TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
TMS320F28003x Real-Time Microcontrollers
1 Features
•
•
•
•
•
•
•
TMS320C28x 32-bit DSP core at 120 MHz
– IEEE 754 Floating-Point Unit (FPU)
• Support for Fast Integer Division (FINTDIV)
– Trigonometric Math Unit (TMU)
• Support for Nonlinear Proportional Integral
Derivative (NLPID) control
– CRC Engine and Instructions (VCRC)
– Ten hardware breakpoints (with ERAD)
Programmable Control Law Accelerator (CLA)
– 120 MHz
– IEEE 754 single-precision floating-point
instructions
– Executes code independently of main CPU
On-chip memory
– 384KB (192KW) of flash (ECC-protected)
across three independent banks
– 69KB (34.5KW) of RAM (ECC-protected)
– Security
• JTAGLOCK
• Zero-pin boot
• Dual-zone security
Clock and system control
– Two internal 10-MHz oscillators
– Crystal oscillator or external clock input
– Windowed watchdog timer module
– Missing clock detection circuitry
– Dual-clock Comparator (DCC)
3.3-V I/O design
– Internal VREG generation allows for singlesupply design
– Brownout reset (BOR) circuit
System peripherals
– 6-channel Direct Memory Access (DMA)
controller
– 55 individually programmable multiplexed
General-Purpose Input/Output (GPIO) pins
– 23 digital inputs on analog pins
– 2 digital inputs/outputs on analog pins (AGPIO)
– Enhanced Peripheral Interrupt Expansion
(ePIE)
– Multiple low-power mode (LPM) support
– Embedded Real-time Analysis and Diagnostic
(ERAD)
– Unique Identification (UID) number
Communications peripherals
– One Power-Management Bus (PMBus)
interface
– Two Inter-integrated Circuit (I2C) interfaces
•
•
•
•
•
•
– One Controller Area Network (CAN/DCAN) bus
port
– One Controller Area Network with Flexible
Data-Rate (CAN FD/MCAN) bus port
– Two Serial Peripheral Interface (SPI) ports
– Two UART-compatible Serial Communication
Interface (SCI)
– Two UART-compatible Local Interconnect
Network (LIN) interfaces
– Fast Serial Interface (FSI) with one transmitter
and one receiver (up to 200Mbps)
Analog system
– Three 4-MSPS, 12-bit Analog-to-Digital
Converters (ADCs)
• Up to 23 external channels (includes the two
gpdac outputs)
• Four integrated Post-Processing Blocks
(PPB) per ADC
– Four windowed comparators (CMPSS) with
12-bit reference Digital-to-Analog Converters
(DACs)
• Digital glitch filters
– Two 12-bit buffered DAC outputs
Enhanced control peripherals
– 16 ePWM channels with eight channels
that have high-resolution capability (150-ps
resolution)
• Integrated dead-band support
• Integrated hardware trip zones (TZs)
– Three Enhanced Capture (eCAP) modules
• High-resolution Capture (HRCAP) available
on one of the three eCAP modules
– Two Enhanced Quadrature Encoder Pulse
(eQEP) modules with support for CW/CCW
operation modes
– Eight Sigma-Delta Filter Module (SDFM) input
channels (two parallel filters per channel)
• Standard SDFM data filtering
• Comparator filter for fast action for
overvalue or undervalue condition
– Embedded Pattern Generator (EPG)
Configurable Logic Block (CLB)
– 4 tiles
– Augments existing peripheral capability
– Supports position manager solutions
Host Interface Controller (HIC)
– Access to internal memory from an external
host
Background CRC (BGCRC)
– One cycle CRC computation on 32 bits of data
Advanced Encryption Standard (AES) accelerator
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. UNLESS OTHERWISE NOTED, this document contains PRODUCTION
DATA.
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
•
•
•
•
•
•
Live Firmware Update (LFU)
– Fast context switching from old to new firmware
– Flash bank erase time improvements
Diagnostic features
– Memory Power On Self Test (MPOST)
– Hardware Built-in Self Test (HWBIST)
Functional Safety-Compliant (PZ and Q100 PM
packages only)
– Developed for functional safety applications
– Documentation available to aid ISO 26262 and
IEC 61508 system design
– Systematic capability up to ASIL D and SIL 3
– Hardware capability up to ASIL B and SIL 2
Safety-related certification
– ISO 26262 certification up to ASIL B and SIL 2
by TÜV SÜD (PZ and Q100 PM packages only)
Package options:
– 100-pin Low-profile Quad Flatpack (LQFP)
[PZ suffix]
– 80-pin Low-profile Quad Flatpack (LQFP)
[PN suffix]
– 64-pin (LQFP) [PM suffix]
– 48-pin (LQFP) [PT suffix]
Temperature options:
– Free-air (TA): –40°C to 125°C
– Junction (TJ): –40°C to 150°C
•
•
•
•
•
•
2 Applications
•
•
•
•
•
•
•
•
•
•
2
Appliances
– Air conditioner outdoor unit
Building automation
– Door operator drive control
Industrial machine & machine tools
– Automated sorting equipment
– Textile machine
AC inverter & VF drives
– AC drive control module
– AC drive position feedback
– AC drive power stage module
Linear motor transport systems
– Linear motor power stage
Single & multi axis servo drives
– Servo drive position feedback
– Servo drive power stage module
Speed controlled BLDC drives
– AC-input BLDC motor drive
– DC-input BLDC motor drive
Factory automation
– Robot servo drive
– Mobile robot motor control
– Position sensor
Submit Document Feedback
•
•
•
www.ti.com
Industrial power
– Industrial AC-DC
UPS
– Three phase UPS
– Single phase online UPS
Telecom & server power
– Merchant DC/DC
– Merchant network & server PSU
– Merchant telecom rectifiers
Hybrids, electric & powertrain systems
– DC/DC converter
– Inverter & motor control
– On-board (OBC) & wireless charger
– Virtual engine sound system (VESS)
– Engine fan
– eTurbo/charger
– Pump
– Electric power steering (EPS)
Infotainment and cluster
– Head-up display
– Automotive head unit
– Automotive external amplifier
Body electronics & lighting
– Automotive HVAC compressor module
– DC/AC inverter
– Headlight
ADAS
– Mechanically scanning LIDAR
HEV/EV battery-management system (BMS)
– 100-V battery pack-passive balancing
– 12- & 24-V battery pack-passive balancing
– 400-V battery pack-passive balancing
– 48-V battery pack-passive balancing
EV charging infrastructure
– AC charging (pile) station
– DC charging (pile) station
– EV charging station power module
– Wireless EV charging station
Renewable energy storage
– Energy storage power conversion system
(PCS)
Solar energy
– Central inverter
– Micro inverter
– Solar power optimizer
– Solar arc protection
– Rapid shutdown
– String inverter
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
3 Description
The TMS320F28003x (F28003x) is a member of the C2000™ real-time microcontroller family of scalable, ultralow latency devices designed for efficiency in power electronics, including but not limited to: high power density,
high switching frequencies, and supporting the use of GaN and SiC technologies.
These include such applications as:
•
•
•
•
•
•
•
Motor drives
Appliances
Hybrid, electric & powertrain systems
Solar & EV charging
Digital power
Body electronics & lighting
Test & measurement
The real-time control subsystem is based on TI’s 32-bit C28x DSP core, which provides 120 MHz of signalprocessing performance for floating- or fixed-point code running from either on-chip flash or SRAM. The
C28x CPU is further boosted by the Floating-Point Unit (FPU), Trigonometric Math Unit (TMU), and VCRC
(Cyclical Redundancy Check) extended instruction sets, speeding up common algorithms key to real-time control
systems.
The CLA allows significant offloading of common tasks from the main C28x CPU. The CLA is an independent
32-bit floating-point math accelerator that executes in parallel with the CPU. Additionally, the CLA has its own
dedicated memory resources and it can directly access the key peripherals that are required in a typical control
system. Support of a subset of ANSI C is standard, as are key features like hardware breakpoints and hardware
task-switching.
The F28003x supports up to 384KB (192KW) of flash memory divided into three 128KB (64KW) banks, which
enable programming and execution in parallel. Up to 69KB (34.5KW) of on-chip SRAM is also available to
supplement the flash memory.
The Live Firmware Update hardware enhancements on F28003x allow fast context switching from the old
firmware to the new firmware to minimize application downtime when updating the device firmware.
High-performance analog blocks are integrated on the F28003x real-time microcontroller (MCU) and are closely
coupled with the processing and PWM units to provide optimal real-time signal chain performance. Sixteen PWM
channels, all supporting frequency-independent resolution modes, enable control of various power stages from a
3-phase inverter to power factor correction and advanced multilevel power topologies.
The inclusion of the Configurable Logic Block (CLB) allows the user to add custom logic and potentially integrate
FPGA-like functions into the C2000 real-time MCU.
Interfacing is supported through various industry-standard communication ports (such as SPI, SCI, I2C, PMBus,
LIN, CAN and CAN FD) and offers multiple pin-muxing options for optimal signal placement. The Fast Serial
Interface (FSI) enables up to 200Mbps of robust communications across an isolation boundary.
New to the C2000 platform is the Host Interface Controller (HIC), a high-throughput interface that allows an
external host to access the resources of the TMS320F28003x directly.
Want to learn more about features that make C2000 Real-Time MCUs the right choice for your real-time control
system? Check out The Essential Guide for Developing With C2000™ Real-Time Microcontrollers and visit the
C2000™ real-time control MCUs page.
The Getting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guide covers all
aspects of development with C2000 devices from hardware to support resources. In addition to key reference
documents, each section provides relevant links and resources to further expand on the information covered.
Ready to get started? Check out the TMDSCNCD280039C evaluation board and download C2000Ware.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
3
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Package Information
PART NUMBER
TMS320F280039C
TMS320F280039C-Q1
TMS320F280039
TMS320F280039-Q1
PACKAGE SIZE(2)
BODY SIZE (NOM)
PZ (LQFP, 100)
16 mm × 16 mm
14 mm × 14 mm
PN (LQFP, 80)
14 mm × 14 mm
12 mm × 12 mm
PM (LQFP, 64)
12 mm × 12 mm
10 mm × 10 mm
PZ (LQFP, 100)
16 mm × 16 mm
14 mm × 14 mm
PN (LQFP, 80)
14 mm × 14 mm
12 mm × 12 mm
PZ (LQFP, 100)
16 mm × 16 mm
14 mm × 14 mm
PN (LQFP, 80)
14 mm × 14 mm
12 mm × 12 mm
PM (LQFP, 64)
12 mm × 12 mm
10 mm × 10 mm
PZ (LQFP, 100)
16 mm × 16 mm
14 mm × 14 mm
PN (LQFP, 80)
14 mm × 14 mm
12 mm × 12 mm
TMS320F280038C-Q1
PM (LQFP, 64)
12 mm × 12 mm
10 mm × 10 mm
TMS320F280038-Q1
PM (LQFP, 64)
12 mm × 12 mm
10 mm × 10 mm
PZ (LQFP, 100)
16 mm × 16 mm
14 mm × 14 mm
PN (LQFP, 80)
14 mm × 14 mm
12 mm × 12 mm
PM (LQFP, 64)
12 mm × 12 mm
10 mm × 10 mm
TMS320F280037C
PT (LQFP, 48)
9 mm × 9 mm
7 mm × 7 mm
PZ (LQFP, 100)
16 mm × 16 mm
14 mm × 14 mm
PN (LQFP, 80)
14 mm × 14 mm
12 mm × 12 mm
PT (LQFP, 48)
9 mm × 9 mm
7 mm × 7 mm
PZ (LQFP, 100)
16 mm × 16 mm
14 mm × 14 mm
PN (LQFP, 80)
14 mm × 14 mm
12 mm × 12 mm
PM (LQFP, 64)
12 mm × 12 mm
10 mm × 10 mm
PT (LQFP, 48)
9 mm × 9 mm
7 mm × 7 mm
PZ (LQFP, 100)
16 mm × 16 mm
14 mm × 14 mm
PT (LQFP, 48)
9 mm × 9 mm
7 mm × 7 mm
TMS320F280036C-Q1
PM (LQFP, 64)
12 mm × 12 mm
10 mm × 10 mm
TMS320F280036-Q1
PM (LQFP, 64)
12 mm × 12 mm
10 mm × 10 mm
PZ (LQFP, 100)
16 mm × 16 mm
14 mm × 14 mm
PN (LQFP, 80)
14 mm × 14 mm
12 mm × 12 mm
PM (LQFP, 64)
12 mm × 12 mm
10 mm × 10 mm
TMS320F280037C-Q1
TMS320F280037
TMS320F280037-Q1
TMS320F280034
TMS320F280034-Q1
TMS320F280033
TMS320F280033-Q1(3)
(1)
(2)
(3)
4
PACKAGE(1)
PT (LQFP, 48)
9 mm × 9 mm
7 mm × 7 mm
PN (LQFP, 80)
14 mm × 14 mm
12 mm × 12 mm
PT (LQFP, 48)
9 mm × 9 mm
7 mm × 7 mm
PZ (LQFP, 100)
16 mm × 16 mm
14 mm × 14 mm
PN (LQFP, 80)
14 mm × 14 mm
12 mm × 12 mm
PM (LQFP, 64)
12 mm × 12 mm
10 mm × 10 mm
PT (LQFP, 48)
9 mm × 9 mm
7 mm × 7 mm
PN (LQFP, 80)
14 mm × 14 mm
12 mm × 12 mm
For more information, see Mechanical, Packaging, and Orderable Information.
The package size (length × width) is a nominal value and includes pins, where applicable.
Preview information (not Production Data).
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Device Information
CONTROL LAW
ACCELERATOR (CLA)
CONFIGURABLE
LOGIC BLOCK (CLB)
TMS320F280039C-Q1
TMS320F280039C
Yes
4 Tiles
TMS320F280039-Q1
TMS320F280039
Yes
–
TMS320F280038C-Q1
Yes
4 Tiles
TMS320F280038-Q1
Yes
–
TMS320F280037C-Q1
TMS320F280037C
Yes
4 Tiles
TMS320F280037-Q1
TMS320F280037
Yes
–
TMS320F280036C-Q1
Yes
4 Tiles
TMS320F280036-Q1
Yes
–
TMS320F280034-Q1
TMS320F280034
Yes
–
128KB
TMS320F280033-Q1(2)
TMS320F280033
No
–
128KB
PART
(1)
(2)
NUMBER(1)
FLASH SIZE
384KB
256KB
For more information on these devices, see the Device Comparison table.
Preview information (not Production Data).
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
5
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
3.1 Functional Block Diagram
The Functional Block Diagram shows the CPU system and associated peripherals.
C28x CPU
(120 MHz)
FPU32
TMU
VCRC
FINTDIV
CLA
(120 MHz)
CLA to CPU MSG RAM
SYSTEM CONTROL
CPU Timers
XTAL
INTOSC1, INTOSC2
PLL
ePIE
Windowed WD
NMI WD
Boot ROM
CPU to CLA MSG RAM
Secure ROM
Flash Bank0
16 Sectors, 64Kw(128 KB)
CLA Data ROM
CLA Program ROM
Flash Bank1
16 Sectors, 64Kw(128 KB)
SECURITY
DCSM
JTAG Lock
Secure Boot
CLA to DMA MSG RAM
Flash Bank2
16 Sectors, 64Kw(128 KB)
DMA to CLA MSG RAM
M0-M1 RAM
2Kw(4 KB)
DIAGNOSTICS
DCC
MPOST
HWBIST
ERAD
JTAG/cJTAG
BGCRC
Buses Legend
LS0-LS7 RAM
16Kw(32 KB)
CPU
HIC
DMA
GS0-GS3 RAM
16Kw(32 KB)
OTHERS
EPG
PF1
PF3
PF4
Result
16x ePWM
(8 Hi-Res Capable)
4x CMPSS
3x eCAP
(1 HRCAP Capable)
2x Buffered DAC
55x GPIO
Input XBAR
Output XBAR
HIC
DMA
6 Channels
PF2
1x PMBUS
Data
3x 12-Bit ADC
CLA
2x SPI
1x FSI RX
PF7
1x
DCAN/
CAN
PF7
PF8
PF9
2x LIN(A)
1x MCAN/
CAN FD
2x SCI
BGCRC
PF10
PF11
PF12
4x CLB
1x AES
LFU
2x I2C
1x FSI TX
ePWM XBAR
2x eQEP
(CW/CCW Support)
CLB XBAR
CLB Input XBAR
CLB Output XBAR
8x SD Filters
A.
The LIN module can also work as an SCI.
Figure 3-1. Functional Block Diagram
6
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table of Contents
1 Features............................................................................1
2 Applications..................................................................... 2
3 Description.......................................................................3
3.1 Functional Block Diagram........................................... 6
4 Device Comparison......................................................... 8
4.1 Related Products...................................................... 10
5 Pin Configuration and Functions................................. 11
5.1 Pin Diagrams.............................................................11
5.2 Pin Attributes.............................................................16
5.3 Signal Descriptions................................................... 36
5.4 Pin Multiplexing.........................................................48
5.5 Pins With Internal Pullup and Pulldown.................... 56
5.6 Connections for Unused Pins................................... 57
6 Specifications................................................................ 59
6.1 Absolute Maximum Ratings...................................... 59
6.2 ESD Ratings – Commercial...................................... 59
6.3 ESD Ratings – Automotive....................................... 60
6.4 Recommended Operating Conditions.......................60
6.5 Power Consumption Summary................................. 61
6.6 Electrical Characteristics...........................................68
6.7 Thermal Resistance Characteristics for PZ
Package...................................................................... 69
6.8 Thermal Resistance Characteristics for PN
Package...................................................................... 70
6.9 Thermal Resistance Characteristics for PM
Package...................................................................... 71
6.10 Thermal Resistance Characteristics for PT
Package...................................................................... 72
6.11 Thermal Design Considerations..............................72
6.12 System.................................................................... 73
6.13 Analog Peripherals................................................115
6.14 Control Peripherals............................................... 146
6.15 Communications Peripherals................................ 161
7 Detailed Description....................................................195
7.1 Overview................................................................. 195
Copyright © 2023 Texas Instruments Incorporated
7.2 Functional Block Diagram....................................... 196
7.3 Memory................................................................... 197
7.4 Identification............................................................205
7.5 Bus Architecture – Peripheral Connectivity.............206
7.6 C28x Processor...................................................... 207
7.7 Control Law Accelerator (CLA)............................... 209
7.8 Embedded Real-Time Analysis and Diagnostic
(ERAD)...................................................................... 211
7.9 Background CRC-32 (BGCRC)...............................211
7.10 Direct Memory Access (DMA)...............................212
7.11 Device Boot Modes............................................... 213
7.12 Security................................................................. 221
7.13 Watchdog.............................................................. 222
7.14 C28x Timers..........................................................223
7.15 Dual-Clock Comparator (DCC)............................. 224
7.16 Configurable Logic Block (CLB)............................226
7.17 Functional Safety.................................................. 228
8 Applications, Implementation, and Layout............... 229
8.1 Applications and Implementation............................ 229
8.2 Key Device Features...............................................229
8.3 Application Information........................................... 232
9 Device and Documentation Support..........................246
9.1 Getting Started and Next Steps.............................. 246
9.2 Device Nomenclature..............................................246
9.3 Markings................................................................. 247
9.4 Tools and Software................................................. 249
9.5 Documentation Support.......................................... 251
9.6 Support Resources................................................. 252
9.7 Trademarks............................................................. 253
9.8 Electrostatic Discharge Caution..............................253
9.9 Glossary..................................................................253
10 Revision History........................................................ 253
11 Mechanical, Packaging, and Orderable
Information.................................................................. 256
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
7
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
4 Device Comparison
Table 4-1 lists the features of the TMS320F28003x devices.
Table 4-1. Device Comparison
FEATURE(1)
F280039C
F280039C-Q1
F280039
F280039-Q1
F280038C-Q1
F280038-Q1
F280037C
F280037C-Q1
F280037
F280037-Q1
F280036C-Q1
F280036-Q1
F280034
F280034-Q1
F280033
F280033-Q1(2)
Processor and Accelerators
C28x
Frequency (MHz)
120
FPU
Yes (instructions for Fast Integer Division)
VCRC
Yes
TMU
CLA – Type 2
Yes – Type 1 (instructions supporting NLPID)
Available
Yes
Frequency (MHz)
120
6-Channel DMA – Type 0
No
–
Yes
External interrupts
5
Memory
Flash
Flash Banks
RAM
384KB (192KW)
256KB (128KW)
128KB (64KW)
3 x 128KB
2 x 128KB
2 x 64KB
Dedicated
4KB (2KW)
Local Shared
32KB (16KW)
Message
1KB (0.5KW)
Global Shared
32KB (16KW)
Total
69KB (34.5KW)
Message RAM Types
ECC
512B (256W) CPU-CLA
512B (256W) CLA-DMA
–
FLASH, Mx, LSx, GSx, Message RAM
FLASH, Mx,
LSx, GSx
Parity
ROM, CAN RAM
Security: JTAGLOCK, Zero-pin boot, Dual-zone security
Yes
System
Configurable Logic Block (CLB)
Embedded Pattern Generator (EPG)
32-bit CPU timers
Advance Encryption Standard (AES)
Background CRC (BGCRC)
Live Firmware Update (LFU) Support
8
4 Tiles on C Variants
–
Yes
3
Yes
Yes
Yes, with enhancements and flash bank erase time improvements
Secure Boot
Yes
JTAG Lock
Yes
HWBIST
Yes
Nonmaskable Interrupt Watchdog (NMIWD) timers
1
Watchdog timers
1
Crystal oscillator/External clock input
1
Internal oscillator
2
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 4-1. Device Comparison (continued)
FEATURE(1)
F280039C
F280039C-Q1
F280039
F280039-Q1
F280038C-Q1
F280038-Q1
F280037C
F280037C-Q1
F280037
F280037-Q1
F280036C-Q1
F280036-Q1
F280034
F280034-Q1
F280033
F280033-Q1(2)
Pins and Power Supply
Internal 3.3-V to 1.2-V Voltage
Regulator
VREG LDO
Yes
GPIO pins
100-pin PZ
51
–
51
–
51
80-pin PN
39
–
39
–
39
64-pin PM
26
25
26
25
26
48-pin PT
–
–
14
–
14
Additional GPIO
AIO (analog with digital inputs)
4 (2 from cJTAG and 2 from X1/X2)
100-pin PZ
23
–
23
–
23
80-pin PN
16
–
16
–
16
64-pin PM
16
16
16
16
16
48-pin PT
–
–
14
–
14
AGPIO (analog with digital
inputs and outputs)
100-pin PZ
2
–
2
–
2
80-pin PN
2
–
2
–
2
ADC 12-bit
Number of ADCs
–
25
Analog Peripherals
3
MSPS
4
Conversion Time (ns)(3)
ADC channels (single-ended)
(includes the two gpdac
outputs)
250
100-pin PZ
25
–
25
80-pin PN
64-pin PM
18
–
18
–
18
16
16
16
16
48-pin PT
16
–
–
14
–
14
Temperature sensor
1
Buffered DAC
2
CMPSS
(each CMPSS has two comparators and two internal DACs)
4
Control Peripherals (4)
eCAP/HRCAP modules – Type 2
ePWM/HRPWM channels – Type 4
3 (1 - eCAP3 with HRCAP capability)
16 (8 - ePWM1 to ePWM4 with HRPWM capability)
eQEP modules – Type 2
2
SDFM channels – Type 2
8
Communication Peripherals (4)
CAN (DCAN) – Type 0
CAN FD (MCAN) – Type 1
Fast Serial Interface (FSI) – Type 2
1
1
1 (1 RX and 1 TX)
I2C – Type 1
2
LIN – Type 1 (UART-Compatible)
2
Host Interface Controller (HIC) – Type 1
1
PMBus – Type 0
1
SCI – Type 0 (UART-Compatible)
2
SPI – Type 2
2
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
9
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 4-1. Device Comparison (continued)
FEATURE(1)
F280039C
F280039C-Q1
F280039
F280039-Q1
F280038C-Q1
F280038-Q1
F280037C
F280037C-Q1
F280037
F280037-Q1
F280036C-Q1
F280036-Q1
F280034
F280034-Q1
F280033
F280033-Q1(2)
Package Options, Temperature, and Qualification
Junction temperature (TJ)
–40°C to 150°C
Free-Air temperature (TA)
Package Options
Package Options with AECQ100 Qualification available
(1)
(2)
(3)
(4)
–40°C to 125°C
100-pin PZ
F280039C
F280039
–
F280037C
F280037
–
F280034
F280033
80-pin PN
F280039C
F280039
–
F280037C
F280037
–
F280034
F280033
64-pin PM
F280039C
F280039
–
F280037C
F280037
–
F280034
F280033
48-pin PT
–
–
F280037C
F280037
–
F280034
F280033
100-pin PZ
F280039C-Q1
F280039-Q1
–
F280037C-Q1
F280037-Q1
–
–
–
80-pin PN
F280039C-Q1
F280039-Q1
–
F280037C-Q1
–
F280034-Q1
F280033-Q1
64-pin PM
–
F280038C-Q1
F280038-Q1
–
F280036C-Q1
F280036-Q1
–
–
48-pin PT
–
–
F280037C-Q1
F280037-Q1
–
F280034-Q1
–
A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor
differences between devices that do not affect the basic functionality of the module.
Preview information (not Production Data).
Time between start of sample-and-hold window to start of sample-and-hold window of the next conversion.
For devices that are available in more than one package, the peripheral count listed in the smaller package is reduced because the
smaller package has less device pins available. The number of peripherals internally present on the device is not reduced compared
to the largest package offered within a part number. See Section 5 to identify which peripheral instances are accessible on pins in the
smaller package.
4.1 Related Products
TMS320F2803x Real-Time Microcontrollers
The F2803x series increases the pin-count and memory size options. The F2803x series also introduces the
parallel control law accelerator (CLA) option.
TMS320F2807x Real-Time Microcontrollers
The F2807x series offers the most performance, largest pin counts, flash memory sizes, and peripheral options.
The F2807x series includes the latest generation of accelerators, ePWM peripherals, and analog technology.
TMS320F28004x Real-Time Microcontrollers
The F28004x series is a reduced version of the F2807x series with the latest generational enhancements.
TMS320F28002x Real-Time Microcontrollers
The F28002x series is a reduced version of the F28004x series with the latest generational enhancements.
TMS320F2838x Real-Time Microcontrollers
The F2838x series offers more performance, larger pin counts, flash memory sizes, peripheral and wide variety
of connectivity options. The F2838x series includes the latest generation of accelerators, ePWM peripherals, and
analog technology.
10
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
5 Pin Configuration and Functions
5.1 Pin Diagrams
GPIO29
GPIO31
GPIO30
GPIO6
GPIO14
GPIO15
GPIO34
GPIO10
GPIO59
GPIO61
GPIO9
GPIO5
VDDIO
VDD
VSS
GPIO44
GPIO7
GPIO22
GPIO41
GPIO23
GPIO40
GPIO0
GPIO1
GPIO2
GPIO3
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
Figure 5-1 shows the pin assignments on the 100-pin PZ low-profile quad flatpack; the Q and non-Q variant have
the same pinout. Figure 5-2 shows the pin assignments on the 80-pin PN low-profile quad flatpack. Figure 5-3
shows the pin assignments on the 64-pin PM low-profile quad flatpack (Q temperature). Figure 5-4 shows the pin
assignments on the 64-pin PM low-profile quad flatpack. Figure 5-5 shows the pin assignments on the 48-Pin PT
low-profile quad flatpack; the Q and non-Q variant have the same pinout.
GPIO28
1
75
GPIO4
XRSn
2
74
GPIO8
VDDIO
3
73
VREGENZ
VDD
4
72
VSS
VSS
5
71
VDD
GPIO47
6
70
VDDIO
GPIO48
7
69
GPIO19,X1
GPIO49
8
68
GPIO18,X2
GPIO50
9
67
GPIO58
GPIO51
10
66
GPIO57
GPIO52
11
65
GPIO56
GPIO53
12
64
GPIO32
GPIO54
13
63
GPIO35/TDI
A6
14
62
TMS
B2,C6
15
61
GPIO37/TDO
B3,VDAC
16
60
TCK
A2,B6,C9
17
59
GPIO27
50
GPIO13
49
B11,GPIO21
48
B5,GPIO20
VDD
VDDIO
VSS
GPIO60
GPIO55
C14
B0,C11
A10,B1,C10
B4,C8
A9
A8
A4,B8
A5
VDDA
B5
VSSA
A7,C3
B11
C1
A12,C5
VREFLO
VREFLO
A.
47
GPIO12
46
51
45
25
44
GPIO11
VREFHI
43
GPIO33
52
42
53
24
41
23
VREFHI
40
A0,B15,C15,DACA_OUT
39
GPIO16
38
54
37
22
36
GPIO17
A1,B7,DACB_OUT
35
55
34
21
33
GPIO24
B12,C2
32
56
31
20
30
GPIO25
A11,B10,C0
29
GPIO26
57
28
58
19
27
18
26
A3,B9,C7
A14,B14,C4
Not to scale
Only the GPIO function is shown on GPIO pins. See Section 5.2 for the complete, muxed signal name.
Figure 5-1. 100-Pin PZ Low-Profile Quad Flatpack (Top View)
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
11
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
GPIO6
GPIO14
GPIO15
GPIO34
GPIO10
GPIO9
GPIO5
GPIO45
VDDIO
VDD
VSS
GPIO44
GPIO7
GPIO22
GPIO41
GPIO23
GPIO40
GPIO0
GPIO1
GPIO2
80
79
78
77
76
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
GPIO30
1
60
GPIO3
GPIO31
2
59
GPIO4
GPIO29
3
58
GPIO8
GPIO28
4
57
GPIO42
XRSn
5
56
GPIO39
GPIO46
6
55
VSS
VDDIO
7
54
GPIO43
VDD
8
53
VDD
VSS
9
52
VDDIO
A6
10
51
GPIO19,X1
B2,C6
11
50
GPIO18,X2
A3,B3,C5,VDAC
12
49
GPIO32
A2,B6,C9
13
48
GPIO35/TDI
A15,B9,C7
14
47
TMS
A14,B14,C4
15
46
GPIO37/TDO
A11,B10,C0
16
45
TCK
A5,B12,C2
17
44
GPIO27
40
GPIO17
39
GPIO16
37
38
GPIO33
GPIO11
36
GPIO12
35
GPIO13
34
33
B5,GPIO20
B11,GPIO21
32
VDDIO
31
30
VSS
VDD
A10,B1,C10
A9,B4,C8
A4,B8,C14
VDDA
VSSA
A8,B0,C11
A7,C3
A12,C1
VREFLO
A.
29
GPIO24
28
41
27
20
26
VREFHI
25
GPIO25
24
GPIO26
42
23
43
19
22
18
21
A1,B7,DACB_OUT
A0,B15,C15,DACA_OUT
Not to scale
Only the GPIO function is shown on GPIO pins. See Section 5.2 for the complete, muxed signal name.
Figure 5-2. 80-Pin PN Low-Profile Quad Flatpack (Top View)
12
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
GPIO6
GPIO10
GPIO9
GPIO5
VDDIO
VDD
VSS
GPIO7
GPIO22
GPIO41
GPIO23
GPIO40
GPIO0
GPIO1
GPIO2
GPIO3
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
VSS
5
44
VDD
A6
6
43
VDDIO
B2,C6
7
42
GPIO19,X1
A3,B3,C5,VDAC
8
41
GPIO18,X2
A2,B6,C9
9
40
GPIO32
A15,B9,C7
10
39
GPIO35/TDI
A14,B14,C4
11
38
TMS
A11,B10,C0
12
37
GPIO37/TDO
A5,B12,C2
13
36
TCK
A1,B7,DACB_OUT
14
35
GPIO24
A0,B15,C15,DACA_OUT
15
34
GPIO17
VREFHI
16
33
GPIO16
GPIO33
GPIO11
GPIO12
GPIO13
VDDIO
VDD
VSS
A10,B1,C10
A9,B4,C8
A4,B8,C14
VDDA
VSSA
A8,B0,C11
A7,C3
A12,C1
VREFLO
A.
32
VSS
31
45
30
4
29
VDD
28
VREGENZ
27
46
26
3
25
XRSn
24
GPIO8
23
47
22
2
21
GPIO28
20
GPIO4
19
48
18
1
17
GPIO29
Not to scale
Only the GPIO function is shown on GPIO pins. See Section 5.2 for the complete, muxed signal name.
Figure 5-3. 64-Pin PM Low-Profile Quad Flatpack - Q Temperature (Top View)
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
13
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
GPIO6
GPIO10
GPIO9
GPIO5
VDDIO
VDD
VSS
GPIO7
GPIO22
GPIO41
GPIO23
GPIO40
GPIO0
GPIO1
GPIO2
GPIO3
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
VSS
5
44
VDD
A6
6
43
VDDIO
B2,C6
7
42
GPIO19,X1
A3,B3,C5,VDAC
8
41
GPIO18,X2
A2,B6,C9
9
40
GPIO32
A15,B9,C7
10
39
GPIO35/TDI
A14,B14,C4
11
38
TMS
A11,B10,C0
12
37
GPIO37/TDO
A5,B12,C2
13
36
TCK
A1,B7,DACB_OUT
14
35
GPIO24
A0,B15,C15,DACA_OUT
15
34
GPIO17
VREFHI
16
33
GPIO16
GPIO33
GPIO11
GPIO12
GPIO13
VDDIO
VDD
VSS
A10,B1,C10
A9,B4,C8
A4,B8,C14
VDDA
VSSA
A8,B0,C11
A7,C3
A12,C1
VREFLO
A.
32
VSS
31
45
30
4
29
VDD
28
GPIO39
27
46
26
3
25
XRSn
24
GPIO8
23
47
22
2
21
GPIO28
20
GPIO4
19
48
18
1
17
GPIO29
Not to scale
Only the GPIO function is shown on GPIO pins. See Section 5.2 for the complete, muxed signal name.
Figure 5-4. 64-Pin PM Low-Profile Quad Flatpack (Top View)
14
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
GPIO6
GPIO5
VDDIO
VDD
VSS
GPIO7
GPIO0
GPIO1
GPIO2
GPIO3
GPIO4
VSS
48
47
46
45
44
43
42
41
40
39
38
37
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
A6,B2,C6
4
33
GPIO18,X2
A3,B3,C5,VDAC
5
32
GPIO32
A2,B6,C9
6
31
GPIO35/TDI
A15,B9,C7
7
30
TMS
A11,B10,C0
8
29
GPIO37/TDO
A5,B12,C2
9
28
TCK
A1,B7,DACB_OUT
10
27
GPIO24
A0,B15,C15,DACA_OUT
11
26
GPIO16
VREFHI
12
25
GPIO33
Not to scale
VDDIO
VDD
VSS
A10,B1,C10
A9,B4,C8
A4,B8,C14
VDDA
VSSA
A8,B0,C11
A7,C3
A12,C1
VREFLO
A.
24
GPIO19,X1
23
34
22
3
21
XRSn
20
VDDIO
19
35
18
2
17
GPIO28
16
VDD
15
36
14
1
13
GPIO29
Only the GPIO function is shown on GPIO pins. See Section 5.2 for the complete, muxed signal name.
Figure 5-5. 48-Pin PT Low-Profile Quad Flatpack (Top View)
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
15
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
5.2 Pin Attributes
Table 5-1. Pin Attributes
SIGNAL NAME
MUX POSITION
100
PZ
80 PN 64 PMQ 64 PM 48 PT
PIN
TYPE
DESCRIPTION
ANALOG
A0
I
ADC-A Input 0
B15
I
ADC-B Input 15
C15
I
ADC-C Input 15
CMP3_HP2
I
CMPSS-3 High Comparator Positive Input 2
I
CMPSS-3 Low Comparator Positive Input 2
O
Buffered DAC-A Output.
I
Analog Pin Used For Digital Input 231 This pin also
has digital mux functions which are described in the
GPIO section of this table.
A1
I
ADC-A Input 1
B7
I
ADC-B Input 7
CMP1_HP4
I
CMPSS-1 High Comparator Positive Input 4
CMP1_LP4
I
CMPSS-1 Low Comparator Positive Input 4
O
Buffered DAC-B Output.
I
Analog Pin Used For Digital Input 232 This pin also
has digital mux functions which are described in the
GPIO section of this table.
A2
I
ADC-A Input 2
B6
I
ADC-B Input 6
C9
I
ADC-C Input 9
I
CMPSS-1 High Comparator Positive Input 0
I
CMPSS-1 Low Comparator Positive Input 0
I
Analog Pin Used For Digital Input 224 This pin also
has digital mux functions which are described in the
GPIO section of this table.
I
ADC-A Input 3
I
CMPSS-3 High Comparator Positive Input 5
I
CMPSS-3 Low Comparator Positive Input 5
I
Analog Pin Used For Digital Input 229
I
ADC-A Input 3
I
CMPSS-3 High Comparator Positive Input 5
CMP3_LP5
I
CMPSS-3 Low Comparator Positive Input 5
A4
I
ADC-A Input 4
B8
I
ADC-B Input 8
I
CMPSS-2 High Comparator Positive Input 0
I
CMPSS-2 Low Comparator Positive Input 0
I
Analog Pin Used For Digital Input 225 This pin also
has digital mux functions which are described in the
GPIO section of this table.
A5
I
ADC-A Input 5
CMP2_HP5
I
CMPSS-2 High Comparator Positive Input 5
I
CMPSS-2 Low Comparator Positive Input 5
I
Analog Pin Used For Digital Input 249
I
ADC-A Input 5
I
CMPSS-2 High Comparator Positive Input 5
I
CMPSS-2 Low Comparator Positive Input 5
23
CMP3_LP2
19
15
15
11
DACA_OUT
AIO231
0, 4, 8, 12
22
18
14
14
10
DACB_OUT
AIO232
0, 4, 8, 12
CMP1_HP0
17
13
9
9
6
CMP1_LP0
AIO224
0, 4, 8, 12
A3
CMP3_HP5
18
CMP3_LP5
AIO229
0, 4, 8, 12
A3
CMP3_HP5
12
8
8
5
CMP2_HP0
36
CMP2_LP0
AIO225
23
23
19
0, 4, 8, 12
35
CMP2_LP5
AIO249
27
0, 4, 8, 12
A5
CMP2_HP5
CMP2_LP5
16
Submit Document Feedback
17
13
13
9
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-1. Pin Attributes (continued)
SIGNAL NAME
MUX POSITION
100
PZ
80 PN 64 PMQ 64 PM 48 PT
PIN
TYPE
DESCRIPTION
A6
I
ADC-A Input 6
CMP1_HP2
I
CMPSS-1 High Comparator Positive Input 2
CMP1_LP2
I
CMPSS-1 Low Comparator Positive Input 2
I
Analog Pin Used For Digital Input 228 This pin also
has digital mux functions which are described in the
GPIO section of this table.
A8
I
ADC-A Input 8
CMP4_HP4
I
CMPSS-4 High Comparator Positive Input 4
I
CMPSS-4 Low Comparator Positive Input 4
I
Analog Pin Used For Digital Input 240 This pin also
has digital mux functions which are described in the
GPIO section of this table.
A8
I
ADC-A Input 8
CMP4_HP4
I
CMPSS-4 High Comparator Positive Input 4
I
CMPSS-4 Low Comparator Positive Input 4
I
Analog Pin Used For Digital Input 241 This pin also
has digital mux functions which are described in the
GPIO section of this table.
A9
I
ADC-A Input 9
CMP2_HP2
I
CMPSS-2 High Comparator Positive Input 2
CMP2_LP2
I
CMPSS-2 Low Comparator Positive Input 2
I
Analog Pin Used For Digital Input 227 This pin also
has digital mux functions which are described in the
GPIO section of this table.
A10
I
ADC-A Input 10
B1
I
ADC-B Input 1
C10
I
ADC-C Input 10
CMP2_HN0
I
CMPSS-2 High Comparator Negative Input 0
CMP2_HP3
I
CMPSS-2 High Comparator Positive Input 3
CMP2_LN0
I
CMPSS-2 Low Comparator Negative Input 0
CMP2_LP3
I
CMPSS-2 Low Comparator Positive Input 3
I
Analog Pin Used For Digital Input 230 This pin also
has digital mux functions which are described in the
GPIO section of this table.
A11
I
ADC-A Input 11
B10
I
ADC-B Input 10
C0
I
ADC-C Input 0
CMP1_HN1
I
CMPSS-1 High Comparator Negative Input 1
CMP1_HP1
I
CMPSS-1 High Comparator Positive Input 1
CMP1_LN1
I
CMPSS-1 Low Comparator Negative Input 1
CMP1_LP1
I
CMPSS-1 Low Comparator Positive Input 1
I
Analog Pin Used For Digital Input 237 This pin also
has digital mux functions which are described in the
GPIO section of this table.
A12
I
ADC-A Input 12
CMP2_HN1
I
CMPSS-2 High Comparator Negative Input 1
CMP2_HP1
I
CMPSS-2 High Comparator Positive Input 1
CMP2_LN1
I
CMPSS-2 Low Comparator Negative Input 1
I
CMPSS-2 Low Comparator Positive Input 1
I
Analog Pin Used For Digital Input 238 This pin also
has digital mux functions which are described in the
GPIO section of this table.
AIO228
14
AIO227
AIO230
AIO237
4
0, 4, 8, 12
24
20
20
16
0, 4, 8, 12
38
28
24
24
20
0, 4, 8, 12
40
29
25
25
21
0, 4, 8, 12
20
16
12
12
8
0, 4, 8, 12
28
CMP2_LP1
AIO238
6
37
CMP4_LP4
AIO241
6
0, 4, 8, 12
CMP4_LP4
AIO240
10
0, 4, 8, 12
Copyright © 2023 Texas Instruments Incorporated
22
18
18
14
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
17
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-1. Pin Attributes (continued)
SIGNAL NAME
MUX POSITION
100
PZ
80 PN 64 PMQ 64 PM 48 PT
PIN
TYPE
DESCRIPTION
A14
I
ADC-A Input 14
B14
I
ADC-B Input 14
C4
I
ADC-C Input 4
CMP3_HP4
I
CMPSS-3 High Comparator Positive Input 4
I
CMPSS-3 Low Comparator Positive Input 4
I
Analog Pin Used For Digital Input 239 This pin also
has digital mux functions which are described in the
GPIO section of this table.
A15
I
ADC-A Input 15
CMP1_HN0
I
CMPSS-1 High Comparator Negative Input 0
CMP1_HP3
I
CMPSS-1 High Comparator Positive Input 3
CMP1_LN0
I
CMPSS-1 Low Comparator Negative Input 0
I
CMPSS-1 Low Comparator Positive Input 3
I
Analog Pin Used For Digital Input 233 This pin also
has digital mux functions which are described in the
GPIO section of this table.
B0
I
ADC-B Input 0
C11
I
ADC-C Input 11
I
CMPSS-2 High Comparator Positive Input 4
I
CMPSS-2 Low Comparator Positive Input 4
I
Analog Pin Used For Digital Input 253
B0
I
ADC-B Input 0
C11
I
ADC-C Input 11
I
CMPSS-2 High Comparator Positive Input 4
CMP2_LP4
I
CMPSS-2 Low Comparator Positive Input 4
B2
I
ADC-B Input 2
C6
I
ADC-C Input 6
CMP3_HP0
I
CMPSS-3 High Comparator Positive Input 0
I
CMPSS-3 Low Comparator Positive Input 0
I
Analog Pin Used For Digital Input 226 This pin also
has digital mux functions which are described in the
GPIO section of this table.
B3
I
ADC-B Input 3
CMP3_HN0
I
CMPSS-3 High Comparator Negative Input 0
CMP3_HP3
I
CMPSS-3 High Comparator Positive Input 3
CMP3_LN0
I
CMPSS-3 Low Comparator Negative Input 0
I
CMPSS-3 Low Comparator Positive Input 3
I
Optional external reference voltage for on-chip DACs.
I
Analog Pin Used For Digital Input 242 This pin also
has digital mux functions which are described in the
GPIO section of this table.
B4
I
ADC-B Input 4
C8
I
ADC-C Input 8
I
CMPSS-4 High Comparator Positive Input 0
I
CMPSS-4 Low Comparator Positive Input 0
I
Analog Pin Used For Digital Input 236
B5
I
ADC-B Input 5
CMP1_HP5
I
CMPSS-1 High Comparator Positive Input 5
CMP1_LP5
I
CMPSS-1 Low Comparator Positive Input 5
I
Analog Pin Used For Digital Input 252 This pin also
has digital mux functions which are described in the
GPIO section of this table.
19
15
11
11
CMP3_LP4
AIO239
0, 4, 8, 12
14
10
10
7
CMP1_LP3
AIO233
0, 4, 8, 12
CMP2_HP4
41
CMP2_LP4
AIO253
0, 4, 8, 12
24
CMP2_HP4
15
CMP3_LP0
AIO226
11
20
7
20
7
16
4
0, 4, 8, 12
16
CMP3_LP3
12
8
8
5
VDAC
AIO242
0, 4, 8, 12
CMP4_HP0
39
CMP4_LP0
AIO236
AIO252
18
0, 4, 8, 12
32
0, 4, 8, 12
Submit Document Feedback
28
24
24
20
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-1. Pin Attributes (continued)
SIGNAL NAME
MUX POSITION
100
PZ
80 PN 64 PMQ 64 PM 48 PT
PIN
TYPE
DESCRIPTION
B5
I
ADC-B Input 5
CMP1_HP5
I
CMPSS-1 High Comparator Positive Input 5
CMP1_LP5
I
CMPSS-1 Low Comparator Positive Input 5
48
33
GPIO20
I/O
General-Purpose Input Output 20 This pin also has
digital mux functions which are described in the GPIO
section of this table.
B11
I
ADC-B Input 11
CMP4_HP5
I
CMPSS-4 High Comparator Positive Input 5
I
CMPSS-4 Low Comparator Positive Input 5
I
Analog Pin Used For Digital Input 251
B11
I
ADC-B Input 11
CMP4_HP5
I
CMPSS-4 High Comparator Positive Input 5
CMP4_LP5
I
CMPSS-4 Low Comparator Positive Input 5
30
CMP4_LP5
AIO251
0, 4, 8, 12
49
34
GPIO21
I/O
General-Purpose Input Output 21 This pin also has
digital mux functions which are described in the GPIO
section of this table.
C1
I
ADC-C Input 1
CMP4_HP2
I
CMPSS-4 High Comparator Positive Input 2
I
CMPSS-4 Low Comparator Positive Input 2
I
Analog Pin Used For Digital Input 248
I
Analog Pin Used For Digital Input 248
B12
I
ADC-B Input 12
C2
I
ADC-C Input 2
CMP3_HN1
I
CMPSS-3 High Comparator Negative Input 1
CMP3_HP1
I
CMPSS-3 High Comparator Positive Input 1
I
CMPSS-3 Low Comparator Negative Input 1
I
CMPSS-3 Low Comparator Positive Input 1
I
Analog Pin Used For Digital Input 244 This pin also
has digital mux functions which are described in the
GPIO section of this table.
A7
I
ADC-A Input 7
C3
I
ADC-C Input 3
CMP4_HN1
I
CMPSS-4 High Comparator Negative Input 1
CMP4_HP1
I
CMPSS-4 High Comparator Positive Input 1
I
CMPSS-4 Low Comparator Negative Input 1
I
CMPSS-4 Low Comparator Positive Input 1
I
Analog Pin Used For Digital Input 245 This pin also
has digital mux functions which are described in the
GPIO section of this table.
I
ADC-C Input 5
I
ADC-B Input 9
I
ADC-C Input 7
C14
I
ADC-C Input 14
CMP4_HN0
I
CMPSS-4 High Comparator Negative Input 0
CMP4_HP3
I
CMPSS-4 High Comparator Positive Input 3
I
CMPSS-4 Low Comparator Negative Input 0
I
CMPSS-4 Low Comparator Positive Input 3
I
Analog Pin Used For Digital Input 247
C14
I
ADC-C Input 14
CMP4_HN0
I
CMPSS-4 High Comparator Negative Input 0
I
CMPSS-4 High Comparator Positive Input 3
CMP4_LN0
I
CMPSS-4 Low Comparator Negative Input 0
CMP4_LP3
I
CMPSS-4 Low Comparator Positive Input 3
29
CMP4_LP2
AIO248
22
18
18
14
0, 4, 8, 12
AIO248
29
21
CMP3_LN1
22
17
18
13
18
13
14
9
CMP3_LP1
AIO244
0, 4, 8, 12
31
CMP4_LN1
23
19
19
15
CMP4_LP1
AIO245
0, 4, 8, 12
C5
B9
C7
28
12
8
8
5
18
14
10
10
7
42
CMP4_LN0
CMP4_LP3
AIO247
0, 4, 8, 12
CMP4_HP3
Copyright © 2023 Texas Instruments Incorporated
27
23
23
19
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
19
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-1. Pin Attributes (continued)
SIGNAL NAME
MUX POSITION
100
PZ
80 PN 64 PMQ 64 PM 48 PT
VREFHI
24, 25
20
16
VREFLO
26, 27
21
17
PIN
TYPE
DESCRIPTION
16
12
I
ADC High Reference. In external reference mode,
externally drive the high reference voltage onto this
pin. In internal reference mode, a voltage is driven
onto this pin by the device. In either mode, place at
least a 2.2-µF capacitor on this pin. This capacitor
should be placed as close to the device as possible
between the VREFHI and VREFLO pins.
17
13
I
ADC Low Reference
I
Analog Pin Used For Digital Input 231 This pin also
has analog functions which are described in the
ANALOG section of this table.
GPIO
AIO231
0, 4, 8, 12
SD1_C1
2
I
SDFM-1 Channel 1 Clock Input
HIC_BASESEL1
15
I
HIC Base address range select 1
AIO232
0, 4, 8, 12
I
Analog Pin Used For Digital Input 232 This pin also
has analog functions which are described in the
ANALOG section of this table.
SD1_D4
2
I
SDFM-1 Channel 4 Data Input
HIC_BASESEL0
15
I
HIC Base address range select 0
AIO224
0, 4, 8, 12
I
Analog Pin Used For Digital Input 224 This pin also
has analog functions which are described in the
ANALOG section of this table.
SD2_D3
2
I
SDFM-2 Channel 3 Data Input
HIC_A3
15
I
HIC Address 3
AIO225
0, 4, 8, 12
I
Analog Pin Used For Digital Input 225 This pin also
has analog functions which are described in the
ANALOG section of this table.
SD2_C2
2
I
SDFM-2 Channel 2 Clock Input
HIC_NWE
15
I
HIC Data Write enable from host
AIO228
0, 4, 8, 12
I
Analog Pin Used For Digital Input 228 This pin also
has analog functions which are described in the
ANALOG section of this table.
SD2_C1
2
I
SDFM-2 Channel 1 Clock Input
HIC_A0
15
I
HIC Address 0
AIO240
0, 4, 8, 12
I
Analog Pin Used For Digital Input 240 This pin also
has analog functions which are described in the
ANALOG section of this table.
SD2_C1
2
I
SDFM-2 Channel 1 Clock Input
HIC_NBE1
15
I
HIC Byte enable 1
AIO241
0, 4, 8, 12
I
Analog Pin Used For Digital Input 241 This pin also
has analog functions which are described in the
ANALOG section of this table.
SD2_C1
2
I
SDFM-2 Channel 1 Clock Input
HIC_NBE1
15
I
HIC Byte enable 1
AIO227
0, 4, 8, 12
I
Analog Pin Used For Digital Input 227 This pin also
has analog functions which are described in the
ANALOG section of this table.
SD1_C3
2
I
SDFM-1 Channel 3 Clock Input
HIC_NBE0
15
I
HIC Byte enable 0
AIO230
0, 4, 8, 12
I
Analog Pin Used For Digital Input 230 This pin also
has analog functions which are described in the
ANALOG section of this table.
SD1_C4
2
I
SDFM-1 Channel 4 Clock Input
HIC_BASESEL2
15
I
HIC Base address range select 2
23
22
17
36
14
19
18
13
27
10
15
14
9
23
6
15
14
9
23
6
11
10
6
19
4
37
24
38
40
20
Submit Document Feedback
28
29
20
24
25
20
24
25
16
20
21
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-1. Pin Attributes (continued)
SIGNAL NAME
MUX POSITION
100
PZ
80 PN 64 PMQ 64 PM 48 PT
PIN
TYPE
DESCRIPTION
I
Analog Pin Used For Digital Input 237 This pin also
has analog functions which are described in the
ANALOG section of this table.
2
I
SDFM-1 Channel 2 Data Input
HIC_A6
15
I
HIC Address 6
AIO238
0, 4, 8, 12
I
Analog Pin Used For Digital Input 238 This pin also
has analog functions which are described in the
ANALOG section of this table.
SD2_C3
2
I
SDFM-2 Channel 3 Clock Input
HIC_NCS
15
I
HIC Chip select input
AIO239
0, 4, 8, 12
I
Analog Pin Used For Digital Input 239 This pin also
has analog functions which are described in the
ANALOG section of this table.
SD1_D1
2
I
SDFM-1 Channel 1 Data Input
HIC_A5
15
I
HIC Address 5
AIO233
0, 4, 8, 12
I
Analog Pin Used For Digital Input 233 This pin also
has analog functions which are described in the
ANALOG section of this table.
SD2_D1
2
I
SDFM-2 Channel 1 Data Input
HIC_A4
15
I
HIC Address 4
AIO226
0, 4, 8, 12
I
Analog Pin Used For Digital Input 226 This pin also
has analog functions which are described in the
ANALOG section of this table.
SD2_D4
2
I
SDFM-2 Channel 4 Data Input
HIC_A1
15
I
HIC Address 1
AIO242
0, 4, 8, 12
I
Analog Pin Used For Digital Input 242 This pin also
has analog functions which are described in the
ANALOG section of this table.
SD2_D2
2
I
SDFM-2 Channel 2 Data Input
HIC_A2
15
I
HIC Address 2
AIO252
0, 4, 8, 12
I
Analog Pin Used For Digital Input 252 This pin also
has analog functions which are described in the
ANALOG section of this table.
SD2_C4
2
I
SDFM-2 Channel 4 Clock Input
AIO244
0, 4, 8, 12
I
Analog Pin Used For Digital Input 244 This pin also
has analog functions which are described in the
ANALOG section of this table.
SD1_D3
2
I
SDFM-1 Channel 3 Data Input
HIC_A7
15
I
HIC Address 7
AIO245
0, 4, 8, 12
I
Analog Pin Used For Digital Input 245 This pin also
has analog functions which are described in the
ANALOG section of this table.
SD1_C2
2
I
SDFM-1 Channel 2 Clock Input
HIC_NOE
15
O
HIC Output enable for data bus
0, 4, 8, 12
I/O
General-Purpose Input Output 0
EPWM1_A
1
O
ePWM-1 Output A
I2CA_SDA
6
I/OD
I2C-A Open-Drain Bidirectional Data
SPIA_STE
7
I/O
SPI-A Slave Transmit Enable (STE)
AIO237
0, 4, 8, 12
SD1_D2
20
28
19
16
22
15
14
15
16
31
FSIRXA_CLK
9
MCAN_RX
10
CLB_OUTPUTXBAR8
12
18
11
10
7
8
12
18
8
14
11
10
7
8
7
4
5
32
21
GPIO0
11
12
17
23
13
19
13
19
9
15
I
FSIRX-A Input Clock
I
CAN/CAN FD Receive
11
O
CLB Output X-BAR Output 8
EQEP1_INDEX
13
I/O
eQEP-1 Index
HIC_D7
14
I/O
HIC Data 7
HIC_BASESEL1
15
I
Copyright © 2023 Texas Instruments Incorporated
79
63
52
52
42
HIC Base address range select 1
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
21
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-1. Pin Attributes (continued)
SIGNAL NAME
GPIO1
MUX POSITION
100
PZ
80 PN 64 PMQ 64 PM 48 PT
PIN
TYPE
DESCRIPTION
0, 4, 8, 12
I/O
General-Purpose Input Output 1
EPWM1_B
1
O
ePWM-1 Output B
I2CA_SCL
6
I/OD
SPIA_SOMI
7
I/O
SPI-A Slave Out, Master In (SOMI)
MCAN_TX
10
O
CAN/CAN FD Transmit
CLB_OUTPUTXBAR7
11
O
CLB Output X-BAR Output 7
HIC_A2
13
I
HIC Address 2
FSITXA_TDM_D1
14
I
FSITX-A Time Division Multiplexed Additional Data
Input
HIC_D10
78
62
51
51
41
I2C-A Open-Drain Bidirectional Clock
15
I/O
HIC Data 10
0, 4, 8, 12
I/O
General-Purpose Input Output 2
EPWM2_A
1
O
ePWM-2 Output A
OUTPUTXBAR1
5
O
Output X-BAR Output 1
PMBUSA_SDA
6
I/OD
SPIA_SIMO
7
I/O
SPI-A Slave In, Master Out (SIMO)
GPIO2
SCIA_TX
9
O
SCI-A Transmit Data
FSIRXA_D1
10
I
FSIRX-A Optional Additional Data Input
I2CB_SDA
11
I/OD
HIC_A1
13
I
HIC Address 1
CANA_TX
14
O
CAN-A Transmit
HIC_D9
15
I/O
HIC Data 9
GPIO3
0, 4, 8, 12
I/O
General-Purpose Input Output 3
1
O
ePWM-2 Output B
2, 5
O
Output X-BAR Output 2
PMBUSA_SCL
6
I/OD
SPIA_CLK
7
I/O
SCIA_RX
9
FSIRXA_D0
EPWM2_B
OUTPUTXBAR2
77
76
61
60
50
49
50
49
40
PMBus-A Open-Drain Bidirectional Data
39
I2C-B Open-Drain Bidirectional Data
PMBus-A Open-Drain Bidirectional Clock
SPI-A Clock
I
SCI-A Receive Data
10
I
FSIRX-A Primary Data Input
I2CB_SCL
11
I/OD
HIC_NOE
13
O
HIC Output enable for data bus
CANA_RX
14
I
CAN-A Receive
HIC_D4
15
I/O
HIC Data 4
GPIO4
0, 4, 8, 12
I/O
General-Purpose Input Output 4
EPWM3_A
1
O
ePWM-3 Output A
MCAN_TX
3
O
CAN/CAN FD Transmit
OUTPUTXBAR3
5
O
Output X-BAR Output 3
CANA_TX
6
O
CAN-A Transmit
SPIB_CLK
7
I/O
SPI-B Clock
EQEP2_STROBE
9
I/O
eQEP-2 Strobe
FSIRXA_CLK
10
I
FSIRX-A Input Clock
CLB_OUTPUTXBAR6
11
O
CLB Output X-BAR Output 6
HIC_BASESEL2
13
I
HIC Base address range select 2
HIC_NWE
15
I
HIC Data Write enable from host
22
Submit Document Feedback
75
59
48
48
38
I2C-B Open-Drain Bidirectional Clock
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-1. Pin Attributes (continued)
SIGNAL NAME
GPIO5
MUX POSITION
100
PZ
80 PN 64 PMQ 64 PM 48 PT
PIN
TYPE
DESCRIPTION
0, 4, 8, 12
I/O
General-Purpose Input Output 5
EPWM3_B
1
O
ePWM-3 Output B
OUTPUTXBAR3
3
O
Output X-BAR Output 3
MCAN_RX
5
I
CAN/CAN FD Receive
CANA_RX
6
I
CAN-A Receive
SPIA_STE
7
89
74
61
61
47
I/O
SPI-A Slave Transmit Enable (STE)
FSITXA_D1
9
O
FSITX-A Optional Additional Data Output
CLB_OUTPUTXBAR5
10
O
CLB Output X-BAR Output 5
HIC_A7
13
I
HIC Address 7
HIC_D4
14
I/O
HIC Data 4
HIC_D15
15
I/O
HIC Data 15
0, 4, 8, 12
I/O
General-Purpose Input Output 6
EPWM4_A
1
O
ePWM-4 Output A
OUTPUTXBAR4
2
O
Output X-BAR Output 4
SYNCOUT
3
O
External ePWM Synchronization Pulse
EQEP1_A
5
I
eQEP-1 Input A
SPIB_SOMI
7
FSITXA_D0
GPIO6
I/O
SPI-B Slave Out, Master In (SOMI)
9
O
FSITX-A Primary Data Output
FSITXA_D1
11
O
FSITX-A Optional Additional Data Output
HIC_NBE1
13
I
HIC Byte enable 1
CLB_OUTPUTXBAR8
14
O
CLB Output X-BAR Output 8
HIC_D14
15
I/O
HIC Data 14
0, 4, 8, 12
I/O
General-Purpose Input Output 7
EPWM4_B
1
O
ePWM-4 Output B
OUTPUTXBAR5
3
O
Output X-BAR Output 5
EQEP1_B
5
I
eQEP-1 Input B
SPIB_SIMO
7
FSITXA_CLK
GPIO7
97
SPI-B Slave In, Master Out (SIMO)
FSITX-A Output Clock
CLB_OUTPUTXBAR2
10
O
CLB Output X-BAR Output 2
HIC_A6
13
I
HIC Address 6
HIC_D14
15
I/O
HIC Data 14
0, 4, 8, 12
I/O
General-Purpose Input Output 8
EPWM5_A
1
O
ePWM-5 Output A
ADCSOCAO
3
O
ADC Start of Conversion A for External ADC
EQEP1_STROBE
5
I/O
eQEP-1 Strobe
SCIA_TX
6
O
SCI-A Transmit Data
SPIA_SIMO
7
I/O
SPI-A Slave In, Master Out (SIMO)
I2CA_SCL
9
FSITXA_D1
10
O
FSITX-A Optional Additional Data Output
CLB_OUTPUTXBAR5
11
O
CLB Output X-BAR Output 5
HIC_A0
13
I
HIC Address 0
FSITXA_TDM_CLK
14
I
FSITX-A Time Division Multiplexed Clock Input
HIC_D8
15
I/O
Copyright © 2023 Texas Instruments Incorporated
47
57
48
O
58
57
64
9
74
68
64
I/O
GPIO8
84
80
47
43
I/OD
I2C-A Open-Drain Bidirectional Clock
HIC Data 8
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
23
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-1. Pin Attributes (continued)
SIGNAL NAME
GPIO9
MUX POSITION
100
PZ
80 PN 64 PMQ 64 PM 48 PT
PIN
TYPE
DESCRIPTION
0, 4, 8, 12
I/O
General-Purpose Input Output 9
EPWM5_B
1
O
ePWM-5 Output B
SCIB_TX
2
O
SCI-B Transmit Data
OUTPUTXBAR6
3
O
Output X-BAR Output 6
EQEP1_INDEX
5
I/O
eQEP-1 Index
SCIA_RX
6
I
90
75
62
62
SCI-A Receive Data
SPIA_CLK
7
I/O
SPI-A Clock
FSITXA_D0
10
O
FSITX-A Primary Data Output
LINB_RX
11
I
LIN-B Receive
HIC_BASESEL0
13
I
HIC Base address range select 0
I2CB_SCL
14
I/OD
HIC_NRDY
15
O
HIC Ready from device to host
0, 4, 8, 12
I/O
General-Purpose Input Output 10
EPWM6_A
1
O
ePWM-6 Output A
ADCSOCBO
3
O
ADC Start of Conversion B for External ADC
EQEP1_A
5
I
eQEP-1 Input A
SCIB_TX
6
O
SCI-B Transmit Data
SPIA_SOMI
7
I/O
SPI-A Slave Out, Master In (SOMI)
I2CA_SDA
9
FSITXA_CLK
10
O
FSITX-A Output Clock
LINB_TX
11
O
LIN-B Transmit
HIC_NWE
13
I
HIC Data Write enable from host
FSITXA_TDM_D0
14
I
FSITX-A Time Division Multiplexed Data Input
CLB_OUTPUTXBAR4
15
O
CLB Output X-BAR Output 4
GPIO10
GPIO11
93
76
63
63
I/OD
I2C-B Open-Drain Bidirectional Clock
I2C-A Open-Drain Bidirectional Data
0, 4, 8, 12
I/O
General-Purpose Input Output 11
EPWM6_B
1
O
ePWM-6 Output B
OUTPUTXBAR7
3
O
Output X-BAR Output 7
EQEP1_B
5
I
eQEP-1 Input B
SCIB_RX
6
I
SCI-B Receive Data
SPIA_STE
7
I/O
FSIRXA_D1
9
LINB_RX
52
37
31
31
SPI-A Slave Transmit Enable (STE)
I
FSIRX-A Optional Additional Data Input
10
I
LIN-B Receive
EQEP2_A
11
I
eQEP-2 Input A
SPIA_SIMO
13
I/O
SPI-A Slave In, Master Out (SIMO)
HIC_D6
14
I/O
HIC Data 6
HIC_NBE0
15
I
0, 4, 8, 12
I/O
General-Purpose Input Output 12
EPWM7_A
1
O
ePWM-7 Output A
MCAN_RX
3
I
CAN/CAN FD Receive
EQEP1_STROBE
5
I/O
eQEP-1 Strobe
SCIB_TX
6
O
SCI-B Transmit Data
PMBUSA_CTL
7
I/O
PMBus-A Control Signal - Slave Input/Master Output
FSIRXA_D0
9
LINB_TX
GPIO12
51
36
30
30
HIC Byte enable 0
I
FSIRX-A Primary Data Input
10
O
LIN-B Transmit
SPIA_CLK
11
I/O
SPI-A Clock
CANA_RX
13
I
HIC_D13
14
I/O
HIC Data 13
HIC_INT
15
O
HIC Device interrupt to host
24
Submit Document Feedback
CAN-A Receive
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-1. Pin Attributes (continued)
SIGNAL NAME
GPIO13
MUX POSITION
100
PZ
80 PN 64 PMQ 64 PM 48 PT
PIN
TYPE
DESCRIPTION
0, 4, 8, 12
I/O
General-Purpose Input Output 13
EPWM7_B
1
O
ePWM-7 Output B
MCAN_TX
3
O
CAN/CAN FD Transmit
EQEP1_INDEX
5
I/O
eQEP-1 Index
SCIB_RX
6
I
PMBUSA_ALERT
7
I/OD
50
35
29
29
SCI-B Receive Data
PMBus-A Open-Drain Bidirectional Alert Signal
FSIRXA_CLK
9
I
FSIRX-A Input Clock
LINB_RX
10
I
LIN-B Receive
SPIA_SOMI
11
I/O
SPI-A Slave Out, Master In (SOMI)
CANA_TX
13
O
CAN-A Transmit
HIC_D11
14
I/O
HIC Data 11
HIC_D5
15
I/O
HIC Data 5
GPIO14
0, 4, 8, 12
I/O
General-Purpose Input Output 14
EPWM8_A
1
O
ePWM-8 Output A
SCIB_TX
2
O
SCI-B Transmit Data
I2CB_SDA
5
I/OD
OUTPUTXBAR3
6
O
PMBUSA_SDA
7
I/OD
SPIB_CLK
9
EQEP2_A
10
I
eQEP-2 Input A
LINB_TX
11
O
LIN-B Transmit
EPWM3_A
13
O
ePWM-3 Output A
CLB_OUTPUTXBAR7
14
O
CLB Output X-BAR Output 7
HIC_D15
15
I/O
HIC Data 15
GPIO15
96
79
I/O
I2C-B Open-Drain Bidirectional Data
Output X-BAR Output 3
PMBus-A Open-Drain Bidirectional Data
SPI-B Clock
0, 4, 8, 12
I/O
General-Purpose Input Output 15
EPWM8_B
1
O
ePWM-8 Output B
SCIB_RX
2
I
SCI-B Receive Data
I2CB_SCL
5
I/OD
OUTPUTXBAR4
6
O
PMBUSA_SCL
7
I/OD
SPIB_STE
9
EQEP2_B
10
I
eQEP-2 Input B
LINB_RX
11
I
LIN-B Receive
EPWM3_B
13
O
ePWM-3 Output B
CLB_OUTPUTXBAR6
14
O
CLB Output X-BAR Output 6
HIC_D12
15
I/O
HIC Data 12
GPIO16
0, 4, 8, 12
I/O
General-Purpose Input Output 16
SPIA_SIMO
1
I/O
SPI-A Slave In, Master Out (SIMO)
OUTPUTXBAR7
3
O
Output X-BAR Output 7
EPWM5_A
5
O
ePWM-5 Output A
SCIA_TX
6
O
SCI-A Transmit Data
SD1_D1
7
I
SDFM-1 Channel 1 Data Input
EQEP1_STROBE
9
PMBUSA_SCL
10
I/OD
XCLKOUT
11
O
External Clock Output. This pin outputs a divided-down
version of a chosen clock signal from within the device.
