0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ISO1212DBQR

ISO1212DBQR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SSOP16

  • 描述:

    用于数字输入模块的双通道隔离式 24V 至 60V 数字输入接收器

  • 数据手册
  • 价格&库存
ISO1212DBQR 数据手册
Order Now Product Folder Support & Community Tools & Software Technical Documents Reference Design ISO1211, ISO1212 ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 用于数字输入模块的 ISO121x 隔离式 24V 至 60V 数字输入接收器 1 特性 • 1 • • • • • • • • • • • • • 3 说明 符合 IEC 61131-2 针对 24V 隔离式数字输入的 1、 2、3 类特性标准 支持 9V 至 300V 直流和交流数字输入设计(使用 外部电阻器) 通过精确电流限制实现低功耗: – 对于 3 类,电流为 2.2mA 至 2.47mA – 可调电流,最高为 6.5mA 消除了对现场侧电源的需求 具有反极性保护功能的宽输入电压范围:±60V 断线检测(请参阅 TIDA-01509) 可配置为拉电流或灌电流输入 高数据速率:最高 4Mbps 多路复用器输出信号使能引脚 高瞬态抗扰性:±70kV/µs CMTI 宽电源电压范围 (VCC1):2.25V 至 5.5V 环境温度范围:–40°C 至 +125°C 紧凑型封装选项: – 单通道 ISO1211,SOIC-8 – 双通道 ISO1212,SSOP-16 安全相关认证: – 符合 DIN V VDE V 0884-10 标准的基本绝缘 – UL 1577 认证,2500VRMS 绝缘 – 可提供 CSA、CQC、TUV 认证 2 应用 • • • • • • 可编程逻辑控制器 (PLC) – 数字输入模块 – 混合 I/O 模块 电机驱动 I/O 和位置反馈 CNC 控制 变电站自动化 数据采集 二进制输入模块 ISO1211 和 ISO1212 器件是隔离式 24V 至 60V 数字 输入接收器,符合 IEC 61131-2 1 类、2 类和 3 类特 性标准。这些器件可以在可编程逻辑控制器 (PLC)、电 机控制、电网基础设施和其他工业应用中实现 9V 至 300V 直流和交流数字输入 模块。不同于具有分立式、 不精确电流限制电路的传统光耦合器解决方 案,ISO121x 器件提供具有精确电流限制的简单低功 耗解决方案,可实现紧凑型和高密度 I/O 模块的设计。 这些器件不需要现场侧电源,可配置为拉电流或灌电流 输入。 ISO121x 器件的工作电压范围为 2.25V 至 5.5V,支持 2.5V、3.3V 和 5V 控制器。具有反极性保护的 ±60V 输入容差有助于确保输入引脚在可忽略的反向电流发生 故障时受到保护。这些器件支持高达 4Mbps 的数据速 率,可通过 150ns 的最小脉冲宽度,从而实现高速运 行。ISO1211 器件适用于需要通道间隔离功能的设 计,而 ISO1212 器件适用于多通道空间受限的设计。 与传统解决方案相比,ISO121x 器件减少了组件数 量,简化了系统设计,提高了性能,降低了电路板温 度。有关详细信息,请参阅《如何简化隔离式 24V PLC 数字输入模块设计》TI 技术手册、《如何提高电 机驱动中的隔离式数字输入的速度和可靠性》TI 技术 手册以及《如何设计用于 ±48V、110V 和 240V 直流 和交流检测的隔离式比较器》TI 技术手册。 器件信息(1) 器件型号 封装 封装尺寸(标称值) ISO1211 SOIC (8) 4.90mm × 3.91mm ISO1212 SSOP (16) 4.90mm × 3.90mm (1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。 ISO121x 器件与传统解决方案相比可降低电路板温度 应用图表 Field TA = 25°C TA = 25°C PLC Digital Input Module ISO1211 RTHR 24 V Sensor/ Switch RSENSE SENSE VCC1 IN OUT FGND Host Controller GND1 a) 8-Ch With ISO1212 b) 8-Ch Traditional Solution Without Current Limit Copyright © 2017, Texas Instruments Incorporated 1 本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确 性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。 English Data Sheet: SLLSEY7 ISO1211, ISO1212 ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 www.ti.com.cn 目录 1 2 3 4 5 6 特性 .......................................................................... 应用 .......................................................................... 说明 .......................................................................... 修订历史记录 ........................................................... Pin Configuration and Functions ......................... Specifications......................................................... 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 1 1 1 2 3 5 Absolute Maximum Ratings ...................................... 5 ESD Ratings ............................................................ 5 Recommended Operating Conditions....................... 5 Thermal Information .................................................. 6 Power Ratings........................................................... 6 Insulation Specifications............................................ 7 Safety-Related Certifications..................................... 8 Safety Limiting Values .............................................. 9 Electrical Characteristics—DC Specification........... 10 Switching Characteristics—AC Specification ........ 11 Insulation Characteristics Curves ......................... 12 Typical Characteristics .......................................... 13 7 Parameter Measurement Information ................ 14 8 Detailed Description ............................................ 17 7.1 Test Circuits ............................................................ 14 8.1 8.2 8.3 8.4 9 Overview ................................................................. Functional Block Diagram ....................................... Feature Description................................................. Device Functional Modes........................................ 17 17 17 18 Application and Implementation ........................ 19 9.1 Application Information............................................ 19 9.2 Typical Application .................................................. 19 10 Power Supply Recommendations ..................... 30 11 Layout................................................................... 31 11.1 Layout Guidelines ................................................. 31 11.2 Layout Example .................................................... 31 12 器件和文档支持 ..................................................... 33 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 器件支持................................................................ 文档支持................................................................ 相关链接................................................................ 接收文档更新通知 ................................................. 社区资源................................................................ 商标 ....................................................................... 静电放电警告......................................................... 术语表 ................................................................... 33 33 33 33 33 33 33 34 13 机械、封装和可订购信息 ....................................... 34 4 修订历史记录 注:之前版本的页码可能与当前版本有所不同。 Changes from Revision D (March 2018) to Revision E • Page 已更改 VIH and VIH to VIL and VIH in the RTHR resistor description in the Setting Current Limit and Voltage Thresholds section .................................................................................................................................................................................. 21 Changes from Revision C (February 2018) to Revision D Page • 更新了特性 和应用 部分。在说明 和相关文档 部分中添加了新的 TI 技术手册参考。............................................................ 1 • Changed the unit for CPG from µm to mm in the Insulation Specifications table .................................................................. 7 • 已更改 the Functional Block Diagram................................................................................................................................... 17 • 已更改 VIL from min to typ in the VIL equation ...................................................................................................................... 22 • 已添加 the Designing for Input Voltages Greater Than 60 V section................................................................................... 24 • 已添加 the bidirectional implementation example to the Sourcing and Sinking Inputs section............................................ 30 Changes from Revision B (September 2017) to Revision C Page • 已添加 将断线检测添加到特性 部分........................................................................................................................................ 1 • 已添加 将多路复用器输出信号使能引脚添加到了特性 部分中,更改了所有需要为 DW 和 D 封装完成的认证 ...................... 1 • 已更改 RTHR = 5 kΩ to 4 kΩ in the High-Level Voltage Transition Threshold vs Ambient Temperature graph.................... 