0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
F280039CSPN

F280039CSPN

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    80-LQFP

  • 描述:

    C28x - 微控制器 IC 32-位 120MHz 384KB(192K x 16) 闪存 80-LQFP(12x12)

  • 数据手册
  • 价格&库存
F280039CSPN 数据手册
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 TMS320F28003x Real-Time Microcontrollers 1 Features • • • • • • • TMS320C28x 32-bit DSP core at 120 MHz – IEEE 754 Floating-Point Unit (FPU) • Support for Fast Integer Division (FINTDIV) – Trigonometric Math Unit (TMU) • Support for Nonlinear Proportional Integral Derivative (NLPID) control – CRC Engine and Instructions (VCRC) – Ten hardware breakpoints (with ERAD) Programmable Control Law Accelerator (CLA) – 120 MHz – IEEE 754 single-precision floating-point instructions – Executes code independently of main CPU On-chip memory – 384KB (192KW) of flash (ECC-protected) across three independent banks – 69KB (34.5KW) of RAM (ECC-protected) – Security • JTAGLOCK • Zero-pin boot • Dual-zone security Clock and system control – Two internal 10-MHz oscillators – Crystal oscillator or external clock input – Windowed watchdog timer module – Missing clock detection circuitry – Dual-clock Comparator (DCC) 3.3-V I/O design – Internal VREG generation allows for singlesupply design – Brownout reset (BOR) circuit System peripherals – 6-channel Direct Memory Access (DMA) controller – 55 individually programmable multiplexed General-Purpose Input/Output (GPIO) pins – 23 digital inputs on analog pins – 2 digital inputs/outputs on analog pins (AGPIO) – Enhanced Peripheral Interrupt Expansion (ePIE) – Multiple low-power mode (LPM) support – Embedded Real-time Analysis and Diagnostic (ERAD) – Unique Identification (UID) number Communications peripherals – One Power-Management Bus (PMBus) interface – Two Inter-integrated Circuit (I2C) interfaces • • • • • • – One Controller Area Network (CAN/DCAN) bus port – One Controller Area Network with Flexible Data-Rate (CAN FD/MCAN) bus port – Two Serial Peripheral Interface (SPI) ports – Two UART-compatible Serial Communication Interface (SCI) – Two UART-compatible Local Interconnect Network (LIN) interfaces – Fast Serial Interface (FSI) with one transmitter and one receiver (up to 200Mbps) Analog system – Three 4-MSPS, 12-bit Analog-to-Digital Converters (ADCs) • Up to 23 external channels (includes the two gpdac outputs) • Four integrated Post-Processing Blocks (PPB) per ADC – Four windowed comparators (CMPSS) with 12-bit reference Digital-to-Analog Converters (DACs) • Digital glitch filters – Two 12-bit buffered DAC outputs Enhanced control peripherals – 16 ePWM channels with eight channels that have high-resolution capability (150-ps resolution) • Integrated dead-band support • Integrated hardware trip zones (TZs) – Three Enhanced Capture (eCAP) modules • High-resolution Capture (HRCAP) available on one of the three eCAP modules – Two Enhanced Quadrature Encoder Pulse (eQEP) modules with support for CW/CCW operation modes – Eight Sigma-Delta Filter Module (SDFM) input channels (two parallel filters per channel) • Standard SDFM data filtering • Comparator filter for fast action for overvalue or undervalue condition – Embedded Pattern Generator (EPG) Configurable Logic Block (CLB) – 4 tiles – Augments existing peripheral capability – Supports position manager solutions Host Interface Controller (HIC) – Access to internal memory from an external host Background CRC (BGCRC) – One cycle CRC computation on 32 bits of data Advanced Encryption Standard (AES) accelerator An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION DATA. TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 • • • • • • Live Firmware Update (LFU) – Fast context switching from old to new firmware – Flash bank erase time improvements Diagnostic features – Memory Power On Self Test (MPOST) – Hardware Built-in Self Test (HWBIST) Functional Safety-Compliant (PZ and Q100 PM packages only) – Developed for functional safety applications – Documentation available to aid ISO 26262 and IEC 61508 system design – Systematic capability up to ASIL D and SIL 3 – Hardware capability up to ASIL B and SIL 2 Safety-related certification – ISO 26262 certification up to ASIL B and SIL 2 by TÜV SÜD (PZ and Q100 PM packages only) Package options: – 100-pin Low-profile Quad Flatpack (LQFP) [PZ suffix] – 80-pin Low-profile Quad Flatpack (LQFP) [PN suffix] – 64-pin (LQFP) [PM suffix] – 48-pin (LQFP) [PT suffix] Temperature options: – Free-air (TA): –40°C to 125°C – Junction (TJ): –40°C to 150°C • • • • • • 2 Applications • • • • • • • • • • 2 Appliances – Air conditioner outdoor unit Building automation – Door operator drive control Industrial machine & machine tools – Automated sorting equipment – Textile machine AC inverter & VF drives – AC drive control module – AC drive position feedback – AC drive power stage module Linear motor transport systems – Linear motor power stage Single & multi axis servo drives – Servo drive position feedback – Servo drive power stage module Speed controlled BLDC drives – AC-input BLDC motor drive – DC-input BLDC motor drive Factory automation – Robot servo drive – Mobile robot motor control – Position sensor Submit Document Feedback • • • www.ti.com Industrial power – Industrial AC-DC UPS – Three phase UPS – Single phase online UPS Telecom & server power – Merchant DC/DC – Merchant network & server PSU – Merchant telecom rectifiers Hybrids, electric & powertrain systems – DC/DC converter – Inverter & motor control – On-board (OBC) & wireless charger – Virtual engine sound system (VESS) – Engine fan – eTurbo/charger – Pump – Electric power steering (EPS) Infotainment and cluster – Head-up display – Automotive head unit – Automotive external amplifier Body electronics & lighting – Automotive HVAC compressor module – DC/AC inverter – Headlight ADAS – Mechanically scanning LIDAR HEV/EV battery-management system (BMS) – 100-V battery pack-passive balancing – 12- & 24-V battery pack-passive balancing – 400-V battery pack-passive balancing – 48-V battery pack-passive balancing EV charging infrastructure – AC charging (pile) station – DC charging (pile) station – EV charging station power module – Wireless EV charging station Renewable energy storage – Energy storage power conversion system (PCS) Solar energy – Central inverter – Micro inverter – Solar power optimizer – Solar arc protection – Rapid shutdown – String inverter Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 3 Description The TMS320F28003x (F28003x) is a member of the C2000™ real-time microcontroller family of scalable, ultralow latency devices designed for efficiency in power electronics, including but not limited to: high power density, high switching frequencies, and supporting the use of GaN and SiC technologies. These include such applications as: • • • • • • • Motor drives Appliances Hybrid, electric & powertrain systems Solar & EV charging Digital power Body electronics & lighting Test & measurement The real-time control subsystem is based on TI’s 32-bit C28x DSP core, which provides 120 MHz of signalprocessing performance for floating- or fixed-point code running from either on-chip flash or SRAM. The C28x CPU is further boosted by the Floating-Point Unit (FPU), Trigonometric Math Unit (TMU), and VCRC (Cyclical Redundancy Check) extended instruction sets, speeding up common algorithms key to real-time control systems. The CLA allows significant offloading of common tasks from the main C28x CPU. The CLA is an independent 32-bit floating-point math accelerator that executes in parallel with the CPU. Additionally, the CLA has its own dedicated memory resources and it can directly access the key peripherals that are required in a typical control system. Support of a subset of ANSI C is standard, as are key features like hardware breakpoints and hardware task-switching. The F28003x supports up to 384KB (192KW) of flash memory divided into three 128KB (64KW) banks, which enable programming and execution in parallel. Up to 69KB (34.5KW) of on-chip SRAM is also available to supplement the flash memory. The Live Firmware Update hardware enhancements on F28003x allow fast context switching from the old firmware to the new firmware to minimize application downtime when updating the device firmware. High-performance analog blocks are integrated on the F28003x real-time microcontroller (MCU) and are closely coupled with the processing and PWM units to provide optimal real-time signal chain performance. Sixteen PWM channels, all supporting frequency-independent resolution modes, enable control of various power stages from a 3-phase inverter to power factor correction and advanced multilevel power topologies. The inclusion of the Configurable Logic Block (CLB) allows the user to add custom logic and potentially integrate FPGA-like functions into the C2000 real-time MCU. Interfacing is supported through various industry-standard communication ports (such as SPI, SCI, I2C, PMBus, LIN, CAN and CAN FD) and offers multiple pin-muxing options for optimal signal placement. The Fast Serial Interface (FSI) enables up to 200Mbps of robust communications across an isolation boundary. New to the C2000 platform is the Host Interface Controller (HIC), a high-throughput interface that allows an external host to access the resources of the TMS320F28003x directly. Want to learn more about features that make C2000 Real-Time MCUs the right choice for your real-time control system? Check out The Essential Guide for Developing With C2000™ Real-Time Microcontrollers and visit the C2000™ real-time control MCUs page. The Getting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guide covers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Ready to get started? Check out the TMDSCNCD280039C evaluation board and download C2000Ware. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 3 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Package Information PART NUMBER TMS320F280039C TMS320F280039C-Q1 TMS320F280039 TMS320F280039-Q1 PACKAGE SIZE(2) BODY SIZE (NOM) PZ (LQFP, 100) 16 mm × 16 mm 14 mm × 14 mm PN (LQFP, 80) 14 mm × 14 mm 12 mm × 12 mm PM (LQFP, 64) 12 mm × 12 mm 10 mm × 10 mm PZ (LQFP, 100) 16 mm × 16 mm 14 mm × 14 mm PN (LQFP, 80) 14 mm × 14 mm 12 mm × 12 mm PZ (LQFP, 100) 16 mm × 16 mm 14 mm × 14 mm PN (LQFP, 80) 14 mm × 14 mm 12 mm × 12 mm PM (LQFP, 64) 12 mm × 12 mm 10 mm × 10 mm PZ (LQFP, 100) 16 mm × 16 mm 14 mm × 14 mm PN (LQFP, 80) 14 mm × 14 mm 12 mm × 12 mm TMS320F280038C-Q1 PM (LQFP, 64) 12 mm × 12 mm 10 mm × 10 mm TMS320F280038-Q1 PM (LQFP, 64) 12 mm × 12 mm 10 mm × 10 mm PZ (LQFP, 100) 16 mm × 16 mm 14 mm × 14 mm PN (LQFP, 80) 14 mm × 14 mm 12 mm × 12 mm PM (LQFP, 64) 12 mm × 12 mm 10 mm × 10 mm TMS320F280037C PT (LQFP, 48) 9 mm × 9 mm 7 mm × 7 mm PZ (LQFP, 100) 16 mm × 16 mm 14 mm × 14 mm PN (LQFP, 80) 14 mm × 14 mm 12 mm × 12 mm PT (LQFP, 48) 9 mm × 9 mm 7 mm × 7 mm PZ (LQFP, 100) 16 mm × 16 mm 14 mm × 14 mm PN (LQFP, 80) 14 mm × 14 mm 12 mm × 12 mm PM (LQFP, 64) 12 mm × 12 mm 10 mm × 10 mm PT (LQFP, 48) 9 mm × 9 mm 7 mm × 7 mm PZ (LQFP, 100) 16 mm × 16 mm 14 mm × 14 mm PT (LQFP, 48) 9 mm × 9 mm 7 mm × 7 mm TMS320F280036C-Q1 PM (LQFP, 64) 12 mm × 12 mm 10 mm × 10 mm TMS320F280036-Q1 PM (LQFP, 64) 12 mm × 12 mm 10 mm × 10 mm PZ (LQFP, 100) 16 mm × 16 mm 14 mm × 14 mm PN (LQFP, 80) 14 mm × 14 mm 12 mm × 12 mm PM (LQFP, 64) 12 mm × 12 mm 10 mm × 10 mm TMS320F280037C-Q1 TMS320F280037 TMS320F280037-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280033 TMS320F280033-Q1(3) (1) (2) (3) 4 PACKAGE(1) PT (LQFP, 48) 9 mm × 9 mm 7 mm × 7 mm PN (LQFP, 80) 14 mm × 14 mm 12 mm × 12 mm PT (LQFP, 48) 9 mm × 9 mm 7 mm × 7 mm PZ (LQFP, 100) 16 mm × 16 mm 14 mm × 14 mm PN (LQFP, 80) 14 mm × 14 mm 12 mm × 12 mm PM (LQFP, 64) 12 mm × 12 mm 10 mm × 10 mm PT (LQFP, 48) 9 mm × 9 mm 7 mm × 7 mm PN (LQFP, 80) 14 mm × 14 mm 12 mm × 12 mm For more information, see Mechanical, Packaging, and Orderable Information. The package size (length × width) is a nominal value and includes pins, where applicable. Preview information (not Production Data). Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Device Information CONTROL LAW ACCELERATOR (CLA) CONFIGURABLE LOGIC BLOCK (CLB) TMS320F280039C-Q1 TMS320F280039C Yes 4 Tiles TMS320F280039-Q1 TMS320F280039 Yes – TMS320F280038C-Q1 Yes 4 Tiles TMS320F280038-Q1 Yes – TMS320F280037C-Q1 TMS320F280037C Yes 4 Tiles TMS320F280037-Q1 TMS320F280037 Yes – TMS320F280036C-Q1 Yes 4 Tiles TMS320F280036-Q1 Yes – TMS320F280034-Q1 TMS320F280034 Yes – 128KB TMS320F280033-Q1(2) TMS320F280033 No – 128KB PART (1) (2) NUMBER(1) FLASH SIZE 384KB 256KB For more information on these devices, see the Device Comparison table. Preview information (not Production Data). Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 5 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 3.1 Functional Block Diagram The Functional Block Diagram shows the CPU system and associated peripherals. C28x CPU (120 MHz) FPU32 TMU VCRC FINTDIV CLA (120 MHz) CLA to CPU MSG RAM SYSTEM CONTROL CPU Timers XTAL INTOSC1, INTOSC2 PLL ePIE Windowed WD NMI WD Boot ROM CPU to CLA MSG RAM Secure ROM Flash Bank0 16 Sectors, 64Kw(128 KB) CLA Data ROM CLA Program ROM Flash Bank1 16 Sectors, 64Kw(128 KB) SECURITY DCSM JTAG Lock Secure Boot CLA to DMA MSG RAM Flash Bank2 16 Sectors, 64Kw(128 KB) DMA to CLA MSG RAM M0-M1 RAM 2Kw(4 KB) DIAGNOSTICS DCC MPOST HWBIST ERAD JTAG/cJTAG BGCRC Buses Legend LS0-LS7 RAM 16Kw(32 KB) CPU HIC DMA GS0-GS3 RAM 16Kw(32 KB) OTHERS EPG PF1 PF3 PF4 Result 16x ePWM (8 Hi-Res Capable) 4x CMPSS 3x eCAP (1 HRCAP Capable) 2x Buffered DAC 55x GPIO Input XBAR Output XBAR HIC DMA 6 Channels PF2 1x PMBUS Data 3x 12-Bit ADC CLA 2x SPI 1x FSI RX PF7 1x DCAN/ CAN PF7 PF8 PF9 2x LIN(A) 1x MCAN/ CAN FD 2x SCI BGCRC PF10 PF11 PF12 4x CLB 1x AES LFU 2x I2C 1x FSI TX ePWM XBAR 2x eQEP (CW/CCW Support) CLB XBAR CLB Input XBAR CLB Output XBAR 8x SD Filters A. The LIN module can also work as an SCI. Figure 3-1. Functional Block Diagram 6 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 2 3 Description.......................................................................3 3.1 Functional Block Diagram........................................... 6 4 Device Comparison......................................................... 8 4.1 Related Products...................................................... 10 5 Pin Configuration and Functions................................. 11 5.1 Pin Diagrams.............................................................11 5.2 Pin Attributes.............................................................16 5.3 Signal Descriptions................................................... 36 5.4 Pin Multiplexing.........................................................48 5.5 Pins With Internal Pullup and Pulldown.................... 56 5.6 Connections for Unused Pins................................... 57 6 Specifications................................................................ 59 6.1 Absolute Maximum Ratings...................................... 59 6.2 ESD Ratings – Commercial...................................... 59 6.3 ESD Ratings – Automotive....................................... 60 6.4 Recommended Operating Conditions.......................60 6.5 Power Consumption Summary................................. 61 6.6 Electrical Characteristics...........................................68 6.7 Thermal Resistance Characteristics for PZ Package...................................................................... 69 6.8 Thermal Resistance Characteristics for PN Package...................................................................... 70 6.9 Thermal Resistance Characteristics for PM Package...................................................................... 71 6.10 Thermal Resistance Characteristics for PT Package...................................................................... 72 6.11 Thermal Design Considerations..............................72 6.12 System.................................................................... 73 6.13 Analog Peripherals................................................115 6.14 Control Peripherals............................................... 146 6.15 Communications Peripherals................................ 161 7 Detailed Description....................................................195 7.1 Overview................................................................. 195 Copyright © 2023 Texas Instruments Incorporated 7.2 Functional Block Diagram....................................... 196 7.3 Memory................................................................... 197 7.4 Identification............................................................205 7.5 Bus Architecture – Peripheral Connectivity.............206 7.6 C28x Processor...................................................... 207 7.7 Control Law Accelerator (CLA)............................... 209 7.8 Embedded Real-Time Analysis and Diagnostic (ERAD)...................................................................... 211 7.9 Background CRC-32 (BGCRC)...............................211 7.10 Direct Memory Access (DMA)...............................212 7.11 Device Boot Modes............................................... 213 7.12 Security................................................................. 221 7.13 Watchdog.............................................................. 222 7.14 C28x Timers..........................................................223 7.15 Dual-Clock Comparator (DCC)............................. 224 7.16 Configurable Logic Block (CLB)............................226 7.17 Functional Safety.................................................. 228 8 Applications, Implementation, and Layout............... 229 8.1 Applications and Implementation............................ 229 8.2 Key Device Features...............................................229 8.3 Application Information........................................... 232 9 Device and Documentation Support..........................246 9.1 Getting Started and Next Steps.............................. 246 9.2 Device Nomenclature..............................................246 9.3 Markings................................................................. 247 9.4 Tools and Software................................................. 249 9.5 Documentation Support.......................................... 251 9.6 Support Resources................................................. 252 9.7 Trademarks............................................................. 253 9.8 Electrostatic Discharge Caution..............................253 9.9 Glossary..................................................................253 10 Revision History........................................................ 253 11 Mechanical, Packaging, and Orderable Information.................................................................. 256 Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 7 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 4 Device Comparison Table 4-1 lists the features of the TMS320F28003x devices. Table 4-1. Device Comparison FEATURE(1) F280039C F280039C-Q1 F280039 F280039-Q1 F280038C-Q1 F280038-Q1 F280037C F280037C-Q1 F280037 F280037-Q1 F280036C-Q1 F280036-Q1 F280034 F280034-Q1 F280033 F280033-Q1(2) Processor and Accelerators C28x Frequency (MHz) 120 FPU Yes (instructions for Fast Integer Division) VCRC Yes TMU CLA – Type 2 Yes – Type 1 (instructions supporting NLPID) Available Yes Frequency (MHz) 120 6-Channel DMA – Type 0 No – Yes External interrupts 5 Memory Flash Flash Banks RAM 384KB (192KW) 256KB (128KW) 128KB (64KW) 3 x 128KB 2 x 128KB 2 x 64KB Dedicated 4KB (2KW) Local Shared 32KB (16KW) Message 1KB (0.5KW) Global Shared 32KB (16KW) Total 69KB (34.5KW) Message RAM Types ECC 512B (256W) CPU-CLA 512B (256W) CLA-DMA – FLASH, Mx, LSx, GSx, Message RAM FLASH, Mx, LSx, GSx Parity ROM, CAN RAM Security: JTAGLOCK, Zero-pin boot, Dual-zone security Yes System Configurable Logic Block (CLB) Embedded Pattern Generator (EPG) 32-bit CPU timers Advance Encryption Standard (AES) Background CRC (BGCRC) Live Firmware Update (LFU) Support 8 4 Tiles on C Variants – Yes 3 Yes Yes Yes, with enhancements and flash bank erase time improvements Secure Boot Yes JTAG Lock Yes HWBIST Yes Nonmaskable Interrupt Watchdog (NMIWD) timers 1 Watchdog timers 1 Crystal oscillator/External clock input 1 Internal oscillator 2 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 4-1. Device Comparison (continued) FEATURE(1) F280039C F280039C-Q1 F280039 F280039-Q1 F280038C-Q1 F280038-Q1 F280037C F280037C-Q1 F280037 F280037-Q1 F280036C-Q1 F280036-Q1 F280034 F280034-Q1 F280033 F280033-Q1(2) Pins and Power Supply Internal 3.3-V to 1.2-V Voltage Regulator VREG LDO Yes GPIO pins 100-pin PZ 51 – 51 – 51 80-pin PN 39 – 39 – 39 64-pin PM 26 25 26 25 26 48-pin PT – – 14 – 14 Additional GPIO AIO (analog with digital inputs) 4 (2 from cJTAG and 2 from X1/X2) 100-pin PZ 23 – 23 – 23 80-pin PN 16 – 16 – 16 64-pin PM 16 16 16 16 16 48-pin PT – – 14 – 14 AGPIO (analog with digital inputs and outputs) 100-pin PZ 2 – 2 – 2 80-pin PN 2 – 2 – 2 ADC 12-bit Number of ADCs – 25 Analog Peripherals 3 MSPS 4 Conversion Time (ns)(3) ADC channels (single-ended) (includes the two gpdac outputs) 250 100-pin PZ 25 – 25 80-pin PN 64-pin PM 18 – 18 – 18 16 16 16 16 48-pin PT 16 – – 14 – 14 Temperature sensor 1 Buffered DAC 2 CMPSS (each CMPSS has two comparators and two internal DACs) 4 Control Peripherals (4) eCAP/HRCAP modules – Type 2 ePWM/HRPWM channels – Type 4 3 (1 - eCAP3 with HRCAP capability) 16 (8 - ePWM1 to ePWM4 with HRPWM capability) eQEP modules – Type 2 2 SDFM channels – Type 2 8 Communication Peripherals (4) CAN (DCAN) – Type 0 CAN FD (MCAN) – Type 1 Fast Serial Interface (FSI) – Type 2 1 1 1 (1 RX and 1 TX) I2C – Type 1 2 LIN – Type 1 (UART-Compatible) 2 Host Interface Controller (HIC) – Type 1 1 PMBus – Type 0 1 SCI – Type 0 (UART-Compatible) 2 SPI – Type 2 2 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 9 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 4-1. Device Comparison (continued) FEATURE(1) F280039C F280039C-Q1 F280039 F280039-Q1 F280038C-Q1 F280038-Q1 F280037C F280037C-Q1 F280037 F280037-Q1 F280036C-Q1 F280036-Q1 F280034 F280034-Q1 F280033 F280033-Q1(2) Package Options, Temperature, and Qualification Junction temperature (TJ) –40°C to 150°C Free-Air temperature (TA) Package Options Package Options with AECQ100 Qualification available (1) (2) (3) (4) –40°C to 125°C 100-pin PZ F280039C F280039 – F280037C F280037 – F280034 F280033 80-pin PN F280039C F280039 – F280037C F280037 – F280034 F280033 64-pin PM F280039C F280039 – F280037C F280037 – F280034 F280033 48-pin PT – – F280037C F280037 – F280034 F280033 100-pin PZ F280039C-Q1 F280039-Q1 – F280037C-Q1 F280037-Q1 – – – 80-pin PN F280039C-Q1 F280039-Q1 – F280037C-Q1 – F280034-Q1 F280033-Q1 64-pin PM – F280038C-Q1 F280038-Q1 – F280036C-Q1 F280036-Q1 – – 48-pin PT – – F280037C-Q1 F280037-Q1 – F280034-Q1 – A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor differences between devices that do not affect the basic functionality of the module. Preview information (not Production Data). Time between start of sample-and-hold window to start of sample-and-hold window of the next conversion. For devices that are available in more than one package, the peripheral count listed in the smaller package is reduced because the smaller package has less device pins available. The number of peripherals internally present on the device is not reduced compared to the largest package offered within a part number. See Section 5 to identify which peripheral instances are accessible on pins in the smaller package. 4.1 Related Products TMS320F2803x Real-Time Microcontrollers The F2803x series increases the pin-count and memory size options. The F2803x series also introduces the parallel control law accelerator (CLA) option. TMS320F2807x Real-Time Microcontrollers The F2807x series offers the most performance, largest pin counts, flash memory sizes, and peripheral options. The F2807x series includes the latest generation of accelerators, ePWM peripherals, and analog technology. TMS320F28004x Real-Time Microcontrollers The F28004x series is a reduced version of the F2807x series with the latest generational enhancements. TMS320F28002x Real-Time Microcontrollers The F28002x series is a reduced version of the F28004x series with the latest generational enhancements. TMS320F2838x Real-Time Microcontrollers The F2838x series offers more performance, larger pin counts, flash memory sizes, peripheral and wide variety of connectivity options. The F2838x series includes the latest generation of accelerators, ePWM peripherals, and analog technology. 10 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 5 Pin Configuration and Functions 5.1 Pin Diagrams GPIO29 GPIO31 GPIO30 GPIO6 GPIO14 GPIO15 GPIO34 GPIO10 GPIO59 GPIO61 GPIO9 GPIO5 VDDIO VDD VSS GPIO44 GPIO7 GPIO22 GPIO41 GPIO23 GPIO40 GPIO0 GPIO1 GPIO2 GPIO3 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 Figure 5-1 shows the pin assignments on the 100-pin PZ low-profile quad flatpack; the Q and non-Q variant have the same pinout. Figure 5-2 shows the pin assignments on the 80-pin PN low-profile quad flatpack. Figure 5-3 shows the pin assignments on the 64-pin PM low-profile quad flatpack (Q temperature). Figure 5-4 shows the pin assignments on the 64-pin PM low-profile quad flatpack. Figure 5-5 shows the pin assignments on the 48-Pin PT low-profile quad flatpack; the Q and non-Q variant have the same pinout. GPIO28 1 75 GPIO4 XRSn 2 74 GPIO8 VDDIO 3 73 VREGENZ VDD 4 72 VSS VSS 5 71 VDD GPIO47 6 70 VDDIO GPIO48 7 69 GPIO19,X1 GPIO49 8 68 GPIO18,X2 GPIO50 9 67 GPIO58 GPIO51 10 66 GPIO57 GPIO52 11 65 GPIO56 GPIO53 12 64 GPIO32 GPIO54 13 63 GPIO35/TDI A6 14 62 TMS B2,C6 15 61 GPIO37/TDO B3,VDAC 16 60 TCK A2,B6,C9 17 59 GPIO27 50 GPIO13 49 B11,GPIO21 48 B5,GPIO20 VDD VDDIO VSS GPIO60 GPIO55 C14 B0,C11 A10,B1,C10 B4,C8 A9 A8 A4,B8 A5 VDDA B5 VSSA A7,C3 B11 C1 A12,C5 VREFLO VREFLO A. 47 GPIO12 46 51 45 25 44 GPIO11 VREFHI 43 GPIO33 52 42 53 24 41 23 VREFHI 40 A0,B15,C15,DACA_OUT 39 GPIO16 38 54 37 22 36 GPIO17 A1,B7,DACB_OUT 35 55 34 21 33 GPIO24 B12,C2 32 56 31 20 30 GPIO25 A11,B10,C0 29 GPIO26 57 28 58 19 27 18 26 A3,B9,C7 A14,B14,C4 Not to scale Only the GPIO function is shown on GPIO pins. See Section 5.2 for the complete, muxed signal name. Figure 5-1. 100-Pin PZ Low-Profile Quad Flatpack (Top View) Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 11 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com GPIO6 GPIO14 GPIO15 GPIO34 GPIO10 GPIO9 GPIO5 GPIO45 VDDIO VDD VSS GPIO44 GPIO7 GPIO22 GPIO41 GPIO23 GPIO40 GPIO0 GPIO1 GPIO2 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 GPIO30 1 60 GPIO3 GPIO31 2 59 GPIO4 GPIO29 3 58 GPIO8 GPIO28 4 57 GPIO42 XRSn 5 56 GPIO39 GPIO46 6 55 VSS VDDIO 7 54 GPIO43 VDD 8 53 VDD VSS 9 52 VDDIO A6 10 51 GPIO19,X1 B2,C6 11 50 GPIO18,X2 A3,B3,C5,VDAC 12 49 GPIO32 A2,B6,C9 13 48 GPIO35/TDI A15,B9,C7 14 47 TMS A14,B14,C4 15 46 GPIO37/TDO A11,B10,C0 16 45 TCK A5,B12,C2 17 44 GPIO27 40 GPIO17 39 GPIO16 37 38 GPIO33 GPIO11 36 GPIO12 35 GPIO13 34 33 B5,GPIO20 B11,GPIO21 32 VDDIO 31 30 VSS VDD A10,B1,C10 A9,B4,C8 A4,B8,C14 VDDA VSSA A8,B0,C11 A7,C3 A12,C1 VREFLO A. 29 GPIO24 28 41 27 20 26 VREFHI 25 GPIO25 24 GPIO26 42 23 43 19 22 18 21 A1,B7,DACB_OUT A0,B15,C15,DACA_OUT Not to scale Only the GPIO function is shown on GPIO pins. See Section 5.2 for the complete, muxed signal name. Figure 5-2. 80-Pin PN Low-Profile Quad Flatpack (Top View) 12 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com GPIO6 GPIO10 GPIO9 GPIO5 VDDIO VDD VSS GPIO7 GPIO22 GPIO41 GPIO23 GPIO40 GPIO0 GPIO1 GPIO2 GPIO3 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 VSS 5 44 VDD A6 6 43 VDDIO B2,C6 7 42 GPIO19,X1 A3,B3,C5,VDAC 8 41 GPIO18,X2 A2,B6,C9 9 40 GPIO32 A15,B9,C7 10 39 GPIO35/TDI A14,B14,C4 11 38 TMS A11,B10,C0 12 37 GPIO37/TDO A5,B12,C2 13 36 TCK A1,B7,DACB_OUT 14 35 GPIO24 A0,B15,C15,DACA_OUT 15 34 GPIO17 VREFHI 16 33 GPIO16 GPIO33 GPIO11 GPIO12 GPIO13 VDDIO VDD VSS A10,B1,C10 A9,B4,C8 A4,B8,C14 VDDA VSSA A8,B0,C11 A7,C3 A12,C1 VREFLO A. 32 VSS 31 45 30 4 29 VDD 28 VREGENZ 27 46 26 3 25 XRSn 24 GPIO8 23 47 22 2 21 GPIO28 20 GPIO4 19 48 18 1 17 GPIO29 Not to scale Only the GPIO function is shown on GPIO pins. See Section 5.2 for the complete, muxed signal name. Figure 5-3. 64-Pin PM Low-Profile Quad Flatpack - Q Temperature (Top View) Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 13 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com GPIO6 GPIO10 GPIO9 GPIO5 VDDIO VDD VSS GPIO7 GPIO22 GPIO41 GPIO23 GPIO40 GPIO0 GPIO1 GPIO2 GPIO3 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 VSS 5 44 VDD A6 6 43 VDDIO B2,C6 7 42 GPIO19,X1 A3,B3,C5,VDAC 8 41 GPIO18,X2 A2,B6,C9 9 40 GPIO32 A15,B9,C7 10 39 GPIO35/TDI A14,B14,C4 11 38 TMS A11,B10,C0 12 37 GPIO37/TDO A5,B12,C2 13 36 TCK A1,B7,DACB_OUT 14 35 GPIO24 A0,B15,C15,DACA_OUT 15 34 GPIO17 VREFHI 16 33 GPIO16 GPIO33 GPIO11 GPIO12 GPIO13 VDDIO VDD VSS A10,B1,C10 A9,B4,C8 A4,B8,C14 VDDA VSSA A8,B0,C11 A7,C3 A12,C1 VREFLO A. 32 VSS 31 45 30 4 29 VDD 28 GPIO39 27 46 26 3 25 XRSn 24 GPIO8 23 47 22 2 21 GPIO28 20 GPIO4 19 48 18 1 17 GPIO29 Not to scale Only the GPIO function is shown on GPIO pins. See Section 5.2 for the complete, muxed signal name. Figure 5-4. 64-Pin PM Low-Profile Quad Flatpack (Top View) 14 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com GPIO6 GPIO5 VDDIO VDD VSS GPIO7 GPIO0 GPIO1 GPIO2 GPIO3 GPIO4 VSS 48 47 46 45 44 43 42 41 40 39 38 37 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 A6,B2,C6 4 33 GPIO18,X2 A3,B3,C5,VDAC 5 32 GPIO32 A2,B6,C9 6 31 GPIO35/TDI A15,B9,C7 7 30 TMS A11,B10,C0 8 29 GPIO37/TDO A5,B12,C2 9 28 TCK A1,B7,DACB_OUT 10 27 GPIO24 A0,B15,C15,DACA_OUT 11 26 GPIO16 VREFHI 12 25 GPIO33 Not to scale VDDIO VDD VSS A10,B1,C10 A9,B4,C8 A4,B8,C14 VDDA VSSA A8,B0,C11 A7,C3 A12,C1 VREFLO A. 24 GPIO19,X1 23 34 22 3 21 XRSn 20 VDDIO 19 35 18 2 17 GPIO28 16 VDD 15 36 14 1 13 GPIO29 Only the GPIO function is shown on GPIO pins. See Section 5.2 for the complete, muxed signal name. Figure 5-5. 48-Pin PT Low-Profile Quad Flatpack (Top View) Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 15 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 5.2 Pin Attributes Table 5-1. Pin Attributes SIGNAL NAME MUX POSITION 100 PZ 80 PN 64 PMQ 64 PM 48 PT PIN TYPE DESCRIPTION ANALOG A0 I ADC-A Input 0 B15 I ADC-B Input 15 C15 I ADC-C Input 15 CMP3_HP2 I CMPSS-3 High Comparator Positive Input 2 I CMPSS-3 Low Comparator Positive Input 2 O Buffered DAC-A Output. I Analog Pin Used For Digital Input 231 This pin also has digital mux functions which are described in the GPIO section of this table. A1 I ADC-A Input 1 B7 I ADC-B Input 7 CMP1_HP4 I CMPSS-1 High Comparator Positive Input 4 CMP1_LP4 I CMPSS-1 Low Comparator Positive Input 4 O Buffered DAC-B Output. I Analog Pin Used For Digital Input 232 This pin also has digital mux functions which are described in the GPIO section of this table. A2 I ADC-A Input 2 B6 I ADC-B Input 6 C9 I ADC-C Input 9 I CMPSS-1 High Comparator Positive Input 0 I CMPSS-1 Low Comparator Positive Input 0 I Analog Pin Used For Digital Input 224 This pin also has digital mux functions which are described in the GPIO section of this table. I ADC-A Input 3 I CMPSS-3 High Comparator Positive Input 5 I CMPSS-3 Low Comparator Positive Input 5 I Analog Pin Used For Digital Input 229 I ADC-A Input 3 I CMPSS-3 High Comparator Positive Input 5 CMP3_LP5 I CMPSS-3 Low Comparator Positive Input 5 A4 I ADC-A Input 4 B8 I ADC-B Input 8 I CMPSS-2 High Comparator Positive Input 0 I CMPSS-2 Low Comparator Positive Input 0 I Analog Pin Used For Digital Input 225 This pin also has digital mux functions which are described in the GPIO section of this table. A5 I ADC-A Input 5 CMP2_HP5 I CMPSS-2 High Comparator Positive Input 5 I CMPSS-2 Low Comparator Positive Input 5 I Analog Pin Used For Digital Input 249 I ADC-A Input 5 I CMPSS-2 High Comparator Positive Input 5 I CMPSS-2 Low Comparator Positive Input 5 23 CMP3_LP2 19 15 15 11 DACA_OUT AIO231 0, 4, 8, 12 22 18 14 14 10 DACB_OUT AIO232 0, 4, 8, 12 CMP1_HP0 17 13 9 9 6 CMP1_LP0 AIO224 0, 4, 8, 12 A3 CMP3_HP5 18 CMP3_LP5 AIO229 0, 4, 8, 12 A3 CMP3_HP5 12 8 8 5 CMP2_HP0 36 CMP2_LP0 AIO225 23 23 19 0, 4, 8, 12 35 CMP2_LP5 AIO249 27 0, 4, 8, 12 A5 CMP2_HP5 CMP2_LP5 16 Submit Document Feedback 17 13 13 9 Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-1. Pin Attributes (continued) SIGNAL NAME MUX POSITION 100 PZ 80 PN 64 PMQ 64 PM 48 PT PIN TYPE DESCRIPTION A6 I ADC-A Input 6 CMP1_HP2 I CMPSS-1 High Comparator Positive Input 2 CMP1_LP2 I CMPSS-1 Low Comparator Positive Input 2 I Analog Pin Used For Digital Input 228 This pin also has digital mux functions which are described in the GPIO section of this table. A8 I ADC-A Input 8 CMP4_HP4 I CMPSS-4 High Comparator Positive Input 4 I CMPSS-4 Low Comparator Positive Input 4 I Analog Pin Used For Digital Input 240 This pin also has digital mux functions which are described in the GPIO section of this table. A8 I ADC-A Input 8 CMP4_HP4 I CMPSS-4 High Comparator Positive Input 4 I CMPSS-4 Low Comparator Positive Input 4 I Analog Pin Used For Digital Input 241 This pin also has digital mux functions which are described in the GPIO section of this table. A9 I ADC-A Input 9 CMP2_HP2 I CMPSS-2 High Comparator Positive Input 2 CMP2_LP2 I CMPSS-2 Low Comparator Positive Input 2 I Analog Pin Used For Digital Input 227 This pin also has digital mux functions which are described in the GPIO section of this table. A10 I ADC-A Input 10 B1 I ADC-B Input 1 C10 I ADC-C Input 10 CMP2_HN0 I CMPSS-2 High Comparator Negative Input 0 CMP2_HP3 I CMPSS-2 High Comparator Positive Input 3 CMP2_LN0 I CMPSS-2 Low Comparator Negative Input 0 CMP2_LP3 I CMPSS-2 Low Comparator Positive Input 3 I Analog Pin Used For Digital Input 230 This pin also has digital mux functions which are described in the GPIO section of this table. A11 I ADC-A Input 11 B10 I ADC-B Input 10 C0 I ADC-C Input 0 CMP1_HN1 I CMPSS-1 High Comparator Negative Input 1 CMP1_HP1 I CMPSS-1 High Comparator Positive Input 1 CMP1_LN1 I CMPSS-1 Low Comparator Negative Input 1 CMP1_LP1 I CMPSS-1 Low Comparator Positive Input 1 I Analog Pin Used For Digital Input 237 This pin also has digital mux functions which are described in the GPIO section of this table. A12 I ADC-A Input 12 CMP2_HN1 I CMPSS-2 High Comparator Negative Input 1 CMP2_HP1 I CMPSS-2 High Comparator Positive Input 1 CMP2_LN1 I CMPSS-2 Low Comparator Negative Input 1 I CMPSS-2 Low Comparator Positive Input 1 I Analog Pin Used For Digital Input 238 This pin also has digital mux functions which are described in the GPIO section of this table. AIO228 14 AIO227 AIO230 AIO237 4 0, 4, 8, 12 24 20 20 16 0, 4, 8, 12 38 28 24 24 20 0, 4, 8, 12 40 29 25 25 21 0, 4, 8, 12 20 16 12 12 8 0, 4, 8, 12 28 CMP2_LP1 AIO238 6 37 CMP4_LP4 AIO241 6 0, 4, 8, 12 CMP4_LP4 AIO240 10 0, 4, 8, 12 Copyright © 2023 Texas Instruments Incorporated 22 18 18 14 Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 17 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-1. Pin Attributes (continued) SIGNAL NAME MUX POSITION 100 PZ 80 PN 64 PMQ 64 PM 48 PT PIN TYPE DESCRIPTION A14 I ADC-A Input 14 B14 I ADC-B Input 14 C4 I ADC-C Input 4 CMP3_HP4 I CMPSS-3 High Comparator Positive Input 4 I CMPSS-3 Low Comparator Positive Input 4 I Analog Pin Used For Digital Input 239 This pin also has digital mux functions which are described in the GPIO section of this table. A15 I ADC-A Input 15 CMP1_HN0 I CMPSS-1 High Comparator Negative Input 0 CMP1_HP3 I CMPSS-1 High Comparator Positive Input 3 CMP1_LN0 I CMPSS-1 Low Comparator Negative Input 0 I CMPSS-1 Low Comparator Positive Input 3 I Analog Pin Used For Digital Input 233 This pin also has digital mux functions which are described in the GPIO section of this table. B0 I ADC-B Input 0 C11 I ADC-C Input 11 I CMPSS-2 High Comparator Positive Input 4 I CMPSS-2 Low Comparator Positive Input 4 I Analog Pin Used For Digital Input 253 B0 I ADC-B Input 0 C11 I ADC-C Input 11 I CMPSS-2 High Comparator Positive Input 4 CMP2_LP4 I CMPSS-2 Low Comparator Positive Input 4 B2 I ADC-B Input 2 C6 I ADC-C Input 6 CMP3_HP0 I CMPSS-3 High Comparator Positive Input 0 I CMPSS-3 Low Comparator Positive Input 0 I Analog Pin Used For Digital Input 226 This pin also has digital mux functions which are described in the GPIO section of this table. B3 I ADC-B Input 3 CMP3_HN0 I CMPSS-3 High Comparator Negative Input 0 CMP3_HP3 I CMPSS-3 High Comparator Positive Input 3 CMP3_LN0 I CMPSS-3 Low Comparator Negative Input 0 I CMPSS-3 Low Comparator Positive Input 3 I Optional external reference voltage for on-chip DACs. I Analog Pin Used For Digital Input 242 This pin also has digital mux functions which are described in the GPIO section of this table. B4 I ADC-B Input 4 C8 I ADC-C Input 8 I CMPSS-4 High Comparator Positive Input 0 I CMPSS-4 Low Comparator Positive Input 0 I Analog Pin Used For Digital Input 236 B5 I ADC-B Input 5 CMP1_HP5 I CMPSS-1 High Comparator Positive Input 5 CMP1_LP5 I CMPSS-1 Low Comparator Positive Input 5 I Analog Pin Used For Digital Input 252 This pin also has digital mux functions which are described in the GPIO section of this table. 19 15 11 11 CMP3_LP4 AIO239 0, 4, 8, 12 14 10 10 7 CMP1_LP3 AIO233 0, 4, 8, 12 CMP2_HP4 41 CMP2_LP4 AIO253 0, 4, 8, 12 24 CMP2_HP4 15 CMP3_LP0 AIO226 11 20 7 20 7 16 4 0, 4, 8, 12 16 CMP3_LP3 12 8 8 5 VDAC AIO242 0, 4, 8, 12 CMP4_HP0 39 CMP4_LP0 AIO236 AIO252 18 0, 4, 8, 12 32 0, 4, 8, 12 Submit Document Feedback 28 24 24 20 Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-1. Pin Attributes (continued) SIGNAL NAME MUX POSITION 100 PZ 80 PN 64 PMQ 64 PM 48 PT PIN TYPE DESCRIPTION B5 I ADC-B Input 5 CMP1_HP5 I CMPSS-1 High Comparator Positive Input 5 CMP1_LP5 I CMPSS-1 Low Comparator Positive Input 5 48 33 GPIO20 I/O General-Purpose Input Output 20 This pin also has digital mux functions which are described in the GPIO section of this table. B11 I ADC-B Input 11 CMP4_HP5 I CMPSS-4 High Comparator Positive Input 5 I CMPSS-4 Low Comparator Positive Input 5 I Analog Pin Used For Digital Input 251 B11 I ADC-B Input 11 CMP4_HP5 I CMPSS-4 High Comparator Positive Input 5 CMP4_LP5 I CMPSS-4 Low Comparator Positive Input 5 30 CMP4_LP5 AIO251 0, 4, 8, 12 49 34 GPIO21 I/O General-Purpose Input Output 21 This pin also has digital mux functions which are described in the GPIO section of this table. C1 I ADC-C Input 1 CMP4_HP2 I CMPSS-4 High Comparator Positive Input 2 I CMPSS-4 Low Comparator Positive Input 2 I Analog Pin Used For Digital Input 248 I Analog Pin Used For Digital Input 248 B12 I ADC-B Input 12 C2 I ADC-C Input 2 CMP3_HN1 I CMPSS-3 High Comparator Negative Input 1 CMP3_HP1 I CMPSS-3 High Comparator Positive Input 1 I CMPSS-3 Low Comparator Negative Input 1 I CMPSS-3 Low Comparator Positive Input 1 I Analog Pin Used For Digital Input 244 This pin also has digital mux functions which are described in the GPIO section of this table. A7 I ADC-A Input 7 C3 I ADC-C Input 3 CMP4_HN1 I CMPSS-4 High Comparator Negative Input 1 CMP4_HP1 I CMPSS-4 High Comparator Positive Input 1 I CMPSS-4 Low Comparator Negative Input 1 I CMPSS-4 Low Comparator Positive Input 1 I Analog Pin Used For Digital Input 245 This pin also has digital mux functions which are described in the GPIO section of this table. I ADC-C Input 5 I ADC-B Input 9 I ADC-C Input 7 C14 I ADC-C Input 14 CMP4_HN0 I CMPSS-4 High Comparator Negative Input 0 CMP4_HP3 I CMPSS-4 High Comparator Positive Input 3 I CMPSS-4 Low Comparator Negative Input 0 I CMPSS-4 Low Comparator Positive Input 3 I Analog Pin Used For Digital Input 247 C14 I ADC-C Input 14 CMP4_HN0 I CMPSS-4 High Comparator Negative Input 0 I CMPSS-4 High Comparator Positive Input 3 CMP4_LN0 I CMPSS-4 Low Comparator Negative Input 0 CMP4_LP3 I CMPSS-4 Low Comparator Positive Input 3 29 CMP4_LP2 AIO248 22 18 18 14 0, 4, 8, 12 AIO248 29 21 CMP3_LN1 22 17 18 13 18 13 14 9 CMP3_LP1 AIO244 0, 4, 8, 12 31 CMP4_LN1 23 19 19 15 CMP4_LP1 AIO245 0, 4, 8, 12 C5 B9 C7 28 12 8 8 5 18 14 10 10 7 42 CMP4_LN0 CMP4_LP3 AIO247 0, 4, 8, 12 CMP4_HP3 Copyright © 2023 Texas Instruments Incorporated 27 23 23 19 Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 19 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-1. Pin Attributes (continued) SIGNAL NAME MUX POSITION 100 PZ 80 PN 64 PMQ 64 PM 48 PT VREFHI 24, 25 20 16 VREFLO 26, 27 21 17 PIN TYPE DESCRIPTION 16 12 I ADC High Reference. In external reference mode, externally drive the high reference voltage onto this pin. In internal reference mode, a voltage is driven onto this pin by the device. In either mode, place at least a 2.2-µF capacitor on this pin. This capacitor should be placed as close to the device as possible between the VREFHI and VREFLO pins. 17 13 I ADC Low Reference I Analog Pin Used For Digital Input 231 This pin also has analog functions which are described in the ANALOG section of this table. GPIO AIO231 0, 4, 8, 12 SD1_C1 2 I SDFM-1 Channel 1 Clock Input HIC_BASESEL1 15 I HIC Base address range select 1 AIO232 0, 4, 8, 12 I Analog Pin Used For Digital Input 232 This pin also has analog functions which are described in the ANALOG section of this table. SD1_D4 2 I SDFM-1 Channel 4 Data Input HIC_BASESEL0 15 I HIC Base address range select 0 AIO224 0, 4, 8, 12 I Analog Pin Used For Digital Input 224 This pin also has analog functions which are described in the ANALOG section of this table. SD2_D3 2 I SDFM-2 Channel 3 Data Input HIC_A3 15 I HIC Address 3 AIO225 0, 4, 8, 12 I Analog Pin Used For Digital Input 225 This pin also has analog functions which are described in the ANALOG section of this table. SD2_C2 2 I SDFM-2 Channel 2 Clock Input HIC_NWE 15 I HIC Data Write enable from host AIO228 0, 4, 8, 12 I Analog Pin Used For Digital Input 228 This pin also has analog functions which are described in the ANALOG section of this table. SD2_C1 2 I SDFM-2 Channel 1 Clock Input HIC_A0 15 I HIC Address 0 AIO240 0, 4, 8, 12 I Analog Pin Used For Digital Input 240 This pin also has analog functions which are described in the ANALOG section of this table. SD2_C1 2 I SDFM-2 Channel 1 Clock Input HIC_NBE1 15 I HIC Byte enable 1 AIO241 0, 4, 8, 12 I Analog Pin Used For Digital Input 241 This pin also has analog functions which are described in the ANALOG section of this table. SD2_C1 2 I SDFM-2 Channel 1 Clock Input HIC_NBE1 15 I HIC Byte enable 1 AIO227 0, 4, 8, 12 I Analog Pin Used For Digital Input 227 This pin also has analog functions which are described in the ANALOG section of this table. SD1_C3 2 I SDFM-1 Channel 3 Clock Input HIC_NBE0 15 I HIC Byte enable 0 AIO230 0, 4, 8, 12 I Analog Pin Used For Digital Input 230 This pin also has analog functions which are described in the ANALOG section of this table. SD1_C4 2 I SDFM-1 Channel 4 Clock Input HIC_BASESEL2 15 I HIC Base address range select 2 23 22 17 36 14 19 18 13 27 10 15 14 9 23 6 15 14 9 23 6 11 10 6 19 4 37 24 38 40 20 Submit Document Feedback 28 29 20 24 25 20 24 25 16 20 21 Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-1. Pin Attributes (continued) SIGNAL NAME MUX POSITION 100 PZ 80 PN 64 PMQ 64 PM 48 PT PIN TYPE DESCRIPTION I Analog Pin Used For Digital Input 237 This pin also has analog functions which are described in the ANALOG section of this table. 2 I SDFM-1 Channel 2 Data Input HIC_A6 15 I HIC Address 6 AIO238 0, 4, 8, 12 I Analog Pin Used For Digital Input 238 This pin also has analog functions which are described in the ANALOG section of this table. SD2_C3 2 I SDFM-2 Channel 3 Clock Input HIC_NCS 15 I HIC Chip select input AIO239 0, 4, 8, 12 I Analog Pin Used For Digital Input 239 This pin also has analog functions which are described in the ANALOG section of this table. SD1_D1 2 I SDFM-1 Channel 1 Data Input HIC_A5 15 I HIC Address 5 AIO233 0, 4, 8, 12 I Analog Pin Used For Digital Input 233 This pin also has analog functions which are described in the ANALOG section of this table. SD2_D1 2 I SDFM-2 Channel 1 Data Input HIC_A4 15 I HIC Address 4 AIO226 0, 4, 8, 12 I Analog Pin Used For Digital Input 226 This pin also has analog functions which are described in the ANALOG section of this table. SD2_D4 2 I SDFM-2 Channel 4 Data Input HIC_A1 15 I HIC Address 1 AIO242 0, 4, 8, 12 I Analog Pin Used For Digital Input 242 This pin also has analog functions which are described in the ANALOG section of this table. SD2_D2 2 I SDFM-2 Channel 2 Data Input HIC_A2 15 I HIC Address 2 AIO252 0, 4, 8, 12 I Analog Pin Used For Digital Input 252 This pin also has analog functions which are described in the ANALOG section of this table. SD2_C4 2 I SDFM-2 Channel 4 Clock Input AIO244 0, 4, 8, 12 I Analog Pin Used For Digital Input 244 This pin also has analog functions which are described in the ANALOG section of this table. SD1_D3 2 I SDFM-1 Channel 3 Data Input HIC_A7 15 I HIC Address 7 AIO245 0, 4, 8, 12 I Analog Pin Used For Digital Input 245 This pin also has analog functions which are described in the ANALOG section of this table. SD1_C2 2 I SDFM-1 Channel 2 Clock Input HIC_NOE 15 O HIC Output enable for data bus 0, 4, 8, 12 I/O General-Purpose Input Output 0 EPWM1_A 1 O ePWM-1 Output A I2CA_SDA 6 I/OD I2C-A Open-Drain Bidirectional Data SPIA_STE 7 I/O SPI-A Slave Transmit Enable (STE) AIO237 0, 4, 8, 12 SD1_D2 20 28 19 16 22 15 14 15 16 31 FSIRXA_CLK 9 MCAN_RX 10 CLB_OUTPUTXBAR8 12 18 11 10 7 8 12 18 8 14 11 10 7 8 7 4 5 32 21 GPIO0 11 12 17 23 13 19 13 19 9 15 I FSIRX-A Input Clock I CAN/CAN FD Receive 11 O CLB Output X-BAR Output 8 EQEP1_INDEX 13 I/O eQEP-1 Index HIC_D7 14 I/O HIC Data 7 HIC_BASESEL1 15 I Copyright © 2023 Texas Instruments Incorporated 79 63 52 52 42 HIC Base address range select 1 Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 21 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-1. Pin Attributes (continued) SIGNAL NAME GPIO1 MUX POSITION 100 PZ 80 PN 64 PMQ 64 PM 48 PT PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 1 EPWM1_B 1 O ePWM-1 Output B I2CA_SCL 6 I/OD SPIA_SOMI 7 I/O SPI-A Slave Out, Master In (SOMI) MCAN_TX 10 O CAN/CAN FD Transmit CLB_OUTPUTXBAR7 11 O CLB Output X-BAR Output 7 HIC_A2 13 I HIC Address 2 FSITXA_TDM_D1 14 I FSITX-A Time Division Multiplexed Additional Data Input HIC_D10 78 62 51 51 41 I2C-A Open-Drain Bidirectional Clock 15 I/O HIC Data 10 0, 4, 8, 12 I/O General-Purpose Input Output 2 EPWM2_A 1 O ePWM-2 Output A OUTPUTXBAR1 5 O Output X-BAR Output 1 PMBUSA_SDA 6 I/OD SPIA_SIMO 7 I/O SPI-A Slave In, Master Out (SIMO) GPIO2 SCIA_TX 9 O SCI-A Transmit Data FSIRXA_D1 10 I FSIRX-A Optional Additional Data Input I2CB_SDA 11 I/OD HIC_A1 13 I HIC Address 1 CANA_TX 14 O CAN-A Transmit HIC_D9 15 I/O HIC Data 9 GPIO3 0, 4, 8, 12 I/O General-Purpose Input Output 3 1 O ePWM-2 Output B 2, 5 O Output X-BAR Output 2 PMBUSA_SCL 6 I/OD SPIA_CLK 7 I/O SCIA_RX 9 FSIRXA_D0 EPWM2_B OUTPUTXBAR2 77 76 61 60 50 49 50 49 40 PMBus-A Open-Drain Bidirectional Data 39 I2C-B Open-Drain Bidirectional Data PMBus-A Open-Drain Bidirectional Clock SPI-A Clock I SCI-A Receive Data 10 I FSIRX-A Primary Data Input I2CB_SCL 11 I/OD HIC_NOE 13 O HIC Output enable for data bus CANA_RX 14 I CAN-A Receive HIC_D4 15 I/O HIC Data 4 GPIO4 0, 4, 8, 12 I/O General-Purpose Input Output 4 EPWM3_A 1 O ePWM-3 Output A MCAN_TX 3 O CAN/CAN FD Transmit OUTPUTXBAR3 5 O Output X-BAR Output 3 CANA_TX 6 O CAN-A Transmit SPIB_CLK 7 I/O SPI-B Clock EQEP2_STROBE 9 I/O eQEP-2 Strobe FSIRXA_CLK 10 I FSIRX-A Input Clock CLB_OUTPUTXBAR6 11 O CLB Output X-BAR Output 6 HIC_BASESEL2 13 I HIC Base address range select 2 HIC_NWE 15 I HIC Data Write enable from host 22 Submit Document Feedback 75 59 48 48 38 I2C-B Open-Drain Bidirectional Clock Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-1. Pin Attributes (continued) SIGNAL NAME GPIO5 MUX POSITION 100 PZ 80 PN 64 PMQ 64 PM 48 PT PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 5 EPWM3_B 1 O ePWM-3 Output B OUTPUTXBAR3 3 O Output X-BAR Output 3 MCAN_RX 5 I CAN/CAN FD Receive CANA_RX 6 I CAN-A Receive SPIA_STE 7 89 74 61 61 47 I/O SPI-A Slave Transmit Enable (STE) FSITXA_D1 9 O FSITX-A Optional Additional Data Output CLB_OUTPUTXBAR5 10 O CLB Output X-BAR Output 5 HIC_A7 13 I HIC Address 7 HIC_D4 14 I/O HIC Data 4 HIC_D15 15 I/O HIC Data 15 0, 4, 8, 12 I/O General-Purpose Input Output 6 EPWM4_A 1 O ePWM-4 Output A OUTPUTXBAR4 2 O Output X-BAR Output 4 SYNCOUT 3 O External ePWM Synchronization Pulse EQEP1_A 5 I eQEP-1 Input A SPIB_SOMI 7 FSITXA_D0 GPIO6 I/O SPI-B Slave Out, Master In (SOMI) 9 O FSITX-A Primary Data Output FSITXA_D1 11 O FSITX-A Optional Additional Data Output HIC_NBE1 13 I HIC Byte enable 1 CLB_OUTPUTXBAR8 14 O CLB Output X-BAR Output 8 HIC_D14 15 I/O HIC Data 14 0, 4, 8, 12 I/O General-Purpose Input Output 7 EPWM4_B 1 O ePWM-4 Output B OUTPUTXBAR5 3 O Output X-BAR Output 5 EQEP1_B 5 I eQEP-1 Input B SPIB_SIMO 7 FSITXA_CLK GPIO7 97 SPI-B Slave In, Master Out (SIMO) FSITX-A Output Clock CLB_OUTPUTXBAR2 10 O CLB Output X-BAR Output 2 HIC_A6 13 I HIC Address 6 HIC_D14 15 I/O HIC Data 14 0, 4, 8, 12 I/O General-Purpose Input Output 8 EPWM5_A 1 O ePWM-5 Output A ADCSOCAO 3 O ADC Start of Conversion A for External ADC EQEP1_STROBE 5 I/O eQEP-1 Strobe SCIA_TX 6 O SCI-A Transmit Data SPIA_SIMO 7 I/O SPI-A Slave In, Master Out (SIMO) I2CA_SCL 9 FSITXA_D1 10 O FSITX-A Optional Additional Data Output CLB_OUTPUTXBAR5 11 O CLB Output X-BAR Output 5 HIC_A0 13 I HIC Address 0 FSITXA_TDM_CLK 14 I FSITX-A Time Division Multiplexed Clock Input HIC_D8 15 I/O Copyright © 2023 Texas Instruments Incorporated 47 57 48 O 58 57 64 9 74 68 64 I/O GPIO8 84 80 47 43 I/OD I2C-A Open-Drain Bidirectional Clock HIC Data 8 Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 23 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-1. Pin Attributes (continued) SIGNAL NAME GPIO9 MUX POSITION 100 PZ 80 PN 64 PMQ 64 PM 48 PT PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 9 EPWM5_B 1 O ePWM-5 Output B SCIB_TX 2 O SCI-B Transmit Data OUTPUTXBAR6 3 O Output X-BAR Output 6 EQEP1_INDEX 5 I/O eQEP-1 Index SCIA_RX 6 I 90 75 62 62 SCI-A Receive Data SPIA_CLK 7 I/O SPI-A Clock FSITXA_D0 10 O FSITX-A Primary Data Output LINB_RX 11 I LIN-B Receive HIC_BASESEL0 13 I HIC Base address range select 0 I2CB_SCL 14 I/OD HIC_NRDY 15 O HIC Ready from device to host 0, 4, 8, 12 I/O General-Purpose Input Output 10 EPWM6_A 1 O ePWM-6 Output A ADCSOCBO 3 O ADC Start of Conversion B for External ADC EQEP1_A 5 I eQEP-1 Input A SCIB_TX 6 O SCI-B Transmit Data SPIA_SOMI 7 I/O SPI-A Slave Out, Master In (SOMI) I2CA_SDA 9 FSITXA_CLK 10 O FSITX-A Output Clock LINB_TX 11 O LIN-B Transmit HIC_NWE 13 I HIC Data Write enable from host FSITXA_TDM_D0 14 I FSITX-A Time Division Multiplexed Data Input CLB_OUTPUTXBAR4 15 O CLB Output X-BAR Output 4 GPIO10 GPIO11 93 76 63 63 I/OD I2C-B Open-Drain Bidirectional Clock I2C-A Open-Drain Bidirectional Data 0, 4, 8, 12 I/O General-Purpose Input Output 11 EPWM6_B 1 O ePWM-6 Output B OUTPUTXBAR7 3 O Output X-BAR Output 7 EQEP1_B 5 I eQEP-1 Input B SCIB_RX 6 I SCI-B Receive Data SPIA_STE 7 I/O FSIRXA_D1 9 LINB_RX 52 37 31 31 SPI-A Slave Transmit Enable (STE) I FSIRX-A Optional Additional Data Input 10 I LIN-B Receive EQEP2_A 11 I eQEP-2 Input A SPIA_SIMO 13 I/O SPI-A Slave In, Master Out (SIMO) HIC_D6 14 I/O HIC Data 6 HIC_NBE0 15 I 0, 4, 8, 12 I/O General-Purpose Input Output 12 EPWM7_A 1 O ePWM-7 Output A MCAN_RX 3 I CAN/CAN FD Receive EQEP1_STROBE 5 I/O eQEP-1 Strobe SCIB_TX 6 O SCI-B Transmit Data PMBUSA_CTL 7 I/O PMBus-A Control Signal - Slave Input/Master Output FSIRXA_D0 9 LINB_TX GPIO12 51 36 30 30 HIC Byte enable 0 I FSIRX-A Primary Data Input 10 O LIN-B Transmit SPIA_CLK 11 I/O SPI-A Clock CANA_RX 13 I HIC_D13 14 I/O HIC Data 13 HIC_INT 15 O HIC Device interrupt to host 24 Submit Document Feedback CAN-A Receive Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-1. Pin Attributes (continued) SIGNAL NAME GPIO13 MUX POSITION 100 PZ 80 PN 64 PMQ 64 PM 48 PT PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 13 EPWM7_B 1 O ePWM-7 Output B MCAN_TX 3 O CAN/CAN FD Transmit EQEP1_INDEX 5 I/O eQEP-1 Index SCIB_RX 6 I PMBUSA_ALERT 7 I/OD 50 35 29 29 SCI-B Receive Data PMBus-A Open-Drain Bidirectional Alert Signal FSIRXA_CLK 9 I FSIRX-A Input Clock LINB_RX 10 I LIN-B Receive SPIA_SOMI 11 I/O SPI-A Slave Out, Master In (SOMI) CANA_TX 13 O CAN-A Transmit HIC_D11 14 I/O HIC Data 11 HIC_D5 15 I/O HIC Data 5 GPIO14 0, 4, 8, 12 I/O General-Purpose Input Output 14 EPWM8_A 1 O ePWM-8 Output A SCIB_TX 2 O SCI-B Transmit Data I2CB_SDA 5 I/OD OUTPUTXBAR3 6 O PMBUSA_SDA 7 I/OD SPIB_CLK 9 EQEP2_A 10 I eQEP-2 Input A LINB_TX 11 O LIN-B Transmit EPWM3_A 13 O ePWM-3 Output A CLB_OUTPUTXBAR7 14 O CLB Output X-BAR Output 7 HIC_D15 15 I/O HIC Data 15 GPIO15 96 79 I/O I2C-B Open-Drain Bidirectional Data Output X-BAR Output 3 PMBus-A Open-Drain Bidirectional Data SPI-B Clock 0, 4, 8, 12 I/O General-Purpose Input Output 15 EPWM8_B 1 O ePWM-8 Output B SCIB_RX 2 I SCI-B Receive Data I2CB_SCL 5 I/OD OUTPUTXBAR4 6 O PMBUSA_SCL 7 I/OD SPIB_STE 9 EQEP2_B 10 I eQEP-2 Input B LINB_RX 11 I LIN-B Receive EPWM3_B 13 O ePWM-3 Output B CLB_OUTPUTXBAR6 14 O CLB Output X-BAR Output 6 HIC_D12 15 I/O HIC Data 12 GPIO16 0, 4, 8, 12 I/O General-Purpose Input Output 16 SPIA_SIMO 1 I/O SPI-A Slave In, Master Out (SIMO) OUTPUTXBAR7 3 O Output X-BAR Output 7 EPWM5_A 5 O ePWM-5 Output A SCIA_TX 6 O SCI-A Transmit Data SD1_D1 7 I SDFM-1 Channel 1 Data Input EQEP1_STROBE 9 PMBUSA_SCL 10 I/OD XCLKOUT 11 O External Clock Output. This pin outputs a divided-down version of a chosen clock signal from within the device. EQEP2_B 13 I eQEP-2 Input B SPIB_SOMI 14 I/O SPI-B Slave Out, Master In (SOMI) HIC_D1 15 I/O HIC Data 1 Copyright © 2023 Texas Instruments Incorporated 95 54 78 39 I/O 33 33 26 I/O I2C-B Open-Drain Bidirectional Clock Output X-BAR Output 4 PMBus-A Open-Drain Bidirectional Clock SPI-B Slave Transmit Enable (STE) eQEP-1 Strobe PMBus-A Open-Drain Bidirectional Clock Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 25 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-1. Pin Attributes (continued) SIGNAL NAME GPIO17 MUX POSITION 100 PZ 80 PN 64 PMQ 64 PM 48 PT PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 17 SPIA_SOMI 1 I/O SPI-A Slave Out, Master In (SOMI) OUTPUTXBAR8 3 O Output X-BAR Output 8 EPWM5_B 5 O ePWM-5 Output B SCIA_RX 6 I SCI-A Receive Data SD1_C1 7 I SDFM-1 Channel 1 Clock Input 55 40 34 34 EQEP1_INDEX 9 I/O PMBUSA_SDA 10 I/OD CANA_TX 11 O CAN-A Transmit HIC_D2 15 I/O HIC Data 2 GPIO18 0, 4, 8, 12 I/O General-Purpose Input Output 18 SPIA_CLK 1 I/O SPI-A Clock SCIB_TX 2 O SCI-B Transmit Data CANA_RX 3 I CAN-A Receive EPWM6_A 5 O ePWM-6 Output A I2CA_SCL 6 I/OD SD1_D2 7 I SDFM-1 Channel 2 Data Input EQEP2_A 9 I eQEP-2 Input A PMBUSA_CTL 10 I/O PMBus-A Control Signal - Slave Input/Master Output XCLKOUT 11 O External Clock Output. This pin outputs a divided-down version of a chosen clock signal from within the device. LINB_TX 13 O LIN-B Transmit FSITXA_TDM_CLK 14 I FSITX-A Time Division Multiplexed Clock Input HIC_INT 15 O HIC Device interrupt to host ALT I/O Crystal oscillator output. X2 GPIO19 68 50 41 41 33 eQEP-1 Index PMBus-A Open-Drain Bidirectional Data I2C-A Open-Drain Bidirectional Clock 0, 4, 8, 12 I/O General-Purpose Input Output 19 SPIA_STE 1 I/O SPI-A Slave Transmit Enable (STE) SCIB_RX 2 I SCI-B Receive Data CANA_TX 3 O CAN-A Transmit EPWM6_B 5 O ePWM-6 Output B I2CA_SDA 6 I/OD SD1_C2 7 I SDFM-1 Channel 2 Clock Input EQEP2_B 9 I eQEP-2 Input B PMBUSA_ALERT 10 I/OD 69 51 42 42 34 I2C-A Open-Drain Bidirectional Data PMBus-A Open-Drain Bidirectional Alert Signal CLB_OUTPUTXBAR1 11 O CLB Output X-BAR Output 1 LINB_RX 13 I LIN-B Receive FSITXA_TDM_D0 14 I FSITX-A Time Division Multiplexed Data Input HIC_NBE0 15 I HIC Byte enable 0 X1 GPIO20 ALT I/O Crystal oscillator input or single-ended clock input. The device initialization software must configure this pin before the crystal oscillator is enabled. To use this oscillator, a quartz crystal circuit must be connected to X1 and X2. This pin can also be used to feed a single-ended 3.3-V level clock. See the XTAL section for usage details. 