EQEP2_B
13
I
eQEP-2 Input B
SPIB_SOMI
14
I/O
SPI-B Slave Out, Master In (SOMI)
HIC_D1
15
I/O
HIC Data 1
Copyright © 2023 Texas Instruments Incorporated
95
54
78
39
I/O
33
33
26
I/O
I2C-B Open-Drain Bidirectional Clock
Output X-BAR Output 4
PMBus-A Open-Drain Bidirectional Clock
SPI-B Slave Transmit Enable (STE)
eQEP-1 Strobe
PMBus-A Open-Drain Bidirectional Clock
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
25
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-1. Pin Attributes (continued)
SIGNAL NAME
GPIO17
MUX POSITION
100
PZ
80 PN 64 PMQ 64 PM 48 PT
PIN
TYPE
DESCRIPTION
0, 4, 8, 12
I/O
General-Purpose Input Output 17
SPIA_SOMI
1
I/O
SPI-A Slave Out, Master In (SOMI)
OUTPUTXBAR8
3
O
Output X-BAR Output 8
EPWM5_B
5
O
ePWM-5 Output B
SCIA_RX
6
I
SCI-A Receive Data
SD1_C1
7
I
SDFM-1 Channel 1 Clock Input
55
40
34
34
EQEP1_INDEX
9
I/O
PMBUSA_SDA
10
I/OD
CANA_TX
11
O
CAN-A Transmit
HIC_D2
15
I/O
HIC Data 2
GPIO18
0, 4, 8, 12
I/O
General-Purpose Input Output 18
SPIA_CLK
1
I/O
SPI-A Clock
SCIB_TX
2
O
SCI-B Transmit Data
CANA_RX
3
I
CAN-A Receive
EPWM6_A
5
O
ePWM-6 Output A
I2CA_SCL
6
I/OD
SD1_D2
7
I
SDFM-1 Channel 2 Data Input
EQEP2_A
9
I
eQEP-2 Input A
PMBUSA_CTL
10
I/O
PMBus-A Control Signal - Slave Input/Master Output
XCLKOUT
11
O
External Clock Output. This pin outputs a divided-down
version of a chosen clock signal from within the device.
LINB_TX
13
O
LIN-B Transmit
FSITXA_TDM_CLK
14
I
FSITX-A Time Division Multiplexed Clock Input
HIC_INT
15
O
HIC Device interrupt to host
ALT
I/O
Crystal oscillator output.
X2
GPIO19
68
50
41
41
33
eQEP-1 Index
PMBus-A Open-Drain Bidirectional Data
I2C-A Open-Drain Bidirectional Clock
0, 4, 8, 12
I/O
General-Purpose Input Output 19
SPIA_STE
1
I/O
SPI-A Slave Transmit Enable (STE)
SCIB_RX
2
I
SCI-B Receive Data
CANA_TX
3
O
CAN-A Transmit
EPWM6_B
5
O
ePWM-6 Output B
I2CA_SDA
6
I/OD
SD1_C2
7
I
SDFM-1 Channel 2 Clock Input
EQEP2_B
9
I
eQEP-2 Input B
PMBUSA_ALERT
10
I/OD
69
51
42
42
34
I2C-A Open-Drain Bidirectional Data
PMBus-A Open-Drain Bidirectional Alert Signal
CLB_OUTPUTXBAR1
11
O
CLB Output X-BAR Output 1
LINB_RX
13
I
LIN-B Receive
FSITXA_TDM_D0
14
I
FSITX-A Time Division Multiplexed Data Input
HIC_NBE0
15
I
HIC Byte enable 0
X1
GPIO20
ALT
I/O
Crystal oscillator input or single-ended clock input. The
device initialization software must configure this pin
before the crystal oscillator is enabled. To use this
oscillator, a quartz crystal circuit must be connected
to X1 and X2. This pin can also be used to feed a
single-ended 3.3-V level clock. See the XTAL section
for usage details.
0, 4, 8, 12
I/O
General-Purpose Input Output 20 This pin also has
analog functions which are described in the ANALOG
section of this table.
EQEP1_A
1
SPIB_SIMO
6
I/O
SD1_D3
7
I
SDFM-1 Channel 3 Data Input
MCAN_TX
9
O
CAN/CAN FD Transmit
26
Submit Document Feedback
48
33
I
eQEP-1 Input A
SPI-B Slave In, Master Out (SIMO)
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-1. Pin Attributes (continued)
SIGNAL NAME
GPIO21
MUX POSITION
100
PZ
80 PN 64 PMQ 64 PM 48 PT
0, 4, 8, 12
PIN
TYPE
I/O
General-Purpose Input Output 21 This pin also has
analog functions which are described in the ANALOG
section of this table.
EQEP1_B
1
SPIB_SOMI
6
I/O
SD1_C3
7
I
SDFM-1 Channel 3 Clock Input
CAN/CAN FD Receive
MCAN_RX
49
I
DESCRIPTION
34
eQEP-1 Input B
SPI-B Slave Out, Master In (SOMI)
9
I
0, 4, 8, 12
I/O
General-Purpose Input Output 22
EQEP1_STROBE
1
I/O
eQEP-1 Strobe
SCIB_TX
3
O
SCI-B Transmit Data
SPIB_CLK
6
I/O
SPI-B Clock
SD1_D4
7
I
SDFM-1 Channel 4 Data Input
LINA_TX
9
O
LIN-A Transmit
CLB_OUTPUTXBAR1
10
O
CLB Output X-BAR Output 1
LINB_TX
11
O
LIN-B Transmit
HIC_A5
13
I
HIC Address 5
EPWM4_A
14
O
ePWM-4 Output A
HIC_D13
15
I/O
HIC Data 13
GPIO23
0, 4, 8, 12
I/O
General-Purpose Input Output 23
EQEP1_INDEX
1
I/O
eQEP-1 Index
SCIB_RX
3
I
SPIB_STE
6
I/O
SD1_C4
7
I
SDFM-1 Channel 4 Clock Input
LINA_RX
9
I
LIN-A Receive
CLB_OUTPUTXBAR3
10
O
CLB Output X-BAR Output 3
LINB_RX
11
I
LIN-B Receive
HIC_A3
13
I
HIC Address 3
EPWM4_B
14
O
ePWM-4 Output B
HIC_D11
15
I/O
HIC Data 11
GPIO24
0, 4, 8, 12
I/O
General-Purpose Input Output 24
OUTPUTXBAR1
1
O
Output X-BAR Output 1
EQEP2_A
2
I
eQEP-2 Input A
EPWM8_A
5
O
ePWM-8 Output A
SPIB_SIMO
6
I/O
SPI-B Slave In, Master Out (SIMO)
SD2_D1
7
I
SDFM-2 Channel 1 Data Input
LINB_TX
9
O
LIN-B Transmit
PMBUSA_SCL
10
I/OD
SCIA_TX
11
O
SCI-A Transmit Data
ERRORSTS
13
O
Error Status Output. This signal requires an external
pulldown.
HIC_D3
15
I/O
HIC Data 3
GPIO25
0, 4, 8, 12
I/O
General-Purpose Input Output 25
OUTPUTXBAR2
1
O
Output X-BAR Output 2
EQEP2_B
2
I
eQEP-2 Input B
EQEP1_A
5
I
eQEP-1 Input A
SPIB_SOMI
6
I/O
SD2_C1
7
FSITXA_D1
GPIO22
83
81
56
57
67
65
41
42
56
54
35
56
54
35
27
SCI-B Receive Data
SPI-B Slave Transmit Enable (STE)
PMBus-A Open-Drain Bidirectional Clock
SPI-B Slave Out, Master In (SOMI)
I
SDFM-2 Channel 1 Clock Input
9
O
FSITX-A Optional Additional Data Output
PMBUSA_SDA
10
I/OD
PMBus-A Open-Drain Bidirectional Data
SCIA_RX
11
I
SCI-A Receive Data
HIC_BASESEL0
14
I
HIC Base address range select 0
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
27
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-1. Pin Attributes (continued)
SIGNAL NAME
GPIO26
MUX POSITION
100
PZ
80 PN 64 PMQ 64 PM 48 PT
PIN
TYPE
DESCRIPTION
0, 4, 8, 12
I/O
General-Purpose Input Output 26
OUTPUTXBAR3
1, 5
O
Output X-BAR Output 3
EQEP2_INDEX
2
I/O
eQEP-2 Index
SPIB_CLK
6
I/O
SPI-B Clock
SD2_D2
7
I
SDFM-2 Channel 2 Data Input
FSITXA_D0
9
O
FSITX-A Primary Data Output
PMBUSA_CTL
10
I/O
PMBus-A Control Signal - Slave Input/Master Output
I2CA_SDA
11
I/OD
HIC_D0
14
I/O
HIC_A1
15
I
GPIO27
0, 4, 8, 12
I/O
General-Purpose Input Output 27
1, 5
O
Output X-BAR Output 4
EQEP2_STROBE
2
I/O
eQEP-2 Strobe
SPIB_STE
6
I/O
SPI-B Slave Transmit Enable (STE)
SD2_C2
7
I
SDFM-2 Channel 2 Clock Input
O
FSITX-A Output Clock
OUTPUTXBAR4
58
59
43
44
I2C-A Open-Drain Bidirectional Data
HIC Data 0
HIC Address 1
FSITXA_CLK
9
PMBUSA_ALERT
10
I/OD
PMBus-A Open-Drain Bidirectional Alert Signal
I2CA_SCL
11
I/OD
I2C-A Open-Drain Bidirectional Clock
HIC_D1
14
I/O
HIC_A4
15
I
GPIO28
0, 4, 8, 12
I/O
SCIA_RX
1
I
SCI-A Receive Data
EPWM7_A
3
O
ePWM-7 Output A
OUTPUTXBAR5
5
O
Output X-BAR Output 5
EQEP1_A
6
I
eQEP-1 Input A
SD2_D3
7
I
SDFM-2 Channel 3 Data Input
EQEP2_STROBE
9
LINA_TX
1
4
2
2
2
HIC Data 1
HIC Address 4
General-Purpose Input Output 28
I/O
eQEP-2 Strobe
10
O
LIN-A Transmit
SPIB_CLK
11
I/O
SPI-B Clock
ERRORSTS
13
O
Error Status Output. This signal requires an external
pulldown.
I2CB_SDA
14
I/OD
HIC_NOE
15
O
HIC Output enable for data bus
GPIO29
0, 4, 8, 12
I/O
General-Purpose Input Output 29
SCIA_TX
1
O
SCI-A Transmit Data
EPWM7_B
3
O
ePWM-7 Output B
OUTPUTXBAR6
5
O
Output X-BAR Output 6
EQEP1_B
6
I
eQEP-1 Input B
SD2_C3
7
I
SDFM-2 Channel 3 Clock Input
EQEP2_INDEX
9
I/O
eQEP-2 Index
LINA_RX
10
I
LIN-A Receive
SPIB_STE
11
I/O
SPI-B Slave Transmit Enable (STE)
ERRORSTS
13
O
Error Status Output. This signal requires an external
pulldown.
I2CB_SCL
14
I/OD
HIC_NCS
15
I
HIC Chip select input
ALT
I
Auxiliary Clock Input
AUXCLKIN
28
Submit Document Feedback
100
3
1
1
1
I2C-B Open-Drain Bidirectional Data
I2C-B Open-Drain Bidirectional Clock
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-1. Pin Attributes (continued)
SIGNAL NAME
GPIO30
MUX POSITION
100
PZ
80 PN 64 PMQ 64 PM 48 PT
PIN
TYPE
DESCRIPTION
0, 4, 8, 12
I/O
CANA_RX
1
I
SPIB_SIMO
3
I/O
SPI-B Slave In, Master Out (SIMO)
OUTPUTXBAR7
5
O
Output X-BAR Output 7
EQEP1_STROBE
6
I/O
eQEP-1 Strobe
SD2_D4
7
98
1
General-Purpose Input Output 30
CAN-A Receive
I
SDFM-2 Channel 4 Data Input
FSIRXA_CLK
9
I
FSIRX-A Input Clock
MCAN_RX
10
I
CAN/CAN FD Receive
EPWM1_A
11
O
ePWM-1 Output A
HIC_D8
14
I/O
HIC Data 8
GPIO31
0, 4, 8, 12
I/O
General-Purpose Input Output 31
CANA_TX
1
O
CAN-A Transmit
SPIB_SOMI
3
I/O
SPI-B Slave Out, Master In (SOMI)
OUTPUTXBAR8
5
O
Output X-BAR Output 8
EQEP1_INDEX
6
I/O
eQEP-1 Index
SD2_C4
7
I
SDFM-2 Channel 4 Clock Input
FSIRXA_D1
9
I
FSIRX-A Optional Additional Data Input
MCAN_TX
10
O
CAN/CAN FD Transmit
EPWM1_B
11
O
ePWM-1 Output B
HIC_D10
14
I/O
HIC Data 10
GPIO32
0, 4, 8, 12
I/O
General-Purpose Input Output 32
I2CA_SDA
1
I/OD
SPIB_CLK
3
I/O
SPI-B Clock
EPWM8_B
5
O
ePWM-8 Output B
LINA_TX
6
O
LIN-A Transmit
SD1_D2
7
I
SDFM-1 Channel 2 Data Input
FSIRXA_D0
9
I
FSIRX-A Primary Data Input
CANA_TX
10
O
CAN-A Transmit
PMBUSA_SDA
11
I/OD
ADCSOCBO
13
O
ADC Start of Conversion B for External ADC
HIC_INT
15
O
HIC Device interrupt to host
GPIO33
0, 4, 8, 12
I/O
General-Purpose Input Output 33
I2CA_SCL
1
I/OD
SPIB_STE
3
I/O
SPI-B Slave Transmit Enable (STE)
OUTPUTXBAR4
5
O
Output X-BAR Output 4
LINA_RX
6
I
LIN-A Receive
SD1_C2
7
I
SDFM-1 Channel 2 Clock Input
FSIRXA_CLK
9
I
FSIRX-A Input Clock
CANA_RX
10
I
CAN-A Receive
EQEP2_B
11
I
eQEP-2 Input B
ADCSOCAO
13
O
ADC Start of Conversion A for External ADC
SD1_C1
14
I
SDFM-1 Channel 1 Clock Input
HIC_D0
15
I/O
HIC Data 0
GPIO34
99
64
53
2
49
38
40
32
40
32
32
25
I2C-A Open-Drain Bidirectional Data
PMBus-A Open-Drain Bidirectional Data
I2C-A Open-Drain Bidirectional Clock
0, 4, 8, 12
I/O
General-Purpose Input Output 34
OUTPUTXBAR1
1
O
Output X-BAR Output 1
PMBUSA_SDA
6
I/OD
HIC_NBE1
13
I2CB_SDA
14
I/OD
HIC_D9
15
I/O
Copyright © 2023 Texas Instruments Incorporated
94
77
I
PMBus-A Open-Drain Bidirectional Data
HIC Byte enable 1
I2C-B Open-Drain Bidirectional Data
HIC Data 9
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
29
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-1. Pin Attributes (continued)
SIGNAL NAME
GPIO35
MUX POSITION
100
PZ
80 PN 64 PMQ 64 PM 48 PT
PIN
TYPE
DESCRIPTION
0, 4, 8, 12
I/O
SCIA_RX
1
I
I2CA_SDA
3
I/OD
CANA_RX
5
I
PMBUSA_SCL
6
I/OD
LINA_RX
7
I
LIN-A Receive
I
eQEP-1 Input A
EQEP1_A
9
PMBUSA_CTL
10
EPWM5_B
63
48
39
39
31
General-Purpose Input Output 35
SCI-A Receive Data
I2C-A Open-Drain Bidirectional Data
CAN-A Receive
PMBus-A Open-Drain Bidirectional Clock
I/O
PMBus-A Control Signal - Slave Input/Master Output
11
O
ePWM-5 Output B
SD2_C1
13
I
SDFM-2 Channel 1 Clock Input
HIC_NWE
14
I
HIC Data Write enable from host
15
I
JTAG Test Data Input (TDI) - TDI is the default mux
selection for the pin. The internal pullup is disabled by
default. The internal pullup should be enabled or an
external pullup added on the board if this pin is used
as JTAG TDI to avoid a floating input.
TDI
GPIO37
0, 4, 8, 12
I/O
General-Purpose Input Output 37
OUTPUTXBAR2
1
O
Output X-BAR Output 2
I2CA_SCL
3
I/OD
SCIA_TX
5
O
SCI-A Transmit Data
CANA_TX
6
O
CAN-A Transmit
LINA_TX
7
O
LIN-A Transmit
EQEP1_B
9
I
eQEP-1 Input B
PMBUSA_ALERT
10
HIC_NRDY
14
TDO
GPIO39
61
46
37
37
29
I/OD
I2C-A Open-Drain Bidirectional Clock
PMBus-A Open-Drain Bidirectional Alert Signal
O
HIC Ready from device to host
15
O
JTAG Test Data Output (TDO) - TDO is the default
mux selection for the pin. The internal pullup is
disabled by default. The TDO function will be in a tristate condition when there is no JTAG activity, leaving
this pin floating; the internal pullup should be enabled
or an external pullup added on the board to avoid a
floating GPIO input.
General-Purpose Input Output 39
0, 4, 8, 12
I/O
MCAN_RX
6
I
CAN/CAN FD Receive
FSIRXA_CLK
7
I
FSIRX-A Input Clock
EQEP2_INDEX
9
I/O
eQEP-2 Index
CLB_OUTPUTXBAR2
11
O
CLB Output X-BAR Output 2
SYNCOUT
13
O
External ePWM Synchronization Pulse
EQEP1_INDEX
14
I/O
eQEP-1 Index
HIC_D7
15
I/O
HIC Data 7
GPIO40
0, 4, 8, 12
I/O
General-Purpose Input Output 40
SPIB_SIMO
1
I/O
SPI-B Slave In, Master Out (SIMO)
EPWM2_B
5
O
ePWM-2 Output B
PMBUSA_SDA
6
I/OD
FSIRXA_D0
7
SCIB_TX
9
EQEP1_A
56
46
PMBus-A Open-Drain Bidirectional Data
I
FSIRX-A Primary Data Input
O
SCI-B Transmit Data
10
I
eQEP-1 Input A
LINB_TX
11
O
LIN-B Transmit
HIC_NBE1
14
I
HIC Byte enable 1
HIC_D5
15
I/O
30
Submit Document Feedback
80
64
53
53
HIC Data 5
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-1. Pin Attributes (continued)
SIGNAL NAME
GPIO41
MUX POSITION
100
PZ
80 PN 64 PMQ 64 PM 48 PT
PIN
TYPE
DESCRIPTION
0, 4, 8, 12
I/O
General-Purpose Input Output 41
EPWM2_A
5
O
ePWM-2 Output A
PMBUSA_SCL
6
I/OD
FSIRXA_D1
7
I
FSIRX-A Optional Additional Data Input
SCIB_RX
9
I
SCI-B Receive Data
EQEP1_B
10
I
eQEP-1 Input B
82
66
55
55
PMBus-A Open-Drain Bidirectional Clock
LINB_RX
11
I
LIN-B Receive
HIC_A4
13
I
HIC Address 4
SPIB_SOMI
14
I/O
SPI-B Slave Out, Master In (SOMI)
HIC_D12
15
I/O
HIC Data 12
GPIO42
0, 4, 8, 12
I/O
General-Purpose Input Output 42
LINA_RX
2
I
LIN-A Receive
OUTPUTXBAR5
3
O
Output X-BAR Output 5
PMBUSA_CTL
5
I/O
PMBus-A Control Signal - Slave Input/Master Output
I2CA_SDA
6
EQEP1_STROBE
10
I/O
eQEP-1 Strobe
CLB_OUTPUTXBAR3
11
O
CLB Output X-BAR Output 3
HIC_D2
14
I/O
HIC Data 2
HIC_A6
15
I
GPIO43
0, 4, 8, 12
I/O
General-Purpose Input Output 43
OUTPUTXBAR6
3
O
Output X-BAR Output 6
PMBUSA_ALERT
5, 9
I/OD
PMBus-A Open-Drain Bidirectional Alert Signal
I2CA_SCL
6
I/OD
I2C-A Open-Drain Bidirectional Clock
EQEP1_INDEX
10
57
54
I/OD
I2C-A Open-Drain Bidirectional Data
HIC Address 6
I/O
eQEP-1 Index
CLB_OUTPUTXBAR4
11
O
CLB Output X-BAR Output 4
SD2_D3
13
I
SDFM-2 Channel 3 Data Input
HIC_D3
14
I/O
HIC_A7
15
I
GPIO44
0, 4, 8, 12
I/O
General-Purpose Input Output 44
OUTPUTXBAR7
3
O
Output X-BAR Output 7
EQEP1_A
5
I
eQEP-1 Input A
PMBUSA_SDA
6
I/OD
FSITXA_CLK
7
O
FSITX-A Output Clock
PMBUSA_CTL
9
I/O
PMBus-A Control Signal - Slave Input/Master Output
CLB_OUTPUTXBAR3
10
O
CLB Output X-BAR Output 3
FSIRXA_D0
11
I
FSIRX-A Primary Data Input
HIC_D7
13
I/O
HIC Data 7
LINB_TX
14
O
LIN-B Transmit
HIC_D5
15
I/O
HIC Data 5
GPIO45
0, 4, 8, 12
I/O
General-Purpose Input Output 45
OUTPUTXBAR8
3
O
Output X-BAR Output 8
FSITXA_D0
7
O
FSITX-A Primary Data Output
PMBUSA_ALERT
9
CLB_OUTPUTXBAR4
10
O
CLB Output X-BAR Output 4
SD2_C3
13
I
SDFM-2 Channel 3 Clock Input
HIC_D6
15
I/O
Copyright © 2023 Texas Instruments Incorporated
85
69
73
I/OD
HIC Data 3
HIC Address 7
PMBus-A Open-Drain Bidirectional Data
PMBus-A Open-Drain Bidirectional Alert Signal
HIC Data 6
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
31
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-1. Pin Attributes (continued)
SIGNAL NAME
MUX POSITION
100
PZ
80 PN 64 PMQ 64 PM 48 PT
PIN
TYPE
DESCRIPTION
GPIO46
0, 4, 8, 12
I/O
General-Purpose Input Output 46
LINA_TX
3
O
LIN-A Transmit
MCAN_TX
5
O
CAN/CAN FD Transmit
FSITXA_D1
7
O
FSITX-A Optional Additional Data Output
PMBUSA_SDA
9
I/OD
PMBus-A Open-Drain Bidirectional Data
SD2_C4
13
I
SDFM-2 Channel 4 Clock Input
HIC_NWE
6
15
I
HIC Data Write enable from host
GPIO47
0, 4, 8, 12
I/O
General-Purpose Input Output 47
LINA_RX
3
I
LIN-A Receive
MCAN_RX
5
I
CAN/CAN FD Receive
CLB_OUTPUTXBAR2
7
O
CLB Output X-BAR Output 2
PMBUSA_SCL
9
SD2_D4
13
I
SDFM-2 Channel 4 Data Input
FSITXA_TDM_CLK
14
I
FSITX-A Time Division Multiplexed Clock Input
HIC_A6
15
I
HIC Address 6
GPIO48
6
I/OD
PMBus-A Open-Drain Bidirectional Clock
0, 4, 8, 12
I/O
General-Purpose Input Output 48
OUTPUTXBAR3
1
O
Output X-BAR Output 3
CANA_TX
3
O
CAN-A Transmit
SCIA_TX
6
O
SCI-A Transmit Data
SD1_D1
7
I
SDFM-1 Channel 1 Data Input
PMBUSA_SDA
9
I/OD
HIC_A7
15
I
GPIO49
0, 4, 8, 12
I/O
General-Purpose Input Output 49
OUTPUTXBAR4
1
O
Output X-BAR Output 4
CANA_RX
3
I
CAN-A Receive
SCIA_RX
6
I
SCI-A Receive Data
SD1_C1
7
I
SDFM-1 Channel 1 Clock Input
LINA_RX
9
I
LIN-A Receive
SD2_D1
13
I
SDFM-2 Channel 1 Data Input
FSITXA_D0
14
O
FSITX-A Primary Data Output
HIC_D2
15
I/O
HIC Data 2
GPIO50
0, 4, 8, 12
I/O
General-Purpose Input Output 50
EQEP1_A
1
I
eQEP-1 Input A
MCAN_TX
5
O
CAN/CAN FD Transmit
SPIB_SIMO
6
I/O
SPI-B Slave In, Master Out (SIMO)
SD1_D2
7
I2CB_SDA
9
I/OD
SD2_D2
13
I
SDFM-2 Channel 2 Data Input
FSITXA_D1
14
O
FSITX-A Optional Additional Data Output
HIC_D3
15
I/O
HIC Data 3
GPIO51
0, 4, 8, 12
I/O
General-Purpose Input Output 51
EQEP1_B
1
I
eQEP-1 Input B
MCAN_RX
5
I
CAN/CAN FD Receive
SPIB_SOMI
6
I/O
SD1_C2
7
I2CB_SCL
9
I/OD
SD2_D3
13
I
SDFM-2 Channel 3 Data Input
FSITXA_CLK
14
O
FSITX-A Output Clock
HIC_D6
15
I/O
HIC Data 6
32
Submit Document Feedback
7
8
9
10
I
I
PMBus-A Open-Drain Bidirectional Data
HIC Address 7
SDFM-1 Channel 2 Data Input
I2C-B Open-Drain Bidirectional Data
SPI-B Slave Out, Master In (SOMI)
SDFM-1 Channel 2 Clock Input
I2C-B Open-Drain Bidirectional Clock
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-1. Pin Attributes (continued)
SIGNAL NAME
GPIO52
MUX POSITION
100
PZ
80 PN 64 PMQ 64 PM 48 PT
PIN
TYPE
DESCRIPTION
0, 4, 8, 12
I/O
General-Purpose Input Output 52
EQEP1_STROBE
1
I/O
eQEP-1 Strobe
CLB_OUTPUTXBAR5
5
O
CLB Output X-BAR Output 5
SPIB_CLK
6
I/O
SPI-B Clock
SD1_D3
7
SYNCOUT
I
SDFM-1 Channel 3 Data Input
9
O
External ePWM Synchronization Pulse
SD2_D4
13
I
SDFM-2 Channel 4 Data Input
FSIRXA_D0
14
I
FSIRX-A Primary Data Input
HIC_NWE
15
I
HIC Data Write enable from host
0, 4, 8, 12
I/O
General-Purpose Input Output 53
EQEP1_INDEX
1
I/O
eQEP-1 Index
CLB_OUTPUTXBAR6
5
O
CLB Output X-BAR Output 6
SPIB_STE
6
I/O
SPI-B Slave Transmit Enable (STE)
SD1_C3
7
ADCSOCAO
GPIO53
11
I
SDFM-1 Channel 3 Clock Input
9
O
ADC Start of Conversion A for External ADC
CANA_RX
10
I
CAN-A Receive
SD1_C1
13
I
SDFM-1 Channel 1 Clock Input
FSIRXA_D1
14
I
FSIRX-A Optional Additional Data Input
0, 4, 8, 12
I/O
General-Purpose Input Output 54
SPIA_SIMO
1
I/O
SPI-A Slave In, Master Out (SIMO)
EQEP2_A
5
I
eQEP-2 Input A
OUTPUTXBAR2
6
O
Output X-BAR Output 2
SD1_D4
7
I
SDFM-1 Channel 4 Data Input
ADCSOCBO
9
O
ADC Start of Conversion B for External ADC
LINB_TX
10
O
LIN-B Transmit
SD1_C2
13
I
SDFM-1 Channel 2 Clock Input
FSIRXA_CLK
14
I
FSIRX-A Input Clock
FSITXA_TDM_D1
15
I
FSITX-A Time Division Multiplexed Additional Data
Input
GPIO54
GPIO55
12
13
0, 4, 8, 12
I/O
General-Purpose Input Output 55
SPIA_SOMI
1
I/O
SPI-A Slave Out, Master In (SOMI)
EQEP2_B
5
I
eQEP-2 Input B
OUTPUTXBAR3
6
O
Output X-BAR Output 3
SD1_C4
7
I
SDFM-1 Channel 4 Clock Input
ERRORSTS
9
O
Error Status Output. This signal requires an external
pulldown.
LINB_RX
10
I
LIN-B Receive
SD1_C3
13
I
SDFM-1 Channel 3 Clock Input
HIC_A0
15
I
HIC Address 0
Copyright © 2023 Texas Instruments Incorporated
43
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
33
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-1. Pin Attributes (continued)
SIGNAL NAME
GPIO56
MUX POSITION
100
PZ
80 PN 64 PMQ 64 PM 48 PT
PIN
TYPE
DESCRIPTION
0, 4, 8, 12
I/O
General-Purpose Input Output 56
SPIA_CLK
1
I/O
SPI-A Clock
CLB_OUTPUTXBAR7
2
O
CLB Output X-BAR Output 7
MCAN_TX
3
O
CAN/CAN FD Transmit
EQEP2_STROBE
5
I/O
eQEP-2 Strobe
SCIB_TX
6
O
SCI-B Transmit Data
SD2_D1
7
I
SDFM-2 Channel 1 Data Input
SPIB_SIMO
9
I/O
I2CA_SDA
10
I/OD
EQEP1_A
11
I
eQEP-1 Input A
SD1_C4
13
I
SDFM-1 Channel 4 Clock Input
FSIRXA_D1
14
I
FSIRX-A Optional Additional Data Input
HIC_D6
15
I/O
HIC Data 6
GPIO57
0, 4, 8, 12
I/O
General-Purpose Input Output 57
SPIA_STE
1
I/O
SPI-A Slave Transmit Enable (STE)
CLB_OUTPUTXBAR8
2
O
CLB Output X-BAR Output 8
MCAN_RX
3
I
CAN/CAN FD Receive
EQEP2_INDEX
5
I/O
SCIB_RX
6
I
SCI-B Receive Data
SD2_C1
7
I
SDFM-2 Channel 1 Clock Input
SPIB_SOMI
9
I/O
I2CA_SCL
10
I/OD
EQEP1_B
11
I
eQEP-1 Input B
FSIRXA_CLK
14
I
FSIRX-A Input Clock
HIC_D4
15
I/O
HIC Data 4
GPIO58
65
66
SPI-B Slave In, Master Out (SIMO)
I2C-A Open-Drain Bidirectional Data
eQEP-2 Index
SPI-B Slave Out, Master In (SOMI)
I2C-A Open-Drain Bidirectional Clock
0, 4, 8, 12
I/O
General-Purpose Input Output 58
OUTPUTXBAR1
5
O
Output X-BAR Output 1
SPIB_CLK
6
I/O
SPI-B Clock
SD2_D2
7
I
SDFM-2 Channel 2 Data Input
LINA_TX
9
O
LIN-A Transmit
CANA_TX
10
O
CAN-A Transmit
EQEP1_STROBE
11
I/O
eQEP-1 Strobe
SD2_C2
13
I
SDFM-2 Channel 2 Clock Input
FSIRXA_D0
14
I
FSIRX-A Primary Data Input
HIC_NRDY
67
15
O
HIC Ready from device to host
0, 4, 8, 12
I/O
General-Purpose Input Output 59
OUTPUTXBAR2
5
O
Output X-BAR Output 2
SPIB_STE
6
I/O
SPI-B Slave Transmit Enable (STE)
SD2_C2
7
I
SDFM-2 Channel 2 Clock Input
LINA_RX
9
I
LIN-A Receive
CANA_RX
10
I
CAN-A Receive
EQEP1_INDEX
11
I/O
SD2_C3
13
I
SDFM-2 Channel 3 Clock Input
FSITXA_TDM_D1
14
I
FSITX-A Time Division Multiplexed Additional Data
Input
GPIO59
34
Submit Document Feedback
92
eQEP-1 Index
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-1. Pin Attributes (continued)
SIGNAL NAME
GPIO60
MUX POSITION
100
PZ
80 PN 64 PMQ 64 PM 48 PT
PIN
TYPE
DESCRIPTION
0, 4, 8, 12
I/O
General-Purpose Input Output 60
MCAN_TX
3
O
CAN/CAN FD Transmit
OUTPUTXBAR3
5
O
Output X-BAR Output 3
SPIB_SIMO
6
I/O
SPI-B Slave In, Master Out (SIMO)
SD2_D3
7
I
SDFM-2 Channel 3 Data Input
SD2_C4
13
I
SDFM-2 Channel 4 Clock Input
HIC Address 0
44
HIC_A0
15
I
GPIO61
0, 4, 8, 12
I/O
MCAN_RX
3
I
CAN/CAN FD Receive
OUTPUTXBAR4
5
O
Output X-BAR Output 4
SPIB_SOMI
6
I/O
SPI-B Slave Out, Master In (SOMI)
SD2_C3
7
I
SDFM-2 Channel 3 Clock Input
CANA_RX
14
I
CAN-A Receive
I
JTAG test clock with internal pullup.
91
General-Purpose Input Output 61
TEST, JTAG, AND RESET
TCK
60
TMS
62
XRSn
2
45
47
5
36
38
3
36
38
3
28
30
3
I/O
JTAG test-mode select (TMS) with internal pullup. This
serial control input is clocked into the TAP controller on
the rising edge of TCK. This device does not have a
TRSTn pin. An external pullup resistor (recommended
2.2 kΩ) on the TMS pin to VDDIO should be placed
on the board to keep JTAG in reset during normal
operation.
I/OD
Device Reset (in) and Watchdog Reset (out). During
a power-on condition, this pin is driven low by the
device. An external circuit may also drive this pin to
assert a device reset. This pin is also driven low by the
MCU when a watchdog reset occurs. During watchdog
reset, the XRSn pin is driven low for the watchdog
reset duration of 512 OSCCLK cycles. A resistor
between 2.2 kΩ and 10 kΩ should be placed between
XRSn and VDDIO. If a capacitor is placed between
XRSn and VSS for noise filtering, it should be 100
nF or smaller. These values will allow the watchdog
to properly drive the XRSn pin to VOL within 512
OSCCLK cycles when the watchdog reset is asserted.
This pin is an open-drain output with an internal pullup.
If this pin is driven by an external device, it should be
done using an open-drain device.
POWER AND GROUND
4, 46, 8, 31,
71, 87 53, 71
VDD
VDDA
VDDIO
VREGENZ
34
26
3, 47, 7, 32,
70, 88 52, 72
73
VSSA
Copyright © 2023 Texas Instruments Incorporated
33
22
28, 43,
60
4, 27, 23, 36,
44, 59
45
22
25
5, 26,
45, 58
21
1.2-V Digital Logic Power Pins. See the Power
Management Module (PMM) section for usage details.
3.3-V Analog Power Pins. Place a minimum 2.2-µF
decoupling capacitor on each pin. See the Power
Management Module (PMM) section for usage details.
18
28, 43, 24, 35,
60
46
46
5, 45, 9, 30,
72, 86 55, 70
VSS
4, 27,
44, 59
3.3-V Digital I/O Power Pins. See the Power
Management Module (PMM) section for usage details.
I
5, 26, 22, 37,
45, 58
44
21
17
Internal voltage regulator enable with internal
pulldown. Tie low to VSS to enable internal VREG.
Tie high to VDDIO to use an external supply. See the
Power Management Module (PMM) section for usage
details.
Digital Ground
Analog Ground
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
35
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
5.3 Signal Descriptions
5.3.1 Analog Signals
Table 5-2. Analog Signals
36
SIGNAL
NAME
PIN
TYPE
A0
I
A1
A2
DESCRIPTION
100 PZ
80 PN
64 PMQ
64 PM
48 PT
ADC-A Input 0
23
19
15
15
11
I
ADC-A Input 1
22
18
14
14
10
I
ADC-A Input 2
17
13
9
9
6
A3
I
ADC-A Input 3
18
12
8
8
5
A4
I
ADC-A Input 4
36
27
23
23
19
A5
I
ADC-A Input 5
35
17
13
13
9
A6
I
ADC-A Input 6
14
10
6
6
4
A7
I
ADC-A Input 7
31
23
19
19
15
A8
I
ADC-A Input 8
37
24
20
20
16
A9
I
ADC-A Input 9
38
28
24
24
20
A10
I
ADC-A Input 10
40
29
25
25
21
A11
I
ADC-A Input 11
20
16
12
12
8
A12
I
ADC-A Input 12
28
22
18
18
14
A14
I
ADC-A Input 14
19
15
11
11
A15
I
ADC-A Input 15
14
10
10
7
AIO224
I
Analog Pin Used For Digital Input 224
17
13
9
9
6
AIO225
I
Analog Pin Used For Digital Input 225
36
27
23
23
19
AIO226
I
Analog Pin Used For Digital Input 226
15
11
7
7
4
AIO227
I
Analog Pin Used For Digital Input 227
38
28
24
24
20
AIO228
I
Analog Pin Used For Digital Input 228
14
10
6
6
4
AIO229
I
Analog Pin Used For Digital Input 229
18
AIO230
I
Analog Pin Used For Digital Input 230
40
29
25
25
21
AIO231
I
Analog Pin Used For Digital Input 231
23
19
15
15
11
AIO232
I
Analog Pin Used For Digital Input 232
22
18
14
14
10
AIO233
I
Analog Pin Used For Digital Input 233
14
10
10
7
AIO236
I
Analog Pin Used For Digital Input 236
39
28
24
24
20
AIO237
I
Analog Pin Used For Digital Input 237
20
16
12
12
8
AIO238
I
Analog Pin Used For Digital Input 238
28
22
18
18
14
AIO239
I
Analog Pin Used For Digital Input 239
19
15
11
11
AIO240
I
Analog Pin Used For Digital Input 240
37
AIO241
I
Analog Pin Used For Digital Input 241
24
20
20
16
AIO242
I
Analog Pin Used For Digital Input 242
16
12
8
8
5
AIO244
I
Analog Pin Used For Digital Input 244
21
17
13
13
9
AIO245
I
Analog Pin Used For Digital Input 245
31
23
19
19
15
AIO247
I
Analog Pin Used For Digital Input 247
42
AIO248
I
Analog Pin Used For Digital Input 248
29
22
18
18
14
AIO249
I
Analog Pin Used For Digital Input 249
35
AIO251
I
Analog Pin Used For Digital Input 251
30
AIO252
I
Analog Pin Used For Digital Input 252
32
AIO253
I
Analog Pin Used For Digital Input 253
41
B0
I
ADC-B Input 0
41
24
20
20
16
B1
I
ADC-B Input 1
40
29
25
25
21
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-2. Analog Signals (continued)
SIGNAL
NAME
PIN
TYPE
B2
I
ADC-B Input 2
B3
I
ADC-B Input 3
B4
I
B5
I
B6
B7
DESCRIPTION
80 PN
64 PMQ
64 PM
48 PT
15
11
7
7
4
16
12
8
8
5
ADC-B Input 4
39
28
24
24
20
ADC-B Input 5
32, 48
33
I
ADC-B Input 6
17
13
9
9
6
I
ADC-B Input 7
22
18
14
14
10
B8
I
ADC-B Input 8
36
27
23
23
19
B9
I
ADC-B Input 9
18
14
10
10
7
B10
I
ADC-B Input 10
20
16
12
12
8
B11
I
ADC-B Input 11
30, 49
34
B12
I
ADC-B Input 12
21
17
13
13
9
B14
I
ADC-B Input 14
19
15
11
11
B15
I
ADC-B Input 15
23
19
15
15
11
C0
I
ADC-C Input 0
20
16
12
12
8
C1
I
ADC-C Input 1
29
22
18
18
14
C2
I
ADC-C Input 2
21
17
13
13
9
C3
I
ADC-C Input 3
31
23
19
19
15
C4
I
ADC-C Input 4
19
15
11
11
C5
I
ADC-C Input 5
28
12
8
8
5
C6
I
ADC-C Input 6
15
11
7
7
4
C7
I
ADC-C Input 7
18
14
10
10
7
C8
I
ADC-C Input 8
39
28
24
24
20
C9
I
ADC-C Input 9
17
13
9
9
6
C10
I
ADC-C Input 10
40
29
25
25
21
C11
I
ADC-C Input 11
41
24
20
20
16
C14
I
ADC-C Input 14
42
27
23
23
19
C15
I
ADC-C Input 15
23
19
15
15
11
CMP1_HN0
I
CMPSS-1 High Comparator Negative
Input 0
14
10
10
7
CMP1_HN1
I
CMPSS-1 High Comparator Negative
Input 1
20
16
12
12
8
CMP1_HP0
I
CMPSS-1 High Comparator Positive
Input 0
17
13
9
9
6
CMP1_HP1
I
CMPSS-1 High Comparator Positive
Input 1
20
16
12
12
8
CMP1_HP2
I
CMPSS-1 High Comparator Positive
Input 2
14
10
6
6
4
CMP1_HP3
I
CMPSS-1 High Comparator Positive
Input 3
14
10
10
7
CMP1_HP4
I
CMPSS-1 High Comparator Positive
Input 4
22
18
14
14
10
CMP1_HP5
I
CMPSS-1 High Comparator Positive
Input 5
32, 48
33
CMP1_LN0
I
CMPSS-1 Low Comparator Negative
Input 0
14
10
10
7
CMP1_LN1
I
CMPSS-1 Low Comparator Negative
Input 1
16
12
12
8
Copyright © 2023 Texas Instruments Incorporated
100 PZ
20
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
37
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-2. Analog Signals (continued)
38
SIGNAL
NAME
PIN
TYPE
CMP1_LP0
I
CMP1_LP1
DESCRIPTION
100 PZ
80 PN
64 PMQ
64 PM
48 PT
CMPSS-1 Low Comparator Positive
Input 0
17
13
9
9
6
I
CMPSS-1 Low Comparator Positive
Input 1
20
16
12
12
8
CMP1_LP2
I
CMPSS-1 Low Comparator Positive
Input 2
14
10
6
6
4
CMP1_LP3
I
CMPSS-1 Low Comparator Positive
Input 3
14
10
10
7
CMP1_LP4
I
CMPSS-1 Low Comparator Positive
Input 4
22
18
14
14
10
CMP1_LP5
I
CMPSS-1 Low Comparator Positive
Input 5
32, 48
33
CMP2_HN0
I
CMPSS-2 High Comparator Negative
Input 0
40
29
25
25
21
CMP2_HN1
I
CMPSS-2 High Comparator Negative
Input 1
28
22
18
18
14
CMP2_HP0
I
CMPSS-2 High Comparator Positive
Input 0
36
27
23
23
19
CMP2_HP1
I
CMPSS-2 High Comparator Positive
Input 1
28
22
18
18
14
CMP2_HP2
I
CMPSS-2 High Comparator Positive
Input 2
38
28
24
24
20
CMP2_HP3
I
CMPSS-2 High Comparator Positive
Input 3
40
29
25
25
21
CMP2_HP4
I
CMPSS-2 High Comparator Positive
Input 4
41
24
20
20
16
CMP2_HP5
I
CMPSS-2 High Comparator Positive
Input 5
35
17
13
13
9
CMP2_LN0
I
CMPSS-2 Low Comparator Negative
Input 0
40
29
25
25
21
CMP2_LN1
I
CMPSS-2 Low Comparator Negative
Input 1
28
22
18
18
14
CMP2_LP0
I
CMPSS-2 Low Comparator Positive
Input 0
36
27
23
23
19
CMP2_LP1
I
CMPSS-2 Low Comparator Positive
Input 1
28
22
18
18
14
CMP2_LP2
I
CMPSS-2 Low Comparator Positive
Input 2
38
28
24
24
20
CMP2_LP3
I
CMPSS-2 Low Comparator Positive
Input 3
40
29
25
25
21
CMP2_LP4
I
CMPSS-2 Low Comparator Positive
Input 4
41
24
20
20
16
CMP2_LP5
I
CMPSS-2 Low Comparator Positive
Input 5
35
17
13
13
9
CMP3_HN0
I
CMPSS-3 High Comparator Negative
Input 0
16
12
8
8
5
CMP3_HN1
I
CMPSS-3 High Comparator Negative
Input 1
21
17
13
13
9
CMP3_HP0
I
CMPSS-3 High Comparator Positive
Input 0
15
11
7
7
4
CMP3_HP1
I
CMPSS-3 High Comparator Positive
Input 1
21
17
13
13
9
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-2. Analog Signals (continued)
SIGNAL
NAME
PIN
TYPE
CMP3_HP2
I
CMP3_HP3
DESCRIPTION
100 PZ
80 PN
64 PMQ
64 PM
48 PT
CMPSS-3 High Comparator Positive
Input 2
23
19
15
15
11
I
CMPSS-3 High Comparator Positive
Input 3
16
12
8
8
5
CMP3_HP4
I
CMPSS-3 High Comparator Positive
Input 4
19
15
11
11
CMP3_HP5
I
CMPSS-3 High Comparator Positive
Input 5
18
12
8
8
5
CMP3_LN0
I
CMPSS-3 Low Comparator Negative
Input 0
16
12
8
8
5
CMP3_LN1
I
CMPSS-3 Low Comparator Negative
Input 1
21
17
13
13
9
CMP3_LP0
I
CMPSS-3 Low Comparator Positive
Input 0
15
11
7
7
4
CMP3_LP1
I
CMPSS-3 Low Comparator Positive
Input 1
21
17
13
13
9
CMP3_LP2
I
CMPSS-3 Low Comparator Positive
Input 2
23
19
15
15
11
CMP3_LP3
I
CMPSS-3 Low Comparator Positive
Input 3
16
12
8
8
5
CMP3_LP4
I
CMPSS-3 Low Comparator Positive
Input 4
19
15
11
11
CMP3_LP5
I
CMPSS-3 Low Comparator Positive
Input 5
18
12
8
8
5
CMP4_HN0
I
CMPSS-4 High Comparator Negative
Input 0
42
27
23
23
19
CMP4_HN1
I
CMPSS-4 High Comparator Negative
Input 1
31
23
19
19
15
CMP4_HP0
I
CMPSS-4 High Comparator Positive
Input 0
39
28
24
24
20
CMP4_HP1
I
CMPSS-4 High Comparator Positive
Input 1
31
23
19
19
15
CMP4_HP2
I
CMPSS-4 High Comparator Positive
Input 2
29
22
18
18
14
CMP4_HP3
I
CMPSS-4 High Comparator Positive
Input 3
42
27
23
23
19
CMP4_HP4
I
CMPSS-4 High Comparator Positive
Input 4
37
24
20
20
16
CMP4_HP5
I
CMPSS-4 High Comparator Positive
Input 5
30, 49
34
CMP4_LN0
I
CMPSS-4 Low Comparator Negative
Input 0
42
27
23
23
19
CMP4_LN1
I
CMPSS-4 Low Comparator Negative
Input 1
31
23
19
19
15
CMP4_LP0
I
CMPSS-4 Low Comparator Positive
Input 0
39
28
24
24
20
CMP4_LP1
I
CMPSS-4 Low Comparator Positive
Input 1
31
23
19
19
15
CMP4_LP2
I
CMPSS-4 Low Comparator Positive
Input 2
29
22
18
18
14
CMP4_LP3
I
CMPSS-4 Low Comparator Positive
Input 3
42
27
23
23
19
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
39
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-2. Analog Signals (continued)
40
SIGNAL
NAME
PIN
TYPE
CMP4_LP4
I
CMP4_LP5
DESCRIPTION
100 PZ
80 PN
64 PMQ
64 PM
48 PT
CMPSS-4 Low Comparator Positive
Input 4
37
24
20
20
16
I
CMPSS-4 Low Comparator Positive
Input 5
30, 49
34
DACA_OUT
O
Buffered DAC-A Output.
23
19
15
15
11
DACB_OUT
O
Buffered DAC-B Output.
22
18
14
14
10
VDAC
I
Optional external reference voltage for
on-chip DACs.
16
12
8
8
5
VREFHI
I
ADC High Reference. In external
reference mode, externally drive the
high reference voltage onto this pin.
In internal reference mode, a voltage
is driven onto this pin by the device.
In either mode, place at least a 2.2µF capacitor on this pin. This capacitor
should be placed as close to the device
as possible between the VREFHI and
VREFLO pins.
24, 25
20
16
16
12
VREFLO
I
ADC Low Reference
26, 27
21
17
17
13
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
5.3.2 Digital Signals
Table 5-3. Digital Signals
SIGNAL NAME
PIN
TYPE
GPIO
100 PZ
80 PN
64 PMQ
64 PM
48 PT
ADCSOCAO
O
ADC Start of Conversion A for External ADC
8, 33, 53
12, 53, 74
38, 58
32, 47
32, 47
25
ADCSOCBO
O
ADC Start of Conversion B for External ADC
10, 32, 54
13, 64, 93
49, 76
40, 63
40, 63
32
AUXCLKIN
I
Auxiliary Clock Input
29
100
3
1
1
1
DESCRIPTION
CANA_RX
I
CAN-A Receive
3, 5, 12, 18, 30,
8, 12, 51, 53, 63,
33, 35, 49, 53, 59, 68, 76, 89, 91, 92,
61
98
1, 36, 38, 48,
50, 60, 74
30, 32, 39,
41, 49, 61
30, 32, 39,
41, 49, 61
25, 31,
33, 39,
47
CANA_TX
O
CAN-A Transmit
2, 4, 13, 17, 19,
31, 32, 37, 48, 58
7, 50, 55, 61, 64,
67, 69, 75, 77, 99
2, 35, 40, 46,
49, 51, 59, 61
29, 34, 37,
40, 42, 48,
50
29, 34, 37,
40, 42, 48,
50
29, 32,
34, 38,
40
CLB_OUTPUTXBAR1
O
CLB Output X-BAR Output 1
19, 22
69, 83
51, 67
42, 56
42, 56
34
CLB_OUTPUTXBAR2
O
CLB Output X-BAR Output 2
7, 39, 47
6, 84
56, 68
57
46, 57
43
CLB_OUTPUTXBAR3
O
CLB Output X-BAR Output 3
23, 42, 44
81, 85
57, 65, 69
54
54
CLB_OUTPUTXBAR4
O
CLB Output X-BAR Output 4
10, 43, 45
93
54, 73, 76
63
63
CLB_OUTPUTXBAR5
O
CLB Output X-BAR Output 5
5, 8, 52
11, 74, 89
58, 74
47, 61
47, 61
47
CLB_OUTPUTXBAR6
O
CLB Output X-BAR Output 6
4, 15, 53
12, 75, 95
59, 78
48
48
38
CLB_OUTPUTXBAR7
O
CLB Output X-BAR Output 7
1, 14, 56
65, 78, 96
62, 79
51
51
41
CLB_OUTPUTXBAR8
O
CLB Output X-BAR Output 8
0, 6, 57
66, 79, 97
63, 80
52, 64
52, 64
42, 48
EPWM1_A
O
ePWM-1 Output A
0, 30
79, 98
1, 63
52
52
42
EPWM1_B
O
ePWM-1 Output B
1, 31
78, 99
2, 62
51
51
41
EPWM2_A
O
ePWM-2 Output A
2, 41
77, 82
61, 66
50, 55
50, 55
40
EPWM2_B
O
ePWM-2 Output B
3, 40
76, 80
60, 64
49, 53
49, 53
39
EPWM3_A
O
ePWM-3 Output A
4, 14
75, 96
59, 79
48
48
38
EPWM3_B
O
ePWM-3 Output B
5, 15
89, 95
74, 78
61
61
47
EPWM4_A
O
ePWM-4 Output A
6, 22
83, 97
67, 80
56, 64
56, 64
48
EPWM4_B
O
ePWM-4 Output B
7, 23
81, 84
65, 68
54, 57
54, 57
43
EPWM5_A
O
ePWM-5 Output A
8, 16
54, 74
39, 58
33, 47
33, 47
26
EPWM5_B
O
ePWM-5 Output B
9, 17, 35
55, 63, 90
40, 48, 75
34, 39, 62
34, 39, 62
31
EPWM6_A
O
ePWM-6 Output A
10, 18
68, 93
50, 76
41, 63
41, 63
33
EPWM6_B
O
ePWM-6 Output B
11, 19
52, 69
37, 51
31, 42
31, 42
34
EPWM7_A
O
ePWM-7 Output A
12, 28
1, 51
4, 36
2, 30
2, 30
2
EPWM7_B
O
ePWM-7 Output B
13, 29
50, 100
3, 35
1, 29
1, 29
1
EPWM8_A
O
ePWM-8 Output A
14, 24
56, 96
41, 79
35
35
27
EPWM8_B
O
ePWM-8 Output B
15, 32
64, 95
49, 78
40
40
32
1, 9, 48, 57, 63,
65, 80, 85, 93, 97
4, 33, 42, 48,
64, 69, 76, 80
2, 39, 53,
63, 64
2, 39, 53,
63, 64
2, 31,
48
EQEP1_A
I
eQEP-1 Input A
6, 10, 20, 25, 28,
35, 40, 44, 50, 56
EQEP1_B
I
eQEP-1 Input B
7, 11, 21, 29, 37,
41, 51, 57
10, 49, 52, 61, 66,
82, 84, 100
3, 34, 37, 46,
66, 68
1, 31, 37,
55, 57
1, 31, 37,
55, 57
1, 29,
43
EQEP1_INDEX
I/O
eQEP-1 Index
0, 9, 13, 17, 23,
31, 39, 43, 53, 59
12, 50, 55, 79, 81,
90, 92, 99
2, 35, 40, 54,
56, 63, 65, 75
29, 34, 52,
54, 62
29, 34, 46,
52, 54, 62
42
8, 12, 16, 22, 30,
42, 52, 58
11, 51, 54, 67, 74,
83, 98
1, 36, 39, 57,
58, 67
30, 33, 47,
56
30, 33, 47,
56
26
13, 52, 56, 68, 96
37, 41, 50, 79
31, 35, 41
31, 35, 41
27, 33
32, 33, 42
32, 33, 42
25, 26,
34
EQEP1_STROBE
I/O
eQEP-1 Strobe
EQEP2_A
I
eQEP-2 Input A
11, 14, 18, 24, 54
eQEP-2 Input B
15, 16, 19, 25, 33, 43, 53, 54, 57, 69, 38, 39, 42, 51,
55
95
78
EQEP2_B
I
EQEP2_INDEX
I/O
eQEP-2 Index
26, 29, 39, 57
58, 66, 100
3, 43, 56
1
1, 46
1
EQEP2_STROBE
I/O
eQEP-2 Strobe
4, 27, 28, 56
1, 59, 65, 75
4, 44, 59
2, 48
2, 48
2, 38
ERRORSTS
O
Error Status Output. This signal requires an external
pulldown.
24, 28, 29, 55
1, 43, 56, 100
3, 4, 41
1, 2, 35
1, 2, 35
1, 2, 27
FSIRXA_CLK
I
FSIRX-A Input Clock
0, 4, 13, 30, 33,
39, 54, 57
13, 50, 53, 66, 75,
79, 98
1, 35, 38, 56,
59, 63
29, 32, 48,
52
29, 32, 46,
48, 52
25, 38,
42
FSIRXA_D0
I
FSIRX-A Primary Data Input
3, 12, 32, 40, 44,
52, 58
11, 51, 64, 67, 76,
80, 85
36, 49, 60, 64,
69
30, 40, 49,
53
30, 40, 49,
53
32, 39
12, 52, 65, 77, 82,
99
2, 37, 61, 66
31, 50, 55
31, 50, 55
40
FSIRXA_D1
I
FSIRX-A Optional Additional Data Input
2, 11, 31, 41, 53,
56
FSITXA_CLK
O
FSITX-A Output Clock
7, 10, 27, 44, 51
10, 59, 84, 85, 93
44, 68, 69, 76
57, 63
57, 63
43
FSITXA_D0
O
FSITX-A Primary Data Output
6, 9, 26, 45, 49
8, 58, 90, 97
43, 73, 75, 80
62, 64
62, 64
48
9, 57, 74, 89, 97
6, 42, 58, 74,
80
47, 61, 64
47, 61, 64
47, 48
FSITXA_D1
O
FSITX-A Optional Additional Data Output
Copyright © 2023 Texas Instruments Incorporated
5, 6, 8, 25, 46, 50
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
41
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-3. Digital Signals (continued)
42
SIGNAL NAME
PIN
TYPE
FSITXA_TDM_CLK
I
FSITXA_TDM_D0
I
FSITXA_TDM_D1
I
FSITX-A Time Division Multiplexed Additional Data
Input
GPIO0
I/O
GPIO1
I/O
GPIO2
DESCRIPTION
GPIO
100 PZ
80 PN
64 PMQ
64 PM
48 PT
FSITX-A Time Division Multiplexed Clock Input
8, 18, 47
6, 68, 74
50, 58
41, 47
41, 47
33
FSITX-A Time Division Multiplexed Data Input
10, 19
69, 93
51, 76
42, 63
42, 63
34
1, 54, 59
13, 78, 92
62
51
51
41
General-Purpose Input Output 0
0
79
63
52
52
42
General-Purpose Input Output 1
1
78
62
51
51
41
I/O
General-Purpose Input Output 2
2
77
61
50
50
40
GPIO3
I/O
General-Purpose Input Output 3
3
76
60
49
49
39
GPIO4
I/O
General-Purpose Input Output 4
4
75
59
48
48
38
GPIO5
I/O
General-Purpose Input Output 5
5
89
74
61
61
47
GPIO6
I/O
General-Purpose Input Output 6
6
97
80
64
64
48
GPIO7
I/O
General-Purpose Input Output 7
7
84
68
57
57
43
GPIO8
I/O
General-Purpose Input Output 8
8
74
58
47
47
GPIO9
I/O
General-Purpose Input Output 9
9
90
75
62
62
GPIO10
I/O
General-Purpose Input Output 10
10
93
76
63
63
GPIO11
I/O
General-Purpose Input Output 11
11
52
37
31
31
GPIO12
I/O
General-Purpose Input Output 12
12
51
36
30
30
GPIO13
I/O
General-Purpose Input Output 13
13
50
35
29
29
GPIO14
I/O
General-Purpose Input Output 14
14
96
79
GPIO15
I/O
General-Purpose Input Output 15
15
95
78
GPIO16
I/O
General-Purpose Input Output 16
16
54
39
33
33
GPIO17
I/O
General-Purpose Input Output 17
17
55
40
34
34
GPIO18
I/O
General-Purpose Input Output 18
18
68
50
41
41
33
GPIO19
I/O
General-Purpose Input Output 19
19
69
51
42
42
34
GPIO20
I/O
General-Purpose Input Output 20
20
48
33
GPIO21
I/O
General-Purpose Input Output 21
21
49
34
GPIO22
I/O
General-Purpose Input Output 22
22
83
67
56
56
GPIO23
I/O
General-Purpose Input Output 23
23
81
65
54
54
GPIO24
I/O
General-Purpose Input Output 24
24
56
41
35
35
27
GPIO25
I/O
General-Purpose Input Output 25
25
57
42
GPIO26
I/O
General-Purpose Input Output 26
26
58
43
GPIO27
I/O
General-Purpose Input Output 27
27
59
44
GPIO28
I/O
General-Purpose Input Output 28
28
1
4
2
2
2
GPIO29
I/O
General-Purpose Input Output 29
29
100
3
1
1
1
GPIO30
I/O
General-Purpose Input Output 30
30
98
1
GPIO31
I/O
General-Purpose Input Output 31
31
99
2
GPIO32
I/O
General-Purpose Input Output 32
32
64
49
40
40
32
GPIO33
I/O
General-Purpose Input Output 33
33
53
38
32
32
25
GPIO34
I/O
General-Purpose Input Output 34
34
94
77
GPIO35
I/O
General-Purpose Input Output 35
35
63
48
39
39
31
GPIO37
I/O
General-Purpose Input Output 37
37
61
46
37
37
29
GPIO39
I/O
General-Purpose Input Output 39
39
GPIO40
I/O
General-Purpose Input Output 40
40
80
64
53
53
GPIO41
I/O
General-Purpose Input Output 41
41
82
66
55
55
GPIO42
I/O
General-Purpose Input Output 42
42
GPIO43
I/O
General-Purpose Input Output 43
43
GPIO44
I/O
General-Purpose Input Output 44
44
GPIO45
I/O
General-Purpose Input Output 45
45
GPIO46
I/O
General-Purpose Input Output 46
46
GPIO47
I/O
General-Purpose Input Output 47
47
6
GPIO48
I/O
General-Purpose Input Output 48
48
7
GPIO49
I/O
General-Purpose Input Output 49
49
8
GPIO50
I/O
General-Purpose Input Output 50
50
9
GPIO51
I/O
General-Purpose Input Output 51
51
10
GPIO52
I/O
General-Purpose Input Output 52
52
11
Submit Document Feedback
56
26
46
57
54
85
69
73
6
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-3. Digital Signals (continued)
SIGNAL NAME
PIN
TYPE
GPIO53
I/O
GPIO54
I/O
GPIO55
DESCRIPTION
GPIO
100 PZ
80 PN
64 PMQ
64 PM
General-Purpose Input Output 53
53
12
General-Purpose Input Output 54
54
13
I/O
General-Purpose Input Output 55
55
43
GPIO56
I/O
General-Purpose Input Output 56
56
65
GPIO57
I/O
General-Purpose Input Output 57
57
66
GPIO58
I/O
General-Purpose Input Output 58
58
67
GPIO59
I/O
General-Purpose Input Output 59
59
92
GPIO60
I/O
General-Purpose Input Output 60
60
44
GPIO61
I/O
General-Purpose Input Output 61
61
91
HIC_A0
I
HIC Address 0
8, 55, 60
HIC_A1
I
HIC Address 1
HIC_A2
I
HIC_A3
I
HIC_A4
48 PT
14, 43, 44, 74
10, 58
6, 47
6, 47
4
2, 26
15, 58, 77
11, 43, 61
7, 50
7, 50
4, 40
HIC Address 2
1
16, 78
12, 62
8, 51
8, 51
5, 41
HIC Address 3
23
17, 81
13, 65
9, 54
9, 54
6
I
HIC Address 4
27, 41
59, 82
14, 44, 66
10, 55
10, 55
7
HIC_A5
I
HIC Address 5
22
19, 83
15, 67
11, 56
11, 56
HIC_A6
I
HIC Address 6
7, 42, 47
6, 20, 84
16, 57, 68
12, 57
12, 57
8, 43
HIC_A7
I
HIC Address 7
5, 43, 48
7, 21, 89
17, 54, 74
13, 61
13, 61
9, 47
HIC_BASESEL0
I
HIC Base address range select 0
9, 25
22, 57, 90
18, 42, 75
14, 62
14, 62
10
HIC_BASESEL1
I
HIC Base address range select 1
0
23, 79
19, 63
15, 52
15, 52
11, 42
HIC_BASESEL2
I
HIC Base address range select 2
4
40, 75
29, 59
25, 48
25, 48
21, 38
HIC_D0
I/O
HIC Data 0
26, 33
53, 58
38, 43
32
32
25
HIC_D1
I/O
HIC Data 1
16, 27
54, 59
39, 44
33
33
26
HIC_D2
I/O
HIC Data 2
17, 42, 49
8, 55
40, 57
34
34
HIC_D3
I/O
HIC Data 3
24, 43, 50
9, 56
41, 54
35
35
27
HIC_D4
I/O
HIC Data 4
3, 5, 57
66, 76, 89
60, 74
49, 61
49, 61
39, 47
HIC_D5
I/O
HIC Data 5
13, 40, 44
50, 80, 85
35, 64, 69
29, 53
29, 53
HIC_D6
I/O
HIC Data 6
11, 45, 51, 56
10, 52, 65
37, 73
31
31
HIC_D7
I/O
HIC Data 7
0, 39, 44
79, 85
56, 63, 69
52
46, 52
HIC_D8
I/O
HIC Data 8
8, 30
74, 98
1, 58
47
47
42
HIC_D9
I/O
HIC Data 9
2, 34
77, 94
61, 77
50
50
40
HIC_D10
I/O
HIC Data 10
1, 31
78, 99
2, 62
51
51
41
HIC_D11
I/O
HIC Data 11
13, 23
50, 81
35, 65
29, 54
29, 54
HIC_D12
I/O
HIC Data 12
15, 41
82, 95
66, 78
55
55
HIC_D13
I/O
HIC Data 13
12, 22
51, 83
36, 67
30, 56
30, 56
HIC_D14
I/O
HIC Data 14
6, 7
84, 97
68, 80
57, 64
57, 64
HIC_D15
I/O
HIC Data 15
5, 14
89, 96
74, 79
61
61
47
HIC_INT
O
HIC Device interrupt to host
12, 18, 32
51, 64, 68
36, 49, 50
30, 40, 41
30, 40, 41
32, 33
HIC_NBE0
I
HIC Byte enable 0
11, 19
38, 52, 69
28, 37, 51
24, 31, 42
24, 31, 42
20, 34
HIC_NBE1
I
HIC Byte enable 1
6, 34, 40
37, 80, 94, 97
24, 64, 77, 80
20, 53, 64
20, 53, 64
16, 48
HIC_NCS
I
HIC Chip select input
29
28, 100
3, 22
1, 18
1, 18
1, 14
2, 19, 49
2, 15,
39
43, 48
HIC_NOE
O
HIC Output enable for data bus
3, 28
1, 31, 76
4, 23, 60
2, 19, 49
HIC_NRDY
O
HIC Ready from device to host
9, 37, 58
61, 67, 90
46, 75
37, 62
37, 62
29
6, 27, 48, 59,
76
23, 39, 48,
63
23, 39, 48,
63
19, 31,
38
HIC_NWE
I
HIC Data Write enable from host
4, 10, 35, 46, 52
11, 36, 63, 75, 93
I2CA_SCL
I/OD
I2C-A Open-Drain Bidirectional Clock
1, 8, 18, 27, 33,
37, 43, 57
53, 59, 61, 66, 68, 38, 44, 46, 50,
74, 78
54, 58, 62
32, 37, 41,
47, 51
32, 37, 41,
47, 51
25, 29,
33, 41
I2CA_SDA
I/OD
I2C-A Open-Drain Bidirectional Data
0, 10, 19, 26, 32,
35, 42, 56
58, 63, 64, 65, 69, 43, 48, 49, 51,
79, 93
57, 63, 76
39, 40, 42,
52, 63
39, 40, 42,
52, 63
31, 32,
34, 42
I2CB_SCL
I/OD
I2C-B Open-Drain Bidirectional Clock
3, 9, 15, 29, 51
1, 49, 62
1, 49, 62
1, 39
I2CB_SDA
I/OD
I2C-B Open-Drain Bidirectional Data
3, 60, 75, 78
2, 14, 28, 34, 50
1, 9, 77, 94, 96
4, 61, 77, 79
2, 50
2, 50
2, 40
6, 8, 53, 63, 81,
92, 100
3, 38, 48, 57,
65
1, 32, 39,
54
1, 32, 39,
54
1, 25,
31
1, 61, 64, 67, 83
4, 6, 46, 49,
67
2, 37, 40,
56
2, 37, 40,
56
2, 29,
32
LINA_RX
I
LIN-A Receive
23, 29, 33, 35, 42,
47, 49, 59
LINA_TX
O
LIN-A Transmit
22, 28, 32, 37, 46,
58
Copyright © 2023 Texas Instruments Incorporated
10, 76, 90, 95,
100
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
43
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-3. Digital Signals (continued)
SIGNAL NAME
PIN
TYPE
LINB_RX
I
LIN-B Receive
LINB_TX
O
GPIO
64 PMQ
64 PM
48 PT
43, 50, 52, 69, 81, 35, 37, 51, 65,
82, 90, 95
66, 75, 78
29, 31, 42,
54, 55, 62
29, 31, 42,
54, 55, 62
34
LIN-B Transmit
10, 12, 14, 18, 22, 13, 51, 56, 68, 80, 36, 41, 50, 64,
24, 40, 44, 54
83, 85, 93, 96
67, 69, 76, 79
30, 35, 41,
53, 56, 63
30, 35, 41,
53, 56, 63
27, 33
6, 10, 49, 51, 66,
79, 89, 91, 98
1, 34, 36, 56,
63, 74
30, 52, 61
30, 46, 52,
61
42, 47
9, 44, 48, 50, 65,
75, 78, 99
2, 6, 33, 35,
59, 62
29, 48, 51
29, 48, 51
38, 41
9, 11, 13, 15, 19,
23, 41, 55
100 PZ
80 PN
MCAN_RX
I
CAN/CAN FD Receive
0, 5, 12, 21, 30,
39, 47, 51, 57, 61
MCAN_TX
O
CAN/CAN FD Transmit
1, 4, 13, 20, 31,
46, 50, 56, 60
OUTPUTXBAR1
O
Output X-BAR Output 1
2, 24, 34, 58
56, 67, 77, 94
41, 61, 77
35, 50
35, 50
27, 40
OUTPUTXBAR2
O
Output X-BAR Output 2
3, 25, 37, 54, 59
13, 57, 61, 76, 92
42, 46, 60
37, 49
37, 49
29, 39
Output X-BAR Output 3
4, 5, 14, 26, 48,
55, 60
7, 43, 44, 58, 75,
89, 96
43, 59, 74, 79
48, 61
48, 61
38, 47
8, 53, 59, 91, 95,
97
38, 44, 78, 80
32, 64
32, 64
25, 48
2, 43
OUTPUTXBAR3
O
OUTPUTXBAR4
O
Output X-BAR Output 4
6, 15, 27, 33, 49,
61
OUTPUTXBAR5
O
Output X-BAR Output 5
7, 28, 42
1, 84
4, 57, 68
2, 57
2, 57
OUTPUTXBAR6
O
Output X-BAR Output 6
9, 29, 43
90, 100
3, 54, 75
1, 62
1, 62
1
OUTPUTXBAR7
O
Output X-BAR Output 7
11, 16, 30, 44
52, 54, 85, 98
1, 37, 39, 69
31, 33
31, 33
26
Output X-BAR Output 8
OUTPUTXBAR8
O
PMBUSA_ALERT
I/OD
17, 31, 45
55, 99
2, 40, 73
34
34
PMBus-A Open-Drain Bidirectional Alert Signal
13, 19, 27, 37, 43,
45
50, 59, 61, 69
35, 44, 46, 51,
54, 73
29, 37, 42
29, 37, 42
29, 34
PMBUSA_CTL
I/O
PMBus-A Control Signal - Slave Input/Master Output
12, 18, 26, 35, 42,
44
51, 58, 63, 68, 85
36, 43, 48, 50,
57, 69
30, 39, 41
30, 39, 41
31, 33
PMBUSA_SCL
I/OD
PMBus-A Open-Drain Bidirectional Clock
3, 15, 16, 24, 35,
41, 47
6, 54, 56, 63, 76,
82, 95
39, 41, 48, 60,
66, 78
33, 35, 39,
49, 55
33, 35, 39,
49, 55
26, 27,
31, 39
PMBUSA_SDA
I/OD
PMBus-A Open-Drain Bidirectional Data
2, 14, 17, 25, 32,
34, 40, 44, 46, 48
7, 55, 57, 64, 77,
80, 85, 94, 96
6, 40, 42, 49,
61, 64, 69, 77,
79
34, 40, 50,
53
34, 40, 50,
53
32, 40
SCIA_RX
I
SCI-A Receive Data
3, 9, 17, 25, 28,
35, 49
1, 8, 55, 57, 63,
76, 90
4, 40, 42, 48,
60, 75
2, 34, 39,
49, 62
2, 34, 39,
49, 62
2, 31,
39
SCIA_TX
O
SCI-A Transmit Data
2, 8, 16, 24, 29,
37, 48
7, 54, 56, 61, 74,
77, 100
3, 39, 41, 46,
58, 61
1, 33, 35,
37, 47, 50
1, 33, 35,
37, 47, 50
1, 26,
27, 29,
40
SCIB_RX
I
SCI-B Receive Data
11, 13, 15, 19, 23, 50, 52, 66, 69, 81, 35, 37, 51, 65,
41, 57
82, 95
66, 78
29, 31, 42,
54, 55
29, 31, 42,
54, 55
34
SCIB_TX
O
SCI-B Transmit Data
9, 10, 12, 14, 18,
22, 40, 56
30, 41, 53,
56, 62, 63
30, 41, 53,
56, 62, 63
33
SD1_C1
I
SDFM-1 Channel 1 Clock Input
17, 33, 49, 53
8, 12, 23, 53, 55
19, 38, 40
15, 32, 34
15, 32, 34
11, 25
SD1_C2
I
SDFM-1 Channel 2 Clock Input
19, 33, 51, 54
10, 13, 31, 53, 69
23, 38, 51
19, 32, 42
19, 32, 42
15, 25,
34
SD1_C3
I
SDFM-1 Channel 3 Clock Input
21, 53, 55
12, 38, 43, 49
28, 34
24
24
20
SD1_C4
I
SDFM-1 Channel 4 Clock Input
23, 55, 56
40, 43, 65, 81
29, 65
25, 54
25, 54
21
SD1_D1
I
SDFM-1 Channel 1 Data Input
16, 48
7, 19, 54
15, 39
11, 33
11, 33
26
12, 40, 41
8, 32,
33
51, 65, 68, 80, 83, 36, 50, 64, 67,
90, 93, 96
75, 76, 79
SD1_D2
I
SDFM-1 Channel 2 Data Input
18, 32, 50
SD1_D3
I
SDFM-1 Channel 3 Data Input
SD1_D4
I
SDFM-1 Channel 4 Data Input
SD2_C1
I
SDFM-2 Channel 1 Clock Input
SD2_C2
I
SDFM-2 Channel 2 Clock Input
27, 58, 59
36, 59, 67, 92
27, 44
23
23
19
SD2_C3
I
SDFM-2 Channel 3 Clock Input
29, 45, 59, 61
28, 91, 92, 100
3, 22, 73
1, 18
1, 18
1, 14
SD2_C4
I
SDFM-2 Channel 4 Clock Input
31, 46, 60
32, 44, 99
2, 6
SD2_D1
I
SDFM-2 Channel 1 Data Input
24, 49, 56
8, 56, 65
14, 41
10, 35
10, 35
7, 27
SD2_D2
I
SDFM-2 Channel 2 Data Input
26, 50, 58
9, 16, 58, 67
12, 43
8
8
5
SD2_D3
I
SDFM-2 Channel 3 Data Input
28, 43, 51, 60
1, 10, 17, 44
4, 13, 54
2, 9
2, 9
2, 6
SD2_D4
I
SDFM-2 Channel 4 Data Input
30, 47, 52
6, 11, 15, 98
1, 11
9, 20, 64, 68
16, 49, 50
12, 40, 41
20, 52
11, 21, 48
17, 33
13
13
9
22, 54
13, 22, 83
18, 67
14, 56
14, 56
10
25, 35, 57
14, 37, 57, 63, 66
10, 24, 42, 48
6, 20, 39
6, 20, 39
4, 16,
31
7
7
4
30, 41, 49,
62
33, 39
26, 40
SPIA_CLK
I/O
SPI-A Clock
3, 9, 12, 18, 56
51, 65, 68, 76, 90
36, 50, 60, 75
30, 41, 49,
62
SPIA_SIMO
I/O
SPI-A Slave In, Master Out (SIMO)
2, 8, 11, 16, 54
13, 52, 54, 74, 77
37, 39, 58, 61
31, 33, 47,
50
31, 33, 47,
50
SPIA_SOMI
I/O
SPI-A Slave Out, Master In (SOMI)
1, 10, 13, 17, 55
43, 50, 55, 78, 93
35, 40, 62, 76
29, 34, 51,
63
29, 34, 51,
63
41
37, 51, 63, 74
31, 42, 52,
61
31, 42, 52,
61
34, 42,
47
SPIA_STE
44
DESCRIPTION
I/O
SPI-A Slave Transmit Enable (STE)
Submit Document Feedback
0, 5, 11, 19, 57
52, 66, 69, 79, 89
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-3. Digital Signals (continued)
SIGNAL NAME
PIN
TYPE
SPIB_CLK
I/O
SPIB_SIMO
I/O
DESCRIPTION
GPIO
100 PZ
80 PN
64 PMQ
64 PM
48 PT
SPI-B Clock
4, 14, 22, 26, 28,
32, 52, 58
1, 11, 58, 64, 67,
75, 83, 96
4, 43, 49, 59,
67, 79
2, 40, 48,
56
2, 40, 48,
56
2, 32,
38
SPI-B Slave In, Master Out (SIMO)
7, 20, 24, 30, 40,
50, 56, 60
9, 44, 48, 56, 65,
80, 84, 98
1, 33, 41, 64,
68
35, 53, 57
35, 53, 57
27, 43
10, 49, 54, 57, 66,
82, 91, 97, 99
2, 34, 39, 42,
66, 80
33, 55, 64
33, 55, 64
26, 48
3, 38, 44, 65,
78
1, 32, 54
1, 32, 54
1, 25
SPIB_SOMI
I/O
SPI-B Slave Out, Master In (SOMI)
6, 16, 21, 25, 31,
41, 51, 57, 61
SPIB_STE
I/O
SPI-B Slave Transmit Enable (STE)
15, 23, 27, 29, 33, 12, 53, 59, 81, 92,
53, 59
95, 100
SYNCOUT
O
External ePWM Synchronization Pulse
6, 39, 52
11, 97
56, 80
64
46, 64
48
I
JTAG Test Data Input (TDI) - TDI is the default mux
selection for the pin. The internal pullup is disabled by
default. The internal pullup should be enabled or an
external pullup added on the board if this pin is used
as JTAG TDI to avoid a floating input.
