0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ISO6760FQDWRQ1

ISO6760FQDWRQ1

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC16_300MIL

  • 描述:

    EMC 性能优异的汽车类通用 50Mbps 六通道 (6/0) 数字隔离器

  • 数据手册
  • 价格&库存
ISO6760FQDWRQ1 数据手册
ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 EMC 性能优异的 ISO676x-Q1 通用六通道自动增强型数字隔离器 1 特性 3 说明 • 具有符合 AEC-Q100 标准的下列特性: – 器件温度等级 1:–40°C 至 +125°C 环境工作 温度范围 • 满足 VDA320 隔离要求 • 50Mbps 数据速率 • 稳健可靠的隔离栅: – 在 1500 VRMS 工作电压下具有超长的寿命 – 隔离等级高达 5000 VRMS – 浪涌能力高达 10kV – CMTI 典型值为 ±150 kV/μs • 宽电源电压范围:1.71V 到 1.89V 和 2.25V 到 5.5V • 1.71V 至 5.5V 电平转换 • 默认输出高电平 (ISO676x-Q1) 和低电平 (ISO676xF-Q1) 选项 • 1Mbps 时的每通道电流典型值为 1.6mA • 低传播延迟:11ns(典型值) • 优异的电磁兼容性 (EMC) – 系统级 ESD、EFT 和浪涌抗扰性 – 低辐射 • 宽体 SOIC (DW-16) 封装 • 安全相关认证(待审核): – DIN VDE V 0884-11:2017-01 – UL 1577 组件认证计划 – IEC 62368-1、IEC 61010-1、IEC 60601-1 和 GB 4943.1-2011 认证 ISO676x-Q1 器件是高性能六通道数字隔离器,可提供 符合 UL 1577 的 5000 VRMS 隔离额定值,非常适合具 有此类需求的成本敏感型应用。这些器件还通过了 VDE、TUV、CSA 和 CQC 认证。 2 应用 • 混合动力、电动和动力总成系统 (EV/HEV) – 电池管理系统 (BMS) – 车载充电器 – 直流/直流转换器 – 逆变器和电机控制 在 隔 离 CMOS 或 者 LVCMOS 数 字 I/O 的 同 时 , ISO676x-Q1 器件可提供高电磁抗扰度和低辐射,同时 具备低功耗特性。每条隔离通道的逻辑输入和输出缓冲 器均由 TI 的双电容二氧化硅 (SiO2) 绝缘栅相隔离。 ISO676x 系列器件采用所有可能的引脚配置,因此所 有六个通道都可以处于同一方向,或者一个、两个或三 个通道处于反向,而其余通道处于正向。如果输入功率 或信号出现损失,不带后缀 F 的器件默认输出 高电 平 ,带后缀 F 的器件默认输出 低电平 。更多详细信 息,请参见器件功能模式部分。 这些器件与隔离式电源结合使用,有助于防止 CAN 和 LIN 等数据总线上的噪声电流损坏敏感电路。凭借创新 型芯片设计和布线技术,ISO676x-Q1 器件的电磁兼容 性得到了显著增强,可缓解系统级 ESD、EFT 和浪涌 问题并符合辐射标准。ISO676x-Q1 系列器件采用 16 引脚 SOIC 宽体 (DW) 封装,是对前几代器件的引脚到 引脚的升级。 器件描述 器件型号 (1) 封装 封装尺寸 ISO6760-Q1、ISO6760FQ1、ISO6761-Q1、 ISO6761F-Q1、ISO6762Q1、ISO6762F-Q1、 ISO6763-Q1、ISO6763FQ1 SOIC (DW) 10.30mm x 7.50mm (1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。 VCCO VCCI Series Isolation Capacitors INx OUTx GNDI GNDO Copyright © 2016, Texas Instruments Incorporated VCCI = 输入电源,VCCO = 输出电源 GNDI = 输入接地,GNDO = 输出接地 简化版原理图 本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。TI 不保证翻译的准确性和有效性。在实际设计之前,请务必参考最新版本的英文版本。 English Data Sheet: SLLSFK2 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 Table of Contents 1 特性................................................................................... 1 2 应用................................................................................... 1 3 说明................................................................................... 1 4 Revision History.............................................................. 2 5 Pin Configuration and Functions...................................3 6 Specifications.................................................................. 5 6.1 Absolute Maximum Ratings........................................ 5 6.2 ESD Ratings............................................................... 5 6.3 Recommended Operating Conditions.........................6 6.4 Thermal Information....................................................7 6.5 Power Ratings.............................................................7 6.6 Insulation Specifications............................................. 8 6.7 Safety-Related Certifications...................................... 9 6.8 Safety Limiting Values.................................................9 Electrical Characteristics—5-V Supply........................... 10 6.9 Supply Current Characteristics—5-V Supply............ 10 6.10 Electrical Characteristics—3.3-V Supply................ 12 6.11 Supply Current Characteristics—3.3-V Supply....... 12 6.12 Electrical Characteristics—2.5-V Supply ............... 14 6.13 Supply Current Characteristics—2.5-V Supply....... 14 Electrical Characteristics—1.8-V Supply........................ 16 6.14 Supply Current Characteristics—1.8-V Supply....... 16 6.15 Switching Characteristics—5-V Supply...................18 6.16 Switching Characteristics—3.3-V Supply................19 6.17 Switching Characteristics—2.5-V Supply................20 6.18 Switching Characteristics—1.8-V Supply................21 6.19 Insulation Characteristics Curves........................... 22 6.20 Typical Characteristics............................................ 23 7 Parameter Measurement Information.......................... 25 8 Detailed Description......................................................26 8.1 Overview................................................................... 26 8.2 Functional Block Diagram......................................... 26 8.3 Feature Description...................................................27 8.4 Device Functional Modes..........................................28 9 Application and Implementation.................................. 29 9.1 Application Information............................................. 29 9.2 Typical Application.................................................... 30 10 Power Supply Recommendations..............................33 11 Layout........................................................................... 34 11.1 Layout Guidelines................................................... 34 11.2 Layout Example...................................................... 35 12 Device and Documentation Support..........................36 12.1 Documentation Support.......................................... 36 12.2 Receiving Notification of Documentation Updates..36 12.3 支持资源..................................................................36 12.4 Trademarks............................................................. 