F280039CSPZR

F280039CSPZR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    LQFP-100(14x14)

  • 描述:

    32位MCU微控制器 LQFP100_14X14MM 120MHz 32KB

  • 数据手册
  • 价格&库存
F280039CSPZR 数据手册
TMS320F280039C, TMS320F280037C SPRSP61 – OCTOBER 2021 1 Features • • • • • • • TMS320C28x 32-bit DSP core at 120 MHz – IEEE 754 Floating-Point Unit (FPU) • Support for Fast Integer Division (FINTDIV) – Trigonometric Math Unit (TMU) • Support for Nonlinear Proportional Integral Derivative (NLPID) control – CRC Engine and Instructions (VCRC) – Ten hardware breakpoints (with ERAD) Programmable Control Law Accelerator (CLA) – 120 MHz – IEEE 754 single-precision floating-point instructions – Executes code independently of main CPU On-chip memory – 384KB (192KW) of flash (ECC-protected) across three independent banks – 69KB (34.5KW) of RAM (ECC-protected) – Dual-zone security – Secure Boot and JTAG Lock Clock and system control – Two internal 10-MHz oscillators – Crystal oscillator or external clock input – Windowed watchdog timer module – Missing clock detection circuitry – Dual-clock Comparator (DCC) 3.3-V I/O design – Internal VREG generation allows for singlesupply design – Brownout reset (BOR) circuit System peripherals – 6-channel Direct Memory Access (DMA) controller – 55 individually programmable multiplexed General-Purpose Input/Output (GPIO) pins – 23 digital inputs on analog pins – 2 digital inputs/outputs on analog pins (AGPIO) – Enhanced Peripheral Interrupt Expansion (ePIE) – Multiple low-power mode (LPM) support – Embedded Real-time Analysis and Diagnostic (ERAD) – Unique Identification (UID) number Communications peripherals – One Power-Management Bus (PMBus) interface – Two Inter-integrated Circuit (I2C) interfaces – One Controller Area Network (CAN/DCAN) bus port • • • • • • – One Controller Area Network with Flexible Data-Rate (CAN FD/MCAN) bus port – Two Serial Peripheral Interface (SPI) ports – Two UART-compatible Serial Communication Interface (SCI) – Two UART-compatible Local Interconnect Network (LIN) interfaces – Fast Serial Interface (FSI) with one transmitter and one receiver (up to 200Mbps) Analog system – Three 4-MSPS, 12-bit Analog-to-Digital Converters (ADCs) • Up to 23 external channels (includes the two gpdac outputs) • Four integrated Post-Processing Blocks (PPB) per ADC – Four windowed comparators (CMPSS) with 12-bit reference Digital-to-Analog Converters (DACs) • Digital glitch filters – Two 12-bit buffered DAC outputs Enhanced control peripherals – 16 ePWM channels with eight channels that have high-resolution capability (150-ps resolution) • Integrated dead-band support • Integrated hardware trip zones (TZs) – Three Enhanced Capture (eCAP) modules • High-resolution Capture (HRCAP) available on one of the three eCAP modules – Two Enhanced Quadrature Encoder Pulse (eQEP) modules with support for CW/CCW operation modes – Eight Sigma-Delta Filter Module (SDFM) input channels (two parallel filters per channel) • Standard SDFM data filtering • Comparator filter for fast action for overvalue or undervalue condition – Embedded Pattern Generator (EPG) Configurable Logic Block (CLB) – 4 tiles – Augments existing peripheral capability – Supports position manager solutions Host Interface Controller (HIC) – Access to internal memory from an external host Background CRC (BGCRC) – One cycle CRC computation on 32 bits of data Advanced Encryption Standard (AES) accelerator An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. ADVANCE INFORMATION for preproduction products; subject to change without notice. ADVANCE INFORMATION TMS320F28003x Real-Time Microcontrollers TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 • • • ADVANCE INFORMATION • Live Firmware Update (LFU) – Fast context switching from old to new firmware – Flash bank erase time improvements Diagnostic features – Memory Power On Self Test (MPOST) – Hardware Built-in Self Test (HWBIST) Package options: – 100-pin Low-profile Quad Flatpack (LQFP) [PZ suffix] – 80-pin Low-profile Quad Flatpack (LQFP) [PN suffix] – 64-pin (LQFP) [PM suffix] – 48-pin (LQFP) [PT suffix] Temperature options: – Free-air (TA): –40°C to 125°C – Junction (TJ): –40°C to 150°C • • • • 2 Applications • • • • • • • • Appliances – Air conditioner outdoor unit Building automation – Door operator drive control Industrial machine & machine tools – Automated sorting equipment – Textile machine AC inverter & VF drives – AC drive control module – AC drive position feedback – AC drive power stage module Linear motor transport systems – Linear motor power stage Single & multi axis servo drives – Servo drive position feedback – Servo drive power stage module Speed controlled BLDC drives – AC-input BLDC motor drive – DC-input BLDC motor drive Factory automation – Robot servo drive – Mobile robot motor control – Position sensor • • • • • • Industrial power – Industrial AC-DC UPS – Three phase UPS – Single phase online UPS Telecom & server power – Merchant DC/DC – Merchant network & server PSU – Merchant telecom rectifiers Hybrids, electric & powertrain systems – DC/DC converter – Inverter & motor control – On-board (OBC) & wireless charger – Virtual engine sound system (VESS) – Engine fan – eTurbo/charger – Pump – Electric power steering (EPS) Infotainment and cluster – Head-up display – Automotive head unit – Automotive external amplifier Body electronics & lighting – Automotive HVAC compressor module – DC/AC inverter – Headlight ADAS – Mechanically scanning LIDAR EV charging infrastructure – AC charging (pile) station – DC charging (pile) station – EV charging station power module – Wireless EV charging station Renewable energy storage – Energy storage power conversion system (PCS) Solar energy – Central inverter – Micro inverter – Solar power optimizer – Solar arc protection – Rapid shutdown – String inverter 3 Description The TMS320F28003x (F28003x) is a member of the C2000™ real-time microcontroller family of scalable, ultralow latency devices designed for efficiency in power electronics, including but not limited to: high power density, high switching frequencies, and supporting the use of GaN and SiC technologies. 2 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 These include such applications as: • • • • • • Industrial motor drives Motor control Solar inverters Digital power Electrical vehicles and transportation Sensing and signal processing The real-time control subsystem is based on TI’s 32-bit C28x DSP core, which provides 120 MHz of signalprocessing performance for floating- or fixed-point code running from either on-chip flash or SRAM. The C28x CPU is further boosted by the Floating-Point Unit (FPU), Trigonometric Math Unit (TMU), and VCRC (Cyclical Redundancy Check) extended instruction sets, speeding up common algorithms key to real-time control systems. ADVANCE INFORMATION The CLA allows significant offloading of common tasks from the main C28x CPU. The CLA is an independent 32-bit floating-point math accelerator that executes in parallel with the CPU. Additionally, the CLA has its own dedicated memory resources and it can directly access the key peripherals that are required in a typical control system. Support of a subset of ANSI C is standard, as are key features like hardware breakpoints and hardware task-switching. The F28003x supports up to 384KB (192KW) of flash memory divided into three 128KB (64KW) banks, which enable programming and execution in parallel. Up to 69KB (34.5KW) of on-chip SRAM is also available to supplement the flash memory. The Live Firmware Update hardware enhancements on F28003x allow fast context switching from the old firmware to the new firmware to minimize application downtime when updating the device firmware. High-performance analog blocks are integrated on the F28003x real-time microcontroller (MCU) and are closely coupled with the processing and PWM units to provide optimal real-time signal chain performance. Sixteen PWM channels, all supporting frequency-independent resolution modes, enable control of various power stages from a 3-phase inverter to power factor correction and advanced multi-level power topologies. The inclusion of the Configurable Logic Block (CLB) allows the user to add custom logic and potentially integrate FPGA-like functions into the C2000 real-time MCU. Interfacing is supported through various industry-standard communication ports (such as SPI, SCI, I2C, PMBus, LIN, CAN and CAN FD) and offers multiple pin-muxing options for optimal signal placement. The Fast Serial Interface (FSI) enables up to 200 Mbps of robust communications across an isolation boundary. New to the C2000 platform is the Host Interface Controller (HIC), a high-throughput interface that allows an external host to access the resources of the TMS320F28003x directly. Want to learn more about features that make C2000 Real-Time MCUs the right choice for your real-time control system? Check out The Essential Guide for Developing With C2000™ Real-Time Microcontrollers and visit the C2000™ real-time control MCUs page. The Getting Started With C2000™ Real-Time Control Microcontrollers (MCUs) Getting Started Guide covers all aspects of development with C2000 devices from hardware to support resources. In addition to key reference documents, each section provides relevant links and resources to further expand on the information covered. Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 3 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Ready to get started? Check out the F28003x evaluation board (coming soon) and download C2000Ware. Device Information CONTROL LAW ACCELERATOR (CLA) CONFIGURABLE LOGIC BLOCK (CLB) TMS320F280039C-Q1, TMS320F280039C Yes 4 Tiles TMS320F280039-Q1, TMS320F280039 Yes – TMS320F280038C-Q1 Yes 4 Tiles TMS320F280038-Q1 Yes – TMS320F280037C-Q1, TMS320F280037C Yes 4 Tiles PART NUMBER(1) ADVANCE INFORMATION TMS320F280037-Q1, TMS320F280037 Yes TMS320F280036C-Q1 Yes 4 Tiles TMS320F280036-Q1 Yes – TMS320F280034-Q1, TMS320F280034 Yes TMS320F280033 No (1) 4 FLASH SIZE 384KB – 256KB – 128KB – 128KB For more information on these devices, see the Device Comparison table. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 3.1 Functional Block Diagram The Functional Block Diagram shows the CPU system and associated peripherals. Buses Legend CPU CLA DMA HIC BGCRC C28x CPU (120MHz) FPU32 TMU VCRC FINTDIV CLA (120MHz) SYSTEM CONTROL CLA to CPU MSG RAM CPU Timers XTAL INTOSC1, INTOSC2 PLL ePIE Windowed WD NMI WD Boot ROM CPU to CLA MSG RAM Flash Bank0 16 Sectors, 64Kw(128KB) CLA Data ROM CLA Program ROM Flash Bank1 16 Sectors, 64Kw(128KB) SECURITY DCSM JTAG Lock Secure Boot Flash Bank2 16 Sectors, 64Kw(128KB) DIAGNOSTICS M0-M1 RAM 2Kw(4KB) DCC MPOST HWBIST ERAD JTAG/cJTAG CLA to DMA MSG RAM DMA to CLA MSG RAM BGCRC LS0-LS7 RAM 16Kw(32KB) HIC GS0-GS3 RAM 16Kw(32KB) OTHERS DMA 6 Channels EPG PF1 16x ePWM (8 Hi-Res Capable) 3x eCAP (1 HRCAP Capable) PF3 4x CMPSS Result Data 3x 12-Bit ADC 55x GPIO Input XBAR Output XBAR ePWM XBAR CLB XBAR CLB Input XBAR CLB Output XBAR 2x Buered DAC 2x eQEP (CW/CCW Support) 8x SD Filters A. PF4 ADVANCE INFORMATION Secure ROM PF2 1x PMBUS 2x SPI 1x FSI RX 1x FSI TX PF7 1x DCAN/ CAN PF7 1x MCAN/ CAN FD PF8 2x LIN(A) PF9 2x SCI 2x I2C PF10 PF11 PF12 4x CLB 1x AES LFU The LIN module can also work as an SCI. Figure 3-1. Functional Block Diagram Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 5 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table of Contents ADVANCE INFORMATION 1 Features............................................................................1 2 Applications..................................................................... 2 3 Description.......................................................................2 3.1 Functional Block Diagram........................................... 5 Revision History................................................................. 6 4 Device Comparison......................................................... 7 4.1 Related Products........................................................ 9 5 Pin Configuration and Functions.................................10 5.1 Pin Diagrams............................................................ 10 5.2 Pin Attributes.............................................................15 5.3 Signal Descriptions................................................... 37 5.4 Pin Multiplexing.........................................................61 5.5 Pins With Internal Pullup and Pulldown.................... 69 5.6 Connections for Unused Pins................................... 70 6 Specifications................................................................ 72 6.1 Absolute Maximum Ratings...................................... 72 6.2 ESD Ratings – Commercial...................................... 72 6.3 ESD Ratings – Automotive....................................... 73 6.4 Recommended Operating Conditions.......................73 6.5 Power Consumption Summary................................. 74 6.6 Electrical Characteristics...........................................80 6.7 Thermal Resistance Characteristics for PZ Package...................................................................... 81 6.8 Thermal Resistance Characteristics for PN Package...................................................................... 82 6.9 Thermal Resistance Characteristics for PM Package...................................................................... 83 6.10 Thermal Resistance Characteristics for PT Package...................................................................... 84 6.11 Thermal Design Considerations..............................84 6.12 System.................................................................... 85 6.13 Analog Peripherals................................................126 6.14 Control Peripherals............................................... 156 6.15 Communications Peripherals................................ 171 7 Detailed Description....................................................206 7.1 Overview................................................................. 206 7.2 Functional Block Diagram....................................... 207 7.3 Memory................................................................... 208 7.4 Identification............................................................216 7.5 Bus Architecture – Peripheral Connectivity.............217 7.6 C28x Processor...................................................... 218 7.7 Control Law Accelerator (CLA)............................... 220 7.8 Embedded Real-Time Analysis and Diagnostic (ERAD)...................................................................... 222 7.9 Background CRC-32 (BGCRC).............................. 222 7.10 Direct Memory Access (DMA)...............................223 7.11 Device Boot Modes............................................... 224 7.12 Dual Code Security Module.................................. 232 7.13 Watchdog.............................................................. 233 7.14 C28x Timers..........................................................234 7.15 Dual-Clock Comparator (DCC)............................. 234 7.16 Configurable Logic Block (CLB)............................236 8 Applications, Implementation, and Layout............... 238 8.1 TI Reference Design............................................... 238 9 Device and Documentation Support..........................239 9.1 Getting Started and Next Steps.............................. 239 9.2 Device Nomenclature..............................................239 9.3 Markings................................................................. 240 9.4 Tools and Software................................................. 241 9.5 Documentation Support.......................................... 243 9.6 Support Resources................................................. 244 9.7 Trademarks............................................................. 245 9.8 Electrostatic Discharge Caution..............................245 9.9 Glossary..................................................................245 10 Mechanical, Packaging, and Orderable Information.................................................................. 246 Revision History DATE October 2021 6 Submit Document Feedback REVISION * NOTES Initial Release Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 4 Device Comparison Table 4-1 lists the features of the TMS320F28003x devices. Table 4-1. Device Comparison F280039C F280039C-Q1 F280039 F280039-Q1 FEATURE(1) F280038C-Q1 F280038-Q1 F280037C F280037C-Q1 F280037 F280037-Q1 F280036C-Q1 F280036-Q1 F280034 F280034-Q1 F280033 Processor and Accelerators Frequency (MHz) 120 FPU Yes (instructions for Fast Integer Division) VCRC Yes TMU CLA – Type 2 Yes – Type 1 (instructions supporting NLPID) Available Yes Frequency (MHz) 120 6-Channel DMA – Type 0 No ADVANCE INFORMATION C28x – Yes External interrupts 5 Memory Flash Flash Banks RAM 384KB (192KW) 256KB (128KW) 128KB (64KW) 3 x 128KB 2 x 128KB 2 x 64KB Dedicated 4KB (2KW) Local Shared 32KB (16KW) Message 1KB (0.5KW) Global Shared 32KB (16KW) Total 69KB (34.5KW) Message RAM Types ECC 512B (256W) CPU-CLA 512B (256W) CLA-DMA – FLASH, Mx, LSx, GSx, Message RAM FLASH, Mx, LSx, GSx Parity ROM, CAN RAM Code security for on-chip flash and RAM Yes System Configurable Logic Block (CLB) 4 Tiles on C Variants Embedded Pattern Generator (EPG) – Yes 32-bit CPU timers 3 Advance Encryption Standard (AES) Yes Background CRC (BGCRC) Yes Live Firmware Update (LFU) Support Yes, with enhancements and flash bank erase time improvements Secure Boot Yes JTAG Lock Yes HWBIST Yes Nonmaskable Interrupt Watchdog (NMIWD) timers 1 Watchdog timers 1 Crystal oscillator/External clock input 1 Internal oscillator 2 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 7 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 4-1. Device Comparison (continued) F280039C F280039C-Q1 F280039 F280039-Q1 FEATURE(1) F280038C-Q1 F280038-Q1 F280037C F280037C-Q1 F280037 F280037-Q1 F280036C-Q1 F280036-Q1 F280034 F280034-Q1 F280033 Pins and Power Supply Internal 3.3-V to 1.2-V Voltage Regulator VREG LDO Yes GPIO pins 100-pin PZ 51 – 51 – 51 80-pin PN 39 – 39 – 39 64-pin PM 26 25 26 25 26 48-pin PT – – 14 – 14 Additional GPIO AIO (analog with digital inputs) 4 (2 from cJTAG and 2 from X1/X2) ADVANCE INFORMATION 100-pin PZ 23 – 23 – 23 80-pin PN 16 – 16 – 16 64-pin PM 16 16 16 16 16 48-pin PT – – 14 – 14 AGPIO (analog with digital inputs and outputs) 100-pin PZ 2 – 2 – 2 80-pin PN 2 – 2 – 2 ADC 12-bit Number of ADCs – 23 Analog Peripherals 3 MSPS 4 Conversion Time (ns)(2) ADC channels (single-ended) (includes the two gpdac outputs) 250 100-pin PZ 23 – 23 80-pin PN 64-pin PM 18 – 18 – 18 16 16 16 16 48-pin PT 16 – – 14 – 14 Temperature sensor 1 Buffered DAC 2 CMPSS (each CMPSS has two comparators and two internal DACs) 4 Control Peripherals (3) eCAP/HRCAP modules – Type 2 ePWM/HRPWM channels – Type 4 8 3 (1 - eCAP3 with HRCAP capability) 16 (8 - ePWM1 to ePWM4 with HRPWM capability) eQEP modules – Type 2 2 SDFM channels – Type 2 8 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 4-1. Device Comparison (continued) F280039C F280039C-Q1 F280039 F280039-Q1 FEATURE(1) F280038C-Q1 F280038-Q1 F280037C F280037C-Q1 F280037 F280037-Q1 F280036C-Q1 F280036-Q1 F280034 F280034-Q1 F280033 Communication Peripherals (3) CAN (DCAN) – Type 0 1 CANFD (MCAN) – Type 1 1 1 (1 RX and 1 TX) I2C – Type 1 2 LIN – Type 1 (UART-Compatible) 2 Host Interface Controller (HIC) – Type 1 1 PMBus – Type 0 1 SCI – Type 0 (UART-Compatible) 2 SPI – Type 2 ADVANCE INFORMATION Fast Serial Interface (FSI) – Type 2 2 Package Options, Temperature, and Qualification Junction temperature (TJ) –40°C to 150°C Free-Air temperature (TA) –40°C to 125°C Package Options Package Options with AECQ100 Qualification available (1) (2) (3) 100-pin PZ F280039C F280039 – F280037C F280037 – F280034 F280033 80-pin PN F280039C F280039 – F280037C F280037 – F280034 F280033 64-pin PM F280039C F280039 – F280037C F280037 – F280034 F280033 48-pin PT – – F280037C F280037 – F280034 F280033 100-pin PZ F280039C-Q1 F280039-Q1 – F280037C-Q1 F280037-Q1 – – – 64-pin PM – F280038C-Q1 F280038-Q1 – F280036C-Q1 F280036-Q1 – – 48-pin PT – – F280037C-Q1 F280037-Q1 – F280034-Q1 – A type change represents a major functional feature difference in a peripheral module. Within a peripheral type, there may be minor differences between devices that do not affect the basic functionality of the module. Time between start of sample-and-hold window to start of sample-and-hold window of the next conversion. For devices that are available in more than one package, the peripheral count listed in the smaller package is reduced because the smaller package has less device pins available. The number of peripherals internally present on the device is not reduced compared to the largest package offered within a part number. See Section 5 to identify which peripheral instances are accessible on pins in the smaller package. 4.1 Related Products TMS320F2803x Real-Time Microcontrollers The F2803x series increases the pin-count and memory size options. The F2803x series also introduces the parallel control law accelerator (CLA) option. TMS320F2807x Real-Time Microcontrollers The F2807x series offers the most performance, largest pin counts, flash memory sizes, and peripheral options. The F2807x series includes the latest generation of accelerators, ePWM peripherals, and analog technology. TMS320F28004x Real-Time Microcontrollers The F28004x series is a reduced version of the F2807x series with the latest generational enhancements. TMS320F28002x Real-Time Microcontrollers The F28002x series is a reduced version of the F28004x series with the latest generational enhancements. TMS320F2838x Real-Time Microcontrollers The F2838x series offers more performance, larger pin counts, flash memory sizes, peripheral and wide variety of connectivity options. The F2838x series includes the latest generation of accelerators, ePWM peripherals, and analog technology. Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 9 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 5 Pin Configuration and Functions 5.1 Pin Diagrams GPIO29 GPIO31 GPIO30 GPIO6 GPIO14 GPIO15 GPIO34 GPIO10 GPIO59 GPIO61 GPIO9 GPIO5 VDDIO VDD VSS GPIO44 GPIO7 GPIO22 GPIO41 GPIO23 GPIO40 GPIO0 GPIO1 GPIO2 GPIO3 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82 81 80 79 78 77 76 Figure 5-1 shows the pin assignments on the 100-pin PZ low-profile quad flatpack; the Q and non-Q variant have the same pinout. Figure 5-2 shows the pin assignments on the 80-pin PN low-profile quad flatpack. Figure 5-3 shows the pin assignments on the 64-pin PM low-profile quad flatpack (Q temperature). Figure 5-4 shows the pin assignments on the 64-pin PM low-profile quad flatpack. Figure 5-5 shows the pin assignments on the 48-Pin PT low-profile quad flatpack; the Q and non-Q variant have the same pinout. ADVANCE INFORMATION GPIO28 1 75 GPIO4 XRSn 2 74 GPIO8 VDDIO 3 73 VREGENZ VDD 4 72 VSS VSS 5 71 VDD GPIO47 6 70 VDDIO GPIO48 7 69 GPIO19,X1 GPIO49 8 68 GPIO18,X2 GPIO50 9 67 GPIO58 GPIO51 10 66 GPIO57 GPIO52 11 65 GPIO56 GPIO53 12 64 GPIO32 GPIO54 13 63 GPIO35/TDI A6 14 62 TMS B2,C6 15 61 GPIO37/TDO B3,VDAC 16 60 TCK A2,B6,C9 17 59 GPIO27 50 GPIO13 49 B11,GPIO21 48 B5,GPIO20 VDD VDDIO VSS GPIO60 GPIO55 C14 B0,C11 A10,B1,C10 B4,C8 A9 A8 A4,B8 A5 VDDA B5 VSSA A7,C3 B11 C1 A12,C5 VREFLO VREFLO A. 47 GPIO12 46 51 45 25 44 GPIO11 VREFHI 43 GPIO33 52 42 53 24 41 23 VREFHI 40 A0,B15,C15,DACA_OUT 39 GPIO16 38 54 37 22 36 GPIO17 A1,B7,DACB_OUT 35 55 34 21 33 GPIO24 B12,C2 32 56 31 20 30 GPIO25 A11,B10,C0 29 GPIO26 57 28 58 19 27 18 26 A3,B9,C7 A14,B14,C4 Not to scale Only the GPIO function is shown on GPIO pins. See Section 5.2 for the complete, muxed signal name. Figure 5-1. 100-Pin PZ Low-Profile Quad Flatpack (Top View) 10 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com GPIO14 GPIO15 GPIO34 GPIO10 GPIO9 GPIO5 GPIO45 VDDIO VDD VSS GPIO44 GPIO7 GPIO22 GPIO41 GPIO23 GPIO40 GPIO0 GPIO1 GPIO2 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63 62 61 GPIO30 1 60 GPIO3 GPIO31 2 59 GPIO4 GPIO29 3 58 GPIO8 GPIO28 4 57 GPIO42 XRSn 5 56 GPIO39 GPIO46 6 55 VSS VDDIO 7 54 GPIO43 VDD 8 53 VDD VSS 9 52 VDDIO A6 10 51 GPIO19,X1 B2,C6 11 50 GPIO18,X2 A3,B3,C5,VDAC 12 49 GPIO32 A2,B6,C9 13 48 GPIO35/TDI A15,B9,C7 14 47 TMS A14,B14,C4 15 46 GPIO37/TDO A11,B10,C0 16 45 TCK A5,B12,C2 17 44 GPIO27 40 GPIO17 39 GPIO16 37 38 GPIO33 GPIO11 36 GPIO12 35 GPIO13 34 33 B5,GPIO20 B11,GPIO21 32 VDDIO 31 30 VSS VDD A10,B1,C10 A9,B4,C8 A4,B8,C14 VDDA VSSA A8,B0,C11 A7,C3 A12,C1 VREFLO A. 29 GPIO24 28 41 27 20 26 VREFHI 25 GPIO25 24 GPIO26 42 23 43 19 22 18 21 A1,B7,DACB_OUT A0,B15,C15,DACA_OUT ADVANCE INFORMATION GPIO6 80 SPRSP61 – OCTOBER 2021 Not to scale Only the GPIO function is shown on GPIO pins. See Section 5.2 for the complete, muxed signal name. Figure 5-2. 