35
63
48
39
39
31
O
JTAG Test Data Output (TDO) - TDO is the default
mux selection for the pin. The internal pullup is
disabled by default. The TDO function will be in a tristate condition when there is no JTAG activity, leaving
this pin floating; the internal pullup should be enabled
or an external pullup added on the board to avoid a
floating GPIO input.
37
61
46
37
37
29
X1
I/O
Crystal oscillator input or single-ended clock input.
The device initialization software must configure this
pin before the crystal oscillator is enabled. To use this
oscillator, a quartz crystal circuit must be connected
to X1 and X2. This pin can also be used to feed a
single-ended 3.3-V level clock. See the XTAL section
for usage details.
19
69
51
42
42
34
X2
I/O
Crystal oscillator output.
18
68
50
41
41
33
O
External Clock Output. This pin outputs a divideddown version of a chosen clock signal from within the
device.
16, 18
54, 68
39, 50
33, 41
33, 41
26, 33
TDI
TDO
XCLKOUT
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
45
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
5.3.3 Power and Ground
Table 5-4. Power and Ground
SIGNAL
NAME
PIN
TYPE
DESCRIPTION
100 PZ
80 PN
64 PMQ
64 PM
48 PT
VDD
1.2-V Digital Logic Power Pins. See the Power
Management Module (PMM) section for usage details.
4, 46, 71, 87
8, 31, 53, 71
4, 27, 44, 59
4, 27, 44, 59
23, 36, 45
VDDA
3.3-V Analog Power Pins. Place a minimum 2.2-µF
decoupling capacitor on each pin. See the Power
Management Module (PMM) section for usage details.
34
26
22
22
18
VDDIO
3.3-V Digital I/O Power Pins. See the Power
Management Module (PMM) section for usage details.
3, 47, 70, 88
7, 32, 52, 72
28, 43, 60
28, 43, 60
24, 35, 46
VREGENZ
Internal voltage regulator enable with internal
pulldown. Tie low to VSS to enable internal VREG.
Tie high to VDDIO to use an external supply. See the
Power Management Module (PMM) section for usage
details.
73
46
I
46
VSS
Digital Ground
5, 45, 72, 86
9, 30, 55, 70
5, 26, 45, 58
5, 26, 45, 58
22, 37, 44
VSSA
Analog Ground
33
25
21
21
17
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
5.3.4 Test, JTAG, and Reset
Table 5-5. Test, JTAG, and Reset
SIGNAL
NAME
PIN
TYPE
TCK
I
TMS
XRSn
DESCRIPTION
100 PZ
80 PN
64 PMQ
64 PM
48 PT
JTAG test clock with internal pullup.
60
45
36
36
28
I/O
JTAG test-mode select (TMS) with
internal pullup. This serial control input
is clocked into the TAP controller on the
rising edge of TCK. This device does not
have a TRSTn pin. An external pullup
resistor (recommended 2.2 kΩ) on the
TMS pin to VDDIO should be placed on
the board to keep JTAG in reset during
normal operation.
62
47
38
38
30
I/OD
Device Reset (in) and Watchdog Reset
(out). During a power-on condition, this
pin is driven low by the device. An
external circuit may also drive this pin
to assert a device reset. This pin is
also driven low by the MCU when a
watchdog reset occurs. During watchdog
reset, the XRSn pin is driven low for the
watchdog reset duration of 512 OSCCLK
cycles. A resistor between 2.2 kΩ and
10 kΩ should be placed between XRSn
and VDDIO. If a capacitor is placed
between XRSn and VSS for noise
filtering, it should be 100 nF or smaller.
These values will allow the watchdog
to properly drive the XRSn pin to VOL
within 512 OSCCLK cycles when the
watchdog reset is asserted. This pin is
an open-drain output with an internal
pullup. If this pin is driven by an external
device, it should be done using an opendrain device.
2
5
3
3
3
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
47
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
5.4 Pin Multiplexing
5.4.1 GPIO Muxed Pins
Table 5-6 lists the GPIO muxed pins. The default mode for each GPIO pin is the GPIO function, except GPIO35
and GPIO37, which default to TDI and TDO, respectively. Secondary functions can be selected by setting both
the GPyGMUXn.GPIOz and GPyMUXn.GPIOz register bits. The GPyGMUXn register should be configured
before the GPyMUXn to avoid transient pulses on GPIOs from alternate mux selections. Columns that are not
shown and blank cells are reserved GPIO Mux settings. GPIO ALT functions cannot be configured with the
GPyMUXn and GPyGMUXn registers. These are special functions that need to be configured from the module.
Note
GPIO36 and GPIO38 do not exist on this device. GPIO62 to GPIO63 exist but are not pinned out on
any packages. Boot ROM enables pullups on GPIO62 to GPIO63. For more details, see Section 5.5.
48
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
5.4.1.1 GPIO Muxed Pins
Table 5-6. GPIO Muxed Pins
0, 4, 8,
12
1
2
3
5
6
7
9
11
13
14
15
MCAN_RX
CLB_OUTPUTXBA
R8
EQEP1_INDE
X
HIC_D7
HIC_BASESEL1
MCAN_TX
CLB_OUTPUTXBA
R7
HIC_A2
FSITXA_TDM_D1
HIC_D10
HIC_D9
GPIO0
EPWM1_A
I2CA_SDA
SPIA_STE
GPIO1
EPWM1_B
I2CA_SCL
SPIA_SOMI
GPIO2
EPWM2_A
OUTPUTXBAR1
PMBUSA_SDA
SPIA_SIMO
SCIA_TX
FSIRXA_D1
I2CB_SDA
HIC_A1
CANA_TX
GPIO3
EPWM2_B
OUTPUTXBAR2
PMBUSA_SCL
SPIA_CLK
SCIA_RX
FSIRXA_D0
I2CB_SCL
HIC_NOE
CANA_RX
GPIO4
EPWM3_A
MCAN_TX
OUTPUTXBAR3
CANA_TX
SPIB_CLK
EQEP2_STRO
BE
FSIRXA_CLK
GPIO5
EPWM3_B
OUTPUTXBA
R3
MCAN_RX
CANA_RX
SPIA_STE
FSITXA_D1
CLB_OUTPUTXBA
R5
GPIO6
EPWM4_A
SYNCOUT
EQEP1_A
SPIB_SOMI
FSITXA_D0
GPIO7
EPWM4_B
OUTPUTXBA
R5
EQEP1_B
SPIB_SIMO
FSITXA_CLK
CLB_OUTPUTXBA
R2
GPIO8
EPWM5_A
ADCSOCAO
EQEP1_STROBE
SCIA_TX
SPIA_SIMO
I2CA_SCL
FSITXA_D1
CLB_OUTPUTXBA
R5
HIC_A0
FSITXA_TDM_CL
K
HIC_D8
GPIO9
EPWM5_B
OUTPUTXBA
R6
EQEP1_INDEX
SCIA_RX
SPIA_CLK
FSITXA_D0
LINB_RX
HIC_BASESEL
0
I2CB_SCL
HIC_NRDY
GPIO10
EPWM6_A
ADCSOCBO
EQEP1_A
SCIB_TX
SPIA_SOMI
I2CA_SDA
FSITXA_CLK
LINB_TX
HIC_NWE
FSITXA_TDM_D0
CLB_OUTPUTXBA
R4
GPIO11
EPWM6_B
OUTPUTXBA
R7
EQEP1_B
SCIB_RX
SPIA_STE
FSIRXA_D1
LINB_RX
EQEP2_A
SPIA_SIMO
HIC_D6
HIC_NBE0
GPIO12
EPWM7_A
MCAN_RX
EQEP1_STROBE
SCIB_TX
PMBUSA_CTL
FSIRXA_D0
LINB_TX
SPIA_CLK
CANA_RX
HIC_D13
HIC_INT
GPIO13
EPWM7_B
MCAN_TX
EQEP1_INDEX
SCIB_RX
PMBUSA_ALERT
FSIRXA_CLK
LINB_RX
SPIA_SOMI
CANA_TX
HIC_D11
HIC_D5
I2CB_SDA
OUTPUTXBAR
3
EPWM3_A
CLB_OUTPUTXBA
R7
HIC_D15
I2CB_SCL
OUTPUTXBAR
4
PMBUSA_SCL
SPIB_STE
EQEP2_B
LINB_RX
EPWM3_B
CLB_OUTPUTXBA
R6
HIC_D12
EQEP2_B
SPIB_SOMI
HIC_D1
GPIO14
EPWM8_A
OUTPUTXBAR2
OUTPUTXBAR4
SCIB_TX
SCIB_TX
SCIB_RX
PMBUSA_SDA
FSIRXA_CLK
10
SPIB_CLK
CLB_OUTPUTXBA HIC_BASESEL
R6
2
FSITXA_D1
EQEP2_A
HIC_D4
HIC_NWE
HIC_A7
HIC_D4
HIC_D15
HIC_NBE1
CLB_OUTPUTXBA
R8
HIC_D14
HIC_A6
LINB_TX
ALT
HIC_D14
GPIO15
EPWM8_B
GPIO16
SPIA_SIMO
OUTPUTXBA
R7
EPWM5_A
SCIA_TX
SD1_D1
EQEP1_STRO
BE
PMBUSA_SCL
XCLKOUT
GPIO17
SPIA_SOMI
OUTPUTXBA
R8
EPWM5_B
SCIA_RX
SD1_C1
EQEP1_INDE
X
PMBUSA_SDA
CANA_TX
GPIO18
SPIA_CLK
SCIB_TX
CANA_RX
EPWM6_A
I2CA_SCL
SD1_D2
EQEP2_A
PMBUSA_CTL
XCLKOUT
LINB_TX
FSITXA_TDM_CL
K
HIC_INT
X2
GPIO19
SPIA_STE
SCIB_RX
CANA_TX
EPWM6_B
I2CA_SDA
SD1_C2
EQEP2_B
PMBUSA_ALERT
CLB_OUTPUTXBA
R1
LINB_RX
FSITXA_TDM_D0
HIC_NBE0
X1
GPIO20
EQEP1_A
SPIB_SIMO
SD1_D3
MCAN_TX
GPIO21
EQEP1_B
SPIB_SOMI
SD1_C3
MCAN_RX
GPIO22
EQEP1_STRO
BE
SPIB_CLK
SD1_D4
LINA_TX
CLB_OUTPUTXBA
R1
LINB_TX
HIC_A5
EPWM4_A
HIC_D13
GPIO23
EQEP1_INDE
X
LINB_RX
HIC_A3
EPWM4_B
HIC_D11
GPIO24
OUTPUTXBAR
1
SCIA_TX
ERRORSTS
SCIB_TX
SCIB_RX
EQEP2_A
Copyright © 2023 Texas Instruments Incorporated
EPWM8_A
SPIB_STE
SD1_C4
LINA_RX
CLB_OUTPUTXBA
R3
SPIB_SIMO
SD2_D1
LINB_TX
PMBUSA_SCL
HIC_D2
HIC_D3
Submit Document Feedback
49
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036CQ1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-6. GPIO Muxed Pins (continued)
0, 4, 8,
12
1
2
GPIO25
OUTPUTXBAR
2
GPIO26
OUTPUTXBAR
3
OUTPUTXBAR
GPIO27
4
3
5
6
7
9
10
11
13
14
15
EQEP2_B
EQEP1_A
SPIB_SOMI
SD2_C1
FSITXA_D1
PMBUSA_SDA
SCIA_RX
HIC_BASESEL0
EQEP2_INDEX
OUTPUTXBAR3
SPIB_CLK
SD2_D2
FSITXA_D0
PMBUSA_CTL
I2CA_SDA
HIC_D0
HIC_A1
EQEP2_STROBE
OUTPUTXBAR4
SPIB_STE
SD2_C2
FSITXA_CLK
PMBUSA_ALERT
I2CA_SCL
HIC_D1
HIC_A4
GPIO28
SCIA_RX
EPWM7_A
OUTPUTXBAR5
EQEP1_A
SD2_D3
EQEP2_STRO
BE
LINA_TX
SPIB_CLK
ERRORSTS
I2CB_SDA
HIC_NOE
GPIO29
SCIA_TX
EPWM7_B
OUTPUTXBAR6
EQEP1_B
SD2_C3
EQEP2_INDE
X
LINA_RX
SPIB_STE
ERRORSTS
I2CB_SCL
HIC_NCS
GPIO30
CANA_RX
SPIB_SIMO
OUTPUTXBAR7
EQEP1_STRO
BE
SD2_D4
FSIRXA_CLK
MCAN_RX
EPWM1_A
HIC_D8
GPIO31
CANA_TX
SPIB_SOMI
OUTPUTXBAR8
EQEP1_INDE
X
SD2_C4
FSIRXA_D1
MCAN_TX
EPWM1_B
HIC_D10
GPIO32
I2CA_SDA
SPIB_CLK
EPWM8_B
LINA_TX
SD1_D2
FSIRXA_D0
CANA_TX
PMBUSA_SDA
ADCSOCBO
GPIO33
I2CA_SCL
SPIB_STE
OUTPUTXBAR4
LINA_RX
SD1_C2
FSIRXA_CLK
CANA_RX
EQEP2_B
ADCSOCAO
SD1_C1
HIC_D0
HIC_NBE1
I2CB_SDA
HIC_D9
I2CA_SDA
CANA_RX
PMBUSA_SCL
LINA_RX
EQEP1_A
PMBUSA_CTL
EPWM5_B
SD2_C1
HIC_NWE
TDI
I2CA_SCL
SCIA_TX
CANA_TX
LINA_TX
EQEP1_B
PMBUSA_ALERT
HIC_NRDY
TDO
MCAN_RX
FSIRXA_CLK
EQEP2_INDE
X
SYNCOUT
EQEP1_INDEX
HIC_D7
EPWM2_B
PMBUSA_SDA
FSIRXA_D0
SCIB_TX
EQEP1_A
LINB_TX
HIC_NBE1
HIC_D5
EPWM2_A
PMBUSA_SCL
FSIRXA_D1
SCIB_RX
EQEP1_B
LINB_RX
HIC_A4
SPIB_SOMI
HIC_D12
OUTPUTXBA
R5
PMBUSA_CTL
I2CA_SDA
EQEP1_STROBE
CLB_OUTPUTXBA
R3
HIC_D2
HIC_A6
GPIO43
OUTPUTXBA
R6
PMBUSA_ALERT
I2CA_SCL
PMBUSA_ALE
RT
EQEP1_INDEX
CLB_OUTPUTXBA
R4
SD2_D3
HIC_D3
HIC_A7
GPIO44
OUTPUTXBA
R7
EQEP1_A
PMBUSA_SDA
PMBUSA_CTL
CLB_OUTPUTXBA
R3
FSIRXA_D0
HIC_D7
LINB_TX
HIC_D5
GPIO45
OUTPUTXBA
R8
GPIO46
LINA_TX
OUTPUTXBAR
GPIO34
1
GPIO35
PMBUSA_SDA
SCIA_RX
OUTPUTXBAR
GPIO37
2
GPIO39
GPIO40
SPIB_SIMO
GPIO41
GPIO42
LINA_RX
GPIO47
LINA_RX
MCAN_TX
FSITXA_CLK
CLB_OUTPUTXBA
R2
FSITXA_D0
PMBUSA_ALE CLB_OUTPUTXBA
RT
R4
SD2_C3
FSITXA_D1
PMBUSA_SDA
SD2_C4
CLB_OUTPUTXBA
PMBUSA_SCL
R2
MCAN_RX
SD2_D4
OUTPUTXBAR
3
CANA_TX
SCIA_TX
SD1_D1
PMBUSA_SDA
OUTPUTXBAR
GPIO49
4
CANA_RX
SCIA_RX
SD1_C1
LINA_RX
SD2_D1
GPIO48
HIC_D6
HIC_NWE
FSITXA_TDM_CL
K
HIC_A6
HIC_A7
FSITXA_D0
HIC_D2
EQEP1_A
MCAN_TX
SPIB_SIMO
SD1_D2
I2CB_SDA
SD2_D2
FSITXA_D1
HIC_D3
GPIO51
EQEP1_B
MCAN_RX
SPIB_SOMI
SD1_C2
I2CB_SCL
SD2_D3
FSITXA_CLK
HIC_D6
EQEP1_STRO
GPIO52
BE
CLB_OUTPUTXBA
R5
SPIB_CLK
SD1_D3
SYNCOUT
SD2_D4
FSIRXA_D0
HIC_NWE
EQEP1_INDE
X
CLB_OUTPUTXBA
R6
SPIB_STE
SD1_C3
ADCSOCAO
SD1_C1
FSIRXA_D1
50
Submit Document Feedback
AUXCLKI
N
HIC_INT
GPIO50
GPIO53
ALT
CANA_RX
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036CQ1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 5-6. GPIO Muxed Pins (continued)
0, 4, 8,
12
1
GPIO54
GPIO55
2
5
6
7
9
10
SPIA_SIMO
EQEP2_A
OUTPUTXBAR
2
SD1_D4
ADCSOCBO
SPIA_SOMI
EQEP2_B
OUTPUTXBAR
3
SD1_C4
GPIO56
SPIA_CLK
CLB_OUTPUTXBA
R7
GPIO57
SPIA_STE
CLB_OUTPUTXBA
R8
3
11
13
14
15
LINB_TX
SD1_C2
FSIRXA_CLK
FSITXA_TDM_D1
ERRORSTS
LINB_RX
SD1_C3
MCAN_TX
EQEP2_STROBE
SCIB_TX
SD2_D1
SPIB_SIMO
I2CA_SDA
EQEP1_A
MCAN_RX
EQEP2_INDEX
SCIB_RX
SD2_C1
SPIB_SOMI
I2CA_SCL
EQEP1_B
GPIO58
OUTPUTXBAR1
SPIB_CLK
SD2_D2
LINA_TX
CANA_TX
EQEP1_STROBE
GPIO59
OUTPUTXBAR2
SPIB_STE
SD2_C2
LINA_RX
CANA_RX
EQEP1_INDEX
GPIO60
MCAN_TX
OUTPUTXBAR3
SPIB_SIMO
SD2_D3
GPIO61
MCAN_RX
OUTPUTXBAR4
SPIB_SOMI
SD2_C3
SD1_C4
ALT
HIC_A0
FSIRXA_D1
HIC_D6
FSIRXA_CLK
HIC_D4
SD2_C2
FSIRXA_D0
HIC_NRDY
SD2_C3
FSITXA_TDM_D1
SD2_C4
HIC_A0
CANA_RX
AIO224
SD2_D3
HIC_A3
AIO225
SD2_C2
HIC_NWE
AIO226
SD2_D4
HIC_A1
AIO227
SD1_C3
HIC_NBE0
AIO228
SD2_C1
HIC_A0
AIO230
SD1_C4
HIC_BASESEL2
AIO231
SD1_C1
HIC_BASESEL1
AIO232
SD1_D4
HIC_BASESEL0
AIO233
SD2_D1
HIC_A4
AIO229
AIO236
AIO237
SD1_D2
HIC_A6
AIO238
SD2_C3
HIC_NCS
AIO239
SD1_D1
HIC_A5
AIO240
SD2_C1
HIC_NBE1
AIO241
SD2_C1
HIC_NBE1
AIO242
SD2_D2
HIC_A2
AIO244
SD1_D3
HIC_A7
AIO245
SD1_C2
HIC_NOE
AIO247
AIO248
AIO249
AIO251
AIO252
SD2_C4
AIO253
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
51
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036CQ1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
5.4.2 Digital Inputs on ADC Pins (AIOs)
GPIOs on port H (GPIO224–GPIO253) are multiplexed with analog pins. These are also referred to as AIOs.
These pins can only function in input mode. By default, these pins will function as analog pins and the GPIOs are
in a high-Z state. The GPHAMSEL register is used to configure these pins for digital or analog operation.
Note
If digital signals with sharp edges (high dv/dt) are connected to the AIOs, cross-talk can occur with
adjacent analog signals. The user should therefore limit the edge rate of signals connected to AIOs if
adjacent channels are being used for analog functions.
5.4.3 Digital Inputs and Outputs on ADC Pins (AGPIOs)
Some GPIOs on this device are multiplexed with analog pins. These are also referred to as AGPIOs. Unlike
AIOs, AGPIOs have full input and output capability. This device has two GPIOs (GPIO20, GPIO21) that offer this
feature on the 100-Pin PZ and 80-Pin PN packages.
100-Pin PZ: On this package, there are dedicated pins for B5 (pin 32) and B11 (pin 30) which respectively also
have AIO252 and AIO251 functionality. In addition, GPIO20 (pin 48) and GPIO21 (pin 49) are also available as
B5 and B11 respectively. Since B5 and B11 are dedicated pins on this package, it is recommended to use them
instead of the ones on GPIO20/21.
80-Pin PN: On this package, GPIO20 (pin 33) and GPIO21 (pin 34) are also available as B5 and B11
respectively. There are no dedicated pin for B5 and B11.
By default the AGPIOs are not connected and have to be configured. Table 5-7 truth table shows how to
configure the AGPIOs using B5 (pin 32) and GPIO20 (pin 48) on the 100-Pin PZ as an example.
Table 5-7. AGPIO Configuration
AGPIOCTRLA.bit.GPIO20
GPAAMSEL.bit.GPIO20
GPHAMSEL.bit.GPIO252
0
0
0
B5 CONNECTED TO
GPIO20 CONNECTED TO
ADC
GPIO20
AIO252
ADC
GPIO20
AIO252
1
Yes
-
-
-
Yes
-
1
1
Yes
-
-
-
-
-
1
0
1
Yes
-
-
-
Yes
-
1
1
1
-
-
-
Yes
-
-
0
0
0
Yes
-
Yes
-
Yes
-
0
1
0
Yes
-
Yes
-
-
-
1
0
0
Yes
-
Yes
-
Yes
-
1
1
0
-
-
Yes
Yes
-
-
Note
If digital signals with sharp edges (high dv/dt) are connected to the AGPIOs, cross-talk can occur with
adjacent analog signals. The user should therefore limit the edge rate of signals connected to AGPIOs
if adjacent channels are being used for analog functions.
5.4.4 GPIO Input X-BAR
The Input X-BAR is used to route signals from a GPIO to many different IP blocks such as the ADCs, eCAPs,
ePWMs, and external interrupts (see Figure 5-6). Table 5-8 lists the input X-BAR destinations.
52
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
GPIO0
GPIOx
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Asynchronous
Synchronous
Sync. + Qual.
Input X-BAR
Other Sources
eCAP
Modules
15:0
INPUT16
INPUT15
INPUT14
INPUT13
INPUT12
INPUT11
INPUT10
INPUT9
INPUT8
INPUT7
INPUT6
INPUT5
INPUT4
INPUT3
INPUT2
INPUT1
INPUT[16:1]
127:16
DCCx Clock Source-1
TZ1,TRIP1
TZ2,TRIP2
TZ3,TRIP3
TRIP6
DCCx Clock Source-0
XINT1
XINT2
XINT3
XINT4
XINT5
CPU PIE
CLA
TRIP4
TRIP5
ePWM
Modules
TRIP7
TRIP8
TRIP9
TRIP10
TRIP11
TRIP12
ePWM
X-BAR
Other
Sources
ADCEXTSOC
ADC
EXTSYNCIN1
ePWM and eCAP
Sync Scheme
EXTSYNCIN2
Other Sources
INPUT[1:16]
ERAD
INPUT[13:16]
EPG
Output X-BAR
Figure 5-6. Input X-BAR
Table 5-8. Input X-BAR Destinations
INPUT
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
ECAP / HRCAP
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
EPWM X-BAR
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
CLB X-BAR
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
OUTPUT X-BAR
Yes
Yes
Yes
Yes
Yes
Yes
XINT1
XINT2
XINT3
CPU XINT
EPWM TRIP
TZ1, TZ2, TZ3,
TRIP1 TRIP2 TRIP3
XINT4 XINT5
TRIP6
ADC START OF
CONVERSION
ADCEX
TSOC
EPWM / ECAP
SYNC
EXTSY
NCIN1
EXTSY
NCIN2
CLK CLK
0
0
DCCx
CLK1 CLK0
EPG1 EPG1 EPG1 EPG1
IN1
IN2
IN3
IN4
EPG
ERAD
Yes
Yes
Yes
Copyright © 2023 Texas Instruments Incorporated
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
53
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
5.4.5 GPIO Output X-BAR, CLB X-BAR, CLB Output X-BAR, and ePWM X-BAR
The Output X-BAR has eight outputs that can be selected on the GPIO mux as OUTPUTXBARx. The CLB
X-BAR has eight outputs that are connected to the CLB global mux as AUXSIGx. The CLB Output X-BAR has
eight outputs that can be selected on the GPIO mux as CLB_OUTPUTXBARx. The ePWM X-BAR has eight
outputs that are connected to the TRIPx inputs of the ePWM. The sources for the Output X-BAR, CLB X-BAR,
CLB Output X-BAR, and ePWM X-BAR are shown in Figure 5-7.
54
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
CMPSSx
ePWM and eCAP
Sync Chain
CTRIPOUTH
CTRIPOUTL
(Output X-BAR only)
CTRIPH
CTRIPL
(ePWM X-BAR only)
EXTSYNCOUT
ADCSOCA0
Select Circuit
ADCSOCA0
ADCSOCB0
Select Circuit
ADCSOCB0
eCAPx
ECAPxOUT
ADCx
EVT1
EVT2
EVT3
EVT4
Input X-BAR
CLAHALT
CLB
X-BAR
CLB
Global
Mux
TRIP4
TRIP5
EPWM
X-BAR
INPUT1-6
INPUT7-14
(ePWM X-BAR only)
TRIP7
TRIP8
TRIP9
TRIP10
TRIP11
TRIP12
All
ePWM
Modules
eQEPx
CLAHALT
FLT1.COMPH
FLT1.COMPL
SDFMx
AUXSIG1
AUXSIG2
AUXSIG3
AUXSIG4
AUXSIG5
AUXSIG6
AUXSIG7
AUXSIG8
Output
X-BAR
FLT4.COMPH
FLT4.COMPL
OUTPUTXBAR1
OUTPUTXBAR2
OUTPUTXBAR3
OUTPUTXBAR4
OUTPUTXBAR5
OUTPUTXBAR6
OUTPUTXBAR7
OUTPUTXBAR8
GPIO
Mux
X-BAR Flags
(shared)
CLB Input X-BAR
CLB TILEx
CLB
Output
X-BAR
CLB_OUTPUTXBAR1
CLB_OUTPUTXBAR2
CLB_OUTPUTXBAR3
CLB_OUTPUTXBAR4
CLB_OUTPUTXBAR5
CLB_OUTPUTXBAR6
CLB_OUTPUTXBAR7
CLB_OUTPUTXBAR8
Figure 5-7. Output X-BAR, CLB X-BAR, CLB Output X-BAR, and ePWM X-BAR Sources
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
55
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
5.5 Pins With Internal Pullup and Pulldown
Some pins on the device have internal pullups or pulldowns. Table 5-9 lists the pull direction and when it is
active. The pullups on GPIO pins are disabled by default and can be enabled through software. To avoid any
floating unbonded inputs, the Boot ROM will enable internal pullups on GPIO pins that are not bonded out in
a particular package. Other pins noted in Table 5-9 with pullups and pulldowns are always on and cannot be
disabled.
Table 5-9. Pins With Internal Pullup and Pulldown
PIN
GPIOx
RESET
(XRSn = 0)
DEVICE BOOT
APPLICATION
Pullup disabled
Pullup disabled(1)
Application defined
GPIO35/TDI
Pullup disabled
GPIO37/TDO
AGPIOx
Application defined
Pullup disabled
Pullup disabled
Application defined
Pullup disabled
TCK
Pullup active
TMS
Pullup active
XRSn
Other pins (including AIOs)
(1)
56
Application defined
Pullup active
No pullup or pulldown present
Pins not bonded out in a given package will have the internal pullups enabled by the Boot ROM.
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
5.6 Connections for Unused Pins
For applications that do not need to use all functions of the device, Table 5-10 lists acceptable conditioning for
any unused pins. When multiple options are listed in Table 5-10, any option is acceptable. Pins not listed in Table
5-10 must be connected according to Section 5.
Table 5-10. Connections for Unused Pins
SIGNAL NAME
ACCEPTABLE PRACTICE
ANALOG
VREFHI
Tie to VDDA (applies only if ADC is not used in the application)
VREFLO
Tie to VSSA
Analog input pins with
DACx_OUT
•
•
No Connect
Tie to VSSA through 4.7-kΩ or larger resistor
Analog input pins (except
DACx_OUT)
•
•
•
No Connect
Tie to VSSA
Tie to VSSA through resistor
Analog input pins (shared with
GPIOs)(1)
•
•
•
No connection (digital input mode with internal pullup enabled)
No connection (digital output mode with internal pullup disabled)
Pullup or pulldown resistor (any value resistor, digital input mode, and with internal pullup disabled)
DIGITAL
GPIOx
•
•
•
No connection (input mode with internal pullup enabled)
No connection (output mode with internal pullup disabled)
Pullup or pulldown resistor (any value resistor, input mode, and with internal pullup disabled)
When TDI mux option is selected (default), the GPIO is in Input mode.
GPIO35/TDI
•
•
Internal pullup enabled
External pullup resistor
When TDO mux option is selected (default), the GPIO is in Output mode only during JTAG activity;
otherwise, it is in a tri-state condition. The pin must be biased to avoid extra current on the input buffer.
GPIO37/TDO
•
•
Internal pullup enabled
External pullup resistor
TCK
•
•
No Connect
Pullup resistor
TMS
Pullup resistor
Turn XTAL off and:
GPIO19/X1
•
•
•
Input mode with internal pullup enabled
Input mode with external pullup or pulldown resistor
Output mode with internal pullup disabled
Turn XTAL off and:
GPIO18/X2
•
•
•
Input mode with internal pullup enabled
Input mode with external pullup or pulldown resistor
Output mode with internal pullup disabled
POWER AND GROUND
VDD
All VDD pins must be connected per Section 5.3. Pins should not be used to bias any external circuits.
VDDA
If a dedicated analog supply is not used, tie to VDDIO.
VDDIO
All VDDIO pins must be connected per Section 5.3.
VSS
All VSS pins must be connected to board ground.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
57
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
Table 5-10. Connections for Unused Pins (continued)
SIGNAL NAME
VSSA
(1)
58
ACCEPTABLE PRACTICE
If an analog ground is not used, tie to VSS.
AGPIO pins share analog and digital functionality. The actions here only apply if these pins are also not being used for analog
functions.
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)(1) (2)
MIN
MAX
VDDIO with respect to VSS
–0.3
4.6
VDDA with respect to VSSA
–0.3
4.6
VDD with respect to VSS
–0.3
1.5
Input voltage
VIN (3.3 V)
–0.3
4.6
V
Output voltage
VO
–0.3
4.6
V
Digital/analog input (per pin), IIK (VIN < VSS/VSSA or VIN > VDDIO/
VDDA)(4)
–20
20
Total for all inputs, IIKTOTAL
(VIN < VSS/VSSA or VIN > VDDIO/VDDA)
–20
20
Output current
Digital output (per pin), IOUT
–20
20
mA
Free-Air temperature
TA
–40
125
°C
Operating junction temperature
TJ
–40
150
°C
Storage temperature(3)
Tstg
–65
150
°C
Supply voltage
Input clamp current
(1)
(2)
(3)
(4)
UNIT
V
mA
Operation outside the Absolute Maximum Ratings may cause permanent device damage. Absolute Maximum Ratings do not imply
functional operation of the device at these or any other conditions beyond those listed under Recommended Operating Conditions.
If used outside the Recommended Operating Conditions but within the Absolute Maximum Ratings, the device may not be fully
functional, and this may affect device reliability, functionality, performance, and shorten the device lifetime.
All voltage values are with respect to VSS, unless otherwise noted.
Long-term high-temperature storage or extended use at maximum temperature conditions may result in a reduction of overall device
life. For additional information, see the Semiconductor and IC Package Thermal Metrics Application Report.
Continuous clamp current per pin is ±2 mA. Do not operate in this condition continuously as VDDIO/VDDA voltage may internally rise and
impact other electrical specifications.
6.2 ESD Ratings – Commercial
VALUE
UNIT
F280039C, F280039, F280037C, F280037, F280034, F280033 in 100-pin PZ package
V(ESD)
Electrostatic discharge (ESD)
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)
±2000
Charged-device model (CDM),
All pins
per ANSI/ESDA/JEDEC JS-002(2)
Corner pins on 100-pin PZ:
1, 25, 26, 50, 51, 75, 76, 100
±500
V
±750
F280039C, F280039, F280037C, F280037, F280034, F280033 in 80-pin PN package
V(ESD)
Electrostatic discharge (ESD)
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)
±2000
Charged-device model (CDM),
All pins
per ANSI/ESDA/JEDEC JS-002(2)
Corner pins on 80-pin PN:
1, 20, 21, 40, 41, 60, 61, 80
±500
V
±750
F280039C, F280039, F280037C, F280037, F280034, F280033 in 64-pin PM package
V(ESD)
Electrostatic discharge (ESD)
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)
±2000
Charged-device model (CDM),
All pins
per ANSI/ESDA/JEDEC JS-002(2)
Corner pins on 64-pin PM:
1, 16, 17, 32, 33, 48, 49, 64
±500
V
±750
F280037C, F280037, F280034, F280033 in 48-pin PT package
V(ESD)
(1)
(2)
Electrostatic discharge (ESD)
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)
±2000
Charged-device model (CDM),
All pins
per ANSI/ESDA/JEDEC JS-002(2)
Corner pins on 48-pin PT:
1, 12, 13, 24, 25, 36, 37, 48
±500
V
±750
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
59
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.3 ESD Ratings – Automotive
VALUE
UNIT
F280039C-Q1, F280039-Q1, F280037C-Q1, F280037-Q1 in 100-pin PZ package
V(ESD)
Electrostatic discharge
Human body model (HBM), per
AEC Q100-002(1)
All pins
±2000
Charged device model (CDM),
per AEC Q100-011
All pins
±500
Corner pins on 100-pin PZ:
1, 25, 26, 50, 51, 75, 76, 100
±750
V
F280039C-Q1, F280039-Q1, F280037C-Q1, F280034-Q1, F280033-Q1 in 80-pin PN package
V(ESD)
Electrostatic discharge
Human body model (HBM), per
AEC Q100-002(1)
All pins
±2000
Charged device model (CDM),
per AEC Q100-011
All pins
±500
Corner pins on 80-pin PN:
1, 20, 21, 40, 41, 60, 61, 80
±750
Human body model (HBM), per
AEC Q100-002(1)
All pins
±2000
Charged device model (CDM),
per AEC Q100-011
All pins
±500
Corner pins on 64-pin PM:
1, 16, 17, 32, 33, 48, 49, 64
±750
Human body model (HBM), per
AEC Q100-002(1)
All pins
±2000
Charged device model (CDM),
per AEC Q100-011
All pins
±500
Corner pins on 48-pin PT:
1, 12, 13, 24, 25, 36, 37, 48
±750
V
F280038C-Q1, F280038-Q1, F280036C-Q1, F280036-Q1 in 64-pin PM package
V(ESD)
Electrostatic discharge
V
F280037C-Q1, F280037-Q1, F280034-Q1 in 48-pin PT package
V(ESD)
(1)
Electrostatic discharge
V
AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.
6.4 Recommended Operating Conditions
Device supply voltage, VDDIO and VDDA
Internal BOR
enabled(3)
Internal BOR disabled
Device supply voltage, VDD
MIN
NOM
MAX
(2)
3.3
3.63
2.8
3.3
3.63
1.14
1.2
1.32
VBOR-VDDIO(MAX) + VBOR-VDDIO-GB
UNIT
V
V
Device ground, VSS
0
V
Analog ground, VSSA
0
V
SRSUPPLY
Supply ramp
rate(4)
Digital input voltage
VSS – 0.3
VDDIO + 0.3
VSSA – 0.3
VDDA + 0.3
V
Junction temperature, TJ (1)
–40
150
°C
Free-Air temperature, TA
–40
125
°C
VIN
(1)
(2)
(3)
(4)
60
Analog input voltage
V
Operation above TJ = 105°C for extended duration will reduce the lifetime of the device. See Calculating Useful Lifetimes of Embedded
Processors for more information.
See the Power Management Module (PMM) section.
Internal BOR is enabled by default.
See the Power Management Module Operating Conditions table.
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.5 Power Consumption Summary
Current values listed in this section are representative for the test conditions given and not the absolute
maximum possible. The actual device currents in an application will vary with application code and pin
configurations. Section 6.5.1 lists the system current consumption values. Section 6.5.2 lists the system current
consumption with VREG disabled.
6.5.1 System Current Consumption
over operating free-air temperature range (unless otherwise noted).
TYP : Vnom, 30℃
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
80
108
mA
8
17.5
mA
30
58
mA
0.01
0.1
mA
16.5
41
mA
0.01
0.1
mA
OPERATING MODE
IDDIO
VDDIO current consumption during
operational usage
IDDA
VDDA current consumption during
operational usage
This is an estimation of current
for a typical heavily loaded
application. Actual currents will
vary depending on system
activity, I/O electrical loading
and switching frequency. This
includes Core supply current with
Internal Vreg Enabled.
- CPU is running from RAM
- Flash is powered up
- X1/X2 crystal is powered up
- PLL is enabled, SYSCLK=Max
Device frequency
- Analog modules are powered up
- Outputs are static without DC
Load
- Inputs are static high or low
IDLE MODE
IDDIO
VDDIO current consumption while
device is in Idle mode
IDDA
VDDA current consumption while
device is in Idle mode
- CPU is in IDLE mode
- Flash is powered down
- PLL is Enabled, SYSCLK=Max
Device Frequency, CPUCLK is
gated
- X1/X2 crystal is powered up
- Analog Modules are powered
down
- Outputs are static without DC
Load
- Inputs are static high or low
STANDBY MODE
IDDIO
VDDIO current consumption while
device is in Standby mode
IDDA
VDDA current consumption while
device is in Standby mode
Copyright © 2023 Texas Instruments Incorporated
- CPU is in STANDBY mode
- Flash is powered down
- PLL is Enabled, SYSCLK &
CPUCLK are gated
- X1/X2 crystal is powered down
- Analog Modules are powered
down
- Outputs are static without DC
Load
- Inputs are static high or low
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
61
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.5.1 System Current Consumption (continued)
over operating free-air temperature range (unless otherwise noted).
TYP : Vnom, 30℃
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
12.5
36
mA
0.01
0.1
mA
72
106
mA
0.1
2.5
mA
HALT MODE
IDDIO
VDDIO current consumption while
device is in Halt mode
IDDA
VDDA current consumption while
device is in Halt mode
- CPU is in HALT mode
- Flash is powered down
- PLL is Disabled, SYSCLK &
CPUCLK are gated
- X1/X2 crystal is powered down
- Analog Modules are powered
down
- Outputs are static without DC
Load
- Inputs are static high or low
FLASH ERASE/PROGRAM
IDDIO
VDDIO current consumption during
Erase/Program cycle(1)
IDDA
VDDA current consumption during
Erase/Program cycle
- CPU is running from RAM
- Flash going through continuous
Program/Erase operation
- PLL is enabled, SYSCLK at 120
MHz.
- Peripheral clocks are turned
OFF.
- X1/X2 crystal is powered up
- Analog is powered down
- Outputs are static without DC
Load
- Inputs are static high or low
RESET MODE
IDDIO
VDDIO current consumption while
reset is active(2)
5.8
mA
IDDA
VDDA current consumption while reset
is active(2)
0.1
mA
(1)
(2)
62
Brownout events during flash programming can corrupt flash data and permanently lock the device. Programming environments using
alternate power sources (such as a USB programmer) must be capable of supplying the rated current for the device and other system
components with sufficient margin to avoid supply brownout conditions.
This is the current consumption while reset is active, that is XRSn is low.
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.5.2 System Current Consumption - VREG Disable - External Supply
over operating free-air temperature range (unless otherwise noted).
TYP : Vnom, 30℃
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
73
103.5
mA
4
4.7
mA
8
17.5
mA
25
48
mA
1.7
2.2
mA
0.01
0.1
mA
11.6
35
mA
1.7
2.3
mA
0.01
0.1
mA
8.5
31
mA
0.8
1.2
mA
0.01
0.1
mA
OPERATING MODE
IDD
VDD current consumption during
operational usage
IDDIO
VDDIO current consumption during
operational usage
IDDA
VDDA current consumption during
operational usage
This is an estimation of current
for a typical heavily loaded
application. Actual currents will
vary depending on system
activity, I/O electrical loading and
switching frequency.
- CPU is running from RAM
- Flash is powered up
- X1/X2 crystal is powered up
- PLL is enabled, SYSCLK=Max
Device frequency
- Analog modules are powered up
- Outputs are static without DC
Load
- Inputs are static high or low
IDLE MODE
VDD current consumption while device - CPU is in IDLE mode
is in Idle mode
- Flash is powered down
- PLL is Enabled, SYSCLK=Max
VDDIO current consumption while
Device Frequency, CPUCLK is
device is in Idle mode
gated
- X1/X2 crystal is powered up
- Analog Modules are powered
VDDA current consumption while
down
device is in Idle mode
- Outputs are static without DC
Load
- Inputs are static high or low
IDD
IDDIO
IDDA
STANDBY MODE
VDD current consumption while device - CPU is in STANDBY mode
is in Standby mode
- Flash is powered down
- PLL is Enabled, SYSCLK &
VDDIO current consumption while
CPUCLK are gated
device is in Standby mode
- X1/X2 crystal is powered down
- Analog Modules are powered
down
VDDA current consumption while
- Outputs are static without DC
device is in Standby mode
Load
- Inputs are static high or low
IDD
IDDIO
IDDA
HALT MODE
IDD
IDDIO
IDDA
VDD current consumption while device - CPU is in HALT mode
is in Halt mode
- Flash is powered down
- PLL is Disabled, SYSCLK &
VDDIO current consumption while
CPUCLK are gated
device is in Halt mode
- X1/X2 crystal is powered down
- Analog Modules are powered
down
VDDA current consumption while
- Outputs are static without DC
device is in Halt mode
Load
- Inputs are static high or low
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
63
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.5.2 System Current Consumption - VREG Disable - External Supply (continued)
over operating free-air temperature range (unless otherwise noted).
TYP : Vnom, 30℃
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
41
60.5
mA
31
45.5
mA
0.1
2.5
mA
FLASH ERASE/PROGRAM
IDD
VDD Current consumption during
Erase/Program cycle(1)
IDDIO
VDDIO Current consumption during
Erase/Program cycle(1)
IDDA
VDDA Current consumption during
Erase/Program cycle
- CPU is running from RAM
- Flash going through continuous
Program/Erase operation
- PLL is enabled, SYSCLK at 120
MHz.
- Peripheral clocks are turned
OFF.
- X1/X2 crystal is powered up
- Analog is powered down
- Outputs are static without DC
Load
- Inputs are static high or low
RESET MODE
IDD
VDD current consumption while reset
is active(2)
3.3
mA
IDDIO
VDDIO current consumption while
reset is active(2)
2.2
mA
IDDA
VDDA current consumption while reset
is active(2)
0.1
mA
(1)
(2)
64
Brownout events during flash programming can corrupt flash data and permanently lock the device. Programming environments using
alternate power sources (such as a USB programmer) must be capable of supplying the rated current for the device and other system
components with sufficient margin to avoid supply brownout conditions.
This is the current consumption while reset is active, that is XRSn is low.
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.5.3 Operating Mode Test Description
Section 6.5.1 and Section 6.5.5.1 list the current consumption values for the operational mode of the device. The
operational mode provides an estimation of what an application might encounter. The test condition for these
measurements has the following properties:
• Code is executing from RAM.
• FLASH is read and kept in active state.
• No external components are driven by I/O pins.
• All peripherals have clocks enabled.
• The CPU is actively executing code.
• All analog peripherals are powered up. ADCs and DACs are periodically converting.
6.5.4 Current Consumption Graphs
The below graphs show a typical representation of the relationship between frequency, temperature,
supply(VREG Enabled), and current consumption on the device. Actual results will vary based on the system
implementation and conditions.
Figure 6-2 shows the typical operating current profile across temperature and core supply voltage.Figure 6-3
shows the typical idle current profile across temperature and core supply voltage. Figure 6-4 shows the typical
standby current profile across temperature and core supply voltage. Figure 6-5 shows the typical halt current
profile across temperature and core supply voltage.
70
82.5
65
VddIO=2.80V
VddIO=3.30V
VddIO=3.63V
80
60
77.5
50
Idd IO (mA)
Idd IO (mA)
55
45
40
35
75
72.5
70
30
67.5
25
20
15
20
65
30
40
50
60
70
80
SYSCLK (MHz)
90
100
110
120
Figure 6-1. Operating Current Versus Frequency
62.5
-40
40
60
80
100
120
140
25
VddIO=2.80V
VddIO=3.30V
VddIO=3.63V
23
VddIO=2.80V
VddIO=3.30V
VddIO=3.63V
21
34
19
32
Idd IO (mA)
Idd IO (mA)
20
Figure 6-2. Operating Current Versus Temperature
36
30
28
17
15
13
26
11
24
9
22
20
-40
0
Temperature (°C)
40
38
-20
-20
0
20
40
60
80
100
120
140
Temperature (°C)
Figure 6-3. Current Versus Temperature –
IDLE Mode
Copyright © 2023 Texas Instruments Incorporated
7
-40
-20
0
20
40
60
80
100
120
140
Temperature (°C)
Figure 6-4. Current Versus Temperature –
STANDBY Mode
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
65
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
22.5
21
19.5
VddIO=2.80V
VddIO=3.30V
VddIO=3.63V
18
16.5
Idd IO (mA)
15
13.5
12
10.5
9
7.5
6
4.5
3
1.5
-40
-20
0
20
40
60
80
100
120
140
Temperature (°C)
Figure 6-5. Current Versus Temperature – HALT Mode
66
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.5.5 Reducing Current Consumption
The F28003x devices provide some methods to reduce the device current consumption:
• One of the two low-power modes—IDLE or STANDBY—could be entered during idle periods in the
application.
• The flash module may be powered down if the code is run from RAM.
• Disable the pullups on pins that assume an output function.
• Each peripheral has an individual clock-enable bit (PCLKCRx). Reduced current consumption may be
achieved by turning off the clock to any peripheral that is not used in a given application. Section 6.5.5.1
lists the typical current reduction that may be achieved by disabling the clocks using the PCLKCRx register.
• To realize the lowest VDDA current consumption in an LPM, see the Analog-to-Digital Converter (ADC)
chapter of the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual to ensure each
module is powered down as well.
6.5.5.1 Typical Current Reduction per Disabled Peripheral
PERIPHERAL
IDD CURRENT REDUCTION (mA)
ADC(1)
0.73
CLA
0.56
CLA BGCRC
0.42
CLB
1.41
CMPSS(1)
0.33
CPU BGCRC
0.25
CPU TIMER
0.04
GPDAC
0.12
DCAN
1.28
DCC
0.12
DMA
0.57
eCAP1 and eCAP2
0.08
eCAP3(2)
0.29
ePWM1 to
ePWM4(3)
0.95
ePWM5 to ePWM8
0.78
ERAD
1.56
eQEP
0.1
FSI RX
0.34
FSI TX
0.27
HIC
0.17
I2C
0.26
LIN
0.35
MCAN (CAN FD)
1.01
PMBUS
0.28
SCI
0.16
SDFM
1.83
SPI
0.08
(1)
(2)
(3)
This current represents the current drawn by the digital portion of the each module.
eCAP3 can also be configured as HRCAP.
ePWM1 to ePWM4 can also be configured as HRPWM.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
67
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.6 Electrical Characteristics
over recommended operating conditions (unless otherwise noted)
TEST
CONDITIONS
PARAMETER
MIN
TYP
MAX
UNIT
Digital and Analog IO
IOH = IOH MIN
VDDIO * 0.8
IOH = –100 μA
VDDIO – 0.2
VOH
High-level output voltage
VOL
Low-level output voltage
IOH
High-level output source current for all output pins
IOL
Low-level output sink current for all output pins
ROH
High-level output impedance for all output pins
VOH=VDDIO-0.4V
ROL
Low-level output impedance for all output pins
VOL=0.4V
VIH
High-level input voltage
VIL
Low-level input voltage
VHYSTERESIS
Input hysteresis
IPULLDOWN
Input current
Pins with pulldown
VDDIO = 3.3 V
VIN = VDDIO
120
µA
IPULLUP
Input current
Digital inputs with pullup VDDIO = 3.3 V
enabled(1)
VIN = 0 V
160
µA
RPULLDOWN
Weak pulldown resistance
RPULLUP
Weak pullup resistance
Pin leakage
Input capacitance
0.4
IOL = 100 µA
0.2
–4
V
mA
4
mA
50
66
96
Ω
48
60
84
Ω
V
0.8
125
Analog pins (except
ADCINB3/VDAC)
ADCINB3/VDAC
CI
IOL = IOL MAX
2.0
Digital inputs
ILEAK
V
Digital inputs
22
31
62
kΩ
19
30
54
kΩ
Pullups and outputs
disabled
0 V ≤ VIN ≤ VDDIO
Analog drivers
disabled
0 V ≤ VIN ≤ VDDA
V
mV
0.1
µA
0.1
0.2
4.4
2
Analog pins(2)
pF
VREG, POR and BOR
VREG, POR,
BOR(3)
(1)
(2)
(3)
68
See Pins With Internal Pullup and Pulldown table for a list of pins with a pullup or pulldown.
The analog pins are specified separately; see the Per-Channel Parasitic Capacitance tables that are in the ADC Input Model section.
See the Power Management Module (PMM) section.
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.7 Thermal Resistance Characteristics for PZ Package
°C/W(1)
AIR FLOW (lfm)(2)
RΘJC
Junction-to-case thermal resistance
7.6
N/A
RΘJB
Junction-to-board thermal resistance
24.2
N/A
RΘJA (High k PCB)
Junction-to-free air thermal resistance
46.1
0
37.3
150
34.8
250
32.6
500
RΘJMA
PsiJT
PsiJB
(1)
(2)
Junction-to-moving air thermal resistance
Junction-to-package top
Junction-to-board
0.2
0
0.4
150
0.4
250
0.6
500
23.8
0
22.8
150
22.4
250
21.9
500
These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on
a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these
EIA/JEDEC standards:
• JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)
• JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
lfm = linear feet per minute
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
69
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.8 Thermal Resistance Characteristics for PN Package
°C/W(1)
AIR FLOW (lfm)(2)
RΘJC
Junction-to-case thermal resistance
14.2
N/A
RΘJB
Junction-to-board thermal resistance
21.9
N/A
RΘJA (High k PCB)
PsiJT
PsiJB
(1)
(2)
70
Junction-to-free air thermal resistance
Junction-to-package top
Junction-to-board
49.9
0
38.3
150
36.7
250
34.4
500
0.8
0
1.18
150
1.34
250
1.62
500
21.6
0
20.7
150
20.5
250
20.1
500
These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on
a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these
EIA/JEDEC standards:
• JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)
• JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
lfm = linear feet per minute
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.9 Thermal Resistance Characteristics for PM Package
°C/W(1)
AIR FLOW (lfm)(2)
RΘJC
Junction-to-case thermal resistance
12.4
N/A
RΘJB
Junction-to-board thermal resistance
25.6
N/A
RΘJA (High k PCB)
Junction-to-free air thermal resistance
51.8
0
42.2
150
39.4
250
36.5
500
RΘJMA
PsiJT
PsiJB
(1)
(2)
Junction-to-moving air thermal resistance
Junction-to-package top
Junction-to-board
0.5
0
0.9
150
1.1
250
1.4
500
25.1
0
23.8
150
23.4
250
22.7
500
These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on
a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these
EIA/JEDEC standards:
• JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)
• JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
lfm = linear feet per minute
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
71
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.10 Thermal Resistance Characteristics for PT Package
°C/W(1)
AIR FLOW (lfm)(2)
RΘJC
Junction-to-case thermal resistance
16.2
N/A
RΘJB
Junction-to-board thermal resistance
22.3
N/A
RΘJA (High k PCB)
PsiJT
PsiJB
(1)
(2)
Junction-to-free air thermal resistance
Junction-to-package top
Junction-to-board
56.7
0
50.4
150
48.2
250
45
500
0.7
0
0.94
150
1.1
250
1.38
500
22
0
28.7
150
28.4
250
28
500
These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on
a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these
EIA/JEDEC standards:
• JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air)
• JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages
• JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements
lfm = linear feet per minute
6.11 Thermal Design Considerations
Based on the end application design and operational profile, the IDD and IDDIO currents could vary. Systems
that exceed the recommended maximum power dissipation in the end product may require additional thermal
enhancements. Ambient temperature (TA) varies with the end application and product design. The critical factor
that affects reliability and functionality is TJ, the junction temperature, not the ambient temperature. Hence, care
should be taken to keep TJ within the specified limits. Tcase should be measured to estimate the operating
junction temperature TJ. Tcase is normally measured at the center of the package top-side surface. The thermal
application report Semiconductor and IC Package Thermal Metrics helps to understand the thermal metrics and
definitions.
72
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.12 System
6.12.1 Power Management Module (PMM)
6.12.1.1 Introduction
The Power Management Module (PMM) handles all the power management functions required for device
operation.
6.12.1.2 Overview
The block diagram of the PMM is shown in Figure 6-6. As can be seen, the PMM comprises of various
subcomponents, which are described in the subsequent sections.
MCU
To Rest of Chip
PMM
I/O
POR
CPU Reset
Release
RISE
DELAY
(45us)
RISE
DELAY
(80us)
I/O
BOR
Internal
All
Monitors
Release
Signal
RISE
DELAY
(145us)
RISE
DELAY
(40us)
EN
VMONCTL.bit.BORLVMONDIS
CVDDIO
XRSn
VREGENZ
VSS
Internal
VDD
1.2v LDO
VREG
VSS
External
VDDIO
Internal
VDD
POR
OUT
IN
EN
External
CVDD
Figure 6-6. PMM Block Diagram
6.12.1.2.1 Power Rail Monitors
The PMM has voltage monitors on the supply rails that release the XRSn signal high once the voltages cross the
set threshold during power up. They also function to trip the XRSn signal low if any of the voltages drop below
the programmed levels. The various voltage monitors are described in subsequent sections.
Note
Not all the voltage monitors are supported for device operation in an application after boot up. In the
case where a voltage monitor is not supported, an external supervisor is recommended if the device
needs supply voltage monitoring while the application is running.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
73
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
The three voltage monitors (I/O POR, I/O BOR, VDD POR) all have to release their respective outputs before the
device begins operation (that is, XRSn goes high). However, if any of the voltage monitors trips, XRSn is driven
low. The I/Os are held in high impedance when any of the voltage monitors trip.
6.12.1.2.1.1 I/O POR (Power-On Reset) Monitor
The I/O POR monitor supervises the VDDIO rail. During power up, this is the first monitor to release (that is, first
to untrip) on VDDIO.
6.12.1.2.1.2 I/O BOR (Brown-Out Reset) Monitor
The I/O BOR monitor also supervises the VDDIO rail. During power up, this is the second monitor to release
(that is, second to untrip) on VDDIO. This monitor has a tighter tolerance compared to the I/O POR.
Any drop in voltage below the recommended operating voltages will trip the I/O BOR and reset the device but
this can be disabled by setting VMONCTL.bit.BORLVMONDIS to 1. The I/O BOR can only be disabled after the
device has fully booted up. If the I/O BOR is disabled, the I/O POR will reset the device for voltage drops.
Note
The level at which the I/O POR trips is well below the minimum recommended voltage for VDDIO, and
therefore should not be used for device supervision.
Figure 6-7 shows the operating region of the I/O BOR.
3.63 V
+10%
0%
3.3 V
Recommended
System Voltage
Regulator Range
VDDIO
Operating
Range
3.1 V
–6.1%
3.0 V
–9.1%
VBOR-GB
BOR Guard Band
VBOR-VDDIO
Internal BOR Threshold
2.81 V
2.80 V
–14.8%
–15.1%
Figure 6-7. I/O BOR Operating Region
6.12.1.2.1.3 VDD POR (Power-On Reset) Monitor
The VDD POR monitor supervises the VDD rail. During power up, this monitor releases (that is, untrips) once the
voltage crosses the programmed trip level on VDD.
Note
VDD POR is programmed at a level below the minimum recommended voltage for VDD, and therefore
it should not be relied upon for VDD supervision if that is required in the application.
6.12.1.2.2 External Supervisor Usage
VDDIO Monitoring: The I/O BOR is supported for application use, so an external supervisor is not required to
monitor the I/O rail.
74
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
VDD Monitoring:
• VDD supplied from the internal VREG: The VDD supply is derived from the VDDIO supply. The VREG is
designed in such a way that a valid VDDIO supply(monitored by the IO BOR) implies a valid VDD supply.
• VDD supplied from an external supply: The VDD POR is not supported for application use. If VDD monitoring
is required by the application, an external supervisor can be used to monitor the VDD rail.
Note
The use of an external supervisor with the internal VREG is not supported.If VDD monitoring is
required by the application, a package with a VREGENZ pin must be used to power VDD externally.
6.12.1.2.3 Delay Blocks
The delay blocks in the path of the voltage monitors work together to delay the release time between the voltage
monitors and XRSn. These delays are designed to make sure that the voltages are stable when XRSn releases
in external VREG mode. The delay blocks are only active during power up (that is, when VDDIO and VDD are
ramping up).
The delay blocks contribute to the minimum slew rates specified in Power Management Module Electrical Data
and Timing for the power rails.
Note
The delay numbers specified in the block diagram are typical numbers.
6.12.1.2.4 Internal 1.2-V LDO Voltage Regulator (VREG)
The internal VREG is supplied by the VDDIO rail and can generate the 1.2 V required to power the VDD pins.
It is enabled by tying the VREGENZ pin low. Although the internal VREG eliminates the need to use an external
supply for VDD, decoupling capacitors are still required on the VDD pins for VREG stability and transients. See
the VDD Decoupling section for details.
6.12.1.2.5 VREGENZ
The VREGENZ (VREG disable) pin controls the state of the internal VREG. To enable the internal VREG,
connect the VREGENZ pin to a logic low voltage. For applications supplying VDD externally (external VREG),
disable the internal VREG by tying the VREGENZ pin high.
Note
Not all device packages have VREGENZ pinned out. For packages without VREGENZ, external
VREG mode is not supported.
6.12.1.3 External Components
6.12.1.3.1 Decoupling Capacitors
VDDIO and VDD require decoupling capacitors for correct operation. The requirements are outlined in
subsequent sections.
6.12.1.3.1.1 VDDIO Decoupling
Place a minimum amount of decoupling capacitance on VDDIO. See the CVDDIO parameter in Power
Management Module Electrical Data and Timing. The actual amount of decoupling capacitance to use is a
requirement of the power supply driving VDDIO. Either of the configurations outlined below is acceptable:
• Configuration 1: Place a decoupling capacitor on each VDDIO pin per the CVDDIO parameter.
• Configuration 2: Install a single decoupling capacitor that is the equivalent of CVDDIO * VDDIO pins.
Note
Having the decoupling capacitor or capacitors close to the device pins is critical.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
75
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
6.12.1.3.1.2 VDD Decoupling
Place a minimum amount of decoupling capacitance on VDD. See the CVDD TOTAL parameter in Power
Management Module Electrical Data and Timing.
In external VREG mode, the actual amount of decoupling capacitance to use is a requirement of the power
supply driving VDD.
Either of the configurations outlined below is acceptable:
•
•
Configuration 1: Divide CVDD TOTAL across the VDD pins.
Configuration 2: Install a single decoupling capacitor with value of CVDD TOTAL.
Note
Having the decoupling capacitor or capacitors close to the device pins is critical.
6.12.1.4 Power Sequencing
6.12.1.4.1 Supply Pins Ganging
Connecting all 3.3-V rails together and supplying from a single source are strongly recommended. This list
includes:
• VDDIO
• VDDA
In addition, connect all power pins to avoid leaving any unconnected.
In external VREG mode, the VDD pins should be tied together and supplied from a single source.
In internal VREG mode, tying the VDD pins together is optional as long as each VDD pin has a capacitor
connected to pin. See the VDD Decoupling section for VDD decoupling configurations.
The analog modules on the device have fairly high PSRR; therefore, in most cases, noise on VDDA will
have to exceed the recommended operating conditions of the supply rails before the analog modules see
performance degradation. Therefore, supplying VDDA separately typically offers minimal benefits. Nevertheless,
for the purposes of noise improvement, placing a pi filter between VDDIO and VDDA is acceptable.
Note
All the supply pins per rail are tied together internally. For example, all VDDIO pins are tied together
internally, all VDD pins are tied together internally, and so forth.
6.12.1.4.2 Signal Pins Power Sequence
Before powering the device, do not apply voltage larger than 0.3 V above VDDIO or 0.3 V below VSS to any
digital pin and 0.3 V above VDDA or 0.3 V below VSSA to any analog pin (including VREFHI and VDAC).
Simply, the signal pins should only be driven after XRSn goes high, provided all the 3.3-V rails are tied together.
This sequencing is still required even if VDDIO and VDDA are not tied together.
CAUTION
If the above sequence is violated, device malfunction and possibly damage can occur as current will
flow through unintended parasitic paths in the device.
6.12.1.4.3 Supply Pins Power Sequence
6.12.1.4.3.1 External VREG/VDD Mode Sequence
Figure 6-8 depicts the power sequencing requirements for external VREG mode. The values for all the
parameters indicated can be found in Power Management Module Electrical Data and Timing.
76
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
VDDIO
VBOR-VDDIO-UP
(A)
SRVDDIO-UP
VPOR-VDDIO
SRVDD-UP
VDD
Internal
All Monitors Release
Signal(C)
XRSn
VDDIO
VBOR-VDDIO-DN(B)
VDD
Internal All
Monitors Release
Signal(D)
SRVDD-DN
VPOR-VDD-DN(B)
VPOR-VDD-UP(A)
XRSn
SRVDDIO-DN
VPOR-VDDIO
VDDIO - VDD
Delay
VDDIO-MON-TOT-DELAY
A.