13 • 已更改 the Type 1 RTH value from 3 kΩ to 2.5 kΩ in the Surge, IEC ESD and EFT table................................................... 25 Changes from Revision A (September 2017) to Revision B Page • 已更改 将状态从预告信息改为生产数据.................................................................................................................................. 1 2 Copyright © 2017–2018, Texas Instruments Incorporated ISO1211, ISO1212 www.ti.com.cn ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 5 Pin Configuration and Functions ISO1211 D Package 8-Pin SOIC Top View 8 SENSE EN 2 7 IN OUT 3 6 FGND GND1 4 5 SUB ILIM 1 Basic Isolation VCC1 Pin Functions PIN NO. NAME I/O DESCRIPTION 1 VCC1 — Power supply, side 1 2 EN I Output enable. The output pin on side 1 is enabled when the EN pin is high or open. The output pin on side 1 is in the high-impedance state when the EN pin is low. In noisy applications, tie the EN pin to VCC1. 3 OUT O Channel output 4 GND1 — Ground connection for VCC1 5 SUB — Internal connection to input chip substrate. Leave this pin unconnected on the board. 6 FGND — Field-side ground 7 IN I Field-side current input 8 SENSE I Field-side voltage sense Copyright © 2017–2018, Texas Instruments Incorporated 3 ISO1211, ISO1212 ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 www.ti.com.cn ISO1212 DBQ Package 16-Pin SSOP Top View 1 16 SENSE1 VCC1 2 15 IN1 EN 3 14 FGND1 OUT1 4 13 SUB1 Basic Isolation ILIM GND1 Functional Isolation 12 SUB2 5 NC 6 11 SENSE2 NC 7 10 IN2 GND1 8 9 FGND2 ILIM OUT2 Pin Functions PIN I/O Description NO. NAME 1 GND1 — Ground connection for VCC1 2 VCC1 — Power supply, side 1 3 EN I Output enable. The output pins on side 1 are enabled when the EN pin is high or open. The output pins on side 1 are in the high-impedance state when the EN pin is low. In noisy applications, tie the EN pin to VCC1. 4 OUT1 O Channel 1 output 5 OUT2 O Channel 2 output NC — Not connected 8 GND1 — Ground connection for VCC1 9 FGND2 — Field-side ground, channel 2 10 IN2 I Field-side current input, channel 2 11 SENSE2 I Field-side voltage sense, channel 2 12 SUB2 — Internal connection to input chip 2 substrate. Leave this pin unconnected on the board. 13 SUB1 — Internal connection to input chip 1 substrate. Leave this pin unconnected on the board. 14 FGND1 — Field-side ground, channel 1 15 IN1 I Field-side current input, channel 1 16 SENSE1 I Field-side voltage sense, channel 1 6 7 4 Copyright © 2017–2018, Texas Instruments Incorporated ISO1211, ISO1212 www.ti.com.cn ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) MIN MAX UNIT VCC1 Supply voltage, control side –0.5 6 V VOUTx, VEN Voltage on OUTx pins and EN pin –0.5 VCC1 + 0.5 (2) V IO Output current on OUTx pins –15 15 mA VINx, VSENSEx Voltage on IN and SENSE pins –60 60 V V(ISO,FUNC) Functional isolation between channels in ISO1212 on the field side –60 60 V TJ Junction temperature –40 150 °C Tstg Storage temperature –65 150 °C (1) (2) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Maximum voltage must not exceed 6 V. 6.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) UNIT ±2000 Charged device model (CDM), per JEDEC specification JESD22-C101 (2) V ±1000 JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions VCC1 Supply voltage input side VINx, VSENSEx Voltage on INx and SENSEx pins IOH High-level output current from OUTx pin IOL (1) Low-level output current into OUTx pin MIN MAX 2.25 5.5 V –60 60 V VCC1 = 5 V –4 VCC1 = 3.3 V –3 VCC1 = 2.5 V –2 4 VCC1 = 3.3 V 3 VCC1 = 2.5 V 2 Minimum pulse width at SENSEx pins 150 TA Ambient temperature –40 (1) mA VCC1 = 5 V tUI UNIT mA ns 125 °C See the Thermal Considerations section. Copyright © 2017–2018, Texas Instruments Incorporated 5 ISO1211, ISO1212 ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 www.ti.com.cn 6.4 Thermal Information THERMAL METRIC (1) ISO1211 ISO1212 D (SOIC) DBQ (SSOP) 8 PINS 16 PINS UNIT RθJA Junction-to-ambient thermal resistance 146.1 116.9 °C/W RθJC(top) Junction-to-case (top) thermal resistance 63.1 56.5 °C/W RθJB Junction-to-board thermal resistance 80 64.7 °C/W ΨJT Junction-to-top characterization parameter 9.6 27.9 °C/W ΨJB Junction-to-board characterization parameter 79 64.1 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance — — °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 6.5 Power Ratings PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 450 mW 20 mW VSENSE = 60 V, VCC1 = 5.5 V, RSENSE = 200 Ω, RTHR = 0 Ω, TJ = 150°C 430 mW VSENSEx = 60 V, VCC1 = 5.5 V, RSENSE = 200 Ω, RTHR = 0 Ω, TJ = 150°C 900 mW 40 mW 860 mW ISO1211 VSENSE = 60 V, VCC1 = 5.5 V, RSENSE = 200 Ω, RTHR = 0 Ω, TJ = 150°C PD Maximum power dissipation, both sides PD1 Maximum power dissipation, output side VCC1 = 5.5 V, CL = 15 pF, Input 2-MHz 50% duty(side 1) cycle square wave at SENSE pin, TJ = 150°C PD2 Maximum power dissipation, field input side ISO1212 PD Maximum power dissipation, both sides PD1 Maximum power dissipation, output side VCC1 = 5.5 V, CL = 15 pF, Input 2-MHz 50% duty(side 1) cycle square wave at SENSEx pins, TJ = 150°C PD2 Maximum power dissipation, field input side 6 VSENSEx = 60 V, VCC1 = 5.5 V, RSENSE = 200 Ω, RTHR = 0 Ω, TJ = 150°C Copyright © 2017–2018, Texas Instruments Incorporated ISO1211, ISO1212 www.ti.com.cn ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 6.6 Insulation Specifications PARAMETER TEST CONDITIONS SPECIFICATION D-8 DBQ-16 UNIT External clearance (1) Shortest terminal-to-terminal distance through air 4 3.7 mm CPG External Creepage (1) Shortest terminal-to-terminal distance across the package surface 4 3.7 mm DTI Distance through the insulation Minimum internal gap (internal clearance) 10.5 10.5 µm CTI Comparative tracking index DIN EN 60112 (VDE 0303-11); IEC 60112 > 600 > 600 V Material Group According to IEC 60664-1 CLR Overvoltage category DIN V VDE V 0884-10 (VDE V 0884-10):2006-12 VIORM Maximum repetitive peak isolation voltage VIOWM Maximum working isolation voltage I I Rated mains voltage ≤ 150 VRMS I-IV I-IV Rated mains voltage ≤ 300 VRMS I-III I-III AC voltage (bipolar) 566 566 VPK AC voltage (sine wave); time-dependent dielectric breakdown (TDDB) test 400 400 VRMS DC voltage 566 566 VDC 3600 3600 VPK 4000 4000 VPK Method a: After I/O safety test subgroup 2/3, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM = 680 VPK, tm = 10 s 109 Pollution degree 2 2 Climatic category 40/125/21 40/125/21 2500 2500 Ω UL 1577 VISO (1) (2) (3) (4) (5) Withstand isolation voltage VTEST = VISO = 2500 VRMS, t = 60 s (qualification); VTEST = 1.2 × VISO = 3000 VRMS, t = 1 s (100% production) VRMS Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications. This coupler is suitable for basic electrical insulation only within the maximum operating ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits. Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier. Apparent charge is electrical discharge caused by a partial discharge (pd). All pins on each side of the barrier tied together creating a two-terminal device Copyright © 2017–2018, Texas Instruments Incorporated 7 ISO1211, ISO1212 ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 www.ti.com.cn 6.7 Safety-Related Certifications VDE CSA Certified according to DIN V VDE V 0884-10 (VDE V 0884-10):200612 and DIN EN 61010-1 (VDE 0411-1):2011-07 Certified according to IEC 60950-1 and IEC 62368-1 Basic Insulation, Maximum Transient Isolation Voltage, 3600 VPK, Maximum Repetitive Peak Isolation Voltage, 566 VPK, Maximum Surge Isolation Voltage, 4000 VPK Certificate number: 40016131 8 UL CQC TUV Certified according to GB4943.1-2011 Certified according to EN 61010-1:2010 (3rd Ed) and EN 609501:2006/A11:2009/A1:2010/ A12:2011/A2:2013 370 VRMS (ISO1212) and 400 VRMS (ISO1211) Basic Insulation working voltage per CSA 60950-1-07+A1 + A2 and IEC 60950-1 2nd Single protection, 2500 Ed. + A1 + A2 VRMS 300 VRMS Basic Insulation working voltage per CSA 62368-1-14 and IEC 623681 2nd Ed. Basic Insulation, Altitude ≤ 5000m, Tropical Climate, 400 VRMS maximum working voltage Basic insulation per EN 61010-1:2010 (3rd Ed) up to working voltage of 300 VRMS, Basic insulation per EN 609501:2006/A11:2009/A1:2010/ A12:2011/A2:2013 up to working voltage of 370 VRMS (ISO1212) and 400 VRMS (ISO1211) Master contract number: 220991 ISO1211 Certificate number: CQC15001121656, ISO1212 Certification Planned Client ID number: 77311 Recognized under UL 1577 Component Recognition Program File number: E181974 Copyright © 2017–2018, Texas Instruments Incorporated ISO1211, ISO1212 www.ti.com.cn ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 6.8 Safety Limiting Values Safety limiting (1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat the die and damage the isolation barrier, potentially leading to secondary system failures. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ISO1211 Safety input, output, or supply current - side 1 IS IS Safety input current - field side PS Safety input, output, or total power TS Maximum safety temperature RθJA = 146.1°C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see 图 1 310 RθJA = 146.1°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see 图 1 237 RθJA = 146.1°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see 图 1 155 RθJA = 146.1°C/W, VI = 24 V, TJ = 150°C, TA = 25°C, see 图 1 35 RθJA = 146.1°C/W, VI = 36 V, TJ = 150°C, TA = 25°C, see 图 1 23 RθJA = 146.1°C/W, VI = 60 V, TJ = 150°C, TA = 25°C, see 图 1 14 RθJA = 146.1°C/W, TJ = 150°C, TA = 25°C, see 图 2 855 mW 150 °C mA mA ISO1212 IS IS Safety input, output, or supply current - side 1 Safety input current - field side PS Safety input, output, or total power TS Maximum safety temperature (1) RθJA = 116.9°C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see 图 3 389 RθJA= 116.9°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see 图 3 297 RθJA = 116.9°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see 图 3 194 RθJA = 116.9°C/W, VI = 24 V, TJ = 150°C, TA = 25°C, see 图 3 44 RθJA= 116.9°C/W, VI = 36 V, TJ = 150°C, TA = 25°C, see 图 3 29 RθJA = 116.9°C/W, VI = 60 V, TJ = 150°C, TA = 25°C, see 图 3 17 RθJA = 116.9°C/W, TJ = 150°C, TA = 25°C, see 图 4 mA mA 1070 mW 150 °C The safety-limiting constraint is the maximum junction temperature specified in the data sheet. The power dissipation and junction-to-air thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-to-air thermal resistance in the Thermal Information table is that of a device installed on a high-K test board for leaded surface-mount packages. The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature plus the power times the junction-to-air thermal resistance. Copyright © 2017–2018, Texas Instruments Incorporated 9 ISO1211, ISO1212 ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 www.ti.com.cn 6.9 Electrical Characteristics—DC Specification (Over recommended operating conditions unless otherwise noted). PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VCC1 VOLTAGE SUPPLY VIT+ (UVLO1) Positive-going UVLO threshold voltage (VCC1) VIT– (UVLO1) Negative-going UVLO threshold (VCC1) 2.25 1.7 VHYS (UVLO1) UVLO threshold hysteresis (VCC1) VCC1 supply quiescent current ICC1 ISO1211 ISO1212 V 0.2 EN = VCC1 V V 0.6 1 1.2 1.9 mA LOGIC I/O VIT+ (EN) Positive-going input logic threshold voltage for EN pin 0.7 × VCC1 VIT– (EN) Negative-going input logic threshold voltage for EN pin VHYS(EN) Input hysteresis voltage for EN pin IIH Low-level input leakage at EN pin EN = GND1 VOH High-level output voltage on OUTx VCC1 = 4.5 V; IOH = –4 mA VCC1 = 3 V; IOH = –3 mA VCC1= 2.25 V; IOH = –2 mA, see 图 10 VOL Low-level output voltage on OUTx VCC1 = 4.5 V; IOH = 4 mA VCC1 = 3 V; IOH = 3 mA VCC1= 2.25 V ; IOH = 2 mA, see 图 10 0.3 × VCC1 V V 0.1 × VCC1 V –10 μA VCC1 – 0.4 V 0.4 V 2.47 mA CURRENT LIMIT I(INx+SENSEx), Typical sum of current drawn from IN and SENSE pins across temperature TYP RTHR = 0 Ω, RSENSE = 562 Ω, VSENSE = 24 V, –40°C < TA < 125°C, see 图 11 2.2 RTHR = 0 Ω, RSENSE = 562 Ω ± 1%; –60 V < VSENSE < 0 V, see 图 11 I(INx+SENSEx) Sum of current drawn from IN and SENSE pins –0.1 RTHR = 0 Ω, RSENSE = 562 Ω ± 1%; 5 V < VSENSE < VIL, see 图 11 1.9 2.5 RTHR = 0 Ω, RSENSE = 562 Ω ± 1%; VIL < VSENSE < 30 V, see 图 11 2.05 2.75 RTHR = 0 Ω, RSENSE = 562 Ω ± 1%; 30 V < VSENSE < 36 V, see 图 11 2.1 2.83 RTHR = 0 Ω, RSENSE = 562 Ω ± 1%; 36 V < VSENSE < 60 V (1), see 图 11 2.1 3.1 mA RTHR = 0 Ω, RSENSE = 200 Ω ± 1%; –60 V < VSENSE < 0 V, see 图 11 (1) 10 µA –0.1 µA RTHR = 0 Ω, RSENSE = 200 Ω ± 1%; 5 V < VSENSE < VIL, see 图 11 5.3 6.8 RTHR = 0 Ω, RSENSE = 200 Ω ± 1%; VIL < VSENSE < 36 V (1), see 图 11 5.5 7 RTHR = 0 Ω, RSENSE = 200 Ω ± 1%; 36 V < VSENSE < 60 V (1), see 图 11 5.5 7.3 mA See the Thermal Considerations section. Copyright © 2017–2018, Texas Instruments Incorporated ISO1211, ISO1212 www.ti.com.cn ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 Electrical Characteristics—DC Specification (continued) (Over recommended operating conditions unless otherwise noted). PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VOLTAGE TRANSITION THRESHOLD ON FIELD SIDE VIL VIH VHYS Low level threshold voltage at module input (including RTHR) for output high High level threshold voltage at module input (including RTHR) for output low Threshold voltage hysteresis at module input RSENSE = 562 Ω, RTHR = 0 Ω, see 图 11 6.5 7 RSENSE = 562 Ω, RTHR = 1 kΩ, see 图 11 8.7 9.2 RSENSE = 562 Ω, RTHR = 4 kΩ, see 图 11 15.2 15.8 V RSENSE = 562 Ω, RTHR = 0 Ω, see 图 11 8.2 8.55 RSENSE = 562 Ω, RTHR = 1 kΩ, see 图 11 10.4 10.95 RSENSE = 562 Ω, RTHR = 4 kΩ, see 图 11 17 18.25 RSENSE = 562 Ω, RTHR = 0 Ω, see 图 11 1 1.2 RSENSE = 562 Ω, RTHR = 1 kΩ, see 图 11 1 1.2 RSENSE = 562 Ω, RTHR = 4 kΩ, see 图 11 1 1.2 V V 6.10 Switching Characteristics—AC Specification (Over recommended operating conditions unless otherwise noted). PARAMETER TEST CONDITIONS MIN TYP MAX UNIT tr, tf Output signal rise and fall time, OUTx pins Input rise and fall times = 10 ns, see 图 10 3 tPLH Propagation delay time for low to high transition Input rise and fall times = 10 ns, see 图 10 110 140 ns tPHL Propagation delay time for high to low transition Input rise and fall times = 10 ns, see 图 10 10 15 ns tsk(p) Pulse skew |tPHL - tPLH| Input rise and fall times = 10 ns, see 图 10 102 130 ns tUI Minimum pulse width Input rise and fall times = 125 ns, see 图 