80-Pin PN Low-Profile Quad Flatpack (Top View) Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 11 TMS320F280039C, TMS320F280037C www.ti.com GPIO6 GPIO10 GPIO9 GPIO5 VDDIO VDD VSS GPIO7 GPIO22 GPIO41 GPIO23 GPIO40 GPIO0 GPIO1 GPIO2 GPIO3 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 SPRSP61 – OCTOBER 2021 5 44 VDD A6 6 43 VDDIO B2,C6 7 42 GPIO19,X1 A3,B3,C5,VDAC 8 41 GPIO18,X2 A2,B6,C9 9 40 GPIO32 A15,B9,C7 10 39 GPIO35/TDI A14,B14,C4 11 38 TMS A11,B10,C0 12 37 GPIO37/TDO A5,B12,C2 13 36 TCK A1,B7,DACB_OUT 14 35 GPIO24 A0,B15,C15,DACA_OUT 15 34 GPIO17 VREFHI 16 33 GPIO16 A. GPIO33 GPIO11 GPIO12 GPIO13 VDDIO VDD VSS A10,B1,C10 A9,B4,C8 A4,B8,C14 VDDA VSSA A8,B0,C11 A7,C3 A12,C1 32 VSS 31 VSS 30 45 29 4 28 VDD 27 VREGENZ 26 46 25 3 24 XRSn 23 GPIO8 22 47 21 2 20 GPIO28 19 GPIO4 18 48 17 1 VREFLO ADVANCE INFORMATION GPIO29 Not to scale Only the GPIO function is shown on GPIO pins. See Section 5.2 for the complete, muxed signal name. Figure 5-3. 64-Pin PM Low-Profile Quad Flatpack - Q Temperature (Top View) 12 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com GPIO10 GPIO9 GPIO5 VDDIO VDD VSS GPIO7 GPIO22 GPIO41 GPIO23 GPIO40 GPIO0 GPIO1 GPIO2 GPIO3 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 VSS 5 44 VDD A6 6 43 VDDIO B2,C6 7 42 GPIO19,X1 A3,B3,C5,VDAC 8 41 GPIO18,X2 A2,B6,C9 9 40 GPIO32 A15,B9,C7 10 39 GPIO35/TDI A14,B14,C4 11 38 TMS A11,B10,C0 12 37 GPIO37/TDO A5,B12,C2 13 36 TCK A1,B7,DACB_OUT 14 35 GPIO24 A0,B15,C15,DACA_OUT 15 34 GPIO17 VREFHI 16 33 GPIO16 GPIO33 GPIO11 GPIO12 GPIO13 VDDIO VDD VSS A10,B1,C10 A9,B4,C8 A4,B8,C14 VDDA VSSA A8,B0,C11 A7,C3 A12,C1 VREFLO A. 32 VSS 31 45 30 4 29 VDD 28 GPIO39 27 46 26 3 25 XRSn 24 GPIO8 23 47 22 2 21 GPIO28 20 GPIO4 19 48 18 1 17 GPIO29 ADVANCE INFORMATION GPIO6 64 SPRSP61 – OCTOBER 2021 Not to scale Only the GPIO function is shown on GPIO pins. See Section 5.2 for the complete, muxed signal name. Figure 5-4. 64-Pin PM Low-Profile Quad Flatpack (Top View) Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 13 TMS320F280039C, TMS320F280037C www.ti.com GPIO6 GPIO5 VDDIO VDD VSS GPIO7 GPIO0 GPIO1 GPIO2 GPIO3 GPIO4 VSS 48 47 46 45 44 43 42 41 40 39 38 37 SPRSP61 – OCTOBER 2021 A6,B2,C6 4 33 GPIO18,X2 A3,B3,C5,VDAC 5 32 GPIO32 A2,B6,C9 6 31 GPIO35/TDI A15,B9,C7 7 30 TMS A11,B10,C0 8 29 GPIO37/TDO A5,B12,C2 9 28 TCK A1,B7,DACB_OUT 10 27 GPIO24 A0,B15,C15,DACA_OUT 11 26 GPIO16 VREFHI 12 25 GPIO33 VDDIO VDD VSS A10,B1,C10 A9,B4,C8 A4,B8,C14 VDDA VSSA A8,B0,C11 A7,C3 A12,C1 VREFLO A. 24 GPIO19,X1 23 34 22 3 21 XRSn 20 VDDIO 19 35 18 2 17 GPIO28 16 VDD 15 36 14 1 13 ADVANCE INFORMATION GPIO29 Not to scale Only the GPIO function is shown on GPIO pins. See Section 5.2 for the complete, muxed signal name. Figure 5-5. 48-Pin PT Low-Profile Quad Flatpack (Top View) 14 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 5.2 Pin Attributes Table 5-1. Pin Attributes SIGNAL NAME MUX 100 PZ 80 PN POSITION 64 PM 64 PMQ 48 PT PIN TYPE DESCRIPTION A0 I ADC-A Input 0 B15 I ADC-B Input 15 C15 I ADC-C Input 15 DACA_OUT O Buffered DAC-A Output. I CMPSS-3 High Comparator Positive Input 2 CMP3_HP2 23 19 15 15 11 CMP3_LP2 I CMPSS-3 Low Comparator Positive Input 2 0, 4, 8, 12 I Analog Pin Used For Digital Input 231 SD1_C1 2 I SDFM-1 Channel 1 Clock Input HIC_BASESEL1 15 I HIC Base address range select 1 I ADC-A Input 1 B7 I ADC-B Input 7 DACB_OUT O Buffered DAC-B Output. I CMPSS-1 High Comparator Positive Input 4 I CMPSS-1 Low Comparator Positive Input 4 0, 4, 8, 12 I Analog Pin Used For Digital Input 232 SD1_D4 2 I SDFM-1 Channel 4 Data Input HIC_BASESEL0 15 I HIC Base address range select 0 A10 I ADC-A Input 10 B1 I ADC-B Input 1 C10 I ADC-C Input 10 CMP2_HP3 I CMPSS-2 High Comparator Positive Input 3 CMP2_HN0 I CMPSS-2 High Comparator Negative Input 0 I CMPSS-2 Low Comparator Positive Input 3 I CMPSS-2 Low Comparator Negative Input 0 AIO231 A1 CMP1_HP4 22 CMP1_LP4 AIO232 40 CMP2_LP3 18 29 14 25 14 25 10 21 CMP2_LN0 AIO230 0, 4, 8, 12 I Analog Pin Used For Digital Input 230 SD1_C4 2 I SDFM-1 Channel 4 Clock Input HIC_BASESEL2 15 I HIC Base address range select 2 A11 I ADC-A Input 11 B10 I ADC-B Input 10 C0 I ADC-C Input 0 CMP1_HP1 I CMPSS-1 High Comparator Positive Input 1 CMP1_HN1 I CMPSS-1 High Comparator Negative Input 1 I CMPSS-1 Low Comparator Positive Input 1 I CMPSS-1 Low Comparator Negative Input 1 20 CMP1_LP1 CMP1_LN1 16 12 12 8 AIO237 0, 4, 8, 12 I Analog Pin Used For Digital Input 237 SD1_D2 2 I SDFM-1 Channel 2 Data Input HIC_A6 15 I HIC Address 6 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback ADVANCE INFORMATION ANALOG 15 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-1. Pin Attributes (continued) SIGNAL NAME MUX 100 PZ 80 PN POSITION 64 PM 64 PMQ 48 PT PIN TYPE DESCRIPTION A12 I ADC-A Input 12 CMP2_HP1 I CMPSS-2 High Comparator Positive Input 1 CMP2_HN1 I CMPSS-2 High Comparator Negative Input 1 CMP2_LP1 I CMPSS-2 Low Comparator Positive Input 1 I CMPSS-2 Low Comparator Negative Input 1 28 CMP2_LN1 22 18 18 14 AIO238 0, 4, 8, 12 I Analog Pin Used For Digital Input 238 SD2_C3 2 I SDFM-2 Channel 3 Clock Input HIC_NCS 15 ADVANCE INFORMATION I HIC Chip select input A14 I ADC-A Input 14 B14 I ADC-B Input 14 C4 I ADC-C Input 4 CMP3_HP4 I CMPSS-3 High Comparator Positive Input 4 19 CMP3_LP4 15 11 11 I CMPSS-3 Low Comparator Positive Input 4 AIO239 0, 4, 8, 12 I Analog Pin Used For Digital Input 239 SD1_D1 2 I SDFM-1 Channel 1 Data Input HIC_A5 15 I HIC Address 5 A2 I ADC-A Input 2 B6 I ADC-B Input 6 C9 I ADC-C Input 9 I CMPSS-1 High Comparator Positive Input 0 I CMPSS-1 Low Comparator Positive Input 0 0, 4, 8, 12 I Analog Pin Used For Digital Input 224 SD2_D3 2 I SDFM-2 Channel 3 Data Input HIC_A3 15 I HIC Address 3 A3 I ADC-A Input 3 CMP3_HP5 I CMPSS-3 High Comparator Positive Input 5 I CMPSS-3 Low Comparator Positive Input 5 CMP1_HP0 17 CMP1_LP0 AIO224 9 9 6 18 CMP3_LP5 AIO229 13 I Analog Pin Used For Digital Input 229 A4 0, 4, 8, 12 I ADC-A Input 4 B8 I ADC-B Input 8 CMP2_HP0 I CMPSS-2 High Comparator Positive Input 0 CMP2_LP0 I CMPSS-2 Low Comparator Positive Input 0 AIO225 0, 4, 8, 12 36 27 23 23 19 I Analog Pin Used For Digital Input 225 SD2_C2 2 I SDFM-2 Channel 2 Clock Input HIC_NWE 15 I HIC Data Write enable from host I ADC-A Input 5 I CMPSS-2 High Comparator Positive Input 5 I CMPSS-2 Low Comparator Positive Input 5 I Analog Pin Used For Digital Input 249 A6 I ADC-A Input 6 CMP1_HP2 I CMPSS-1 High Comparator Positive Input 2 I CMPSS-1 Low Comparator Positive Input 2 I Analog Pin Used For Digital Input 228 A5 CMP2_HP5 35 CMP2_LP5 AIO249 0, 4, 8, 12 CMP1_LP2 14 10 6 6 4 AIO228 0, 4, 8, 12 SD2_C1 2 I SDFM-2 Channel 1 Clock Input HIC_A0 15 I HIC Address 0 16 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-1. Pin Attributes (continued) 64 PM 64 PMQ 48 PT PIN TYPE DESCRIPTION A8 I ADC-A Input 8 CMP4_HP4 I CMPSS-4 High Comparator Positive Input 4 I CMPSS-4 Low Comparator Positive Input 4 I Analog Pin Used For Digital Input 240 CMP4_LP4 37 AIO240 0, 4, 8, 12 SD2_C1 2 I SDFM-2 Channel 1 Clock Input HIC_NBE1 15 I HIC Byte enable 1 A9 I ADC-A Input 9 CMP2_HP2 I CMPSS-2 High Comparator Positive Input 2 CMP2_LP2 I CMPSS-2 Low Comparator Positive Input 2 I Analog Pin Used For Digital Input 227 AIO227 0, 4, 8, 12 38 28 24 24 20 SD1_C3 2 I SDFM-1 Channel 3 Clock Input HIC_NBE0 15 I HIC Byte enable 0 B0 I ADC-B Input 0 C11 I ADC-C Input 11 I CMPSS-2 High Comparator Positive Input 4 I CMPSS-2 Low Comparator Positive Input 4 I Analog Pin Used For Digital Input 253 B11 I ADC-B Input 11 CMP4_HP5 I CMPSS-4 High Comparator Positive Input 5 I CMPSS-4 Low Comparator Positive Input 5 I Analog Pin Used For Digital Input 251 B11 I ADC-B Input 11 CMP4_HP5 I CMPSS-4 High Comparator Positive Input 5 CMP4_LP5 I CMPSS-4 Low Comparator Positive Input 5 CMP2_HP4 41 CMP2_LP4 AIO253 0, 4, 8, 12 30 CMP4_LP5 AIO251 GPIO21 (See GPIO Section) 0, 4, 8, 12 49 34 0, 4, 8, 12 I/O General-Purpose Input Output 21. This pin also has digital mux functions which are described in the DIGITAL section of this table. B2 I ADC-B Input 2 C6 I ADC-C Input 6 I CMPSS-3 High Comparator Positive Input 0 I CMPSS-3 Low Comparator Positive Input 0 CMP3_HP0 CMP3_LP0 15 11 7 7 4 AIO226 0, 4, 8, 12 I Analog Pin Used For Digital Input 226 SD2_D4 2 I SDFM-2 Channel 4 Data Input HIC_A1 15 I HIC Address 1 B3 I ADC-B Input 3 VDAC I Optional external reference voltage for on-chip DACs. CMP3_HP3 I CMPSS-3 High Comparator Positive Input 3 CMP3_HN0 I CMPSS-3 High Comparator Negative Input 0 I CMPSS-3 Low Comparator Positive Input 3 I CMPSS-3 Low Comparator Negative Input 0 16 CMP3_LP3 CMP3_LN0 12 8 8 5 ADVANCE INFORMATION SIGNAL NAME MUX 100 PZ 80 PN POSITION AIO242 0, 4, 8, 12 I Analog Pin Used For Digital Input 242 SD2_D2 2 I SDFM-2 Channel 2 Data Input HIC_A2 15 I HIC Address 2 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 17 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-1. Pin Attributes (continued) SIGNAL NAME MUX 100 PZ 80 PN POSITION 64 PM 64 PMQ 48 PT PIN TYPE DESCRIPTION B4 I ADC-B Input 4 C8 I ADC-C Input 8 I CMPSS-4 High Comparator Positive Input 0 I CMPSS-4 Low Comparator Positive Input 0 I Analog Pin Used For Digital Input 236 B5 I ADC-B Input 5 CMP1_HP5 I CMPSS-1 High Comparator Positive Input 5 CMP4_HP0 39 28 24 24 20 CMP4_LP0 AIO236 0, 4, 8, 12 CMP1_LP5 ADVANCE INFORMATION I CMPSS-1 Low Comparator Positive Input 5 AIO252 0, 4, 8, 12 32 I Analog Pin Used For Digital Input 252 SD2_C4 2 I SDFM-2 Channel 4 Clock Input B5 I ADC-B Input 5 CMP1_HP5 I CMPSS-1 High Comparator Positive Input 5 I CMPSS-1 Low Comparator Positive Input 5 CMP1_LP5 GPIO20 (See GPIO Section) 48 33 0, 4, 8, 12 I/O C1 CMP4_HP2 29 CMP4_LP2 AIO248 22 18 18 14 0, 4, 8, 12 General-Purpose Input Output 20. This pin also has digital mux functions which are described in the DIGITAL section of this table. I ADC-C Input 1 I CMPSS-4 High Comparator Positive Input 2 I CMPSS-4 Low Comparator Positive Input 2 I Analog Pin Used For Digital Input 248 C14 I ADC-C Input 14 CMP4_HP3 I CMPSS-4 High Comparator Positive Input 3 CMP4_HN0 I CMPSS-4 High Comparator Negative Input 0 I CMPSS-4 Low Comparator Positive Input 3 I CMPSS-4 Low Comparator Negative Input 0 I Analog Pin Used For Digital Input 247 C2 I ADC-C Input 2 B12 I ADC-B Input 12 CMP3_HP1 I CMPSS-3 High Comparator Positive Input 1 I CMPSS-3 High Comparator Negative Input 1 I CMPSS-3 Low Comparator Positive Input 1 42 CMP4_LP3 CMP4_LN0 AIO247 0, 4, 8, 12 CMP3_HN1 CMP3_LP1 21 17 13 13 9 CMP3_LN1 I CMPSS-3 Low Comparator Negative Input 1 AIO244 0, 4, 8, 12 I Analog Pin Used For Digital Input 244 SD1_D3 2 I SDFM-1 Channel 3 Data Input HIC_A7 15 I HIC Address 7 C3 I ADC-C Input 3 A7 I ADC-A Input 7 CMP4_HP1 I CMPSS-4 High Comparator Positive Input 1 CMP4_HN1 I CMPSS-4 High Comparator Negative Input 1 I CMPSS-4 Low Comparator Positive Input 1 I CMPSS-4 Low Comparator Negative Input 1 31 CMP4_LP1 23 19 19 15 CMP4_LN1 AIO245 0, 4, 8, 12 I Analog Pin Used For Digital Input 245 SD1_C2 2 I SDFM-1 Channel 2 Clock Input HIC_NOE 15 O HIC Output enable for data bus I ADC-C Input 5 C5 18 28 Submit Document Feedback 12 8 8 5 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-1. Pin Attributes (continued) C7 18 B9 14 64 PM 64 PMQ 48 PT 10 10 7 PIN TYPE DESCRIPTION I ADC-C Input 7 I ADC-B Input 9 VREFHI 25 20 16 16 12 I ADC High Reference. In external reference mode, externally drive the high reference voltage onto this pin. In internal reference mode, a voltage is driven onto this pin by the device. In either mode, place at least a 2.2-µF capacitor on this pin. This capacitor should be placed as close to the device as possible between the VREFHI and VREFLO pins. VREFLO 27 21 17 17 13 I ADC Low Reference A15 I ADC-A Input 15 CMP1_HP3 I CMPSS-1 High Comparator Positive Input 3 CMP1_HN0 I CMPSS-1 High Comparator Negative Input 0 I CMPSS-1 Low Comparator Positive Input 3 I CMPSS-1 Low Comparator Negative Input 0 0, 4, 8, 12 I Analog Pin Used For Digital Input 233 SD2_D1 2 I SDFM-2 Channel 1 Data Input HIC_A4 15 I HIC Address 4 I ADC-A Input 3 I CMPSS-3 High Comparator Positive Input 5 CMP3_LP5 I CMPSS-3 Low Comparator Positive Input 5 A5 I ADC-A Input 5 I CMPSS-2 High Comparator Positive Input 5 CMP2_LP5 I CMPSS-2 Low Comparator Positive Input 5 A8 I ADC-A Input 8 CMP4_HP4 I CMPSS-4 High Comparator Positive Input 4 CMP4_LP4 I CMPSS-4 Low Comparator Positive Input 4 I Analog Pin Used For Digital Input 241 CMP1_LP3 14 CMP1_LN0 AIO233 10 10 7 A3 12 CMP3_HP5 CMP2_HP5 AIO241 17 24 0, 4, 8, 12 8 13 20 8 13 20 5 9 16 SD2_C1 2 I SDFM-2 Channel 1 Clock Input HIC_NBE1 15 I HIC Byte enable 1 B0 I ADC-B Input 0 C11 I ADC-C Input 11 24 CMP2_HP4 20 20 16 I CMPSS-2 High Comparator Positive Input 4 CMP2_LP4 I CMPSS-2 Low Comparator Positive Input 4 C14 I ADC-C Input 14 I CMPSS-4 High Comparator Positive Input 3 I CMPSS-4 High Comparator Negative Input 0 CMP4_LP3 I CMPSS-4 Low Comparator Positive Input 3 CMP4_LN0 I CMPSS-4 Low Comparator Negative Input 0 CMP4_HP3 CMP4_HN0 27 23 23 19 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback ADVANCE INFORMATION SIGNAL NAME MUX 100 PZ 80 PN POSITION 19 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-1. Pin Attributes (continued) SIGNAL NAME MUX 100 PZ 80 PN POSITION 64 PM 64 PMQ 48 PT PIN TYPE DESCRIPTION GPIO GPIO0 0, 4, 8, 12 I/O General-Purpose Input Output 0 ePWM-1 Output A EPWM1_A 1 O I2CA_SDA 6 I/OD I2C-A Open-Drain Bidirectional Data SPIA_STE 7 I/O SPI-A Slave Transmit Enable (STE) FSIRXA_CLK 9 MCAN_RX 10 79 63 52 52 42 I FSIRX-A Input Clock I CAN/CAN FD Receive ADVANCE INFORMATION CLB_OUTPUTXBAR8 11 O CLB Output X-BAR Output 8 EQEP1_INDEX 13 I/O eQEP-1 Index HIC_D7 14 I/O HIC Data 7 HIC_BASESEL1 GPIO1 15 I HIC Base address range select 1 0, 4, 8, 12 I/O General-Purpose Input Output 1 ePWM-1 Output B EPWM1_B 1 O I2CA_SCL 6 I/OD SPIA_SOMI 7 I/O SPI-A Slave Out, Master In (SOMI) MCAN_TX 10 O CAN/CAN FD Transmit CLB_OUTPUTXBAR7 11 O CLB Output X-BAR Output 7 HIC_A2 13 I HIC Address 2 FSITXA_TDM_D1 14 I FSITX-A Time Division Multiplexed Additional Data Input HIC_D10 78 62 51 51 41 I2C-A Open-Drain Bidirectional Clock 15 I/O HIC Data 10 0, 4, 8, 12 I/O General-Purpose Input Output 2 EPWM2_A 1 O ePWM-2 Output A OUTPUTXBAR1 5 O Output X-BAR Output 1 PMBUSA_SDA 6 I/OD SPIA_SIMO 7 I/O SPI-A Slave In, Master Out (SIMO) SCIA_TX 9 O SCI-A Transmit Data FSIRXA_D1 10 I FSIRX-A Optional Additional Data Input I2CB_SDA 11 I/OD HIC_A1 13 I HIC Address 1 CANA_TX 14 O CAN-A Transmit HIC_D9 15 I/O HIC Data 9 GPIO3 0, 4, 8, 12 I/O General-Purpose Input Output 3 1 O ePWM-2 Output B Output X-BAR Output 2 GPIO2 EPWM2_B OUTPUTXBAR2 77 61 50 50 40 2, 5 O PMBUSA_SCL 6 I/OD SPIA_CLK 7 SCIA_RX 9 FSIRXA_D0 I/O 49 49 39 PMBus-A Open-Drain Bidirectional Clock SPI-A Clock SCI-A Receive Data 10 I FSIRX-A Primary Data Input I2CB_SCL 11 I/OD HIC_NOE 13 O HIC Output enable for data bus CANA_RX 14 I CAN-A Receive HIC_D4 15 I/O Submit Document Feedback 60 I2C-B Open-Drain Bidirectional Data I 20 76 PMBus-A Open-Drain Bidirectional Data I2C-B Open-Drain Bidirectional Clock HIC Data 4 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-1. Pin Attributes (continued) GPIO4 64 PM 64 PMQ 48 PT PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 4 EPWM3_A 1 O ePWM-3 Output A MCAN_TX 3 O CAN/CAN FD Transmit OUTPUTXBAR3 5 O Output X-BAR Output 3 CANA_TX 6 O CAN-A Transmit SPIB_CLK 7 I/O SPI-B Clock EQEP2_STROBE 9 I/O eQEP-2 Strobe FSIRXA_CLK 10 I FSIRX-A Input Clock CLB_OUTPUTXBAR6 11 O CLB Output X-BAR Output 6 HIC_BASESEL2 13 I HIC Base address range select 2 HIC_NWE 75 59 48 48 38 15 I HIC Data Write enable from host 0, 4, 8, 12 I/O General-Purpose Input Output 5 EPWM3_B 1 O ePWM-3 Output B OUTPUTXBAR3 3 O Output X-BAR Output 3 MCAN_RX 5 I CAN/CAN FD Receive CANA_RX 6 I CAN-A Receive SPIA_STE 7 GPIO5 89 74 61 61 47 I/O SPI-A Slave Transmit Enable (STE) FSITXA_D1 9 O FSITX-A Optional Additional Data Output CLB_OUTPUTXBAR5 10 O CLB Output X-BAR Output 5 HIC_A7 13 I HIC Address 7 HIC_D4 14 I/O HIC Data 4 HIC_D15 15 I/O HIC Data 15 GPIO6 0, 4, 8, 12 I/O General-Purpose Input Output 6 EPWM4_A 1 O ePWM-4 Output A OUTPUTXBAR4 2 O Output X-BAR Output 4 SYNCOUT 3 O External ePWM Synchronization Pulse EQEP1_A 5 I eQEP-1 Input A SPIB_SOMI 7 I/O SPI-B Slave Out, Master In (SOMI) FSITXA_D0 9 O FSITX-A Primary Data Output FSITXA_D1 11 O FSITX-A Optional Additional Data Output HIC_NBE1 13 I HIC Byte enable 1 CLB_OUTPUTXBAR8 14 O CLB Output X-BAR Output 8 HIC_D14 97 80 64 64 48 15 I/O HIC Data 14 0, 4, 8, 12 I/O General-Purpose Input Output 7 EPWM4_B 1 O ePWM-4 Output B OUTPUTXBAR5 3 O Output X-BAR Output 5 EQEP1_B 5 I eQEP-1 Input B SPIB_SIMO 7 I/O SPI-B Slave In, Master Out (SIMO) FSITXA_CLK 9 O FSITX-A Output Clock CLB_OUTPUTXBAR2 10 O CLB Output X-BAR Output 2 HIC_A6 13 I HIC Address 6 HIC_D14 15 I/O GPIO7 84 68 57 57 43 ADVANCE INFORMATION SIGNAL NAME MUX 100 PZ 80 PN POSITION HIC Data 14 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 21 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-1. Pin Attributes (continued) SIGNAL NAME GPIO8 MUX 100 PZ 80 PN POSITION 64 PM 64 PMQ 48 PT PIN TYPE DESCRIPTION ADVANCE INFORMATION 0, 4, 8, 12 I/O General-Purpose Input Output 8 EPWM5_A 1 O ePWM-5 Output A ADCSOCAO 3 O ADC Start of Conversion A for External ADC EQEP1_STROBE 5 I/O eQEP-1 Strobe SCIA_TX 6 O SCI-A Transmit Data SPIA_SIMO 7 I/O SPI-A Slave In, Master Out (SIMO) I2CA_SCL 9 FSITXA_D1 10 O FSITX-A Optional Additional Data Output CLB_OUTPUTXBAR5 11 O CLB Output X-BAR Output 5 HIC_A0 13 I HIC Address 0 FSITXA_TDM_CLK 14 I FSITX-A Time Division Multiplexed Clock Input HIC_D8 15 I/O HIC Data 8 GPIO9 74 58 47 47 I/OD I2C-A Open-Drain Bidirectional Clock 0, 4, 8, 12 I/O General-Purpose Input Output 9 EPWM5_B 1 O ePWM-5 Output B SCIB_TX 2 O SCI-B Transmit Data OUTPUTXBAR6 3 O Output X-BAR Output 6 EQEP1_INDEX 5 I/O eQEP-1 Index SCIA_RX 6 SPIA_CLK 7 FSITXA_D0 90 75 62 62 I SCI-A Receive Data I/O SPI-A Clock 10 O FSITX-A Primary Data Output LINB_RX 11 I LIN-B Receive HIC_BASESEL0 13 I HIC Base address range select 0 I2CB_SCL 14 I/OD HIC_NRDY 15 O HIC Ready from device to host GPIO10 I2C-B Open-Drain Bidirectional Clock 0, 4, 8, 12 I/O General-Purpose Input Output 10 EPWM6_A 1 O ePWM-6 Output A ADCSOCBO 3 O ADC Start of Conversion B for External ADC EQEP1_A 5 I eQEP-1 Input A SCIB_TX 6 O SCI-B Transmit Data SPIA_SOMI 7 I/O SPI-A Slave Out, Master In (SOMI) I2CA_SDA 9 FSITXA_CLK 10 O FSITX-A Output Clock LINB_TX 11 O LIN-B Transmit HIC_NWE 13 I HIC Data Write enable from host FSITXA_TDM_D0 14 I FSITX-A Time Division Multiplexed Data Input CLB_OUTPUTXBAR4 15 O CLB Output X-BAR Output 4 22 Submit Document Feedback 93 76 63 63 I/OD I2C-A Open-Drain Bidirectional Data Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-1. Pin Attributes (continued) GPIO11 64 PM 64 PMQ 48 PT PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 11 EPWM6_B 1 O ePWM-6 Output B OUTPUTXBAR7 3 O Output X-BAR Output 7 EQEP1_B 5 I eQEP-1 Input B SCIB_RX 6 I SCI-B Receive Data SPIA_STE 7 FSIRXA_D1 9 LINB_RX EQEP2_A 52 37 31 31 I/O SPI-A Slave Transmit Enable (STE) I FSIRX-A Optional Additional Data Input 10 I LIN-B Receive 11 I eQEP-2 Input A SPIA_SIMO 13 I/O SPI-A Slave In, Master Out (SIMO) HIC_D6 14 I/O HIC Data 6 HIC_NBE0 15 I GPIO12 HIC Byte enable 0 0, 4, 8, 12 I/O General-Purpose Input Output 12 EPWM7_A 1 O ePWM-7 Output A MCAN_RX 3 I CAN/CAN FD Receive EQEP1_STROBE 5 I/O eQEP-1 Strobe SCIB_TX 6 O SCI-B Transmit Data PMBUSA_CTL 7 I/O PMBus-A Control Signal - Slave Input/Master Output FSIRXA_D0 9 LINB_TX SPIA_CLK CANA_RX 13 I HIC_D13 14 I/O HIC Data 13 HIC_INT 15 O HIC Device interrupt to host GPIO13 51 36 30 30 I FSIRX-A Primary Data Input 10 O LIN-B Transmit 11 I/O SPI-A Clock CAN-A Receive 0, 4, 8, 12 I/O General-Purpose Input Output 13 EPWM7_B 1 O ePWM-7 Output B MCAN_TX 3 O CAN/CAN FD Transmit EQEP1_INDEX 5 I/O eQEP-1 Index SCIB_RX 6 I PMBUSA_ALERT 7 I/OD FSIRXA_CLK 9 LINB_RX SPIA_SOMI CANA_TX HIC_D11 HIC_D5 50 35 29 29 ADVANCE INFORMATION SIGNAL NAME MUX 100 PZ 80 PN POSITION SCI-B Receive Data PMBus-A Open-Drain Bidirectional Alert Signal I FSIRX-A Input Clock 10 I LIN-B Receive 11 I/O SPI-A Slave Out, Master In (SOMI) 13 O CAN-A Transmit 14 I/O HIC Data 11 15 I/O HIC Data 5 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 23 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-1. Pin Attributes (continued) SIGNAL NAME GPIO14 MUX 100 PZ 80 PN POSITION 64 PM 64 PMQ 48 PT PIN TYPE DESCRIPTION ADVANCE INFORMATION 0, 4, 8, 12 I/O General-Purpose Input Output 14 EPWM8_A 1 O ePWM-8 Output A SCIB_TX 2 O SCI-B Transmit Data I2CB_SDA 5 I/OD OUTPUTXBAR3 6 O PMBUSA_SDA 7 SPIB_CLK 9 EQEP2_A 10 I eQEP-2 Input A LINB_TX 11 O LIN-B Transmit EPWM3_A 13 O ePWM-3 Output A CLB_OUTPUTXBAR7 14 O CLB Output X-BAR Output 7 HIC_D15 15 I/O HIC Data 15 GPIO15 96 I/OD 79 I/O I2C-B Open-Drain Bidirectional Data Output X-BAR Output 3 PMBus-A Open-Drain Bidirectional Data SPI-B Clock 0, 4, 8, 12 I/O General-Purpose Input Output 15 EPWM8_B 1 O ePWM-8 Output B SCIB_RX 2 I SCI-B Receive Data I2CB_SCL 5 I/OD OUTPUTXBAR4 6 O PMBUSA_SCL 7 SPIB_STE 9 EQEP2_B 10 95 I/OD 78 I/O I2C-B Open-Drain Bidirectional Clock Output X-BAR Output 4 PMBus-A Open-Drain Bidirectional Clock SPI-B Slave Transmit Enable (STE) I eQEP-2 Input B LINB_RX 11 I LIN-B Receive EPWM3_B 13 O ePWM-3 Output B CLB_OUTPUTXBAR6 14 O CLB Output X-BAR Output 6 HIC_D12 15 I/O HIC Data 12 GPIO16 0, 4, 8, 12 I/O General-Purpose Input Output 16 SPIA_SIMO 1 I/O SPI-A Slave In, Master Out (SIMO) OUTPUTXBAR7 3 O Output X-BAR Output 7 EPWM5_A 5 O ePWM-5 Output A SCIA_TX 6 O SCI-A Transmit Data SD1_D1 7 I SDFM-1 Channel 1 Data Input EQEP1_STROBE 9 I/O PMBUSA_SCL 10 I/OD XCLKOUT 11 O External Clock Output. This pin outputs a divided-down version of a chosen clock signal from within the device. EQEP2_B 13 I eQEP-2 Input B SPIB_SOMI 14 I/O SPI-B Slave Out, Master In (SOMI) HIC_D1 15 I/O HIC Data 1 24 Submit Document Feedback 54 39 33 33 26 eQEP-1 Strobe PMBus-A Open-Drain Bidirectional Clock Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-1. Pin Attributes (continued) GPIO17 64 PM 64 PMQ 48 PT PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 17 SPIA_SOMI 1 I/O SPI-A Slave Out, Master In (SOMI) OUTPUTXBAR8 3 O Output X-BAR Output 8 EPWM5_B 5 O ePWM-5 Output B SCIA_RX 6 I SCI-A Receive Data SD1_C1 7 I SDFM-1 Channel 1 Clock Input EQEP1_INDEX 9 I/O PMBUSA_SDA 10 I/OD CANA_TX 11 O CAN-A Transmit HIC_D2 15 I/O HIC Data 2 GPIO18 55 40 34 34 eQEP-1 Index PMBus-A Open-Drain Bidirectional Data 0, 4, 8, 12 I/O General-Purpose Input Output 18 SPIA_CLK 1 I/O SPI-A Clock SCIB_TX 2 O SCI-B Transmit Data CANA_RX 3 I CAN-A Receive EPWM6_A 5 O ePWM-6 Output A I2CA_SCL 6 I/OD SD1_D2 7 I SDFM-1 Channel 2 Data Input EQEP2_A 9 I eQEP-2 Input A PMBUSA_CTL 10 I/O PMBus-A Control Signal - Slave Input/Master Output XCLKOUT 11 O External Clock Output. This pin outputs a divided-down version of a chosen clock signal from within the device. LINB_TX 13 O LIN-B Transmit FSITXA_TDM_CLK 14 I FSITX-A Time Division Multiplexed Clock Input HIC_INT X2 GPIO19 68 50 41 41 33 I2C-A Open-Drain Bidirectional Clock 15 O HIC Device interrupt to host ALT I/O Crystal oscillator output. 0, 4, 8, 12 I/O General-Purpose Input Output 19 SPIA_STE 1 I/O SPI-A Slave Transmit Enable (STE) SCIB_RX 2 I SCI-B Receive Data CANA_TX 3 O CAN-A Transmit EPWM6_B 5 O ePWM-6 Output B I2CA_SDA 6 I/OD SD1_C2 7 I SDFM-1 Channel 2 Clock Input eQEP-2 Input B EQEP2_B 9 I PMBUSA_ALERT 10 I/OD CLB_OUTPUTXBAR1 11 LINB_RX FSITXA_TDM_D0 HIC_NBE0 X1 69 51 42 42 34 I2C-A Open-Drain Bidirectional Data PMBus-A Open-Drain Bidirectional Alert Signal O CLB Output X-BAR Output 1 13 I LIN-B Receive 14 I FSITX-A Time Division Multiplexed Data Input 15 I HIC Byte enable 0 ALT I/O ADVANCE INFORMATION SIGNAL NAME MUX 100 PZ 80 PN POSITION Crystal oscillator input or single-ended clock input. The device initialization software must configure this pin before the crystal oscillator is enabled. To use this oscillator, a quartz crystal circuit must be connected to X1 and X2. This pin can also be used to feed a single-ended 3.3-V level clock. See the XTAL section for usage details. Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 25 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-1. Pin Attributes (continued) SIGNAL NAME GPIO20 (See ANALOG Section) MUX 100 PZ 80 PN POSITION 64 PM 64 PMQ 0, 4, 8, 12 48 PT PIN TYPE DESCRIPTION I/O General-Purpose Input Output 20. This pin also has analog functions which are described in the ANALOG section of this table. EQEP1_A 1 SPIB_SIMO 6 SD1_D3 7 I SDFM-1 Channel 3 Data Input MCAN_TX 9 O CAN/CAN FD Transmit 0, 4, 8, 12 I/O General-Purpose Input Output 21. This pin also has analog functions which are described in the ANALOG section of this table. GPIO21 (See ANALOG Section) 48 I 33 I/O SPI-B Slave In, Master Out (SIMO) ADVANCE INFORMATION EQEP1_B 1 SPIB_SOMI 6 I/O SD1_C3 7 I SDFM-1 Channel 3 Clock Input MCAN_RX 9 I CAN/CAN FD Receive GPIO22 49 I eQEP-1 Input A 34 eQEP-1 Input B SPI-B Slave Out, Master In (SOMI) 0, 4, 8, 12 I/O General-Purpose Input Output 22 EQEP1_STROBE 1 I/O eQEP-1 Strobe SCIB_TX 3 O SCI-B Transmit Data SPIB_CLK 6 I/O SPI-B Clock SD1_D4 7 I SDFM-1 Channel 4 Data Input 83 67 56 56 LINA_TX 9 O LIN-A Transmit CLB_OUTPUTXBAR1 10 O CLB Output X-BAR Output 1 LINB_TX 11 O LIN-B Transmit HIC_A5 13 I HIC Address 5 EPWM4_A 14 O ePWM-4 Output A HIC_D13 15 I/O HIC Data 13 GPIO23 0, 4, 8, 12 I/O General-Purpose Input Output 23 EQEP1_INDEX 1 I/O eQEP-1 Index SCIB_RX 3 I SPIB_STE 6 I/O SD1_C4 7 LINA_RX 9 CLB_OUTPUTXBAR3 SCI-B Receive Data SPI-B Slave Transmit Enable (STE) I SDFM-1 Channel 4 Clock Input I LIN-A Receive 10 O CLB Output X-BAR Output 3 LINB_RX 11 I LIN-B Receive HIC_A3 13 I HIC Address 3 EPWM4_B 14 O ePWM-4 Output B HIC_D11 15 I/O HIC Data 11 26 Submit Document Feedback 81 65 54 54 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-1. Pin Attributes (continued) GPIO24 64 PM 64 PMQ 48 PT PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 24 OUTPUTXBAR1 1 O Output X-BAR Output 1 EQEP2_A 2 I eQEP-2 Input A EPWM8_A 5 O ePWM-8 Output A SPIB_SIMO 6 I/O SPI-B Slave In, Master Out (SIMO) SD2_D1 7 LINB_TX 9 PMBUSA_SCL 10 I/OD SCIA_TX 11 O SCI-A Transmit Data ERRORSTS 13 O Error Status Output. This signal requires an external pulldown. HIC_D3 15 I/O HIC Data 3 GPIO25 56 41 35 35 27 I SDFM-2 Channel 1 Data Input O LIN-B Transmit PMBus-A Open-Drain Bidirectional Clock 0, 4, 8, 12 I/O General-Purpose Input Output 25 OUTPUTXBAR2 1 O Output X-BAR Output 2 EQEP2_B 2 I eQEP-2 Input B EQEP1_A 5 I eQEP-1 Input A SPIB_SOMI 6 I/O SD2_C1 7 I SDFM-2 Channel 1 Clock Input FSITXA_D1 9 O FSITX-A Optional Additional Data Output PMBUSA_SDA 10 I/OD PMBus-A Open-Drain Bidirectional Data SCIA_RX 11 I SCI-A Receive Data HIC_BASESEL0 14 I HIC Base address range select 0 GPIO26 57 42 SPI-B Slave Out, Master In (SOMI) 0, 4, 8, 12 I/O General-Purpose Input Output 26 OUTPUTXBAR3 1, 5 O Output X-BAR Output 3 EQEP2_INDEX 2 I/O eQEP-2 Index SPIB_CLK 6 I/O SPI-B Clock SD2_D2 7 I SDFM-2 Channel 2 Data Input O FSITX-A Primary Data Output PMBus-A Control Signal - Slave Input/Master Output 58 43 FSITXA_D0 9 PMBUSA_CTL 10 I/O I2CA_SDA 11 I/OD HIC_D0 14 I/O I2C-A Open-Drain Bidirectional Data HIC Data 0 HIC_A1 15 I GPIO27 0, 4, 8, 12 I/O General-Purpose Input Output 27 OUTPUTXBAR4 HIC Address 1 1, 5 O Output X-BAR Output 4 EQEP2_STROBE 2 I/O eQEP-2 Strobe SPIB_STE 6 I/O SPI-B Slave Transmit Enable (STE) SD2_C2 7 FSITXA_CLK 9 PMBUSA_ALERT 10 I/OD PMBus-A Open-Drain Bidirectional Alert Signal I2CA_SCL 11 I/OD I2C-A Open-Drain Bidirectional Clock HIC_D1 14 I/O HIC_A4 15 I 59 44 ADVANCE INFORMATION SIGNAL NAME MUX 100 PZ 80 PN POSITION I SDFM-2 Channel 2 Clock Input O FSITX-A Output Clock HIC Data 1 HIC Address 4 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 27 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-1. Pin Attributes (continued) SIGNAL NAME GPIO28 MUX 100 PZ 80 PN POSITION 64 PM 64 PMQ 48 PT PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O SCIA_RX 1 I SCI-A Receive Data EPWM7_A 3 O ePWM-7 Output A OUTPUTXBAR5 5 O Output X-BAR Output 5 EQEP1_A 6 I eQEP-1 Input A SD2_D3 7 I SDFM-2 Channel 3 Data Input EQEP2_STROBE 9 LINA_TX SPIB_CLK 1 4 2 2 2 General-Purpose Input Output 28 ADVANCE INFORMATION I/O eQEP-2 Strobe 10 O LIN-A Transmit 11 I/O SPI-B Clock ERRORSTS 13 O Error Status Output. This signal requires an external pulldown. I2CB_SDA 14 I/OD HIC_NOE I2C-B Open-Drain Bidirectional Data 15 O HIC Output enable for data bus GPIO29 0, 4, 8, 12 I/O General-Purpose Input Output 29 SCIA_TX 1 O SCI-A Transmit Data EPWM7_B 3 O ePWM-7 Output B OUTPUTXBAR6 5 O Output X-BAR Output 6 EQEP1_B 6 I eQEP-1 Input B SD2_C3 7 I SDFM-2 Channel 3 Clock Input EQEP2_INDEX 9 I/O eQEP-2 Index LINA_RX 10 I LIN-A Receive SPIB_STE 11 I/O SPI-B Slave Transmit Enable (STE) ERRORSTS 13 O Error Status Output. This signal requires an external pulldown. I2CB_SCL 14 I/OD 15 I HIC_NCS AUXCLKIN GPIO30 100 3 1 1 1 I2C-B Open-Drain Bidirectional Clock HIC Chip select input ALT 0, 4, 8, 12 I/O CANA_RX 1 I SPIB_SIMO 3 I/O SPI-B Slave In, Master Out (SIMO) OUTPUTXBAR7 5 O Output X-BAR Output 7 EQEP1_STROBE 6 I/O eQEP-1 Strobe SD2_D4 7 FSIRXA_CLK 9 MCAN_RX EPWM1_A HIC_D8 28 98 1 General-Purpose Input Output 30 CAN-A Receive I SDFM-2 Channel 4 Data Input I FSIRX-A Input Clock 10 I CAN/CAN FD Receive 11 O ePWM-1 Output A 14 I/O HIC Data 8 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-1. Pin Attributes (continued) GPIO31 64 PM 64 PMQ 48 PT PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 31 CANA_TX 1 O CAN-A Transmit SPIB_SOMI 3 I/O SPI-B Slave Out, Master In (SOMI) OUTPUTXBAR8 5 O Output X-BAR Output 8 EQEP1_INDEX 6 I/O eQEP-1 Index SD2_C4 7 I SDFM-2 Channel 4 Clock Input FSIRXA_D1 9 I FSIRX-A Optional Additional Data Input MCAN_TX 10 O CAN/CAN FD Transmit EPWM1_B 11 O ePWM-1 Output B HIC_D10 14 I/O HIC Data 10 GPIO32 General-Purpose Input Output 32 99 2 0, 4, 8, 12 I/O I2CA_SDA 1 I/OD SPIB_CLK 3 I/O SPI-B Clock EPWM8_B 5 O ePWM-8 Output B LINA_TX 6 O LIN-A Transmit SD1_D2 7 I SDFM-1 Channel 2 Data Input FSIRXA_D0 9 I FSIRX-A Primary Data Input CANA_TX 10 O CAN-A Transmit PMBUSA_SDA 11 I/OD ADCSOCBO 13 O ADC Start of Conversion B for External ADC 64 49 40 40 32 I2C-A Open-Drain Bidirectional Data PMBus-A Open-Drain Bidirectional Data HIC_INT 15 O HIC Device interrupt to host GPIO33 0, 4, 8, 12 I/O General-Purpose Input Output 33 I2CA_SCL 1 I/OD SPIB_STE 3 I/O SPI-B Slave Transmit Enable (STE) OUTPUTXBAR4 5 O Output X-BAR Output 4 LINA_RX 6 I LIN-A Receive SD1_C2 7 I SDFM-1 Channel 2 Clock Input I FSIRX-A Input Clock I CAN-A Receive FSIRXA_CLK 9 CANA_RX 10 53 38 32 32 25 I2C-A Open-Drain Bidirectional Clock EQEP2_B 11 I eQEP-2 Input B ADCSOCAO 13 O ADC Start of Conversion A for External ADC SD1_C1 14 I SDFM-1 Channel 1 Clock Input HIC_D0 15 I/O HIC Data 0 GPIO34 0, 4, 8, 12 I/O General-Purpose Input Output 34 Output X-BAR Output 1 OUTPUTXBAR1 1 O PMBUSA_SDA 6 I/OD HIC_NBE1 13 I2CB_SDA 14 I/OD HIC_D9 15 I/O 94 77 I ADVANCE INFORMATION SIGNAL NAME MUX 100 PZ 80 PN POSITION PMBus-A Open-Drain Bidirectional Data HIC Byte enable 1 I2C-B Open-Drain Bidirectional Data HIC Data 9 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 29 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-1. Pin Attributes (continued) SIGNAL NAME GPIO35 MUX 100 PZ 80 PN POSITION 64 PM 64 PMQ 48 PT PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O SCIA_RX 1 I General-Purpose Input Output 35 I2CA_SDA 3 I/OD CANA_RX 5 I PMBUSA_SCL 6 I/OD LINA_RX 7 I LIN-A Receive EQEP1_A 9 I eQEP-1 Input A PMBUSA_CTL 10 EPWM5_B SCI-A Receive Data I2C-A Open-Drain Bidirectional Data CAN-A Receive PMBus-A Open-Drain Bidirectional Clock ADVANCE INFORMATION I/O PMBus-A Control Signal - Slave Input/Master Output 11 O ePWM-5 Output B SD2_C1 13 I SDFM-2 Channel 1 Clock Input HIC_NWE 14 I HIC Data Write enable from host 15 I JTAG Test Data Input (TDI) - TDI is the default mux selection for the pin. The internal pullup is disabled by default. The internal pullup should be enabled or an external pullup added on the board if this pin is used as JTAG TDI to avoid a floating input. TDI GPIO37 63 48 39 39 31 0, 4, 8, 12 I/O General-Purpose Input Output 37 OUTPUTXBAR2 1 O Output X-BAR Output 2 I2CA_SCL 3 I/OD SCIA_TX 5 O SCI-A Transmit Data CANA_TX 6 O CAN-A Transmit LINA_TX 7 O LIN-A Transmit EQEP1_B 9 I eQEP-1 Input B PMBUSA_ALERT 10 HIC_NRDY 14 TDO GPIO39 61 46 37 37 29 I/OD I2C-A Open-Drain Bidirectional Clock PMBus-A Open-Drain Bidirectional Alert Signal O HIC Ready from device to host 15 O JTAG Test Data Output (TDO) - TDO is the default mux selection for the pin. The internal pullup is disabled by default. The TDO function will tristate when there is no JTAG activity, leaving this pin floating; the internal pullup should be enabled or an external pullup added on the board to avoid a floating GPIO input. General-Purpose Input Output 39 0, 4, 8, 12 I/O MCAN_RX 6 I CAN/CAN FD Receive FSIRXA_CLK 7 I FSIRX-A Input Clock EQEP2_INDEX 9 CLB_OUTPUTXBAR2 11 SYNCOUT EQEP1_INDEX HIC_D7 30 I/O eQEP-2 Index O CLB Output X-BAR Output 2 13 O External ePWM Synchronization Pulse 14 I/O eQEP-1 Index 15 I/O HIC Data 7 Submit Document Feedback 56 46 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-1. Pin Attributes (continued) GPIO40 64 PM 64 PMQ 48 PT PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 40 SPIB_SIMO 1 I/O SPI-B Slave In, Master Out (SIMO) EPWM2_B 5 O ePWM-2 Output B PMBUSA_SDA 6 I/OD FSIRXA_D0 7 I FSIRX-A Primary Data Input 80 64 53 53 PMBus-A Open-Drain Bidirectional Data SCIB_TX 9 O SCI-B Transmit Data EQEP1_A 10 I eQEP-1 Input A LINB_TX 11 O LIN-B Transmit HIC_NBE1 14 I HIC Byte enable 1 HIC_D5 15 I/O HIC Data 5 GPIO41 0, 4, 8, 12 I/O General-Purpose Input Output 41 EPWM2_A 5 O ePWM-2 Output A PMBUSA_SCL 6 I/OD FSIRXA_D1 7 I FSIRX-A Optional Additional Data Input SCIB_RX 9 I SCI-B Receive Data EQEP1_B 10 I eQEP-1 Input B LINB_RX 11 I LIN-B Receive HIC_A4 13 I HIC Address 4 SPIB_SOMI 14 I/O SPI-B Slave Out, Master In (SOMI) HIC_D12 15 I/O HIC Data 12 GPIO42 0, 4, 8, 12 I/O General-Purpose Input Output 42 LINA_RX 2 I LIN-A Receive OUTPUTXBAR5 3 O Output X-BAR Output 5 PMBUSA_CTL 5 I/O PMBus-A Control Signal - Slave Input/Master Output I2CA_SDA 6 EQEP1_STROBE 10 82 66 57 55 55 I/OD PMBus-A Open-Drain Bidirectional Clock I2C-A Open-Drain Bidirectional Data I/O eQEP-1 Strobe CLB_OUTPUTXBAR3 11 O CLB Output X-BAR Output 3 HIC_D2 14 I/O HIC Data 2 HIC_A6 15 I GPIO43 0, 4, 8, 12 I/O General-Purpose Input Output 43 OUTPUTXBAR6 3 O Output X-BAR Output 6 PMBUSA_ALERT HIC Address 6 5, 9 I/OD PMBus-A Open-Drain Bidirectional Alert Signal I2CA_SCL 6 I/OD I2C-A Open-Drain Bidirectional Clock EQEP1_INDEX 10 I/O eQEP-1 Index CLB_OUTPUTXBAR4 11 O CLB Output X-BAR Output 4 SD2_D3 13 I SDFM-2 Channel 3 Data Input HIC_D3 14 I/O HIC_A7 15 I 54 ADVANCE INFORMATION SIGNAL NAME MUX 100 PZ 80 PN POSITION HIC Data 3 HIC Address 7 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 31 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-1. Pin Attributes (continued) SIGNAL NAME GPIO44 MUX 100 PZ 80 PN POSITION 64 PM 64 PMQ 48 PT PIN TYPE DESCRIPTION ADVANCE INFORMATION 0, 4, 8, 12 I/O General-Purpose Input Output 44 OUTPUTXBAR7 3 O Output X-BAR Output 7 EQEP1_A 5 I eQEP-1 Input A PMBUSA_SDA 6 I/OD FSITXA_CLK 7 O FSITX-A Output Clock PMBUSA_CTL 9 I/O PMBus-A Control Signal - Slave Input/Master Output CLB_OUTPUTXBAR3 10 O CLB Output X-BAR Output 3 FSIRXA_D0 11 I FSIRX-A Primary Data Input HIC_D7 13 I/O HIC Data 7 LINB_TX 14 O LIN-B Transmit HIC_D5 15 I/O HIC Data 5 GPIO45 85 69 PMBus-A Open-Drain Bidirectional Data 0, 4, 8, 12 I/O General-Purpose Input Output 45 OUTPUTXBAR8 3 O Output X-BAR Output 8 FSITXA_D0 7 O FSITX-A Primary Data Output PMBUSA_ALERT 9 CLB_OUTPUTXBAR4 10 SD2_C3 HIC_D6 73 I/OD PMBus-A Open-Drain Bidirectional Alert Signal O CLB Output X-BAR Output 4 13 I SDFM-2 Channel 3 Clock Input 15 I/O HIC Data 6 GPIO46 0, 4, 8, 12 I/O General-Purpose Input Output 46 LINA_TX 3 O LIN-A Transmit MCAN_TX 5 O CAN/CAN FD Transmit FSITXA_D1 7 O FSITX-A Optional Additional Data Output PMBUSA_SDA 9 I/OD PMBus-A Open-Drain Bidirectional Data SD2_C4 13 I SDFM-2 Channel 4 Clock Input HIC_NWE 15 I HIC Data Write enable from host GPIO47 0, 4, 8, 12 I/O General-Purpose Input Output 47 LINA_RX 3 I LIN-A Receive MCAN_RX 5 I CAN/CAN FD Receive CLB_OUTPUTXBAR2 7 O CLB Output X-BAR Output 2 PMBUSA_SCL 9 SD2_D4 13 I SDFM-2 Channel 4 Data Input FSITXA_TDM_CLK 14 I FSITX-A Time Division Multiplexed Clock Input HIC_A6 15 I HIC Address 6 GPIO48 6 6 I/OD PMBus-A Open-Drain Bidirectional Clock 0, 4, 8, 12 I/O General-Purpose Input Output 48 OUTPUTXBAR3 1 O Output X-BAR Output 3 CANA_TX 3 O CAN-A Transmit SCIA_TX 6 O SCI-A Transmit Data SD1_D1 7 I SDFM-1 Channel 1 Data Input PMBUSA_SDA 9 I/OD HIC_A7 15 I 32 Submit Document Feedback 7 PMBus-A Open-Drain Bidirectional Data HIC Address 7 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-1. Pin Attributes (continued) GPIO49 64 PM 64 PMQ 48 PT PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 49 OUTPUTXBAR4 1 O Output X-BAR Output 4 CANA_RX 3 I CAN-A Receive SCIA_RX 6 I SCI-A Receive Data SD1_C1 7 I SDFM-1 Channel 1 Clock Input 8 LINA_RX 9 I LIN-A Receive SD2_D1 13 I SDFM-2 Channel 1 Data Input FSITXA_D0 14 O FSITX-A Primary Data Output HIC_D2 15 I/O HIC Data 2 GPIO50 0, 4, 8, 12 I/O General-Purpose Input Output 50 EQEP1_A 1 I eQEP-1 Input A MCAN_TX 5 O CAN/CAN FD Transmit SPIB_SIMO 6 I/O SPI-B Slave In, Master Out (SIMO) SD1_D2 7 I2CB_SDA 9 SD2_D2 13 I SDFM-2 Channel 2 Data Input FSITXA_D1 14 O FSITX-A Optional Additional Data Output HIC_D3 15 I/O HIC Data 3 GPIO51 0, 4, 8, 12 I/O General-Purpose Input Output 51 EQEP1_B 1 I eQEP-1 Input B MCAN_RX 5 I CAN/CAN FD Receive SPIB_SOMI 6 I/O SD1_C2 7 I2CB_SCL 9 SD2_D3 13 I SDFM-2 Channel 3 Data Input FSITXA_CLK 14 O FSITX-A Output Clock HIC_D6 15 I/O HIC Data 6 GPIO52 9 I I/OD 10 I I/OD SDFM-1 Channel 2 Data Input I2C-B Open-Drain Bidirectional Data SPI-B Slave Out, Master In (SOMI) SDFM-1 Channel 2 Clock Input I2C-B Open-Drain Bidirectional Clock 0, 4, 8, 12 I/O General-Purpose Input Output 52 EQEP1_STROBE 1 I/O eQEP-1 Strobe CLB_OUTPUTXBAR5 5 O CLB Output X-BAR Output 5 SPIB_CLK 6 I/O SPI-B Clock SD1_D3 7 11 I SDFM-1 Channel 3 Data Input SYNCOUT 9 O External ePWM Synchronization Pulse SD2_D4 13 I SDFM-2 Channel 4 Data Input FSIRXA_D0 14 I FSIRX-A Primary Data Input HIC_NWE 15 I HIC Data Write enable from host GPIO53 0, 4, 8, 12 I/O General-Purpose Input Output 53 EQEP1_INDEX 1 I/O eQEP-1 Index CLB_OUTPUTXBAR6 5 O CLB Output X-BAR Output 6 SPIB_STE 6 I/O SPI-B Slave Transmit Enable (STE) SD1_C3 7 12 ADVANCE INFORMATION SIGNAL NAME MUX 100 PZ 80 PN POSITION I SDFM-1 Channel 3 Clock Input ADCSOCAO 9 O ADC Start of Conversion A for External ADC CANA_RX 10 I CAN-A Receive SD1_C1 13 I SDFM-1 Channel 1 Clock Input FSIRXA_D1 14 I FSIRX-A Optional Additional Data Input Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 33 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-1. Pin Attributes (continued) SIGNAL NAME GPIO54 MUX 100 PZ 80 PN POSITION 64 PM 64 PMQ 48 PT PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 54 SPIA_SIMO 1 I/O SPI-A Slave In, Master Out (SIMO) EQEP2_A 5 I eQEP-2 Input A OUTPUTXBAR2 6 O Output X-BAR Output 2 SD1_D4 7 I SDFM-1 Channel 4 Data Input 13 ADVANCE INFORMATION ADCSOCBO 9 O ADC Start of Conversion B for External ADC LINB_TX 10 O LIN-B Transmit SD1_C2 13 I SDFM-1 Channel 2 Clock Input FSIRXA_CLK 14 I FSIRX-A Input Clock FSITXA_TDM_D1 15 I FSITX-A Time Division Multiplexed Additional Data Input 0, 4, 8, 12 I/O General-Purpose Input Output 55 SPIA_SOMI 1 I/O SPI-A Slave Out, Master In (SOMI) EQEP2_B 5 I eQEP-2 Input B OUTPUTXBAR3 6 O Output X-BAR Output 3 SD1_C4 7 I SDFM-1 Channel 4 Clock Input ERRORSTS 9 O Error Status Output. This signal requires an external pulldown. LINB_RX 10 I LIN-B Receive SD1_C3 13 I SDFM-1 Channel 3 Clock Input HIC Address 0 GPIO55 43 HIC_A0 15 I GPIO56 0, 4, 8, 12 I/O General-Purpose Input Output 56 SPIA_CLK 1 I/O SPI-A Clock CLB_OUTPUTXBAR7 2 O CLB Output X-BAR Output 7 MCAN_TX 3 O CAN/CAN FD Transmit EQEP2_STROBE 5 I/O eQEP-2 Strobe SCIB_TX 6 O SCI-B Transmit Data SD2_D1 7 I SDFM-2 Channel 1 Data Input SPIB_SIMO 9 I/O I2CA_SDA 10 I/OD EQEP1_A 11 I eQEP-1 Input A SD1_C4 13 I SDFM-1 Channel 4 Clock Input FSIRXA_D1 14 I FSIRX-A Optional Additional Data Input HIC_D6 15 I/O HIC Data 6 GPIO57 65 SPI-B Slave In, Master Out (SIMO) I2C-A Open-Drain Bidirectional Data 0, 4, 8, 12 I/O General-Purpose Input Output 57 SPIA_STE 1 I/O SPI-A Slave Transmit Enable (STE) CLB_OUTPUTXBAR8 2 O CLB Output X-BAR Output 8 MCAN_RX 3 I CAN/CAN FD Receive EQEP2_INDEX 5 I/O SCIB_RX 6 SD2_C1 7 SPIB_SOMI 9 I/O I2CA_SCL 10 I/OD EQEP1_B 11 I eQEP-1 Input B FSIRXA_CLK 14 I FSIRX-A Input Clock HIC_D4 15 I/O 34 Submit Document Feedback 66 eQEP-2 Index I SCI-B Receive Data I SDFM-2 Channel 1 Clock Input SPI-B Slave Out, Master In (SOMI) I2C-A Open-Drain Bidirectional Clock HIC Data 4 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-1. Pin Attributes (continued) GPIO58 64 PM 64 PMQ 48 PT PIN TYPE DESCRIPTION 0, 4, 8, 12 I/O General-Purpose Input Output 58 OUTPUTXBAR1 5 O Output X-BAR Output 1 SPIB_CLK 6 I/O SPI-B Clock SD2_D2 7 I SDFM-2 Channel 2 Data Input LINA_TX 9 O LIN-A Transmit CANA_TX 10 O CAN-A Transmit EQEP1_STROBE 11 I/O eQEP-1 Strobe SD2_C2 13 I SDFM-2 Channel 2 Clock Input FSIRXA_D0 14 I FSIRX-A Primary Data Input HIC_NRDY 15 O HIC Ready from device to host GPIO59 67 0, 4, 8, 12 I/O General-Purpose Input Output 59 OUTPUTXBAR2 5 O Output X-BAR Output 2 SPIB_STE 6 I/O SPI-B Slave Transmit Enable (STE) SD2_C2 7 I SDFM-2 Channel 2 Clock Input LINA_RX 9 I LIN-A Receive CANA_RX 10 I CAN-A Receive EQEP1_INDEX 11 I/O SD2_C3 13 I SDFM-2 Channel 3 Clock Input FSITXA_TDM_D1 14 I FSITX-A Time Division Multiplexed Additional Data Input GPIO60 92 eQEP-1 Index 0, 4, 8, 12 I/O General-Purpose Input Output 60 MCAN_TX 3 O CAN/CAN FD Transmit OUTPUTXBAR3 5 O Output X-BAR Output 3 SPIB_SIMO 6 I/O SPI-B Slave In, Master Out (SIMO) 44 SD2_D3 7 I SDFM-2 Channel 3 Data Input SD2_C4 13 I SDFM-2 Channel 4 Clock Input HIC_A0 15 I HIC Address 0 GPIO61 0, 4, 8, 12 I/O MCAN_RX 3 I CAN/CAN FD Receive OUTPUTXBAR4 5 O Output X-BAR Output 4 SPIB_SOMI 6 I/O SPI-B Slave Out, Master In (SOMI) SD2_C3 7 CANA_RX 14 91 ADVANCE INFORMATION SIGNAL NAME MUX 100 PZ 80 PN POSITION General-Purpose Input Output 61 I SDFM-2 Channel 3 Clock Input I CAN-A Receive I JTAG test clock with internal pullup. TEST, JTAG, AND RESET TCK TMS 60 62 45 47 36 38 36 38 28 30 I/O JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK. This device does not have a TRSTn pin. An external pullup resistor (recommended 2.2 kΩ) on the TMS pin to VDDIO should be placed on the board to keep JTAG in reset during normal operation. Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 35 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-1. Pin Attributes (continued) SIGNAL NAME MUX 100 PZ 80 PN POSITION XRSn 2 5 64 PM 3 64 PMQ 3 48 PT 3 ADVANCE INFORMATION PIN TYPE DESCRIPTION I/OD Device Reset (in) and Watchdog Reset (out). During a power-on condition, this pin is driven low by the device. An external circuit may also drive this pin to assert a device reset. This pin is also driven low by the MCU when a watchdog reset occurs. During watchdog reset, the XRSn pin is driven low for the watchdog reset duration of 512 OSCCLK cycles. A resistor between 2.2 kΩ and 10 kΩ should be placed between XRSn and VDDIO. If a capacitor is placed between XRSn and VSS for noise filtering, it should be 100 nF or smaller. These values will allow the watchdog to properly drive the XRSn pin to VOL within 512 OSCCLK cycles when the watchdog reset is asserted. This pin is an open-drain output with an internal pullup. If this pin is driven by an external device, it should be done using an open-drain device. POWER AND GROUND 4, 46, 71, 87 8, 31, 53, 71 4, 27, 44, 59 VDDA 34 26 22 VDDIO 3, 47, 70, 88 VDD VREGENZ VSS VSSA 36 Submit Document Feedback 4, 27, 23, 36, 44, 59 45 22 1.2-V Digital Logic Power Pins. See the PMM section for usage details. 3.3-V Analog Power Pins. Place a minimum 2.2-µF decoupling capacitor on each pin. See the PMM section for usage details. 18 7, 32, 28, 43, 28, 43, 24, 35, 52, 72 60 60 46 73 46 5, 45, 72, 86 9, 30, 55, 70 5, 26, 45, 58 33 25 21 I 5, 26, 22, 37, 45, 58 44 21 3.3-V Digital I/O Power Pins. See the PMM section for usage details. 17 Internal voltage regulator disable with internal pulldown. Tie low to VSS to enable internal VREG. Tie high to VDDIO to use an external supply. See the PMM section for usage details. Digital Ground Analog Ground Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 5.3 Signal Descriptions 5.3.1 Analog Signals Table 5-2. Analog Signals PIN TYPE DESCRIPTION 100 PZ PIN 80 PN PIN 64 PM PIN 64 PMQ PIN A0 I ADC-A Input 0 GPIO PIN 23 19 15 15 11 A1 I ADC-A Input 1 22 18 14 14 10 A2 I ADC-A Input 2 17 13 9 9 6 A3 I ADC-A Input 3 18 12 8 8 5 A4 I ADC-A Input 4 36 27 23 23 19 A5 I ADC-A Input 5 35 17 13 13 9 A6 I ADC-A Input 6 14 10 6 6 4 A7 I ADC-A Input 7 31 23 19 19 15 A8 I ADC-A Input 8 37 24 20 20 16 A9 I ADC-A Input 9 38 28 24 24 20 A10 I ADC-A Input 10 40 29 25 25 21 A11 I ADC-A Input 11 20 16 12 12 8 A12 I ADC-A Input 12 28 22 18 18 14 A14 I ADC-A Input 14 19 15 11 11 A15 I ADC-A Input 15 14 10 10 7 AIO224 I Analog Pin Used For Digital Input 224 17 13 9 9 6 AIO225 I Analog Pin Used For Digital Input 225 36 27 23 23 19 AIO226 I Analog Pin Used For Digital Input 226 15 11 7 7 4 AIO227 I Analog Pin Used For Digital Input 227 38 28 24 24 20 AIO228 I Analog Pin Used For Digital Input 228 14 10 6 6 4 AIO229 I Analog Pin Used For Digital Input 229 18 AIO230 I Analog Pin Used For Digital Input 230 40 29 25 25 21 AIO231 I Analog Pin Used For Digital Input 231 23 19 15 15 11 AIO232 I Analog Pin Used For Digital Input 232 22 18 14 14 10 AIO233 I Analog Pin Used For Digital Input 233 14 10 10 7 AIO236 I Analog Pin Used For Digital Input 236 39 28 24 24 20 AIO237 I Analog Pin Used For Digital Input 237 20 16 12 12 8 AIO238 I Analog Pin Used For Digital Input 238 28 22 18 18 14 AIO239 I Analog Pin Used For Digital Input 239 19 15 11 11 AIO240 I Analog Pin Used For Digital Input 240 37 AIO241 I Analog Pin Used For Digital Input 241 24 20 20 16 AIO242 I Analog Pin Used For Digital Input 242 16 12 8 8 5 AIO244 I Analog Pin Used For Digital Input 244 21 17 13 13 9 AIO245 I Analog Pin Used For Digital Input 245 31 23 19 19 15 AIO247 I Analog Pin Used For Digital Input 247 42 AIO248 I Analog Pin Used For Digital Input 248 29 22 18 18 14 AIO249 I Analog Pin Used For Digital Input 249 35 AIO251 I Analog Pin Used For Digital Input 251 30 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C 48 PT PIN Submit Document Feedback ADVANCE INFORMATION SIGNAL NAME 37 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-2. Analog Signals (continued) SIGNAL NAME PIN TYPE DESCRIPTION GPIO PIN 100 PZ PIN ADVANCE INFORMATION 80 PN PIN 64 PM PIN 64 PMQ PIN 48 PT PIN 41 24 20 20 16 40 29 25 25 21 ADC-B Input 2 15 11 7 7 4 I ADC-B Input 3 16 12 8 8 5 B4 I ADC-B Input 4 39 28 24 24 20 B5 I ADC-B Input 5 32, 48 33 B6 I ADC-B Input 6 17 13 9 9 6 B7 I ADC-B Input 7 22 18 14 14 10 B8 I ADC-B Input 8 36 27 23 23 19 B9 I ADC-B Input 9 18 14 10 10 7 B10 I ADC-B Input 10 20 16 12 12 8 B11 I ADC-B Input 11 30, 49 34 B12 I ADC-B Input 12 21 17 13 13 9 B14 I ADC-B Input 14 19 15 11 11 B15 I ADC-B Input 15 23 19 15 15 C0 I ADC-C Input 0 20 16 12 12 8 C1 I ADC-C Input 1 29 22 18 18 14 C2 I ADC-C Input 2 21 17 13 13 9 C3 I ADC-C Input 3 31 23 19 19 15 C4 I ADC-C Input 4 19 15 11 11 C5 I ADC-C Input 5 28 12 8 8 5 C6 I ADC-C Input 6 15 11 7 7 4 C7 I ADC-C Input 7 18 14 10 10 7 C8 I ADC-C Input 8 39 28 24 24 20 C9 I ADC-C Input 9 17 13 9 9 6 C10 I ADC-C Input 10 40 29 25 25 21 C11 I ADC-C Input 11 41 24 20 20 16 C14 I ADC-C Input 14 42 27 23 23 19 C15 I ADC-C Input 15 23 19 15 15 11 CMP1_HN0 I CMPSS-1 High Comparator Negative Input 0 14 10 10 7 CMP1_HN1 I CMPSS-1 High Comparator Negative Input 1 20 16 12 12 8 CMP1_HP0 I CMPSS-1 High Comparator Positive Input 0 17 13 9 9 6 CMP1_HP1 I CMPSS-1 High Comparator Positive Input 1 20 16 12 12 8 CMP1_HP2 I CMPSS-1 High Comparator Positive Input 2 14 10 6 6 4 CMP1_HP3 I CMPSS-1 High Comparator Positive Input 3 14 10 10 7 CMP1_HP4 I CMPSS-1 High Comparator Positive Input 4 22 18 14 14 10 CMP1_HP5 I CMPSS-1 High Comparator Positive Input 5 32, 48 33 CMP1_LN0 I CMPSS-1 Low Comparator Negative Input 0 14 10 10 7 CMP1_LN1 I CMPSS-1 Low Comparator Negative Input 1 20 16 12 12 8 CMP1_LP0 I CMPSS-1 Low Comparator Positive Input 0 17 13 9 9 6 CMP1_LP1 I CMPSS-1 Low Comparator Positive Input 1 20 16 12 12 8 CMP1_LP2 I CMPSS-1 Low Comparator Positive Input 2 14 10 6 6 4 CMP1_LP3 I CMPSS-1 Low Comparator Positive Input 3 14 10 10 7 AIO252 I Analog Pin Used For Digital Input 252 48 AIO253 I Analog Pin Used For Digital Input 253 41 B0 I ADC-B Input 0 B1 I ADC-B Input 1 B2 I B3 38 Submit Document Feedback 11 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 PIN TYPE 100 PZ PIN 80 PN PIN 64 PM PIN 64 PMQ PIN 48 PT PIN CMP1_LP4 I CMPSS-1 Low Comparator Positive Input 4 DESCRIPTION GPIO PIN 22 18 14 14 10 CMP1_LP5 I CMPSS-1 Low Comparator Positive Input 5 32, 48 33 CMP2_HN0 I CMPSS-2 High Comparator Negative Input 0 40 29 25 25 21 CMP2_HN1 I CMPSS-2 High Comparator Negative Input 1 28 22 18 18 14 CMP2_HP0 I CMPSS-2 High Comparator Positive Input 0 36 27 23 23 19 CMP2_HP1 I CMPSS-2 High Comparator Positive Input 1 28 22 18 18 14 CMP2_HP2 I CMPSS-2 High Comparator Positive Input 2 38 28 24 24 20 CMP2_HP3 I CMPSS-2 High Comparator Positive Input 3 40 29 25 25 21 CMP2_HP4 I CMPSS-2 High Comparator Positive Input 4 41 24 20 20 16 CMP2_HP5 I CMPSS-2 High Comparator Positive Input 5 35 17 13 13 9 CMP2_LN0 I CMPSS-2 Low Comparator Negative Input 0 40 29 25 25 21 CMP2_LN1 I CMPSS-2 Low Comparator Negative Input 1 28 22 18 18 14 CMP2_LP0 I CMPSS-2 Low Comparator Positive Input 0 36 27 23 23 19 CMP2_LP1 I CMPSS-2 Low Comparator Positive Input 1 28 22 18 18 14 CMP2_LP2 I CMPSS-2 Low Comparator Positive Input 2 38 28 24 24 20 CMP2_LP3 I CMPSS-2 Low Comparator Positive Input 3 40 29 25 25 21 CMP2_LP4 I CMPSS-2 Low Comparator Positive Input 4 41 24 20 20 16 CMP2_LP5 I CMPSS-2 Low Comparator Positive Input 5 35 17 13 13 9 CMP3_HN0 I CMPSS-3 High Comparator Negative Input 0 16 12 8 8 5 CMP3_HN1 I CMPSS-3 High Comparator Negative Input 1 21 17 13 13 9 CMP3_HP0 I CMPSS-3 High Comparator Positive Input 0 15 11 7 7 4 CMP3_HP1 I CMPSS-3 High Comparator Positive Input 1 21 17 13 13 9 CMP3_HP2 I CMPSS-3 High Comparator Positive Input 2 23 19 15 15 11 CMP3_HP3 I CMPSS-3 High Comparator Positive Input 3 16 12 8 8 5 CMP3_HP4 I CMPSS-3 High Comparator Positive Input 4 19 15 11 11 CMP3_HP5 I CMPSS-3 High Comparator Positive Input 5 18 12 8 8 5 CMP3_LN0 I CMPSS-3 Low Comparator Negative Input 0 16 12 8 8 5 CMP3_LN1 I CMPSS-3 Low Comparator Negative Input 1 21 17 13 13 9 CMP3_LP0 I CMPSS-3 Low Comparator Positive Input 0 15 11 7 7 4 CMP3_LP1 I CMPSS-3 Low Comparator Positive Input 1 21 17 13 13 9 CMP3_LP2 I CMPSS-3 Low Comparator Positive Input 2 23 19 15 15 11 CMP3_LP3 I CMPSS-3 Low Comparator Positive Input 3 16 12 8 8 5 CMP3_LP4 I CMPSS-3 Low Comparator Positive Input 4 19 15 11 11 CMP3_LP5 I CMPSS-3 Low Comparator Positive Input 5 18 12 8 8 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C ADVANCE INFORMATION Table 5-2. Analog Signals (continued) SIGNAL NAME 5 Submit Document Feedback 39 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-2. Analog Signals (continued) SIGNAL NAME ADVANCE INFORMATION PIN TYPE DESCRIPTION 100 PZ PIN 80 PN PIN 64 PM PIN 64 PMQ PIN 48 PT PIN CMP4_HN0 I CMPSS-4 High Comparator Negative Input 0 42 27 23 23 19 CMP4_HN1 I CMPSS-4 High Comparator Negative Input 1 31 23 19 19 15 CMP4_HP0 I CMPSS-4 High Comparator Positive Input 0 39 28 24 24 20 CMP4_HP1 I CMPSS-4 High Comparator Positive Input 1 31 23 19 19 15 CMP4_HP2 I CMPSS-4 High Comparator Positive Input 2 29 22 18 18 14 CMP4_HP3 I CMPSS-4 High Comparator Positive Input 3 42 27 23 23 19 CMP4_HP4 I CMPSS-4 High Comparator Positive Input 4 37 24 20 20 16 CMP4_HP5 I CMPSS-4 High Comparator Positive Input 5 30, 49 34 CMP4_LN0 I CMPSS-4 Low Comparator Negative Input 0 42 27 23 23 19 CMP4_LN1 I CMPSS-4 Low Comparator Negative Input 1 31 23 19 19 15 CMP4_LP0 I CMPSS-4 Low Comparator Positive Input 0 39 28 24 24 20 CMP4_LP1 I CMPSS-4 Low Comparator Positive Input 1 31 23 19 19 15 CMP4_LP2 I CMPSS-4 Low Comparator Positive Input 2 29 22 18 18 14 CMP4_LP3 I CMPSS-4 Low Comparator Positive Input 3 42 27 23 23 19 CMP4_LP4 I CMPSS-4 Low Comparator Positive Input 4 37 24 20 20 16 CMP4_LP5 I CMPSS-4 Low Comparator Positive Input 5 30, 49 34 DACA_OUT O Buffered DAC-A Output. 