B.
C.
D.
VXRSn-PU-DELAY
VXRSn-PD-DELAY
This trip point is the trip point before XRSn releases. See the Power Management Module Characteristics table.
This trip point is the trip point after XRSn releases. See the Power Management Module Characteristics table.
During power up, the All Monitors Release Signal goes high after all POR and BOR monitors are released. See the PMM Block
Diagram.
During power down, the All Monitors Release Signal goes low if any of the POR or BOR monitors are tripped. See the PMM Block
Diagram.
Figure 6-8. External VREG Power Up Sequence
•
•
For Power Up:
1. VDDIO (that is, the 3.3-V rail) should come up first with the minimum slew rate specified.
2. VDD (that is, the 1.2-V rail) should come up next with the minimum slew rate specified.
3. The time delta between the VDDIO rail coming up and when the VDD rail can come up is also specified.
4. After the times specified by VDDIO-MON-TOT-DELAY and VXRSN-PD-DELAY, XRSn will be released and the
device starts the boot-up sequence.
There is an additional delay between XRSn releasing (that is, going high) and the boot-up sequence
starting. See Figure 6-6.
5. The I/O BOR monitor has different release points during power up and power down.
6. During power up, both VDDIO and VDD rails have to be up before XRSn releases.
For Power Down:
1. There is no requirement between VDDIO and VDD on which should power down first; however, there is a
minimum slew rate specification.
2. The I/O BOR monitor has different release points during power up and power down.
3. Any of the POR or BOR monitors that trips during power down will cause XRSn to go low after
VXRSN-PD-DELAY.
Note
The All Monitors Release Signal is an internal signal.
Note
If there is an external circuit driving XRSn (for example, a supervisor), the boot-up sequence does not
start until the XRSn pin is released by all internal and external sources.
6.12.1.4.3.2 Internal VREG/VDD Mode Sequence
Figure 6-9 depicts the power sequencing requirements for internal VREG mode. The values for all the
parameters indicated can be found in Power Management Module Electrical Data and Timing.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
77
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
VDDIO
VBOR-VDDIO-UP
VDDIO
(A)
VBOR-VDDIO-DN(B)
Internal
All Monitors Release
Signal(C)
XRSn
SRVDDIO-UP
Internal All
Monitors Release
Signal(D)
XRSn
SRVDDIO-DN
VPOR-VDDIO
VPOR-VDDIO
VDDIO-MON-TOT-DELAY
A.
B.
C.
D.
VXRSn-PU-DELAY
VXRSn-PD-DELAY
This trip point is the trip point before XRSn releases. See the Power Management Module Characteristics table.
This trip point is the trip point after XRSn releases. See the Power Management Module Characteristics table.
During power up, the All Monitors Release Signal goes high after all POR and BOR monitors are released. See the PMM Block
Diagram.
During power down, the All Monitors Release Signal goes low if any of the POR or BOR monitors are tripped. See the PMM Block
Diagram.
Figure 6-9. Internal VREG Power Up Sequence
•
•
For Power Up:
1. VDDIO (that is, the 3.3-V rail) should come up with the minimum slew rate specified.
2. The Internal VREG powers up after the I/O monitors (I/O POR and I/O BOR) are released.
3. After the times specified by VDDIO-MON-TOT-DELAY and VXRSN-PU-DELAY, XRSn will be released and the
device starts the boot-up sequence.
There is an additional delay between XRSn releasing (that is, going high) and the boot-up sequence
starting. See Figure 6-6.
4. The I/O BOR monitor has different release points during power up and power down.
For Power Down:
1. The only requirement on VDDIO during power down is the slew rate.
2. The I/O BOR monitor has different release points during power up and power down.
3. The I/O BOR tripping will cause XRSn to go low after VXRSN-PD-DELAY and also power down the Internal
VREG.
Note
The All Monitors Release Signal is an internal signal.
Note
If there is an external circuit driving XRSn (for example, a supervisor), the boot-up sequence does not
start until the XRSn pin is released by all internal and external sources.
6.12.1.4.3.3 Supply Sequencing Summary and Effects of Violations
The acceptable power-up sequence for the rails is summarized below. "Power up" here means the rail in
question has reached the minimum recommended operating voltage.
CAUTION
Non-acceptable sequences leads to reliability concerns and possibly damage.
For simplicity, connecting all 3.3-V rails together and following the descriptions in Supply Pins Power Sequence
is recommended.
78
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 6-1. External VREG Sequence Summary
CASE
RAILS POWER-UP ORDER
ACCEPTABLE
VDDIO
VDDA
VDD
A
1
2
3
Yes
B
1
3
2
Yes
C
2
1
3
-
D
2
3
1
-
E
3
2
1
-
F
3
1
2
-
G
1
1
2
Yes
H
2
2
1
-
Table 6-2. Internal VREG Sequence Summary
CASE
RAILS POWER-UP ORDER
ACCEPTABLE
VDDIO
VDDA
A
1
2
Yes
B
2
1
-
C
1
1
Yes
Note
The analog modules on the device should only be powered after VDDA has reached the minimum
recommended operating voltage.
6.12.1.4.3.4 Supply Slew Rate
VDDIO has a minimum slew rate requirement. If the minimum slew rate is not met, XRSn might toggle a few
times until VDDIO crosses the I/O BOR region.
Note
The toggling on XRSn has no adverse effect on the device as boot only starts once XRSn is steadily
high. However if XRSn from the device is used to gate the reset signal of other ICs, then the slew rate
requirement should be met to prevent this toggling.
VDD has a minimum slew rate requirement in external VREG mode. If the minimum slew rate is not met, the
VDD POR may release before the VDD operational minimum voltage is met and the device may not start in a
properly reset state.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
79
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.12.1.5 Power Management Module Electrical Data and Timing
6.12.1.5.1 Power Management Module Operating Conditions
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
General
CVDDIO (1) (2)
VDDIO Capacitance Per
Pin(7)
0.1
μF
CVDDA (1) (2)
VDDA Capacitance Per
Pin(7)
2.2
μF
SRVDDIO-UP (3)
Supply Ramp Up Rate of
3.3V Rail (VDDIO)
SRVDDIO-DN (3)
Supply Ramp Down Rate of
3.3V Rail (VDDIO)
8
100
mV/μs
20
100
mV/μs
VBOR-VDDIO-GB VDDIO Brown Out Reset
(5)
Voltage Guardband
0.1
V
External VREG
CVDD
TOTAL(1) (4)
Total VDD Capacitance(7)
10
SRVDD-UP (3)
Supply Ramp Up Rate of
1.2V Rail (VDD)
3.5
100
mV/μs
SRVDD-DN (3)
Supply Ramp Down Rate of
1.2V Rail (VDD)
10
100
mV/μs
VDDIO - VDD
Delay(6)
Ramp Delay Between VDDIO
and VDD
0
No
Restrictions
μs
10
26.8
μF
μF
Internal VREG
CVDD
TOTAL(4)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
Total VDD Capacitance(7)
The exact value of the decoupling capacitance depends on the system voltage regulation solution that is supplying these pins.
It is recommended to tie the 3.3V rails (VDDIO, VDDA) together and supply them from a single source.
See the Supply Slew Rate section. Supply ramp rate faster than the maximum can trigger the on-chip ESD protection.
See the Power Management Module (PMM) section on possible configurations for the total decoupling capacitance.
TI recommends VBOR-VDDIO-GB to avoid BOR-VDDIO resets due to normal supply noise or load-transient events on the 3.3-V VDDIO
system regulator. Good system regulator design and decoupling capacitance (following the system regulator specifications) are
important to prevent activation of the BOR-VDDIO during normal device operation. The value of VBOR-VDDIO-GB is a system-level design
consideration; the voltage listed here is typical for many applications.
Delay between when the 3.3-V rail ramps up and when the 1.2-V rail ramps up. See the VREG Sequence Summary table for the
allowable supply ramp sequences.
Max capacitor tolerance should be 20%.
6.12.1.5.2 Power Management Module Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
VVREG
Internal Voltage Regulator
Output
VVREG-PU
Internal Voltage Regulator
Power Up Time
VVREG-INRUSH
(5)
Internal Voltage Regulator
Inrush Current
VPOR-VDDIO
VDDIO Power on Reset
Voltage
TEST CONDITIONS
MIN
TYP
MAX
UNIT
1.14
1.2
1.32
V
350
µs
650
mA
Before and After XRSn
Release
2.3
V
VBOR-VDDIO-UP VDDIO Brown Out Reset
(1)
Voltage on Ramp Up
Before XRSn Release
2.7
V
VBOR-VDDIO-DN VDDIO Brown Out Reset
(1)
Voltage on Ramp Down
After XRSn Release
80
Submit Document Feedback
2.81
3.0
V
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.12.1.5.2 Power Management Module Characteristics (continued)
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
VPOR-VDD-UP
VDD Power on Reset Voltage
Before XRSn Release
on Ramp Up
1
V
VPOR-VDD-DN
VDD Power on Reset Voltage
After XRSn Release
on Ramp Down
1
V
40
μs
2
μs
145
μs
40
μs
140
μs
185
μs
(2)
(2)
VXRSn-PUDELAY
(3)
VXRSn-PDDELAY
(4)
VDDIO-MONTOT-DELAY
XRSn Release Delay after
Supplies are Ramped Up
During Power Up
This is the final delay
XRSn Trip Delay after
Supplies are Ramped Down
During Power Down
Total Delays in Path of
VDDIO Monitors (POR, BOR)
XRSn Release Delay after a
VDD POR Event
VXRSn-MONRELEASE-DELAY
XRSn Release Delay after a
VDDIO BOR
Supplies Within Operating
Range
XRSn Release Delay after a
VDDIO POR Event
(1)
(2)
(3)
(4)
(5)
See the Supply Voltages figure.
VPOR-VDD is not supported and it is set to trip at a level below the recommended operating conditions. If monitoring of VDD is needed,
an external supervisor is required.
Supplies are considered fully ramped up after they cross the minimum recommended operating conditions for the respective rail. All
POR and BOR monitors need to be released before this delay takes effect. RC network delay will add to this.
On power down, any of the POR or BOR monitors that trips will immediately trip XRSn. This delay is the time between any of the POR,
BOR monitors tripping and XRSn going low. It is variable and depends on the ramp down rate of the supply. RC network delay will add
to this.
This is the transient current drawn on the VDDIO rail when the internal VREG turns on. Due to this, there might be some voltage drops
on the VDDIO rail when the VREG turns on which could cause the VREG to ramp up in steps. There is no detriment to the device from
this but the effect can be reduced if desired by using sufficient decoupling capacitors on VDDIO or picking an LDO/DC-DC that can
supply this transient current.
Supply Voltages
3.63 V
3.3 V
+10%
0%
Recommended
System Voltage
Regulator Range
VDDIO
Operating
Range
3.1 V
–6.1%
3.0 V
–9.1%
VBOR-GB
BOR Guard Band
VBOR-VDDIO
Internal BOR Threshold
2.81 V
2.80 V
–14.8%
–15.1%
Figure 6-10. Supply Voltages
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
81
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.12.2 Reset Timing
XRSn is the device reset pin. It functions as an input and open-drain output. The device has a built-in power-on
reset (POR) and brown-out reset (BOR) monitors. During power up, the monitor circuits keep the XRSn pin low.
For more details, see the Power Management Module (PMM) section. A watchdog or NMI watchdog reset will
also drive the pin low. An external open-drain circuit may drive the pin to assert a device reset.
A resistor with a value from 2.2 kΩ to 10 kΩ should be placed between XRSn and VDDIO. A capacitor should
be placed between XRSn and VSS for noise filtering, it should be 100 nF or smaller. These values will allow
the watchdog to properly drive the XRSn pin to VOL within 512 OSCCLK cycles when the watchdog reset is
asserted. Figure 6-11 shows the recommended reset circuit.
VDDIO
2.2 kW to 10 kW
Optional open-drain
Reset source
XRSn
£100 nF
Figure 6-11. Reset Circuit
6.12.2.1 Reset Sources
The Reset Signals table summarizes the various reset signals and their effect on the device.
Table 6-3. Reset Signals
Reset Source
CPU Core Reset
(C28x, FPU, TMU)
Peripherals
Reset
JTAG / Debug
Logic Reset
IOs
XRS Output
POR
Yes
Yes
Yes
Hi-Z
Yes
BOR
Yes
Yes
Yes
Hi-Z
Yes
XRS Pin
Yes
Yes
No
Hi-Z
-
WDRS
Yes
Yes
No
Hi-Z
Yes
NMIWDRS
Yes
Yes
No
Hi-Z
Yes
SYSRS (Debugger Reset)
Yes
Yes
No
Hi-Z
No
SCCRESET
Yes
Yes
No
Hi-Z
No
SIMRESET. XRS
Yes
Yes
No
Hi-Z
Yes
SIMRESET. CPU1RS
Yes
Yes
No
Hi-Z
No
HWBISTRS
Yes
No
No
No
No
The parameter th(boot-mode) must account for a reset initiated from any of these sources.
See the Resets section of the System Control chapter in the TMS320F28003x Real-Time Microcontrollers
Technical Reference Manual.
CAUTION
Some reset sources are internally driven by the device. Some of these sources will drive XRSn low,
use this to disable any other devices driving the boot pins. The SCCRESET and debugger reset
sources do not drive XRSn; therefore, the pins used for boot mode should not be actively driven by
other devices in the system. The boot configuration has a provision for changing the boot pins in
OTP.
82
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.12.2.2 Reset Electrical Data and Timing
6.12.2.2.1 Reset - XRSn - Timing Requirements
MIN
MAX
UNIT
th(boot-mode)
Hold time for boot-mode pins
1.5
ms
tw(RSL2)
Pulse duration, XRSn low on warm reset
3.2
µs
6.12.2.2.2 Reset - XRSn - Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
MIN
tw(RSL1)
Pulse duration, XRSn driven low by device after supplies are stable
tw(WDRS)
Pulse duration, reset pulse generated by watchdog
tboot-flash
Boot-ROM execution time to first instruction fetch in flash
TYP
MAX
100
UNIT
µs
512tc(OSCCLK)
cycles
1.2
ms
6.12.2.2.3 Reset Timing Diagrams
VDDIO VDDA
(3.3V)
VDD (1.2V)
tw(RSL1)
XRSn(A)
tboot-flash
Boot ROM
CPU
Execution
Phase
User code
th(boot-mode)(B)
Boot-Mode
Pins
User code dependent
GPIO pins as input
Peripheral/GPIO function
Based on boot code
Boot-ROM execution starts
I/O Pins
GPIO pins as input (pullups are disabled)
User code dependent
A.
B.
The XRSn pin can be driven externally by a supervisor or an external pullup resistor, see the Pin Attributes table. On-chip monitors will
hold this pin low until the supplies are in a valid range.
After reset from any source (see the Reset Sources section), the boot ROM code samples Boot Mode pins. Based on the status of
the Boot Mode pin, the boot code branches to destination memory or boot code function. If boot ROM code executes after power-on
conditions (in debugger environment), the boot code execution time is based on the current SYSCLK speed. The SYSCLK will be based
on user environment and could be with or without PLL enabled.
Figure 6-12. Power-on Reset
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
83
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
tw(RSL2)
XRSn
User code
CPU
Execution
Phase
Boot ROM
User code
Boot ROM execution starts
(initiated by any reset source)
Boot-Mode
Pins
Peripheral/GPIO function
GPIO Pins as Input
th(boot-mode)(A)
Peripheral/GPIO function
User-Code Execution Starts
I/O Pins
User-Code Dependent
GPIO Pins as Input (Pullups are Disabled)
User-Code Dependent
A.
After reset from any source (see the Reset Sources section), the Boot ROM code samples BOOT Mode pins. Based on the status of
the Boot Mode pin, the boot code branches to destination memory or boot code function. If Boot ROM code executes after power-on
conditions (in debugger environment), the Boot code execution time is based on the current SYSCLK speed. The SYSCLK will be
based on user environment and could be with or without PLL enabled.
Figure 6-13. Warm Reset
84
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.12.3 Clock Specifications
6.12.3.1 Clock Sources
Table 6-4. Possible Reference Clock Sources
CLOCK SOURCE
DESCRIPTION
INTOSC1
Internal oscillator 1.
Zero-pin overhead 10-MHz internal oscillator.
INTOSC2(1)
Internal oscillator 2.
Zero-pin overhead 10-MHz internal oscillator.
X1 (XTAL)
External crystal or resonator connected between the X1 and X2 pins or single-ended clock connected to the X1
pin.
(1)
On reset, internal oscillator 2 (INTOSC2) is the default clock source for the PLL (OSCCLK).
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
85
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
SYSCLKDIVSEL
PLLSYSCLK
NMIWD
Watchdog
Timer
SYSPLL
INTOSC1
INTOSC2
SYS
Divider
PLLRAWCLK
FPU
TMU
Flash
CPUCLK
OSCCLK
SYSPLLCLKEN
X1 (XTAL)
OSCCLKSRCSEL
CPU
SYSCLK
SYSCLK
One per SYSCLK peripheral
PCLKCRx
PERx.SYSCLK
ePIE
CLA
GPIO
Mx RAMs
LSx RAMs
GSx RAMs
Boot ROM
Message RAMs
DCSM
System Control
WD
XINT
I2C
ADC
CMPSS
GPDAC
CAN
MCAN
HIC
DCC
HWBIST
BGCRC
ERAD
CPUTIMERs
CLB
ECAP
EQEP
EPWM
HRCAL
PMBUS
LIN
FSI
SDFM
EPG
AES
One per LSPCLK peripheral
LOSPCP
PCLKCRx
LSP
Divider
LSPCLK
PERx.LSPCLK
SCI
SPI
CLKSRCCTL2.CANxBCLKSEL
AUXCLKIN (GPIO29)
CAN Bit Clock
PERx.SYSCLK
CLKSRCCTL2.MCANxBCLKSEL
CPUSYSCLK
PLLRAWCLK
/
MCAN Bit Clock
AUXCLKDIVSEL.MCANCLKDIV
Figure 6-14. Clocking System
86
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
SYSPLL
OSCCLK
÷
INTCLK
VCO
(REFDIV+1)
VCOCLK
PLLRAWCLK
÷
(ODIV+1)
÷
IMULT
Figure 6-15. System PLL
In the System PLL figure,
fPLLRAWCLK =
fOSCCLK
× IMULT
REFDIV + 1
ODIV + 1
Copyright © 2023 Texas Instruments Incorporated
(1)
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
87
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.12.3.2 Clock Frequencies, Requirements, and Characteristics
This section provides the frequencies and timing requirements of the input clocks, PLL lock times, frequencies of
the internal clocks, and the frequency and switching characteristics of the output clock.
6.12.3.2.1 Input Clock Frequency and Timing Requirements, PLL Lock Times
6.12.3.2.1.1 Input Clock Frequency
MIN
MAX
UNIT
f(XTAL)
Frequency, X1/X2, from external crystal or resonator
10
20
MHz
f(X1)
Frequency, X1, from external oscillator
10
25
MHz
f(AUXI)
Frequency, AUXCLKIN, from external oscillator
10
60
MHz
6.12.3.2.1.2 XTAL Oscillator Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
X1 VIL
Valid low-level input voltage
(Comparator)
X1 VIH
Valid high-level input voltage
(Comparator)
MIN
TYP
MAX
UNIT
–0.3
0.3 * VDDIO
V
0.7 * VDDIO
VDDIO + 0.3
V
6.12.3.2.1.3 X1 Input Level Characteristics When Using an External Clock Source - Not a Crystal
over recommended operating conditions (unless otherwise noted)
PARAMETER
X1 VIL
Valid low-level input voltage (Buffer)
X1 VIH
Valid high-level input voltage (Buffer)
MIN
MAX
UNIT
–0.3
0.3 * VDDIO
V
0.7 * VDDIO
VDDIO + 0.3
V
6.12.3.2.1.4 X1 Timing Requirements
MIN
MAX
tf(X1)
Fall time, X1
tr(X1)
Rise time, X1
tw(X1L)
Pulse duration, X1 low as a percentage of tc(X1)
45%
55%
tw(X1H)
Pulse duration, X1 high as a percentage of tc(X1)
45%
55%
MIN
MAX
UNIT
6
ns
6
ns
6.12.3.2.1.5 AUXCLKIN Timing Requirements
UNIT
tf(AUXI)
Fall time, AUXCLKIN
6
ns
tr(AUXI)
Rise time, AUXCLKIN
6
ns
tw(AUXL)
Pulse duration, AUXCLKIN low as a percentage of tc(XCI)
45%
55%
tw(AUXH)
Pulse duration, AUXCLKIN high as a percentage of tc(XCI)
45%
55%
6.12.3.2.1.6 APLL Characteristics
over operating free-air temperature range (unless otherwise noted)
PARAMETER
MIN
TYP
MAX
UNIT
PLL Lock time
SYS PLL Lock Time(1)
(1)
88
5µs + (1024 * (REFDIV + 1) * tc(OSCCLK))
μs
The PLL lock time here defines the typical time that takes for the PLL to lock once PLL is enabled (SYSPLLCTL1[PLLENA]=1).
Additional time to verify the PLL clock using Dual Clock Comparator (DCC) is not accounted here. TI recommends using the latest
example software from C2000Ware for initializing the PLLs. For the system PLL, see InitSysPll() or SysCtl_setClock().
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.12.3.2.1.7 XCLKOUT Switching Characteristics - PLL Bypassed or Enabled
over recommended operating conditions (unless otherwise noted)
PARAMETER(1)
MIN
MAX
UNIT
tf(XCO)
Fall time, XCLKOUT
5
ns
tr(XCO)
Rise time, XCLKOUT
5
ns
tw(XCOL)
Pulse duration, XCLKOUT low
H – 2(2)
H + 2(2)
ns
2(2)
2(2)
ns
50
MHz
tw(XCOH)
Pulse duration, XCLKOUT high
f(XCO)
Frequency, XCLKOUT
(1)
(2)
H–
H+
A load of 40 pF is assumed for these parameters.
H = 0.5tc(XCO)
6.12.3.2.1.8 Internal Clock Frequencies
MIN
f(SYSCLK)
Frequency, device (system) clock
tc(SYSCLK)
Period, device (system) clock
f(INTCLK)
Frequency, system PLL going into VCO (after REFDIV)
f(VCOCLK)
Frequency, system PLL VCO (before ODIV)
f(PLLRAWCLK)
Frequency, system PLL output (before SYSCLK divider)
f(PLL)
Frequency, PLLSYSCLK
UNIT
120
MHz
8.33
500
ns
2
20
MHz
220
600
MHz
6
240
MHz
2
120
MHz
(1)
f(PLL_LIMP)
Frequency, PLL Limp Frequency
f(LSP)
Frequency, LSPCLK
tc(LSPCLK)
Period, LSPCLK
f(OSCCLK)
Frequency, OSCCLK (INTOSC1 or INTOSC2 or XTAL or
X1)
f(EPWM)
Frequency, EPWMCLK
f(HRPWM)
Frequency, HRPWMCLK
(1)
MAX
2
NOM
45/(ODIV+1)
MHz
2
120
MHz
8.33
500
ns
See respective clock
60
MHz
120
MHz
120
MHz
PLL output frequency when OSCCLK is dead (Loss of OSCCLK causes PLL to Limp).
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
89
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.12.3.3 Input Clocks and PLLs
In addition to the internal 0-pin oscillators, three types of external clock sources are supported:
• A single-ended 3.3-V external clock. The clock signal should be connected to X1, as shown in Figure 6-16,
with the XTALCR.SE bit set to 1.
• An external crystal. The crystal should be connected across X1 and X2 with its load capacitors connected to
VSS as shown in Figure 6-17.
• An external resonator. The resonator should be connected across X1 and X2 with its ground connected to
VSS as shown in Figure 6-18.
Microcontroller
Microcontroller
VSS
GPIO19
GPIO18*
X1
X2
GPIO19
GPIO18
X1
X2
* Available as a
GPIO when X1 is
used as a clock
+3.3 V
VDD
VSS
Out
3.3-V Oscillator
Gnd
Figure 6-17. External Crystal
Figure 6-16. Single-ended 3.3-V External Clock
Microcontroller
VSS
GPIO19
GPIO18
X1
X2
Figure 6-18. External Resonator
6.12.3.4 XTAL Oscillator
6.12.3.4.1 Introduction
The crystal oscillator in this device is an embedded electrical oscillator that, when paired with a compatible
quartz crystal (or a ceramic resonator), can generate the system clock required by the device.
6.12.3.4.2 Overview
The following sections describe the components of the electrical oscillator and crystal.
6.12.3.4.2.1 Electrical Oscillator
The electrical oscillator in this device is a Pierce oscillator. It is a positive feedback inverter circuit that requires a
tuning circuit in order to oscillate. When this oscillator is paired with a compatible crystal, a tank circuit is formed.
This tank circuit oscillates at the fundamental frequency of the crystal. On this device, the oscillator is designed
to operate in parallel resonance mode due to the shunt capacitor (C0) and required load capacitors (CL). Figure
6-19 illustrates the components of the electrical oscillator and the tank circuit.
90
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
MCU
To Rest of Chip
XTAL Oscillator
Buffer
0
Comp
1
XCLKOUT
Circuit
[XTAL On]
Rbias
XCLKOUT
Pierce Inverter
GPIO
External
X2
X1
Internal
External
Rd
Crystal
CL1
Internal
CL2
GND
GND
Figure 6-19. Electrical Oscillator Block Diagram
6.12.3.4.2.1.1 Modes of Operation
The electrical oscillator in this device has two modes of operation: crystal mode and single-ended mode.
6.12.3.4.2.1.1.1 Crystal Mode of Operation
In the crystal mode of operation, a quartz crystal with load capacitors has to be connected to X1 and X2.
This mode of operation is engaged when [XTAL On] = 1, which is achieved by setting XTALCR.OSCOFF = 0
and XTALCR.SE = 0. There is an internal bias resistor for the feedback loop so an external one should not be
used. Adding an external bias resistor will create a parallel resistance with the internal Rbias, moving the bias
point of operation and possibly leading to clipped waveforms, out-of-specification duty cycle, and reduction in the
effective negative resistance.
In this mode of operation, the resultant clock on X1 is passed through a comparator (Comp) to the rest of the
chip. The clock on X1 needs to meet the VIH and VIL of the comparator. See the XTAL Oscillator Characteristics
table for the VIH and VIL requirements of the comparator.
6.12.3.4.2.1.1.2 Single-Ended Mode of Operation
In the single-ended mode of operation, a clock signal is connected to X1 with X2 left unconnected. A quartz
crystal should not be used in this mode.
This mode is enabled when [XTAL On] = 0, which can be achieved by setting XTALCR.OSCOFF = 1 and
XTALCR.SE = 1.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
91
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
In this mode of operation, the clock on X1 is passed through a buffer (Buffer) to the rest of the chip. See
the X1 Input Level Characteristics When Using an External Clock Source (Not a Crystal) table for the input
requirements of the buffer.
6.12.3.4.2.1.2 XTAL Output on XCLKOUT
The output of the electrical oscillator that is fed to the rest of the chip can be brought out on XCLKOUT for
observation by configuring the CLKSRCCTL3.XCLKOUTSEL and XCLKOUTDIVSEL.XCLKOUTDIV registers.
See the GPIO Muxed Pins table for a list of GPIOs that XCLKOUT comes out on.
6.12.3.4.2.2 Quartz Crystal
Electrically, a quartz crystal can be represented by an LCR (Inductor-Capacitor-Resistor) circuit. However, unlike
an LCR circuit, crystals have very high Q due to the low motional resistance and are also very underdamped.
Components of the crystal are shown in Figure 6-20 and explained below.
Quartz Crystal
Internal
External
Cm
Rm
C0
CL
Lm
Figure 6-20. Crystal Electrical Representation
Cm (Motional capacitance): Denotes the elasticity of the crystal.
Rm (Motional resistance): Denotes the resistive losses within the crystal. This is not the ESR of the crystal but
can be approximated as such depending on the values of the other crystal components.
Lm (Motional inductance): Denotes the vibrating mass of the crystal.
C0 (Shunt capacitance): The capacitance formed from the two crystal electrodes and stray package
capacitance.
CL (Load capacitance): This is the effective capacitance seen by the crystal at its electrodes. It is external to
the crystal. The frequency ppm specified in the crystal data sheet is usually tied to the CL parameter.
Note that most crystal manufacturers specify CL as the effective capacitance seen at the crystal pins, while
some crystal manufacturers specify CL as the capacitance on just one of the crystal pins. Check with the crystal
manufacturer for how the CL is specified in order to use the correct values in calculations.
From Figure 6-19, CL1 and CL2 are in series; so, to find the equivalent total capacitance seen by the crystal, the
capacitance series formula has to be applied which simply evaluates to [CL1]/2 if CL1 = CL2.
It is recommended that a stray PCB capacitance be added to this value. 3 pF to 5 pF are reasonable estimates,
but the actual value will depend on the PCB in question.
Note that the load capacitance is a requirement of both the electrical oscillator and crystal. The value chosen has
to satisfy both the electrical oscillator and the crystal.
92
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
The effect of CL on the crystal is frequency-pulling. If the effective load capacitance is lower than the target, the
crystal frequency will increase and vice versa. However, the effect of frequency-pulling is usually very minimal
and typically results in less than 10-ppm variation from the nominal frequency.
6.12.3.4.2.3 GPIO Modes of Operation
On this device, X1 and X2 can be used as GPIO19 and GPIO18, respectively, depending on the operating mode
of the XTAL. Refer to the External Oscillator (XTAL) section of the TMS320F28003x Real-Time Microcontrollers
Technical Reference Manual .
6.12.3.4.3 Functional Operation
6.12.3.4.3.1 ESR – Effective Series Resistance
Effective Series Resistance is the resistive load the crystal presents to the electrical oscillator at resonance. The
higher the ESR, the lower the Q, and less likely the crystal will start up or maintain oscillation. The relationship
between ESR and the crystal components is indicated below.
ESR = Rm * 1 + C0
CL
2
(2)
Note that ESR is not the same as motional resistance of the crystal, but can be approximated as such if the
effective load capacitance is much greater than the shunt capacitance.
6.12.3.4.3.2 Rneg – Negative Resistance
Negative resistance is the impedance presented by the electrical oscillator to the crystal. It is the amount of
energy the electrical oscillator must supply to the crystal to overcome the losses incurred during oscillation. Rneg
depicts a circuit that provides rather than consume energy and can also be viewed as the overall gain of the
circuit.
The generally accepted practice is to have Rneg > 3x ESR to 5x ESR to ensure the crystal starts up under
all conditions. Note that it takes slightly more energy to start up the crystal than it does to sustain oscillation;
therefore, if it can be ensured that the negative resistance requirement is met at start-up, then oscillation
sustenance will not be an issue.
Figure 6-21 and Figure 6-22 show the variation between negative resistance and the crystal components for this
device. As can be seen from the graphs, the crystal shunt capacitance (C0) and effective load capacitance (CL)
greatly influence the negative resistance of the electrical oscillator. Note that these are typical graphs; so, refer to
Table 6-5 for minimum and maximum values for design considerations.
6.12.3.4.3.3 Start-up Time
Start-up time is an important consideration when selecting the components of the crystal circuit. As mentioned
in the Rneg – Negative Resistance section, for reliable start-up across all conditions, it is recommended that the
Rneg > 3x ESR to 5x ESR of the crystal.
Crystal ESR and the dampening resistor (Rd) greatly affect the start-up time. The higher the two values, the
longer the crystal takes to start up. Longer start-up times are usually a sign that the crystal and components are
not a correct match.
Refer to Crystal Oscillator Specifications for the typical start-up times. Note that the numbers specified here are
typical numbers provided for guidance only. Actual start-up time depends heavily on the crystal in question and
the external components.
6.12.3.4.3.3.1 X1/X2 Precondition
On this device, the GPIO19/18 alternate functionality on X1/X2 can be used to speed up the start-up time of the
crystal if needed. This functionality is achieved by preconditioning the load capacitors CL1 and CL2 to a known
state before the XTAL is turned on. See the TMS320F28003x Real-Time Microcontrollers Technical Reference
Manual for details.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
93
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
6.12.3.4.3.4 DL – Drive Level
Drive level refers to how much power is provided by the electrical oscillator and dissipated by the crystal. The
maximum drive level specified in the crystal manufacturer’s data sheet is usually the maximum the crystal can
dissipate without damage or significant reduction in operating life. On the other hand, the drive level specified
by the electrical oscillator is the maximum power it can provide. The actual power provided by the electrical
oscillator is not necessarily the maximum power and depends on the crystal and board components.
For cases where the actual drive level from the electrical oscillator exceeds the maximum drive level
specification of the crystal, a dampening resistor (Rd) should be installed to limit the current and reduce the
power dissipated by the crystal. Note that Rd reduces the circuit gain; and therefore, the actual value to use
should be evaluated to make sure all other conditions for start-up and sustained oscillation are met.
6.12.3.4.4 How to Choose a Crystal
Using Crystal Oscillator Specifications as a reference:
1. Pick a crystal frequency (for example, 20 MHz).
2. Check that the ESR of the crystal = 1 mW. If this requirement is not met, a dampening
resistor Rd can be used. Refer to DL – Drive Level on other points to consider when using Rd.
6.12.3.4.5 Testing
It is recommended that the user have the crystal manufacturer completely characterize the crystal with their
board to ensure the crystal always starts up and maintains oscillation.
Below is a brief overview of some measurements that can be performed:
Due to how sensitive the crystal circuit is to capacitance, it is recommended that scope probes not be connected
to X1 and X2. If scope probes must be used to monitor X1/X2, an active probe with less than 1-pF input
capacitance should be used.
Frequency
1. Bring out the XTAL on XCLKOUT.
2. Measure this frequency as the crystal frequency.
Negative Resistance
1.
2.
3.
4.
Bring out the XTAL on XCLKOUT.
Place a potentiometer in series with the crystal between the load capacitors.
Increase the resistance of the potentiometer until the clock on XCLKOUT stops.
This resistance plus the crystal’s actual ESR is the negative resistance of the electrical oscillator.
Start-Up Time
1. Turn off the XTAL.
2. Bring out the XTAL on XCLKOUT.
3. Turn on the XTAL and measure how long it takes the clock on XCLKOUT to stay within 45% and 55% duty
cycle.
94
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.12.3.4.6 Common Problems and Debug Tips
Crystal Fails to Start Up
• Go through the How to Choose a Crystal section and make sure there are no violations.
Crystal Takes a Long Time to Start Up
• If a dampening resistor Rd is installed, it is too high.
• If no dampening resistor is installed, either the crystal ESR is too high or the overall circuit gain is too low due
to high load capacitance.
6.12.3.4.7 Crystal Oscillator Specifications
6.12.3.4.7.1 Crystal Oscillator Parameters
CL1, CL2
Load capacitance
C0
Crystal shunt capacitance
MIN
MAX
UNIT
12
24
pF
7
pF
6.12.3.4.7.2 Crystal Equivalent Series Resistance (ESR) Requirements
For the Crystal Equivalent Series Resistance (ESR) Requirements table:
1. Crystal shunt capacitance (C0) should be less than or equal to 7 pF.
2. ESR = Negative Resistance/3
Table 6-5. Crystal Equivalent Series Resistance (ESR) Requirements
CRYSTAL FREQUENCY (MHz)
MAXIMUM ESR (Ω)
(CL1 = CL2 = 12 pF)
MAXIMUM ESR (Ω)
(CL1 = CL2 = 24 pF)
10
55
110
12
50
95
14
50
90
16
45
75
18
45
65
20
45
50
Negative Resistance vs. 10MHz Crystal
3000
C0 (pF)
1
3
5
7
9
Rneg (Ohms)
2500
2000
1500
1000
500
0
2
4
6
8
10
12
14
16
Effective CL (pF)
Figure 6-21. Negative Resistance Variation at 10 MHz
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
95
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Negative Resistance vs. 20MHz Crystal
1600
C0 (pF)
1
3
5
7
9
1400
Rneg (Ohms)
1200
1000
800
600
400
200
0
2
4
6
8
10
12
14
16
Effective CL (pF)
Figure 6-22. Negative Resistance Variation at 20 MHz
6.12.3.4.7.3 Crystal Oscillator Electrical Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
TYP
MAX
UNIT
4
ms
f = 20 MHz
ESR MAX = 50 Ω
CL1 = CL2 = 24 pF
C0 = 7 pF
2
ms
Crystal drive level (DL)
96
MIN
f = 10 MHz
Start-up
time(1)
(1)
TEST CONDITIONS
ESR MAX = 110 Ω
CL1 = CL2 = 24 pF
C0 = 7 pF
1
mW
Start-up time is dependent on the crystal and tank circuit components. TI recommends that the crystal vendor characterize the
application with the chosen crystal.
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.12.3.5 Internal Oscillators
To reduce production board costs and application development time, all F28003x devices contain two
independent internal oscillators, referred to as INTOSC1 and INTOSC2. By default, INTOSC2 is set as the
source for the system reference clock (OSCCLK) and INTOSC1 is set as the backup clock source.
Applications requiring tighter SCI baud rate matching can use the SCI baud tuning example
(baud_tune_via_uart) available in C2000Ware.
6.12.3.5.1 INTOSC Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
fINTOSC
Frequency, INTOSC1 and
INTOSC2(1)
fINTOSC-STABILITY
Frequency stability at room
temperature
tINT0SC-ST
Start-up and settling time
(1)
TEST
CONDITIONS
MIN
TYP
MAX
-40℃ to 125℃
9.82 (-1.8%)
10
10.1 (1.0%)
-30℃ to 90℃
9.86 (-1.4%)
10
10.1 (1.0%)
-10℃ to 85℃
9.9 (-1.0%)
10
10.1 (1.0%)
30°C, Nominal
VDD
±0.1
UNIT
MHz
%
20
µs
INTOSC frequency may shift due to the thermal and mechanical stress of solder reflow. A post-reflow bake can restore the unit to its
original data sheet performance.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
97
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.12.4 Flash Parameters
Table 6-6 lists the minimum required Flash wait states with different clock sources and frequencies. Wait state is
the value set in register FRDCNTL[RWAIT].
Table 6-6. Minimum Required Flash Wait States with Different Clock Sources and Frequencies
EXTERNAL OSCILLATOR OR CRYSTAL
CPUCLK (MHz)
NORMAL
OPERATION
BANK OR PUMP
SLEEP(1)
116 < CPUCLK ≤ 120
100 < CPUCLK ≤ 116
97 < CPUCLK ≤ 100
80 < CPUCLK ≤ 97
77 < CPUCLK ≤ 80
60 < CPUCLK ≤ 77
58 < CPUCLK ≤ 60
40 < CPUCLK ≤ 58
38 < CPUCLK ≤ 40
20 < CPUCLK ≤ 38
19 < CPUCLK ≤ 20
CPUCLK ≤ 19
(1)
INTOSC1 OR INTOSC2
BANK OR PUMP
SLEEP(1)
NORMAL OPERATION
5
5
4
4
3
3
2
2
1
1
0
0
6
5
5
4
4
3
3
2
2
1
1
0
Flash SLEEP operations require an extra wait state when using INTOSC as the clock source for the frequency ranges indicated. Any
wait state FRDCNTL[RWAIT] change must be made before beginning a SLEEP mode operation. This setting impacts both flash banks.
The F28003x devices have an improved 128-bit prefetch buffer that provides high flash code execution efficiency
across wait states. Figure 6-23 and Figure 6-24 illustrate typical efficiency across wait-state settings compared
to previous-generation devices with a 64-bit prefetch buffer. Wait-state execution efficiency with a prefetch buffer
will depend on how many branches are present in application software. Two examples of linear code and
if-then-else code are provided.
100%
100%
95%
90%
Efficiency (%)
Efficiency (%)
90%
80%
70%
60%
Flash with 64-Bit Prefetch
Flash with 128-Bit Prefetch
50%
80%
75%
Flash with 64-Bit Prefetch
Flash with 128-Bit Prefetch
70%
65%
40%
60%
30%
55%
0
1
2
3
Wait State
4
5
D005
Figure 6-23. Application Code With Heavy 32-Bit
Floating-Point Math Instructions
98
85%
Submit Document Feedback
0
1
2
3
Wait State
4
5
D006
Figure 6-24. Application Code With 16-Bit If-Else
Instructions
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Section 6.12.4.1 lists the Flash parameters.
Note
The Main Array flash programming must be aligned to 64-bit address boundaries and each 64-bit
word may only be programmed once per write/erase cycle.
Note
It is important to provide the correct sector mask for the bank erase command. If the mask is
mistakenly chosen to erase an inaccessible sector (belongs to another security zone), the bank erase
command will continue attempting to erase the sector endlessly and the FSM will never exit (since
erase will not succeed). To avoid such a situation, user must take care to provide the correct mask.
However, given that there is a chance of choosing an incorrect mask, TI suggests to initialize the max
allowed erase pulses to zero after the max number of pulses are issued by the FSM for the bank
erase operation. This will ensure that the FSM will end the bank erase command after trying to erase
the inaccessible sector up to the max allowed erase pulses.
The Example_EraseBanks() function in the C2000Ware’s flash API usage example depicts the
implementation of this sequence (content of the while loop waiting for the FSM to complete the bank
erase command). Users must use this code as-is irrespective of whether or not security is used by the
application to also ensure that the FSM exits from bank erase operations in case of an erase-failure.
6.12.4.1 Flash Parameters
PARAMETER
MIN
TYP
MAX
UNIT
150
300
µs
50
100
ms
15
56
ms
26
133
ms
31
226
ms
20k cycles
123
1026
ms
< 25 cycles
21
78
ms
35
183
ms
42
310
ms
128 data bits + 16 ECC bits
Program Time(1)
8KB (Sector)
< 25 cycles
Sector Erase Time(2) (3)
Bank Erase Time(2) (3)
1k cycles
2k cycles
1k cycles
2k cycles
8KB (Sector)
128KB (Bank)
20k cycles
169
Nwec Write/Erase Cycles per Sector
Nwec Write/Erase Cycles for Entire Flash
(Combined for all Sectors)
tretention Data retention duration at TJ =
85oC
(1)
(2)
(3)
20
1410
ms
20000
cycles
100000
cycles
years
Program time is at the maximum device frequency. Program time includes overhead of the flash state machine but does not include
the time to transfer the following into RAM:
• Code that uses flash API to program the flash
• Flash API itself
• Flash data to be programmed
In other words, the time indicated in this table is applicable after all the required code/data is available in the device RAM, ready for
programming. The transfer time will significantly vary depending on the speed of the JTAG debug probe used.
Program time calculation is based on programming 144 bits at a time at the specified operating frequency. Program time includes
Program verify by the CPU. The program time does not degrade with write/erase (W/E) cycling, but the erase time does.
Erase time includes Erase verify by the CPU and does not involve any data transfer.
Erase time includes Erase verify by the CPU.
The on-chip flash memory is in an erased state when the device is shipped from TI. As such, erasing the flash memory is not required
prior to programming, when programming the device for the first time. However, the erase operation is needed on all subsequent
programming operations.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
99
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.12.5 RAM and ROM Parameters
All volatile memory (RAM and ROM) on the F28003x device is 0 Wait-state for both reads and writes, meaning
the memory operates at the same speed as SYSCLK. RAM Block Properties summarizes the characteristics of
the different RAM instances on the device. ROM Properties summarizes the aspects of the ROM instances on
the device
Table 6-7. RAM Block Properties
RAM TYPE
M0
SIZE EACH
FETCH TIME
(CYCLES)
SUPPORTED
WRITE TIME
BUS WIDTHS
(CYCLES)
(BITS)
READ TIME
(CYCLES)
HOST
ACCESS
LIST
2KB
C28x
LS RAM
(LS0–LS7)
4KB
C28x/CLA
GS RAM
(GS0–GS3)
8KB
C28x/DMA/HI
C
M1
CLA to CPU
Message
RAM
CPU to CLA
Message
RAM
CLA to DMA
Message
RAM
2
2
1
16/32
WAIT
STATES
BURST
ACCESS
SUPPORT
0
No
C28x/CLA
256B
CLA/DMA
DMA to CLA
Message
RAM
Table 6-8. ROM Properties
ROM TYPE
SIZE EACH
Boot ROM
64KB
Secure ROM
48KB
CLA Data ROM
8KB
CLA Program
ROM
96KB
100
Submit Document Feedback
FETCH TIME
(CYCLES)
READ TIME
(CYCLES)
SUPPORTED
BUS WIDTHS
(BITS)
HOST ACCESS
WAIT STATES
LIST
BURST
ACCESS
SUPPORT
C28x
2
2
16/32
C28x/CLA
0
No
CLA
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.12.6 Emulation/JTAG
The JTAG (IEEE Standard 1149.1-1990 Standard Test Access Port and Boundary Scan Architecture) port has
four dedicated pins: TMS, TDI, TDO, and TCK. The cJTAG (IEEE Standard 1149.7-2009 for Reduced-Pin and
Enhanced-Functionality Test Access Port and Boundary-Scan Architecture) port is a compact JTAG interface
requiring only two pins (TMS and TCK), which allows other device functionality to be muxed to the traditional
GPIO35 (TDI) and GPIO37 (TDO) pins.
Typically, no buffers are needed on the JTAG signals when the distance between the MCU target and the JTAG
header is smaller than 6 inches (15.24 cm), and no other devices are present on the JTAG chain. Otherwise,
each signal should be buffered. Additionally, for most JTAG debug probe operations at 10 MHz, no series
resistors are needed on the JTAG signals. However, if high emulation speeds are expected (35 MHz or so), 22-Ω
resistors should be placed in series on each JTAG signal.
The PD (Power Detect) pin of the JTAG debug probe header should be connected to the board's 3.3-V supply.
Header GND pins should be connected to board ground. TDIS (Cable Disconnect Sense) should also be
connected to board ground. The JTAG clock should be looped from the header TCK output pin back to the
RTCK input pin of the header (to sense clock continuity by the JTAG debug probe). This MCU does not support
the EMU0 and EMU1 signals that are present on 14-pin and 20-pin emulation headers. These signals should
always be pulled up at the emulation header through a pair of board pullup resistors ranging from 2.2 kΩ to
4.7 kΩ (depending on the drive strength of the debugger ports). Typically, a 2.2-kΩ value is used.
Header pin RESET is an open-drain output from the JTAG debug probe header that enables board components
to be reset through JTAG debug probe commands (available only through the 20-pin header). Figure 6-25 shows
how the 14-pin JTAG header connects to the MCU’s JTAG port signals. Figure 6-26 shows how to connect to
the 20-pin JTAG header. The 20-pin JTAG header pins EMU2, EMU3, and EMU4 are not used and should be
grounded.
For more information about hardware breakpoints and watchpoints, see Hardware Breakpoints and Watchpoints
in CCS for C2000 devices.
For more information about JTAG emulation, see the XDS Target Connection Guide.
Note
JTAG Test Data Input (TDI) is the default mux selection for the pin. The internal pullup is disabled by
default. If this pin is used as JTAG TDI, the internal pullup should be enabled or an external pullup
added on the board to avoid a floating input. In the cJTAG option, this pin can be used as GPIO.
JTAG Test Data Output (TDO) is the default mux selection for the pin. The internal pullup is disabled
by default. The TDO function will be in a tri-state condition when there is no JTAG activity, leaving this
pin floating. The internal pullup should be enabled or an external pullup added on the board to avoid a
floating GPIO input. In the cJTAG option, this pin can be used as GPIO.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
101
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Distance between the header and the target
should be less than 6 inches (15.24 cm).
3.3 V
4.7 kΩ
1
TMS
TMS
TRST
TDI
TDIS
PD
KEY
2
3.3 V
10 kΩ
3
(A)
TDI
MCU
3.3 V
100 Ω
3.3 V
5
4
GND
6
10 kΩ
(A)
TDO
TDO
GND
9
RTCK
GND 10
TCK
GND
11
TCK
4.7 kΩ
3.3 V
A.
7
8
12
4.7 kΩ
13
EMU0
EMU1 14
3.3 V
TDI and TDO connections are not required for cJTAG option and these pins can be used as GPIOs instead.
Figure 6-25. Connecting to the 14-Pin JTAG Header
Distance between the header and the target
should be less than 6 inches (15.24 cm).
3.3 V
4.7 kΩ
1
TMS
3.3 V
10 kΩ
3
(A)
MCU
TDI
3.3 V
100 Ω
3.3V
10 kΩ
5
7
(A)
TDO
9
11
TCK
4.7 kΩ
3.3 V
13
15
Open
Drain
17
19
A low pulse from the JTAG debug probe
can be tied with other reset sources
to reset the board.
GND
A.
TMS
TRST
TDI
TDIS
PD
KEY
TDO
GND
RTCK
GND
TCK
GND
EMU0
EMU1
RESET
GND
EMU2
EMU3
EMU4
GND
2
4
GND
6
8
10
12
4.7 kΩ
14
3.3 V
16
18
20
GND
TDI and TDO connections are not required for cJTAG option and these pins can be used as GPIOs instead.
Figure 6-26. Connecting to the 20-Pin JTAG Header
102
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.12.6.1 JTAG Electrical Data and Timing
6.12.6.1.1 JTAG Timing Requirements
NO.
MIN
MAX
UNIT
1
tc(TCK)
Cycle time, TCK
66.66
ns
1a
tw(TCKH)
Pulse duration, TCK high (40% of tc)
26.66
ns
1b
tw(TCKL)
Pulse duration, TCK low (40% of tc)
26.66
ns
tsu(TDI-TCKH)
Input setup time, TDI valid to TCK high
7
tsu(TMS-TCKH)
Input setup time, TMS valid to TCK high
7
th(TCKH-TDI)
Input hold time, TDI valid from TCK high
7
th(TCKH-TMS)
Input hold time, TMS valid from TCK high
7
3
4
ns
ns
6.12.6.1.2 JTAG Switching Characteristics
over recommended operating conditions (unless otherwise noted)
NO.
2
PARAMETER
td(TCKL-TDO)
Delay time, TCK low to TDO valid
MIN
MAX
6
20
UNIT
ns
6.12.6.1.3 JTAG Timing Diagram
1
1a
1b
TCK
2
TDO
3
4
TDI/TMS
Figure 6-27. JTAG Timing
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
103
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.12.6.2 cJTAG Electrical Data and Timing
6.12.6.2.1 cJTAG Timing Requirements
NO.
MIN
1
tc(TCK)
Cycle time, TCK
1a
tw(TCKH)
1b
3
4
MAX
UNIT
100
ns
Pulse duration, TCK high (40% of tc)
40
ns
tw(TCKL)
Pulse duration, TCK low (40% of tc)
40
ns
tsu(TMS-TCKH)
Input setup time, TMS valid to TCK high
7
ns
tsu(TMS-TCKL)
Input setup time, TMS valid to TCK low
7
ns
th(TCKH-TMS)
Input hold time, TMS valid from TCK high
2
ns
th(TCKL-TMS)
Input hold time, TMS valid from TCK low
2
ns
6.12.6.2.2 cJTAG Switching Characteristics
over recommended operating conditions (unless otherwise noted)
NO.
PARAMETER
2
td(TCKL-TMS)
Delay time, TCK low to TMS valid
5
tdis(TCKH-TMS)
Delay time, TCK high to TMS disable
MIN
MAX
5
20
UNIT
ns
20
ns
6.12.6.2.3 cJTAG Timing Diagram
1
1a
TCK
TMS
1b
3
TMS Input
4
3
4
TMS Input
2
5
TMS Output
Figure 6-28. cJTAG Timing
104
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.12.7 GPIO Electrical Data and Timing
The peripheral signals are multiplexed with general-purpose input/output (GPIO) signals. On reset, GPIO pins
are configured as inputs. For specific inputs, the user can also select the number of input qualification cycles to
filter unwanted noise glitches.
The GPIO module contains an Output X-BAR which allows an assortment of internal signals to be routed to
a GPIO in the GPIO mux positions denoted as OUTPUTXBARx. The GPIO module also contains an Input
X-BAR which is used to route signals from any GPIO input to different IP blocks such as the ADCs, eCAPs,
ePWMs, and external interrupts. For more details, see the X-BAR chapter in the TMS320F28003x Real-Time
Microcontrollers Technical Reference Manual.
6.12.7.1 GPIO – Output Timing
6.12.7.1.1 General-Purpose Output Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
MIN
MAX
UNIT
tr(GPO)
Rise time, GPIO switching low to high
All GPIOs
8(1)
tf(GPO)
Fall time, GPIO switching high to low
All GPIOs
8(1)
ns
tfGPO
Toggling frequency, GPIO pins
50
MHz
(1)
ns
Rise time and fall time vary with load. These values assume a 20-pF load.
6.12.7.1.2 General-Purpose Output Timing Diagram
GPIO
tf(GPO)
tr(GPO)
Figure 6-29. General-Purpose Output Timing
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
105
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.12.7.2 GPIO – Input Timing
6.12.7.2.1 General-Purpose Input Timing Requirements
MIN
tw(SP)
Sampling period
tw(IQSW)
tw(GPI) (2)
(1)
(2)
UNIT
QUALPRD = 0
1tc(SYSCLK)
cycles
QUALPRD ≠ 0
2tc(SYSCLK) * QUALPRD
cycles
Input qualifier sampling window
tw(SP) *
With input qualifier
(n(1)
– 1)
cycles
2tc(SYSCLK)
cycles
tw(IQSW) + tw(SP) + 1tc(SYSCLK)
cycles
Synchronous mode
Pulse duration, GPIO low/high
MAX
"n" represents the number of qualification samples as defined by GPxQSELn register.
For tw(GPI), pulse width is measured from VIL to VIL for an active low signal and VIH to VIH for an active high signal.
6.12.7.2.2 Sampling Mode
(A)
GPIO Signal
GPxQSELn = 1,0 (6 samples)
1
1
0
0
0
0
0
0
0
1
tw(SP)
0
0
0
1
1
1
1
Sampling Window
1
1
1
1
Sampling Period determined
by GPxCTRL[QUALPRD]
tw(IQSW)
1
(SYSCLK cycle * 2 * QUALPRD) * 5
(B)
(C)
SYSCLK
QUALPRD = 1
(SYSCLK/2)
(D)
Output From
Qualifier
A.
B.
C.
D.
This glitch will be ignored by the input qualifier. The QUALPRD bit field specifies the qualification sampling period. It can vary from 00 to
0xFF. If QUALPRD = 00, then the sampling period is 1 SYSCLK cycle. For any other value "n", the qualification sampling period in 2n
SYSCLK cycles (that is, at every 2n SYSCLK cycles, the GPIO pin will be sampled).
The qualification period selected through the GPxCTRL register applies to groups of eight GPIO pins.
The qualification block can take either three or six samples. The GPxQSELn Register selects which sample mode is used.
In the example shown, for the qualifier to detect the change, the input should be stable for 10 SYSCLK cycles or greater. In other words,
the inputs should be stable for (5 × QUALPRD × 2) SYSCLK cycles. This would ensure 5 sampling periods for detection to occur.
Because external signals are driven asynchronously, an 13-SYSCLK-wide pulse ensures reliable recognition.
Figure 6-30. Sampling Mode
106
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.12.7.3 Sampling Window Width for Input Signals
The following section summarizes the sampling window width for input signals for various input qualifier
configurations.
Sampling frequency denotes how often a signal is sampled with respect to SYSCLK.
Sampling frequency = SYSCLK/(2 × QUALPRD), if QUALPRD ≠ 0
Sampling frequency = SYSCLK, if QUALPRD = 0
Sampling period = SYSCLK cycle × 2 × QUALPRD, if QUALPRD ≠ 0
In the previous equations, SYSCLK cycle indicates the time period of SYSCLK.
Sampling period = SYSCLK cycle, if QUALPRD = 0
In a given sampling window, either 3 or 6 samples of the input signal are taken to determine the validity of the
signal. This is determined by the value written to GPxQSELn register.
Case 1:
Qualification using 3 samples
Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 2, if QUALPRD ≠ 0
Sampling window width = (SYSCLK cycle) × 2, if QUALPRD = 0
Case 2:
Qualification using 6 samples
Sampling window width = (SYSCLK cycle × 2 × QUALPRD) × 5, if QUALPRD ≠ 0
Sampling window width = (SYSCLK cycle) × 5, if QUALPRD = 0
SYSCLK
GPIOxn
tw(GPI)
Figure 6-31. General-Purpose Input Timing
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
107
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.12.8 Interrupts
The C28x CPU has fourteen peripheral interrupt lines. Two of them (INT13 and INT14) are connected directly
to CPU timers 1 and 2, respectively. The remaining twelve are connected to peripheral interrupt signals through
the enhanced Peripheral Interrupt Expansion (ePIE) module. The ePIE multiplexes up to sixteen peripheral
interrupts into each CPU interrupt line. It also expands the vector table to allow each interrupt to have its own
ISR. This allows the CPU to support a large number of peripherals.
An interrupt path is divided into three stages—the peripheral, the ePIE, and the CPU. Each stage has its
own enable and flag registers. This system allows the CPU to handle one interrupt while others are pending,
implement and prioritize nested interrupts in software, and disable interrupts during certain critical tasks.
Figure 6-32 shows the interrupt architecture for this device.
TIMER0
LPM Logic
WD
LPMINT
WDINT
TINT0
WAKEINT
NMI module
ERAD
GPIO0
to
GPIOx
INPUTXBAR4
INPUTXBAR5
Input
INPUTXBAR6
X-BAR
INPUTXBAR13
INPUTXBAR14
XINT1 Control
XINT2 Control
XINT3 Control
XINT4 Control
XINT5 Control
Peripherals
See ePIE Table
NMI
RTOSINT
CPU
ePIE
INT1
to
INT12
TIMER1
INT13
TIMER2
INT14
Figure 6-32. Device Interrupt Architecture
108
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.12.8.1 External Interrupt (XINT) Electrical Data and Timing
For an explanation of the input qualifier parameters, see the General-Purpose Input Timing Requirements table.
6.12.8.1.1 External Interrupt Timing Requirements
MIN
tw(INT)
Pulse duration, INT input low/high
MAX
UNIT
Synchronous
2tc(SYSCLK)
cycles
With qualifier
tw(IQSW) + tw(SP) + 1tc(SYSCLK)
cycles
6.12.8.1.2 External Interrupt Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
td(INT)
(1)
Delay time, INT low/high to interrupt-vector fetch(1)
MIN
MAX
UNIT
tw(IQSW) + 14tc(SYSCLK)
tw(IQSW) + tw(SP) + 14tc(SYSCLK)
cycles
This assumes that the ISR is in a single-cycle memory.
6.12.8.1.3 External Interrupt Timing
tw(INT)
XINT1, XINT2, XINT3,
XINT4, XINT5
td(INT)
Address bus
(internal)
Interrupt Vector
Figure 6-33. External Interrupt Timing
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
109
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.12.9 Low-Power Modes
This device has HALT, IDLE and STANDBY as clock-gating low-power modes.
Further details, as well as the entry and exit procedure, for all of the low-power modes can be found in the
Low-Power Modes section of the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual.
6.12.9.1 Clock-Gating Low-Power Modes
IDLE and HALT modes on this device are similar to those on other C28x devices. Table 6-9 describes the effect
on the system when any of the clock-gating low-power modes are entered.
Table 6-9. Effect of Clock-Gating Low-Power Modes on the Device
MODULES/
CLOCK DOMAIN
IDLE
STANDBY
HALT
SYSCLK
Active
Gated
Gated
CPUCLK
Gated
Gated
Gated
Clock to modules connected
to PERx.SYSCLK
Active
Gated
Gated
WDCLK
Active
Active
Gated if CLKSRCCTL1.WDHALTI = 0
PLL
Powered
Powered
Software must power down PLL before entering HALT.
INTOSC1
Powered
Powered
Powered down if CLKSRCCTL1.WDHALTI = 0
INTOSC2
Powered
Powered
Powered down if CLKSRCCTL1.WDHALTI = 0
Flash(1)
Powered
Powered
Powered
XTAL(2)
Powered
Powered
Powered
(1)
(2)
110
The Flash module is not powered down by hardware in any LPM. It may be powered down using software if required by the
application. For more information, see the Flash and OTP Memory section of the System Control chapter in the TMS320F28003x
Real-Time Microcontrollers Technical Reference Manual.
The XTAL is not powered down by hardware in any LPM. It may be powered down by software setting the XTALCR.OSCOFF bit to 1.
This can be done at any time during the application if the XTAL is not required.
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.12.9.2 Low-Power Mode Wake-up Timing
For an explanation of the input qualifier parameters, see the General-Purpose Input Timing Requirements table.
6.12.9.2.1 IDLE Mode Timing Requirements
MIN
tw(WAKE)
Pulse duration, external wake-up signal
Without input qualifier
2tc(SYSCLK)
With input qualifier
2tc(SYSCLK) + tw(IQSW)
MAX
UNIT
cycles
6.12.9.2.2 IDLE Mode Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
From Flash (active state)
Delay time, external
wake signal to program
execution resume(1)
td(WAKE-IDLE)
From Flash (sleep state)
From RAM
(1)
(2)
MIN
Without input qualifier
With input qualifier
Without input qualifier
With input qualifier
Without input qualifier
With input qualifier
MAX
UNIT
40tc(SYSCLK) cycles
40tc(SYSCLK) + tw(WAKE) cycles
9316tc(SYSCLK) (2) cycles
9316tc(SYSCLK) (2) + tw(WAKE) cycles
25tc(SYSCLK) cycles
25tc(SYSCLK) + tw(WAKE) cycles
This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered
by the wake-up signal) involves additional latency.
This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and
FPAC1[PSLEEP].
6.12.9.2.3 IDLE Entry and Exit Timing Diagram
td(WAKE-IDLE)
Address/Data
(internal)
XCLKOUT
tw(WAKE)
WAKE
A.
(A)
WAKE can be any enabled interrupt, WDINT or XRSn. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum)
is needed before the wake-up signal could be asserted.
Figure 6-34. IDLE Entry and Exit Timing Diagram
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
111
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.12.9.2.4 STANDBY Mode Timing Requirements
MIN
tw(WAKE-INT)
(1)
Pulse duration, external
wake-up signal
QUALSTDBY = 0 | 2tc(OSCCLK)
MAX
UNIT
3tc(OSCCLK)
QUALSTDBY > 0 |
(2 + QUALSTDBY)tc(OSCCLK) (1)
cycles
(2 + QUALSTDBY) * tc(OSCCLK)
QUALSTDBY is a 6-bit field in the LPMCR register.
6.12.9.2.5 STANDBY Mode Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
td(IDLE-XCOS)
TEST CONDITIONS
(2)
UNIT
16tc(INTOSC1) cycles
Delay time, external wake signal to program
execution resume(1)
td(WAKE-STBY)
(1)
MAX
Delay time, IDLE instruction executed to
XCLKOUT stop
td(WAKE-STBY)
td(WAKE-STBY)
MIN
Wakeup from flash
(Flash module in
active state)
175tc(SYSCLK) + tw(WAKE-INT) cycles
Wakeup from flash
(Flash module in
sleep state)
9316tc(SYSCLK) (2) + tw(WAKE-INT) cycles
Wakeup from RAM
3tc(OSC) + 15tc(SYSCLK) + tw(WAKE-INT) cycles
This is the time taken to begin execution of the instruction that immediately follows the IDLE instruction. Execution of an ISR (triggered
by the wake-up signal) involves additional latency.
This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and
FPAC1[PSLEEP].
6.12.9.2.6 STANDBY Entry and Exit Timing Diagram
(C)
(A)
(B)
Device
Status
(F)
(D)(E)
STANDBY
STANDBY
(G)
Normal Execution
Flushing Pipeline
Wake-up
Signal
tw(WAKE-INT)
td(WAKE-STBY)
OSCCLK
XCLKOUT
td(IDLE-XCOS)
A.
B.
C.
D.
E.
F.
G.
IDLE instruction is executed to put the device into STANDBY mode.
The LPM block responds to the STANDBY signal, SYSCLK is held for a maximum 16 INTOSC1 clock cycles before being turned off.
This delay enables the CPU pipeline and any other pending operations to flush properly.
Clock to the peripherals are turned off. However, the PLL and watchdog are not shut down. The device is now in STANDBY mode. After
the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before the wake-up signal could be asserted.
The external wake-up signal is driven active.
The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal
must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the device will not be deterministic and the
device may not exit low-power mode for subsequent wake-up pulses.
After a latency period, the STANDBY mode is exited.
Normal execution resumes. The device will respond to the interrupt (if enabled).
Figure 6-35. STANDBY Entry and Exit Timing Diagram
112
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.12.9.2.7 HALT Mode Timing Requirements
MIN
MAX
UNIT
tw(WAKE-GPIO)
Pulse duration, GPIO wake-up signal(1)
toscst + 2tc(OSCCLK)
cycles
tw(WAKE-XRS)
Pulse duration, XRS wake-up signal(1)
toscst + 8tc(OSCCLK)
cycles
(1)
For applications using X1/X2 for OSCCLK, the user must characterize their specific oscillator start-up time as it is dependent on
circuit/layout external to the device. See Crystal Oscillator (XTAL) section for more information. For applications using INTOSC1 or
INTOSC2 for OSCCLK, see the Internal Oscillators section for toscst. Oscillator start-up time does not apply to applications using a
single-ended crystal on the X1 pin, as it is powered externally to the device.
6.12.9.2.8 HALT Mode Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
td(IDLE-XCOS)
MAX
UNIT
16tc(INTOSC1)
cycles
Wakeup from Flash - Flash module in active state
75tc(OSCCLK)
cycles
Wakeup from Flash - Flash module in sleep state
9316tc(SYSCLK)+75tc(OSCCLK) (1)
Delay time, IDLE instruction executed to XCLKOUT
stop
MIN
Delay time, external wake signal end to CPU1 program
execution resume
td(WAKE-HALT)
Wakeup from RAM
(1)
75tc(OSCCLK)
This value is based on the flash power-up time, which is a function of the SYSCLK frequency, flash wait states (RWAIT), and
FPAC1[PSLEEP].
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
113
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.12.9.2.9 HALT Entry and Exit Timing Diagram
(C)
(A)
(B)
Device
Status
(F)
(D)(E)
HALT
(G)
HALT
Flushing Pipeline
Normal
Execution
GPIOn
td(WAKE-HALT)
tw(WAKE-GPIO)
OSCCLK
Oscillator Start-up Time
XCLKOUT
td(IDLE-XCOS)
A.
B.
C.
D.
E.
F.
G.
H.
IDLE instruction is executed to put the device into HALT mode.
The LPM block responds to the HALT signal, SYSCLK is held for a maximum 16 INTOSC1 clock cycles before being turned off. This
delay enables the CPU pipeline and any other pending operations to flush properly.
Clocks to the peripherals are turned off and the PLL is shut down. If a quartz crystal or ceramic resonator is used as the clock
source, the internal oscillator is shut down as well. The device is now in HALT mode and consumes very little power. It is possible
to keep the zero-pin internal oscillators (INTOSC1 and INTOSC2) and the watchdog alive in HALT MODE. This is done by writing 1
to CLKSRCCTL1.WDHALTI. After the IDLE instruction is executed, a delay of five OSCCLK cycles (minimum) is needed before the
wake-up signal could be asserted.
When the GPIOn pin (used to bring the device out of HALT) is driven low, the oscillator is turned on and the oscillator wake-up
sequence is initiated. The GPIO pin should be driven high only after the oscillator has stabilized. This enables the provision of a clean
clock signal during the PLL lock sequence. Because the falling edge of the GPIO pin asynchronously begins the wake-up procedure,
care should be taken to maintain a low noise environment before entering and during HALT mode.
The wake-up signal fed to a GPIO pin to wake up the device must meet the minimum pulse width requirement. Furthermore, this signal
must be free of glitches. If a noisy signal is fed to a GPIO pin, the wake-up behavior of the device will not be deterministic and the
device may not exit low-power mode for subsequent wake-up pulses.
When CLKIN to the core is enabled, the device will respond to the interrupt (if enabled), after some latency. The HALT mode is now
exited.
Normal operation resumes.
The user must relock the PLL upon HALT wakeup to ensure a stable PLL lock.
Figure 6-36. HALT Entry and Exit Timing Diagram
114
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.13 Analog Peripherals
The analog subsystem module is described in this section.
The analog modules on this device include the ADC, temperature sensor, CMPSS, and buffered DAC.
The analog subsystem has the following features:
•
•
Flexible voltage references
– The ADCs are referenced to VREFHIx and VSSA pins
• VREFHIx pin voltage can be driven in externally or can be generated by an internal bandgap voltage
reference
• The internal voltage reference range can be selected to be 0 V to 3.3 V or 0 V to 2.5 V
– The buffered DACs are referenced to VREFHIx and VSSA
• Alternately, these DACs can be referenced to the VDAC pin and VSSA
– The comparator DACs are referenced to VDDA and VSSA
• Alternately, these DACs can be referenced to the VDAC pin and VSSA
Flexible pin usage
– Buffered DAC outputs, comparator subsystem inputs, and digital inputs (AIOs)/outputs (AGPIOs) are
multiplexed with ADC inputs
– Internal connection to VREFLO on all ADCs for offset self-calibration
Figure 6-37 shows the Analog Subsystem Block Diagram for the 100-pin PZ LQFP.
