes the differences between the Texas Instruments TMS320F2802x/TMS320F2803x and the TMS320F28002x microcontrollers for the purpose of assisting with application migration. 10.6 Support Resources TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 184 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 10.7 Trademarks C2000™, TMS320C2000™, InstaSPIN-FOC™, Code Composer Studio™, TMS320™, LaunchPad™, BoosterPack™, TI E2E™ are trademarks of Texas Instruments. Bosch® is a registered trademark of Robert Bosch GmbH Corporation. All trademarks are the property of their respective owners. 10.8 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 10.9 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 185 TMS320F280025, TMS320F280025-Q1 TMS320F280025C, TMS320F280025C-Q1, TMS320F280023, TMS320F280023-Q1 TMS320F280023C, TMS320F280021, TMS320F280021-Q1 www.ti.com SPRSP45B – MARCH 2020 – REVISED DECEMBER 2020 11 Mechanical, Packaging, and Orderable Information 11.1 Packaging Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. To learn more about TI packaging, visit the Packaging information website. 186 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: TMS320F280025 TMS320F280025-Q1 TMS320F280025C TMS320F280025C-Q1 TMS320F280023 TMS320F280023-Q1 TMS320F280023C TMS320F280021 TMS320F280021-Q1 PACKAGE OPTION ADDENDUM www.ti.com 29-Jan-2021 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) F280021PTQR ACTIVE LQFP PT 48 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280021 PTQ F280021PTSR ACTIVE LQFP PT 48 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280021 PTS F280023CPMSR ACTIVE LQFP PM 64 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280023CPMS F280023CPNSR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280023CPNS F280023CPTSR ACTIVE LQFP PT 48 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280023C PTS F280023PMQR ACTIVE LQFP PM 64 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280023PMQ F280023PMSR ACTIVE LQFP PM 64 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280023PMS F280023PNQR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280023PNQ F280023PNSR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280023PNS F280023PTQR ACTIVE LQFP PT 48 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280023 PTQ F280023PTSR ACTIVE LQFP PT 48 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280023 PTS F280025CPMQR ACTIVE LQFP PM 64 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280025CPMQ F280025CPMS ACTIVE LQFP PM 64 160 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280025CPMS F280025CPMSR ACTIVE LQFP PM 64 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280025CPMS F280025CPNQR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280025CPNQ F280025CPNSR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280025CPNS F280025CPTQR ACTIVE LQFP PT 48 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280025C PTQ F280025CPTSR ACTIVE LQFP PT 48 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280025C PTS Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 29-Jan-2021 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) F280025PMQR ACTIVE LQFP PM 64 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280025PMQ F280025PMS ACTIVE LQFP PM 64 160 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280025PMS F280025PMSR ACTIVE LQFP PM 64 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280025PMS F280025PNQR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280025PNQ F280025PNS ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280025PNS F280025PNSR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280025PNS F280025PTQR ACTIVE LQFP PT 48 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280025 PTQ F280025PTS ACTIVE LQFP PT 48 250 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280025 PTS F280025PTSR ACTIVE LQFP PT 48 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280025 PTS (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
F280025CPMSR 价格&库存

很抱歉,暂时无法提供与“F280025CPMSR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
F280025CPMSR

库存:2000

F280025CPMSR
  •  国内价格 香港价格
  • 1000+33.058531000+4.14525
  • 2000+32.357892000+4.05740

库存:1383