36 12.5 Electrostatic Discharge Caution..............................36 12.6 术语表..................................................................... 36 13 Mechanical, Packaging, and Orderable Information.................................................................... 36 13.1 Package Option Addendum.................................... 40 13.2 Tape and Reel Information......................................41 4 Revision History 注:以前版本的页码可能与当前版本的页码不同 Changes from Revision A (November 2021) to Revision B (May 2022) Page • Updated CMTI spec for 5-V, 3.3-V and 2.5-V supply conditions.........................................................................5 Changes from Revision * (August 2021) to Revision A (November 2021) Page • 将器件状态更新为“量产数据”......................................................................................................................... 1 2 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 5 Pin Configuration and Functions 1 16 VCC2 INA 2 15 OUTA INB 3 14 OUTB INC 4 13 OUTC IND 5 12 OUTD INE 6 11 OUTE INF 7 10 OUTF GND1 8 9 GND2 ISOLATION VCC1 Not to scale 图 5-1. ISO6760-Q1 DW Package 16-Pin SOIC-WB Top View 1 16 VCC2 INA 2 15 OUTA INB 3 14 OUTB INC 4 13 OUTC IND 5 12 OUTD INE 6 11 OUTE OUTF 7 10 INF GND1 8 9 ISOLATION VCC1 GND2 Not to scale 图 5-2. ISO6761-Q1 DW Package 16-Pin SOIC-WB Top View 1 16 VCC2 INA 2 15 OUTA INB 3 14 OUTB INC 4 13 OUTC IND 5 12 OUTD OUTE 6 11 INE OUTF 7 10 INF GND1 8 9 ISOLATION VCC1 GND2 Not to scale 图 5-3. ISO6762-Q1 DW Package 16-Pin SOIC-WB Top View Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 3 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 1 16 VCC2 INA 2 15 OUTA INB 3 14 OUTB INC 4 13 OUTC OUTD 5 12 IND OUTE 6 11 INE OUTF 7 10 INF GND1 8 9 ISOLATION VCC1 GND2 Not to scale 图 5-4. ISO6763-Q1 DW Package 16-Pin SOIC-WB Top View 表 5-1. Pin Functions PIN NAME 4 NO. I/O DESCRIPTION ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 GND1 8 8 8 8 — Ground connection for VCC1 GND2 9 9 9 9 — Ground connection for VCC2 INA 2 2 2 2 I Input, channel A INB 3 3 3 3 I Input, channel B INC 4 4 4 4 I Input, channel C IND 5 5 5 12 I Input, channel D INE 6 6 11 11 I Input, channel E INF 7 10 10 10 I Input, channel F OUTA 15 15 15 15 O Output, channel A OUTB 14 14 14 14 O Output, channel B OUTC 13 13 13 13 O Output, channel C OUTD 12 12 12 5 O Output, channel D OUTE 11 11 6 6 O Output, channel E OUTF 10 7 7 7 O Output, channel F VCC1 1 1 1 1 — Power supply, side 1 VCC2 16 16 16 16 — Power supply, side 2 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 6 Specifications 6.1 Absolute Maximum Ratings See(1) MIN MAX VCC1 to GND1 -0.5 6 VCC2 to GND2 -0.5 6 Input/Output Voltage INx to GNDx -0.5 VCCX + 0.5 (3) OUTx to GNDx -0.5 VCCX + 0.5 (3) Output Current Io -15 Supply Voltage (2) Temperature (1) (2) (3) Operating junction temperature, TJ Storage temperature, Tstg -65 UNIT V V 15 mA 150 °C 150 °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak voltage values Maximum voltage must not exceed 6 V. 6.2 ESD Ratings (1) (2) VALUE V(ESD) (1) (2) Electrostatic discharge Human body model (HBM), per ANSI/ ESDA/JEDEC JS-001, all pins(1) ±2000 Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) ±1500 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 5 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 6.3 Recommended Operating Conditions MIN MAX UNIT 1.71 1.89 V 2.25 5.5 V (3) 1.71 1.89 V VCC2 (1) Supply Voltage Side 2 (3) 2.25 5.5 V Vcc (UVLO+) UVLO threshold when supply voltage is rising 1.71 V Vcc (UVLO-) UVLO threshold when supply voltage is falling Vhys (UVLO) Supply voltage UVLO hysteresis VIH High level Input voltage VIL Low level Input voltage (3) VCC1 (1) Supply Voltage Side 1 (3) (1) VCC1 VCC2 (1) Supply Voltage Side 1 Supply Voltage Side 2 IOL Low level output current DR Data Rate TA Ambient temperature (1) (2) (3) 6 High level output current 1.53 1.1 1.41 V 0.08 0.13 V 0.7 x VCCI VCCO IOH NOM (2) =5V (2) VCCI V 0 0.3 x VCCI V -4 mA VCCO = 3.3 V -2 mA VCCO = 2.5 V -1 mA VCCO = 1.8 V -1 mA VCCO = 5 V 4 mA VCCO = 3.3 V 2 mA VCCO = 2.5 V 1 mA VCCO = 1.8 V 1 mA 50 Mbps 125 °C 0 -40 25 VCC1 and VCC2 can be set independent of one another VCCI = Input-side VCC; VCCO = Output-side VCC The channel outputs are in undetermined state when 1.89 V < VCC1, VCC2 < 2.25 V and 1.05 V < VCC1, VCC2 < 1.71 V Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 6.4 Thermal Information ISO676x THERMAL METRIC (1) DW (SOIC) UNIT 16 PINS RθJA Junction-to-ambient thermal resistance 68.8 °C/W RθJC(top) Junction-to-case (top) thermal resistance 31.8 °C/W RθJB Junction-to-board thermal resistance 32.7 °C/W ψJT Junction-to-top characterization parameter 13.5 °C/W ψJB Junction-to-board characterization parameter 32.1 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance n/a °C/W 6.5 Power Ratings PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 192 mW 45 mW 147 mW 197 mW 63 mW 134 mW 197 mW ISO6760 PD Maximum power dissipation (both sides) PD1 Maximum power dissipation (side-1) PD2 Maximum power dissipation (side-2) VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, Input a 25-MHz 50% duty cycle square wave ISO6761 PD Maximum power dissipation (both sides) PD1 Maximum power dissipation (side-1) PD2 Maximum power dissipation (side-2) VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, Input a 25-MHz 50% duty cycle square wave ISO6762 PD Maximum power dissipation (both sides) PD1 Maximum power dissipation (side-1) PD2 Maximum power dissipation (side-2) VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, Input a 25-MHz 50% duty cycle