Figure 6-38 shows the Analog Subsystem Block Diagram for the 80-pin PN LQFP.
Figure 6-39 shows the Analog Subsystem Block Diagram for the 64-pin PM LQFP.
Figure 6-40 shows the Analog Subsystem Block Diagram for the 48-pin PT LQFP.
Figure 6-41 shows the analog group connections. Section 6.13.1 lists the analog pins and internal connections.
Section 6.13.2 lists descriptions of analog signals.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
115
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
VREFHI
CMP1_HP
CMP1_HN
VREFLO
Reference Circuit
DAC12
Temp Sensor
(C12)
Vref
Digital
Filter
CTRIP1L
CTRIPOUT1L
Comparator Subsystem 2
Digital
Filter
CTRIP2H
CTRIPOUT2H
CMP1_LN
CMP1_LP
REFLO
CMP2_HP
CMP2_HN
VDDA or VDAC
/LPMXSEL4/
HPMXSEL2/
/LPMXSEL2/
HPMXSEL0/
/LPMXSEL0/
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1
HPMXSEL5/
/LPMXSEL5/
AGPIO
AGPIO
AGPIO
AIO
AIO
AIO
CMPSS1 Input MUX
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0
HPMXSEL2/
/LPMXSEL2/
HPMXSEL0/
/LPMXSEL0/
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1
HPMXSEL5/
/LPMXSEL5/
HPMXSEL4/
/LPMXSEL4/
AIO
AIO
AIO
CMPSS2 Input MUX
C5
B2/C6
B3/VDAC
A14/B14/C4
B12/C2
A3
A0/B15/C15/DACA_OUT
HPMXSEL0/
/LPMXSEL0/
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0
HPMXSEL4/
/LPMXSEL4/
ADC-A
12-bits
REFLO
DAC12
DAC12
HPMXSEL5/
/LPMXSEL5/
HPMXSEL2/
/LPMXSEL2/
CMP3_HP
CMP3_HN
Comparator Subsystem 3
Digital
Filter
CTRIP3H
CTRIPOUT3H
DAC12
REFHI
ADC Inputs
B0 to B15
ADC-B
DAC12
Digital
Filter
CTRIP3L
CTRIPOUT3L
Comparator Subsystem 4
Digital
Filter
VDDA or VDAC
CTRIP4H
CTRIPOUT4H
CMP3_LN
CMP3_LP
12-bits
REFLO
CMP4_HP
CMP4_HN
DAC12
AIO
AIO
AIO
/LPMXSEL0/
REFHI
ADC Inputs
C0 to C15
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0
HPMXSEL2/
/LPMXSEL2/
HPMXSEL4/
HPMXSEL5/
CTRIP2L
CTRIPOUT2L
VDDA or VDAC
Input MUX
HPMXSEL0/
Digital
Filter
CMP2_LN
CMP2_LP
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1
CMPSS3 Input MUX
B4/C8
C14
C1
A8
B11, B11/GPIO21
A7/C3
ADC Inputs
A0 to A15
Input MUX
A10/B1/C10
A9
A4/B8
A12
A5
B0/C11
REFHI
Analog Interconnect
HPMXSEL4/
Input MUX
A1/B7/DACB_OUT
A6
A2/B6/C9
A11/B10/C0
B5, B5/GPIO20
B9/C7
CTRIP1H
CTRIPOUT1H
DAC12
ANAREFSEL
Misc. Analog
Comparator Subsystem 1
Digital
Filter
VDDA or VDAC
ADC-C
DAC12
CMP4_LN
CMP4_LP
Digital
Filter
CTRIP4L
CTRIPOUT4L
12-bits
/LPMXSEL4/
/LPMXSEL5/
REFLO
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1
AGPIO
AGPIO
AGPIO
CMPSS4 Input MUX
CMPSS Inputs
AIO
AIO
AIO
VREFHI
DACA_OUT
12-bit
Buffered
DAC-A
VREFHI
DACB_OUT
VDAC
VDAC
12-bit
Buffered
DAC-B
Figure 6-37. Analog Subsystem Block Diagram (100-Pin PZ LQFP)
116
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
VREFHI
CMP1_HP
CMP1_HN
VREFLO
Reference Circuit
DAC12
Temp Sensor
(C12)
Vref
HPMXSEL2/
/LPMXSEL2/
HPMXSEL0/
/LPMXSEL0/
HPMXSEL0/
/LPMXSEL0/
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1
HPMXSEL5/
/LPMXSEL5/
HPMXSEL4/
/LPMXSEL4/
AIO
AIO
AIO
CMPSS2 Input MUX
B2/C6
A3/B3/C5/VDAC
A14/B14/C4
A5/B12/C2
HPMXSEL0/
/LPMXSEL0/
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0
HPMXSEL5/
/LPMXSEL5/
HPMXSEL4/
/LPMXSEL4/
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1
Analog Interconnect
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0
ADC-A
12-bits
REFLO
CTRIP2H
CTRIPOUT2H
DAC12
DAC12
Digital
Filter
CTRIP2L
CTRIPOUT2L
Comparator Subsystem 3
Digital
Filter
CTRIP3H
CTRIPOUT3H
CMP2_LN
CMP2_LP
CMP3_HP
CMP3_HN
VDDA or VDAC
DAC12
REFHI
ADC Inputs
B0 to B15
Input MUX
A8/B0/C11
ADC Inputs
A0 to A15
Input MUX
AGPIO
AGPIO
AGPIO
AIO
AIO
AIO
/LPMXSEL2/
Comparator Subsystem 2
Digital
Filter
REFHI
/LPMXSEL5/
HPMXSEL5/
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0
HPMXSEL2/
CTRIP1L
CTRIPOUT1L
VDDA or VDAC
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1
CMPSS1 Input MUX
A10/B1/C10
A9/B4/C8
A4/B8/C14
A12/C1
CMP2_HP
CMP2_HN
/LPMXSEL4/
Digital
Filter
CMP1_LN
CMP1_LP
REFLO
HPMXSEL4/
ADC-B
CTRIP1H
CTRIPOUT1H
DAC12
ANAREFSEL
Misc. Analog
A1/B7/DACB_OUT
A6
A2/B6/C9
A11/B10/C0
B5/GPIO20
A15/B9/C7
Comparator Subsystem 1
Digital
Filter
VDDA or VDAC
DAC12
Digital
Filter
CTRIP3L
CTRIPOUT3L
Comparator Subsystem 4
Digital
Filter
VDDA or VDAC
CTRIP4H
CTRIPOUT4H
CMP3_LN
CMP3_LP
12-bits
REFLO
CMP4_HP
CMP4_HN
DAC12
A0/B15/C15/DACA_OUT
HPMXSEL2/
/LPMXSEL2/
HPMXSEL0/
/LPMXSEL0/
REFHI
ADC Inputs
C0 to C15
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0
HPMXSEL2/
/LPMXSEL2/
B11/GPIO21
A7/C3
/LPMXSEL4/
HPMXSEL4/
HPMXSEL5/
/LPMXSEL5/
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1
AGPIO
AGPIO
AGPIO
AIO
AIO
AIO
CMPSS4 Input MUX
Input MUX
AIO
AIO
AIO
CMPSS3 Input MUX
ADC-C
DAC12
CMP4_LN
CMP4_LP
Digital
Filter
CTRIP4L
CTRIPOUT4L
12-bits
REFLO
CMPSS Inputs
VREFHI
DACA_OUT
12-bit
Buffered
DAC-A
VREFHI
DACB_OUT
VDAC
VDAC
12-bit
Buffered
DAC-B
Figure 6-38. Analog Subsystem Block Diagram (80-Pin PN LQFP)
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
117
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
VREFHI
CMP1_HP
CMP1_HN
VREFLO
Reference Circuit
Comparator Subsystem 1
Digital
Filter
VDDA or VDAC
DAC12
ANAREFSEL
Misc. Analog
DAC12
Temp Sensor
(C12)
Vref
Digital
Filter
CTRIP1L
CTRIPOUT1L
Comparator Subsystem 2
Digital
Filter
CTRIP2H
CTRIPOUT2H
CMP1_LN
CMP1_LP
REFLO
CMP2_HP
CMP2_HN
VDDA or VDAC
HPMXSEL4/
/LPMXSEL4/
HPMXSEL2/
/LPMXSEL2/
HPMXSEL0/
/LPMXSEL0/
REFHI
A10/B1/C10
A9/B4/C8
A4/B8/C14
A12/C1
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0
AIO
AIO
AIO
CMPSS1 Input MUX
HPMXSEL2/
/LPMXSEL2/
HPMXSEL0/
/LPMXSEL0/
HPMXSEL4/
/LPMXSEL4/
AIO
AIO
AIO
CMPSS2 Input MUX
B2/C6
A3/B3/C5/VDAC
A14/B14/C4
A5/B12/C2
HPMXSEL0/
/LPMXSEL0/
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0
HPMXSEL5/
/LPMXSEL5/
HPMXSEL4/
/LPMXSEL4/
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1
ADC-A
12-bits
REFLO
DAC12
DAC12
Digital
Filter
CTRIP2L
CTRIPOUT2L
Comparator Subsystem 3
Digital
Filter
CTRIP3H
CTRIPOUT3H
CMP2_LN
CMP2_LP
CMP3_HP
CMP3_HN
VDDA or VDAC
DAC12
REFHI
ADC Inputs
B0 to B15
Input MUX
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1
HPMXSEL5/
/LPMXSEL5/
Analog Interconnect
A15/B9/C7
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0
A8/B0/C11
ADC Inputs
A0 to A15
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1
Input MUX
A1/B7/DACB_OUT
A6
A2/B6/C9
A11/B10/C0
CTRIP1H
CTRIPOUT1H
ADC-B
DAC12
Digital
Filter
CTRIP3L
CTRIPOUT3L
Comparator Subsystem 4
Digital
Filter
VDDA or VDAC
CTRIP4H
CTRIPOUT4H
CMP3_LN
CMP3_LP
12-bits
REFLO
CMP4_HP
CMP4_HN
DAC12
A0/B15/C15/DACA_OUT
HPMXSEL2/
/LPMXSEL2/
HPMXSEL0/
/LPMXSEL0/
REFHI
ADC Inputs
C0 to C15
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0
HPMXSEL2/
/LPMXSEL2/
HPMXSEL4/
A7/C3
ADC-C
DAC12
CMP4_LN
CMP4_LP
Digital
Filter
CTRIP4L
CTRIPOUT4L
12-bits
/LPMXSEL4/
REFLO
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1
CMPSS4 Input MUX
Input MUX
AIO
AIO
AIO
CMPSS3 Input MUX
AIO
AIO
AIO
CMPSS Inputs
VREFHI
DACA_OUT
12-bit
Buffered
DAC-A
VREFHI
DACB_OUT
VDAC
VDAC
12-bit
Buffered
DAC-B
Figure 6-39. Analog Subsystem Block Diagram (64-Pin PM LQFP)
118
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
VREFHI
CMP1_HP
CMP1_HN
VREFLO
Reference Circuit
Comparator Subsystem 1
Digital
Filter
VDDA or VDAC
DAC12
ANAREFSEL
Misc. Analog
DAC12
Temp Sensor
(C12)
Vref
Digital
Filter
CTRIP1L
CTRIPOUT1L
Comparator Subsystem 2
Digital
Filter
CTRIP2H
CTRIPOUT2H
CMP1_LN
CMP1_LP
REFLO
CMP2_HP
CMP2_HN
VDDA or VDAC
HPMXSEL4/
/LPMXSEL4/
HPMXSEL2/
/LPMXSEL2/
HPMXSEL0/
/LPMXSEL0/
REFHI
A10/B1/C10
A9/B4/C8
A4/B8/C14
A12/C1
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0
HPMXSEL2/
/LPMXSEL2/
HPMXSEL0/
/LPMXSEL0/
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1
HPMXSEL5/
/LPMXSEL5/
/LPMXSEL4/
AIO
AIO
AIO
CMPSS2 Input MUX
A3/B3/C5/VDAC
HPMXSEL0/
/LPMXSEL0/
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0
HPMXSEL5/
/LPMXSEL5/
A5/B12/C2
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1
ADC-A
12-bits
REFLO
DAC12
DAC12
Digital
Filter
CTRIP2L
CTRIPOUT2L
Comparator Subsystem 3
Digital
Filter
CTRIP3H
CTRIPOUT3H
CMP2_LN
CMP2_LP
CMP3_HP
CMP3_HN
VDDA or VDAC
DAC12
REFHI
ADC Inputs
B0 to B15
Input MUX
HPMXSEL4/
Analog Interconnect
A15/B9/C7
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0
AIO
AIO
AIO
CMPSS1 Input MUX
A8/B0/C11
ADC Inputs
A0 to A15
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1
Input MUX
A1/B7/DACB_OUT
A6/B2/C6
A2/B6/C9
A11/B10/C0
CTRIP1H
CTRIPOUT1H
ADC-B
DAC12
Digital
Filter
CTRIP3L
CTRIPOUT3L
Comparator Subsystem 4
Digital
Filter
VDDA or VDAC
CTRIP4H
CTRIPOUT4H
CMP3_LN
CMP3_LP
12-bits
REFLO
CMP4_HP
CMP4_HN
DAC12
A0/B15/C15/DACA_OUT
HPMXSEL2/
/LPMXSEL2/
HPMXSEL0/
/LPMXSEL0/
REFHI
ADC Inputs
C0 to C15
HPMXSEL3/HNMXSEL0/LPMXSEL3/LNMXSEL0
HPMXSEL2/
/LPMXSEL2/
HPMXSEL4/
A7/C3
Input MUX
AIO
AIO
AIO
CMPSS3 Input MUX
ADC-C
Digital
Filter
CTRIP4L
CTRIPOUT4L
12-bits
/LPMXSEL4/
HPMXSEL1/HNMXSEL1/LPMXSEL1/LNMXSEL1
AIO
AIO
AIO
CMPSS4 Input MUX
DAC12
CMP4_LN
CMP4_LP
REFLO
CMPSS Inputs
VREFHI
DACA_OUT
12-bit
Buffered
DAC-A
VREFHI
DACB_OUT
VDAC
VDAC
12-bit
Buffered
DAC-B
Figure 6-40. Analog Subsystem Block Diagram (48-Pin PT LQFP)
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
119
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
CMPSSx Input MUX
CMPxHPMX
CMPx_HP0
CMPx_HP1
CMPx_HP2
CMPx_HP3
CMPx_HP4
0
1
2
3
CMPx_HP5
4
5
CMPx_HN0
0
CMPx_HN1
1
CMPx_LN0
0
CMPx_LN1
1
CMPx_HP
CMPxHNMX
CMPxLNMX
To CMPSSx
CMPx_HN
CMPx_LN
CMPxLPMX
CMPx_LP0
CMPx_LP1
CMPx_LP2
CMPx_LP3
CMPx_LP4
CMPx_LP5
0
1
2
3
4
5
Gx_ADCA
CMPx_LP
Gx_ADCA
AIO
Gx_ADCB
AIO
To ADCs
Gx_ADCB
AGPIO
Gx_ADCC
Gx_ADCC
AIO
A.
AIOs support digital input mode only.
Figure 6-41. Analog Group Connections
120
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.13.1 Analog Pins and Internal Connections
Table 6-10. Analog Pins and Internal Connections
Package Pin
Pin Name
100 PZ
ADC
80 PN
64 PM
48 PT
Comparator Subsystem (MUX)
A
B
C
VREFHI
24, 25
20
16
12
VREFLO
26, 27
21
17
13
A13
B13
C13
High
Positive
High
Negative
Analog Group 1
Low
Positive
Low
Negative
AIO Input
CMP1
A6
14
10
6
4(1)
A6
-
-
CMP1 (HPMXSEL=2)
CMP1 (LPMXSEL=2)
A2/B6/C9
17
13
9
6
A2
B6
C9
CMP1 (HPMXSEL=0)
CMP1 (LPMXSEL=0)
A15
-
-
CMP1 (HPMXSEL=3)
CMP1 (HNMXSEL=0)
CMP1 (LPMXSEL=3)
CMP1 (LNMXSEL=0)
AIO233
-
B9
C7
CMP1 (HNMXSEL=1)
CMP1 (LPMXSEL=1)
CMP1 (LNMXSEL=1)
AIO237
A15
-
14
10
20
16
12
8
A11
B10
C0
CMP1 (HPMXSEL=1)
22
18
14
10
A1
B7
-
CMP1 (HPMXSEL=4)
B9/C7
18
A11/B10/C0
A1/B7/DACB_OUT
7
40
29
25
15
B3/VDAC(2)
16
C5
28
11
7
21
A10
B1
C10
CMP2 (HPMXSEL=3)
CMP2 (HNMXSEL=0)
4(1)
-
B2
C6
CMP3 (HPMXSEL=0)
-
B3
-
CMP3 (HPMXSEL=3)
-
-
C5
-
-
-
-
8
5
18
-
-
-
A14/B14/C4
19
15
11
-
A14
B14
A0/B15/C15/
DACA_OUT
23
19
15
11
A0
A7/C3
31
23
15
A7
-
A3
B12/C2
35
21
17
13
28
C1
29
22
Copyright © 2023 Texas Instruments Incorporated
18
CMP3 (LPMXSEL=3)
AIO226
CMP3 (LNMXSEL=0)
AIO242
CMP3 (LPMXSEL=5)
C4
CMP3 (HPMXSEL=4)
CMP3 (LPMXSEL=4)
AIO239
B15
C15
CMP3 (HPMXSEL=2)
CMP3 (LPMXSEL=2)
AIO231
-
C3
CMP4 (HPMXSEL=1)
AIO229
CMP4
CMP4 (HNMXSEL=1)
9
14
CMP4 (LPMXSEL=1)
CMP4 (LNMXSEL=1)
AIO245
CMP2/3
A5
-
-
-
-
-
B12
C2
CMP2 (HPMXSEL=5)
CMP3 (HPMXSEL=1)
AIO249
CMP2 (LPMXSEL=5)
CMP3 (HNMXSEL=1)
Combined Analog Group 2/4
A12
AIO230
CMP3 (HPMXSEL=5)
Combined Analog Group 2/3
A5
CMP2 (LNMXSEL=0)
CMP3 (LPMXSEL=0)
CMP3 (HNMXSEL=0)
Analog Group 4
19
CMP2 (LPMXSEL=3)
CMP3
12
A3
AIO232
CMP2
Analog Group 3
B2/C6
AIO224
CMP1 (LPMXSEL=4)
Analog Group 2
A10/B1/C10
AIO228
CMP3 (LPMXSEL=1)
CMP3 (LNMXSEL=1)
AIO244
CMP2 (LNMXSEL=1)
AIO238
CMP2/4
A12
-
-
CMP2 (HPMXSEL=1)
-
-
C1
CMP4 (HPMXSEL=2)
CMP2 (HNMXSEL=1)
CMP2 (LPMXSEL=1)
CMP4 (LPMXSEL=2)
AIO248
Submit Document Feedback
121
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036CQ1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 6-10. Analog Pins and Internal Connections (continued)
Package Pin
Pin Name
100 PZ
37
A8
-
B0/C11
41
A4/B8
36
-
C14
42
A9
38
B4/C8
39
ADC
80 PN
64 PM
48 PT
-
-
-
24
20
16
-
-
-
27
23
19
-
-
-
28
24
20
A
Comparator Subsystem (MUX)
B
C
-
-
-
-
B0
A4
B8
-
-
-
-
A9
-
A8
-
High
Positive
High
Negative
Low
Positive
Low
Negative
AIO Input
AIO240
CMP4 (HPMXSEL=4)
CMP4 (LPMXSEL=4)
C11
CMP2 (HPMXSEL=4)
CMP2 (LPMXSEL=4)
-
CMP2 (HPMXSEL=0)
CMP2 (LPMXSEL=0)
C14
CMP4 (HPMXSEL=3)
-
-
CMP2 (HPMXSEL=2)
CMP2 (LPMXSEL=2)
AIO227
B4
C8
CMP4 (HPMXSEL=0)
CMP4 (LPMXSEL=0)
AIO236
CMP1 (HPMXSEL=5)
CMP1 (LPMXSEL=5)
CMP4 (HPMXSEL=5)
CMP4 (LPMXSEL=5)
CMP4 (HNMXSEL=0)
CMP4 (LPMXSEL=3)
AIO241
AIO253
AIO225
CMP4 (LNMXSEL=0)
AIO247
Other Analog
B5
32
-
-
-
-
B5/GPIO20(3)
48
33
-
-
-
B11
30
-
-
-
-
B11/GPIO21(3)
49
34
-
-
-
TempSensor(4)
-
-
-
-
-
(1)
(2)
(3)
(4)
122
B5
B11
-
-
AIO252
GPIO20
AIO251
GPIO21
C12
A6 and C6 is double bonded as pin # 4.
Optional external reference voltage for on-chip COMPDACs/GPDACs. There is an internal capacitance to VSSA on this pin whether used for ADC input or COMPDAC/GPDAC reference.
If used as a VDAC reference, place at least a 1-µF capacitor on this pin.
The GPIOs on these analog pins support full digital input and output functionality and are referred to as AGPIOs. By default, the AGPIOs are unconnected; that is, the analog and digital
functions are both disabled. For configuration details, see the Digital Inputs and Outputs on ADC Pins (AGPIOs) section.
Internal connection only; does not come to a device pin.
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C TMS320F280037C-Q1 TMS320F280037 TMS320F280036CQ1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.13.2 Analog Signal Descriptions
Table 6-11. Analog Signal Descriptions
Signal Name
Description
AIOx
Digital input on ADC pin
GPIOx
Digital input/output pin with ADC functionality
Ax
ADC A Input
Bx
ADC B Input
Cx
ADC C Input
CMPx_DACH
Comparator subsystem high DAC output
CMPx_DACL
Comparator subsystem low DAC output
CMPx_HNy
Comparator subsystem high comparator negative input
CMPx_HPy
Comparator subsystem high comparator positive input
CMPx_LNy
Comparator subsystem low comparator negative input
CMPx_LPy
Comparator subsystem low comparator positive input
DACx_OUT
Buffered DAC Output
TempSensor
Internal temperature sensor
VDAC
Optional external reference voltage for on-chip COMPDACs. This pin has a higher capacitance compared to the
other analog pins. See the Per-Channel Parasitic Capacitance table for details. This capacitance is present whether
the pin is being used for ADC input or COMPDAC/GPDAC reference and cannot be disabled. If this pin is being
used as a reference for the on-chip COMPDAC/GPDACs, place at least a 1-μF capacitor on this pin.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
123
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
6.13.3 Analog-to-Digital Converter (ADC)
The ADC module described here is a successive approximation (SAR) style ADC with resolution of 12 bits.
This section refers to the analog circuits of the converter as the “core,” and includes the channel-select MUX,
the sample-and-hold (S/H) circuit, the successive approximation circuits, voltage reference circuits, and other
analog support circuits. The digital circuits of the converter are referred to as the “wrapper” and include logic
for programmable conversions, result registers, interfaces to analog circuits, interfaces to the peripheral buses,
post-processing circuits, and interfaces to other on-chip modules.
Each ADC module consists of a single sample-and-hold (S/H) circuit. The ADC module is designed to be
duplicated multiple times on the same chip, allowing simultaneous sampling or independent operation of multiple
ADCs. The ADC wrapper is start-of-conversion (SOC)-based (see the SOC Principle of Operation section of
the Analog-to-Digital Converter (ADC) chapter in the TMS320F28003x Real-Time Microcontrollers Technical
Reference Manual).
Each ADC has the following features:
• Resolution of 12 bits
• Ratiometric external reference set by VREFHI/VREFLO
• Selectable internal reference of 2.5 V or 3.3 V
• Single-ended signal mode
• Input multiplexer with up to 16 channels
• 16 configurable SOCs
• 16 individually addressable result registers
• Multiple trigger sources
– Software immediate start
– All ePWMs: ADCSOC A or B
– GPIO XINT2
– CPU Timers 0/1/2
– ADCINT1/2
• Four flexible PIE interrupts
• Burst-mode triggering option
• Four post-processing blocks, each with:
– Saturating offset calibration
– Error from setpoint calculation
– High, low, and zero-crossing compare, with interrupt and ePWM trip capability
– Trigger-to-sample delay capture
Note
Not every channel can be pinned out from all ADCs. See the Pin Configuration and Functions section
to determine which channels are available.
124
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
The block diagram for the ADC core and ADC wrapper are shown in Figure 6-42.
Analog-to-Digital Wrapper Logic
Input Circuit
SOC Arbitration
& Control
ADCSOC
[15:0]
ACQPS
u
DOUT1
xV
2
IN-
SOCxSTART[15:0]
xV
1
IN+
EOCx[15:0]
[15:0]
CHSEL
ADCCOUNTER
TRIGGER[15:0]
SOC Delay
Timestamp
Converter
S/H Circuit
...
RESULT
Trigger
Timestamp
-
+
ADCRESULT
0±15 Regs
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
[15:0]
...
ADCIN0
ADCIN1
ADCIN2
ADCIN3
ADCIN4
ADCIN5
ADCIN6
ADCIN7
ADCIN8
ADCIN9
ADCIN10
ADCIN11
ADCIN12
ADCIN13
ADCIN14
ADCIN15
TRIGSEL
SOCx (0-15)
CHSEL
Triggers
Analog-to-Digital Core
ADCPPBxOFFCAL
saturate
ADCPPBxOFFREF
-
+
ADCPPBxRESULT
ADCEVT
VREFHI
CONFIG
Bandgap
Reference Circuit
1.65-V Output
(3.3-V Range)
or
2.5-V Output
(2.5-V Range)
1
Event
Logic
ADCEVTINT
Post Processing Block (1-4)
0
Interrupt Block (1-4)
ADCINT1-4
VREFLO
Analog System Control
ANAREFSEL
ANAREFx2PSSEL
Reference Voltage Levels
Figure 6-42. ADC Module Block Diagram
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
125
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.13.3.1 ADC Configurability
Some ADC configurations are individually controlled by the SOCs, while others are globally controlled per ADC
module. Table 6-12 summarizes the basic ADC options and their level of configurability.
Table 6-12. ADC Options and Configuration Levels
(1)
OPTIONS
CONFIGURABILITY
Clock
Per module(1)
Resolution
Not configurable (12-bit resolution only)
Signal mode
Not configurable (single-ended signal mode only)
Reference voltage source
Either external or internal for all modules
Trigger source
Per SOC(1)
Converted channel
Per SOC
Acquisition window duration
Per SOC(1)
EOC location
Per module
Burst mode
Per module(1)
Writing these values differently to different ADC modules could cause the ADCs to operate
asynchronously. For guidance on when the ADCs are operating synchronously or asynchronously,
see the Ensuring Synchronous Operation section of the Analog-to-Digital Converter (ADC) chapter
in the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual.
6.13.3.1.1 Signal Mode
The ADC supports single-ended signaling. The input voltage to the converter is sampled through a single pin
(ADCINx), referenced to VREFLO.
VREFHI
Pin Voltage
VREFHI
ADCINx
ADCINx
ADC
VREFHI/2
VREFLO
VREFLO
(VSSA)
2n - 1
Digital Output
ADC Vin
0
Figure 6-43. Single-ended Signaling Mode
126
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.13.3.2 ADC Electrical Data and Timing
Note
The ADC inputs should be kept below VDDA + 0.3 V. If an ADC input goes above this level, ADC
disturbances to other channels may occur by two mechanisms:
• ADC input overvoltage will overdrive the CMPSS mux, disturbing all other channels which share a
common CMPSS mux. This disturbance will be continuous regardless of if the overvoltage input is
sampled by the ADC
• When the ADC samples the overvoltage ADC input, VREFHI will be pulled up to a higher level.
This will disturb subsequent ADC conversions on any channel until the VREF stabilizes
Note
The VREFHI pin must be kept below VDDA + 0.3 V to ensure proper functional operation. If the
VREFHI pin exceeds this level, a blocking circuit may activate, and the internal value of VREFHI may
float to 0 V internally, giving improper ADC conversion.
6.13.3.2.1 ADC Operating Conditions
over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
ADCCLK (derived from PERx.SYSCLK)
Sample rate
MIN
5
120-MHz SYSCLK
120-MHz SYSCLK (AGPIO Pin)
Sample window duration (set by ACQPS and
PERx.SYSCLK)(1)
With 50 Ω or less Rs
With 50 Ω or less Rs (AGPIO Pin)
90
VREFHI
External Reference
2.4
VREFHI(2)
UNIT
60
MHz
4
MSPS
3.75
MSPS
75
ns
ns
2.5 or 3.0
VDDA
V
1.65
V
Internal Reference = 2.5V Range
2.5
V
VSSA
VSSA
V
2.4
VDDA
V
Internal Reference = 3.3 V Range
0
3.3
V
Internal Reference = 2.5 V Range
0
2.5
V
VREFLO
VREFHI
V
VREFHI - VREFLO
External Reference
(1)
(2)
MAX
Internal Reference = 3.3V Range
VREFLO
Conversion range
TYP
The sample window must also be at least as long as 1 ADCCLK cycle for correct ADC operation.
In internal reference mode, the reference voltage is driven out of the VREFHI pin by the device. The user should not drive a voltage
into the pin in this mode.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
127
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.13.3.2.2 ADC Characteristics
over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
General
ADCCLK Conversion Cycles
Power Up Time
120-MHz SYSCLK
10.1
11 ADCCLKs
External Reference mode
500
µs
Internal Reference mode
5000
µs
Internal Reference mode, when switching between
2.5-V range and 3.3-V range.
5000
µs
VREFHI input current(1)
130
µA
Internal Reference Capacitor
Value(2)
2.2
µF
External Reference Capacitor
Value(2)
2.2
µF
DC Characteristics
Gain Error
Internal reference
–45
External reference
–5
±3
5
–5
±2
5
Offset Error
Channel-to-Channel Gain
Error(4)
Channel-to-Channel Offset
Error(4)
45
LSB
LSB
2
LSB
2
LSB
ADC-to-ADC Gain Error(5)
Identical VREFHI and VREFLO for all ADCs
4
LSB
ADC-to-ADC Offset Error(5)
Identical VREFHI and VREFLO for all ADCs
2
LSB
DNL Error
>–1
±0.5
1
LSB
INL Error
–2
±1.0
2
LSB
1
LSBs
ADC-to-ADC Isolation
VREFHI = 2.5 V, synchronous ADCs
–1
AC Characteristics
SNR(3)
THD(3)
SFDR(3)
SINAD(3)
ENOB(3)
External VREFHI/Internal VREFHI = 2.5 V, fin =
100 kHz, SYSCLK from X1
70.5
Internal VREFHI = 1.65 V (0 to 3.3 V range), fin =
100 kHz, SYSCLK from X1
68.2
External/Internal VREFHI, fin = 100 kHz, SYSCLK
from INTOSC
60.1
Submit Document Feedback
dB
External VREFHI/Internal VREFHI = 2.5 V, fin =
100 kHz, SYSCLK from X1
–85.0
dB
Internal VREFHI = 1.65 V (0 to 3.3 V range), fin =
100 kHz, SYSCLK from X1
–82.3
dB
External/Internal VREFHI , fin = 100 kHz
79.2
dB
External VREFHI/Internal VREFHI = 2.5V, fin = 100
kHz, SYSCLK from X1
70.4
dB
Internal VREFHI = 1.65 V (0 to 3.3 V range), fin =
100 kHz, SYSCLK from X1
68.0
External/Internal VREFHI, fin = 100 kHz, SYSCLK
from INTOSC
60.0
External VREFHI/Internal VREFHI = 2.5 V, fin
= 100 kHz, SYSCLK from X1, single and
synchronous ADCs
11.4
Internal VREFHI = 1.65 V (0 to 3.3 V range),
fin = 100 kHz, SYSCLK from X1, single and
synchronous ADCs
11.0
Any VREF mode, fin = 100 kHz, SYSCLK from X1,
asynchronous ADCs
128
dB
dB
bits
Not
Supported
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.13.3.2.2 ADC Characteristics (continued)
over operating free-air temperature range (unless otherwise noted)
PARAMETER
TEST CONDITIONS
PSRR
(1)
(2)
(3)
(4)
(5)
MIN
TYP
VDD = 1.2-V DC + 100mV
DC up to Sine at 1 kHz
60
VDD = 1.2-V DC + 100 mV
DC up to Sine at 300 kHz
57
VDDA = 3.3-V DC + 200 mV
DC up to Sine at 1 kHz
60
VDDA = 3.3-V DC + 200 mV
Sine at 900 kHz
57
MAX
UNIT
dB
Load current on VREFHI increases when ADC input is greater than VDDA. This causes inaccurate conversions.
A ceramic capacitor with package size of 0805 or smaller is preferred. Up to ±20% tolerance is acceptable.
IO activity is minimized on pins adjacent to ADC input and VREFHI pins as part of best practices to reduce capacitive coupling and
crosstalk.
Variation across all channels belonging to the same ADC module.
Worst case variation compared to other ADC modules.
6.13.3.2.3 ADC Input Model
The ADC input characteristics are given by Table 6-13 and Figure 6-44.
Table 6-13. Input Model Parameters
DESCRIPTION
Cp
Ron
REFERENCE MODE
VALUE
Parasitic input capacitance
All
Sampling switch resistance
External Reference, 2.5-V Internal
Reference
500 Ω
3.3-V Internal Reference
860 Ω
Ch
Sampling capacitor
Rs
Nominal source impedance
See Table 6-14 to Table 6-17
External Reference, 2.5-V Internal
Reference
12.5 pF
3.3-V Internal Reference
7.5 pF
All
50 Ω
ADC
Rs
ADCINx
Switch
AC
Ron
Cp
Ch
VREFLO
Figure 6-44. Input Model
This input model should be used with actual signal source impedance to determine the acquisition window
duration. For more information, see the Choosing an Acquisition Window Duration section of the Analogto-Digital Converter (ADC) chapter in the TMS320F28003x Real-Time Microcontrollers Technical Reference
Manual. For recommendations on improving ADC input circuits, see the ADC Input Circuit Evaluation for C2000
MCUs Application Report.
Table 6-14. Per-Channel Parasitic Capacitance for 100-Pin PZ LQFP
ADC CHANNEL
Cp (pF)
COMPARATOR DISABLED
COMPARATOR ENABLED
A0/B15/C15/DACA_OUT
9.1
11.6
A1/B7/DACB_OUT
7.4
9.9
A2/B6/C9
4.1
6.6
A3
3.3
5.8
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
129
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 6-14. Per-Channel Parasitic Capacitance for 100-Pin PZ LQFP
(continued)
ADC CHANNEL
Cp (pF)
COMPARATOR DISABLED
COMPARATOR ENABLED
A4/B8
3.8
6.3
A5
3.5
6
A6
3.2
5.7
A7/C3
3.8
6.3
A8
4.1
6.6
A9
3.1
5.6
A10/B1/C10
4.7
7.2
A11/B11/C0
4
6.5
A12
3.4
5.9
A14/B14/C4
3.8
6.3
B0/C11
4.1
6.6
B2/C6
3.9
6.4
B3/VDAC
75
77.5
B4/C8
3.8
6.3
B5
3.5
6
B9/C7
3.3
5.8
B11
3
5.5
B12/C2
3.6
6.1
C1
3
5.5
C5
3.6
6.1
C14
4.2
6.7
AGPIO_B5
3.2
5.7
AGPIO_B11
3.1
5.6
Table 6-15. Per-Channel Parasitic Capacitance for 80-Pin PN LQFP
ADC CHANNEL
130
Cp (pF)
COMPARATOR DISABLED
COMPARATOR ENABLED
A0/B15/C15/DACA_OUT
9.1
11.6
A1/B7/DACB_OUT
7.4
9.9
A2/B6/C9
4.1
6.6
A3/B3/C5/VDAC
81.9
89.4
A4/B8/C14
8
13
A5/B12/C2
7.1
12.1
A6
3.2
5.7
A7/C3
3.8
6.3
A8/B0/C11
8.2
13.2
A9/B4/C8
6.9
11.9
A10/B1/C10
4.7
7.2
A11/B11/C0
4
6.5
A12/C1
6.4
11.4
A14/B14/C4
3.8
6.3
A15/B9/C7
7.1
12.1
B2/C6
3.9
6.4
AGPIO_B5
3.2
5.7
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 6-15. Per-Channel Parasitic Capacitance for 80-Pin PN LQFP (continued)
ADC CHANNEL
AGPIO_B11
Cp (pF)
COMPARATOR DISABLED
COMPARATOR ENABLED
3.1
5.6
Table 6-16. Per-Channel Parasitic Capacitance for 64-Pin PM LQFP
ADC CHANNEL
Cp (pF)
COMPARATOR DISABLED
COMPARATOR ENABLED
A0/B15/C15/DACA_OUT
9.1
11.6
A1/B7/DACB_OUT
7.4
9.9
A2/B6/C9
4.1
6.6
A3/B3/C5/VDAC
81.9
89.4
A4/B8/C14
8
13
A5/B12/C2
7.1
12.1
5.7
A6
3.2
A7/C3
3.8
6.3
A8/B0/C11
8.2
13.2
A9/B4/C8
6.9
11.9
A10/B1/C10
4.7
7.2
A11/B11/C0
4
6.5
A12/C1
6.4
11.4
A14/B14/C4
3.8
6.3
A15/B9/C7
7.1
12.1
B2/C6
3.9
6.4
Table 6-17. Per-Channel Parasitic Capacitance for 48-Pin PT LQFP
ADC CHANNEL
Cp (pF)
COMPARATOR DISABLED
COMPARATOR ENABLED
A0/B15/C15/DACA_OUT
9.1
11.6
A1/B7/DACB_OUT
7.4
9.9
A2/B6/C9
4.1
6.6
A3/B3/C5/VDAC
81.9
89.4
A4/B8/C14
8
13
A5/B12/C2
7.1
12.1
A6/B2/C6
7.1
12.1
A7/C3
3.8
6.3
A8/B0/C11
8.2
13.2
A9/B4/C8
6.9
11.9
A10/B1/C10
4.7
7.2
A11/B11/C0
4
6.5
A12/C1
6.4
11.4
A15/B9/C7
7.1
12.1
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
131
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
6.13.3.2.4 ADC Timing Diagrams
Figure 6-45 shows the ADC conversion timings for two SOCs given the following assumptions:
• SOC0 and SOC1 are configured to use the same trigger.
• No other SOCs are converting or pending when the trigger occurs.
• The round-robin pointer is in a state that causes SOC0 to convert first.
• ADCINTSEL is configured to set an ADCINT flag upon end of conversion for SOC0 (whether this flag
propagates through to the CPU to cause an interrupt is determined by the configurations in the PIE module).
Table 6-18 lists the descriptions of the ADC timing parameters. Table 6-19 lists the ADC timings.
Sample n
Input on SOC0.CHSEL
Input on SOC1.CHSEL
Sample n+1
ADC S+H
SOC0
SOC1
SYSCLK
ADCCLK
ADCTRIG
ADCSOCFLG.SOC0
ADCSOCFLG.SOC1
ADCRESULT0
(old data)
ADCRESULT1
(old data)
Sample n
Sample n+1
ADCINTFLG.ADCINTx
tSH
tLAT
tEOC
tINT
Figure 6-45. ADC Timings
132
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 6-18. ADC Timing Parameter Descriptions
PARAMETER
DESCRIPTION
The duration of the S+H window.
tSH
At the end of this window, the value on the S+H capacitor becomes the voltage to be converted into a digital value. The
duration is given by (ACQPS + 1) SYSCLK cycles. ACQPS can be configured individually for each SOC, so tSH is not
necessarily the same for different SOCs.
Note: The value on the S+H capacitor is captured approximately 5 ns before the end of the S+H window regardless of
device clock settings.
tLAT
tEOC
The time from the end of the S+H window until the ADC results latch in the ADCRESULTx register.
If the ADCRESULTx register is read before this time, the previous conversion results are returned.
The time from the end of the S+H window until the S+H window for the next ADC conversion can begin. The
subsequent sample can start before the conversion results are latched.
The time from the end of the S+H window until an ADCINT flag is set (if configured).
If the INTPULSEPOS bit in the ADCCTL1 register is set, tINT coincides with the end of conversion (EOC) signal.
tINT
If the INTPULSEPOS bit is 0, tINT coincides with the end of the S+H window. If tINT triggers a read of the ADC result
register (directly through DMA or indirectly by triggering an ISR that reads the result), care must be taken to make sure
the read occurs after the results latch (otherwise, the previous results are read).
If the INTPULSEPOS bit is 0, and the OFFSET field in the ADCINTCYCLE register is not 0, then there is a delay of
OFFSET SYSCLK cycles before the ADCINT flag is set. This delay can be used to enter the ISR or trigger the DMA
exactly when the sample is ready.
Table 6-19. ADC Timings
ADCCLK PRESCALE
(1)
(2)
ADCCTL2
[PRESCALE]
RATIO
ADCCLK:SYSCLK
0
2
ADCCLK
CYCLES
SYSCLK CYCLES
tEOC
tLAT (1)
tINT(EARLY) (2)
1
11
13
1
11
11
2
21
23
1
21
10.5
4
3
31
34
1
31
10.3
6
4
41
44
1
41
10.3
tINT(LATE)
tEOC
8
5
51
55
1
51
10.2
10
6
61
65
1
61
10.2
12
7
71
76
1
71
10.1
14
8
81
86
1
81
10.1
Refer to the "ADC: DMA Read of Stale Result" advisory in the TMS320F28003x Real-Time MCUs Silicon Errata.
By default, tINT occurs one SYSCLK cycle after the S+H window if INTPULSEPOS is 0. This can be changed by writing to the OFFSET
field in the ADCINTCYCLE register.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
133
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.13.4 Temperature Sensor
6.13.4.1 Temperature Sensor Electrical Data and Timing
The temperature sensor can be used to measure the device junction temperature. The temperature sensor
is sampled through an internal connection to the ADC and translated into a temperature through TI-provided
software. When sampling the temperature sensor, the ADC must meet the acquisition time in the Temperature
Sensor Characteristics table.
6.13.4.1.1 Temperature Sensor Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
Tacc
Temperature Accuracy
tstartup
Start-up time
(TSNSCTL[ENABLE] to
sampling temperature sensor)
tacq
ADC acquisition time
134
Submit Document Feedback
TEST CONDITIONS
MIN
External reference
450
TYP
MAX
UNIT
±15
°C
500
µs
ns
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.13.5 Comparator Subsystem (CMPSS)
The Comparator Subsystem (CMPSS) consists of analog comparators and supporting circuits that are useful for
power applications such as peak current mode control, switched-mode power supply, power factor correction,
voltage trip monitoring, and so forth.
The comparator subsystem is built around a number of modules. Each subsystem contains two comparators,
two reference 12-bit DACs, and two digital filters. The subsystem also includes one ramp generator.
Comparators are denoted "H" or "L" within each module where “H” and “L” represent high and low, respectively.
Each comparator generates a digital output which indicates whether the voltage on the positive input is greater
than the voltage on the negative input. The positive input of the comparator is driven from an external pin
(see the Analog Subsystem chapter of the TMS320F28003x Real-Time Microcontrollers Technical Reference
Manual for mux options available to the CMPSS). The negative input can be driven by an external pin or by
the programmable reference 12-bit DAC. Each comparator output passes through a programmable digital filter
that can remove spurious trip signals. An unfiltered output is also available if filtering is not required. A ramp
generator circuit is optionally available to control the reference 12-bit DAC value for the high comparator in the
subsystem.
Each CMPSS includes:
•
•
•
•
•
•
•
•
•
•
•
•
Two analog comparators
Two programmable reference 12-bit DACs
One ramp generator
Two digital filters, 65536 max filter clock prescale
Ability to synchronize submodules with EPWMSYNCPER
Ability to extend clear signal with EPWMBLANK
Ability to synchronize output with SYSCLK
Ability to latch output
Ability to invert output
Option to use hysteresis on the input
Option for negative input of comparator to be driven by an external signal or by the reference DAC
Option to choose between VDDA or VDAC to be the DAC reference voltage
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
135
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.13.5.1 CMPSS Connectivity Diagram
CMP1_ HP
CMP1_HN
Comparator Subsystem 1
VDDA or VDAC
CTRIP1H
Digital
Filter
CTRIP1H
CTRIPOUT1H
Digital
Filter
CTRIP1L
CTRIPOUT1L
CTRIP2H
DAC12
DAC12
CMP1_LN
CMP1_LP
CMP2_HP
CMP2_HN
Comparator Subsystem 2
Digital
Filter
VDDA or VDAC
CMP2_LN
CMP2_LP
CTRIP2L
ePWM X- BAR
ePWMs
Output X- BAR
GPIO Mux
CTRIP2H
CTRIPOUT2H
DAC12
DAC12
CTRIP1L
CTRIP4H
Digital
Filter
CTRIP2L
CTRIPOUT2L
CTRIP4L
CTRIPOUT1H
CTRIPOUT1L
CTRIPOUT2H
CMP4_ HP
CMP4_ HN
Comparator Subsystem 4
VDDA or VDAC
Digital
Filter
CTRIP4H
CTRIPOUT4H
Digital
Filter
CTRIP4L
CTRIPOUT4L
CTRIPOUT2L
DAC12
DAC12
CMP4_LN
CMP4_ LP
CTRIPOUT4H
CTRIPOUT4L
Figure 6-46. CMPSS Connectivity
6.13.5.2 Block Diagram
The block diagram for the CMPSS is shown in Figure 6-47.
•
•
136
CTRIPx(x= "H" or "L") signals are connected to the ePWM X-BAR for ePWM trip response. See the
Enhanced Pulse Width Modulator (ePWM) chapter of the TMS320F28003x Real-Time Microcontrollers
Technical Reference Manual for more details on the ePWM X-BAR mux configuration.
CTRIPxOUTx(x= "H" or "L") signals are connected to the Output X-BAR for external signaling. See the
General-Purpose Input/Output (GPIO) chapter of the TMS320F28003x Real-Time Microcontrollers Technical
Reference Manual for more details on the Output X-BAR mux configuration.
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Figure 6-47. CMPSS Module Block Diagram
Each reference 12-bit DAC can be configured to drive a reference voltage into the negative input of the
respective comparator. The reference 12-bit DAC output is internal only and cannot be observed externally. The
reference 12-bit DAC is illustrated in Figure 6-48.
COMPDACCTL[SELREF]
VDDA 0
DACREF
VDAC 1
DACHVALA
12-bit DACOUTH
DACH To COMPH
DACLVALA
12-bit DACOUTL
DACL To COMPL
VSSA
Figure 6-48. Reference DAC Block Diagram
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
137
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.13.5.3 CMPSS Electrical Data and Timing
6.13.5.3.1 Comparator Electrical Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
TPU
TEST CONDITIONS
MIN
Comparator input (CMPINxx) range
Low common mode, inverting
input set to 50mV
Input referred offset error
Hysteresis(1)
Response time (delay from CMPINx input pin
change to GPIO output pin through either ePWM
X-BAR or Output X-BAR)
PSRR
Power Supply Rejection Ratio
CMRR
Common Mode Rejection Ratio
(1)
TYP
MAX
UNIT
500
µs
0
VDDA
V
–20
20
Power-up time
1x
4
12
20
2x
17
24
33
3x
25
36
50
4x
30
mV
LSB
48
67
Step response
21
60
Ramp response (1.65V/µs)
26
Ramp response (8.25mV/µs)
30
ns
Up to 250 kHz
46
dB
40
ns
dB
The CMPSS DAC is used as the reference to determine how much hysteresis to apply. Therefore, hysteresis will scale with the
CMPSS DAC reference voltage. Hysteresis is available for all comparator input source configurations.
CMPSS Comparator Input Referred Offset and Hysteresis
Note
The CMPSS inputs must be kept below VDDA + 0.3 V to ensure proper functional operation. If a
CMPSS input exceeds this level, an internal blocking circuit isolates the internal comparator from
the external pin until the external pin voltage returns below VDDA + 0.3 V. During this time, the
internal comparator input is floating and can decay below VDDA within approximately 0.5 µs. After
this time, the comparator could begin to output an incorrect result depending on the value of the other
comparator input.
Input Referred Offset
CTRIPx
Logic Level
CTRIPx = 1
CTRIPx = 0
0
CMPINxN or
DACxVAL
COMPINxP
Voltage
Figure 6-49. CMPSS Comparator Input Referred Offset
138
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Hysteresis
CTRIPx
Logic Level
CTRIPx = 1
CTRIPx = 0
0
CMPINxN or
DACxVAL
COMPINxP
Voltage
Figure 6-50. CMPSS Comparator Hysteresis
6.13.5.3.2 CMPSS DAC Static Electrical Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
Internal reference
0
VDDA
External reference
0
VDAC(4)
Static offset error(1)
–25
25
mV
Static gain error(1)
–2
2
% of FSR
CMPSS DAC output range
V
Static DNL
Endpoint corrected
>–1
4
LSB
Static INL
Endpoint corrected
–16
16
LSB
Settling time
Settling to 1LSB after full-scale output change
1
µs
Resolution
CMPSS DAC output disturbance(2)
12
Error induced by comparator trip or CMPSS
DAC code change within the same CMPSS
module
–100
CMPSS DAC disturbance time(2)
VDAC reference voltage
VDAC
(1)
(2)
(3)
(4)
load(3)
bits
100
LSB
200
ns
When VDAC is reference
2.4
2.5 or 3.0
VDDA
V
When VDAC is reference
6
8
10
kΩ
Includes comparator input referred errors.
Disturbance error may be present on the CMPSS DAC output for a certain amount of time after a comparator trip.
Per active CMPSS module.
The maximum output voltage is VDDA when VDAC > VDDA.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
139
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.13.5.3.3 CMPSS Illustrative Graphs
Offset Error
Figure 6-51. CMPSS DAC Static Offset
Ideal Gain
Actual Gain
Actual Linear Range
Figure 6-52. CMPSS DAC Static Gain
140
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Linearity Error
Figure 6-53. CMPSS DAC Static Linearity
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
141
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.13.5.3.4 CMPSS DAC Dynamic Error
When using the ramp generator to control the internal DAC, the step size can vary based on the application
need. Since the step size of the DAC is less than a full scale transition, the settling time is improved from the
electrical specification listed in the CMPSS DAC Static Electrical Characteristics table. The equation below and
Figure 6-54 can give guidance on the expected voltage error from ideal based on different RAMPxDECVALA
values.
DYNAMICERROR = m × RAMPxDECVALA + b
(3)
Table 6-20. DAC Max Dynamic Error Terms
EQUATION PARAMETER
MIN (LSB)
MAX (LSB)
m
0.10
0.18
b
3.7
5.6
Note
Above error terms are based on the max SYSCLK of the target device. If operating below the max
SYSCLK then the "m" error term should be scaled accordingly.
300
Max Error
Min Error
Dynamic Error (LSB)
250
200
150
100
50
0
0
200
400
600
800
1000
1200
1400
1600
RAMPxDECVAL
Figure 6-54. CMPSS DAC Dynamic Error
142
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.13.6 Buffered Digital-to-Analog Converter (DAC)
The buffered DAC module consists of an internal 12-bit DAC and an analog output buffer that can drive an
external load. For driving even higher loads than typical, a trade-off can be made between load size and
output voltage swing. For the load conditions of the buffered DAC, see the Buffered DAC Electrical Data and
Timing section. The buffered DAC is a general-purpose DAC that can be used to generate a DC voltage or AC
waveforms such as sine waves, square waves, triangle waves and so forth. Software writes to the DAC value
register can take effect immediately or can be synchronized with EPWMSYNCO events.
Each buffered DAC has the following features:
• 12-bit resolution
• Selectable reference voltage source
• x1 and x2 gain modes when using internal VREFHI
• Ability to synchronize with EPWMSYNCPER
DAC Module
Reference Voltage Source
Output Buer
12-Bit DAC
Internal Reference Circuit
DACCTL[DACREFSEL]
ANAREFx2P5
VDAC
0
1.65 V
Internal Reference
Circuit
2.5 V
DACREF
0
1
1
0
1
ANAREFCTL[ANAREFxSEL]
VREFHI
VDDA
SYSCLK
DACVALS
DACCTL[LOADMODE]
>
D
Q
0
D
Q
1
DACVALA
EPWM1SYNCPER
EPWM2SYNCPER
EPWM3SYNCPER
...
EPWMnSYNCPER
0
DACOUT
12-bit
DAC
EN
1
VSSA
2
...
n-1
VSSA
DACCTL[MODE]
(Select x1 or x2 gain)
DACCTL[SYNCSEL]
Figure 6-55. DAC Module Block Diagram
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
143
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.13.6.1 Buffered DAC Electrical Data and Timing
6.13.6.1.1 Buffered DAC Operating Conditions
over recommended operating conditions (unless otherwise noted)(1)
PARAMETER
RL
Resistive Load(2)
CL
Capacitive Load
Valid Output Voltage Range(3)
VOUT
Reference Voltage(4)
(1)
(2)
(3)
(4)
TEST CONDITIONS
MIN
TYP
MAX
5
RL = 5 kΩ
0.3
RL = 1 kΩ
0.6
VDAC or VREFHI
2.4
UNIT
kΩ
2.5 or 3.0
100
pF
VDDA – 0.3
V
VDDA – 0.6
V
VDDA
V
Typical values are measured with VREFHI = 3.3 V and VREFLO = 0 V, unless otherwise noted. Minimum and maximum values are
tested or characterized with VREFHI = 2.5 V and VREFLO = 0 V.
DAC can drive a minimum resistive load of 1 kΩ, but the output range will be limited.
This is the linear output range of the DAC. The DAC can generate voltages outside this range, but the output voltage will not be linear
due to the buffer.
For best PSRR performance, VDAC or VREFHI should be less than VDDA.
6.13.6.1.2 Buffered DAC Electrical Characteristics
over recommended operating conditions (unless otherwise noted)(1)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
1
mV/V
General
Resolution
12
Load Regulation
–1
Glitch Energy
bits
1.5
V-ns
Voltage Output Settling Time Full-Scale
Settling to 2 LSBs after 0.3Vto-3V transition
2
µs
Voltage Output Settling Time 1/4th Full-Scale
Settling to 2 LSBs after 0.3Vto-0.75V transition
1.6
µs
Voltage Output Slew Rate
Slew rate from 0.3V-to-3V
transition
4.5
V/µs
5-kΩ Load
328
ns
1-kΩ Load
557
ns
Load Transient Settling Time
Reference Input
TPU
Resistance(2)
Power Up Time
VDAC or VREFHI
2.8
240
kΩ
External Reference mode
160
200
500
µs
Internal Reference mode
5000
µs
DC Characteristics
Offset
Offset Error
Gain
Gain Error(3)
Midpoint
–10
10
mV
–2.5
2.5
% of FSR
DNL
Differential Non Linearity(4)
Endpoint corrected
–1
±0.4
1
LSB
INL
Integral Non Linearity
Endpoint corrected
–5
±2
5
LSB
AC Characteristics
Output Noise
Integrated noise from 100 Hz
to 100 kHz
600
µVrms
Noise density at 10 kHz
800
nVrms/√Hz
SNR
Signal to Noise Ratio
1 kHz, 200 KSPS
64
dB
THD
Total Harmonic Distortion
1 kHz, 200 KSPS
–64.2
dB
SFDR
Spurious Free Dynamic
Range
1 kHz, 200 KSPS
66
dB
SINAD
Signal to Noise and Distortion
1 kHz, 200 KSPS
Ratio
61.7
dB
144
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.13.6.1.2 Buffered DAC Electrical Characteristics (continued)
over recommended operating conditions (unless otherwise noted)(1)
PARAMETER
PSRR
(1)
(2)
(3)
(4)
(5)
Power Supply Rejection
Ratio(5)
TEST CONDITIONS
MIN
TYP
MAX
UNIT
DC
70
dB
100 kHz
30
dB
Typical values are measured with VREFHI = 3.3 V and VREFLO = 0 V, unless otherwise noted. Minimum and maximum values are
tested or characterized with VREFHI = 2.5 V and VREFLO = 0 V.
Per active Buffered DAC module.
Gain error is calculated for linear output range.
The DAC output is monotonic.
VREFHI = 3.2 V, VDDA = 3.3 V DC + 100 mV Sine.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
145
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
6.14 Control Peripherals
6.14.1 Enhanced Pulse Width Modulator (ePWM)
The ePWM peripheral is a key element in controlling many of the power electronic systems found in both
commercial and industrial equipment. The ePWM type-4 module is able to generate complex pulse width
waveforms with minimal CPU overhead by building the peripheral up from smaller modules with separate
resources that can operate together to form a system. Some of the highlights of the ePWM type-4 module
include complex waveform generation, dead-band generation, a flexible synchronization scheme, advanced
trip-zone functionality, and global register reload capabilities.
The ePWM and eCAP synchronization scheme on the device provides flexibility in partitioning the ePWM and
eCAP modules and allows localized synchronization within the modules.
Figure 6-56 shows the ePWM module. Figure 6-57 shows the ePWM trip input connectivity.
146
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Time-Base (TB)
TBPRD Shadow (24)
ePWM
SYNC
Scheme
EXTSYNCIN
TBPRDHR (8)
TBPRD Active (24)
EXTSYNCOUT
CTR=PRD
EPWMxSYNCI
TBCTL[PHSEN]
TBCTL[SWFSYNC]
Counter
Up/Down
(16 bit)
DCAEVT1/sync(A)
DCBEVT1/sync(A)
CTR=ZERO
TBCTR
Active (16)
CTR=PRD
CTR=ZERO
CTR_Dir
TBPHSHR (8)
16
Phase
Control
Event
Trigger
And
Interrupt
(ET)
CTR=CMPD
CTR_Dir
Counter Compare (CC)
CTR=CMPA
EPWMxSOCA
CTR=PRD or ZERO
CTR=CMPA
CTR=CMPB
CTR=CMPC
8
TBPHS Active (24)
EPWMx_INT
Action
Qualifier
(AQ)
EPWMxSOCB
On-chip
ADC
ADCSOCOUTSELECT
DCAEVT1.soc(A)
DCBEVT1.soc(A)
Select and pulse stretch
for external ADC
CMPAHR (8)
16
HiRes PWM (HRPWM)
CMPAHR (8)
ADCSOCAO
ADCSOCBO
CMPA Active (24)
CMPA Shadow (24)
EPWMA
ePWMxA
Dead
Band
(DB)
CTR=CMPB
CMPBHR (8)
PWM
Chopper
(DB)
Trip
Zone
(TZ)
16
CMPB Active (16)
EPWMB
ePWMxB
CMPB Shadow (16)
CMPBHR (8)
TBCNT (16)
CTR=CMPC
CTR=ZERO
DCAEVT1.inter
CMPC[15-0]
DCBEVT1.inter
16
DCAEVT2.inter
CMPC Active (16)
DCBEVT2.inter
CMPC Shadow (16)
EPWMx_TZ_INT
TZ1 to TZ3
EMUSTOP
CLOCKFAIL
EQEPxERR
DCAEVT1.force(A)
DCBEVT1.force(A)
TBCNT (16)
CTR=CMPD
DCAEVT2.force(A)
DCBEVT2.force(A)
CMPD[15-0]
16
CMPD Active (16)
CMPD Shadow (16)
A.
These events are generated by the ePWM digital compare (DC) submodule based on the levels of the TRIPIN inputs.
Figure 6-56. ePWM Submodules and Critical Internal Signal Interconnects
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
147
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
Figure 6-57. ePWM Trip Input Connectivity
148
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.14.1.1 ePWM Electrical Data and Timing
For an explanation of the input qualifier parameters, see the General-Purpose Input Timing Requirements table.
6.14.1.1.1 ePWM Timing Requirements
MIN
tw(SYNCIN)
Sync input pulse width
Asynchronous
2tc(EPWMCLK)
Synchronous
2tc(EPWMCLK)
With input qualifier
MAX
UNIT
cycles
1tc(EPWMCLK) + tw(IQSW)
6.14.1.1.2 ePWM Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER(1)
tw(PWM)
Pulse duration, PWMx output high/low
tw(SYNCOUT)
Sync output pulse width
td(TZ-PWM)
Delay time, trip input active to PWM forced high
Delay time, trip input active to PWM forced low
Delay time, trip input active to PWM Hi-Z
(1)
MIN
MAX
UNIT
20
ns
8tc(SYSCLK)
cycles
25
ns
20-pF load on pin.
6.14.1.1.3 Trip-Zone Input Timing
For an explanation of the input qualifier parameters, see the General-Purpose Input Timing Requirements table.
6.14.1.1.3.1 Trip-Zone Input Timing Requirements
MIN
Asynchronous
tw(TZ)
Pulse duration, TZx input low
UNIT
cycles
2tc(EPWMCLK)
cycles
1tc(EPWMCLK) + tw(IQSW)
cycles
Synchronous
With input qualifier
MAX
1tc(EPWMCLK)
6.14.1.1.3.2 PWM Hi-Z Characteristics Timing Diagram
EPWMCLK
tw(TZ)
(A)
TZ
td(TZ-PWM)
(B)
PWM
A.
B.
TZ: TZ1, TZ2, TZ3, TRIP1–TRIP12
PWM refers to all the PWM pins in the device. The state of the PWM pins after TZ is taken high depends on the PWM recovery
software.
Figure 6-58. PWM Hi-Z Characteristics
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
149
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.14.2 High-Resolution Pulse Width Modulator (HRPWM)
The HRPWM combines multiple delay lines in a single module and a simplified calibration system by using a
dedicated calibration delay line. For each ePWM module, there are two HR outputs:
• HR Duty and Deadband control on Channel A
• HR Duty and Deadband control on Channel B
The HRPWM module offers PWM resolution (time granularity) that is significantly better than what can be
achieved using conventionally derived digital PWM methods. The key points for the HRPWM module are:
• Significantly extends the time resolution capabilities of conventionally derived digital PWM
• This capability can be used in both single edge (duty cycle and phase-shift control) as well as dual edge
control for frequency/period modulation.
• Finer time granularity control or edge positioning is controlled through extensions to the Compare A, B,
phase, period and deadband registers of the ePWM module.
6.14.2.1 HRPWM Electrical Data and Timing
6.14.2.1.1 High-Resolution PWM Characteristics
PARAMETER
Micro Edge Positioning (MEP) step
(1)
MIN
size(1)
TYP
150
MAX UNIT
310
ps
The MEP step size will be largest at high temperature and minimum voltage on VDD. MEP step size will increase with higher
temperature and lower voltage and decrease with lower temperature and higher voltage.
Applications that use the HRPWM feature should use MEP Scale Factor Optimizer (SFO) estimation software functions. See the TI
software libraries for details of using SFO functions in end applications. SFO functions help to estimate the number of MEP steps per
SYSCLK period dynamically while the HRPWM is in operation.
6.14.3 External ADC Start-of-Conversion Electrical Data and Timing
6.14.3.1 External ADC Start-of-Conversion Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
tw(ADCSOCL)
MIN
Pulse duration, ADCSOCxO low
32tc(SYSCLK)
MAX
UNIT
cycles
6.14.3.2 ADCSOCAO or ADCSOCBO Timing Diagram
tw(ADCSOCL)
ADCSOCAO
or
ADCSOCBO
Figure 6-59. ADCSOCAO or ADCSOCBO Timing
150
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.14.4 Enhanced Capture (eCAP)
The features of the eCAP module include:
•
•
•
•
Speed measurements of rotating machinery (for example, toothed sprockets sensed by way of Hall sensors)
Elapsed time measurements between position sensor pulses
Period and duty cycle measurements of pulse train signals
Decoding current or voltage amplitude derived from duty cycle encoded current/voltage sensors
The eCAP module features described in this chapter include:
•
•
•
•
•
•
•
•
4-event time-stamp registers (each 32 bits)
Edge polarity selection for up to four sequenced time-stamp capture events
Interrupt on either of the four events
Single-shot capture of up to four event time-stamps
Continuous mode capture of time stamps in a four-deep circular buffer
Absolute time-stamp capture
Difference (Delta) mode time-stamp capture
When not used in capture mode, the eCAP module can be configured as a single-channel PWM output
The capture functionality of the Type 1 eCAP is enhanced from the Type 0 eCAP with the following added
features:
• Event filter reset bit
– Writing a 1 to ECCTL2[CTRFILTRESET] clears the event filter, the modulo counter, and any pending
interrupts flags. Resetting the bit is useful for initialization and debug.
• Modulo counter status bits
– The modulo counter (ECCTL2 [MODCNTRSTS]) indicates which capture register is loaded next. In the
Type 0 eCAP, to know the current state of the modulo counter was not possible
• DMA trigger source
– eCAPxDMA was added as a DMA trigger. CEVT[1-4] can be configured as the source for eCAPxDMA.
• Input multiplexer
– ECCTL0 [INPUTSEL] selects one of 128 input signals, which are detailed in the Configuring Device
Pins for the eCAP section of the Enhanced Capture (eCAP) chapter in the TMS320F28003x Real-Time
Microcontrollers Technical Reference Manual.
• EALLOW protection
– EALLOW protection was added to critical registers. To maintain software compatibility with Type-0,
configure DEV_CFG_REGS.ECAPTYPE to make these registers unprotected.
The capture functionality of the Type 2 eCAP is enhanced from the Type 1 eCAP with the following added
features:
• Added ECAPxSYNCINSEL register
– ECAPxSYNCINSEL register is added for each eCAP to select an external SYNCIN. Every eCAP can have
a separate SYNCIN signal.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
151
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.14.4.1 eCAP and HRCAP Block Diagram
ECCTL2 [ SYNCI_EN, SYNCOSEL, SWSYNC]
ECCTL2[CAP/APWM]
SYNC
CTRPHS
(phase register−32 bit)
ECAPxSYNCIN
APWM Mode
OVF
TSCTR
(counter−32 bit)
ECAPxSYNCOUT
RST
CTR_OVF
CTR [0−31]
Delta−Mode
PRD [0−31]
PWM
Compare
Logic
Output
X-Bar
CMP [0−31]
32
CTR=PRD
CTR [0−31]
CTR=CMP
32
PRD [0−31]
ECCTL1 [ CAPLDEN, CTRRSTx]
HRCTRL[HRE]
32
32
APRD
shadow
HRCTRL[HRE]
LD1
CAP1
(APRD Active)
Polarity
Select
LD
32
CMP [0−31]
32
HRCTRL[HRE]
32
32
CAP2
(ACMP Active)
32
Polarity
Select
LD2
LD
Other
Sources
[127:16]
Event
qualifier
ACMP
shadow
HRCTRL[HRE]
Event
Prescale
16
ECCTL1[PRESCALE]
[15:0]
Input
X-Bar
32
32
Polarity
Select
LD3
CAP3
(APRD Shadow)
LD
CAP4
(ACMP Shadow)
LD
HRCTRL[HRE]
32
32
LD4
Polarity
Select
4
Capture Events
4
Edge Polarity Select
ECCTL1[CAPxPOL]
CEVT[1:4]
ECAPxDMA_INT
ECCTL2[CTRFILTRESET]
ECCTL2[DMAEVTSEL]
ECAPx
(to ePIE)
Interrupt
Trigger
and
Flag
Control
Continuous /
Oneshot
Capture Control
CTR_OVF
MODCNTRSTS
CTR=PRD
CTR=CMP
ECCTL2 [ REARM, CONT_ONESHT, STOP_WRAP]
Registers: ECEINT, ECFLG, ECCLR, ECFRC
Capture Pulse
SYSCLK
HRCLK
ECAPx_HRCAL
(to ePIE)
A.
HR Submodule
(A)
HR Input
The HRCAP submodule is not available on all eCAP modules; in this case, the high-resolution muxes and hardware are not
implemented.
Figure 6-60. eCAP and HRCAP Block Diagram
152
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.14.4.2 eCAP Synchronization
The eCAP modules can be synchronized with each other by selecting a common SYNCIN source. SYNCIN
source for eCAP can be either software sync-in or external sync-in. The external sync-in signal can come from
EPWM, eCAP, or X-Bar. The SYNC signal is defined by the selection in the ECAPxSYNCINSEL[SEL] bit for
ECAPx as shown in Figure 6-61.
ECAPx
Disable
0x0
0x1
ECAPxSYNCIN
ECAPxSYNCIN
Signals
EPWMxSYNCOUT
ECCTL2[SWSYNC]
CTR=PRD
(EPWM, ECAP,
INPUTXBAR, «)
EXTSYNCOUT
ECAPxSYNCOUT
Disable
Disable
SYNCSELECT[SYNCOUT]
0xn
ECCTL2[SYNCOSEL]
ECAPSYNCINSEL[SEL]
Figure 6-61. eCAP Synchronization Scheme
6.14.4.3 eCAP Electrical Data and Timing
6.14.4.3.1 eCAP Timing Requirements
MIN
Asynchronous
tw(CAP)
Capture input pulse width
Synchronous
With input qualifier
NOM
MAX
UNIT
2tc(SYSCLK)
2tc(SYSCLK)
ns
1tc(SYSCLK) + tw_(IQSW)
6.14.4.3.2 eCAP Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
tw(APWM)
Pulse duration, APWMx output high/low
Copyright © 2023 Texas Instruments Incorporated
MIN
20
TYP
MAX
UNIT
ns
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
153
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
6.14.5 High-Resolution Capture (HRCAP)
The eCAP3 module can be configured as high-resolution capture (HRCAP) submodules. The HRCAP
submodule measures the difference, in time, between pulses asynchronously to the system clock. This
submodule is new to the eCAP Type 1 module, and features many enhancements over the Type 0 HRCAP
module.