0, 4, 8, 12 I/O General-Purpose Input Output 20 This pin also has analog functions which are described in the ANALOG section of this table. EQEP1_A 1 SPIB_SIMO 6 I/O SD1_D3 7 I SDFM-1 Channel 3 Data Input MCAN_TX 9 O CAN/CAN FD Transmit 26 Submit Document Feedback 48 33 I eQEP-1 Input A SPI-B Slave In, Master Out (SIMO) Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-1. Pin Attributes (continued) SIGNAL NAME GPIO21 MUX POSITION 100 PZ 80 PN 64 PMQ 64 PM 48 PT 0, 4, 8, 12 PIN TYPE I/O General-Purpose Input Output 21 This pin also has analog functions which are described in the ANALOG section of this table. EQEP1_B 1 SPIB_SOMI 6 I/O SD1_C3 7 I SDFM-1 Channel 3 Clock Input CAN/CAN FD Receive MCAN_RX 49 I DESCRIPTION 34 eQEP-1 Input B SPI-B Slave Out, Master In (SOMI) 9 I 0, 4, 8, 12 I/O General-Purpose Input Output 22 EQEP1_STROBE 1 I/O eQEP-1 Strobe SCIB_TX 3 O SCI-B Transmit Data SPIB_CLK 6 I/O SPI-B Clock SD1_D4 7 I SDFM-1 Channel 4 Data Input LINA_TX 9 O LIN-A Transmit CLB_OUTPUTXBAR1 10 O CLB Output X-BAR Output 1 LINB_TX 11 O LIN-B Transmit HIC_A5 13 I HIC Address 5 EPWM4_A 14 O ePWM-4 Output A HIC_D13 15 I/O HIC Data 13 GPIO23 0, 4, 8, 12 I/O General-Purpose Input Output 23 EQEP1_INDEX 1 I/O eQEP-1 Index SCIB_RX 3 I SPIB_STE 6 I/O SD1_C4 7 I SDFM-1 Channel 4 Clock Input LINA_RX 9 I LIN-A Receive CLB_OUTPUTXBAR3 10 O CLB Output X-BAR Output 3 LINB_RX 11 I LIN-B Receive HIC_A3 13 I HIC Address 3 EPWM4_B 14 O ePWM-4 Output B HIC_D11 15 I/O HIC Data 11 GPIO24 0, 4, 8, 12 I/O General-Purpose Input Output 24 OUTPUTXBAR1 1 O Output X-BAR Output 1 EQEP2_A 2 I eQEP-2 Input A EPWM8_A 5 O ePWM-8 Output A SPIB_SIMO 6 I/O SPI-B Slave In, Master Out (SIMO) SD2_D1 7 I SDFM-2 Channel 1 Data Input LINB_TX 9 O LIN-B Transmit PMBUSA_SCL 10 I/OD SCIA_TX 11 O SCI-A Transmit Data ERRORSTS 13 O Error Status Output. This signal requires an external pulldown. HIC_D3 15 I/O HIC Data 3 GPIO25 0, 4, 8, 12 I/O General-Purpose Input Output 25 OUTPUTXBAR2 1 O Output X-BAR Output 2 EQEP2_B 2 I eQEP-2 Input B EQEP1_A 5 I eQEP-1 Input A SPIB_SOMI 6 I/O SD2_C1 7 FSITXA_D1 GPIO22 83 81 56 57 67 65 41 42 56 54 35 56 54 35 27 SCI-B Receive Data SPI-B Slave Transmit Enable (STE) PMBus-A Open-Drain Bidirectional Clock SPI-B Slave Out, Master In (SOMI) I SDFM-2 Channel 1 Clock Input 9 O FSITX-A Optional Additional Data Output PMBUSA_SDA 10 I/OD PMBus-A Open-Drain Bidirectional Data SCIA_RX 11 I SCI-A Receive Data HIC_BASESEL0 14 I HIC Base address range select 0 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 27 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-1. Pin Attributes (continued) SIGNAL NAME GPIO26 MUX POSITION 100 PZ 80 PN 64 PMQ 64 PM 48 PT PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 26 OUTPUTXBAR3 1, 5 O Output X-BAR Output 3 EQEP2_INDEX 2 I/O eQEP-2 Index SPIB_CLK 6 I/O SPI-B Clock SD2_D2 7 I SDFM-2 Channel 2 Data Input FSITXA_D0 9 O FSITX-A Primary Data Output PMBUSA_CTL 10 I/O PMBus-A Control Signal - Slave Input/Master Output I2CA_SDA 11 I/OD HIC_D0 14 I/O HIC_A1 15 I GPIO27 0, 4, 8, 12 I/O General-Purpose Input Output 27 1, 5 O Output X-BAR Output 4 EQEP2_STROBE 2 I/O eQEP-2 Strobe SPIB_STE 6 I/O SPI-B Slave Transmit Enable (STE) SD2_C2 7 I SDFM-2 Channel 2 Clock Input O FSITX-A Output Clock OUTPUTXBAR4 58 59 43 44 I2C-A Open-Drain Bidirectional Data HIC Data 0 HIC Address 1 FSITXA_CLK 9 PMBUSA_ALERT 10 I/OD PMBus-A Open-Drain Bidirectional Alert Signal I2CA_SCL 11 I/OD I2C-A Open-Drain Bidirectional Clock HIC_D1 14 I/O HIC_A4 15 I GPIO28 0, 4, 8, 12 I/O SCIA_RX 1 I SCI-A Receive Data EPWM7_A 3 O ePWM-7 Output A OUTPUTXBAR5 5 O Output X-BAR Output 5 EQEP1_A 6 I eQEP-1 Input A SD2_D3 7 I SDFM-2 Channel 3 Data Input EQEP2_STROBE 9 LINA_TX 1 4 2 2 2 HIC Data 1 HIC Address 4 General-Purpose Input Output 28 I/O eQEP-2 Strobe 10 O LIN-A Transmit SPIB_CLK 11 I/O SPI-B Clock ERRORSTS 13 O Error Status Output. This signal requires an external pulldown. I2CB_SDA 14 I/OD HIC_NOE 15 O HIC Output enable for data bus GPIO29 0, 4, 8, 12 I/O General-Purpose Input Output 29 SCIA_TX 1 O SCI-A Transmit Data EPWM7_B 3 O ePWM-7 Output B OUTPUTXBAR6 5 O Output X-BAR Output 6 EQEP1_B 6 I eQEP-1 Input B SD2_C3 7 I SDFM-2 Channel 3 Clock Input EQEP2_INDEX 9 I/O eQEP-2 Index LINA_RX 10 I LIN-A Receive SPIB_STE 11 I/O SPI-B Slave Transmit Enable (STE) ERRORSTS 13 O Error Status Output. This signal requires an external pulldown. I2CB_SCL 14 I/OD HIC_NCS 15 I HIC Chip select input ALT I Auxiliary Clock Input AUXCLKIN 28 Submit Document Feedback 100 3 1 1 1 I2C-B Open-Drain Bidirectional Data I2C-B Open-Drain Bidirectional Clock Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-1. Pin Attributes (continued) SIGNAL NAME GPIO30 MUX POSITION 100 PZ 80 PN 64 PMQ 64 PM 48 PT PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O CANA_RX 1 I SPIB_SIMO 3 I/O SPI-B Slave In, Master Out (SIMO) OUTPUTXBAR7 5 O Output X-BAR Output 7 EQEP1_STROBE 6 I/O eQEP-1 Strobe SD2_D4 7 98 1 General-Purpose Input Output 30 CAN-A Receive I SDFM-2 Channel 4 Data Input FSIRXA_CLK 9 I FSIRX-A Input Clock MCAN_RX 10 I CAN/CAN FD Receive EPWM1_A 11 O ePWM-1 Output A HIC_D8 14 I/O HIC Data 8 GPIO31 0, 4, 8, 12 I/O General-Purpose Input Output 31 CANA_TX 1 O CAN-A Transmit SPIB_SOMI 3 I/O SPI-B Slave Out, Master In (SOMI) OUTPUTXBAR8 5 O Output X-BAR Output 8 EQEP1_INDEX 6 I/O eQEP-1 Index SD2_C4 7 I SDFM-2 Channel 4 Clock Input FSIRXA_D1 9 I FSIRX-A Optional Additional Data Input MCAN_TX 10 O CAN/CAN FD Transmit EPWM1_B 11 O ePWM-1 Output B HIC_D10 14 I/O HIC Data 10 GPIO32 0, 4, 8, 12 I/O General-Purpose Input Output 32 I2CA_SDA 1 I/OD SPIB_CLK 3 I/O SPI-B Clock EPWM8_B 5 O ePWM-8 Output B LINA_TX 6 O LIN-A Transmit SD1_D2 7 I SDFM-1 Channel 2 Data Input FSIRXA_D0 9 I FSIRX-A Primary Data Input CANA_TX 10 O CAN-A Transmit PMBUSA_SDA 11 I/OD ADCSOCBO 13 O ADC Start of Conversion B for External ADC HIC_INT 15 O HIC Device interrupt to host GPIO33 0, 4, 8, 12 I/O General-Purpose Input Output 33 I2CA_SCL 1 I/OD SPIB_STE 3 I/O SPI-B Slave Transmit Enable (STE) OUTPUTXBAR4 5 O Output X-BAR Output 4 LINA_RX 6 I LIN-A Receive SD1_C2 7 I SDFM-1 Channel 2 Clock Input FSIRXA_CLK 9 I FSIRX-A Input Clock CANA_RX 10 I CAN-A Receive EQEP2_B 11 I eQEP-2 Input B ADCSOCAO 13 O ADC Start of Conversion A for External ADC SD1_C1 14 I SDFM-1 Channel 1 Clock Input HIC_D0 15 I/O HIC Data 0 GPIO34 99 64 53 2 49 38 40 32 40 32 32 25 I2C-A Open-Drain Bidirectional Data PMBus-A Open-Drain Bidirectional Data I2C-A Open-Drain Bidirectional Clock 0, 4, 8, 12 I/O General-Purpose Input Output 34 OUTPUTXBAR1 1 O Output X-BAR Output 1 PMBUSA_SDA 6 I/OD HIC_NBE1 13 I2CB_SDA 14 I/OD HIC_D9 15 I/O Copyright © 2023 Texas Instruments Incorporated 94 77 I PMBus-A Open-Drain Bidirectional Data HIC Byte enable 1 I2C-B Open-Drain Bidirectional Data HIC Data 9 Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 29 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-1. Pin Attributes (continued) SIGNAL NAME GPIO35 MUX POSITION 100 PZ 80 PN 64 PMQ 64 PM 48 PT PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O SCIA_RX 1 I I2CA_SDA 3 I/OD CANA_RX 5 I PMBUSA_SCL 6 I/OD LINA_RX 7 I LIN-A Receive I eQEP-1 Input A EQEP1_A 9 PMBUSA_CTL 10 EPWM5_B 63 48 39 39 31 General-Purpose Input Output 35 SCI-A Receive Data I2C-A Open-Drain Bidirectional Data CAN-A Receive PMBus-A Open-Drain Bidirectional Clock I/O PMBus-A Control Signal - Slave Input/Master Output 11 O ePWM-5 Output B SD2_C1 13 I SDFM-2 Channel 1 Clock Input HIC_NWE 14 I HIC Data Write enable from host 15 I JTAG Test Data Input (TDI) - TDI is the default mux selection for the pin. The internal pullup is disabled by default. The internal pullup should be enabled or an external pullup added on the board if this pin is used as JTAG TDI to avoid a floating input. TDI GPIO37 0, 4, 8, 12 I/O General-Purpose Input Output 37 OUTPUTXBAR2 1 O Output X-BAR Output 2 I2CA_SCL 3 I/OD SCIA_TX 5 O SCI-A Transmit Data CANA_TX 6 O CAN-A Transmit LINA_TX 7 O LIN-A Transmit EQEP1_B 9 I eQEP-1 Input B PMBUSA_ALERT 10 HIC_NRDY 14 TDO GPIO39 61 46 37 37 29 I/OD I2C-A Open-Drain Bidirectional Clock PMBus-A Open-Drain Bidirectional Alert Signal O HIC Ready from device to host 15 O JTAG Test Data Output (TDO) - TDO is the default mux selection for the pin. The internal pullup is disabled by default. The TDO function will be in a tristate condition when there is no JTAG activity, leaving this pin floating; the internal pullup should be enabled or an external pullup added on the board to avoid a floating GPIO input. General-Purpose Input Output 39 0, 4, 8, 12 I/O MCAN_RX 6 I CAN/CAN FD Receive FSIRXA_CLK 7 I FSIRX-A Input Clock EQEP2_INDEX 9 I/O eQEP-2 Index CLB_OUTPUTXBAR2 11 O CLB Output X-BAR Output 2 SYNCOUT 13 O External ePWM Synchronization Pulse EQEP1_INDEX 14 I/O eQEP-1 Index HIC_D7 15 I/O HIC Data 7 GPIO40 0, 4, 8, 12 I/O General-Purpose Input Output 40 SPIB_SIMO 1 I/O SPI-B Slave In, Master Out (SIMO) EPWM2_B 5 O ePWM-2 Output B PMBUSA_SDA 6 I/OD FSIRXA_D0 7 SCIB_TX 9 EQEP1_A 56 46 PMBus-A Open-Drain Bidirectional Data I FSIRX-A Primary Data Input O SCI-B Transmit Data 10 I eQEP-1 Input A LINB_TX 11 O LIN-B Transmit HIC_NBE1 14 I HIC Byte enable 1 HIC_D5 15 I/O 30 Submit Document Feedback 80 64 53 53 HIC Data 5 Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-1. Pin Attributes (continued) SIGNAL NAME GPIO41 MUX POSITION 100 PZ 80 PN 64 PMQ 64 PM 48 PT PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 41 EPWM2_A 5 O ePWM-2 Output A PMBUSA_SCL 6 I/OD FSIRXA_D1 7 I FSIRX-A Optional Additional Data Input SCIB_RX 9 I SCI-B Receive Data EQEP1_B 10 I eQEP-1 Input B 82 66 55 55 PMBus-A Open-Drain Bidirectional Clock LINB_RX 11 I LIN-B Receive HIC_A4 13 I HIC Address 4 SPIB_SOMI 14 I/O SPI-B Slave Out, Master In (SOMI) HIC_D12 15 I/O HIC Data 12 GPIO42 0, 4, 8, 12 I/O General-Purpose Input Output 42 LINA_RX 2 I LIN-A Receive OUTPUTXBAR5 3 O Output X-BAR Output 5 PMBUSA_CTL 5 I/O PMBus-A Control Signal - Slave Input/Master Output I2CA_SDA 6 EQEP1_STROBE 10 I/O eQEP-1 Strobe CLB_OUTPUTXBAR3 11 O CLB Output X-BAR Output 3 HIC_D2 14 I/O HIC Data 2 HIC_A6 15 I GPIO43 0, 4, 8, 12 I/O General-Purpose Input Output 43 OUTPUTXBAR6 3 O Output X-BAR Output 6 PMBUSA_ALERT 5, 9 I/OD PMBus-A Open-Drain Bidirectional Alert Signal I2CA_SCL 6 I/OD I2C-A Open-Drain Bidirectional Clock EQEP1_INDEX 10 57 54 I/OD I2C-A Open-Drain Bidirectional Data HIC Address 6 I/O eQEP-1 Index CLB_OUTPUTXBAR4 11 O CLB Output X-BAR Output 4 SD2_D3 13 I SDFM-2 Channel 3 Data Input HIC_D3 14 I/O HIC_A7 15 I GPIO44 0, 4, 8, 12 I/O General-Purpose Input Output 44 OUTPUTXBAR7 3 O Output X-BAR Output 7 EQEP1_A 5 I eQEP-1 Input A PMBUSA_SDA 6 I/OD FSITXA_CLK 7 O FSITX-A Output Clock PMBUSA_CTL 9 I/O PMBus-A Control Signal - Slave Input/Master Output CLB_OUTPUTXBAR3 10 O CLB Output X-BAR Output 3 FSIRXA_D0 11 I FSIRX-A Primary Data Input HIC_D7 13 I/O HIC Data 7 LINB_TX 14 O LIN-B Transmit HIC_D5 15 I/O HIC Data 5 GPIO45 0, 4, 8, 12 I/O General-Purpose Input Output 45 OUTPUTXBAR8 3 O Output X-BAR Output 8 FSITXA_D0 7 O FSITX-A Primary Data Output PMBUSA_ALERT 9 CLB_OUTPUTXBAR4 10 O CLB Output X-BAR Output 4 SD2_C3 13 I SDFM-2 Channel 3 Clock Input HIC_D6 15 I/O Copyright © 2023 Texas Instruments Incorporated 85 69 73 I/OD HIC Data 3 HIC Address 7 PMBus-A Open-Drain Bidirectional Data PMBus-A Open-Drain Bidirectional Alert Signal HIC Data 6 Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 31 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-1. Pin Attributes (continued) SIGNAL NAME MUX POSITION 100 PZ 80 PN 64 PMQ 64 PM 48 PT PIN TYPE DESCRIPTION GPIO46 0, 4, 8, 12 I/O General-Purpose Input Output 46 LINA_TX 3 O LIN-A Transmit MCAN_TX 5 O CAN/CAN FD Transmit FSITXA_D1 7 O FSITX-A Optional Additional Data Output PMBUSA_SDA 9 I/OD PMBus-A Open-Drain Bidirectional Data SD2_C4 13 I SDFM-2 Channel 4 Clock Input HIC_NWE 6 15 I HIC Data Write enable from host GPIO47 0, 4, 8, 12 I/O General-Purpose Input Output 47 LINA_RX 3 I LIN-A Receive MCAN_RX 5 I CAN/CAN FD Receive CLB_OUTPUTXBAR2 7 O CLB Output X-BAR Output 2 PMBUSA_SCL 9 SD2_D4 13 I SDFM-2 Channel 4 Data Input FSITXA_TDM_CLK 14 I FSITX-A Time Division Multiplexed Clock Input HIC_A6 15 I HIC Address 6 GPIO48 6 I/OD PMBus-A Open-Drain Bidirectional Clock 0, 4, 8, 12 I/O General-Purpose Input Output 48 OUTPUTXBAR3 1 O Output X-BAR Output 3 CANA_TX 3 O CAN-A Transmit SCIA_TX 6 O SCI-A Transmit Data SD1_D1 7 I SDFM-1 Channel 1 Data Input PMBUSA_SDA 9 I/OD HIC_A7 15 I GPIO49 0, 4, 8, 12 I/O General-Purpose Input Output 49 OUTPUTXBAR4 1 O Output X-BAR Output 4 CANA_RX 3 I CAN-A Receive SCIA_RX 6 I SCI-A Receive Data SD1_C1 7 I SDFM-1 Channel 1 Clock Input LINA_RX 9 I LIN-A Receive SD2_D1 13 I SDFM-2 Channel 1 Data Input FSITXA_D0 14 O FSITX-A Primary Data Output HIC_D2 15 I/O HIC Data 2 GPIO50 0, 4, 8, 12 I/O General-Purpose Input Output 50 EQEP1_A 1 I eQEP-1 Input A MCAN_TX 5 O CAN/CAN FD Transmit SPIB_SIMO 6 I/O SPI-B Slave In, Master Out (SIMO) SD1_D2 7 I2CB_SDA 9 I/OD SD2_D2 13 I SDFM-2 Channel 2 Data Input FSITXA_D1 14 O FSITX-A Optional Additional Data Output HIC_D3 15 I/O HIC Data 3 GPIO51 0, 4, 8, 12 I/O General-Purpose Input Output 51 EQEP1_B 1 I eQEP-1 Input B MCAN_RX 5 I CAN/CAN FD Receive SPIB_SOMI 6 I/O SD1_C2 7 I2CB_SCL 9 I/OD SD2_D3 13 I SDFM-2 Channel 3 Data Input FSITXA_CLK 14 O FSITX-A Output Clock HIC_D6 15 I/O HIC Data 6 32 Submit Document Feedback 7 8 9 10 I I PMBus-A Open-Drain Bidirectional Data HIC Address 7 SDFM-1 Channel 2 Data Input I2C-B Open-Drain Bidirectional Data SPI-B Slave Out, Master In (SOMI) SDFM-1 Channel 2 Clock Input I2C-B Open-Drain Bidirectional Clock Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-1. Pin Attributes (continued) SIGNAL NAME GPIO52 MUX POSITION 100 PZ 80 PN 64 PMQ 64 PM 48 PT PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 52 EQEP1_STROBE 1 I/O eQEP-1 Strobe CLB_OUTPUTXBAR5 5 O CLB Output X-BAR Output 5 SPIB_CLK 6 I/O SPI-B Clock SD1_D3 7 SYNCOUT I SDFM-1 Channel 3 Data Input 9 O External ePWM Synchronization Pulse SD2_D4 13 I SDFM-2 Channel 4 Data Input FSIRXA_D0 14 I FSIRX-A Primary Data Input HIC_NWE 15 I HIC Data Write enable from host 0, 4, 8, 12 I/O General-Purpose Input Output 53 EQEP1_INDEX 1 I/O eQEP-1 Index CLB_OUTPUTXBAR6 5 O CLB Output X-BAR Output 6 SPIB_STE 6 I/O SPI-B Slave Transmit Enable (STE) SD1_C3 7 ADCSOCAO GPIO53 11 I SDFM-1 Channel 3 Clock Input 9 O ADC Start of Conversion A for External ADC CANA_RX 10 I CAN-A Receive SD1_C1 13 I SDFM-1 Channel 1 Clock Input FSIRXA_D1 14 I FSIRX-A Optional Additional Data Input 0, 4, 8, 12 I/O General-Purpose Input Output 54 SPIA_SIMO 1 I/O SPI-A Slave In, Master Out (SIMO) EQEP2_A 5 I eQEP-2 Input A OUTPUTXBAR2 6 O Output X-BAR Output 2 SD1_D4 7 I SDFM-1 Channel 4 Data Input ADCSOCBO 9 O ADC Start of Conversion B for External ADC LINB_TX 10 O LIN-B Transmit SD1_C2 13 I SDFM-1 Channel 2 Clock Input FSIRXA_CLK 14 I FSIRX-A Input Clock FSITXA_TDM_D1 15 I FSITX-A Time Division Multiplexed Additional Data Input GPIO54 GPIO55 12 13 0, 4, 8, 12 I/O General-Purpose Input Output 55 SPIA_SOMI 1 I/O SPI-A Slave Out, Master In (SOMI) EQEP2_B 5 I eQEP-2 Input B OUTPUTXBAR3 6 O Output X-BAR Output 3 SD1_C4 7 I SDFM-1 Channel 4 Clock Input ERRORSTS 9 O Error Status Output. This signal requires an external pulldown. LINB_RX 10 I LIN-B Receive SD1_C3 13 I SDFM-1 Channel 3 Clock Input HIC_A0 15 I HIC Address 0 Copyright © 2023 Texas Instruments Incorporated 43 Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 33 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-1. Pin Attributes (continued) SIGNAL NAME GPIO56 MUX POSITION 100 PZ 80 PN 64 PMQ 64 PM 48 PT PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 56 SPIA_CLK 1 I/O SPI-A Clock CLB_OUTPUTXBAR7 2 O CLB Output X-BAR Output 7 MCAN_TX 3 O CAN/CAN FD Transmit EQEP2_STROBE 5 I/O eQEP-2 Strobe SCIB_TX 6 O SCI-B Transmit Data SD2_D1 7 I SDFM-2 Channel 1 Data Input SPIB_SIMO 9 I/O I2CA_SDA 10 I/OD EQEP1_A 11 I eQEP-1 Input A SD1_C4 13 I SDFM-1 Channel 4 Clock Input FSIRXA_D1 14 I FSIRX-A Optional Additional Data Input HIC_D6 15 I/O HIC Data 6 GPIO57 0, 4, 8, 12 I/O General-Purpose Input Output 57 SPIA_STE 1 I/O SPI-A Slave Transmit Enable (STE) CLB_OUTPUTXBAR8 2 O CLB Output X-BAR Output 8 MCAN_RX 3 I CAN/CAN FD Receive EQEP2_INDEX 5 I/O SCIB_RX 6 I SCI-B Receive Data SD2_C1 7 I SDFM-2 Channel 1 Clock Input SPIB_SOMI 9 I/O I2CA_SCL 10 I/OD EQEP1_B 11 I eQEP-1 Input B FSIRXA_CLK 14 I FSIRX-A Input Clock HIC_D4 15 I/O HIC Data 4 GPIO58 65 66 SPI-B Slave In, Master Out (SIMO) I2C-A Open-Drain Bidirectional Data eQEP-2 Index SPI-B Slave Out, Master In (SOMI) I2C-A Open-Drain Bidirectional Clock 0, 4, 8, 12 I/O General-Purpose Input Output 58 OUTPUTXBAR1 5 O Output X-BAR Output 1 SPIB_CLK 6 I/O SPI-B Clock SD2_D2 7 I SDFM-2 Channel 2 Data Input LINA_TX 9 O LIN-A Transmit CANA_TX 10 O CAN-A Transmit EQEP1_STROBE 11 I/O eQEP-1 Strobe SD2_C2 13 I SDFM-2 Channel 2 Clock Input FSIRXA_D0 14 I FSIRX-A Primary Data Input HIC_NRDY 67 15 O HIC Ready from device to host 0, 4, 8, 12 I/O General-Purpose Input Output 59 OUTPUTXBAR2 5 O Output X-BAR Output 2 SPIB_STE 6 I/O SPI-B Slave Transmit Enable (STE) SD2_C2 7 I SDFM-2 Channel 2 Clock Input LINA_RX 9 I LIN-A Receive CANA_RX 10 I CAN-A Receive EQEP1_INDEX 11 I/O SD2_C3 13 I SDFM-2 Channel 3 Clock Input FSITXA_TDM_D1 14 I FSITX-A Time Division Multiplexed Additional Data Input GPIO59 34 Submit Document Feedback 92 eQEP-1 Index Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-1. Pin Attributes (continued) SIGNAL NAME GPIO60 MUX POSITION 100 PZ 80 PN 64 PMQ 64 PM 48 PT PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 60 MCAN_TX 3 O CAN/CAN FD Transmit OUTPUTXBAR3 5 O Output X-BAR Output 3 SPIB_SIMO 6 I/O SPI-B Slave In, Master Out (SIMO) SD2_D3 7 I SDFM-2 Channel 3 Data Input SD2_C4 13 I SDFM-2 Channel 4 Clock Input HIC Address 0 44 HIC_A0 15 I GPIO61 0, 4, 8, 12 I/O MCAN_RX 3 I CAN/CAN FD Receive OUTPUTXBAR4 5 O Output X-BAR Output 4 SPIB_SOMI 6 I/O SPI-B Slave Out, Master In (SOMI) SD2_C3 7 I SDFM-2 Channel 3 Clock Input CANA_RX 14 I CAN-A Receive I JTAG test clock with internal pullup. 91 General-Purpose Input Output 61 TEST, JTAG, AND RESET TCK 60 TMS 62 XRSn 2 45 47 5 36 38 3 36 38 3 28 30 3 I/O JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK. This device does not have a TRSTn pin. An external pullup resistor (recommended 2.2 kΩ) on the TMS pin to VDDIO should be placed on the board to keep JTAG in reset during normal operation. I/OD Device Reset (in) and Watchdog Reset (out). During a power-on condition, this pin is driven low by the device. An external circuit may also drive this pin to assert a device reset. This pin is also driven low by the MCU when a watchdog reset occurs. During watchdog reset, the XRSn pin is driven low for the watchdog reset duration of 512 OSCCLK cycles. A resistor between 2.2 kΩ and 10 kΩ should be placed between XRSn and VDDIO. If a capacitor is placed between XRSn and VSS for noise filtering, it should be 100 nF or smaller. These values will allow the watchdog to properly drive the XRSn pin to VOL within 512 OSCCLK cycles when the watchdog reset is asserted. This pin is an open-drain output with an internal pullup. If this pin is driven by an external device, it should be done using an open-drain device. POWER AND GROUND 4, 46, 8, 31, 71, 87 53, 71 VDD VDDA VDDIO VREGENZ 34 26 3, 47, 7, 32, 70, 88 52, 72 73 VSSA Copyright © 2023 Texas Instruments Incorporated 33 22 28, 43, 60 4, 27, 23, 36, 44, 59 45 22 25 5, 26, 45, 58 21 1.2-V Digital Logic Power Pins. See the Power Management Module (PMM) section for usage details. 3.3-V Analog Power Pins. Place a minimum 2.2-µF decoupling capacitor on each pin. See the Power Management Module (PMM) section for usage details. 18 28, 43, 24, 35, 60 46 46 5, 45, 9, 30, 72, 86 55, 70 VSS 4, 27, 44, 59 3.3-V Digital I/O Power Pins. See the Power Management Module (PMM) section for usage details. I 5, 26, 22, 37, 45, 58 44 21 17 Internal voltage regulator enable with internal pulldown. Tie low to VSS to enable internal VREG. Tie high to VDDIO to use an external supply. See the Power Management Module (PMM) section for usage details. Digital Ground Analog Ground Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 35 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 5.3 Signal Descriptions 5.3.1 Analog Signals Table 5-2. Analog Signals 36 SIGNAL NAME PIN TYPE A0 I A1 A2 DESCRIPTION 100 PZ 80 PN 64 PMQ 64 PM 48 PT ADC-A Input 0 23 19 15 15 11 I ADC-A Input 1 22 18 14 14 10 I ADC-A Input 2 17 13 9 9 6 A3 I ADC-A Input 3 18 12 8 8 5 A4 I ADC-A Input 4 36 27 23 23 19 A5 I ADC-A Input 5 35 17 13 13 9 A6 I ADC-A Input 6 14 10 6 6 4 A7 I ADC-A Input 7 31 23 19 19 15 A8 I ADC-A Input 8 37 24 20 20 16 A9 I ADC-A Input 9 38 28 24 24 20 A10 I ADC-A Input 10 40 29 25 25 21 A11 I ADC-A Input 11 20 16 12 12 8 A12 I ADC-A Input 12 28 22 18 18 14 A14 I ADC-A Input 14 19 15 11 11 A15 I ADC-A Input 15 14 10 10 7 AIO224 I Analog Pin Used For Digital Input 224 17 13 9 9 6 AIO225 I Analog Pin Used For Digital Input 225 36 27 23 23 19 AIO226 I Analog Pin Used For Digital Input 226 15 11 7 7 4 AIO227 I Analog Pin Used For Digital Input 227 38 28 24 24 20 AIO228 I Analog Pin Used For Digital Input 228 14 10 6 6 4 AIO229 I Analog Pin Used For Digital Input 229 18 AIO230 I Analog Pin Used For Digital Input 230 40 29 25 25 21 AIO231 I Analog Pin Used For Digital Input 231 23 19 15 15 11 AIO232 I Analog Pin Used For Digital Input 232 22 18 14 14 10 AIO233 I Analog Pin Used For Digital Input 233 14 10 10 7 AIO236 I Analog Pin Used For Digital Input 236 39 28 24 24 20 AIO237 I Analog Pin Used For Digital Input 237 20 16 12 12 8 AIO238 I Analog Pin Used For Digital Input 238 28 22 18 18 14 AIO239 I Analog Pin Used For Digital Input 239 19 15 11 11 AIO240 I Analog Pin Used For Digital Input 240 37 AIO241 I Analog Pin Used For Digital Input 241 24 20 20 16 AIO242 I Analog Pin Used For Digital Input 242 16 12 8 8 5 AIO244 I Analog Pin Used For Digital Input 244 21 17 13 13 9 AIO245 I Analog Pin Used For Digital Input 245 31 23 19 19 15 AIO247 I Analog Pin Used For Digital Input 247 42 AIO248 I Analog Pin Used For Digital Input 248 29 22 18 18 14 AIO249 I Analog Pin Used For Digital Input 249 35 AIO251 I Analog Pin Used For Digital Input 251 30 AIO252 I Analog Pin Used For Digital Input 252 32 AIO253 I Analog Pin Used For Digital Input 253 41 B0 I ADC-B Input 0 41 24 20 20 16 B1 I ADC-B Input 1 40 29 25 25 21 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-2. Analog Signals (continued) SIGNAL NAME PIN TYPE B2 I ADC-B Input 2 B3 I ADC-B Input 3 B4 I B5 I B6 B7 DESCRIPTION 80 PN 64 PMQ 64 PM 48 PT 15 11 7 7 4 16 12 8 8 5 ADC-B Input 4 39 28 24 24 20 ADC-B Input 5 32, 48 33 I ADC-B Input 6 17 13 9 9 6 I ADC-B Input 7 22 18 14 14 10 B8 I ADC-B Input 8 36 27 23 23 19 B9 I ADC-B Input 9 18 14 10 10 7 B10 I ADC-B Input 10 20 16 12 12 8 B11 I ADC-B Input 11 30, 49 34 B12 I ADC-B Input 12 21 17 13 13 9 B14 I ADC-B Input 14 19 15 11 11 B15 I ADC-B Input 15 23 19 15 15 11 C0 I ADC-C Input 0 20 16 12 12 8 C1 I ADC-C Input 1 29 22 18 18 14 C2 I ADC-C Input 2 21 17 13 13 9 C3 I ADC-C Input 3 31 23 19 19 15 C4 I ADC-C Input 4 19 15 11 11 C5 I ADC-C Input 5 28 12 8 8 5 C6 I ADC-C Input 6 15 11 7 7 4 C7 I ADC-C Input 7 18 14 10 10 7 C8 I ADC-C Input 8 39 28 24 24 20 C9 I ADC-C Input 9 17 13 9 9 6 C10 I ADC-C Input 10 40 29 25 25 21 C11 I ADC-C Input 11 41 24 20 20 16 C14 I ADC-C Input 14 42 27 23 23 19 C15 I ADC-C Input 15 23 19 15 15 11 CMP1_HN0 I CMPSS-1 High Comparator Negative Input 0 14 10 10 7 CMP1_HN1 I CMPSS-1 High Comparator Negative Input 1 20 16 12 12 8 CMP1_HP0 I CMPSS-1 High Comparator Positive Input 0 17 13 9 9 6 CMP1_HP1 I CMPSS-1 High Comparator Positive Input 1 20 16 12 12 8 CMP1_HP2 I CMPSS-1 High Comparator Positive Input 2 14 10 6 6 4 CMP1_HP3 I CMPSS-1 High Comparator Positive Input 3 14 10 10 7 CMP1_HP4 I CMPSS-1 High Comparator Positive Input 4 22 18 14 14 10 CMP1_HP5 I CMPSS-1 High Comparator Positive Input 5 32, 48 33 CMP1_LN0 I CMPSS-1 Low Comparator Negative Input 0 14 10 10 7 CMP1_LN1 I CMPSS-1 Low Comparator Negative Input 1 16 12 12 8 Copyright © 2023 Texas Instruments Incorporated 100 PZ 20 Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 37 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-2. Analog Signals (continued) 38 SIGNAL NAME PIN TYPE CMP1_LP0 I CMP1_LP1 DESCRIPTION 100 PZ 80 PN 64 PMQ 64 PM 48 PT CMPSS-1 Low Comparator Positive Input 0 17 13 9 9 6 I CMPSS-1 Low Comparator Positive Input 1 20 16 12 12 8 CMP1_LP2 I CMPSS-1 Low Comparator Positive Input 2 14 10 6 6 4 CMP1_LP3 I CMPSS-1 Low Comparator Positive Input 3 14 10 10 7 CMP1_LP4 I CMPSS-1 Low Comparator Positive Input 4 22 18 14 14 10 CMP1_LP5 I CMPSS-1 Low Comparator Positive Input 5 32, 48 33 CMP2_HN0 I CMPSS-2 High Comparator Negative Input 0 40 29 25 25 21 CMP2_HN1 I CMPSS-2 High Comparator Negative Input 1 28 22 18 18 14 CMP2_HP0 I CMPSS-2 High Comparator Positive Input 0 36 27 23 23 19 CMP2_HP1 I CMPSS-2 High Comparator Positive Input 1 28 22 18 18 14 CMP2_HP2 I CMPSS-2 High Comparator Positive Input 2 38 28 24 24 20 CMP2_HP3 I CMPSS-2 High Comparator Positive Input 3 40 29 25 25 21 CMP2_HP4 I CMPSS-2 High Comparator Positive Input 4 41 24 20 20 16 CMP2_HP5 I CMPSS-2 High Comparator Positive Input 5 35 17 13 13 9 CMP2_LN0 I CMPSS-2 Low Comparator Negative Input 0 40 29 25 25 21 CMP2_LN1 I CMPSS-2 Low Comparator Negative Input 1 28 22 18 18 14 CMP2_LP0 I CMPSS-2 Low Comparator Positive Input 0 36 27 23 23 19 CMP2_LP1 I CMPSS-2 Low Comparator Positive Input 1 28 22 18 18 14 CMP2_LP2 I CMPSS-2 Low Comparator Positive Input 2 38 28 24 24 20 CMP2_LP3 I CMPSS-2 Low Comparator Positive Input 3 40 29 25 25 21 CMP2_LP4 I CMPSS-2 Low Comparator Positive Input 4 41 24 20 20 16 CMP2_LP5 I CMPSS-2 Low Comparator Positive Input 5 35 17 13 13 9 CMP3_HN0 I CMPSS-3 High Comparator Negative Input 0 16 12 8 8 5 CMP3_HN1 I CMPSS-3 High Comparator Negative Input 1 21 17 13 13 9 CMP3_HP0 I CMPSS-3 High Comparator Positive Input 0 15 11 7 7 4 CMP3_HP1 I CMPSS-3 High Comparator Positive Input 1 21 17 13 13 9 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-2. Analog Signals (continued) SIGNAL NAME PIN TYPE CMP3_HP2 I CMP3_HP3 DESCRIPTION 100 PZ 80 PN 64 PMQ 64 PM 48 PT CMPSS-3 High Comparator Positive Input 2 23 19 15 15 11 I CMPSS-3 High Comparator Positive Input 3 16 12 8 8 5 CMP3_HP4 I CMPSS-3 High Comparator Positive Input 4 19 15 11 11 CMP3_HP5 I CMPSS-3 High Comparator Positive Input 5 18 12 8 8 5 CMP3_LN0 I CMPSS-3 Low Comparator Negative Input 0 16 12 8 8 5 CMP3_LN1 I CMPSS-3 Low Comparator Negative Input 1 21 17 13 13 9 CMP3_LP0 I CMPSS-3 Low Comparator Positive Input 0 15 11 7 7 4 CMP3_LP1 I CMPSS-3 Low Comparator Positive Input 1 21 17 13 13 9 CMP3_LP2 I CMPSS-3 Low Comparator Positive Input 2 23 19 15 15 11 CMP3_LP3 I CMPSS-3 Low Comparator Positive Input 3 16 12 8 8 5 CMP3_LP4 I CMPSS-3 Low Comparator Positive Input 4 19 15 11 11 CMP3_LP5 I CMPSS-3 Low Comparator Positive Input 5 18 12 8 8 5 CMP4_HN0 I CMPSS-4 High Comparator Negative Input 0 42 27 23 23 19 CMP4_HN1 I CMPSS-4 High Comparator Negative Input 1 31 23 19 19 15 CMP4_HP0 I CMPSS-4 High Comparator Positive Input 0 39 28 24 24 20 CMP4_HP1 I CMPSS-4 High Comparator Positive Input 1 31 23 19 19 15 CMP4_HP2 I CMPSS-4 High Comparator Positive Input 2 29 22 18 18 14 CMP4_HP3 I CMPSS-4 High Comparator Positive Input 3 42 27 23 23 19 CMP4_HP4 I CMPSS-4 High Comparator Positive Input 4 37 24 20 20 16 CMP4_HP5 I CMPSS-4 High Comparator Positive Input 5 30, 49 34 CMP4_LN0 I CMPSS-4 Low Comparator Negative Input 0 42 27 23 23 19 CMP4_LN1 I CMPSS-4 Low Comparator Negative Input 1 31 23 19 19 15 CMP4_LP0 I CMPSS-4 Low Comparator Positive Input 0 39 28 24 24 20 CMP4_LP1 I CMPSS-4 Low Comparator Positive Input 1 31 23 19 19 15 CMP4_LP2 I CMPSS-4 Low Comparator Positive Input 2 29 22 18 18 14 CMP4_LP3 I CMPSS-4 Low Comparator Positive Input 3 42 27 23 23 19 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 39 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-2. Analog Signals (continued) 40 SIGNAL NAME PIN TYPE CMP4_LP4 I CMP4_LP5 DESCRIPTION 100 PZ 80 PN 64 PMQ 64 PM 48 PT CMPSS-4 Low Comparator Positive Input 4 37 24 20 20 16 I CMPSS-4 Low Comparator Positive Input 5 30, 49 34 DACA_OUT O Buffered DAC-A Output. 23 19 15 15 11 DACB_OUT O Buffered DAC-B Output. 22 18 14 14 10 VDAC I Optional external reference voltage for on-chip DACs. 16 12 8 8 5 VREFHI I ADC High Reference. In external reference mode, externally drive the high reference voltage onto this pin. In internal reference mode, a voltage is driven onto this pin by the device. In either mode, place at least a 2.2µF capacitor on this pin. This capacitor should be placed as close to the device as possible between the VREFHI and VREFLO pins. 24, 25 20 16 16 12 VREFLO I ADC Low Reference 26, 27 21 17 17 13 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 5.3.2 Digital Signals Table 5-3. Digital Signals SIGNAL NAME PIN TYPE GPIO 100 PZ 80 PN 64 PMQ 64 PM 48 PT ADCSOCAO O ADC Start of Conversion A for External ADC 8, 33, 53 12, 53, 74 38, 58 32, 47 32, 47 25 ADCSOCBO O ADC Start of Conversion B for External ADC 10, 32, 54 13, 64, 93 49, 76 40, 63 40, 63 32 AUXCLKIN I Auxiliary Clock Input 29 100 3 1 1 1 DESCRIPTION CANA_RX I CAN-A Receive 3, 5, 12, 18, 30, 8, 12, 51, 53, 63, 33, 35, 49, 53, 59, 68, 76, 89, 91, 92, 61 98 1, 36, 38, 48, 50, 60, 74 30, 32, 39, 41, 49, 61 30, 32, 39, 41, 49, 61 25, 31, 33, 39, 47 CANA_TX O CAN-A Transmit 2, 4, 13, 17, 19, 31, 32, 37, 48, 58 7, 50, 55, 61, 64, 67, 69, 75, 77, 99 2, 35, 40, 46, 49, 51, 59, 61 29, 34, 37, 40, 42, 48, 50 29, 34, 37, 40, 42, 48, 50 29, 32, 34, 38, 40 CLB_OUTPUTXBAR1 O CLB Output X-BAR Output 1 19, 22 69, 83 51, 67 42, 56 42, 56 34 CLB_OUTPUTXBAR2 O CLB Output X-BAR Output 2 7, 39, 47 6, 84 56, 68 57 46, 57 43 CLB_OUTPUTXBAR3 O CLB Output X-BAR Output 3 23, 42, 44 81, 85 57, 65, 69 54 54 CLB_OUTPUTXBAR4 O CLB Output X-BAR Output 4 10, 43, 45 93 54, 73, 76 63 63 CLB_OUTPUTXBAR5 O CLB Output X-BAR Output 5 5, 8, 52 11, 74, 89 58, 74 47, 61 47, 61 47 CLB_OUTPUTXBAR6 O CLB Output X-BAR Output 6 4, 15, 53 12, 75, 95 59, 78 48 48 38 CLB_OUTPUTXBAR7 O CLB Output X-BAR Output 7 1, 14, 56 65, 78, 96 62, 79 51 51 41 CLB_OUTPUTXBAR8 O CLB Output X-BAR Output 8 0, 6, 57 66, 79, 97 63, 80 52, 64 52, 64 42, 48 EPWM1_A O ePWM-1 Output A 0, 30 79, 98 1, 63 52 52 42 EPWM1_B O ePWM-1 Output B 1, 31 78, 99 2, 62 51 51 41 EPWM2_A O ePWM-2 Output A 2, 41 77, 82 61, 66 50, 55 50, 55 40 EPWM2_B O ePWM-2 Output B 3, 40 76, 80 60, 64 49, 53 49, 53 39 EPWM3_A O ePWM-3 Output A 4, 14 75, 96 59, 79 48 48 38 EPWM3_B O ePWM-3 Output B 5, 15 89, 95 74, 78 61 61 47 EPWM4_A O ePWM-4 Output A 6, 22 83, 97 67, 80 56, 64 56, 64 48 EPWM4_B O ePWM-4 Output B 7, 23 81, 84 65, 68 54, 57 54, 57 43 EPWM5_A O ePWM-5 Output A 8, 16 54, 74 39, 58 33, 47 33, 47 26 EPWM5_B O ePWM-5 Output B 9, 17, 35 55, 63, 90 40, 48, 75 34, 39, 62 34, 39, 62 31 EPWM6_A O ePWM-6 Output A 10, 18 68, 93 50, 76 41, 63 41, 63 33 EPWM6_B O ePWM-6 Output B 11, 19 52, 69 37, 51 31, 42 31, 42 34 EPWM7_A O ePWM-7 Output A 12, 28 1, 51 4, 36 2, 30 2, 30 2 EPWM7_B O ePWM-7 Output B 13, 29 50, 100 3, 35 1, 29 1, 29 1 EPWM8_A O ePWM-8 Output A 14, 24 56, 96 41, 79 35 35 27 EPWM8_B O ePWM-8 Output B 15, 32 64, 95 49, 78 40 40 32 1, 9, 48, 57, 63, 65, 80, 85, 93, 97 4, 33, 42, 48, 64, 69, 76, 80 2, 39, 53, 63, 64 2, 39, 53, 63, 64 2, 31, 48 EQEP1_A I eQEP-1 Input A 6, 10, 20, 25, 28, 35, 40, 44, 50, 56 EQEP1_B I eQEP-1 Input B 7, 11, 21, 29, 37, 41, 51, 57 10, 49, 52, 61, 66, 82, 84, 100 3, 34, 37, 46, 66, 68 1, 31, 37, 55, 57 1, 31, 37, 55, 57 1, 29, 43 EQEP1_INDEX I/O eQEP-1 Index 0, 9, 13, 17, 23, 31, 39, 43, 53, 59 12, 50, 55, 79, 81, 90, 92, 99 2, 35, 40, 54, 56, 63, 65, 75 29, 34, 52, 54, 62 29, 34, 46, 52, 54, 62 42 8, 12, 16, 22, 30, 42, 52, 58 11, 51, 54, 67, 74, 83, 98 1, 36, 39, 57, 58, 67 30, 33, 47, 56 30, 33, 47, 56 26 13, 52, 56, 68, 96 37, 41, 50, 79 31, 35, 41 31, 35, 41 27, 33 32, 33, 42 32, 33, 42 25, 26, 34 EQEP1_STROBE I/O eQEP-1 Strobe EQEP2_A I eQEP-2 Input A 11, 14, 18, 24, 54 eQEP-2 Input B 15, 16, 19, 25, 33, 43, 53, 54, 57, 69, 38, 39, 42, 51, 55 95 78 EQEP2_B I EQEP2_INDEX I/O eQEP-2 Index 26, 29, 39, 57 58, 66, 100 3, 43, 56 1 1, 46 1 EQEP2_STROBE I/O eQEP-2 Strobe 4, 27, 28, 56 1, 59, 65, 75 4, 44, 59 2, 48 2, 48 2, 38 ERRORSTS O Error Status Output. This signal requires an external pulldown. 24, 28, 29, 55 1, 43, 56, 100 3, 4, 41 1, 2, 35 1, 2, 35 1, 2, 27 FSIRXA_CLK I FSIRX-A Input Clock 0, 4, 13, 30, 33, 39, 54, 57 13, 50, 53, 66, 75, 79, 98 1, 35, 38, 56, 59, 63 29, 32, 48, 52 29, 32, 46, 48, 52 25, 38, 42 FSIRXA_D0 I FSIRX-A Primary Data Input 3, 12, 32, 40, 44, 52, 58 11, 51, 64, 67, 76, 80, 85 36, 49, 60, 64, 69 30, 40, 49, 53 30, 40, 49, 53 32, 39 12, 52, 65, 77, 82, 99 2, 37, 61, 66 31, 50, 55 31, 50, 55 40 FSIRXA_D1 I FSIRX-A Optional Additional Data Input 2, 11, 31, 41, 53, 56 FSITXA_CLK O FSITX-A Output Clock 7, 10, 27, 44, 51 10, 59, 84, 85, 93 44, 68, 69, 76 57, 63 57, 63 43 FSITXA_D0 O FSITX-A Primary Data Output 6, 9, 26, 45, 49 8, 58, 90, 97 43, 73, 75, 80 62, 64 62, 64 48 9, 57, 74, 89, 97 6, 42, 58, 74, 80 47, 61, 64 47, 61, 64 47, 48 FSITXA_D1 O FSITX-A Optional Additional Data Output Copyright © 2023 Texas Instruments Incorporated 5, 6, 8, 25, 46, 50 Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 41 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-3. Digital Signals (continued) 42 SIGNAL NAME PIN TYPE FSITXA_TDM_CLK I FSITXA_TDM_D0 I FSITXA_TDM_D1 I FSITX-A Time Division Multiplexed Additional Data Input GPIO0 I/O GPIO1 I/O GPIO2 DESCRIPTION GPIO 100 PZ 80 PN 64 PMQ 64 PM 48 PT FSITX-A Time Division Multiplexed Clock Input 8, 18, 47 6, 68, 74 50, 58 41, 47 41, 47 33 FSITX-A Time Division Multiplexed Data Input 10, 19 69, 93 51, 76 42, 63 42, 63 34 1, 54, 59 13, 78, 92 62 51 51 41 General-Purpose Input Output 0 0 79 63 52 52 42 General-Purpose Input Output 1 1 78 62 51 51 41 I/O General-Purpose Input Output 2 2 77 61 50 50 40 GPIO3 I/O General-Purpose Input Output 3 3 76 60 49 49 39 GPIO4 I/O General-Purpose Input Output 4 4 75 59 48 48 38 GPIO5 I/O General-Purpose Input Output 5 5 89 74 61 61 47 GPIO6 I/O General-Purpose Input Output 6 6 97 80 64 64 48 GPIO7 I/O General-Purpose Input Output 7 7 84 68 57 57 43 GPIO8 I/O General-Purpose Input Output 8 8 74 58 47 47 GPIO9 I/O General-Purpose Input Output 9 9 90 75 62 62 GPIO10 I/O General-Purpose Input Output 10 10 93 76 63 63 GPIO11 I/O General-Purpose Input Output 11 11 52 37 31 31 GPIO12 I/O General-Purpose Input Output 12 12 51 36 30 30 GPIO13 I/O General-Purpose Input Output 13 13 50 35 29 29 GPIO14 I/O General-Purpose Input Output 14 14 96 79 GPIO15 I/O General-Purpose Input Output 15 15 95 78 GPIO16 I/O General-Purpose Input Output 16 16 54 39 33 33 GPIO17 I/O General-Purpose Input Output 17 17 55 40 34 34 GPIO18 I/O General-Purpose Input Output 18 18 68 50 41 41 33 GPIO19 I/O General-Purpose Input Output 19 19 69 51 42 42 34 GPIO20 I/O General-Purpose Input Output 20 20 48 33 GPIO21 I/O General-Purpose Input Output 21 21 49 34 GPIO22 I/O General-Purpose Input Output 22 22 83 67 56 56 GPIO23 I/O General-Purpose Input Output 23 23 81 65 54 54 GPIO24 I/O General-Purpose Input Output 24 24 56 41 35 35 27 GPIO25 I/O General-Purpose Input Output 25 25 57 42 GPIO26 I/O General-Purpose Input Output 26 26 58 43 GPIO27 I/O General-Purpose Input Output 27 27 59 44 GPIO28 I/O General-Purpose Input Output 28 28 1 4 2 2 2 GPIO29 I/O General-Purpose Input Output 29 29 100 3 1 1 1 GPIO30 I/O General-Purpose Input Output 30 30 98 1 GPIO31 I/O General-Purpose Input Output 31 31 99 2 GPIO32 I/O General-Purpose Input Output 32 32 64 49 40 40 32 GPIO33 I/O General-Purpose Input Output 33 33 53 38 32 32 25 GPIO34 I/O General-Purpose Input Output 34 34 94 77 GPIO35 I/O General-Purpose Input Output 35 35 63 48 39 39 31 GPIO37 I/O General-Purpose Input Output 37 37 61 46 37 37 29 GPIO39 I/O General-Purpose Input Output 39 39 GPIO40 I/O General-Purpose Input Output 40 40 80 64 53 53 GPIO41 I/O General-Purpose Input Output 41 41 82 66 55 55 GPIO42 I/O General-Purpose Input Output 42 42 GPIO43 I/O General-Purpose Input Output 43 43 GPIO44 I/O General-Purpose Input Output 44 44 GPIO45 I/O General-Purpose Input Output 45 45 GPIO46 I/O General-Purpose Input Output 46 46 GPIO47 I/O General-Purpose Input Output 47 47 6 GPIO48 I/O General-Purpose Input Output 48 48 7 GPIO49 I/O General-Purpose Input Output 49 49 8 GPIO50 I/O General-Purpose Input Output 50 50 9 GPIO51 I/O General-Purpose Input Output 51 51 10 GPIO52 I/O General-Purpose Input Output 52 52 11 Submit Document Feedback 56 26 46 57 54 85 69 73 6 Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-3. Digital Signals (continued) SIGNAL NAME PIN TYPE GPIO53 I/O GPIO54 I/O GPIO55 DESCRIPTION GPIO 100 PZ 80 PN 64 PMQ 64 PM General-Purpose Input Output 53 53 12 General-Purpose Input Output 54 54 13 I/O General-Purpose Input Output 55 55 43 GPIO56 I/O General-Purpose Input Output 56 56 65 GPIO57 I/O General-Purpose Input Output 57 57 66 GPIO58 I/O General-Purpose Input Output 58 58 67 GPIO59 I/O General-Purpose Input Output 59 59 92 GPIO60 I/O General-Purpose Input Output 60 60 44 GPIO61 I/O General-Purpose Input Output 61 61 91 HIC_A0 I HIC Address 0 8, 55, 60 HIC_A1 I HIC Address 1 HIC_A2 I HIC_A3 I HIC_A4 48 PT 14, 43, 44, 74 10, 58 6, 47 6, 47 4 2, 26 15, 58, 77 11, 43, 61 7, 50 7, 50 4, 40 HIC Address 2 1 16, 78 12, 62 8, 51 8, 51 5, 41 HIC Address 3 23 17, 81 13, 65 9, 54 9, 54 6 I HIC Address 4 27, 41 59, 82 14, 44, 66 10, 55 10, 55 7 HIC_A5 I HIC Address 5 22 19, 83 15, 67 11, 56 11, 56 HIC_A6 I HIC Address 6 7, 42, 47 6, 20, 84 16, 57, 68 12, 57 12, 57 8, 43 HIC_A7 I HIC Address 7 5, 43, 48 7, 21, 89 17, 54, 74 13, 61 13, 61 9, 47 HIC_BASESEL0 I HIC Base address range select 0 9, 25 22, 57, 90 18, 42, 75 14, 62 14, 62 10 HIC_BASESEL1 I HIC Base address range select 1 0 23, 79 19, 63 15, 52 15, 52 11, 42 HIC_BASESEL2 I HIC Base address range select 2 4 40, 75 29, 59 25, 48 25, 48 21, 38 HIC_D0 I/O HIC Data 0 26, 33 53, 58 38, 43 32 32 25 HIC_D1 I/O HIC Data 1 16, 27 54, 59 39, 44 33 33 26 HIC_D2 I/O HIC Data 2 17, 42, 49 8, 55 40, 57 34 34 HIC_D3 I/O HIC Data 3 24, 43, 50 9, 56 41, 54 35 35 27 HIC_D4 I/O HIC Data 4 3, 5, 57 66, 76, 89 60, 74 49, 61 49, 61 39, 47 HIC_D5 I/O HIC Data 5 13, 40, 44 50, 80, 85 35, 64, 69 29, 53 29, 53 HIC_D6 I/O HIC Data 6 11, 45, 51, 56 10, 52, 65 37, 73 31 31 HIC_D7 I/O HIC Data 7 0, 39, 44 79, 85 56, 63, 69 52 46, 52 HIC_D8 I/O HIC Data 8 8, 30 74, 98 1, 58 47 47 42 HIC_D9 I/O HIC Data 9 2, 34 77, 94 61, 77 50 50 40 HIC_D10 I/O HIC Data 10 1, 31 78, 99 2, 62 51 51 41 HIC_D11 I/O HIC Data 11 13, 23 50, 81 35, 65 29, 54 29, 54 HIC_D12 I/O HIC Data 12 15, 41 82, 95 66, 78 55 55 HIC_D13 I/O HIC Data 13 12, 22 51, 83 36, 67 30, 56 30, 56 HIC_D14 I/O HIC Data 14 6, 7 84, 97 68, 80 57, 64 57, 64 HIC_D15 I/O HIC Data 15 5, 14 89, 96 74, 79 61 61 47 HIC_INT O HIC Device interrupt to host 12, 18, 32 51, 64, 68 36, 49, 50 30, 40, 41 30, 40, 41 32, 33 HIC_NBE0 I HIC Byte enable 0 11, 19 38, 52, 69 28, 37, 51 24, 31, 42 24, 31, 42 20, 34 HIC_NBE1 I HIC Byte enable 1 6, 34, 40 37, 80, 94, 97 24, 64, 77, 80 20, 53, 64 20, 53, 64 16, 48 HIC_NCS I HIC Chip select input 29 28, 100 3, 22 1, 18 1, 18 1, 14 2, 19, 49 2, 15, 39 43, 48 HIC_NOE O HIC Output enable for data bus 3, 28 1, 31, 76 4, 23, 60 2, 19, 49 HIC_NRDY O HIC Ready from device to host 9, 37, 58 61, 67, 90 46, 75 37, 62 37, 62 29 6, 27, 48, 59, 76 23, 39, 48, 63 23, 39, 48, 63 19, 31, 38 HIC_NWE I HIC Data Write enable from host 4, 10, 35, 46, 52 11, 36, 63, 75, 93 I2CA_SCL I/OD I2C-A Open-Drain Bidirectional Clock 1, 8, 18, 27, 33, 37, 43, 57 53, 59, 61, 66, 68, 38, 44, 46, 50, 74, 78 54, 58, 62 32, 37, 41, 47, 51 32, 37, 41, 47, 51 25, 29, 33, 41 I2CA_SDA I/OD I2C-A Open-Drain Bidirectional Data 0, 10, 19, 26, 32, 35, 42, 56 58, 63, 64, 65, 69, 43, 48, 49, 51, 79, 93 57, 63, 76 39, 40, 42, 52, 63 39, 40, 42, 52, 63 31, 32, 34, 42 I2CB_SCL I/OD I2C-B Open-Drain Bidirectional Clock 3, 9, 15, 29, 51 1, 49, 62 1, 49, 62 1, 39 I2CB_SDA I/OD I2C-B Open-Drain Bidirectional Data 3, 60, 75, 78 2, 14, 28, 34, 50 1, 9, 77, 94, 96 4, 61, 77, 79 2, 50 2, 50 2, 40 6, 8, 53, 63, 81, 92, 100 3, 38, 48, 57, 65 1, 32, 39, 54 1, 32, 39, 54 1, 25, 31 1, 61, 64, 67, 83 4, 6, 46, 49, 67 2, 37, 40, 56 2, 37, 40, 56 2, 29, 32 LINA_RX I LIN-A Receive 23, 29, 33, 35, 42, 47, 49, 59 LINA_TX O LIN-A Transmit 22, 28, 32, 37, 46, 58 Copyright © 2023 Texas Instruments Incorporated 10, 76, 90, 95, 100 Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 43 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-3. Digital Signals (continued) SIGNAL NAME PIN TYPE LINB_RX I LIN-B Receive LINB_TX O GPIO 64 PMQ 64 PM 48 PT 43, 50, 52, 69, 81, 35, 37, 51, 65, 82, 90, 95 66, 75, 78 29, 31, 42, 54, 55, 62 29, 31, 42, 54, 55, 62 34 LIN-B Transmit 10, 12, 14, 18, 22, 13, 51, 56, 68, 80, 36, 41, 50, 64, 24, 40, 44, 54 83, 85, 93, 96 67, 69, 76, 79 30, 35, 41, 53, 56, 63 30, 35, 41, 53, 56, 63 27, 33 6, 10, 49, 51, 66, 79, 89, 91, 98 1, 34, 36, 56, 63, 74 30, 52, 61 30, 46, 52, 61 42, 47 9, 44, 48, 50, 65, 75, 78, 99 2, 6, 33, 35, 59, 62 29, 48, 51 29, 48, 51 38, 41 9, 11, 13, 15, 19, 23, 41, 55 100 PZ 80 PN MCAN_RX I CAN/CAN FD Receive 0, 5, 12, 21, 30, 39, 47, 51, 57, 61 MCAN_TX O CAN/CAN FD Transmit 1, 4, 13, 20, 31, 46, 50, 56, 60 OUTPUTXBAR1 O Output X-BAR Output 1 2, 24, 34, 58 56, 67, 77, 94 41, 61, 77 35, 50 35, 50 27, 40 OUTPUTXBAR2 O Output X-BAR Output 2 3, 25, 37, 54, 59 13, 57, 61, 76, 92 42, 46, 60 37, 49 37, 49 29, 39 Output X-BAR Output 3 4, 5, 14, 26, 48, 55, 60 7, 43, 44, 58, 75, 89, 96 43, 59, 74, 79 48, 61 48, 61 38, 47 8, 53, 59, 91, 95, 97 38, 44, 78, 80 32, 64 32, 64 25, 48 2, 43 OUTPUTXBAR3 O OUTPUTXBAR4 O Output X-BAR Output 4 6, 15, 27, 33, 49, 61 OUTPUTXBAR5 O Output X-BAR Output 5 7, 28, 42 1, 84 4, 57, 68 2, 57 2, 57 OUTPUTXBAR6 O Output X-BAR Output 6 9, 29, 43 90, 100 3, 54, 75 1, 62 1, 62 1 OUTPUTXBAR7 O Output X-BAR Output 7 11, 16, 30, 44 52, 54, 85, 98 1, 37, 39, 69 31, 33 31, 33 26 Output X-BAR Output 8 OUTPUTXBAR8 O PMBUSA_ALERT I/OD 17, 31, 45 55, 99 2, 40, 73 34 34 PMBus-A Open-Drain Bidirectional Alert Signal 13, 19, 27, 37, 43, 45 50, 59, 61, 69 35, 44, 46, 51, 54, 73 29, 37, 42 29, 37, 42 29, 34 PMBUSA_CTL I/O PMBus-A Control Signal - Slave Input/Master Output 12, 18, 26, 35, 42, 44 51, 58, 63, 68, 85 36, 43, 48, 50, 57, 69 30, 39, 41 30, 39, 41 31, 33 PMBUSA_SCL I/OD PMBus-A Open-Drain Bidirectional Clock 3, 15, 16, 24, 35, 41, 47 6, 54, 56, 63, 76, 82, 95 39, 41, 48, 60, 66, 78 33, 35, 39, 49, 55 33, 35, 39, 49, 55 26, 27, 31, 39 PMBUSA_SDA I/OD PMBus-A Open-Drain Bidirectional Data 2, 14, 17, 25, 32, 34, 40, 44, 46, 48 7, 55, 57, 64, 77, 80, 85, 94, 96 6, 40, 42, 49, 61, 64, 69, 77, 79 34, 40, 50, 53 34, 40, 50, 53 32, 40 SCIA_RX I SCI-A Receive Data 3, 9, 17, 25, 28, 35, 49 1, 8, 55, 57, 63, 76, 90 4, 40, 42, 48, 60, 75 2, 34, 39, 49, 62 2, 34, 39, 49, 62 2, 31, 39 SCIA_TX O SCI-A Transmit Data 2, 8, 16, 24, 29, 37, 48 7, 54, 56, 61, 74, 77, 100 3, 39, 41, 46, 58, 61 1, 33, 35, 37, 47, 50 1, 33, 35, 37, 47, 50 1, 26, 27, 29, 40 SCIB_RX I SCI-B Receive Data 11, 13, 15, 19, 23, 50, 52, 66, 69, 81, 35, 37, 51, 65, 41, 57 82, 95 66, 78 29, 31, 42, 54, 55 29, 31, 42, 54, 55 34 SCIB_TX O SCI-B Transmit Data 9, 10, 12, 14, 18, 22, 40, 56 30, 41, 53, 56, 62, 63 30, 41, 53, 56, 62, 63 33 SD1_C1 I SDFM-1 Channel 1 Clock Input 17, 33, 49, 53 8, 12, 23, 53, 55 19, 38, 40 15, 32, 34 15, 32, 34 11, 25 SD1_C2 I SDFM-1 Channel 2 Clock Input 19, 33, 51, 54 10, 13, 31, 53, 69 23, 38, 51 19, 32, 42 19, 32, 42 15, 25, 34 SD1_C3 I SDFM-1 Channel 3 Clock Input 21, 53, 55 12, 38, 43, 49 28, 34 24 24 20 SD1_C4 I SDFM-1 Channel 4 Clock Input 23, 55, 56 40, 43, 65, 81 29, 65 25, 54 25, 54 21 SD1_D1 I SDFM-1 Channel 1 Data Input 16, 48 7, 19, 54 15, 39 11, 33 11, 33 26 12, 40, 41 8, 32, 33 51, 65, 68, 80, 83, 36, 50, 64, 67, 90, 93, 96 75, 76, 79 SD1_D2 I SDFM-1 Channel 2 Data Input 18, 32, 50 SD1_D3 I SDFM-1 Channel 3 Data Input SD1_D4 I SDFM-1 Channel 4 Data Input SD2_C1 I SDFM-2 Channel 1 Clock Input SD2_C2 I SDFM-2 Channel 2 Clock Input 27, 58, 59 36, 59, 67, 92 27, 44 23 23 19 SD2_C3 I SDFM-2 Channel 3 Clock Input 29, 45, 59, 61 28, 91, 92, 100 3, 22, 73 1, 18 1, 18 1, 14 SD2_C4 I SDFM-2 Channel 4 Clock Input 31, 46, 60 32, 44, 99 2, 6 SD2_D1 I SDFM-2 Channel 1 Data Input 24, 49, 56 8, 56, 65 14, 41 10, 35 10, 35 7, 27 SD2_D2 I SDFM-2 Channel 2 Data Input 26, 50, 58 9, 16, 58, 67 12, 43 8 8 5 SD2_D3 I SDFM-2 Channel 3 Data Input 28, 43, 51, 60 1, 10, 17, 44 4, 13, 54 2, 9 2, 9 2, 6 SD2_D4 I SDFM-2 Channel 4 Data Input 30, 47, 52 6, 11, 15, 98 1, 11 9, 20, 64, 68 16, 49, 50 12, 40, 41 20, 52 11, 21, 48 17, 33 13 13 9 22, 54 13, 22, 83 18, 67 14, 56 14, 56 10 25, 35, 57 14, 37, 57, 63, 66 10, 24, 42, 48 6, 20, 39 6, 20, 39 4, 16, 31 7 7 4 30, 41, 49, 62 33, 39 26, 40 SPIA_CLK I/O SPI-A Clock 3, 9, 12, 18, 56 51, 65, 68, 76, 90 36, 50, 60, 75 30, 41, 49, 62 SPIA_SIMO I/O SPI-A Slave In, Master Out (SIMO) 2, 8, 11, 16, 54 13, 52, 54, 74, 77 37, 39, 58, 61 31, 33, 47, 50 31, 33, 47, 50 SPIA_SOMI I/O SPI-A Slave Out, Master In (SOMI) 1, 10, 13, 17, 55 43, 50, 55, 78, 93 35, 40, 62, 76 29, 34, 51, 63 29, 34, 51, 63 41 37, 51, 63, 74 31, 42, 52, 61 31, 42, 52, 61 34, 42, 47 SPIA_STE 44 DESCRIPTION I/O SPI-A Slave Transmit Enable (STE) Submit Document Feedback 0, 5, 11, 19, 57 52, 66, 69, 79, 89 Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-3. Digital Signals (continued) SIGNAL NAME PIN TYPE SPIB_CLK I/O SPIB_SIMO I/O DESCRIPTION GPIO 100 PZ 80 PN 64 PMQ 64 PM 48 PT SPI-B Clock 4, 14, 22, 26, 28, 32, 52, 58 1, 11, 58, 64, 67, 75, 83, 96 4, 43, 49, 59, 67, 79 2, 40, 48, 56 2, 40, 48, 56 2, 32, 38 SPI-B Slave In, Master Out (SIMO) 7, 20, 24, 30, 40, 50, 56, 60 9, 44, 48, 56, 65, 80, 84, 98 1, 33, 41, 64, 68 35, 53, 57 35, 53, 57 27, 43 10, 49, 54, 57, 66, 82, 91, 97, 99 2, 34, 39, 42, 66, 80 33, 55, 64 33, 55, 64 26, 48 3, 38, 44, 65, 78 1, 32, 54 1, 32, 54 1, 25 SPIB_SOMI I/O SPI-B Slave Out, Master In (SOMI) 6, 16, 21, 25, 31, 41, 51, 57, 61 SPIB_STE I/O SPI-B Slave Transmit Enable (STE) 15, 23, 27, 29, 33, 12, 53, 59, 81, 92, 53, 59 95, 100 SYNCOUT O External ePWM Synchronization Pulse 6, 39, 52 11, 97 56, 80 64 46, 64 48 I JTAG Test Data Input (TDI) - TDI is the default mux selection for the pin. The internal pullup is disabled by default. The internal pullup should be enabled or an external pullup added on the board if this pin is used as JTAG TDI to avoid a floating input. 35 63 48 39 39 31 O JTAG Test Data Output (TDO) - TDO is the default mux selection for the pin. The internal pullup is disabled by default. The TDO function will be in a tristate condition when there is no JTAG activity, leaving this pin floating; the internal pullup should be enabled or an external pullup added on the board to avoid a floating GPIO input. 37 61 46 37 37 29 X1 I/O Crystal oscillator input or single-ended clock input. The device initialization software must configure this pin before the crystal oscillator is enabled. To use this oscillator, a quartz crystal circuit must be connected to X1 and X2. This pin can also be used to feed a single-ended 3.3-V level clock. See the XTAL section for usage details. 19 69 51 42 42 34 X2 I/O Crystal oscillator output. 18 68 50 41 41 33 O External Clock Output. This pin outputs a divideddown version of a chosen clock signal from within the device. 16, 18 54, 68 39, 50 33, 41 33, 41 26, 33 TDI TDO XCLKOUT Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 45 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 5.3.3 Power and Ground Table 5-4. Power and Ground SIGNAL NAME PIN TYPE DESCRIPTION 100 PZ 80 PN 64 PMQ 64 PM 48 PT VDD 1.2-V Digital Logic Power Pins. See the Power Management Module (PMM) section for usage details. 4, 46, 71, 87 8, 31, 53, 71 4, 27, 44, 59 4, 27, 44, 59 23, 36, 45 VDDA 3.3-V Analog Power Pins. Place a minimum 2.2-µF decoupling capacitor on each pin. See the Power Management Module (PMM) section for usage details. 34 26 22 22 18 VDDIO 3.3-V Digital I/O Power Pins. See the Power Management Module (PMM) section for usage details. 3, 47, 70, 88 7, 32, 52, 72 28, 43, 60 28, 43, 60 24, 35, 46 VREGENZ Internal voltage regulator enable with internal pulldown. Tie low to VSS to enable internal VREG. Tie high to VDDIO to use an external supply. See the Power Management Module (PMM) section for usage details. 73 46 I 46 VSS Digital Ground 5, 45, 72, 86 9, 30, 55, 70 5, 26, 45, 58 5, 26, 45, 58 22, 37, 44 VSSA Analog Ground 33 25 21 21 17 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 5.3.4 Test, JTAG, and Reset Table 5-5. Test, JTAG, and Reset SIGNAL NAME PIN TYPE TCK I TMS XRSn DESCRIPTION 100 PZ 80 PN 64 PMQ 64 PM 48 PT JTAG test clock with internal pullup. 60 45 36 36 28 I/O JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK. This device does not have a TRSTn pin. An external pullup resistor (recommended 2.2 kΩ) on the TMS pin to VDDIO should be placed on the board to keep JTAG in reset during normal operation. 62 47 38 38 30 I/OD Device Reset (in) and Watchdog Reset (out). During a power-on condition, this pin is driven low by the device. An external circuit may also drive this pin to assert a device reset. This pin is also driven low by the MCU when a watchdog reset occurs. During watchdog reset, the XRSn pin is driven low for the watchdog reset duration of 512 OSCCLK cycles. A resistor between 2.2 kΩ and 10 kΩ should be placed between XRSn and VDDIO. If a capacitor is placed between XRSn and VSS for noise filtering, it should be 100 nF or smaller. These values will allow the watchdog to properly drive the XRSn pin to VOL within 512 OSCCLK cycles when the watchdog reset is asserted. This pin is an open-drain output with an internal pullup. If this pin is driven by an external device, it should be done using an opendrain device. 2 5 3 3 3 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 47 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com 5.4 Pin Multiplexing 5.4.1 GPIO Muxed Pins Table 5-6 lists the GPIO muxed pins. The default mode for each GPIO pin is the GPIO function, except GPIO35 and GPIO37, which default to TDI and TDO, respectively. Secondary functions can be selected by setting both the GPyGMUXn.GPIOz and GPyMUXn.GPIOz register bits. The GPyGMUXn register should be configured before the GPyMUXn to avoid transient pulses on GPIOs from alternate mux selections. Columns that are not shown and blank cells are reserved GPIO Mux settings. GPIO ALT functions cannot be configured with the GPyMUXn and GPyGMUXn registers. These are special functions that need to be configured from the module. Note GPIO36 and GPIO38 do not exist on this device. GPIO62 to GPIO63 exist but are not pinned out on any packages. Boot ROM enables pullups on GPIO62 to GPIO63. For more details, see Section 5.5. 48 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 5.4.1.1 GPIO Muxed Pins Table 5-6. GPIO Muxed Pins 0, 4, 8, 12 1 2 3 5 6 7 9 11 13 14 15 MCAN_RX CLB_OUTPUTXBA R8 EQEP1_INDE X HIC_D7 HIC_BASESEL1 MCAN_TX CLB_OUTPUTXBA R7 HIC_A2 FSITXA_TDM_D1 HIC_D10 HIC_D9 GPIO0 EPWM1_A I2CA_SDA SPIA_STE GPIO1 EPWM1_B I2CA_SCL SPIA_SOMI GPIO2 EPWM2_A OUTPUTXBAR1 PMBUSA_SDA SPIA_SIMO SCIA_TX FSIRXA_D1 I2CB_SDA HIC_A1 CANA_TX GPIO3 EPWM2_B OUTPUTXBAR2 PMBUSA_SCL SPIA_CLK SCIA_RX FSIRXA_D0 I2CB_SCL HIC_NOE CANA_RX GPIO4 EPWM3_A MCAN_TX OUTPUTXBAR3 CANA_TX SPIB_CLK EQEP2_STRO BE FSIRXA_CLK GPIO5 EPWM3_B OUTPUTXBA R3 MCAN_RX CANA_RX SPIA_STE FSITXA_D1 CLB_OUTPUTXBA R5 GPIO6 EPWM4_A SYNCOUT EQEP1_A SPIB_SOMI FSITXA_D0 GPIO7 EPWM4_B OUTPUTXBA R5 EQEP1_B SPIB_SIMO FSITXA_CLK CLB_OUTPUTXBA R2 GPIO8 EPWM5_A ADCSOCAO EQEP1_STROBE SCIA_TX SPIA_SIMO I2CA_SCL FSITXA_D1 CLB_OUTPUTXBA R5 HIC_A0 FSITXA_TDM_CL K HIC_D8 GPIO9 EPWM5_B OUTPUTXBA R6 EQEP1_INDEX SCIA_RX SPIA_CLK FSITXA_D0 LINB_RX HIC_BASESEL 0 I2CB_SCL HIC_NRDY GPIO10 EPWM6_A ADCSOCBO EQEP1_A SCIB_TX SPIA_SOMI I2CA_SDA FSITXA_CLK LINB_TX HIC_NWE FSITXA_TDM_D0 CLB_OUTPUTXBA R4 GPIO11 EPWM6_B OUTPUTXBA R7 EQEP1_B SCIB_RX SPIA_STE FSIRXA_D1 LINB_RX EQEP2_A SPIA_SIMO HIC_D6 HIC_NBE0 GPIO12 EPWM7_A MCAN_RX EQEP1_STROBE SCIB_TX PMBUSA_CTL FSIRXA_D0 LINB_TX SPIA_CLK CANA_RX HIC_D13 HIC_INT GPIO13 EPWM7_B MCAN_TX EQEP1_INDEX SCIB_RX PMBUSA_ALERT FSIRXA_CLK LINB_RX SPIA_SOMI CANA_TX HIC_D11 HIC_D5 I2CB_SDA OUTPUTXBAR 3 EPWM3_A CLB_OUTPUTXBA R7 HIC_D15 I2CB_SCL OUTPUTXBAR 4 PMBUSA_SCL SPIB_STE EQEP2_B LINB_RX EPWM3_B CLB_OUTPUTXBA R6 HIC_D12 EQEP2_B SPIB_SOMI HIC_D1 GPIO14 EPWM8_A OUTPUTXBAR2 OUTPUTXBAR4 SCIB_TX SCIB_TX SCIB_RX PMBUSA_SDA FSIRXA_CLK 10 SPIB_CLK CLB_OUTPUTXBA HIC_BASESEL R6 2 FSITXA_D1 EQEP2_A HIC_D4 HIC_NWE HIC_A7 HIC_D4 HIC_D15 HIC_NBE1 CLB_OUTPUTXBA R8 HIC_D14 HIC_A6 LINB_TX ALT HIC_D14 GPIO15 EPWM8_B GPIO16 SPIA_SIMO OUTPUTXBA R7 EPWM5_A SCIA_TX SD1_D1 EQEP1_STRO BE PMBUSA_SCL XCLKOUT GPIO17 SPIA_SOMI OUTPUTXBA R8 EPWM5_B SCIA_RX SD1_C1 EQEP1_INDE X PMBUSA_SDA CANA_TX GPIO18 SPIA_CLK SCIB_TX CANA_RX EPWM6_A I2CA_SCL SD1_D2 EQEP2_A PMBUSA_CTL XCLKOUT LINB_TX FSITXA_TDM_CL K HIC_INT X2 GPIO19 SPIA_STE SCIB_RX CANA_TX EPWM6_B I2CA_SDA SD1_C2 EQEP2_B PMBUSA_ALERT CLB_OUTPUTXBA R1 LINB_RX FSITXA_TDM_D0 HIC_NBE0 X1 GPIO20 EQEP1_A SPIB_SIMO SD1_D3 MCAN_TX GPIO21 EQEP1_B SPIB_SOMI SD1_C3 MCAN_RX GPIO22 EQEP1_STRO BE SPIB_CLK SD1_D4 LINA_TX CLB_OUTPUTXBA R1 LINB_TX HIC_A5 EPWM4_A HIC_D13 GPIO23 EQEP1_INDE X LINB_RX HIC_A3 EPWM4_B HIC_D11 GPIO24 OUTPUTXBAR 1 SCIA_TX ERRORSTS SCIB_TX SCIB_RX EQEP2_A Copyright © 2023 Texas Instruments Incorporated EPWM8_A SPIB_STE SD1_C4 LINA_RX CLB_OUTPUTXBA R3 SPIB_SIMO SD2_D1 LINB_TX PMBUSA_SCL HIC_D2 HIC_D3 Submit Document Feedback 49 Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036CQ1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-6. GPIO Muxed Pins (continued) 0, 4, 8, 12 1 2 GPIO25 OUTPUTXBAR 2 GPIO26 OUTPUTXBAR 3 OUTPUTXBAR GPIO27 4 3 5 6 7 9 10 11 13 14 15 EQEP2_B EQEP1_A SPIB_SOMI SD2_C1 FSITXA_D1 PMBUSA_SDA SCIA_RX HIC_BASESEL0 EQEP2_INDEX OUTPUTXBAR3 SPIB_CLK SD2_D2 FSITXA_D0 PMBUSA_CTL I2CA_SDA HIC_D0 HIC_A1 EQEP2_STROBE OUTPUTXBAR4 SPIB_STE SD2_C2 FSITXA_CLK PMBUSA_ALERT I2CA_SCL HIC_D1 HIC_A4 GPIO28 SCIA_RX EPWM7_A OUTPUTXBAR5 EQEP1_A SD2_D3 EQEP2_STRO BE LINA_TX SPIB_CLK ERRORSTS I2CB_SDA HIC_NOE GPIO29 SCIA_TX EPWM7_B OUTPUTXBAR6 EQEP1_B SD2_C3 EQEP2_INDE X LINA_RX SPIB_STE ERRORSTS I2CB_SCL HIC_NCS GPIO30 CANA_RX SPIB_SIMO OUTPUTXBAR7 EQEP1_STRO BE SD2_D4 FSIRXA_CLK MCAN_RX EPWM1_A HIC_D8 GPIO31 CANA_TX SPIB_SOMI OUTPUTXBAR8 EQEP1_INDE X SD2_C4 FSIRXA_D1 MCAN_TX EPWM1_B HIC_D10 GPIO32 I2CA_SDA SPIB_CLK EPWM8_B LINA_TX SD1_D2 FSIRXA_D0 CANA_TX PMBUSA_SDA ADCSOCBO GPIO33 I2CA_SCL SPIB_STE OUTPUTXBAR4 LINA_RX SD1_C2 FSIRXA_CLK CANA_RX EQEP2_B ADCSOCAO SD1_C1 HIC_D0 HIC_NBE1 I2CB_SDA HIC_D9 I2CA_SDA CANA_RX PMBUSA_SCL LINA_RX EQEP1_A PMBUSA_CTL EPWM5_B SD2_C1 HIC_NWE TDI I2CA_SCL SCIA_TX CANA_TX LINA_TX EQEP1_B PMBUSA_ALERT HIC_NRDY TDO MCAN_RX FSIRXA_CLK EQEP2_INDE X SYNCOUT EQEP1_INDEX HIC_D7 EPWM2_B PMBUSA_SDA FSIRXA_D0 SCIB_TX EQEP1_A LINB_TX HIC_NBE1 HIC_D5 EPWM2_A PMBUSA_SCL FSIRXA_D1 SCIB_RX EQEP1_B LINB_RX HIC_A4 SPIB_SOMI HIC_D12 OUTPUTXBA R5 PMBUSA_CTL I2CA_SDA EQEP1_STROBE CLB_OUTPUTXBA R3 HIC_D2 HIC_A6 GPIO43 OUTPUTXBA R6 PMBUSA_ALERT I2CA_SCL PMBUSA_ALE RT EQEP1_INDEX CLB_OUTPUTXBA R4 SD2_D3 HIC_D3 HIC_A7 GPIO44 OUTPUTXBA R7 EQEP1_A PMBUSA_SDA PMBUSA_CTL CLB_OUTPUTXBA R3 FSIRXA_D0 HIC_D7 LINB_TX HIC_D5 GPIO45 OUTPUTXBA R8 GPIO46 LINA_TX OUTPUTXBAR GPIO34 1 GPIO35 PMBUSA_SDA SCIA_RX OUTPUTXBAR GPIO37 2 GPIO39 GPIO40 SPIB_SIMO GPIO41 GPIO42 LINA_RX GPIO47 LINA_RX MCAN_TX FSITXA_CLK CLB_OUTPUTXBA R2 FSITXA_D0 PMBUSA_ALE CLB_OUTPUTXBA RT R4 SD2_C3 FSITXA_D1 PMBUSA_SDA SD2_C4 CLB_OUTPUTXBA PMBUSA_SCL R2 MCAN_RX SD2_D4 OUTPUTXBAR 3 CANA_TX SCIA_TX SD1_D1 PMBUSA_SDA OUTPUTXBAR GPIO49 4 CANA_RX SCIA_RX SD1_C1 LINA_RX SD2_D1 GPIO48 HIC_D6 HIC_NWE FSITXA_TDM_CL K HIC_A6 HIC_A7 FSITXA_D0 HIC_D2 EQEP1_A MCAN_TX SPIB_SIMO SD1_D2 I2CB_SDA SD2_D2 FSITXA_D1 HIC_D3 GPIO51 EQEP1_B MCAN_RX SPIB_SOMI SD1_C2 I2CB_SCL SD2_D3 FSITXA_CLK HIC_D6 EQEP1_STRO GPIO52 BE CLB_OUTPUTXBA R5 SPIB_CLK SD1_D3 SYNCOUT SD2_D4 FSIRXA_D0 HIC_NWE EQEP1_INDE X CLB_OUTPUTXBA R6 SPIB_STE SD1_C3 ADCSOCAO SD1_C1 FSIRXA_D1 50 Submit Document Feedback AUXCLKI N HIC_INT GPIO50 GPIO53 ALT CANA_RX Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036CQ1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 5-6. GPIO Muxed Pins (continued) 0, 4, 8, 12 1 GPIO54 GPIO55 2 5 6 7 9 10 SPIA_SIMO EQEP2_A OUTPUTXBAR 2 SD1_D4 ADCSOCBO SPIA_SOMI EQEP2_B OUTPUTXBAR 3 SD1_C4 GPIO56 SPIA_CLK CLB_OUTPUTXBA R7 GPIO57 SPIA_STE CLB_OUTPUTXBA R8 3 11 13 14 15 LINB_TX SD1_C2 FSIRXA_CLK FSITXA_TDM_D1 ERRORSTS LINB_RX SD1_C3 MCAN_TX EQEP2_STROBE SCIB_TX SD2_D1 SPIB_SIMO I2CA_SDA EQEP1_A MCAN_RX EQEP2_INDEX SCIB_RX SD2_C1 SPIB_SOMI I2CA_SCL EQEP1_B GPIO58 OUTPUTXBAR1 SPIB_CLK SD2_D2 LINA_TX CANA_TX EQEP1_STROBE GPIO59 OUTPUTXBAR2 SPIB_STE SD2_C2 LINA_RX CANA_RX EQEP1_INDEX GPIO60 MCAN_TX OUTPUTXBAR3 SPIB_SIMO SD2_D3 GPIO61 MCAN_RX OUTPUTXBAR4 SPIB_SOMI SD2_C3 SD1_C4 ALT HIC_A0 FSIRXA_D1 HIC_D6 FSIRXA_CLK HIC_D4 SD2_C2 FSIRXA_D0 HIC_NRDY SD2_C3 FSITXA_TDM_D1 SD2_C4 HIC_A0 CANA_RX AIO224 SD2_D3 HIC_A3 AIO225 SD2_C2 HIC_NWE AIO226 SD2_D4 HIC_A1 AIO227 SD1_C3 HIC_NBE0 AIO228 SD2_C1 HIC_A0 AIO230 SD1_C4 HIC_BASESEL2 AIO231 SD1_C1 HIC_BASESEL1 AIO232 SD1_D4 HIC_BASESEL0 AIO233 SD2_D1 HIC_A4 AIO229 AIO236 AIO237 SD1_D2 HIC_A6 AIO238 SD2_C3 HIC_NCS AIO239 SD1_D1 HIC_A5 AIO240 SD2_C1 HIC_NBE1 AIO241 SD2_C1 HIC_NBE1 AIO242 SD2_D2 HIC_A2 AIO244 SD1_D3 HIC_A7 AIO245 SD1_C2 HIC_NOE AIO247 AIO248 AIO249 AIO251 AIO252 SD2_C4 AIO253 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback 51 Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036CQ1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 5.4.2 Digital Inputs on ADC Pins (AIOs) GPIOs on port H (GPIO224–GPIO253) are multiplexed with analog pins. These are also referred to as AIOs. These pins can only function in input mode. By default, these pins will function as analog pins and the GPIOs are in a high-Z state. The GPHAMSEL register is used to configure these pins for digital or analog operation. Note If digital signals with sharp edges (high dv/dt) are connected to the AIOs, cross-talk can occur with adjacent analog signals. The user should therefore limit the edge rate of signals connected to AIOs if adjacent channels are being used for analog functions. 5.4.3 Digital Inputs and Outputs on ADC Pins (AGPIOs) Some GPIOs on this device are multiplexed with analog pins. These are also referred to as AGPIOs. Unlike AIOs, AGPIOs have full input and output capability. This device has two GPIOs (GPIO20, GPIO21) that offer this feature on the 100-Pin PZ and 80-Pin PN packages. 100-Pin PZ: On this package, there are dedicated pins for B5 (pin 32) and B11 (pin 30) which respectively also have AIO252 and AIO251 functionality. In addition, GPIO20 (pin 48) and GPIO21 (pin 49) are also available as B5 and B11 respectively. Since B5 and B11 are dedicated pins on this package, it is recommended to use them instead of the ones on GPIO20/21. 