23 19 15 15 11 DACB_OUT O Buffered DAC-B Output. 22 18 14 14 10 GPIO20 I/O General-Purpose Input Output 20 48 33 GPIO21 I/O General-Purpose Input Output 21 30 34 HIC_A0 I HIC Address 0 14 10 6 6 4 HIC_A1 I HIC Address 1 15 11 7 7 4 HIC_A2 I HIC Address 2 16 12 8 8 5 HIC_A3 I HIC Address 3 17 13 9 9 6 HIC_A4 I HIC Address 4 14 10 10 7 HIC_A5 I HIC Address 5 19 15 11 11 HIC_A6 I HIC Address 6 20 16 12 12 HIC_A7 I HIC Address 7 21 17 13 13 9 HIC_BASESEL0 I HIC Base address range select 0 22 18 14 14 10 HIC_BASESEL1 I HIC Base address range select 1 23 19 15 15 11 HIC_BASESEL2 I HIC Base address range select 2 40 29 25 25 21 HIC_NBE0 I HIC Byte enable 0 38 28 24 24 20 HIC_NBE1 I HIC Byte enable 1 37 24 20 20 16 HIC_NCS I HIC Chip select input 28 22 18 18 14 HIC_NOE O HIC Output enable for data bus 31 23 19 19 15 HIC_NWE I HIC Data Write enable from host 36 27 23 23 19 SD1_C1 I SDFM-1 Channel 1 Clock Input 23 19 15 15 11 SD1_C2 I SDFM-1 Channel 2 Clock Input 31 23 19 19 15 SD1_C3 I SDFM-1 Channel 3 Clock Input 38 28 24 24 20 SD1_C4 I SDFM-1 Channel 4 Clock Input 40 29 25 25 21 SD1_D1 I SDFM-1 Channel 1 Data Input 19 15 11 11 SD1_D2 I SDFM-1 Channel 2 Data Input 20 16 12 12 SD1_D3 I SDFM-1 Channel 3 Data Input 21 17 13 13 9 SD1_D4 I SDFM-1 Channel 4 Data Input 22 18 14 14 10 SD2_C1 I SDFM-2 Channel 1 Clock Input 14, 37 10, 24 20, 6 20, 6 16, 4 40 Submit Document Feedback GPIO PIN 8 8 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 PIN TYPE 100 PZ PIN 80 PN PIN 64 PM PIN 64 PMQ PIN 48 PT PIN SD2_C2 I SDFM-2 Channel 2 Clock Input DESCRIPTION GPIO PIN 36 27 23 23 19 SD2_C3 I SDFM-2 Channel 3 Clock Input 28 22 18 18 14 SD2_C4 I SDFM-2 Channel 4 Clock Input 48 SD2_D1 I SDFM-2 Channel 1 Data Input 14 10 10 7 SD2_D2 I SDFM-2 Channel 2 Data Input 16 12 8 8 5 SD2_D3 I SDFM-2 Channel 3 Data Input 17 13 9 9 6 SD2_D4 I SDFM-2 Channel 4 Data Input 15 11 7 7 4 VDAC I Optional external reference voltage for on-chip DACs. 16 12 8 8 5 VREFHI I ADC High Reference. In external reference mode, externally drive the high reference voltage onto this pin. In internal reference mode, a voltage is driven onto this pin by the device. In either mode, place at least a 2.2-µF capacitor on this pin. This capacitor should be placed as close to the device as possible between the VREFHI and VREFLO pins. 24, 25 20 16 16 12 VREFLO I ADC Low Reference 26, 27 21 17 17 13 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback ADVANCE INFORMATION Table 5-2. Analog Signals (continued) SIGNAL NAME 41 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 5.3.2 Digital Signals Table 5-3. Digital Signals SIGNAL NAME PIN TYPE DESCRIPTION GPIO PIN 100 PZ PIN 80 PN PIN 64 PM PIN 64 PMQ PIN 48 PT PIN ADCSOCAO O ADC Start of Conversion A for External ADC 33, 53, 8 12, 53, 74 38, 58 32, 47 32, 47 25 ADCSOCBO O ADC Start of Conversion B for External ADC 10, 32, 54 13, 64, 93 49, 76 40, 63 40, 63 32 29 100 3 1 1 1 AUXCLKIN ADVANCE INFORMATION CANA_RX I CAN-A Receive 12, 18, 3, 30, 33, 35, 49, 5, 53, 59, 61 12, 51, 53, 63, 68, 76, 8, 89, 91, 92, 98 1, 36, 38, 48, 50, 60, 74 30, 32, 39, 41, 49, 61 30, 32, 39, 41, 49, 61 25, 31, 33, 39, 47 CANA_TX O CAN-A Transmit 13, 17, 19, 2, 31, 32, 37, 4, 48, 58 50, 55, 61, 64, 67, 69, 7, 75, 77, 99 2, 35, 40, 46, 49, 51, 59, 61 29, 34, 37, 40, 42, 48, 50 29, 34, 37, 40, 42, 48, 50 29, 32, 34, 38, 40 CLB_OUTPUTXBAR1 O CLB Output X-BAR Output 1 19, 22 69, 83 51, 67 42, 56 42, 56 34 CLB_OUTPUTXBAR2 O CLB Output X-BAR Output 2 39, 47, 7 6, 84 56, 68 46, 57 57 43 CLB_OUTPUTXBAR3 O CLB Output X-BAR Output 3 23, 42, 44 81, 85 57, 65, 69 54 54 CLB_OUTPUTXBAR4 O CLB Output X-BAR Output 4 10, 43, 45 93 54, 73, 76 63 63 CLB_OUTPUTXBAR5 O CLB Output X-BAR Output 5 5, 52, 8 11, 74, 89 58, 74 47, 61 47, 61 47 CLB_OUTPUTXBAR6 O CLB Output X-BAR Output 6 15, 4, 53 12, 75, 95 59, 78 48 48 38 CLB_OUTPUTXBAR7 O CLB Output X-BAR Output 7 1, 14, 56 65, 78, 96 62, 79 51 51 41 CLB_OUTPUTXBAR8 O CLB Output X-BAR Output 8 57, 6 66, 79, 97 63, 80 52, 64 52, 64 42, 48 EPWM1_A O ePWM-1 Output A 30 79, 98 1, 63 52 52 42 EPWM1_B O ePWM-1 Output B 1, 31 78, 99 2, 62 51 51 41 EPWM2_A O ePWM-2 Output A 2, 41 77, 82 61, 66 50, 55 50, 55 40 EPWM2_B O ePWM-2 Output B 3, 40 76, 80 60, 64 49, 53 49, 53 39 EPWM3_A O ePWM-3 Output A 14, 4 75, 96 59, 79 48 48 38 EPWM3_B O ePWM-3 Output B 15, 5 89, 95 74, 78 61 61 47 EPWM4_A O ePWM-4 Output A 22, 6 83, 97 67, 80 56, 64 56, 64 48 EPWM4_B O ePWM-4 Output B 23, 7 81, 84 65, 68 54, 57 54, 57 43 EPWM5_A O ePWM-5 Output A 16, 8 54, 74 39, 58 33, 47 33, 47 26 EPWM5_B O ePWM-5 Output B 17, 35, 9 55, 63, 90 40, 48, 75 34, 39, 62 34, 39, 62 31 EPWM6_A O ePWM-6 Output A 10, 18 68, 93 50, 76 41, 63 41, 63 33 EPWM6_B O ePWM-6 Output B 11, 19 52, 69 37, 51 31, 42 31, 42 34 EPWM7_A O ePWM-7 Output A 12, 28 1, 51 36, 4 2, 30 2, 30 2 EPWM7_B O ePWM-7 Output B 13, 29 100, 50 3, 35 1, 29 1, 29 1 EPWM8_A O ePWM-8 Output A 14, 24 56, 96 41, 79 35 35 27 EPWM8_B O ePWM-8 Output B 15, 32 64, 95 49, 78 40 40 32 EQEP1_A I eQEP-1 Input A 10, 20, 25, 28, 35, 40, 44, 50, 56, 6 1, 48, 57, 63, 65, 80, 85, 9, 93, 97 33, 4, 42, 48, 64, 69, 76, 80 2, 39, 53, 63, 64 2, 39, 53, 63, 64 2, 31, 48 EQEP1_B I eQEP-1 Input B 11, 21, 29, 37, 41, 51, 57, 7 10, 100, 49, 52, 61, 66, 82, 84 3, 34, 37, 46, 66, 68 1, 31, 37, 55, 57 1, 31, 37, 55, 57 1, 29, 43 EQEP1_INDEX I/O eQEP-1 Index 13, 17, 23, 31, 39, 43, 53, 59, 9 12, 50, 55, 79, 81, 90, 92, 99 2, 35, 40, 54, 56, 63, 65, 75 29, 34, 46, 52, 54, 62 29, 34, 52, 54, 62 42 EQEP1_STROBE I/O eQEP-1 Strobe 12, 16, 22, 30, 42, 52, 58, 8 11, 51, 54, 67, 74, 83, 98 1, 36, 39, 57, 58, 67 30, 33, 47, 56 30, 33, 47, 56 26 42 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-3. Digital Signals (continued) PIN TYPE DESCRIPTION GPIO PIN 100 PZ PIN 80 PN PIN 64 PM PIN 64 PMQ PIN EQEP2_A I eQEP-2 Input A 11, 14, 18, 24, 54 13, 52, 56, 68, 96 37, 41, 50, 79 31, 35, 41 31, 35, 41 48 PT PIN 27, 33 EQEP2_B I eQEP-2 Input B 15, 16, 19, 25, 33, 55 43, 53, 54, 57, 69, 95 38, 39, 42, 51, 78 32, 33, 42 32, 33, 42 25, 26, 34 EQEP2_INDEX I/O eQEP-2 Index 26, 29, 39, 57 100, 58, 66 3, 43, 56 1, 46 1 1 EQEP2_STROBE I/O eQEP-2 Strobe 27, 28, 4, 56 1, 59, 65, 75 4, 44, 59 2, 48 2, 48 2, 38 ERRORSTS O Error Status Output. This signal requires an external pulldown. 24, 28, 29, 55 1, 100, 43, 56 3, 4, 41 1, 2, 35 1, 2, 35 1, 2, 27 FSIRXA_CLK I FSIRX-A Input Clock 13, 30, 33, 39, 4, 54, 57 13, 50, 53, 66, 75, 79, 98 1, 35, 38, 56, 59, 63 29, 32, 46, 48, 52 29, 32, 48, 52 25, 38, 42 FSIRXA_D0 I FSIRX-A Primary Data Input 12, 3, 32, 40, 44, 52, 58 11, 51, 64, 67, 76, 80, 85 36, 49, 60, 64, 69 30, 40, 49, 53 30, 40, 49, 53 32, 39 FSIRXA_D1 I FSIRX-A Optional Additional Data Input 11, 2, 31, 41, 53, 56 12, 52, 65, 77, 82, 99 2, 37, 61, 66 31, 50, 55 31, 50, 55 40 FSITXA_CLK O FSITX-A Output Clock 10, 27, 44, 51, 7 10, 59, 84, 85, 93 44, 68, 69, 76 57, 63 57, 63 43 FSITXA_D0 O FSITX-A Primary Data Output 26, 45, 49, 6, 9 58, 8, 90, 97 43, 73, 75, 80 62, 64 62, 64 48 FSITXA_D1 O FSITX-A Optional Additional Data Output 25, 46, 5, 50, 6, 8 57, 74, 89, 9, 97 42, 58, 6, 74, 80 47, 61, 64 47, 61, 64 47, 48 FSITXA_TDM_CLK I FSITX-A Time Division Multiplexed Clock Input 18, 47, 8 6, 68, 74 50, 58 41, 47 41, 47 33 FSITXA_TDM_D0 I FSITX-A Time Division Multiplexed Data Input 10, 19 69, 93 51, 76 42, 63 42, 63 34 FSITXA_TDM_D1 I FSITX-A Time Division Multiplexed Additional Data Input 1, 54, 59 13, 78, 92 62 51 51 41 GPIO0 I/O General-Purpose Input Output 0 79 63 52 52 42 GPIO1 I/O General-Purpose Input Output 1 1 78 62 51 51 41 GPIO2 I/O General-Purpose Input Output 2 2 77 61 50 50 40 GPIO3 I/O General-Purpose Input Output 3 3 76 60 49 49 39 GPIO4 I/O General-Purpose Input Output 4 4 75 59 48 48 38 GPIO5 I/O General-Purpose Input Output 5 5 89 74 61 61 47 GPIO6 I/O General-Purpose Input Output 6 6 97 80 64 64 48 GPIO7 I/O General-Purpose Input Output 7 7 84 68 57 57 43 GPIO8 I/O General-Purpose Input Output 8 8 74 58 47 47 GPIO9 I/O General-Purpose Input Output 9 9 90 75 62 62 GPIO10 I/O General-Purpose Input Output 10 10 93 76 63 63 GPIO11 I/O General-Purpose Input Output 11 11 52 37 31 31 GPIO12 I/O General-Purpose Input Output 12 12 51 36 30 30 GPIO13 I/O General-Purpose Input Output 13 13 50 35 29 29 GPIO14 I/O General-Purpose Input Output 14 14 96 79 GPIO15 I/O General-Purpose Input Output 15 15 95 78 GPIO16 I/O General-Purpose Input Output 16 16 54 39 33 33 GPIO17 I/O General-Purpose Input Output 17 17 55 40 34 34 GPIO18 I/O General-Purpose Input Output 18 18 68 50 41 41 33 GPIO19 I/O General-Purpose Input Output 19 19 69 51 42 42 34 GPIO20 I/O General-Purpose Input Output 20 20 48 33 GPIO21 I/O General-Purpose Input Output 21 21 49 34 26 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C ADVANCE INFORMATION SIGNAL NAME 43 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-3. Digital Signals (continued) SIGNAL NAME ADVANCE INFORMATION GPIO PIN 100 PZ PIN 80 PN PIN 64 PM PIN 64 PMQ PIN GPIO22 I/O General-Purpose Input Output 22 22 83 67 56 56 GPIO23 I/O General-Purpose Input Output 23 23 81 65 54 54 GPIO24 I/O General-Purpose Input Output 24 24 56 41 35 35 27 GPIO25 I/O General-Purpose Input Output 25 25 57 42 GPIO26 I/O General-Purpose Input Output 26 26 58 43 GPIO27 I/O General-Purpose Input Output 27 27 59 44 GPIO28 I/O General-Purpose Input Output 28 28 1 4 2 2 2 GPIO29 I/O General-Purpose Input Output 29 29 100 3 1 1 1 GPIO30 I/O General-Purpose Input Output 30 30 98 1 GPIO31 I/O General-Purpose Input Output 31 31 99 2 GPIO32 I/O General-Purpose Input Output 32 32 64 49 40 40 32 GPIO33 I/O General-Purpose Input Output 33 33 53 38 32 32 25 GPIO34 I/O General-Purpose Input Output 34 34 94 77 GPIO35 I/O General-Purpose Input Output 35 35 63 48 39 39 31 GPIO37 I/O General-Purpose Input Output 37 37 61 46 37 37 29 GPIO39 I/O General-Purpose Input Output 39 39 56 46 GPIO40 I/O General-Purpose Input Output 40 40 80 64 53 53 GPIO41 I/O General-Purpose Input Output 41 41 82 66 55 55 GPIO42 I/O General-Purpose Input Output 42 42 GPIO43 I/O General-Purpose Input Output 43 43 GPIO44 I/O General-Purpose Input Output 44 44 GPIO45 I/O General-Purpose Input Output 45 45 GPIO46 I/O General-Purpose Input Output 46 46 GPIO47 I/O General-Purpose Input Output 47 47 6 GPIO48 I/O General-Purpose Input Output 48 48 7 GPIO49 I/O General-Purpose Input Output 49 49 8 GPIO50 I/O General-Purpose Input Output 50 50 9 GPIO51 I/O General-Purpose Input Output 51 51 10 GPIO52 I/O General-Purpose Input Output 52 52 11 GPIO53 I/O General-Purpose Input Output 53 53 12 GPIO54 I/O General-Purpose Input Output 54 54 13 GPIO55 I/O General-Purpose Input Output 55 55 43 GPIO56 I/O General-Purpose Input Output 56 56 65 GPIO57 I/O General-Purpose Input Output 57 57 66 GPIO58 I/O General-Purpose Input Output 58 58 67 GPIO59 I/O General-Purpose Input Output 59 59 92 GPIO60 I/O General-Purpose Input Output 60 60 44 GPIO61 I/O General-Purpose Input Output 61 61 91 HIC_A0 I HIC Address 0 55, 60, 8 43, 44, 74 58 47 47 HIC_A1 I HIC Address 1 2, 26 58, 77 43, 61 50 50 44 PIN TYPE DESCRIPTION 48 PT PIN 57 54 85 69 73 6 Submit Document Feedback 40 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 PIN TYPE DESCRIPTION GPIO PIN 100 PZ PIN 80 PN PIN 64 PM PIN 64 PMQ PIN 48 PT PIN HIC_A2 I HIC Address 2 1 78 62 51 51 41 HIC_A3 I HIC Address 3 23 81 65 54 54 HIC_A4 I HIC Address 4 27, 41 59, 82 44, 66 55 55 HIC_A5 I HIC Address 5 22 83 67 56 56 HIC_A6 I HIC Address 6 42, 47, 7 6, 84 57, 68 57 57 43 HIC_A7 I HIC Address 7 43, 48, 5 7, 89 54, 74 61 61 47 HIC_BASESEL0 I HIC Base address range select 0 25, 9 57, 90 42, 75 62 62 HIC_BASESEL1 I HIC Base address range select 1 HIC_BASESEL2 I HIC Base address range select 2 79 63 52 52 42 4 75 59 48 48 38 HIC_D0 I/O HIC Data 0 26, 33 53, 58 38, 43 32 32 25 HIC_D1 I/O HIC Data 1 16, 27 54, 59 39, 44 33 33 26 HIC_D2 I/O HIC Data 2 17, 42, 49 55, 8 40, 57 34 34 HIC_D3 I/O HIC Data 3 24, 43, 50 56, 9 41, 54 35 35 27 HIC_D4 I/O HIC Data 4 3, 5, 57 66, 76, 89 60, 74 49, 61 49, 61 39, 47 HIC_D5 I/O HIC Data 5 13, 40, 44 50, 80, 85 35, 64, 69 29, 53 29, 53 HIC_D6 I/O HIC Data 6 11, 45, 51, 56 10, 52, 65 37, 73 31 31 HIC_D7 I/O HIC Data 7 39, 44 79, 85 56, 63, 69 46, 52 52 HIC_D8 I/O HIC Data 8 30, 8 74, 98 1, 58 47 47 HIC_D9 I/O HIC Data 9 2, 34 77, 94 61, 77 50 50 40 HIC_D10 I/O HIC Data 10 1, 31 78, 99 2, 62 51 51 41 HIC_D11 I/O HIC Data 11 13, 23 50, 81 35, 65 29, 54 29, 54 HIC_D12 I/O HIC Data 12 15, 41 82, 95 66, 78 55 55 HIC_D13 I/O HIC Data 13 12, 22 51, 83 36, 67 30, 56 30, 56 HIC_D14 I/O HIC Data 14 6, 7 84, 97 68, 80 57, 64 57, 64 HIC_D15 I/O HIC Data 15 14, 5 89, 96 74, 79 61 61 47 HIC_INT O HIC Device interrupt to host 12, 18, 32 51, 64, 68 36, 49, 50 30, 40, 41 30, 40, 41 32, 33 HIC_NBE0 I HIC Byte enable 0 11, 19 52, 69 37, 51 31, 42 31, 42 34 HIC_NBE1 I HIC Byte enable 1 34, 40, 6 80, 94, 97 64, 77, 80 53, 64 53, 64 48 HIC_NCS I HIC Chip select input 29 100 3 1 1 1 HIC_NOE O HIC Output enable for data bus 28, 3 1, 76 4, 60 2, 49 2, 49 2, 39 HIC_NRDY O HIC Ready from device to host 37, 58, 9 61, 67, 90 46, 75 37, 62 37, 62 29 HIC_NWE I HIC Data Write enable from host 10, 35, 4, 46, 52 11, 63, 75, 93 48, 59, 6, 76 39, 48, 63 39, 48, 63 31, 38 I2CA_SCL I/OD I2C-A Open-Drain Bidirectional Clock 1, 18, 27, 33, 37, 43, 57, 8 53, 59, 61, 66, 68, 74, 78 38, 44, 46, 50, 54, 58, 62 32, 37, 41, 47, 51 32, 37, 41, 47, 51 25, 29, 33, 41 I2CA_SDA I/OD I2C-A Open-Drain Bidirectional Data 10, 19, 26, 32, 35, 42, 56 58, 63, 64, 65, 69, 79, 93 43, 48, 49, 51, 57, 63, 76 39, 40, 42, 52, 63 39, 40, 42, 52, 63 31, 32, 34, 42 I2CB_SCL I/OD I2C-B Open-Drain Bidirectional Clock 15, 29, 3, 51, 9 10, 100, 76, 90, 95 3, 60, 75, 78 1, 49, 62 1, 49, 62 1, 39 I2CB_SDA I/OD I2C-B Open-Drain Bidirectional Data 14, 2, 28, 34, 50 1, 77, 9, 94, 96 4, 61, 77, 79 2, 50 2, 50 2, 40 23, 29, 33, 35, 42, 47, 49, 59 100, 53, 6, 63, 8, 81, 92 3, 38, 48, 57, 65 1, 32, 39, 54 1, 32, 39, 54 1, 25, 31 LINA_RX I LIN-A Receive 42 43, 48 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C ADVANCE INFORMATION Table 5-3. Digital Signals (continued) SIGNAL NAME 45 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-3. Digital Signals (continued) SIGNAL NAME PIN TYPE DESCRIPTION ADVANCE INFORMATION GPIO PIN 100 PZ PIN 80 PN PIN 64 PM PIN 64 PMQ PIN 48 PT PIN LINA_TX O LIN-A Transmit 22, 28, 32, 37, 46, 58 1, 61, 64, 67, 83 4, 46, 49, 6, 67 2, 37, 40, 56 2, 37, 40, 56 2, 29, 32 LINB_RX I LIN-B Receive 11, 13, 15, 19, 23, 41, 55, 9 43, 50, 52, 69, 81, 82, 90, 95 35, 37, 51, 65, 66, 75, 78 29, 31, 42, 54, 55, 62 29, 31, 42, 54, 55, 62 34 LINB_TX O LIN-B Transmit 10, 12, 14, 18, 22, 24, 40, 44, 54 13, 51, 56, 68, 80, 83, 85, 93, 96 36, 41, 50, 64, 67, 69, 76, 79 30, 35, 41, 53, 56, 63 30, 35, 41, 53, 56, 63 27, 33 MCAN_RX I CAN/CAN FD Receive 12, 21, 30, 39, 47, 5, 51, 57, 61 10, 49, 51, 6, 66, 79, 89, 91, 98 1, 34, 36, 56, 63, 74 30, 46, 52, 61 30, 52, 61 42, 47 MCAN_TX O CAN/CAN FD Transmit 1, 13, 20, 31, 4, 46, 50, 56, 60 44, 48, 50, 65, 75, 78, 9, 99 2, 33, 35, 59, 6, 62 29, 48, 51 29, 48, 51 38, 41 OUTPUTXBAR1 O Output X-BAR Output 1 2, 24, 34, 58 56, 67, 77, 94 41, 61, 77 35, 50 35, 50 27, 40 OUTPUTXBAR2 O Output X-BAR Output 2 25, 3, 37, 54, 59 13, 57, 61, 76, 92 42, 46, 60 37, 49 37, 49 29, 39 OUTPUTXBAR3 O Output X-BAR Output 3 14, 26, 4, 48, 5, 55, 60 43, 44, 58, 7, 75, 89, 96 43, 59, 74, 79 48, 61 48, 61 38, 47 OUTPUTXBAR4 O Output X-BAR Output 4 15, 27, 33, 49, 6, 61 53, 59, 8, 91, 95, 97 38, 44, 78, 80 32, 64 32, 64 25, 48 OUTPUTXBAR5 O Output X-BAR Output 5 28, 42, 7 1, 84 4, 57, 68 2, 57 2, 57 2, 43 OUTPUTXBAR6 O Output X-BAR Output 6 29, 43, 9 100, 90 3, 54, 75 1, 62 1, 62 1 OUTPUTXBAR7 O Output X-BAR Output 7 11, 16, 30, 44 52, 54, 85, 98 1, 37, 39, 69 31, 33 31, 33 26 OUTPUTXBAR8 O Output X-BAR Output 8 PMBUSA_ALERT I/OD 17, 31, 45 55, 99 2, 40, 73 34 34 PMBus-A Open-Drain Bidirectional Alert Signal 13, 19, 27, 37, 43, 45 50, 59, 61, 69 35, 44, 46, 51, 54, 73 29, 37, 42 29, 37, 42 29, 34 PMBus-A Control Signal - Slave Input/Master Output 12, 18, 26, 35, 42, 44 51, 58, 63, 68, 85 36, 43, 48, 50, 57, 69 30, 39, 41 30, 39, 41 31, 33 PMBUSA_CTL I/O PMBUSA_SCL I/OD PMBus-A Open-Drain Bidirectional Clock 15, 16, 24, 3, 35, 41, 47 54, 56, 6, 63, 76, 82, 95 39, 41, 48, 60, 66, 78 33, 35, 39, 49, 55 33, 35, 39, 49, 55 26, 27, 31, 39 PMBUSA_SDA I/OD PMBus-A Open-Drain Bidirectional Data 14, 17, 2, 25, 32, 34, 40, 44, 46, 48 55, 57, 64, 7, 77, 80, 85, 94, 96 40, 42, 49, 6, 61, 64, 69, 77, 79 34, 40, 50, 53 34, 40, 50, 53 32, 40 SCIA_RX I SCI-A Receive Data 17, 25, 28, 3, 35, 49, 9 1, 55, 57, 63, 76, 8, 90 4, 40, 42, 48, 60, 75 2, 34, 39, 49, 62 2, 34, 39, 49, 62 2, 31, 39 SCIA_TX O SCI-A Transmit Data 16, 2, 24, 29, 37, 48, 8 100, 54, 56, 61, 7, 74, 77 3, 39, 41, 46, 58, 61 1, 33, 35, 37, 47, 50 1, 33, 35, 37, 47, 50 1, 26, 27, 29, 40 SCIB_RX I SCI-B Receive Data 11, 13, 15, 19, 23, 41, 57 50, 52, 66, 69, 81, 82, 95 35, 37, 51, 65, 66, 78 29, 31, 42, 54, 55 29, 31, 42, 54, 55 34 SCIB_TX O SCI-B Transmit Data 10, 12, 14, 18, 22, 40, 56, 9 51, 65, 68, 80, 83, 90, 93, 96 36, 50, 64, 67, 75, 76, 79 30, 41, 53, 56, 62, 63 30, 41, 53, 56, 62, 63 33 SD1_C1 I SDFM-1 Channel 1 Clock Input 17, 33, 49, 53 12, 53, 55, 8 38, 40 32, 34 32, 34 25 SD1_C2 I SDFM-1 Channel 2 Clock Input 19, 33, 51, 54 10, 13, 53, 69 38, 51 32, 42 32, 42 25, 34 SD1_C3 I SDFM-1 Channel 3 Clock Input 21, 53, 55 12, 43, 49 34 SD1_C4 I SDFM-1 Channel 4 Clock Input 23, 55, 56 43, 65, 81 65 54 54 SD1_D1 I SDFM-1 Channel 1 Data Input 16, 48 54, 7 39 33 33 26 SD1_D2 I SDFM-1 Channel 2 Data Input 18, 32, 50 64, 68, 9 49, 50 40, 41 40, 41 32, 33 SD1_D3 I SDFM-1 Channel 3 Data Input 20, 52 11, 48 33 SD1_D4 I SDFM-1 Channel 4 Data Input 22, 54 13, 83 67 56 56 SD2_C1 I SDFM-2 Channel 1 Clock Input 25, 35, 57 57, 63, 66 42, 48 39 39 46 Submit Document Feedback 31 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 PIN TYPE DESCRIPTION GPIO PIN 100 PZ PIN 80 PN PIN SD2_C2 I SDFM-2 Channel 2 Clock Input 27, 58, 59 59, 67, 92 44 SD2_C3 I SDFM-2 Channel 3 Clock Input 29, 45, 59, 61 100, 91, 92 3, 73 SD2_C4 I SDFM-2 Channel 4 Clock Input 31, 46, 60 44, 99 2, 6 SD2_D1 I SDFM-2 Channel 1 Data Input 24, 49, 56 56, 65, 8 41 SD2_D2 I SDFM-2 Channel 2 Data Input 26, 50, 58 58, 67, 9 43 SD2_D3 I SDFM-2 Channel 3 Data Input 28, 43, 51, 60 1, 10, 44 4, 54 SD2_D4 I SDFM-2 Channel 4 Data Input 30, 47, 52 11, 6, 98 1 64 PM PIN 64 PMQ PIN 48 PT PIN 1 1 1 35 35 27 2 2 2 SPIA_CLK I/O SPI-A Clock 12, 18, 3, 56, 9 51, 65, 68, 76, 90 36, 50, 60, 75 30, 41, 49, 62 30, 41, 49, 62 33, 39 SPIA_SIMO I/O SPI-A Slave In, Master Out (SIMO) 11, 16, 2, 54, 8 13, 52, 54, 74, 77 37, 39, 58, 61 31, 33, 47, 50 31, 33, 47, 50 26, 40 SPIA_SOMI I/O SPI-A Slave Out, Master In (SOMI) 1, 10, 13, 17, 55 43, 50, 55, 78, 93 35, 40, 62, 76 29, 34, 51, 63 29, 34, 51, 63 41 SPIA_STE I/O SPI-A Slave Transmit Enable (STE) 11, 19, 5, 57 52, 66, 69, 79, 89 37, 51, 63, 74 31, 42, 52, 61 31, 42, 52, 61 34, 42, 47 SPIB_CLK I/O SPI-B Clock 14, 22, 26, 28, 32, 4, 52, 58 1, 11, 58, 64, 67, 75, 83, 96 4, 43, 49, 59, 67, 79 2, 40, 48, 56 2, 40, 48, 56 2, 32, 38 SPIB_SIMO I/O SPI-B Slave In, Master Out (SIMO) 20, 24, 30, 40, 50, 56, 60, 7 44, 48, 56, 65, 80, 84, 9, 98 1, 33, 41, 64, 68 35, 53, 57 35, 53, 57 27, 43 SPIB_SOMI I/O SPI-B Slave Out, Master In (SOMI) 16, 21, 25, 31, 41, 51, 57, 6, 61 10, 49, 54, 57, 66, 82, 91, 97, 99 2, 34, 39, 42, 66, 80 33, 55, 64 33, 55, 64 26, 48 SPIB_STE I/O SPI-B Slave Transmit Enable (STE) 15, 23, 27, 29, 33, 53, 59 100, 12, 53, 59, 81, 92, 95 3, 38, 44, 65, 78 1, 32, 54 1, 32, 54 1, 25 SYNCOUT O External ePWM Synchronization Pulse 39, 52, 6 11, 97 56, 80 46, 64 64 48 TDI I JTAG Test Data Input (TDI) - TDI is the default mux selection for the pin. The internal pullup is disabled by default. The internal pullup should be enabled or an external pullup added on the board if this pin is used as JTAG TDI to avoid a floating input. 35 63 48 39 39 31 TDO O JTAG Test Data Output (TDO) - TDO is the default mux selection for the pin. The internal pullup is disabled by default. The TDO function will tristate when there is no JTAG activity, leaving this pin floating; the internal pullup should be enabled or an external pullup added on the board to avoid a floating GPIO input. 37 61 46 37 37 29 X1 I/O Crystal oscillator input or single-ended clock input. The device initialization software must configure this pin before the crystal oscillator is enabled. To use this oscillator, a quartz crystal circuit must be connected to X1 and X2. This pin can also be used to feed a single-ended 3.3-V level clock. See the XTAL section for usage details. 19 69 51 42 42 34 X2 I/O Crystal oscillator output. XCLKOUT O External Clock Output. This pin outputs a divideddown version of a chosen clock signal from within the device. 