Applications for the HRCAP include:
• Capacitive touch applications
• High-resolution period and duty-cycle measurements of pulse train cycles
• Instantaneous speed measurements
• Instantaneous frequency measurements
• Voltage measurements across an isolation boundary
• Distance/sonar measurement and scanning
• Flow measurements
The HRCAP submodule includes the following features:
• Pulse-width capture in either non-high-resolution or high-resolution modes
• Absolute mode pulse-width capture
• Continuous or "one-shot" capture
• Capture on either falling or rising edge
• Continuous mode capture of pulse widths in 4-deep buffer
• Hardware calibration logic for precision high-resolution capture
• All of the resources in this list are available on any pin using the Input X-BAR.
The HRCAP submodule includes one high-resolution capture channel in addition to a calibration block. The
calibration block allows the HRCAP submodule to be continually recalibrated, at a set interval, with no “down
time”. Because the HRCAP submodule now uses the same hardware as its respective eCAP, if the HRCAP is
used, the corresponding eCAP will be unavailable.
Each high-resolution-capable channel has the following independent key resources.
• All hardware of the respective eCAP
• High-resolution calibration logic
• Dedicated calibration interrupt
6.14.5.1 eCAP and HRCAP Block Diagram
For the HRCAP Block Diagram, see the eCAP and HRCAP Block Diagram in the Enhanced Capture (eCAP)
section.
154
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.14.5.2 HRCAP Electrical Data and Timing
6.14.5.2.1 HRCAP Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
Input pulse width
MIN
TYP
Accuracy(1) (2) (3) (4)
UNIT
ns
Measurement length ≤ 5 µs
±390
540
ps
Measurement length > 5 µs
±450
1450
ps
See HRCAP
Standard
Deviation
Characteristics
figure
Standard deviation
Resolution
(1)
(2)
(3)
MAX
110
300
ps
Value obtained using an oscillator of 100 PPM, oscillator accuracy directly affects the HRCAP accuracy.
Measurement is completed using rising-rising or falling-falling edges
Opposite polarity edges will have an additional inaccuracy due to the difference between VIH and VIL. This effect is dependent on the
signal’s slew rate.
Accuracy only applies to time-converted measurements.
(4)
6.14.5.2.2 HRCAP Figure and Graph
HRCAP’s Mean
HRCAP Result
Probability
Accuracy
Resolution
(Step Size)
Actual
Input Signal
A.
Precision
(Standard Deviation)
The HRCAP has some variation in performance, this results in a probability distribution which is described using the following terms:
•
•
•
Accuracy: The time difference between the input signal and the mean of the HRCAP’s distribution.
Precision: The width of the HRCAP’s distribution, this is given as a standard deviation.
Resolution: The minimum measurable increment.
Figure 6-62. HRCAP Accuracy Precision and Resolution
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
155
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
2
7.4
1.8
6.66
1.6
5.92
1.4
5.18
1.2
4.44
1
3.7
0.8
2.96
0.6
2.22
0.4
1.48
0.2
0
A.
B.
C.
1000
2000
3000
4000
5000
6000
Time Between Edges(nS)
7000
8000
9000
Standard Deviation (Steps)
Standard Deviation (nS)
Typical Core Conditions
Noisy Core Supply
0.74
10000
Typical core conditions: All peripheral clocks are enabled.
Noisy core supply: All core clocks are enabled and disabled with a regular period during the measurement.
Fluctuations in current and voltage on the 1.2-V rail cause the standard deviation of the HRCAP to rise. Care should be taken to ensure
that the 1.2-V supply is clean, and that noisy internal events, such as enabling and disabling clock trees, have been minimized while
using the HRCAP.
Figure 6-63. HRCAP Standard Deviation Characteristics
156
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.14.6 Enhanced Quadrature Encoder Pulse (eQEP)
The eQEP module on this device is Type-2. The eQEP interfaces directly with linear or rotary incremental
encoders to obtain position, direction, and speed information from rotating machines used in high-performance
motion and position control systems.
The eQEP peripheral contains the following major functional units (see Figure 6-64):
• Programmable input qualification for each pin (part of the GPIO MUX)
• Quadrature decoder unit (QDU)
• Position counter and control unit for position measurement (PCCU)
• Quadrature edge-capture unit for low-speed measurement (QCAP)
• Unit time base for speed/frequency measurement (UTIME)
• Watchdog timer for detecting stalls (QWDOG)
• Quadrature Mode Adapter (QMA)
System
control registers
To CPU
EQEPxENCLK
Data bus
SYSCLK
QCPRD
QCTMR
QCAPCTL
16
Enhanced QEP (eQEP) peripheral
16
16
Quadrature
capture unit
(QCAP)
QCTMRLAT
QCPRDLAT
QWDTMR
QWDPRD
QUTMR
QUPRD
Registers
used by
multiple units
32
QEPCTL
QEPSTS
QFLG
UTIME
16
UTOUT
QDECCTL
16
QWDOG
WDTOUT
PIE
QCLK
QDIR
QI
QS
PHE
EQEPxINT
32
Position counter/
control unit
(PCCU)
QPOSLAT
QPOSSLAT
QPOSILAT
QMA
Quadrature
decoder
(QDU)
PCSOUT
32
QPOSCNT
QPOSINIT
QPOSMAX
32
QPOSCMP
16
EQEPxAIN
EQEPx_A
EQEPxBIN
EQEPx_B
EQEPxIIN
EQEPxIOUT
EQEPxIOE
EQEPxSIN
EQEPxSOUT
EQEPxSOE
GPIO
MUX
EQEPx_INDEX
EQEPx_STROBE
QEINT
QFRC
QCLR
QPOSCTL
Figure 6-64. eQEP Block Diagram
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
157
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.14.6.1 eQEP Electrical Data and Timing
For an explanation of the input qualifier parameters, see the General-Purpose Input Timing Requirements table.
6.14.6.1.1 eQEP Timing Requirements
MIN
Synchronous(1)
tw(QEPP)
QEP input period
tw(INDEXH)
QEP Index Input High time
tw(INDEXL)
QEP Index Input Low time
tw(STROBH)
QEP Strobe High time
tw(STROBL)
QEP Strobe Input Low time
(1)
Synchronous with input qualifier
2tc(SYSCLK)
2tc(SYSCLK)
Synchronous with input qualifier
2tc(SYSCLK)
2tc(SYSCLK)
cycles
2tc(SYSCLK) + tw(IQSW)
Synchronous(1)
Synchronous with input qualifier
cycles
2tc(SYSCLK) + tw(IQSW)
Synchronous(1)
Synchronous with input qualifier
cycles
2tc(SYSCLK) + tw(IQSW)
Synchronous(1)
UNIT
cycles
2[1tc(SYSCLK) + tw(IQSW)]
Synchronous(1)
Synchronous with input qualifier
MAX
2tc(SYSCLK)
cycles
2tc(SYSCLK) + tw(IQSW)
The GPIO GPxQSELn Asynchronous mode should not be used for eQEP module input pins.
6.14.6.1.2 eQEP Switching Characteristics
over recommended operating conditions (unless otherwise noted)
MAX
UNIT
td(CNTR)xin
Delay time, external clock to counter increment
PARAMETER
5tc(SYSCLK)
cycles
td(PCS-OUT)QEP
Delay time, QEP input edge to position compare sync output
7tc(SYSCLK)
cycles
158
Submit Document Feedback
MIN
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.14.7 Sigma-Delta Filter Module (SDFM)
SDFM features include:
•
•
•
•
•
•
•
•
•
•
•
Eight external pins per SDFM module
– Four sigma-delta data input pins per SDFM module (SD-Dx, where x = 1 to 4)
– Four sigma-delta clock input pins per SDFM module (SD-Cx, where x = 1 to 4)
Different configurable modulator clock modes supported:
– Mode 0: Modulator clock rate equals the modulator data rate.
Four independent, configurable secondary filter (comparator) units per SDFM module:
– Four different filter type selection (Sinc1/Sinc2/SincFast/Sinc3) options available
– Ability to detect over-value condition, under-value condition, and Threshold-crossing conditions
1. Two independent Higher Threshold comparators (used to detect over-value condition)
2. Two independent Lower Threshold comparators (used to detect under-value condition)
3. One independent Threshold-Crossing comparator (used to measure duty cycle/frequency with eCAP)
– OSR value for comparator filter unit (COSR) programmable from 1 to 32
Four independent configurable primary filter (data filter) units per SDFM module:
– Four different filter type selection (Sinc1/Sinc2/SincFast/Sinc3) options available
– OSR value for data filter unit (DOSR) programmable from 1 to 256
– Ability to enable or disable (or both) individual filter module
– Ability to synchronize all four independent filters of an SDFM module by using the Main Filter Enable
(MFE) bit or by using PWM signals
Data filter output can be represented in either 16 bits or 32 bits.
Data filter unit has a programmable mode FIFO to reduce interrupt overhead. The FIFO has the following
features:
– The primary filter (data filter) has a 16-deep x 32-bit FIFO.
– The FIFO can interrupt the CPU after programmable number of data-ready events.
– FIFO Wait-for-Sync feature: Ability to ignore data-ready events until the PWM synchronization signal
(SDSYNC) is received. Once the SDSYNC event is received, the FIFO is populated on every data-ready
event.
– Data filter output can be represented in either 16 bits or 32 bits.
PWMx.SOCA/SOCB can be configured to serve as SDSYNC source on a per-data-filter-channel basis.
PWMs can be used to generate a modulator clock for sigma-delta modulators.
Configurable Input Qualification available for both SD-Cx and SD-Dx
Ability to use one filter channel clock (SD-C1) to provide clock to other filter clock channels.
Configurable digital filter available on comparator filter events to blank out comparator events caused by
spurious noise
Figure 6-65 shows the SDFM module block diagram.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
159
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Output XBAR
PWM XBAR
SDyFLTx_CEVT1 SDyFLTx_CEVT2
Comparator
Signals
SDyFLTx.DR
SDFM- Sigma Delta Filter Module
G4
Streams
DMA
Filter Module 1
Input
Ctrl
SDy_C1
PWMi.SOCA / SOCB
PWMj.CMPC
Secondary
(Comparator)
Filter
Interrupt
Unit
R
Primary (Data) R
Filter
SDy_ERR
SDyFLTx.DR
SDy_D2
Filter Module 2
SDy_C2
GPIO
MUX
CLA
FIFO
Peripheral Frame 1
SDy_D1
PWMi.SOCA / SOCB
PWMj.CMPC
SDy_D3
Filter Module 3
SDy_C3
PWMi.SOCA / SOCB
PWMj.CMPD
SDy_D4
Filter Module 4
SDy_ERR
SDyFLTx.DR
C28x
SDyFLTx_CEVT1
ECAP
SDyFLTx_CEVT2
Register
Map
SDy_C4
PWMi.SOCA / SOCB
PWMj.CMPD
LEGEND
Interrupt / trigger sources from SDFM
Internal secondary filter signals
Where,
j =
i =
y =
x =
11 for SDFM1 & 12 for SDFM2
1 to Max. no of PWMs
1 for SDFM1 & 2 for SDFM2
1t4
Figure 6-65. Sigma Delta Filter Module (SDFM) Block Diagram
6.14.7.1 SDFM Electrical Data and Timing
WARNING
Special precautions should be taken on both SD-Cx and SD-Dx signals to ensure a clean and
noise-free signal that meets SDFM timing requirements. Precautions such as series termination
resistors for ringing noise due to any impedance mismatch of clock driver and spacing of traces from
other noisy signals are recommended.
Note
The SDFM SD-Cx and SD-Dx signals, when synchronized to PLLRAWCLK, provide protection
against SDFM module corruption due to occasional random noise glitches that may result in a false
comparator trip and filter output. However, the signals do not provide protection against persistent
violations of the above timing requirements. Timing violations will result in data corruption proportional
to the number of bits which violate the requirements.
6.14.7.1.1 SDFM Timing Requirements When Using Asynchronous GPIO - ASYNC - Option
MIN
MAX
256 * SYSCLK period
UNIT
Mode 0
tc(SDC)M0
Cycle time, SDx_Cy
4 * tc(PLLRAWCLK)
tw(SDDHL)M0
Pulse duration, SDx_Dy (high / Low)
2 * tc(PLLRAWCLK)
ns
tsu(SDDV-SDCH)M0
Setup time, SDx_Dy valid before SDx_Cy goes high
1 * tc(PLLRAWCLK) + 3
ns
th(SDCH-SDD)M0
Hold time, SDx_Dy wait after SDx_Cy goes high
1 * tc(PLLRAWCLK) + 3
ns
160
Submit Document Feedback
ns
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.15 Communications Peripherals
6.15.1 Controller Area Network (CAN)
Note
The CAN module uses the IP known as DCAN. This document uses the names CAN and DCAN
interchangeably to reference this peripheral.
The CAN module implements the following features:
• Complies with ISO11898-1 ( Bosch® CAN protocol specification 2.0 A and B)
• Bit rates up to 1 Mbps
• Multiple clock sources
• 32 message objects (mailboxes), each with the following properties:
– Configurable as receive or transmit
– Configurable with standard (11-bit) or extended (29-bit) identifier
– Supports programmable identifier receive mask
– Supports data and remote frames
– Holds 0 to 8 bytes of data
– Parity-checked configuration and data RAM
• Individual identifier mask for each message object
• Programmable FIFO mode for message objects
• Programmable loopback modes for self-test operation
• Suspend mode for debug support
• Software module reset
• Automatic bus on after bus-off state by a programmable 32-bit timer
• Two interrupt lines
• DMA support
Note
For a CAN bit clock of 100 MHz, the smallest bit rate possible is 3.90625Kbps.
Note
The accuracy of the on-chip zero-pin oscillator is in the INTOSC Characteristics table. Depending
on parameters such as the CAN bit timing settings, bit rate, bus length, and propagation delay, the
accuracy of this oscillator may not meet the requirements of the CAN protocol. In this situation, an
external clock source must be used.
Figure 6-66 shows the CAN block diagram.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
161
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
CAN_H
CAN Bus
CAN_L
External connections
Device
3.3V CAN Transceiver
CANx RX pin
CANx TX pin
CAN
CAN Core
Message RAM
Message Handler
Message
RAM
Interface
32
Message
Objects
(Mailboxes)
Register and Message
Object Access (IFx)
Test Modes
Only
Module Interface
CANINT0
CANINT1
DMA
CPU Bus
Figure 6-66. CAN Block Diagram
6.15.2 Modular Controller Area Network (MCAN)
The Controller Area Network (CAN) is a serial communications protocol that efficiently supports distributed
real-time control with a high level of reliability. CAN has high immunity to electrical interference and the ability to
detect various type of errors. In CAN, many short messages are broadcast to the entire network, which provides
data consistency in every node of the system.
The MCAN module supports both classic CAN and CAN FD (CAN with flexible data-rate) protocols. The CAN FD
feature allows higher throughput and increased payload per data frame. Classic CAN and CAN FD devices may
coexist on the same network without any conflict provided that partial network transceivers, which can detect
and ignore CAN FD without generating bus errors, are used by the classic CAN devices. The MCAN module is
compliant to ISO 11898-1:2015.
162
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Note
The availability of the CAN FD feature is dependent on the device's part number. Refer to the device
data sheet for more information.
Device
MCANSS
NMI
Uncorrectable ECC
PIE
Correctable ECC
Configurable Interrupts (2 lines)
Counter Overflow and Clock Stop/
Wakeup
mcanss_tx
CPU BUS
SYSCLK
Peripheral Clock
Clock disable/
enable
MCAN Bit Clock
mcanss_rx
Bit Timing Clock
Wakeup
Clock Stop and Wakeup
RESET
Reset
Figure 6-67. MCAN Module Overview
The MCAN module implements the following features:
•
•
•
•
•
•
•
•
•
•
•
Conforms with CAN Protocol 2.0 A, B and ISO 11898-1:2015
Full CAN FD support (up to 64 data bytes)
AUTOSAR and SAE J1939 support
Flexible Message RAM allocation (maximum configuration below is for a device with 4352 32-bit word
message RAM)
– Up to 32 dedicated transmit buffers
– Configurable transmit FIFO, up to 32 elements
– Configurable transmit queue, up to 32 elements
– Configurable transmit Event FIFO, up to 32 elements
– Up to 64 dedicated receive buffers
– Two configurable receive FIFOs, up to 64 elements each
– Up to 128 filter elements
Loop-back mode for self-test
Maskable interrupt (two configurable interrupt lines, correctable ECC, counter overflow and clock stop/
wakeup)
Non-maskable interrupt (uncorrectable ECC)
Two clock domains (CAN clock/host clock)
ECC check for Message RAM
Clock stop and wake-up support
Timestamp counter
Non-supported features:
•
•
•
Host bus firewall
Clock calibration
Debug over CAN
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
163
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
6.15.3 Inter-Integrated Circuit (I2C)
The I2C module has the following features:
• Compliance with the NXP Semiconductors I2C-bus specification (version 2.1):
– Support for 8-bit format transfers
– 7-bit and 10-bit addressing modes
– General call
– START byte mode
– Support for multiple master-transmitters and slave-receivers
– Support for multiple slave-transmitters and master-receivers
– Combined master transmit/receive and receive/transmit mode
– Data transfer rate from 10Kbps up to 400Kbps (Fast-mode)
• Supports voltage thresholds compatible to:
– SMBus 2.0 and below
– PMBus 1.2 and below
• One 16-byte receive FIFO and one 16-byte transmit FIFO
• Supports two ePIE interrupts
– I2Cx interrupt – Any of the below conditions can be configured to generate an I2Cx interrupt:
• Transmit Ready
• Receive Ready
• Register-Access Ready
• No-Acknowledgment
• Arbitration-Lost
• Stop Condition Detected
• Addressed-as-Slave
– I2Cx_FIFO interrupts:
• Transmit FIFO interrupt
• Receive FIFO interrupt
• Module enable and disable capability
• Free data format mode
Figure 6-68 shows how the I2C peripheral module interfaces within the device.
164
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
I2C module
I2CXSR
I2CDXR
TX FIFO
SDA
FIFO Interrupt
to CPU/PIE
RX FIFO
Peripheral bus
I2CRSR
SCL
Clock
synchronizer
I2CDRR
Control/status
registers
CPU
Prescaler
Noise filters
I2C INT
Interrupt to
CPU/PIE
Arbitrator
Figure 6-68. I2C Peripheral Module Interfaces
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
165
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.15.3.1 I2C Electrical Data and Timing
Note
To meet all of the I2C protocol timing specifications, the I2C module clock must be configured in the
range from 7 MHz to 12 MHz.
A pullup resistor must be chosen to meet the I2C standard timings. In most circumstances, 2.2 kΩ of
total bus resistance to VDDIO is sufficient. For evaluating pullup resistor values for a particular design,
see the I2C Bus Pullup Resistor Calculation Application Report.
6.15.3.1.1 I2C Timing Requirements
NO.
MIN
MAX
UNIT
7
12
MHz
Standard mode
T0
fmod
I2C module frequency
T1
th(SDA-SCL)START
Hold time, START condition, SCL fall delay after
SDA fall
4.0
µs
T2
tsu(SCL-SDA)START
Setup time, Repeated START, SCL rise before SDA
fall delay
4.0
µs
T3
th(SCL-DAT)
Hold time, data after SCL fall
0
µs
T4
tsu(DAT-SCL)
Setup time, data before SCL rise
250 (2)
ns
(1)
ns
T5
tr(SDA)
Rise time, SDA
1000
T6
tr(SCL)
Rise time, SCL
1000 (1)
ns
T7
tf(SDA)
Fall time, SDA
300
ns
T8
tf(SCL)
Fall time, SCL
300
ns
T9
tsu(SCL-SDA)STOP
Setup time, STOP condition, SCL rise before SDA
rise delay
T10
tw(SP)
Pulse duration of spikes that will be suppressed by
filter
T11
Cb
capacitance load on each bus line
fmod
I2C module frequency
T1
th(SDA-SCL)START
Hold time, START condition, SCL fall delay after
SDA fall
0.6
µs
T2
tsu(SCL-SDA)START
Setup time, Repeated START, SCL rise before SDA
fall delay
0.6
µs
T3
th(SCL-DAT)
Hold time, data after SCL fall
0
µs
T4
tsu(DAT-SCL)
Setup time, data before SCL rise
100
ns
T5
tr(SDA)
Rise time, SDA
20
300
ns
T6
tr(SCL)
Rise time, SCL
20
300
ns
T7
tf(SDA)
Fall time, SDA
11.4
300
ns
T8
tf(SCL)
Fall time, SCL
11.4
300
ns
T9
tsu(SCL-SDA)STOP
Setup time, STOP condition, SCL rise before SDA
rise delay
T10
tw(SP)
Pulse duration of spikes that will be suppressed by
filter
T11
Cb
capacitance load on each bus line
4.0
0
µs
50
ns
400
pF
12
MHz
Fast mode
T0
(1)
(2)
166
7
0.6
0
µs
50
ns
400
pF
In order to minimize the rise time, TI recommends using a strong pullup on both the SDA and SCL bus lines on the order of 2.2-kΩ net
pullup resistance. It is also recommended that the value of the pullup resistance used on both SCL and SDA pins be matched.
The C2000 I2C is a Fast-mode device. There is a limitation when using the I2C as a target transmitter with a standard mode host. For
more information, see the TMS320F28003x Real-Time MCUs Silicon Errata.
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.15.3.1.2 I2C Switching Characteristics
over recommended operating conditions (unless otherwise noted)
NO.
PARAMETER
TEST CONDITIONS
MIN
MAX
UNIT
0
100
kHz
Standard mode
S1
fSCL
SCL clock frequency
S2
TSCL
SCL clock period
10
µs
S3
tw(SCLL)
Pulse duration, SCL clock low
4.7
µs
S4
tw(SCLH)
Pulse duration, SCL clock high
4.0
µs
S5
tBUF
Bus free time between STOP and START
conditions
4.7
µs
S6
tv(SCL-DAT)
Valid time, data after SCL fall
3.45
µs
S7
tv(SCL-ACK)
Valid time, Acknowledge after SCL fall
3.45
µs
S8
II
Input current on pins
–10
10
µA
0
400
kHz
0.1 Vbus < Vi < 0.9 Vbus
Fast mode
S1
fSCL
SCL clock frequency
S2
TSCL
SCL clock period
2.5
µs
S3
tw(SCLL)
Pulse duration, SCL clock low
1.3
µs
S4
tw(SCLH)
Pulse duration, SCL clock high
0.6
µs
S5
tBUF
Bus free time between STOP and START
conditions
1.3
µs
S6
tv(SCL-DAT)
Valid time, data after SCL fall
0.9
µs
S7
tv(SCL-ACK)
Valid time, Acknowledge after SCL fall
0.9
µs
S8
II
Input current on pins
10
µA
0.1 Vbus < Vi < 0.9 Vbus
–10
6.15.3.1.3 I2C Timing Diagram
STOP
START
SDA
ACK
T5
S6
T7
Contd...
S7
T10
S3
SCL
Contd...
S4
T6
Repeated
START
9th
clock
T8
S2
SDA
STOP
S5
ACK
T2
T9
T1
SCL
9th
clock
Figure 6-69. I2C Timing Diagram
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
167
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.15.4 Power Management Bus (PMBus) Interface
The PMBus module has the following features:
• Compliance with the SMI Forum PMBus Specification (Part I v1.0 and Part II v1.1)
• Supports voltage thresholds compatible to:
– PMBus 1.2 and below
– SMBus 2.0 and below
• Support for master and slave modes
• Support for I2C mode
• Support for two speeds:
– Standard Mode: Up to 100 kHz
– Fast Mode: 400 kHz
• Packet error checking
• CONTROL and ALERT signals
• Clock high and low time-outs
• Four-byte transmit and receive buffers
• One maskable interrupt, which can be generated by several conditions:
– Receive data ready
– Transmit buffer empty
– Slave address received
– End of message
– ALERT input asserted
– Clock low time-out
– Clock high time-out
– Bus free
PCLKCR20
SYSCLK
Div
PMBCTRL
ALERT
DMA
Bit clock
Other registers
CTL
GPIO Mux
CPU
PMBTXBUF
SCL
Shift register
PMBRXBUF
SDA
PMBUSA_INT
PIE
PMBus Module
Figure 6-70. PMBus Block Diagram
168
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.15.4.1 PMBus Electrical Data and Timing
6.15.4.1.1 PMBus Electrical Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VIL
Valid low-level input voltage
VIH
Valid high-level input voltage
VOL
Low-level output voltage
At Ipullup = 4 mA
IOL
Low-level output current
VOL ≤ 0.4 V
tSP
Pulse width of spikes that must be
suppressed by the input filter
Ii
Input leakage current on each pin
Ci
Capacitance on each pin
MIN
TYP
2.1
0.1 Vbus < Vi < 0.9 Vbus
MAX
UNIT
0.8
V
VDDIO
V
0.4
4
V
mA
0
50
ns
–10
10
µA
10
pF
6.15.4.1.2 PMBus Fast Mode Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MAX
UNIT
SYSCL
K/32
MIN
TYP
10
MHz
400
kHz
fFSM_CLK
FSM_CLK clock frequency
fSCL
SCL clock frequency
10
tBUF
Bus free time between STOP and
START conditions
1.3
µs
tHD;STA
START condition hold time -- SDA fall
to SCL fall delay
0.6
µs
tSU;STA
Repeated START setup time -- SCL
rise to SDA fall delay
0.6
µs
tSU;STO
STOP condition setup time -- SCL rise
to SDA rise delay
0.6
µs
tHD;DAT
Data hold time after SCL fall
300
ns
tSU;DAT
Data setup time before SCL rise
100
ns
tTimeout
Clock low time-out
25
tLOW
Low period of the SCL clock
1.3
tHIGH
High period of the SCL clock
0.6
tLOW;SEXT
Cumulative clock low extend time
(slave device)
tLOW;MEXT
35
ms
µs
50
µs
From START to STOP
25
ms
Cumulative clock low extend time
(master device)
Within each byte
10
ms
tr
Rise time of SDA and SCL
5% to 95%
20
300
ns
tf
Fall time of SDA and SCL
95% to 5%
20
300
ns
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
169
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.15.4.1.3 PMBus Standard Mode Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
SYSCL
K/32
10
MHz
100
kHz
fFSM_CLK
FSM_CLK clock frequency
fSCL
SCL clock frequency
10
tBUF
Bus free time between STOP and
START conditions
4.7
µs
tHD;STA
START condition hold time -- SDA fall
to SCL fall delay
4
µs
tSU;STA
Repeated START setup time -- SCL
rise to SDA fall delay
4.7
µs
tSU;STO
STOP condition setup time -- SCL rise
to SDA rise delay
4
µs
tHD;DAT
Data hold time after SCL fall
300
ns
tSU;DAT
Data setup time before SCL rise
250
tTimeout
Clock low time-out
25
tLOW
Low period of the SCL clock
4.7
tHIGH
High period of the SCL clock
4
tLOW;SEXT
Cumulative clock low extend time
(slave device)
tLOW;MEXT
Cumulative clock low extend time
(master device)
tr
tf
170
ns
35
ms
µs
50
µs
From START to STOP
25
ms
Within each byte
10
ms
Rise time of SDA and SCL
1000
ns
Fall time of SDA and SCL
300
ns
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.15.5 Serial Communications Interface (SCI)
The SCI is a 2-wire asynchronous serial port, commonly known as a UART. The SCI module supports digital
communications between the CPU and other asynchronous peripherals that use the standard non-return-to-zero
(NRZ) format
The SCI receiver and transmitter each have a 16-level-deep FIFO for reducing servicing overhead, and each has
its own separate enable and interrupt bits. Both can be operated independently for half-duplex communication,
or simultaneously for full-duplex communication. To specify data integrity, the SCI checks received data for break
detection, parity, overrun, and framing errors. The bit rate is programmable to different speeds through a 16-bit
baud-select register.
Features of the SCI module include:
• Two external pins:
– SCITXD: SCI transmit-output pin
– SCIRXD: SCI receive-input pin
– Baud rate programmable to 64K different rates
• Data-word format
– 1 start bit
– Data-word length programmable from 1 to 8 bits
– Optional even/odd/no parity bit
– 1 or 2 stop bits
• Four error-detection flags: parity, overrun, framing, and break detection
• Two wake-up multiprocessor modes: idle-line and address bit
• Half- or full-duplex operation
• Double-buffered receive and transmit functions
• Transmitter and receiver operations can be accomplished through interrupt-driven or polled algorithms with
status flags.
– Transmitter: TXRDY flag (transmitter-buffer register is ready to receive another character) and TX EMPTY
flag (transmitter-shift register is empty)
– Receiver: RXRDY flag (receiver-buffer register is ready to receive another character), BRKDT flag (break
condition occurred), and RX ERROR flag (monitoring four interrupt conditions)
• Separate enable bits for transmitter and receiver interrupts (except BRKDT)
• NRZ format
• Auto baud-detect hardware logic
• 16-level transmit and receive FIFO
Note
All registers in this module are 8-bit registers. When a register is accessed, the register data is in the
lower byte (bits 7–0), and the upper byte (bits 15–8) is read as zeros. Writing to the upper byte has no
effect.
Figure 6-71 shows the SCI block diagram.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
171
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
TXSHF
Register
SCITXD
8
TXENA
SCICTL1.1
Frame
Format and Mode
Parity
Even/Odd
0
1
SCICCR.6
Enable
TXEMPTY
SCICTL2.6
8
TX FIFO_0
SCICCR.5
88
TX FIFO_1
TX Interrupt
Logic
TX FIFO Interrupts
TXINT
To CPU
TX FIFO_N
TXINTENA
8
0
TXWAKE
SCICTL2.0
TXRDY
1
SCICTL2.7
SCICTL1.3
SCI TX Interrupt Select Logic
8
WUT
Transmit Data
Buffer Register
SCITXBUF.7-0
LSPCLK
Baud Rate
MSB/LSB
Registers
RXSHF
Register
SCIHBAUD.15-8
SCILBAUD.7-0
Auto Baud Detect Logic
SCIRXD
RXWAKE
SCIRXST.1
SCICTL1.0
RXENA
8
0
1
8
SCIFFENA
RX FIFO_0
SCIFFTX.14
8
RX FIFO_1
RX FIFO Interrupts
RX Interrupt
Logic
RXINT
To CPU
RX FIFO_N
RXFFOVF
8
0
SCIFFRX.15
1
RXBKINTENA
SCICTL2.1
RXRDY
SCIRXST.6
RXENA
BRKDT
SCICTL1.0
RXERRINTENA
SCIRXST.5
8
SCICTL1.6
SCI RX Interrupt Select Logic
SCIRXST.5-2
Receive Data
Buffer Register
SCIRXBUF.7-0
BRKDT
FE OE PE
RXERROR
SCIRXST.7
Figure 6-71. SCI Block Diagram
172
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.15.6 Serial Peripheral Interface (SPI)
The serial peripheral interface (SPI) is a high-speed synchronous serial input and output (I/O) port that allows a
serial bit stream of programmed length (1 to 16 bits) to be shifted into and out of the device at a programmed bittransfer rate. The SPI is normally used for communications between the MCU controller and external peripherals
or another controller. Typical applications include external I/O or peripheral expansion through devices such
as shift registers, display drivers, and analog-to-digital converters (ADCs). Multidevice communications are
supported by the master or slave operation of the SPI. The port supports a 16-level, receive and transmit FIFO
for reducing CPU servicing overhead.
The SPI module features include:
• SPISOMI: SPI slave-output/master-input pin
• SPISIMO: SPI slave-input/master-output pin
• SPISTE: SPI slave transmit-enable pin
• SPICLK: SPI serial-clock pin
• Two operational modes: Master and Slave
• Baud rate: 125 different programmable rates. The maximum baud rate that can be employed is limited by the
maximum speed of the I/O buffers used on the SPI pins.
• Data word length: 1 to 16 data bits
• Four clocking schemes (controlled by clock polarity and clock phase bits) include:
– Falling edge without phase delay: SPICLK active-high. SPI transmits data on the falling edge of the
SPICLK signal and receives data on the rising edge of the SPICLK signal.
– Falling edge with phase delay: SPICLK active-high. SPI transmits data one half-cycle ahead of the falling
edge of the SPICLK signal and receives data on the falling edge of the SPICLK signal.
– Rising edge without phase delay: SPICLK inactive-low. SPI transmits data on the rising edge of the
SPICLK signal and receives data on the falling edge of the SPICLK signal.
– Rising edge with phase delay: SPICLK inactive-low. SPI transmits data one half-cycle ahead of the rising
edge of the SPICLK signal and receives data on the rising edge of the SPICLK signal.
• Simultaneous receive and transmit operation (transmit function can be disabled in software)
• Transmitter and receiver operations are accomplished through either interrupt-driven or polled algorithm
• 16-level transmit/receive FIFO
• DMA support
• High-speed mode
• Delayed transmit control
• 3-wire SPI mode
• SPISTE inversion for digital audio interface receive mode on devices with two SPI modules
Figure 6-72 shows the SPI CPU interfaces.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
173
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
PCLKCR8
LSPCLK
Low-Speed
Prescaler
SYSCLK
CPU
Bit Clock
Peripheral Bus
SYSRS
SPISIMO
SPISOMI
SPI
GPIO MUX
SPICLK
SPIINT
SPITXINT
PIE
SPISTE
SPIRXDMA
SPITXDMA
DMA
Figure 6-72. SPI CPU Interface
174
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.15.6.1 SPI Master Mode Timings
The following section contains the SPI Master Mode Timings. For more information about the SPI in High-Speed
mode, see the Serial Peripheral Interface (SPI) chapter of the TMS320F28003x Real-Time Microcontrollers
Technical Reference Manual.
Note
All timing parameters for SPI High-Speed Mode assume a load capacitance of 5 pF on SPICLK,
SPISIMO, and SPISOMI.
6.15.6.1.1 SPI Master Mode Timing Requirements
(BRR + 1) (1)
NO.
MIN
MAX
UNIT
High-Speed Mode
8
tsu(SOMI)M
Setup time, SPISOMI valid before SPICLK
Even, Odd
1
ns
9
th(SOMI)M
Hold time, SPISOMI valid after SPICLK
Even, Odd
6.5
ns
Normal Mode
8
tsu(SOMI)M
Setup time, SPISOMI valid before SPICLK
Even, Odd
15
ns
9
th(SOMI)M
Hold time, SPISOMI valid after SPICLK
Even, Odd
0
ns
(1)
The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is
greater than 3.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
175
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.15.6.1.2 SPI Master Mode Switching Characteristics - Clock Phase 0
over recommended operating conditions (unless otherwise noted)
PARAMETER(1) (2)
NO.
(BRR + 1)(3)
MIN
MAX
UNIT
Even
4tc(LSPCLK)
128tc(LSPCLK)
Odd
5tc(LSPCLK)
127tc(LSPCLK)
0.5tc(SPC)M – 1
0.5tc(SPC)M + 1
0.5tc(SPC)M + 0.5tc(LSPCLK) – 1
0.5tc(SPC)M +
0.5tc(LSPCLK) + 1
0.5tc(SPC)M – 1
0.5tc(SPC)M + 1
0.5tc(SPC)M – 0.5tc(LSPCLK) – 1
0.5tc(SPC)M –
0.5tc(LSPCLK) + 1
Even
1.5tc(SPC)M – 3tc(SYSCLK) – 3
1.5tc(SPC)M –
3tc(SYSCLK) + 3
Odd
1.5tc(SPC)M – 4tc(SYSCLK) – 3
1.5tc(SPC)M –
4tc(SYSCLK) + 3
0.5tc(SPC)M – 3
0.5tc(SPC)M + 3
0.5tc(SPC)M – 0.5tc(LSPCLK) – 3
0.5tc(SPC)M –
0.5tc(LSPCLK) + 3
ns
1
ns
General
1
tc(SPC)M
Cycle time, SPICLK
2
tw(SPC1)M
Pulse duration, SPICLK, first pulse
3
tw(SPC2)M
Pulse duration, SPICLK, second pulse
Even
Odd
Even
23
td(SPC)M
Odd
Delay time, SPISTE active to SPICLK
Even
24
tv(STE)M
Valid time, SPICLK to SPISTE inactive
Odd
ns
ns
ns
ns
High-Speed Mode
4
td(SIMO)M
Delay time, SPICLK to SPISIMO valid
Even, Odd
5
tv(SIMO)M
Valid time, SPISIMO valid after
SPICLK
Even
Odd
0.5tc(SPC)M – 3
ns
0.5tc(SPC)M – 0.5tc(LSPCLK) – 3
Normal Mode
4
td(SIMO)M
Delay time, SPICLK to SPISIMO valid
Even, Odd
5
tv(SIMO)M
Valid time, SPISIMO valid after
SPICLK
Even
(1)
(2)
(3)
176
Odd
2
0.5tc(SPC)M – 3
0.5tc(SPC)M – 0.5tc(LSPCLK) – 3
ns
ns
10-pF load on pin for High-Speed Mode.
20-pF load on pin for Normal Mode.
The (BRR + 1) condition is Even when (SPIBRR + 1) is even or SPIBRR is 0 or 2. It is Odd when (SPIBRR + 1) is odd and SPIBRR is
greater than 3.
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.15.6.1.3 SPI Master Mode Switching Characteristics - Clock Phase 1
over recommended operating conditions (unless otherwise noted)
PARAMETER(1) (2)
NO.
(BRR + 1)
MIN
MAX
Even
4tc(LSPCLK)
128tc(LSPCLK)
Odd
5tc(LSPCLK)
127tc(LSPCLK)
0.5tc(SPC)M – 1
0.5tc(SPC)M + 1
0.5tc(SPC)M – 0.5tc(LSPCLK) – 1
0.5tc(SPC)M –
0.5tc(LSPCLK) + 1
0.5tc(SPC)M – 1
0.5tc(SPC)M + 1
0.5tc(SPC)M + 0.5tc(LSPCLK) – 1
0.5tc(SPC)M +
0.5tc(LSPCLK) + 1
2tc(SPC)M – 3tc(SYSCLK) – 3
2tc(SPC)M –
3tc(SYSCLK) + 3
Even
–3
3
Odd
–3
3
UNIT
General
1
tc(SPC)M
Cycle time, SPICLK
2
tw(SPCH)M
Pulse duration, SPICLK, first pulse
3
tw(SPC2)M
Pulse duration, SPICLK, second pulse
23
td(SPC)M
Delay time, SPISTE valid to SPICLK
24
td(STE)M
Delay time, SPICLK to SPISTE invalid
Even
Odd
Even
Odd
Even, Odd
ns
ns
ns
ns
ns
High-Speed Mode
4
td(SIMO)M
Delay time, SPISIMO valid to SPICLK
5
tv(SIMO)M
Valid time, SPISIMO valid after
SPICLK
Even
Odd
Even
Odd
0.5tc(SPC)M – 2
0.5tc(SPC)M + 0.5tc(LSPCLK) – 2
0.5tc(SPC)M – 3
0.5tc(SPC)M – 0.5tc(LSPCLK) – 3
ns
ns
Normal Mode
4
td(SIMO)M
Delay time, SPISIMO valid to SPICLK
5
tv(SIMO)M
Valid time, SPISIMO valid after
SPICLK
(1)
(2)
Even
Odd
Even
Odd
0.5tc(SPC)M – 2
0.5tc(SPC)M + 0.5tc(LSPCLK) – 2
0.5tc(SPC)M – 3
0.5tc(SPC)M – 0.5tc(LSPCLK) – 3
ns
ns
10-pF load on pin for High-Speed Mode.
20-pF load on pin for Normal Mode.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
177
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.15.6.1.4 SPI Master Mode Timing Diagrams
1
SPICLK
(clock polarity = 0)
2
3
SPICLK
(clock polarity = 1)
4
5
SPISIMO
Master Out Data Is Valid
8
9
Master In Data
Must Be Valid
SPISOMI
24
23
(A)
SPISTE
A.
On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO
modes.
Figure 6-73. SPI Master Mode External Timing (Clock Phase = 0)
1
SPICLK
(clock polarity = 0)
2
3
SPICLK
(clock polarity = 1)
4
5
Master Out Data Is Valid
SPISIMO
8
9
Master In Data Must
Be Valid
SPISOMI
24
23
(A)
SPISTE
A.
On the trailing end of the word, SPISTE will go inactive except between back-to-back transmit words in both FIFO and non-FIFO
modes.
Figure 6-74. SPI Master Mode External Timing (Clock Phase = 1)
178
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.15.6.2 SPI Slave Mode Timings
The following section contains the SPI Slave Mode Timings. For more information about the SPI in High-Speed
mode, see the Serial Peripheral Interface (SPI) chapter of the TMS320F28003x Real-Time Microcontrollers
Technical Reference Manual.
6.15.6.2.1 SPI Slave Mode Timing Requirements
NO.
MIN
MAX
UNIT
12
tc(SPC)S
Cycle time, SPICLK
4tc(SYSCLK)
ns
13
tw(SPC1)S
Pulse duration, SPICLK, first pulse
2tc(SYSCLK) – 1
ns
14
tw(SPC2)S
Pulse duration, SPICLK, second pulse
2tc(SYSCLK) – 1
ns
19
tsu(SIMO)S
Setup time, SPISIMO valid before SPICLK
1.5tc(SYSCLK)
ns
20
th(SIMO)S
Hold time, SPISIMO valid after SPICLK
25
tsu(STE)S
26
th(STE)S
1.5tc(SYSCLK)
ns
Setup time, SPISTE valid before SPICLK
(Clock Phase = 0)
2tc(SYSCLK) + 15
ns
Setup time, SPISTE valid before SPICLK
(Clock Phase = 1)
2tc(SYSCLK) + 15
ns
1.5tc(SYSCLK)
ns
Hold time, SPISTE invalid after SPICLK
6.15.6.2.2 SPI Slave Mode Switching Characteristics
over recommended operating conditions (unless otherwise noted)
PARAMETER(1)
NO.
15
td(SOMI)S
Delay time, SPICLK to SPISOMI valid
16
tv(SOMI)S
Valid time, SPISOMI valid after SPICLK
(1)
MIN
MAX
UNIT
12
0
ns
ns
20-pF load on pin.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
179
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.15.6.2.3 SPI Slave Mode Timing Diagrams
12
SPICLK
(clock polarity = 0)
13
14
SPICLK
(clock polarity = 1)
15
16
SPISOMI Data Is Valid
SPISOMI
19
20
SPISIMO Data
Must Be Valid
SPISIMO
25
26
SPISTE
Figure 6-75. SPI Slave Mode External Timing (Clock Phase = 0)
12
SPICLK
(clock polarity = 0)
13
14
SPICLK
(clock polarity = 1)
15
SPISOMI
Data Valid
SPISOMI Data Is Valid
Data Valid
16
19
20
SPISIMO Data
Must Be Valid
SPISIMO
26
25
SPISTE
Figure 6-76. SPI Slave Mode External Timing (Clock Phase = 1)
180
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.15.7 Local Interconnect Network (LIN)
This device contains one Local Interconnect Network (LIN) module. The LIN module adheres to the LIN 2.1
standard as defined by the LIN Specification Package Revision 2.1. The LIN is a low-cost serial interface
designed for applications where the CAN protocol may be too expensive to implement, such as small
subnetworks for cabin comfort functions like interior lighting or window control in an automotive application.
The LIN standard is based on the SCI (UART) serial data link format. The communication concept is singlemaster and multiple-slave with a message identification for multicast transmission between any network nodes.
The LIN module can be programmed to work either as an SCI or as a LIN as the core of the module is an SCI.
The hardware features of the SCI are augmented to achieve LIN compatibility. The SCI module is a universal
asynchronous receiver-transmitter (UART) that implements the standard non-return-to-zero format.
Though the registers are common for LIN and SCI, the register descriptions have notes to identify the register/bit
usage in different modes. Because of this, code written for this module cannot be directly ported to the standalone SCI module and vice versa.
The LIN module has the following features:
• Compatibility with LIN 1.3, 2.0 and 2.1 protocols
• Configurable baud rate up to 20 kbps (as per LIN 2.1 protocol)
• Two external pins: LINRX and LINTX
• Multibuffered receive and transmit units
• Identification masks for message filtering
• Automatic master header generation
– Programmable synchronization break field
– Synchronization field
– Identifier field
• Slave automatic synchronization
– Synchronization break detection
– Optional baud rate update
– Synchronization validation
• 231 programmable transmission rates with 7 fractional bits
• Wakeup on LINRX dominant level from transceiver
• Automatic wake-up support
– Wakeup signal generation
– Expiration times on wakeup signals
• Automatic bus idle detection
• Error detection
– Bit error
– Bus error
– No-response error
– Checksum error
– Synchronization field error
– Parity error
• Capability to use direct memory access (DMA) for transmit and receive data
• Two interrupt lines with priority encoding for:
– Receive
– Transmit
– ID, error, and status
• Support for LIN 2.0 checksum
• Enhanced synchronizer finite state machine (FSM) support for frame processing
• Enhanced handling of extended frames
• Enhanced baud rate generator
• Update wakeup/go to sleep
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
181
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
READ DATA BUS
WRITE DATA BUS
ADDRESS BUS
CHECKSUM
CALCULATOR
INTERFACE
ID PARTY
CHECKER
BIT
MONITOR
TXRX ERROR
DETECTOR (TED)
TIME-OUT
CONTROL
COUNTER
LINRX/
SCIRX
COMPARE
LINTX/
SCITX
FSM
MASK
FILTER
SYNCHRONIZER
8 RECEIVE
BUFFERS
DMA
CONTROL
8 TRANSMIT
BUFFERS
Figure 6-77. LIN Block Diagram
182
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.15.8 Fast Serial Interface (FSI)
The Fast Serial Interface (FSI) module is a serial communication peripheral capable of reliable and robust
high-speed communications. The FSI is designed to ensure data robustness across many system conditions
such as chip-to-chip as well as board-to-board across an isolation barrier. Payload integrity checks such as
CRC, start- and end-of-frame patterns, and user-defined tags, are encoded before transmit and then verified
after receipt without additional CPU interaction. Line breaks can be detected using periodic transmissions, all
managed and monitored by hardware. The FSI is also tightly integrated with other control peripherals on the
device. To ensure that the latest sensor data or control parameters are available, frames can be transmitted on
every control loop period. An integrated skew-compensation block has been added on the receiver to handle
skew that may occur between the clock and data signals due to a variety of factors, including trace-length
mismatch and skews induced by an isolation chip. With embedded data robustness checks, data-link integrity
checks, skew compensation, and integration with control peripherals, the FSI can enable high-speed, robust
communication in any system. These and many other features of the FSI follow.
The FSI module includes the following features:
• Independent transmitter and receiver cores
• Source-synchronous transmission
• Dual data rate (DDR)
• One or two data lines
• Programmable data length
• Skew adjustment block to compensate for board and system delay mismatches
• Frame error detection
• Programmable frame tagging for message filtering
• Hardware ping to detect line breaks during communication (ping watchdog)
• Two interrupts per FSI core
• Externally triggered frame generation
• Hardware- or software-calculated CRC
• Embedded ECC computation module
• Register write protection
• DMA support
• SPI compatibility mode (limited features available)
Operating the FSI at maximum speed (60 MHz) at dual data rate (120Mbps) may require the integrated skew
compensation block to be configured according to the specific operating conditions on a case-by-case basis.
The Fast Serial Interface (FSI) Skew Compensation Application Report provides example software on how to
configure and set up the integrated skew compensation block on the Fast Serial Interface.
The FSI consists of independent transmitter (FSITX) and receiver (FSIRX) cores. The FSITX and FSIRX cores
are configured and operated independently. The features available on the FSITX and FSIRX are described in the
FSI Transmitter section and the FSI Receiver section, respectively.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
183
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.15.8.1 FSI Transmitter
The FSI transmitter module handles the framing of data, CRC generation, signal generation of TXCLK, TXD0,
and TXD1, as well as interrupt generation. The operation of the transmitter core is controlled and configured
through programmable control registers. The transmitter control registers let the CPU program, control, and
monitor the operation of the FSI transmitter. The transmit data buffer is accessible by the CPU and the DMA.
The transmitter has the following features:
• Automated ping frame generation
• Externally triggered ping frames
• Software-configurable frame lengths
• 16-word data buffer
• Data buffer underrun and overrun detection
• Hardware-generated CRC on data bits
• Software ECC calculation on select data
• DMA support
Figure 6-78 shows the FSITX CPU interface. Figure 6-79 shows the high-level block diagram of the FSITX. Not
all data paths and internal connections are shown. This diagram provides a high-level overview of the internal
modules present in the FSITX.
PLLRAWCLK
PCLKCR18
SYSCLK
SYSRSN
C28x
ePIE
FSITXyINT1
FSITXyINT2
FSITXyCLK
FSITX
FSITXyD1
FSITXyDMA
A.
Trigger Muxes(A)
32
FSITXyD0
GPIO MUX
DMA
Registers
Register Interface
CLA
The signals connected to the trigger muxes are described in the External Frame Trigger Mux section of the Fast Serial Interface (FSI)
chapter in the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual.
Figure 6-78. FSITX CPU Interface
184
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
PLLRAWCLK
FSITX
SYSRSN
SYSCLK
Transmit Clock
Generator
TXCLKIN
Register Interface
FSI Mode:
TXCLK = TXCLKIN/2
SPI Signaling Mode:
TXCLK = TXCLKIN
Core Reset
FSITXINT1
FSITXINT2
Control Registers,
Interrupt Management
TXCLK
Ping Time-out Counter
FSITX_DMA_EVT
Transmitter Core
External Frame Triggers
TXD0
TXD1
Transmit Data
Buffer
ECC Logic
Figure 6-79. FSITX Block Diagram
6.15.8.1.1 FSITX Electrical Data and Timing
6.15.8.1.1.1 FSITX Switching Characteristics
over operating free-air temperature range (unless otherwise noted)
PARAMETER(1)
NO.
1
tc(TXCLK)
Cycle time, TXCLK
2
tw(TXCLK)
Pulse width, TXCLK low or TXCLK high
3
td(TXCLK–TXD)
Delay time, TXCLK rising or falling toTXD
valid
4
td(TXCLK)
5
MIN
MAX
16.67
UNIT
ns
(0.5tc(TXCLK)) – 1
(0.5tc(TXCLK)) + 1
ns
(0.25tc(TXCLK)) – 2
(0.25tc(TXCLK)) + 2
ns
TXCLK delay compensation at
TX_DLYLINE_CTRL[TXCLK_DLY]=31
9.95
30
ns
td(TXD0)
TXD0 delay compensation at
TX_DLYLINE_CTRL[TXD0_DLY]=31
9.95
30
ns
6
td(TXD1)
TXD1 delay compensation at
TX_DLYLINE_CTRL[TXD1_DLY]=31
9.95
30
ns
7
td(DELAY_ELEMENT)
Incremental delay of each delay line element
for TXCLK, TXD0, and TXD1
0.3
1
ns
TDM1
tskew(TDM_CLK-TDM_Dx )
Delay skew introduced between TXCLKTDM_CLK delay and TXDx-TDM_Dx delays
-2.5
2.5
ns
(1)
10-pF load on pin.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
185
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
6.15.8.1.1.2 FSITX Timings
1
2
FSITXCLK
FSITXD0
FSITXD1
3
Figure 6-80. FSITX Timings
186
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.15.8.2 FSI Receiver
The receiver module interfaces to the FSI clock (RXCLK), and data lines (RXD0 and RXD1) after they pass
through an optional programmable delay line. The receiver core handles the data framing, CRC computation,
and frame-related error checking. The receiver bit clock and state machine are run by the RXCLK input, which is
asynchronous to the device system clock.
The receiver control registers let the CPU program, control, and monitor the operation of the FSIRX. The receive
data buffer is accessible by the CPU, HIC, and the DMA.
The receiver core has the following features:
• 16-word data buffer
• Multiple supported frame types
• Ping frame watchdog
• Frame watchdog
• CRC calculation and comparison in hardware
• ECC detection
• Programmable delay line control on incoming signals
• DMA support
• SPI compatibility mode
Figure 6-81 shows the FSIRX CPU interface. Figure 6-82 provides a high-level overview of the internal modules
present in the FSIRX. Not all data paths and internal connections are shown.
PCLKCR18
SYSCLK
SYSRSN
C28x
ePIE
FSIRXyINT1
FSIRXyINT2
FSIRXyCLK
FSIRX
FSIRXyD0
FSIRXyD1
GPIO MUX
Registers
DMA
Register Interface
CLA
FSIRXyDMA
Figure 6-81. FSIRX CPU Interface
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
187
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
FSIRX
SYSRSn
SYSCLK
Frame Watchdog
Register Interface
Core Reset
FSIRXINT1
FSIRXINT2
Control Registers,
Interrupt Management
RXCLK
Ping Watchdog
FSIRX_DMA_EVT
Receiver Core
Skew
Control
RXD0
RXD1
Receive Data
Buffer
ECC Check
Logic
Figure 6-82. FSIRX Block Diagram
6.15.8.2.1 FSIRX Electrical Data and Timing
6.15.8.2.1.1 FSIRX Timing Requirements
NO.
MIN
1
tc(RXCLK)
Cycle time, RXCLK
2
tw(RXCLK)
Pulse width, RXCLK low or RXCLK high.
3
tsu(RXCLK–RXD)
Setup time with respect to RXCLK, applies to
both edges of the clock
4
th(RXCLK–RXD)
Hold time with respect to RXCLK, applies to
both edges of the clock
MAX
16.67
0.35tc(RXCLK)
UNIT
ns
0.65tc(RXCLK)
ns
1.7
ns
2
ns
6.15.8.2.1.2 FSIRX Switching Characteristics
PARAMETER(1)
NO.
MIN
MAX
UNIT
10
30
ns
1
td(RXCLK)
RXCLK delay compensation at
RX_DLYLINE_CTRL[RXCLK_DLY]=31
2
td(RXD0)
RXD0 delay compensation at
RX_DLYLINE_CTRL[RXD0_DLY]=31
10
30
ns
3
td(RXD1)
RXD1 delay compensation
at RX_DLYLINE_CTRL[RXD1_DLY]=31
10
30
ns
4
td(DELAY_ELEMENT)
Incremental delay of each delay line element
for RXCLK, RXD0, and RXD1
0.3
1
ns
TDM1
tskew(TDM_CLK-TDM_Dx )
Delay skew introduced between RXCLKTDM_CLK delay and RXDx-TDM_Dx delays
-3
3
ns
(1)
188
10-pF load on pin.
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.15.8.2.1.3 FSIRX Timings
1
FSIRXCLK
2
FSIRXD0
FSIRXD1
3
4
Figure 6-83. FSIRX Timings
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
189
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.15.8.3 FSI SPI Compatibility Mode
The FSI supports a SPI compatibility mode to enable communication with programmable SPI devices. In this
mode, the FSI transmits its data in the same manner as a SPI in a single clock configuration mode. While the
FSI is able to physically interface with a SPI in this mode, the external device must be able to encode and
decode an FSI frame to communicate successfully. This is because the FSI transmits all SPI frame phases with
the exception of the preamble and postamble. The FSI provides the same data validation and frame checking
as if it was in standard FSI mode, allowing for more robust communication without consuming CPU cycles. The
external SPI is required to send all relevant information and can access standard FSI features such as the ping
frame watchdog on the FSIRX, frame tagging, or custom CRC values. The list of features of SPI compatibility
mode follows:
• Data will transmit on rising edge and receive on falling edge of the clock.
• Only 16-bit word size is supported.
• TXD1 will be driven like an active-low chip-select signal. The signal will be low for the duration of the full
frame transmission.
• No receiver chip-select input is required. RXD1 is not used. Data is shifted into the receiver on every active
clock edge.
• No preamble or postamble clocks will be transmitted. All signals return to the idle state after the frame phase
is finished.
• It is not possible to transmit in the SPI slave configuration because the FSI TXCLK cannot take an external
clock source.
6.15.8.3.1 FSITX SPI Signaling Mode Electrical Data and Timing
Special timings are not required for the FSIRX in SPI signaling mode. FSIRX timings listed in the FSIRX Timing
Requirements table are applicable in SPI compatibility mode. Setup and Hold times are only valid on the falling
edge of FSIRXCLK because this is the active edge in SPI signaling mode.
6.15.8.3.1.1 FSITX SPI Signaling Mode Switching Characteristics
over operating free-air temperature range (unless otherwise noted)
PARAMETER(1)
NO.
MIN
MAX
1
tc(TXCLK)
Cycle time, TXCLK
2
tw(TXCLK)
Pulse width, TXCLK low or TXCLK high
3
td(TXCLKH–TXD0)
Delay time, TXD0 valid after TXCLK high
4
td(TXD1-TXCLK)
Delay time, TXCLK high after TXD1 low
tw(TXCLK) – 3
ns
5
td(TXCLK-TXD1)
Delay time, TXD1 high after TXCLK low
tw(TXCLK)
ns
(1)
16.67
UNIT
(0.5tc(TXCLK)) – 1
ns
(0.5tc(TXCLK)) + 1
ns
3
ns
10-pF load on pin
6.15.8.3.1.2 FSITX SPI Signaling Mode Timings
1
2
FSITXCLK
3
FSITXD0
5
4
FSITXD1
Figure 6-84. FSITX SPI Signaling Mode Timings
190
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.15.9 Host Interface Controller (HIC)
The HIC module allows an external host controller (master) to directly access resources of the device (slave)
by emulating the ASRAM protocol. It has two modes of operation: direct access and mailbox access. In direct
access mode, device resources is written to and read from directly by the external host. In mailbox access mode,
external host and device write to and read from a buffer and notify each other when the buffer write/read is
complete. For security reasons, the HIC has to be enabled by the device before the external host can access it.
Features of the HIC include:
•
•
•
•
•
•
•
•
•
Configurable I/O data lines of 8 bits and 16 bits
Direct and mailbox access modes
8 address lines and 8 configurable base addresses for a total of 2048 possible addressable regions
Two 64-byte buffers for external host and device when using mailbox access mode
Interrupt generation on buffer full/empty
High throughput
Trigger HIC activity from other peripherals
Error indicators to the system or interface
Commit feature that blocks writes to configuration registers
Legend
HIC Pins
HIC Registers
HIC
I/O Interface
Bus Master Interface
A[7:0]
A[31:0]
D[15:0]
H2DINT to PIE
nBE[1:0]
nCS
D2HINT to Pin
Memory Mapped HIC
Configuration Interface
Host
To
Device
CTRL Regs
STATUS Regs
WDATA[31:0]
RDATA[31:0]
Device
To
Host
nWE
nOE
BASESEL[2:0]
Mailbox
Buffer
BASE_ADDR0
BASE_ADDR1
.
.
BASE_ADDRn
Mailbox
Buffer
nRDY
EVT_TRIGGER[15:0]
Figure 6-85. HIC Block Diagram
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
191
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.15.9.1 HIC Electrical Data and Timing
6.15.9.1.1 HIC Timing Requirements
over operating free-air temperature range (unless otherwise noted)
MIN
MAX UNIT
Read/Write Parameters with nOE and nWE pins - Dual Read/Write pins
tsu(ABBV-OEV)
Setup time, A/BASESEL/nBE before nOE active
0
ns
tsu(ABBV-WEV)
Setup time, A/BASESEL/nBE before nWE active
0
ns
tsu(CSV-OEV)
Setup time, nCS active before nOE active
0.5tc(SYSCLK)
ns
tsu(CSV-WEV)
Setup time, nCS active before nWE active
0.5tc(SYSCLK)
ns
th(ABBV-OEIV)
Hold time, A/BASESEL/nBE/nCS after nOE inactive
6
ns
th(ABBV-WEIV)
Hold time, A/BASESEL/nBE/nCS after nWE inactive
6
ns
4tc(SYSCLK)
ns
4tc(SYSCLK)
ns
(Read)(1)
tw(OEV)
Active pulse width of nOE
tw(WEV)
Active pulse width of nWE (Write)
nCS(2)
tw(CSIV)
Inactive pulse width of
3tc(SYSCLK)
ns
tw(OEIV)
Inactive Read pulse width of nOE(2)
3tc(SYSCLK)
ns
tw(WEIV)
Inactive Write pulse width of
nWE(2)
3tc(SYSCLK)
ns
tsu(DV-WEV)
Setup time, D before nWE active
0
ns
th(DV-WEIV)
Hold time, D after nWE inactive
6
ns
Read/Write Parameters with RnW pin - Single Read/Write pin
tsu(ABBV-CSV)
Setup time, A/BASESEL/nBE before nCS active
tsu(RNWV-CSV)
Setup time, RnW before nCS active
th(ABBV-CSIV)
Hold time, A/BASESEL/nBE/RnW after nCS inactive
tw(CSV_RD)
Active pulse width of nCS for read operation(1)
tw(CSV_WR)
Active pulse width of nCS for write operation
4tc(SYSCLK)
ns
tw(CSIV)
Inactive pulse width of nCS(2)
3tc(SYSCLK)
ns
tw(RNWIV)
Inactive pulse width of RnW(2)
3tc(SYSCLK)
ns
tsu(DV-CSV)
Setup time, D before nCS active
0
ns
th(DV-CSIV)
Hold time, D after nCS inactive
5
ns
(1)
(2)
0
ns
0.5tc(SYSCLK)
ns
5
ns
4tc(SYSCLK)
ns
For accesses to the device region, additional 2 SYSCLK cycles are required.
For accesses to the device region with nRDY pin, additional SYSCLK cycle is required.
6.15.9.1.2 HIC Switching Characteristics
over operating free-air temperature range (unless otherwise noted)
PARAMETER(1)
MIN
MAX UNIT
Read/Write Parameters with nOE and nWE pins
td(OEV-DV)
Output data delay time : nOE to D output valid (2)
3tc(SYSCLK)
4tc(SYSCLK) + 15
ns
td(OEIV-DIV)
Output data hold time : nOE invalid to D output invalid (tri-state)
1tc(SYSCLK)
2tc(SYSCLK) + 15
ns
td(OEV-RDYV)
Read Ready delay time : nOE to nRDY output valid
0
12
ns
td(WEV-RDYV)
Write Ready delay time : nWE to nRDY output valid
0
12
ns
td(RDYV-DV)
Ready to Data delay time : nRDY output valid to D output valid
-3
3
ns
tw(RDYACT)
Active pulse width of nRDY output
2tc(SYSCLK)
ns
Read/Write Parameters with RnW pin
td(CSV-DV)
Output delay time : nCS active to D output valid (2)
3tc(SYSCLK)
4tc(SYSCLK) + 14
ns
td(CSIV-DIV)
Output hold time : nCS inactive to D output invalid (tri-state)
1tc(SYSCLK)
2tc(SYSCLK) + 14
ns
td(CSV-RDYV)
Output delay time : nCS to nRDY output valid
0
12
ns
td(RDYV-DV)
Ready to Data delay time : nRDY output valid to D output valid
-3
3
ns
192
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
6.15.9.1.2 HIC Switching Characteristics (continued)
over operating free-air temperature range (unless otherwise noted)
PARAMETER(1)
tw(RDYACT)
(1)
(2)
MIN
Active pulse width of nRDY output
MAX UNIT
2tc(SYSCLK)
ns
10-pF load on pin.
Applicable to mailbox accesses only. Direct memory map (Device) accesses are qualified with nRDY pin.
6.15.9.1.3 HIC Timing Diagrams
SETUP SIGNALS
T9
nCS
A[7:0]
BASESEL[2:0]
nBE[3:0]
READ SIGNALS
T1
T5
T3
T10
nOE
T7
S2
S1
D[15:0]
7
WRITE SIGNALS
T6
T2
T4
T11
nWE
T8
T12
T13
D[15:0]
S3
nRDY
READY/WAIT SIGNAL
S5
S6
S4
Figure 6-86. Read/Write Operation With nOE and nWE Pins
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
193
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
SETUP SIGNALS
T19
nCS
T17 or T18
A[7:0]
BASESEL[2:0]
nBE[3:0]
T16
T14
READ SIGNALS
RnW
(Read)
T15
T20
S8
S7
D[15:0]
S10
WRITE SIGNALS
RnW
(Write)
T20
T15
T21
T22
D[15:0]
nRDY
READY/WAIT SIGNAL
S9
S11
Figure 6-87. Read/Write Operation With RnW Pin
194
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
7 Detailed Description
7.1 Overview
C2000™ 32-bit Real-Time microcontrollers are optimized for processing, sensing, and actuation to improve
closed-loop performance in real-time control applications such as industrial motor drives; solar inverters and
digital power; electrical vehicles and transportation; motor control; and sensing and signal processing.
The TMS320F28003x (F28003x) is a powerful 32-bit floating-point microcontroller unit (MCU) that lets designers
incorporate crucial control peripherals, differentiated analog, and nonvolatile memory on a single device.
The real-time control subsystem is based on TI’s 32-bit C28x CPU, which provides 120 MHz of signal processing
performance. The C28x CPU is further boosted by the FPU, new TMU extended instruction set, which enables
fast execution of algorithms with trigonometric operations commonly found in transforms and torque loop
calculations; and the VCRC extended instruction set, which reduces the latency for complex math operations
commonly found in encoded applications.
The CLA allows significant offloading of common tasks from the main C28x CPU. The CLA is an independent
32-bit floating-point math accelerator that executes in parallel with the CPU. Additionally, the CLA has its own
dedicated memory resources and it can directly access the key peripherals that are required in a typical control
system. Support of a subset of ANSI C is standard, as are key features like hardware breakpoints and hardware
task-switching.
The F28003x supports up to 384KB (192KW) of flash memory divided into three 128KB (64KW) banks, which
enable programming and execution in parallel. Up to 69KB (34.5KW) of on-chip SRAM is also available to
supplement the flash memory.
The Live Firmware Update hardware enhancements on F28003x allow fast context switching from the old
firmware to the new firmware to minimize application downtime when updating the device firmware.
High-performance analog blocks are integrated on the F28003x real-time MCU to further enable system
consolidation. Three separate 12-bit ADCs provide precise and efficient management of multiple analog signals,
which ultimately boosts system throughput. Four analog comparator modules provide continuous monitoring of
input voltage levels for trip conditions.
The TMS320C2000™ devices contain industry-leading control peripherals with frequency-independent ePWM/
HRPWM and eCAP allow for a best-in-class level of control to the system.
Connectivity is supported through various industry-standard communication ports (such as SPI, SCI, I2C,
PMBus, LIN, CAN and CAN FD) and offers multiple muxing options for optimal signal placement in a variety
of applications. New to the C2000™ platform is Host Interface Controller (HIC), a high throughput interface that
allows an external host to access resources of the TMS320F28003x. Additionally, in an industry first, the FSI
enables high-speed, robust communication to complement the rich set of peripherals that are embedded in the
device.
A specially enabled device variant, TMS320F28003xC, allows access to the Configurable Logic Block (CLB) for
additional interfacing features. See Table 4-1 for more information.
The Embedded Real-Time Analysis and Diagnostic (ERAD) module enhances the debug and system analysis
capabilities of the device by providing additional hardware breakpoints and counters for profiling.
To learn more about the C2000 real-time MCUs, visit the C2000™ real-time control MCUs page.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
195
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
7.2 Functional Block Diagram
Figure 7-1 shows the CPU system and associated peripherals.
C28x CPU
(120 MHz)
FPU32
TMU
VCRC
FINTDIV
CLA
(120 MHz)
CLA to CPU MSG RAM
SYSTEM CONTROL
CPU Timers
XTAL
INTOSC1, INTOSC2
PLL
ePIE
Windowed WD
NMI WD
Boot ROM
CPU to CLA MSG RAM
Secure ROM
Flash Bank0
16 Sectors, 64Kw(128 KB)
CLA Data ROM
CLA Program ROM
Flash Bank1
16 Sectors, 64Kw(128 KB)
SECURITY
DCSM
JTAG Lock
Secure Boot
CLA to DMA MSG RAM
Flash Bank2
16 Sectors, 64Kw(128 KB)
DMA to CLA MSG RAM
M0-M1 RAM
2Kw(4 KB)
DIAGNOSTICS
DCC
MPOST
HWBIST
ERAD
JTAG/cJTAG
BGCRC
Buses Legend
LS0-LS7 RAM
16Kw(32 KB)
CPU
HIC
DMA
GS0-GS3 RAM
16Kw(32 KB)
OTHERS
EPG
PF1
PF3
PF4
Result
16x ePWM
(8 Hi-Res Capable)
4x CMPSS
3x eCAP
(1 HRCAP Capable)
2x Buffered DAC
55x GPIO
Input XBAR
Output XBAR
HIC
DMA
6 Channels
PF2
1x PMBUS
Data
3x 12-Bit ADC
CLA
2x SPI
1x FSI RX
PF7
1x
DCAN/
CAN
PF7
PF8
PF9
2x LIN(A)
1x MCAN/
CAN FD
2x SCI
BGCRC
PF10
PF11
PF12
4x CLB
1x AES
LFU
2x I2C
1x FSI TX
ePWM XBAR
2x eQEP
(CW/CCW Support)
CLB XBAR
CLB Input XBAR
CLB Output XBAR
8x SD Filters
A.
The LIN module can also work as an SCI.
Figure 7-1. Functional Block Diagram
196
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
7.3 Memory
7.3.1 Memory Map
The Memory Map table describes the memory map. See the Memory Controller Module section of the System
Control chapter in the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual.