80-Pin PN: On this package, GPIO20 (pin 33) and GPIO21 (pin 34) are also available as B5 and B11 respectively. There are no dedicated pin for B5 and B11. By default the AGPIOs are not connected and have to be configured. Table 5-7 truth table shows how to configure the AGPIOs using B5 (pin 32) and GPIO20 (pin 48) on the 100-Pin PZ as an example. Table 5-7. AGPIO Configuration AGPIOCTRLA.bit.GPIO20 GPAAMSEL.bit.GPIO20 GPHAMSEL.bit.GPIO252 0 0 0 B5 CONNECTED TO GPIO20 CONNECTED TO ADC GPIO20 AIO252 ADC GPIO20 AIO252 1 Yes - - - Yes - 1 1 Yes - - - - - 1 0 1 Yes - - - Yes - 1 1 1 - - - Yes - - 0 0 0 Yes - Yes - Yes - 0 1 0 Yes - Yes - - - 1 0 0 Yes - Yes - Yes - 1 1 0 - - Yes Yes - - Note If digital signals with sharp edges (high dv/dt) are connected to the AGPIOs, cross-talk can occur with adjacent analog signals. The user should therefore limit the edge rate of signals connected to AGPIOs if adjacent channels are being used for analog functions. 5.4.4 GPIO Input X-BAR The Input X-BAR is used to route signals from a GPIO to many different IP blocks such as the ADCs, eCAPs, ePWMs, and external interrupts (see Figure 5-6). Table 5-8 lists the input X-BAR destinations. 52 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com GPIO0 GPIOx SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Asynchronous Synchronous Sync. + Qual. Input X-BAR Other Sources eCAP Modules 15:0 INPUT16 INPUT15 INPUT14 INPUT13 INPUT12 INPUT11 INPUT10 INPUT9 INPUT8 INPUT7 INPUT6 INPUT5 INPUT4 INPUT3 INPUT2 INPUT1 INPUT[16:1] 127:16 DCCx Clock Source-1 TZ1,TRIP1 TZ2,TRIP2 TZ3,TRIP3 TRIP6 DCCx Clock Source-0 XINT1 XINT2 XINT3 XINT4 XINT5 CPU PIE CLA TRIP4 TRIP5 ePWM Modules TRIP7 TRIP8 TRIP9 TRIP10 TRIP11 TRIP12 ePWM X-BAR Other Sources ADCEXTSOC ADC EXTSYNCIN1 ePWM and eCAP Sync Scheme EXTSYNCIN2 Other Sources INPUT[1:16] ERAD INPUT[13:16] EPG Output X-BAR Figure 5-6. Input X-BAR Table 5-8. Input X-BAR Destinations INPUT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ECAP / HRCAP Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes EPWM X-BAR Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes CLB X-BAR Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes OUTPUT X-BAR Yes Yes Yes Yes Yes Yes XINT1 XINT2 XINT3 CPU XINT EPWM TRIP TZ1, TZ2, TZ3, TRIP1 TRIP2 TRIP3 XINT4 XINT5 TRIP6 ADC START OF CONVERSION ADCEX TSOC EPWM / ECAP SYNC EXTSY NCIN1 EXTSY NCIN2 CLK CLK 0 0 DCCx CLK1 CLK0 EPG1 EPG1 EPG1 EPG1 IN1 IN2 IN3 IN4 EPG ERAD Yes Yes Yes Copyright © 2023 Texas Instruments Incorporated Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 53 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com 5.4.5 GPIO Output X-BAR, CLB X-BAR, CLB Output X-BAR, and ePWM X-BAR The Output X-BAR has eight outputs that can be selected on the GPIO mux as OUTPUTXBARx. The CLB X-BAR has eight outputs that are connected to the CLB global mux as AUXSIGx. The CLB Output X-BAR has eight outputs that can be selected on the GPIO mux as CLB_OUTPUTXBARx. The ePWM X-BAR has eight outputs that are connected to the TRIPx inputs of the ePWM. The sources for the Output X-BAR, CLB X-BAR, CLB Output X-BAR, and ePWM X-BAR are shown in Figure 5-7. 54 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 CMPSSx ePWM and eCAP Sync Chain CTRIPOUTH CTRIPOUTL (Output X-BAR only) CTRIPH CTRIPL (ePWM X-BAR only) EXTSYNCOUT ADCSOCA0 Select Circuit ADCSOCA0 ADCSOCB0 Select Circuit ADCSOCB0 eCAPx ECAPxOUT ADCx EVT1 EVT2 EVT3 EVT4 Input X-BAR CLAHALT CLB X-BAR CLB Global Mux TRIP4 TRIP5 EPWM X-BAR INPUT1-6 INPUT7-14 (ePWM X-BAR only) TRIP7 TRIP8 TRIP9 TRIP10 TRIP11 TRIP12 All ePWM Modules eQEPx CLAHALT FLT1.COMPH FLT1.COMPL SDFMx AUXSIG1 AUXSIG2 AUXSIG3 AUXSIG4 AUXSIG5 AUXSIG6 AUXSIG7 AUXSIG8 Output X-BAR FLT4.COMPH FLT4.COMPL OUTPUTXBAR1 OUTPUTXBAR2 OUTPUTXBAR3 OUTPUTXBAR4 OUTPUTXBAR5 OUTPUTXBAR6 OUTPUTXBAR7 OUTPUTXBAR8 GPIO Mux X-BAR Flags (shared) CLB Input X-BAR CLB TILEx CLB Output X-BAR CLB_OUTPUTXBAR1 CLB_OUTPUTXBAR2 CLB_OUTPUTXBAR3 CLB_OUTPUTXBAR4 CLB_OUTPUTXBAR5 CLB_OUTPUTXBAR6 CLB_OUTPUTXBAR7 CLB_OUTPUTXBAR8 Figure 5-7. Output X-BAR, CLB X-BAR, CLB Output X-BAR, and ePWM X-BAR Sources Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 55 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com 5.5 Pins With Internal Pullup and Pulldown Some pins on the device have internal pullups or pulldowns. Table 5-9 lists the pull direction and when it is active. The pullups on GPIO pins are disabled by default and can be enabled through software. To avoid any floating unbonded inputs, the Boot ROM will enable internal pullups on GPIO pins that are not bonded out in a particular package. Other pins noted in Table 5-9 with pullups and pulldowns are always on and cannot be disabled. Table 5-9. Pins With Internal Pullup and Pulldown PIN GPIOx RESET (XRSn = 0) DEVICE BOOT APPLICATION Pullup disabled Pullup disabled(1) Application defined GPIO35/TDI Pullup disabled GPIO37/TDO AGPIOx Application defined Pullup disabled Pullup disabled Application defined Pullup disabled TCK Pullup active TMS Pullup active XRSn Other pins (including AIOs) (1) 56 Application defined Pullup active No pullup or pulldown present Pins not bonded out in a given package will have the internal pullups enabled by the Boot ROM. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 5.6 Connections for Unused Pins For applications that do not need to use all functions of the device, Table 5-10 lists acceptable conditioning for any unused pins. When multiple options are listed in Table 5-10, any option is acceptable. Pins not listed in Table 5-10 must be connected according to Section 5. Table 5-10. Connections for Unused Pins SIGNAL NAME ACCEPTABLE PRACTICE ANALOG VREFHI Tie to VDDA (applies only if ADC is not used in the application) VREFLO Tie to VSSA Analog input pins with DACx_OUT • • No Connect Tie to VSSA through 4.7-kΩ or larger resistor Analog input pins (except DACx_OUT) • • • No Connect Tie to VSSA Tie to VSSA through resistor Analog input pins (shared with GPIOs)(1) • • • No connection (digital input mode with internal pullup enabled) No connection (digital output mode with internal pullup disabled) Pullup or pulldown resistor (any value resistor, digital input mode, and with internal pullup disabled) DIGITAL GPIOx • • • No connection (input mode with internal pullup enabled) No connection (output mode with internal pullup disabled) Pullup or pulldown resistor (any value resistor, input mode, and with internal pullup disabled) When TDI mux option is selected (default), the GPIO is in Input mode. GPIO35/TDI • • Internal pullup enabled External pullup resistor When TDO mux option is selected (default), the GPIO is in Output mode only during JTAG activity; otherwise, it is in a tri-state condition. The pin must be biased to avoid extra current on the input buffer. GPIO37/TDO • • Internal pullup enabled External pullup resistor TCK • • No Connect Pullup resistor TMS Pullup resistor Turn XTAL off and: GPIO19/X1 • • • Input mode with internal pullup enabled Input mode with external pullup or pulldown resistor Output mode with internal pullup disabled Turn XTAL off and: GPIO18/X2 • • • Input mode with internal pullup enabled Input mode with external pullup or pulldown resistor Output mode with internal pullup disabled POWER AND GROUND VDD All VDD pins must be connected per Section 5.3. Pins should not be used to bias any external circuits. VDDA If a dedicated analog supply is not used, tie to VDDIO. VDDIO All VDDIO pins must be connected per Section 5.3. VSS All VSS pins must be connected to board ground. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 57 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com Table 5-10. Connections for Unused Pins (continued) SIGNAL NAME VSSA (1) 58 ACCEPTABLE PRACTICE If an analog ground is not used, tie to VSS. AGPIO pins share analog and digital functionality. The actions here only apply if these pins are also not being used for analog functions. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) (2) MIN MAX VDDIO with respect to VSS –0.3 4.6 VDDA with respect to VSSA –0.3 4.6 VDD with respect to VSS –0.3 1.5 Input voltage VIN (3.3 V) –0.3 4.6 V Output voltage VO –0.3 4.6 V Digital/analog input (per pin), IIK (VIN < VSS/VSSA or VIN > VDDIO/ VDDA)(4) –20 20 Total for all inputs, IIKTOTAL (VIN < VSS/VSSA or VIN > VDDIO/VDDA) –20 20 Output current Digital output (per pin), IOUT –20 20 mA Free-Air temperature TA –40 125 °C Operating junction temperature TJ –40 150 °C Storage temperature(3) Tstg –65 150 °C Supply voltage Input clamp current (1) (2) (3) (4) UNIT V mA Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions. If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime. All voltage values are with respect to VSS, unless otherwise noted. Long-term high-temperature storage or extended use at maximum temperature conditions may result in a reduction of overall device life. For additional information, see the Semiconductor and IC Package Thermal Metrics Application Report. Continuous clamp current per pin is ±2 mA. Do not operate in this condition continuously as VDDIO/VDDA voltage may internally rise and impact other electrical specifications. 6.2 ESD Ratings – Commercial VALUE UNIT F280039C, F280039, F280037C, F280037, F280034, F280033 in 100-pin PZ package V(ESD) Electrostatic discharge (ESD) Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 Charged-device model (CDM), All pins per ANSI/ESDA/JEDEC JS-002(2) Corner pins on 100-pin PZ: 1, 25, 26, 50, 51, 75, 76, 100 ±500 V ±750 F280039C, F280039, F280037C, F280037, F280034, F280033 in 80-pin PN package V(ESD) Electrostatic discharge (ESD) Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 Charged-device model (CDM), All pins per ANSI/ESDA/JEDEC JS-002(2) Corner pins on 80-pin PN: 1, 20, 21, 40, 41, 60, 61, 80 ±500 V ±750 F280039C, F280039, F280037C, F280037, F280034, F280033 in 64-pin PM package V(ESD) Electrostatic discharge (ESD) Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 Charged-device model (CDM), All pins per ANSI/ESDA/JEDEC JS-002(2) Corner pins on 64-pin PM: 1, 16, 17, 32, 33, 48, 49, 64 ±500 V ±750 F280037C, F280037, F280034, F280033 in 48-pin PT package V(ESD) (1) (2) Electrostatic discharge (ESD) Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 Charged-device model (CDM), All pins per ANSI/ESDA/JEDEC JS-002(2) Corner pins on 48-pin PT: 1, 12, 13, 24, 25, 36, 37, 48 ±500 V ±750 JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 59 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.3 ESD Ratings – Automotive VALUE UNIT F280039C-Q1, F280039-Q1, F280037C-Q1, F280037-Q1 in 100-pin PZ package V(ESD) Electrostatic discharge Human body model (HBM), per AEC Q100-002(1) All pins ±2000 Charged device model (CDM), per AEC Q100-011 All pins ±500 Corner pins on 100-pin PZ: 1, 25, 26, 50, 51, 75, 76, 100 ±750 V F280039C-Q1, F280039-Q1, F280037C-Q1, F280034-Q1, F280033-Q1 in 80-pin PN package V(ESD) Electrostatic discharge Human body model (HBM), per AEC Q100-002(1) All pins ±2000 Charged device model (CDM), per AEC Q100-011 All pins ±500 Corner pins on 80-pin PN: 1, 20, 21, 40, 41, 60, 61, 80 ±750 Human body model (HBM), per AEC Q100-002(1) All pins ±2000 Charged device model (CDM), per AEC Q100-011 All pins ±500 Corner pins on 64-pin PM: 1, 16, 17, 32, 33, 48, 49, 64 ±750 Human body model (HBM), per AEC Q100-002(1) All pins ±2000 Charged device model (CDM), per AEC Q100-011 All pins ±500 Corner pins on 48-pin PT: 1, 12, 13, 24, 25, 36, 37, 48 ±750 V F280038C-Q1, F280038-Q1, F280036C-Q1, F280036-Q1 in 64-pin PM package V(ESD) Electrostatic discharge V F280037C-Q1, F280037-Q1, F280034-Q1 in 48-pin PT package V(ESD) (1) Electrostatic discharge V AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification. 6.4 Recommended Operating Conditions Device supply voltage, VDDIO and VDDA Internal BOR enabled(3) Internal BOR disabled Device supply voltage, VDD MIN NOM MAX (2) 3.3 3.63 2.8 3.3 3.63 1.14 1.2 1.32 VBOR-VDDIO(MAX) + VBOR-VDDIO-GB UNIT V V Device ground, VSS 0 V Analog ground, VSSA 0 V SRSUPPLY Supply ramp rate(4) Digital input voltage VSS – 0.3 VDDIO + 0.3 VSSA – 0.3 VDDA + 0.3 V Junction temperature, TJ (1) –40 150 °C Free-Air temperature, TA –40 125 °C VIN (1) (2) (3) (4) 60 Analog input voltage V Operation above TJ = 105°C for extended duration will reduce the lifetime of the device. See Calculating Useful Lifetimes of Embedded Processors for more information. See the Power Management Module (PMM) section. Internal BOR is enabled by default. See the Power Management Module Operating Conditions table. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.5 Power Consumption Summary Current values listed in this section are representative for the test conditions given and not the absolute maximum possible. The actual device currents in an application will vary with application code and pin configurations. Section 6.5.1 lists the system current consumption values. Section 6.5.2 lists the system current consumption with VREG disabled. 6.5.1 System Current Consumption over operating free-air temperature range (unless otherwise noted). TYP : Vnom, 30℃ PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 80 108 mA 8 17.5 mA 30 58 mA 0.01 0.1 mA 16.5 41 mA 0.01 0.1 mA OPERATING MODE IDDIO VDDIO current consumption during operational usage IDDA VDDA current consumption during operational usage This is an estimation of current for a typical heavily loaded application. Actual currents will vary depending on system activity, I/O electrical loading and switching frequency. This includes Core supply current with Internal Vreg Enabled. - CPU is running from RAM - Flash is powered up - X1/X2 crystal is powered up - PLL is enabled, SYSCLK=Max Device frequency - Analog modules are powered up - Outputs are static without DC Load - Inputs are static high or low IDLE MODE IDDIO VDDIO current consumption while device is in Idle mode IDDA VDDA current consumption while device is in Idle mode - CPU is in IDLE mode - Flash is powered down - PLL is Enabled, SYSCLK=Max Device Frequency, CPUCLK is gated - X1/X2 crystal is powered up - Analog Modules are powered down - Outputs are static without DC Load - Inputs are static high or low STANDBY MODE IDDIO VDDIO current consumption while device is in Standby mode IDDA VDDA current consumption while device is in Standby mode Copyright © 2023 Texas Instruments Incorporated - CPU is in STANDBY mode - Flash is powered down - PLL is Enabled, SYSCLK & CPUCLK are gated - X1/X2 crystal is powered down - Analog Modules are powered down - Outputs are static without DC Load - Inputs are static high or low Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 61 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.5.1 System Current Consumption (continued) over operating free-air temperature range (unless otherwise noted). TYP : Vnom, 30℃ PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 12.5 36 mA 0.01 0.1 mA 72 106 mA 0.1 2.5 mA HALT MODE IDDIO VDDIO current consumption while device is in Halt mode IDDA VDDA current consumption while device is in Halt mode - CPU is in HALT mode - Flash is powered down - PLL is Disabled, SYSCLK & CPUCLK are gated - X1/X2 crystal is powered down - Analog Modules are powered down - Outputs are static without DC Load - Inputs are static high or low FLASH ERASE/PROGRAM IDDIO VDDIO current consumption during Erase/Program cycle(1) IDDA VDDA current consumption during Erase/Program cycle - CPU is running from RAM - Flash going through continuous Program/Erase operation - PLL is enabled, SYSCLK at 120 MHz. - Peripheral clocks are turned OFF. - X1/X2 crystal is powered up - Analog is powered down - Outputs are static without DC Load - Inputs are static high or low RESET MODE IDDIO VDDIO current consumption while reset is active(2) 5.8 mA IDDA VDDA current consumption while reset is active(2) 0.1 mA (1) (2) 62 Brownout events during flash programming can corrupt flash data and permanently lock the device. Programming environments using alternate power sources (such as a USB programmer) must be capable of supplying the rated current for the device and other system components with sufficient margin to avoid supply brownout conditions. This is the current consumption while reset is active, that is XRSn is low. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.5.2 System Current Consumption - VREG Disable - External Supply over operating free-air temperature range (unless otherwise noted). TYP : Vnom, 30℃ PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 73 103.5 mA 4 4.7 mA 8 17.5 mA 25 48 mA 1.7 2.2 mA 0.01 0.1 mA 11.6 35 mA 1.7 2.3 mA 0.01 0.1 mA 8.5 31 mA 0.8 1.2 mA 0.01 0.1 mA OPERATING MODE IDD VDD current consumption during operational usage IDDIO VDDIO current consumption during operational usage IDDA VDDA current consumption during operational usage This is an estimation of current for a typical heavily loaded application. Actual currents will vary depending on system activity, I/O electrical loading and switching frequency. - CPU is running from RAM - Flash is powered up - X1/X2 crystal is powered up - PLL is enabled, SYSCLK=Max Device frequency - Analog modules are powered up - Outputs are static without DC Load - Inputs are static high or low IDLE MODE VDD current consumption while device - CPU is in IDLE mode is in Idle mode - Flash is powered down - PLL is Enabled, SYSCLK=Max VDDIO current consumption while Device Frequency, CPUCLK is device is in Idle mode gated - X1/X2 crystal is powered up - Analog Modules are powered VDDA current consumption while down device is in Idle mode - Outputs are static without DC Load - Inputs are static high or low IDD IDDIO IDDA STANDBY MODE VDD current consumption while device - CPU is in STANDBY mode is in Standby mode - Flash is powered down - PLL is Enabled, SYSCLK & VDDIO current consumption while CPUCLK are gated device is in Standby mode - X1/X2 crystal is powered down - Analog Modules are powered down VDDA current consumption while - Outputs are static without DC device is in Standby mode Load - Inputs are static high or low IDD IDDIO IDDA HALT MODE IDD IDDIO IDDA VDD current consumption while device - CPU is in HALT mode is in Halt mode - Flash is powered down - PLL is Disabled, SYSCLK & VDDIO current consumption while CPUCLK are gated device is in Halt mode - X1/X2 crystal is powered down - Analog Modules are powered down VDDA current consumption while - Outputs are static without DC device is in Halt mode Load - Inputs are static high or low Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 63 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.5.2 System Current Consumption - VREG Disable - External Supply (continued) over operating free-air temperature range (unless otherwise noted). TYP : Vnom, 30℃ PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 41 60.5 mA 31 45.5 mA 0.1 2.5 mA FLASH ERASE/PROGRAM IDD VDD Current consumption during Erase/Program cycle(1) IDDIO VDDIO Current consumption during Erase/Program cycle(1) IDDA VDDA Current consumption during Erase/Program cycle - CPU is running from RAM - Flash going through continuous Program/Erase operation - PLL is enabled, SYSCLK at 120 MHz. - Peripheral clocks are turned OFF. - X1/X2 crystal is powered up - Analog is powered down - Outputs are static without DC Load - Inputs are static high or low RESET MODE IDD VDD current consumption while reset is active(2) 3.3 mA IDDIO VDDIO current consumption while reset is active(2) 2.2 mA IDDA VDDA current consumption while reset is active(2) 0.1 mA (1) (2) 64 Brownout events during flash programming can corrupt flash data and permanently lock the device. Programming environments using alternate power sources (such as a USB programmer) must be capable of supplying the rated current for the device and other system components with sufficient margin to avoid supply brownout conditions. This is the current consumption while reset is active, that is XRSn is low. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.5.3 Operating Mode Test Description Section 6.5.1 and Section 6.5.5.1 list the current consumption values for the operational mode of the device. The operational mode provides an estimation of what an application might encounter. The test condition for these measurements has the following properties: • Code is executing from RAM. • FLASH is read and kept in active state. • No external components are driven by I/O pins. • All peripherals have clocks enabled. • The CPU is actively executing code. • All analog peripherals are powered up. ADCs and DACs are periodically converting. 6.5.4 Current Consumption Graphs The below graphs show a typical representation of the relationship between frequency, temperature, supply(VREG Enabled), and current consumption on the device. Actual results will vary based on the system implementation and conditions. Figure 6-2 shows the typical operating current profile across temperature and core supply voltage.Figure 6-3 shows the typical idle current profile across temperature and core supply voltage. Figure 6-4 shows the typical standby current profile across temperature and core supply voltage. Figure 6-5 shows the typical halt current profile across temperature and core supply voltage. 70 82.5 65 VddIO=2.80V VddIO=3.30V VddIO=3.63V 80 60 77.5 50 Idd IO (mA) Idd IO (mA) 55 45 40 35 75 72.5 70 30 67.5 25 20 15 20 65 30 40 50 60 70 80 SYSCLK (MHz) 90 100 110 120 Figure 6-1. Operating Current Versus Frequency 62.5 -40 40 60 80 100 120 140 25 VddIO=2.80V VddIO=3.30V VddIO=3.63V 23 VddIO=2.80V VddIO=3.30V VddIO=3.63V 21 34 19 32 Idd IO (mA) Idd IO (mA) 20 Figure 6-2. Operating Current Versus Temperature 36 30 28 17 15 13 26 11 24 9 22 20 -40 0 Temperature (°C) 40 38 -20 -20 0 20 40 60 80 100 120 140 Temperature (°C) Figure 6-3. Current Versus Temperature – IDLE Mode Copyright © 2023 Texas Instruments Incorporated 7 -40 -20 0 20 40 60 80 100 120 140 Temperature (°C) Figure 6-4. Current Versus Temperature – STANDBY Mode Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 65 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com 22.5 21 19.5 VddIO=2.80V VddIO=3.30V VddIO=3.63V 18 16.5 Idd IO (mA) 15 13.5 12 10.5 9 7.5 6 4.5 3 1.5 -40 -20 0 20 40 60 80 100 120 140 Temperature (°C) Figure 6-5. Current Versus Temperature – HALT Mode 66 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.5.5 Reducing Current Consumption The F28003x devices provide some methods to reduce the device current consumption: • One of the two low-power modes—IDLE or STANDBY—could be entered during idle periods in the application. • The flash module may be powered down if the code is run from RAM. • Disable the pullups on pins that assume an output function. • Each peripheral has an individual clock-enable bit (PCLKCRx). Reduced current consumption may be achieved by turning off the clock to any peripheral that is not used in a given application. Section 6.5.5.1 lists the typical current reduction that may be achieved by disabling the clocks using the PCLKCRx register. • To realize the lowest VDDA current consumption in an LPM, see the Analog-to-Digital Converter (ADC) chapter of the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual to ensure each module is powered down as well. 6.5.5.1 Typical Current Reduction per Disabled Peripheral PERIPHERAL IDD CURRENT REDUCTION (mA) ADC(1) 0.73 CLA 0.56 CLA BGCRC 0.42 CLB 1.41 CMPSS(1) 0.33 CPU BGCRC 0.25 CPU TIMER 0.04 GPDAC 0.12 DCAN 1.28 DCC 0.12 DMA 0.57 eCAP1 and eCAP2 0.08 eCAP3(2) 0.29 ePWM1 to ePWM4(3) 0.95 ePWM5 to ePWM8 0.78 ERAD 1.56 eQEP 0.1 FSI RX 0.34 FSI TX 0.27 HIC 0.17 I2C 0.26 LIN 0.35 MCAN (CAN FD) 1.01 PMBUS 0.28 SCI 0.16 SDFM 1.83 SPI 0.08 (1) (2) (3) This current represents the current drawn by the digital portion of the each module. eCAP3 can also be configured as HRCAP. ePWM1 to ePWM4 can also be configured as HRPWM. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 67 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.6 Electrical Characteristics over recommended operating conditions (unless otherwise noted) TEST CONDITIONS PARAMETER MIN TYP MAX UNIT Digital and Analog IO IOH = IOH MIN VDDIO * 0.8 IOH = –100 μA VDDIO – 0.2 VOH High-level output voltage VOL Low-level output voltage IOH High-level output source current for all output pins IOL Low-level output sink current for all output pins ROH High-level output impedance for all output pins VOH=VDDIO-0.4V ROL Low-level output impedance for all output pins VOL=0.4V VIH High-level input voltage VIL Low-level input voltage VHYSTERESIS Input hysteresis IPULLDOWN Input current Pins with pulldown VDDIO = 3.3 V VIN = VDDIO 120 µA IPULLUP Input current Digital inputs with pullup VDDIO = 3.3 V enabled(1) VIN = 0 V 160 µA RPULLDOWN Weak pulldown resistance RPULLUP Weak pullup resistance Pin leakage Input capacitance 0.4 IOL = 100 µA 0.2 –4 V mA 4 mA 50 66 96 Ω 48 60 84 Ω V 0.8 125 Analog pins (except ADCINB3/VDAC) ADCINB3/VDAC CI IOL = IOL MAX 2.0 Digital inputs ILEAK V Digital inputs 22 31 62 kΩ 19 30 54 kΩ Pullups and outputs disabled 0 V ≤ VIN ≤ VDDIO Analog drivers disabled 0 V ≤ VIN ≤ VDDA V mV 0.1 µA 0.1 0.2 4.4 2 Analog pins(2) pF VREG, POR and BOR VREG, POR, BOR(3) (1) (2) (3) 68 See Pins With Internal Pullup and Pulldown table for a list of pins with a pullup or pulldown. The analog pins are specified separately; see the Per-Channel Parasitic Capacitance tables that are in the ADC Input Model section. See the Power Management Module (PMM) section. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.7 Thermal Resistance Characteristics for PZ Package °C/W(1) AIR FLOW (lfm)(2) RΘJC Junction-to-case thermal resistance 7.6 N/A RΘJB Junction-to-board thermal resistance 24.2 N/A RΘJA (High k PCB) Junction-to-free air thermal resistance 46.1 0 37.3 150 34.8 250 32.6 500 RΘJMA PsiJT PsiJB (1) (2) Junction-to-moving air thermal resistance Junction-to-package top Junction-to-board 0.2 0 0.4 150 0.4 250 0.6 500 23.8 0 22.8 150 22.4 250 21.9 500 These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements lfm = linear feet per minute Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 69 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.8 Thermal Resistance Characteristics for PN Package °C/W(1) AIR FLOW (lfm)(2) RΘJC Junction-to-case thermal resistance 14.2 N/A RΘJB Junction-to-board thermal resistance 21.9 N/A RΘJA (High k PCB) PsiJT PsiJB (1) (2) 70 Junction-to-free air thermal resistance Junction-to-package top Junction-to-board 49.9 0 38.3 150 36.7 250 34.4 500 0.8 0 1.18 150 1.34 250 1.62 500 21.6 0 20.7 150 20.5 250 20.1 500 These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements lfm = linear feet per minute Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.9 Thermal Resistance Characteristics for PM Package °C/W(1) AIR FLOW (lfm)(2) RΘJC Junction-to-case thermal resistance 12.4 N/A RΘJB Junction-to-board thermal resistance 25.6 N/A RΘJA (High k PCB) Junction-to-free air thermal resistance 51.8 0 42.2 150 39.4 250 36.5 500 RΘJMA PsiJT PsiJB (1) (2) Junction-to-moving air thermal resistance Junction-to-package top Junction-to-board 0.5 0 0.9 150 1.1 250 1.4 500 25.1 0 23.8 150 23.4 250 22.7 500 These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements lfm = linear feet per minute Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 71 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.10 Thermal Resistance Characteristics for PT Package °C/W(1) AIR FLOW (lfm)(2) RΘJC Junction-to-case thermal resistance 16.2 N/A RΘJB Junction-to-board thermal resistance 22.3 N/A RΘJA (High k PCB) PsiJT PsiJB (1) (2) Junction-to-free air thermal resistance Junction-to-package top Junction-to-board 56.7 0 50.4 150 48.2 250 45 500 0.7 0 0.94 150 1.1 250 1.38 500 22 0 28.7 150 28.4 250 28 500 These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements lfm = linear feet per minute 6.11 Thermal Design Considerations Based on the end application design and operational profile, the IDD and IDDIO currents could vary. Systems that exceed the recommended maximum power dissipation in the end product may require additional thermal enhancements. Ambient temperature (TA) varies with the end application and product design. The critical factor that affects reliability and functionality is TJ, the junction temperature, not the ambient temperature. Hence, care should be taken to keep TJ within the specified limits. Tcase should be measured to estimate the operating junction temperature TJ. Tcase is normally measured at the center of the package top-side surface. The thermal application report Semiconductor and IC Package Thermal Metrics helps to understand the thermal metrics and definitions. 72 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.12 System 6.12.1 Power Management Module (PMM) 6.12.1.1 Introduction The Power Management Module (PMM) handles all the power management functions required for device operation. 6.12.1.2 Overview The block diagram of the PMM is shown in Figure 6-6. As can be seen, the PMM comprises of various subcomponents, which are described in the subsequent sections. MCU To Rest of Chip PMM I/O POR CPU Reset Release RISE DELAY (45us) RISE DELAY (80us) I/O BOR Internal All Monitors Release Signal RISE DELAY (145us) RISE DELAY (40us) EN VMONCTL.bit.BORLVMONDIS CVDDIO XRSn VREGENZ VSS Internal VDD 1.2v LDO VREG VSS External VDDIO Internal VDD POR OUT IN EN External CVDD Figure 6-6. PMM Block Diagram 6.12.1.2.1 Power Rail Monitors The PMM has voltage monitors on the supply rails that release the XRSn signal high once the voltages cross the set threshold during power up. They also function to trip the XRSn signal low if any of the voltages drop below the programmed levels. The various voltage monitors are described in subsequent sections. Note Not all the voltage monitors are supported for device operation in an application after boot up. In the case where a voltage monitor is not supported, an external supervisor is recommended if the device needs supply voltage monitoring while the application is running. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 73 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com The three voltage monitors (I/O POR, I/O BOR, VDD POR) all have to release their respective outputs before the device begins operation (that is, XRSn goes high). However, if any of the voltage monitors trips, XRSn is driven low. The I/Os are held in high impedance when any of the voltage monitors trip. 6.12.1.2.1.1 I/O POR (Power-On Reset) Monitor The I/O POR monitor supervises the VDDIO rail. During power up, this is the first monitor to release (that is, first to untrip) on VDDIO. 6.12.1.2.1.2 I/O BOR (Brown-Out Reset) Monitor The I/O BOR monitor also supervises the VDDIO rail. During power up, this is the second monitor to release (that is, second to untrip) on VDDIO. This monitor has a tighter tolerance compared to the I/O POR. Any drop in voltage below the recommended operating voltages will trip the I/O BOR and reset the device but this can be disabled by setting VMONCTL.bit.BORLVMONDIS to 1. The I/O BOR can only be disabled after the device has fully booted up. If the I/O BOR is disabled, the I/O POR will reset the device for voltage drops. Note The level at which the I/O POR trips is well below the minimum recommended voltage for VDDIO, and therefore should not be used for device supervision. Figure 6-7 shows the operating region of the I/O BOR. 3.63 V +10% 0% 3.3 V Recommended System Voltage Regulator Range VDDIO Operating Range 3.1 V –6.1% 3.0 V –9.1% VBOR-GB BOR Guard Band VBOR-VDDIO Internal BOR Threshold 2.81 V 2.80 V –14.8% –15.1% Figure 6-7. I/O BOR Operating Region 6.12.1.2.1.3 VDD POR (Power-On Reset) Monitor The VDD POR monitor supervises the VDD rail. During power up, this monitor releases (that is, untrips) once the voltage crosses the programmed trip level on VDD. Note VDD POR is programmed at a level below the minimum recommended voltage for VDD, and therefore it should not be relied upon for VDD supervision if that is required in the application. 6.12.1.2.2 External Supervisor Usage VDDIO Monitoring: The I/O BOR is supported for application use, so an external supervisor is not required to monitor the I/O rail. 74 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 VDD Monitoring: • VDD supplied from the internal VREG: The VDD supply is derived from the VDDIO supply. The VREG is designed in such a way that a valid VDDIO supply(monitored by the IO BOR) implies a valid VDD supply. • VDD supplied from an external supply: The VDD POR is not supported for application use. If VDD monitoring is required by the application, an external supervisor can be used to monitor the VDD rail. Note The use of an external supervisor with the internal VREG is not supported.If VDD monitoring is required by the application, a package with a VREGENZ pin must be used to power VDD externally. 6.12.1.2.3 Delay Blocks The delay blocks in the path of the voltage monitors work together to delay the release time between the voltage monitors and XRSn. These delays are designed to make sure that the voltages are stable when XRSn releases in external VREG mode. The delay blocks are only active during power up (that is, when VDDIO and VDD are ramping up). The delay blocks contribute to the minimum slew rates specified in Power Management Module Electrical Data and Timing for the power rails. Note The delay numbers specified in the block diagram are typical numbers. 6.12.1.2.4 Internal 1.2-V LDO Voltage Regulator (VREG) The internal VREG is supplied by the VDDIO rail and can generate the 1.2 V required to power the VDD pins. It is enabled by tying the VREGENZ pin low. Although the internal VREG eliminates the need to use an external supply for VDD, decoupling capacitors are still required on the VDD pins for VREG stability and transients. See the VDD Decoupling section for details. 6.12.1.2.5 VREGENZ The VREGENZ (VREG disable) pin controls the state of the internal VREG. To enable the internal VREG, connect the VREGENZ pin to a logic low voltage. For applications supplying VDD externally (external VREG), disable the internal VREG by tying the VREGENZ pin high. Note Not all device packages have VREGENZ pinned out. For packages without VREGENZ, external VREG mode is not supported. 6.12.1.3 External Components 6.12.1.3.1 Decoupling Capacitors VDDIO and VDD require decoupling capacitors for correct operation. The requirements are outlined in subsequent sections. 6.12.1.3.1.1 VDDIO Decoupling Place a minimum amount of decoupling capacitance on VDDIO. See the CVDDIO parameter in Power Management Module Electrical Data and Timing. The actual amount of decoupling capacitance to use is a requirement of the power supply driving VDDIO. Either of the configurations outlined below is acceptable: • Configuration 1: Place a decoupling capacitor on each VDDIO pin per the CVDDIO parameter. • Configuration 2: Install a single decoupling capacitor that is the equivalent of CVDDIO * VDDIO pins. Note Having the decoupling capacitor or capacitors close to the device pins is critical. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 75 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com 6.12.1.3.1.2 VDD Decoupling Place a minimum amount of decoupling capacitance on VDD. See the CVDD TOTAL parameter in Power Management Module Electrical Data and Timing. In external VREG mode, the actual amount of decoupling capacitance to use is a requirement of the power supply driving VDD. Either of the configurations outlined below is acceptable: • • Configuration 1: Divide CVDD TOTAL across the VDD pins. Configuration 2: Install a single decoupling capacitor with value of CVDD TOTAL. Note Having the decoupling capacitor or capacitors close to the device pins is critical. 6.12.1.4 Power Sequencing 6.12.1.4.1 Supply Pins Ganging Connecting all 3.3-V rails together and supplying from a single source are strongly recommended. This list includes: • VDDIO • VDDA In addition, connect all power pins to avoid leaving any unconnected. In external VREG mode, the VDD pins should be tied together and supplied from a single source. In internal VREG mode, tying the VDD pins together is optional as long as each VDD pin has a capacitor connected to pin. See the VDD Decoupling section for VDD decoupling configurations. The analog modules on the device have fairly high PSRR; therefore, in most cases, noise on VDDA will have to exceed the recommended operating conditions of the supply rails before the analog modules see performance degradation. Therefore, supplying VDDA separately typically offers minimal benefits. Nevertheless, for the purposes of noise improvement, placing a pi filter between VDDIO and VDDA is acceptable. Note All the supply pins per rail are tied together internally. For example, all VDDIO pins are tied together internally, all VDD pins are tied together internally, and so forth. 6.12.1.4.2 Signal Pins Power Sequence Before powering the device, do not apply voltage larger than 0.3 V above VDDIO or 0.3 V below VSS to any digital pin and 0.3 V above VDDA or 0.3 V below VSSA to any analog pin (including VREFHI and VDAC). Simply, the signal pins should only be driven after XRSn goes high, provided all the 3.3-V rails are tied together. This sequencing is still required even if VDDIO and VDDA are not tied together. CAUTION If the above sequence is violated, device malfunction and possibly damage can occur as current will flow through unintended parasitic paths in the device. 6.12.1.4.3 Supply Pins Power Sequence 6.12.1.4.3.1 External VREG/VDD Mode Sequence Figure 6-8 depicts the power sequencing requirements for external VREG mode. The values for all the parameters indicated can be found in Power Management Module Electrical Data and Timing. 76 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 VDDIO VBOR-VDDIO-UP (A) SRVDDIO-UP VPOR-VDDIO SRVDD-UP VDD Internal All Monitors Release Signal(C) XRSn VDDIO VBOR-VDDIO-DN(B) VDD Internal All Monitors Release Signal(D) SRVDD-DN VPOR-VDD-DN(B) VPOR-VDD-UP(A) XRSn SRVDDIO-DN VPOR-VDDIO VDDIO - VDD Delay VDDIO-MON-TOT-DELAY A. B. C. D. VXRSn-PU-DELAY VXRSn-PD-DELAY This trip point is the trip point before XRSn releases. See the Power Management Module Characteristics table. This trip point is the trip point after XRSn releases. See the Power Management Module Characteristics table. During power up, the All Monitors Release Signal goes high after all POR and BOR monitors are released. See the PMM Block Diagram. During power down, the All Monitors Release Signal goes low if any of the POR or BOR monitors are tripped. See the PMM Block Diagram. Figure 6-8. External VREG Power Up Sequence • • For Power Up: 1. VDDIO (that is, the 3.3-V rail) should come up first with the minimum slew rate specified. 2. VDD (that is, the 1.2-V rail) should come up next with the minimum slew rate specified. 3. The time delta between the VDDIO rail coming up and when the VDD rail can come up is also specified. 4. After the times specified by VDDIO-MON-TOT-DELAY and VXRSN-PD-DELAY, XRSn will be released and the device starts the boot-up sequence. There is an additional delay between XRSn releasing (that is, going high) and the boot-up sequence starting. See Figure 6-6. 5. The I/O BOR monitor has different release points during power up and power down. 6. During power up, both VDDIO and VDD rails have to be up before XRSn releases. For Power Down: 1. There is no requirement between VDDIO and VDD on which should power down first; however, there is a minimum slew rate specification. 2. The I/O BOR monitor has different release points during power up and power down. 3. Any of the POR or BOR monitors that trips during power down will cause XRSn to go low after VXRSN-PD-DELAY. Note The All Monitors Release Signal is an internal signal. Note If there is an external circuit driving XRSn (for example, a supervisor), the boot-up sequence does not start until the XRSn pin is released by all internal and external sources. 6.12.1.4.3.2 Internal VREG/VDD Mode Sequence Figure 6-9 depicts the power sequencing requirements for internal VREG mode. The values for all the parameters indicated can be found in Power Management Module Electrical Data and Timing. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 77 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 VDDIO VBOR-VDDIO-UP VDDIO (A) VBOR-VDDIO-DN(B) Internal All Monitors Release Signal(C) XRSn SRVDDIO-UP Internal All Monitors Release Signal(D) XRSn SRVDDIO-DN VPOR-VDDIO VPOR-VDDIO VDDIO-MON-TOT-DELAY A. B. C. D. VXRSn-PU-DELAY VXRSn-PD-DELAY This trip point is the trip point before XRSn releases. See the Power Management Module Characteristics table. This trip point is the trip point after XRSn releases. See the Power Management Module Characteristics table. During power up, the All Monitors Release Signal goes high after all POR and BOR monitors are released. See the PMM Block Diagram. During power down, the All Monitors Release Signal goes low if any of the POR or BOR monitors are tripped. See the PMM Block Diagram. Figure 6-9. Internal VREG Power Up Sequence • • For Power Up: 1. VDDIO (that is, the 3.3-V rail) should come up with the minimum slew rate specified. 2. The Internal VREG powers up after the I/O monitors (I/O POR and I/O BOR) are released. 3. After the times specified by VDDIO-MON-TOT-DELAY and VXRSN-PU-DELAY, XRSn will be released and the device starts the boot-up sequence. There is an additional delay between XRSn releasing (that is, going high) and the boot-up sequence starting. See Figure 6-6. 4. The I/O BOR monitor has different release points during power up and power down. For Power Down: 1. The only requirement on VDDIO during power down is the slew rate. 2. The I/O BOR monitor has different release points during power up and power down. 3. The I/O BOR tripping will cause XRSn to go low after VXRSN-PD-DELAY and also power down the Internal VREG. Note The All Monitors Release Signal is an internal signal. Note If there is an external circuit driving XRSn (for example, a supervisor), the boot-up sequence does not start until the XRSn pin is released by all internal and external sources. 6.12.1.4.3.3 Supply Sequencing Summary and Effects of Violations The acceptable power-up sequence for the rails is summarized below. "Power up" here means the rail in question has reached the minimum recommended operating voltage. CAUTION Non-acceptable sequences leads to reliability concerns and possibly damage. For simplicity, connecting all 3.3-V rails together and following the descriptions in Supply Pins Power Sequence is recommended. 78 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 6-1. External VREG Sequence Summary CASE RAILS POWER-UP ORDER ACCEPTABLE VDDIO VDDA VDD A 1 2 3 Yes B 1 3 2 Yes C 2 1 3 - D 2 3 1 - E 3 2 1 - F 3 1 2 - G 1 1 2 Yes H 2 2 1 - Table 6-2. Internal VREG Sequence Summary CASE RAILS POWER-UP ORDER ACCEPTABLE VDDIO VDDA A 1 2 Yes B 2 1 - C 1 1 Yes Note The analog modules on the device should only be powered after VDDA has reached the minimum recommended operating voltage. 6.12.1.4.3.4 Supply Slew Rate VDDIO has a minimum slew rate requirement. If the minimum slew rate is not met, XRSn might toggle a few times until VDDIO crosses the I/O BOR region. Note The toggling on XRSn has no adverse effect on the device as boot only starts once XRSn is steadily high. However if XRSn from the device is used to gate the reset signal of other ICs, then the slew rate requirement should be met to prevent this toggling. VDD has a minimum slew rate requirement in external VREG mode. If the minimum slew rate is not met, the VDD POR may release before the VDD operational minimum voltage is met and the device may not start in a properly reset state. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 79 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.12.1.5 Power Management Module Electrical Data and Timing 6.12.1.5.1 Power Management Module Operating Conditions over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT General CVDDIO (1) (2) VDDIO Capacitance Per Pin(7) 0.1 μF CVDDA (1) (2) VDDA Capacitance Per Pin(7) 2.2 μF SRVDDIO-UP (3) Supply Ramp Up Rate of 3.3V Rail (VDDIO) SRVDDIO-DN (3) Supply Ramp Down Rate of 3.3V Rail (VDDIO) 8 100 mV/μs 20 100 mV/μs VBOR-VDDIO-GB VDDIO Brown Out Reset (5) Voltage Guardband 0.1 V External VREG CVDD TOTAL(1) (4) Total VDD Capacitance(7) 10 SRVDD-UP (3) Supply Ramp Up Rate of 1.2V Rail (VDD) 3.5 100 mV/μs SRVDD-DN (3) Supply Ramp Down Rate of 1.2V Rail (VDD) 10 100 mV/μs VDDIO - VDD Delay(6) Ramp Delay Between VDDIO and VDD 0 No Restrictions μs 10 26.8 μF μF Internal VREG CVDD TOTAL(4) (1) (2) (3) (4) (5) (6) (7) Total VDD Capacitance(7) The exact value of the decoupling capacitance depends on the system voltage regulation solution that is supplying these pins. It is recommended to tie the 3.3V rails (VDDIO, VDDA) together and supply them from a single source. See the Supply Slew Rate section. Supply ramp rate faster than the maximum can trigger the on-chip ESD protection. See the Power Management Module (PMM) section on possible configurations for the total decoupling capacitance. TI recommends VBOR-VDDIO-GB to avoid BOR-VDDIO resets due to normal supply noise or load-transient events on the 3.3-V VDDIO system regulator. Good system regulator design and decoupling capacitance (following the system regulator specifications) are important to prevent activation of the BOR-VDDIO during normal device operation. The value of VBOR-VDDIO-GB is a system-level design consideration; the voltage listed here is typical for many applications. Delay between when the 3.3-V rail ramps up and when the 1.2-V rail ramps up. See the VREG Sequence Summary table for the allowable supply ramp sequences. Max capacitor tolerance should be 20%. 6.12.1.5.2 Power Management Module Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER VVREG Internal Voltage Regulator Output VVREG-PU Internal Voltage Regulator Power Up Time VVREG-INRUSH (5) Internal Voltage Regulator Inrush Current VPOR-VDDIO VDDIO Power on Reset Voltage TEST CONDITIONS MIN TYP MAX UNIT 1.14 1.2 1.32 V 350 µs 650 mA Before and After XRSn Release 2.3 V VBOR-VDDIO-UP VDDIO Brown Out Reset (1) Voltage on Ramp Up Before XRSn Release 2.7 V VBOR-VDDIO-DN VDDIO Brown Out Reset (1) Voltage on Ramp Down After XRSn Release 80 Submit Document Feedback 2.81 3.0 V Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.12.1.5.2 Power Management Module Characteristics (continued) over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VPOR-VDD-UP VDD Power on Reset Voltage Before XRSn Release on Ramp Up 1 V VPOR-VDD-DN VDD Power on Reset Voltage After XRSn Release on Ramp Down 1 V 40 μs 2 μs 145 μs 40 μs 140 μs 185 μs (2) (2) VXRSn-PUDELAY (3) VXRSn-PDDELAY (4) VDDIO-MONTOT-DELAY XRSn Release Delay after Supplies are Ramped Up During Power Up This is the final delay XRSn Trip Delay after Supplies are Ramped Down During Power Down Total Delays in Path of VDDIO Monitors (POR, BOR) XRSn Release Delay after a VDD POR Event VXRSn-MONRELEASE-DELAY XRSn Release Delay after a VDDIO BOR Supplies Within Operating Range XRSn Release Delay after a VDDIO POR Event (1) (2) (3) (4) (5) See the Supply Voltages figure. VPOR-VDD is not supported and it is set to trip at a level below the recommended operating conditions. If monitoring of VDD is needed, an external supervisor is required. Supplies are considered fully ramped up after they cross the minimum recommended operating conditions for the respective rail. All POR and BOR monitors need to be released before this delay takes effect. RC network delay will add to this. On power down, any of the POR or BOR monitors that trips will immediately trip XRSn. This delay is the time between any of the POR, BOR monitors tripping and XRSn going low. It is variable and depends on the ramp down rate of the supply. RC network delay will add to this. This is the transient current drawn on the VDDIO rail when the internal VREG turns on. Due to this, there might be some voltage drops on the VDDIO rail when the VREG turns on which could cause the VREG to ramp up in steps. There is no detriment to the device from this but the effect can be reduced if desired by using sufficient decoupling capacitors on VDDIO or picking an LDO/DC-DC that can supply this transient current. Supply Voltages 3.63 V 3.3 V +10% 0% Recommended System Voltage Regulator Range VDDIO Operating Range 3.1 V –6.1% 3.0 V –9.1% VBOR-GB BOR Guard Band VBOR-VDDIO Internal BOR Threshold 2.81 V 2.80 V –14.8% –15.1% Figure 6-10. Supply Voltages Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 81 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.12.2 Reset Timing XRSn is the device reset pin. It functions as an input and open-drain output. The device has a built-in power-on reset (POR) and brown-out reset (BOR) monitors. During power up, the monitor circuits keep the XRSn pin low. For more details, see the Power Management Module (PMM) section. A watchdog or NMI watchdog reset will also drive the pin low. An external open-drain circuit may drive the pin to assert a device reset. A resistor with a value from 2.2 kΩ to 10 kΩ should be placed between XRSn and VDDIO. A capacitor should be placed between XRSn and VSS for noise filtering, it should be 100 nF or smaller. These values will allow the watchdog to properly drive the XRSn pin to VOL within 512 OSCCLK cycles when the watchdog reset is asserted. Figure 6-11 shows the recommended reset circuit. VDDIO 2.2 kW to 10 kW Optional open-drain Reset source XRSn £100 nF Figure 6-11. Reset Circuit 6.12.2.1 Reset Sources The Reset Signals table summarizes the various reset signals and their effect on the device. Table 6-3. Reset Signals Reset Source CPU Core Reset (C28x, FPU, TMU) Peripherals Reset JTAG / Debug Logic Reset IOs XRS Output POR Yes Yes Yes Hi-Z Yes BOR Yes Yes Yes Hi-Z Yes XRS Pin Yes Yes No Hi-Z - WDRS Yes Yes No Hi-Z Yes NMIWDRS Yes Yes No Hi-Z Yes SYSRS (Debugger Reset) Yes Yes No Hi-Z No SCCRESET Yes Yes No Hi-Z No SIMRESET. XRS Yes Yes No Hi-Z Yes SIMRESET. CPU1RS Yes Yes No Hi-Z No HWBISTRS Yes No No No No The parameter th(boot-mode) must account for a reset initiated from any of these sources. See the Resets section of the System Control chapter in the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual. CAUTION Some reset sources are internally driven by the device. Some of these sources will drive XRSn low, use this to disable any other devices driving the boot pins. The SCCRESET and debugger reset sources do not drive XRSn; therefore, the pins used for boot mode should not be actively driven by other devices in the system. The boot configuration has a provision for changing the boot pins in OTP. 82 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.12.2.2 Reset Electrical Data and Timing 6.12.2.2.1 Reset - XRSn - Timing Requirements MIN MAX UNIT th(boot-mode) Hold time for boot-mode pins 1.5 ms tw(RSL2) Pulse duration, XRSn low on warm reset 3.2 µs 6.12.2.2.2 Reset - XRSn - Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER MIN tw(RSL1) Pulse duration, XRSn driven low by device after supplies are stable tw(WDRS) Pulse duration, reset pulse generated by watchdog tboot-flash Boot-ROM execution time to first instruction fetch in flash TYP MAX 100 UNIT µs 512tc(OSCCLK) cycles 1.2 ms 6.12.2.2.3 Reset Timing Diagrams VDDIO VDDA (3.3V) VDD (1.2V) tw(RSL1) XRSn(A) tboot-flash Boot ROM CPU Execution Phase User code th(boot-mode)(B) Boot-Mode Pins User code dependent GPIO pins as input Peripheral/GPIO function Based on boot code Boot-ROM execution starts I/O Pins GPIO pins as input (pullups are disabled) User code dependent A. B. The XRSn pin can be driven externally by a supervisor or an external pullup resistor, see the Pin Attributes table. On-chip monitors will hold this pin low until the supplies are in a valid range. After reset from any source (see the Reset Sources section), the boot ROM code samples Boot Mode pins. Based on the status of the Boot Mode pin, the boot code branches to destination memory or boot code function. If boot ROM code executes after power-on conditions (in debugger environment), the boot code execution time is based on the current SYSCLK speed. The SYSCLK will be based on user environment and could be with or without PLL enabled. Figure 6-12. Power-on Reset Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 83 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 tw(RSL2) XRSn User code CPU Execution Phase Boot ROM User code Boot ROM execution starts (initiated by any reset source) Boot-Mode Pins Peripheral/GPIO function GPIO Pins as Input th(boot-mode)(A) Peripheral/GPIO function User-Code Execution Starts I/O Pins User-Code Dependent GPIO Pins as Input (Pullups are Disabled) User-Code Dependent A. After reset from any source (see the Reset Sources section), the Boot ROM code samples BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code branches to destination memory or boot code function. If Boot ROM code executes after power-on conditions (in debugger environment), the Boot code execution time is based on the current SYSCLK speed. The SYSCLK will be based on user environment and could be with or without PLL enabled. Figure 6-13. Warm Reset 84 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.12.3 Clock Specifications 6.12.3.1 Clock Sources Table 6-4. Possible Reference Clock Sources CLOCK SOURCE DESCRIPTION INTOSC1 Internal oscillator 1. Zero-pin overhead 10-MHz internal oscillator. INTOSC2(1) Internal oscillator 2. Zero-pin overhead 10-MHz internal oscillator. X1 (XTAL) External crystal or resonator connected between the X1 and X2 pins or single-ended clock connected to the X1 pin. (1) On reset, internal oscillator 2 (INTOSC2) is the default clock source for the PLL (OSCCLK). Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 85 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 SYSCLKDIVSEL PLLSYSCLK NMIWD Watchdog Timer SYSPLL INTOSC1 INTOSC2 SYS Divider PLLRAWCLK FPU TMU Flash CPUCLK OSCCLK SYSPLLCLKEN X1 (XTAL) OSCCLKSRCSEL CPU SYSCLK SYSCLK One per SYSCLK peripheral PCLKCRx PERx.SYSCLK ePIE CLA GPIO Mx RAMs LSx RAMs GSx RAMs Boot ROM Message RAMs DCSM System Control WD XINT I2C ADC CMPSS GPDAC CAN MCAN HIC DCC HWBIST BGCRC ERAD CPUTIMERs CLB ECAP EQEP EPWM HRCAL PMBUS LIN FSI SDFM EPG AES One per LSPCLK peripheral LOSPCP PCLKCRx LSP Divider LSPCLK PERx.LSPCLK SCI SPI CLKSRCCTL2.CANxBCLKSEL AUXCLKIN (GPIO29) CAN Bit Clock PERx.SYSCLK CLKSRCCTL2.MCANxBCLKSEL CPUSYSCLK PLLRAWCLK / MCAN Bit Clock AUXCLKDIVSEL.MCANCLKDIV Figure 6-14. Clocking System 86 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 SYSPLL OSCCLK ÷ INTCLK VCO (REFDIV+1) VCOCLK PLLRAWCLK ÷ (ODIV+1) ÷ IMULT Figure 6-15. System PLL In the System PLL figure, fPLLRAWCLK = fOSCCLK × IMULT REFDIV + 1 ODIV + 1 Copyright © 2023 Texas Instruments Incorporated (1) Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 87 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.12.3.2 Clock Frequencies, Requirements, and Characteristics This section provides the frequencies and timing requirements of the input clocks, PLL lock times, frequencies of the internal clocks, and the frequency and switching characteristics of the output clock. 6.12.3.2.1 Input Clock Frequency and Timing Requirements, PLL Lock Times 6.12.3.2.1.1 Input Clock Frequency MIN MAX UNIT f(XTAL) Frequency, X1/X2, from external crystal or resonator 10 20 MHz f(X1) Frequency, X1, from external oscillator 10 25 MHz f(AUXI) Frequency, AUXCLKIN, from external oscillator 10 60 MHz 6.12.3.2.1.2 XTAL Oscillator Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER X1 VIL Valid low-level input voltage (Comparator) X1 VIH Valid high-level input voltage (Comparator) MIN TYP MAX UNIT –0.3 0.3 * VDDIO V 0.7 * VDDIO VDDIO + 0.3 V 6.12.3.2.1.3 X1 Input Level Characteristics When Using an External Clock Source - Not a Crystal over recommended operating conditions (unless otherwise noted) PARAMETER X1 VIL Valid low-level input voltage (Buffer) X1 VIH Valid high-level input voltage (Buffer) MIN MAX UNIT –0.3 0.3 * VDDIO V 0.7 * VDDIO VDDIO + 0.3 V 6.12.3.2.1.4 X1 Timing Requirements MIN MAX tf(X1) Fall time, X1 tr(X1) Rise time, X1 tw(X1L) Pulse duration, X1 low as a percentage of tc(X1) 45% 55% tw(X1H) Pulse duration, X1 high as a percentage of tc(X1) 45% 55% MIN MAX UNIT 6 ns 6 ns 6.12.3.2.1.5 AUXCLKIN Timing Requirements UNIT tf(AUXI) Fall time, AUXCLKIN 6 ns tr(AUXI) Rise time, AUXCLKIN 6 ns tw(AUXL) Pulse duration, AUXCLKIN low as a percentage of tc(XCI) 45% 55% tw(AUXH) Pulse duration, AUXCLKIN high as a percentage of tc(XCI) 45% 55% 6.12.3.2.1.6 APLL Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER MIN TYP MAX UNIT PLL Lock time SYS PLL Lock Time(1) (1) 88 5µs + (1024 * (REFDIV + 1) * tc(OSCCLK)) μs The PLL lock time here defines the typical time that takes for the PLL to lock once PLL is enabled (SYSPLLCTL1[PLLENA]=1). Additional time to verify the PLL clock using Dual Clock Comparator (DCC) is not accounted here. TI recommends using the latest example software from C2000Ware for initializing the PLLs. For the system PLL, see InitSysPll() or SysCtl_setClock(). Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.12.3.2.1.7 XCLKOUT Switching Characteristics - PLL Bypassed or Enabled over recommended operating conditions (unless otherwise noted) PARAMETER(1) MIN MAX UNIT tf(XCO) Fall time, XCLKOUT 5 ns tr(XCO) Rise time, XCLKOUT 5 ns tw(XCOL) Pulse duration, XCLKOUT low H – 2(2) H + 2(2) ns 2(2) 2(2) ns 50 MHz tw(XCOH) Pulse duration, XCLKOUT high f(XCO) Frequency, XCLKOUT (1) (2) H– H+ A load of 40 pF is assumed for these parameters. H = 0.5tc(XCO) 6.12.3.2.1.8 Internal Clock Frequencies MIN f(SYSCLK) Frequency, device (system) clock tc(SYSCLK) Period, device (system) clock f(INTCLK) Frequency, system PLL going into VCO (after REFDIV) f(VCOCLK) Frequency, system PLL VCO (before ODIV) f(PLLRAWCLK) Frequency, system PLL output (before SYSCLK divider) f(PLL) Frequency, PLLSYSCLK UNIT 120 MHz 8.33 500 ns 2 20 MHz 220 600 MHz 6 240 MHz 2 120 MHz (1) f(PLL_LIMP) Frequency, PLL Limp Frequency f(LSP) Frequency, LSPCLK tc(LSPCLK) Period, LSPCLK f(OSCCLK) Frequency, OSCCLK (INTOSC1 or INTOSC2 or XTAL or X1) f(EPWM) Frequency, EPWMCLK f(HRPWM) Frequency, HRPWMCLK (1) MAX 2 NOM 45/(ODIV+1) MHz 2 120 MHz 8.33 500 ns See respective clock 60 MHz 120 MHz 120 MHz PLL output frequency when OSCCLK is dead (Loss of OSCCLK causes PLL to Limp). Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 89 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.12.3.3 Input Clocks and PLLs In addition to the internal 0-pin oscillators, three types of external clock sources are supported: • A single-ended 3.3-V external clock. The clock signal should be connected to X1, as shown in Figure 6-16, with the XTALCR.SE bit set to 1. • An external crystal. The crystal should be connected across X1 and X2 with its load capacitors connected to VSS as shown in Figure 6-17. • An external resonator. The resonator should be connected across X1 and X2 with its ground connected to VSS as shown in Figure 6-18. Microcontroller Microcontroller VSS GPIO19 GPIO18* X1 X2 GPIO19 GPIO18 X1 X2 * Available as a GPIO when X1 is used as a clock +3.3 V VDD VSS Out 3.3-V Oscillator Gnd Figure 6-17. External Crystal Figure 6-16. Single-ended 3.3-V External Clock Microcontroller VSS GPIO19 GPIO18 X1 X2 Figure 6-18. External Resonator 6.12.3.4 XTAL Oscillator 6.12.3.4.1 Introduction The crystal oscillator in this device is an embedded electrical oscillator that, when paired with a compatible quartz crystal (or a ceramic resonator), can generate the system clock required by the device. 6.12.3.4.2 Overview The following sections describe the components of the electrical oscillator and crystal. 6.12.3.4.2.1 Electrical Oscillator The electrical oscillator in this device is a Pierce oscillator. It is a positive feedback inverter circuit that requires a tuning circuit in order to oscillate. When this oscillator is paired with a compatible crystal, a tank circuit is formed. This tank circuit oscillates at the fundamental frequency of the crystal. On this device, the oscillator is designed to operate in parallel resonance mode due to the shunt capacitor (C0) and required load capacitors (CL). Figure 6-19 illustrates the components of the electrical oscillator and the tank circuit. 90 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 MCU To Rest of Chip XTAL Oscillator Buffer 0 Comp 1 XCLKOUT Circuit [XTAL On] Rbias XCLKOUT Pierce Inverter GPIO External X2 X1 Internal External Rd Crystal CL1 Internal CL2 GND GND Figure 6-19. Electrical Oscillator Block Diagram 6.12.3.4.2.1.1 Modes of Operation The electrical oscillator in this device has two modes of operation: crystal mode and single-ended mode. 6.12.3.4.2.1.1.1 Crystal Mode of Operation In the crystal mode of operation, a quartz crystal with load capacitors has to be connected to X1 and X2. This mode of operation is engaged when [XTAL On] = 1, which is achieved by setting XTALCR.OSCOFF = 0 and XTALCR.SE = 0. There is an internal bias resistor for the feedback loop so an external one should not be used. Adding an external bias resistor will create a parallel resistance with the internal Rbias, moving the bias point of operation and possibly leading to clipped waveforms, out-of-specification duty cycle, and reduction in the effective negative resistance. In this mode of operation, the resultant clock on X1 is passed through a comparator (Comp) to the rest of the chip. The clock on X1 needs to meet the VIH and VIL of the comparator. See the XTAL Oscillator Characteristics table for the VIH and VIL requirements of the comparator. 6.12.3.4.2.1.1.2 Single-Ended Mode of Operation In the single-ended mode of operation, a clock signal is connected to X1 with X2 left unconnected. A quartz crystal should not be used in this mode. This mode is enabled when [XTAL On] = 0, which can be achieved by setting XTALCR.OSCOFF = 1 and XTALCR.SE = 1. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 91 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 In this mode of operation, the clock on X1 is passed through a buffer (Buffer) to the rest of the chip. See the X1 Input Level Characteristics When Using an External Clock Source (Not a Crystal) table for the input requirements of the buffer. 6.12.3.4.2.1.2 XTAL Output on XCLKOUT The output of the electrical oscillator that is fed to the rest of the chip can be brought out on XCLKOUT for observation by configuring the CLKSRCCTL3.XCLKOUTSEL and XCLKOUTDIVSEL.XCLKOUTDIV registers. See the GPIO Muxed Pins table for a list of GPIOs that XCLKOUT comes out on. 6.12.3.4.2.2 Quartz Crystal Electrically, a quartz crystal can be represented by an LCR (Inductor-Capacitor-Resistor) circuit. However, unlike an LCR circuit, crystals have very high Q due to the low motional resistance and are also very underdamped. Components of the crystal are shown in Figure 6-20 and explained below. Quartz Crystal Internal External Cm Rm C0 CL Lm Figure 6-20. Crystal Electrical Representation Cm (Motional capacitance): Denotes the elasticity of the crystal. Rm (Motional resistance): Denotes the resistive losses within the crystal. This is not the ESR of the crystal but can be approximated as such depending on the values of the other crystal components. Lm (Motional inductance): Denotes the vibrating mass of the crystal. C0 (Shunt capacitance): The capacitance formed from the two crystal electrodes and stray package capacitance. CL (Load capacitance): This is the effective capacitance seen by the crystal at its electrodes. It is external to the crystal. The frequency ppm specified in the crystal data sheet is usually tied to the CL parameter. Note that most crystal manufacturers specify CL as the effective capacitance seen at the crystal pins, while some crystal manufacturers specify CL as the capacitance on just one of the crystal pins. Check with the crystal manufacturer for how the CL is specified in order to use the correct values in calculations. From Figure 6-19, CL1 and CL2 are in series; so, to find the equivalent total capacitance seen by the crystal, the capacitance series formula has to be applied which simply evaluates to [CL1]/2 if CL1 = CL2. It is recommended that a stray PCB capacitance be added to this value. 3 pF to 5 pF are reasonable estimates, but the actual value will depend on the PCB in question. Note that the load capacitance is a requirement of both the electrical oscillator and crystal. The value chosen has to satisfy both the electrical oscillator and the crystal. 92 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 The effect of CL on the crystal is frequency-pulling. If the effective load capacitance is lower than the target, the crystal frequency will increase and vice versa. However, the effect of frequency-pulling is usually very minimal and typically results in less than 10-ppm variation from the nominal frequency. 6.12.3.4.2.3 GPIO Modes of Operation On this device, X1 and X2 can be used as GPIO19 and GPIO18, respectively, depending on the operating mode of the XTAL. Refer to the External Oscillator (XTAL) section of the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual . 6.12.3.4.3 Functional Operation 6.12.3.4.3.1 ESR – Effective Series Resistance Effective Series Resistance is the resistive load the crystal presents to the electrical oscillator at resonance. The higher the ESR, the lower the Q, and less likely the crystal will start up or maintain oscillation. The relationship between ESR and the crystal components is indicated below. ESR = Rm *  1 +   C0 CL 2 (2) Note that ESR is not the same as motional resistance of the crystal, but can be approximated as such if the effective load capacitance is much greater than the shunt capacitance. 6.12.3.4.3.2 Rneg – Negative Resistance Negative resistance is the impedance presented by the electrical oscillator to the crystal. It is the amount of energy the electrical oscillator must supply to the crystal to overcome the losses incurred during oscillation. Rneg depicts a circuit that provides rather than consume energy and can also be viewed as the overall gain of the circuit. The generally accepted practice is to have Rneg > 3x ESR to 5x ESR to ensure the crystal starts up under all conditions. Note that it takes slightly more energy to start up the crystal than it does to sustain oscillation; therefore, if it can be ensured that the negative resistance requirement is met at start-up, then oscillation sustenance will not be an issue. Figure 6-21 and Figure 6-22 show the variation between negative resistance and the crystal components for this device. As can be seen from the graphs, the crystal shunt capacitance (C0) and effective load capacitance (CL) greatly influence the negative resistance of the electrical oscillator. Note that these are typical graphs; so, refer to Table 6-5 for minimum and maximum values for design considerations. 6.12.3.4.3.3 Start-up Time Start-up time is an important consideration when selecting the components of the crystal circuit. As mentioned in the Rneg – Negative Resistance section, for reliable start-up across all conditions, it is recommended that the Rneg > 3x ESR to 5x ESR of the crystal. Crystal ESR and the dampening resistor (Rd) greatly affect the start-up time. The higher the two values, the longer the crystal takes to start up. Longer start-up times are usually a sign that the crystal and components are not a correct match. Refer to Crystal Oscillator Specifications for the typical start-up times. Note that the numbers specified here are typical numbers provided for guidance only. Actual start-up time depends heavily on the crystal in question and the external components. 6.12.3.4.3.3.1 X1/X2 Precondition On this device, the GPIO19/18 alternate functionality on X1/X2 can be used to speed up the start-up time of the crystal if needed. This functionality is achieved by preconditioning the load capacitors CL1 and CL2 to a known state before the XTAL is turned on. See the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual for details. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 93 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com 6.12.3.4.3.4 DL – Drive Level Drive level refers to how much power is provided by the electrical oscillator and dissipated by the crystal. The maximum drive level specified in the crystal manufacturer’s data sheet is usually the maximum the crystal can dissipate without damage or significant reduction in operating life. On the other hand, the drive level specified by the electrical oscillator is the maximum power it can provide. The actual power provided by the electrical oscillator is not necessarily the maximum power and depends on the crystal and board components. For cases where the actual drive level from the electrical oscillator exceeds the maximum drive level specification of the crystal, a dampening resistor (Rd) should be installed to limit the current and reduce the power dissipated by the crystal. Note that Rd reduces the circuit gain; and therefore, the actual value to use should be evaluated to make sure all other conditions for start-up and sustained oscillation are met. 6.12.3.4.4 How to Choose a Crystal Using Crystal Oscillator Specifications as a reference: 1. Pick a crystal frequency (for example, 20 MHz). 2. Check that the ESR of the crystal = 1 mW. If this requirement is not met, a dampening resistor Rd can be used. Refer to DL – Drive Level on other points to consider when using Rd. 6.12.3.4.5 Testing It is recommended that the user have the crystal manufacturer completely characterize the crystal with their board to ensure the crystal always starts up and maintains oscillation. Below is a brief overview of some measurements that can be performed: Due to how sensitive the crystal circuit is to capacitance, it is recommended that scope probes not be connected to X1 and X2. If scope probes must be used to monitor X1/X2, an active probe with less than 1-pF input capacitance should be used. Frequency 1. Bring out the XTAL on XCLKOUT. 2. Measure this frequency as the crystal frequency. Negative Resistance 1. 2. 3. 4. Bring out the XTAL on XCLKOUT. Place a potentiometer in series with the crystal between the load capacitors. Increase the resistance of the potentiometer until the clock on XCLKOUT stops. This resistance plus the crystal’s actual ESR is the negative resistance of the electrical oscillator. Start-Up Time 1. Turn off the XTAL. 2. Bring out the XTAL on XCLKOUT. 3. Turn on the XTAL and measure how long it takes the clock on XCLKOUT to stay within 45% and 55% duty cycle. 94 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.12.3.4.6 Common Problems and Debug Tips Crystal Fails to Start Up • Go through the How to Choose a Crystal section and make sure there are no violations. Crystal Takes a Long Time to Start Up • If a dampening resistor Rd is installed, it is too high. • If no dampening resistor is installed, either the crystal ESR is too high or the overall circuit gain is too low due to high load capacitance. 6.12.3.4.7 Crystal Oscillator Specifications 6.12.3.4.7.1 Crystal Oscillator Parameters CL1, CL2 Load capacitance C0 Crystal shunt capacitance MIN MAX UNIT 12 24 pF 7 pF 6.12.3.4.7.2 Crystal Equivalent Series Resistance (ESR) Requirements For the Crystal Equivalent Series Resistance (ESR) Requirements table: 1. Crystal shunt capacitance (C0) should be less than or equal to 7 pF. 2. ESR = Negative Resistance/3 Table 6-5. Crystal Equivalent Series Resistance (ESR) Requirements CRYSTAL FREQUENCY (MHz) MAXIMUM ESR (Ω) (CL1 = CL2 = 12 pF) MAXIMUM ESR (Ω) (CL1 = CL2 = 24 pF) 10 55 110 12 50 95 14 50 90 16 45 75 18 45 65 20 45 50 Negative Resistance vs. 10MHz Crystal 3000 C0 (pF) 1 3 5 7 9 Rneg (Ohms) 2500 2000 1500 1000 500 0 2 4 6 8 10 12 14 16 Effective CL (pF) Figure 6-21. Negative Resistance Variation at 10 MHz Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 95 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Negative Resistance vs. 20MHz Crystal 1600 C0 (pF) 1 3 5 7 9 1400 Rneg (Ohms) 1200 1000 800 600 400 200 0 2 4 6 8 10 12 14 16 Effective CL (pF) Figure 6-22. Negative Resistance Variation at 20 MHz 6.12.3.4.7.3 Crystal Oscillator Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TYP MAX UNIT 4 ms f = 20 MHz ESR MAX = 50 Ω CL1 = CL2 = 24 pF C0 = 7 pF 2 ms Crystal drive level (DL) 96 MIN f = 10 MHz Start-up time(1) (1) TEST CONDITIONS ESR MAX = 110 Ω CL1 = CL2 = 24 pF C0 = 7 pF 1 mW Start-up time is dependent on the crystal and tank circuit components. TI recommends that the crystal vendor characterize the application with the chosen crystal. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.12.3.5 Internal Oscillators To reduce production board costs and application development time, all F28003x devices contain two independent internal oscillators, referred to as INTOSC1 and INTOSC2. By default, INTOSC2 is set as the source for the system reference clock (OSCCLK) and INTOSC1 is set as the backup clock source. Applications requiring tighter SCI baud rate matching can use the SCI baud tuning example (baud_tune_via_uart) available in C2000Ware. 6.12.3.5.1 INTOSC Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER fINTOSC Frequency, INTOSC1 and INTOSC2(1) fINTOSC-STABILITY Frequency stability at room temperature tINT0SC-ST Start-up and settling time (1) TEST CONDITIONS MIN TYP MAX -40℃ to 125℃ 9.82 (-1.8%) 10 10.1 (1.0%) -30℃ to 90℃ 9.86 (-1.4%) 10 10.1 (1.0%) -10℃ to 85℃ 9.9 (-1.0%) 10 10.1 (1.0%) 30°C, Nominal VDD ±0.1 UNIT MHz % 20 µs INTOSC frequency may shift due to the thermal and mechanical stress of solder reflow. A post-reflow bake can restore the unit to its original data sheet performance. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 97 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.12.4 Flash Parameters Table 6-6 lists the minimum required Flash wait states with different clock sources and frequencies. Wait state is the value set in register FRDCNTL[RWAIT]. Table 6-6. Minimum Required Flash Wait States with Different Clock Sources and Frequencies EXTERNAL OSCILLATOR OR CRYSTAL CPUCLK (MHz) NORMAL OPERATION BANK OR PUMP SLEEP(1) 116 < CPUCLK ≤ 120 100 < CPUCLK ≤ 116 97 < CPUCLK ≤ 100 80 < CPUCLK ≤ 97 77 < CPUCLK ≤ 80 60 < CPUCLK ≤ 77 58 < CPUCLK ≤ 60 40 < CPUCLK ≤ 58 38 < CPUCLK ≤ 40 20 < CPUCLK ≤ 38 19 < CPUCLK ≤ 20 CPUCLK ≤ 19 (1) INTOSC1 OR INTOSC2 BANK OR PUMP SLEEP(1) NORMAL OPERATION 5 5 4 4 3 3 2 2 1 1 0 0 6 5 5 4 4 3 3 2 2 1 1 0 Flash SLEEP operations require an extra wait state when using INTOSC as the clock source for the frequency ranges indicated. Any wait state FRDCNTL[RWAIT] change must be made before beginning a SLEEP mode operation. This setting impacts both flash banks. The F28003x devices have an improved 128-bit prefetch buffer that provides high flash code execution efficiency across wait states. Figure 6-23 and Figure 6-24 illustrate typical efficiency across wait-state settings compared to previous-generation devices with a 64-bit prefetch buffer. Wait-state execution efficiency with a prefetch buffer will depend on how many branches are present in application software. Two examples of linear code and if-then-else code are provided. 100% 100% 95% 90% Efficiency (%) Efficiency (%) 90% 80% 70% 60% Flash with 64-Bit Prefetch Flash with 128-Bit Prefetch 50% 80% 75% Flash with 64-Bit Prefetch Flash with 128-Bit Prefetch 70% 65% 40% 60% 30% 55% 0 1 2 3 Wait State 4 5 D005 Figure 6-23. Application Code With Heavy 32-Bit Floating-Point Math Instructions 98 85% Submit Document Feedback 0 1 2 3 Wait State 4 5 D006 Figure 6-24. Application Code With 16-Bit If-Else Instructions Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Section 6.12.4.1 lists the Flash parameters. Note The Main Array flash programming must be aligned to 64-bit address boundaries and each 64-bit word may only be programmed once per write/erase cycle. Note It is important to provide the correct sector mask for the bank erase command. If the mask is mistakenly chosen to erase an inaccessible sector (belongs to another security zone), the bank erase command will continue attempting to erase the sector endlessly and the FSM will never exit (since erase will not succeed). To avoid such a situation, user must take care to provide the correct mask. However, given that there is a chance of choosing an incorrect mask, TI suggests to initialize the max allowed erase pulses to zero after the max number of pulses are issued by the FSM for the bank erase operation. This will ensure that the FSM will end the bank erase command after trying to erase the inaccessible sector up to the max allowed erase pulses. The Example_EraseBanks() function in the C2000Ware’s flash API usage example depicts the implementation of this sequence (content of the while loop waiting for the FSM to complete the bank erase command). Users must use this code as-is irrespective of whether or not security is used by the application to also ensure that the FSM exits from bank erase operations in case of an erase-failure. 6.12.4.1 Flash Parameters PARAMETER MIN TYP MAX UNIT 150 300 µs 50 100 ms 15 56 ms 26 133 ms 31 226 ms 20k cycles 123 1026 ms < 25 cycles 21 78 ms 35 183 ms 42 310 ms 128 data bits + 16 ECC bits Program Time(1) 8KB (Sector) < 25 cycles Sector Erase Time(2) (3) Bank Erase Time(2) (3) 1k cycles 2k cycles 1k cycles 2k cycles 8KB (Sector) 128KB (Bank) 20k cycles 169 Nwec Write/Erase Cycles per Sector Nwec Write/Erase Cycles for Entire Flash (Combined for all Sectors) tretention Data retention duration at TJ = 85oC (1) (2) (3) 20 1410 ms 20000 cycles 100000 cycles years Program time is at the maximum device frequency. Program time includes overhead of the flash state machine but does not include the time to transfer the following into RAM: • Code that uses flash API to program the flash • Flash API itself • Flash data to be programmed In other words, the time indicated in this table is applicable after all the required code/data is available in the device RAM, ready for programming. The transfer time will significantly vary depending on the speed of the JTAG debug probe used. Program time calculation is based on programming 144 bits at a time at the specified operating frequency. Program time includes Program verify by the CPU. The program time does not degrade with write/erase (W/E) cycling, but the erase time does. Erase time includes Erase verify by the CPU and does not involve any data transfer. Erase time includes Erase verify by the CPU. The on-chip flash memory is in an erased state when the device is shipped from TI. As such, erasing the flash memory is not required prior to programming, when programming the device for the first time. However, the erase operation is needed on all subsequent programming operations. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 99 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.12.5 RAM and ROM Parameters All volatile memory (RAM and ROM) on the F28003x device is 0 Wait-state for both reads and writes, meaning the memory operates at the same speed as SYSCLK. RAM Block Properties summarizes the characteristics of the different RAM instances on the device. ROM Properties summarizes the aspects of the ROM instances on the device Table 6-7. RAM Block Properties RAM TYPE M0 SIZE EACH FETCH TIME (CYCLES) SUPPORTED WRITE TIME BUS WIDTHS (CYCLES) (BITS) READ TIME (CYCLES) HOST ACCESS LIST 2KB C28x LS RAM (LS0–LS7) 4KB C28x/CLA GS RAM (GS0–GS3) 8KB C28x/DMA/HI C M1 CLA to CPU Message RAM CPU to CLA Message RAM CLA to DMA Message RAM 2 2 1 16/32 WAIT STATES BURST ACCESS SUPPORT 0 No C28x/CLA 256B CLA/DMA DMA to CLA Message RAM Table 6-8. ROM Properties ROM TYPE SIZE EACH Boot ROM 64KB Secure ROM 48KB CLA Data ROM 8KB CLA Program ROM 96KB 100 Submit Document Feedback FETCH TIME (CYCLES) READ TIME (CYCLES) SUPPORTED BUS WIDTHS (BITS) HOST ACCESS WAIT STATES LIST BURST ACCESS SUPPORT C28x 2 2 16/32 C28x/CLA 0 No CLA Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.12.6 Emulation/JTAG The JTAG (IEEE Standard 1149.1-1990 Standard Test Access Port and Boundary Scan Architecture) port has four dedicated pins: TMS, TDI, TDO, and TCK. The cJTAG (IEEE Standard 1149.7-2009 for Reduced-Pin and Enhanced-Functionality Test Access Port and Boundary-Scan Architecture) port is a compact JTAG interface requiring only two pins (TMS and TCK), which allows other device functionality to be muxed to the traditional GPIO35 (TDI) and GPIO37 (TDO) pins. Typically, no buffers are needed on the JTAG signals when the distance between the MCU target and the JTAG header is smaller than 6 inches (15.24 cm), and no other devices are present on the JTAG chain. Otherwise, each signal should be buffered. Additionally, for most JTAG debug probe operations at 10 MHz, no series resistors are needed on the JTAG signals. However, if high emulation speeds are expected (35 MHz or so), 22-Ω resistors should be placed in series on each JTAG signal. The PD (Power Detect) pin of the JTAG debug probe header should be connected to the board's 3.3-V supply. Header GND pins should be connected to board ground. TDIS (Cable Disconnect Sense) should also be connected to board ground. The JTAG clock should be looped from the header TCK output pin back to the RTCK input pin of the header (to sense clock continuity by the JTAG debug probe). This MCU does not support the EMU0 and EMU1 signals that are present on 14-pin and 20-pin emulation headers. These signals should always be pulled up at the emulation header through a pair of board pullup resistors ranging from 2.2 kΩ to 4.7 kΩ (depending on the drive strength of the debugger ports). Typically, a 2.2-kΩ value is used. Header pin RESET is an open-drain output from the JTAG debug probe header that enables board components to be reset through JTAG debug probe commands (available only through the 20-pin header). Figure 6-25 shows how the 14-pin JTAG header connects to the MCU’s JTAG port signals. Figure 6-26 shows how to connect to the 20-pin JTAG header. The 20-pin JTAG header pins EMU2, EMU3, and EMU4 are not used and should be grounded. For more information about hardware breakpoints and watchpoints, see Hardware Breakpoints and Watchpoints in CCS for C2000 devices. For more information about JTAG emulation, see the XDS Target Connection Guide. Note JTAG Test Data Input (TDI) is the default mux selection for the pin. The internal pullup is disabled by default. If this pin is used as JTAG TDI, the internal pullup should be enabled or an external pullup added on the board to avoid a floating input. In the cJTAG option, this pin can be used as GPIO. JTAG Test Data Output (TDO) is the default mux selection for the pin. The internal pullup is disabled by default. The TDO function will be in a tri-state condition when there is no JTAG activity, leaving this pin floating. The internal pullup should be enabled or an external pullup added on the board to avoid a floating GPIO input. In the cJTAG option, this pin can be used as GPIO. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 101 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Distance between the header and the target should be less than 6 inches (15.24 cm). 3.3 V 4.7 kΩ 1 TMS TMS TRST TDI TDIS PD KEY 2 3.3 V 10 kΩ 3 (A) TDI MCU 3.3 V 100 Ω 3.3 V 5 4 GND 6 10 kΩ (A) TDO TDO GND 9 RTCK GND 10 TCK GND 11 TCK 4.7 kΩ 3.3 V A. 7 8 12 4.7 kΩ 13 EMU0 EMU1 14 3.3 V TDI and TDO connections are not required for cJTAG option and these pins can be used as GPIOs instead. Figure 6-25. Connecting to the 14-Pin JTAG Header Distance between the header and the target should be less than 6 inches (15.24 cm). 3.3 V 4.7 kΩ 1 TMS 3.3 V 10 kΩ 3 (A) MCU TDI 3.3 V 100 Ω 3.3V 10 kΩ 5 7 (A) TDO 9 11 TCK 4.7 kΩ 3.3 V 13 15 Open Drain 17 19 A low pulse from the JTAG debug probe can be tied with other reset sources to reset the board. GND A. TMS TRST TDI TDIS PD KEY TDO GND RTCK GND TCK GND EMU0 EMU1 RESET GND EMU2 EMU3 EMU4 GND 2 4 GND 6 8 10 12 4.7 kΩ 14 3.3 V 16 18 20 GND TDI and TDO connections are not required for cJTAG option and these pins can be used as GPIOs instead. Figure 6-26. Connecting to the 20-Pin JTAG Header 102 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.12.6.1 JTAG Electrical Data and Timing 6.12.6.1.1 JTAG Timing Requirements NO. MIN MAX UNIT 1 tc(TCK) Cycle time, TCK 66.66 ns 1a tw(TCKH) Pulse duration, TCK high (40% of tc) 26.66 ns 1b tw(TCKL) Pulse duration, TCK low (40% of tc) 26.66 ns tsu(TDI-TCKH) Input setup time, TDI valid to TCK high 7 tsu(TMS-TCKH) Input setup time, TMS valid to TCK high 7 th(TCKH-TDI) Input hold time, TDI valid from TCK high 7 th(TCKH-TMS) Input hold time, TMS valid from TCK high 7 3 4 ns ns 6.12.6.1.2 JTAG Switching Characteristics over recommended operating conditions (unless otherwise noted) NO. 2 PARAMETER td(TCKL-TDO) Delay time, TCK low to TDO valid MIN MAX 6 20 UNIT ns 6.12.6.1.3 JTAG Timing Diagram 1 1a 1b TCK 2 TDO 3 4 TDI/TMS Figure 6-27. JTAG Timing Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 103 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.12.6.2 cJTAG Electrical Data and Timing 6.12.6.2.1 cJTAG Timing Requirements NO. MIN 1 tc(TCK) Cycle time, TCK 1a tw(TCKH) 1b 3 4 MAX UNIT 100 ns Pulse duration, TCK high (40% of tc) 40 ns tw(TCKL) Pulse duration, TCK low (40% of tc) 40 ns tsu(TMS-TCKH) Input setup time, TMS valid to TCK high 7 ns tsu(TMS-TCKL) Input setup time, TMS valid to TCK low 7 ns th(TCKH-TMS) Input hold time, TMS valid from TCK high 2 ns th(TCKL-TMS) Input hold time, TMS valid from TCK low 2 ns 6.12.6.2.2 cJTAG Switching Characteristics over recommended operating conditions (unless otherwise noted) NO. PARAMETER 2 td(TCKL-TMS) Delay time, TCK low to TMS valid 5 tdis(TCKH-TMS) Delay time, TCK high to TMS disable MIN MAX 5 20 UNIT ns 20 ns 6.12.6.2.3 cJTAG Timing Diagram 1 1a TCK TMS 1b 3 TMS Input 4 3 4 TMS Input 2 5 TMS Output Figure 6-28. cJTAG Timing 104 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.12.7 GPIO Electrical Data and Timing The peripheral signals are multiplexed with general-purpose input/output (GPIO) signals. On reset, GPIO pins are configured as inputs. For specific inputs, the user can also select the number of input qualification cycles to filter unwanted noise glitches. The GPIO module contains an Output X-BAR which allows an assortment of internal signals to be routed to a GPIO in the GPIO mux positions denoted as OUTPUTXBARx. The GPIO module also contains an Input X-BAR which is used to route signals from any GPIO input to different IP blocks such as the ADCs, eCAPs, ePWMs, and external interrupts. For more details, see the X-BAR chapter in the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual. 6.12.7.1 GPIO – Output Timing 6.12.7.1.1 General-Purpose Output Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER MIN MAX UNIT tr(GPO) Rise time, GPIO switching low to high All GPIOs 8(1) tf(GPO) Fall time, GPIO switching high to low All GPIOs 8(1) ns tfGPO Toggling frequency, GPIO pins 50 MHz (1) ns Rise time and fall time vary with load. These values assume a 20-pF load. 6.12.7.1.2 General-Purpose Output Timing Diagram GPIO tf(GPO) tr(GPO) Figure 6-29. General-Purpose Output Timing Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 105 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.12.7.2 GPIO – Input Timing 6.12.7.2.1 General-Purpose Input Timing Requirements MIN tw(SP) Sampling period tw(IQSW) tw(GPI) (2) (1) (2) UNIT QUALPRD = 0 1tc(SYSCLK) cycles QUALPRD ≠ 0 2tc(SYSCLK) * QUALPRD cycles Input qualifier sampling window tw(SP) * With input qualifier (n(1) – 1) cycles 2tc(SYSCLK) cycles tw(IQSW) + tw(SP) + 1tc(SYSCLK) cycles Synchronous mode Pulse duration, GPIO low/high MAX "n" represents the number of qualification samples as defined by GPxQSELn register. For tw(GPI), pulse width is measured from VIL to VIL for an active low signal and VIH to VIH for an active high signal. 6.12.7.2.2 Sampling Mode (A) GPIO Signal GPxQSELn = 1,0 (6 samples) 1 1 0 0 0 0 0 0 0 1 tw(SP) 0 0 0 1 1 1 1 Sampling Window 1 1 1 1 Sampling Period determined by GPxCTRL[QUALPRD] tw(IQSW) 1 (SYSCLK cycle * 2 * QUALPRD) * 5 (B) (C) SYSCLK QUALPRD = 1 (SYSCLK/2) (D) Output From Qualifier A. B. C. D. This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It can vary from 00 to 0xFF. If QUALPRD = 00, then the sampling period is 1 SYSCLK cycle. For any other value "n", the qualification sampling period in 2n SYSCLK cycles (that is, at every 2n SYSCLK cycles, the GPIO pin will be sampled). The qualification period selected through the GPxCTRL register applies to groups of eight GPIO pins. The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is used. In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLK cycles or greater. In other words, the inputs should be stable for (5 × QUALPRD × 2) SYSCLK cycles. This would ensure 5 sampling periods for detection to occur. Because external signals are driven asynchronously, an 13-SYSCLK-wide pulse ensures reliable recognition. Figure 6-30. Sampling Mode 106 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.12.7.3 Sampling Window Width for Input Signals The following section summarizes the sampling window width for input signals for various input qualifier configurations. Sampling frequency denotes how often a signal is sampled with respect to SYSCLK. Sampling frequency = SYSCLK/(2 × QUALPRD), if QUALPRD ≠ 0 Sampling frequency = SYSCLK, if QUALPRD = 0 Sampling period = SYSCLK cycle × 2 × QUALPRD, if QUALPRD ≠ 0 In the previous equations, SYSCLK cycle indicates the time period of SYSCLK. Sampling period = SYSCLK cycle, if QUALPRD = 0 In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of the signal. This is determined by the value written to GPxQSELn register. Case 1: Qualification using 3 samples Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 2, if QUALPRD ≠ 0 Sampling window width = (SYSCLK cycle) × 2, if QUALPRD = 0 Case 2: Qualification using 6 samples Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 5, if QUALPRD ≠ 0 Sampling window width = (SYSCLK cycle) × 5, if QUALPRD = 0 SYSCLK GPIOxn tw(GPI) Figure 6-31. General-Purpose Input Timing Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 107 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.12.8 Interrupts The C28x CPU has fourteen peripheral interrupt lines. Two of them (INT13 and INT14) are connected directly to CPU timers 1 and 2, respectively. The remaining twelve are connected to peripheral interrupt signals through the enhanced Peripheral Interrupt Expansion (ePIE) module. The ePIE multiplexes up to sixteen peripheral interrupts into each CPU interrupt line. It also expands the vector table to allow each interrupt to have its own ISR. This allows the CPU to support a large number of peripherals. An interrupt path is divided into three stages—the peripheral, the ePIE, and the CPU. Each stage has its own enable and flag registers. This system allows the CPU to handle one interrupt while others are pending, implement and prioritize nested interrupts in software, and disable interrupts during certain critical tasks. Figure 6-32 shows the interrupt architecture for this device. TIMER0 LPM Logic WD LPMINT WDINT TINT0 WAKEINT NMI module ERAD GPIO0 to GPIOx INPUTXBAR4 INPUTXBAR5 Input INPUTXBAR6 X-BAR INPUTXBAR13 INPUTXBAR14 XINT1 Control XINT2 Control XINT3 Control XINT4 Control XINT5 Control Peripherals See ePIE Table NMI RTOSINT CPU ePIE INT1 to INT12 TIMER1 INT13 TIMER2 INT14 Figure 6-32. Device Interrupt Architecture 108 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.12.8.1 External Interrupt (XINT) Electrical Data and Timing For an explanation of the input qualifier parameters, see the General-Purpose Input Timing Requirements table. 6.12.8.1.1 External Interrupt Timing Requirements MIN tw(INT) Pulse duration, INT input low/high MAX UNIT Synchronous 2tc(SYSCLK) cycles With qualifier tw(IQSW) + tw(SP) + 1tc(SYSCLK) cycles 6.12.8.1.2 External Interrupt Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER td(INT) (1) Delay time, INT low/high to interrupt-vector fetch(1) MIN MAX UNIT tw(IQSW) + 14tc(SYSCLK) tw(IQSW) + tw(SP) + 14tc(SYSCLK) cycles This assumes that the ISR is in a single-cycle memory. 6.12.8.1.3 External Interrupt Timing tw(INT) XINT1, XINT2, XINT3, XINT4, XINT5 td(INT) Address bus (internal) Interrupt Vector Figure 6-33. External Interrupt Timing Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 109 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.12.9 Low-Power Modes This device has HALT, IDLE and STANDBY as clock-gating low-power modes. Further details, as well as the entry and exit procedure, for all of the low-power modes can be found in the Low-Power Modes section of the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual. 6.12.9.1 Clock-Gating Low-Power Modes IDLE and HALT modes on this device are similar to those on other C28x devices. Table 6-9 describes the effect on the system when any of the clock-gating low-power modes are entered. Table 6-9. Effect of Clock-Gating Low-Power Modes on the Device MODULES/ CLOCK DOMAIN IDLE STANDBY HALT SYSCLK Active Gated Gated CPUCLK Gated Gated Gated Clock to modules connected to PERx.SYSCLK Active Gated Gated WDCLK Active Active Gated if CLKSRCCTL1.WDHALTI = 0 PLL Powered Powered Software must power down PLL before entering HALT. INTOSC1 Powered Powered Powered down if CLKSRCCTL1.WDHALTI = 0 INTOSC2 Powered Powered Powered down if CLKSRCCTL1.WDHALTI = 0 Flash(1) Powered Powered Powered XTAL(2) Powered Powered Powered (1) (2) 110 The Flash module is not powered down by hardware in any LPM. It may be powered down using software if required by the application. For more information, see the Flash and OTP Memory section of the System Control chapter in the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual. The XTAL is not powered down by hardware in any LPM. It may be powered down by software setting the XTALCR.OSCOFF bit to 1. This can be done at any time during the application if the XTAL is not required. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.12.9.2 Low-Power Mode Wake-up Timing For an explanation of the input qualifier parameters, see the General-Purpose Input Timing Requirements table. 6.12.9.2.1 IDLE Mode Timing Requirements MIN tw(WAKE) Pulse duration, external wake-up signal Without input qualifier 2tc(SYSCLK) With input qualifier 2tc(SYSCLK) + tw(IQSW) MAX UNIT cycles 6.12.9.2.2 IDLE Mode Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS From Flash (active state) Delay time, external wake signal to program execution resume(1) td(WAKE-IDLE) From Flash (sleep state) From RAM (1) (2) MIN Without input qualifier With input qualifier Without input qualifier With input qualifier Without input qualifier With input qualifier MAX UNIT 40tc(SYSCLK) cycles 40tc(SYSCLK) + tw(WAKE) cycles 9316tc(SYSCLK) (2) cycles 9316tc(SYSCLK) (2) + tw(WAKE) cycles 25tc(SYSCLK) cycles 25tc(SYSCLK) + tw(WAKE) cycles This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered by the wake-up signal) involves additional latency. This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and FPAC1[PSLEEP]. 6.12.9.2.3 IDLE Entry and Exit Timing Diagram td(WAKE-IDLE) Address/Data (internal) XCLKOUT tw(WAKE) WAKE A. (A) WAKE can be any enabled interrupt, WDINT or XRSn. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted. Figure 6-34. IDLE Entry and Exit Timing Diagram Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 111 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023   6.12.9.2.4 STANDBY Mode Timing Requirements MIN tw(WAKE-INT) (1) Pulse duration, external wake-up signal QUALSTDBY = 0 | 2tc(OSCCLK) MAX UNIT 3tc(OSCCLK) QUALSTDBY > 0 | (2 + QUALSTDBY)tc(OSCCLK) (1) cycles (2 + QUALSTDBY) * tc(OSCCLK) QUALSTDBY is a 6-bit field in the LPMCR register. 6.12.9.2.5 STANDBY Mode Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER td(IDLE-XCOS) TEST CONDITIONS (2) UNIT 16tc(INTOSC1) cycles Delay time, external wake signal to program execution resume(1) td(WAKE-STBY) (1) MAX Delay time, IDLE instruction executed to XCLKOUT stop td(WAKE-STBY) td(WAKE-STBY) MIN Wakeup from flash (Flash module in active state) 175tc(SYSCLK) + tw(WAKE-INT) cycles Wakeup from flash (Flash module in sleep state) 9316tc(SYSCLK) (2) + tw(WAKE-INT) cycles Wakeup from RAM 3tc(OSC) + 15tc(SYSCLK) + tw(WAKE-INT) cycles This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered by the wake-up signal) involves additional latency. This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and FPAC1[PSLEEP]. 6.12.9.2.6 STANDBY Entry and Exit Timing Diagram (C) (A) (B) Device Status (F) (D)(E) STANDBY STANDBY (G) Normal Execution Flushing Pipeline Wake-up Signal tw(WAKE-INT) td(WAKE-STBY) OSCCLK XCLKOUT td(IDLE-XCOS) A. B. C. D. E. F. G. IDLE instruction is executed to put the device into STANDBY mode. The LPM block responds to the STANDBY signal, SYSCLK is held for a maximum 16 INTOSC1 clock cycles before being turned off. This delay enables the CPU pipeline and any other pending operations to flush properly. Clock to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in STANDBY mode. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted. The external wake-up signal is driven active. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the device will not be deterministic and the device may not exit low-power mode for subsequent wake-up pulses. After a latency period, the STANDBY mode is exited. Normal execution resumes. The device will respond to the interrupt (if enabled). Figure 6-35. STANDBY Entry and Exit Timing Diagram 112 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023   6.12.9.2.7 HALT Mode Timing Requirements MIN MAX UNIT tw(WAKE-GPIO) Pulse duration, GPIO wake-up signal(1) toscst + 2tc(OSCCLK) cycles tw(WAKE-XRS) Pulse duration, XRS wake-up signal(1) toscst + 8tc(OSCCLK) cycles (1) For applications using X1/X2 for OSCCLK, the user must characterize their specific oscillator start-up time as it is dependent on circuit/layout external to the device. See Crystal Oscillator (XTAL) section for more information. For applications using INTOSC1 or INTOSC2 for OSCCLK, see the Internal Oscillators section for toscst. Oscillator start-up time does not apply to applications using a single-ended crystal on the X1 pin, as it is powered externally to the device. 6.12.9.2.8 HALT Mode Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER td(IDLE-XCOS) MAX UNIT 16tc(INTOSC1) cycles Wakeup from Flash - Flash module in active state 75tc(OSCCLK) cycles Wakeup from Flash - Flash module in sleep state 9316tc(SYSCLK)+75tc(OSCCLK) (1) Delay time, IDLE instruction executed to XCLKOUT stop MIN Delay time, external wake signal end to CPU1 program execution resume td(WAKE-HALT) Wakeup from RAM (1) 75tc(OSCCLK) This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and FPAC1[PSLEEP]. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 113 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.12.9.2.9 HALT Entry and Exit Timing Diagram (C) (A) (B) Device Status (F) (D)(E) HALT (G) HALT Flushing Pipeline Normal Execution GPIOn td(WAKE-HALT) tw(WAKE-GPIO) OSCCLK Oscillator Start-up Time XCLKOUT td(IDLE-XCOS) A. B. C. D. E. F. G. H. IDLE instruction is executed to put the device into HALT mode. The LPM block responds to the HALT signal, SYSCLK is held for a maximum 16 INTOSC1 clock cycles before being turned off. This delay enables the CPU pipeline and any other pending operations to flush properly. Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as the clock source, the internal oscillator is shut down as well. The device is now in HALT mode and consumes very little power. It is possible to keep the zero-pin internal oscillators (INTOSC1 and INTOSC2) and the watchdog alive in HALT MODE. This is done by writing 1 to CLKSRCCTL1.WDHALTI. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted. When the GPIOn pin (used to bring the device out of HALT) is driven low, the oscillator is turned on and the oscillator wake-up sequence is initiated. The GPIO pin should be driven high only after the oscillator has stabilized. This enables the provision of a clean clock signal during the PLL lock sequence. Because the falling edge of the GPIO pin asynchronously begins the wake-up procedure, care should be taken to maintain a low noise environment before entering and during HALT mode. The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the device will not be deterministic and the device may not exit low-power mode for subsequent wake-up pulses. When CLKIN to the core is enabled, the device will respond to the interrupt (if enabled), after some latency. The HALT mode is now exited. Normal operation resumes. The user must relock the PLL upon HALT wakeup to ensure a stable PLL lock. Figure 6-36. HALT Entry and Exit Timing Diagram 114 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.13 Analog Peripherals The analog subsystem module is described in this section. The analog modules on this device include the ADC, temperature sensor, CMPSS, and buffered DAC. The analog subsystem has the following features: • • Flexible voltage references – The ADCs are referenced to VREFHIx and VSSA pins • VREFHIx pin voltage can be driven in externally or can be generated by an internal bandgap voltage reference • The internal voltage reference range can be selected to be 0 V to 3.3 V or 0 V to 2.5 V – The buffered DACs are referenced to VREFHIx and VSSA • Alternately, these DACs can be referenced to the VDAC pin and VSSA – The comparator DACs are referenced to VDDA and VSSA • Alternately, these DACs can be referenced to the VDAC pin and VSSA Flexible pin usage – Buffered DAC outputs, comparator subsystem inputs, and digital inputs (AIOs)/outputs (AGPIOs) are multiplexed with ADC inputs – Internal connection to VREFLO on all ADCs for offset self-calibration Figure 6-37 shows the Analog Subsystem Block Diagram for the 100-pin PZ LQFP. Figure 6-38 shows the Analog Subsystem Block Diagram for the 80-pin PN LQFP. Figure 6-39 shows the Analog Subsystem Block Diagram for the 64-pin PM LQFP. Figure 6-40 shows the Analog Subsystem Block Diagram for the 48-pin PT LQFP. Figure 6-41 shows the analog group connections. Section 6.13.1 lists the analog pins and internal connections. Section 6.13.2 lists descriptions of analog signals. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 115 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 VREFHI CMP1_HP CMP1_HN VREFLO Reference Circuit DAC12 Temp Sensor (C12) Vref Digital Filter CTRIP1L CTRIPOUT1L Comparator Subsystem 2 Digital Filter CTRIP2H CTRIPOUT2H CMP1_LN CMP1_LP REFLO CMP2_HP CMP2_HN VDDA or VDAC /LPMXSEL4/ HPMXSEL2/ /LPMXSEL2/ HPMXSEL0/ /LPMXSEL0/ HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1 HPMXSEL5/ /LPMXSEL5/ AGPIO AGPIO AGPIO AIO AIO AIO CMPSS1 Input MUX HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0 HPMXSEL2/ /LPMXSEL2/ HPMXSEL0/ /LPMXSEL0/ HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1 HPMXSEL5/ /LPMXSEL5/ HPMXSEL4/ /LPMXSEL4/ AIO AIO AIO CMPSS2 Input MUX C5 B2/C6 B3/VDAC A14/B14/C4 B12/C2 A3 A0/B15/C15/DACA_OUT HPMXSEL0/ /LPMXSEL0/ HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0 HPMXSEL4/ /LPMXSEL4/ ADC-A 12-bits REFLO DAC12 DAC12 HPMXSEL5/ /LPMXSEL5/ HPMXSEL2/ /LPMXSEL2/ CMP3_HP CMP3_HN Comparator Subsystem 3 Digital Filter CTRIP3H CTRIPOUT3H DAC12 REFHI ADC Inputs B0 to B15 ADC-B DAC12 Digital Filter CTRIP3L CTRIPOUT3L Comparator Subsystem 4 Digital Filter VDDA or VDAC CTRIP4H CTRIPOUT4H CMP3_LN CMP3_LP 12-bits REFLO CMP4_HP CMP4_HN DAC12 AIO AIO AIO /LPMXSEL0/ REFHI ADC Inputs C0 to C15 HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0 HPMXSEL2/ /LPMXSEL2/ HPMXSEL4/ HPMXSEL5/ CTRIP2L CTRIPOUT2L VDDA or VDAC Input MUX HPMXSEL0/ Digital Filter CMP2_LN CMP2_LP HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1 CMPSS3 Input MUX B4/C8 C14 C1 A8 B11, B11/GPIO21 A7/C3 ADC Inputs A0 to A15 Input MUX A10/B1/C10 A9 A4/B8 A12 A5 B0/C11 REFHI Analog Interconnect HPMXSEL4/ Input MUX A1/B7/DACB_OUT A6 A2/B6/C9 A11/B10/C0 B5, B5/GPIO20 B9/C7 CTRIP1H CTRIPOUT1H DAC12 ANAREFSEL Misc. Analog Comparator Subsystem 1 Digital Filter VDDA or VDAC ADC-C DAC12 CMP4_LN CMP4_LP Digital Filter CTRIP4L CTRIPOUT4L 12-bits /LPMXSEL4/ /LPMXSEL5/ REFLO HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1 AGPIO AGPIO AGPIO CMPSS4 Input MUX CMPSS Inputs AIO AIO AIO VREFHI DACA_OUT 12-bit Buffered DAC-A VREFHI DACB_OUT VDAC VDAC 12-bit Buffered DAC-B Figure 6-37. Analog Subsystem Block Diagram (100-Pin PZ LQFP) 116 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 VREFHI CMP1_HP CMP1_HN VREFLO Reference Circuit DAC12 Temp Sensor (C12) Vref HPMXSEL2/ /LPMXSEL2/ HPMXSEL0/ /LPMXSEL0/ HPMXSEL0/ /LPMXSEL0/ HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1 HPMXSEL5/ /LPMXSEL5/ HPMXSEL4/ /LPMXSEL4/ AIO AIO AIO CMPSS2 Input MUX B2/C6 A3/B3/C5/VDAC A14/B14/C4 A5/B12/C2 HPMXSEL0/ /LPMXSEL0/ HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0 HPMXSEL5/ /LPMXSEL5/ HPMXSEL4/ /LPMXSEL4/ HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1 Analog Interconnect HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0 ADC-A 12-bits REFLO CTRIP2H CTRIPOUT2H DAC12 DAC12 Digital Filter CTRIP2L CTRIPOUT2L Comparator Subsystem 3 Digital Filter CTRIP3H CTRIPOUT3H CMP2_LN CMP2_LP CMP3_HP CMP3_HN VDDA or VDAC DAC12 REFHI ADC Inputs B0 to B15 Input MUX A8/B0/C11 ADC Inputs A0 to A15 Input MUX AGPIO AGPIO AGPIO AIO AIO AIO /LPMXSEL2/ Comparator Subsystem 2 Digital Filter REFHI /LPMXSEL5/ HPMXSEL5/ HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0 HPMXSEL2/ CTRIP1L CTRIPOUT1L VDDA or VDAC HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1 CMPSS1 Input MUX A10/B1/C10 A9/B4/C8 A4/B8/C14 A12/C1 CMP2_HP CMP2_HN /LPMXSEL4/ Digital Filter CMP1_LN CMP1_LP REFLO HPMXSEL4/ ADC-B CTRIP1H CTRIPOUT1H DAC12 ANAREFSEL Misc. Analog A1/B7/DACB_OUT A6 A2/B6/C9 A11/B10/C0 B5/GPIO20 A15/B9/C7 Comparator Subsystem 1 Digital Filter VDDA or VDAC DAC12 Digital Filter CTRIP3L CTRIPOUT3L Comparator Subsystem 4 Digital Filter VDDA or VDAC CTRIP4H CTRIPOUT4H CMP3_LN CMP3_LP 12-bits REFLO CMP4_HP CMP4_HN DAC12 A0/B15/C15/DACA_OUT HPMXSEL2/ /LPMXSEL2/ HPMXSEL0/ /LPMXSEL0/ REFHI ADC Inputs C0 to C15 HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0 HPMXSEL2/ /LPMXSEL2/ B11/GPIO21 A7/C3 /LPMXSEL4/ HPMXSEL4/ HPMXSEL5/ /LPMXSEL5/ HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1 AGPIO AGPIO AGPIO AIO AIO AIO CMPSS4 Input MUX Input MUX AIO AIO AIO CMPSS3 Input MUX ADC-C DAC12 CMP4_LN CMP4_LP Digital Filter CTRIP4L CTRIPOUT4L 12-bits REFLO CMPSS Inputs VREFHI DACA_OUT 12-bit Buffered DAC-A VREFHI DACB_OUT VDAC VDAC 12-bit Buffered DAC-B Figure 6-38. Analog Subsystem Block Diagram (80-Pin PN LQFP) Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 117 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 VREFHI CMP1_HP CMP1_HN VREFLO Reference Circuit Comparator Subsystem 1 Digital Filter VDDA or VDAC DAC12 ANAREFSEL Misc. Analog DAC12 Temp Sensor (C12) Vref Digital Filter CTRIP1L CTRIPOUT1L Comparator Subsystem 2 Digital Filter CTRIP2H CTRIPOUT2H CMP1_LN CMP1_LP REFLO CMP2_HP CMP2_HN VDDA or VDAC HPMXSEL4/ /LPMXSEL4/ HPMXSEL2/ /LPMXSEL2/ HPMXSEL0/ /LPMXSEL0/ REFHI A10/B1/C10 A9/B4/C8 A4/B8/C14 A12/C1 HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0 AIO AIO AIO CMPSS1 Input MUX HPMXSEL2/ /LPMXSEL2/ HPMXSEL0/ /LPMXSEL0/ HPMXSEL4/ /LPMXSEL4/ AIO AIO AIO CMPSS2 Input MUX B2/C6 A3/B3/C5/VDAC A14/B14/C4 A5/B12/C2 HPMXSEL0/ /LPMXSEL0/ HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0 HPMXSEL5/ /LPMXSEL5/ HPMXSEL4/ /LPMXSEL4/ HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1 ADC-A 12-bits REFLO DAC12 DAC12 Digital Filter CTRIP2L CTRIPOUT2L Comparator Subsystem 3 Digital Filter CTRIP3H CTRIPOUT3H CMP2_LN CMP2_LP CMP3_HP CMP3_HN VDDA or VDAC DAC12 REFHI ADC Inputs B0 to B15 Input MUX HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1 HPMXSEL5/ /LPMXSEL5/ Analog Interconnect A15/B9/C7 HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0 A8/B0/C11 ADC Inputs A0 to A15 HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1 Input MUX A1/B7/DACB_OUT A6 A2/B6/C9 A11/B10/C0 CTRIP1H CTRIPOUT1H ADC-B DAC12 Digital Filter CTRIP3L CTRIPOUT3L Comparator Subsystem 4 Digital Filter VDDA or VDAC CTRIP4H CTRIPOUT4H CMP3_LN CMP3_LP 12-bits REFLO CMP4_HP CMP4_HN DAC12 A0/B15/C15/DACA_OUT HPMXSEL2/ /LPMXSEL2/ HPMXSEL0/ /LPMXSEL0/ REFHI ADC Inputs C0 to C15 HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0 HPMXSEL2/ /LPMXSEL2/ HPMXSEL4/ A7/C3 ADC-C DAC12 CMP4_LN CMP4_LP Digital Filter CTRIP4L CTRIPOUT4L 12-bits /LPMXSEL4/ REFLO HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1 CMPSS4 Input MUX Input MUX AIO AIO AIO CMPSS3 Input MUX AIO AIO AIO CMPSS Inputs VREFHI DACA_OUT 12-bit Buffered DAC-A VREFHI DACB_OUT VDAC VDAC 12-bit Buffered DAC-B Figure 6-39. Analog Subsystem Block Diagram (64-Pin PM LQFP) 118 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 VREFHI CMP1_HP CMP1_HN VREFLO Reference Circuit Comparator Subsystem 1 Digital Filter VDDA or VDAC DAC12 ANAREFSEL Misc. Analog DAC12 Temp Sensor (C12) Vref Digital Filter CTRIP1L CTRIPOUT1L Comparator Subsystem 2 Digital Filter CTRIP2H CTRIPOUT2H CMP1_LN CMP1_LP REFLO CMP2_HP CMP2_HN VDDA or VDAC HPMXSEL4/ /LPMXSEL4/ HPMXSEL2/ /LPMXSEL2/ HPMXSEL0/ /LPMXSEL0/ REFHI A10/B1/C10 A9/B4/C8 A4/B8/C14 A12/C1 HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0 HPMXSEL2/ /LPMXSEL2/ HPMXSEL0/ /LPMXSEL0/ HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1 HPMXSEL5/ /LPMXSEL5/ /LPMXSEL4/ AIO AIO AIO CMPSS2 Input MUX A3/B3/C5/VDAC HPMXSEL0/ /LPMXSEL0/ HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0 HPMXSEL5/ /LPMXSEL5/ A5/B12/C2 HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1 ADC-A 12-bits REFLO DAC12 DAC12 Digital Filter CTRIP2L CTRIPOUT2L Comparator Subsystem 3 Digital Filter CTRIP3H CTRIPOUT3H CMP2_LN CMP2_LP CMP3_HP CMP3_HN VDDA or VDAC DAC12 REFHI ADC Inputs B0 to B15 Input MUX HPMXSEL4/ Analog Interconnect A15/B9/C7 HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0 AIO AIO AIO CMPSS1 Input MUX A8/B0/C11 ADC Inputs A0 to A15 HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1 Input MUX A1/B7/DACB_OUT A6/B2/C6 A2/B6/C9 A11/B10/C0 CTRIP1H CTRIPOUT1H ADC-B DAC12 Digital Filter CTRIP3L CTRIPOUT3L Comparator Subsystem 4 Digital Filter VDDA or VDAC CTRIP4H CTRIPOUT4H CMP3_LN CMP3_LP 12-bits REFLO CMP4_HP CMP4_HN DAC12 A0/B15/C15/DACA_OUT HPMXSEL2/ /LPMXSEL2/ HPMXSEL0/ /LPMXSEL0/ REFHI ADC Inputs C0 to C15 HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0 HPMXSEL2/ /LPMXSEL2/ HPMXSEL4/ A7/C3 Input MUX AIO AIO AIO CMPSS3 Input MUX ADC-C Digital Filter CTRIP4L CTRIPOUT4L 12-bits /LPMXSEL4/ HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1 AIO AIO AIO CMPSS4 Input MUX DAC12 CMP4_LN CMP4_LP REFLO CMPSS Inputs VREFHI DACA_OUT 12-bit Buffered DAC-A VREFHI DACB_OUT VDAC VDAC 12-bit Buffered DAC-B Figure 6-40. Analog Subsystem Block Diagram (48-Pin PT LQFP) Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 119 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 CMPSSx Input MUX CMPxHPMX CMPx_HP0 CMPx_HP1 CMPx_HP2 CMPx_HP3 CMPx_HP4 0 1 2 3 CMPx_HP5 4 5 CMPx_HN0 0 CMPx_HN1 1 CMPx_LN0 0 CMPx_LN1 1 CMPx_HP CMPxHNMX CMPxLNMX To CMPSSx CMPx_HN CMPx_LN CMPxLPMX CMPx_LP0 CMPx_LP1 CMPx_LP2 CMPx_LP3 CMPx_LP4 CMPx_LP5 0 1 2 3 4 5 Gx_ADCA CMPx_LP Gx_ADCA AIO Gx_ADCB AIO To ADCs Gx_ADCB AGPIO Gx_ADCC Gx_ADCC AIO A. AIOs support digital input mode only. Figure 6-41. Analog Group Connections 120 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.13.1 Analog Pins and Internal Connections Table 6-10. Analog Pins and Internal Connections Package Pin Pin Name 100 PZ ADC 80 PN 64 PM 48 PT Comparator Subsystem (MUX) A B C VREFHI 24, 25 20 16 12 VREFLO 26, 27 21 17 13 A13 B13 C13 High Positive High Negative Analog Group 1 Low Positive Low Negative AIO Input CMP1 A6 14 10 6 4(1) A6 - - CMP1 (HPMXSEL=2) CMP1 (LPMXSEL=2) A2/B6/C9 17 13 9 6 A2 B6 C9 CMP1 (HPMXSEL=0) CMP1 (LPMXSEL=0) A15 - - CMP1 (HPMXSEL=3) CMP1 (HNMXSEL=0) CMP1 (LPMXSEL=3) CMP1 (LNMXSEL=0) AIO233 - B9 C7 CMP1 (HNMXSEL=1) CMP1 (LPMXSEL=1) CMP1 (LNMXSEL=1) AIO237 A15 - 14 10 20 16 12 8 A11 B10 C0 CMP1 (HPMXSEL=1) 22 18 14 10 A1 B7 - CMP1 (HPMXSEL=4) B9/C7 18 A11/B10/C0 A1/B7/DACB_OUT 7 40 29 25 15 B3/VDAC(2) 16 C5 28 11 7 21 A10 B1 C10 CMP2 (HPMXSEL=3) CMP2 (HNMXSEL=0) 4(1) - B2 C6 CMP3 (HPMXSEL=0) - B3 - CMP3 (HPMXSEL=3) - - C5 - - - - 8 5 18 - - - A14/B14/C4 19 15 11 - A14 B14 A0/B15/C15/ DACA_OUT 23 19 15 11 A0 A7/C3 31 23 15 A7 - A3 B12/C2 35 21 17 13 28 C1 29 22 Copyright © 2023 Texas Instruments Incorporated 18 CMP3 (LPMXSEL=3) AIO226 CMP3 (LNMXSEL=0) AIO242 CMP3 (LPMXSEL=5) C4 CMP3 (HPMXSEL=4) CMP3 (LPMXSEL=4) AIO239 B15 C15 CMP3 (HPMXSEL=2) CMP3 (LPMXSEL=2) AIO231 - C3 CMP4 (HPMXSEL=1) AIO229 CMP4 CMP4 (HNMXSEL=1) 9 14 CMP4 (LPMXSEL=1) CMP4 (LNMXSEL=1) AIO245 CMP2/3 A5 - - - - - B12 C2 CMP2 (HPMXSEL=5) CMP3 (HPMXSEL=1) AIO249 CMP2 (LPMXSEL=5) CMP3 (HNMXSEL=1) Combined Analog Group 2/4 A12 AIO230 CMP3 (HPMXSEL=5) Combined Analog Group 2/3 A5 CMP2 (LNMXSEL=0) CMP3 (LPMXSEL=0) CMP3 (HNMXSEL=0) Analog Group 4 19 CMP2 (LPMXSEL=3) CMP3 12 A3 AIO232 CMP2 Analog Group 3 B2/C6 AIO224 CMP1 (LPMXSEL=4) Analog Group 2 A10/B1/C10 AIO228 CMP3 (LPMXSEL=1) CMP3 (LNMXSEL=1) AIO244 CMP2 (LNMXSEL=1) AIO238 CMP2/4 A12 - - CMP2 (HPMXSEL=1) - - C1 CMP4 (HPMXSEL=2) CMP2 (HNMXSEL=1) CMP2 (LPMXSEL=1) CMP4 (LPMXSEL=2) AIO248 Submit Document Feedback 121 Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036CQ1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 6-10. Analog Pins and Internal Connections (continued) Package Pin Pin Name 100 PZ 37 A8 - B0/C11 41 A4/B8 36 - C14 42 A9 38 B4/C8 39 ADC 80 PN 64 PM 48 PT - - - 24 20 16 - - - 27 23 19 - - - 28 24 20 A Comparator Subsystem (MUX) B C - - - - B0 A4 B8 - - - - A9 - A8 - High Positive High Negative Low Positive Low Negative AIO Input AIO240 CMP4 (HPMXSEL=4) CMP4 (LPMXSEL=4) C11 CMP2 (HPMXSEL=4) CMP2 (LPMXSEL=4) - CMP2 (HPMXSEL=0) CMP2 (LPMXSEL=0) C14 CMP4 (HPMXSEL=3) - - CMP2 (HPMXSEL=2) CMP2 (LPMXSEL=2) AIO227 B4 C8 CMP4 (HPMXSEL=0) CMP4 (LPMXSEL=0) AIO236 CMP1 (HPMXSEL=5) CMP1 (LPMXSEL=5) CMP4 (HPMXSEL=5) CMP4 (LPMXSEL=5) CMP4 (HNMXSEL=0) CMP4 (LPMXSEL=3) AIO241 AIO253 AIO225 CMP4 (LNMXSEL=0) AIO247 Other Analog B5 32 - - - - B5/GPIO20(3) 48 33 - - - B11 30 - - - - B11/GPIO21(3) 49 34 - - - TempSensor(4) - - - - - (1) (2) (3) (4) 122 B5 B11 - - AIO252 GPIO20 AIO251 GPIO21 C12 A6 and C6 is double bonded as pin # 4. Optional external reference voltage for on-chip COMPDACs/GPDACs. There is an internal capacitance to VSSA on this pin whether used for ADC input or COMPDAC/GPDAC reference. If used as a VDAC reference, place at least a 1-µF capacitor on this pin. The GPIOs on these analog pins support full digital input and output functionality and are referred to as AGPIOs. By default, the AGPIOs are unconnected; that is, the analog and digital functions are both disabled. For configuration details, see the Digital Inputs and Outputs on ADC Pins (AGPIOs) section. Internal connection only; does not come to a device pin. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036CQ1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.13.2 Analog Signal Descriptions Table 6-11. Analog Signal Descriptions Signal Name Description AIOx Digital input on ADC pin GPIOx Digital input/output pin with ADC functionality Ax ADC A Input Bx ADC B Input Cx ADC C Input CMPx_DACH Comparator subsystem high DAC output CMPx_DACL Comparator subsystem low DAC output CMPx_HNy Comparator subsystem high comparator negative input CMPx_HPy Comparator subsystem high comparator positive input CMPx_LNy Comparator subsystem low comparator negative input CMPx_LPy Comparator subsystem low comparator positive input DACx_OUT Buffered DAC Output TempSensor Internal temperature sensor VDAC Optional external reference voltage for on-chip COMPDACs. This pin has a higher capacitance compared to the other analog pins. See the Per-Channel Parasitic Capacitance table for details. This capacitance is present whether the pin is being used for ADC input or COMPDAC/GPDAC reference and cannot be disabled. If this pin is being used as a reference for the on-chip COMPDAC/GPDACs, place at least a 1-μF capacitor on this pin. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 123 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com 6.13.3 Analog-to-Digital Converter (ADC) The ADC module described here is a successive approximation (SAR) style ADC with resolution of 12 bits. This section refers to the analog circuits of the converter as the “core,” and includes the channel-select MUX, the sample-and-hold (S/H) circuit, the successive approximation circuits, voltage reference circuits, and other analog support circuits. The digital circuits of the converter are referred to as the “wrapper” and include logic for programmable conversions, result registers, interfaces to analog circuits, interfaces to the peripheral buses, post-processing circuits, and interfaces to other on-chip modules. Each ADC module consists of a single sample-and-hold (S/H) circuit. The ADC module is designed to be duplicated multiple times on the same chip, allowing simultaneous sampling or independent operation of multiple ADCs. The ADC wrapper is start-of-conversion (SOC)-based (see the SOC Principle of Operation section of the Analog-to-Digital Converter (ADC) chapter in the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual). Each ADC has the following features: • Resolution of 12 bits • Ratiometric external reference set by VREFHI/VREFLO • Selectable internal reference of 2.5 V or 3.3 V • Single-ended signal mode • Input multiplexer with up to 16 channels • 16 configurable SOCs • 16 individually addressable result registers • Multiple trigger sources – Software immediate start – All ePWMs: ADCSOC A or B – GPIO XINT2 – CPU Timers 0/1/2 – ADCINT1/2 • Four flexible PIE interrupts • Burst-mode triggering option • Four post-processing blocks, each with: – Saturating offset calibration – Error from setpoint calculation – High, low, and zero-crossing compare, with interrupt and ePWM trip capability – Trigger-to-sample delay capture Note Not every channel can be pinned out from all ADCs. See the Pin Configuration and Functions section to determine which channels are available. 124 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 The block diagram for the ADC core and ADC wrapper are shown in Figure 6-42. Analog-to-Digital Wrapper Logic Input Circuit SOC Arbitration & Control ADCSOC [15:0] ACQPS u DOUT1 xV 2 IN- SOCxSTART[15:0] xV 1 IN+ EOCx[15:0] [15:0] CHSEL ADCCOUNTER TRIGGER[15:0] SOC Delay Timestamp Converter S/H Circuit ... RESULT Trigger Timestamp - + ADCRESULT 0±15 Regs 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 [15:0] ... ADCIN0 ADCIN1 ADCIN2 ADCIN3 ADCIN4 ADCIN5 ADCIN6 ADCIN7 ADCIN8 ADCIN9 ADCIN10 ADCIN11 ADCIN12 ADCIN13 ADCIN14 ADCIN15 TRIGSEL SOCx (0-15) CHSEL Triggers Analog-to-Digital Core ADCPPBxOFFCAL saturate ADCPPBxOFFREF - + ADCPPBxRESULT ADCEVT VREFHI CONFIG Bandgap Reference Circuit 1.65-V Output (3.3-V Range) or 2.5-V Output (2.5-V Range) 1 Event Logic ADCEVTINT Post Processing Block (1-4) 0 Interrupt Block (1-4) ADCINT1-4 VREFLO Analog System Control ANAREFSEL ANAREFx2PSSEL Reference Voltage Levels Figure 6-42. ADC Module Block Diagram Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 125 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.13.3.1 ADC Configurability Some ADC configurations are individually controlled by the SOCs, while others are globally controlled per ADC module. Table 6-12 summarizes the basic ADC options and their level of configurability. Table 6-12. ADC Options and Configuration Levels (1) OPTIONS CONFIGURABILITY Clock Per module(1) Resolution Not configurable (12-bit resolution only) Signal mode Not configurable (single-ended signal mode only) Reference voltage source Either external or internal for all modules Trigger source Per SOC(1) Converted channel Per SOC Acquisition window duration Per SOC(1) EOC location Per module Burst mode Per module(1) Writing these values differently to different ADC modules could cause the ADCs to operate asynchronously. For guidance on when the ADCs are operating synchronously or asynchronously, see the Ensuring Synchronous Operation section of the Analog-to-Digital Converter (ADC) chapter in the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual. 6.13.3.1.1 Signal Mode The ADC supports single-ended signaling. The input voltage to the converter is sampled through a single pin (ADCINx), referenced to VREFLO. VREFHI Pin Voltage VREFHI ADCINx ADCINx ADC VREFHI/2 VREFLO VREFLO (VSSA) 2n - 1 Digital Output ADC Vin 0 Figure 6-43. Single-ended Signaling Mode 126 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.13.3.2 ADC Electrical Data and Timing Note The ADC inputs should be kept below VDDA + 0.3 V. If an ADC input goes above this level, ADC disturbances to other channels may occur by two mechanisms: • ADC input overvoltage will overdrive the CMPSS mux, disturbing all other channels which share a common CMPSS mux. This disturbance will be continuous regardless of if the overvoltage input is sampled by the ADC • When the ADC samples the overvoltage ADC input, VREFHI will be pulled up to a higher level. This will disturb subsequent ADC conversions on any channel until the VREF stabilizes Note The VREFHI pin must be kept below VDDA + 0.3 V to ensure proper functional operation. If the VREFHI pin exceeds this level, a blocking circuit may activate, and the internal value of VREFHI may float to 0 V internally, giving improper ADC conversion. 6.13.3.2.1 ADC Operating Conditions over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS ADCCLK (derived from PERx.SYSCLK) Sample rate MIN 5 120-MHz SYSCLK 120-MHz SYSCLK (AGPIO Pin) Sample window duration (set by ACQPS and PERx.SYSCLK)(1) With 50 Ω or less Rs With 50 Ω or less Rs (AGPIO Pin) 90 VREFHI External Reference 2.4 VREFHI(2) UNIT 60 MHz 4 MSPS 3.75 MSPS 75 ns ns 2.5 or 3.0 VDDA V 1.65 V Internal Reference = 2.5V Range 2.5 V VSSA VSSA V 2.4 VDDA V Internal Reference = 3.3 V Range 0 3.3 V Internal Reference = 2.5 V Range 0 2.5 V VREFLO VREFHI V VREFHI - VREFLO External Reference (1) (2) MAX Internal Reference = 3.3V Range VREFLO Conversion range TYP The sample window must also be at least as long as 1 ADCCLK cycle for correct ADC operation. In internal reference mode, the reference voltage is driven out of the VREFHI pin by the device. The user should not drive a voltage into the pin in this mode. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 127 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.13.3.2.2 ADC Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT General ADCCLK Conversion Cycles Power Up Time 120-MHz SYSCLK 10.1 11 ADCCLKs External Reference mode 500 µs Internal Reference mode 5000 µs Internal Reference mode, when switching between 2.5-V range and 3.3-V range. 5000 µs VREFHI input current(1) 130 µA Internal Reference Capacitor Value(2) 2.2 µF External Reference Capacitor Value(2) 2.2 µF DC Characteristics Gain Error Internal reference –45 External reference –5 ±3 5 –5 ±2 5 Offset Error Channel-to-Channel Gain Error(4) Channel-to-Channel Offset Error(4) 45 LSB LSB 2 LSB 2 LSB ADC-to-ADC Gain Error(5) Identical VREFHI and VREFLO for all ADCs 4 LSB ADC-to-ADC Offset Error(5) Identical VREFHI and VREFLO for all ADCs 2 LSB DNL Error >–1 ±0.5 1 LSB INL Error –2 ±1.0 2 LSB 1 LSBs ADC-to-ADC Isolation VREFHI = 2.5 V, synchronous ADCs –1 AC Characteristics SNR(3) THD(3) SFDR(3) SINAD(3) ENOB(3) External VREFHI/Internal VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1 70.5 Internal VREFHI = 1.65 V (0 to 3.3 V range), fin = 100 kHz, SYSCLK from X1 68.2 External/Internal VREFHI, fin = 100 kHz, SYSCLK from INTOSC 60.1 Submit Document Feedback dB External VREFHI/Internal VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1 –85.0 dB Internal VREFHI = 1.65 V (0 to 3.3 V range), fin = 100 kHz, SYSCLK from X1 –82.3 dB External/Internal VREFHI , fin = 100 kHz 79.2 dB External VREFHI/Internal VREFHI = 2.5V, fin = 100 kHz, SYSCLK from X1 70.4 dB Internal VREFHI = 1.65 V (0 to 3.3 V range), fin = 100 kHz, SYSCLK from X1 68.0 External/Internal VREFHI, fin = 100 kHz, SYSCLK from INTOSC 60.0 External VREFHI/Internal VREFHI = 2.5 V, fin = 100 kHz, SYSCLK from X1, single and synchronous ADCs 11.4 Internal VREFHI = 1.65 V (0 to 3.3 V range), fin = 100 kHz, SYSCLK from X1, single and synchronous ADCs 11.0 Any VREF mode, fin = 100 kHz, SYSCLK from X1, asynchronous ADCs 128 dB dB bits Not Supported Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.13.3.2.2 ADC Characteristics (continued) over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS PSRR (1) (2) (3) (4) (5) MIN TYP VDD = 1.2-V DC + 100mV DC up to Sine at 1 kHz 60 VDD = 1.2-V DC + 100 mV DC up to Sine at 300 kHz 57 VDDA = 3.3-V DC + 200 mV DC up to Sine at 1 kHz 60 VDDA = 3.3-V DC + 200 mV Sine at 900 kHz 57 MAX UNIT dB Load current on VREFHI increases when ADC input is greater than VDDA. This causes inaccurate conversions. A ceramic capacitor with package size of 0805 or smaller is preferred. Up to ±20% tolerance is acceptable. IO activity is minimized on pins adjacent to ADC input and VREFHI pins as part of best practices to reduce capacitive coupling and crosstalk. Variation across all channels belonging to the same ADC module. Worst case variation compared to other ADC modules. 6.13.3.2.3 ADC Input Model The ADC input characteristics are given by Table 6-13 and Figure 6-44. Table 6-13. Input Model Parameters DESCRIPTION Cp Ron REFERENCE MODE VALUE Parasitic input capacitance All Sampling switch resistance External Reference, 2.5-V Internal Reference 500 Ω 3.3-V Internal Reference 860 Ω Ch Sampling capacitor Rs Nominal source impedance See Table 6-14 to Table 6-17 External Reference, 2.5-V Internal Reference 12.5 pF 3.3-V Internal Reference 7.5 pF All 50 Ω ADC Rs ADCINx Switch AC Ron Cp Ch VREFLO Figure 6-44. Input Model This input model should be used with actual signal source impedance to determine the acquisition window duration. For more information, see the Choosing an Acquisition Window Duration section of the Analogto-Digital Converter (ADC) chapter in the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual. For recommendations on improving ADC input circuits, see the ADC Input Circuit Evaluation for C2000 MCUs Application Report. Table 6-14. Per-Channel Parasitic Capacitance for 100-Pin PZ LQFP ADC CHANNEL Cp (pF) COMPARATOR DISABLED COMPARATOR ENABLED A0/B15/C15/DACA_OUT 9.1 11.6 A1/B7/DACB_OUT 7.4 9.9 A2/B6/C9 4.1 6.6 A3 3.3 5.8 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 129 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 6-14. Per-Channel Parasitic Capacitance for 100-Pin PZ LQFP (continued) ADC CHANNEL Cp (pF) COMPARATOR DISABLED COMPARATOR ENABLED A4/B8 3.8 6.3 A5 3.5 6 A6 3.2 5.7 A7/C3 3.8 6.3 A8 4.1 6.6 A9 3.1 5.6 A10/B1/C10 4.7 7.2 A11/B11/C0 4 6.5 A12 3.4 5.9 A14/B14/C4 3.8 6.3 B0/C11 4.1 6.6 B2/C6 3.9 6.4 B3/VDAC 75 77.5 B4/C8 3.8 6.3 B5 3.5 6 B9/C7 3.3 5.8 B11 3 5.5 B12/C2 3.6 6.1 C1 3 5.5 C5 3.6 6.1 C14 4.2 6.7 AGPIO_B5 3.2 5.7 AGPIO_B11 3.1 5.6 Table 6-15. Per-Channel Parasitic Capacitance for 80-Pin PN LQFP ADC CHANNEL 130 Cp (pF) COMPARATOR DISABLED COMPARATOR ENABLED A0/B15/C15/DACA_OUT 9.1 11.6 A1/B7/DACB_OUT 7.4 9.9 A2/B6/C9 4.1 6.6 A3/B3/C5/VDAC 81.9 89.4 A4/B8/C14 8 13 A5/B12/C2 7.1 12.1 A6 3.2 5.7 A7/C3 3.8 6.3 A8/B0/C11 8.2 13.2 A9/B4/C8 6.9 11.9 A10/B1/C10 4.7 7.2 A11/B11/C0 4 6.5 A12/C1 6.4 11.4 A14/B14/C4 3.8 6.3 A15/B9/C7 7.1 12.1 B2/C6 3.9 6.4 AGPIO_B5 3.2 5.7 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 6-15. Per-Channel Parasitic Capacitance for 80-Pin PN LQFP (continued) ADC CHANNEL AGPIO_B11 Cp (pF) COMPARATOR DISABLED COMPARATOR ENABLED 3.1 5.6 Table 6-16. Per-Channel Parasitic Capacitance for 64-Pin PM LQFP ADC CHANNEL Cp (pF) COMPARATOR DISABLED COMPARATOR ENABLED A0/B15/C15/DACA_OUT 9.1 11.6 A1/B7/DACB_OUT 7.4 9.9 A2/B6/C9 4.1 6.6 A3/B3/C5/VDAC 81.9 89.4 A4/B8/C14 8 13 A5/B12/C2 7.1 12.1 5.7 A6 3.2 A7/C3 3.8 6.3 A8/B0/C11 8.2 13.2 A9/B4/C8 6.9 11.9 A10/B1/C10 4.7 7.2 A11/B11/C0 4 6.5 A12/C1 6.4 11.4 A14/B14/C4 3.8 6.3 A15/B9/C7 7.1 12.1 B2/C6 3.9 6.4 Table 6-17. Per-Channel Parasitic Capacitance for 48-Pin PT LQFP ADC CHANNEL Cp (pF) COMPARATOR DISABLED COMPARATOR ENABLED A0/B15/C15/DACA_OUT 9.1 11.6 A1/B7/DACB_OUT 7.4 9.9 A2/B6/C9 4.1 6.6 A3/B3/C5/VDAC 81.9 89.4 A4/B8/C14 8 13 A5/B12/C2 7.1 12.1 A6/B2/C6 7.1 12.1 A7/C3 3.8 6.3 A8/B0/C11 8.2 13.2 A9/B4/C8 6.9 11.9 A10/B1/C10 4.7 7.2 A11/B11/C0 4 6.5 A12/C1 6.4 11.4 A15/B9/C7 7.1 12.1 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 131 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com 6.13.3.2.4 ADC Timing Diagrams Figure 6-45 shows the ADC conversion timings for two SOCs given the following assumptions: • SOC0 and SOC1 are configured to use the same trigger. • No other SOCs are converting or pending when the trigger occurs. • The round-robin pointer is in a state that causes SOC0 to convert first. • ADCINTSEL is configured to set an ADCINT flag upon end of conversion for SOC0 (whether this flag propagates through to the CPU to cause an interrupt is determined by the configurations in the PIE module). Table 6-18 lists the descriptions of the ADC timing parameters. Table 6-19 lists the ADC timings. Sample n Input on SOC0.CHSEL Input on SOC1.CHSEL Sample n+1 ADC S+H SOC0 SOC1 SYSCLK ADCCLK ADCTRIG ADCSOCFLG.SOC0 ADCSOCFLG.SOC1 ADCRESULT0 (old data) ADCRESULT1 (old data) Sample n Sample n+1 ADCINTFLG.ADCINTx tSH tLAT tEOC tINT Figure 6-45. ADC Timings 132 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 6-18. ADC Timing Parameter Descriptions PARAMETER DESCRIPTION The duration of the S+H window. tSH At the end of this window, the value on the S+H capacitor becomes the voltage to be converted into a digital value. The duration is given by (ACQPS + 1) SYSCLK cycles. ACQPS can be configured individually for each SOC, so tSH is not necessarily the same for different SOCs. Note: The value on the S+H capacitor is captured approximately 5 ns before the end of the S+H window regardless of device clock settings. tLAT tEOC The time from the end of the S+H window until the ADC results latch in the ADCRESULTx register. If the ADCRESULTx register is read before this time, the previous conversion results are returned. The time from the end of the S+H window until the S+H window for the next ADC conversion can begin. The subsequent sample can start before the conversion results are latched. The time from the end of the S+H window until an ADCINT flag is set (if configured). If the INTPULSEPOS bit in the ADCCTL1 register is set, tINT coincides with the end of conversion (EOC) signal. tINT If the INTPULSEPOS bit is 0, tINT coincides with the end of the S+H window. If tINT triggers a read of the ADC result register (directly through DMA or indirectly by triggering an ISR that reads the result), care must be taken to make sure the read occurs after the results latch (otherwise, the previous results are read). If the INTPULSEPOS bit is 0, and the OFFSET field in the ADCINTCYCLE register is not 0, then there is a delay of OFFSET SYSCLK cycles before the ADCINT flag is set. This delay can be used to enter the ISR or trigger the DMA exactly when the sample is ready. Table 6-19. ADC Timings ADCCLK PRESCALE (1) (2) ADCCTL2 [PRESCALE] RATIO ADCCLK:SYSCLK 0 2 ADCCLK CYCLES SYSCLK CYCLES tEOC tLAT (1) tINT(EARLY) (2) 1 11 13 1 11 11 2 21 23 1 21 10.5 4 3 31 34 1 31 10.3 6 4 41 44 1 41 10.3 tINT(LATE) tEOC 8 5 51 55 1 51 10.2 10 6 61 65 1 61 10.2 12 7 71 76 1 71 10.1 14 8 81 86 1 81 10.1 Refer to the "ADC: DMA Read of Stale Result" advisory in the TMS320F28003x Real-Time MCUs Silicon Errata. By default, tINT occurs one SYSCLK cycle after the S+H window if INTPULSEPOS is 0. This can be changed by writing to the OFFSET field in the ADCINTCYCLE register. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 133 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.13.4 Temperature Sensor 6.13.4.1 Temperature Sensor Electrical Data and Timing The temperature sensor can be used to measure the device junction temperature. The temperature sensor is sampled through an internal connection to the ADC and translated into a temperature through TI-provided software. When sampling the temperature sensor, the ADC must meet the acquisition time in the Temperature Sensor Characteristics table. 6.13.4.1.1 Temperature Sensor Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER Tacc Temperature Accuracy tstartup Start-up time (TSNSCTL[ENABLE] to sampling temperature sensor) tacq ADC acquisition time 134 Submit Document Feedback TEST CONDITIONS MIN External reference 450 TYP MAX UNIT ±15 °C 500 µs ns Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.13.5 Comparator Subsystem (CMPSS) The Comparator Subsystem (CMPSS) consists of analog comparators and supporting circuits that are useful for power applications such as peak current mode control, switched-mode power supply, power factor correction, voltage trip monitoring, and so forth. The comparator subsystem is built around a number of modules. Each subsystem contains two comparators, two reference 12-bit DACs, and two digital filters. The subsystem also includes one ramp generator. Comparators are denoted "H" or "L" within each module where “H” and “L” represent high and low, respectively. Each comparator generates a digital output which indicates whether the voltage on the positive input is greater than the voltage on the negative input. The positive input of the comparator is driven from an external pin (see the Analog Subsystem chapter of the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual for mux options available to the CMPSS). The negative input can be driven by an external pin or by the programmable reference 12-bit DAC. Each comparator output passes through a programmable digital filter that can remove spurious trip signals. An unfiltered output is also available if filtering is not required. A ramp generator circuit is optionally available to control the reference 12-bit DAC value for the high comparator in the subsystem. Each CMPSS includes: • • • • • • • • • • • • Two analog comparators Two programmable reference 12-bit DACs One ramp generator Two digital filters, 65536 max filter clock prescale Ability to synchronize submodules with EPWMSYNCPER Ability to extend clear signal with EPWMBLANK Ability to synchronize output with SYSCLK Ability to latch output Ability to invert output Option to use hysteresis on the input Option for negative input of comparator to be driven by an external signal or by the reference DAC Option to choose between VDDA or VDAC to be the DAC reference voltage Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 135 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.13.5.1 CMPSS Connectivity Diagram CMP1_ HP CMP1_HN Comparator Subsystem 1 VDDA or VDAC CTRIP1H Digital Filter CTRIP1H CTRIPOUT1H Digital Filter CTRIP1L CTRIPOUT1L CTRIP2H DAC12 DAC12 CMP1_LN CMP1_LP CMP2_HP CMP2_HN Comparator Subsystem 2 Digital Filter VDDA or VDAC CMP2_LN CMP2_LP CTRIP2L ePWM X- BAR ePWMs Output X- BAR GPIO Mux CTRIP2H CTRIPOUT2H DAC12 DAC12 CTRIP1L CTRIP4H Digital Filter CTRIP2L CTRIPOUT2L CTRIP4L CTRIPOUT1H CTRIPOUT1L CTRIPOUT2H CMP4_ HP CMP4_ HN Comparator Subsystem 4 VDDA or VDAC Digital Filter CTRIP4H CTRIPOUT4H Digital Filter CTRIP4L CTRIPOUT4L CTRIPOUT2L DAC12 DAC12 CMP4_LN CMP4_ LP CTRIPOUT4H CTRIPOUT4L Figure 6-46. CMPSS Connectivity 6.13.5.2 Block Diagram The block diagram for the CMPSS is shown in Figure 6-47. • • 136 CTRIPx(x= "H" or "L") signals are connected to the ePWM X-BAR for ePWM trip response. See the Enhanced Pulse Width Modulator (ePWM) chapter of the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual for more details on the ePWM X-BAR mux configuration. CTRIPxOUTx(x= "H" or "L") signals are connected to the Output X-BAR for external signaling. See the General-Purpose Input/Output (GPIO) chapter of the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual for more details on the Output X-BAR mux configuration. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Figure 6-47. CMPSS Module Block Diagram Each reference 12-bit DAC can be configured to drive a reference voltage into the negative input of the respective comparator. The reference 12-bit DAC output is internal only and cannot be observed externally. The reference 12-bit DAC is illustrated in Figure 6-48. COMPDACCTL[SELREF] VDDA 0 DACREF VDAC 1 DACHVALA 12-bit DACOUTH DACH To COMPH DACLVALA 12-bit DACOUTL DACL To COMPL VSSA Figure 6-48. Reference DAC Block Diagram Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 137 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.13.5.3 CMPSS Electrical Data and Timing 6.13.5.3.1 Comparator Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TPU TEST CONDITIONS MIN Comparator input (CMPINxx) range Low common mode, inverting input set to 50mV Input referred offset error Hysteresis(1) Response time (delay from CMPINx input pin change to GPIO output pin through either ePWM X-BAR or Output X-BAR) PSRR Power Supply Rejection Ratio CMRR Common Mode Rejection Ratio (1) TYP MAX UNIT 500 µs 0 VDDA V –20 20 Power-up time 1x 4 12 20 2x 17 24 33 3x 25 36 50 4x 30 mV LSB 48 67 Step response 21 60 Ramp response (1.65V/µs) 26 Ramp response (8.25mV/µs) 30 ns Up to 250 kHz 46 dB 40 ns dB The CMPSS DAC is used as the reference to determine how much hysteresis to apply. Therefore, hysteresis will scale with the CMPSS DAC reference voltage. Hysteresis is available for all comparator input source configurations. CMPSS Comparator Input Referred Offset and Hysteresis Note The CMPSS inputs must be kept below VDDA + 0.3 V to ensure proper functional operation. If a CMPSS input exceeds this level, an internal blocking circuit isolates the internal comparator from the external pin until the external pin voltage returns below VDDA + 0.3 V. During this time, the internal comparator input is floating and can decay below VDDA within approximately 0.5 µs. After this time, the comparator could begin to output an incorrect result depending on the value of the other comparator input. Input Referred Offset CTRIPx Logic Level CTRIPx = 1 CTRIPx = 0 0 CMPINxN or DACxVAL COMPINxP Voltage Figure 6-49. CMPSS Comparator Input Referred Offset 138 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Hysteresis CTRIPx Logic Level CTRIPx = 1 CTRIPx = 0 0 CMPINxN or DACxVAL COMPINxP Voltage Figure 6-50. CMPSS Comparator Hysteresis 6.13.5.3.2 CMPSS DAC Static Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT Internal reference 0 VDDA External reference 0 VDAC(4) Static offset error(1) –25 25 mV Static gain error(1) –2 2 % of FSR CMPSS DAC output range V Static DNL Endpoint corrected >–1 4 LSB Static INL Endpoint corrected –16 16 LSB Settling time Settling to 1LSB after full-scale output change 1 µs Resolution CMPSS DAC output disturbance(2) 12 Error induced by comparator trip or CMPSS DAC code change within the same CMPSS module –100 CMPSS DAC disturbance time(2) VDAC reference voltage VDAC (1) (2) (3) (4) load(3) bits 100 LSB 200 ns When VDAC is reference 2.4 2.5 or 3.0 VDDA V When VDAC is reference 6 8 10 kΩ Includes comparator input referred errors. Disturbance error may be present on the CMPSS DAC output for a certain amount of time after a comparator trip. Per active CMPSS module. The maximum output voltage is VDDA when VDAC > VDDA. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 139 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.13.5.3.3 CMPSS Illustrative Graphs Offset Error Figure 6-51. CMPSS DAC Static Offset Ideal Gain Actual Gain Actual Linear Range Figure 6-52. CMPSS DAC Static Gain 140 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Linearity Error Figure 6-53. CMPSS DAC Static Linearity Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 141 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.13.5.3.4 CMPSS DAC Dynamic Error When using the ramp generator to control the internal DAC, the step size can vary based on the application need. Since the step size of the DAC is less than a full scale transition, the settling time is improved from the electrical specification listed in the CMPSS DAC Static Electrical Characteristics table. The equation below and Figure 6-54 can give guidance on the expected voltage error from ideal based on different RAMPxDECVALA values. DYNAMICERROR = m × RAMPxDECVALA + b (3) Table 6-20. DAC Max Dynamic Error Terms EQUATION PARAMETER MIN (LSB) MAX (LSB) m 0.10 0.18 b 3.7 5.6 Note Above error terms are based on the max SYSCLK of the target device. If operating below the max SYSCLK then the "m" error term should be scaled accordingly. 300 Max Error Min Error Dynamic Error (LSB) 250 200 150 100 50 0 0 200 400 600 800 1000 1200 1400 1600 RAMPxDECVAL Figure 6-54. CMPSS DAC Dynamic Error 142 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.13.6 Buffered Digital-to-Analog Converter (DAC) The buffered DAC module consists of an internal 12-bit DAC and an analog output buffer that can drive an external load. For driving even higher loads than typical, a trade-off can be made between load size and output voltage swing. For the load conditions of the buffered DAC, see the Buffered DAC Electrical Data and Timing section. The buffered DAC is a general-purpose DAC that can be used to generate a DC voltage or AC waveforms such as sine waves, square waves, triangle waves and so forth. Software writes to the DAC value register can take effect immediately or can be synchronized with EPWMSYNCO events. Each buffered DAC has the following features: • 12-bit resolution • Selectable reference voltage source • x1 and x2 gain modes when using internal VREFHI • Ability to synchronize with EPWMSYNCPER DAC Module Reference Voltage Source Output Buer 12-Bit DAC Internal Reference Circuit DACCTL[DACREFSEL] ANAREFx2P5 VDAC 0 1.65 V Internal Reference Circuit 2.5 V DACREF 0 1 1 0 1 ANAREFCTL[ANAREFxSEL] VREFHI VDDA SYSCLK DACVALS DACCTL[LOADMODE] > D Q 0 D Q 1 DACVALA EPWM1SYNCPER EPWM2SYNCPER EPWM3SYNCPER ... EPWMnSYNCPER 0 DACOUT 12-bit DAC EN 1 VSSA 2 ... n-1 VSSA DACCTL[MODE] (Select x1 or x2 gain) DACCTL[SYNCSEL] Figure 6-55. DAC Module Block Diagram Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 143 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.13.6.1 Buffered DAC Electrical Data and Timing 6.13.6.1.1 Buffered DAC Operating Conditions over recommended operating conditions (unless otherwise noted)(1) PARAMETER RL Resistive Load(2) CL Capacitive Load Valid Output Voltage Range(3) VOUT Reference Voltage(4) (1) (2) (3) (4) TEST CONDITIONS MIN TYP MAX 5 RL = 5 kΩ 0.3 RL = 1 kΩ 0.6 VDAC or VREFHI 2.4 UNIT kΩ 2.5 or 3.0 100 pF VDDA – 0.3 V VDDA – 0.6 V VDDA V Typical values are measured with VREFHI = 3.3 V and VREFLO = 0 V, unless otherwise noted. Minimum and maximum values are tested or characterized with VREFHI = 2.5 V and VREFLO = 0 V. DAC can drive a minimum resistive load of 1 kΩ, but the output range will be limited. This is the linear output range of the DAC. The DAC can generate voltages outside this range, but the output voltage will not be linear due to the buffer. For best PSRR performance, VDAC or VREFHI should be less than VDDA. 6.13.6.1.2 Buffered DAC Electrical Characteristics over recommended operating conditions (unless otherwise noted)(1) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 1 mV/V General Resolution 12 Load Regulation –1 Glitch Energy bits 1.5 V-ns Voltage Output Settling Time Full-Scale Settling to 2 LSBs after 0.3Vto-3V transition 2 µs Voltage Output Settling Time 1/4th Full-Scale Settling to 2 LSBs after 0.3Vto-0.75V transition 1.6 µs Voltage Output Slew Rate Slew rate from 0.3V-to-3V transition 4.5 V/µs 5-kΩ Load 328 ns 1-kΩ Load 557 ns Load Transient Settling Time Reference Input TPU Resistance(2) Power Up Time VDAC or VREFHI 2.8 240 kΩ External Reference mode 160 200 500 µs Internal Reference mode 5000 µs DC Characteristics Offset Offset Error Gain Gain Error(3) Midpoint –10 10 mV –2.5 2.5 % of FSR DNL Differential Non Linearity(4) Endpoint corrected –1 ±0.4 1 LSB INL Integral Non Linearity Endpoint corrected –5 ±2 5 LSB AC Characteristics Output Noise Integrated noise from 100 Hz to 100 kHz 600 µVrms Noise density at 10 kHz 800 nVrms/√Hz SNR Signal to Noise Ratio 1 kHz, 200 KSPS 64 dB THD Total Harmonic Distortion 1 kHz, 200 KSPS –64.2 dB SFDR Spurious Free Dynamic Range 1 kHz, 200 KSPS 66 dB SINAD Signal to Noise and Distortion 1 kHz, 200 KSPS Ratio 61.7 dB 144 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.13.6.1.2 Buffered DAC Electrical Characteristics (continued) over recommended operating conditions (unless otherwise noted)(1) PARAMETER PSRR (1) (2) (3) (4) (5) Power Supply Rejection Ratio(5) TEST CONDITIONS MIN TYP MAX UNIT DC 70 dB 100 kHz 30 dB Typical values are measured with VREFHI = 3.3 V and VREFLO = 0 V, unless otherwise noted. Minimum and maximum values are tested or characterized with VREFHI = 2.5 V and VREFLO = 0 V. Per active Buffered DAC module. Gain error is calculated for linear output range. The DAC output is monotonic. VREFHI = 3.2 V, VDDA = 3.3 V DC + 100 mV Sine. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 145 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com 6.14 Control Peripherals 6.14.1 Enhanced Pulse Width Modulator (ePWM) The ePWM peripheral is a key element in controlling many of the power electronic systems found in both commercial and industrial equipment. The ePWM type-4 module is able to generate complex pulse width waveforms with minimal CPU overhead by building the peripheral up from smaller modules with separate resources that can operate together to form a system. Some of the highlights of the ePWM type-4 module include complex waveform generation, dead-band generation, a flexible synchronization scheme, advanced trip-zone functionality, and global register reload capabilities. The ePWM and eCAP synchronization scheme on the device provides flexibility in partitioning the ePWM and eCAP modules and allows localized synchronization within the modules. Figure 6-56 shows the ePWM module. Figure 6-57 shows the ePWM trip input connectivity. 146 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Time-Base (TB) TBPRD Shadow (24) ePWM SYNC Scheme EXTSYNCIN TBPRDHR (8) TBPRD Active (24) EXTSYNCOUT CTR=PRD EPWMxSYNCI TBCTL[PHSEN] TBCTL[SWFSYNC] Counter Up/Down (16 bit) DCAEVT1/sync(A) DCBEVT1/sync(A) CTR=ZERO TBCTR Active (16) CTR=PRD CTR=ZERO CTR_Dir TBPHSHR (8) 16 Phase Control Event Trigger And Interrupt (ET) CTR=CMPD CTR_Dir Counter Compare (CC) CTR=CMPA EPWMxSOCA CTR=PRD or ZERO CTR=CMPA CTR=CMPB CTR=CMPC 8 TBPHS Active (24) EPWMx_INT Action Qualifier (AQ) EPWMxSOCB On-chip ADC ADCSOCOUTSELECT DCAEVT1.soc(A) DCBEVT1.soc(A) Select and pulse stretch for external ADC CMPAHR (8) 16 HiRes PWM (HRPWM) CMPAHR (8) ADCSOCAO ADCSOCBO CMPA Active (24) CMPA Shadow (24) EPWMA ePWMxA Dead Band (DB) CTR=CMPB CMPBHR (8) PWM Chopper (DB) Trip Zone (TZ) 16 CMPB Active (16) EPWMB ePWMxB CMPB Shadow (16) CMPBHR (8) TBCNT (16) CTR=CMPC CTR=ZERO DCAEVT1.inter CMPC[15-0] DCBEVT1.inter 16 DCAEVT2.inter CMPC Active (16) DCBEVT2.inter CMPC Shadow (16) EPWMx_TZ_INT TZ1 to TZ3 EMUSTOP CLOCKFAIL EQEPxERR DCAEVT1.force(A) DCBEVT1.force(A) TBCNT (16) CTR=CMPD DCAEVT2.force(A) DCBEVT2.force(A) CMPD[15-0] 16 CMPD Active (16) CMPD Shadow (16) A. These events are generated by the ePWM digital compare (DC) submodule based on the levels of the TRIPIN inputs. Figure 6-56. ePWM Submodules and Critical Internal Signal Interconnects Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 147 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com Figure 6-57. ePWM Trip Input Connectivity 148 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.14.1.1 ePWM Electrical Data and Timing For an explanation of the input qualifier parameters, see the General-Purpose Input Timing Requirements table. 6.14.1.1.1 ePWM Timing Requirements MIN tw(SYNCIN) Sync input pulse width Asynchronous 2tc(EPWMCLK) Synchronous 2tc(EPWMCLK) With input qualifier MAX UNIT cycles 1tc(EPWMCLK) + tw(IQSW) 6.14.1.1.2 ePWM Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER(1) tw(PWM) Pulse duration, PWMx output high/low tw(SYNCOUT) Sync output pulse width td(TZ-PWM) Delay time, trip input active to PWM forced high Delay time, trip input active to PWM forced low Delay time, trip input active to PWM Hi-Z (1) MIN MAX UNIT 20 ns 8tc(SYSCLK) cycles 25 ns 20-pF load on pin. 6.14.1.1.3 Trip-Zone Input Timing For an explanation of the input qualifier parameters, see the General-Purpose Input Timing Requirements table. 6.14.1.1.3.1 Trip-Zone Input Timing Requirements MIN Asynchronous tw(TZ) Pulse duration, TZx input low UNIT cycles 2tc(EPWMCLK) cycles 1tc(EPWMCLK) + tw(IQSW) cycles Synchronous With input qualifier MAX 1tc(EPWMCLK) 6.14.1.1.3.2 PWM Hi-Z Characteristics Timing Diagram EPWMCLK tw(TZ) (A) TZ td(TZ-PWM) (B) PWM A. B. TZ: TZ1, TZ2, TZ3, TRIP1–TRIP12 PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery software. Figure 6-58. PWM Hi-Z Characteristics Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 149 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.14.2 High-Resolution Pulse Width Modulator (HRPWM) The HRPWM combines multiple delay lines in a single module and a simplified calibration system by using a dedicated calibration delay line. For each ePWM module, there are two HR outputs: • HR Duty and Deadband control on Channel A • HR Duty and Deadband control on Channel B The HRPWM module offers PWM resolution (time granularity) that is significantly better than what can be achieved using conventionally derived digital PWM methods. The key points for the HRPWM module are: • Significantly extends the time resolution capabilities of conventionally derived digital PWM • This capability can be used in both single edge (duty cycle and phase-shift control) as well as dual edge control for frequency/period modulation. • Finer time granularity control or edge positioning is controlled through extensions to the Compare A, B, phase, period and deadband registers of the ePWM module. 6.14.2.1 HRPWM Electrical Data and Timing 6.14.2.1.1 High-Resolution PWM Characteristics PARAMETER Micro Edge Positioning (MEP) step (1) MIN size(1) TYP 150 MAX UNIT 310 ps The MEP step size will be largest at high temperature and minimum voltage on VDD. MEP step size will increase with higher temperature and lower voltage and decrease with lower temperature and higher voltage. Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI software libraries for details of using SFO functions in end applications. SFO functions help to estimate the number of MEP steps per SYSCLK period dynamically while the HRPWM is in operation. 6.14.3 External ADC Start-of-Conversion Electrical Data and Timing 6.14.3.1 External ADC Start-of-Conversion Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER tw(ADCSOCL) MIN Pulse duration, ADCSOCxO low 32tc(SYSCLK) MAX UNIT cycles 6.14.3.2 ADCSOCAO or ADCSOCBO Timing Diagram tw(ADCSOCL) ADCSOCAO or ADCSOCBO Figure 6-59. ADCSOCAO or ADCSOCBO Timing 150 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.14.4 Enhanced Capture (eCAP) The features of the eCAP module include: • • • • Speed measurements of rotating machinery (for example, toothed sprockets sensed by way of Hall sensors) Elapsed time measurements between position sensor pulses Period and duty cycle measurements of pulse train signals Decoding current or voltage amplitude derived from duty cycle encoded current/voltage sensors The eCAP module features described in this chapter include: • • • • • • • • 4-event time-stamp registers (each 32 bits) Edge polarity selection for up to four sequenced time-stamp capture events Interrupt on either of the four events Single-shot capture of up to four event time-stamps Continuous mode capture of time stamps in a four-deep circular buffer Absolute time-stamp capture Difference (Delta) mode time-stamp capture When not used in capture mode, the eCAP module can be configured as a single-channel PWM output The capture functionality of the Type 1 eCAP is enhanced from the Type 0 eCAP with the following added features: • Event filter reset bit – Writing a 1 to ECCTL2[CTRFILTRESET] clears the event filter, the modulo counter, and any pending interrupts flags. Resetting the bit is useful for initialization and debug. • Modulo counter status bits – The modulo counter (ECCTL2 [MODCNTRSTS]) indicates which capture register is loaded next. In the Type 0 eCAP, to know the current state of the modulo counter was not possible • DMA trigger source – eCAPxDMA was added as a DMA trigger. CEVT[1-4] can be configured as the source for eCAPxDMA. • Input multiplexer – ECCTL0 [INPUTSEL] selects one of 128 input signals, which are detailed in the Configuring Device Pins for the eCAP section of the Enhanced Capture (eCAP) chapter in the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual. • EALLOW protection – EALLOW protection was added to critical registers. To maintain software compatibility with Type-0, configure DEV_CFG_REGS.ECAPTYPE to make these registers unprotected. The capture functionality of the Type 2 eCAP is enhanced from the Type 1 eCAP with the following added features: • Added ECAPxSYNCINSEL register – ECAPxSYNCINSEL register is added for each eCAP to select an external SYNCIN. Every eCAP can have a separate SYNCIN signal. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 151 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.14.4.1 eCAP and HRCAP Block Diagram ECCTL2 [ SYNCI_EN, SYNCOSEL, SWSYNC] ECCTL2[CAP/APWM] SYNC CTRPHS (phase register−32 bit) ECAPxSYNCIN APWM Mode OVF TSCTR (counter−32 bit) ECAPxSYNCOUT RST CTR_OVF CTR [0−31] Delta−Mode PRD [0−31] PWM Compare Logic Output X-Bar CMP [0−31] 32 CTR=PRD CTR [0−31] CTR=CMP 32 PRD [0−31] ECCTL1 [ CAPLDEN, CTRRSTx] HRCTRL[HRE] 32 32 APRD shadow HRCTRL[HRE] LD1 CAP1 (APRD Active) Polarity Select LD 32 CMP [0−31] 32 HRCTRL[HRE] 32 32 CAP2 (ACMP Active) 32 Polarity Select LD2 LD Other Sources [127:16] Event qualifier ACMP shadow HRCTRL[HRE] Event Prescale 16 ECCTL1[PRESCALE] [15:0] Input X-Bar 32 32 Polarity Select LD3 CAP3 (APRD Shadow) LD CAP4 (ACMP Shadow) LD HRCTRL[HRE] 32 32 LD4 Polarity Select 4 Capture Events 4 Edge Polarity Select ECCTL1[CAPxPOL] CEVT[1:4] ECAPxDMA_INT ECCTL2[CTRFILTRESET] ECCTL2[DMAEVTSEL] ECAPx (to ePIE) Interrupt Trigger and Flag Control Continuous / Oneshot Capture Control CTR_OVF MODCNTRSTS CTR=PRD CTR=CMP ECCTL2 [ REARM, CONT_ONESHT, STOP_WRAP] Registers: ECEINT, ECFLG, ECCLR, ECFRC Capture Pulse SYSCLK HRCLK ECAPx_HRCAL (to ePIE) A. HR Submodule (A) HR Input The HRCAP submodule is not available on all eCAP modules; in this case, the high-resolution muxes and hardware are not implemented. Figure 6-60. eCAP and HRCAP Block Diagram 152 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.14.4.2 eCAP Synchronization The eCAP modules can be synchronized with each other by selecting a common SYNCIN source. SYNCIN source for eCAP can be either software sync-in or external sync-in. The external sync-in signal can come from EPWM, eCAP, or X-Bar. The SYNC signal is defined by the selection in the ECAPxSYNCINSEL[SEL] bit for ECAPx as shown in Figure 6-61. ECAPx Disable 0x0 0x1 ECAPxSYNCIN ECAPxSYNCIN Signals EPWMxSYNCOUT ECCTL2[SWSYNC] CTR=PRD (EPWM, ECAP, INPUTXBAR, «) EXTSYNCOUT ECAPxSYNCOUT Disable Disable SYNCSELECT[SYNCOUT] 0xn ECCTL2[SYNCOSEL] ECAPSYNCINSEL[SEL] Figure 6-61. eCAP Synchronization Scheme 6.14.4.3 eCAP Electrical Data and Timing 6.14.4.3.1 eCAP Timing Requirements MIN Asynchronous tw(CAP) Capture input pulse width Synchronous With input qualifier NOM MAX UNIT 2tc(SYSCLK) 2tc(SYSCLK) ns 1tc(SYSCLK) + tw_(IQSW) 6.14.4.3.2 eCAP Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER tw(APWM) Pulse duration, APWMx output high/low Copyright © 2023 Texas Instruments Incorporated MIN 20 TYP MAX UNIT ns Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 153 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com 6.14.5 High-Resolution Capture (HRCAP) The eCAP3 module can be configured as high-resolution capture (HRCAP) submodules. The HRCAP submodule measures the difference, in time, between pulses asynchronously to the system clock. This submodule is new to the eCAP Type 1 module, and features many enhancements over the Type 0 HRCAP module. Applications for the HRCAP include: • Capacitive touch applications • High-resolution period and duty-cycle measurements of pulse train cycles • Instantaneous speed measurements • Instantaneous frequency measurements • Voltage measurements across an isolation boundary • Distance/sonar measurement and scanning • Flow measurements The HRCAP submodule includes the following features: • Pulse-width capture in either non-high-resolution or high-resolution modes • Absolute mode pulse-width capture • Continuous or "one-shot" capture • Capture on either falling or rising edge • Continuous mode capture of pulse widths in 4-deep buffer • Hardware calibration logic for precision high-resolution capture • All of the resources in this list are available on any pin using the Input X-BAR. The HRCAP submodule includes one high-resolution capture channel in addition to a calibration block. The calibration block allows the HRCAP submodule to be continually recalibrated, at a set interval, with no “down time”. Because the HRCAP submodule now uses the same hardware as its respective eCAP, if the HRCAP is used, the corresponding eCAP will be unavailable. Each high-resolution-capable channel has the following independent key resources. • All hardware of the respective eCAP • High-resolution calibration logic • Dedicated calibration interrupt 6.14.5.1 eCAP and HRCAP Block Diagram For the HRCAP Block Diagram, see the eCAP and HRCAP Block Diagram in the Enhanced Capture (eCAP) section. 154 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.14.5.2 HRCAP Electrical Data and Timing 6.14.5.2.1 HRCAP Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS Input pulse width MIN TYP Accuracy(1) (2) (3) (4) UNIT ns Measurement length ≤ 5 µs ±390 540 ps Measurement length > 5 µs ±450 1450 ps See HRCAP Standard Deviation Characteristics figure Standard deviation Resolution (1) (2) (3) MAX 110 300 ps Value obtained using an oscillator of 100 PPM, oscillator accuracy directly affects the HRCAP accuracy. Measurement is completed using rising-rising or falling-falling edges Opposite polarity edges will have an additional inaccuracy due to the difference between VIH and VIL. This effect is dependent on the signal’s slew rate. Accuracy only applies to time-converted measurements. (4) 6.14.5.2.2 HRCAP Figure and Graph HRCAP’s Mean HRCAP Result Probability Accuracy Resolution (Step Size) Actual Input Signal A. Precision (Standard Deviation) The HRCAP has some variation in performance, this results in a probability distribution which is described using the following terms: • • • Accuracy: The time difference between the input signal and the mean of the HRCAP’s distribution. Precision: The width of the HRCAP’s distribution, this is given as a standard deviation. Resolution: The minimum measurable increment. Figure 6-62. HRCAP Accuracy Precision and Resolution Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 155 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 2 7.4 1.8 6.66 1.6 5.92 1.4 5.18 1.2 4.44 1 3.7 0.8 2.96 0.6 2.22 0.4 1.48 0.2 0 A. B. C. 1000 2000 3000 4000 5000 6000 Time Between Edges(nS) 7000 8000 9000 Standard Deviation (Steps) Standard Deviation (nS) Typical Core Conditions Noisy Core Supply 0.74 10000 Typical core conditions: All peripheral clocks are enabled. Noisy core supply: All core clocks are enabled and disabled with a regular period during the measurement. Fluctuations in current and voltage on the 1.2-V rail cause the standard deviation of the HRCAP to rise. Care should be taken to ensure that the 1.2-V supply is clean, and that noisy internal events, such as enabling and disabling clock trees, have been minimized while using the HRCAP. Figure 6-63. HRCAP Standard Deviation Characteristics 156 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.14.6 Enhanced Quadrature Encoder Pulse (eQEP) The eQEP module on this device is Type-2. The eQEP interfaces directly with linear or rotary incremental encoders to obtain position, direction, and speed information from rotating machines used in high-performance motion and position control systems. The eQEP peripheral contains the following major functional units (see Figure 6-64): • Programmable input qualification for each pin (part of the GPIO MUX) • Quadrature decoder unit (QDU) • Position counter and control unit for position measurement (PCCU) • Quadrature edge-capture unit for low-speed measurement (QCAP) • Unit time base for speed/frequency measurement (UTIME) • Watchdog timer for detecting stalls (QWDOG) • Quadrature Mode Adapter (QMA) System control registers To CPU EQEPxENCLK Data bus SYSCLK QCPRD QCTMR QCAPCTL 16 Enhanced QEP (eQEP) peripheral 16 16 Quadrature capture unit (QCAP) QCTMRLAT QCPRDLAT QWDTMR QWDPRD QUTMR QUPRD Registers used by multiple units 32 QEPCTL QEPSTS QFLG UTIME 16 UTOUT QDECCTL 16 QWDOG WDTOUT PIE QCLK QDIR QI QS PHE EQEPxINT 32 Position counter/ control unit (PCCU) QPOSLAT QPOSSLAT QPOSILAT QMA Quadrature decoder (QDU) PCSOUT 32 QPOSCNT QPOSINIT QPOSMAX 32 QPOSCMP 16 EQEPxAIN EQEPx_A EQEPxBIN EQEPx_B EQEPxIIN EQEPxIOUT EQEPxIOE EQEPxSIN EQEPxSOUT EQEPxSOE GPIO MUX EQEPx_INDEX EQEPx_STROBE QEINT QFRC QCLR QPOSCTL Figure 6-64. eQEP Block Diagram Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 157 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.14.6.1 eQEP Electrical Data and Timing For an explanation of the input qualifier parameters, see the General-Purpose Input Timing Requirements table. 6.14.6.1.1 eQEP Timing Requirements MIN Synchronous(1) tw(QEPP) QEP input period tw(INDEXH) QEP Index Input High time tw(INDEXL) QEP Index Input Low time tw(STROBH) QEP Strobe High time tw(STROBL) QEP Strobe Input Low time (1) Synchronous with input qualifier 2tc(SYSCLK) 2tc(SYSCLK) Synchronous with input qualifier 2tc(SYSCLK) 2tc(SYSCLK) cycles 2tc(SYSCLK) + tw(IQSW) Synchronous(1) Synchronous with input qualifier cycles 2tc(SYSCLK) + tw(IQSW) Synchronous(1) Synchronous with input qualifier cycles 2tc(SYSCLK) + tw(IQSW) Synchronous(1) UNIT cycles 2[1tc(SYSCLK) + tw(IQSW)] Synchronous(1) Synchronous with input qualifier MAX 2tc(SYSCLK) cycles 2tc(SYSCLK) + tw(IQSW) The GPIO GPxQSELn Asynchronous mode should not be used for eQEP module input pins. 6.14.6.1.2 eQEP Switching Characteristics over recommended operating conditions (unless otherwise noted) MAX UNIT td(CNTR)xin Delay time, external clock to counter increment PARAMETER 5tc(SYSCLK) cycles td(PCS-OUT)QEP Delay time, QEP input edge to position compare sync output 7tc(SYSCLK) cycles 158 Submit Document Feedback MIN Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.14.7 Sigma-Delta Filter Module (SDFM) SDFM features include: • • • • • • • • • • • Eight external pins per SDFM module – Four sigma-delta data input pins per SDFM module (SD-Dx, where x = 1 to 4) – Four sigma-delta clock input pins per SDFM module (SD-Cx, where x = 1 to 4) Different configurable modulator clock modes supported: – Mode 0: Modulator clock rate equals the modulator data rate. Four independent, configurable secondary filter (comparator) units per SDFM module: – Four different filter type selection (Sinc1/Sinc2/SincFast/Sinc3) options available – Ability to detect over-value condition, under-value condition, and Threshold-crossing conditions 1. Two independent Higher Threshold comparators (used to detect over-value condition) 2. Two independent Lower Threshold comparators (used to detect under-value condition) 3. One independent Threshold-Crossing comparator (used to measure duty cycle/frequency with eCAP) – OSR value for comparator filter unit (COSR) programmable from 1 to 32 Four independent configurable primary filter (data filter) units per SDFM module: – Four different filter type selection (Sinc1/Sinc2/SincFast/Sinc3) options available – OSR value for data filter unit (DOSR) programmable from 1 to 256 – Ability to enable or disable (or both) individual filter module – Ability to synchronize all four independent filters of an SDFM module by using the Main Filter Enable (MFE) bit or by using PWM signals Data filter output can be represented in either 16 bits or 32 bits. Data filter unit has a programmable mode FIFO to reduce interrupt overhead. The FIFO has the following features: – The primary filter (data filter) has a 16-deep x 32-bit FIFO. – The FIFO can interrupt the CPU after programmable number of data-ready events. – FIFO Wait-for-Sync feature: Ability to ignore data-ready events until the PWM synchronization signal (SDSYNC) is received. Once the SDSYNC event is received, the FIFO is populated on every data-ready event. – Data filter output can be represented in either 16 bits or 32 bits. PWMx.SOCA/SOCB can be configured to serve as SDSYNC source on a per-data-filter-channel basis. PWMs can be used to generate a modulator clock for sigma-delta modulators. Configurable Input Qualification available for both SD-Cx and SD-Dx Ability to use one filter channel clock (SD-C1) to provide clock to other filter clock channels. Configurable digital filter available on comparator filter events to blank out comparator events caused by spurious noise Figure 6-65 shows the SDFM module block diagram. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 159 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Output XBAR PWM XBAR SDyFLTx_CEVT1 SDyFLTx_CEVT2 Comparator Signals SDyFLTx.DR SDFM- Sigma Delta Filter Module G4 Streams DMA Filter Module 1 Input Ctrl SDy_C1 PWMi.SOCA / SOCB PWMj.CMPC Secondary (Comparator) Filter Interrupt Unit R Primary (Data) R Filter SDy_ERR SDyFLTx.DR SDy_D2 Filter Module 2 SDy_C2 GPIO MUX CLA FIFO Peripheral Frame 1 SDy_D1 PWMi.SOCA / SOCB PWMj.CMPC SDy_D3 Filter Module 3 SDy_C3 PWMi.SOCA / SOCB PWMj.CMPD SDy_D4 Filter Module 4 SDy_ERR SDyFLTx.DR C28x SDyFLTx_CEVT1 ECAP SDyFLTx_CEVT2 Register Map SDy_C4 PWMi.SOCA / SOCB PWMj.CMPD LEGEND Interrupt / trigger sources from SDFM Internal secondary filter signals Where, j = i = y = x = 11 for SDFM1 & 12 for SDFM2 1 to Max. no of PWMs 1 for SDFM1 & 2 for SDFM2 1t4 Figure 6-65. Sigma Delta Filter Module (SDFM) Block Diagram 6.14.7.1 SDFM Electrical Data and Timing WARNING Special precautions should be taken on both SD-Cx and SD-Dx signals to ensure a clean and noise-free signal that meets SDFM timing requirements. Precautions such as series termination resistors for ringing noise due to any impedance mismatch of clock driver and spacing of traces from other noisy signals are recommended. Note The SDFM SD-Cx and SD-Dx signals, when synchronized to PLLRAWCLK, provide protection against SDFM module corruption due to occasional random noise glitches that may result in a false comparator trip and filter output. However, the signals do not provide protection against persistent violations of the above timing requirements. Timing violations will result in data corruption proportional to the number of bits which violate the requirements. 6.14.7.1.1 SDFM Timing Requirements When Using Asynchronous GPIO - ASYNC - Option MIN MAX 256 * SYSCLK period UNIT Mode 0 tc(SDC)M0 Cycle time, SDx_Cy 4 * tc(PLLRAWCLK) tw(SDDHL)M0 Pulse duration, SDx_Dy (high / Low) 2 * tc(PLLRAWCLK) ns tsu(SDDV-SDCH)M0 Setup time, SDx_Dy valid before SDx_Cy goes high 1 * tc(PLLRAWCLK) + 3 ns th(SDCH-SDD)M0 Hold time, SDx_Dy wait after SDx_Cy goes high 1 * tc(PLLRAWCLK) + 3 ns 160 Submit Document Feedback ns Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.15 Communications Peripherals 6.15.1 Controller Area Network (CAN) Note The CAN module uses the IP known as DCAN. This document uses the names CAN and DCAN interchangeably to reference this peripheral. The CAN module implements the following features: • Complies with ISO11898-1 ( Bosch® CAN protocol specification 2.0 A and B) • Bit rates up to 1 Mbps • Multiple clock sources • 32 message objects (mailboxes), each with the following properties: – Configurable as receive or transmit – Configurable with standard (11-bit) or extended (29-bit) identifier – Supports programmable identifier receive mask – Supports data and remote frames – Holds 0 to 8 bytes of data – Parity-checked configuration and data RAM • Individual identifier mask for each message object • Programmable FIFO mode for message objects • Programmable loopback modes for self-test operation • Suspend mode for debug support • Software module reset • Automatic bus on after bus-off state by a programmable 32-bit timer • Two interrupt lines • DMA support Note For a CAN bit clock of 100 MHz, the smallest bit rate possible is 3.90625Kbps. Note The accuracy of the on-chip zero-pin oscillator is in the INTOSC Characteristics table. Depending on parameters such as the CAN bit timing settings, bit rate, bus length, and propagation delay, the accuracy of this oscillator may not meet the requirements of the CAN protocol. In this situation, an external clock source must be used. Figure 6-66 shows the CAN block diagram. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 161 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com CAN_H CAN Bus CAN_L External connections Device 3.3V CAN Transceiver CANx RX pin CANx TX pin CAN CAN Core Message RAM Message Handler Message RAM Interface 32 Message Objects (Mailboxes) Register and Message Object Access (IFx) Test Modes Only Module Interface CANINT0 CANINT1 DMA CPU Bus Figure 6-66. CAN Block Diagram 6.15.2 Modular Controller Area Network (MCAN) The Controller Area Network (CAN) is a serial communications protocol that efficiently supports distributed real-time control with a high level of reliability. CAN has high immunity to electrical interference and the ability to detect various type of errors. In CAN, many short messages are broadcast to the entire network, which provides data consistency in every node of the system. The MCAN module supports both classic CAN and CAN FD (CAN with flexible data-rate) protocols. The CAN FD feature allows higher throughput and increased payload per data frame. Classic CAN and CAN FD devices may coexist on the same network without any conflict provided that partial network transceivers, which can detect and ignore CAN FD without generating bus errors, are used by the classic CAN devices. The MCAN module is compliant to ISO 11898-1:2015. 162 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Note The availability of the CAN FD feature is dependent on the device's part number. Refer to the device data sheet for more information. Device MCANSS NMI Uncorrectable ECC PIE Correctable ECC Configurable Interrupts (2 lines) Counter Overflow and Clock Stop/ Wakeup mcanss_tx CPU BUS SYSCLK Peripheral Clock Clock disable/ enable MCAN Bit Clock mcanss_rx Bit Timing Clock Wakeup Clock Stop and Wakeup RESET Reset Figure 6-67. MCAN Module Overview The MCAN module implements the following features: • • • • • • • • • • • Conforms with CAN Protocol 2.0 A, B and ISO 11898-1:2015 Full CAN FD support (up to 64 data bytes) AUTOSAR and SAE J1939 support Flexible Message RAM allocation (maximum configuration below is for a device with 4352 32-bit word message RAM) – Up to 32 dedicated transmit buffers – Configurable transmit FIFO, up to 32 elements – Configurable transmit queue, up to 32 elements – Configurable transmit Event FIFO, up to 32 elements – Up to 64 dedicated receive buffers – Two configurable receive FIFOs, up to 64 elements each – Up to 128 filter elements Loop-back mode for self-test Maskable interrupt (two configurable interrupt lines, correctable ECC, counter overflow and clock stop/ wakeup) Non-maskable interrupt (uncorrectable ECC) Two clock domains (CAN clock/host clock) ECC check for Message RAM Clock stop and wake-up support Timestamp counter Non-supported features: • • • Host bus firewall Clock calibration Debug over CAN Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 163 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com 6.15.3 Inter-Integrated Circuit (I2C) The I2C module has the following features: • Compliance with the NXP Semiconductors I2C-bus specification (version 2.1): – Support for 8-bit format transfers – 7-bit and 10-bit addressing modes – General call – START byte mode – Support for multiple master-transmitters and slave-receivers – Support for multiple slave-transmitters and master-receivers – Combined master transmit/receive and receive/transmit mode – Data transfer rate from 10Kbps up to 400Kbps (Fast-mode) • Supports voltage thresholds compatible to: – SMBus 2.0 and below – PMBus 1.2 and below • One 16-byte receive FIFO and one 16-byte transmit FIFO • Supports two ePIE interrupts – I2Cx interrupt – Any of the below conditions can be configured to generate an I2Cx interrupt: • Transmit Ready • Receive Ready • Register-Access Ready • No-Acknowledgment • Arbitration-Lost • Stop Condition Detected • Addressed-as-Slave – I2Cx_FIFO interrupts: • Transmit FIFO interrupt • Receive FIFO interrupt • Module enable and disable capability • Free data format mode Figure 6-68 shows how the I2C peripheral module interfaces within the device. 