10 tPHZ Disable propagation delay, highto-high impedance output See 图 13 17 40 ns tPLZ Disable propagation delay, lowto-high impedance output See 图 12 17 40 ns tPZH Enable propagation delay, high impedance-to-high output See 图 13 3 8.5 µs tPZL Enable propagation delay, high impedance-to-low output See 图 12 17 40 ns CMTI Common mode transient immunity See 图 14 版权 © 2017–2018, Texas Instruments Incorporated ns 150 25 ns 70 kV/µs 11 ISO1211, ISO1212 ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 www.ti.com.cn 6.11 Insulation Characteristics Curves 900 350 VCC1 = 2.75 V VCC1 = 3.6 V VCC1 = 5.5 V VINx = 24 V VINx = 36 V VINx = 60 V 250 800 Safety Limiting Power (mW) Safety Limiting Current (mA) 300 200 150 100 50 600 500 400 300 200 100 0 0 0 50 100 150 Ambient Temperature (qC) 0 200 50 D001 100 150 Ambient Temperature (qC) 200 D002 图 2. Thermal Derating Curve for Safety Limiting Power per VDE for D-8 Package 图 1. Thermal Derating Curve for Safety Limiting Current per VDE for D-8 Package 450 1200 350 300 Safety Limiting Power (mW) VCC1 = 2.75 V VCC1 = 3.6 V VCC1 = 5.5 V VINx = 24 V VINx = 36 V VINx = 60 V 400 Safety Limiting Current (mA) 700 250 200 150 100 1000 800 600 400 200 50 0 0 0 50 100 150 Ambient Temperature (qC) 200 D003 图 3. Thermal Derating Curve for Safety Limiting Current per VDE for DBQ-16 Package 12 0 50 100 150 Ambient Temperature (qC) 200 D004 图 4. Thermal Derating Curve for Safety Limiting Power per VDE for DBQ-16 Package 版权 © 2017–2018, Texas Instruments Incorporated ISO1211, ISO1212 www.ti.com.cn ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 6.12 Typical Characteristics 2.75 3 40qC 25qC 2.5 85qC 105qC 115qC 125qC 2.75 Input Current (mA) 2 1.5 1.25 1 0.75 ON = 8.25 V 1.75 OFF = 7.1 V Input Current (mA) 2.25 ±40°C 25°C 85°C 105°C 115°C 125°C 0.5 0.25 2.5 2.25 0 0 5 10 RSENSE = 562 Ω 15 20 Input Voltage (V) 25 2 30 30 RTHR = 0 Ω 35 -30 -10 RTHR = 2 k: RTHR = 3 k: 10 RTHR = 4 k: 30 50 70 Temperature (qC) 90 55 60 D006 RTHR = 0 Ω 图 6. Input Current vs Input Voltage Low-Level Threshold Voltage (V) High-Level Threshold Voltage (V) RTHR = 0 k: RTHR = 1 k: 45 50 Input Voltage (V) RSENSE = 562 Ω 图 5. Input Current vs Input Voltage 20 19 18 17 16 15 14 13 12 11 10 9 8 7 -50 40 110 130 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 -50 RTHR = 0 k: RTHR = 1 k: -30 -10 10 D007 RSENSE = 562 Ω RTHR = 2 k: RTHR = 3 k: 30 50 70 Temperature (qC) RTHR = 4 k: 90 110 130 D008 RSENSE = 562 Ω 图 7. High-Level Voltage Transition Threshold vs Ambient Temperature 图 8. Low-Level Voltage Transition Threshold vs Ambient Temperature 7 Input Current (mA) 6 5 4 3 40qC 25qC 85qC 105qC 115qC 125qC 2 1 0 0 10 20 RSENSE = 200 Ω 30 40 Input Voltage (V) 50 60 70 D009 RTHR = 0 Ω 图 9. Input Current vs Input Voltage 版权 © 2017–2018, Texas Instruments Incorporated 13 ISO1211, ISO1212 ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 www.ti.com.cn 7 Parameter Measurement Information 7.1 Test Circuits SENSE 18 V VI IN Capacitive Isolation VCC1 0V Signal VI 100 nF tPLH VO ILIM tPHL Generator VO OUT 50% 50% RSENSE 90% 50% 10% tr FGND VOH 50% VOL tf CL 15 pF GND1 图 10. Switching Characteristics Test Circuit and Voltage Waveforms RTHR SENSE I(Inx+SENSEx) VCC1 IN Capacitive Isolation RSENSE 100 nF Signal OUT VO ILIM VI Generator FGND CL 15 pF GND1 图 11. Input Current and Voltage Threshold Test Circuit 14 版权 © 2017–2018, Texas Instruments Incorporated ISO1211, ISO1212 www.ti.com.cn ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 Test Circuits (接 接下页) SENSE VCC1 IN Capacitive Isolation 0V RSENSE VCC1 RL 1k VCC1 / 2 VCC1 / 2 VI tPZL tPLZ 0V VO ILIM VOH OUT FGND VO 0.5 V 50% VOL CL 15 pF EN1 GND1 Signal Generator VI 50 图 12. Enable and Disable Propagation Delay Time Test Circuit and Waveform—Logic Low State 版权 © 2017–2018, Texas Instruments Incorporated 15 ISO1211, ISO1212 ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 www.ti.com.cn Test Circuits (接 接下页) SENSE 24 V VCC1 VCC1 IN Capacitive Isolation RSENSE VCC1 / 2 VCC1 / 2 VI 0V tPZH VO ILIM VOH OUT CL 15 pF RL 1k 50% VO FGND 0.5 V 0V tPHZ EN1 GND1 Signal Generator VI 50 图 13. Enable and Disable Propagation Delay Time Test Circuit and Waveform—Logic High State S1 SENSE 24 V VCC1 IN Capacitive Isolation + ± RSENSE ILIM 100 nF OUT VOH or VOL FGND CL 15 pF GND1 GND1 (1) + VCM ± FGND Pass Criterion: The output must remain stable. 图 14. Common-Mode Transient Immunity Test Circuit 16 版权 © 2017–2018, Texas Instruments Incorporated ISO1211, ISO1212 www.ti.com.cn ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 8 Detailed Description 8.1 Overview The ISO1211 and ISO1212 devices are fully-integrated, isolated digital-input receivers with IEC 61131-2 Type 1, 2, and 3 characteristics. The devices receive 24-V to 60-V digital-input signals and provide isolated digital outputs. No field-side power supply is required. An external resistor, RSENSE, on the input-signal path precisely sets the limit for the current drawn from the field input based on an internal feedback loop. The voltage transition thresholds are compliant with Type 1, 2, and 3 and can be increased further using an external resistor, RTHR. For more information on selecting the RSENSE and RTHR resistor values, see the Detailed Design Procedure section. The ISO121x devices use an ON-OFF keying (OOK) modulation scheme to transmit the digital data across a silicon-dioxide based isolation barrier. The transmitter sends a high frequency carrier across the barrier to represent one digital state and sends no signal to represent the other digital state. The receiver demodulates the signal after advanced signal conditioning and produces the output through a buffer stage. The conceptual block diagram of the ISO121x device is shown in the Functional Block Diagram section. 8.2 Functional Block Diagram RTHR SENSE RSENSE IN CURRENT LIMIT ISOLATION INPUT OUT REF FGND 8.3 Feature Description The ISO121x devices receive 24-V to 60-V digital input signals and provide isolated digital outputs. An external resistor, RSENSE, connected between the INx and SENSEx pins, sets the limit for the current drawn from the field input. Internal voltage comparators connected to the SENSEx pins determine the input-voltage transition thresholds. The output buffers on the control side are capable of providing enough current to drive status LEDs. The EN pin is used to enable the output buffers. A low state on the EN pin puts the output buffers in a high-impedance state. The ISO121x devices are capable of operating up to 4 Mbps. Both devices support an isolation withstand voltage of 2500 VRMS between side 1 and side 2. 表 1 provides an overview of the device features. 表 1. Device Features PART NUMBER CHANNELS MAXIMUM DATA RATE PACKAGE RATED ISOLATION ISO1211 1 4 Mbps 8-pin SOIC (D) 2500 VRMS, 3600 VPK ISO1212 2 4 Mbps 16-pin SSOP (DBQ) 2500 VRMS, 3600 VPK 版权 © 2017–2018, Texas Instruments Incorporated 17 ISO1211, ISO1212 ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 www.ti.com.cn 8.4 Device Functional Modes 表 2 lists the functional modes for the ISO121x devices. 