0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ISO1176DWR

ISO1176DWR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC16

  • 描述:

    DG ISO 2.5KV RS422/RS485 16SOIC

  • 数据手册
  • 价格&库存
ISO1176DWR 数据手册
Product Folder Sample & Buy Support & Community Tools & Software Technical Documents ISO1176 SLLS897E – MARCH 2008 – REVISED JUNE 2015 ISO1176 Isolated RS-485 Profibus Transceiver 1 Features 3 Description • The ISO1176 device is an isolated differential line transceiver designed for use in PROFIBUS applications. The device is ideal for long transmission lines because the ground loop is broken to provide for operation with a much larger common-mode voltage range. The symmetrical isolation barrier of each device is tested to provide 2500 VRMS of isolation per UL between the line transceiver and the logic level interface. 1 • • • • • • • • • Meets or Exceeds the Requirements of EN 50170 and TIA/EIA-485-A Signaling Rates up to 40 Mbps Differential Output Exceeds 2.1 V (54-Ω Load) Low Bus Capacitance – 10 pF (Maximum) Up to 160 Transceivers on a Bus 50 kV/μs Typical Transient Immunity Fail-Safe Receiver for Bus Open, Short, Idle 3.3-V Inputs are 5-V Tolerant Bus-Pin ESD Protection – 16-kV HBM Between Bus Pins and GND2 – 6-kV HBM Between Bus Pins and GND1 Safety and Regulatory Approvals – 4000-VPK Isolation, 560-VPK VIORM per DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12 and DIN EN 61010-1 – 2500 VRMS Isolation Rating per UL 1577 – 4000 VPK Isolation Rating per CSA CA5A and IEC 60950-1 The galvanically isolated differential bus transceiver is an integrated circuit designed for bidirectional data communication on multipoint bus-transmission lines. The transceiver combines a galvanically isolated differential line driver and differential input line receiver. The driver has an active-high enable with isolated enable-state output on the ISODE pin (pin 10) to facilitate direction control. The driver differential outputs and the receiver differential inputs connect internally to form a differential input/output (I/O) bus port that is designed to offer minimum loading to the bus allowing up to 160 nodes. The PV pin (pin 7) is provided as a full-chip enable option. All device outputs become high impedance when a logic low is applied to the PV pin. For more information, see the function tables in Device Functional Modes. 2 Applications • • • • • • Profibus Factory Automation Networked Sensors Motor and Motion Control HVA and Building Automation Networks Networked Security Stations Device Information(1) PART NUMBER ISO1176 PACKAGE SOIC (16) BODY SIZE (NOM) 10.30 mm × 7.50 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. Simplified Schematic R RE D PV DE 3 4 6 7 5 GALVANIC ISOLATION ISO1176 Function Diagram 13 12 10 B A ISODE 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. ISO1176 SLLS897E – MARCH 2008 – REVISED JUNE 2015 www.ti.com Table of Contents 1 2 3 4 5 6 7 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Description (continued)......................................... Pin Configuration and Functions ......................... Specifications......................................................... 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 8 1 1 1 2 4 4 5 Absolute Maximum Ratings ...................................... 5 ESD Ratings ............................................................ 5 Recommended Operating Conditions....................... 5 Thermal Information .................................................. 6 Electrical Characteristics: ISODE-Pin ....................... 6 Supply Current .......................................................... 