164 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 I2C module I2CXSR I2CDXR TX FIFO SDA FIFO Interrupt to CPU/PIE RX FIFO Peripheral bus I2CRSR SCL Clock synchronizer I2CDRR Control/status registers CPU Prescaler Noise filters I2C INT Interrupt to CPU/PIE Arbitrator Figure 6-68. I2C Peripheral Module Interfaces Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 165 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.15.3.1 I2C Electrical Data and Timing Note To meet all of the I2C protocol timing specifications, the I2C module clock must be configured in the range from 7 MHz to 12 MHz. A pullup resistor must be chosen to meet the I2C standard timings. In most circumstances, 2.2 kΩ of total bus resistance to VDDIO is sufficient. For evaluating pullup resistor values for a particular design, see the I2C Bus Pullup Resistor Calculation Application Report. 6.15.3.1.1 I2C Timing Requirements NO. MIN MAX UNIT 7 12 MHz Standard mode T0 fmod I2C module frequency T1 th(SDA-SCL)START Hold time, START condition, SCL fall delay after SDA fall 4.0 µs T2 tsu(SCL-SDA)START Setup time, Repeated START, SCL rise before SDA fall delay 4.0 µs T3 th(SCL-DAT) Hold time, data after SCL fall 0 µs T4 tsu(DAT-SCL) Setup time, data before SCL rise 250 (2) ns (1) ns T5 tr(SDA) Rise time, SDA 1000 T6 tr(SCL) Rise time, SCL 1000 (1) ns T7 tf(SDA) Fall time, SDA 300 ns T8 tf(SCL) Fall time, SCL 300 ns T9 tsu(SCL-SDA)STOP Setup time, STOP condition, SCL rise before SDA rise delay T10 tw(SP) Pulse duration of spikes that will be suppressed by filter T11 Cb capacitance load on each bus line fmod I2C module frequency T1 th(SDA-SCL)START Hold time, START condition, SCL fall delay after SDA fall 0.6 µs T2 tsu(SCL-SDA)START Setup time, Repeated START, SCL rise before SDA fall delay 0.6 µs T3 th(SCL-DAT) Hold time, data after SCL fall 0 µs T4 tsu(DAT-SCL) Setup time, data before SCL rise 100 ns T5 tr(SDA) Rise time, SDA 20 300 ns T6 tr(SCL) Rise time, SCL 20 300 ns T7 tf(SDA) Fall time, SDA 11.4 300 ns T8 tf(SCL) Fall time, SCL 11.4 300 ns T9 tsu(SCL-SDA)STOP Setup time, STOP condition, SCL rise before SDA rise delay T10 tw(SP) Pulse duration of spikes that will be suppressed by filter T11 Cb capacitance load on each bus line 4.0 0 µs 50 ns 400 pF 12 MHz Fast mode T0 (1) (2) 166 7 0.6 0 µs 50 ns 400 pF In order to minimize the rise time, TI recommends using a strong pullup on both the SDA and SCL bus lines on the order of 2.2-kΩ net pullup resistance. It is also recommended that the value of the pullup resistance used on both SCL and SDA pins be matched. The C2000 I2C is a Fast-mode device. There is a limitation when using the I2C as a target transmitter with a standard mode host. For more information, see the TMS320F28003x Real-Time MCUs Silicon Errata. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.15.3.1.2 I2C Switching Characteristics over recommended operating conditions (unless otherwise noted) NO. PARAMETER TEST CONDITIONS MIN MAX UNIT 0 100 kHz Standard mode S1 fSCL SCL clock frequency S2 TSCL SCL clock period 10 µs S3 tw(SCLL) Pulse duration, SCL clock low 4.7 µs S4 tw(SCLH) Pulse duration, SCL clock high 4.0 µs S5 tBUF Bus free time between STOP and START conditions 4.7 µs S6 tv(SCL-DAT) Valid time, data after SCL fall 3.45 µs S7 tv(SCL-ACK) Valid time, Acknowledge after SCL fall 3.45 µs S8 II Input current on pins –10 10 µA 0 400 kHz 0.1 Vbus < Vi < 0.9 Vbus Fast mode S1 fSCL SCL clock frequency S2 TSCL SCL clock period 2.5 µs S3 tw(SCLL) Pulse duration, SCL clock low 1.3 µs S4 tw(SCLH) Pulse duration, SCL clock high 0.6 µs S5 tBUF Bus free time between STOP and START conditions 1.3 µs S6 tv(SCL-DAT) Valid time, data after SCL fall 0.9 µs S7 tv(SCL-ACK) Valid time, Acknowledge after SCL fall 0.9 µs S8 II Input current on pins 10 µA 0.1 Vbus < Vi < 0.9 Vbus –10 6.15.3.1.3 I2C Timing Diagram STOP START SDA ACK T5 S6 T7 Contd... S7 T10 S3 SCL Contd... S4 T6 Repeated START 9th clock T8 S2 SDA STOP S5 ACK T2 T9 T1 SCL 9th clock Figure 6-69. I2C Timing Diagram Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 167 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.15.4 Power Management Bus (PMBus) Interface The PMBus module has the following features: • Compliance with the SMI Forum PMBus Specification (Part I v1.0 and Part II v1.1) • Supports voltage thresholds compatible to: – PMBus 1.2 and below – SMBus 2.0 and below • Support for master and slave modes • Support for I2C mode • Support for two speeds: – Standard Mode: Up to 100 kHz – Fast Mode: 400 kHz • Packet error checking • CONTROL and ALERT signals • Clock high and low time-outs • Four-byte transmit and receive buffers • One maskable interrupt, which can be generated by several conditions: – Receive data ready – Transmit buffer empty – Slave address received – End of message – ALERT input asserted – Clock low time-out – Clock high time-out – Bus free PCLKCR20 SYSCLK Div PMBCTRL ALERT DMA Bit clock Other registers CTL GPIO Mux CPU PMBTXBUF SCL Shift register PMBRXBUF SDA PMBUSA_INT PIE PMBus Module Figure 6-70. PMBus Block Diagram 168 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.15.4.1 PMBus Electrical Data and Timing 6.15.4.1.1 PMBus Electrical Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS VIL Valid low-level input voltage VIH Valid high-level input voltage VOL Low-level output voltage At Ipullup = 4 mA IOL Low-level output current VOL ≤ 0.4 V tSP Pulse width of spikes that must be suppressed by the input filter Ii Input leakage current on each pin Ci Capacitance on each pin MIN TYP 2.1 0.1 Vbus < Vi < 0.9 Vbus MAX UNIT 0.8 V VDDIO V 0.4 4 V mA 0 50 ns –10 10 µA 10 pF 6.15.4.1.2 PMBus Fast Mode Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MAX UNIT SYSCL K/32 MIN TYP 10 MHz 400 kHz fFSM_CLK FSM_CLK clock frequency fSCL SCL clock frequency 10 tBUF Bus free time between STOP and START conditions 1.3 µs tHD;STA START condition hold time -- SDA fall to SCL fall delay 0.6 µs tSU;STA Repeated START setup time -- SCL rise to SDA fall delay 0.6 µs tSU;STO STOP condition setup time -- SCL rise to SDA rise delay 0.6 µs tHD;DAT Data hold time after SCL fall 300 ns tSU;DAT Data setup time before SCL rise 100 ns tTimeout Clock low time-out 25 tLOW Low period of the SCL clock 1.3 tHIGH High period of the SCL clock 0.6 tLOW;SEXT Cumulative clock low extend time (slave device) tLOW;MEXT 35 ms µs 50 µs From START to STOP 25 ms Cumulative clock low extend time (master device) Within each byte 10 ms tr Rise time of SDA and SCL 5% to 95% 20 300 ns tf Fall time of SDA and SCL 95% to 5% 20 300 ns Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 169 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.15.4.1.3 PMBus Standard Mode Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT SYSCL K/32 10 MHz 100 kHz fFSM_CLK FSM_CLK clock frequency fSCL SCL clock frequency 10 tBUF Bus free time between STOP and START conditions 4.7 µs tHD;STA START condition hold time -- SDA fall to SCL fall delay 4 µs tSU;STA Repeated START setup time -- SCL rise to SDA fall delay 4.7 µs tSU;STO STOP condition setup time -- SCL rise to SDA rise delay 4 µs tHD;DAT Data hold time after SCL fall 300 ns tSU;DAT Data setup time before SCL rise 250 tTimeout Clock low time-out 25 tLOW Low period of the SCL clock 4.7 tHIGH High period of the SCL clock 4 tLOW;SEXT Cumulative clock low extend time (slave device) tLOW;MEXT Cumulative clock low extend time (master device) tr tf 170 ns 35 ms µs 50 µs From START to STOP 25 ms Within each byte 10 ms Rise time of SDA and SCL 1000 ns Fall time of SDA and SCL 300 ns Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.15.5 Serial Communications Interface (SCI) The SCI is a 2-wire asynchronous serial port, commonly known as a UART. The SCI module supports digital communications between the CPU and other asynchronous peripherals that use the standard non-return-to-zero (NRZ) format The SCI receiver and transmitter each have a 16-level-deep FIFO for reducing servicing overhead, and each has its own separate enable and interrupt bits. Both can be operated independently for half-duplex communication, or simultaneously for full-duplex communication. To specify data integrity, the SCI checks received data for break detection, parity, overrun, and framing errors. The bit rate is programmable to different speeds through a 16-bit baud-select register. Features of the SCI module include: • Two external pins: – SCITXD: SCI transmit-output pin – SCIRXD: SCI receive-input pin – Baud rate programmable to 64K different rates • Data-word format – 1 start bit – Data-word length programmable from 1 to 8 bits – Optional even/odd/no parity bit – 1 or 2 stop bits • Four error-detection flags: parity, overrun, framing, and break detection • Two wake-up multiprocessor modes: idle-line and address bit • Half- or full-duplex operation • Double-buffered receive and transmit functions • Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms with status flags. – Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX EMPTY flag (transmitter-shift register is empty) – Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag (break condition occurred), and RX ERROR flag (monitoring four interrupt conditions) • Separate enable bits for transmitter and receiver interrupts (except BRKDT) • NRZ format • Auto baud-detect hardware logic • 16-level transmit and receive FIFO Note All registers in this module are 8-bit registers. When a register is accessed, the register data is in the lower byte (bits 7–0), and the upper byte (bits 15–8) is read as zeros. Writing to the upper byte has no effect. Figure 6-71 shows the SCI block diagram. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 171 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 TXSHF Register SCITXD 8 TXENA SCICTL1.1 Frame Format and Mode Parity Even/Odd 0 1 SCICCR.6 Enable TXEMPTY SCICTL2.6 8 TX FIFO_0 SCICCR.5 88 TX FIFO_1 TX Interrupt Logic TX FIFO Interrupts TXINT To CPU TX FIFO_N TXINTENA 8 0 TXWAKE SCICTL2.0 TXRDY 1 SCICTL2.7 SCICTL1.3 SCI TX Interrupt Select Logic 8 WUT Transmit Data Buffer Register SCITXBUF.7-0 LSPCLK Baud Rate MSB/LSB Registers RXSHF Register SCIHBAUD.15-8 SCILBAUD.7-0 Auto Baud Detect Logic SCIRXD RXWAKE SCIRXST.1 SCICTL1.0 RXENA 8 0 1 8 SCIFFENA RX FIFO_0 SCIFFTX.14 8 RX FIFO_1 RX FIFO Interrupts RX Interrupt Logic RXINT To CPU RX FIFO_N RXFFOVF 8 0 SCIFFRX.15 1 RXBKINTENA SCICTL2.1 RXRDY SCIRXST.6 RXENA BRKDT SCICTL1.0 RXERRINTENA SCIRXST.5 8 SCICTL1.6 SCI RX Interrupt Select Logic SCIRXST.5-2 Receive Data Buffer Register SCIRXBUF.7-0 BRKDT FE OE PE RXERROR SCIRXST.7 Figure 6-71. SCI Block Diagram 172 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.15.6 Serial Peripheral Interface (SPI) The serial peripheral interface (SPI) is a high-speed synchronous serial input and output (I/O) port that allows a serial bit stream of programmed length (1 to 16 bits) to be shifted into and out of the device at a programmed bittransfer rate. The SPI is normally used for communications between the MCU controller and external peripherals or another controller. Typical applications include external I/O or peripheral expansion through devices such as shift registers, display drivers, and analog-to-digital converters (ADCs). Multidevice communications are supported by the master or slave operation of the SPI. The port supports a 16-level, receive and transmit FIFO for reducing CPU servicing overhead. The SPI module features include: • SPISOMI: SPI slave-output/master-input pin • SPISIMO: SPI slave-input/master-output pin • SPISTE: SPI slave transmit-enable pin • SPICLK: SPI serial-clock pin • Two operational modes: Master and Slave • Baud rate: 125 different programmable rates. The maximum baud rate that can be employed is limited by the maximum speed of the I/O buffers used on the SPI pins. • Data word length: 1 to 16 data bits • Four clocking schemes (controlled by clock polarity and clock phase bits) include: – Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal. – Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the falling edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal. – Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal. – Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the rising edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal. • Simultaneous receive and transmit operation (transmit function can be disabled in software) • Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithm • 16-level transmit/receive FIFO • DMA support • High-speed mode • Delayed transmit control • 3-wire SPI mode • SPISTE inversion for digital audio interface receive mode on devices with two SPI modules Figure 6-72 shows the SPI CPU interfaces. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 173 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 PCLKCR8 LSPCLK Low-Speed Prescaler SYSCLK CPU Bit Clock Peripheral Bus SYSRS SPISIMO SPISOMI SPI GPIO MUX SPICLK SPIINT SPITXINT PIE SPISTE SPIRXDMA SPITXDMA DMA Figure 6-72. SPI CPU Interface 174 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.15.6.1 SPI Master Mode Timings The following section contains the SPI Master Mode Timings. For more information about the SPI in High-Speed mode, see the Serial Peripheral Interface (SPI) chapter of the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual. Note All timing parameters for SPI High-Speed Mode assume a load capacitance of 5 pF on SPICLK, SPISIMO, and SPISOMI. 6.15.6.1.1 SPI Master Mode Timing Requirements (BRR + 1) (1) NO. MIN MAX UNIT High-Speed Mode 8 tsu(SOMI)M Setup time, SPISOMI valid before SPICLK Even, Odd 1 ns 9 th(SOMI)M Hold time, SPISOMI valid after SPICLK Even, Odd 6.5 ns Normal Mode 8 tsu(SOMI)M Setup time, SPISOMI valid before SPICLK Even, Odd 15 ns 9 th(SOMI)M Hold time, SPISOMI valid after SPICLK Even, Odd 0 ns (1) The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is greater than 3. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 175 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.15.6.1.2 SPI Master Mode Switching Characteristics - Clock Phase 0 over recommended operating conditions (unless otherwise noted) PARAMETER(1) (2) NO. (BRR + 1)(3) MIN MAX UNIT Even 4tc(LSPCLK) 128tc(LSPCLK) Odd 5tc(LSPCLK) 127tc(LSPCLK) 0.5tc(SPC)M – 1 0.5tc(SPC)M + 1 0.5tc(SPC)M + 0.5tc(LSPCLK) – 1 0.5tc(SPC)M + 0.5tc(LSPCLK) + 1 0.5tc(SPC)M – 1 0.5tc(SPC)M + 1 0.5tc(SPC)M – 0.5tc(LSPCLK) – 1 0.5tc(SPC)M – 0.5tc(LSPCLK) + 1 Even 1.5tc(SPC)M – 3tc(SYSCLK) – 3 1.5tc(SPC)M – 3tc(SYSCLK) + 3 Odd 1.5tc(SPC)M – 4tc(SYSCLK) – 3 1.5tc(SPC)M – 4tc(SYSCLK) + 3 0.5tc(SPC)M – 3 0.5tc(SPC)M + 3 0.5tc(SPC)M – 0.5tc(LSPCLK) – 3 0.5tc(SPC)M – 0.5tc(LSPCLK) + 3 ns 1 ns General 1 tc(SPC)M Cycle time, SPICLK 2 tw(SPC1)M Pulse duration, SPICLK, first pulse 3 tw(SPC2)M Pulse duration, SPICLK, second pulse Even Odd Even 23 td(SPC)M Odd Delay time, SPISTE active to SPICLK Even 24 tv(STE)M Valid time, SPICLK to SPISTE inactive Odd ns ns ns ns High-Speed Mode 4 td(SIMO)M Delay time, SPICLK to SPISIMO valid Even, Odd 5 tv(SIMO)M Valid time, SPISIMO valid after SPICLK Even Odd 0.5tc(SPC)M – 3 ns 0.5tc(SPC)M – 0.5tc(LSPCLK) – 3 Normal Mode 4 td(SIMO)M Delay time, SPICLK to SPISIMO valid Even, Odd 5 tv(SIMO)M Valid time, SPISIMO valid after SPICLK Even (1) (2) (3) 176 Odd 2 0.5tc(SPC)M – 3 0.5tc(SPC)M – 0.5tc(LSPCLK) – 3 ns ns 10-pF load on pin for High-Speed Mode. 20-pF load on pin for Normal Mode. The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is greater than 3. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.15.6.1.3 SPI Master Mode Switching Characteristics - Clock Phase 1 over recommended operating conditions (unless otherwise noted) PARAMETER(1) (2) NO. (BRR + 1) MIN MAX Even 4tc(LSPCLK) 128tc(LSPCLK) Odd 5tc(LSPCLK) 127tc(LSPCLK) 0.5tc(SPC)M – 1 0.5tc(SPC)M + 1 0.5tc(SPC)M – 0.5tc(LSPCLK) – 1 0.5tc(SPC)M – 0.5tc(LSPCLK) + 1 0.5tc(SPC)M – 1 0.5tc(SPC)M + 1 0.5tc(SPC)M + 0.5tc(LSPCLK) – 1 0.5tc(SPC)M + 0.5tc(LSPCLK) + 1 2tc(SPC)M – 3tc(SYSCLK) – 3 2tc(SPC)M – 3tc(SYSCLK) + 3 Even –3 3 Odd –3 3 UNIT General 1 tc(SPC)M Cycle time, SPICLK 2 tw(SPCH)M Pulse duration, SPICLK, first pulse 3 tw(SPC2)M Pulse duration, SPICLK, second pulse 23 td(SPC)M Delay time, SPISTE valid to SPICLK 24 td(STE)M Delay time, SPICLK to SPISTE invalid Even Odd Even Odd Even, Odd ns ns ns ns ns High-Speed Mode 4 td(SIMO)M Delay time, SPISIMO valid to SPICLK 5 tv(SIMO)M Valid time, SPISIMO valid after SPICLK Even Odd Even Odd 0.5tc(SPC)M – 2 0.5tc(SPC)M + 0.5tc(LSPCLK) – 2 0.5tc(SPC)M – 3 0.5tc(SPC)M – 0.5tc(LSPCLK) – 3 ns ns Normal Mode 4 td(SIMO)M Delay time, SPISIMO valid to SPICLK 5 tv(SIMO)M Valid time, SPISIMO valid after SPICLK (1) (2) Even Odd Even Odd 0.5tc(SPC)M – 2 0.5tc(SPC)M + 0.5tc(LSPCLK) – 2 0.5tc(SPC)M – 3 0.5tc(SPC)M – 0.5tc(LSPCLK) – 3 ns ns 10-pF load on pin for High-Speed Mode. 20-pF load on pin for Normal Mode. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 177 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.15.6.1.4 SPI Master Mode Timing Diagrams 1 SPICLK (clock polarity = 0) 2 3 SPICLK (clock polarity = 1) 4 5 SPISIMO Master Out Data Is Valid 8 9 Master In Data Must Be Valid SPISOMI 24 23 (A) SPISTE A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO modes. Figure 6-73. SPI Master Mode External Timing (Clock Phase = 0) 1 SPICLK (clock polarity = 0) 2 3 SPICLK (clock polarity = 1) 4 5 Master Out Data Is Valid SPISIMO 8 9 Master In Data Must Be Valid SPISOMI 24 23 (A) SPISTE A. On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO modes. Figure 6-74. SPI Master Mode External Timing (Clock Phase = 1) 178 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.15.6.2 SPI Slave Mode Timings The following section contains the SPI Slave Mode Timings. For more information about the SPI in High-Speed mode, see the Serial Peripheral Interface (SPI) chapter of the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual. 6.15.6.2.1 SPI Slave Mode Timing Requirements NO. MIN MAX UNIT 12 tc(SPC)S Cycle time, SPICLK 4tc(SYSCLK) ns 13 tw(SPC1)S Pulse duration, SPICLK, first pulse 2tc(SYSCLK) – 1 ns 14 tw(SPC2)S Pulse duration, SPICLK, second pulse 2tc(SYSCLK) – 1 ns 19 tsu(SIMO)S Setup time, SPISIMO valid before SPICLK 1.5tc(SYSCLK) ns 20 th(SIMO)S Hold time, SPISIMO valid after SPICLK 25 tsu(STE)S 26 th(STE)S 1.5tc(SYSCLK) ns Setup time, SPISTE valid before SPICLK (Clock Phase = 0) 2tc(SYSCLK) + 15 ns Setup time, SPISTE valid before SPICLK (Clock Phase = 1) 2tc(SYSCLK) + 15 ns 1.5tc(SYSCLK) ns Hold time, SPISTE invalid after SPICLK 6.15.6.2.2 SPI Slave Mode Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER(1) NO. 15 td(SOMI)S Delay time, SPICLK to SPISOMI valid 16 tv(SOMI)S Valid time, SPISOMI valid after SPICLK (1) MIN MAX UNIT 12 0 ns ns 20-pF load on pin. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 179 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.15.6.2.3 SPI Slave Mode Timing Diagrams 12 SPICLK (clock polarity = 0) 13 14 SPICLK (clock polarity = 1) 15 16 SPISOMI Data Is Valid SPISOMI 19 20 SPISIMO Data Must Be Valid SPISIMO 25 26 SPISTE Figure 6-75. SPI Slave Mode External Timing (Clock Phase = 0) 12 SPICLK (clock polarity = 0) 13 14 SPICLK (clock polarity = 1) 15 SPISOMI Data Valid SPISOMI Data Is Valid Data Valid 16 19 20 SPISIMO Data Must Be Valid SPISIMO 26 25 SPISTE Figure 6-76. SPI Slave Mode External Timing (Clock Phase = 1) 180 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.15.7 Local Interconnect Network (LIN) This device contains one Local Interconnect Network (LIN) module. The LIN module adheres to the LIN 2.1 standard as defined by the LIN Specification Package Revision 2.1. The LIN is a low-cost serial interface designed for applications where the CAN protocol may be too expensive to implement, such as small subnetworks for cabin comfort functions like interior lighting or window control in an automotive application. The LIN standard is based on the SCI (UART) serial data link format. The communication concept is singlemaster and multiple-slave with a message identification for multicast transmission between any network nodes. The LIN module can be programmed to work either as an SCI or as a LIN as the core of the module is an SCI. The hardware features of the SCI are augmented to achieve LIN compatibility. The SCI module is a universal asynchronous receiver-transmitter (UART) that implements the standard non-return-to-zero format. Though the registers are common for LIN and SCI, the register descriptions have notes to identify the register/bit usage in different modes. Because of this, code written for this module cannot be directly ported to the standalone SCI module and vice versa. The LIN module has the following features: • Compatibility with LIN 1.3, 2.0 and 2.1 protocols • Configurable baud rate up to 20 kbps (as per LIN 2.1 protocol) • Two external pins: LINRX and LINTX • Multibuffered receive and transmit units • Identification masks for message filtering • Automatic master header generation – Programmable synchronization break field – Synchronization field – Identifier field • Slave automatic synchronization – Synchronization break detection – Optional baud rate update – Synchronization validation • 231 programmable transmission rates with 7 fractional bits • Wakeup on LINRX dominant level from transceiver • Automatic wake-up support – Wakeup signal generation – Expiration times on wakeup signals • Automatic bus idle detection • Error detection – Bit error – Bus error – No-response error – Checksum error – Synchronization field error – Parity error • Capability to use direct memory access (DMA) for transmit and receive data • Two interrupt lines with priority encoding for: – Receive – Transmit – ID, error, and status • Support for LIN 2.0 checksum • Enhanced synchronizer finite state machine (FSM) support for frame processing • Enhanced handling of extended frames • Enhanced baud rate generator • Update wakeup/go to sleep Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 181 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 READ DATA BUS WRITE DATA BUS ADDRESS BUS CHECKSUM CALCULATOR INTERFACE ID PARTY CHECKER BIT MONITOR TXRX ERROR DETECTOR (TED) TIME-OUT CONTROL COUNTER LINRX/ SCIRX COMPARE LINTX/ SCITX FSM MASK FILTER SYNCHRONIZER 8 RECEIVE BUFFERS DMA CONTROL 8 TRANSMIT BUFFERS Figure 6-77. LIN Block Diagram 182 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.15.8 Fast Serial Interface (FSI) The Fast Serial Interface (FSI) module is a serial communication peripheral capable of reliable and robust high-speed communications. The FSI is designed to ensure data robustness across many system conditions such as chip-to-chip as well as board-to-board across an isolation barrier. Payload integrity checks such as CRC, start- and end-of-frame patterns, and user-defined tags, are encoded before transmit and then verified after receipt without additional CPU interaction. Line breaks can be detected using periodic transmissions, all managed and monitored by hardware. The FSI is also tightly integrated with other control peripherals on the device. To ensure that the latest sensor data or control parameters are available, frames can be transmitted on every control loop period. An integrated skew-compensation block has been added on the receiver to handle skew that may occur between the clock and data signals due to a variety of factors, including trace-length mismatch and skews induced by an isolation chip. With embedded data robustness checks, data-link integrity checks, skew compensation, and integration with control peripherals, the FSI can enable high-speed, robust communication in any system. These and many other features of the FSI follow. The FSI module includes the following features: • Independent transmitter and receiver cores • Source-synchronous transmission • Dual data rate (DDR) • One or two data lines • Programmable data length • Skew adjustment block to compensate for board and system delay mismatches • Frame error detection • Programmable frame tagging for message filtering • Hardware ping to detect line breaks during communication (ping watchdog) • Two interrupts per FSI core • Externally triggered frame generation • Hardware- or software-calculated CRC • Embedded ECC computation module • Register write protection • DMA support • SPI compatibility mode (limited features available) Operating the FSI at maximum speed (60 MHz) at dual data rate (120Mbps) may require the integrated skew compensation block to be configured according to the specific operating conditions on a case-by-case basis. The Fast Serial Interface (FSI) Skew Compensation Application Report provides example software on how to configure and set up the integrated skew compensation block on the Fast Serial Interface. The FSI consists of independent transmitter (FSITX) and receiver (FSIRX) cores. The FSITX and FSIRX cores are configured and operated independently. The features available on the FSITX and FSIRX are described in the FSI Transmitter section and the FSI Receiver section, respectively. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 183 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.15.8.1 FSI Transmitter The FSI transmitter module handles the framing of data, CRC generation, signal generation of TXCLK, TXD0, and TXD1, as well as interrupt generation. The operation of the transmitter core is controlled and configured through programmable control registers. The transmitter control registers let the CPU program, control, and monitor the operation of the FSI transmitter. The transmit data buffer is accessible by the CPU and the DMA. The transmitter has the following features: • Automated ping frame generation • Externally triggered ping frames • Software-configurable frame lengths • 16-word data buffer • Data buffer underrun and overrun detection • Hardware-generated CRC on data bits • Software ECC calculation on select data • DMA support Figure 6-78 shows the FSITX CPU interface. Figure 6-79 shows the high-level block diagram of the FSITX. Not all data paths and internal connections are shown. This diagram provides a high-level overview of the internal modules present in the FSITX. PLLRAWCLK PCLKCR18 SYSCLK SYSRSN C28x ePIE FSITXyINT1 FSITXyINT2 FSITXyCLK FSITX FSITXyD1 FSITXyDMA A. Trigger Muxes(A) 32 FSITXyD0 GPIO MUX DMA Registers Register Interface CLA The signals connected to the trigger muxes are described in the External Frame Trigger Mux section of the Fast Serial Interface (FSI) chapter in the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual. Figure 6-78. FSITX CPU Interface 184 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 PLLRAWCLK FSITX SYSRSN SYSCLK Transmit Clock Generator TXCLKIN Register Interface FSI Mode: TXCLK = TXCLKIN/2 SPI Signaling Mode: TXCLK = TXCLKIN Core Reset FSITXINT1 FSITXINT2 Control Registers, Interrupt Management TXCLK Ping Time-out Counter FSITX_DMA_EVT Transmitter Core External Frame Triggers TXD0 TXD1 Transmit Data Buffer ECC Logic Figure 6-79. FSITX Block Diagram 6.15.8.1.1 FSITX Electrical Data and Timing 6.15.8.1.1.1 FSITX Switching Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER(1) NO. 1 tc(TXCLK) Cycle time, TXCLK 2 tw(TXCLK) Pulse width, TXCLK low or TXCLK high 3 td(TXCLK–TXD) Delay time, TXCLK rising or falling toTXD valid 4 td(TXCLK) 5 MIN MAX 16.67 UNIT ns (0.5tc(TXCLK)) – 1 (0.5tc(TXCLK)) + 1 ns (0.25tc(TXCLK)) – 2 (0.25tc(TXCLK)) + 2 ns TXCLK delay compensation at TX_DLYLINE_CTRL[TXCLK_DLY]=31 9.95 30 ns td(TXD0) TXD0 delay compensation at TX_DLYLINE_CTRL[TXD0_DLY]=31 9.95 30 ns 6 td(TXD1) TXD1 delay compensation at TX_DLYLINE_CTRL[TXD1_DLY]=31 9.95 30 ns 7 td(DELAY_ELEMENT) Incremental delay of each delay line element for TXCLK, TXD0, and TXD1 0.3 1 ns TDM1 tskew(TDM_CLK-TDM_Dx ) Delay skew introduced between TXCLKTDM_CLK delay and TXDx-TDM_Dx delays -2.5 2.5 ns (1) 10-pF load on pin. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 185 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com 6.15.8.1.1.2 FSITX Timings 1 2 FSITXCLK FSITXD0 FSITXD1 3 Figure 6-80. FSITX Timings 186 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.15.8.2 FSI Receiver The receiver module interfaces to the FSI clock (RXCLK), and data lines (RXD0 and RXD1) after they pass through an optional programmable delay line. The receiver core handles the data framing, CRC computation, and frame-related error checking. The receiver bit clock and state machine are run by the RXCLK input, which is asynchronous to the device system clock. The receiver control registers let the CPU program, control, and monitor the operation of the FSIRX. The receive data buffer is accessible by the CPU, HIC, and the DMA. The receiver core has the following features: • 16-word data buffer • Multiple supported frame types • Ping frame watchdog • Frame watchdog • CRC calculation and comparison in hardware • ECC detection • Programmable delay line control on incoming signals • DMA support • SPI compatibility mode Figure 6-81 shows the FSIRX CPU interface. Figure 6-82 provides a high-level overview of the internal modules present in the FSIRX. Not all data paths and internal connections are shown. PCLKCR18 SYSCLK SYSRSN C28x ePIE FSIRXyINT1 FSIRXyINT2 FSIRXyCLK FSIRX FSIRXyD0 FSIRXyD1 GPIO MUX Registers DMA Register Interface CLA FSIRXyDMA Figure 6-81. FSIRX CPU Interface Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 187 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 FSIRX SYSRSn SYSCLK Frame Watchdog Register Interface Core Reset FSIRXINT1 FSIRXINT2 Control Registers, Interrupt Management RXCLK Ping Watchdog FSIRX_DMA_EVT Receiver Core Skew Control RXD0 RXD1 Receive Data Buffer ECC Check Logic Figure 6-82. FSIRX Block Diagram 6.15.8.2.1 FSIRX Electrical Data and Timing 6.15.8.2.1.1 FSIRX Timing Requirements NO. MIN 1 tc(RXCLK) Cycle time, RXCLK 2 tw(RXCLK) Pulse width, RXCLK low or RXCLK high. 3 tsu(RXCLK–RXD) Setup time with respect to RXCLK, applies to both edges of the clock 4 th(RXCLK–RXD) Hold time with respect to RXCLK, applies to both edges of the clock MAX 16.67 0.35tc(RXCLK) UNIT ns 0.65tc(RXCLK) ns 1.7 ns 2 ns 6.15.8.2.1.2 FSIRX Switching Characteristics PARAMETER(1) NO. MIN MAX UNIT 10 30 ns 1 td(RXCLK) RXCLK delay compensation at RX_DLYLINE_CTRL[RXCLK_DLY]=31 2 td(RXD0) RXD0 delay compensation at RX_DLYLINE_CTRL[RXD0_DLY]=31 10 30 ns 3 td(RXD1) RXD1 delay compensation at RX_DLYLINE_CTRL[RXD1_DLY]=31 10 30 ns 4 td(DELAY_ELEMENT) Incremental delay of each delay line element for RXCLK, RXD0, and RXD1 0.3 1 ns TDM1 tskew(TDM_CLK-TDM_Dx ) Delay skew introduced between RXCLKTDM_CLK delay and RXDx-TDM_Dx delays -3 3 ns (1) 188 10-pF load on pin. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.15.8.2.1.3 FSIRX Timings 1 FSIRXCLK 2 FSIRXD0 FSIRXD1 3 4 Figure 6-83. FSIRX Timings Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 189 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.15.8.3 FSI SPI Compatibility Mode The FSI supports a SPI compatibility mode to enable communication with programmable SPI devices. In this mode, the FSI transmits its data in the same manner as a SPI in a single clock configuration mode. While the FSI is able to physically interface with a SPI in this mode, the external device must be able to encode and decode an FSI frame to communicate successfully. This is because the FSI transmits all SPI frame phases with the exception of the preamble and postamble. The FSI provides the same data validation and frame checking as if it was in standard FSI mode, allowing for more robust communication without consuming CPU cycles. The external SPI is required to send all relevant information and can access standard FSI features such as the ping frame watchdog on the FSIRX, frame tagging, or custom CRC values. The list of features of SPI compatibility mode follows: • Data will transmit on rising edge and receive on falling edge of the clock. • Only 16-bit word size is supported. • TXD1 will be driven like an active-low chip-select signal. The signal will be low for the duration of the full frame transmission. • No receiver chip-select input is required. RXD1 is not used. Data is shifted into the receiver on every active clock edge. • No preamble or postamble clocks will be transmitted. All signals return to the idle state after the frame phase is finished. • It is not possible to transmit in the SPI slave configuration because the FSI TXCLK cannot take an external clock source. 6.15.8.3.1 FSITX SPI Signaling Mode Electrical Data and Timing Special timings are not required for the FSIRX in SPI signaling mode. FSIRX timings listed in the FSIRX Timing Requirements table are applicable in SPI compatibility mode. Setup and Hold times are only valid on the falling edge of FSIRXCLK because this is the active edge in SPI signaling mode. 6.15.8.3.1.1 FSITX SPI Signaling Mode Switching Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER(1) NO. MIN MAX 1 tc(TXCLK) Cycle time, TXCLK 2 tw(TXCLK) Pulse width, TXCLK low or TXCLK high 3 td(TXCLKH–TXD0) Delay time, TXD0 valid after TXCLK high 4 td(TXD1-TXCLK) Delay time, TXCLK high after TXD1 low tw(TXCLK) – 3 ns 5 td(TXCLK-TXD1) Delay time, TXD1 high after TXCLK low tw(TXCLK) ns (1) 16.67 UNIT (0.5tc(TXCLK)) – 1 ns (0.5tc(TXCLK)) + 1 ns 3 ns 10-pF load on pin 6.15.8.3.1.2 FSITX SPI Signaling Mode Timings 1 2 FSITXCLK 3 FSITXD0 5 4 FSITXD1 Figure 6-84. FSITX SPI Signaling Mode Timings 190 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.15.9 Host Interface Controller (HIC) The HIC module allows an external host controller (master) to directly access resources of the device (slave) by emulating the ASRAM protocol. It has two modes of operation: direct access and mailbox access. In direct access mode, device resources is written to and read from directly by the external host. In mailbox access mode, external host and device write to and read from a buffer and notify each other when the buffer write/read is complete. For security reasons, the HIC has to be enabled by the device before the external host can access it. Features of the HIC include: • • • • • • • • • Configurable I/O data lines of 8 bits and 16 bits Direct and mailbox access modes 8 address lines and 8 configurable base addresses for a total of 2048 possible addressable regions Two 64-byte buffers for external host and device when using mailbox access mode Interrupt generation on buffer full/empty High throughput Trigger HIC activity from other peripherals Error indicators to the system or interface Commit feature that blocks writes to configuration registers Legend HIC Pins HIC Registers HIC I/O Interface Bus Master Interface A[7:0] A[31:0] D[15:0] H2DINT to PIE nBE[1:0] nCS D2HINT to Pin Memory Mapped HIC Configuration Interface Host To Device CTRL Regs STATUS Regs WDATA[31:0] RDATA[31:0] Device To Host nWE nOE BASESEL[2:0] Mailbox Buffer BASE_ADDR0 BASE_ADDR1 . . BASE_ADDRn Mailbox Buffer nRDY EVT_TRIGGER[15:0] Figure 6-85. HIC Block Diagram Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 191 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.15.9.1 HIC Electrical Data and Timing 6.15.9.1.1 HIC Timing Requirements over operating free-air temperature range (unless otherwise noted) MIN MAX UNIT Read/Write Parameters with nOE and nWE pins - Dual Read/Write pins tsu(ABBV-OEV) Setup time, A/BASESEL/nBE before nOE active 0 ns tsu(ABBV-WEV) Setup time, A/BASESEL/nBE before nWE active 0 ns tsu(CSV-OEV) Setup time, nCS active before nOE active 0.5tc(SYSCLK) ns tsu(CSV-WEV) Setup time, nCS active before nWE active 0.5tc(SYSCLK) ns th(ABBV-OEIV) Hold time, A/BASESEL/nBE/nCS after nOE inactive 6 ns th(ABBV-WEIV) Hold time, A/BASESEL/nBE/nCS after nWE inactive 6 ns 4tc(SYSCLK) ns 4tc(SYSCLK) ns (Read)(1) tw(OEV) Active pulse width of nOE tw(WEV) Active pulse width of nWE (Write) nCS(2) tw(CSIV) Inactive pulse width of 3tc(SYSCLK) ns tw(OEIV) Inactive Read pulse width of nOE(2) 3tc(SYSCLK) ns tw(WEIV) Inactive Write pulse width of nWE(2) 3tc(SYSCLK) ns tsu(DV-WEV) Setup time, D before nWE active 0 ns th(DV-WEIV) Hold time, D after nWE inactive 6 ns Read/Write Parameters with RnW pin - Single Read/Write pin tsu(ABBV-CSV) Setup time, A/BASESEL/nBE before nCS active tsu(RNWV-CSV) Setup time, RnW before nCS active th(ABBV-CSIV) Hold time, A/BASESEL/nBE/RnW after nCS inactive tw(CSV_RD) Active pulse width of nCS for read operation(1) tw(CSV_WR) Active pulse width of nCS for write operation 4tc(SYSCLK) ns tw(CSIV) Inactive pulse width of nCS(2) 3tc(SYSCLK) ns tw(RNWIV) Inactive pulse width of RnW(2) 3tc(SYSCLK) ns tsu(DV-CSV) Setup time, D before nCS active 0 ns th(DV-CSIV) Hold time, D after nCS inactive 5 ns (1) (2) 0 ns 0.5tc(SYSCLK) ns 5 ns 4tc(SYSCLK) ns For accesses to the device region, additional 2 SYSCLK cycles are required. For accesses to the device region with nRDY pin, additional SYSCLK cycle is required. 6.15.9.1.2 HIC Switching Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER(1) MIN MAX UNIT Read/Write Parameters with nOE and nWE pins td(OEV-DV) Output data delay time : nOE to D output valid (2) 3tc(SYSCLK) 4tc(SYSCLK) + 15 ns td(OEIV-DIV) Output data hold time : nOE invalid to D output invalid (tri-state) 1tc(SYSCLK) 2tc(SYSCLK) + 15 ns td(OEV-RDYV) Read Ready delay time : nOE to nRDY output valid 0 12 ns td(WEV-RDYV) Write Ready delay time : nWE to nRDY output valid 0 12 ns td(RDYV-DV) Ready to Data delay time : nRDY output valid to D output valid -3 3 ns tw(RDYACT) Active pulse width of nRDY output 2tc(SYSCLK) ns Read/Write Parameters with RnW pin td(CSV-DV) Output delay time : nCS active to D output valid (2) 3tc(SYSCLK) 4tc(SYSCLK) + 14 ns td(CSIV-DIV) Output hold time : nCS inactive to D output invalid (tri-state) 1tc(SYSCLK) 2tc(SYSCLK) + 14 ns td(CSV-RDYV) Output delay time : nCS to nRDY output valid 0 12 ns td(RDYV-DV) Ready to Data delay time : nRDY output valid to D output valid -3 3 ns 192 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 6.15.9.1.2 HIC Switching Characteristics (continued) over operating free-air temperature range (unless otherwise noted) PARAMETER(1) tw(RDYACT) (1) (2) MIN Active pulse width of nRDY output MAX UNIT 2tc(SYSCLK) ns 10-pF load on pin. Applicable to mailbox accesses only. Direct memory map (Device) accesses are qualified with nRDY pin. 6.15.9.1.3 HIC Timing Diagrams SETUP SIGNALS T9 nCS A[7:0] BASESEL[2:0] nBE[3:0] READ SIGNALS T1 T5 T3 T10 nOE T7 S2 S1 D[15:0] 7 WRITE SIGNALS T6 T2 T4 T11 nWE T8 T12 T13 D[15:0] S3 nRDY READY/WAIT SIGNAL S5 S6 S4 Figure 6-86. Read/Write Operation With nOE and nWE Pins Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 193 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 SETUP SIGNALS T19 nCS T17 or T18 A[7:0] BASESEL[2:0] nBE[3:0] T16 T14 READ SIGNALS RnW (Read) T15 T20 S8 S7 D[15:0] S10 WRITE SIGNALS RnW (Write) T20 T15 T21 T22 D[15:0] nRDY READY/WAIT SIGNAL S9 S11 Figure 6-87. Read/Write Operation With RnW Pin 194 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 7 Detailed Description 7.1 Overview C2000™ 32-bit Real-Time microcontrollers are optimized for processing, sensing, and actuation to improve closed-loop performance in real-time control applications such as industrial motor drives; solar inverters and digital power; electrical vehicles and transportation; motor control; and sensing and signal processing. The TMS320F28003x (F28003x) is a powerful 32-bit floating-point microcontroller unit (MCU) that lets designers incorporate crucial control peripherals, differentiated analog, and nonvolatile memory on a single device. The real-time control subsystem is based on TI’s 32-bit C28x CPU, which provides 120 MHz of signal processing performance. The C28x CPU is further boosted by the FPU, new TMU extended instruction set, which enables fast execution of algorithms with trigonometric operations commonly found in transforms and torque loop calculations; and the VCRC extended instruction set, which reduces the latency for complex math operations commonly found in encoded applications. The CLA allows significant offloading of common tasks from the main C28x CPU. The CLA is an independent 32-bit floating-point math accelerator that executes in parallel with the CPU. Additionally, the CLA has its own dedicated memory resources and it can directly access the key peripherals that are required in a typical control system. Support of a subset of ANSI C is standard, as are key features like hardware breakpoints and hardware task-switching. The F28003x supports up to 384KB (192KW) of flash memory divided into three 128KB (64KW) banks, which enable programming and execution in parallel. Up to 69KB (34.5KW) of on-chip SRAM is also available to supplement the flash memory. The Live Firmware Update hardware enhancements on F28003x allow fast context switching from the old firmware to the new firmware to minimize application downtime when updating the device firmware. High-performance analog blocks are integrated on the F28003x real-time MCU to further enable system consolidation. Three separate 12-bit ADCs provide precise and efficient management of multiple analog signals, which ultimately boosts system throughput. Four analog comparator modules provide continuous monitoring of input voltage levels for trip conditions. The TMS320C2000™ devices contain industry-leading control peripherals with frequency-independent ePWM/ HRPWM and eCAP allow for a best-in-class level of control to the system. Connectivity is supported through various industry-standard communication ports (such as SPI, SCI, I2C, PMBus, LIN, CAN and CAN FD) and offers multiple muxing options for optimal signal placement in a variety of applications. New to the C2000™ platform is Host Interface Controller (HIC), a high throughput interface that allows an external host to access resources of the TMS320F28003x. Additionally, in an industry first, the FSI enables high-speed, robust communication to complement the rich set of peripherals that are embedded in the device. A specially enabled device variant, TMS320F28003xC, allows access to the Configurable Logic Block (CLB) for additional interfacing features. See Table 4-1 for more information. The Embedded Real-Time Analysis and Diagnostic (ERAD) module enhances the debug and system analysis capabilities of the device by providing additional hardware breakpoints and counters for profiling. To learn more about the C2000 real-time MCUs, visit the C2000™ real-time control MCUs page. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 195 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 7.2 Functional Block Diagram Figure 7-1 shows the CPU system and associated peripherals. C28x CPU (120 MHz) FPU32 TMU VCRC FINTDIV CLA (120 MHz) CLA to CPU MSG RAM SYSTEM CONTROL CPU Timers XTAL INTOSC1, INTOSC2 PLL ePIE Windowed WD NMI WD Boot ROM CPU to CLA MSG RAM Secure ROM Flash Bank0 16 Sectors, 64Kw(128 KB) CLA Data ROM CLA Program ROM Flash Bank1 16 Sectors, 64Kw(128 KB) SECURITY DCSM JTAG Lock Secure Boot CLA to DMA MSG RAM Flash Bank2 16 Sectors, 64Kw(128 KB) DMA to CLA MSG RAM M0-M1 RAM 2Kw(4 KB) DIAGNOSTICS DCC MPOST HWBIST ERAD JTAG/cJTAG BGCRC Buses Legend LS0-LS7 RAM 16Kw(32 KB) CPU HIC DMA GS0-GS3 RAM 16Kw(32 KB) OTHERS EPG PF1 PF3 PF4 Result 16x ePWM (8 Hi-Res Capable) 4x CMPSS 3x eCAP (1 HRCAP Capable) 2x Buffered DAC 55x GPIO Input XBAR Output XBAR HIC DMA 6 Channels PF2 1x PMBUS Data 3x 12-Bit ADC CLA 2x SPI 1x FSI RX PF7 1x DCAN/ CAN PF7 PF8 PF9 2x LIN(A) 1x MCAN/ CAN FD 2x SCI BGCRC PF10 PF11 PF12 4x CLB 1x AES LFU 2x I2C 1x FSI TX ePWM XBAR 2x eQEP (CW/CCW Support) CLB XBAR CLB Input XBAR CLB Output XBAR 8x SD Filters A. The LIN module can also work as an SCI. Figure 7-1. Functional Block Diagram 196 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 7.3 Memory 7.3.1 Memory Map The Memory Map table describes the memory map. See the Memory Controller Module section of the System Control chapter in the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual. Table 7-1. Memory Map SIZE START ADDRESS END ADDRESS HIC ACCESS DMA ACCESS CLA ACCESS ECC/ PARITY ACCESS PROTECTION SECURITY M0 RAM 1K x 16 0x0000 0000 0x0000 03FF - - - ECC Yes - M1 RAM 1K x 16 0x0000 0400 0x0000 07FF - - - ECC Yes - PieVectTable 512 x 16 0x0000 0D00 0x0000 0EFF - - - - - - PieVectTable Swap 512 x 16 0x0100 0900 0x0100 0AFF - - - - - - LS0 RAM 2K x 16 0x0000 8000 0x0000 87FF - - Yes ECC Yes Yes LS1 RAM 2K x 16 0x0000 8800 0x0000 8FFF - - Yes ECC Yes Yes LS2 RAM 2K x 16 0x0000 9000 0x0000 97FF - - Yes ECC Yes Yes LS3 RAM 2K x 16 0x0000 9800 0x0000 9FFF - - Yes ECC Yes Yes LS4 RAM 2K x 16 0x0000 A000 0x0000 A7FF - - Yes ECC Yes Yes LS5 RAM 2K x 16 0x0000 A800 0x0000 AFFF - - Yes ECC Yes Yes LS6 RAM 2K x 16 0x0000 B000 0x0000 B7FF - - Yes ECC Yes Yes LS7 RAM 2K x 16 0x0000 B800 0x0000 BFFF - - Yes ECC Yes Yes GS0 RAM 4K x 16 0x0000 C000 0x0000 CFFF Yes Yes - ECC Yes - GS1 RAM 4K x 16 0x0000 D000 0x0000 DFFF Yes Yes - ECC Yes - GS2 RAM 4K x 16 0x0000 E000 0x0000 EFFF Yes Yes - ECC Yes - GS3 RAM 4K x 16 0x0000 F000 0x0000 FFFF Yes Yes - ECC Yes - CAN A Message RAM 2K x 16 0x0004 9000 0x0004 97FF Yes Yes - Parity - - MCAN Message RAM 8K x 16 0x0005 8000 0x0005 9FFF Yes - - Parity - - CLA to CPU Message RAM 128 x 16 0x0000 1480 0x0000 14FF - - Yes ECC - - CPU to CLA Message RAM 128 x 16 0x0000 1500 0x0000 157F - - Yes ECC - - CLA to DMA Message RAM 128 x 16 0x0000 1680 0x0000 16FF - Yes Yes ECC - - DMA to CLA Message RAM 128 x 16 0x0000 1700 0x0000 177F - Yes Yes ECC - - 3K x 16 0x0007 0000 0x0007 0BFF - - - ECC - Yes 2 3K x 16 0x0007 8000 0x0007 8BFF - - - ECC - Yes 2 MEMORY TI OTP 1 User OTP Flash 192K x 16 0x0008 0000 0x000A FFFF - - - ECC - Yes Secure ROM 24K x 16 0x003F 2000 0x003F 7FFF - - - Parity - Yes Boot ROM 32K x 16 0x003F 8000 0x003F FFFF - - - Parity - - Pie Vector Fetch Error (part of Boot ROM) 1 x 16 0x003F FFBE 0x003F FFBF - - - Parity - - Default Vectors (part of Boot ROM) 64 x 16 0x003F FFC0 0x003F FFFF - - - Parity - - (1) (2) TI OTP is for TI internal use only. Only a subset is secure. 7.3.1.1 Dedicated RAM (Mx RAM) The CPU subsystem has two dedicated ECC-capable RAM blocks: M0 and M1. These memories are small nonsecure blocks that are tightly coupled with the CPU (that is, only the CPU has access to them). 7.3.1.2 Local Shared RAM (LSx RAM) Local shared RAMs (LSx RAMs) are accessible to the CPU, CLA, and BGCRC. All LSx RAM blocks have ECC. These memories are secure and have CPU access protection (CPU write/CPU fetch). Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 197 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 7.3.1.3 Global Shared RAM (GSx RAM) Global shared RAMs (GSx RAMs) are accessible from the CPU, HIC, BGCRC and DMA. The CPU, HIC, and DMA have full read and write access to these memories. All GSx RAM blocks have ECC. The GSx RAMs have access protection (CPU write/CPU fetch/DMA write/HIC write). 7.3.1.4 Message RAM There are two types of message RAMs on this device that can be used to share between CPU, CLA and DMA. CLA-CPU message RAM shares data between the CLA and CPU while the CLA-DMA message RAM shares data between the CLA and DMA. 7.3.2 Control Law Accelerator (CLA) Memory Map Table 7-2 shows the CLA data ROM memory map. For information about the CLA program ROM, see the CLA Program ROM (CLAPROMCRC) chapter in the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual. Table 7-2. CLA Data ROM Memory Map 198 MEMORY START ADDRESS END ADDRESS LENGTH FFT Tables (Load) 0x0100 1070 0x0100 186F 0x0800 Data (Load) 0x0100 1870 0x0100 1FF9 0x078A Version (Load) 0x0100 1FFA 0x0100 1FFF 0x0006 FFT Tables (Run) 0x0000 F070 0x0000 F86F 0x0800 Data (Run) 0x0000 F870 0x0000 FFF9 0x078A Version (Run) 0x0000 FFFA 0x0000 FFFF 0x0006 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 7.3.3 Flash Memory Map On the F28003x devices, three flash banks (384KB [192KW]) are available. Code to program the flash should be executed out of RAM, there should not be any kind of access to the flash bank when an erase or program operation is in progress. The Addresses of Flash Sectors table lists the addresses of flash sectors available for each part number. 7.3.3.1 Addresses of Flash Sectors Table 7-3. Addresses of Flash Sectors PART NUMBER SECTOR ADDRESS SIZE START ECC ADDRESS END SIZE START END OTP Sectors All F28003x F280039, F280038 All F28003x F280039, F280038 TI OTP Bank 0 (Unsecure) 1008 x 16 0x0007 0000 0x0007 03EF 126 x 16 0x0107 0000 0x0107 007D TI OTP Bank 0 (Secure) 16 x 16 0x0007 03F0 0x0007 03FF 2 x 16 0x0107 007E 0x0107 007F TI OTP Bank 1 1K x 16 0x0007 0400 0x0007 07FF 128 x 16 0x0107 0080 0x0107 00FF TI OTP Bank 2 1K x 16 0x0007 0800 0x0007 0BFF 128 x 16 0x0107 0100 0x0107 017F User configurable DCSM OTP Bank 0 1K x 16 0x0007 8000 0x0007 83FF 128 x 16 0x0107 1000 0x0107 107F User configurable OTP Bank 1 1K x 16 0x0007 8400 0x0007 87FF 128 x 16 0x0107 1080 0x0107 10FF User configurable OTP Bank 2 1K x 16 0x0007 8800 0x0007 8BFF 128 x 16 0x0107 1100 0x0107 117F Sector 0 4K x 16 0x0008 0000 0x0008 0FFF 512 x 16 0x0108 0000 0x0108 01FF Sector 1 4K x 16 0x0008 1000 0x0008 1FFF 512 x 16 0x0108 0200 0x0108 03FF Sector 2 4K x 16 0x0008 2000 0x0008 2FFF 512 x 16 0x0108 0400 0x0108 05FF Sector 3 4K x 16 0x0008 3000 0x0008 3FFF 512 x 16 0x0108 0600 0x0108 07FF Sector 4 4K x 16 0x0008 4000 0x0008 4FFF 512 x 16 0x0108 0800 0x0108 09FF Sector 5 4K x 16 0x0008 5000 0x0008 5FFF 512 x 16 0x0108 0A00 0x0108 0BFF Sector 6 4K x 16 0x0008 6000 0x0008 6FFF 512 x 16 0x0108 0C00 0x0108 0DFF Sector 7 4K x 16 0x0008 7000 0x0008 7FFF 512 x 16 0x0108 0E00 0x0108 0FFF Sector 8 4K x 16 0x0008 8000 0x0008 8FFF 512 x 16 0x0108 1000 0x0108 11FF Sector 9 4K x 16 0x0008 9000 0x0008 9FFF 512 x 16 0x0108 1200 0x0108 13FF Sector 10 4K x 16 0x0008 A000 0x0008 AFFF 512 x 16 0x0108 1400 0x0108 15FF Sector 11 4K x 16 0x0008 B000 0x0008 BFFF 512 x 16 0x0108 1600 0x0108 17FF Sector 12 4K x 16 0x0008 C000 0x0008 CFFF 512 x 16 0x0108 1800 0x0108 19FF Sector 13 4K x 16 0x0008 D000 0x0008 DFFF 512 x 16 0x0108 1A00 0x0108 1BFF Sector 14 4K x 16 0x0008 E000 0x0008 EFFF 512 x 16 0x0108 1C00 0x0108 1DFF Sector 15 4K x 16 0x0008 F000 0x0008 FFFF 512 x 16 0x0108 1E00 0x0108 1FFF Bank 0 Sectors F280039, F280038, F280037, F280036 F280039, F280038, F280037, F280036, F280034, F280033 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 199 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 7-3. Addresses of Flash Sectors (continued) PART NUMBER SECTOR ADDRESS SIZE START Sector 0 4K x 16 0x0009 0000 Sector 1 4K x 16 Sector 2 4K x 16 Sector 3 Sector 4 ECC ADDRESS END SIZE START END 0x0009 0FFF 512 x 16 0x0108 2000 0x0108 21FF 0x0009 1000 0x0009 1FFF 512 x 16 0x0108 2200 0x0108 23FF 0x0009 2000 0x0009 2FFF 512 x 16 0x0108 2400 0x0108 25FF 4K x 16 0x0009 3000 0x0009 3FFF 512 x 16 0x0108 2600 0x0108 27FF 4K x 16 0x0009 4000 0x0009 4FFF 512 x 16 0x0108 2800 0x0108 29FF Sector 5 4K x 16 0x0009 5000 0x0009 5FFF 512 x 16 0x0108 2A00 0x0108 2BFF Sector 6 4K x 16 0x0009 6000 0x0009 6FFF 512 x 16 0x0108 2C00 0x0108 2DFF Sector 7 4K x 16 0x0009 7000 0x0009 7FFF 512 x 16 0x0108 2E00 0x0108 2FFF Sector 8 4K x 16 0x0009 8000 0x0009 8FFF 512 x 16 0x0108 3000 0x0108 31FF Sector 9 4K x 16 0x0009 9000 0x0009 9FFF 512 x 16 0x0108 3200 0x0108 33FF Sector 10 4K x 16 0x0009 A000 0x0009 AFFF 512 x 16 0x0108 3400 0x0108 35FF Sector 11 4K x 16 0x0009 B000 0x0009 BFFF 512 x 16 0x0108 3600 0x0108 37FF Sector 12 4K x 16 0x0009 C000 0x0009 CFFF 512 x 16 0x0108 3800 0x0108 39FF Sector 13 4K x 16 0x0009 D000 0x0009 DFFF 512 x 16 0x0108 3A00 0x0108 3BFF Sector 14 4K x 16 0x0009 E000 0x0009 EFFF 512 x 16 0x0108 3C00 0x0108 3DFF Sector 15 4K x 16 0x0009 F000 0x0009 FFFF 512 x 16 0x0108 3E00 0x0108 3FFF Bank 1 Sectors F280039, F280038, F280037, F280036, F280034, F280033 F280039, F280038, F280037, F280036 Bank 2 Sectors F280039, F280038 200 Sector 0 4K x 16 0x000A 0000 0x000A 0FFF 512 x 16 0x0108 4000 0x0108 41FF Sector 1 4K x 16 0x000A 1000 0x000A 1FFF 512 x 16 0x0108 4200 0x0108 43FF Sector 2 4K x 16 0x000A 2000 0x000A 2FFF 512 x 16 0x0108 4400 0x0108 45FF Sector 3 4K x 16 0x000A 3000 0x000A 3FFF 512 x 16 0x0108 4600 0x0108 47FF Sector 4 4K x 16 0x000A 4000 0x000A 4FFF 512 x 16 0x0108 4800 0x0108 49FF Sector 5 4K x 16 0x000A 5000 0x000A 5FFF 512 x 16 0x0108 4A00 0x0108 4BFF Sector 6 4K x 16 0x000A 6000 0x000A 6FFF 512 x 16 0x0108 4C00 0x0108 4DFF Sector 7 4K x 16 0x000A 7000 0x000A 7FFF 512 x 16 0x0108 4E00 0x0108 4FFF Sector 8 4K x 16 0x000A 8000 0x000A 8FFF 512 x 16 0x0108 5000 0x0108 51FF Sector 9 4K x 16 0x000A 9000 0x000A 9FFF 512 x 16 0x0108 5200 0x0108 53FF Sector 10 4K x 16 0x000A A000 0x000A AFFF 512 x 16 0x0108 5400 0x0108 55FF Sector 11 4K x 16 0x000A B000 0x000A BFFF 512 x 16 0x0108 5600 0x0108 57FF Sector 12 4K x 16 0x000A C000 0x000A CFFF 512 x 16 0x0108 5800 0x0108 59FF Sector 13 4K x 16 0x000A D000 0x000A DFFF 512 x 16 0x0108 5A00 0x0108 5BFF Sector 14 4K x 16 0x000A E000 0x000A EFFF 512 x 16 0x0108 5C00 0x0108 5DFF Sector 15 4K x 16 0x000A F000 0x000A FFFF 512 x 16 0x0108 5E00 0x0108 5FFF Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 7.3.4 Peripheral Registers Memory Map The Peripheral Registers Memory Map (C28) table lists the peripheral registers. Table 7-4. Peripheral Registers Memory Map Structure DriverLib Name Base Address CPU1 DMA HIC CLA Pipeline Protected Peripheral Frame 0 (PF0) ADC_RESULT_REGS ADCARESULT_BASE 0x0000_0B00 YES YES YES YES - ADC_RESULT_REGS ADCBRESULT_BASE 0x0000_0B20 YES YES YES YES - ADC_RESULT_REGS ADCCRESULT_BASE 0x0000_0B40 YES YES YES YES - CPUTIMER0_BASE 0x0000_0C00 YES - - - - CLA_ONLY_REGS CLA1_ONLY_BASE 0x0000_0C00 - - - YES - CPUTIMER_REGS CPUTIMER1_BASE 0x0000_0C08 YES - - - - CPUTIMER_REGS CPUTIMER2_BASE 0x0000_0C10 YES - - - - CLA1_SOFTINT_BASE 0x0000_0CE0 - - - YES - PIE_CTRL_REGS PIECTRL_BASE 0x0000_0CE0 YES - - - - PIE_VECT_TABLE PIEVECTTABLE_BASE 0x0000_0D00 YES - - - - CPUTIMER_REGS CLA_SOFTINT_REGS DMA_REGS DMA_BASE 0x0000_1000 YES - - - - DMA_CH_REGS DMA_CH1_BASE 0x0000_1020 YES - - - - DMA_CH_REGS DMA_CH2_BASE 0x0000_1040 YES - - - - DMA_CH_REGS DMA_CH3_BASE 0x0000_1060 YES - - - - DMA_CH_REGS DMA_CH4_BASE 0x0000_1080 YES - - - - DMA_CH_REGS DMA_CH5_BASE 0x0000_10A0 YES - - - - DMA_CH_REGS DMA_CH6_BASE 0x0000_10C0 YES - - - - CLA_REGS CLA1_BASE 0x0000_1400 YES - - - - UID_REGS UID_BASE 0x0007_0200 YES - - - - DCSM_Z1_OTP DCSM_Z1OTP_BASE 0x0007_8000 YES - - - - DCSM_Z2_OTP DCSM_Z2OTP_BASE 0x0007_8200 YES - - - - Peripheral Frame 1 (PF1) EPWM_REGS EPWM1_BASE 0x0000_4000 YES YES YES YES YES EPWM_REGS EPWM2_BASE 0x0000_4100 YES YES YES YES YES EPWM_REGS EPWM3_BASE 0x0000_4200 YES YES YES YES YES EPWM_REGS EPWM4_BASE 0x0000_4300 YES YES YES YES YES EPWM_REGS EPWM5_BASE 0x0000_4400 YES YES YES YES YES EPWM_REGS EPWM6_BASE 0x0000_4500 YES YES YES YES YES EPWM_REGS EPWM7_BASE 0x0000_4600 YES YES YES YES YES EPWM_REGS EPWM8_BASE 0x0000_4700 YES YES YES YES YES EQEP_REGS EQEP1_BASE 0x0000_5100 YES YES YES YES YES EQEP_REGS EQEP2_BASE 0x0000_5140 YES YES YES YES YES ECAP_REGS ECAP1_BASE 0x0000_5200 YES YES YES YES YES ECAP_REGS ECAP2_BASE 0x0000_5240 YES YES YES YES YES ECAP_REGS ECAP3_BASE 0x0000_5280 YES YES YES YES YES HRCAP3_BASE 0x0000_52A0 YES YES YES YES YES DAC_REGS DACA_BASE 0x0000_5C00 YES YES YES YES YES DAC_REGS DACB_BASE 0x0000_5C10 YES YES YES YES YES CMPSS_REGS CMPSS1_BASE 0x0000_5C80 YES YES YES YES YES CMPSS_REGS CMPSS2_BASE 0x0000_5CA0 YES YES YES YES YES CMPSS_REGS CMPSS3_BASE 0x0000_5CC0 YES YES YES YES YES CMPSS_REGS CMPSS4_BASE 0x0000_5CE0 YES YES YES YES YES SDFM_REGS SDFM1_BASE 0x0000_5E00 YES YES YES YES YES SDFM_REGS SDFM2_BASE 0x0000_5E80 YES YES YES YES YES HRCAP_REGS Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 201 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 7-4. Peripheral Registers Memory Map (continued) Structure DriverLib Name Base Address CPU1 DMA HIC CLA Pipeline Protected Peripheral Frame 2 (PF2) SPI_REGS SPIA_BASE 0x0000_6100 YES YES YES YES YES SPI_REGS SPIB_BASE 0x0000_6110 YES YES YES YES YES BGCRC_REGS BGCRC_CPU_BASE 0x0000_6340 YES - - - YES BGCRC_REGS BGCRC_CLA1_BASE 0x0000_6380 YES - - YES YES PMBUS_REGS PMBUSA_BASE 0x0000_6400 YES YES YES YES YES HIC_BASE 0x0000_6500 YES YES - - YES FSI_TX_REGS FSITXA_BASE 0x0000_6600 YES YES YES YES YES FSI_RX_REGS FSIRXA_BASE 0x0000_6680 YES YES YES YES YES HIC_CFG_REGS Peripheral Frame 3 (PF3) ADC_REGS ADCA_BASE 0x0000_7400 YES - - YES YES ADC_REGS ADCB_BASE 0x0000_7480 YES - - YES YES ADC_REGS ADCC_BASE 0x0000_7500 YES - - YES YES Peripheral Frame 4 (PF4) INPUT_XBAR_REGS XBAR_REGS INPUTXBAR_BASE 0x0000_7900 YES - - - YES XBAR_BASE 0x0000_7920 YES - - - YES SYNCSOC_BASE 0x0000_7940 YES - - - YES INPUT_XBAR_REGS CLBINPUTXBAR_BASE 0x0000_7960 YES - - - YES DMA_CLA_SRC_SEL_ REGS DMACLASRCSEL_BASE 0x0000_7980 YES - - - YES EPWMXBAR_BASE 0x0000_7A00 YES - - - YES SYNC_SOC_REGS EPWM_XBAR_REGS CLB_XBAR_REGS CLBXBAR_BASE 0x0000_7A40 YES - - - YES OUTPUT_XBAR_REG S OUTPUTXBAR_BASE 0x0000_7A80 YES - - - YES OUTPUT_XBAR_REG S CLBOUTPUTXBAR_BASE 0x0000_7BC0 YES - - - YES GPIO_CTRL_REGS GPIOCTRL_BASE 0x0000_7C00 YES - - - YES GPIO_DATA_REGS GPIODATA_BASE 0x0000_7F00 YES - - YES YES GPIODATAREAD_BASE 0x0000_7F80 YES - YES YES YES CLK_CFG_REGS CLKCFG_BASE 0x0005_D200 YES - - - YES CPU_SYS_REGS CPUSYS_BASE 0x0005_D300 YES - - - YES SYS_STATUS_REGS SYSSTAT_BASE 0x0005_D400 YES - - - YES PERIPHAC_BASE 0x0005_D500 YES - - - YES ANALOGSUBSYS_BASE 0x0005_D700 YES - - - YES GPIO_DATA_READ_R EGS PERIPH_AC_REGS ANALOG_SUBSYS_R EGS Peripheral Frame 5 (PF5) DEV_CFG_REGS DEVCFG_BASE 0x0005_D000 YES - - - YES ERAD_GLOBAL_REG S ERAD_GLOBAL_BASE 0x0005_E800 YES - - - YES ERAD_HWBP_REGS ERAD_HWBP1_BASE 0x0005_E900 YES - - - YES ERAD_HWBP_REGS ERAD_HWBP2_BASE 0x0005_E908 YES - - - YES ERAD_HWBP_REGS ERAD_HWBP3_BASE 0x0005_E910 YES - - - YES ERAD_HWBP_REGS ERAD_HWBP4_BASE 0x0005_E918 YES - - - YES ERAD_HWBP_REGS ERAD_HWBP5_BASE 0x0005_E920 YES - - - YES ERAD_HWBP_REGS ERAD_HWBP6_BASE 0x0005_E928 YES - - - YES ERAD_HWBP_REGS ERAD_HWBP7_BASE 0x0005_E930 YES - - - YES ERAD_HWBP_REGS ERAD_HWBP8_BASE 0x0005_E938 YES - - - YES ERAD_COUNTER_RE GS ERAD_COUNTER1_BASE 0x0005_E980 YES - - - YES ERAD_COUNTER_RE GS ERAD_COUNTER2_BASE 0x0005_E990 YES - - - YES 202 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 7-4. Peripheral Registers Memory Map (continued) Structure DriverLib Name Base Address CPU1 DMA HIC CLA Pipeline Protected ERAD_COUNTER_RE GS ERAD_COUNTER3_BASE 0x0005_E9A0 YES - - - YES ERAD_COUNTER_RE GS ERAD_COUNTER4_BASE 0x0005_E9B0 YES - - - YES ERAD_CRC_GLOBAL_ REGS ERAD_CRC_GLOBAL_BASE 0x0005_EA00 YES - - - YES ERAD_CRC_REGS ERAD_CRC1_BASE 0x0005_EA10 YES - - - YES ERAD_CRC_REGS ERAD_CRC2_BASE 0x0005_EA20 YES - - - YES ERAD_CRC_REGS ERAD_CRC3_BASE 0x0005_EA30 YES - - - YES ERAD_CRC_REGS ERAD_CRC4_BASE 0x0005_EA40 YES - - - YES ERAD_CRC_REGS ERAD_CRC5_BASE 0x0005_EA50 YES - - - YES ERAD_CRC_REGS ERAD_CRC6_BASE 0x0005_EA60 YES - - - YES ERAD_CRC_REGS ERAD_CRC7_BASE 0x0005_EA70 YES - - - YES ERAD_CRC_REGS ERAD_CRC8_BASE 0x0005_EA80 YES - - - YES EPG1_BASE 0x0005_EC00 YES - - - YES EPG_MUX_REGS EPG1MUX_BASE 0x0005_ECD0 YES - - - YES DCSM_Z1_REGS DCSM_Z1_BASE 0x0005_F000 YES - - - YES DCSM_Z2_REGS DCSM_Z2_BASE 0x0005_F080 YES - - - YES DCSMCOMMON_BASE 0x0005_F0C0 YES - - - YES EPG_REGS DCSM_COMMON_RE GS MEM_CFG_REGS MEMCFG_BASE 0x0005_F400 YES - - - YES ACCESS_PROTECTIO N_REGS ACCESSPROTECTION_BASE 0x0005_F500 YES - - - YES MEMORY_ERROR_RE GS MEMORYERROR_BASE 0x0005_F540 YES - - - YES TEST_ERROR_REGS TESTERROR_BASE 0x0005_F590 YES - - - YES FLASH_CTRL_REGS FLASH0CTRL_BASE 0x0005_F800 YES - - - YES FLASH_ECC_REGS FLASH0ECC_BASE 0x0005_FB00 YES - - - YES Peripheral Frame 7 (PF7) CAN_REGS CANA_BASE 0x0004_8000 YES YES YES - YES MCANASS_BASE 0x0005_C400 YES - YES - YES MCANA_BASE 0x0005_C600 YES - YES - YES MCANA_ERROR_BASE 0x0005_C800 YES - YES - YES HWBIST_REGS HWBIST_BASE 0x0005_E000 YES - - - YES PBIST_REGS MCANSS_REGS MCAN_REGS MCAN_ERROR_REGS MPOST_BASE 0x0005_E200 YES - - - YES DCC_REGS DCC0_BASE 0x0005_E700 YES - - - YES DCC_REGS DCC1_BASE 0x0005_E740 YES - - - YES 0x0000_6A00 YES YES YES YES YES 0x0000_6B00 YES YES YES YES YES Peripheral Frame 8 (PF8) LIN_REGS LINA_BASE LIN_REGS LINB_BASE Peripheral Frame 9 (PF9) WD_REGS WD_BASE 0x0000_7000 YES - - - YES NMI_INTRUPT_REGS NMI_BASE 0x0000_7060 YES - - - YES XINT_REGS XINT_BASE 0x0000_7070 YES - - - YES SCI_REGS SCIA_BASE 0x0000_7200 YES - YES - YES SCI_REGS SCIB_BASE 0x0000_7210 YES - YES - YES I2C_REGS I2CA_BASE 0x0000_7300 YES - YES - YES I2C_REGS I2CB_BASE 0x0000_7340 YES - YES - YES YES - YES YES - Peripheral Frame 10 (PF10) CLB_LOGIC_CONFIG_ REGS CLB1_LOGICCFG_BASE Copyright © 2023 Texas Instruments Incorporated 0x0000_3000 Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 203 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 7-4. Peripheral Registers Memory Map (continued) Structure DriverLib Name Base Address CPU1 DMA HIC CLA Pipeline Protected CLB_LOGIC_CONTRO L_REGS CLB1_LOGICCTRL_BASE 0x0000_3100 YES - YES YES - CLB_DATA_EXCHANG E_REGS CLB1_DATAEXCH_BASE 0x0000_3180 YES - YES YES - CLB_LOGIC_CONFIG_ REGS CLB2_LOGICCFG_BASE 0x0000_3400 YES - YES YES - CLB_LOGIC_CONTRO L_REGS CLB2_LOGICCTRL_BASE 0x0000_3500 YES - YES YES - CLB_DATA_EXCHANG E_REGS CLB2_DATAEXCH_BASE 0x0000_3580 YES - YES YES - CLB_LOGIC_CONFIG_ REGS CLB3_LOGICCFG_BASE 0x0000_3800 YES - YES YES - CLB_LOGIC_CONTRO L_REGS CLB3_LOGICCTRL_BASE 0x0000_3900 YES - YES YES - CLB_DATA_EXCHANG E_REGS CLB3_DATAEXCH_BASE 0x0000_3980 YES - YES YES - CLB_LOGIC_CONFIG_ REGS CLB4_LOGICCFG_BASE 0x0000_3C00 YES - YES YES - CLB_LOGIC_CONTRO L_REGS CLB4_LOGICCTRL_BASE 0x0000_3D00 YES - YES YES - CLB_DATA_EXCHANG E_REGS CLB4_DATAEXCH_BASE 0x0000_3D80 YES - YES YES - Peripheral Frame 11 (PF11) AES_REGS AES_SS_REGS AESA_BASE 0x0004_2000 YES YES - - - AESA_SS_BASE 0x0004_2C00 YES YES - - - YES - - YES YES Peripheral Frame 12 (PF12) LFU_REGS 204 LFU_BASE Submit Document Feedback 0x0000_7FE0 Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 7.4 Identification Table 7-5 lists the Device Identification Registers. Additional information on these device identification registers can be found in the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual. See the register descriptions of PARTIDH and PARTIDL for identification of production status (TMX or TMS) and other device information. Table 7-5. Device Identification Registers NAME ADDRESS SIZE (x16) DESCRIPTION Device part identification number PARTIDH 0x0005 D00A 2 REVID 0x0005 D00C 2 UID_UNIQUE 0x0007 020C 2 Copyright © 2023 Texas Instruments Incorporated TMS320F280039C 0x05FF 0500 TMS320F280039 0x05FF 0500 TMS320F280038C 0x05FE 0500 TMS320F280038 0x05FE 0500 TMS320F280037C 0x05FD 0500 TMS320F280037 0x05FD 0500 TMS320F280036C 0x05FC 0500 TMS320F280036 0x05FC 0500 TMS320F280034 0x05FA 0500 TMS320F280033 0x05F9 0500 Silicon revision number Revision 0 0x0000 0000 Unique identification number. This number is different on each individual device with the same PARTIDH. This unique number can be used as a serial number in the application. This number is present only on TMS devices. Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 205 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 7.5 Bus Architecture – Peripheral Connectivity The Peripheral Connectivity table lists a broad view of the peripheral and configuration register accessibility from each bus master. Table 7-6. Peripheral Connectivity PERIPHERAL DMA HIC BGCRC CLA C28 SYSTEM PERIPHERALS CPU Timers Y ERAD Y GPIO Data Y Y Y GPIO Pin Mapping and Configuration Y XBAR Configuration Y System Configuration Y AES Y Y EPG Y LFU Y DCC Y Y MEMORY M0/M1 Y LSx Y GSx Y Y ROM Y Y Y Y Y Y Y FLASH Y CONTROL PERIPHERALS ePWM/HRPWM Y Y Y Y eCAP/HRCAP Y Y Y Y Y Y Y Y Y Y Y Y Y Y eQEP 1 CLB SDFM Y ANALOG PERIPHERALS CMPSS DAC 1 1 Y Y Y Y Y Y Y Y Y Y Y Y ADC Configuration ADC Results 1 Y Y COMMUNICATION PERIPHERALS DCAN Y MCAN FSITX/FSIRX Y I2C Y Y Y Y Y Y Y Y Y LIN Y Y Y Y PMBus Y Y Y Y SCI Y SPI (1) 206 Y Y Y Y Y These modules are accessible from DMA but cannot trigger a DMA transfer. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023   7.6 C28x Processor The CPU is a 32-bit fixed-point processor. This device draws from the best features of digital signal processing; reduced instruction set computing (RISC); and microcontroller architectures, firmware, and tool sets. The CPU features include a modified Harvard architecture and circular addressing. The RISC features are single-cycle instruction execution, register-to-register operations, and modified Harvard architecture. The microcontroller features include ease of use through an intuitive instruction set, byte packing and unpacking, and bit manipulation. The modified Harvard architecture of the CPU enables instruction and data fetches to be performed in parallel. The CPU can read instructions and data while it writes data simultaneously to maintain the single-cycle instruction operation across the pipeline. The CPU does this over six separate address/data buses. For more information on CPU architecture and instruction set, see the TMS320C28x CPU and Instruction Set Reference Guide. 7.6.1 Floating-Point Unit (FPU) The C28x plus floating-point (C28x+FPU) processor extends the capabilities of the C28x fixed-point CPU by adding registers and instructions to support IEEE single-precision floating-point operations. Devices with the C28x+FPU include the standard C28x register set plus an additional set of floating-point unit registers. The additional floating-point unit registers are the following: • Eight floating-point result registers, RnH (where n = 0–7) • Floating-point Status Register (STF) • Repeat Block Register (RB) All of the floating-point registers, except the RB, are shadowed. This shadowing can be used in high-priority interrupts for fast context save and restore of the floating-point registers. For more information on the C28x Floating Point Unit (FPU), see the TMS320C28x Extended Instruction Sets Technical Reference Manual. 7.6.2 Fast Integer Division Unit The Fast Integer Division (FINTDIV) unit of the C28x CPU uniquely supports three types of integer division (Truncated, Modulus, Euclidean) of varying data type sizes (16/16, 32/16, 32/32, 64/32, 64/64) in unsigned or signed formats. • Truncated integer division is naturally supported by C language (/, % operators). • Modulus and Euclidean divisions are variants that are more efficient for control algorithms and are supported by C intrinsics. All three types of integer division produce both a quotient and remainder component, are interruptible, and execute in a minimum number of deterministic cycles (10 cycles for a 32/32 division). In addition, the Fast Division capabilities of the C28x CPU uniquely support fast execution of floating-point 32-bit (in 5 cycles) and 64-bit (in 20 cycles) division. For more information about fast integer division, see the Fast Integer Division – A Differentiated Offering From C2000™ Product Family Application Report. 7.6.3 Trigonometric Math Unit (TMU) The trigonometric math unit (TMU) extends the capabilities of a C28x+FPU by adding instructions and leveraging existing FPU instructions to speed up the execution of common trigonometric and arithmetic operations listed in Table 7-7. Table 7-7. TMU Supported Instructions Instructions C Equivalent Operation MPY2PIF32 RaH,RbH a = b * 2pi 2/3 DIV2PIF32 RaH,RbH a = b / 2pi 2/3 Copyright © 2023 Texas Instruments Incorporated Pipeline Cycles Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 207 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 7-7. TMU Supported Instructions (continued) Instructions C Equivalent Operation DIVF32 RaH,RbH,RcH a = b/c Pipeline Cycles 5 SQRTF32 RaH,RbH a = sqrt(b) 5 SINPUF32 RaH,RbH a = sin(b*2pi) 4 COSPUF32 RaH,RbH a = cos(b*2pi) 4 ATANPUF32 RaH,RbH a = atan(b)/2pi 4 QUADF32 RaH,RbH,RcH,RdH Operation to assist in calculating ATANPU2 5 Exponent instruction IEXP2F32 and logarithmic instruction LOG2F32 have been added to support computation of floating-point power function for the nonlinear proportional integral derivative control (NLPID) component of the C2000 Digital Control Library. These two added instructions reduce the power function calculations from a typical of 300 cycles using library emulation to less than 10 cycles. No changes have been made to existing instructions, pipeline or memory bus architecture. All TMU instructions use the existing FPU register set (R0H to R7H) to carry out their operations. For more information, see the TMS320C28x Extended Instruction Sets Technical Reference Manual. 7.6.4 VCRC Unit Cyclic redundancy check (CRC) algorithms provide a straightforward method for verifying data integrity over large data blocks, communication packets, or code sections. The C28x+VCRC can perform 8-bit, 16-bit, 24-bit, and 32-bit CRCs. For example, the VCRC can compute the CRC for a block length of 10 bytes in 10 cycles. A CRC result register contains the current CRC, which is updated whenever a CRC instruction is executed. The following are the CRC polynomials used by the CRC calculation logic of the VCRC: • CRC8 polynomial = 0x07 • CRC16 polynomial 1 = 0x8005 • CRC16 polynomial 2 = 0x1021 • CRC24 polynomial = 0x5d6dcb • CRC32 polynomial 1 = 0x04c11db7 • CRC32 polynomial 2 = 0x1edc6f41 This module can calculate CRCs for a byte of data in a single cycle. The CRC calculation for CRC8, CRC16, CRC24, and CRC32 is done byte-wise (instead of computing on a complete 16-bit or 32-bit data read by the C28x core) to match the byte-wise computation requirement mandated by various standards. The VCRC Unit also allows the user to provide the size (1b-32b) and value of any polynomial to fit custom CRC requirements. The CRC execution time increases to three cycles when using a custom polynomial. For more information on the Cyclic Redundancy Check (VCRC) instruction sets, see the TMS320C28x Extended Instruction Sets Technical Reference Manual. 208 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 7.7 Control Law Accelerator (CLA) The CLA Type-2 is an independent, fully programmable, 32-bit floating-point math processor that brings concurrent control-loop execution to the C28x family. The low interrupt-latency of the CLA allows it to read ADC samples "just-in-time." This significantly reduces the ADC sample to output delay to enable faster system response and higher MHz control loops. By using the CLA to service time-critical control loops, the main CPU is free to perform other system tasks such as communications and diagnostics. The control law accelerator extends the capabilities of the C28x CPU by adding parallel processing. Time-critical control loops serviced by the CLA can achieve low ADC sample to output delay. Thus, the CLA enables faster system response and higher frequency control loops. Using the CLA for time-critical tasks frees up the main CPU to perform other system and communication functions concurrently. The following is a list of major features of the CLA: • C compilers are available for CLA software development • Clocked at the same rate as the main CPU (SYSCLKOUT). • An independent architecture allowing CLA algorithm execution independent of the main C28x CPU. – Complete bus architecture: • Program Address Bus (PAB) and Program Data Bus (PDB) • Data Read Address Bus (DRAB), Data Read Data Bus (DRDB), Data Write Address Bus (DWAB), and Data Write Data Bus (DWDB) – Independent 8-stage pipeline. – 16-bit program counter (MPC) – Four 32-bit result registers (MR0 to MR3) – Two 16-bit auxiliary registers (MAR0, MAR1) – Status register (MSTF) • Instruction set includes: – IEEE single-precision (32-bit) floating-point math operations – Floating-point math with parallel load or store – Floating-point multiply with parallel add or subtract – 1/X and 1/sqrt(X) estimations – Data type conversions – Conditional branch and call – Data load/store operations • The CLA program code can consist of up to eight tasks or interrupt service routines, or seven tasks and a main background task. – The start address of each task is specified by the MVECT registers. – No limit on task size as long as the tasks fit within the configurable CLA program memory space. – One task is serviced at a time until its completion. There is no nesting of tasks. – Upon task completion a task-specific interrupt is flagged within the PIE. – When a task finishes the next highest-priority pending task is automatically started. – The Type-2 CLA can have a main task that runs continuously in the background, while other high-priority events trigger a foreground task. • Task trigger mechanisms: – C28x CPU through the IACK instruction – Task1 to Task8: up to 256 possible trigger sources from peripherals connected to the shared bus on which the CLA assumes secondary ownership. – Task8 can be set to be the background task, while Tasks 1 to 7 take peripheral triggers. • Memory and Shared Peripherals: – Two dedicated message RAMs for communication between the CLA and the main CPU. – The C28x CPU can map CLA program and data memory to the main CPU space or CLA space. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 209 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 CLA Control Register Set MIFR(16) From Shared Peripherals MPERINT1 to MPERINT8 CLA_INT1 to CLA_INT8 MIOVF(16) MICLR(16) MICLROVF(16) PIE MIFRC(16) MIER(16) MIRUN(16) MCTLBGRND(16) MSTSBGRND(16) CLA1SOFTINTEN(16) CLA1INTFRC(16) INT11 INT12 C28x CPU LVF LUF SYSCLK CLA Clock Enable SYSRS MVECT1(16) MVECT2(16) MVECT3(16) CPU Read/Write Data Bus MVECT4(16) MVECT5(16) MVECT6(16) MVECT7(16) MVECT8(16) CLA Program Memory (LSx) CLA Program Bus LSxMSEL[MSEL_LSx] LSxCLAPGM[CLAPGM_LSx] MVECTBGRND(16) MVECTBGRNDACTIVE(16) MPSA1(32) MPSA2(32) CLA Data Memory (LSx) CLA Data Bus MCTL(16) CLA Execution Register Set CPU Data Bus MPSACTL(16) CLA Message RAMs MPC(16) MSTF(32) MR0(32) MR1(32) MR2(32) MR3(32) Shared Peripherals MEALLOW MAR0(16) MAR1(16) CPU Read Data Bus Figure 7-2. CLA Block Diagram 210 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 7.8 Embedded Real-Time Analysis and Diagnostic (ERAD) The ERAD module enhances the debug and system-analysis capabilities of the device. The debug and systemanalysis enhancements provided by the ERAD module is done outside of the CPU. The ERAD module consists of the Enhanced Bus Comparator units and the System Event Counter units. The Enhanced Bus Comparator units are used to generate hardware breakpoints, hardware watch points, and other output events. The System Event Counter units are used to analyze and profile the system. The ERAD module is accessible by the debugger and by the application software, which significantly increases the debug capabilities of many real-time systems, especially in situations where debuggers are not connected. In the TMS320F28003x devices, the ERAD module contains eight Enhanced Bus Comparator units (which increases the number of Hardware breakpoints from two to ten) and four Benchmark System Event Counter units. 7.9 Background CRC-32 (BGCRC) The Background CRC (BGCRC) module computes a CRC-32 on a configurable block of memory. It accomplishes this by fetching the specified block of memory during idle cycles (when the CPU, HIC, CLA or DMA is not accessing the memory block). The calculated CRC-32 value is compared against a golden CRC-32 value to indicate a pass or fail. In essence, the BGCRC helps identify memory faults and corruption. The BGCRC module has the following features: • One cycle CRC-32 computation on 32 bits of data • No CPU bandwidth impact for zero wait state memory • Minimal CPU bandwidth impact for non-zero wait state memory • Dual operation modes (CRC-32 mode and scrub mode) • Watchdog timer to time CRC-32 completion • Ability to pause and resume CRC-32 computation Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 211 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 7.10 Direct Memory Access (DMA) The DMA module provides a hardware method of transferring data between peripherals and/or memory without intervention from the CPU, thereby freeing up bandwidth for other system functions. Additionally, the DMA has the capability to orthogonally rearrange the data as it is transferred as well as “ping-pong” data between buffers. These features are useful for structuring data into blocks for optimal CPU processing. Figure 7-3 shows a device-level block diagram of the DMA. DMA features include: • Six channels with independent PIE interrupts • Peripheral interrupt trigger sources – ADC interrupts and EVT signals – External Interrupts – ePWM SOC signals – CPU timers – eCAP – SPI transmit and receive – CAN transmit and receive – LIN transmit and receive • Data sources and destinations: – GSx RAM – ADC result registers – Control peripheral registers (ePWM, eQEP, eCAP) – SPI, LIN, CAN, and PMBus registers • Word Size: 16-bit or 32-bit (SPI limited to 16-bit) • Throughput: Four cycles per word without arbitration DCAN LIN AES ADC WRAPPER ADC RESULTS XINT TIMER Global Shared RAM DMA bus C28x bus TINT (0-2) XINT(1-5) ADCx.INT(1-5), ADCx.EVT DMA_CHx(1-6) AESA_ContextIn, AESA_ContextOut, AESA_DataIn, AESA_DataOut LINxTXDMA, LINxRXDMA CANxIF(1-3) SDxDRINT1-4 ECAP(1-3)DMA EPWM(1-8).SOCA, EPWM(1-8.SOCB CLB1-4INT EPG1INT DMA Trigger Source Selection DMACHSRCSEL1.CHx DMACHSRCSEL2.CHx CHx.MODE.PERINTSEL (x = 1 to 6) DMA C28x PIE SPITXDMA(A-B) SPIRXDMA(A-B) HICA_INT FSITXADMA, FSIRXADMA FSI_DATA_TAG_MATCH, FSI_PING_TAG_MATCH DAC SDFM CMPSS eQEP eCAP EPWM EPG CLB SPI PM Bus HIC FSI Figure 7-3. DMA Block Diagram 212 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 7.11 Device Boot Modes This section explains the default boot modes, as well as all the available boot modes supported on this device. The boot ROM uses the boot mode select, general-purpose input/output (GPIO) pins to determine the boot mode configuration. Table 7-8 shows the boot mode options available for selection by the default boot mode select pins. Users have the option to program the device to customize the boot modes selectable in the boot-up table as well as the boot mode select pin GPIOs used. All the peripheral boot modes that are supported use the first instance of the peripheral module (SCIA, SPIA, I2CA, CANA, and so forth). Whenever these boot modes are referred to in this chapter, such as SCI boot, it is actually referring to the first module instance, which means the SCI boot on the SCIA port. The same applies to the other peripheral boots. See Section 6.12.2.2.2 and the Power-on Reset figure for tboot-flash, the boot ROM execution time to first instruction fetch in flash. Table 7-8. Device Default Boot Modes BOOT MODE GPIO24 (DEFAULT BOOT MODE SELECT PIN 1) GPIO32 (DEFAULT BOOT MODE SELECT PIN 0) Parallel IO 0 0 SCI / Wait (1) Boot(1) 0 1 CAN 1 0 Flash 1 1 SCI boot mode can be used as a wait boot mode as long as SCI continues to wait for an 'A' or 'a' during the SCI autobaud lock process. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 213 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com 7.11.1 Device Boot Configurations This section details what boot configurations are available and how to configure them. This device supports from 0 boot mode select pins up to 3 boot mode select pins as well as from 1 configured boot mode up to 8 configured boot modes. To change and configure the device from the default settings to custom settings for your application, use the following process: 1. Determine all the various ways you want application to be able to boot. (For example: Primary boot option of Flash boot for your main application, secondary boot option of CAN boot for firmware updates, tertiary boot option of SCI boot for debugging, etc) 2. Based on the number of boot modes needed, determine how many boot mode select pins (BMSPs) are required to select between your selected boot modes. (For example: 2 BMSPs are required to select between 3 boot mode options) 3. Assign the required BMSPs to a physical GPIO pin. (For example, BMSP0 to GPIO10, BMSP1 to GPIO51, and BMSP2 left as default which is disabled). Refer to Section 7.11.1.1 for all the details on performing these configurations. 4. Assign the determined boot mode definitions to indexes in your custom boot table that correlate to the decoded value of the BMSPs. For example, BOOTDEF0=Boot to Flash, BOOTDEF1=CAN Boot, BOOTDEF2=SCI Boot; all other BOOTDEFx are left as default/nothing). Refer to Section 7.11.1.2 for all the details on setting up and configuring the custom boot mode table. Additionally, the Boot Mode Example Use Cases section of the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual provides some example use cases on how to configure the BMSPs and custom boot tables. Note The CAN boot mode turns on the XTAL. Be sure an XTAL is installed in the application before using CAN boot mode. 214 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 7.11.1.1 Configuring Boot Mode Pins This section explains how the boot mode select pins can be customized by the user, by programming the BOOTPIN-CONFIG location (refer to Table 7-9) in the user-configurable dual-zone security module (DCSM) OTP. The location in the DCSM OTP is Z1-OTP-BOOTPIN-CONFIG or Z2-OTP-BOOTPIN-CONFIG. When debugging, EMU-BOOTPIN-CONFIG is the emulation equivalent of Z1-OTP-BOOTPIN-CONFIG/Z2-OTPBOOTPIN-CONFIG, and can be programmed to experiment with different boot modes without writing to OTP. The device can be programmed to use 0, 1, 2, or 3 boot mode select pins as needed. Note When using Z2-OTP-BOOTPIN-CONFIG, the configurations programmed in this location will take priority over the configurations in Z1-OTP-BOOTPIN-CONFIG. It is recommended to use Z1-OTPBOOTPIN-CONFIG first and then if OTP configurations need to be altered, switch to using Z2-OTPBOOTPIN-CONFIG. Table 7-9. BOOTPIN-CONFIG Bit Fields BIT NAME 31:24 Key 23:16 Boot Mode Select Pin 2 (BMSP2) Refer to BMSP0 description except for BMSP2 15:8 Boot Mode Select Pin 1 (BMSP1) Refer to BMSP0 description except for BMSP1 Boot Mode Select Pin 0 (BMSP0) Set to the GPIO pin to be used during boot (up to 255): - 0x0 = GPIO0 - 0x01 = GPIO1 - and so on Writing 0xFF disables BMSP0 and this pin is no longer used to select the boot mode. 7:0 DESCRIPTION Write 0x5A to these 8-bits to indicate the bits in this register are valid The following GPIOs cannot be used as a BMSP. If selected for a particular BMSP, the boot ROM automatically selects the factory default GPIO (the factory default for BMSP2 is 0xFF, which disables the BMSP). • GPIO 20 and GPIO 21 • GPIO 36 and GPIO 38 • GPIO 62 to GPIO 223 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 215 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 7-10. Standalone Boot Mode Select Pin Decoding BOOTPIN_CONFIG KEY BMSP0 BMSP1 BMSP2 != 0x5A Don’t Care Don’t Care Don’t Care 0xFF 0xFF 0xFF Boot as defined in the boot table for boot mode 0 (All BMSPs disabled) Valid GPIO 0xFF 0xFF Boot as defined by the value of BMSP0 (BMSP1 and BMSP2 disabled) 0xFF Valid GPIO 0xFF Boot as defined by the value of BMSP1 (BMSP0 and BMSP2 disabled) 0xFF 0xFF Valid GPIO Boot as defined by the value of BMSP2 (BMSP0 and BMSP1 disabled) Valid GPIO Valid GPIO 0xFF Boot as defined by the values of BMSP0 and BMSP1 (BMSP2 disabled) Valid GPIO 0xFF Valid GPIO Boot as defined by the values of BMSP0 and BMSP2 (BMSP1 disabled) 0xFF Valid GPIO Valid GPIO Boot as defined by the values of BMSP1 and BMSP2 (BMSP0 disabled) Valid GPIO Valid GPIO Valid GPIO Boot as defined by the values of BMSP0, BMSP1, and BMSP2 = 0x5A REALIZED BOOT MODE Boot as defined by the factory default BMSPs Invalid GPIO Valid GPIO Valid GPIO BMSP0 is reset to the factory default BMSP0 GPIO Boot as defined by the values of BMSP0, BMSP1, and BMSP2 Valid GPIO Invalid GPIO Valid GPIO BMSP1 is reset to the factory default BMSP1 GPIO Boot as defined by the values of BMSP0, BMSP1, and BMSP2 Invalid GPIO BMSP2 is reset to the factory default state, which is disabled Boot as defined by the values of BMSP0 and BMSP1 Valid GPIO Valid GPIO   Note When decoding the boot mode, BMSP0 is the least-significant-bit and BMSP2 is the most-significantbit of the boot table index value. It is recommended when disabling BMSPs to start with disabling BMSP2. For example, in an instance when only using BMSP2 (BMSP1 and BMSP0 are disabled), then only the boot table indexes of 0 and 4 will be selectable. In the instance when using only BMSP0, then the selectable boot table indexes are 0 and 1. 216 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 7.11.1.2 Configuring Boot Mode Table Options This section explains how to configure the boot definition table, BOOTDEF, for the device and the associated boot options. The 64-bit location is located in user-configurable DCSM OTP in the Z1-OTP-BOOTDEF-LOW and Z1-OTP-BOOTDEF-HIGH locations. When debugging, EMU-BOOTDEF-LOW and EMU-BOOTDEF-HIGH are the emulation equivalents of Z1-OTP-BOOTDEF-LOW and Z1-OTP-BOOTDEF-HIGH, and can be programmed to experiment with different boot mode options without writing to OTP. The range of customization to the boot definition table depends on how many boot mode select pins (BMSP) are being used. For example, 0 BMSPs equals to 1 table entry, 1 BMSP equals to 2 table entries, 2 BMSPs equals to 4 table entries, and 3 BMSPs equals to 8 table entries. Refer to the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual for examples on how to set up the BOOTPIN_CONFIG and BOOTDEF values. Note The locations Z2-OTP-BOOTDEF-LOW and Z2-OTP-BOOTDEF-HIGH will be used instead of Z1OTP-BOOTDEF-LOW and Z1-OTP-BOOTDEF-HIGH locations when Z2-OTP-BOOTPIN-CONFIG is configured. Refer to Configuring Boot Mode Pins for more details on BOOTPIN_CONFIG usage. Table 7-11. BOOTDEF Bit Fields BOOTDEF NAME BYTE POSITION NAME DESCRIPTION Set the boot mode for index 0 of the boot table. BOOT_DEF0 7:0 BOOT_DEF0 Mode/Options Different boot modes and their options can include, for example, a boot mode that uses different GPIOs for a specific bootloader or a different flash entry point address. Any unsupported boot mode will cause the device to either go to wait boot or boot to flash. Refer to GPIO Assignments for valid BOOTDEF values to set in the table. BOOT_DEF1 15:8 BOOT_DEF1 Mode/Options BOOT_DEF2 23:16 BOOT_DEF2 Mode/Options BOOT_DEF3 31:24 BOOT_DEF3 Mode/Options BOOT_DEF4 39:32 BOOT_DEF4 Mode/Options BOOT_DEF5 47:40 BOOT_DEF5 Mode/Options BOOT_DEF6 55:48 BOOT_DEF6 Mode/Options BOOT_DEF7 63:56 BOOT_DEF7 Mode/Options Copyright © 2023 Texas Instruments Incorporated Refer to BOOT_DEF0 description Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 217 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 7.11.2 GPIO Assignments This section details the GPIOs and boot option values used for boot mode set in the BOOT_DEF memory location located at Z1-OTP-BOOTDEF-LOW/ Z2-OTP-BOOTDEF-LOW and Z1-OTP-BOOTDEF-HIGH/ Z2-OTPBOOTDEF-HIGH. Refer to Configuring Boot Mode Table Options on how to configure BOOT_DEF. When selecting a boot mode option, make sure to verify that the necessary pins are available in the pin mux options for the specific device package being used. Table 7-12. SCI Boot Options OPTION BOOTDEF VALUE SCITXDA GPIO SCIRXDA GPIO 0 (default) 0x01 GPIO29 GPIO28 1 0x21 GPIO16 GPIO17 2 0x41 GPIO8 GPIO9 3 0x61 GPIO2 GPIO3 4 0x81 GPIO16 GPIO3 OPTION BOOTDEF VALUE CANTXA GPIO CANRXA GPIO 0 (default) 0x08 GPIO4 GPIO5 1 0x28 GPIO1 GPIO0 2 0x48 GPIO13 GPIO12 OPTION BOOTDEF VALUE 0 (default) 0x02 GPIO4 GPIO5 1 0x22 GPIO32 GPIO33 2 0x42 GPIO2 GPIO3 3 0x62 GPIO13 GPIO12 OPTION BOOTDEF VALUE SDAA GPIO SCLA GPIO 0 0x07 GPIO32 GPIO33 1 0x27 GPIO0 GPIO1 2 0x47 GPIO10 GPIO8 Table 7-13. MCAN Boot Options Table 7-14. DCAN Boot Options CANTXA GPIO CANRXA GPIO Table 7-15. I2C Boot Options Table 7-16. RAM Boot Options OPTION BOOTDEF VALUE RAM ENTRY POINT (ADDRESS) 0 0x05 0x0000 0000 Table 7-17. Flash Boot Options 218 OPTION BOOTDEF VALUE FLASH ENTRY POINT (ADDRESS) 0 (default) 0x03 0x0008 0000 Bank0 Sector 0 1 0x23 0x0008 8000 Bank 0 Sector 8 2 0x43 0x0008 FFF0 Bank 0 Sector 15 3 0x63 0x0009 0000 Bank 1, Sector 0 FLASH SECTOR 4 0x83 0x0009 7FF0 Bank 1, Sector 7 5 0xA3 0x0009 FFF0 Bank 1, Sector 15 6 0xC3 0x000A 0000 Bank 2, Sector 0 7 0xE3 0x000A FFF0 Bank 2, Sector 15 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 7-18. LFU Flash Boot Options OPTION BOOTDEF VALUE FLASH ENTRY POINT (ADDRESS) BANK 0 (default) 0x0B 0x0008 0000 Bank0 0x0009 0000 Bank1 0x000A 0000 Bank2 0x0008 8000 Bank0 1 0x2B 2 0x4B 3 0x6B 4 0x8B 0x0009 8000 Bank1 0x000A 8000 Bank2 0x0008 FFF0 Bank0 0x0009 FFF0 Bank1 0x000A FFF0 Bank2 0x0008 8000 Bank0 0x0009 0000 Bank1 0x000A 0000 Bank2 0x0008 EFF0 Bank0 0x0009 7FF0 Bank1 0x000A 7FF0 Bank2 Table 7-19. Wait Boot Options OPTION BOOTDEF VALUE 0 0x04 Enabled 1 0x24 Disabled Copyright © 2023 Texas Instruments Incorporated WATCHDOG Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 219 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 7-20. SPI Boot Options OPTION BOOTDEF VALUE SPISIMOA SPISOMIA SPICLKA SPISTEA 0 0x06 GPIO2 GPIO1 GPIO3 GPIO5 1 0x26 GPIO16 GPIO1 GPIO3 GPIO0 2 0x46 GPIO8 GPIO10 GPIO9 GPIO11 3 0x66 GPIO8 GPIO17 GPIO9 GPIO11 Table 7-21. Parallel Boot Options OPTION BOOTDEF VALUE D0-D7 GPIO 28x(DSP) CONTROL GPIO HOST CONTROL GPIO 0 (default) 0x00 D0 - GPIO28 GPIO16 GPIO29 GPIO16 GPIO11 D1 - GPIO1 D2 - GPIO2 D3 - GPIO3 D4 - GPIO4 D5 - GPIO5 D6 - GPIO6 D7 - GPIO7 1 0x20 D0 - GPIO0 D1 - GPIO1 D2 - GPIO2 D3 - GPIO3 D4 - GPIO4 D5 - GPIO5 D6 - GPIO6 D7 - GPIO7 220 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 7.12 Security Security features are enforced by the Dual Code Security Module (DCSM). The primary layer of defense is securing the boundary of the chip, which should always be enabled. Additionally, the Dual Zone Security feature is available to support code partitioning. 7.12.1 Securing the Boundary of the Chip The following two features, along with authentication in the firmware update code, should be used to help to prevent unauthorized code from running on the device. 7.12.1.1 JTAGLOCK Enabling the JTAGLOCK feature in the USER OTP disables JTAG access (for example, debug probe) to resources on the device. 7.12.1.2 Zero-pin Boot Enabling the Zero-pin Boot option along with Flash Boot in the USER OTP blocks all pin-based external bootloader options (for example, SCI, CAN, Parallel). 7.12.2 Dual-Zone Security The dual-zone security mechanism offers protection for two zones: Zone 1 (Z1) and Zone 2 (Z2). The security implementation for both zones is identical. Each zone has its own dedicated secure resource (OTP memory and secure ROM) and allocated secure resource (LSx RAM and flash sectors). 7.12.3 Disclaimer Code Security Module Disclaimer   THE CODE SECURITY MODULE (CSM) INCLUDED ON THIS DEVICE WAS DESIGNED TO PASSWORD PROTECT THE DATA STORED IN THE ASSOCIATED MEMORY AND IS WARRANTED BY TEXAS INSTRUMENTS (TI), IN ACCORDANCE WITH ITS STANDARD TERMS AND CONDITIONS, TO CONFORM TO TI'S PUBLISHED SPECIFICATIONS FOR THE WARRANTY PERIOD APPLICABLE FOR THIS DEVICE. TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE CSM CANNOT BE COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED MEMORY CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER, EXCEPT AS SET FORTH ABOVE, TI MAKES NO WARRANTIES OR REPRESENTATIONS CONCERNING THE CSM OR OPERATION OF THIS DEVICE, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INDIRECT, INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN ANY WAY OUT OF YOUR USE OF THE CSM OR THIS DEVICE, WHETHER OR NOT TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED TO LOSS OF DATA, LOSS OF GOODWILL, LOSS OF USE OR INTERRUPTION OF BUSINESS OR OTHER ECONOMIC LOSS. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 221 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 7.13 Watchdog The watchdog module is the same as the one on previous TMS320C2000™ microcontrollers, but with an optional lower limit on the time between software resets of the counter. This windowed countdown is disabled by default, so the watchdog is fully backward-compatible. The watchdog generates either a reset or an interrupt. It is clocked from the internal oscillator with a selectable frequency divider. Figure 7-4 shows the various functional blocks within the watchdog module. WDCR.WDPRECLKDIV WDCR.WDPS WDCR.WDDIS WDCNTR WDCLK (INTOSC1) Overflow WDCLK Divider 8-bit Watchdog Counter Watchdog Prescaler 1-count delay SYSRSn Clear Count WDWCR.MIN WDKEY (7:0) WDCR(WDCHK(2:0)) Watchdog Key Detector 55 + AA Good Key Out of Window Watchdog Window Detector Bad Key WDRSTn 1 0 1 WDINTn Generate 512-WDCLK Output Pulse Watchdog Time-out SCSR.WDENINT Figure 7-4. Windowed Watchdog 222 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 7.14 C28x Timers CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock prescaling. The timers have a 32-bit count-down register that generates an interrupt when the counter reaches zero. The counter is decremented at the CPU clock speed divided by the prescale value setting. When the counter reaches zero, it is automatically reloaded with a 32-bit period value. CPU-Timer 0 is for general use and is connected to the PIE block. CPU-Timer 1 is also for general use and is connected to INT13 of the CPU. CPU-Timer 2 is reserved for TI-RTOS. It is connected to INT14 of the CPU. If TI-RTOS is not being used, CPU-Timer 2 is available for general use. CPU-Timer 2 can be clocked by any one of the following: • SYSCLK (default) • Internal zero-pin oscillator 1 (INTOSC1) • Internal zero-pin oscillator 2 (INTOSC2) • X1 (XTAL) Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 223 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 7.15 Dual-Clock Comparator (DCC) The DCC module is used for evaluating and monitoring the clock input based on a second clock, which can be a more accurate and reliable version. This instrumentation is used to detect faults in clock source or clock structures, thereby enhancing the system's safety metrics. 7.15.1 Features The DCC has the following features: • Allows the application to ensure that a fixed ratio is maintained between frequencies of two clock signals. • Supports the definition of a programmable tolerance window in terms of the number of reference clock cycles. • Supports continuous monitoring without requiring application intervention. • Supports a single-sequence mode for spot measurements. • Allows the selection of a clock source for each of the counters, resulting in several specific use cases. 7.15.2 Mapping of DCCx Clock Source Inputs Table 7-22. DCCx Clock Source0 Table 224 DCCxCLKSRC0[3:0] CLOCK NAME 0x0 XTAL/X1 0x1 INTOSC1 0x2 INTOSC2 0x4 TCK 0x5 CPU1.SYSCLK 0x8 AUXCLKIN 0xC INPUT XBAR (Output16 of input-xbar) others Reserved Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 7-23. DCCx Clock Source1 Table DCCxCLKSRC1[4:0] CLOCK NAME 0x0 PLLRAWCLK 0x2 INTOSC1 0x3 INTOSC2 0x6 CPU1.SYSCLK 0x9 Input XBAR (Output15 of the input-xbar) 0xA AUXCLKIN 0xB EPWMCLK 0xC LSPCLK 0xD ADCCLK 0xE WDCLK 0xF CAN0BITCLK others Reserved Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 225 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 7.16 Configurable Logic Block (CLB) The C2000 configurable logic block (CLB) is a collection of blocks that can be interconnected using software to implement custom digital logic functions or enhance existing on-chip peripherals. The CLB is able to enhance existing peripherals through a set of crossbar interconnections, which provide a high level of connectivity to existing control peripherals such as enhanced pulse width modulators (ePWM), enhanced capture modules (eCAP), and enhanced quadrature encoder pulse modules (eQEP). The crossbars also allow the CLB to be connected to external GPIO pins. In this way, the CLB can be configured to interact with device peripherals to perform small logical functions such as comparators, or to implement custom serial data exchange protocols. Through the CLB, functions that would otherwise be accomplished using external logic devices can now be implemented inside the MCU. The CLB peripheral is configured through the CLB tool. For more information on the CLB tool, available examples, application reports and users guide, please refer to the following location in your C2000Ware for C2000 MCUs package (C2000Ware_2_00_00_03 and higher): • • • • C2000WARE_INSTALL_LOCATION\utilities\clb_tool\clb_syscfg\doc CLB Tool User's Guide Designing With the C2000™ Configurable Logic Block (CLB) Application Report How to Migrate Custom Logic From an FPGA/CPLD to C2000™ Microcontrollers Application Report The CLB module and its interconnections are shown in Figure 7-5. GPIO0 to GPIOx Asynchronous Synchronous Sync. + Qual Input X-BAR IN P U T 1 – IN P U T 6 O t h er S o u rc es CLBx T ILE OU T 4 /5 CLB X-BAR CLB INPUT X-BAR O t her So u rc es AU XSIG 0 – AU XSIG 7 CLB CLB TILE1 CLB Global Signals CELL GPREG IN0-7 Local Signals OUT 0-7 . . . I N P U T 1 – IN P U T 1 6 C L B T i l e O ut p ut s I nte rs ec t o t he r Pe r i ph eral s O U T P U T X-BAR CLB TILEx CELL GPREG IN0-7 Local Signals OUT 0-7 All C LB T i l e Ou t p u t s CLB OUTPUT X-BAR GP IO M U X Figure 7-5. GPIO to CLB Tile Connections 226 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Absolute encoder protocol interfaces are now provided as Position Manager solutions in the C2000Ware MotorControl SDK. Configuration files, application programmer interface (API), and use examples for such solutions are provided with C2000Ware MotorControl SDK. In some solutions, the TI-configured CLB is used with other on-chip resources, such as the SPI port or the C28x CPU, to perform more complex functionality. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 227 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com 7.17 Functional Safety Functional Safety-Compliant products are developed using an ISO 26262/IEC 61508-compliant hardware development process that is independently assessed and certified to meet ASIL D/SIL 3 systematic capability (see certificate). The TMS320F28003x has been certified to meet a component-level random hardware capability of ASIL B and SIL 2 (see certificate). A functional safety manual that describes all of the hardware and software functional safety mechanisms is available. See the Functional Safety Manual for TMS320F28003x Real-Time Microcontrollers. A detailed, tunable, fault-injected, quantitative FMEDA that enables the calculation of random hardware metrics—as outlined in the International Organization for Standardization ISO 26262 and the International Electrotechnical Commission IEC 61508 for automotive and industrial applications, respectively—is also available. This tunable FMEDA must be requested; see the C2000™ Safety Package for Automotive and Industrial Real-Time Microcontrollers User's Guide. • • A white paper outlining the value (or benefit) of a tunable FMEDA is available. See the Functional Safety: A tunable FMEDA for C2000™ MCUs publication. Part 1 and Part 2 of a five-part FMEDA tuning training are available from the TI Video Library. Part 1 is Basics of FMEDA and how it is useful in system level safety analysis. Part 2 is Introduction to the C2000™ Tunable FMEDA. Parts 3, 4, and 5 are packaged with the tunable FMEDA, and must be requested. Two diagnostic libraries designed for the F28003x series of devices are available to aid in the development of functionally safe systems—the CLA Self-Test Library (CLA_STL) and the Software Diagnostic Library (SDL). The CLA_STL provides software tests of the CLA and has been independently assessed and certified. It is available upon request only, see the C2000™ Safety Package for Automotive and Industrial Real-Time Microcontrollers User's Guide. The SDL is a set of reference software providing example implementations of several safety mechanisms described in the device safety manual, such as HWBIST, software tests of SRAMs, software tests of Missing Clock Detect functionality, clock integrity checks using CPU Timers, and several other key features. The SDL is provided as part of C2000Ware. C2000 real-time MCUs are also equipped with a TI release validation-based C28x and CLA Compiler Qualification Kit (CQKIT), which is available for free and may be requested at the Safety compiler qualification kit web page. Additional details about how to develop functionally safe systems with C2000 real-time MCUs can be found in the following documents: • • • • • 228 Automotive Functional Safety for C2000™ Real-Time Microcontrollers summarizes the available functional safety products, documentation, software, and support available for aiding in the ISO 26262 certification process. Industrial Functional Safety for C2000™ Real-Time Microcontrollers summarizes the available functional safety products, documentation, software, and support available for aiding in the IEC 61508 certification process. C2000™ Hardware Built-In Self-Test discusses the Hardware Built-In Self-Test (HWBIST) feature in C2000™ real-time microcontrollers. The HWBIST provides a method of reaching a high level of diagnostic coverage on the C28x CPU, which is often needed to satisfy safety standards. Error Detection in SRAM Application Report provides technical information about the nature of the SRAM bit cell and bit array, as well as the sources of SRAM failures. It then presents methods for managing memory failures in electronic systems. This discussion is intended for electronic system developers or integrators who are interested in improving the robustness of the embedded SRAM. C2000™ CPU Memory Built-In Self-Test describes embedded memory validation using the C28x central processing unit (CPU) during an active control loop. It discusses system challenges to memory validation as well as the different solutions provided by C2000 devices and software. Finally, it presents the applicable Software Diagnostic Library features for memory testing. Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 8 Applications, Implementation, and Layout 8.1 Applications and Implementation Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. The Hardware Design Guide for F2800x C2000™ Real-Time MCU Series Application Note is an essential guide for hardware developers using C2000 devices, and helps to streamline the design process while mitigating the potential for faulty designs. Key topics discussed include: power requirements; general-purpose input/output (GPIO) connections; analog inputs and ADC; clocking generation and requirements; and JTAG debugging among many others. 8.2 Key Device Features Table 8-1. Key Device Features MODULE FEATURE SYSTEM BENEFIT PROCESSING Provides 120 MHz of signal-processing performance for floating- or fixed-point code running from either on-chip flash or SRAM. Real-time control CPUs Up to 120 MIPS C28x: 120 MIPS CLA: 120MIPs Flash: Up to 384KB RAM : Up to 69KB 32-bit Floating-Point Unit (FPU32) Trigonometric Math Unit (TMU) CRC engine and instructions (VCRC) CLA:32-bit floating point Control Law Accelerator, parallel execution to C28x CPU FPU32: Native hardware support for IEEE-754 single-precision floatingpoint operations TMU: Accelerators used to speed up execution of trigonometric and arithmetic operations for faster computation (such as PLL and DQ transform) optimized for control applications. Helps in achieving faster control loops, resulting in higher efficiency and better component sizing. Special instructions to support nonlinear PID control algorithms VCRC: Provides a straightforward method for verifying data integrity over large data blocks, communication packets, or code sections. SENSING ADC provides precise and concurrent sampling of all three-phase currents and DC bus with zero jitter. Analog-to-Digital Converter (ADC) (12-bit) Up to 3 ADC modules 4 MSPS Up to 23 channels Copyright © 2023 Texas Instruments Incorporated ADC post-processing – On-chip hardware reduces ADC ISR complexity and shortens current loop cycles. More ADCs help in multiphase applications. Provide better effective MSPS (oversampling) and typical ENOB for better control-loop performance. Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 229 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com Table 8-1. Key Device Features (continued) MODULE FEATURE SYSTEM BENEFIT System protection without false alarms: Comparator Subsystem (CMPSS) modules are useful for applications Comparator Subsystem (CMPSS) CMPSS 4 windowed comparator Dual 12-bit DACs DAC ramp generation Digital filters 60-ns detection to trip time Slope compensation such as peak-current mode control, switched-mode power, power factor correction, and voltage trip monitoring. PWM trip-triggering and removal of unwanted noise are easy with blanking window and filtering features provided with the analog comparator subsystems. Provides better control accuracy. No need for further CPU configuration to control the PWM with the comparator and 12-bit DAC (CMPSS) Enables protection(CMPSS) and control(ADC) using the same pin. Enhanced Quadrature Encoder Pulse (eQEP) 2 eQEP modules 3 eCAP modules Measures elapsed time between events (up to 4 time-stamped events). Enhanced Capture Connects to any GPIO through the input X(eCAP) BAR. When not used in capture mode, the eCAP module can be configured as a singlechannel PWM output (APWM). 230 Submit Document Feedback Used for direct interface with a linear or rotary incremental encoder to get position, direction, and speed information from a rotating machine used in a high-performance motion and position-control system. Support CW/CCW encoding. Also can be used in other applications to count input pulses from an external device (such as a sensor). Applications for eCAP include: Speed measurements of rotating machinery (for example, toothed sprockets sensed through Hall sensors) Elapsed time measurements between position sensor pulses Period and duty cycle measurements of pulse train signals Decoding current or voltage amplitude derived from duty-cycle encoded current/voltage sensors Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Table 8-1. Key Device Features (continued) MODULE FEATURE SYSTEM BENEFIT ACTUATION Flexible PWM waveform generation with best power topology coverage. Ability to generate high-side/low-side PWMs Shadowed Dead band itself and shadowed action qualifier enable adaptive PWM generation and protection for improved control accuracy with deadband and reduced power loss. Supports Valley switching (ability to switch PWM output at valley point) and features like Enables improvement in Power Factor (PF) and Total Harmonic Distortion (THD), which is especially relevant in Power Factor blanking window Correction (PFC) applications. Improves light load efficiency. Up to 16 ePWM channels Critical for variable-frequency and multiphase DC-DC applications and helps in attaining high-frequency control loops (>2 MHz). One-shot and global reload feature Enables control of interleaved LLC topologies at high frequencies Enhanced Pulse Width Modulation (ePWM) High-Resolution Pulse Width Modulation (HRPWM) Independent PWM action on a Cycle-byCycle (CBC) trip event and an One-Shot Trip (OST) trip event Provides cycle-by-cycle protection and complete shutoff of PWM under fault condition. Helps implement multiphase PFC or DC-DC control. Load on SYNC (support for shadow-to-active Enables variable-frequency applications (allows LLC control in power load on a SYNC event) conversion). Ability to shut down the PWMs without software intervention (no ISR latency) Fast protection under fault condition Delayed Trip Functionality Helps implement the deadband with Peak Current Mode Control (PCMC) Phase-Shifted Full Bride (PSFB) DC-DC easily without occupying much CPU resources (even on trigger events based on comparator, trip, or sync-in events). Dead band Generator (DB) submodule Prevents simultaneous ON conditions of High and Low side gates by adding programmable delay to rising (RED) and falling (FED) PWM signal edges. Flexible PWM Phase Relationships and Timer Synchronization Each ePWM module can be synchronized with other ePWM modules or other peripherals. Keeps PWM edges perfectly in synchronization with certain events. Supports flexible ADC scheduling with specific sampling window in synchronization with power device switching. 8 channels with high-resolution capability (150 ps) Provides 150-ps steps for duty cycle, period, Dead band, and phase offsets for 99% greater precision Beneficial for accurate control and enables better-performance highfrequency power conversion. Achieves cleaner waveforms and avoids oscillations/limit cycle at output. CONNECTIVITY Serial Peripheral Interface (SPI) 2 high-speed SPI port Supports 30 MHz Serial Communication Interface (SCI) 2 SCI (UART) modules Interfaces with controllers Local Interconnect 2 LIN Network (LIN) Controller Area Network (CAN/ DCAN) 1 DCAN module Copyright © 2023 Texas Instruments Incorporated Provides a low-cost solution where the bandwidth and fault tolerance of a Controller Area Network (CAN) are not required Can also be used as simple UART Provides compatibility with classic CAN modules Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 231 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com Table 8-1. Key Device Features (continued) MODULE FEATURE SYSTEM BENEFIT CAN FD (flexible data-rate) is an enhancement to the classic CAN protocol. CAN FD facilitates dynamic switching to higher bit rates (>1 Mbps) for the data segment and allows for up to 64 bytes compared to 8 bytes in classic CAN. This is done without having to change the physical layer. This results in a bandwidth gain over traditional CAN. Systems using CAN-FD benefit from faster in-the-field flash updates. Controller Area Network (CAN FD/ 1 CAN FD/MCAN module MCAN) Inter-Integrated Circuit (I2C) 2 I2C modules Interfaces with external EEPROMs, sensors, or controllers 1 PMBus module PowerManagement Bus Compliance with the SMI Forum PMBus (PMBus) Specification (Part I v1.0 and Part II v1.1) Seamless HW-based host communication OTHER SYSTEM FEATURES Dual-zone Code Security Module (DCSM) Watchdog Write Protection on Register Security enhancers Missing Clock Detection Logic (MCD) Error Correction Code (ECC) and parity Dual-Clock Comparator (DCC) Crossbars (XBARs) DCSM: Prevents duplication and reverse-engineering of proprietary code Watchdog: Generates reset if CPU gets stuck in endless loops of execution Write Protection on Registers: LOCK protection on system configuration registers Protection against spurious CPU writes MCD: Automatic clock failure detection ECC and parity: Single-bit error correction and double-bit error detection DCC: Used to detect faults in clock source Enhances hardware design versatility: Provides flexibility to connect device inputs, outputs, and internal resources in a variety of Input X-BAR: Routes signals from any GPIO to multiple IP blocks configurations. within the chip Output XBAR: Routes internal signals onto designated GPIO pins • Input X-BAR ePWM X-BAR: Routes internal signals from various IP blocks to • Output X-BAR EPWM • ePWM X-BAR 8.3 Application Information 8.3.1 Typical Application The Typical Applications section details some applications of this device. For a more extensive list of applications, see the Applications section of this data sheet. 8.3.1.1 Automotive Pump Fluid or fuel control pumps are typically used in automotive engine management systems based on the type of powertrain required. Depending on the type of system and load, these actuators are in open loop or closed loop, complete with precise control. All vehicles—internal combustion engine, electric, or hybrid (ICE/EV/HEV)—need various types of pumps (such as fuel pumps; coolant or water pumps; and oil pumps). Although the purpose of each pump is different, the function of the pump is the same: to move fluid, fuel, or oil from one place to another. In the example of a fuel pump, the pump transfers fuel from the fuel tank to the engine chamber for the engine to use. Depending on the function, pumps can be variable-speed pumps or fixed-speed pumps. The vehicle’s battery provides the current required to run the fuel pump. An electronic control unit (ECU) regulates the output pressure and volume of the gasoline, as well as meters the incoming fuel from the tank. The ECU assists the car in conserving fuel, resulting in improved economy and power. 232 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 8.3.1.1.1 System Block Diagram Vdc LV Battery + – 2A 1A 3A + Va – Vb Motor Vc + – 1B 2B 3B Ia Ib CPU 32 bit C28x DSP core Lock-Step 120 MHz LV Battery Ic PWM1 PWM2 1B 2A 2B 3V3 PWM3 3V3 1A PSU 3A 3B VREG Voltage Supervisor Window WDT 1V2 Comms SPI LIN CAN FD CAN FD and LIN Transceiver ADC GPIO Vref Ia Ib Ic Va Vb Vc Vdc Figure 8-1. Automotive Pump 8.3.1.1.2 Automotive Pump Resources Reference Designs and Associated Training Videos C2000™ MCUs - Electric vehicle (EV) training videos (Video) This collection of C2000™ MCU videos covers electric vehicle (EV)-specific training in both English and Chinese. 8.3.1.2 Automotive HVAC Compressor In a vehicle, the purpose of a conventional HVAC compressor is to cool the cabin. In hybrid and electric vehicles (HEVs and EVs), the compressor system not only cools the cabin but also the battery which powers the vehicle. In HEV/EVs, the sizing or the absence of a combustion engine requires the introduction of two additional components that play a key role in the HVAC system: • A brushless DC (BLDC) motor is a type of DC motor that rotates the AC compressor, instead of the engine. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 233 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 • A positive temperature coefficient (PTC) heater or alternatively, a heat pump, heats the coolant, rather than the engine. Automotive HVAC compressor module designs require: • Minimized number of isolated components. • Reduced EMI to optimize system performance. • Comprehensive diagnostics for fault identification. • High efficiency and sensorless torque control even at low speeds. 8.3.1.2.1 System Block Diagram Vdc HV Battery + – 2A 1A 3A + Va – Vb Motor Vc + – 1B LV Battery 2B 3B Ia Ib CPU 32 bit C28x DSP core Lock-Step 120 MHz Aux. DC/DC Ic PWM1 PWM2 1B 2A 2B 3V3 PWM3 3V3 1A LDO 3A 3B VREG Voltage Supervisor Window WDT CAN FD and LIN Transceiver 1V2 Comms SPI LIN CAN FD ADC GPIO Vref Ia Ib Ic Va Vb Vc Vdc Figure 8-2. Automotive HVAC Compressor 234 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 8.3.1.2.2 HVAC Resources Reference Designs and Associated Training Videos How to optimize your automotive HVAC design in the growing HEV/EV market In this article, we’ll overview the design challenges associated with these electronic HVAC applications, and discuss how real-time control performance, scalability and cost can help address those challenges. C2000™ MCUs - Electric vehicle (EV) training videos (Video) This collection of C2000™ MCU videos covers electric vehicle (EV)-specific training in both English and Chinese. How to design heating and cooling systems for HEV/EVs In this white paper, we will describe the new heating and cooling control modules in 48-V, 400-V or 800-V HEVs and EVs. From there, you will learn about the unique subsystems in these modules with examples and system diagrams, and we will finish by reviewing functional solutions for these subsystems to help you start planning your implementation Reliable real-time control in automotive HVAC compressor applications for HEVs and EVs In this article, we focus on the design challenges of HVAC compressor subsystems within HEV and EV heating and cooling systems and discuss how real-time control can address those challenges. 