0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ISO1176TDWR

ISO1176TDWR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC16

  • 描述:

    DG ISO 2.5KV RS422/RS485 16SOIC

  • 数据手册
  • 价格&库存
ISO1176TDWR 数据手册
Product Folder Sample & Buy Support & Community Tools & Software Technical Documents Reference Design ISO1176T SLLSE28G – OCTOBER 2010 – REVISED OCTOBER 2015 ISO1176T Isolated Profibus RS-485 Transceiver with Integrated Transformer Driver 1 Features • 1 • • • • • • • • Meets or Exceeds the Requirements of EN 50170 and TIA/EIA-485-A Signaling Rates up to 40 Mbps Easy Isolated Power Design with Integrated Transformer Driver Typical Efficiency > 60% (ILOAD = 100 mA) - see SLUU471 Differential Output exceeds 2.1 V (54-Ω Load) Low Bus Capacitance 10 pF (Maximum) Fail-safe Receiver for Bus Open, Short, or Idle 50-kV/µs Typical Transient Immunity Safety and Regulatory Approvals – 4242 VPK Basic Insulation per DIN V VDE V 0884-10 and DIN EN 61010-1 – 2500 VRMS Isolation for 1 minute per UL 1577 – CSA Component Acceptance Notice 5A, IEC 60950-1 and IEC 61010-1 Standards The galvanically isolated differential bus transceiver is an integrated circuit designed for bi-directional data communication on multipoint bus-transmission lines. The transceiver combines a galvanically isolated differential line driver and differential input line receiver. The driver has an active-high enable with isolated enable-state output on the ISODE pin (pin 10) to facilitate direction control. The driver differential outputs and the receiver differential inputs connect internally to form a differential input/output (I/O) bus port that is designed to offer minimum loading to the bus whenever the driver is disabled or VCC2 = 0. Any cabled I/O can be subjected to electrical noise transients from various sources. These noise transients can cause damage to the transceiver and/or near-by sensitive circuitry if they are of sufficient magnitude and duration. The ISO1176T can significantly reduce the risk of data corruption and damage to expensive control circuits. The device is characterized for operation over the ambient temperature range of –40°C to 85°C. • 2 Applications • • • • • • Profibus® Factory Automation Networked Sensors Motor/motion Control HVAC and Building Automation Networks Networked Security Stations Device Information(1) PART NUMBER BODY SIZE (NOM) SOIC (16) 10.30 mm × 7.50 mm (1) For all available packages, see the orderable addendum at the end of the datasheet. Typical Application X-FMR 3 Description 4 8 3 2 7 6 LDO D1 1 C4 C5 3 2 C1 1 The ISO1176T is an isolated differential line transceiver with integrated oscillator outputs that provide the primary voltage for an isolation transformer. The device is ideal for long transmission lines because the ground loop is broken to allow the device to operate with a much larger common-mode voltage range. The symmetrical isolation barrier of each device is tested to provide 4242VPK of isolation per VDE for 60 seconds between the line transceiver and the logiclevel interface. PACKAGE ISO1176T 5 OUT IN 5 C6 EN GND NC 4 D2 1 2 4 C2 3 5 6 Control Circuitry D1 VCC2 16 C3 Isolated Supply to other Components D2 VCC1 B GND1 A R ISODE 13 12 10 Profibus Interface RE 7 DE GND2 D GND2 8 14, 15 9, 11 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. ISO1176T SLLSE28G – OCTOBER 2010 – REVISED OCTOBER 2015 www.ti.com Table of Contents 1 2 3 4 5 6 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 7 1 1 1 2 4 4 Absolute Maximum Ratings ...................................... 