Table 7-1. Memory Map
SIZE
START
ADDRESS
END
ADDRESS
HIC
ACCESS
DMA
ACCESS
CLA
ACCESS
ECC/
PARITY
ACCESS
PROTECTION
SECURITY
M0 RAM
1K x 16
0x0000 0000
0x0000 03FF
-
-
-
ECC
Yes
-
M1 RAM
1K x 16
0x0000 0400
0x0000 07FF
-
-
-
ECC
Yes
-
PieVectTable
512 x 16
0x0000 0D00
0x0000 0EFF
-
-
-
-
-
-
PieVectTable Swap
512 x 16
0x0100 0900
0x0100 0AFF
-
-
-
-
-
-
LS0 RAM
2K x 16
0x0000 8000
0x0000 87FF
-
-
Yes
ECC
Yes
Yes
LS1 RAM
2K x 16
0x0000 8800
0x0000 8FFF
-
-
Yes
ECC
Yes
Yes
LS2 RAM
2K x 16
0x0000 9000
0x0000 97FF
-
-
Yes
ECC
Yes
Yes
LS3 RAM
2K x 16
0x0000 9800
0x0000 9FFF
-
-
Yes
ECC
Yes
Yes
LS4 RAM
2K x 16
0x0000 A000
0x0000 A7FF
-
-
Yes
ECC
Yes
Yes
LS5 RAM
2K x 16
0x0000 A800
0x0000 AFFF
-
-
Yes
ECC
Yes
Yes
LS6 RAM
2K x 16
0x0000 B000
0x0000 B7FF
-
-
Yes
ECC
Yes
Yes
LS7 RAM
2K x 16
0x0000 B800
0x0000 BFFF
-
-
Yes
ECC
Yes
Yes
GS0 RAM
4K x 16
0x0000 C000
0x0000 CFFF
Yes
Yes
-
ECC
Yes
-
GS1 RAM
4K x 16
0x0000 D000
0x0000 DFFF
Yes
Yes
-
ECC
Yes
-
GS2 RAM
4K x 16
0x0000 E000
0x0000 EFFF
Yes
Yes
-
ECC
Yes
-
GS3 RAM
4K x 16
0x0000 F000
0x0000 FFFF
Yes
Yes
-
ECC
Yes
-
CAN A Message RAM
2K x 16
0x0004 9000
0x0004 97FF
Yes
Yes
-
Parity
-
-
MCAN Message RAM
8K x 16
0x0005 8000
0x0005 9FFF
Yes
-
-
Parity
-
-
CLA to CPU Message RAM
128 x 16
0x0000 1480
0x0000 14FF
-
-
Yes
ECC
-
-
CPU to CLA Message RAM
128 x 16
0x0000 1500
0x0000 157F
-
-
Yes
ECC
-
-
CLA to DMA Message RAM
128 x 16
0x0000 1680
0x0000 16FF
-
Yes
Yes
ECC
-
-
DMA to CLA Message RAM
128 x 16
0x0000 1700
0x0000 177F
-
Yes
Yes
ECC
-
-
3K x 16
0x0007 0000
0x0007 0BFF
-
-
-
ECC
-
Yes
2
3K x 16
0x0007 8000
0x0007 8BFF
-
-
-
ECC
-
Yes
2
MEMORY
TI OTP
1
User OTP
Flash
192K x 16
0x0008 0000
0x000A FFFF
-
-
-
ECC
-
Yes
Secure ROM
24K x 16
0x003F 2000
0x003F 7FFF
-
-
-
Parity
-
Yes
Boot ROM
32K x 16
0x003F 8000
0x003F FFFF
-
-
-
Parity
-
-
Pie Vector Fetch Error (part
of Boot ROM)
1 x 16
0x003F FFBE
0x003F FFBF
-
-
-
Parity
-
-
Default Vectors (part of
Boot ROM)
64 x 16
0x003F FFC0
0x003F FFFF
-
-
-
Parity
-
-
(1)
(2)
TI OTP is for TI internal use only.
Only a subset is secure.
7.3.1.1 Dedicated RAM (Mx RAM)
The CPU subsystem has two dedicated ECC-capable RAM blocks: M0 and M1. These memories are small
nonsecure blocks that are tightly coupled with the CPU (that is, only the CPU has access to them).
7.3.1.2 Local Shared RAM (LSx RAM)
Local shared RAMs (LSx RAMs) are accessible to the CPU, CLA, and BGCRC. All LSx RAM blocks have ECC.
These memories are secure and have CPU access protection (CPU write/CPU fetch).
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
197
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
7.3.1.3 Global Shared RAM (GSx RAM)
Global shared RAMs (GSx RAMs) are accessible from the CPU, HIC, BGCRC and DMA. The CPU, HIC, and
DMA have full read and write access to these memories. All GSx RAM blocks have ECC. The GSx RAMs have
access protection (CPU write/CPU fetch/DMA write/HIC write).
7.3.1.4 Message RAM
There are two types of message RAMs on this device that can be used to share between CPU, CLA and DMA.
CLA-CPU message RAM shares data between the CLA and CPU while the CLA-DMA message RAM shares
data between the CLA and DMA.
7.3.2 Control Law Accelerator (CLA) Memory Map
Table 7-2 shows the CLA data ROM memory map. For information about the CLA program ROM, see the
CLA Program ROM (CLAPROMCRC) chapter in the TMS320F28003x Real-Time Microcontrollers Technical
Reference Manual.
Table 7-2. CLA Data ROM Memory Map
198
MEMORY
START ADDRESS
END ADDRESS
LENGTH
FFT Tables (Load)
0x0100 1070
0x0100 186F
0x0800
Data (Load)
0x0100 1870
0x0100 1FF9
0x078A
Version (Load)
0x0100 1FFA
0x0100 1FFF
0x0006
FFT Tables (Run)
0x0000 F070
0x0000 F86F
0x0800
Data (Run)
0x0000 F870
0x0000 FFF9
0x078A
Version (Run)
0x0000 FFFA
0x0000 FFFF
0x0006
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
7.3.3 Flash Memory Map
On the F28003x devices, three flash banks (384KB [192KW]) are available. Code to program the flash should
be executed out of RAM, there should not be any kind of access to the flash bank when an erase or program
operation is in progress. The Addresses of Flash Sectors table lists the addresses of flash sectors available for
each part number.
7.3.3.1 Addresses of Flash Sectors
Table 7-3. Addresses of Flash Sectors
PART
NUMBER
SECTOR
ADDRESS
SIZE
START
ECC ADDRESS
END
SIZE
START
END
OTP Sectors
All F28003x
F280039,
F280038
All F28003x
F280039,
F280038
TI OTP Bank 0
(Unsecure)
1008 x 16
0x0007 0000
0x0007 03EF
126 x 16
0x0107 0000
0x0107 007D
TI OTP Bank 0
(Secure)
16 x 16
0x0007 03F0
0x0007 03FF
2 x 16
0x0107 007E
0x0107 007F
TI OTP Bank 1
1K x 16
0x0007 0400
0x0007 07FF
128 x 16
0x0107 0080
0x0107 00FF
TI OTP Bank 2
1K x 16
0x0007 0800
0x0007 0BFF
128 x 16
0x0107 0100
0x0107 017F
User
configurable
DCSM OTP
Bank 0
1K x 16
0x0007 8000
0x0007 83FF
128 x 16
0x0107 1000
0x0107 107F
User
configurable
OTP Bank 1
1K x 16
0x0007 8400
0x0007 87FF
128 x 16
0x0107 1080
0x0107 10FF
User
configurable
OTP Bank 2
1K x 16
0x0007 8800
0x0007 8BFF
128 x 16
0x0107 1100
0x0107 117F
Sector 0
4K x 16
0x0008 0000
0x0008 0FFF
512 x 16
0x0108 0000
0x0108 01FF
Sector 1
4K x 16
0x0008 1000
0x0008 1FFF
512 x 16
0x0108 0200
0x0108 03FF
Sector 2
4K x 16
0x0008 2000
0x0008 2FFF
512 x 16
0x0108 0400
0x0108 05FF
Sector 3
4K x 16
0x0008 3000
0x0008 3FFF
512 x 16
0x0108 0600
0x0108 07FF
Sector 4
4K x 16
0x0008 4000
0x0008 4FFF
512 x 16
0x0108 0800
0x0108 09FF
Sector 5
4K x 16
0x0008 5000
0x0008 5FFF
512 x 16
0x0108 0A00
0x0108 0BFF
Sector 6
4K x 16
0x0008 6000
0x0008 6FFF
512 x 16
0x0108 0C00
0x0108 0DFF
Sector 7
4K x 16
0x0008 7000
0x0008 7FFF
512 x 16
0x0108 0E00
0x0108 0FFF
Sector 8
4K x 16
0x0008 8000
0x0008 8FFF
512 x 16
0x0108 1000
0x0108 11FF
Sector 9
4K x 16
0x0008 9000
0x0008 9FFF
512 x 16
0x0108 1200
0x0108 13FF
Sector 10
4K x 16
0x0008 A000
0x0008 AFFF
512 x 16
0x0108 1400
0x0108 15FF
Sector 11
4K x 16
0x0008 B000
0x0008 BFFF
512 x 16
0x0108 1600
0x0108 17FF
Sector 12
4K x 16
0x0008 C000
0x0008 CFFF
512 x 16
0x0108 1800
0x0108 19FF
Sector 13
4K x 16
0x0008 D000
0x0008 DFFF
512 x 16
0x0108 1A00
0x0108 1BFF
Sector 14
4K x 16
0x0008 E000
0x0008 EFFF
512 x 16
0x0108 1C00
0x0108 1DFF
Sector 15
4K x 16
0x0008 F000
0x0008 FFFF
512 x 16
0x0108 1E00
0x0108 1FFF
Bank 0 Sectors
F280039,
F280038,
F280037,
F280036
F280039,
F280038,
F280037,
F280036,
F280034,
F280033
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
199
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 7-3. Addresses of Flash Sectors (continued)
PART
NUMBER
SECTOR
ADDRESS
SIZE
START
Sector 0
4K x 16
0x0009 0000
Sector 1
4K x 16
Sector 2
4K x 16
Sector 3
Sector 4
ECC ADDRESS
END
SIZE
START
END
0x0009 0FFF
512 x 16
0x0108 2000
0x0108 21FF
0x0009 1000
0x0009 1FFF
512 x 16
0x0108 2200
0x0108 23FF
0x0009 2000
0x0009 2FFF
512 x 16
0x0108 2400
0x0108 25FF
4K x 16
0x0009 3000
0x0009 3FFF
512 x 16
0x0108 2600
0x0108 27FF
4K x 16
0x0009 4000
0x0009 4FFF
512 x 16
0x0108 2800
0x0108 29FF
Sector 5
4K x 16
0x0009 5000
0x0009 5FFF
512 x 16
0x0108 2A00
0x0108 2BFF
Sector 6
4K x 16
0x0009 6000
0x0009 6FFF
512 x 16
0x0108 2C00
0x0108 2DFF
Sector 7
4K x 16
0x0009 7000
0x0009 7FFF
512 x 16
0x0108 2E00
0x0108 2FFF
Sector 8
4K x 16
0x0009 8000
0x0009 8FFF
512 x 16
0x0108 3000
0x0108 31FF
Sector 9
4K x 16
0x0009 9000
0x0009 9FFF
512 x 16
0x0108 3200
0x0108 33FF
Sector 10
4K x 16
0x0009 A000
0x0009 AFFF
512 x 16
0x0108 3400
0x0108 35FF
Sector 11
4K x 16
0x0009 B000
0x0009 BFFF
512 x 16
0x0108 3600
0x0108 37FF
Sector 12
4K x 16
0x0009 C000
0x0009 CFFF
512 x 16
0x0108 3800
0x0108 39FF
Sector 13
4K x 16
0x0009 D000
0x0009 DFFF
512 x 16
0x0108 3A00
0x0108 3BFF
Sector 14
4K x 16
0x0009 E000
0x0009 EFFF
512 x 16
0x0108 3C00
0x0108 3DFF
Sector 15
4K x 16
0x0009 F000
0x0009 FFFF
512 x 16
0x0108 3E00
0x0108 3FFF
Bank 1 Sectors
F280039,
F280038,
F280037,
F280036,
F280034,
F280033
F280039,
F280038,
F280037,
F280036
Bank 2 Sectors
F280039,
F280038
200
Sector 0
4K x 16
0x000A 0000
0x000A 0FFF
512 x 16
0x0108 4000
0x0108 41FF
Sector 1
4K x 16
0x000A 1000
0x000A 1FFF
512 x 16
0x0108 4200
0x0108 43FF
Sector 2
4K x 16
0x000A 2000
0x000A 2FFF
512 x 16
0x0108 4400
0x0108 45FF
Sector 3
4K x 16
0x000A 3000
0x000A 3FFF
512 x 16
0x0108 4600
0x0108 47FF
Sector 4
4K x 16
0x000A 4000
0x000A 4FFF
512 x 16
0x0108 4800
0x0108 49FF
Sector 5
4K x 16
0x000A 5000
0x000A 5FFF
512 x 16
0x0108 4A00
0x0108 4BFF
Sector 6
4K x 16
0x000A 6000
0x000A 6FFF
512 x 16
0x0108 4C00
0x0108 4DFF
Sector 7
4K x 16
0x000A 7000
0x000A 7FFF
512 x 16
0x0108 4E00
0x0108 4FFF
Sector 8
4K x 16
0x000A 8000
0x000A 8FFF
512 x 16
0x0108 5000
0x0108 51FF
Sector 9
4K x 16
0x000A 9000
0x000A 9FFF
512 x 16
0x0108 5200
0x0108 53FF
Sector 10
4K x 16
0x000A A000
0x000A AFFF
512 x 16
0x0108 5400
0x0108 55FF
Sector 11
4K x 16
0x000A B000
0x000A BFFF
512 x 16
0x0108 5600
0x0108 57FF
Sector 12
4K x 16
0x000A C000
0x000A CFFF
512 x 16
0x0108 5800
0x0108 59FF
Sector 13
4K x 16
0x000A D000
0x000A DFFF
512 x 16
0x0108 5A00
0x0108 5BFF
Sector 14
4K x 16
0x000A E000
0x000A EFFF
512 x 16
0x0108 5C00
0x0108 5DFF
Sector 15
4K x 16
0x000A F000
0x000A FFFF
512 x 16
0x0108 5E00
0x0108 5FFF
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
7.3.4 Peripheral Registers Memory Map
The Peripheral Registers Memory Map (C28) table lists the peripheral registers.
Table 7-4. Peripheral Registers Memory Map
Structure
DriverLib Name
Base Address
CPU1
DMA
HIC
CLA
Pipeline Protected
Peripheral Frame 0 (PF0)
ADC_RESULT_REGS
ADCARESULT_BASE
0x0000_0B00
YES
YES
YES
YES
-
ADC_RESULT_REGS
ADCBRESULT_BASE
0x0000_0B20
YES
YES
YES
YES
-
ADC_RESULT_REGS
ADCCRESULT_BASE
0x0000_0B40
YES
YES
YES
YES
-
CPUTIMER0_BASE
0x0000_0C00
YES
-
-
-
-
CLA_ONLY_REGS
CLA1_ONLY_BASE
0x0000_0C00
-
-
-
YES
-
CPUTIMER_REGS
CPUTIMER1_BASE
0x0000_0C08
YES
-
-
-
-
CPUTIMER_REGS
CPUTIMER2_BASE
0x0000_0C10
YES
-
-
-
-
CLA1_SOFTINT_BASE
0x0000_0CE0
-
-
-
YES
-
PIE_CTRL_REGS
PIECTRL_BASE
0x0000_0CE0
YES
-
-
-
-
PIE_VECT_TABLE
PIEVECTTABLE_BASE
0x0000_0D00
YES
-
-
-
-
CPUTIMER_REGS
CLA_SOFTINT_REGS
DMA_REGS
DMA_BASE
0x0000_1000
YES
-
-
-
-
DMA_CH_REGS
DMA_CH1_BASE
0x0000_1020
YES
-
-
-
-
DMA_CH_REGS
DMA_CH2_BASE
0x0000_1040
YES
-
-
-
-
DMA_CH_REGS
DMA_CH3_BASE
0x0000_1060
YES
-
-
-
-
DMA_CH_REGS
DMA_CH4_BASE
0x0000_1080
YES
-
-
-
-
DMA_CH_REGS
DMA_CH5_BASE
0x0000_10A0
YES
-
-
-
-
DMA_CH_REGS
DMA_CH6_BASE
0x0000_10C0
YES
-
-
-
-
CLA_REGS
CLA1_BASE
0x0000_1400
YES
-
-
-
-
UID_REGS
UID_BASE
0x0007_0200
YES
-
-
-
-
DCSM_Z1_OTP
DCSM_Z1OTP_BASE
0x0007_8000
YES
-
-
-
-
DCSM_Z2_OTP
DCSM_Z2OTP_BASE
0x0007_8200
YES
-
-
-
-
Peripheral Frame 1 (PF1)
EPWM_REGS
EPWM1_BASE
0x0000_4000
YES
YES
YES
YES
YES
EPWM_REGS
EPWM2_BASE
0x0000_4100
YES
YES
YES
YES
YES
EPWM_REGS
EPWM3_BASE
0x0000_4200
YES
YES
YES
YES
YES
EPWM_REGS
EPWM4_BASE
0x0000_4300
YES
YES
YES
YES
YES
EPWM_REGS
EPWM5_BASE
0x0000_4400
YES
YES
YES
YES
YES
EPWM_REGS
EPWM6_BASE
0x0000_4500
YES
YES
YES
YES
YES
EPWM_REGS
EPWM7_BASE
0x0000_4600
YES
YES
YES
YES
YES
EPWM_REGS
EPWM8_BASE
0x0000_4700
YES
YES
YES
YES
YES
EQEP_REGS
EQEP1_BASE
0x0000_5100
YES
YES
YES
YES
YES
EQEP_REGS
EQEP2_BASE
0x0000_5140
YES
YES
YES
YES
YES
ECAP_REGS
ECAP1_BASE
0x0000_5200
YES
YES
YES
YES
YES
ECAP_REGS
ECAP2_BASE
0x0000_5240
YES
YES
YES
YES
YES
ECAP_REGS
ECAP3_BASE
0x0000_5280
YES
YES
YES
YES
YES
HRCAP3_BASE
0x0000_52A0
YES
YES
YES
YES
YES
DAC_REGS
DACA_BASE
0x0000_5C00
YES
YES
YES
YES
YES
DAC_REGS
DACB_BASE
0x0000_5C10
YES
YES
YES
YES
YES
CMPSS_REGS
CMPSS1_BASE
0x0000_5C80
YES
YES
YES
YES
YES
CMPSS_REGS
CMPSS2_BASE
0x0000_5CA0
YES
YES
YES
YES
YES
CMPSS_REGS
CMPSS3_BASE
0x0000_5CC0
YES
YES
YES
YES
YES
CMPSS_REGS
CMPSS4_BASE
0x0000_5CE0
YES
YES
YES
YES
YES
SDFM_REGS
SDFM1_BASE
0x0000_5E00
YES
YES
YES
YES
YES
SDFM_REGS
SDFM2_BASE
0x0000_5E80
YES
YES
YES
YES
YES
HRCAP_REGS
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
201
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 7-4. Peripheral Registers Memory Map (continued)
Structure
DriverLib Name
Base Address
CPU1
DMA
HIC
CLA
Pipeline Protected
Peripheral Frame 2 (PF2)
SPI_REGS
SPIA_BASE
0x0000_6100
YES
YES
YES
YES
YES
SPI_REGS
SPIB_BASE
0x0000_6110
YES
YES
YES
YES
YES
BGCRC_REGS
BGCRC_CPU_BASE
0x0000_6340
YES
-
-
-
YES
BGCRC_REGS
BGCRC_CLA1_BASE
0x0000_6380
YES
-
-
YES
YES
PMBUS_REGS
PMBUSA_BASE
0x0000_6400
YES
YES
YES
YES
YES
HIC_BASE
0x0000_6500
YES
YES
-
-
YES
FSI_TX_REGS
FSITXA_BASE
0x0000_6600
YES
YES
YES
YES
YES
FSI_RX_REGS
FSIRXA_BASE
0x0000_6680
YES
YES
YES
YES
YES
HIC_CFG_REGS
Peripheral Frame 3 (PF3)
ADC_REGS
ADCA_BASE
0x0000_7400
YES
-
-
YES
YES
ADC_REGS
ADCB_BASE
0x0000_7480
YES
-
-
YES
YES
ADC_REGS
ADCC_BASE
0x0000_7500
YES
-
-
YES
YES
Peripheral Frame 4 (PF4)
INPUT_XBAR_REGS
XBAR_REGS
INPUTXBAR_BASE
0x0000_7900
YES
-
-
-
YES
XBAR_BASE
0x0000_7920
YES
-
-
-
YES
SYNCSOC_BASE
0x0000_7940
YES
-
-
-
YES
INPUT_XBAR_REGS
CLBINPUTXBAR_BASE
0x0000_7960
YES
-
-
-
YES
DMA_CLA_SRC_SEL_
REGS
DMACLASRCSEL_BASE
0x0000_7980
YES
-
-
-
YES
EPWMXBAR_BASE
0x0000_7A00
YES
-
-
-
YES
SYNC_SOC_REGS
EPWM_XBAR_REGS
CLB_XBAR_REGS
CLBXBAR_BASE
0x0000_7A40
YES
-
-
-
YES
OUTPUT_XBAR_REG
S
OUTPUTXBAR_BASE
0x0000_7A80
YES
-
-
-
YES
OUTPUT_XBAR_REG
S
CLBOUTPUTXBAR_BASE
0x0000_7BC0
YES
-
-
-
YES
GPIO_CTRL_REGS
GPIOCTRL_BASE
0x0000_7C00
YES
-
-
-
YES
GPIO_DATA_REGS
GPIODATA_BASE
0x0000_7F00
YES
-
-
YES
YES
GPIODATAREAD_BASE
0x0000_7F80
YES
-
YES
YES
YES
CLK_CFG_REGS
CLKCFG_BASE
0x0005_D200
YES
-
-
-
YES
CPU_SYS_REGS
CPUSYS_BASE
0x0005_D300
YES
-
-
-
YES
SYS_STATUS_REGS
SYSSTAT_BASE
0x0005_D400
YES
-
-
-
YES
PERIPHAC_BASE
0x0005_D500
YES
-
-
-
YES
ANALOGSUBSYS_BASE
0x0005_D700
YES
-
-
-
YES
GPIO_DATA_READ_R
EGS
PERIPH_AC_REGS
ANALOG_SUBSYS_R
EGS
Peripheral Frame 5 (PF5)
DEV_CFG_REGS
DEVCFG_BASE
0x0005_D000
YES
-
-
-
YES
ERAD_GLOBAL_REG
S
ERAD_GLOBAL_BASE
0x0005_E800
YES
-
-
-
YES
ERAD_HWBP_REGS
ERAD_HWBP1_BASE
0x0005_E900
YES
-
-
-
YES
ERAD_HWBP_REGS
ERAD_HWBP2_BASE
0x0005_E908
YES
-
-
-
YES
ERAD_HWBP_REGS
ERAD_HWBP3_BASE
0x0005_E910
YES
-
-
-
YES
ERAD_HWBP_REGS
ERAD_HWBP4_BASE
0x0005_E918
YES
-
-
-
YES
ERAD_HWBP_REGS
ERAD_HWBP5_BASE
0x0005_E920
YES
-
-
-
YES
ERAD_HWBP_REGS
ERAD_HWBP6_BASE
0x0005_E928
YES
-
-
-
YES
ERAD_HWBP_REGS
ERAD_HWBP7_BASE
0x0005_E930
YES
-
-
-
YES
ERAD_HWBP_REGS
ERAD_HWBP8_BASE
0x0005_E938
YES
-
-
-
YES
ERAD_COUNTER_RE
GS
ERAD_COUNTER1_BASE
0x0005_E980
YES
-
-
-
YES
ERAD_COUNTER_RE
GS
ERAD_COUNTER2_BASE
0x0005_E990
YES
-
-
-
YES
202
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 7-4. Peripheral Registers Memory Map (continued)
Structure
DriverLib Name
Base Address
CPU1
DMA
HIC
CLA
Pipeline Protected
ERAD_COUNTER_RE
GS
ERAD_COUNTER3_BASE
0x0005_E9A0
YES
-
-
-
YES
ERAD_COUNTER_RE
GS
ERAD_COUNTER4_BASE
0x0005_E9B0
YES
-
-
-
YES
ERAD_CRC_GLOBAL_
REGS
ERAD_CRC_GLOBAL_BASE
0x0005_EA00
YES
-
-
-
YES
ERAD_CRC_REGS
ERAD_CRC1_BASE
0x0005_EA10
YES
-
-
-
YES
ERAD_CRC_REGS
ERAD_CRC2_BASE
0x0005_EA20
YES
-
-
-
YES
ERAD_CRC_REGS
ERAD_CRC3_BASE
0x0005_EA30
YES
-
-
-
YES
ERAD_CRC_REGS
ERAD_CRC4_BASE
0x0005_EA40
YES
-
-
-
YES
ERAD_CRC_REGS
ERAD_CRC5_BASE
0x0005_EA50
YES
-
-
-
YES
ERAD_CRC_REGS
ERAD_CRC6_BASE
0x0005_EA60
YES
-
-
-
YES
ERAD_CRC_REGS
ERAD_CRC7_BASE
0x0005_EA70
YES
-
-
-
YES
ERAD_CRC_REGS
ERAD_CRC8_BASE
0x0005_EA80
YES
-
-
-
YES
EPG1_BASE
0x0005_EC00
YES
-
-
-
YES
EPG_MUX_REGS
EPG1MUX_BASE
0x0005_ECD0
YES
-
-
-
YES
DCSM_Z1_REGS
DCSM_Z1_BASE
0x0005_F000
YES
-
-
-
YES
DCSM_Z2_REGS
DCSM_Z2_BASE
0x0005_F080
YES
-
-
-
YES
DCSMCOMMON_BASE
0x0005_F0C0
YES
-
-
-
YES
EPG_REGS
DCSM_COMMON_RE
GS
MEM_CFG_REGS
MEMCFG_BASE
0x0005_F400
YES
-
-
-
YES
ACCESS_PROTECTIO
N_REGS
ACCESSPROTECTION_BASE
0x0005_F500
YES
-
-
-
YES
MEMORY_ERROR_RE
GS
MEMORYERROR_BASE
0x0005_F540
YES
-
-
-
YES
TEST_ERROR_REGS
TESTERROR_BASE
0x0005_F590
YES
-
-
-
YES
FLASH_CTRL_REGS
FLASH0CTRL_BASE
0x0005_F800
YES
-
-
-
YES
FLASH_ECC_REGS
FLASH0ECC_BASE
0x0005_FB00
YES
-
-
-
YES
Peripheral Frame 7 (PF7)
CAN_REGS
CANA_BASE
0x0004_8000
YES
YES
YES
-
YES
MCANASS_BASE
0x0005_C400
YES
-
YES
-
YES
MCANA_BASE
0x0005_C600
YES
-
YES
-
YES
MCANA_ERROR_BASE
0x0005_C800
YES
-
YES
-
YES
HWBIST_REGS
HWBIST_BASE
0x0005_E000
YES
-
-
-
YES
PBIST_REGS
MCANSS_REGS
MCAN_REGS
MCAN_ERROR_REGS
MPOST_BASE
0x0005_E200
YES
-
-
-
YES
DCC_REGS
DCC0_BASE
0x0005_E700
YES
-
-
-
YES
DCC_REGS
DCC1_BASE
0x0005_E740
YES
-
-
-
YES
0x0000_6A00
YES
YES
YES
YES
YES
0x0000_6B00
YES
YES
YES
YES
YES
Peripheral Frame 8 (PF8)
LIN_REGS
LINA_BASE
LIN_REGS
LINB_BASE
Peripheral Frame 9 (PF9)
WD_REGS
WD_BASE
0x0000_7000
YES
-
-
-
YES
NMI_INTRUPT_REGS
NMI_BASE
0x0000_7060
YES
-
-
-
YES
XINT_REGS
XINT_BASE
0x0000_7070
YES
-
-
-
YES
SCI_REGS
SCIA_BASE
0x0000_7200
YES
-
YES
-
YES
SCI_REGS
SCIB_BASE
0x0000_7210
YES
-
YES
-
YES
I2C_REGS
I2CA_BASE
0x0000_7300
YES
-
YES
-
YES
I2C_REGS
I2CB_BASE
0x0000_7340
YES
-
YES
-
YES
YES
-
YES
YES
-
Peripheral Frame 10 (PF10)
CLB_LOGIC_CONFIG_
REGS
CLB1_LOGICCFG_BASE
Copyright © 2023 Texas Instruments Incorporated
0x0000_3000
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
203
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 7-4. Peripheral Registers Memory Map (continued)
Structure
DriverLib Name
Base Address
CPU1
DMA
HIC
CLA
Pipeline Protected
CLB_LOGIC_CONTRO
L_REGS
CLB1_LOGICCTRL_BASE
0x0000_3100
YES
-
YES
YES
-
CLB_DATA_EXCHANG
E_REGS
CLB1_DATAEXCH_BASE
0x0000_3180
YES
-
YES
YES
-
CLB_LOGIC_CONFIG_
REGS
CLB2_LOGICCFG_BASE
0x0000_3400
YES
-
YES
YES
-
CLB_LOGIC_CONTRO
L_REGS
CLB2_LOGICCTRL_BASE
0x0000_3500
YES
-
YES
YES
-
CLB_DATA_EXCHANG
E_REGS
CLB2_DATAEXCH_BASE
0x0000_3580
YES
-
YES
YES
-
CLB_LOGIC_CONFIG_
REGS
CLB3_LOGICCFG_BASE
0x0000_3800
YES
-
YES
YES
-
CLB_LOGIC_CONTRO
L_REGS
CLB3_LOGICCTRL_BASE
0x0000_3900
YES
-
YES
YES
-
CLB_DATA_EXCHANG
E_REGS
CLB3_DATAEXCH_BASE
0x0000_3980
YES
-
YES
YES
-
CLB_LOGIC_CONFIG_
REGS
CLB4_LOGICCFG_BASE
0x0000_3C00
YES
-
YES
YES
-
CLB_LOGIC_CONTRO
L_REGS
CLB4_LOGICCTRL_BASE
0x0000_3D00
YES
-
YES
YES
-
CLB_DATA_EXCHANG
E_REGS
CLB4_DATAEXCH_BASE
0x0000_3D80
YES
-
YES
YES
-
Peripheral Frame 11 (PF11)
AES_REGS
AES_SS_REGS
AESA_BASE
0x0004_2000
YES
YES
-
-
-
AESA_SS_BASE
0x0004_2C00
YES
YES
-
-
-
YES
-
-
YES
YES
Peripheral Frame 12 (PF12)
LFU_REGS
204
LFU_BASE
Submit Document Feedback
0x0000_7FE0
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
7.4 Identification
Table 7-5 lists the Device Identification Registers. Additional information on these device identification registers
can be found in the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual. See the register
descriptions of PARTIDH and PARTIDL for identification of production status (TMX or TMS) and other device
information.
Table 7-5. Device Identification Registers
NAME
ADDRESS
SIZE (x16)
DESCRIPTION
Device part identification number
PARTIDH
0x0005 D00A
2
REVID
0x0005 D00C
2
UID_UNIQUE
0x0007 020C
2
Copyright © 2023 Texas Instruments Incorporated
TMS320F280039C
0x05FF 0500
TMS320F280039
0x05FF 0500
TMS320F280038C
0x05FE 0500
TMS320F280038
0x05FE 0500
TMS320F280037C
0x05FD 0500
TMS320F280037
0x05FD 0500
TMS320F280036C
0x05FC 0500
TMS320F280036
0x05FC 0500
TMS320F280034
0x05FA 0500
TMS320F280033
0x05F9 0500
Silicon revision number
Revision 0
0x0000 0000
Unique identification number. This number is different on each
individual device with the same PARTIDH. This unique number
can be used as a serial number in the application. This number
is present only on TMS devices.
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
205
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
7.5 Bus Architecture – Peripheral Connectivity
The Peripheral Connectivity table lists a broad view of the peripheral and configuration register accessibility from
each bus master.
Table 7-6. Peripheral Connectivity
PERIPHERAL
DMA
HIC
BGCRC
CLA
C28
SYSTEM PERIPHERALS
CPU Timers
Y
ERAD
Y
GPIO Data
Y
Y
Y
GPIO Pin Mapping and Configuration
Y
XBAR Configuration
Y
System Configuration
Y
AES
Y
Y
EPG
Y
LFU
Y
DCC
Y
Y
MEMORY
M0/M1
Y
LSx
Y
GSx
Y
Y
ROM
Y
Y
Y
Y
Y
Y
Y
FLASH
Y
CONTROL PERIPHERALS
ePWM/HRPWM
Y
Y
Y
Y
eCAP/HRCAP
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
eQEP
1
CLB
SDFM
Y
ANALOG PERIPHERALS
CMPSS
DAC
1
1
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
Y
ADC Configuration
ADC Results
1
Y
Y
COMMUNICATION PERIPHERALS
DCAN
Y
MCAN
FSITX/FSIRX
Y
I2C
Y
Y
Y
Y
Y
Y
Y
Y
Y
LIN
Y
Y
Y
Y
PMBus
Y
Y
Y
Y
SCI
Y
SPI
(1)
206
Y
Y
Y
Y
Y
These modules are accessible from DMA but cannot trigger a DMA transfer.
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
7.6 C28x Processor
The CPU is a 32-bit fixed-point processor. This device draws from the best features of digital signal processing;
reduced instruction set computing (RISC); and microcontroller architectures, firmware, and tool sets.
The CPU features include a modified Harvard architecture and circular addressing. The RISC features
are single-cycle instruction execution, register-to-register operations, and modified Harvard architecture. The
microcontroller features include ease of use through an intuitive instruction set, byte packing and unpacking,
and bit manipulation. The modified Harvard architecture of the CPU enables instruction and data fetches to be
performed in parallel. The CPU can read instructions and data while it writes data simultaneously to maintain the
single-cycle instruction operation across the pipeline. The CPU does this over six separate address/data buses.
For more information on CPU architecture and instruction set, see the TMS320C28x CPU and Instruction Set
Reference Guide.
7.6.1 Floating-Point Unit (FPU)
The C28x plus floating-point (C28x+FPU) processor extends the capabilities of the C28x fixed-point CPU by
adding registers and instructions to support IEEE single-precision floating-point operations.
Devices with the C28x+FPU include the standard C28x register set plus an additional set of floating-point unit
registers. The additional floating-point unit registers are the following:
• Eight floating-point result registers, RnH (where n = 0–7)
• Floating-point Status Register (STF)
• Repeat Block Register (RB)
All of the floating-point registers, except the RB, are shadowed. This shadowing can be used in high-priority
interrupts for fast context save and restore of the floating-point registers.
For more information on the C28x Floating Point Unit (FPU), see the TMS320C28x Extended Instruction Sets
Technical Reference Manual.
7.6.2 Fast Integer Division Unit
The Fast Integer Division (FINTDIV) unit of the C28x CPU uniquely supports three types of integer division
(Truncated, Modulus, Euclidean) of varying data type sizes (16/16, 32/16, 32/32, 64/32, 64/64) in unsigned or
signed formats.
• Truncated integer division is naturally supported by C language (/, % operators).
• Modulus and Euclidean divisions are variants that are more efficient for control algorithms and are supported
by C intrinsics.
All three types of integer division produce both a quotient and remainder component, are interruptible, and
execute in a minimum number of deterministic cycles (10 cycles for a 32/32 division). In addition, the Fast
Division capabilities of the C28x CPU uniquely support fast execution of floating-point 32-bit (in 5 cycles) and
64-bit (in 20 cycles) division.
For more information about fast integer division, see the Fast Integer Division – A Differentiated Offering From
C2000™ Product Family Application Report.
7.6.3 Trigonometric Math Unit (TMU)
The trigonometric math unit (TMU) extends the capabilities of a C28x+FPU by adding instructions and
leveraging existing FPU instructions to speed up the execution of common trigonometric and arithmetic
operations listed in Table 7-7.
Table 7-7. TMU Supported Instructions
Instructions
C Equivalent Operation
MPY2PIF32 RaH,RbH
a = b * 2pi
2/3
DIV2PIF32 RaH,RbH
a = b / 2pi
2/3
Copyright © 2023 Texas Instruments Incorporated
Pipeline Cycles
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
207
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 7-7. TMU Supported Instructions (continued)
Instructions
C Equivalent Operation
DIVF32 RaH,RbH,RcH
a = b/c
Pipeline Cycles
5
SQRTF32 RaH,RbH
a = sqrt(b)
5
SINPUF32 RaH,RbH
a = sin(b*2pi)
4
COSPUF32 RaH,RbH
a = cos(b*2pi)
4
ATANPUF32 RaH,RbH
a = atan(b)/2pi
4
QUADF32 RaH,RbH,RcH,RdH
Operation to assist in calculating ATANPU2
5
Exponent instruction IEXP2F32 and logarithmic instruction LOG2F32 have been added to support computation
of floating-point power function for the nonlinear proportional integral derivative control (NLPID) component of
the C2000 Digital Control Library. These two added instructions reduce the power function calculations from a
typical of 300 cycles using library emulation to less than 10 cycles.
No changes have been made to existing instructions, pipeline or memory bus architecture. All TMU instructions
use the existing FPU register set (R0H to R7H) to carry out their operations.
For more information, see the TMS320C28x Extended Instruction Sets Technical Reference Manual.
7.6.4 VCRC Unit
Cyclic redundancy check (CRC) algorithms provide a straightforward method for verifying data integrity over
large data blocks, communication packets, or code sections. The C28x+VCRC can perform 8-bit, 16-bit, 24-bit,
and 32-bit CRCs. For example, the VCRC can compute the CRC for a block length of 10 bytes in 10 cycles. A
CRC result register contains the current CRC, which is updated whenever a CRC instruction is executed.
The following are the CRC polynomials used by the CRC calculation logic of the VCRC:
• CRC8 polynomial = 0x07
• CRC16 polynomial 1 = 0x8005
• CRC16 polynomial 2 = 0x1021
• CRC24 polynomial = 0x5d6dcb
• CRC32 polynomial 1 = 0x04c11db7
• CRC32 polynomial 2 = 0x1edc6f41
This module can calculate CRCs for a byte of data in a single cycle. The CRC calculation for CRC8, CRC16,
CRC24, and CRC32 is done byte-wise (instead of computing on a complete 16-bit or 32-bit data read by the
C28x core) to match the byte-wise computation requirement mandated by various standards.
The VCRC Unit also allows the user to provide the size (1b-32b) and value of any polynomial to fit custom CRC
requirements. The CRC execution time increases to three cycles when using a custom polynomial.
For more information on the Cyclic Redundancy Check (VCRC) instruction sets, see the TMS320C28x Extended
Instruction Sets Technical Reference Manual.
208
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
7.7 Control Law Accelerator (CLA)
The CLA Type-2 is an independent, fully programmable, 32-bit floating-point math processor that brings
concurrent control-loop execution to the C28x family. The low interrupt-latency of the CLA allows it to read
ADC samples "just-in-time." This significantly reduces the ADC sample to output delay to enable faster system
response and higher MHz control loops. By using the CLA to service time-critical control loops, the main CPU is
free to perform other system tasks such as communications and diagnostics.
The control law accelerator extends the capabilities of the C28x CPU by adding parallel processing. Time-critical
control loops serviced by the CLA can achieve low ADC sample to output delay. Thus, the CLA enables faster
system response and higher frequency control loops. Using the CLA for time-critical tasks frees up the main
CPU to perform other system and communication functions concurrently.
The following is a list of major features of the CLA:
• C compilers are available for CLA software development
• Clocked at the same rate as the main CPU (SYSCLKOUT).
• An independent architecture allowing CLA algorithm execution independent of the main C28x CPU.
– Complete bus architecture:
• Program Address Bus (PAB) and Program Data Bus (PDB)
• Data Read Address Bus (DRAB), Data Read Data Bus (DRDB), Data Write Address Bus (DWAB), and
Data Write Data Bus (DWDB)
– Independent 8-stage pipeline.
– 16-bit program counter (MPC)
– Four 32-bit result registers (MR0 to MR3)
– Two 16-bit auxiliary registers (MAR0, MAR1)
– Status register (MSTF)
• Instruction set includes:
– IEEE single-precision (32-bit) floating-point math operations
– Floating-point math with parallel load or store
– Floating-point multiply with parallel add or subtract
– 1/X and 1/sqrt(X) estimations
– Data type conversions
– Conditional branch and call
– Data load/store operations
• The CLA program code can consist of up to eight tasks or interrupt service routines, or seven tasks and a
main background task.
– The start address of each task is specified by the MVECT registers.
– No limit on task size as long as the tasks fit within the configurable CLA program memory space.
– One task is serviced at a time until its completion. There is no nesting of tasks.
– Upon task completion a task-specific interrupt is flagged within the PIE.
– When a task finishes the next highest-priority pending task is automatically started.
– The Type-2 CLA can have a main task that runs continuously in the background, while other high-priority
events trigger a foreground task.
• Task trigger mechanisms:
– C28x CPU through the IACK instruction
– Task1 to Task8: up to 256 possible trigger sources from peripherals connected to the shared bus on which
the CLA assumes secondary ownership.
– Task8 can be set to be the background task, while Tasks 1 to 7 take peripheral triggers.
• Memory and Shared Peripherals:
– Two dedicated message RAMs for communication between the CLA and the main CPU.
– The C28x CPU can map CLA program and data memory to the main CPU space or CLA space.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
209
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
CLA Control
Register Set
MIFR(16)
From Shared
Peripherals
MPERINT1
to
MPERINT8
CLA_INT1
to
CLA_INT8
MIOVF(16)
MICLR(16)
MICLROVF(16)
PIE
MIFRC(16)
MIER(16)
MIRUN(16)
MCTLBGRND(16)
MSTSBGRND(16)
CLA1SOFTINTEN(16)
CLA1INTFRC(16)
INT11
INT12
C28x
CPU
LVF
LUF
SYSCLK
CLA Clock Enable
SYSRS
MVECT1(16)
MVECT2(16)
MVECT3(16)
CPU Read/Write Data Bus
MVECT4(16)
MVECT5(16)
MVECT6(16)
MVECT7(16)
MVECT8(16)
CLA Program
Memory (LSx)
CLA Program Bus
LSxMSEL[MSEL_LSx]
LSxCLAPGM[CLAPGM_LSx]
MVECTBGRND(16)
MVECTBGRNDACTIVE(16)
MPSA1(32)
MPSA2(32)
CLA Data
Memory (LSx)
CLA Data Bus
MCTL(16)
CLA Execution
Register Set
CPU Data Bus
MPSACTL(16)
CLA Message
RAMs
MPC(16)
MSTF(32)
MR0(32)
MR1(32)
MR2(32)
MR3(32)
Shared
Peripherals
MEALLOW
MAR0(16)
MAR1(16)
CPU Read Data Bus
Figure 7-2. CLA Block Diagram
210
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
7.8 Embedded Real-Time Analysis and Diagnostic (ERAD)
The ERAD module enhances the debug and system-analysis capabilities of the device. The debug and systemanalysis enhancements provided by the ERAD module is done outside of the CPU. The ERAD module consists
of the Enhanced Bus Comparator units and the System Event Counter units. The Enhanced Bus Comparator
units are used to generate hardware breakpoints, hardware watch points, and other output events. The System
Event Counter units are used to analyze and profile the system. The ERAD module is accessible by the
debugger and by the application software, which significantly increases the debug capabilities of many real-time
systems, especially in situations where debuggers are not connected. In the TMS320F28003x devices, the
ERAD module contains eight Enhanced Bus Comparator units (which increases the number of Hardware
breakpoints from two to ten) and four Benchmark System Event Counter units.
7.9 Background CRC-32 (BGCRC)
The Background CRC (BGCRC) module computes a CRC-32 on a configurable block of memory. It
accomplishes this by fetching the specified block of memory during idle cycles (when the CPU, HIC, CLA or
DMA is not accessing the memory block). The calculated CRC-32 value is compared against a golden CRC-32
value to indicate a pass or fail. In essence, the BGCRC helps identify memory faults and corruption.
The BGCRC module has the following features:
• One cycle CRC-32 computation on 32 bits of data
• No CPU bandwidth impact for zero wait state memory
• Minimal CPU bandwidth impact for non-zero wait state memory
• Dual operation modes (CRC-32 mode and scrub mode)
• Watchdog timer to time CRC-32 completion
• Ability to pause and resume CRC-32 computation
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
211
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
7.10 Direct Memory Access (DMA)
The DMA module provides a hardware method of transferring data between peripherals and/or memory without
intervention from the CPU, thereby freeing up bandwidth for other system functions. Additionally, the DMA has
the capability to orthogonally rearrange the data as it is transferred as well as “ping-pong” data between buffers.
These features are useful for structuring data into blocks for optimal CPU processing. Figure 7-3 shows a
device-level block diagram of the DMA.
DMA features include:
• Six channels with independent PIE interrupts
• Peripheral interrupt trigger sources
– ADC interrupts and EVT signals
– External Interrupts
– ePWM SOC signals
– CPU timers
– eCAP
– SPI transmit and receive
– CAN transmit and receive
– LIN transmit and receive
• Data sources and destinations:
– GSx RAM
– ADC result registers
– Control peripheral registers (ePWM, eQEP, eCAP)
– SPI, LIN, CAN, and PMBus registers
• Word Size: 16-bit or 32-bit (SPI limited to 16-bit)
• Throughput: Four cycles per word without arbitration
DCAN
LIN
AES
ADC
WRAPPER
ADC
RESULTS
XINT
TIMER
Global Shared RAM
DMA bus
C28x bus
TINT (0-2)
XINT(1-5)
ADCx.INT(1-5), ADCx.EVT
DMA_CHx(1-6)
AESA_ContextIn, AESA_ContextOut, AESA_DataIn, AESA_DataOut
LINxTXDMA, LINxRXDMA
CANxIF(1-3)
SDxDRINT1-4
ECAP(1-3)DMA
EPWM(1-8).SOCA, EPWM(1-8.SOCB
CLB1-4INT
EPG1INT
DMA Trigger
Source Selection
DMACHSRCSEL1.CHx
DMACHSRCSEL2.CHx
CHx.MODE.PERINTSEL
(x = 1 to 6)
DMA
C28x
PIE
SPITXDMA(A-B)
SPIRXDMA(A-B)
HICA_INT
FSITXADMA, FSIRXADMA
FSI_DATA_TAG_MATCH,
FSI_PING_TAG_MATCH
DAC
SDFM
CMPSS
eQEP
eCAP
EPWM
EPG
CLB
SPI
PM
Bus
HIC
FSI
Figure 7-3. DMA Block Diagram
212
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
7.11 Device Boot Modes
This section explains the default boot modes, as well as all the available boot modes supported on this device.
The boot ROM uses the boot mode select, general-purpose input/output (GPIO) pins to determine the boot
mode configuration.
Table 7-8 shows the boot mode options available for selection by the default boot mode select pins. Users have
the option to program the device to customize the boot modes selectable in the boot-up table as well as the boot
mode select pin GPIOs used.
All the peripheral boot modes that are supported use the first instance of the peripheral module (SCIA, SPIA,
I2CA, CANA, and so forth). Whenever these boot modes are referred to in this chapter, such as SCI boot, it is
actually referring to the first module instance, which means the SCI boot on the SCIA port. The same applies to
the other peripheral boots.
See Section 6.12.2.2.2 and the Power-on Reset figure for tboot-flash, the boot ROM execution time to first
instruction fetch in flash.
Table 7-8. Device Default Boot Modes
BOOT MODE
GPIO24
(DEFAULT BOOT MODE SELECT PIN 1)
GPIO32
(DEFAULT BOOT MODE SELECT PIN 0)
Parallel IO
0
0
SCI / Wait
(1)
Boot(1)
0
1
CAN
1
0
Flash
1
1
SCI boot mode can be used as a wait boot mode as long as SCI continues to wait for an 'A' or 'a' during the SCI autobaud lock
process.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
213
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
7.11.1 Device Boot Configurations
This section details what boot configurations are available and how to configure them. This device supports
from 0 boot mode select pins up to 3 boot mode select pins as well as from 1 configured boot mode up to 8
configured boot modes.
To change and configure the device from the default settings to custom settings for your application, use the
following process:
1. Determine all the various ways you want application to be able to boot. (For example: Primary boot option of
Flash boot for your main application, secondary boot option of CAN boot for firmware updates, tertiary boot
option of SCI boot for debugging, etc)
2. Based on the number of boot modes needed, determine how many boot mode select pins (BMSPs) are
required to select between your selected boot modes. (For example: 2 BMSPs are required to select
between 3 boot mode options)
3. Assign the required BMSPs to a physical GPIO pin. (For example, BMSP0 to GPIO10, BMSP1 to GPIO51,
and BMSP2 left as default which is disabled). Refer to Section 7.11.1.1 for all the details on performing these
configurations.
4. Assign the determined boot mode definitions to indexes in your custom boot table that correlate to
the decoded value of the BMSPs. For example, BOOTDEF0=Boot to Flash, BOOTDEF1=CAN Boot,
BOOTDEF2=SCI Boot; all other BOOTDEFx are left as default/nothing). Refer to Section 7.11.1.2 for all
the details on setting up and configuring the custom boot mode table.
Additionally, the Boot Mode Example Use Cases section of the TMS320F28003x Real-Time Microcontrollers
Technical Reference Manual provides some example use cases on how to configure the BMSPs and custom
boot tables.
Note
The CAN boot mode turns on the XTAL. Be sure an XTAL is installed in the application before using
CAN boot mode.
214
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
7.11.1.1 Configuring Boot Mode Pins
This section explains how the boot mode select pins can be customized by the user, by programming
the BOOTPIN-CONFIG location (refer to Table 7-9) in the user-configurable dual-zone security module
(DCSM) OTP. The location in the DCSM OTP is Z1-OTP-BOOTPIN-CONFIG or Z2-OTP-BOOTPIN-CONFIG.
When debugging, EMU-BOOTPIN-CONFIG is the emulation equivalent of Z1-OTP-BOOTPIN-CONFIG/Z2-OTPBOOTPIN-CONFIG, and can be programmed to experiment with different boot modes without writing to OTP.
The device can be programmed to use 0, 1, 2, or 3 boot mode select pins as needed.
Note
When using Z2-OTP-BOOTPIN-CONFIG, the configurations programmed in this location will take
priority over the configurations in Z1-OTP-BOOTPIN-CONFIG. It is recommended to use Z1-OTPBOOTPIN-CONFIG first and then if OTP configurations need to be altered, switch to using Z2-OTPBOOTPIN-CONFIG.
Table 7-9. BOOTPIN-CONFIG Bit Fields
BIT
NAME
31:24
Key
23:16
Boot Mode Select Pin 2 (BMSP2)
Refer to BMSP0 description except for BMSP2
15:8
Boot Mode Select Pin 1 (BMSP1)
Refer to BMSP0 description except for BMSP1
Boot Mode Select Pin 0 (BMSP0)
Set to the GPIO pin to be used during boot (up to 255):
- 0x0 = GPIO0
- 0x01 = GPIO1
- and so on
Writing 0xFF disables BMSP0 and this pin is no longer used to select
the boot mode.
7:0
DESCRIPTION
Write 0x5A to these 8-bits to indicate the bits in this register are valid
The following GPIOs cannot be used as a BMSP. If selected for a particular BMSP, the boot ROM automatically
selects the factory default GPIO (the factory default for BMSP2 is 0xFF, which disables the BMSP).
• GPIO 20 and GPIO 21
• GPIO 36 and GPIO 38
• GPIO 62 to GPIO 223
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
215
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 7-10. Standalone Boot Mode Select Pin Decoding
BOOTPIN_CONFIG
KEY
BMSP0
BMSP1
BMSP2
!= 0x5A
Don’t Care
Don’t Care
Don’t Care
0xFF
0xFF
0xFF
Boot as defined in the boot table for boot mode
0
(All BMSPs disabled)
Valid GPIO
0xFF
0xFF
Boot as defined by the value of BMSP0
(BMSP1 and BMSP2 disabled)
0xFF
Valid GPIO
0xFF
Boot as defined by the value of BMSP1
(BMSP0 and BMSP2 disabled)
0xFF
0xFF
Valid GPIO
Boot as defined by the value of BMSP2
(BMSP0 and BMSP1 disabled)
Valid GPIO
Valid GPIO
0xFF
Boot as defined by the values of BMSP0 and
BMSP1
(BMSP2 disabled)
Valid GPIO
0xFF
Valid GPIO
Boot as defined by the values of BMSP0 and
BMSP2
(BMSP1 disabled)
0xFF
Valid GPIO
Valid GPIO
Boot as defined by the values of BMSP1 and
BMSP2
(BMSP0 disabled)
Valid GPIO
Valid GPIO
Valid GPIO
Boot as defined by the values of BMSP0,
BMSP1, and BMSP2
= 0x5A
REALIZED BOOT MODE
Boot as defined by the factory default BMSPs
Invalid GPIO
Valid GPIO
Valid GPIO
BMSP0 is reset to the factory default BMSP0
GPIO
Boot as defined by the values of BMSP0,
BMSP1, and BMSP2
Valid GPIO
Invalid GPIO
Valid GPIO
BMSP1 is reset to the factory default BMSP1
GPIO
Boot as defined by the values of BMSP0,
BMSP1, and BMSP2
Invalid GPIO
BMSP2 is reset to the factory default state,
which is disabled
Boot as defined by the values of BMSP0 and
BMSP1
Valid GPIO
Valid GPIO
Note
When decoding the boot mode, BMSP0 is the least-significant-bit and BMSP2 is the most-significantbit of the boot table index value. It is recommended when disabling BMSPs to start with disabling
BMSP2. For example, in an instance when only using BMSP2 (BMSP1 and BMSP0 are disabled),
then only the boot table indexes of 0 and 4 will be selectable. In the instance when using only BMSP0,
then the selectable boot table indexes are 0 and 1.
216
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
7.11.1.2 Configuring Boot Mode Table Options
This section explains how to configure the boot definition table, BOOTDEF, for the device and the associated
boot options. The 64-bit location is located in user-configurable DCSM OTP in the Z1-OTP-BOOTDEF-LOW and
Z1-OTP-BOOTDEF-HIGH locations. When debugging, EMU-BOOTDEF-LOW and EMU-BOOTDEF-HIGH are
the emulation equivalents of Z1-OTP-BOOTDEF-LOW and Z1-OTP-BOOTDEF-HIGH, and can be programmed
to experiment with different boot mode options without writing to OTP. The range of customization to the boot
definition table depends on how many boot mode select pins (BMSP) are being used. For example, 0 BMSPs
equals to 1 table entry, 1 BMSP equals to 2 table entries, 2 BMSPs equals to 4 table entries, and 3 BMSPs
equals to 8 table entries. Refer to the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual
for examples on how to set up the BOOTPIN_CONFIG and BOOTDEF values.
Note
The locations Z2-OTP-BOOTDEF-LOW and Z2-OTP-BOOTDEF-HIGH will be used instead of Z1OTP-BOOTDEF-LOW and Z1-OTP-BOOTDEF-HIGH locations when Z2-OTP-BOOTPIN-CONFIG is
configured. Refer to Configuring Boot Mode Pins for more details on BOOTPIN_CONFIG usage.
Table 7-11. BOOTDEF Bit Fields
BOOTDEF NAME
BYTE
POSITION
NAME
DESCRIPTION
Set the boot mode for index 0 of the boot table.
BOOT_DEF0
7:0
BOOT_DEF0 Mode/Options
Different boot modes and their options can include,
for example, a boot mode that uses different GPIOs
for a specific bootloader or a different flash entry
point address. Any unsupported boot mode will
cause the device to either go to wait boot or boot to
flash.
Refer to GPIO Assignments for valid BOOTDEF
values to set in the table.
BOOT_DEF1
15:8
BOOT_DEF1 Mode/Options
BOOT_DEF2
23:16
BOOT_DEF2 Mode/Options
BOOT_DEF3
31:24
BOOT_DEF3 Mode/Options
BOOT_DEF4
39:32
BOOT_DEF4 Mode/Options
BOOT_DEF5
47:40
BOOT_DEF5 Mode/Options
BOOT_DEF6
55:48
BOOT_DEF6 Mode/Options
BOOT_DEF7
63:56
BOOT_DEF7 Mode/Options
Copyright © 2023 Texas Instruments Incorporated
Refer to BOOT_DEF0 description
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
217
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
7.11.2 GPIO Assignments
This section details the GPIOs and boot option values used for boot mode set in the BOOT_DEF memory
location located at Z1-OTP-BOOTDEF-LOW/ Z2-OTP-BOOTDEF-LOW and Z1-OTP-BOOTDEF-HIGH/ Z2-OTPBOOTDEF-HIGH. Refer to Configuring Boot Mode Table Options on how to configure BOOT_DEF. When
selecting a boot mode option, make sure to verify that the necessary pins are available in the pin mux options for
the specific device package being used.
Table 7-12. SCI Boot Options
OPTION
BOOTDEF VALUE
SCITXDA GPIO
SCIRXDA GPIO
0 (default)
0x01
GPIO29
GPIO28
1
0x21
GPIO16
GPIO17
2
0x41
GPIO8
GPIO9
3
0x61
GPIO2
GPIO3
4
0x81
GPIO16
GPIO3
OPTION
BOOTDEF VALUE
CANTXA GPIO
CANRXA GPIO
0 (default)
0x08
GPIO4
GPIO5
1
0x28
GPIO1
GPIO0
2
0x48
GPIO13
GPIO12
OPTION
BOOTDEF VALUE
0 (default)
0x02
GPIO4
GPIO5
1
0x22
GPIO32
GPIO33
2
0x42
GPIO2
GPIO3
3
0x62
GPIO13
GPIO12
OPTION
BOOTDEF VALUE
SDAA GPIO
SCLA GPIO
0
0x07
GPIO32
GPIO33
1
0x27
GPIO0
GPIO1
2
0x47
GPIO10
GPIO8
Table 7-13. MCAN Boot Options
Table 7-14. DCAN Boot Options
CANTXA GPIO
CANRXA GPIO
Table 7-15. I2C Boot Options
Table 7-16. RAM Boot Options
OPTION
BOOTDEF VALUE
RAM ENTRY POINT
(ADDRESS)
0
0x05
0x0000 0000
Table 7-17. Flash Boot Options
218
OPTION
BOOTDEF VALUE
FLASH ENTRY POINT
(ADDRESS)
0 (default)
0x03
0x0008 0000
Bank0 Sector 0
1
0x23
0x0008 8000
Bank 0 Sector 8
2
0x43
0x0008 FFF0
Bank 0 Sector 15
3
0x63
0x0009 0000
Bank 1, Sector 0
FLASH SECTOR
4
0x83
0x0009 7FF0
Bank 1, Sector 7
5
0xA3
0x0009 FFF0
Bank 1, Sector 15
6
0xC3
0x000A 0000
Bank 2, Sector 0
7
0xE3
0x000A FFF0
Bank 2, Sector 15
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 7-18. LFU Flash Boot Options
OPTION
BOOTDEF VALUE
FLASH ENTRY POINT
(ADDRESS)
BANK
0 (default)
0x0B
0x0008 0000
Bank0
0x0009 0000
Bank1
0x000A 0000
Bank2
0x0008 8000
Bank0
1
0x2B
2
0x4B
3
0x6B
4
0x8B
0x0009 8000
Bank1
0x000A 8000
Bank2
0x0008 FFF0
Bank0
0x0009 FFF0
Bank1
0x000A FFF0
Bank2
0x0008 8000
Bank0
0x0009 0000
Bank1
0x000A 0000
Bank2
0x0008 EFF0
Bank0
0x0009 7FF0
Bank1
0x000A 7FF0
Bank2
Table 7-19. Wait Boot Options
OPTION
BOOTDEF VALUE
0
0x04
Enabled
1
0x24
Disabled
Copyright © 2023 Texas Instruments Incorporated
WATCHDOG
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
219
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 7-20. SPI Boot Options
OPTION
BOOTDEF VALUE
SPISIMOA
SPISOMIA
SPICLKA
SPISTEA
0
0x06
GPIO2
GPIO1
GPIO3
GPIO5
1
0x26
GPIO16
GPIO1
GPIO3
GPIO0
2
0x46
GPIO8
GPIO10
GPIO9
GPIO11
3
0x66
GPIO8
GPIO17
GPIO9
GPIO11
Table 7-21. Parallel Boot Options
OPTION
BOOTDEF VALUE
D0-D7 GPIO
28x(DSP) CONTROL
GPIO
HOST CONTROL GPIO
0 (default)
0x00
D0 - GPIO28
GPIO16
GPIO29
GPIO16
GPIO11
D1 - GPIO1
D2 - GPIO2
D3 - GPIO3
D4 - GPIO4
D5 - GPIO5
D6 - GPIO6
D7 - GPIO7
1
0x20
D0 - GPIO0
D1 - GPIO1
D2 - GPIO2
D3 - GPIO3
D4 - GPIO4
D5 - GPIO5
D6 - GPIO6
D7 - GPIO7
220
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
7.12 Security
Security features are enforced by the Dual Code Security Module (DCSM). The primary layer of defense is
securing the boundary of the chip, which should always be enabled. Additionally, the Dual Zone Security feature
is available to support code partitioning.
7.12.1 Securing the Boundary of the Chip
The following two features, along with authentication in the firmware update code, should be used to help to
prevent unauthorized code from running on the device.
7.12.1.1 JTAGLOCK
Enabling the JTAGLOCK feature in the USER OTP disables JTAG access (for example, debug probe) to
resources on the device.
7.12.1.2 Zero-pin Boot
Enabling the Zero-pin Boot option along with Flash Boot in the USER OTP blocks all pin-based external
bootloader options (for example, SCI, CAN, Parallel).
7.12.2 Dual-Zone Security
The dual-zone security mechanism offers protection for two zones: Zone 1 (Z1) and Zone 2 (Z2). The security
implementation for both zones is identical. Each zone has its own dedicated secure resource (OTP memory and
secure ROM) and allocated secure resource (LSx RAM and flash sectors).
7.12.3 Disclaimer
Code Security Module Disclaimer
THE CODE SECURITY MODULE (CSM) INCLUDED ON THIS DEVICE WAS DESIGNED
TO PASSWORD PROTECT THE DATA STORED IN THE ASSOCIATED MEMORY AND IS
WARRANTED BY TEXAS INSTRUMENTS (TI), IN ACCORDANCE WITH ITS STANDARD TERMS
AND CONDITIONS, TO CONFORM TO TI'S PUBLISHED SPECIFICATIONS FOR THE WARRANTY
PERIOD APPLICABLE FOR THIS DEVICE.
TI DOES NOT, HOWEVER, WARRANT OR REPRESENT THAT THE CSM CANNOT BE
COMPROMISED OR BREACHED OR THAT THE DATA STORED IN THE ASSOCIATED MEMORY
CANNOT BE ACCESSED THROUGH OTHER MEANS. MOREOVER, EXCEPT AS SET FORTH
ABOVE, TI MAKES NO WARRANTIES OR REPRESENTATIONS CONCERNING THE CSM OR
OPERATION OF THIS DEVICE, INCLUDING ANY IMPLIED WARRANTIES OF MERCHANTABILITY
OR FITNESS FOR A PARTICULAR PURPOSE.
IN NO EVENT SHALL TI BE LIABLE FOR ANY CONSEQUENTIAL, SPECIAL, INDIRECT,
INCIDENTAL, OR PUNITIVE DAMAGES, HOWEVER CAUSED, ARISING IN ANY WAY OUT OF
YOUR USE OF THE CSM OR THIS DEVICE, WHETHER OR NOT TI HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED
TO LOSS OF DATA, LOSS OF GOODWILL, LOSS OF USE OR INTERRUPTION OF BUSINESS OR
OTHER ECONOMIC LOSS.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
221
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
7.13 Watchdog
The watchdog module is the same as the one on previous TMS320C2000™ microcontrollers, but with an
optional lower limit on the time between software resets of the counter. This windowed countdown is disabled by
default, so the watchdog is fully backward-compatible.
The watchdog generates either a reset or an interrupt. It is clocked from the internal oscillator with a selectable
frequency divider.
Figure 7-4 shows the various functional blocks within the watchdog module.
WDCR.WDPRECLKDIV
WDCR.WDPS
WDCR.WDDIS
WDCNTR
WDCLK
(INTOSC1)
Overflow
WDCLK
Divider
8-bit
Watchdog
Counter
Watchdog
Prescaler
1-count
delay
SYSRSn
Clear
Count
WDWCR.MIN
WDKEY (7:0)
WDCR(WDCHK(2:0))
Watchdog
Key Detector
55 + AA
Good Key
Out of Window
Watchdog
Window
Detector
Bad Key
WDRSTn
1
0
1
WDINTn
Generate
512-WDCLK
Output Pulse
Watchdog Time-out
SCSR.WDENINT
Figure 7-4. Windowed Watchdog
222
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
7.14 C28x Timers
CPU-Timers 0, 1, and 2 are identical 32-bit timers with presettable periods and with 16-bit clock prescaling. The
timers have a 32-bit count-down register that generates an interrupt when the counter reaches zero. The counter
is decremented at the CPU clock speed divided by the prescale value setting. When the counter reaches zero, it
is automatically reloaded with a 32-bit period value.
CPU-Timer 0 is for general use and is connected to the PIE block. CPU-Timer 1 is also for general use and is
connected to INT13 of the CPU. CPU-Timer 2 is reserved for TI-RTOS. It is connected to INT14 of the CPU. If
TI-RTOS is not being used, CPU-Timer 2 is available for general use.
CPU-Timer 2 can be clocked by any one of the following:
• SYSCLK (default)
• Internal zero-pin oscillator 1 (INTOSC1)
• Internal zero-pin oscillator 2 (INTOSC2)
• X1 (XTAL)
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
223
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
7.15 Dual-Clock Comparator (DCC)
The DCC module is used for evaluating and monitoring the clock input based on a second clock, which can
be a more accurate and reliable version. This instrumentation is used to detect faults in clock source or clock
structures, thereby enhancing the system's safety metrics.
7.15.1 Features
The DCC has the following features:
• Allows the application to ensure that a fixed ratio is maintained between frequencies of two clock signals.
• Supports the definition of a programmable tolerance window in terms of the number of reference clock cycles.
• Supports continuous monitoring without requiring application intervention.
• Supports a single-sequence mode for spot measurements.
• Allows the selection of a clock source for each of the counters, resulting in several specific use cases.
7.15.2 Mapping of DCCx Clock Source Inputs
Table 7-22. DCCx Clock Source0 Table
224
DCCxCLKSRC0[3:0]
CLOCK NAME
0x0
XTAL/X1
0x1
INTOSC1
0x2
INTOSC2
0x4
TCK
0x5
CPU1.SYSCLK
0x8
AUXCLKIN
0xC
INPUT XBAR (Output16 of input-xbar)
others
Reserved
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 7-23. DCCx Clock Source1 Table
DCCxCLKSRC1[4:0]
CLOCK NAME
0x0
PLLRAWCLK
0x2
INTOSC1
0x3
INTOSC2
0x6
CPU1.SYSCLK
0x9
Input XBAR (Output15 of the input-xbar)
0xA
AUXCLKIN
0xB
EPWMCLK
0xC
LSPCLK
0xD
ADCCLK
0xE
WDCLK
0xF
CAN0BITCLK
others
Reserved
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
225
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
7.16 Configurable Logic Block (CLB)
The C2000 configurable logic block (CLB) is a collection of blocks that can be interconnected using software to
implement custom digital logic functions or enhance existing on-chip peripherals. The CLB is able to enhance
existing peripherals through a set of crossbar interconnections, which provide a high level of connectivity to
existing control peripherals such as enhanced pulse width modulators (ePWM), enhanced capture modules
(eCAP), and enhanced quadrature encoder pulse modules (eQEP). The crossbars also allow the CLB to be
connected to external GPIO pins. In this way, the CLB can be configured to interact with device peripherals to
perform small logical functions such as comparators, or to implement custom serial data exchange protocols.
Through the CLB, functions that would otherwise be accomplished using external logic devices can now be
implemented inside the MCU.
The CLB peripheral is configured through the CLB tool. For more information on the CLB tool, available
examples, application reports and users guide, please refer to the following location in your C2000Ware for
C2000 MCUs package (C2000Ware_2_00_00_03 and higher):
•
•
•
•
C2000WARE_INSTALL_LOCATION\utilities\clb_tool\clb_syscfg\doc
CLB Tool User's Guide
Designing With the C2000™ Configurable Logic Block (CLB) Application Report
How to Migrate Custom Logic From an FPGA/CPLD to C2000™ Microcontrollers Application Report
The CLB module and its interconnections are shown in Figure 7-5.
GPIO0
to
GPIOx
Asynchronous
Synchronous
Sync. + Qual
Input X-BAR
IN P U T 1 – IN P U T 6
O t h er
S o u rc es
CLBx T ILE
OU T 4 /5
CLB X-BAR
CLB INPUT X-BAR
O t her
So u rc es
AU XSIG 0 – AU XSIG 7
CLB
CLB TILE1
CLB Global Signals
CELL
GPREG
IN0-7
Local
Signals
OUT 0-7
.