square wave 81 mW 116 mW 196 mW 98 mW 98 mW ISO6763 PD Maximum power dissipation (both sides) PD1 Maximum power dissipation (side-1) PD2 Maximum power dissipation (side-2) Copyright © 2022 Texas Instruments Incorporated VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, Input a 25-MHz 50% duty cycle square wave Submit Document Feedback Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 7 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 6.6 Insulation Specifications PARAMETER VALUE TEST CONDITIONS DW-16 UNIT CLR External clearance(1) Shortest terminal-to-terminal distance through air >8 mm CPG External creepage(1) Shortest terminal-to-terminal distance across the package surface >8 mm DTI Distance through the insulation Minimum internal gap (internal clearance) >17 um CTI Comparative tracking index DIN EN 60112 (VDE 0303-11); IEC 60112 >600 V Material group According to IEC 60664-1 I Rated mains voltage ≤ 600 VRMS I-IV Rated mains voltage ≤ 1000 VRMS I-III Maximum repetitive peak isolation voltage AC voltage (bipolar) 2121 VPK Maximum working isolation voltage AC voltage; Time dependent dielectric breakdown (TDDB) Test; See 图 9-8 1500 VRMS DC voltage 2121 VDC Overvoltage category per IEC 60664-1 DIN VDE V 0884-11:2017-01(2) VIORM VIOWM VIOTM Maximum transient isolation voltage VTEST = VIOTM, t = 60 s (qualification); VTEST = 1.2 x VIOTM, t= 1 s (100% production) 7071 VPK VIOSM Maximum surge isolation voltage(3) Test method per IEC 62368-1, 1.2/50 µs waveform, VTEST = 1.6 x VIOSM = 10,000 VPK (qualification) 6250 VPK Method a, After Input-output safety test subgroup 2/3, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.2 x VIORM, tm = 10 s ≤5 Method a, After environmental tests subgroup 1, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.6 x VIORM, tm = 10 s ≤5 Method b1; At routine test (100% production) and preconditioning (type test) Vini = 1.2 x VIOTM, tini = 1 s; Vpd(m) = 1.875 x VIORM, tm = 1 s ≤5 VIO = 0.4 x sin (2πft), f = 1 MHz ~1 VIO = 500 V, TA = 25°C >1012 VIO = 500 V, 100°C ≤ TA ≤ 125°C >1011 VIO = 500 V at TS = 150°C >109 Apparent charge(4) qpd Barrier capacitance, input to output(5) CIO Isolation resistance(5) RIO Pollution degree 2 Climatic category 40/125/21 pC pF Ω UL 1577 VISO (1) (2) (3) (4) (5) 8 Maximum withstanding isolation voltage VTEST = VISO , t = 60 s (qualification), VTEST = 1.2 x VISO , t = 1 s (100% production) 5000 VRMS Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed-circuit board are used to help increase these specifications. This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits. Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier. Apparent charge is electrical discharge caused by a partial discharge (pd). All pins on each side of the barrier tied together creating a two-terminal device. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 6.7 Safety-Related Certifications VDE CSA UL CQC TUV Plan to certify according to Plan to certify according to Plan to certify according to Plan to certify according to Plan to certify according to EN 61010-1:2010/ DIN VDE V 0884-11:2017- IEC 62368-1, IEC 61010-1 UL 1577 Component GB4943.1-2011 A1:2019 and EN 01 and IEC 60601-1 Recognition Program 62368-1:2014 Maximum transient isolation voltage, 7071 VPK; Maximum repetitive peak isolation voltage, 2121 VPK; Maximum surge isolation voltage, 6250 VPK Certificate planned 600 VRMS reinforced insulation per CSA 62368-1:19 and IEC 62368-1:2018; 600 VRMS reinforced insulation per CSA 61010-1-12+A1 and IEC 61010-1 3rd Ed Single protection, (pollution degree 2, 5000 VRMS material group I); 2 MOPP (Means of Patient Protection) per CSA 60601-1-14 and IEC 60601-1 Ed.3+A1, 250 VRMS max working voltage Certificate planned Certificate planned Reinforced insulation, Altitude ≤ 5000 m, Tropical Climate, 700 VRMS maximum working voltage 5000 VRMS reinforced insulation per EN 61010-1:2010/A1:2019 and EN 62368-1:2014 up to working voltage of 600 VRMS Certificate planned Certificate planned 6.8 Safety Limiting Values Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT RθJA =68.8°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C 330 mA RθJA = 68.8°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C 504 mA RθJA = 68.8°C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C 660 mA RθJA = 68.8°C/W, VI = 1.89 V, TJ = 150°C, TA = 25°C 956 mA 1820 mW 150 °C DW-16 PACKAGE IS PS TS (1) Safety input, output, or supply current Safety input, output, or total power (1) Maximum safety temperature (1) RθJA = 68.8°C/W, TJ = 150°C, TA = 25°C (1) The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be exceeded. These limits vary with the ambient temperature, TA. The junction-to-air thermal resistance, RθJA, in the table is that of a device installed on a high-K test board for leaded surface-mount packages. Use these equations to calculate the value for each parameter: TJ = TA + RθJA × P, where P is the power dissipated in the device. TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature. PS = IS × VI, where VI is the maximum input voltage. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 9 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 Electrical Characteristics—5-V Supply over recommended operating conditions (unless otherwise noted) PARAMETER TEST CONDITIONS VOH High-level output voltage IOH = -4 mA; See 图 7-1 VOL Low-level output voltage IOL = 4 mA; See 图 7-1 MIN MAX VCCO - 0.4 VIT+(IN) Rising input switching threshold VIT-(IN) Falling input switching threshold VI(HYS) Input threshold voltage hysteresis IIH High-level input current VIH = VCCI (1) at INx IIL Low-level input current VIL = 0 V at INx -10 CMTI Common mode transient immunity VI = VCC or 0 V, VCM = 1200 V; See 图 7-3 100 Ci Input Capacitance (2) VI = VCC/ 2 + 0.4×sin(2πft), f = 2 MHz, VCC = 5 V (1) (2) TYP UNIT V 0.4 V (1) V 0.7 x VCCI 0.3 x VCCI V 0.1 x VCCI V 10 µA µA 150 kV/us 2.8 pF VCCI = Input-side VCC; VCCO = Output-side VCC Measured from input pin to same side ground. 6.9 Supply Current Characteristics—5-V Supply VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted). PARAMETER TEST CONDITIONS SUPPLY CURRENT MIN TYP MAX ICC1 2.2 2.8 ICC2 3.1 5.2 ICC1 8.3 11.1 ICC2 3.4 5.7 ICC1 5.3 7.0 ICC2 3.7 5.9 ICC1 5.4 7.2 ICC2 7.0 9.7 ICC1 6.3 8.1 ICC2 21.9 26.6 ICC1 2.4 3.5 ICC2 3.6 5.8 ICC1 7.6 10.4 ICC2 5.0 7.6 ICC1 5.1 7.0 ICC2 4.6 7.0 ICC1 5.8 7.8 ICC2 7.4 10.2 UNIT ISO6760 VI = VCC1 (ISO6760); VI = 0 V (ISO6760 with F suffix) Supply current - DC signal VI = 0 V (ISO6760); VI = VCC1 (ISO6760 with F suffix) 1 Mbps Supply current - AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps 50 Mbps mA ISO6761 VI = VCC1 (ISO6761); VI = 0 V (ISO6761 with F suffix) Supply current - DC signal VI = 0 V (ISO6761); VI = VCC1 (ISO6761 with F suffix) 1 Mbps Supply current - AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps 50 Mbps ICC1 8.9 11.4 ICC2 20.0 24.4 mA ISO6762 10 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted). PARAMETER TEST CONDITIONS VI = VCC1 (ISO6762); VI = 0 V (ISO6762 with F suffix) Supply current - DC signal VI = 0 V (ISO6762); VI = VCC1 (ISO6762 with F suffix) 1 Mbps Supply current - AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps 50 Mbps SUPPLY CURRENT MIN TYP MAX ICC1 2.7 4.1 ICC2 3.3 5.2 ICC1 6.9 9.7 ICC2 5.6 8.3 ICC1 5 7 ICC2 4.7 7 ICC1 6.2 8.4 ICC2 7 9.6 ICC1 11.7 14.6 ICC2 17.2 21.1 UNIT mA ISO6763 Supply current - DC signal Supply current - AC signal VI = VCCI (ISO6763); VI = 0 V (ISO6763 with F suffix) ICC1, ICC2 3 4.7 VI = 0 V (ISO6763); VI = VCCI (ISO6763 with F suffix) ICC1, ICC2 6.3 9 1 Mbps ICC1, ICC2 4.8 7 10 Mbps ICC1, ICC2 6.6 9 50 Mbps ICC1, ICC2 14.4 17.8 All channels switching with square wave clock input; CL = 15 pF Copyright © 2022 Texas Instruments Incorporated mA Submit Document Feedback Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 11 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 6.10 Electrical Characteristics—3.3-V Supply VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted). PARAMETER TEST CONDITIONS VOH High-level output voltage IOH = -2mA ; See 图 7-1 VOL Low-level output voltage IOL = 2mA ; See 图 7-1 MIN TYP MAX UNIT VCCO - 0.2 V 0.2 V (1) V VIT+(IN) Rising input switching threshold VIT-(IN) Falling input switching threshold 0.3 x VCCI V VI(HYS) Input threshold voltage hysteresis 0.1 x VCCI V IIH High-level input current VIH = VCCI (1) at INx IIL Low-level input current VIL = 0 V at INx -10 CMTI Common mode transient immunity VI = VCC or 0 V, VCM = 1200 V; See 图 7-3 100 Ci Input Capacitance(2) VI = VCC/ 2 + 0.4×sin(2πft), f = 2 MHz, VCC = 3.3 V (1) (2) 0.7 x VCCI 10 µA µA 150 kV/us 2.8 pF VCCI = Input-side VCC; VCCO = Output-side VCC Measured from input pin to same side ground. 6.11 Supply Current Characteristics—3.3-V Supply VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted). PARAMETER TEST CONDITIONS SUPPLY CURRENT MIN TYP MAX ICC1 2.2 2.8 ICC2 3.1 5.1 ICC1 8.3 10.9 ICC2 3.4 5.6 ICC1 5.3 6.9 ICC2 3.5 5.7 ICC1 5.3 7 ICC2 5.9 8.5 UNIT ISO6760 VI = VCC1 (ISO6760); VI = 0 V (ISO6760 with F suffix) Supply current - DC signal VI = 0 V (ISO6760); VI = VCC1 (ISO6760 with F suffix) 1 Mbps Supply current - AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps 50 Mbps ICC1 5.9 7.6 ICC2 16.6 20.9 ICC1 2.4 3.5 ICC2 3.6 5.8 ICC1 7.5 10.3 ICC2 4.9 7.5 ICC1 5 7 ICC2 4.5 6.9 ICC1 5.5 7.5 ICC2 6.5 9.2 mA ISO6761 VI = VCC1 (ISO6761); VI = 0 V (ISO6761 with F suffix) Supply current - DC signal VI = 0 V (ISO6761); VI = VCC1 (ISO6761 with F suffix) 1 Mbps Supply current - AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps 50 Mbps ICC1 7.7 10 ICC2 15.5 19.6 mA ISO6762 12 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted). PARAMETER TEST CONDITIONS VI = VCC1 (ISO6762); VI = 0 V (ISO6762 with F suffix) Supply current - DC signal VI = 0 V (ISO6762); VI = VCC1 (ISO6762 with F suffix) 1 Mbps Supply current - AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps 50 Mbps SUPPLY CURRENT MIN TYP MAX ICC1 2.7 4.1 ICC2 3.3 5.2 ICC1 6.9 9.6 ICC2 5.6 8.2 ICC1 4.9 6.9 ICC2 4.6 6.9 ICC1 5.7 7.9 ICC2 6.2 8.8 ICC1 9.6 12.4 ICC2 13.5 17.1 UNIT mA ISO6763 Supply current - DC signal Supply current - AC signal VI = VCCI (ISO6763); VI = 0 V (ISO6763 with F suffix) ICC1, ICC2 3 4.6 VI = 0 V (ISO6763); VI = VCCI (ISO6763 with F suffix) ICC1, ICC2 6.2 8.9 1 Mbps ICC1, ICC2 4.8 6.9 10 Mbps ICC1, ICC2 6 8.4 50 Mbps ICC1, ICC2 11.6 14.7 All channels switching with square wave clock input; CL = 15 pF Copyright © 2022 Texas Instruments Incorporated mA Submit Document Feedback Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 13 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 6.12 Electrical Characteristics—2.5-V Supply VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted). PARAMETER TEST CONDITIONS VOH High-level output voltage IOH = -1mA ; See 图 7-1 VOL Low-level output voltage IOL = 1mA ; See 图 7-1 MIN TYP MAX UNIT VCCO - 0.1 V 0.1 V (1) V VIT+(IN) Rising input switching threshold VIT-(IN) Falling input switching threshold 0.3 x VCCI V VI(HYS) Input threshold voltage hysteresis 0.1 x VCCI V IIH High-level input current VIH = VCCI (1) at INx IIL Low-level input current VIL = 0 V at INx -10 CMTI Common mode transient immunity VI = VCC or 0 V, VCM = 1200 V; See 图 7-3 100 Ci Input Capacitance(2) VI = VCC/ 2 + 0.4×sin(2πft), f = 2 MHz, VCC = 2.5 V (1) (2) 0.7 x VCCI 10 µA µA 150 kV/us 2.8 pF VCCI = Input-side VCC; VCCO = Output-side VCC Measured from input pin to same side ground. 