6 Electrical Characteristics: Driver ............................... 7 Electrical Characteristics: Receiver .......................... 8 Power Dissipation Characteristics ............................ 8 Switching Characteristics: Driver ............................ 8 Switching Characteristics: Receiver........................ 9 Typical Characteristics .......................................... 10 Parameter Measurement Information ................ 12 9 Detailed Description ............................................ 18 9.1 9.2 9.3 9.4 Overview ................................................................. Functional Block Diagram ....................................... Feature Description................................................. Device Functional Modes........................................ 18 18 19 21 10 Application and Implementation........................ 24 10.1 Application Information.......................................... 24 10.2 Typical Application ................................................ 24 11 Power Supply Recommendations ..................... 28 12 Layout................................................................... 28 12.1 Layout Guidelines ................................................. 28 12.2 Layout Example .................................................... 29 13 Device and Documentation Support ................. 30 13.1 13.2 13.3 13.4 13.5 Documentation Support ....................................... Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 30 30 30 30 30 14 Mechanical, Packaging, and Orderable Information ........................................................... 30 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision D (March 2010) to Revision E Page • Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section .............................. 1 • VDE standard changed to DIN V VDE V 0884-10 (VDE V 0884-10): 2006-12...................................................................... 1 • Changed the IEC 60664-1 Ratings Table. Basic isolation group SPECIFICATION entry From: IIIa To: II ......................... 19 Changes from Revision C (October 2008) to Revision D Page • Added 560-Vpeak VIORM to the first Features List .................................................................................................................. 1 • Added UL 1577, IEC 60747-5-2 (VDE 0884, Rev. 2), to the Features List............................................................................ 1 • Added Input pulse width MIN = 10 ns to the RECOMMENDED OPERATING CONDITIONS table ..................................... 5 • Added the CSA column to the Regulatory Information table................................................................................................ 20 • Changed the ISO1176 “Sticky Bit” Issue section ................................................................................................................. 26 Changes from Revision B (June 2008) to Revision C • Changed the text in the second paragraph of the DESCRIPTION From: "whenever the driver is disabled or VCC2 = 0" To: "allowing up to 160 nodes.".......................................................................................................................................... 