.
.
I N P U T 1 – IN P U T 1 6
C L B T i l e O ut p ut s
I nte rs ec t o t he r
Pe r i ph eral s
O U T P U T X-BAR
CLB TILEx
CELL
GPREG
IN0-7
Local
Signals
OUT 0-7
All C LB T i l e
Ou t p u t s
CLB OUTPUT X-BAR
GP IO M U X
Figure 7-5. GPIO to CLB Tile Connections
226
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Absolute encoder protocol interfaces are now provided as Position Manager solutions in the C2000Ware
MotorControl SDK. Configuration files, application programmer interface (API), and use examples for such
solutions are provided with C2000Ware MotorControl SDK. In some solutions, the TI-configured CLB is used
with other on-chip resources, such as the SPI port or the C28x CPU, to perform more complex functionality.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
227
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
7.17 Functional Safety
Functional Safety-Compliant products are developed using an ISO 26262/IEC 61508-compliant hardware
development process that is independently assessed and certified to meet ASIL D/SIL 3 systematic capability
(see certificate). The TMS320F28003x has been certified to meet a component-level random hardware capability
of ASIL B and SIL 2 (see certificate).
A functional safety manual that describes all of the hardware and software functional safety mechanisms is
available. See the Functional Safety Manual for TMS320F28003x Real-Time Microcontrollers.
A detailed, tunable, fault-injected, quantitative FMEDA that enables the calculation of random hardware
metrics—as outlined in the International Organization for Standardization ISO 26262 and the International
Electrotechnical Commission IEC 61508 for automotive and industrial applications, respectively—is also
available. This tunable FMEDA must be requested; see the C2000™ Safety Package for Automotive and
Industrial Real-Time Microcontrollers User's Guide.
•
•
A white paper outlining the value (or benefit) of a tunable FMEDA is available. See the Functional Safety: A
tunable FMEDA for C2000™ MCUs publication.
Part 1 and Part 2 of a five-part FMEDA tuning training are available from the TI Video Library. Part 1 is Basics
of FMEDA and how it is useful in system level safety analysis. Part 2 is Introduction to the C2000™ Tunable
FMEDA. Parts 3, 4, and 5 are packaged with the tunable FMEDA, and must be requested.
Two diagnostic libraries designed for the F28003x series of devices are available to aid in the development of
functionally safe systems—the CLA Self-Test Library (CLA_STL) and the Software Diagnostic Library (SDL). The
CLA_STL provides software tests of the CLA and has been independently assessed and certified. It is available
upon request only, see the C2000™ Safety Package for Automotive and Industrial Real-Time Microcontrollers
User's Guide. The SDL is a set of reference software providing example implementations of several safety
mechanisms described in the device safety manual, such as HWBIST, software tests of SRAMs, software tests
of Missing Clock Detect functionality, clock integrity checks using CPU Timers, and several other key features.
The SDL is provided as part of C2000Ware.
C2000 real-time MCUs are also equipped with a TI release validation-based C28x and CLA Compiler
Qualification Kit (CQKIT), which is available for free and may be requested at the Safety compiler qualification kit
web page.
Additional details about how to develop functionally safe systems with C2000 real-time MCUs can be found in
the following documents:
•
•
•
•
•
228
Automotive Functional Safety for C2000™ Real-Time Microcontrollers summarizes the available functional
safety products, documentation, software, and support available for aiding in the ISO 26262 certification
process.
Industrial Functional Safety for C2000™ Real-Time Microcontrollers summarizes the available functional
safety products, documentation, software, and support available for aiding in the IEC 61508 certification
process.
C2000™ Hardware Built-In Self-Test discusses the Hardware Built-In Self-Test (HWBIST) feature in C2000™
real-time microcontrollers. The HWBIST provides a method of reaching a high level of diagnostic coverage on
the C28x CPU, which is often needed to satisfy safety standards.
Error Detection in SRAM Application Report provides technical information about the nature of the SRAM bit
cell and bit array, as well as the sources of SRAM failures. It then presents methods for managing memory
failures in electronic systems. This discussion is intended for electronic system developers or integrators who
are interested in improving the robustness of the embedded SRAM.
C2000™ CPU Memory Built-In Self-Test describes embedded memory validation using the C28x central
processing unit (CPU) during an active control loop. It discusses system challenges to memory validation
as well as the different solutions provided by C2000 devices and software. Finally, it presents the applicable
Software Diagnostic Library features for memory testing.
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
8 Applications, Implementation, and Layout
8.1 Applications and Implementation
Note
Information in the following applications sections is not part of the TI component specification,
and TI does not warrant its accuracy or completeness. TI’s customers are responsible for
determining suitability of components for their purposes, as well as validating and testing their design
implementation to confirm system functionality.
The Hardware Design Guide for F2800x C2000™ Real-Time MCU Series Application Note is an essential guide
for hardware developers using C2000 devices, and helps to streamline the design process while mitigating the
potential for faulty designs. Key topics discussed include: power requirements; general-purpose input/output
(GPIO) connections; analog inputs and ADC; clocking generation and requirements; and JTAG debugging
among many others.
8.2 Key Device Features
Table 8-1. Key Device Features
MODULE
FEATURE
SYSTEM BENEFIT
PROCESSING
Provides 120 MHz of signal-processing performance for floating- or
fixed-point code running from either on-chip flash or SRAM.
Real-time control
CPUs
Up to 120 MIPS
C28x: 120 MIPS
CLA: 120MIPs
Flash: Up to 384KB
RAM : Up to 69KB
32-bit Floating-Point Unit (FPU32)
Trigonometric Math Unit (TMU)
CRC engine and instructions (VCRC)
CLA:32-bit floating point Control Law Accelerator, parallel execution to
C28x CPU
FPU32: Native hardware support for IEEE-754 single-precision floatingpoint operations
TMU: Accelerators used to speed up execution of trigonometric and
arithmetic operations for faster computation (such as PLL and DQ
transform) optimized for control applications. Helps in achieving faster
control loops, resulting in higher efficiency and better component sizing.
Special instructions to support nonlinear PID control algorithms
VCRC: Provides a straightforward method for verifying data integrity
over large data blocks, communication packets, or code sections.
SENSING
ADC provides precise and concurrent sampling of all three-phase
currents and DC bus with zero jitter.
Analog-to-Digital
Converter (ADC)
(12-bit)
Up to 3 ADC modules
4 MSPS
Up to 23 channels
Copyright © 2023 Texas Instruments Incorporated
ADC post-processing – On-chip hardware reduces ADC ISR complexity
and shortens current loop cycles.
More ADCs help in multiphase applications. Provide better effective
MSPS (oversampling) and typical ENOB for better control-loop
performance.
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
229
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
Table 8-1. Key Device Features (continued)
MODULE
FEATURE
SYSTEM BENEFIT
System protection without false alarms:
Comparator Subsystem (CMPSS) modules are useful for applications
Comparator
Subsystem
(CMPSS)
CMPSS
4 windowed comparator
Dual 12-bit DACs
DAC ramp generation
Digital filters
60-ns detection to trip time
Slope compensation
such as peak-current mode control, switched-mode power, power factor
correction, and voltage trip monitoring.
PWM trip-triggering and removal of unwanted noise are easy with
blanking window and filtering features provided with the analog
comparator subsystems.
Provides better control accuracy. No need for further CPU configuration
to control the PWM with the comparator and 12-bit DAC (CMPSS)
Enables protection(CMPSS) and control(ADC) using the same pin.
Enhanced
Quadrature
Encoder Pulse
(eQEP)
2 eQEP modules
3 eCAP modules
Measures elapsed time between events (up
to 4 time-stamped events).
Enhanced Capture Connects to any GPIO through the input X(eCAP)
BAR.
When not used in capture mode, the eCAP
module can be configured as a singlechannel PWM output (APWM).
230
Submit Document Feedback
Used for direct interface with a linear or rotary incremental encoder to
get position, direction, and speed information from a rotating machine
used in a high-performance motion and position-control system.
Support CW/CCW encoding. Also can be used in other applications
to count input pulses from an external device (such as a sensor).
Applications for eCAP include:
Speed measurements of rotating machinery (for example, toothed
sprockets sensed through Hall sensors)
Elapsed time measurements between position sensor pulses
Period and duty cycle measurements of pulse train signals
Decoding current or voltage amplitude derived from duty-cycle encoded
current/voltage sensors
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Table 8-1. Key Device Features (continued)
MODULE
FEATURE
SYSTEM BENEFIT
ACTUATION
Flexible PWM waveform generation with best power topology
coverage.
Ability to generate high-side/low-side PWMs Shadowed Dead band itself and shadowed action qualifier enable
adaptive PWM generation and protection for improved control accuracy
with deadband
and reduced power loss.
Supports Valley switching (ability to switch
PWM output at valley point) and features like Enables improvement in Power Factor (PF) and Total Harmonic
Distortion (THD), which is especially relevant in Power Factor
blanking window
Correction (PFC) applications. Improves light load efficiency.
Up to 16 ePWM channels
Critical for variable-frequency and multiphase DC-DC applications and
helps in attaining high-frequency control loops (>2 MHz).
One-shot and global reload feature
Enables control of interleaved LLC topologies at high frequencies
Enhanced Pulse
Width Modulation
(ePWM)
High-Resolution
Pulse Width
Modulation
(HRPWM)
Independent PWM action on a Cycle-byCycle (CBC) trip event and an One-Shot Trip
(OST) trip event
Provides cycle-by-cycle protection and complete shutoff of PWM under
fault condition. Helps implement multiphase PFC or DC-DC control.
Load on SYNC (support for shadow-to-active Enables variable-frequency applications (allows LLC control in power
load on a SYNC event)
conversion).
Ability to shut down the PWMs without
software intervention (no ISR latency)
Fast protection under fault condition
Delayed Trip Functionality
Helps implement the deadband with Peak Current Mode Control
(PCMC) Phase-Shifted Full Bride (PSFB) DC-DC easily without
occupying much CPU resources (even on trigger events based on
comparator, trip, or sync-in events).
Dead band Generator (DB) submodule
Prevents simultaneous ON conditions of High and Low side gates by
adding programmable delay to rising (RED) and falling (FED) PWM
signal edges.
Flexible PWM Phase Relationships and
Timer Synchronization
Each ePWM module can be synchronized with other ePWM modules or
other peripherals. Keeps PWM edges perfectly in synchronization with
certain events.
Supports flexible ADC scheduling with specific sampling window in
synchronization with power device switching.
8 channels with high-resolution capability
(150 ps)
Provides 150-ps steps for duty cycle, period,
Dead band, and phase offsets for 99%
greater precision
Beneficial for accurate control and enables better-performance highfrequency power conversion.
Achieves cleaner waveforms and avoids oscillations/limit cycle at
output.
CONNECTIVITY
Serial Peripheral
Interface (SPI)
2 high-speed SPI port
Supports 30 MHz
Serial
Communication
Interface (SCI)
2 SCI (UART) modules
Interfaces with controllers
Local Interconnect
2 LIN
Network (LIN)
Controller Area
Network (CAN/
DCAN)
1 DCAN module
Copyright © 2023 Texas Instruments Incorporated
Provides a low-cost solution where the bandwidth and fault tolerance of
a Controller Area Network (CAN) are not required
Can also be used as simple UART
Provides compatibility with classic CAN modules
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
231
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
Table 8-1. Key Device Features (continued)
MODULE
FEATURE
SYSTEM BENEFIT
CAN FD (flexible data-rate) is an enhancement to the classic CAN
protocol. CAN FD facilitates dynamic switching to higher bit rates
(>1 Mbps) for the data segment and allows for up to 64 bytes compared
to 8 bytes in classic CAN. This is done without having to change the
physical layer. This results in a bandwidth gain over traditional CAN.
Systems using CAN-FD benefit from faster in-the-field flash updates.
Controller Area
Network (CAN FD/ 1 CAN FD/MCAN module
MCAN)
Inter-Integrated
Circuit (I2C)
2 I2C modules
Interfaces with external EEPROMs, sensors, or controllers
1 PMBus module
PowerManagement Bus Compliance with the SMI Forum PMBus
(PMBus)
Specification (Part I v1.0 and Part II v1.1)
Seamless HW-based host communication
OTHER SYSTEM FEATURES
Dual-zone Code Security Module (DCSM)
Watchdog
Write Protection on Register
Security enhancers
Missing Clock Detection Logic (MCD)
Error Correction Code (ECC) and parity
Dual-Clock Comparator (DCC)
Crossbars
(XBARs)
DCSM: Prevents duplication and reverse-engineering of proprietary
code
Watchdog: Generates reset if CPU gets stuck in endless loops of
execution
Write Protection on Registers:
LOCK protection on system configuration registers
Protection against spurious CPU writes
MCD: Automatic clock failure detection
ECC and parity: Single-bit error correction and double-bit error
detection
DCC: Used to detect faults in clock source
Enhances hardware design versatility:
Provides flexibility to connect device inputs,
outputs, and internal resources in a variety of Input X-BAR: Routes signals from any GPIO to multiple IP blocks
configurations.
within the chip
Output XBAR: Routes internal signals onto designated GPIO pins
• Input X-BAR
ePWM X-BAR: Routes internal signals from various IP blocks to
• Output X-BAR
EPWM
• ePWM X-BAR
8.3 Application Information
8.3.1 Typical Application
The Typical Applications section details some applications of this device. For a more extensive list of
applications, see the Applications section of this data sheet.
8.3.1.1 Automotive Pump
Fluid or fuel control pumps are typically used in automotive engine management systems based on the type of
powertrain required. Depending on the type of system and load, these actuators are in open loop or closed loop,
complete with precise control.
All vehicles—internal combustion engine, electric, or hybrid (ICE/EV/HEV)—need various types of pumps (such
as fuel pumps; coolant or water pumps; and oil pumps). Although the purpose of each pump is different, the
function of the pump is the same: to move fluid, fuel, or oil from one place to another. In the example of a fuel
pump, the pump transfers fuel from the fuel tank to the engine chamber for the engine to use. Depending on the
function, pumps can be variable-speed pumps or fixed-speed pumps.
The vehicle’s battery provides the current required to run the fuel pump. An electronic control unit (ECU)
regulates the output pressure and volume of the gasoline, as well as meters the incoming fuel from the tank. The
ECU assists the car in conserving fuel, resulting in improved economy and power.
232
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
8.3.1.1.1 System Block Diagram
Vdc
LV Battery
+
–
2A
1A
3A
+
Va
–
Vb
Motor
Vc
+
–
1B
2B
3B
Ia
Ib
CPU
32 bit
C28x
DSP core
Lock-Step
120 MHz
LV
Battery
Ic
PWM1
PWM2
1B
2A
2B
3V3
PWM3
3V3
1A
PSU
3A
3B
VREG
Voltage
Supervisor
Window WDT
1V2
Comms
SPI
LIN
CAN FD
CAN FD and
LIN
Transceiver
ADC
GPIO
Vref
Ia
Ib
Ic
Va
Vb
Vc
Vdc
Figure 8-1. Automotive Pump
8.3.1.1.2 Automotive Pump Resources
Reference Designs and Associated Training Videos
C2000™ MCUs - Electric vehicle (EV) training videos (Video)
This collection of C2000™ MCU videos covers electric vehicle (EV)-specific training in both English and
Chinese.
8.3.1.2 Automotive HVAC Compressor
In a vehicle, the purpose of a conventional HVAC compressor is to cool the cabin. In hybrid and electric vehicles
(HEVs and EVs), the compressor system not only cools the cabin but also the battery which powers the vehicle.
In HEV/EVs, the sizing or the absence of a combustion engine requires the introduction of two additional
components that play a key role in the HVAC system:
• A brushless DC (BLDC) motor is a type of DC motor that rotates the AC compressor, instead of the engine.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
233
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
•
A positive temperature coefficient (PTC) heater or alternatively, a heat pump, heats the coolant, rather than
the engine.
Automotive HVAC compressor module designs require:
• Minimized number of isolated components.
• Reduced EMI to optimize system performance.
• Comprehensive diagnostics for fault identification.
• High efficiency and sensorless torque control even at low speeds.
8.3.1.2.1 System Block Diagram
Vdc
HV Battery
+
–
2A
1A
3A
+
Va
–
Vb
Motor
Vc
+
–
1B
LV
Battery
2B
3B
Ia
Ib
CPU
32 bit
C28x
DSP core
Lock-Step
120 MHz
Aux.
DC/DC
Ic
PWM1
PWM2
1B
2A
2B
3V3
PWM3
3V3
1A
LDO
3A
3B
VREG
Voltage
Supervisor
Window WDT
CAN FD and
LIN
Transceiver
1V2
Comms
SPI
LIN
CAN FD
ADC
GPIO
Vref
Ia
Ib
Ic
Va
Vb
Vc
Vdc
Figure 8-2. Automotive HVAC Compressor
234
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
8.3.1.2.2 HVAC Resources
Reference Designs and Associated Training Videos
How to optimize your automotive HVAC design in the growing HEV/EV market
In this article, we’ll overview the design challenges associated with these electronic HVAC applications, and
discuss how real-time control performance, scalability and cost can help address those challenges.
C2000™ MCUs - Electric vehicle (EV) training videos (Video)
This collection of C2000™ MCU videos covers electric vehicle (EV)-specific training in both English and
Chinese.
How to design heating and cooling systems for HEV/EVs
In this white paper, we will describe the new heating and cooling control modules in 48-V, 400-V or 800-V HEVs
and EVs. From there, you will learn about the unique subsystems in these modules with examples and system
diagrams, and we will finish by reviewing functional solutions for these subsystems to help you start planning
your implementation
Reliable real-time control in automotive HVAC compressor applications for HEVs and EVs
In this article, we focus on the design challenges of HVAC compressor subsystems within HEV and EV heating
and cooling systems and discuss how real-time control can address those challenges.
8.3.1.3 On-Board Charger (OBC)
In the OBC and High-Voltage DC-DC charger (HV DCDC) markets, the modular-based design and the
combo-box-based design are the two primary architectures adopted. The modular approach provides flexibility
in manufacturing and after-service; and the combo-box approach seeks to integrate multiple functions into
one enclosure for compactness. F28003x targets the modular-based control architecture and cost-sensitive
solutions, which require limited controller performance (≤120 MIPS) with the element functional safety of ASIL B
(D) for the controller.
An on-board charger consists of two power stages: PFC (AC-DC) power converter and a subsequent DC-DC
power converter. Each power stage is controlled with a single MCU.
OBC-charging design requirements are as follows:
• High-performance and fast digital control loops enabling highly efficient power conversion and increased
power density.
• Enabling precise control and fast shutdown in an overcurrent scenario by high bandwidth and fast response
current sensing.
• Safely and efficiently controlling and protecting the power switch [insulated-gate bipolar transistor/silicon
carbide (IGBT/SiC)].
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
235
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
8.3.1.3.1 System Block Diagram
VOUT
VBUS
1A
2A
3A
4A
+
+
1B
2B
3B
4B
IRES
IOUT
1A
PWM1
1B
2A
PWM2
2B
3A
3B
4A
4B
CPU
32 bit
C28x
DSP core
Lock-Step
120 MHz
3V3
PWM3
3V3
PWM4
VREG
1V2
VOUT
IRES
LDO
ADC
IOUT
Comms
GPIO
Vref
SPI
UART
CAN FD
Voltage
Supervisor
Window WDT
Host
Figure 8-3. OBC - DC - DC
8.3.1.3.2 OBC Resources
Reference Designs and Associated Training Videos
C2000 Digital Power Training videos
This training series covers the basics of digital power control and how to implement it on C2000™
microcontrollers.
C2000™ MCUs - Electric vehicle (EV) training videos (Video)
This collection of C2000™ MCU videos covers electric vehicle (EV)-specific training in both English and
Chinese.
TIDUEG2C TIDM-02002 Bidirectional CLLLC resonant dual active bridge (DAB) reference design for HEV/EV
onboard charger
The CLLLC resonant DAB with bidirectional power flow capability and soft switching characteristics is an
ideal candidate for Hybrid Electric Vehicle/Electric Vehicle (HEV/EV) on-board chargers and energy storage
applications. This design illustrates control of this power topology using a C2000™ MCU in closed voltage and
236
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
closed current-loop mode. The hardware and software available with this design help accelerate your time to
market.
TIDUEG3A TIDM-1022 Valley switching boost power factor correction (PFC) reference design
This reference design illustrates a digital control method to significantly improve Boost Power Factor Correction
(PFC) converter performance such as the efficiency and Total Harmonic Distortion (THD) under light load
condition where efficiency and THD standards are difficult to meet. This is achieved using the integrated digital
control feature of the C2000™ microcontroller (MCU). The design supports phase-shedding, valley-switching,
valley-skipping, and Zero Voltage Switching (ZVS) for different load and instantaneous input voltage conditions.
The software available with this reference design accelerates time to market.
8.3.1.4 Servo Drive Control Module
Servo drives require high precision current and voltage sensing for accurate torque control and often supports
interfaces for multiple encoder types along with communication interfaces. This C2000 device can be used either
as single chip solution for standalone servo drive (shown in Figure 8-4) or can be used in decentralized systems
(shown in Figure 8-5). In the later case, the F28P65x C2000 device functions as the controller which samples all
the voltage and current inputs and generates the correct PWM signals for inverter. Each C2000 device serves
as real-time controller for a target axis, running motor current control loop. Using the Fast Serial Interface (FSI)
peripheral, up to 16 axes can be managed with one C2000 device. As an outer loop controller, the C2000 device
executes main axis motor control, controls data exchange with all secondary axis over FSI and communicates
with a host or PLC through EtherCAT.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
237
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
8.3.1.4.1 System Block Diagram
DC bus
VBUS
1A
400
VAC
F
I
L
T
E
R
2A
3A
External
Brake
M
1B
2B
3B
IU
4
Iu
Iv
Iv
Iw
Iw
VU
Vv
Vw
Absolute
Encoder
Incremental
Encoder
Resolver
TMODULE
Aux.
DC/DC
DC bus
2A 2B
3A 3B
4
PWM3
PWM4
PWM1
1A 1B
PWM2
IDC
Iu
Iv
Iw
VU Vv Vw VBUS
Absolute
Encoder
IDC TMODULE Resolver
SAR ADC
SDFM
Configurable logic
block
3V3
3V3
CLA
C28x
Flash
QEP
Fast Serial
Interface
SRAM
Incremental
Encoder
Figure 8-4. Servo Drive Control Module
238
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
CPU1
FPU
TMU
FSITX1
CLK
DAT
CLK
DAT
FSIRX
FSITX2
CLK
DAT
CLK
DAT
FSITX
CPU1
FPU
TMU
PWM2
PWM3
Option
CLA1
A
B
AH
A
B
A
B
BH
AL
AH
BH
CH
Ia(option)
BL
CH
Load
Ib
CL
TZ1
DMA1
PWM1
A
B
PWM-2
A
B
PWM-3
A
B
C-M4
A
B
AH
AL
BH
BL
CH
CL
EQEP
I
Node # 1
ADCA
12-bit
ADCB
12-bit
ADCC
12-bit
Ic
A1
CMP1
Ia
A2
B1
CMP1
Ib
B2
C1
CMP1
Ic
Vdc
AL
C2
F28003x
BL
CL
M
Incremental
Encoder
Vdc
-
DMA
ECAT
PWM1
+
SCIA
BOOSTXL-3PHGANINV
TZ1
CPU2
FPU
TMU
CLA2
Master
A1
ADCB
12-bit
B1
CMP1
Ia
A2
CMP2
Ib
ADCC C1
12-bit C2
CMP3
Ic
ADCD D1
12-bit D2
CMP4
CLK
DAT
B2
CLK
DAT
Vdc
FSIRX
CPU1
FPU
TMU
FSITX
DMA
A
B
EQEP
I
CH
Ib
Ic
CL
Load
Node # 2
xxxxxx
Ia(option)
BL
AH
BH
AL
AH
BH
CH
Ia(option)
BL
CH
Load
Ib
CL
ADCA
12-bit
ADCB
12-bit
ADCC
12-bit
Ic
CMP1
Ia
B1
CMP1
Ib
B2
C1
CMP1
Ic
Vdc
A1
AL
A2
C2
F28003x
BL
CL
M
Incremental
Encoder
Vdc
-
A
B
I
AL
A
B
A
B
A
B
TZ1
EQEP1
BH
PWM2
PWM3
Option
DMA2
AH
PWM1
+
F28P65x
ADCA
12-bit
BOOSTXL-3PHGANINV
M
Incremental
Encoder
Vdc
CLK
DAT
FSIRX
CLK
DAT
FSITX
CPU1
FPU
TMU
PWM2
PWM3
Option
IDDK
PWM1
A
B
AH
A
B
A
B
BH
AL
AH
BH
CH
Ia(option)
BL
CH
Load
Ib
CL
+
-
TZ1
EQEP
I
Node # 3
CLK
DAT
CLK
DAT
ADCA
12-bit
ADCB
12-bit
ADCC
12-bit
A1
CMP1
Ia
B1
CMP1
Ib
B2
C1
CMP1
Ic
Vdc
AL
A2
C2
F28003x
FSIRX
CPU1
FPU
TMU
FSITX
PWM1
PWM2
PWM3
Option
BL
CL
AH
A
B
AL
A
B
A
B
AH
BH
CH
BH
BL
CH
Ia(option)
Ib
CL
Node # 4
ADCA
12-bit
ADCB
12-bit
ADCC
12-bit
CMP1
Ia
B1
CMP1
Ib
B2
C1
CMP1
Ic
Vdc
A1
AL
A2
C2
F28003x
-
I
Ic
+
DMA
EQEP
Incremental
Encoder
BOOSTXL-3PHGANINV
TZ1
A
B
M
Vdc
-
A
B
Ic
+
DMA
BL
CL
Load
M
Incremental
Encoder
Vdc
BOOSTXL-3PHGANINV
Figure 8-5. Distributed Multi-Axis Servo Drive
8.3.1.4.2 Servo Drive Control Module Resources
Reference Designs and Associated Training Videos
48-V Three-Phase Inverter With Shunt-Based In-Line Motor Phase Current Sensing Evaluation Module
The BOOSTXL-3PHGANINV evaluation module features a 48-V/10-A three-phase GaN inverter with precision
in-line shunt-based phase current sensing for accurate control of precision drives such as servo drives.
C2000 DesignDRIVE Development Kit for Industrial Motor Control
The DesignDRIVE Development Kit (IDDK) hardware offers an integrated servo drive design with full power
stage to drive a high voltage three-phase motor and eases the evaluation of a range of position feedback,
current sensing and control topologies.
C2000 DesignDRIVE position manager BoosterPack™ plug-in module
The PositionManager BoosterPack is a flexible low voltage platform intended for evaluating interfaces to
absolute encoders and analog sensors like resolvers and SinCos transducers. When combined with the
DesignDRIVE Position Manager software solutions this low-cost evaluation module becomes a powerful tool
for interfacing many popular position encoder types such as EnDat, BiSS and T-format with C2000 Real-Time
Control devices. C2000 Position Manager technology integrates interfaces to the most popular digital and analog
position sensors onto C2000 Real-Time Controller, thus eliminating the need for external FPGAs for these
functions.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
239
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
C2000Ware MotorControl SDK
MotorControl SDK for C2000™ microcontrollers (MCU) is a cohesive set of software infrastructure, tools, and
documentation designed to minimize C2000 real-time controller based motor control system development time
targeted for various three-phase motor control applications. The software includes firmware that runs on C2000
motor control evaluation modules (EVMs) and TI designs (TIDs) which are targeted for industrial drives, robotics,
appliances, and automotive applications. MotorControl SDK provides all the needed resources at every stage of
development and evaluation for high performance motor control applications.
TIDM-02006 Distributed multi-axis servo drive over fast serial interface (FSI) reference design
This reference design presents an example distributed or decentralized multi-axis servo drive over Fast Serial
Interface (FSI) using C2000™ real-time controllers. Multi-axis servo drives are used in many applications such
as factory automation and robots. The cost per axis, performance and ease of use are always high concerns
for such systems. FSI is a cost-optimized and reliable high speed communication interface with low jitter that
can daisy-chain multiple C2000 microcontrollers. In this design, each TMS320F280039 or TMS320F280025
real-time controller serves as a real-time controller for a distributed axis, running motor current control loop. A
single TMS320F28388D runs position and speed control loops for all axes. The same F2838x also executes a
centralized motor control axis plus EtherCAT communication, leveraging its multiple cores. The design uses our
existing EVM kits, the software is released within C2000WARE MotorControl SDK.
TIDM-02007 Dual-axis motor drive using fast current loop (FCL) and SFRA on a single MCU reference design
This reference design presents a dual-axis motor drive using fast current loop (FCL) and software frequency
response analyzer (SFRA) technologies on a single C2000 controller. The FCL utilizes dual core (CPU, CLA)
parallel processing techniques to achieve a substantial improvement in control bandwidth and phase margin,
to reduce the latency between feedback sampling and PWM update, to achieve higher control bandwidth and
maximum modulation index, to improve DC bus utilization by the drive and to increase speed range of the motor.
The integrated SFRA tool enables developers to quickly measure the frequency response of the application to
tune speed and current controllers. Given the system-level integration and performance of C2000 series, MCUs
have the ability to support dual-axis motor drive requirements simultaneously that delivers very robust position
control with higher performance. The software is released within C2000Ware MotorControl SDK.
TIDM-02010 Dual motor control with digital interleaved PFC for HVAC reference design
The TIDM-02010 reference design is a 1.5-kW dual motor drive and PFC control reference design for variable
frequency air conditioner outdoor unit controller in HVAC applications, which illustrates a method to implement
sensorless 3-phase PMSM vector control for compressor and fan motor drive, and digital interleaved boost
PFC for meeting new efficiency standards with a single C2000™ microcontroller. The hardware and software
available with this reference design are tested and ready-to-use to help accelerate development time to market.
The reference design includes hardware design files and software codes.
TIDM-02012High-voltage HEV/EV HVAC eCompressor motor control reference design
The TIDM-02012 is a high-voltage, 5-kW reference design built for HEV/EV compressor (eCompressor)
applications controlled by a mid-performance C2000™ TMS320F28003x real-time MCU. It is designed to
evaluate with both 400-V and 800-V DC-bus, covering the market-trending of higher battery voltage. A
controlCARD-based design enables users to evaluate multiple MCU and gate driver options, and is scalable
to support other devices within the C2000™ portfolio including future roadmap devices to meet growing
cybersecurity, functional safety, and other automotive market needs.
8.3.1.5 Solar Micro Inverter
A Solar Micro Inverter consists of a DC-AC inverter power stage and one or more Maximum Power Point
Tracking (MPPT) DC-DC power stages. Typical switching frequency for the inverter (DC-AC) is between
20kHz-50kHz and for DC-DC side can be in the range 100kHz-200kHz. A variety of power stage topologies
can be used to achieve this and the diagram only depicts a typical power stage and the control & communication
requirements. A C2000 microcontroller has on-chip EPWM, ADC and analog comparator modules to implement
complete digital control of such micro inverter system.
240
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
8.3.1.5.1 System Block Diagram
S3
Active Clamp Flyback with
sec Voltage Multiplier
DC – AC
Inverter
DC bus
S6
3B
2B
S5
1A
PV
27V – 45V
Vgrid
I
1B
2A
3A
4 (Relay)
S7
GND
S1 (S2)
interleaved
phases
S4
GND
Isolation
3A 3B
4
PWM3
PWM4
PWM1
Aux.
DC/DC
DC bus
2A 2B
PWM2
S6 S7
1A 1B
S1 S2 S3 S4 S5
ADC
Comparators
Vref
3V3
3V3
Comms
GPIO
SPI
UART
CAN
C28x
Flash
SRAM
QEP
Figure 8-6. Solar Micro Inverter
8.3.1.5.2 Solar Micro Inverter Resources
Reference Designs and Associated Training Videos
TIDM-SOLARUINV Grid-tied Solar Micro Inverter with MPPT
This C2000 Solar Micro Inverter EVM hardware consists of two stages. These are: (1) an active clamp fly-back
DC/DC converter with secondary voltage multiplier and, (2) a DC-AC inverter. A block diagram of this system
is shown in Figure 1b. The DC-DC converter draws dc current from the PV panel such that the panel operates
at its maximum power transfer point. This requires maintaining the panel output, that is, the DC-DC converter
input at a level determined by the MPPT algorithm. The MPPT algorithm determines the panel output current
(reference current) for maximum power transfer. Then a current control loop for the fly-back converter ensures
that the converter input current tracks the MPPT reference current. The fly-back converter also provides high
frequency isolation for the DC-DC stage. The output of the fly-back stage is a high voltage DC bus which drives
the DC-AC inverter. The inverter stage maintains the DC bus at a desired set point and injects controlled sine
wave current into the grid. The inverter also implements grid synchronization in order to maintain its current
waveform locked to phase and frequency of the grid voltage. A C2000 piccolo microcontroller with its on-chip
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
241
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
PWM, ADC and analog comparator modules is able to implement complete digital control of such micro inverter
system.
C2000™ digital power training series (Video)
This training series covers the basics of digital power control and how to implement it on C2000 microcontrollers.
Calculating Useful Lifetimes of Embedded Processors
This application report provides a methodology for calculating the useful lifetime of TI embedded processors
(EP) under power when used in electronic systems. It is aimed at general engineers who wish to determine if
the reliability of the TI EP meets the end system reliability requirement. Electromigration is the primary failure
mechanism being modeled
Digitally Controlled Solar Micro Inverter Design using C2000™ Piccolo Microcontroller
This document presents the implementation details of a digitally-controlled solar micro inverter using the C2000
microcontroller. A 250-W isolated micro inverter design presents all the necessary PV inverter functions using
the Piccolo-B (F28035) control card. This document describes the power stages on the micro inverter board, as
well as an incremental build level system that builds the software by verifying open loop operation and closed
loop operation. This guide describes control structures and algorithms for controlling power flow, maximizing
power from the PV panel (MPPT), and locking to the grid using phase locked loop (PLL), along with hardware
details of Texas Instruments Solar Micro Inverter Kit (TMDSOLARUINVKIT)
Software Phase Locked Loop Design Using C2000™ Microcontrollers for Single Phase Grid Connected Inverter
Application Report
Grid connected applications require an accurate estimate of the grid angle to feed power synchronously to the
grid. This is achieved using a software phase locked loop (PLL). This application report discusses different
challenges in the design of software phase locked loops and presents a methodology to design phase locked
loops using C2000 controllers for single phase grid connection applications.
C2000WARE-DIGITALPOWER-SDK
DigitalPower SDK for C2000™ microcontrollers (MCU) is a cohesive set of software infrastructure, tools, and
documentation designed to minimize C2000 MCU based digital power system development time targeted for
various AC-DC, DC-DC and DC-AC power supply applications. The software includes firmware that runs on
C2000 digital power evaluation modules (EVMs) and TI designs (TIDs) which are targeted for solar, telecom,
server, electric vehicle chargers and industrial power delivery applications. DigitalPower SDK provides all the
needed resources at every stage of development and evaluation in a digital power application
8.3.1.6 Merchant Telecom Rectifiers
Merchant telecom rectifier consists of a power factor correction (PFC) stage and a DC-DC converter stage. The
Totem pole PFC is widely used as the PFC stage. For the DC-DC stage, LLC and phase-shifted full bridge
(PSFB) are the two most popular topologies. Single-chip and two-chip architecture can be used in merchant
telecom rectifier, as shown in Figure 8-7 and Figure 8-8.
The PFC stage draws sine-wave current from the AC mains in phase with the AC voltage, and maintains a
steady DC bus voltage (VDC, typically +400 V) across its output. This output voltage is applied to the input of
DC-DC stage, which converts it to an isolated low-output voltage Vout (usually 48 V).
242
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
8.3.1.6.1 System Block Diagram
Dc bus
VBUS
GaN
Si
VOUT
GaN
VACL
1A
95~275
VAC
2A
F
I
L
T
E
R
3A
4A
5A
+
IPFC
Si
GaN
GaN
2B
3B
VACN
1B
4B
5B
6A
6B
IRES
IOUT
Security:
AES, DCSM,
Secure boot
VACL
VACN
ADC
VBUS
VOUT
AMC1311
IPFC
Aux.
DC/DC
DC bus
IRES
C28x
IOUT
3V3
PWM1
3V3
PWM2
PWM3
I/On
Comms
I2C
PMBUS
SPI
UART
CAN
PWM4
PWM5
1A
1B
2A
2B
3A
3B
4A
4B
5A
5B
6A
PWM6
6B
Host
Figure 8-7. Merchant Telecom Rectifier Single-chip Architecture
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
243
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Dc bus
VBUS
GaN
Si
VOUT
GaN
VACL
95~275
VAC
2A
1A
F
I
L
T
E
R
4A
3A
5A
+
IPFC
Si
GaN
GaN
1B
2B
3B
VACN
4B
5B
6B
6A
IRES
IOUT
Aux.
DC/DC
DC bus
PWM1
C28x
3V3
PWM2
PWM3
Security:
AES, DCSM,
Secure boot
PWM4
Comms
ADC
GPIO
I2C
PMBUS
CAN
4A
1A
1B 4B
2A 5A
2B
3A 5B
3B
sync
PWM1
C28x
VACL
VOUT
IRES
VBUS
IOUT
SPI
UART
FSI
DC bus
PWM3
6A
6B
VACN
IPFC
3V3
PWM2
Aux.
Isolated
DC/DC
PWM4
Security:
AES, DCSM,
Secure boot
I/O
Comms
ADC
SPI
UART
FSI
GPIO
I2C
PMBUS
CAN
Host
Figure 8-8. Merchant Telecom Rectifier Dual-chip Architecture
8.3.1.6.2 Merchant Telecom Rectifiers Resources
Reference Designs and Associated Training Videos
PMP41006 1-kW reference design with CCM totem pole PFC and current-mode LLC realized by C2000™ and
GaN
This reference design demonstrates a hybrid hysteresis control (HHC) method, a kind of current-mode
control method on half-bridge LLC stage with a C2000™ F28004x microcontroller. The hardware is based
on TIDA-010062, which is 1-kW, 80-Plus titanium, GaN CCM totem pole bridgeless PFC and half-bridge LLC
reference design. A separate sensing card is added for hybrid hysteresis control, which recreates the voltage on
the resonant capacitor. This HHC LLC stage shows better transient response and ease-of-control loop design
compared with the single-loop voltage-mode control method (VMC).
PMP23126 3-kW phase-shifted full bridge with active clamp reference design with > 270-W/in3 power density
This reference design is a GaN-based 3-kW phase-shifted full bridge (PSFB) targeting maximum power density.
The design has an active clamp to minimize voltage stress on the secondary synchronous rectifier MOSFETs
enabling use of lower voltage-rating MOSFETs with better figure-of-merit (FoM). PMP23126 uses our 30mΩ
GaN on the primary side and silicon MOSFETs on the secondary side. The LMG3522 top-side cooled GaN with
integrated driver and protection enables higher efficiency by maintaining ZVS over a wider range of operation
compared to Si MOSFET. The PSFB operates at 100 kHz and achieves a peak efficiency of 97.74%.
244
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
PMP23069 3.6-kW single-phase totem-pole bridgeless PFC reference design with a > 180-W/in³ power density
This reference design is a GaN-based 3.6-kW single-phase continuous conduction mode (CCM) totem-pole
power factor correction (PFC) converter targeting maximum power density. The power stage is followed by a
small boost converter, which helps to reduce the size of the bulk capacitor. The LMG3522 top-side cooled GaN
with integrated driver and protection enables higher efficiency and reduces power supply size and complexity.
The F28003x, F28004x, or F28002x C2000™ controller is used for all the advanced controls that includes fast
relay control; baby boost operation during AC dropout event; reverse-current-flow protection; and communication
between the PFC and the housekeeping controller. The PFC operates at a switching frequency of 65 kHz and
achieves peak efficiency of 98.7%.
1-kW reference design with CCM totem pole PFC and current-mode LLC realized by C2000™ and GaN (Video)
With the changing transient response requirements in the world of digital power, meeting stringent specs in
applications like server power supply and other industrial ACDC power supplies has become challenging. This
C2000 real-time MCU based digital hybrid hysteretic controlled (HHC) LLC converter design demonstrates how
current mode control achieves better transient response compared to a traditional voltage mode control with
least CPU resources yet achieving the needed performance.
TIDA-010203 High efficiency PFC stage using GaN and C2000™ Real-time control MCUs (Video)
GaN power FETs and C2000™ MCUs enable a totem-pole Power Factor Correction (PFC) topology, eliminating
bridge rectifier power losses.
TIDA-010062 1-kW, 80 Plus titanium, GaN CCM totem pole bridgeless PFC and half-bridge LLC reference
design
This reference design is a digitally controlled, compact 1-kW AC/DC power supply design for server power
supply unit (PSU) and telecom rectifier applications. The highly efficient design supports two main power
stages, including a front-end continuous conduction mode (CCM) totem-pole bridgeless power factor correction
(PFC) stage. The PFC stage features an LMG341x GaN FET with integrated driver to provide enhanced
efficiency across a wide load range and meet 80-plus titanium requirements. The design also supports a
half-bridge LLC isolated DC/DC stage to achieve a +12-V DC output at 1-kW. Two control cards use C2000™
Entry-Performance MCUs to control both power stages.
TIDM-1001 Two Phase Interleaved LLC Resonant Converter Reference Design Using C2000™ MCUs
Resonant converters are popular DC-DC converters frequently used in server, telecom, automotive, industrial,
and other power supply applications. Their high performance (efficiency, power density, etc.), improving
requirements of the various industry standards, and the ever-increasing power density goals have made
these converters a good choice for medium- to high-power applications. This design implements a digitally
controlled 500-W two-phase interleaved LLC resonant converter. The system is controlled by a single C2000™
microcontroller (MCU), TMS320F280025C, which also generates PWM waveforms for all power electronic
switching devices under all operating modes. This design implements a novel current-sharing technique to
accurately achieve current-balancing between phases.
TIDM-1007 Interleaved CCM Totem Pole PFC Reference Design (Video)
This video covers the hardware aspects, the control aspects, and the software design that are required to control
a totem-pole PFC using a C2000 microcontroller. The test results achieved on this reference design are also
presented as part of this presentation.
Variable-frequency, ZVS, 5-kW, GaN-based, two-phase totem-pole PFC reference design
This reference design is a high-density and high-efficiency 5-kW totem-pole power factor correction (PFC)
design. The design uses a two-phase totem-pole PFC operating with variable frequency and zero voltage
switching (ZVS). The control uses a new topology and improved triangular current mode (iTCM) to achieve both
small size and high efficiency. The design uses a high performance processing core inside a TMS320F280049C
microcontroller to maintain efficiency over a wide operating range. The PFC operates with variable frequency
between 100 kHz and 800 kHz. A peak system efficiency of 99% was achieved with an open-frame power
density of 120 W/in3.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
245
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
9 Device and Documentation Support
TI offers an extensive line of development tools. Tools and software to evaluate the performance of the device,
generate code, and develop solutions are listed below.
9.1 Getting Started and Next Steps
The Getting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guide covers all
aspects of development with C2000 devices from hardware to support resources. In addition to key reference
documents, each section provides relevant links and resources to further expand on the information covered.
For a quick overview of the device, features, comparisons to other devices, and package details, see New
Product Update: C2000™ real-time MCU family: F28003x overview.
9.2 Device Nomenclature
To designate the stages in the product development cycle, TI assigns prefixes to the part numbers of all TMS320
MCU devices and support tools. Each TMS320™ MCU commercial family member has one of three prefixes:
TMX, TMP, or TMS (for example, TMS320F280039C). Texas Instruments recommends two of three possible
prefix designators for its support tools: TMDX and TMDS. These prefixes represent evolutionary stages of
product development from engineering prototypes (with TMX for devices and TMDX for tools) through fully
qualified production devices and tools (with TMS for devices and TMDS for tools).
Device development evolutionary flow:
TMX Experimental device that is not necessarily representative of the final device's electrical specifications and
may not use production assembly flow.
TMP Prototype device that is not necessarily the final silicon die and may not necessarily meet final electrical
specifications.
TMS Production version of the silicon die that is fully qualified.
Support tool development evolutionary flow:
TMDX Development-support product that has not yet completed Texas Instruments internal qualification testing.
TMDS Fully-qualified development-support product.
TMX and TMP devices and TMDX development-support tools are shipped against the following disclaimer:
"Developmental product is intended for internal evaluation purposes."
Production devices and TMDS development-support tools have been characterized fully, and the quality and
reliability of the device have been demonstrated fully. TI's standard warranty applies.
Predictions show that prototype devices (X or P) have a greater failure rate than the standard production
devices. Texas Instruments recommends that these devices not be used in any production system because their
expected end-use failure rate still is undefined. Only qualified production devices are to be used.
TI device nomenclature also includes a suffix with the device family name. This suffix indicates the package type
(for example, PN) and temperature range (for example, S).
For device part numbers and further ordering information, see the TI website (www.ti.com) or contact your TI
sales representative.
246
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
Generic Part Number:
TMS
Orderable Part Number:
320
X
F
280039C
F
280039C
-Q1
(blank)
PZ
R
Q1
PREFIX(A)
AUTOMOTIVE AEC-Q100 QUALIFICATION
TMX (X) = experimental device
TMS (blank) = qualified device
(blank) = Not AEC-Q100 qualified
Q1 = AEC-Q100 Grade 1 qualification
DEVICE FAMILY
SHIPPING OPTIONS
320 = TMS320 MCU Family
(blank) = Tray
R = Tape and Reel
TECHNOLOGY
F = Flash
PACKAGE TYPE
PZ = 100-pin Low-Profile Quad Flatpack (LQFP)
PN = 80-pin LQFP
PM = 64-pin LQFP
PT = 48-pin LQFP
DEVICE
280039
280038
280037
280036
280034
230033
A.
280039C
280038C
280037C
280036C
TEMPERATURE RANGE
(blank), S = –40°C to 125°C (TA); –40°C to 150°C (TJ)
Prefix X is used in orderable part numbers.
Figure 9-1. Device Nomenclature
9.3 Markings
Figure 9-2, Figure 9-3, Figure 9-4, and Figure 9-5 show the package symbolization. Table 9-1 lists the silicon
revision codes.
F280039CSPZ
$$#-YMLLLLS
G4
F280039CPZQ
$$#-YMLLLLS
G4
Pin 1
Pin 1
$$
#
YM
LLLL
S
=
=
=
=
=
Wafer Fab Code (one or two characters)
Silicon Revision Code
2-digit Year/Month Code
Assembly Lot Code
Assembly Site Code per QSS 005-120
G4 = ECAT
Figure 9-2. Package Symbolization for PZ Package
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
247
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
F280039CSPN
$$#-YMLLLLS
G4
F280039CPNQ
$$#-YMLLLLS
G4
Pin 1
Pin 1
$$
#
YM
LLLL
S
=
=
=
=
=
www.ti.com
Wafer Fab Code (one or two characters)
Silicon Revision Code
2-digit Year/Month Code
Assembly Lot Code
Assembly Site Code per QSS 005-120
G4 = ECAT
Figure 9-3. Package Symbolization for PN Package
F280039CSPM
$$#-YMLLLLS
G4
F280038CPMQ
$$#-YMLLLLS
G4
Pin 1
Pin 1
$$
#
YM
LLLL
S
=
=
=
=
=
Wafer Fab Code (one or two characters)
Silicon Revision Code
2-digit Year/Month Code
Assembly Lot Code
Assembly Site Code per QSS 005-120
G4 = ECAT
Figure 9-4. Package Symbolization for PM Package
248
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
980 PT
F280037CS
YMLLLLS
980 PTQ
F280037C
YMLLLLS
$$# G4
$$# G4
Pin 1
Pin 1
980
YM
LLLL
S
$$
#
=
=
=
=
=
=
TI EIA Code
2-digit Year/Month Code
Assembly Lot Code
Assembly Site Code per QSS 005-120
Wafer Fab Code (one or two characters)
Silicon Revision Code
G4 = ECAT
Figure 9-5. Package Symbolization for PT Package
Table 9-1. Revision Identification
SILICON REVISION CODE
SILICON REVISION
REVID(1)
ADDRESS: 0x5D00C
Blank
0
0x0000 0000
(1)
COMMENTS
This silicon revision is available as TMX and
TMS.
Silicon Revision ID
9.4 Tools and Software
TI offers an extensive line of development tools. Some of the tools and software to evaluate the performance
of the device, generate code, and develop solutions follow. To view all available tools and software for C2000™
real-time control MCUs, visit the C2000 real-time control MCUs – Design & development page.
Development Tools
TMDSCNCD280039C Control Card
The F280039C controlCARD is an HSEC180 controlCARD based evaluation and development tool for the
C2000™ F28003x series of microcontroller products. controlCARDs are ideal to use for initial evaluation and
system prototyping. controlCARDs are complete board-level modules that utilize one of two standard form
factors (100-pin DIMM or 180-pin HSEC ) to provide a low-profile single-board controller solution. For first
evaluation controlCARDs are typically purchased bundled with a baseboard or bundled in an application kit.
HSEC180 controlCARD Baseboard Docking Station
TMDSHSECDOCK is a baseboard that provides header pin access to key signals on compatible HSEC180based controlCARDs. A breadboard area is available for rapid prototyping. Board power can be provided by the
provided USB cable or a 5-V barrel supply.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
249
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
XDS110 JTAG Debug Probe
The Texas Instruments XDS110 is a new class of debug probe (emulator) for TI embedded processors. The
XDS110 replaces the XDS100 family while supporting a wider variety of standards (IEEE1149.1, IEEE1149.7,
SWD) in a single pod. Also, all XDS debug probes support Core and System Trace in all Arm® and DSP
processors that feature an Embedded Trace Buffer (ETB). For Core Trace over pins the XDS560v2 PRO TRACE
Receiver & Debug Probe is required.
XDS200 USB Debug Probe
The XDS200 is a debug probe (emulator) used for debugging TI embedded devices. The XDS200 features a
balance of low cost with good performance as compared to the low cost XDS110 and the high performance
XDS560v2. It supports a wide variety of standards (IEEE1149.1, IEEE1149.7, SWD) in a single pod. All XDS
debug probes support Core and System Trace in all Arm® and DSP processors that feature an Embedded Trace
Buffer (ETB). For Core Trace over pins the XDS560v2 PRO TRACE Receiver & Debug Probe is required.
XDS560v2 System Trace USB Debug Probe
The XDS560v2 is the highest performance of the XDS family of debug probes and supports both the traditional
JTAG standard (IEEE1149.1) and cJTAG (IEEE1149.7). Note that it does not support serial wire debug (SWD).
Software Tools
C2000™ Software Guide
C2000™ real-time controllers are a portfolio of high-performance microcontrollers that are purpose-built
to control power electronics and provide advanced digital signal processing for industrial and automotive
applications. Software components to program various modules in C2000 MCUs are released as part of C2000
software releases. This guide provides an overview of various software components and available functionality.
C2000Ware for C2000 MCUs
C2000Ware for C2000™ MCUs is a cohesive set of software and documentation created to minimize
development time. It includes device-specific drivers, libraries, and peripheral examples.
Digital Power SDK
Digital Power SDK is a cohesive set of software infrastructure, tools, and documentation designed to minimize
C2000 MCU-based digital power system development time targeted for various AC-DC, DC-DC and DC-AC
power supply applications. The software includes firmware that runs on C2000 digital power evaluation modules
(EVMs) and reference designs, which are targeted for solar, telecom, server, electric vehicle chargers and
industrial power delivery applications. Digital Power SDK provides all the needed resources at every stage of
development and evaluation in a digital power applications.
Motor Control SDK
Motor Control SDK is a cohesive set of software infrastructure, tools, and documentation designed to minimize
C2000 MCU-based motor control system development time targeted for various three-phase motor control
applications. The software includes firmware that runs on C2000 motor control evaluation modules (EVMs) and
reference designs, which are targeted for industrial drive and other motor control, Motor Control SDK provides
all the needed resources at every stage of development and evaluation for high-performance motor control
applications.
Code Composer Studio™ (CCS) Integrated Development Environment (IDE) for C2000 microcontrollers
Code Composer Studio is an integrated development environment (IDE) that supports TI's Microcontroller
and Embedded Processors portfolio. Code Composer Studio comprises a suite of tools used to develop and
debug embedded applications. It includes an optimizing C/C++ compiler, source code editor, project build
environment, debugger, profiler, and many other features. The intuitive IDE provides a single user interface
taking the user through each step of the application development flow. Familiar tools and interfaces allow
users to get started faster than ever before. Code Composer Studio combines the advantages of the Eclipse
software framework with advanced embedded debug capabilities from TI resulting in a compelling feature-rich
development environment for embedded developers.
250
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
TI Resource Explorer
To enhance your experience, be sure to check out the TI Resource Explorer to browse examples, libraries, and
documentation for your applications.
SysConfig System configuration tool
SysConfig is a comprehensive collection of graphical utilities for configuring pins, peripherals, radios,
subsystems, and other components. SysConfig helps you manage, expose and resolve conflicts visually so
that you have more time to create differentiated applications. The tool's output includes C header and code files
that can be used with software development kit (SDK) examples or used to configure custom software. The
SysConfig tool automatically selects the pinmux settings that satisfy the entered requirements. The SysConfig
tool is delivered integrated in CCS, as a standalone installer, or can be used via the dev.ti.com cloud tools portal.
For more information about the SysConfig system configuration tool, visit the System configuration tool page.
C2000 Third-party search tool
TI has partnered with multiple companies to offer a wide range of solutions and services for TI C2000 devices.
These companies can accelerate your path to production using C2000 devices. Download this search tool to
quickly browse third-party details and find the right third-party to meet your needs.
UniFlash Standalone Flash Tool
UniFlash is a standalone tool used to program on-chip flash memory through a GUI, command line, or scripting
interface.
C2000 code generation tools - compiler
The TI C2000 C/C++ Compiler and Assembly Language Tools support development of applications for TI C2000
Microcontroller platforms, including the Concerto (F28M3xx), Entry-Performance (280xx), Premium-Performance
Floating-Point (283xx), and C2000 Fixed-Point (2823x/280x/281x) Microcontroller devices.
Models
Various models are available for download from the product Design & development pages. These models
include I/O Buffer Information Specification (IBIS) Models and Boundary-Scan Description Language (BSDL)
Models. To view all available models, visit the Design tools & simulation subsection of the Design & development
section of each device product page.
Training
To help assist design engineers in taking full advantage of the C2000 microcontroller features and performance,
TI has developed a variety of training resources. Utilizing the online training materials and downloadable
hands-on workshops provides an easy means for gaining a complete working knowledge of the C2000
microcontroller family. These training resources have been designed to decrease the learning curve, while
reducing development time, and accelerating product time to market. For more information on the various
training resources, visit the C2000™ real-time control MCUs – Support & training site. Additionally, the C2000
Academy course provides new users with a way to ramp quickly with C2000 devices and their many features.
This is a great entry point for users getting started with C2000, and is available at the C2000 Academy resource
explorer page.
9.5 Documentation Support
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on
Notifications to register and receive a weekly digest of any product information that has changed. For change
details, review the revision history included in any revised document.
The current documentation that describes the processor, related peripherals, and other technical collateral
follows.
Errata
TMS320F28003x Real-Time MCUs Silicon Errata describes known advisories on silicon and provides
workarounds.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
251
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
Technical Reference Manual
TMS320F28003x Real-Time Microcontrollers Technical Reference Manual details the integration, the
environment, the functional description, and the programming models for each peripheral and subsystem in
the F28003x real-time microcontrollers.
CPU User's Guides
TMS320C28x CPU and Instruction Set Reference Guide describes the central processing unit (CPU) and the
assembly language instructions of the TMS320C28x fixed-point digital signal processors (DSPs). This Reference
Guide also describes emulation features available on these DSPs.
TMS320C28x Extended Instruction Sets Technical Reference Manual describes the architecture, pipeline, and
instruction set of the TMU, VCU-II, and FPU accelerators.
Peripheral Guides
C2000 Real-Time Control Peripherals Reference Guide describes the peripheral reference guides of the 28x
DSPs.
Tools Guides
TMS320C28x Assembly Language Tools v22.6.0.LTS User’s Guide describes the assembly language tools
(assembler and other tools used to develop assembly language code), assembler directives, macros, common
object file format, and symbolic debugging directives for the TMS320C28x device.
TMS320C28x Optimizing C/C++ Compiler v22.6.0.LTS User’s Guide describes the TMS320C28x C/C++
compiler. This compiler accepts ANSI standard C/C++ source code and produces TMS320 DSP assembly
language source code for the TMS320C28x device.
Application Reports
The SMT & packaging application notes website lists documentation on TI’s surface mount technology (SMT)
and application notes on a variety of packaging-related topics.
Semiconductor Packing Methodology describes the packing methodologies employed to prepare semiconductor
devices for shipment to end users.
Calculating Useful Lifetimes of Embedded Processors provides a methodology for calculating the useful lifetime
of TI embedded processors (EPs) under power when used in electronic systems. It is aimed at general
engineers who wish to determine if the reliability of the TI EP meets the end system reliability requirement.
An Introduction to IBIS (I/O Buffer Information Specification) Modeling discusses various aspects of IBIS
including its history, advantages, compatibility, model generation flow, data requirements in modeling the input/
output structures, and future trends.
Serial Flash Programming of C2000™ Microcontrollers discusses using a flash kernel and ROM loaders for
serial programming a device.
Fast Integer Division – A Differentiated Offering From C2000™ Product Family provides an overview of the
different division and modulo (remainder) functions and its associated properties.
The Essential Guide for Developing With C2000™ Real-Time Microcontrollers provides a deeper look into the
components that differentiate the C2000 Microcontroller Unit (MCU) as it pertains to Real-Time Control Systems.
9.6 Support Resources
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight
from the experts. Search existing answers or ask your own question to get the quick design help you need.
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do
not necessarily reflect TI's views; see TI's Terms of Use.
252
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
www.ti.com
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
9.7 Trademarks
C2000™, TMS320C2000™, TMS320™, Code Composer Studio™, and TI E2E™ are trademarks of Texas
Instruments.
Bosch® is a registered trademark of Robert Bosch GmbH Corporation.
Arm® is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
All trademarks are the property of their respective owners.
9.8 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may
be more susceptible to damage because very small parametric changes could cause the device not to meet its published
specifications.
9.9 Glossary
TI Glossary
This glossary lists and explains terms, acronyms, and definitions.
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
253
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
10 Revision History
Changes from November 30, 2022 to December 7, 2023
Page
• This Revision History lists the changes from SPRSP61B to SPRSP61C. ..................................................1
• Global: Added TMS320F280033-Q1 device [Preview information (not Production Data)]................................1
• Global: Information on the TMS320F280039-Q1, TMS320F280039, TMS320F280038-Q1, TMS320F280037Q1, TMS320F280036C-Q1, TMS320F280036-Q1, TMS320F280034-Q1, and TMS320F280033 devices is
now Production Data.......................................................................................................................................... 1
• Global: TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280037C-Q1, and TMS320F280034-Q1 are
now available in the 80-pin PN package............................................................................................................ 1
• Features section: Changed Security features under "On-chip memory" feature................................................1
• Features section: Updated "Functional Safety-Compliant" feature and "Safety-related certification" feature.... 1
• Package Information table: Added table.............................................................................................................3
• Functional Block Diagram figure: Updated "Buses Legend" by changing "CLU" to "CLA".................................6
• Device Comparison table: Changed "Code security for on-chip flash and RAM" to "Security: JTAGLOCK,
Zero-pin boot, Dual-zone security"..................................................................................................................... 8
• Device Comparison table: Changed the number of ADC channels for the 100-pin PZ package from 23 to 25. 8
• Device Comparison table: TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280037C-Q1,
TMS320F280034-Q1, and TMS320F280033-Q1 are now available in the 80-pin PN package.........................8
• Pin Attributes table: Updated description of VREGENZ................................................................................... 11
• Power and Ground table: Updated description of VREGENZ.......................................................................... 36
• Electrical Characteristics table: Updated ROH and ROL values. Added RPULLDOWN and RPULLUP.................... 59
• ESD Ratings – Commercial table: Added values for corner pins..................................................................... 59
• ESD Ratings – Automotive table: TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280037C-Q1,
TMS320F280034-Q1, and TMS320F280033-Q1 are now available in the 80-pin PN package.......................60
• Current Consumption Graphs section: Added section..................................................................................... 65
• External Supervisor Usage section: Updated section...................................................................................... 74
• VREGENZ section: Updated section................................................................................................................75
• VDDIO Decoupling section: Updated section...................................................................................................75
• VDD Decoupling section: Updated section.......................................................................................................76
• Supply Pins Ganging section: Updated section................................................................................................76
• Signal Pins Power Sequence section: Updated section...................................................................................76
• Supply Sequencing Summary and Effects of Violations section: Updated section.......................................... 78
• Supply Slew Rate section: Updated section.....................................................................................................79
• System PLL figure: Updated figure...................................................................................................................85
• Introduction section: Updated section.............................................................................................................. 90
• Electrical Oscillator section: Updated section...................................................................................................90
• RAM and ROM Parameters section: Added section...................................................................................... 100
• Analog-to-Digital Converter (ADC) section: Updated section.........................................................................124
• ADC Electrical Data and Timing section: Updated "The ADC inputs should be kept below VDDA + 0.3 V
…" Note.......................................................................................................................................................... 127
• ADC Timing Parameter Descriptions table: Changed title from ADC Timing Parameters to ADC Timing
Parameter Descriptions. Updated table..........................................................................................................132
• Comparator Subsystem (CMPSS) section: Updated section. Added "Two digital filters, 65536 max filter clock
prescale" to "Each CMPSS includes" list........................................................................................................135
• Block Diagram section: Added "Each reference 12-bit DAC can be configured to drive a reference voltage
into the negative input of the respective comparator" paragraph. Added "Reference DAC Block Diagram"
figure...............................................................................................................................................................136
• CMPSS DAC Dynamic Error section: Added section..................................................................................... 142
• DAC Module Block Diagram: Updated diagram............................................................................................. 143
• Enhanced Capture (eCAP) section: Updated section.................................................................................... 151
• Sigma-Delta Filter Module (SDFM) section: Changed "Master Filter Enable (MFE) bit" to "Main Filter Enable
(MFE) bit"........................................................................................................................................................159
• Modular Controller Area Network (MCAN) section: Updated list of MCAN module features......................... 162
254
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
www.ti.com
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
I2C Electrical Data and Timing section: Updated Note.................................................................................. 166
I2C Timing Requirements table: Added footnotes..........................................................................................166
PMBus Fast Mode Switching Characteristics table: Added fFSM_CLK, FSM_CLK clock frequency.................169
PMBus Standard Mode Switching Characteristics table: Added fFSM_CLK, FSM_CLK clock frequency......... 169
SCI Block Diagram: Updated diagram............................................................................................................171
Functional Block Diagram figure: Updated "Buses Legend" by changing "CLU" to "CLA".............................196
Peripheral Registers Memory Map table: Changed table title from "Peripheral Registers Memory Map (C28)"
to "Peripheral Registers Memory Map". Updated table.................................................................................. 201
Device Identification Registers table: Changed UID_UNIQUE from "0x0007 01F4" to "0x0007 020C".........205
Trigonometric Math Unit (TMU) section: Added "Exponent instruction IEXP2F32 and logarithmic instruction
LOG2F32 have been added ..." paragraph.................................................................................................... 207
Added second paragraph in Section 7.6.3 .................................................................................................... 207
Control Law Accelerator (CLA) section: Added "C compilers are available for CLA software development" to
list of major features. ..................................................................................................................................... 209
Security section: Changed Dual Code Security Module section to Security section...................................... 221
Functional Safety section: Added section.......................................................................................................228
Applications, Implementation, and Layout section: Changed section............................................................ 229
Merchant Telecom Rectifier Single-chip Architecture figure: Corrected EPWM labels of lower FETs............243
Merchant Telecom Rectifier Dual-chip Architecture figure: Corrected EPWM labels of lower FETs.............. 243
Copyright © 2023 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
255
TMS320F280039C, TMS320F280039C-Q1, TMS320F280039-Q1, TMS320F280038C-Q1
TMS320F280037C, TMS320F280037C-Q1, TMS320F280037, TMS320F280036C-Q1
TMS320F280036-Q1, TMS320F280034, TMS320F280034-Q1
SPRSP61C – OCTOBER 2021 – REVISED DECEMBER 2023
www.ti.com
11 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
To learn more about TI packaging, visit the Packaging information website.
256
Submit Document Feedback
Copyright © 2023 Texas Instruments Incorporated
Product Folder Links: TMS320F280039C TMS320F280039C-Q1 TMS320F280039-Q1 TMS320F280038C-Q1 TMS320F280037C
TMS320F280037C-Q1 TMS320F280037 TMS320F280036C-Q1 TMS320F280036-Q1 TMS320F280034 TMS320F280034-Q1
PACKAGE OPTION ADDENDUM
www.ti.com
23-Dec-2023
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
F280033SPM
ACTIVE
LQFP
PM
64
160
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280033SPM
Samples
F280033SPN
ACTIVE
LQFP
PN
80
119
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280033SPN
Samples
F280033SPT
ACTIVE
LQFP
PT
48
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280033S
PT
Samples
F280033SPZ
ACTIVE
LQFP
PZ
100
90
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280033SPZ
Samples
F280034PTRQ1
ACTIVE
LQFP
PT
48
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280034
PTQ
Samples
F280034SPM
ACTIVE
LQFP
PM
64
160
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280034SPM
Samples
F280034SPN
ACTIVE
LQFP
PN
80
119
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280034SPN
Samples
F280034SPT
ACTIVE
LQFP
PT
48
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280034S
PT
Samples
F280034SPZ
ACTIVE
LQFP
PZ
100
90
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280034SPZ
Samples
F280036CPMRQ1
ACTIVE
LQFP
PM
64
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280036CPMQ
Samples
F280036PMRQ1
ACTIVE
LQFP
PM
64
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280036PMQ
Samples
F280037CPTQ1
ACTIVE
LQFP
PT
48
250
RoHS & Green
Call TI | NIPDAU
Level-3-260C-168 HR
-40 to 125
F280037C
PTQ
Samples
F280037CPTRQ1
ACTIVE
LQFP
PT
48
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280037C
PTQ
Samples
F280037CPZRQ1
ACTIVE
LQFP
PZ
100
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280037CPZQ
Samples
F280037CSPM
ACTIVE
LQFP
PM
64
160
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280037CSPM
Samples
F280037CSPN
ACTIVE
LQFP
PN
80
119
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280037CSPN
Samples
F280037CSPT
ACTIVE
LQFP
PT
48
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280037CS
PT
Samples
F280037CSPTR
ACTIVE
LQFP
PT
48
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280037CS
PT
Samples
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
23-Dec-2023
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
F280037CSPZ
ACTIVE
LQFP
PZ
100
90
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280037CSPZ
Samples
F280037PTRQ1
ACTIVE
LQFP
PT
48
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280037
PTQ
Samples
F280037PZRQ1
ACTIVE
LQFP
PZ
100
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280037PZQ
Samples
F280037SPM
ACTIVE
LQFP
PM
64
160
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280037SPM
Samples
F280037SPMR
ACTIVE
LQFP
PM
64
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
F280037SPM
Samples
F280037SPN
ACTIVE
LQFP
PN
80
119
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280037SPN
Samples
F280037SPNR
ACTIVE
LQFP
PN
80
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280037SPN
Samples
F280037SPT
ACTIVE
LQFP
PT
48
250
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280037S
PT
Samples
F280037SPZ
ACTIVE
LQFP
PZ
100
90
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280037SPZ
Samples
F280038CPMQ1
ACTIVE
LQFP
PM
64
160
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280038CPMQ
Samples
F280038CPMRQ1
ACTIVE
LQFP
PM
64
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280038CPMQ
Samples
F280038PMRQ1
ACTIVE
LQFP
PM
64
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280038PMQ
Samples
F280039CPZQ1
ACTIVE
LQFP
PZ
100
90
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280039CPZQ
Samples
F280039CPZRQ1
ACTIVE
LQFP
PZ
100
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280039CPZQ
Samples
F280039CSPM
ACTIVE
LQFP
PM
64
160
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280039CSPM
Samples
F280039CSPMR
ACTIVE
LQFP
PM
64
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280039CSPM
Samples
F280039CSPN
ACTIVE
LQFP
PN
80
119
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280039CSPN
Samples
F280039CSPNR
ACTIVE
LQFP
PN
80
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280039CSPN
Samples
F280039CSPZ
ACTIVE
LQFP
PZ
100
90
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280039CSPZ
Samples
F280039CSPZR
ACTIVE
LQFP
PZ
100
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280039CSPZ
Samples
F280039PZRQ1
ACTIVE
LQFP
PZ
100
1000
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280039PZQ
Samples
Addendum-Page 2
PACKAGE OPTION ADDENDUM
www.ti.com
23-Dec-2023
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
(3)
Device Marking
Samples
(4/5)
(6)
F280039SPM
ACTIVE
LQFP
PM
64
160
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280039SPM
Samples
F280039SPN
ACTIVE
LQFP
PN
80
119
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280039SPN
Samples
F280039SPZ
ACTIVE
LQFP
PZ
100
90
RoHS & Green
NIPDAU
Level-3-260C-168 HR
-40 to 125
F280039SPZ
Samples
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of