6.13 Supply Current Characteristics—2.5-V Supply VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted). PARAMETER TEST CONDITIONS SUPPLY CURRENT MIN TYP MAX ICC1 2.2 2.8 ICC2 3.1 5.1 ICC1 8.3 10.8 ICC2 3.4 5.6 ICC1 5.2 6.8 ICC2 3.5 5.6 ICC1 5.3 6.9 ICC2 5.3 7.7 UNIT ISO6760 VI = VCC1 (ISO6760); VI = 0 V (ISO6760 with F suffix) Supply current - DC signal VI = 0 V (ISO6760); VI = VCC1 (ISO6760 with F suffix) 1 Mbps Supply current - AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps 50 Mbps ICC1 5.7 7.5 ICC2 13.2 16.9 ICC1 2.4 3.5 ICC2 3.6 5.7 ICC1 7.5 10.3 ICC2 4.9 7.5 ICC1 5 6.9 ICC2 4.4 6.8 ICC1 5.3 7.3 ICC2 5.9 8.5 mA ISO6761 VI = VCC1 (ISO6761); VI = 0 V (ISO6761 with F suffix) Supply current - DC signal VI = 0 V (ISO6761); VI = VCC1 (ISO6761 with F suffix) 1 Mbps Supply current - AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps 50 Mbps ICC1 7 9.3 ICC2 12.7 16.3 mA ISO6762 14 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted). PARAMETER TEST CONDITIONS VI = VCC1 (ISO6762); VI = 0 V (ISO6762 with F suffix) Supply current - DC signal VI = 0 V (ISO6762); VI = VCC1 (ISO6762 with F suffix) 1 Mbps Supply current - AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps 50 Mbps SUPPLY CURRENT MIN TYP MAX ICC1 2.7 4 ICC2 3.3 5.2 ICC1 6.9 9.6 ICC2 5.6 8.2 ICC1 4.9 6.9 ICC2 4.6 6.8 ICC1 5.5 7.6 ICC2 5.8 8.2 ICC1 8.4 11 ICC2 11.2 14.5 UNIT mA ISO6763 Supply current - DC signal Supply current - AC signal VI = VCCI (ISO6763); VI = 0 V (ISO6763 with F suffix) ICC1, ICC2 3 4.6 VI = 0 V (ISO6763); VI = VCCI (ISO6763 with F suffix) ICC1, ICC2 6.2 8.9 1 Mbps ICC1, ICC2 4.7 6.9 10 Mbps ICC1, ICC2 5.6 7.9 50 Mbps ICC1, ICC2 9.8 12.7 All channels switching with square wave clock input; CL = 15 pF Copyright © 2022 Texas Instruments Incorporated mA Submit Document Feedback Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 15 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 Electrical Characteristics—1.8-V Supply VCC1 = VCC2 = 1.8 V ±10% (over recommended operating conditions unless otherwise noted). PARAMETER TEST CONDITIONS VOH High-level output voltage IOH = -1mA ; See 图 7-1 VOL Low-level output voltage IOL = 1mA ; See 图 7-1 VIT+(IN) Rising input switching threshold VIT-(IN) Falling input switching threshold VI(HYS) Input threshold voltage hysteresis IIH High-level input current VIH = VCCI (1) at INx IIL Low-level input current VIL = 0 V at INx CMTI Common mode transient immunity VI = VCC or 0 V, VCM = 1200 V; See 图 7-3 Ci Input Capacitance(2) VI = VCC/ 2 + 0.4×sin(2πft), f = 2 MHz, VCC = 1.8 V (1) (2) MIN TYP MAX VCCO - 0.1 UNIT V 0.1 V (1) V 0.7 x VCCI 0.3 x VCCI V 0.1 x VCCI V 10 -10 µA µA 50 75 kV/us 2.8 pF VCCI = Input-side VCC; VCCO = Output-side VCC Measured from input pin to same side ground. 6.14 Supply Current Characteristics—1.8-V Supply VCC1 = VCC2 = 1.8 V ±10% (over recommended operating conditions unless otherwise noted). PARAMETER TEST CONDITIONS SUPPLY CURRENT MIN TYP MAX 1.5 2.1 UNIT ISO6760 VI = VCC1 (ISO6760); VI = 0 V (ISO6760 with F suffix) Supply current - DC signal VI = 0 V (ISO6760); VI = VCC1 (ISO6760 with F suffix) 1 Mbps Supply current - AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps 50 Mbps ICC1 ICC2 3 5.1 ICC1 7.3 10.3 ICC2 3.3 5.6 ICC1 4.4 6.2 ICC2 3.3 5.5 ICC1 4.5 6.3 ICC2 4.6 7 ICC1 4.8 6.7 ICC2 10.1 13 ICC1 1.8 2.9 ICC2 3.4 5.7 ICC1 6.7 9.8 ICC2 4.6 7.4 ICC1 4.3 6.4 ICC2 4.1 6.7 ICC1 4.6 6.7 ICC2 5.2 7.9 ICC1 5.8 8.1 ICC2 9.9 13 mA ISO6761 VI = VCC1 (ISO6761); VI = 0 V (ISO6761 with F suffix) Supply current - DC signal VI = 0 V (ISO6761); VI = VCC1 (ISO6761 with F suffix) 1 Mbps Supply current - AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps 50 Mbps mA ISO6762 16 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 VCC1 = VCC2 = 1.8 V ±10% (over recommended operating conditions unless otherwise noted). PARAMETER TEST CONDITIONS VI = VCC1 (ISO6762); VI = 0 V (ISO6762 with F suffix) MIN ICC1 TYP MAX 2.2 3.6 ICC2 3 5 ICC1 6.2 9.2 ICC2 5.1 8 ICC1 4.3 6.5 ICC2 4.2 6.6 ICC1 4.7 7 ICC2 5 7.6 ICC1 6.8 9.3 ICC2 8.9 11.8 VI = VCCI (ISO6763); VI = 0 V (ISO6763 with F suffix) ICC1, ICC2 2.6 4.3 VI = 0 V (ISO6763); VI = VCCI (ISO6763 with F suffix) ICC1, ICC2 5.7 8.6 1 Mbps ICC1, ICC2 4.2 6.5 10 Mbps ICC1, ICC2 4.9 7.3 50 Mbps ICC1, ICC2 7.9 10.5 Supply current - DC signal VI = 0 V (ISO6762); VI = VCC1 (ISO6762 with F suffix) 1 Mbps Supply current - AC signal SUPPLY CURRENT All channels switching with square wave clock input; CL = 15 pF 10 Mbps 50 Mbps UNIT mA ISO6763 Supply current - DC signal Supply current - AC signal All channels switching with square wave clock input; CL = 15 pF Copyright © 2022 Texas Instruments Incorporated mA Submit Document Feedback Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 17 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 6.15 Switching Characteristics—5-V Supply VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 11 18 ns 7 ns 6 ns 6 ns 4.5 ns 4.5 ns 300 us 0.3 us ISO676x tPLH, tPHL Propagation