1 Changes from Revision A (May 2008) to Revision B • 2 Page Page Changed L(IO1), Minimum air gap (Clearance) in the PACKAGE CHARACTERISTICS table From: MIN = 7.7mm To: 8.34mm........................................................................................................................................................................... 19 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Product Folder Links: ISO1176 ISO1176 www.ti.com SLLS897E – MARCH 2008 – REVISED JUNE 2015 Changes from Original (March 2008) to Revision A Page • Added 3.3-V Inputs are 5-V Tolerant to the Features List...................................................................................................... 1 • Added the Bus-Pin ESD Protection bullet and sub bullets to the Features List..................................................................... 1 • Added Bus pins to GND1 and Bus pins to GND2 to the ESD information in the Handling Rating table ............................... 5 • Added the APPLICATION INFORMATION section.............................................................................................................. 24 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Product Folder Links: ISO1176 3 ISO1176 SLLS897E – MARCH 2008 – REVISED JUNE 2015 www.ti.com 5 Description (continued) Any cabled I/O can be subjected to electrical noise transients from various sources. These noise transients can cause damage to the transceiver and/or nearby sensitive circuitry if they are of sufficient magnitude and duration. The ISO1176 can significantly reduce the risk of data corruption and damage to expensive control circuits. The device is characterized for operation over the ambient temperature range of –40°C to +85°C. 6 Pin Configuration and Functions DW Package 16-Pin SOIC Top View VCC1 1 16 VCC2 GND1 2 15 R 3 14 GND2 NC RE 4 13 B DE D 5 12 6 11 A NC PV 7 10 GND1 8 9 ISODE GND2 Pin Functions PIN NAME NO. I/O DESCRIPTION A 12 I/O Noninverting bus output B 13 I/O Inverting bus output D 6 I Driver input DE 5 I Driver logic-high enable GND1 2, 8 — Logic-side ground; internally connected GND2 9, 15 — Bus-side ground; internally connected ISODE 10 — Bus-side driver enable output NC 11, 14 — Not connected internally; may be left floating PV 7 I ISO1176 chip enable, logic high applied immediately after power up for device operation. A logic low 3-states all outputs. R 3 O Receiver output RE 4 I Receiver logic-low enable VCC1 1 — Logic side power supply VCC2 16 — Bus side power supply 4 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Product Folder Links: ISO1176 ISO1176 www.ti.com SLLS897E – MARCH 2008 – REVISED JUNE 2015 7 Specifications 7.1 Absolute Maximum Ratings over operating junction temperature range unless otherwise noted (1) VCC Supply voltage (2) VO Voltage at any bus I/O pins VI Voltage input IO Receiver output current TJ Maximum junction temperature Tstg Storage temperature (1) (2) MIN MAX UNIT VCC1, VCC2 –0.5 7 V –9 14 V D, DE or RE –0.5 7 V –10 10 mA 170 °C 150 °C -65 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to the network ground terminal unless otherwise noted. All voltage values except differential I/O bus voltages are with respect to the referenced network ground terminal and are peak voltage values. 7.2 ESD Ratings VALUE Human body model (HBM), per ANSI/ESDA/JEDEC JS001 (1) V(ESD) Electrostatic discharge Bus pins to 2, 8 ±6000 Bus pins to 9, 15 ±16000 All pins ±4000 Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2) Machine model (MM), per ANSI/ESDS5.2-1996, all pins (1) (2) UNIT V ±1000 ±200 JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 7.3 Recommended Operating Conditions MIN VCC MAX Logic-side supply voltage, VCC1 (with respect to GND1) 3.15 5.5 Bus-side supply voltage, VCC2 (with respect to GND2) 4.75 5.25 –7 12 2 5.5 VCM Voltage at either bus I/O terminal VIH High-level input voltage VIL Low-level input voltage VID Differential input voltage IO NOM