18 68 50 41 41 33 16, 18 54, 68 39, 50 33, 41 33, 41 26, 33 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C ADVANCE INFORMATION Table 5-3. Digital Signals (continued) SIGNAL NAME 47 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 5.3.3 Digital Signals by GPIO Table 5-4. Digital Signals by GPIO SIGNAL NAME PIN TYPE DESCRIPTION 100 PZ 80 PN 64 PM 64 PMQ 48 PT ADVANCE INFORMATION ADCSOCAO O ADC Start of Conversion A for External ADC GPIO8 GPIO33 GPIO53 GPIO8 GPIO33 GPIO8 GPIO33 GPIO8 GPIO33 GPIO33 ADCSOCBO O ADC Start of Conversion B for External ADC GPIO10 GPIO32 GPIO54 GPIO10 GPIO32 GPIO10 GPIO32 GPIO10 GPIO32 GPIO32 AUXCLKIN GPIO29 GPIO29 GPIO29 GPIO29 GPIO29 CANA_RX CAN-A Receive GPIO3 GPIO5 GPIO12 GPIO18 GPIO30 GPIO33 GPIO35/ TDI GPIO49 GPIO53 GPIO59 GPIO61 GPIO3 GPIO5 GPIO12 GPIO18 GPIO30 GPIO33 GPIO35/ TDI GPIO3 GPIO5 GPIO12 GPIO18 GPIO33 GPIO35/ TDI GPIO3 GPIO5 GPIO12 GPIO18 GPIO33 GPIO35/ TDI GPIO3 GPIO5 GPIO18 GPIO33 GPIO35/ TDI GPIO2 GPIO4 GPIO13 GPIO17 GPIO19 GPIO31 GPIO32 GPIO37/ TDO GPIO2 GPIO4 GPIO13 GPIO17 GPIO19 GPIO32 GPIO37/ TDO GPIO2 GPIO4 GPIO13 GPIO17 GPIO19 GPIO32 GPIO37/ TDO GPIO2 GPIO4 GPIO19 GPIO32 GPIO37/ TDO I CANA_TX O CAN-A Transmit GPIO2 GPIO4 GPIO13 GPIO17 GPIO19 GPIO31 GPIO32 GPIO37/ TDO GPIO48 GPIO58 CLB_OUTPUTXBAR1 O CLB Output X-BAR Output 1 GPIO19 GPIO22 GPIO19 GPIO22 GPIO19 GPIO22 GPIO19 GPIO22 GPIO19 CLB_OUTPUTXBAR2 O CLB Output X-BAR Output 2 GPIO7 GPIO47 GPIO7 GPIO39 GPIO7 GPIO39 GPIO7 GPIO7 CLB_OUTPUTXBAR3 O CLB Output X-BAR Output 3 GPIO23 GPIO44 GPIO23 GPIO42 GPIO44 GPIO23 GPIO23 CLB_OUTPUTXBAR4 O CLB Output X-BAR Output 4 GPIO10 GPIO10 GPIO43 GPIO45 GPIO10 GPIO10 CLB_OUTPUTXBAR5 O CLB Output X-BAR Output 5 GPIO5 GPIO8 GPIO52 GPIO5 GPIO8 GPIO5 GPIO8 GPIO5 GPIO8 GPIO5 CLB_OUTPUTXBAR6 O CLB Output X-BAR Output 6 GPIO4 GPIO15 GPIO53 GPIO4 GPIO15 GPIO4 GPIO4 GPIO4 CLB_OUTPUTXBAR7 O CLB Output X-BAR Output 7 GPIO1 GPIO14 GPIO56 GPIO1 GPIO14 GPIO1 GPIO1 GPIO1 CLB_OUTPUTXBAR8 O CLB Output X-BAR Output 8 GPIO0 GPIO6 GPIO57 GPIO0 GPIO6 GPIO0 GPIO6 GPIO0 GPIO6 GPIO0 GPIO6 EPWM1_A O ePWM-1 Output A GPIO0 GPIO30 GPIO0 GPIO30 GPIO0 GPIO0 GPIO0 EPWM1_B O ePWM-1 Output B GPIO1 GPIO31 GPIO1 GPIO31 GPIO1 GPIO1 GPIO1 48 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 SIGNAL NAME DESCRIPTION 100 PZ 80 PN 64 PM 64 PMQ 48 PT EPWM2_A O ePWM-2 Output A GPIO2 GPIO41 GPIO2 GPIO41 GPIO2 GPIO41 GPIO2 GPIO41 GPIO2 EPWM2_B O ePWM-2 Output B GPIO3 GPIO40 GPIO3 GPIO40 GPIO3 GPIO40 GPIO3 GPIO40 GPIO3 EPWM3_A O ePWM-3 Output A GPIO4 GPIO14 GPIO4 GPIO14 GPIO4 GPIO4 GPIO4 EPWM3_B O ePWM-3 Output B GPIO5 GPIO15 GPIO5 GPIO15 GPIO5 GPIO5 GPIO5 EPWM4_A O ePWM-4 Output A GPIO6 GPIO22 GPIO6 GPIO22 GPIO6 GPIO22 GPIO6 GPIO22 GPIO6 EPWM4_B O ePWM-4 Output B GPIO7 GPIO23 GPIO7 GPIO23 GPIO7 GPIO23 GPIO7 GPIO23 GPIO7 EPWM5_A O ePWM-5 Output A GPIO8 GPIO16 GPIO8 GPIO16 GPIO8 GPIO16 GPIO8 GPIO16 GPIO16 GPIO9 GPIO17 GPIO35/ TDI GPIO9 GPIO17 GPIO35/ TDI GPIO9 GPIO17 GPIO35/ TDI GPIO35/ TDI EPWM5_B O ePWM-5 Output B GPIO9 GPIO17 GPIO35/ TDI EPWM6_A O ePWM-6 Output A GPIO10 GPIO18 GPIO10 GPIO18 GPIO10 GPIO18 GPIO10 GPIO18 GPIO18 EPWM6_B O ePWM-6 Output B GPIO11 GPIO19 GPIO11 GPIO19 GPIO11 GPIO19 GPIO11 GPIO19 GPIO19 EPWM7_A O ePWM-7 Output A GPIO12 GPIO28 GPIO12 GPIO28 GPIO12 GPIO28 GPIO12 GPIO28 GPIO28 EPWM7_B O ePWM-7 Output B GPIO13 GPIO29 GPIO13 GPIO29 GPIO13 GPIO29 GPIO13 GPIO29 GPIO29 EPWM8_A O ePWM-8 Output A GPIO14 GPIO24 GPIO14 GPIO24 GPIO24 GPIO24 GPIO24 EPWM8_B O ePWM-8 Output B GPIO15 GPIO32 GPIO15 GPIO32 GPIO32 GPIO32 GPIO32 eQEP-1 Input A GPIO6 GPIO10 GPIO20 GPIO25 GPIO28 GPIO35/ TDI GPIO40 GPIO44 GPIO50 GPIO56 GPIO6 GPIO10 GPIO20 GPIO25 GPIO28 GPIO35/ TDI GPIO40 GPIO44 GPIO6 GPIO10 GPIO28 GPIO35/ TDI GPIO40 GPIO6 GPIO10 GPIO28 GPIO35/ TDI GPIO40 GPIO6 GPIO28 GPIO35/ TDI eQEP-1 Input B GPIO7 GPIO11 GPIO21 GPIO29 GPIO37/ TDO GPIO41 GPIO51 GPIO57 GPIO7 GPIO11 GPIO21 GPIO29 GPIO37/ TDO GPIO41 GPIO7 GPIO11 GPIO29 GPIO37/ TDO GPIO41 GPIO7 GPIO11 GPIO29 GPIO37/ TDO GPIO41 GPIO7 GPIO29 GPIO37/ TDO EQEP1_A EQEP1_B I I Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback ADVANCE INFORMATION Table 5-4. Digital Signals by GPIO (continued) PIN TYPE 49 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-4. Digital Signals by GPIO (continued) SIGNAL NAME EQEP1_INDEX EQEP1_STROBE ADVANCE INFORMATION EQEP2_A EQEP2_B PIN TYPE I/O I/O I I DESCRIPTION 100 PZ 80 PN 64 PM 64 PMQ 48 PT eQEP-1 Index GPIO0 GPIO9 GPIO13 GPIO17 GPIO23 GPIO31 GPIO53 GPIO59 GPIO0 GPIO9 GPIO13 GPIO17 GPIO23 GPIO31 GPIO39 GPIO43 GPIO0 GPIO9 GPIO13 GPIO17 GPIO23 GPIO39 GPIO0 GPIO9 GPIO13 GPIO17 GPIO23 GPIO0 eQEP-1 Strobe GPIO8 GPIO12 GPIO16 GPIO22 GPIO30 GPIO52 GPIO58 GPIO8 GPIO12 GPIO16 GPIO22 GPIO30 GPIO42 GPIO8 GPIO12 GPIO16 GPIO22 GPIO8 GPIO12 GPIO16 GPIO22 GPIO16 eQEP-2 Input A GPIO11 GPIO14 GPIO18 GPIO24 GPIO54 GPIO11 GPIO14 GPIO18 GPIO24 GPIO11 GPIO18 GPIO24 GPIO11 GPIO18 GPIO24 GPIO18 GPIO24 eQEP-2 Input B GPIO15 GPIO16 GPIO19 GPIO25 GPIO33 GPIO55 GPIO15 GPIO16 GPIO19 GPIO25 GPIO33 GPIO16 GPIO19 GPIO33 GPIO16 GPIO19 GPIO33 GPIO16 GPIO19 GPIO33 EQEP2_INDEX I/O eQEP-2 Index GPIO26 GPIO29 GPIO57 GPIO26 GPIO29 GPIO39 GPIO29 GPIO39 GPIO29 GPIO29 EQEP2_STROBE I/O eQEP-2 Strobe GPIO4 GPIO27 GPIO28 GPIO56 GPIO4 GPIO27 GPIO28 GPIO4 GPIO28 GPIO4 GPIO28 GPIO4 GPIO28 O Error Status Output. This signal requires an external pulldown. GPIO24 GPIO28 GPIO29 GPIO55 GPIO24 GPIO28 GPIO29 GPIO24 GPIO28 GPIO29 GPIO24 GPIO28 GPIO29 GPIO24 GPIO28 GPIO29 FSIRX-A Input Clock GPIO0 GPIO4 GPIO13 GPIO30 GPIO33 GPIO54 GPIO57 GPIO0 GPIO4 GPIO13 GPIO30 GPIO33 GPIO39 GPIO0 GPIO4 GPIO13 GPIO33 GPIO39 GPIO0 GPIO4 GPIO13 GPIO33 GPIO0 GPIO4 GPIO33 FSIRX-A Primary Data Input GPIO3 GPIO12 GPIO32 GPIO40 GPIO44 GPIO52 GPIO58 GPIO3 GPIO12 GPIO32 GPIO40 GPIO44 GPIO3 GPIO12 GPIO32 GPIO40 GPIO3 GPIO12 GPIO32 GPIO40 GPIO3 GPIO32 FSIRX-A Optional Additional Data Input GPIO2 GPIO11 GPIO31 GPIO41 GPIO53 GPIO56 GPIO2 GPIO11 GPIO31 GPIO41 GPIO2 GPIO11 GPIO41 GPIO2 GPIO11 GPIO41 GPIO2 ERRORSTS FSIRXA_CLK FSIRXA_D0 FSIRXA_D1 50 I I I Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 SIGNAL NAME DESCRIPTION 100 PZ 80 PN 64 PM 64 PMQ 48 PT GPIO7 GPIO10 GPIO27 GPIO44 GPIO7 GPIO10 GPIO7 GPIO10 GPIO7 FSITXA_CLK O FSITX-A Output Clock GPIO7 GPIO10 GPIO27 GPIO44 GPIO51 FSITXA_D0 O FSITX-A Primary Data Output GPIO6 GPIO9 GPIO26 GPIO49 GPIO6 GPIO9 GPIO26 GPIO45 GPIO6 GPIO9 GPIO6 GPIO9 GPIO6 GPIO5 GPIO6 GPIO8 GPIO25 GPIO46 GPIO5 GPIO6 GPIO8 GPIO5 GPIO6 GPIO8 GPIO5 GPIO6 FSITXA_D1 O FSITX-A Optional Additional Data Output GPIO5 GPIO6 GPIO8 GPIO25 GPIO50 FSITXA_TDM_CLK I FSITX-A Time Division Multiplexed Clock Input GPIO8 GPIO18 GPIO47 GPIO8 GPIO18 GPIO8 GPIO18 GPIO8 GPIO18 GPIO18 FSITXA_TDM_D0 I FSITX-A Time Division Multiplexed Data Input GPIO10 GPIO19 GPIO10 GPIO19 GPIO10 GPIO19 GPIO10 GPIO19 GPIO19 FSITXA_TDM_D1 I FSITX-A Time Division Multiplexed Additional Data Input GPIO1 GPIO54 GPIO59 GPIO1 GPIO1 GPIO1 GPIO1 GPIO8 A6 GPIO8 A6 GPIO8 A6 A6 GPIO2 GPIO26 B2/C6 GPIO2 B2/C6 GPIO2 B2/C6 GPIO2 B2/C6 HIC_A0 I HIC Address 0 GPIO8 GPIO55 GPIO60 A6 HIC_A1 I HIC Address 1 GPIO2 GPIO26 B2/C6 HIC_A2 I HIC Address 2 GPIO1 GPIO1 GPIO1 GPIO1 GPIO1 B3/VDAC B3/VDAC B3/VDAC B3/VDAC B3/VDAC HIC_A3 I HIC Address 3 GPIO23 GPIO23 GPIO23 GPIO23 A2/B6/C9 A2/B6/C9 A2/B6/C9 A2/B6/C9 A2/B6/C9 HIC_A4 I HIC Address 4 GPIO27 GPIO41 HIC_A5 I HIC Address 5 GPIO22 GPIO22 GPIO22 GPIO22 A14/B14/ A14/B14/ A14/B14/ A14/B14/ C4 C4 C4 C4 GPIO27 GPIO41 A15 GPIO41 A15 GPIO41 A15 A15 HIC_A6 I HIC Address 6 GPIO7 GPIO7 GPIO7 GPIO7 GPIO7 GPIO47 GPIO42 A11/B10/ A11/B10/ A11/B10/ A11/B10/ A11/B10/ C0 C0 C0 C0 C0 HIC_A7 I HIC Address 7 GPIO5 GPIO48 C2/B12 HIC Base address range select 0 GPIO9 GPIO9 GPIO9 GPIO9 GPIO25 GPIO25 A1/B7/ A1/B7/ A1/B7/ A1/B7/ A1/B7/ DACB_O DACB_O DACB_O DACB_O DACB_O UT UT UT UT UT HIC Base address range select 1 GPIO0 GPIO0 GPIO0 GPIO0 GPIO0 A0/B15/C A0/B15/C A0/B15/C A0/B15/C A0/B15/C 15/ 15/ 15/ 15/ 15/ DACA_O DACA_O DACA_O DACA_O DACA_O UT UT UT UT UT HIC_BASESEL0 HIC_BASESEL1 I I GPIO5 GPIO43 C2/B12 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C GPIO5 C2/B12 GPIO5 C2/B12 ADVANCE INFORMATION Table 5-4. Digital Signals by GPIO (continued) PIN TYPE GPIO5 C2/B12 Submit Document Feedback 51 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-4. Digital Signals by GPIO (continued) SIGNAL NAME HIC_BASESEL2 PIN TYPE I DESCRIPTION HIC Base address range select 2 100 PZ 80 PN 64 PM 64 PMQ 48 PT GPIO4 GPIO4 GPIO4 GPIO4 GPIO4 A10/B1/C A10/B1/C A10/B1/C A10/B1/C A10/B1/C 10 10 10 10 10 ADVANCE INFORMATION HIC_D0 I/O HIC Data 0 GPIO26 GPIO33 GPIO26 GPIO33 GPIO33 GPIO33 GPIO33 HIC_D1 I/O HIC Data 1 GPIO16 GPIO27 GPIO16 GPIO27 GPIO16 GPIO16 GPIO16 HIC_D10 I/O HIC Data 10 GPIO1 GPIO31 GPIO1 GPIO31 GPIO1 GPIO1 GPIO1 HIC_D11 I/O HIC Data 11 GPIO13 GPIO23 GPIO13 GPIO23 GPIO13 GPIO23 GPIO13 GPIO23 HIC_D12 I/O HIC Data 12 GPIO15 GPIO41 GPIO15 GPIO41 GPIO41 GPIO41 HIC_D13 I/O HIC Data 13 GPIO12 GPIO22 GPIO12 GPIO22 GPIO12 GPIO22 GPIO12 GPIO22 HIC_D14 I/O HIC Data 14 GPIO6 GPIO7 GPIO6 GPIO7 GPIO6 GPIO7 GPIO6 GPIO7 GPIO6 GPIO7 HIC_D15 I/O HIC Data 15 GPIO5 GPIO14 GPIO5 GPIO14 GPIO5 GPIO5 GPIO5 HIC_D2 I/O HIC Data 2 GPIO17 GPIO49 GPIO17 GPIO42 GPIO17 GPIO17 HIC_D3 I/O HIC Data 3 GPIO24 GPIO50 GPIO24 GPIO43 GPIO24 GPIO24 GPIO24 HIC_D4 I/O HIC Data 4 GPIO3 GPIO5 GPIO57 GPIO3 GPIO5 GPIO3 GPIO5 GPIO3 GPIO5 GPIO3 GPIO5 HIC_D5 I/O HIC Data 5 GPIO13 GPIO40 GPIO44 GPIO13 GPIO40 GPIO44 GPIO13 GPIO40 GPIO13 GPIO40 HIC_D6 I/O HIC Data 6 GPIO11 GPIO51 GPIO56 GPIO11 GPIO45 GPIO11 GPIO11 HIC_D7 I/O HIC Data 7 GPIO0 GPIO44 GPIO0 GPIO39 GPIO44 GPIO0 GPIO39 GPIO0 HIC_D8 I/O HIC Data 8 GPIO8 GPIO30 GPIO8 GPIO30 GPIO8 GPIO8 HIC_D9 I/O HIC Data 9 GPIO2 GPIO34 GPIO2 GPIO34 GPIO2 GPIO2 GPIO2 HIC_INT O HIC Device interrupt to host GPIO12 GPIO18 GPIO32 GPIO12 GPIO18 GPIO32 GPIO12 GPIO18 GPIO32 GPIO12 GPIO18 GPIO32 GPIO18 GPIO32 HIC_NBE0 I HIC Byte enable 0 GPIO11 GPIO19 A9 GPIO11 GPIO19 A9 GPIO11 GPIO19 A9 GPIO11 GPIO19 A9 GPIO19 A9 GPIO6 GPIO34 GPIO40 A8 GPIO6 GPIO40 A8 GPIO6 GPIO40 A8 GPIO6 A8 GPIO0 HIC_NBE1 I HIC Byte enable 1 GPIO6 GPIO34 GPIO40 A8 HIC_NCS I HIC Chip select input GPIO29 A12 GPIO29 A12 GPIO29 A12 GPIO29 A12 GPIO29 A12 HIC_NOE O HIC Output enable for data bus GPIO3 GPIO28 C3/A7 GPIO3 GPIO28 C3/A7 GPIO3 GPIO28 C3/A7 GPIO3 GPIO28 C3/A7 GPIO3 GPIO28 C3/A7 52 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 SIGNAL NAME HIC_NRDY HIC_NWE I2CA_SCL I2CA_SDA I2CB_SCL I2CB_SDA LINA_RX LINA_TX LINB_RX O I I/OD I/OD I/OD I/OD I O I DESCRIPTION 100 PZ 80 PN 64 PM 64 PMQ 48 PT HIC Ready from device to host GPIO9 GPIO37/ TDO GPIO58 GPIO9 GPIO37/ TDO GPIO9 GPIO37/ TDO GPIO9 GPIO37/ TDO GPIO37/ TDO HIC Data Write enable from host GPIO4 GPIO10 GPIO35/ TDI GPIO52 A4/B8 GPIO4 GPIO10 GPIO35/ TDI GPIO46 A4/B8 GPIO4 GPIO10 GPIO35/ TDI A4/B8 GPIO4 GPIO10 GPIO35/ TDI A4/B8 GPIO4 GPIO35/ TDI A4/B8 I2C-A Open-Drain Bidirectional Clock GPIO1 GPIO8 GPIO18 GPIO27 GPIO33 GPIO37/ TDO GPIO57 GPIO1 GPIO8 GPIO18 GPIO27 GPIO33 GPIO37/ TDO GPIO43 GPIO1 GPIO8 GPIO18 GPIO33 GPIO37/ TDO GPIO1 GPIO8 GPIO18 GPIO33 GPIO37/ TDO GPIO1 GPIO18 GPIO33 GPIO37/ TDO I2C-A Open-Drain Bidirectional Data GPIO0 GPIO10 GPIO19 GPIO26 GPIO32 GPIO35/ TDI GPIO56 GPIO0 GPIO10 GPIO19 GPIO26 GPIO32 GPIO35/ TDI GPIO42 GPIO0 GPIO10 GPIO19 GPIO32 GPIO35/ TDI GPIO0 GPIO10 GPIO19 GPIO32 GPIO35/ TDI GPIO0 GPIO19 GPIO32 GPIO35/ TDI I2C-B Open-Drain Bidirectional Clock GPIO3 GPIO9 GPIO15 GPIO29 GPIO51 GPIO3 GPIO9 GPIO15 GPIO29 GPIO3 GPIO9 GPIO29 GPIO3 GPIO9 GPIO29 GPIO3 GPIO29 I2C-B Open-Drain Bidirectional Data GPIO2 GPIO14 GPIO28 GPIO34 GPIO50 GPIO2 GPIO14 GPIO28 GPIO34 GPIO2 GPIO28 GPIO2 GPIO28 GPIO2 GPIO28 LIN-A Receive GPIO23 GPIO29 GPIO33 GPIO35/ TDI GPIO47 GPIO49 GPIO59 GPIO23 GPIO29 GPIO33 GPIO35/ TDI GPIO42 GPIO23 GPIO29 GPIO33 GPIO35/ TDI GPIO23 GPIO29 GPIO33 GPIO35/ TDI GPIO29 GPIO33 GPIO35/ TDI LIN-A Transmit GPIO22 GPIO28 GPIO32 GPIO37/ TDO GPIO58 GPIO22 GPIO28 GPIO32 GPIO37/ TDO GPIO46 GPIO22 GPIO28 GPIO32 GPIO37/ TDO GPIO22 GPIO28 GPIO32 GPIO37/ TDO GPIO28 GPIO32 GPIO37/ TDO LIN-B Receive GPIO9 GPIO11 GPIO13 GPIO15 GPIO19 GPIO23 GPIO41 GPIO55 GPIO9 GPIO11 GPIO13 GPIO15 GPIO19 GPIO23 GPIO41 GPIO9 GPIO11 GPIO13 GPIO19 GPIO23 GPIO41 GPIO9 GPIO11 GPIO13 GPIO19 GPIO23 GPIO41 GPIO19 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback ADVANCE INFORMATION Table 5-4. Digital Signals by GPIO (continued) PIN TYPE 53 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-4. Digital Signals by GPIO (continued) SIGNAL NAME LINB_TX ADVANCE INFORMATION MCAN_RX MCAN_TX OUTPUTXBAR1 OUTPUTXBAR2 OUTPUTXBAR3 PIN TYPE O I O O O O DESCRIPTION 100 PZ 80 PN 64 PM 64 PMQ 48 PT LIN-B Transmit GPIO10 GPIO12 GPIO14 GPIO18 GPIO22 GPIO24 GPIO40 GPIO44 GPIO54 GPIO10 GPIO12 GPIO14 GPIO18 GPIO22 GPIO24 GPIO40 GPIO44 GPIO10 GPIO12 GPIO18 GPIO22 GPIO24 GPIO40 GPIO10 GPIO12 GPIO18 GPIO22 GPIO24 GPIO40 GPIO18 GPIO24 CAN/CAN FD Receive GPIO0 GPIO5 GPIO12 GPIO21 GPIO30 GPIO47 GPIO51 GPIO57 GPIO61 GPIO0 GPIO5 GPIO12 GPIO21 GPIO30 GPIO39 GPIO0 GPIO5 GPIO12 GPIO39 GPIO0 GPIO5 GPIO12 GPIO0 GPIO5 CAN/CAN FD Transmit GPIO1 GPIO4 GPIO13 GPIO20 GPIO31 GPIO50 GPIO56 GPIO60 GPIO1 GPIO4 GPIO13 GPIO20 GPIO31 GPIO46 GPIO1 GPIO4 GPIO13 GPIO1 GPIO4 GPIO13 GPIO1 GPIO4 Output X-BAR Output 1 GPIO2 GPIO24 GPIO34 GPIO58 GPIO2 GPIO24 GPIO34 GPIO2 GPIO24 GPIO2 GPIO24 GPIO2 GPIO24 Output X-BAR Output 2 GPIO3 GPIO25 GPIO37/ TDO GPIO54 GPIO59 GPIO3 GPIO25 GPIO37/ TDO GPIO3 GPIO37/ TDO GPIO3 GPIO37/ TDO GPIO3 GPIO37/ TDO Output X-BAR Output 3 GPIO4 GPIO5 GPIO14 GPIO26 GPIO48 GPIO55 GPIO60 GPIO4 GPIO5 GPIO14 GPIO26 GPIO4 GPIO5 GPIO4 GPIO5 GPIO4 GPIO5 GPIO6 GPIO15 GPIO27 GPIO33 GPIO6 GPIO33 GPIO6 GPIO33 GPIO6 GPIO33 OUTPUTXBAR4 O Output X-BAR Output 4 GPIO6 GPIO15 GPIO27 GPIO33 GPIO49 GPIO61 OUTPUTXBAR5 O Output X-BAR Output 5 GPIO7 GPIO28 GPIO7 GPIO28 GPIO42 GPIO7 GPIO28 GPIO7 GPIO28 GPIO7 GPIO28 OUTPUTXBAR6 O Output X-BAR Output 6 GPIO9 GPIO29 GPIO9 GPIO29 GPIO43 GPIO9 GPIO29 GPIO9 GPIO29 GPIO29 OUTPUTXBAR7 O Output X-BAR Output 7 GPIO11 GPIO16 GPIO30 GPIO44 GPIO11 GPIO16 GPIO30 GPIO44 GPIO11 GPIO16 GPIO11 GPIO16 GPIO16 54 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-4. Digital Signals by GPIO (continued) OUTPUTXBAR8 PMBUSA_ALERT PMBUSA_CTL PMBUSA_SCL PMBUSA_SDA SCIA_RX SCIA_TX SCIB_RX O I/OD I/O I/OD I/OD I O I DESCRIPTION 100 PZ 80 PN 64 PM 64 PMQ Output X-BAR Output 8 GPIO17 GPIO31 GPIO17 GPIO31 GPIO45 GPIO17 GPIO17 PMBus-A Open-Drain Bidirectional Alert Signal GPIO13 GPIO19 GPIO27 GPIO37/ TDO GPIO13 GPIO19 GPIO27 GPIO37/ TDO GPIO43 GPIO45 GPIO13 GPIO19 GPIO37/ TDO GPIO13 GPIO19 GPIO37/ TDO GPIO19 GPIO37/ TDO PMBus-A Control Signal - Slave Input/ Master Output GPIO12 GPIO18 GPIO26 GPIO35/ TDI GPIO44 GPIO12 GPIO18 GPIO26 GPIO35/ TDI GPIO42 GPIO44 GPIO12 GPIO18 GPIO35/ TDI GPIO12 GPIO18 GPIO35/ TDI GPIO18 GPIO35/ TDI PMBus-A Open-Drain Bidirectional Clock GPIO3 GPIO15 GPIO16 GPIO24 GPIO35/ TDI GPIO41 GPIO47 GPIO3 GPIO15 GPIO16 GPIO24 GPIO35/ TDI GPIO41 GPIO3 GPIO16 GPIO24 GPIO35/ TDI GPIO41 GPIO3 GPIO16 GPIO24 GPIO35/ TDI GPIO41 GPIO3 GPIO16 GPIO24 GPIO35/ TDI PMBus-A Open-Drain Bidirectional Data GPIO2 GPIO14 GPIO17 GPIO25 GPIO32 GPIO34 GPIO40 GPIO44 GPIO48 GPIO2 GPIO14 GPIO17 GPIO25 GPIO32 GPIO34 GPIO40 GPIO44 GPIO46 GPIO2 GPIO17 GPIO32 GPIO40 GPIO2 GPIO17 GPIO32 GPIO40 GPIO2 GPIO32 SCI-A Receive Data GPIO3 GPIO9 GPIO17 GPIO25 GPIO28 GPIO35/ TDI GPIO49 GPIO3 GPIO9 GPIO17 GPIO25 GPIO28 GPIO35/ TDI GPIO3 GPIO9 GPIO17 GPIO28 GPIO35/ TDI GPIO3 GPIO9 GPIO17 GPIO28 GPIO35/ TDI GPIO3 GPIO28 GPIO35/ TDI SCI-A Transmit Data GPIO2 GPIO8 GPIO16 GPIO24 GPIO29 GPIO37/ TDO GPIO48 GPIO2 GPIO8 GPIO16 GPIO24 GPIO29 GPIO37/ TDO GPIO2 GPIO8 GPIO16 GPIO24 GPIO29 GPIO37/ TDO GPIO2 GPIO8 GPIO16 GPIO24 GPIO29 GPIO37/ TDO GPIO2 GPIO16 GPIO24 GPIO29 GPIO37/ TDO SCI-B Receive Data GPIO11 GPIO13 GPIO15 GPIO19 GPIO23 GPIO41 GPIO57 GPIO11 GPIO13 GPIO15 GPIO19 GPIO23 GPIO41 GPIO11 GPIO13 GPIO19 GPIO23 GPIO41 GPIO11 GPIO13 GPIO19 GPIO23 GPIO41 GPIO19 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C 48 PT Submit Document Feedback ADVANCE INFORMATION SIGNAL NAME PIN TYPE 55 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-4. Digital Signals by GPIO (continued) SIGNAL NAME SCIB_TX SD1_C1 ADVANCE INFORMATION SD1_C2 SD1_C3 SD1_C4 SD1_D1 PIN TYPE O I I I I I DESCRIPTION SCI-B Transmit Data SDFM-1 Channel 1 Clock Input 100 PZ 80 PN 64 PM 64 PMQ 48 PT GPIO9 GPIO10 GPIO12 GPIO14 GPIO18 GPIO22 GPIO40 GPIO56 GPIO9 GPIO10 GPIO12 GPIO14 GPIO18 GPIO22 GPIO40 GPIO9 GPIO10 GPIO12 GPIO18 GPIO22 GPIO40 GPIO9 GPIO10 GPIO12 GPIO18 GPIO22 GPIO40 GPIO18 GPIO17 GPIO33 GPIO17 GPIO17 GPIO17 GPIO33 GPIO49 GPIO33 GPIO33 GPIO33 A0/B15/C GPIO53 A0/B15/C A0/B15/C A0/B15/C 15/ A0/B15/C 15/ 15/ 15/ DACA_O 15/ DACA_O DACA_O DACA_O UT DACA_O UT UT UT UT SDFM-1 Channel 2 Clock Input GPIO19 GPIO33 GPIO51 GPIO54 C3/A7 GPIO19 GPIO33 C3/A7 GPIO19 GPIO33 C3/A7 GPIO19 GPIO33 C3/A7 GPIO19 GPIO33 C3/A7 SDFM-1 Channel 3 Clock Input GPIO21 GPIO53 GPIO55 A9 GPIO21 A9 A9 A9 A9 SDFM-1 Channel 4 Clock Input GPIO23 GPIO55 GPIO23 GPIO23 GPIO23 A10/B1/C GPIO56 A10/B1/C A10/B1/C A10/B1/C 10 A10/B1/C 10 10 10 10 SDFM-1 Channel 1 Data Input GPIO16 GPIO16 GPIO16 GPIO16 GPIO48 A14/B14/ A14/B14/ A14/B14/ A14/B14/ C4 C4 C4 C4 GPIO16 SD1_D2 I SDFM-1 Channel 2 Data Input GPIO18 GPIO18 GPIO18 GPIO18 GPIO18 GPIO32 GPIO32 GPIO32 GPIO32 GPIO32 GPIO50 A11/B10/ A11/B10/ A11/B10/ A11/B10/ A11/B10/ C0 C0 C0 C0 C0 SD1_D3 I SDFM-1 Channel 3 Data Input GPIO20 GPIO52 C2/B12 SDFM-1 Channel 4 Data Input GPIO22 GPIO22 GPIO22 GPIO22 GPIO54 A1/B7/ A1/B7/ A1/B7/ A1/B7/ A1/B7/ DACB_O DACB_O DACB_O DACB_O DACB_O UT UT UT UT UT GPIO25 GPIO35/ TDI A6 A8 GPIO35/ TDI A6 A8 GPIO35/ TDI A6 A8 GPIO35/ TDI A6 A8 GPIO27 A4/B8 A4/B8 A4/B8 A4/B8 SD1_D4 I SD2_C1 I SDFM-2 Channel 1 Clock Input GPIO25 GPIO35/ TDI GPIO57 A6 A8 SD2_C2 I SDFM-2 Channel 2 Clock Input GPIO27 GPIO58 GPIO59 A4/B8 56 Submit Document Feedback GPIO20 C2/B12 C2/B12 C2/B12 C2/B12 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 SIGNAL NAME DESCRIPTION 100 PZ 80 PN 64 PM 64 PMQ 48 PT GPIO29 A12 GPIO29 A12 GPIO29 A12 GPIO24 A15 GPIO24 A15 GPIO24 A15 SD2_C3 I SDFM-2 Channel 3 Clock Input GPIO29 GPIO59 GPIO61 A12 GPIO29 GPIO45 A12 SD2_C4 I SDFM-2 Channel 4 Clock Input GPIO31 GPIO60 B5 GPIO31 GPIO46 SD2_D1 I SDFM-2 Channel 1 Data Input GPIO24 GPIO49 GPIO56 GPIO24 A15 SD2_D2 I SDFM-2 Channel 2 Data Input GPIO26 GPIO50 GPIO26 B3/VDAC B3/VDAC B3/VDAC GPIO58 B3/VDAC B3/VDAC SD2_D3 I SDFM-2 Channel 3 Data Input GPIO28 GPIO28 GPIO51 GPIO28 GPIO28 GPIO28 GPIO43 GPIO60 A2/B6/C9 A2/B6/C9 A2/B6/C9 A2/B6/C9 A2/B6/C9 SD2_D4 SPIA_CLK SPIA_SIMO SPIA_SOMI SPIA_STE SPIB_CLK SPIB_SIMO I I/O I/O I/O I/O I/O I/O SDFM-2 Channel 4 Data Input GPIO30 GPIO47 GPIO52 B2/C6 GPIO30 B2/C6 B2/C6 B2/C6 B2/C6 SPI-A Clock GPIO3 GPIO9 GPIO12 GPIO18 GPIO56 GPIO3 GPIO9 GPIO12 GPIO18 GPIO3 GPIO9 GPIO12 GPIO18 GPIO3 GPIO9 GPIO12 GPIO18 GPIO3 GPIO18 SPI-A Slave In, Master Out (SIMO) GPIO2 GPIO8 GPIO11 GPIO16 GPIO54 GPIO2 GPIO8 GPIO11 GPIO16 GPIO2 GPIO8 GPIO11 GPIO16 GPIO2 GPIO8 GPIO11 GPIO16 GPIO2 GPIO16 SPI-A Slave Out, Master In (SOMI) GPIO1 GPIO10 GPIO13 GPIO17 GPIO55 GPIO1 GPIO10 GPIO13 GPIO17 GPIO1 GPIO10 GPIO13 GPIO17 GPIO1 GPIO10 GPIO13 GPIO17 GPIO1 SPI-A Slave Transmit Enable (STE) GPIO0 GPIO5 GPIO11 GPIO19 GPIO57 GPIO0 GPIO5 GPIO11 GPIO19 GPIO0 GPIO5 GPIO11 GPIO19 GPIO0 GPIO5 GPIO11 GPIO19 GPIO0 GPIO5 GPIO19 SPI-B Clock GPIO4 GPIO14 GPIO22 GPIO26 GPIO28 GPIO32 GPIO52 GPIO58 GPIO4 GPIO14 GPIO22 GPIO26 GPIO28 GPIO32 GPIO4 GPIO22 GPIO28 GPIO32 GPIO4 GPIO22 GPIO28 GPIO32 GPIO4 GPIO28 GPIO32 SPI-B Slave In, Master Out (SIMO) GPIO7 GPIO20 GPIO24 GPIO30 GPIO40 GPIO50 GPIO56 GPIO60 GPIO7 GPIO20 GPIO24 GPIO30 GPIO40 GPIO7 GPIO24 GPIO40 GPIO7 GPIO24 GPIO40 GPIO7 GPIO24 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback ADVANCE INFORMATION Table 5-4. Digital Signals by GPIO (continued) PIN TYPE 57 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-4. Digital Signals by GPIO (continued) SIGNAL NAME SPIB_SOMI PIN TYPE I/O DESCRIPTION ADVANCE INFORMATION 100 PZ 80 PN 64 PM 64 PMQ 48 PT SPI-B Slave Out, Master In (SOMI) GPIO6 GPIO16 GPIO21 GPIO25 GPIO31 GPIO41 GPIO51 GPIO57 GPIO61 GPIO6 GPIO16 GPIO21 GPIO25 GPIO31 GPIO41 GPIO6 GPIO16 GPIO41 GPIO6 GPIO16 GPIO41 GPIO6 GPIO16 GPIO15 GPIO23 GPIO27 GPIO29 GPIO33 GPIO23 GPIO29 GPIO33 GPIO23 GPIO29 GPIO33 GPIO29 GPIO33 SPIB_STE I/O SPI-B Slave Transmit Enable (STE) GPIO15 GPIO23 GPIO27 GPIO29 GPIO33 GPIO53 GPIO59 SYNCOUT O External ePWM Synchronization Pulse GPIO6 GPIO52 GPIO6 GPIO39 GPIO6 GPIO39 GPIO6 GPIO6 I JTAG Test Data Input (TDI) - TDI is the default mux selection for the pin. The internal pullup is disabled by default. The internal pullup should be enabled or an external pullup added on the board if this pin is used as JTAG TDI to avoid a floating input. GPIO35/ TDI GPIO35/ TDI GPIO35/ TDI GPIO35/ TDI GPIO35/ TDI O JTAG Test Data Output (TDO) - TDO is the default mux selection for the pin. The internal pullup is disabled by default. The TDO function will tristate when there is no GPIO37/ JTAG activity, leaving this pin floating; the TDO internal pullup should be enabled or an external pullup added on the board to avoid a floating GPIO input. GPIO37/ TDO GPIO37/ TDO GPIO37/ TDO GPIO37/ TDO X1 I/O Crystal oscillator input or single-ended clock input. The device initialization software must configure this pin before the crystal oscillator is enabled. To use this oscillator, a quartz crystal circuit must be connected to X1 and X2. This pin can also be used to feed a single-ended 3.3-V level clock. See the XTAL section for usage details. GPIO19 GPIO19 GPIO19 GPIO19 GPIO19 X2 I/O Crystal oscillator output. GPIO18 GPIO18 GPIO18 GPIO18 GPIO18 XCLKOUT O External Clock Output. This pin outputs a divided-down version of a chosen clock signal from within the device. GPIO16 GPIO18 GPIO16 GPIO18 GPIO16 GPIO18 GPIO16 GPIO18 GPIO16 GPIO18 TDI TDO 58 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 5.3.4 Power and Ground Table 5-5. Power and Ground PIN TYPE 100 PZ PIN 80 PN PIN 64 PM PIN 64 PMQ PIN 48 PT PIN VDD 1.2-V Digital Logic Power Pins. See the PMM section for usage details. 4, 46, 71, 87 31, 53, 71, 8 27, 4, 44, 59 27, 4, 44, 59 23, 36, 45 VDDA 3.3-V Analog Power Pins. Place a minimum 2.2-µF decoupling capacitor on each pin. See the PMM section for usage details. 34 26 22 22 18 VDDIO 3.3-V Digital I/O Power Pins. See the PMM section for usage details. 3, 47, 70, 88 32, 52, 7, 72 28, 43, 60 28, 43, 60 24, 35, 46 Internal voltage regulator disable with internal pulldown. Tie low to VSS to enable internal VREG. Tie high to VDDIO to use an external supply. See the PMM section for usage details. 73 VREGENZ I DESCRIPTION GPIO PIN 46 VSS Digital Ground 45, 5, 72, 86 30, 55, 70, 9 26, 45, 5, 58 26, 45, 5, 58 22, 37, 44 VSSA Analog Ground 33 25 21 21 17 ADVANCE INFORMATION SIGNAL NAME 5.3.5 Test, JTAG, and Reset Table 5-6. Test, JTAG, and Reset SIGNAL NAME 100 PZ 80 PN 64 PM 64 PMQ 48 PT JTAG test clock with internal pullup. 60 45 36 36 28 I/O JTAG test-mode select (TMS) with internal pullup. This serial control input is clocked into the TAP controller on the rising edge of TCK. This device does not have a TRSTn pin. An external pullup resistor (recommended 2.2 kΩ) on the TMS pin to VDDIO should be placed on the board to keep JTAG in reset during normal operation. 62 47 38 38 30 X1 I/O Crystal oscillator input or single-ended clock input. The device initialization software must configure this pin before the crystal oscillator is enabled. To use this oscillator, a quartz crystal circuit must be connected to X1 and X2. This pin can also be used to feed a single-ended 3.3-V level clock. 69 51 42 42 34 X2 I/O Crystal oscillator output. 68 50 41 41 33 TCK TMS PIN TYPE DESCRIPTION I GPIO Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 59 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-6. Test, JTAG, and Reset (continued) SIGNAL NAME ADVANCE INFORMATION XRSn 60 PIN TYPE DESCRIPTION I/OD Device Reset (in) and Watchdog Reset (out). During a power-on condition, this pin is driven low by the device. An external circuit may also drive this pin to assert a device reset. This pin is also driven low by the MCU when a watchdog reset occurs. During watchdog reset, the XRSn pin is driven low for the watchdog reset duration of 512 OSCCLK cycles. A resistor between 2.2 kΩ and 10 kΩ should be placed between XRSn and VDDIO. If a capacitor is placed between XRSn and VSS for noise filtering, it should be 100 nF or smaller. These values will allow the watchdog to properly drive the XRSn pin to VOL within 512 OSCCLK cycles when the watchdog reset is asserted. This pin is an open-drain output with an internal pullup. Submit Document Feedback GPIO 100 PZ 80 PN 64 PM 64 PMQ 48 PT 2 5 3 3 3 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 5.4 Pin Multiplexing 5.4.1 GPIO Muxed Pins Section 5.4.1.1 lists the GPIO muxed pins. The default mode for each GPIO pin is the GPIO function, except GPIO35 and GPIO37, which default to TDI and TDO, respectively. Secondary functions can be selected by setting both the GPyGMUXn.GPIOz and GPyMUXn.GPIOz register bits. The GPyGMUXn register should be configured before the GPyMUXn to avoid transient pulses on GPIOs from alternate mux selections. Columns that are not shown and blank cells are reserved GPIO Mux settings. GPIO ALT functions cannot be configured with the GPyMUXn and GPyGMUXn registers. These are special functions that need to be configured from the module. Note Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback ADVANCE INFORMATION GPIO36 and GPIO38 do not exist on this device. GPIO62 to GPIO63 exist but are not pinned out on any packages. Boot ROM enables pullups on GPIO62 to GPIO63. For more details, see Section 5.5. 