表 2. Function Table (1) SIDE 1 SUPPLY VCC1 PU PD (1) (2) 18 INPUT (INx, SENSEx) OUTPUT ENABLE (EN) OUTPUT (OUTx) H H or Open H L H or Open L Open H or Open L When INx and SENSEx are open, the output of the corresponding channel goes to Low. X L Z A low value of output enable causes the outputs to be high impedance. X X Undetermined COMMENTS Channel output assumes the logic state of channel input. When VCC1 is unpowered, a channel output is undetermined (2). When VCC1 transitions from unpowered to powered up; a channel output assumes the logic state of the input. VCC1 = Side 1 power supply; PU = Powered up (VCC1 ≥ 2.25 V); PD = Powered down (VCC1 ≤ 1.7 V); X = Irrelevant; H = High level; L = Low level; Z = High impedance The outputs are in an undetermined state when 1.7 V < VCC1 < 2.25 V. 版权 © 2017–2018, Texas Instruments Incorporated ISO1211, ISO1212 www.ti.com.cn ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 9 Application and Implementation 注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 9.1 Application Information The ISO1211 and ISO1212 devices are fully-integrated, isolated digital-input receivers with IEC 61131-2 Type 1, 2, and 3 characteristics. These devices are suitable for high-channel density, digital-input modules for programmable logic controllers and motor control digital input modules. The devices receive 24-V to 60-V digitalinput signals and provide isolated digital outputs. No field side power supply is required. An external resistor, RSENSE, on the input signal path precisely sets the limit for the current drawn from the field input. This current limit helps minimize power dissipated in the system. The current limit can be set for Type 1, 2, or 3 operation. The voltage transition thresholds are compliant with Type 1, 2, and 3 and can be increased further using an external resistor, RTHR. For more information on selecting the RSENSE and RTHR resistor values, see the Detailed Design Procedure section. The ISO1211 and ISO1212 devices are capable of high speed operation and can pass through a minimum pulse width of 150 ns. The ISO1211 device has a single receive channel. The ISO1212 device has two receive channels that are independent on the field side. Type 1 Type 2 30 30 30 25 25 25 ON ON 15 10 15 10 5 0 5 10 IIN (mA) 5 OFF 0 ±3 15 15 10 5 OFF 0 ±3 ON 20 VIN (V) 20 VIN (V) 20 VIN (V) Type 3 0 5 10 15 IIN (mA) OFF 0 ±3 20 25 30 0 5 10 IIN (mA) 15 图 15. Switching Characteristics for IEC61131-2 Type 1, 2, and 3 Proximity Switches 9.2 Typical Application 9.2.1 Sinking Inputs 图 16 shows the design for a typical multichannel, isolated digital-input module with sinking inputs. Push-button switches, proximity sensors, and other field inputs connect to the host controller through an isolated interface. The design is easily scalable from a few channels, such as 4 or 8, to many channels, such as 256 or more. The RSENSE resistor limits the current drawn from the input pins. The RTHR resistor is used to adjust the voltage thresholds and limit the peak current during surge events. The CIN capacitor is used to filter noise on the input pins. For more information on selecting RSENSE, RTHR, and CIN, see the Detailed Design Procedure section. The ISO121x devices derive field-side power from the input pins which eliminates the requirement for a fieldside, 24-V input power supply to the module. Similarly, an isolated dc-dc converter creating a field-side power supply from the controller side back plane supply is also eliminated which improves flexibility of system design and reduces system cost. For systems requiring channel-to-channel isolation on the field side, use the ISO1211 device as shown in 图 17. 版权 © 2017–2018, Texas Instruments Incorporated 19 ISO1211, ISO1212 ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 www.ti.com.cn Typical Application (接 接下页) PLC Digital Input Module Field Side PLC 5 V or 3.3 V or 2.5 V Backplane supply ISO1212 RTHR SENSE1 CIN RSENSE VCC1 VCC OUT1 IN1 FGND1 RTHR SENSE2 CIN 24 V RSENSE OUT2 IN2 Power Supply FGND2 GND1 Host Controller 0V Sensors and Switches ISO1212 RTHR SENSE1 CIN VCC1 RSENSE IN1 OUT1 FGND1 RTHR SENSE2 CIN RSENSE Field Ground (FGND) IN2 OUT2 FGND2 GND1 GND 500 pF/2 kV Protection Earth (PE) Copyright © 2017, Texas Instruments Incorporated 图 16. Typical Application Schematic With Sinking Inputs 20 版权 © 2017–2018, Texas Instruments Incorporated ISO1211, ISO1212 www.ti.com.cn ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 Typical Application (接 接下页) 5 V or 3.3 V or 2.5 V Backplane Supply ISO1211 RTHR 24 V CIN + SENSE VCC1 IN OUT VCC RSENSE ± FGND GND1 Host Controller ISO1211 RTHR 24 V + CIN SENSE VCC1 IN OUT RSENSE ± FGND GND1 GND Copyright © 2017, Texas Instruments Incorporated 图 17. Single-Channel or Channel-to-Channel Isolated Designs With ISO1211 9.2.1.1 Design Requirements The ISO121x devices require two resistors, RTHR and RSENSE, and a capacitor, CIN, on the field side. For more information on selecting RSENSE, RTHR, and CIN, see the Detailed Design Procedure section. A 100-nF decoupling capacitor is required on VCC1. 9.2.1.2 Detailed Design Procedure 9.2.1.2.1 Setting Current Limit and Voltage Thresholds The RSENSE resistor limits the current drawn from the field input. A value of 562 Ω for RSENSE is recommended for Type 1 and Type 3 operation, and results in a current limit of 2.25 mA (typical). A value of 200 Ω for RSENSE is recommended for Type 2 operation, and results in a current limit of 6 mA (typical). In each case, a (slightly) lower value of RSENSE can be selected based on the need for a higher current limit or component availability. For more information, see the Electrical Characteristics—DC Specification table and Typical Characteristics section. A 1% tolerance is recommended on RSENSE but 5% resistors can also be used if higher variation in the current limit value is acceptable. The relationship between the RSENSE resistor and the typical current limit (IL) is given by 公式 1. 2.25 mA u 562 : IL RSENSE (1) The RTHR resistor sets the voltage thresholds (VIL and VIH) as well as limits the surge current. A value of 1 kΩ is recommended for RTHR in Type 3 systems (maximum threshold voltage required is 11 V). A value of 2.5 kΩ is recommended for RTHR in Type 1 systems (maximum threshold voltage required is 15 V) and a value of 330 Ω is recommended for RTHR in Type 2 systems. The Electrical Characteristics—DC Specification table lists and the Typical Characteristics section describes the voltage thresholds with different values of RTHR. For other values of RTHR, derive the values through linear interpolation. Use 公式 2 and 公式 3 to calculate the values for the typical VIH values and minimum VIL values, respectively. 2.25 mA u 562 : VIH (typ) 8.25 V RTHR u RSENSE (2) 版权 © 2017–2018, Texas Instruments Incorporated 21 ISO1211, ISO1212 ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 www.ti.com.cn Typical Application (接 接下页) VIL (typ) 7.1 V RTHR u 2.25 mA u 562 : RSENSE (3) The maximum voltage on the SENSE pins of the ISO121x device is 60 V. However, because the RTHR resistor drops additional voltage, the maximum voltage supported at the module inputs is higher and given by 公式 4. 