delay time Propagation delay time PWD Pulse width distortion(1) |tPHL – tPLH| See 图 7-1 Pulse width distortion(1) |tPHL – tPLH| tsk(o) Channel-toChannel-to-channel output skew time(2) channel output skew time(2) tsk(pp) Part-to-part skew time(3) Part-to-part skew time(3) tr Output signal rise time Output signal rise time Same-direction channels See 图 7-1 tf Output signal fall time Output signal fall time tPU Time from UVLO to valid output data Time from UVLO to valid output data tDO Default output delay time from input power loss Default output delay time from input power loss Measured from the time VCC goes below 1.2V. See 图 7-2 tie Time interval error Time interval error 216 – 1 PRBS data at 50 Mbps (1) (2) (3) 18 0.1 1 ns Also known as pulse skew. tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads. tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 6.16 Switching Characteristics—3.3-V Supply VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 11 18 ns 7 ns 6 ns 7 ns 3.2 ns 3.2 ns 300 us 0.3 us ISO676x tPLH, tPHL Propagation delay time Propagation delay time PWD Pulse width distortion(1) |tPHL – tPLH| See 图 7-1 Pulse width distortion(1) |tPHL – tPLH| tsk(o) Channel-toChannel-to-channel output skew time(2) channel output skew time(2) tsk(pp) Part-to-part skew time(3) Part-to-part skew time(3) tr Output signal rise time Output signal rise time Same-direction channels See 图 7-1 tf Output signal fall time Output signal fall time tPU Time from UVLO to valid output data Time from UVLO to valid output data tDO Default output delay time from input power loss Default output delay time from input power loss Measured from the time VCC goes below 1.2V. See 图 7-2 tie Time interval error Time interval error 216 – 1 PRBS data at 50 Mbps (1) (2) (3) 0.1 1 ns Also known as pulse skew. tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads. tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 19 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 6.17 Switching Characteristics—2.5-V Supply VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 12 20.5 ns 7.1 ns 6 ns 7 ns 4 ns 4 ns 300 us 0.3 us ISO676x tPLH, tPHL Propagation delay time Propagation delay time PWD Pulse width distortion(1) |tPHL – tPLH| See 图 7-1 Pulse width distortion(1) |tPHL – tPLH| tsk(o) Channel-toChannel-to-channel output skew time(2) channel output skew time(2) tsk(pp) Part-to-part skew time(3) Part-to-part skew time(3) tr Output signal rise time Output signal rise time Same-direction channels See 图 7-1 tf Output signal fall time Output signal fall time tPU Time from UVLO to valid output data Time from UVLO to valid output data tDO Default output delay time from input power loss Default output delay time from input power loss Measured from the time VCC goes below 1.2V. See 图 7-2 tie Time interval error Time interval error 216 – 1 PRBS data at 50 Mbps (1) (2) (3) 20 0.1 1 ns Also known as pulse skew. tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads. tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 6.18 Switching Characteristics—1.8-V Supply VCC1 = VCC2 = 1.8 V ±5% (over recommended operating conditions unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 15 24 ns 8.2 ns 6 ns 8.8 ns 4.7 ns 4.7 ns 300 us 0.3 us ISO676x tPLH, tPHL Propagation delay time Propagation delay time PWD Pulse width distortion |tPHL – tPLH| Pulse width distortion |tPHL – tPLH| tsk(o) Channel-toChannel-to-channel output skew time(1) channel output skew time(1) tsk(pp) Part-to-part skew time(2) Part-to-part skew time(2) tr Output signal rise time Output signal rise time See 图 7-1 Same-direction channels See 图 7-1 tf Output signal fall time Output signal fall time tPU Time from UVLO to valid output data Time from UVLO to valid output data tDO Default output delay time from input power loss Default output delay time from input power loss Measured from the time VCC goes below 1.2V. See 图 7-2 tie Time interval error Time interval error 216 – 1 PRBS data at 50 Mbps (1) (2) 0.1 1 ns tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads. tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 21 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 6.19 Insulation Characteristics Curves 2000 Vcc = 5.5V Vcc = 3.6V Vcc = 2.75V Vcc = 1.89V 800 600 400 200 1800 Safety Limiting Power (mW) Safety Limiting Current (mA) 1000 1600 1400 1200 1000 800 600 400 200 0 0 0 20 40 60 80 100 120 Ambient Temperature ( C) 140 160 图 6-1. Thermal Derating Curve for Safety Limiting Current for DW-16 Package 22 Submit Document Feedback 0 20 40 60 80 100 120 Ambient Temperature ( C) 140 160 图 6-2. Thermal Derating Curve for Safety Limiting Power for DW-16 Package Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 6.20 Typical Characteristics 16 14 Supply Current (mA) 14 12 10 at at at at at at at at 1.8 V 1.8 V 2.5 V 2.5 V 3.3 V 3.3 V 5V 5V 8 6 2 8 1.8 V 1.8 V 2.5 V 2.5 V 3.3 V 3.3 V 5V 5V 6 2 0 10 20 30 Data Rate (Mbps) TA = 25°C 40 50 0 CL = 15 pF 10 20 30 Data Rate (Mbps) TA = 25°C 图 6-3. ISO6760-Q1 Supply Current vs Data Rate (With 15-pF Load) 40 50 CL = No Load 图 6-4. ISO6760-Q1 Supply Current vs Data Rate (With No Load) 18 14 14 12 10 at at at at at at at at 1.8 V 1.8 V 2.5 V 2.5 V 3.3 V 3.3 V 5V 5V ICC1 ICC2 ICC1 ICC2 ICC1 ICC2 ICC1 ICC2 12 Supply Current (mA) ICC1 ICC2 ICC1 ICC2 ICC1 ICC2 ICC1 ICC2 16 Supply Current (mA) 10 at at at at at at at at 4 4 8 6 10 8 at at at at at at at at 1.8 V 1.8 V 2.5 V 2.5 V 3.3 V 3.3 V 5V 5V 6 4 4 2 2 0 10 20 