4 ESD Ratings.............................................................. 5 Recommended Operating Conditions....................... 5 Thermal Information .................................................. 5 Electrical Characteristics: Power Rating ................... 5 Electrical Characteristics: ISODE-Pin ....................... 6 Electrical Characteristics: RS-485 Driver.................. 6 Electrical Characteristics: Receiver .......................... 7 Supply Current .......................................................... 7 Transformer Driver Characteristics ......................... 8 Switching Characteristics: RS-485 Driver ............... 9 Switching Characteristics: Receiver........................ 9 Typical Characteristics .......................................... 10 Parameter Measurement Information ................ 12 8 Detailed Description ............................................ 17 8.1 8.2 8.3 8.4 9 Overview ................................................................. Functional Block Diagram ....................................... Feature Description................................................. Device Functional Modes........................................ 17 17 18 20 Application and Implementation ........................ 23 9.1 Application Information............................................ 23 9.2 Typical Application ................................................. 23 10 Power Supply Recommendations ..................... 26 11 Layout................................................................... 26 11.1 Layout Guidelines ................................................. 26 11.2 Layout Example .................................................... 27 12 Device and Documentation Support ................. 28 12.1 12.2 12.3 12.4 12.5 Documentation Support ........................................ Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 28 28 28 28 28 13 Mechanical, Packaging, and Orderable Information ........................................................... 28 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision F (October 2012) to Revision G Page • Added Pin Configuration and Functions section, ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section .............................. 1 • VDE standard changed to DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 ...................................................................... 1 • Added Maximum Device Power Dissipation to Power Rating Table. .................................................................................... 5 Changes from Revision E (August 2011) to Revision F • Page Changed From "ISO1176T Reference Design SLLU471" To: "ISO1176T Reference Design SLUU471"........................... 28 Changes from Revision D (May 2011) to Revision E Page • Deleted the MIN and MAX values for tr_D, tf_D and tBBM specifications in the Transformer Driver Characteristics table. ....... 8 • Changed test conditions from 1.9 V to 2.4 V, and changed TYP value from 230 to 350 for fSt specification in the Transformer Driver Characteristics table................................................................................................................................ 8 Changes from Revision C (February 2011) to Revision D Page • Added Figure 33 ..................................................................................................................................................................... 