61 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 5.4.1.1 GPIO Muxed Pins Table 5-7. GPIO Muxed Pins 0, 4, 8, 12 7 9 10 11 13 14 15 GPIO0 EPWM1_A I2CA_SDA SPIA_STE FSIRXA_CLK MCAN_RX CLB_OUTPUTX BAR8 EQEP1_INDEX HIC_D7 HIC_BASESEL1 GPIO1 EPWM1_B I2CA_SCL SPIA_SOMI MCAN_TX CLB_OUTPUTX BAR7 HIC_A2 FSITXA_TDM_D 1 HIC_D10 GPIO2 EPWM2_A OUTPUTXBAR1 PMBUSA_SDA SPIA_SIMO SCIA_TX FSIRXA_D1 I2CB_SDA HIC_A1 CANA_TX HIC_D9 GPIO3 EPWM2_B OUTPUTXBAR2 PMBUSA_SCL SPIA_CLK SCIA_RX FSIRXA_D0 I2CB_SCL HIC_NOE CANA_RX HIC_D4 SPIB_CLK EQEP2_STROB E FSIRXA_CLK CLB_OUTPUTX BAR6 HIC_BASESEL2 SPIA_STE FSITXA_D1 CLB_OUTPUTX BAR5 GPIO4 1 2 OUTPUTXBAR2 EPWM3_A ADVANCE INFORMATION GPIO5 EPWM3_B GPIO6 EPWM4_A GPIO7 EPWM4_B GPIO8 EPWM5_A GPIO9 EPWM5_B 3 MCAN_TX OUTPUTXBAR4 SCIB_TX CANA_TX MCAN_RX SYNCOUT EQEP1_A SPIB_SOMI FSITXA_D0 OUTPUTXBAR5 EQEP1_B SPIB_SIMO FSITXA_CLK ADCSOCAO EQEP1_STROB E SCIA_TX SPIA_SIMO OUTPUTXBAR6 EQEP1_INDEX SCIA_RX SPIA_CLK CANA_RX I2CA_SCL FSITXA_D1 CLB_OUTPUTX BAR2 HIC_A7 HIC_D4 HIC_D15 HIC_NBE1 CLB_OUTPUTX BAR8 HIC_D14 HIC_A6 HIC_D14 FSITXA_D1 CLB_OUTPUTX BAR5 FSITXA_TDM_C LK HIC_A0 FSITXA_D0 LINB_RX HIC_BASESEL0 I2CB_SCL HIC_NRDY CLB_OUTPUTX BAR4 HIC_D8 EQEP1_A SCIB_TX SPIA_SOMI I2CA_SDA FSITXA_CLK LINB_TX HIC_NWE OUTPUTXBAR7 EQEP1_B SCIB_RX SPIA_STE FSIRXA_D1 LINB_RX EQEP2_A SPIA_SIMO HIC_D6 HIC_NBE0 MCAN_RX EQEP1_STROB E SCIB_TX PMBUSA_CTL FSIRXA_D0 LINB_TX SPIA_CLK CANA_RX HIC_D13 HIC_INT EQEP1_INDEX SCIB_RX PMBUSA_ALER T FSIRXA_CLK LINB_RX SPIA_SOMI CANA_TX HIC_D11 HIC_D5 ADCSOCBO GPIO11 EPWM6_B MCAN_TX ALT HIC_NWE FSITXA_TDM_D 0 EPWM6_A EPWM7_A OUTPUTXBAR3 6 OUTPUTXBAR3 GPIO10 GPIO12 5 GPIO13 EPWM7_B GPIO14 EPWM8_A SCIB_TX I2CB_SDA OUTPUTXBAR3 PMBUSA_SDA SPIB_CLK EQEP2_A LINB_TX EPWM3_A CLB_OUTPUTX BAR7 HIC_D15 GPIO15 EPWM8_B SCIB_RX I2CB_SCL OUTPUTXBAR4 PMBUSA_SCL SPIB_STE EQEP2_B LINB_RX EPWM3_B CLB_OUTPUTX BAR6 HIC_D12 PMBUSA_SCL XCLKOUT EQEP2_B SPIB_SOMI HIC_D1 PMBUSA_SDA CANA_TX HIC_INT X2 X1 GPIO16 SPIA_SIMO OUTPUTXBAR7 EPWM5_A SCIA_TX SD1_D1 EQEP1_STROB E GPIO17 SPIA_SOMI OUTPUTXBAR8 EPWM5_B SCIA_RX SD1_C1 EQEP1_INDEX HIC_D2 GPIO18 SPIA_CLK SCIB_TX CANA_RX EPWM6_A I2CA_SCL SD1_D2 EQEP2_A PMBUSA_CTL XCLKOUT LINB_TX FSITXA_TDM_C LK GPIO19 SPIA_STE SCIB_RX CANA_TX EPWM6_B I2CA_SDA SD1_C2 EQEP2_B PMBUSA_ALER T CLB_OUTPUTX BAR1 LINB_RX FSITXA_TDM_D 0 HIC_NBE0 GPIO20 EQEP1_A SPIB_SIMO SD1_D3 MCAN_TX GPIO21 EQEP1_B SPIB_SOMI SD1_C3 MCAN_RX GPIO22 EQEP1_STROB E SCIB_TX SPIB_CLK SD1_D4 LINA_TX CLB_OUTPUTX BAR1 LINB_TX HIC_A5 EPWM4_A HIC_D13 GPIO23 EQEP1_INDEX SCIB_RX SPIB_STE SD1_C4 LINA_RX CLB_OUTPUTX BAR3 LINB_RX HIC_A3 EPWM4_B HIC_D11 GPIO24 OUTPUTXBAR1 EQEP2_A EPWM8_A SPIB_SIMO SD2_D1 LINB_TX PMBUSA_SCL SCIA_TX ERRORSTS GPIO25 OUTPUTXBAR2 EQEP2_B EQEP1_A SPIB_SOMI SD2_C1 FSITXA_D1 PMBUSA_SDA SCIA_RX HIC_BASESEL0 GPIO26 OUTPUTXBAR3 EQEP2_INDEX OUTPUTXBAR3 SPIB_CLK SD2_D2 FSITXA_D0 PMBUSA_CTL I2CA_SDA HIC_D0 62 Submit Document Feedback HIC_D3 HIC_A1 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-7. GPIO Muxed Pins (continued) 1 2 GPIO27 OUTPUTXBAR4 EQEP2_STROB E GPIO28 SCIA_RX GPIO29 GPIO30 3 5 6 7 9 10 11 I2CA_SCL 13 14 15 HIC_D1 HIC_A4 OUTPUTXBAR4 SPIB_STE SD2_C2 FSITXA_CLK PMBUSA_ALER T EPWM7_A OUTPUTXBAR5 EQEP1_A SD2_D3 EQEP2_STROB E LINA_TX SPIB_CLK ERRORSTS I2CB_SDA HIC_NOE SCIA_TX EPWM7_B OUTPUTXBAR6 EQEP1_B SD2_C3 EQEP2_INDEX LINA_RX SPIB_STE ERRORSTS I2CB_SCL HIC_NCS CANA_RX SPIB_SIMO OUTPUTXBAR7 EQEP1_STROB E SD2_D4 FSIRXA_CLK MCAN_RX EPWM1_A GPIO31 CANA_TX SPIB_SOMI OUTPUTXBAR8 EQEP1_INDEX SD2_C4 FSIRXA_D1 MCAN_TX EPWM1_B GPIO32 I2CA_SDA SPIB_CLK EPWM8_B LINA_TX SD1_D2 FSIRXA_D0 CANA_TX PMBUSA_SDA ADCSOCBO GPIO33 I2CA_SCL SPIB_STE OUTPUTXBAR4 LINA_RX SD1_C2 FSIRXA_CLK CANA_RX EQEP2_B ADCSOCAO SD1_C1 HIC_D0 GPIO34 OUTPUTXBAR1 HIC_NBE1 I2CB_SDA HIC_D9 GPIO35 SCIA_RX SD2_C1 HIC_NWE TDI HIC_NRDY TDO SYNCOUT EQEP1_INDEX HIC_D7 HIC_NBE1 HIC_D5 HIC_A4 SPIB_SOMI HIC_D12 HIC_D2 HIC_A6 GPIO37 PMBUSA_SDA I2CA_SDA OUTPUTXBAR2 I2CA_SCL CANA_RX SCIA_TX PMBUSA_SCL LINA_RX EQEP1_A PMBUSA_CTL PMBUSA_ALER T EPWM5_B HIC_D10 HIC_INT LINA_TX EQEP1_B MCAN_RX FSIRXA_CLK EQEP2_INDEX EPWM2_B PMBUSA_SDA FSIRXA_D0 SCIB_TX EQEP1_A LINB_TX EPWM2_A PMBUSA_SCL FSIRXA_D1 SCIB_RX EQEP1_B LINB_RX OUTPUTXBAR5 PMBUSA_CTL I2CA_SDA EQEP1_STROB E CLB_OUTPUTX BAR3 GPIO43 OUTPUTXBAR6 PMBUSA_ALER T I2CA_SCL PMBUSA_ALER T EQEP1_INDEX CLB_OUTPUTX BAR4 SD2_D3 HIC_D3 HIC_A7 GPIO44 OUTPUTXBAR7 EQEP1_A PMBUSA_SDA FSITXA_CLK PMBUSA_CTL CLB_OUTPUTX BAR3 FSIRXA_D0 HIC_D7 LINB_TX HIC_D5 GPIO45 OUTPUTXBAR8 FSITXA_D0 PMBUSA_ALER T CLB_OUTPUTX BAR4 GPIO46 LINA_TX MCAN_TX FSITXA_D1 PMBUSA_SDA MCAN_RX CLB_OUTPUTX BAR2 PMBUSA_SCL GPIO40 SPIB_SIMO GPIO41 GPIO42 LINA_RX GPIO47 LINA_RX CLB_OUTPUTX BAR2 SD2_C3 HIC_D6 SD2_C4 HIC_NWE SD2_D4 FSITXA_TDM_C LK HIC_A6 FSITXA_D0 HIC_D2 GPIO48 OUTPUTXBAR3 CANA_TX SCIA_TX SD1_D1 PMBUSA_SDA GPIO49 OUTPUTXBAR4 CANA_RX SCIA_RX SD1_C1 LINA_RX SD2_D1 GPIO50 EQEP1_A MCAN_TX SPIB_SIMO SD1_D2 I2CB_SDA SD2_D2 FSITXA_D1 HIC_D3 GPIO51 EQEP1_B MCAN_RX SPIB_SOMI SD1_C2 I2CB_SCL SD2_D3 FSITXA_CLK HIC_D6 GPIO52 EQEP1_STROB E CLB_OUTPUTX BAR5 SPIB_CLK SD1_D3 SYNCOUT SD2_D4 FSIRXA_D0 HIC_NWE GPIO53 EQEP1_INDEX CLB_OUTPUTX BAR6 SPIB_STE SD1_C3 ADCSOCAO CANA_RX SD1_C1 FSIRXA_D1 GPIO54 SPIA_SIMO EQEP2_A OUTPUTXBAR2 SD1_D4 ADCSOCBO LINB_TX SD1_C2 FSIRXA_CLK GPIO55 SPIA_SOMI SD1_C3 GPIO56 SPIA_CLK CLB_OUTPUTX BAR7 GPIO57 SPIA_STE CLB_OUTPUTX BAR8 AUX CLKI N HIC_D8 CANA_TX GPIO39 ALT ADVANCE INFORMATION 0, 4, 8, 12 HIC_A7 EQEP2_B OUTPUTXBAR3 SD1_C4 ERRORSTS LINB_RX MCAN_TX EQEP2_STROB E SCIB_TX SD2_D1 SPIB_SIMO I2CA_SDA EQEP1_A MCAN_RX EQEP2_INDEX SCIB_RX SD2_C1 SPIB_SOMI I2CA_SCL EQEP1_B SD1_C4 FSITXA_TDM_D 1 HIC_A0 FSIRXA_D1 HIC_D6 FSIRXA_CLK HIC_D4 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C 63 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-7. GPIO Muxed Pins (continued) 0, 4, 8, 12 1 2 3 5 6 7 9 10 11 13 14 15 SD2_C2 FSIRXA_D0 HIC_NRDY SD2_C3 FSITXA_TDM_D 1 GPIO58 OUTPUTXBAR1 SPIB_CLK SD2_D2 LINA_TX CANA_TX EQEP1_STROB E GPIO59 OUTPUTXBAR2 SPIB_STE SD2_C2 LINA_RX CANA_RX EQEP1_INDEX GPIO60 MCAN_TX OUTPUTXBAR3 SPIB_SIMO SD2_D3 GPIO61 MCAN_RX OUTPUTXBAR4 SPIB_SOMI SD2_C3 SD2_C4 ALT HIC_A0 CANA_RX AIO224 SD2_D3 HIC_A3 AIO225 SD2_C2 HIC_NWE AIO226 SD2_D4 HIC_A1 AIO227 SD1_C3 HIC_NBE0 AIO228 SD2_C1 HIC_A0 AIO230 SD1_C4 HIC_BASESEL2 AIO231 SD1_C1 HIC_BASESEL1 AIO232 SD1_D4 HIC_BASESEL0 AIO233 SD2_D1 HIC_A4 AIO229 ADVANCE INFORMATION AIO236 AIO237 SD1_D2 HIC_A6 AIO238 SD2_C3 HIC_NCS AIO239 SD1_D1 HIC_A5 AIO240 SD2_C1 HIC_NBE1 AIO241 SD2_C1 HIC_NBE1 AIO242 SD2_D2 HIC_A2 AIO244 SD1_D3 HIC_A7 AIO245 SD1_C2 HIC_NOE AIO247 AIO248 AIO249 AIO251 AIO252 SD2_C4 AIO253 64 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 5.4.2 Digital Inputs on ADC Pins (AIOs) GPIOs on port H (GPIO224–GPIO253) are multiplexed with analog pins. These are also referred to as AIOs. These pins can only function in input mode. By default, these pins will function as analog pins and the GPIOs are in a high-Z state. The GPHAMSEL register is used to configure these pins for digital or analog operation. Note If digital signals with sharp edges (high dv/dt) are connected to the AIOs, cross-talk can occur with adjacent analog signals. The user should therefore limit the edge rate of signals connected to AIOs if adjacent channels are being used for analog functions. 5.4.3 Digital Inputs and Outputs on ADC Pins (AGPIOs) ADVANCE INFORMATION Some GPIOs on this device are multiplexed with analog pins. These are also referred to as AGPIOs. Unlike AIOs, AGPIOs have full input and output capability. This device has two GPIOs (GPIO20, GPIO21) that offer this feature on the 100-Pin PZ and 80-Pin PN packages. 100-Pin PZ: On this package, there are dedicated pins for B5 (pin 32) and B11 (pin 30) which respectively also have AIO252 and AIO251 functionality. In addition, GPIO20 (pin 48) and GPIO21 (pin 49) are also available as B5 and B11 respectively. Since B5 and B11 are dedicated pins on this package, it is recommended to use them instead of the ones on GPIO20/21. 80-Pin PN: On this package, GPIO20 (pin 33) and GPIO21 (pin 34) are also available as B5 and B11 respectively. There are no dedicated pin for B5 and B11. By default the AGPIOs are not connected and have to be configured. Table 5-8 truth table shows how to configure the AGPIOs using B5 (pin 32) and GPIO20 (pin 48) on the 100-Pin PZ as an example. Table 5-8. AGPIO Configuration AGPIOCTRLA.bit.GPIO20 GPAAMSEL.bit.GPIO20 GPHAMSEL.bit.GPIO252 0 0 0 B5 CONNECTED TO GPIO20 CONNECTED TO ADC GPIO20 AIO252 ADC GPIO20 AIO252 1 Yes - - - Yes - 1 1 Yes - - - - - 1 0 1 Yes - - - Yes - 1 1 1 - - - Yes - - 0 0 0 Yes - Yes - Yes - 0 1 0 Yes - Yes - - - 1 0 0 Yes - Yes - Yes - 1 1 0 - - Yes Yes - - Note If digital signals with sharp edges (high dv/dt) are connected to the AGPIOs, cross-talk can occur with adjacent analog signals. The user should therefore limit the edge rate of signals connected to AGPIOs if adjacent channels are being used for analog functions. 5.4.4 GPIO Input X-BAR The Input X-BAR is used to route signals from a GPIO to many different IP blocks such as the ADCs, eCAPs, ePWMs, and external interrupts (see Figure 5-6). Table 5-9 lists the input X-BAR destinations. Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 65 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 GPIO0 GPIOx Asynchronous Synchronous Sync. + Qual. Input X-BAR Other Sources 127:16 INPUT[16:1] eCAP Modules INPUT16 INPUT15 INPUT14 INPUT13 INPUT12 INPUT11 INPUT10 INPUT9 INPUT8 INPUT7 INPUT6 INPUT5 INPUT4 INPUT3 INPUT2 INPUT1 15:0 DCCx Clock Source-1 TZ1,TRIP1 TZ2,TRIP2 TZ3,TRIP3 TRIP6 DCCx Clock Source-0 ADVANCE INFORMATION XINT1 XINT2 XINT3 XINT4 XINT5 CPU PIE CLA TRIP4 TRIP5 ePWM Modules TRIP7 TRIP8 TRIP9 TRIP10 TRIP11 TRIP12 ePWM X-BAR Other Sources ADCEXTSOC ADC EXTSYNCIN1 ePWM and eCAP Sync Scheme EXTSYNCIN2 Other Sources INPUT[1:16] ERAD INPUT[13:16] EPG Output X-BAR Figure 5-6. Input X-BAR Table 5-9. Input X-BAR Destinations INPUT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 ECAP / HRCAP Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes EPWM X-BAR Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes CLB X-BAR Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes OUTPUT X-BAR Yes Yes Yes Yes Yes Yes XINT1 XINT2 XINT3 CPU XINT EPWM TRIP TZ1, TZ2, TZ3, TRIP1 TRIP2 TRIP3 XINT4 XINT5 TRIP6 ADC START OF CONVERSION ADCEX TSOC EPWM / ECAP SYNC EXTSY NCIN1 EXTSY NCIN2 CLK CLK 0 0 DCCx EPG1 EPG1 EPG1 EPG1 IN1 IN2 IN3 IN4 EPG ERAD 66 CLK1 CLK0 Yes Yes Submit Document Feedback Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 5.4.5 GPIO Output X-BAR, CLB X-BAR, CLB Output X-BAR, and ePWM X-BAR ADVANCE INFORMATION The Output X-BAR has eight outputs that can be selected on the GPIO mux as OUTPUTXBARx. The CLB X-BAR has eight outputs that are connected to the CLB global mux as AUXSIGx. The CLB Output X-BAR has eight outputs that can be selected on the GPIO mux as CLB_OUTPUTXBARx. The ePWM X-BAR has eight outputs that are connected to the TRIPx inputs of the ePWM. The sources for the Output X-BAR, CLB X-BAR, CLB Output X-BAR, and ePWM X-BAR are shown in Figure 5-7. Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 67 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 CMPSSx ePWM and eCAP Sync Chain CTRIPOUTH CTRIPOUTL (Output X-BAR only) CTRIPH CTRIPL (ePWM X-BAR only) EXTSYNCOUT ADVANCE INFORMATION ADCSOCA0 Select Circuit ADCSOCA0 ADCSOCB0 Select Circuit ADCSOCB0 eCAPx ECAPxOUT ADCx EVT1 EVT2 EVT3 EVT4 Input X-BAR CLAHALT CLB X-BAR CLB Global Mux TRIP4 TRIP5 TRIP7 TRIP8 TRIP9 TRIP10 TRIP11 TRIP12 EPWM X-BAR INPUT1-6 INPUT7-14 (ePWM X-BAR only) All ePWM Modules eQEPx CLAHALT FLT1.COMPH FLT1.COMPL SDFMx AUXSIG1 AUXSIG2 AUXSIG3 AUXSIG4 AUXSIG5 AUXSIG6 AUXSIG7 AUXSIG8 OUTPUTXBAR1 OUTPUTXBAR2 OUTPUTXBAR3 OUTPUTXBAR4 OUTPUTXBAR5 OUTPUTXBAR6 OUTPUTXBAR7 OUTPUTXBAR8 Output X-BAR FLT4.COMPH FLT4.COMPL GPIO Mux X-BAR Flags (shared) CLB Input X-BAR CLB TILEx CLB_OUTPUTXBAR1 CLB_OUTPUTXBAR2 CLB_OUTPUTXBAR3 CLB_OUTPUTXBAR4 CLB_OUTPUTXBAR5 CLB_OUTPUTXBAR6 CLB_OUTPUTXBAR7 CLB_OUTPUTXBAR8 CLB Output X-BAR Figure 5-7. Output X-BAR, CLB X-BAR, CLB Output X-BAR, and ePWM X-BAR Sources 68 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 5.5 Pins With Internal Pullup and Pulldown Some pins on the device have internal pullups or pulldowns. Table 5-10 lists the pull direction and when it is active. The pullups on GPIO pins are disabled by default and can be enabled through software. To avoid any floating unbonded inputs, the Boot ROM will enable internal pullups on GPIO pins that are not bonded out in a particular package. Other pins noted in Table 5-10 with pullups and pulldowns are always on and cannot be disabled. Table 5-10. Pins With Internal Pullup and Pulldown GPIOx RESET (XRSn = 0) DEVICE BOOT APPLICATION Pullup disabled Pullup disabled(1) Application defined GPIO35/TDI Pullup disabled GPIO37/TDO Application defined Pullup disabled AGPIOx Pullup disabled Application defined Pullup disabled TCK Pullup active TMS Pullup active XRSn Application defined Pullup active Other pins (including AIOs) (1) ADVANCE INFORMATION PIN No pullup or pulldown present Pins not bonded out in a given package will have the internal pullups enabled by the Boot ROM. Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 69 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 5.6 Connections for Unused Pins For applications that do not need to use all functions of the device, Table 5-11 lists acceptable conditioning for any unused pins. When multiple options are listed in Table 5-11, any option is acceptable. Pins not listed in Table 5-11 must be connected according to Section 5. Table 5-11. Connections for Unused Pins SIGNAL NAME ACCEPTABLE PRACTICE ANALOG ADVANCE INFORMATION VREFHI Tie to VDDA (applies only if ADC is not used in the application) VREFLO Tie to VSSA Analog input pins with DACx_OUT • • No Connect Tie to VSSA through 4.7-kΩ or larger resistor Analog input pins (except DACx_OUT) • • • No Connect Tie to VSSA Tie to VSSA through resistor Analog input pins (shared with GPIOs)(1) • • • No connection (digital input mode with internal pullup enabled) No connection (digital output mode with internal pullup disabled) Pullup or pulldown resistor (any value resistor, digital input mode, and with internal pullup disabled) DIGITAL GPIOx • • • No connection (input mode with internal pullup enabled) No connection (output mode with internal pullup disabled) Pullup or pulldown resistor (any value resistor, input mode, and with internal pullup disabled) When TDI mux option is selected (default), the GPIO is in Input mode. GPIO35/TDI • • Internal pullup enabled External pullup resistor When TDO mux option is selected (default), the GPIO is in Output mode only during JTAG activity; otherwise, it is in a tri-state condition. The pin must be biased to avoid extra current on the input buffer. GPIO37/TDO • • Internal pullup enabled External pullup resistor TCK • • No Connect Pullup resistor TMS Pullup resistor Turn XTAL off and: GPIO19/X1 • • • Input mode with internal pullup enabled Input mode with external pullup or pulldown resistor Output mode with internal pullup disabled Turn XTAL off and: GPIO18/X2 • • • Input mode with internal pullup enabled Input mode with external pullup or pulldown resistor Output mode with internal pullup disabled POWER AND GROUND VDD All VDD pins must be connected per Section 5.3. Pins should not be used to bias any external circuits. VDDA If a dedicated analog supply is not used, tie to VDDIO. VDDIO All VDDIO pins must be connected per Section 5.3. VSS All VSS pins must be connected to board ground. 70 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 5-11. Connections for Unused Pins (continued) SIGNAL NAME VSSA AGPIO pins share analog and digital functionality. The actions here only apply if these pins are also not being used for analog functions. ADVANCE INFORMATION (1) ACCEPTABLE PRACTICE If an analog ground is not used, tie to VSS. Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 71 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 6 Specifications Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device beyond the Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to VSS, unless otherwise noted. 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) MIN MAX VDDIO with respect to VSS –0.3 4.6 VDDA with respect to VSSA –0.3 4.6 VDD with respect to VSS –0.3 1.5 Input voltage VIN (3.3 V) –0.3 4.6 V Output voltage VO –0.3 4.6 V Digital/analog input (per pin), IIK (VIN < VSS/VSSA or VIN > VDDIO/ VDDA)(2) –20 20 Total for all inputs, IIKTOTAL (VIN < VSS/VSSA or VIN > VDDIO/VDDA) –20 20 Output current Digital output (per pin), IOUT –20 20 mA Free-Air temperature TA –40 125 °C Operating junction temperature TJ –40 150 °C Tstg –65 150 °C Supply voltage ADVANCE INFORMATION Input clamp current Storage (1) (2) temperature(1) UNIT V mA Long-term high-temperature storage or extended use at maximum temperature conditions may result in a reduction of overall device life. For additional information, see the Semiconductor and IC Package Thermal Metrics Application Report. Continuous clamp current per pin is ±2 mA. Do not operate in this condition continuously as VDDIO/VDDA voltage may internally rise and impact other electrical specifications. 6.2 ESD Ratings – Commercial VALUE UNIT F280039C, F280039, F280037C, F280037, F280034, F280033 in 100-pin PZ package V(ESD) Electrostatic discharge (ESD) Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2) ±500 V F280039C, F280039, F280037C, F280037, F280034, F280033 in 80-pin PN package V(ESD) Electrostatic discharge (ESD) Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2) ±500 V F280039C, F280039, F280037C, F280037, F280034, F280033 in 64-pin PM package V(ESD) Electrostatic discharge (ESD) Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2) ±500 V F280037C, F280037, F280034, F280033 in 48-pin PT package V(ESD) (1) (2) 72 Electrostatic discharge (ESD) Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 Charged-device model (CDM), per ANSI/ESDA/JEDEC JS-002(2) ±500 V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 6.3 ESD Ratings – Automotive VALUE UNIT F280039C-Q1, F280039-Q1, F280037C-Q1, F280037-Q1 in 100-pin PZ package V(ESD) Electrostatic discharge Human body model (HBM), per AEC Q100-002(1) All pins ±2000 Charged device model (CDM), per AEC Q100-011 All pins ±500 Corner pins on 100-pin PZ: 1, 25, 26, 50, 51, 75, 76, 100 ±750 Human body model (HBM), per AEC Q100-002(1) All pins ±2000 Charged device model (CDM), per AEC Q100-011 All pins ±500 Corner pins on 64-pin PM: 1, 16, 17, 32, 33, 48, 49, 64 ±750 Human body model (HBM), per AEC Q100-002(1) All pins ±2000 Charged device model (CDM), per AEC Q100-011 All pins ±500 Corner pins on 48-pin PT: 1, 12, 13, 24, 25, 36, 37, 48 ±750 V F280038C-Q1, F280038-Q1, F280036C-Q1, F280036-Q1 in 64-pin PM package Electrostatic discharge V ADVANCE INFORMATION V(ESD) F280037C-Q1, F280037-Q1, F280034-Q1 in 48-pin PT package V(ESD) (1) Electrostatic discharge V AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification. 6.4 Recommended Operating Conditions Internal BOR Device supply voltage, VDDIO and VDDA enabled(3) Internal BOR disabled MIN NOM MAX VBOR-VDDIO(MAX) + VBOR-VDDIO-GB (2) 3.3 3.63 2.8 3.3 3.63 Device ground, VSS Analog ground, VSSA UNIT V 0 V 0 V Supply ramp rate(4) SRSUPPLY Digital input voltage VSS – 0.3 VDDIO + 0.3 VSSA – 0.3 VDDA + 0.3 V Junction temperature, TJ (1) –40 150 °C Free-Air temperature, TA –40 125 °C VIN (1) (2) (3) (4) Analog input voltage V Operation above TJ = 105°C for extended duration will reduce the lifetime of the device. See Calculating Useful Lifetimes of Embedded Processors for more information. See the Power Management Module (PMM) section. Internal BOR is enabled by default. See the Power Management Module Operating Conditions table. Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 73 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 6.5 Power Consumption Summary Current values listed in this section are representative for the test conditions given and not the absolute maximum possible. The actual device currents in an application will vary with application code and pin configurations. Section 6.5.1 lists the system current consumption values. Section 6.5.2 lists the system current consumption with VREG disabled. 6.5.1 System Current Consumption over operating free-air temperature range (unless otherwise noted). TYP : Vnom, 30℃ PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 78.5 106 mA 3 6.5 mA 28.2 47.4 mA 0.01 0.1 mA 13.9 31.3 mA 0.01 0.1 mA OPERATING MODE ADVANCE INFORMATION IDDIO VDDIO current consumption during operational usage IDDA VDDA current consumption during operational usage This is an estimation of current for a typical heavily loaded application. Actual currents will vary depending on system activity, I/O electrical loading and switching frequency. This includes Core supply current with Internal Vreg Enabled. - CPU is running from RAM - Flash is powered up - X1/X2 crystal is powered up - PLL is enabled, SYSCLK=Max Device frequency - Analog modules are powered up - Outputs are static without DC Load - Inputs are static high or low IDLE MODE IDDIO VDDIO current consumption while device is in Idle mode IDDA VDDA current consumption while device is in Idle mode - CPU is in IDLE mode - Flash is powered down - PLL is Enabled, SYSCLK=Max Device Frequency, CPUCLK is gated - X1/X2 crystal is powered up - Analog Modules are powered down - Outputs are static without DC Load - Inputs are static high or low STANDBY MODE IDDIO VDDIO current consumption while device is in Standby mode IDDA VDDA current consumption while device is in Standby mode 74 Submit Document Feedback - CPU is in STANDBY mode - Flash is powered down - PLL is Enabled, SYSCLK & CPUCLK are gated - X1/X2 crystal is powered down - Analog Modules are powered down - Outputs are static without DC Load - Inputs are static high or low Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 6.5.1 System Current Consumption (continued) over operating free-air temperature range (unless otherwise noted). TYP : Vnom, 30℃ PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 9.8 27.5 mA 0.01 0.1 mA 72 106 mA 0.1 2.5 mA IDDIO VDDIO current consumption while device is in Halt mode IDDA VDDA current consumption while device is in Halt mode - CPU is in HALT mode - Flash is powered down - PLL is Disabled, SYSCLK & CPUCLK are gated - X1/X2 crystal is powered down - Analog Modules are powered down - Outputs are static without DC Load - Inputs are static high or low ADVANCE INFORMATION HALT MODE FLASH ERASE/PROGRAM IDDIO VDDIO current consumption during Erase/Program cycle(1) IDDA VDDA current consumption during Erase/Program cycle - CPU is running from RAM - Flash going through continuous Program/Erase operation - PLL is enabled, SYSCLK at 120 MHz. - Peripheral clocks are turned OFF. - X1/X2 crystal is powered up - Analog is powered down - Outputs are static without DC Load - Inputs are static high or low RESET MODE IDDIO VDDIO current consumption while reset is active(2) 5.8 mA IDDA VDDA current consumption while reset is active(2) 0.1 mA (1) (2) Brownout events during flash programming can corrupt flash data and permanently lock the device. Programming environments using alternate power sources (such as a USB programmer) must be capable of supplying the rated current for the device and other system components with sufficient margin to avoid supply brownout conditions. This is the current consumption while reset is active, that is XRSn is low. Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 75 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 6.5.2 System Current Consumption (VREG Disable - External Supply) over operating free-air temperature range (unless otherwise noted). TYP : Vnom, 30℃ PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 68 90 mA 7 15 mA 3 6.5 mA 25 43 mA 1.7 2.2 mA 0.01 0.1 mA 11.6 27.6 mA 1.7 2.3 mA 0.01 0.1 mA 8.5 25 mA 0.8 1.2 mA 0.01 0.1 mA OPERATING MODE ADVANCE INFORMATION IDD VDD current consumption during operational usage IDDIO VDDIO current consumption during operational usage IDDA VDDA current consumption during operational usage This is an estimation of current for a typical heavily loaded application. Actual currents will vary depending on system activity, I/O electrical loading and switching frequency. - CPU is running from RAM - Flash is powered up - X1/X2 crystal is powered up - PLL is enabled, SYSCLK=Max Device frequency - Analog modules are powered up - Outputs are static without DC Load - Inputs are static high or low IDLE MODE VDD current consumption while device - CPU is in IDLE mode is in Idle mode - Flash is powered down - PLL is Enabled, SYSCLK=Max VDDIO current consumption while Device Frequency, CPUCLK is device is in Idle mode gated - X1/X2 crystal is powered up - Analog Modules are powered VDDA current consumption while down device is in Idle mode - Outputs are static without DC Load - Inputs are static high or low IDD IDDIO IDDA STANDBY MODE VDD current consumption while device - CPU is in STANDBY mode is in Standby mode - Flash is powered down - PLL is Enabled, SYSCLK & VDDIO current consumption while CPUCLK are gated device is in Standby mode - X1/X2 crystal is powered down - Analog Modules are powered down VDDA current consumption while - Outputs are static without DC device is in Standby mode Load - Inputs are static high or low IDD IDDIO IDDA HALT MODE IDD IDDIO IDDA 76 VDD current consumption while device - CPU is in HALT mode is in Halt mode - Flash is powered down - PLL is Disabled, SYSCLK & VDDIO current consumption while CPUCLK are gated device is in Halt mode - X1/X2 crystal is powered down - Analog Modules are powered down VDDA current consumption while - Outputs are static without DC device is in Halt mode Load - Inputs are static high or low Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 6.5.2 System Current Consumption (VREG Disable - External Supply) (continued) over operating free-air temperature range (unless otherwise noted). TYP : Vnom, 30℃ PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 41 60.5 mA 31 45.5 mA 0.1 2.5 mA IDD VDD Current consumption during Erase/Program cycle(1) IDDIO VDDIO Current consumption during Erase/Program cycle(1) IDDA VDDA Current consumption during Erase/Program cycle - CPU is running from RAM - Flash going through continuous Program/Erase operation - PLL is enabled, SYSCLK at 120 MHz. - Peripheral clocks are turned OFF. - X1/X2 crystal is powered up - Analog is powered down - Outputs are static without DC Load - Inputs are static high or low ADVANCE INFORMATION FLASH ERASE/PROGRAM RESET MODE IDD VDD current consumption while reset is active(2) 3.3 mA IDDIO VDDIO current consumption while reset is active(2) 2.2 mA IDDA VDDA current consumption while reset is active(2) 0.1 mA (1) (2) Brownout events during flash programming can corrupt flash data and permanently lock the device. Programming environments using alternate power sources (such as a USB programmer) must be capable of supplying the rated current for the device and other system components with sufficient margin to avoid supply brownout conditions. This is the current consumption while reset is active, that is XRSn is low. Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 77 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 6.5.3 Operating Mode Test Description Section 6.5.1 and Section 6.5.4.1 list the current consumption values for the operational mode of the device. The operational mode provides an estimation of what an application might encounter. The test condition for these measurements has the following properties: • Code is executing from RAM. • FLASH is read and kept in active state. • No external components are driven by I/O pins. • All peripherals have clocks enabled. • The CPU is actively executing code. • All analog peripherals are powered up. ADCs and DACs are periodically converting. ADVANCE INFORMATION 78 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 6.5.4 Reducing Current Consumption The F28003x devices provide some methods to reduce the device current consumption: • One of the two low-power modes—IDLE or STANDBY—could be entered during idle periods in the application. • The flash module may be powered down if the code is run from RAM. • Disable the pullups on pins that assume an output function. • Each peripheral has an individual clock-enable bit (PCLKCRx). Reduced current consumption may be achieved by turning off the clock to any peripheral that is not used in a given application. Section 6.5.4.1 lists the typical current reduction that may be achieved by disabling the clocks using the PCLKCRx register. • To realize the lowest VDDA current consumption in an LPM, see the Analog-to-Digital Converter (ADC) chapter of the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual to ensure each module is powered down as well. PERIPHERAL IDD CURRENT REDUCTION (mA) ADC(1) 0.73 CLA 0.56 CLA BGCRC 0.42 CLB 1.41 CMPSS(1) 0.33 CPU BGCRC 0.25 CPU TIMER 0.04 GPDAC 0.12 DCAN 1.28 DCC 0.12 DMA 0.57 eCAP1 and eCAP2 0.08 eCAP3(2) 0.29 ePWM1 to ePWM4(3) 0.95 ePWM5 to ePWM8 0.78 ERAD 1.56 eQEP 0.1 FSI RX 0.34 FSI TX 0.27 HIC 0.17 I2C 0.26 LIN 0.35 MCAN (CAN FD) 1.01 PMBUS 0.28 SCI 0.16 SDFM 1.83 SPI 0.08 (1) (2) (3) ADVANCE INFORMATION 6.5.4.1 Typical Current Reduction per Disabled Peripheral This current represents the current drawn by the digital portion of the each module. eCAP3 can also be configured as HRCAP. ePWM1 to ePWM4 can also be configured as HRPWM. Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 79 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 6.6 Electrical Characteristics over recommended operating conditions (unless otherwise noted) TEST CONDITIONS PARAMETER MIN TYP MAX UNIT Digital and Analog IO IOH = IOH MIN VDDIO * 0.8 IOH = –100 μA VDDIO – 0.2 ADVANCE INFORMATION VOH High-level output voltage VOL Low-level output voltage IOH High-level output source current for all output pins IOL Low-level output sink current for all output pins ROH High-level output impedance for all output pins ROL Low-level output impedance for all output pins VIH High-level input voltage VIL Low-level input voltage VHYSTERESIS Input hysteresis IPULLDOWN Input current Pins with pulldown VDDIO = 3.3 V VIN = VDDIO 120 µA IPULLUP Input current Digital inputs with pullup VDDIO = 3.3 V enabled(1) VIN = 0 V 160 µA Pin leakage Input capacitance 0.4 IOL = 100 µA 0.2 –4 4 mA 70 Ω 70 Ω V 0.8 Analog pins (except ADCINB3/VDAC) V mA 125 ADCINB3/VDAC CI IOL = IOL MAX 2.0 Digital inputs ILEAK V V mV Pullups and outputs disabled 0 V ≤ VIN ≤ VDDIO 0.1 µA Analog drivers disabled 0 V ≤ VIN ≤ VDDA 0.1 2 Digital inputs 2 Analog pins(2) 11 pF VREG, POR and BOR VREG, POR, BOR(3) (1) (2) (3) 80 See Pins With Internal Pullup and Pulldown table for a list of pins with a pullup or pulldown. The analog pins are specified separately; see the Per-Channel Parasitic Capacitance tables that are in the ADC Input Model section. See the Power Management Module (PMM) section. Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 °C/W(1) AIR FLOW (lfm)(2) RΘJC Junction-to-case thermal resistance 7.6 N/A RΘJB Junction-to-board thermal resistance 24.2 N/A RΘJA (High k PCB) Junction-to-free air thermal resistance 46.1 0 37.3 150 34.8 250 32.6 500 RΘJMA PsiJT PsiJB (1) (2) Junction-to-moving air thermal resistance Junction-to-package top Junction-to-board 0.2 0 0.4 150 0.4 250 0.6 500 23.8 0 22.8 150 22.4 250 21.9 500 ADVANCE INFORMATION 6.7 Thermal Resistance Characteristics for PZ Package These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements lfm = linear feet per minute Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 81 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 6.8 Thermal Resistance Characteristics for PN Package °C/W(1) AIR FLOW (lfm)(2) RΘJC Junction-to-case thermal resistance 14.2 N/A RΘJB Junction-to-board thermal resistance 21.9 N/A RΘJA (High k PCB) PsiJT ADVANCE INFORMATION PsiJB (1) (2) 82 Junction-to-free air thermal resistance Junction-to-package top Junction-to-board 49.9 0 38.3 150 36.7 250 34.4 500 0.8 0 1.18 150 1.34 250 1.62 500 21.6 0 20.7 150 20.5 250 20.1 500 These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements lfm = linear feet per minute Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 °C/W(1) AIR FLOW (lfm)(2) RΘJC Junction-to-case thermal resistance 12.4 N/A RΘJB Junction-to-board thermal resistance 25.6 N/A RΘJA (High k PCB) Junction-to-free air thermal resistance 51.8 0 42.2 150 39.4 250 36.5 500 RΘJMA PsiJT PsiJB (1) (2) Junction-to-moving air thermal resistance Junction-to-package top Junction-to-board 0.5 0 0.9 150 1.1 250 1.4 500 25.1 0 23.8 150 23.4 250 22.7 500 ADVANCE INFORMATION 6.9 Thermal Resistance Characteristics for PM Package These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements lfm = linear feet per minute Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 83 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 6.10 Thermal Resistance Characteristics for PT Package °C/W(1) AIR FLOW (lfm)(2) RΘJC Junction-to-case thermal resistance 13.6 N/A RΘJB Junction-to-board thermal resistance 30.6 N/A RΘJA (High k PCB) PsiJT ADVANCE INFORMATION PsiJB (1) (2) Junction-to-free air thermal resistance Junction-to-package top Junction-to-board 64 0 50.4 150 48.2 250 45 500 0.56 0 0.94 150 1.1 250 1.38 500 30.1 0 28.7 150 28.4 250 28 500 These values are based on a JEDEC-defined 2S2P system (with the exception of the Theta JC [RΘJC] value, which is based on a JEDEC-defined 1S0P system) and will change based on environment as well as application. For more information, see these EIA/JEDEC standards: • JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions - Natural Convection (Still Air) • JESD51-3, Low Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-7, High Effective Thermal Conductivity Test Board for Leaded Surface Mount Packages • JESD51-9, Test Boards for Area Array Surface Mount Package Thermal Measurements lfm = linear feet per minute 6.11 Thermal Design Considerations Based on the end application design and operational profile, the IDD and IDDIO currents could vary. Systems that exceed the recommended maximum power dissipation in the end product may require additional thermal enhancements. Ambient temperature (TA) varies with the end application and product design. The critical factor that affects reliability and functionality is TJ, the junction temperature, not the ambient temperature. Hence, care should be taken to keep TJ within the specified limits. Tcase should be measured to estimate the operating junction temperature TJ. Tcase is normally measured at the center of the package top-side surface. The thermal application report Semiconductor and IC Package Thermal Metrics helps to understand the thermal metrics and definitions. 84 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 6.12 System 6.12.1 Power Management Module (PMM) 6.12.1.1 Introduction The Power Management Module (PMM) handles all the power management functions required for device operation. 6.12.1.2 Overview The block diagram of the PMM is shown in Figure 6-1. As can be seen, the PMM comprises of various sub-components which will be described in the subsequent sections. MCU PMM I/O POR ADVANCE INFORMATION To Rest of Chip CPU Reset Release RISE DELAY (45us) RISE DELAY (80us) I/O BOR Internal Power Good Signal RISE DELAY (40us) EN VMONCTL.bit.BORLVMONDIS CVDDIO XRSn VREGENZ VSS Internal VDD 1.2v LDO VREG VSS External VDDIO Internal VDD POR OUT IN EN External CVDD Figure 6-1. PMM Block Diagram 6.12.1.2.1 Power Rail Monitors The PMM has voltage monitors on the supply rails that release the XRSn signal high once the voltages cross the set threshold during power up. They also function to trip the XRSn signal low if any of the voltages drop below the programmed levels. The various voltage monitors are described in the subsequent sections. Note Not all the voltage monitors are supported for device operation in an application. In the case where a voltage monitor is not supported, an external supervisor is recommended if the device needs supply voltage monitoring. The three voltage monitors (I/O POR, I/O BOR, VDD POR) all have to release their respective outputs before the device begins operation (i.e XRSn goes high). However, if any of the voltage monitors trips, XRSn is driven low. The I/Os are held in high impedance when any of the voltage monitors trip. Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 85 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 6.12.1.2.1.1 I/O POR (Power-On Reset) Monitor The I/O POR monitor supervises the VDDIO rail. During power-up, this is the first monitor to release (i.e first to untrip) on VDDIO. 6.12.1.2.1.2 I/O BOR (Brown-Out Reset) Monitor The I/O BOR monitor also supervises the VDDIO rail. During power-up, this is the second monitor to release (i.e second to untrip) on VDDIO. This monitor has a tighter tolerance compared to the I/O POR. Any drop in voltage below the recommended operating voltages will trip the I/O BOR and reset the device but this can be disabled by setting VMONCTL.bit.BORLVMONDIS to 1. The I/O BOR can only be disabled after the device has fully booted up. If the I/O BOR is disabled, the I/O POR will reset the device for voltage drops. ADVANCE INFORMATION Note The level that the I/O POR trips at is well below the minimum recommended voltage for VDDIO and hence should not be used for device supervision. Figure 6-2 shows the operating region of the I/O BOR. 3.63 V +10% 0% 3.3 V Recommended System Voltage Regulator Range VDDIO Operating Range 3.1 V –6.1% 3.0 V –9.1% VBOR-GB BOR Guard Band VBOR-VDDIO Internal BOR Threshold 2.81 V 2.80 V –14.8% –15.1% Figure 6-2. I/O BOR Operating Region 6.12.1.2.1.3 VDD POR (Power-On Reset) Monitor The VDD POR monitor supervises the VDD rail. During power-up, this monitor releases i.e untrips once the voltage crosses the programmed trip level on VDD. Note VDD POR is programmed at a level below the minimum recommended voltage for VDD and hence it should not be relied upon for VDD supervision if that is required in the application. 6.12.1.2.2 External Supervisor Usage VDDIO Monitoring: The I/O BOR is supported for application use so an external supervisor is not required to monitor the I/O rail. VDD Monitoring: The VDD POR is not supported for application use. If VDD monitoring is required by the application, an external supervisor should be used to monitor the VDD rail. 86 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Note Using an external supervisor with the internal VREG is not supported. If VDD monitoring is required by the application, it is a requirement to use a package with VREGENZ pin in order to power VDD externally. 6.12.1.2.3 Delay Blocks The delay blocks in the path of the voltage monitors work together to delay the release time between the voltage monitors and XRSn. This is to ensure that the voltages are stable when XRSn releases in external VREG mode. They are only active during power-up i.e when VDDIO and VDD are ramping up. They contribute to the minimum slew rates specified in Power Management Module Electrical Data and Timing for the power rails. ADVANCE INFORMATION Note The delay numbers specified in the block diagram are typical numbers. 6.12.1.2.4 Internal 1.2-V LDO Voltage Regulator (VREG) The internal VREG is supplied by the VDDIO rail and can generate the 1.2V required to power the VDD pins. It is enabled by tying the VREGENZ pin low. Although it eliminates the need to use an external supply for VDD, decoupling capacitors are still required on the VDD pins for VREG stability and transients. See VDD Decoupling for details. 6.12.1.2.5 VREGENZ The VREGENZ (VREG disable) pin controls the state of the internal VREG. To enable the internal VREG, VREGENZ pin should be tied low. For applications supplying VDD externally (external VREG), the internal VREG should be disabled by tying the VREGENZ pin high. Note Not all device packages have VREGENZ pinned out. For packages without VREGENZ, external VREG mode is not supported. 6.12.1.3 External Components 6.12.1.3.1 Decoupling Capacitors VDDIO and VDD require decoupling capacitors for correct operation. The requirements are outlined in the subsequent sections. 6.12.1.3.1.1 VDDIO Decoupling It is recommended to place a minimum amount of decoupling capacitance on VDDIO. See the CVDDIO parameter in Power Management Module Electrical Data and Timing. The actual amount of decoupling capacitance to use is a requirement of the power supply driving VDDIO. Either of the configurations outlined below is acceptable: • Configuration 1: Place a decoupling capacitor on each VDDIO pin per the CVDDIO parameter. • Configuration 2: Install a single decoupling capacitor which is the equivalent of CVDDIO * VDDIO pins. Note It is critical to have the decoupling capacitor/s close to the device pins. 6.12.1.3.1.2 VDD Decoupling It is recommended to place a minimum amount of decoupling capacitance on VDD. See the CVDD TOTAL parameter in Power Management Module Electrical Data and Timing. In external VREG mode, the actual amount of decoupling capacitance to use is a requirement of the power supply driving VDD. Either of the configurations outlined below is acceptable: Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 87 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 • • Configuration 1: Divide CVDD TOTAL across the VDD pins. Configuration 2: Install a single decoupling capacitor with value of CVDD TOTAL. Note It is critical to have the decoupling capacitor/s close to the device pins. 6.12.1.4 Power Sequencing 6.12.1.4.1 Supply Pins Ganging It is strongly recommended that all 3.3v rails be tied together and supplied from a single source. This list includes: • VDDIO • VDDA ADVANCE INFORMATION In addition, no power pin should be left unconnected. In external VREG mode, the VDD pins should be tied together and supplied from a single source. In internal VREG mode, tying the VDD pins together is optional as long as each VDD pin has a capacitor on it. See VDD Decoupling for VDD decoupling configurations. The analog modules on the device have fairly high PSRR and hence in most cases, noise on VDDA will have to exceed the recommended operating conditions of the supply rails before the analog modules see performance degradation. Due to this, supplying VDDA separately typically offers minimal benefits. Nevertheless, for the purposes of noise improvement, placing a pi filter between VDDIO and VDDA is acceptable. Note All the supply pins per rail are tied together internally. For instance, all VDDIO pins are tied together internally, all VDD pins are tied together internally etc. 6.12.1.4.2 Signal Pins Power Sequence Before powering the device, no voltage larger than 0.3 V above VDDIO or 0.3 V below VSS should be applied to any digital pin and no voltage larger than 0.3 V above VDDA or 0.3 V below VSSA should be applied to any analog pin (including VREFHI and VDAC). Simply, the signal pins should only be driven after XRSn goes high provided all the 3.3v rails are tied together. This sequencing is still required even if VDDIO and VDDA are not tied together. If the above sequence is violated, device malfunction and possibly damage can occur as current will flow through unintended parasitic paths in the device. 6.12.1.4.3 Supply Pins Power Sequence 6.12.1.4.3.1 External VREG/VDD Mode Sequence Figure 6-3 depicts the power sequencing requirements for external VREG mode. The values for all the parameters indicated can be found in Power Management Module Electrical Data and Timing. 88 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 VDDIO VBOR-VDDIO-UP SRVDDIO VPOR-VDDIO VDDIO (i) SRVDD VBOR-VDDIO-DOWN(ii) VDD VDD Internal Power Good Signal(iii) XRSn Internal Power Good Signal(iv) SRVDD VPOR-VDD-DOWN(ii) VPOR-VDD-UP(i) XRSn SRVDDIO VPOR-VDDIO VDDIO - VDD Delay VDDIO-MON-TOT-DELAY VXRSn-PU-DELAY VXRSn-PD-DELAY ADVANCE INFORMATION (i) This trip point is the trip point before XRSn releases. See the PMM Characteriscs table. (ii) This trip point is the trip point aer XRSn releases. See the PMM Characteris cs table. (iii) During power up, the Power Good Signal goes high aer all POR and BOR monitors are released. See the PMM Block Diagram. (iv) During power down, the Power Good Signal goes low if any of the POR or BOR monitors are tripped. See the PMM Block Diagram. Figure 6-3. External VREG Power Up Sequence • • For Power Up: 1. VDDIO i.e the 3.3 V rail should come up first with the minimum slew rate specified. 2. VDD i.e the 1.2 V rail should come up next with the minimum slew rate specified. 3. The time delta between the VDDIO rail coming up and when the VDD rail can come up is also specified. 4. After the times specified by vddio-mon-tot-delay and vxrsn-pu-delay, XRSn will be released and the device starts the boot-up sequence. There is an additional delay between XRSn releasing (i.e going high) and the boot-up sequence starting. See Figure 6-1. 5. The VDD POR and I/O BOR monitors have different release point during power up. 6. During power up, both VDDIO and VDD rails have to be up before XRSn releases. For Power-Down: 1. There is no requirement between VDDIO and VDD on which should power down first, however, there is a minimum slew rate spec. 2. The VDD POR and I/O BOR monitors have different trip points during power down. 3. Any of the POR or BOR monitors that trips during power down will cause XRSn to go low after VXRSN-PD-DELAY. Note The Power Good Signal is an internal signal. Note If there is an external circuit driving XRSn e.g a supervisor, the boot-up sequence does not start until the XRSn pin is released by all internal and external sources. 6.12.1.4.3.2 Internal VREG/VDD Mode Sequence Figure 6-4 depicts the power sequencing requirements for internal VREG mode. The values for all the parameters indicated can be found in Power Management Module Electrical Data and Timing. Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 89 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 VDDIO VBOR-VDDIO-UP VDDIO (i) VBOR-VDDIO-DOWN(ii) Internal Power Good Signal(iii) XRSn SRVDDIO Internal Power Good Signal(iv) XRSn SRVDDIO VPOR-VDDIO VPOR-VDDIO VDDIO-MON-TOT-DELAY VXRSn-PU-DELAY VXRSn-PD-DELAY ADVANCE INFORMATION (i) This trip point is the trip point before XRSn releases. See the PMM Characteriscs table. (ii) This trip point is the trip point aer XRSn releases. See the PMM Characteris cs table. (iii) During power up, the Power Good Signal goes high aer all POR and BOR monitors are released. See the PMM Block Diagram. (iv) During power down, the Power Good Signal goes low if any of the POR or BOR monitors are tripped. See the PMM Block Diagram. Figure 6-4. Internal VREG Power Up Sequence • • For Power-Up: 1. VDDIO i.e the 3.3 V rail should come up with the minimum slew rate specified. 2. The Internal VREG powers up after the I/O monitors (I/O POR and I/O BOR) are released. 3. After the times specified by VDDIO-MON-TOT-DELAY and VXRSN-PU-DELAY, XRSn will be released and the device starts the boot-up sequence. There is an additional delay between XRSn releasing (i.e going high) and the boot-up sequence starting. See Figure 6-1. 4. The I/O BOR monitor has a different release point during power up. For Power-Down: 1. The only requirement on VDDIO during power down is the slew rate. 2. The I/O BOR monitor has a different release point during power down. 3. The I/O BOR tripping will cause XRSn to go low after VXRSN-PD-DELAY and also power down the Internal VREG. Note The Power Good Signal is an internal signal. Note If there is an external circuit driving XRSn e.g a supervisor, the boot-up sequence does not start until the XRSn pin is released by all internal and external sources. 6.12.1.4.3.3 Supply Sequencing Summary and Effects of Violations The acceptable power up sequence for the rails is summarized below. Power-up here means the rail in question has reached the minimum recommended operating voltage. Non-acceptable sequences will lead to reliability concerns and possibly damage. For simplicity, it is recommended to tie all the 3.3-V rails together and follow the descriptions in Supply Pins Power Sequence. Table 6-1. External VREG Sequence Summary CASE 90 RAILS POWER-UP ORDER ACCEPTABLE VDDIO VDDA VDD A 1 2 3 Yes B 1 3 2 Yes C 2 1 3 - D 2 3 1 - Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 Table 6-1. External VREG Sequence Summary (continued) CASE RAILS POWER-UP ORDER ACCEPTABLE VDDIO VDDA VDD E 3 2 1 - F 3 1 2 - G 1 1 2 Yes H 2 2 1 - Table 6-2. Internal VREG Sequence Summary ACCEPTABLE VDDIO VDDA A 1 2 Yes B 2 1 - C 1 1 Yes ADVANCE INFORMATION RAILS POWER-UP ORDER CASE Note The analog modules on the device should only be powered after VDDA has reached the minimum recommended operating voltage. Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 91 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 6.12.1.5 Power Management Module Electrical Data and Timing 6.12.1.5.1 Power Management Module Operating Conditions over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT General CVDDIO (1) (2) VDDIO Capacitance Per Pin(7) 0.1 uF CVDDA (1) (2) VDDA Capacitance Per Pin(7) 2.2 uF SRVDDIO (3) Supply Ramp Rate of 3.3V Rail (VDDIO) 20 100 VBOR-VDDIO-GB VDDIO Brown Out Reset (5) Voltage Guardband 0.1 mV/us V ADVANCE INFORMATION External VREG CVDD TOTAL(1) (4) Total VDD Capacitance(7) 10 SRVDD (3) Supply Ramp Rate of 1.2V Rail (VDD) 20 VDDIO - VDD Delay(6) Ramp Delay Between VDDIO and VDD uF 100 mV/us 0 us 10 uF Internal VREG CVDD TOTAL(4) (1) (2) (3) (4) (5) (6) (7) Total VDD Capacitance(7) The exact value of the decoupling capacitance depends on the system voltage regulation solution that is supplying these pins. It is recommended to tie the 3.3V rails (VDDIO, VDDA) together and supply them from a single source. Supply ramp rate faster than the max can trigger the on-chip ESD protection. See the Power Management Module (PMM) section on possible configurations for the total decoupling capacitance. TI recommends VBOR-VDDIO-GB to avoid BOR-VDDIO resets due to normal supply noise or load-transient events on the 3.3-V VDDIO system regulator. Good system regulator design and decoupling capacitance (following the system regulator specifications) are important to prevent activation of the BOR-VDDIO during normal device operation. The value of VBOR-VDDIO-GB is a system-level design consideration; the voltage listed here is typical for many applications. Delay between when the 3.3v rail ramps up and when the 1.2v rail ramps up. See the supply sequencing table for the allowable supply ramp sequences. Capacitor tolerance should be less than 10%. 