30 Data Rate (Mbps) TA = 25°C 40 50 0 CL = 15 pF 10 20 30 Data Rate (Mbps) TA = 25°C 图 6-5. ISO6761-Q1 Supply Current vs Data Rate (With 15-pF Load) 40 50 CL = No Load 图 6-6. ISO6761-Q1 Supply Current vs Data Rate (With No Load) 16 12 12 10 at at at at at at at at 1.8 V 1.8 V 2.5 V 2.5 V 3.3 V 3.3 V 5V 5V ICC1 ICC2 ICC1 ICC2 ICC1 ICC2 ICC1 ICC2 10 Supply Current (mA) ICC1 ICC2 ICC1 ICC2 ICC1 ICC2 ICC1 ICC2 14 Supply Current (mA) ICC1 ICC2 ICC1 ICC2 ICC1 ICC2 ICC1 ICC2 12 Supply Current (mA) ICC1 ICC2 ICC1 ICC2 ICC1 ICC2 ICC1 ICC2 8 6 8 at at at at at at at at 1.8 V 1.8 V 2.5 V 2.5 V 3.3 V 3.3 V 5V 5V 6 4 4 2 2 0 10 TA = 25°C 20 30 Data Rate (Mbps) 40 50 CL = 15 pF 图 6-7. ISO6762-Q1 Supply Current vs Data Rate (With 15-pF Load) Copyright © 2022 Texas Instruments Incorporated 0 10 TA = 25°C 20 30 Data Rate (Mbps) 40 50 CL = No Load 图 6-8. ISO6762-Q1 Supply Current vs Data Rate (With No Load) Submit Document Feedback Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 23 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 14 9 ICC1 at 1.8 V ICC2 at 1.8 V ICC1 at 2.5 V ICC2 at 2.5 V ICC1 at 3.3 V ICC2 at 3.3 V ICC1 at 5 V ICC2 at 5 V 10 8 Supply Current (mA) Supply Current (mA) 12 8 6 10 20 30 Data Rate (Mbps) TA = 25°C 40 50 0 CL = 15 pF 4 3 2 1 -10 -5 High-Level Output Current (mA) 14 13 12 11 10 tPHL at 1.8 V tPLH at 1.8 V tPHL at 2.5 V 8 -55 0 TA = 25°C 图 6-11. High-Level Output Voltage vs High-level Output Current 1.6 0.7 Low-Level Output Voltage (V) 0.8 1.55 1.5 1.45 1.4 1.35 VCC1 + VCC1 VCC2 + VCC2 - -35 -15 tPLH at 2.5 V tPHL at 3.3 V tPLH at 3.3 V 5 25 45 65 Free-Air Temperature ( C) tPHL at 5 V tPLH at 5V 85 105 125 图 6-12. Propagation Delay Time vs Free-Air Temperature 1.65 1.2 -55 CL = No Load 15 9 0 -15 1.25 50 16 5 1.3 40 17 VCC1 at 1.8 V VCC2 at 2.5 V VCC1 at 3.3 V VCC2 at 5 V Propagation Delay Time (ns) 6 20 30 Data Rate (Mbps) 图 6-10. ISO6763-Q1 Supply Current vs Data Rate (With No Load) 8 7 10 TA = 25°C 图 6-9. ISO6763-Q1 Supply Current vs Data Rate (With 15-pF Load) High-Level Output Voltage (V) 6 4 0 Power Supply UVLO Threshold (V) 7 5 4 VCC1 at 1.8 V VCC2 at 2.5 V VCC1 at 3.3 V VCC2 at 5 V 0.6 0.5 0.4 0.3 0.2 0.1 0 -5 45 Free-Air Temperature ( C) 95 125 图 6-13. Power Supply Undervoltage Threshold vs Free-Air Temperature 24 ICC1 at 1.8 V ICC2 at 1.8 V ICC1 at 2.5 V ICC2 at 2.5 V ICC1 at 3.3 V ICC2 at 3.3 V ICC1 at 5 V ICC2 at 5 V Submit Document Feedback 0 5 10 Low-Level Output Current (mA) 15 TA = 25°C 图 6-14. Low-Level Output Voltage vs Low-Level Output Current Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 7 Parameter Measurement Information Isolation Barrier IN Input Generator (See Note A) VI VCCI VI OUT 50% 50% 0V tPLH CL See Note B VO 50 tPHL VOH 90% 50% VO 50% 10% VOL tf tr Copyright © 2016, Texas Instruments Incorporated A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3 ns, tf ≤ 3ns, ZO B. = 50 Ω. At the input, 50 Ω resistor is required to terminate Input Generator signal. It is not needed in actual application. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%. 图 7-1. Switching Characteristics Test Circuit and Voltage Waveforms VI See Note B VCC VCC Isolation Barrier IN = 0 V (Devices without suffix F) IN = VCC (Devices with suffix F) VI IN 1.4 V 0V OUT VO tDO CL See Note A default high VOH 50% VO VOL default low A. B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%. Power Supply Ramp Rate = 10 mV/ns 图 7-2. Default Output Delay Time Test Circuit and Voltage Waveforms VCCO Isolation Barrier VCCI IN S1 Pass-fail criteria: The output must remain stable. OUT + CL See Note A VOH or VOL ± GNDI + VCM ± GNDO A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%. B. For optimized CMTI performance, a 0.1 μF + 1 μF decoupling capacitor should be placed close to VCC1 and VCC2. Please see 节 11.2 for capacitor placement details. A recommended 0.1μF capacitor is LLL185R71A104MA11L (CAP CER 0.1UF 10V X7R 0306 - LW Reversed Low ESL Chip Ceramic Capacitors) or equivalent. 图 7-3. Common-Mode Transient Immunity Test Circuit Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 25 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 8 Detailed Description 8.1 Overview The ISO676x-Q1 family of devices have an ON-OFF keying (OOK) modulation scheme to transmit the digital data across a silicon dioxide based isolation barrier. The transmitter sends a high frequency carrier across the barrier to represent one digital state and sends no signal to represent the other digital state. The receiver demodulates the signal after advanced signal conditioning and produces the output through a buffer stage. If the ENx pin is low then the output goes to high impedance. The ISO676x-Q1 devices also incorporate advanced circuit techniques to maximize the CMTI performance and minimize the radiated emissions due to the high frequency carrier and IO buffer switching. The conceptual block diagram of a digital capacitive isolator, 图 8-1, shows a functional block diagram of a typical channel. 8.2 Functional Block Diagram Transmitter Receiver EN TX IN OOK Modulation TX Signal Conditioning SiO2 based Capacitive Isolation Barrier RX Signal Conditioning Envelope Detection RX OUT Emissions Reduction Techniques Oscillator Copyright © 2016, Texas Instruments Incorporated 图 8-1. Conceptual Block Diagram of a Digital Capacitive Isolator 图 8-2 shows a conceptual detail of how the ON-OFF keying scheme works. TX IN Carrier signal through isolation barrier RX OUT 图 8-2. On-Off Keying (OOK) Based Modulation Scheme 26 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 8.3 Feature Description 表 8-1 provides an overview of the device features. 