1 • Moved the Pin Description closer to the Pin drawing............................................................................................................. 4 2 Submit Documentation Feedback Copyright © 2010–2015, Texas Instruments Incorporated Product Folder Links: ISO1176T ISO1176T www.ti.com SLLSE28G – OCTOBER 2010 – REVISED OCTOBER 2015 Changes from Revision B (December 2010) to Revision C Page • Deleted ROFF from the TRANSFORMER DRIVER CHARACTERISTICS table ..................................................................... 8 • Added a Typ value of 23ns to Prop delay time for VCC1 = 5V in the RS-485 DRIVER SWITCHING CHARACTERISTIC table ....................................................................................................................................................... 9 • Added a Typ value of 25ns to Prop delay time for VCC1 = 3.3V in the RS-485 DRIVER SWITCHING CHARACTERISTIC table ....................................................................................................................................................... 9 • Changed θJA = 212°C/W To: θJA = 76°C/W, Changed the IS Max value From: 128mA To: 347mA, and changed paragraph two in the IEC SAFETY LIMITING VALUES section .......................................................................................... 19 • Changed Figure 29............................................................................................................................................................... 19 Changes from Revision A (December 2010) to Revision B Page • Changed the Steady-state short-circuit output current - Test Conditions and values............................................................ 6 • Changed the Oscillator frequency values............................................................................................................................... 8 • Changed the D1, D2 output rise time values ......................................................................................................................... 8 Changes from Revision initial (October 2010) to Revision A Page • Updated transformer driver characteristics............................................................................................................................. 8 • Added Thermal Table data ................................................................................................................................................... 19 Submit Documentation Feedback Copyright © 2010–2015, Texas Instruments Incorporated Product Folder Links: ISO1176T 3 ISO1176T SLLSE28G – OCTOBER 2010 – REVISED OCTOBER 2015 www.ti.com 5 Pin Configuration and Functions DW Package 16-Pin SOIC Top View D1 D2 1 16 2 15 GND1 VCC1 R RE DE D 3 4 14 13 5 12 6 11 7 10 8 9 VCC2 GND2 GND2 B A GND2 ISODE GND2 Pin Functions PIN NAME I/O NO. DESCRIPTION A 12 I/O Non-inverting Driver Output / Receiver Input B 13 I/O Inverting Driver Output / Receiver Input D 8 I Driver Input D1 1 O Transformer Driver Terminal 1, Open Drain Output D2 2 O Transformer Driver Terminal 2, Open Drain Output DE 7 I Driver Enable Input GND1 3 — Logic-side Ground GND2 9, 11, 14, 15 — Bus-side Ground. All pins are internally connected. ISODE 10 O Bus-side Driver Enable Output Status R 5 O Receiver Output RE 6 I Receiver Enable Input. This pin has complementary logic. VCC1 4 — Logic-side Power Supply VCC2 16 — Bus-side Power Supply 6 Specifications 6.1 Absolute Maximum Ratings See (1) VCC1, VCC2 Input supply voltage (2) Voltage at any bus I/O terminal VO MIN MAX UNIT –0.5 7 V –9 14 V 14 V 7 V Voltage at D1, D2 VI Voltage input at D, DE or RE terminal –0.5 IO Receiver output current –10 10 mA ID1, ID2 Transformer Driver Output Current 450 mA TJ Maximum junction temperature 170 °C TSTG Storage temperature 150 °C (1) (2) 4 –65 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values except differential I/O bus voltages are with respect to the referenced network ground terminal and are peak voltage values. Submit Documentation Feedback Copyright © 2010–2015, Texas Instruments Incorporated Product Folder Links: ISO1176T ISO1176T www.ti.com SLLSE28G – OCTOBER 2010 – REVISED OCTOBER 2015 6.2 ESD Ratings VALUE V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS001 (1) Bus pins to GND1 ±6000 Bus pins to GND2 ±10000 All pins ±4000 Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) V ±1500 Machine model (MM), ANSI/ESDS5.2-1996 (1) (2) UNIT ±200 JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) MIN Logic side supply voltage, VCC1 (with respect to GND1) VCC Bus side supply voltage, VCC2 (with respect to GND2) VCM Voltage at either bus I/O terminal VIH High-level input voltage VIL Low-level input voltage VID Differential input voltage NOM MAX 3 5.5 4.75 5.25 A, B –7 12 RE 2 VCC1 D, DE 0 TA Ambient temperature TJ Operating junction temperature 1 / tUI Signaling Rate V V 0.8 D, DE Output Current V 0.7 VCC1 RE IO UNIT V 0.3 VCC1 A with respect to B –12 12 RS-485 driver –70 70 –8 8 -40 85 Receiver V mA °C 150 °C 40 Mbps 6.4 Thermal Information ISO1176T THERMAL METRIC (1) DW (SOIC) UNIT 16 PINS RθJA Junction-to-ambient thermal resistance 76 °C/W RθJC(top) Junction-to-case (top) thermal resistance 37.9 °C/W RθJB Junction-to-board thermal resistance 44.6 °C/W ψJT Junction-to-top characterization parameter 12.1 °C/W ψJB Junction-to-board characterization parameter 37.9 °C/W (1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953. 6.5 Electrical Characteristics: Power Rating over operating free-air temperature range (unless otherwise noted) PARAMETER PD Maximum device power dissipation TEST CONDITIONS VCC1 = 5.5 V, VCC2 = 5.25 V, TJ = 150°C, CL = 50 pf, RL = 54 Ω Input a 20 MHz 50% duty cycle square wave VALUE UNIT 719 mW Submit Documentation Feedback Copyright © 2010–2015, Texas Instruments Incorporated Product Folder Links: ISO1176T 5 ISO1176T SLLSE28G – OCTOBER 2010 – REVISED OCTOBER 2015 www.ti.com 6.6 Electrical Characteristics: ISODE-Pin over operating free-air temperature range (unless otherwise noted) PARAMETER VOH High-level output voltage VOL Low-level output voltage TEST CONDITIONS MIN TYP IOH = –8mA VCC2 – 0.8 4.6 IOH = –20µA VCC2 – 0.1 5 MAX UNIT V IOL = 8mA 0.2 0.4 IOL = 20µA 0 0.1 V 6.7 Electrical Characteristics: RS-485 Driver over recommended operating conditions (unless otherwise noted) PARAMETER VOD Open-circuit differential output voltage |VOD(SS)| Steady-state differential output voltage magnitude |ΔVOD(SS)| TEST CONDITIONS MIN TYP MAX UNIT VCC2 V |VA – VB|, See Figure 9 1.5 See Figure 10 and Figure 14 2.1 See Figure 11, Common-mode loading with Vtest from –7 V to +12 V 2.1 Change in steady-state differential output voltage between logic states See Figure 12 and Figure 13, RL = 54 Ω -0.2 0.2 VOC(SS) Steady-state common-mode output voltage See Figure 12 and Figure 13, RL = 54 Ω 2 3 ΔVOC(SS) Change in steady-state