Output current A, B PV, RE D, DE PV, RE Ambient temperature TJ Junction temperature 0 0.8 D, DE 0.3 VCC1 A with respect to B –12 12 Driver –70 70 –8 8 Receiver Input pulse width TA 0.7 VCC1 10 –40 Product Folder Links: ISO1176 V V V V V mA ns 25 85 °C 150 °C Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated UNIT 5 ISO1176 SLLS897E – MARCH 2008 – REVISED JUNE 2015 www.ti.com 7.4 Thermal Information ISO1176 THERMAL METRIC (1) DW [SOIC] UNIT 16 PINS High-K board 81.4 Low-K board 168 RθJA Junction-to-ambient thermal resistance RθJC(top) Junction-to-case (top) thermal resistance 41.4 °C/W RθJB Junction-to-board thermal resistance 46.4 °C/W ψJT Junction-to-top characterization parameter 13.1 °C/W ψJB Junction-to-board characterization parameter 45.8 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance N/A °C/W (1) °C/W For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. 7.5 Electrical Characteristics: ISODE-Pin over recommended operating conditions (unless otherwise noted) PARAMETER VOH High-level output voltage VOL Low-level output voltage TEST CONDITIONS MIN TYP IOH = –8 mA VCC2 – 0.8 4.6 IOH = –20 μA VCC2 – 0.1 5 MAX UNIT V IOL = 8 mA 0.2 0.4 IOL = 20 μA 0 0.1 V 7.6 Supply Current over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS 3V ICC1 Logic-side RMS supply current 5.5 V ICC2 6 Bus-side RMS supply current 5.25 V TYP MAX DE at 0 V MIN 4 6 DE at VCC1, 2 Mbps 5 DE at VCC1, 25 Mbps 6 DE at 0 V 7 DE at VCC1, 2 Mbps 8 DE at VCC1, 25 Mbps 11 DE at 0 V 15 DE at VCC1, 2 Mbps, 54-Ω load 70 DE at VCC1, 25 Mbps, 54-Ω load 75 Submit Documentation Feedback 10 UNIT mA 18 mA Copyright © 2008–2015, Texas Instruments Incorporated Product Folder Links: ISO1176 ISO1176 www.ti.com SLLS897E – MARCH 2008 – REVISED JUNE 2015 7.7 Electrical Characteristics: Driver over recommended operating conditions (unless otherwise noted) PARAMETER VOD TEST CONDITIONS Open-circuit differential output voltage MIN Common-mode loading with Vtest from –7 V to 12 V, See Figure 10 2.1 RL = 54 Ω, See Figure 11 and Figure 12 –0.2 0.2 2 3 –0.2 0.2 VOC(SS) Steady-state common-mode output voltage ΔVOC(SS) Change in steady-state common-mode output RL = 54 Ω, See Figure 11 and Figure 12 voltage VOC(PP) Peak-to-peak common-mode output voltage VOD(RING) Differential output voltage over- and undershoot See Figure 13 and Figure 17 VI(HYS) Input voltage hysteresis See Figure 14 IO(OFF) Output current with power off VCC ≤ 2.5 V IOZ High-impedance state output current DE at 0 V IOS(P) Peak short-circuit output current (1) 10% V V –10 PV (1) at 0 V or VCC1 mV 10 μA 120 See receiver input current in Electrical Characteristics: Receiver VOS = –7 V to 12 V DE at VCC, See Figure 15 and Figure 16 VOD(pp) 150 D, DE at 0 V or VCC1 Input current Common-mode transient immunity V 0.5 II CMTI V 2.1 Change in steady-state differential output voltage between logic states Differential output capacitance VCC2 1.5 |ΔVOD(SS)| COD UNIT See Figure 9 and Figure 13 Steady-state differential output voltage magnitude Steady-state short-circuit output current MAX |VA – VB|, Figure 8 |VOD(SS)| IOS(SS) TYP –250 VOS = 12 V, D at GND1 VOS = –7 V, D at VCC1 250 135 mA –135 See receiver CIN in Electrical Characteristics: Receiver See Figure 27 25 kV/μs The PV pin has a 50-kΩ pullup resistor and leakage current depends on supply voltage. Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Product Folder Links: ISO1176 7 ISO1176 SLLS897E – MARCH 2008 – REVISED JUNE 2015 www.ti.com 7.8 Electrical Characteristics: Receiver over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS VIT(+) Positive-going differential input voltage threshold VIT(–) Negative-going differential input voltage threshold Vhys Hysteresis voltage (VIT+ – VIT-) VOH SeeFigure 22 High-level output voltage VCC1 at 3.3 V and VCC2 at 5V MIN IO = –8 mA IO = 8 mA –200 TYP MAX UNIT –80 –10 mV –120 mV 40 mV VID = 200 mV, See Figure 22 IOH = –8 mA VCC1 –0.4 3 IO H = –20 μA VCC1 –0.1 3.3 V VOL Low-level output voltage VID = –200 mV, See Figure 22 IO L = 8 mA 0.2 0.4 IOL = 20 μA 0 0.1 VOH High-level output voltage VID = 200 mV, See Figure 22 IOH = –8 mA VCC1 –0.8 4.6 IO H = –20 μA VCC1 –0.1 5 Low-level output voltage VID = –200 mV, See Figure 22 IO L = 8 mA IA(OFF) IB(OFF) Bus pin input current VI = –7 V or 12 V, Other input = 0 V II Receiver enable input current IOZ High-impedance state output current RID VCC1 at 5 V and VCC2 at 5 V VOL IA, IB V 0.2 0.4 0 0.1 IOL = –20 μA V V VCC = 4.75 V or 5.25 V –160 200 μA RE = 0 V –50 50 μA RE = VCC1 –1 1 Differential input resistance A, B 48 CID Differential input capacitance Test input signal is a 1.5-MHz sine wave with 1 Vpp amplitude , CD is measured across A and B 7 CMR Common-mode rejection See Figure 26 4 VCC2 = 0 V μA kΩ 10 pF V 7.9 Power Dissipation Characteristics PARAMETER PD Power Dissipation VALUE UNIT 220 mW VCC1 = VCC2 = 5.25 V, TJ = 150°C, CL = 15 pF, Input a 20 MHz 50% duty-cycle square wave 7.10 Switching Characteristics: Driver over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS tpLH, tpHL Propagation delay time tsk(p) Pulse skew (|tp HL – tpLH|) tpLH, tpHL Propagation delay time tsk(p) Pulse skew (|tp HL – tp LH|) tr Differential output signal rise time tf Differential output signal fall time tpDE DE to ISODE prop delay tt(MLH), tt(MHL) Output transition skew tp(AZH), tp(BZH) tp(AZL), tp(BZL) Propagation delay time, high-impedance-to-active output tp(AHZ), tp(BHZ) tp(ALZ), tp(BLZ) Propagation delay time, active-to-high-impedance output |tp(AZL) – tp(BZH)| |tp(AZH) – tp(BZL)| Enable skew time t(CFB) Time from application of short-circuit to current foldback See Figure 16 t(TSD) Time from application of short-circuit to thermal shutdown TA = 25°C, See Figure 16 8 MIN VCC1 at 5 V VCC2 at 5 V VCC1 at 3.3 V VCC2 at 5 V TYP MAX 2 UNIT 35 ns 5 ns 40 ns 2 5 ns 2 3 7.5 ns 2 3 7.5 ns See Figure 21 30 ns See Figure 18 1 ns 80 ns 80 ns 1.5 ns See Figure 17 CL = 50 pF, RE at 0 V, See Figure 19 and Figure 20 0.55 Submit Documentation Feedback 0.5 100 μs μs Copyright © 2008–2015, Texas Instruments Incorporated Product Folder Links: ISO1176 ISO1176 www.ti.com SLLS897E – MARCH 2008 – REVISED JUNE 2015 7.11 Switching Characteristics: Receiver over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS tpLH, tpHL Propagation delay time tsk(p) Pulse skew (|tp HL – tpLH|) tpLH, tpHL Propagation delay time tsk(p) Pulse skew (|tp HL – tp LH|) tr tf tpZH Propagation delay time, high-impedance-to-high-level output tpHZ Propagation delay time, high-level-to-high-impedance output tpZL Propagation delay time, high-impedance-to-low-level output tpLZ Propagation delay time, low-level-to-high-impedance output MIN TYP MAX UNIT 50 ns 5 ns 55 ns 2 5 ns Output signal rise time 2 4 ns Output signal fall time 2 4 ns DE at VCC1, See Figure 24 13 25 ns 13 25 ns DE at VCC, See Figure 25 13 25 ns 13 25 ns VCC1 at 5 V, VCC2 at 5 V VCC1 at 3.3 V, VCC2 at 5 V 2 See Figure 23 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Product Folder Links: ISO1176 9 ISO1176 SLLS897E – MARCH 2008 – REVISED JUNE 2015 www.ti.com 7.12 Typical Characteristics 100 5 VCC = 5 V VCC = 5.25 V 4 50 Ω VCC = 4.75 V 2.5 2 1.5 60 50 40 30 20 0.5 10 TA = 25 C 0 80 ICC1 0 4 RL = 54 Ω, CL = 50 pF 3.75 Driver Rise, Fall Time − ns VCC = 4.75 V 