2.1 mA u 562 : VIN (max) 60 V RTHR u RSENSE (4) Use the ISO121x Threshold Calculator for 9V to 300V DC and AC Voltage Detection to estimate the values of the voltage transition thresholds, the maximum-allowed module input voltage, and module input current for the given values of the RSENSE and RTHR resistors. A value of 0 Ω for RTHR also meets Type 1, Type 2 and Type 3 voltage-threshold requirements. The value of RTHR should be maximized for best EMC performance while meeting the desired input voltage thresholds. Because RTHR is used to limit surge current, 0.25 W MELF resistors must be used. 图 18 shows the typical input current characteristics and voltage transition thresholds for 562-Ω RSENSE and 1-kΩ RTHR. 2.75 2.5 2 1.5 1.25 1 0.75 ON = 8.25 V 1.75 OFF = 7.1 V Input Current (mA) 2.25 ±40°C 25°C 85°C 105°C 115°C 125°C 0.5 0.25 0 0 5 10 15 20 Input Voltage (V) 25 30 图 18. Transition Thresholds 9.2.1.2.2 Thermal Considerations Thermal considerations constrain operation at different input current and voltage levels. The power dissipated inside the ISO121x devices is determined by the voltage at the SENSE pin (VSENSE) and the current drawn by the device (I(INx+SENSEx)). The internal power dissipated, when taken with the junction-to-air thermal resistance defined in the Thermal Information table can be used to determine the junction temperature for a given ambient temperature. The junction temperature must not exceed 150°C. 图 19 shows the maximum allowed ambient temperature for the ISO1211 device for different current limit and input voltage conditions. The ISO1211 device can be used with a VSENSE voltage up to 60 V and an ambient temperature of up to 125°C for an RSENSE value of 562 Ω, which corresponds to a typical current limit of 2.25 mA. At higher levels of current limit, either the ambient temperature or the maximum value of the VSENSE voltage must be derated. In any design, the voltage drop across the external series resistor, RTHR, reduces the maximum voltage received by the SENSE pin and helps extend the allowable module input voltage and ambient temperature range. 22 版权 © 2017–2018, Texas Instruments Incorporated ISO1211, ISO1212 www.ti.com.cn ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 Typical Application (接 接下页) Maximum Ambient Temperature (qC) 130 125 120 115 110 105 100 95 90 85 RSENSE = 562 :, IL = 2.25 mA RSENSE = 400 :, IL = 3.2 mA RSENSE = 200 :, IL = 6.3 mA 80 75 70 0 (1) 10 20 30 40 50 Voltage at SENSE (V) 60 70 80 D011 This figure also applies to the ISO1212 device if only one of the two channels are expected to be active at a given time. 图 19. Maximum Ambient Temperature Derating Curve for ISO1211 vs VSENSE 图 20 shows the maximum allowed ambient temperature for the ISO1212 device for different current limit and input voltage conditions. The ISO1212 device can be used with a VSENSE voltage up to 36 V and an ambient temperature of up to 125°C for an RSENSE value of 562 Ω, which corresponds to a typical current limit of 2.25 mA. At higher current limit levels, either the ambient temperature or the maximum value of the VSENSE voltage must be derated. Operation of the ISO1212 device with an RSENSE value of 200 Ω and with both channels active is not recommended beyond a VSENSE voltage of 36 V. In any design, the voltage drop across the series resistor, RTHR, reduces the maximum voltage received by the SENSE pin and helps extend the allowable module input voltage and ambient temperature range. Maximum Ambient Temperature (qC) 130 125 120 115 110 105 100 95 90 85 RSENSE = 562 :, IL = 2.25 mA RSENSE = 400 :, IL = 3.2 mA RSENSE = 200 :, IL = 6.3 mA 80 75 70 0 (1) 10 20 30 40 50 Voltage at SENSE (V) 60 70 80 D012 This figure only applies if both channels of the ISO1212 device are expected to be on at the same time. If only one channel is expected to be on at a given time, refer to 图 19. 图 20. Maximum Ambient Temperature Derating Curve for ISO1212 vs VSENSE 9.2.1.2.3 Designing for 48-V Systems The ISO121x devices are suitable for 48-V digital input receivers. The current limit, voltage transition thresholds, and maximum voltage supported at the module input are governed by 公式 1, 公式 2, 公式 3, and 公式 4. For 48V systems, a threshold voltage close to 25 V is desirable. The RTHR resistor can be adjusted to achieve this higher threshold. For example, with an RSENSE value of 562 Ω and an RTHR value of 7.5 k Ω, a VIH value of approximately 25 V can be achieved. With this setting, the RTHR resistor drops a voltage of approximately 17 V, reducing the maximum value of the VSENSE voltage for any given module input voltage. This drop vastly increases the allowable module input voltage and ambient temperature range as discussed in Thermal Considerations. 版权 © 2017–2018, Texas Instruments Incorporated 23 ISO1211, ISO1212 ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 www.ti.com.cn Typical Application (接 接下页) 9.2.1.2.4 Designing for Input Voltages Greater Than 60 V The ISO121x devices are rated for 60 V on the SENSE and IN pins with respect to FGND. However, larger voltages on the module input can be supported by dropping extra voltage across an external resistor, RTHR. Because the current drawn by the SENSE and IN pins is well controlled by the built-in current limit, the voltage drop across RTHR is well controlled as well. However, increasing the RTHR resistance also correspondingly raises the voltage transition threshold. An additional resistor, RSHUNT (see 图 21), provides the flexibility to change the voltage transition thresholds independently of the maximum input voltage. The current through the RSHUNT resistor is less near the voltage transition threshold, but increases with the input voltage, increasing the voltage drop across the RTHR resistor, and preventing the voltage on the ISO121x pins from exceeding 60 V. With the correct value selected for the RTHR and RSHUNT resistors, the voltage transition thresholds and the maximum input voltage supported can be adjusted independently. A 1-nF or greater CIN capacitor is recommended between the SENSE and FGND pins to slow down the transitions on the SENSE pin, and to prevent overshoot beyond 60 V during transitions. For more information, refer to the How to Design Isolated Comparators for ±48V, 110V and 240V DC and AC Detection TI TechNote. Use the ISO121x Threshold Calculator for 9V to 300V DC and AC Voltage Detection to estimate the values of voltage transition thresholds, the maximum-allowed module input voltage, and module input current for given values of the RSENSE, RTHR, and RSHUNT resistors. ISO1211 RTHR SENSE VIN VCC1 RSENSE + RSHUNT ± CIN OUT IN FGND GND1 图 21. Increase ISO121x Input Voltage Range With RSHUNT Another way to increase the maximum module input voltage without changing the voltage transition thresholds is to use a 60-V Zener diode to limit the voltage on the ISO121x pins to less than 60 V as shown in 图 22. In this case, when the module input is greater than 60 V, the Zener diode must be designed to sink the additional current, and the RTHR resistor must be designed to drop a higher voltage. For example, with a 2.5-kΩ RTHR and 560-Ω RSENSE, the voltage transition threshold is 15 V, and the ISO121x input current is 2.25 mA. If the module voltage reaches 100 V, the voltage drop across the RTHR resistor is 40 V, and the current through the Zener diode is approximately 14 mA. ISO1211 RTHR SENSE VIN + ± VCC1 RSENSE 60 V CIN OUT IN FGND GND1 图 22. Increase ISO121x Input Voltage Range Using a Zener Diode 9.2.1.2.5 Surge, ESD, and EFT Tests Digital input modules are subject to surge (IEC 61000-4-5), electrostatic discharge or ESD (IEC 61000-4-2) and electrical fast transient or EFT (IEC 61000-4-4) tests. The surge impulse waveform has the highest energy and the widest pulse width, and is therefore the most stringent test of the three. 