common-mode output voltage See Figure 12 and Figure 13, RL = 54 Ω –0.2 0.2 VOC(pp) Peak-to-peak common-mode output voltage See Figure 12 and Figure 13, RL = 54 Ω VOD(ring) Differential output voltage over and under shoot See Figure 14 and Figure 17 II Input current D, DE at 0 V or VCC1 IO(OFF) Power-off output current VCC2 = 0 V IOZ High-impedance output current DE at 0 V IOS(P) Peak short-circuit output current IOS(SS) Steady-state short-circuit output current COD Differential output capacitance CMTI Common-mode transient immunity 6 See Figure 16, DE at VCC1 V V V 0.5 10% –10 10 VOD(pp) µA See receiver input current See receiver input current VOS = –7 V to 12 V –250 VOS = 12 V, D at GND1 VOS = –7 V, D at VCC1 250 135 –135 mA mA See receiver CIN See Figure 27 Submit Documentation Feedback 25 kV/µs Copyright © 2010–2015, Texas Instruments Incorporated Product Folder Links: ISO1176T ISO1176T www.ti.com SLLSE28G – OCTOBER 2010 – REVISED OCTOBER 2015 6.8 Electrical Characteristics: Receiver over recommended operating conditions (unless otherwise noted) PARAMETER VIT(+) Positive-going input threshold voltage VIT(–) Negative-going input threshold voltage Vhys Hysteresis voltage (VIT+ – VIT–) VOH High-level output voltage VOL Low-level output voltage VOH High-level output voltage VOL Low-level output voltage TEST CONDITIONS See Figure 23 VCC1 = 3.3 V ± 10% and VCC2 = 5 V ± 5% IO = 8mA VID = 200 mV, See Figure 23 VID = –200 mV, See Figure 23 VCC1 = 5 V ± 10% and VCC2 = 5 V ± 5% VID = 200 mV, See Figure 23 VID = –200 mV, See Figure 23 IA, IB IA(off), IB(off) Bus pin input current MIN IO = –8mA VI = –7 or 12 V, Other input = 0 V –200 TYP MAX UNIT –80 –10 mV –120 mV 25 mV IOH = –8 mA VCC1 – 0.4 3 IOH = –20 µA VCC1 – 0.1 3.3 V IOL = 8 mA 0.2 0.4 IOL = 20 µA 0 0.1 IOH = –8 mA VCC1 – 0.8 4.6 IOH = –20 µA VCC1 – 0.1 5 V IOL = 8 mA 0.2 0.4 IOL = 20 µA 0 0.1 VCC2 = 4.75 V or 5.25 V V V –160 200 µA µA VCC2 = 0 V II Receiver enable input current RE = 0 V –50 50 IOZ High-impedance state output current RE = VCC1 –1 1 RID Differential input resistance A, B 60 CID Differential input capacitance Test input signal is a 1-MHz sine wave with 1-Vpp amplitude. CD is measured across A and B. 7 CMR Common mode rejection See Figure 26 4 µA kΩ 10 pF V 6.9 Supply Current over operating free-air temperature range (unless otherwise noted) PARAMETER ICC1 (1) ICC2 (1) (1) Logic-side quiescent supply current Bus-side quiescent supply current TEST CONDITIONS VCC1 = 3.3 V ± 10%, DE, RE = 0V or VCC1, No load VCC1 = 5 V ± 10%, DE, RE = 0V or VCC1, No load VCC2 = 5 V ± 5%, DE, RE = 0V or VCC1, No load MIN TYP MAX UNIT 4.5 8 mA 7 11 mA 13.5 18 mA ICC1 and ICC2 are measured when device is connected to external power supplies. D1 and D2 are disconnected from external transformer. Submit Documentation Feedback Copyright © 2010–2015, Texas Instruments Incorporated Product Folder Links: ISO1176T 7 ISO1176T SLLSE28G – OCTOBER 2010 – REVISED OCTOBER 2015 www.ti.com 6.10 Transformer Driver Characteristics over operating free-air temperature range (unless otherwise noted) PARAMETER fOSC RON tr_D tf_D fSt tBBM 8 Oscillator frequency Switch on resistance D1, D2 output rise time D1, D2 output fall time Startup frequency Break before make time delay TEST CONDITIONS MIN TYP MAX VCC1 = 5 V ± 10%, D1 and D2 connected to Transformer 350 450 610 VCC1 = 3.3 V ± 10%, D1 and D2 connected to Transformer 300 400 550 D1 and D2 connected to 50Ω pullup resistors 1 2.5 VCC1 = 5 V ± 10%, See