8.3.1.3 On-Board Charger (OBC) In the OBC and High-Voltage DC-DC charger (HV DCDC) markets, the modular-based design and the combo-box-based design are the two primary architectures adopted. The modular approach provides flexibility in manufacturing and after-service; and the combo-box approach seeks to integrate multiple functions into one enclosure for compactness. F28003x targets the modular-based control architecture and cost-sensitive solutions, which require limited controller performance (≤120 MIPS) with the element functional safety of ASIL B (D) for the controller. An on-board charger consists of two power stages: PFC (AC-DC) power converter and a subsequent DC-DC power converter. Each power stage is controlled with a single MCU. OBC-charging design requirements are as follows: • High-performance and fast digital control loops enabling highly efficient power conversion and increased power density. • Enabling precise control and fast shutdown in an overcurrent scenario by high bandwidth and fast response current sensing. • Safely and efficiently controlling and protecting the power switch [insulated-gate bipolar transistor/silicon carbide (IGBT/SiC)]. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 235 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 8.3.1.3.1 System Block Diagram VOUT VBUS 1A 2A 3A 4A + + 1B 2B 3B 4B IRES IOUT 1A PWM1 1B 2A PWM2 2B 3A 3B 4A 4B CPU 32 bit C28x DSP core Lock-Step 120 MHz 3V3 PWM3 3V3 PWM4 VREG 1V2 VOUT IRES LDO ADC IOUT Comms GPIO Vref SPI UART CAN FD Voltage Supervisor Window WDT Host Figure 8-3. OBC - DC - DC 8.3.1.3.2 OBC Resources Reference Designs and Associated Training Videos C2000 Digital Power Training videos This training series covers the basics of digital power control and how to implement it on C2000™ microcontrollers. C2000™ MCUs - Electric vehicle (EV) training videos (Video) This collection of C2000™ MCU videos covers electric vehicle (EV)-specific training in both English and Chinese. TIDUEG2C TIDM-02002 Bidirectional CLLLC resonant dual active bridge (DAB) reference design for HEV/EV onboard charger The CLLLC resonant DAB with bidirectional power flow capability and soft switching characteristics is an ideal candidate for Hybrid Electric Vehicle/Electric Vehicle (HEV/EV) on-board chargers and energy storage applications. This design illustrates control of this power topology using a C2000™ MCU in closed voltage and 236 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 closed current-loop mode. The hardware and software available with this design help accelerate your time to market. TIDUEG3A TIDM-1022 Valley switching boost power factor correction (PFC) reference design This reference design illustrates a digital control method to significantly improve Boost Power Factor Correction (PFC) converter performance such as the efficiency and Total Harmonic Distortion (THD) under light load condition where efficiency and THD standards are difficult to meet. This is achieved using the integrated digital control feature of the C2000™ microcontroller (MCU). The design supports phase-shedding, valley-switching, valley-skipping, and Zero Voltage Switching (ZVS) for different load and instantaneous input voltage conditions. The software available with this reference design accelerates time to market. 8.3.1.4 Servo Drive Control Module Servo drives require high precision current and voltage sensing for accurate torque control and often supports interfaces for multiple encoder types along with communication interfaces. This C2000 device can be used either as single chip solution for standalone servo drive (shown in Figure 8-4) or can be used in decentralized systems (shown in Figure 8-5). In the later case, the F28P65x C2000 device functions as the controller which samples all the voltage and current inputs and generates the correct PWM signals for inverter. Each C2000 device serves as real-time controller for a target axis, running motor current control loop. Using the Fast Serial Interface (FSI) peripheral, up to 16 axes can be managed with one C2000 device. As an outer loop controller, the C2000 device executes main axis motor control, controls data exchange with all secondary axis over FSI and communicates with a host or PLC through EtherCAT. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 237 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 8.3.1.4.1 System Block Diagram DC bus VBUS 1A 400 VAC F I L T E R 2A 3A External Brake M 1B 2B 3B IU 4 Iu Iv Iv Iw Iw VU Vv Vw Absolute Encoder Incremental Encoder Resolver TMODULE Aux. DC/DC DC bus 2A 2B 3A 3B 4 PWM3 PWM4 PWM1 1A 1B PWM2 IDC Iu Iv Iw VU Vv Vw VBUS Absolute Encoder IDC TMODULE Resolver SAR ADC SDFM Configurable logic block 3V3 3V3 CLA C28x Flash QEP Fast Serial Interface SRAM Incremental Encoder Figure 8-4. Servo Drive Control Module 238 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 CPU1 FPU TMU FSITX1 CLK DAT CLK DAT FSIRX FSITX2 CLK DAT CLK DAT FSITX CPU1 FPU TMU PWM2 PWM3 Option CLA1 A B AH A B A B BH AL AH BH CH Ia(option) BL CH Load Ib CL TZ1 DMA1 PWM1 A B PWM-2 A B PWM-3 A B C-M4 A B AH AL BH BL CH CL EQEP I Node # 1 ADCA 12-bit ADCB 12-bit ADCC 12-bit Ic A1 CMP1 Ia A2 B1 CMP1 Ib B2 C1 CMP1 Ic Vdc AL C2 F28003x BL CL M Incremental Encoder Vdc - DMA ECAT PWM1 + SCIA BOOSTXL-3PHGANINV TZ1 CPU2 FPU TMU CLA2 Master A1 ADCB 12-bit B1 CMP1 Ia A2 CMP2 Ib ADCC C1 12-bit C2 CMP3 Ic ADCD D1 12-bit D2 CMP4 CLK DAT B2 CLK DAT Vdc FSIRX CPU1 FPU TMU FSITX DMA A B EQEP I CH Ib Ic CL Load Node # 2 xxxxxx Ia(option) BL AH BH AL AH BH CH Ia(option) BL CH Load Ib CL ADCA 12-bit ADCB 12-bit ADCC 12-bit Ic CMP1 Ia B1 CMP1 Ib B2 C1 CMP1 Ic Vdc A1 AL A2 C2 F28003x BL CL M Incremental Encoder Vdc - A B I AL A B A B A B TZ1 EQEP1 BH PWM2 PWM3 Option DMA2 AH PWM1 + F28P65x ADCA 12-bit BOOSTXL-3PHGANINV M Incremental Encoder Vdc CLK DAT FSIRX CLK DAT FSITX CPU1 FPU TMU PWM2 PWM3 Option IDDK PWM1 A B AH A B A B BH AL AH BH CH Ia(option) BL CH Load Ib CL + - TZ1 EQEP I Node # 3 CLK DAT CLK DAT ADCA 12-bit ADCB 12-bit ADCC 12-bit A1 CMP1 Ia B1 CMP1 Ib B2 C1 CMP1 Ic Vdc AL A2 C2 F28003x FSIRX CPU1 FPU TMU FSITX PWM1 PWM2 PWM3 Option BL CL AH A B AL A B A B AH BH CH BH BL CH Ia(option) Ib CL Node # 4 ADCA 12-bit ADCB 12-bit ADCC 12-bit CMP1 Ia B1 CMP1 Ib B2 C1 CMP1 Ic Vdc A1 AL A2 C2 F28003x - I Ic + DMA EQEP Incremental Encoder BOOSTXL-3PHGANINV TZ1 A B M Vdc - A B Ic + DMA BL CL Load M Incremental Encoder Vdc BOOSTXL-3PHGANINV Figure 8-5. Distributed Multi-Axis Servo Drive 8.3.1.4.2 Servo Drive Control Module Resources Reference Designs and Associated Training Videos 48-V Three-Phase Inverter With Shunt-Based In-Line Motor Phase Current Sensing Evaluation Module The BOOSTXL-3PHGANINV evaluation module features a 48-V/10-A three-phase GaN inverter with precision in-line shunt-based phase current sensing for accurate control of precision drives such as servo drives. C2000 DesignDRIVE Development Kit for Industrial Motor Control The DesignDRIVE Development Kit (IDDK) hardware offers an integrated servo drive design with full power stage to drive a high voltage three-phase motor and eases the evaluation of a range of position feedback, current sensing and control topologies. C2000 DesignDRIVE position manager BoosterPack™ plug-in module The PositionManager BoosterPack is a flexible low voltage platform intended for evaluating interfaces to absolute encoders and analog sensors like resolvers and SinCos transducers. When combined with the DesignDRIVE Position Manager software solutions this low-cost evaluation module becomes a powerful tool for interfacing many popular position encoder types such as EnDat, BiSS and T-format with C2000 Real-Time Control devices. C2000 Position Manager technology integrates interfaces to the most popular digital and analog position sensors onto C2000 Real-Time Controller, thus eliminating the need for external FPGAs for these functions. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 239 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com C2000Ware MotorControl SDK MotorControl SDK for C2000™ microcontrollers (MCU) is a cohesive set of software infrastructure, tools, and documentation designed to minimize C2000 real-time controller based motor control system development time targeted for various three-phase motor control applications. The software includes firmware that runs on C2000 motor control evaluation modules (EVMs) and TI designs (TIDs) which are targeted for industrial drives, robotics, appliances, and automotive applications. MotorControl SDK provides all the needed resources at every stage of development and evaluation for high performance motor control applications. TIDM-02006 Distributed multi-axis servo drive over fast serial interface (FSI) reference design This reference design presents an example distributed or decentralized multi-axis servo drive over Fast Serial Interface (FSI) using C2000™ real-time controllers. Multi-axis servo drives are used in many applications such as factory automation and robots. The cost per axis, performance and ease of use are always high concerns for such systems. FSI is a cost-optimized and reliable high speed communication interface with low jitter that can daisy-chain multiple C2000 microcontrollers. In this design, each TMS320F280039 or TMS320F280025 real-time controller serves as a real-time controller for a distributed axis, running motor current control loop. A single TMS320F28388D runs position and speed control loops for all axes. The same F2838x also executes a centralized motor control axis plus EtherCAT communication, leveraging its multiple cores. The design uses our existing EVM kits, the software is released within C2000WARE MotorControl SDK. TIDM-02007 Dual-axis motor drive using fast current loop (FCL) and SFRA on a single MCU reference design This reference design presents a dual-axis motor drive using fast current loop (FCL) and software frequency response analyzer (SFRA) technologies on a single C2000 controller. The FCL utilizes dual core (CPU, CLA) parallel processing techniques to achieve a substantial improvement in control bandwidth and phase margin, to reduce the latency between feedback sampling and PWM update, to achieve higher control bandwidth and maximum modulation index, to improve DC bus utilization by the drive and to increase speed range of the motor. The integrated SFRA tool enables developers to quickly measure the frequency response of the application to tune speed and current controllers. Given the system-level integration and performance of C2000 series, MCUs have the ability to support dual-axis motor drive requirements simultaneously that delivers very robust position control with higher performance. The software is released within C2000Ware MotorControl SDK. TIDM-02010 Dual motor control with digital interleaved PFC for HVAC reference design The TIDM-02010 reference design is a 1.5-kW dual motor drive and PFC control reference design for variable frequency air conditioner outdoor unit controller in HVAC applications, which illustrates a method to implement sensorless 3-phase PMSM vector control for compressor and fan motor drive, and digital interleaved boost PFC for meeting new efficiency standards with a single C2000™ microcontroller. The hardware and software available with this reference design are tested and ready-to-use to help accelerate development time to market. The reference design includes hardware design files and software codes. TIDM-02012High-voltage HEV/EV HVAC eCompressor motor control reference design The TIDM-02012 is a high-voltage, 5-kW reference design built for HEV/EV compressor (eCompressor) applications controlled by a mid-performance C2000™ TMS320F28003x real-time MCU. It is designed to evaluate with both 400-V and 800-V DC-bus, covering the market-trending of higher battery voltage. A controlCARD-based design enables users to evaluate multiple MCU and gate driver options, and is scalable to support other devices within the C2000™ portfolio including future roadmap devices to meet growing cybersecurity, functional safety, and other automotive market needs. 8.3.1.5 Solar Micro Inverter A Solar Micro Inverter consists of a DC-AC inverter power stage and one or more Maximum Power Point Tracking (MPPT) DC-DC power stages. Typical switching frequency for the inverter (DC-AC) is between 20kHz-50kHz and for DC-DC side can be in the range 100kHz-200kHz. A variety of power stage topologies can be used to achieve this and the diagram only depicts a typical power stage and the control & communication requirements. A C2000 microcontroller has on-chip EPWM, ADC and analog comparator modules to implement complete digital control of such micro inverter system. 240 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 8.3.1.5.1 System Block Diagram S3 Active Clamp Flyback with sec Voltage Multiplier DC – AC Inverter DC bus S6 3B 2B S5 1A PV 27V – 45V Vgrid I 1B 2A 3A 4 (Relay) S7 GND S1 (S2) interleaved phases S4 GND Isolation 3A 3B 4 PWM3 PWM4 PWM1 Aux. DC/DC DC bus 2A 2B PWM2 S6 S7 1A 1B S1 S2 S3 S4 S5 ADC Comparators Vref 3V3 3V3 Comms GPIO SPI UART CAN C28x Flash SRAM QEP Figure 8-6. Solar Micro Inverter 8.3.1.5.2 Solar Micro Inverter Resources Reference Designs and Associated Training Videos TIDM-SOLARUINV Grid-tied Solar Micro Inverter with MPPT This C2000 Solar Micro Inverter EVM hardware consists of two stages. These are: (1) an active clamp fly-back DC/DC converter with secondary voltage multiplier and, (2) a DC-AC inverter. A block diagram of this system is shown in Figure 1b. The DC-DC converter draws dc current from the PV panel such that the panel operates at its maximum power transfer point. This requires maintaining the panel output, that is, the DC-DC converter input at a level determined by the MPPT algorithm. The MPPT algorithm determines the panel output current (reference current) for maximum power transfer. Then a current control loop for the fly-back converter ensures that the converter input current tracks the MPPT reference current. The fly-back converter also provides high frequency isolation for the DC-DC stage. The output of the fly-back stage is a high voltage DC bus which drives the DC-AC inverter. The inverter stage maintains the DC bus at a desired set point and injects controlled sine wave current into the grid. The inverter also implements grid synchronization in order to maintain its current waveform locked to phase and frequency of the grid voltage. A C2000 piccolo microcontroller with its on-chip Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 241 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com PWM, ADC and analog comparator modules is able to implement complete digital control of such micro inverter system. C2000™ digital power training series (Video) This training series covers the basics of digital power control and how to implement it on C2000 microcontrollers. Calculating Useful Lifetimes of Embedded Processors This application report provides a methodology for calculating the useful lifetime of TI embedded processors (EP) under power when used in electronic systems. It is aimed at general engineers who wish to determine if the reliability of the TI EP meets the end system reliability requirement. Electromigration is the primary failure mechanism being modeled Digitally Controlled Solar Micro Inverter Design using C2000™ Piccolo Microcontroller This document presents the implementation details of a digitally-controlled solar micro inverter using the C2000 microcontroller. A 250-W isolated micro inverter design presents all the necessary PV inverter functions using the Piccolo-B (F28035) control card. This document describes the power stages on the micro inverter board, as well as an incremental build level system that builds the software by verifying open loop operation and closed loop operation. This guide describes control structures and algorithms for controlling power flow, maximizing power from the PV panel (MPPT), and locking to the grid using phase locked loop (PLL), along with hardware details of Texas Instruments Solar Micro Inverter Kit (TMDSOLARUINVKIT) Software Phase Locked Loop Design Using C2000™ Microcontrollers for Single Phase Grid Connected Inverter Application Report Grid connected applications require an accurate estimate of the grid angle to feed power synchronously to the grid. This is achieved using a software phase locked loop (PLL). This application report discusses different challenges in the design of software phase locked loops and presents a methodology to design phase locked loops using C2000 controllers for single phase grid connection applications. C2000WARE-DIGITALPOWER-SDK DigitalPower SDK for C2000™ microcontrollers (MCU) is a cohesive set of software infrastructure, tools, and documentation designed to minimize C2000 MCU based digital power system development time targeted for various AC-DC, DC-DC and DC-AC power supply applications. The software includes firmware that runs on C2000 digital power evaluation modules (EVMs) and TI designs (TIDs) which are targeted for solar, telecom, server, electric vehicle chargers and industrial power delivery applications. DigitalPower SDK provides all the needed resources at every stage of development and evaluation in a digital power application 8.3.1.6 Merchant Telecom Rectifiers Merchant telecom rectifier consists of a power factor correction (PFC) stage and a DC-DC converter stage. The Totem pole PFC is widely used as the PFC stage. For the DC-DC stage, LLC and phase-shifted full bridge (PSFB) are the two most popular topologies. Single-chip and two-chip architecture can be used in merchant telecom rectifier, as shown in Figure 8-7 and Figure 8-8. The PFC stage draws sine-wave current from the AC mains in phase with the AC voltage, and maintains a steady DC bus voltage (VDC, typically +400 V) across its output. This output voltage is applied to the input of DC-DC stage, which converts it to an isolated low-output voltage Vout (usually 48 V). 242 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 8.3.1.6.1 System Block Diagram Dc bus VBUS GaN Si VOUT GaN VACL 1A 95~275 VAC 2A F I L T E R 3A 4A 5A + IPFC Si GaN GaN 2B 3B VACN 1B 4B 5B 6A 6B IRES IOUT Security: AES, DCSM, Secure boot VACL VACN ADC VBUS VOUT AMC1311 IPFC Aux. DC/DC DC bus IRES C28x IOUT 3V3 PWM1 3V3 PWM2 PWM3 I/On Comms I2C PMBUS SPI UART CAN PWM4 PWM5 1A 1B 2A 2B 3A 3B 4A 4B 5A 5B 6A PWM6 6B Host Figure 8-7. Merchant Telecom Rectifier Single-chip Architecture Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 243 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Dc bus VBUS GaN Si VOUT GaN VACL 95~275 VAC 2A 1A F I L T E R 4A 3A 5A + IPFC Si GaN GaN 1B 2B 3B VACN 4B 5B 6B 6A IRES IOUT Aux. DC/DC DC bus PWM1 C28x 3V3 PWM2 PWM3 Security: AES, DCSM, Secure boot PWM4 Comms ADC GPIO I2C PMBUS CAN 4A 1A 1B 4B 2A 5A 2B 3A 5B 3B sync PWM1 C28x VACL VOUT IRES VBUS IOUT SPI UART FSI DC bus PWM3 6A 6B VACN IPFC 3V3 PWM2 Aux. Isolated DC/DC PWM4 Security: AES, DCSM, Secure boot I/O Comms ADC SPI UART FSI GPIO I2C PMBUS CAN Host Figure 8-8. Merchant Telecom Rectifier Dual-chip Architecture 8.3.1.6.2 Merchant Telecom Rectifiers Resources Reference Designs and Associated Training Videos PMP41006 1-kW reference design with CCM totem pole PFC and current-mode LLC realized by C2000™ and GaN This reference design demonstrates a hybrid hysteresis control (HHC) method, a kind of current-mode control method on half-bridge LLC stage with a C2000™ F28004x microcontroller. The hardware is based on TIDA-010062, which is 1-kW, 80-Plus titanium, GaN CCM totem pole bridgeless PFC and half-bridge LLC reference design. A separate sensing card is added for hybrid hysteresis control, which recreates the voltage on the resonant capacitor. This HHC LLC stage shows better transient response and ease-of-control loop design compared with the single-loop voltage-mode control method (VMC). PMP23126 3-kW phase-shifted full bridge with active clamp reference design with > 270-W/in3 power density This reference design is a GaN-based 3-kW phase-shifted full bridge (PSFB) targeting maximum power density. The design has an active clamp to minimize voltage stress on the secondary synchronous rectifier MOSFETs enabling use of lower voltage-rating MOSFETs with better figure-of-merit (FoM). PMP23126 uses our 30mΩ GaN on the primary side and silicon MOSFETs on the secondary side. The LMG3522 top-side cooled GaN with integrated driver and protection enables higher efficiency by maintaining ZVS over a wider range of operation compared to Si MOSFET. The PSFB operates at 100 kHz and achieves a peak efficiency of 97.74%. 244 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 PMP23069 3.6-kW single-phase totem-pole bridgeless PFC reference design with a > 180-W/in³ power density This reference design is a GaN-based 3.6-kW single-phase continuous conduction mode (CCM) totem-pole power factor correction (PFC) converter targeting maximum power density. The power stage is followed by a small boost converter, which helps to reduce the size of the bulk capacitor. The LMG3522 top-side cooled GaN with integrated driver and protection enables higher efficiency and reduces power supply size and complexity. The F28003x, F28004x, or F28002x C2000™ controller is used for all the advanced controls that includes fast relay control; baby boost operation during AC dropout event; reverse-current-flow protection; and communication between the PFC and the housekeeping controller. The PFC operates at a switching frequency of 65 kHz and achieves peak efficiency of 98.7%. 1-kW reference design with CCM totem pole PFC and current-mode LLC realized by C2000™ and GaN (Video) With the changing transient response requirements in the world of digital power, meeting stringent specs in applications like server power supply and other industrial ACDC power supplies has become challenging. This C2000 real-time MCU based digital hybrid hysteretic controlled (HHC) LLC converter design demonstrates how current mode control achieves better transient response compared to a traditional voltage mode control with least CPU resources yet achieving the needed performance. TIDA-010203 High efficiency PFC stage using GaN and C2000™ Real-time control MCUs (Video) GaN power FETs and C2000™ MCUs enable a totem-pole Power Factor Correction (PFC) topology, eliminating bridge rectifier power losses. TIDA-010062 1-kW, 80 Plus titanium, GaN CCM totem pole bridgeless PFC and half-bridge LLC reference design This reference design is a digitally controlled, compact 1-kW AC/DC power supply design for server power supply unit (PSU) and telecom rectifier applications. The highly efficient design supports two main power stages, including a front-end continuous conduction mode (CCM) totem-pole bridgeless power factor correction (PFC) stage. The PFC stage features an LMG341x GaN FET with integrated driver to provide enhanced efficiency across a wide load range and meet 80-plus titanium requirements. The design also supports a half-bridge LLC isolated DC/DC stage to achieve a +12-V DC output at 1-kW. Two control cards use C2000™ Entry-Performance MCUs to control both power stages. TIDM-1001 Two Phase Interleaved LLC Resonant Converter Reference Design Using C2000™ MCUs Resonant converters are popular DC-DC converters frequently used in server, telecom, automotive, industrial, and other power supply applications. Their high performance (efficiency, power density, etc.), improving requirements of the various industry standards, and the ever-increasing power density goals have made these converters a good choice for medium- to high-power applications. This design implements a digitally controlled 500-W two-phase interleaved LLC resonant converter. The system is controlled by a single C2000™ microcontroller (MCU), TMS320F280025C, which also generates PWM waveforms for all power electronic switching devices under all operating modes. This design implements a novel current-sharing technique to accurately achieve current-balancing between phases. TIDM-1007 Interleaved CCM Totem Pole PFC Reference Design (Video) This video covers the hardware aspects, the control aspects, and the software design that are required to control a totem-pole PFC using a C2000 microcontroller. The test results achieved on this reference design are also presented as part of this presentation. Variable-frequency, ZVS, 5-kW, GaN-based, two-phase totem-pole PFC reference design This reference design is a high-density and high-efficiency 5-kW totem-pole power factor correction (PFC) design. The design uses a two-phase totem-pole PFC operating with variable frequency and zero voltage switching (ZVS). The control uses a new topology and improved triangular current mode (iTCM) to achieve both small size and high efficiency. The design uses a high performance processing core inside a TMS320F280049C microcontroller to maintain efficiency over a wide operating range. The PFC operates with variable frequency between 100 kHz and 800 kHz. A peak system efficiency of 99% was achieved with an open-frame power density of 120 W/in3. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 245 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com 9 Device and Documentation Support TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device, generate code, and develop solutions are listed below. 9.1 Getting Started and Next Steps The Getting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guide covers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. For a quick overview of the device, features, comparisons to other devices, and package details, see New Product Update: C2000™ real-time MCU family: F28003x overview. 9.2 Device Nomenclature To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all TMS320 MCU devices and support tools. Each TMS320™ MCU commercial family member has one of three prefixes: TMX, TMP, or TMS (for example, TMS320F280039C). Texas Instruments recommends two of three possible prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of product development from engineering prototypes (with TMX for devices and TMDX for tools) through fully qualified production devices and tools (with TMS for devices and TMDS for tools). Device development evolutionary flow: TMX Experimental device that is not necessarily representative of the final device's electrical specifications and may not use production assembly flow. TMP Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical specifications. TMS Production version of the silicon die that is fully qualified. Support tool development evolutionary flow: TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing. TMDS Fully-qualified development-support product. TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer: "Developmental product is intended for internal evaluation purposes." Production devices and TMDS development-support tools have been characterized fully, and the quality and reliability of the device have been demonstrated fully. TI's standard warranty applies. Predictions show that prototype devices (X or P) have a greater failure rate than the standard production devices. Texas Instruments recommends that these devices not be used in any production system because their expected end-use failure rate still is undefined. Only qualified production devices are to be used. TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type (for example, PN) and temperature range (for example, S). For device part numbers and further ordering information, see the TI website (www.ti.com) or contact your TI sales representative. 246 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 Generic Part Number: TMS Orderable Part Number: 320 X F 280039C F 280039C -Q1 (blank) PZ R Q1 PREFIX(A) AUTOMOTIVE AEC-Q100 QUALIFICATION TMX (X) = experimental device TMS (blank) = qualified device (blank) = Not AEC-Q100 qualified Q1 = AEC-Q100 Grade 1 qualification DEVICE FAMILY SHIPPING OPTIONS 320 = TMS320 MCU Family (blank) = Tray R = Tape and Reel TECHNOLOGY F = Flash PACKAGE TYPE PZ = 100-pin Low-Profile Quad Flatpack (LQFP) PN = 80-pin LQFP PM = 64-pin LQFP PT = 48-pin LQFP DEVICE 280039 280038 280037 280036 280034 230033 A. 280039C 280038C 280037C 280036C TEMPERATURE RANGE (blank), S = –40°C to 125°C (TA); –40°C to 150°C (TJ) Prefix X is used in orderable part numbers. Figure 9-1. Device Nomenclature 9.3 Markings Figure 9-2, Figure 9-3, Figure 9-4, and Figure 9-5 show the package symbolization. Table 9-1 lists the silicon revision codes. F280039CSPZ $$#-YMLLLLS G4 F280039CPZQ $$#-YMLLLLS G4 Pin 1 Pin 1 $$ # YM LLLL S = = = = = Wafer Fab Code (one or two characters) Silicon Revision Code 2-digit Year/Month Code Assembly Lot Code Assembly Site Code per QSS 005-120 G4 = ECAT Figure 9-2. Package Symbolization for PZ Package Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 247 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 F280039CSPN $$#-YMLLLLS G4 F280039CPNQ $$#-YMLLLLS G4 Pin 1 Pin 1 $$ # YM LLLL S = = = = = www.ti.com Wafer Fab Code (one or two characters) Silicon Revision Code 2-digit Year/Month Code Assembly Lot Code Assembly Site Code per QSS 005-120 G4 = ECAT Figure 9-3. Package Symbolization for PN Package F280039CSPM $$#-YMLLLLS G4 F280038CPMQ $$#-YMLLLLS G4 Pin 1 Pin 1 $$ # YM LLLL S = = = = = Wafer Fab Code (one or two characters) Silicon Revision Code 2-digit Year/Month Code Assembly Lot Code Assembly Site Code per QSS 005-120 G4 = ECAT Figure 9-4. Package Symbolization for PM Package 248 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 980 PT F280037CS YMLLLLS 980 PTQ F280037C YMLLLLS $$# G4 $$# G4 Pin 1 Pin 1 980 YM LLLL S $$ # = = = = = = TI EIA Code 2-digit Year/Month Code Assembly Lot Code Assembly Site Code per QSS 005-120 Wafer Fab Code (one or two characters) Silicon Revision Code G4 = ECAT Figure 9-5. Package Symbolization for PT Package Table 9-1. Revision Identification SILICON REVISION CODE SILICON REVISION REVID(1) ADDRESS: 0x5D00C Blank 0 0x0000 0000 (1) COMMENTS This silicon revision is available as TMX and TMS. Silicon Revision ID 9.4 Tools and Software TI offers an extensive line of development tools. Some of the tools and software to evaluate the performance of the device, generate code, and develop solutions follow. To view all available tools and software for C2000™ real-time control MCUs, visit the C2000 real-time control MCUs – Design & development page. Development Tools TMDSCNCD280039C Control Card The F280039C controlCARD is an HSEC180 controlCARD based evaluation and development tool for the C2000™ F28003x series of microcontroller products. controlCARDs are ideal to use for initial evaluation and system prototyping. controlCARDs are complete board-level modules that utilize one of two standard form factors (100-pin DIMM or 180-pin HSEC ) to provide a low-profile single-board controller solution. For first evaluation controlCARDs are typically purchased bundled with a baseboard or bundled in an application kit. HSEC180 controlCARD Baseboard Docking Station TMDSHSECDOCK is a baseboard that provides header pin access to key signals on compatible HSEC180based controlCARDs. A breadboard area is available for rapid prototyping. Board power can be provided by the provided USB cable or a 5-V barrel supply. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 249 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com XDS110 JTAG Debug Probe The Texas Instruments XDS110 is a new class of debug probe (emulator) for TI embedded processors. The XDS110 replaces the XDS100 family while supporting a wider variety of standards (IEEE1149.1, IEEE1149.7, SWD) in a single pod. Also, all XDS debug probes support Core and System Trace in all Arm® and DSP processors that feature an Embedded Trace Buffer (ETB). For Core Trace over pins the XDS560v2 PRO TRACE Receiver & Debug Probe is required. XDS200 USB Debug Probe The XDS200 is a debug probe (emulator) used for debugging TI embedded devices. The XDS200 features a balance of low cost with good performance as compared to the low cost XDS110 and the high performance XDS560v2. It supports a wide variety of standards (IEEE1149.1, IEEE1149.7, SWD) in a single pod. All XDS debug probes support Core and System Trace in all Arm® and DSP processors that feature an Embedded Trace Buffer (ETB). For Core Trace over pins the XDS560v2 PRO TRACE Receiver & Debug Probe is required. XDS560v2 System Trace USB Debug Probe The XDS560v2 is the highest performance of the XDS family of debug probes and supports both the traditional JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7). Note that it does not support serial wire debug (SWD). Software Tools C2000™ Software Guide C2000™ real-time controllers are a portfolio of high-performance microcontrollers that are purpose-built to control power electronics and provide advanced digital signal processing for industrial and automotive applications. Software components to program various modules in C2000 MCUs are released as part of C2000 software releases. This guide provides an overview of various software components and available functionality. C2000Ware for C2000 MCUs C2000Ware for C2000™ MCUs is a cohesive set of software and documentation created to minimize development time. It includes device-specific drivers, libraries, and peripheral examples. Digital Power SDK Digital Power SDK is a cohesive set of software infrastructure, tools, and documentation designed to minimize C2000 MCU-based digital power system development time targeted for various AC-DC, DC-DC and DC-AC power supply applications. The software includes firmware that runs on C2000 digital power evaluation modules (EVMs) and reference designs, which are targeted for solar, telecom, server, electric vehicle chargers and industrial power delivery applications. Digital Power SDK provides all the needed resources at every stage of development and evaluation in a digital power applications. Motor Control SDK Motor Control SDK is a cohesive set of software infrastructure, tools, and documentation designed to minimize C2000 MCU-based motor control system development time targeted for various three-phase motor control applications. The software includes firmware that runs on C2000 motor control evaluation modules (EVMs) and reference designs, which are targeted for industrial drive and other motor control, Motor Control SDK provides all the needed resources at every stage of development and evaluation for high-performance motor control applications. Code Composer Studio™ (CCS) Integrated Development Environment (IDE) for C2000 microcontrollers Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller and Embedded Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build environment, debugger, profiler, and many other features. The intuitive IDE provides a single user interface taking the user through each step of the application development flow. Familiar tools and interfaces allow users to get started faster than ever before. Code Composer Studio combines the advantages of the Eclipse software framework with advanced embedded debug capabilities from TI resulting in a compelling feature-rich development environment for embedded developers. 250 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 TI Resource Explorer To enhance your experience, be sure to check out the TI Resource Explorer to browse examples, libraries, and documentation for your applications. SysConfig System configuration tool SysConfig is a comprehensive collection of graphical utilities for configuring pins, peripherals, radios, subsystems, and other components. SysConfig helps you manage, expose and resolve conflicts visually so that you have more time to create differentiated applications. The tool's output includes C header and code files that can be used with software development kit (SDK) examples or used to configure custom software. The SysConfig tool automatically selects the pinmux settings that satisfy the entered requirements. The SysConfig tool is delivered integrated in CCS, as a standalone installer, or can be used via the dev.ti.com cloud tools portal. For more information about the SysConfig system configuration tool, visit the System configuration tool page. C2000 Third-party search tool TI has partnered with multiple companies to offer a wide range of solutions and services for TI C2000 devices. These companies can accelerate your path to production using C2000 devices. Download this search tool to quickly browse third-party details and find the right third-party to meet your needs. UniFlash Standalone Flash Tool UniFlash is a standalone tool used to program on-chip flash memory through a GUI, command line, or scripting interface. C2000 code generation tools - compiler The TI C2000 C/C++ Compiler and Assembly Language Tools support development of applications for TI C2000 Microcontroller platforms, including the Concerto (F28M3xx), Entry-Performance (280xx), Premium-Performance Floating-Point (283xx), and C2000 Fixed-Point (2823x/280x/281x) Microcontroller devices. Models Various models are available for download from the product Design & development pages. These models include I/O Buffer Information Specification (IBIS) Models and Boundary-Scan Description Language (BSDL) Models. To view all available models, visit the Design tools & simulation subsection of the Design & development section of each device product page. Training To help assist design engineers in taking full advantage of the C2000 microcontroller features and performance, TI has developed a variety of training resources. Utilizing the online training materials and downloadable hands-on workshops provides an easy means for gaining a complete working knowledge of the C2000 microcontroller family. These training resources have been designed to decrease the learning curve, while reducing development time, and accelerating product time to market. For more information on the various training resources, visit the C2000™ real-time control MCUs – Support & training site. Additionally, the C2000 Academy course provides new users with a way to ramp quickly with C2000 devices and their many features. This is a great entry point for users getting started with C2000, and is available at the C2000 Academy resource explorer page. 9.5 Documentation Support To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Notifications to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. The current documentation that describes the processor, related peripherals, and other technical collateral follows. Errata TMS320F28003x Real-Time MCUs Silicon Errata describes known advisories on silicon and provides workarounds. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 251 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com Technical Reference Manual TMS320F28003x Real-Time Microcontrollers Technical Reference Manual details the integration, the environment, the functional description, and the programming models for each peripheral and subsystem in the F28003x real-time microcontrollers. CPU User's Guides TMS320C28x CPU and Instruction Set Reference Guide describes the central processing unit (CPU) and the assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). This Reference Guide also describes emulation features available on these DSPs. TMS320C28x Extended Instruction Sets Technical Reference Manual describes the architecture, pipeline, and instruction set of the TMU, VCU-II, and FPU accelerators. Peripheral Guides C2000 Real-Time Control Peripherals Reference Guide describes the peripheral reference guides of the 28x DSPs. Tools Guides TMS320C28x Assembly Language Tools v22.6.0.LTS User’s Guide describes the assembly language tools (assembler and other tools used to develop assembly language code), assembler directives, macros, common object file format, and symbolic debugging directives for the TMS320C28x device. TMS320C28x Optimizing C/C++ Compiler v22.6.0.LTS User’s Guide describes the TMS320C28x C/C++ compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly language source code for the TMS320C28x device. Application Reports The SMT & packaging application notes website lists documentation on TI’s surface mount technology (SMT) and application notes on a variety of packaging-related topics. Semiconductor Packing Methodology describes the packing methodologies employed to prepare semiconductor devices for shipment to end users. Calculating Useful Lifetimes of Embedded Processors provides a methodology for calculating the useful lifetime of TI embedded processors (EPs) under power when used in electronic systems. It is aimed at general engineers who wish to determine if the reliability of the TI EP meets the end system reliability requirement. An Introduction to IBIS (I/O Buffer Information Specification) Modeling discusses various aspects of IBIS including its history, advantages, compatibility, model generation flow, data requirements in modeling the input/ output structures, and future trends. Serial Flash Programming of C2000™ Microcontrollers discusses using a flash kernel and ROM loaders for serial programming a device. Fast Integer Division – A Differentiated Offering From C2000™ Product Family provides an overview of the different division and modulo (remainder) functions and its associated properties. The Essential Guide for Developing With C2000™ Real-Time Microcontrollers provides a deeper look into the components that differentiate the C2000 Microcontroller Unit (MCU) as it pertains to Real-Time Control Systems. 9.6 Support Resources TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 252 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 www.ti.com SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 9.7 Trademarks C2000™, TMS320C2000™, TMS320™, Code Composer Studio™, and TI E2E™ are trademarks of Texas Instruments. Bosch® is a registered trademark of Robert Bosch GmbH Corporation. Arm® is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere. All trademarks are the property of their respective owners. 9.8 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 9.9 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 253 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com 10 Revision History Changes from November 30, 2022 to December 7, 2023 Page • This Revision History lists the changes from SPRSP61B to SPRSP61C. ..................................................1 • Global: Added TMS320F280033-Q1 device [Preview information (not Production Data)]................................1 • Global: Information on the TMS320F280039-Q1, TMS320F280039, TMS320F280038-Q1, TMS320F280037Q1, TMS320F280036C-Q1, TMS320F280036-Q1, TMS320F280034-Q1, and TMS320F280033 devices is now Production Data.......................................................................................................................................... 1 • Global: TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280037C-Q1, and TMS320F280034-Q1 are now available in the 80-pin PN package............................................................................................................ 1 • Features section: Changed Security features under "On-chip memory" feature................................................1 • Features section: Updated "Functional Safety-Compliant" feature and "Safety-related certification" feature.... 1 • Package Information table: Added table.............................................................................................................3 • Functional Block Diagram figure: Updated "Buses Legend" by changing "CLU" to "CLA".................................6 • Device Comparison table: Changed "Code security for on-chip flash and RAM" to "Security: JTAGLOCK, Zero-pin boot, Dual-zone security"..................................................................................................................... 8 • Device Comparison table: Changed the number of ADC channels for the 100-pin PZ package from 23 to 25. 8 • Device Comparison table: TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280037C-Q1, TMS320F280034-Q1, and TMS320F280033-Q1 are now available in the 80-pin PN package.........................8 • Pin Attributes table: Updated description of VREGENZ................................................................................... 11 • Power and Ground table: Updated description of VREGENZ.......................................................................... 36 • Electrical Characteristics table: Updated ROH and ROL values. Added RPULLDOWN and RPULLUP.................... 59 • ESD Ratings – Commercial table: Added values for corner pins..................................................................... 59 • ESD Ratings – Automotive table: TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280037C-Q1, TMS320F280034-Q1, and TMS320F280033-Q1 are now available in the 80-pin PN package.......................60 • Current Consumption Graphs section: Added section..................................................................................... 65 • External Supervisor Usage section: Updated section...................................................................................... 74 • VREGENZ section: Updated section................................................................................................................75 • VDDIO Decoupling section: Updated section...................................................................................................75 • VDD Decoupling section: Updated section.......................................................................................................76 • Supply Pins Ganging section: Updated section................................................................................................76 • Signal Pins Power Sequence section: Updated section...................................................................................76 • Supply Sequencing Summary and Effects of Violations section: Updated section.......................................... 78 • Supply Slew Rate section: Updated section.....................................................................................................79 • System PLL figure: Updated figure...................................................................................................................85 • Introduction section: Updated section.............................................................................................................. 90 • Electrical Oscillator section: Updated section...................................................................................................90 • RAM and ROM Parameters section: Added section...................................................................................... 100 • Analog-to-Digital Converter (ADC) section: Updated section.........................................................................124 • ADC Electrical Data and Timing section: Updated "The ADC inputs should be kept below VDDA + 0.3 V …" Note.......................................................................................................................................................... 127 • ADC Timing Parameter Descriptions table: Changed title from ADC Timing Parameters to ADC Timing Parameter Descriptions. Updated table..........................................................................................................132 • Comparator Subsystem (CMPSS) section: Updated section. Added "Two digital filters, 65536 max filter clock prescale" to "Each CMPSS includes" list........................................................................................................135 • Block Diagram section: Added "Each reference 12-bit DAC can be configured to drive a reference voltage into the negative input of the respective comparator" paragraph. Added "Reference DAC Block Diagram" figure...............................................................................................................................................................136 • CMPSS DAC Dynamic Error section: Added section..................................................................................... 142 • DAC Module Block Diagram: Updated diagram............................................................................................. 143 • Enhanced Capture (eCAP) section: Updated section.................................................................................... 151 • Sigma-Delta Filter Module (SDFM) section: Changed "Master Filter Enable (MFE) bit" to "Main Filter Enable (MFE) bit"........................................................................................................................................................159 • Modular Controller Area Network (MCAN) section: Updated list of MCAN module features......................... 162 254 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 www.ti.com • • • • • • • • • • • • • • • • TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 I2C Electrical Data and Timing section: Updated Note.................................................................................. 166 I2C Timing Requirements table: Added footnotes..........................................................................................166 PMBus Fast Mode Switching Characteristics table: Added fFSM_CLK, FSM_CLK clock frequency.................169 PMBus Standard Mode Switching Characteristics table: Added fFSM_CLK, FSM_CLK clock frequency......... 169 SCI Block Diagram: Updated diagram............................................................................................................171 Functional Block Diagram figure: Updated "Buses Legend" by changing "CLU" to "CLA".............................196 Peripheral Registers Memory Map table: Changed table title from "Peripheral Registers Memory Map (C28)" to "Peripheral Registers Memory Map". Updated table.................................................................................. 201 Device Identification Registers table: Changed UID_UNIQUE from "0x0007 01F4" to "0x0007 020C".........205 Trigonometric Math Unit (TMU) section: Added "Exponent instruction IEXP2F32 and logarithmic instruction LOG2F32 have been added ..." paragraph.................................................................................................... 207 Added second paragraph in Section 7.6.3 .................................................................................................... 207 Control Law Accelerator (CLA) section: Added "C compilers are available for CLA software development" to list of major features. ..................................................................................................................................... 209 Security section: Changed Dual Code Security Module section to Security section...................................... 221 Functional Safety section: Added section.......................................................................................................228 Applications, Implementation, and Layout section: Changed section............................................................ 229 Merchant Telecom Rectifier Single-chip Architecture figure: Corrected EPWM labels of lower FETs............243 Merchant Telecom Rectifier Dual-chip Architecture figure: Corrected EPWM labels of lower FETs.............. 243 Copyright © 2023 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 255 TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1 TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1 TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1 SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023 www.ti.com 11 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. To learn more about TI packaging, visit the Packaging information website. 256 Submit Document Feedback Copyright © 2023 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1 PACKAGE OPTION ADDENDUM www.ti.com 23-Dec-2023 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) F280033SPM ACTIVE LQFP PM 64 160 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280033SPM Samples F280033SPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280033SPN Samples F280033SPT ACTIVE LQFP PT 48 250 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280033S PT Samples F280033SPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280033SPZ Samples F280034PTRQ1 ACTIVE LQFP PT 48 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280034 PTQ Samples F280034SPM ACTIVE LQFP PM 64 160 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280034SPM Samples F280034SPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280034SPN Samples F280034SPT ACTIVE LQFP PT 48 250 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280034S PT Samples F280034SPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280034SPZ Samples F280036CPMRQ1 ACTIVE LQFP PM 64 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280036CPMQ Samples F280036PMRQ1 ACTIVE LQFP PM 64 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280036PMQ Samples F280037CPTQ1 ACTIVE LQFP PT 48 250 RoHS & Green Call TI | NIPDAU Level-3-260C-168 HR -40 to 125 F280037C PTQ Samples F280037CPTRQ1 ACTIVE LQFP PT 48 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280037C PTQ Samples F280037CPZRQ1 ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280037CPZQ Samples F280037CSPM ACTIVE LQFP PM 64 160 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280037CSPM Samples F280037CSPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280037CSPN Samples F280037CSPT ACTIVE LQFP PT 48 250 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280037CS PT Samples F280037CSPTR ACTIVE LQFP PT 48 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280037CS PT Samples Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 23-Dec-2023 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) F280037CSPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280037CSPZ Samples F280037PTRQ1 ACTIVE LQFP PT 48 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280037 PTQ Samples F280037PZRQ1 ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280037PZQ Samples F280037SPM ACTIVE LQFP PM 64 160 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280037SPM Samples F280037SPMR ACTIVE LQFP PM 64 1000 RoHS & Green NIPDAU Level-3-260C-168 HR F280037SPM Samples F280037SPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280037SPN Samples F280037SPNR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280037SPN Samples F280037SPT ACTIVE LQFP PT 48 250 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280037S PT Samples F280037SPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280037SPZ Samples F280038CPMQ1 ACTIVE LQFP PM 64 160 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280038CPMQ Samples F280038CPMRQ1 ACTIVE LQFP PM 64 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280038CPMQ Samples F280038PMRQ1 ACTIVE LQFP PM 64 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280038PMQ Samples F280039CPZQ1 ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280039CPZQ Samples F280039CPZRQ1 ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280039CPZQ Samples F280039CSPM ACTIVE LQFP PM 64 160 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280039CSPM Samples F280039CSPMR ACTIVE LQFP PM 64 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280039CSPM Samples F280039CSPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280039CSPN Samples F280039CSPNR ACTIVE LQFP PN 80 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280039CSPN Samples F280039CSPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280039CSPZ Samples F280039CSPZR ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280039CSPZ Samples F280039PZRQ1 ACTIVE LQFP PZ 100 1000 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280039PZQ Samples Addendum-Page 2 PACKAGE OPTION ADDENDUM www.ti.com 23-Dec-2023 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) (3) Device Marking Samples (4/5) (6) F280039SPM ACTIVE LQFP PM 64 160 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280039SPM Samples F280039SPN ACTIVE LQFP PN 80 119 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280039SPN Samples F280039SPZ ACTIVE LQFP PZ 100 90 RoHS & Green NIPDAU Level-3-260C-168 HR -40 to 125 F280039SPZ Samples (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
F280039CSPN 价格&库存

很抱歉,暂时无法提供与“F280039CSPN”相匹配的价格&库存,您可以联系我们找货

免费人工找货
F280039CSPN
  •  国内价格
  • 1+44.36640
  • 10+38.16720
  • 30+34.38720
  • 119+31.22280

库存:161

F280039CSPN
    •  国内价格
    • 1+27.34600

    库存:901

    F280039CSPN
    •  国内价格 香港价格
    • 1+52.057401+6.27490
    • 10+40.3025010+4.85800
    • 25+37.7836025+4.55440

    库存:910

    F280039CSPN
    •  国内价格 香港价格
    • 1+53.383061+6.42050
    • 10+41.3133010+4.96884
    • 25+38.2858725+4.60472
    • 119+35.84158119+4.31074

    库存:1039

    F280039CSPN
    •  国内价格
    • 1+28.52000
    • 10+27.28000

    库存:47