0.25 VCC = 5 V 0.2 0.15 VCC = 5.25 V 0.1 0.05 0 −40 5 10 15 Signalling Rate - Mbps 20 Figure 2. RMS Supply Current vs Signaling Rate 0.35 0.3 5 V VCC1 3.3 V VCC1 0 20 40 60 IL − Load Current − mA Figure 1. Differential Output Voltage vs Load Current Driver Output Transition Skew − ns 70 1 0 ICC2 80 3.5 3 No Load TA = 25°C 90 100 Ω ICC - Supply Current - mA VOD − Differential Output Voltage − V 4.5 RL = 54 Ω, CL = 50 pF VCC = 4.75 V 3.5 VCC = 5 V 3.25 3 VCC = 5.25 V 2.75 2.5 2.25 −15 10 35 60 TA − Free-Air Temperature − °C 2 −40 85 Figure 3. Driver Output Transition Skew vs Free-Air Temperature −15 10 35 60 TA − Free-Air Temperature − °C 85 Figure 4. Driver Rise and Fall Time vs Free-Air Temperature 0.7 -99 VCC = 4.75 V 15 pF Load TA = 25°C -89 0.6 IO - Output Current - mA Driver Enable Skew − ns -79 0.5 0.4 VCC = 5.25 V VCC = 5 V 0.3 0.2 -69 -59 -49 -39 -29 -19 0.1 0 −40 RL = 110 Ω, CL = 50 pF −15 10 35 60 TA − Free-Air Temperature − °C -9 85 1 2 3 4 5 VO - Output Voltage - V Figure 5. Driver Enable Skew vs Free-Air Temperature 10 1 0 Figure 6. High-Level Output Voltage vs High-Level Output Current Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Product Folder Links: ISO1176 ISO1176 www.ti.com SLLS897E – MARCH 2008 – REVISED JUNE 2015 Typical Characteristics (continued) 110 15 pF Load TA = 25°C 100 IO - Output Current - mA 90 80 70 60 50 40 30 20 10 0 0 1 2 3 VO - Output Voltage - V 4 5 Figure 7. Low-Level Output Voltage vs Low-Level Output Current Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Product Folder Links: ISO1176 11 ISO1176 SLLS897E – MARCH 2008 – REVISED JUNE 2015 www.ti.com 8 Parameter Measurement Information VCC1 IOA DE A 0 or VCC1 I D VOD B GND 1 VI IOB GND 2 VOA VOB GND 1 GND 2 Figure 8. Open Circuit Voltage Test Circuit VCC1 IOA DE A 0 or VCC1 II D VOD B IOB GND 2 GND 1 54 W VI VOB VOA GND 2 GND 1 Figure 9. VOD Test Circuit VCC2 DE D 0 or 3 V 375 W A B GND 2 + VOD - 60 W -7 V to 12 V 375 W Figure 10. Driver VOD With Common-Mode Loading Test Circuit 12 Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Product Folder Links: ISO1176 ISO1176 www.ti.com SLLS897E – MARCH 2008 – REVISED JUNE 2015 Parameter Measurement Information (continued) VCC1 RL 2 IOA DE A II 0 or VCC1 D VOD B GND 1 RL 2 IOB GND 2 VI VOB VOA VOC GND 2 GND 1 Figure 11. Driver VOD and VOC Without Common-Mode Loading Test Circuit VCC1 RL 2 IOA DE A II Input Generator PRR = 500 kHz, 50% duty cycle, tr < 6 ns, tt < 6 ns, ZO = 50 Ω D GND 1 VI VOD B GND 2 VOB GND 1 RL 2 IOB VOA A VA B VB V OC VOC(p-p) VOC VOC(SS ) GND 2 Figure 12. Steady-State Output Voltage Test Circuit and Voltage Waveforms VDO(RING) VDO(SS) VOD(pp) 0 V Differential Figure 13. VOD(RING) Waveform and Definitions Submit Documentation Feedback Copyright © 2008–2015, Texas Instruments Incorporated Product Folder Links: ISO1176 13 ISO1176 SLLS897E – MARCH 2008 – REVISED JUNE 2015 www.ti.com Parameter Measurement Information (continued) VCC1 IOA DE A II 0 or VCC1 D VOD B GND 2 GND 1 VI IOB VOA VOB GND 1 54 W GND 2 Figure 14. Input Voltage Hysteresis Test Circuit DE 0.5 W D I OS B Vos GND 1 GND 2 Output Current - mA 250 I OS A 120 60 t(CFB) GND 2 time t(TSD) Figure 15. Driver Short-Circuit Test Circuit and Waveforms (Short-Circuit Applied at Time t=0) DE I OS B I OS 250 D Vos GND 1 GND 2 GND 2 Output Current - mA A 120 60 t(CFB) time t(TSD) Figure 16. IOS(SS) Steady State Short-Circuit Output Current Test Circuit 3V DE VCC1 A D Input Generator VI B VOD RL = 54 W ±1% CL = 50 pF ± 20% VI 1.5 V tPHL tPLH 50 W GND 1 Generator PRR = 500 kHz, 50 % Duty Cycle, tr
ISO1176DWR 价格&库存

很抱歉,暂时无法提供与“ISO1176DWR”相匹配的价格&库存,您可以联系我们找货

免费人工找货