Figure 28, D1 and D2 connected to 50-Ω pullup resistors 80 VCC1 = 3.3 V ± 10%, See Figure 28, D1 and D2 connected to 50-Ω pullup resistors 70 VCC1 = 5 V ± 10%, See Figure 28, D1 and D2 connected to 50-Ω pullup resistors 55 VCC1 = 3.3 V ± 10%, See Figure 28, D1 and D2 connected to 50-Ω pullup resistors 80 VCC1 = 2.4 V, D1 and D2 connected to Transformer VCC1 = 3.3 V ± 10%, See Figure 28, D1 and D2 connected to 50-Ω pullup resistors Submit Documentation Feedback kHz Ω ns ns 350 VCC1 = 5 V ± 10%, See Figure 28, D1 and D2 connected to 50-Ω pullup resistors UNIT kHz 38 ns 140 Copyright © 2010–2015, Texas Instruments Incorporated Product Folder Links: ISO1176T ISO1176T www.ti.com SLLSE28G – OCTOBER 2010 – REVISED OCTOBER 2015 6.11 Switching Characteristics: RS-485 Driver over operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT See Figure 17 VCC1 = 5V ± 10%, VCC2 = 5V ± 5% 23 35 ns 2 5 ns 25 40 ns 2 5 ns tPLH, tPHL Prop delay time tsk(p) Pulse skew (|tPHL – tPLH|) tPLH, tPHL Prop delay time tsk(p) Pulse skew (|tPHL – tPLH|) See Figure 17 VCC1 = 3.3V ± 10%, VCC2 = 5V ± 5% tr Differential output signal rise time See Figure 17 2 3 7.5 ns tf Differential output signal fall time See Figure 17 2 3 7.5 ns tpDE DE to ISODE prop delay See Figure 21 30 ns tt(MLH) , tt(MHL) Output transition skew See Figure 18 1 ns tp(AZH), tp(BZH), tp(AZL), tp(BZL) Propagation delay, high-impedance-to-active output 80 ns tp(AHZ), tp(BHZ), tp(ALZ), tp(BLZ) Propagation delay, active-to-high-impedance output 80 ns | tp(AZL) – tp(BZH) | | tp(AZH) – tp(BZL) | Enable skew time 1.5 ns t(CFB) Time from application of short-circuit to current fold back See Figure 16 t(TSD) Time from application of short-circuit to thermal shutdown See Figure 16, TA = 25°C See Figure 19 and Figure 20, CL = 50pf, RE at 0 V 0.55 0.5 µs 100 µs 6.12 Switching Characteristics: Receiver over recommended operating conditions (unless otherwise noted) PARAMETER TYP MAX See Figure 23 VCC1 = 5 V ± 10%, VCC2 = 5 V ± 5% TEST CONDITIONS 50 65 ns 2 5 ns See Figure 23 VCC1 = 3.3 V ± 10%, VCC2 = 5 V ± 5% 53 70 ns 2 5 ns Output signal rise time 2 4 ns Output signal fall time 2 4 ns 13 25 ns 13 25 ns 13 25 ns 13 25 ns tPLH, tPHL Propagation delay time tsk(p) Pulse skew (|tPHL – tPLH|) tPLH, tPHL Propagation delay time tsk(p) Pulse skew (|tpHL - tpLH|) tr tf tPZH Propagation delay, high-impedance-to-highlevel output tPHZ Propagation delay, high-level-to-highimpedance output tPZL Propagation delay, high-impedance-to-lowlevel output tPLZ Propagation delay, low-level-to-highimpedance output MIN UNIT DE at VCC1, See Figure 24 DE at VCC1, See Figure 25 Submit Documentation Feedback Copyright © 2010–2015, Texas Instruments Incorporated Product Folder Links: ISO1176T 9 ISO1176T SLLSE28G – OCTOBER 2010 – REVISED OCTOBER 2015 www.ti.com 6.13 Typical Characteristics 90 35 No Load TA = 25°C 30 ICC2 @ 5 V 80 RL = 54 W, CL = 50 pF, TA = 25°C ICC - Supply Current - mA ICC - Supply Current - mA 70 25 ICC2 @ 5 V 20 15 ICC1 @ 5 V ICC1 @ 3.3 V 10 5 40 30 20 0 0 5 10 15 20 25 Data Rate - Mbps 30 35 40 Figure 1. RMS Supply Current (ICC1 and ICC2) vs Signaling Rate With No Load 5 4 15 20 25 Data Rate - Mbps 30 35 40 15 pF Load TA = 25°C -89 -79 50 Ω 3 VCC2 = 4.75 V 2.5 2 1.5 -69 -59 -49 -39 -29 -19 1 0.5 -9 TA = 25 C 0 20 40 60 IL − Load Current − mA 1 0 80 1 2 3 4 5 VO - Output Voltage - V Figure 3. Differential Output Voltage vs Load Current Figure 4. Receiver High-Level Output Voltage Vs High-Level Output Current 