图 16 shows the application diagram for Type 1 and 3 systems. For a 1-kVPP surge test between the input terminals and protection earth (PE), a value of 1 kΩ for RTHR and 10 nF for CIN is recommended. 表 3 lists a summary of recommended component values to meet different levels of EMC requirements for Type 1 and 3 systems. 24 版权 © 2017–2018, Texas Instruments Incorporated ISO1211, ISO1212 www.ti.com.cn ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 Typical Application (接 接下页) 表 3. Surge, IEC ESD and EFT IEC 61131-2 TYPE RSENSE RTH CIN Type 1 562 2.5 kΩ Type 3 562 1 kΩ SURGE IEC ESD IEC EFT ±1 kV ±6 kV ±4 kV ±500 V ±6 kV ±4 kV ±6 kV ±4 kV LINE-TO-PE LINE-TO-LINE LINE-TO-FGND 10 nF ±1 kV ±1 kV 10 nF ±1 kV ±1 kV 330 nF ±1 kV ±1 kV ±1 kV 图 23 shows the test setup and application circuit used for surge testing. A noise filtering capacitor of 500 pF is recommended between the FGND pin and PE (earth). The total value of effective capacitance between the FGND pin and any other ground potential (including PE) must not exceed 500 pF for optimum surge performance. For line-to-PE test (common-mode test), the FGND pin is connected to the auxiliary equipment (AE) through a decoupling network. 5 V or 3.3 V or 2.5 V Backplane supply 20 mH ISO1212 RTHR IN1 SENSE1 CIN RSENSE VCC1 VCC OUT1 IN1 FGND1 20 mH RTHR IN2 SENSE2 CIN RSENSE OUT2 IN2 FGND2 Host Controller Decoupling Network 20 mH INN Line-to-PE ISO1212 INN-1 RTHR SENSE1 Line-to-FGND 20 mH Line-to-Line Auxiliary Equipment (AE) CIN VCC1 RSENSE IN1 OUT1 FGND1 RTHR SENSE2 CIN RSENSE Field Ground (FGND) 20 mH GND1 IN2 OUT2 FGND2 GND1 GND FGND(1) 500 pF(2) 2 kV PE Protection Earth (PE) PE Copyright © 2017, Texas Instruments Incorporated (1) For line-to-PE test, FGND is connected to the auxiliary equipment (AE) through a decoupling network. (2) A noise filtering capacitor of about 500 pF is recommended between the FGND pin and PE (earth). The total value of effective capacitance between the FGND pin and any other ground potential (including PE) must not exceed 500 pF for optimum performance. 图 23. Setup and Application Circuit Used for Surge Test 版权 © 2017–2018, Texas Instruments Incorporated 25 ISO1211, ISO1212 ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 www.ti.com.cn For higher voltage levels of surge tests or for faster systems that cannot use a large value for CIN, TVS diodes or varistors can be used to meet EMC requirements. Type 2 systems that use a smaller value for RTHR may also require TVS diodes or varistors for surge protection. 图 24 shows an example usage of TVS diodes for surge protection. The recommended components for surge protection are VCAN26A2-03S (TVS, Vishay), EZJP0V420WM (Varistor, Panasonic), and GSOT36C (TVS, Vishay). Use of the RTHR resistor also reduces the peak current requirement for the TVS diodes, making them smaller and cost effective. For example, a 2-kV surge through a 1-kΩ RTHR resistor creates only 2-A peak current. Also, because of voltage drop across the RTHR resistor in normal operation, the working voltage requirement for the varistor or TVS diodes is reduced. For example, for a RTHR value of 1 kΩ and an RSENSE value of 562 Ω, a module designed for 30-V inputs only requires 28-V TVS diodes because the RTHR resistor drops more than 2 V. 5 V or 3.3 V or 2.5 V Backplane Supply ISO1211 RTHR 24 V SENSE VCC1 IN OUT VCC RSENSE TVS 0V FGND GND1 Host Controller GND Copyright © 2017, Texas Instruments Incorporated 图 24. TVS Diodes Used Instead of a Filtering Capacitor for Surge Protection in Faster Systems 9.2.1.2.6 Multiplexing the Interface to the Host Controller The ISO121x devices provide an output-enable pin on the controller side (EN). Setting the EN pin to 0 causes the output buffers to be in the high-impedance state. This feature can be used to multiplex the outputs of multiple ISO121x devices on the same host-controller input, reducing the number of pins on the host controller. In the example shown in 图 25, two sets of 8-channel inputs are multiplexed, reducing the number of input pins required on the controller from 16 to 10. Similarly, if four sets of 8-channel inputs are multiplexed, the number of pins on the controller is reduced from 32 to 12. 26 版权 © 2017–2018, Texas Instruments Incorporated ISO1211, ISO1212 www.ti.com.cn ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 ISO1212 ISO1212 RTHR IN1 RTHR SENSE1 SENSE1 RSENSE OUT1 OUT1 IN1 RTHR IN2 IN1 SENSE2 SENSE2 RSENSE IN2 OUT2 RTHR EN ISO1212 ISO1212 RTHR RTHR RSENSE RSENSE SENSE1 SENSE1 IN1 RTHR IN8 IN15 RSENSE OUT1 OUT1 IN1 RTHR SENSE2 SENSE2 IN2 IN10 RSENSE IN2 OUT2 EN IN7 IN9 RSENSE IN16 RSENSE OUT2 OUT2 IN2 EN EN2 DIN8 DIN7 DIN2 DIN1 EN1 EN Host Controller Copyright © 2017, Texas Instruments Incorporated 图 25. Using the Output Enable Option to Multiplex the Interface to the Host Controller 9.2.1.2.7 Status LEDs The outputs of the ISO121x devices can be used to drive status LEDs on the controller side as shown in 图 26. The output buffers of the ISO121x can provide 4-mA, 3-mA, and 2-mA currents while working at VCC1 values of 5 V, 3.3 V, and 2.5 V respectively. In some cases, placing the LED on the field side is desirable although it is powered from VCC1. In such cases, the signal carrying current to the LED can be routed in an inner layer without compromising the isolation of the digital-input module. For more information, see the Layout Guidelines section. 5 V or 3.3 V or 2.5 V Backplane Supply ISO1211 RTHR 24 V CIN Power Supply 0V SENSE VCC1 IN OUT VCC RSENSE FGND GND1 Host Controller GND Status LED Copyright © 2017, Texas Instruments Incorporated 图 26. Using ISO121x Outputs to Drive Status LEDs 版权 © 2017–2018, Texas Instruments Incorporated 27 ISO1211, ISO1212 ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 www.ti.com.cn 9.2.1.3 Application Curve 2.75 2.5 2 1.5 1.25 1 0.75 ON = 8.25 V 1.75 OFF = 7.1 V Input Current (mA) 2.25 ±40°C 25°C 85°C 105°C 115°C 125°C 0.5 0.25 0 0 5 10 15 20 Input Voltage (V) 25 30 RSENSE = 562 Ω RTHR = 0 Ω 图 27. Input Current vs Input Voltage 28 版权 © 2017–2018, Texas Instruments Incorporated ISO1211, ISO1212 www.ti.com.cn ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 9.2.2 Sourcing Inputs The ISO121x devices can be configured as sourcing inputs as shown in 图 28. In this configuration, all the SENSE pins are connected to the common voltage (24 V), and the inputs are connected to the individual FGND pins. 24-V Common 5 V or 3.3 V or 2.5 V Backplane supply ISO1212 SENSE1 CIN RSENSE VCC OUT1 IN1 RTHR VCC1 FGND1 Current