6.12.1.5.2 Power Management Module Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS VVREG Internal Voltage Regulator Output VPOR-VDDIO VDDIO Power on Reset Voltage VBOR-VDDIO-UP VDDIO Brown Out Reset (1) Voltage on Ramp Up VBOR-VDDIODOWN (1) VDDIO Brown Out Reset Voltage on Ramp Down DELAY (3) VXRSn-PDDELAY 92 (4) XRSn Release Delay after Supplies are Ramped Up During Power-Up 1.152 1.2 1.248 V Before XRSn Release 2.7 V After XRSn Release VDD Power on Reset Voltage After XRSn Release on Ramp Down VXRSn-PU- UNIT V VPOR-VDD(2) MAX 2.3 VDD Power on Reset Voltage Before XRSn Release on Ramp Up DOWN TYP Before and After XRSn Release VPOR-VDD-UP (2) MIN 2.81 3.0 This is the final delay XRSn Trip Delay after Supplies are Ramped Down During Power-Down Submit Document Feedback V 0.9 V 1 V 40 us 50 ns Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 6.12.1.5.2 Power Management Module Characteristics (continued) over recommended operating conditions (unless otherwise noted) PARAMETER VDDIO-MONTOT-DELAY VXRSn-MONRELEASE-DELAY (3) (4) MIN Total Delays in Path of VDDIO Monitors (POR, BOR) XRSn Release Delay after a VDDIO BOR/VDD POR Event Supplies Within Operating XRSn Release Delay after a Range VDDIO POR Event TYP MAX UNIT 45 us 40 us 90 us See the Supply Voltages figure. VPOR-VDD is not supported and it is set to trip at a level below the recommended operating conditions. If monitoring of VDD is needed, an external supervisor is required. Supplies are considered fully ramped up after they cross the minimum recommended operating conditions for the respective rail. All POR and BOR monitors need to be released before this delay takes effect. RC network delay will add to this. On power down, any of the POR or BOR monitors that trips will immediately trip XRSn. This delay is the time between any of the POR, BOR monitors tripping and XRSn going low. It is variable and depends on the ramp down rate of the supply. RC network delay will add to this. Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback ADVANCE INFORMATION (1) (2) TEST CONDITIONS 93 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 6.12.2 Reset Timing XRSn is the device reset pin. It functions as an input and open-drain output. The device has a built-in power-on reset (POR) and brown-out reset (BOR) monitors. During power up, the monitor circuits keep the XRSn pin low. For more details, see the Power Management Module (PMM) section. A watchdog or NMI watchdog reset will also drive the pin low. An external open-drain circuit may drive the pin to assert a device reset. A resistor with a value from 2.2 kΩ to 10 kΩ should be placed between XRSn and VDDIO. A capacitor should be placed between XRSn and VSS for noise filtering, it should be 100 nF or smaller. These values will allow the watchdog to properly drive the XRSn pin to VOL within 512 OSCCLK cycles when the watchdog reset is asserted. Figure 6-5 shows the recommended reset circuit. VDDIO 2.2 kW to 10 kW ADVANCE INFORMATION Optional open-drain Reset source XRSn £100 nF Figure 6-5. Reset Circuit 6.12.2.1 Reset Sources The Reset Signals table summarizes the various reset signals and their effect on the device. Table 6-3. Reset Signals Reset Source CPU Core Reset (C28x, FPU, TMU) Peripherals Reset JTAG / Debug Logic Reset IOs XRS Output POR Yes Yes Yes Hi-Z Yes BOR Yes Yes Yes Hi-Z Yes XRS Pin Yes Yes No Hi-Z - WDRS Yes Yes No Hi-Z Yes NMIWDRS Yes Yes No Hi-Z Yes SYSRS (Debugger Reset) Yes Yes No Hi-Z No SCCRESET Yes Yes No Hi-Z No SIMRESET. XRS Yes Yes No Hi-Z Yes SIMRESET. CPU1RS Yes Yes No Hi-Z No HWBISTRS Yes No No No No The parameter th(boot-mode) must account for a reset initiated from any of these sources. See the Resets section of the System Control chapter in the TMS320F28003x Real-Time Microcontrollers Technical Reference Manual. CAUTION Some reset sources are internally driven by the device. Some of these sources will drive XRSn low, use this to disable any other devices driving the boot pins. The SCCRESET and debugger reset sources do not drive XRSn; therefore, the pins used for boot mode should not be actively driven by other devices in the system. The boot configuration has a provision for changing the boot pins in OTP. 94 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 6.12.2.2 Reset Electrical Data and Timing 6.12.2.2.1 Reset (XRSn) Timing Requirements MIN MAX UNIT th(boot-mode) Hold time for boot-mode pins 1.5 ms tw(RSL2) Pulse duration, XRSn low on warm reset 3.2 µs 6.12.2.2.2 Reset (XRSn) Switching Characteristics over recommended operating conditions (unless otherwise noted) PARAMETER MIN tw(RSL1) Pulse duration, XRSn driven low by device after supplies are stable tw(WDRS) Pulse duration, reset pulse generated by watchdog tboot-flash Boot-ROM execution time to first instruction fetch in flash TYP MAX 100 UNIT µs 512tc(OSCCLK) cycles ms ADVANCE INFORMATION 1.2 6.12.2.2.3 Reset Timing Diagrams VDDIO VDDA (3.3V) VDD (1.2V) tw(RSL1) XRSn(A) tboot-flash Boot ROM CPU Execution Phase User code th(boot-mode)(B) Boot-Mode Pins User code dependent GPIO pins as input Peripheral/GPIO function Based on boot code Boot-ROM execution starts GPIO pins as input (pullups are disabled) I/O Pins User code dependent A. B. The XRSn pin can be driven externally by a supervisor or an external pullup resistor, see the Pin Attributes table. On-chip monitors will hold this pin low until the supplies are in a valid range. After reset from any source (see the Reset Sources section), the boot ROM code samples Boot Mode pins. Based on the status of the Boot Mode pin, the boot code branches to destination memory or boot code function. If boot ROM code executes after power-on conditions (in debugger environment), the boot code execution time is based on the current SYSCLK speed. The SYSCLK will be based on user environment and could be with or without PLL enabled. Figure 6-6. Power-on Reset Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 95 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 tw(RSL2) XRSn User code CPU Execution Phase Boot ROM User code Boot ROM execution starts (initiated by any reset source) Boot-Mode Pins Peripheral/GPIO function GPIO Pins as Input th(boot-mode)(A) Peripheral/GPIO function User-Code Execution Starts ADVANCE INFORMATION I/O Pins User-Code Dependent GPIO Pins as Input (Pullups are Disabled) User-Code Dependent A. After reset from any source (see the Reset Sources section), the Boot ROM code samples BOOT Mode pins. Based on the status of the Boot Mode pin, the boot code branches to destination memory or boot code function. If Boot ROM code executes after power-on conditions (in debugger environment), the Boot code execution time is based on the current SYSCLK speed. The SYSCLK will be based on user environment and could be with or without PLL enabled. Figure 6-7. Warm Reset 96 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 6.12.3 Clock Specifications 6.12.3.1 Clock Sources Table 6-4. Possible Reference Clock Sources CLOCK SOURCE DESCRIPTION INTOSC1 Internal oscillator 1. Zero-pin overhead 10-MHz internal oscillator. INTOSC2(1) Internal oscillator 2. Zero-pin overhead 10-MHz internal oscillator. X1 (XTAL) External crystal or resonator connected between the X1 and X2 pins or single-ended clock connected to the X1 pin. On reset, internal oscillator 2 (INTOSC2) is the default clock source for the PLL (OSCCLK). ADVANCE INFORMATION (1) Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 97 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 SYSCLKDIVSEL Watchdog Timer SYSPLL INTOSC1 INTOSC2 OSCCLK PLLSYSCLK NMIWD SYS Divider PLLRAWCLK FPU TMU Flash CPUCLK SYSPLLCLKEN X1 (XTAL) OSCCLKSRCSEL CPU SYSCLK SYSCLK ADVANCE INFORMATION One per SYSCLK peripheral PCLKCRx PERx.SYSCLK ePIE CLA GPIO Mx RAMs LSx RAMs GSx RAMs Boot ROM Message RAMs DCSM System Control WD XINT CPUTIMERs CLB ECAP EQEP EPWM HRCAL PMBUS LIN FSI SDFM EPG AES I2C ADC CMPSS GPDAC DCAN MCAN HIC DCC HWBIST BGCRC ERAD One per LSPCLK peripheral LOSPCP PCLKCRx LSP Divider PERx.LSPCLK LSPCLK SCI SPI CLKSRCCTL2.CANxBCLKSEL CAN Bit Clock Figure 6-8. Clocking System 98 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 SYSPLL ÷ (REFDIV+1) INTCLK VCOCLK VCO ÷ (ODIV+1) PLLRAWCLK ADVANCE INFORMATION OSCCLK ÷ IMULT Figure 6-9. System PLL In Figure 6-9, f PLLRAWCLK f OSCCLK REFDIV 1 u IMULT ODIV 1 Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 99 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 6.12.3.2 Clock Frequencies, Requirements, and Characteristics This section provides the frequencies and timing requirements of the input clocks, PLL lock times, frequencies of the internal clocks, and the frequency and switching characteristics of the output clock. 6.12.3.2.1 Input Clock Frequency and Timing Requirements, PLL Lock Times 6.12.3.2.1.1 Input Clock Frequency MIN MAX UNIT f(XTAL) Frequency, X1/X2, from external crystal or resonator 10 20 MHz f(X1) Frequency, X1, from external oscillator 10 25 MHz 6.12.3.2.1.2 XTAL Oscillator Characteristics over recommended operating conditions (unless otherwise noted) ADVANCE INFORMATION PARAMETER MIN X1 VIL Valid low-level input voltage X1 VIH Valid high-level input voltage TYP MAX UNIT –0.3 0.3 * VDDIO V 0.7 * VDDIO VDDIO + 0.3 V 6.12.3.2.1.3 X1 Input Level Characteristics When Using an External Clock Source (Not a Crystal) over recommended operating conditions (unless otherwise noted) PARAMETER MIN X1 VIL Valid low-level input voltage X1 VIH Valid high-level input voltage MAX UNIT –0.3 0.3 * VDDIO V 0.7 * VDDIO VDDIO + 0.3 V 6.12.3.2.1.4 X1 Timing Requirements MIN MAX tf(X1) Fall time, X1 tr(X1) Rise time, X1 tw(X1L) Pulse duration, X1 low as a percentage of tc(X1) 45% 55% tw(X1H) Pulse duration, X1 high as a percentage of tc(X1) 45% 55% MIN MAX UNIT 6 ns 6 ns 6.12.3.2.1.5 AUXCLKIN Timing Requirements UNIT tf(AUXI) Fall time, AUXCLKIN 6 ns tr(AUXI) Rise time, AUXCLKIN 6 ns tw(AUXL) Pulse duration, AUXCLKIN low as a percentage of tc(XCI) 45% 55% tw(AUXH) Pulse duration, AUXCLKIN high as a percentage of tc(XCI) 45% 55% 6.12.3.2.1.6 APLL Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER MIN TYP MAX UNIT PLL Lock time SYS PLL Lock Time(1) (1) 100 5µs + (1024 * (REFDIV + 1) * tc(OSCCLK)) us The PLL lock time here defines the typical time that takes for the PLL to lock once PLL is enabled (SYSPLLCTL1[PLLENA]=1). Additional time to verify the PLL clock using Dual Clock Comparator (DCC) is not accounted here. TI recommends using the latest example software from C2000Ware for initializing the PLLs. For the system PLL, see InitSysPll() or SysCtl_setClock(). Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 6.12.3.2.1.7 XCLKOUT Switching Characteristics (PLL Bypassed or Enabled) over recommended operating conditions (unless otherwise noted) PARAMETER(1) MIN MAX UNIT tf(XCO) Fall time, XCLKOUT 5 ns tr(XCO) Rise time, XCLKOUT 5 ns tw(XCOL) Pulse duration, XCLKOUT low H – 2(2) H + 2(2) ns 2(2) 2(2) ns 50 MHz tw(XCOH) Pulse duration, XCLKOUT high f(XCO) Frequency, XCLKOUT (1) (2) H– H+ A load of 40 pF is assumed for these parameters. H = 0.5tc(XCO) MIN f(SYSCLK) Frequency, device (system) clock tc(SYSCLK) Period, device (system) clock f(INTCLK) Frequency, system PLL going into VCO (after REFDIV) f(VCOCLK) Frequency, system PLL VCO (before ODIV) f(PLLRAWCLK) Frequency, system PLL output (before SYSCLK divider) f(PLL) Frequency, PLLSYSCLK NOM UNIT 120 MHz 8.33 500 ns 2 20 MHz 220 600 MHz 6 240 MHz 2 120 MHz (1) f(PLL_LIMP) Frequency, PLL Limp Frequency f(LSP) Frequency, LSPCLK tc(LSPCLK) Period, LSPCLK f(OSCCLK) Frequency, OSCCLK (INTOSC1 or INTOSC2 or XTAL or X1) f(EPWM) Frequency, EPWMCLK f(HRPWM) Frequency, HRPWMCLK (1) MAX 2 45/(ODIV+1) MHz 2 120 MHz 8.33 500 ns See respective clock 60 ADVANCE INFORMATION 6.12.3.2.1.8 Internal Clock Frequencies MHz 120 MHz 120 MHz PLL output frequency when OSCCLK is dead (Loss of OSCCLK causes PLL to Limp). Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 101 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 6.12.3.3 Input Clocks and PLLs In addition to the internal 0-pin oscillators, three types of external clock sources are supported: • A single-ended 3.3-V external clock. The clock signal should be connected to X1, as shown in Figure 6-10, with the XTALCR.SE bit set to 1. • An external crystal. The crystal should be connected across X1 and X2 with its load capacitors connected to VSS as shown in Figure 6-11. • An external resonator. The resonator should be connected across X1 and X2 with its ground connected to VSS as shown in Figure 6-12. Microcontroller Microcontroller VSS GPIO19 GPIO18* X1 X2 GPIO18 X1 X2 ADVANCE INFORMATION * Available as a GPIO when X1 is used as a clock +3.3 V VDD GPIO19 VSS Out 3.3-V Oscillator Gnd Figure 6-11. External Crystal Figure 6-10. Single-ended 3.3-V External Clock Microcontroller VSS GPIO19 GPIO18 X1 X2 Figure 6-12. External Resonator 6.12.3.4 XTAL Oscillator 6.12.3.4.1 Introduction The XTAL oscillator in this device is an embedded electrical oscillator that when paired with a compatible crystal can generate the system clock required by the device. 6.12.3.4.2 Overview The sections below describe the components of the electrical oscillator and crystal. 6.12.3.4.2.1 Electrical Oscillator The electrical oscillator in this device is a Pierce oscillator design. It is a positive feedback inverter circuit that requires a tuning circuit in order to oscillate. When it is paired with a compatible crystal, a tank circuit is formed. This tank circuit oscillates at the fundamental frequency of the crystal component. On this device, it is designed to operate in parallel resonance mode due to the shunt capacitor (C0) and required load capacitors (CL). Figure 6-13 illustrates the components of the electrical oscillator and the tank circuit. 102 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 MCU To Rest of Chip XTAL Oscillator Buffer 0 Comp 1 XCLKOUT Circuit [XTAL On] XCLKOUT Pierce Inverter GPIO External X2 X1 Internal Internal External Rd Crystal CL1 ADVANCE INFORMATION Rbias CL2 GND GND Figure 6-13. Electrical Oscillator Block Diagram 6.12.3.4.2.1.1 Modes of Operation The electrical oscillator in this device has two modes of operation: crystal mode and single-ended mode. 6.12.3.4.2.1.1.1 Crystal Mode of Operation In crystal mode of operation, a quartz crystal with load capacitors has to be connected to X1 and X2. This mode of operation is engaged when [XTAL On]=1 which is achieved by setting XTALCR.OSCOFF=0 and XTALCR.SE=0. There is an internal bias resistor for the feedback loop so an external one should not be used. Adding an external bias resistor will create a parallel resistance with the internal Rbias, moving the bias point of operation and possibly leading to clipped waveforms, out of spec duty cycle and reduction in the effective negative resistance. In this mode of operation, the resultant clock on X1 is passed through a comparator (Comp) to the rest of the chip. The clock on X1 needs to meet the VIH and VIL of the comparator. See XTAL Oscillator Characteristics table for the VIH and VIL requirements of the comparator. 6.12.3.4.2.1.1.2 Single-Ended Mode of Operation In the single-ended mode of operation, a clock signal is connected to X1 with X2 left unconnected. A quartz crystal should not be used in this mode. This mode is enabled when [XTAL On]=0 which can be achieved by setting XTALCR.OSCOFF=1 and XTALCR.SE=1. Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 103 TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 In this mode of operation, the clock on X1 is passed through a buffer (Buffer) to the rest of the chip. See X1 Input Level Characteristics When Using an External Clock Source (Not a Crystal) table for the input requirements of the buffer. 6.12.3.4.2.1.2 XTAL Output on XCLKOUT The output of the electrical oscillator that is fed to the rest of the chip can be brought out on XCLKOUT for observation by configuring CLKSRCCTL3.XCLKOUTSEL and XCLKOUTDIVSEL.XCLKOUTDIV registers . See the GPIO mux table for a list of GPIOs that XCLKOUT comes out on. 6.12.3.4.2.2 Quartz Crystal Electrically, a quartz crystal can be represented by an LCR circuit (Inductor-Capacitor-Resistor). However, unlike an LCR circuit, crystals have very high Q due to the low motional resistance and are also very underdamped. Components of the crystal are shown in Figure 6-14 and explained below. ADVANCE INFORMATION Quartz Crystal Internal External Cm Rm C0 CL Lm Figure 6-14. Crystal Electrical Representation Cm (Motional capacitance): Denotes the elasticity of the crystal. Rm (Motional resistance): Denotes the resistive losses within the crystal. This is not the ESR of the crystal but can be approximated as such depending on the values of the other crystal components. Lm (Motional inductance): Denotes the vibrating mass of the crystal. C0 (Shunt capacitance): The capacitance formed from the two crystal electrodes and stray package capacitance. CL (Load capacitance): This is the effective capacitance seen by the crystal at its electrodes. It is external to the crystal. The frequency ppm specified in the crystal datasheet is usually tied to the CL parameter. Note that most crystal manufacturers specify CL as the effective capacitance seen at the crystal pins while some crystal manufacturers specify the CL as the capacitance on just one of the crystal pins. Check with the crystal manufacturer for how the CL is specified in order to use the correct values in calculations. From Figure 6-13, CL1 and CL2 are in series so to find the equivalent total capacitance seen by the crystal, the capacitance series formula has to be applied which simply evaluates to [CL1]/2 if CL1=CL2. It is recommended to add stray PCB capacitance to this value. 3pF to 5pF are reasonable estimates but the actual value will depend on the PCB in question. Note that the load capacitance is a requirement of both the electrical oscillator and crystal. The value chosen has to satisfy both the electrical oscillator and the crystal. 104 Submit Document Feedback Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 The effect of CL on the crystal is frequency pulling. If the effective load capacitance is lower than the target, the crystal frequency will increase and vice-versa. However, the effect of frequency pulling is usually very minimal and typically results in less than 10ppm variation from the nominal frequency. 6.12.3.4.2.3 GPIO Modes of Operation On this device, X1 and X2 can be used as GPIO19 and GPIO18 respectively depending on the operating mode of the XTAL. Refer to the External Oscillator (XTAL) TRM section. 6.12.3.4.3 Functional Operation 6.12.3.4.3.1 ESR - Effective Series Resistance ESR = Rm *  1 +   C0 CL 2 (1) Note that the ESR is not the same as motional resistance of the crystal but can be approximated as such if the effective load capacitance is much greater than the shunt capacitance. 6.12.3.4.3.2 Rneg - Negative Resistance Negative resistance is the impedance presented by the electrical oscillator to the crystal. It is the amount of energy the electrical oscillator must supply to the crystal to overcome the losses incurred during oscillation. It depicts a circuit that provides rather than consume energy and can also be viewed as the overall gain of the circuit. The generally accepted practice is to have Rneg > 3x-5x ESR to ensure the crystal starts up under all conditions. Note that it takes slightly more energy to start-up the crystal than it does to sustain oscillation and hence if it can be ensured that the negative resistance requirement is met at start-up, then oscillation sustenance will not be an issue. Figure 6-15 and Figure 6-16 show the variation between negative resistance and the crystal components for this device. As can be seen from the chart, the crystal shunt capacitance (C0) and effective load capacitance (CL) greatly influence the negative resistance of the electrical oscillator. Note that these are typical graphs so refer to Table 6-5 for min/max values for design considerations. 6.12.3.4.3.3 Start-up Time Start-up time is an important consideration when selecting the components of the crystal circuit. As mentioned in the negative resistance section, for reliable start-up across all conditions, it is recommended that the Rneg > 3x-5x the ESR of the crystal. Crystal ESR and dampening resistor (Rd) greatly affect the start-up time. The higher the two, the longer the crystal takes to start-up. Longer start-up times are usually a sign the crystal and components are not a correct match. Refer to Crystal Oscillator Specifications for the typical start-up times. Note that the numbers specified here are typical numbers provided for guidance only. Actual start-up time depends heavily on the crystal in question and the external components. 6.12.3.4.3.3.1 X1/X2 Precondition On this device, the GPIO19/18 alternate functionality on X1/X2 can be used to speed up the start-up time of the crystal if needed. This functionality is achieved by preconditioning the load capacitors CL1 and CL2 to a known state before the XTAL is turned on. See the TRM for details. 6.12.3.4.3.4 DL - Drive Level Drive level refers to how much power is provided by the electrical oscillator and dissipated by the crystal. The maximum drive level specified in the crystal manufacturer’s datasheet is usually the maximum the crystal can Copyright © 2021 Texas Instruments Incorporated Product Folder Links: TMS320F280039C TMS320F280037C Submit Document Feedback 105 ADVANCE INFORMATION This is the resistive load the crystal presents to the electrical oscillator at resonance. The higher the ESR, the lower the Q and less likelihood the crystal will start-up or maintain oscillation. The relationship between ESR and the crystal components is indicated below. TMS320F280039C, TMS320F280037C www.ti.com SPRSP61 – OCTOBER 2021 dissipate without damage or significant reduction in operating life. On the other hand, the drive level specified by the electrical oscillator is the maximum power it can provide. The actual power provided by the electrical oscillator is not necessarily the max power and depends on the crystal and board components. For cases where the actual drive level from the electrical oscillator exceeds the maximum drive level specification of the crystal, a dampening resistor (Rd) should be installed to limit the current and reduce the power dissipated by the crystal. Note that Rd reduces the circuit gain and hence the actual value to use should be evaluated to make sure all other conditions for start-up and sustained oscillation are met. 6.12.3.4.4 How to Choose a Crystal Using Crystal Oscillator Specifications as a reference: ADVANCE INFORMATION 1. Pick a crystal frequency e.g: 20MHz 2. Check that the ESR of the crystal = 1mW. If this requirement is not met, a dampening resistor Rd can be used. Refer to DL - Drive Level on other points to consider when using Rd. 6.12.3.4.5 Testing It is recommended that the user have the crystal manufacturer completely characterize the crystal with their board to ensure the crystal always starts up and maintains oscillation. Below is a brief overview of some measurements that can be performed: Due to how sensitive the crystal circuit is to capacitance, it is recommended not to connect scope probes to X1 and X2. If scope probes must be used to monitor X1/X2, an active probe with
F280039CSPZR 价格&库存

很抱歉,暂时无法提供与“F280039CSPZR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
F280039CSPZR
    •  国内价格
    • 10+24.86000
    • 100+22.37400
    • 250+19.88800

    库存:5081

    F280039CSPZR
      •  国内价格
      • 1+22.82148

      库存:2000

      F280039CSPZR
      •  国内价格
      • 1+71.66743
      • 3+50.47002
      • 7+47.69417

      库存:0

      F280039CSPZR
      •  国内价格
      • 1+55.72840
      • 10+41.22360
      • 100+35.33440
      • 1000+29.44540

      库存:5081

      F280039CSPZR
        •  国内价格
        • 1+32.74560
        • 10+27.86400
        • 30+24.95880
        • 100+22.02120
        • 500+20.67120
        • 1000+20.05560

        库存:934

        F280039CSPZR
        •  国内价格 香港价格
        • 1+80.908491+10.13610

        库存:0