0.7 110 15 pF Load TA = 25°C 100 VCC = 4.75 V 0.6 Driver Enable Skew − ns 90 80 70 60 50 40 30 20 0.5 VCC = 5.25 V 0.4 VCC = 5 V 0.3 0.2 0.1 10 0 10 100 Ω IO - Output Current - mA VCC2 = 5.25 V 3.5 0 0 -99 VCC2 = 5 V 4.5 0 1 2 3 VO - Output Voltage - V 4 0 −40 5 Figure 5. Receiver Low-Level Output Voltage vs Low-Level Output Current 10 ICC1 @ 3.3 V ICC1 @ 5 V Figure 2. RMS Supply Current (ICC1 and ICC2) vs Signaling Rate With Load 5 VOD − Differential Output Voltage − V 50 10 0 IO - Output Current - mA 60 RL = 110 Ω, CL = 50 pF −15 10 35 60 TA − Free-Air Temperature − °C 85 Figure 6. Driver Enable Skew vs Free-Air Temperature Submit Documentation Feedback Copyright © 2010–2015, Texas Instruments Incorporated Product Folder Links: ISO1176T ISO1176T www.ti.com SLLSE28G – OCTOBER 2010 – REVISED OCTOBER 2015 Typical Characteristics (continued) 58 28 56 26 Receiver Propagation Delay - ns Driver Propagation Delay - ns tPHL (VCC1 = 3.3 V) tPLH (VCC1 = 3.3 V) 24 22 tPHL (VCC1 = 5 V) 20 tPHL (VCC1 = 5 V) 54 CL = 15 pH, VCC2 = 5 V tPHL (VCC1 = 3.3 V) tPLH (VCC1 = 3.3 V) 52 50 48 tPHL (VCC1 = 5 V) 46 tPLH (VCC1 = 5 V) 44 18 -40 -15 10 35 60 TA - Free-Air Temperature - °C 42 -40 85 Figure 7. Driver Propagation Delay vs Free-Air Temperature -15 10 35 60 TA - Free-Air Temperature - °C 85 Figure 8. Receiver Propagation Delay vs Free-Air Temperature Submit Documentation Feedback Copyright © 2010–2015, Texas Instruments Incorporated Product Folder Links: ISO1176T 11 ISO1176T SLLSE28G – OCTOBER 2010 – REVISED OCTOBER 2015 www.ti.com 7 Parameter Measurement Information VCC1 VCC1 IOA DE IOA DE A A II 0 or VCC1 B GND1 II 0 or VCC1 VOD D IOB GND2 B GND2 GND1 VI 54 W VOD D IOB VI VOA VOB GND1 VOB GND2 GND 1 VOA GND2 Figure 9. Open Circuit Voltage Test Circuit Figure 10. VOD Test Circuit VCC2 VCC1 IOA RL 2 DE DE 375 W A D 0 or 3 V . B + VOD - A II 0 or VCC1 60 W VOD D - 7 V to12 V B GND1 RL 2 IOB VI 375 W GND2 GND2 VOB GND1 Figure 11. Driver VOD with Common-mode Loading Test Circuit VOC VOA GND2 Figure 12. Driver VOD and VOC Without CommonMode Loading Test Circuit VCC1 IOA DE RL 2 A Input Input Generator : PRR = 500 kHz , 50 % duty VI cycle, t r < 6 ns , t f < 6 ns , ZO = 50 W II D GND1 VOD B VOB GND1 RL 2 IOB GND2 VOA A VA B VB VOC VOC(p-p) VOC VOC (SS ) GND2 Figure 13. Steady-State Output Voltage Test Circuit and Voltage Waveforms VOD(RING ) VOD (SS ) VOD ( pp) 0V differential Figure 14. VOD(RING) Waveform and Definitions 12 Submit Documentation Feedback Copyright © 2010–2015, Texas Instruments Incorporated Product Folder Links: ISO1176T ISO1176T www.ti.com SLLSE28G – OCTOBER 2010 – REVISED OCTOBER 2015 VCC1 IOA DE A 0 or VCC1 II VI V OD B D IOB GND 2 GND 1 V OA V OB GND 1 54 W GND 2 Figure 15. Input Voltage Hysteresis Test Circuit DE 250 Output Current - mA IOS A D IOS B + V_ OS GND1 GND2 135 60 t(CFB) time t(TSD) Figure 16. Driver Short-Circuit Test Circuit and Waveforms (Short Circuit applied at Time t=0) 3V DE VCC1 A D Input Generator B VI VOD R L = 54 W ±1 % VI C L = 50 pF ± 20% VOD C L includes fixture and instrumentation capacitance GND1 1.5 V tpHL tpLH 50 W Generator: PRR= 500 kHz , 50 % duty cycle, t r < 6ns , t f < 6 ns ,ZO = 50 W 1.5 V 90% 90% 0V 10 % VOD(H) 0V 10% VOD(L) tf tr Figure 17. Driver Switching Test Circuit and Waveforms DE VCC1 A 50 % D Input Generator VI RL= 54 W CL = 50pF ± 20% ±1% B 50 W GND1 Generator : PRR= 500 kHz, 50 % duty cycle, t r< 6ns , t f
ISO1176TDWR 价格&库存

很抱歉,暂时无法提供与“ISO1176TDWR”相匹配的价格&库存,您可以联系我们找货

免费人工找货