Flow SENSE2 CIN 24 V RSENSE Power Supply OUT2 IN2 RTHR FGND2 GND1 0V Host Controller ISO1212 SENSE1 Sensors and Switches CIN VCC1 RSENSE IN1 RTHR OUT1 FGND1 Current Flow SENSE2 CIN RSENSE RTHR IN2 OUT2 FGND2 GND1 GND 500 pF/2 kV PE Protection Earth (PE) Copyright © 2017, Texas Instruments Incorporated 图 28. Typical Application Circuit With Sourcing Inputs 版权 © 2017–2018, Texas Instruments Incorporated 29 ISO1211, ISO1212 ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 www.ti.com.cn 9.2.3 Sourcing and Sinking Inputs (Bidirectional Inputs) The ISO1212 device can be used to create a bidirectional input module that can sink and source current as shown in 图 29. In this configuration, channel 1 is active if the COM terminal is connected to ground for sinking inputs, and channel 2 is active if the COM terminal is connected to 24 V for sourcing input. The digital input is considered high if either the OUT1 or OUT2 pin is high. 5 V or 3.3 V or 2.5 V Backplane supply IN ISO1212 RTHR SENSE1 CIN VCC VCC1 RSENSE IN1 OUT1 FGND1 Host Controller SENSE2 ±24 V RSENSE OUT2 IN2 FGND2 GND1 GND COM Current for positive polarity Current for negative polarity Copyright © 2017, Texas Instruments Incorporated 图 29. Application Circuit—ISO1212 With Sourcing and Sinking Inputs A bidirectional input module can also be built with the ISO121x devices using low-cost Schottky diodes as shown in 图 30. IN RTHR BAT54CLT1G ISO1211 ±24 V SENSE VCC1 RSENSE COM CIN IN FGND Host Controller OUT GND1 图 30. Bidirectional Implementation With ISO1211 and Bridge Rectifier 10 Power Supply Recommendations To help ensure reliable operation at data rates and supply voltages, a 0.1-μF bypass capacitor is recommended on the side 1 supply pin (VCC1). The capacitor should be placed as close to the supply pins as possible. 30 版权 © 2017–2018, Texas Instruments Incorporated ISO1211, ISO1212 www.ti.com.cn ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 11 Layout 11.1 Layout Guidelines The board layout for ISO1211 and ISO1212 can be completed in two layers. On the field side, place RSENSE, CIN, and RTHR on the top layer. Use the bottom layer as the field ground (FGND) plane. TI recommends using RSENSE and CIN in 0603 footprint for a compact layout, although larger sizes (0805) can also be used. The CIN capacitor is a 50-V capacitor and is available in the 0603 footprint. Keep CIN as close to the ISO121x device as possible. The SUB pin on the ISO1211 device and the SUB1 and SUB2 pins on the ISO1212 device should be left unconnected. For group isolated design, use vias to connect the FGND pins of the ISO121x device to the bottom FGND plane. The placement of the RTHR resistor is flexible, although the resistor pin connected to external high voltage should not be placed within 4 mm of the ISO121x device pins or the CIN and RSENSE pins to avoid flashover during EMC tests. Only a decoupling capacitor is required on side 1. Place this capacitor on the top-layer, with the bottom layer for GND1. If a board with more than two layers is used, placing two ISO121x devices on the top-and bottom layers (back-toback) is possible to achieve a more compact board. The inner layers can be used for FGND. 图 31 and 图 32 show the example layouts. In some designs, placing the LED on the field side is desirable although it is powered from VCC1. In such cases, the signal carrying current to the LED can be routed in an inner layer without compromising the isolation of the digital-input module as shown in 图 33. The LED must be placed with at least 4-mm spacing between other components and connections on side 1 to ensure adequate isolation. 11.2 Layout Example 2 mm maximum from VCC VCC RTHR 0.1 F C VCC1 GND1 Plane GND1 Isolation Capacitor C CIN OUT R IN RSENSE EN MCU R SENSE High Voltage Input FGND SUB FGND Plane 图 31. Layout Example With ISO1211 版权 © 2017–2018, Texas Instruments Incorporated 31 ISO1211, ISO1212 ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 www.ti.com.cn Layout Example (接 接下页) 2 mm Maximum from VCC VCC INP1 R EN OUT1 MCU OUT2 NC RTHR FGND FGND SUB1 High Voltage Input RTHR SUB2 INP2 R SENSE1 IN1 R FGND GND1 C C CIN GND1 Plane IN1 RSENSE NC Isolation Capacitor VCC1 R SENSE1 GND1 CIN C RSENSE 0.1 F FGND Plane 图 32. Layout Example With ISO1212 2 mm maximum from VCC VCC RTHR 0.1 F C VCC1 GND1 R Isolation Capacitor IN C CIN OUT R RSENSE EN MCU R SENSE High Voltage Input FGND SUB 4 mm minimum FGND Plane LED GND1 Plane 图 33. Layout Example With LED Placed on the Field Side But Driven From VCC1 Power Domain 32 版权 © 2017–2018, Texas Instruments Incorporated ISO1211, ISO1212 www.ti.com.cn ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 12 器件和文档支持 12.1 器件支持 12.1.1 开发支持 有关开发支持,请参阅: • 低于 1W 的 16 通道隔离数字输入模块参考设计 • 采用光学开关的断线检测参考设计 • 用于在变速驱动器中实现安全转矩关闭的冗余双通道参考设计 12.2 文档支持 12.2.1 相关文档 如需相关文档,请参阅: • 德州仪器 (TI),《如何提高电机驱动中的隔离式数字输入的速度和可靠性》TI 技术手册 • 德州仪器 (TI),《如何设计用于 ±48V、110V 和 240V 直流和交流检测的隔离式比较器》TI 技术手册 • 德州仪器 (TI),《如何简化隔离式 24V PLC 数字输入模块设计》TI 技术手册 • 德州仪器 (TI),《隔离相关术语》 • 德州仪器 (TI),《用于 9V 至 300V 直流和交流电压检测的 ISO121x 阈值计算器》 • 德州仪器 (TI),《ISO1211 隔离式数字输入接收器评估模块》用户手册 • 德州仪器 (TI),《ISO1212 隔离式数字输入接收器评估模块》用户手册 12.3 相关链接 下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。 表 4. 相关链接 器件 产品文件夹 立即订购 技术文档 工具与软件 支持和社区 ISO1211 请单击此处 请单击此处 请单击此处 请单击此处 请单击此处 ISO1212 请单击此处 请单击此处 请单击此处 请单击此处 请单击此处 12.4 接收文档更新通知 要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产 品信息更改摘要。有关更改的详细信息,请查阅已修订文档中包含的修订历史记录。 12.5 社区资源 下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商“按照原样”提供。这些内容并不构成 TI 技术规范, 并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。 TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。 设计支持 TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。 12.6 商标 E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 12.7 静电放电警告 ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可 能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可 能会导致器件与其发布的规格不相符。 版权 © 2017–2018, Texas Instruments Incorporated 33 ISO1211, ISO1212 ZHCSGU8E – JUNE 2017 – REVISED AUGUST 2018 www.ti.com.cn 12.8 术语表 SLYZ022 — TI 术语表。 这份术语表列出并解释术语、缩写和定义。 13 机械、封装和可订购信息 以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且 不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。 34 版权 © 2017–2018, Texas Instruments Incorporated PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) ISO1211D ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 1211 ISO1211DR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 1211 ISO1212DBQ ACTIVE SSOP DBQ 16 75 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 1212 ISO1212DBQR ACTIVE SSOP DBQ 16 2500 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 1212 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
ISO1212DBQR 价格&库存

很抱歉,暂时无法提供与“ISO1212DBQR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ISO1212DBQR
  •  国内价格 香港价格
  • 1+11.250341+1.36386
  • 10+10.0796410+1.22194
  • 25+9.5665325+1.15973
  • 100+7.85729100+0.95252
  • 250+7.34502250+0.89042
  • 500+6.49095500+0.78689
  • 1000+5.124501000+0.62124

库存:0

ISO1212DBQR
    •  国内价格
    • 30+3.13956
    • 200+2.99052
    • 1000+2.93004

    库存:0

    ISO1212DBQR
    •  国内价格
    • 1+6.10200
    • 10+5.11920
    • 30+4.56840

    库存:0