表 8-1. Device Features (1) PART NUMBER CHANNEL DIRECTION MAXIMUM DATA RATE DEFAULT OUTPUT PACKAGE RATED ISOLATION(1) ISO6760-Q1 6 Forward, 0 Reverse 50 Mbps High DW-16 5000 VRMS / 7071 VPK ISO6760F-Q1 6 Forward, 0 Reverse 50 Mbps Low DW-16 5000 VRMS / 7071 VPK ISO6761-Q1 5 Forward, 1 Reverse 50 Mbps High DW-16 5000 VRMS / 7071 VPK ISO6761F-Q1 5 Forward, 1 Reverse 50 Mbps Low DW-16 5000 VRMS / 7071 VPK ISO6762-Q1 4 Forward, 2 Reverse 50 Mbps High DW-16 5000 VRMS / 7071 VPK ISO6762F-Q1 4 Forward, 2 Reverse 50 Mbps Low DW-16 5000 VRMS / 7071 VPK ISO6763-Q1 3 Forward, 3 Reverse 50 Mbps High DW-16 5000 VRMS / 7071 VPK ISO6763F-Q1 3 Forward, 3 Reverse 50 Mbps Low DW-16 5000 VRMS / 7071 VPK See for detailed isolation ratings. 8.3.1 Electromagnetic Compatibility (EMC) Considerations Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge (ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances are regulated by international standards such as IEC 61000-4-x and CISPR 25. Although system-level performance and reliability depends, to a large extent, on the application board design and layout, the ISO676xQ1 family of devices incorporates many chip-level design improvements for overall system robustness. Some of these improvements include: • Robust ESD protection cells for input and output signal pins and inter-chip bond pads. • Low-resistance connectivity of ESD cells to supply and ground pins. • Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events. • Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance path. • PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic SCRs. • Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 27 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 8.4 Device Functional Modes 表 8-2 lists the functional modes for the ISO676x-Q1 devices. 表 8-2. Function Table VCCI (1) VCCO PU (1) (2) (3) INPUT (INx) (3) OUTPUT (OUTx) H H L L Open Default Default mode: When INx is open, the corresponding channel output goes to its default logic state. Default is High for ISO676x-Q1 and Low for ISO676x-Q1 with F suffix. Default mode: When VCCI is unpowered, a channel output assumes the logic state based on the selected default option. Default is High for ISO676x-Q1 and Low for ISO676x-Q1 with F suffix. When VCCI transitions from unpowered to powered-up, a channel output assumes the logic state of the input. When VCCI transitions from powered-up to unpowered, channel output assumes the selected default state. COMMENTS Normal Operation: A channel output assumes the logic state of its input. PU PD PU X Default X PD X Undetermined When VCCO is unpowered, a channel output is undetermined(2). When VCCO transitions from unpowered to powered-up, a channel output assumes the logic state of the input. VCCI = Input-side VCC; VCCO = Output-side VCC; PU = Powered up (VCC ≥ 1.71 V); PD = Powered down (VCC ≤ 1.05 V); X = Irrelevant; H = High level; L = Low level ; Z = High Impedance The outputs are in undetermined state when 1.05 V < VCCI, VCCO < 1.71 V and 1.89 V < VCCI, VCCO < 2.25 V A strongly driven input signal can weakly power the floating VCC through an internal protection diode and cause undetermined output 8.4.1 Device I/O Schematics Input (Devices with F suffix) Input (Devices without F suffix) VCCI VCCI VCCI VCCI VCCI VCCI VCCI 1.5 M 985 985 INx INx 1.5 M Output VCCO ~20 OUTx 图 8-3. Device I/O Schematics 28 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 9 Application and Implementation 备注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 9.1 Application Information The ISO676x-Q1 devices are high-performance, six-channel digital isolators. The ISO676x-Q1 devices use single-ended CMOS-logic switching technology. The supply voltage range is from 1.71 V to 5.5 V for both supplies, VCC1 and VCC2. Since an isolation barrier separates the two sides, each side can be sourced independently with any voltage within recommended operating conditions. As an example, it is possible to supply ISO676x-Q1 VCC1 with 3.3 V (which is within 1.71 V to 5.5 V) and VCC2 with 5V (which is also within 1.71 V to 5.5 V). You can use the digital isolator as a logic-level translator in addition to providing isolation. When designing with digital isolators, keep in mind that because of the single-ended design structure, digital isolators do not conform to any specific interface standard and are only intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the data controller (that is, MCU or FPGA), and a data converter or a line transceiver, regardless of the interface type or standard. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 29 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 9.2 Typical Application 图 9-1 shows the isolated serial-peripheral interface (SPI) and controller-area network (CAN) interface implementation. VS 10 F 3.3 V 2 Vcc MBR0520L 1:1.33 3 D2 1 SN6501-Q1 10 F 0.1 F 1 D1 GND 4 IN OUT 5 ISO 3.3V TPS76333-Q1 10 F 3 2 EN GND 2 1 µF 4 MBR0520L GND 6 22 µF GND 0.1 µF 0.1 F 0.1 F 2 SPISTEA 44 SPICLKA SPISIMOA SPISOMIA TMS320F28035Q CANRXA CANTXA VSS 6, 28 3 33 4 36 6 34 INA 25 OUTA OUTB INB INC OUTE OUTF 5 31 32 7 26 8 16 VCC2 1 VCC1 0.1 F VDDIO VOUT 5 ISO Barrier 29, 57 VIN REF5025A-Q1 ISO6762-Q1 15 33 14 34 36 OUTC INE INF 5 4 CS CH0 SCLK 28 16 Analog Inputs ADS7953-Q1 SDI SDO CH15 BDGND 27 13 AGND 11 REFM 30 1, 22 11 0.1 F 10 IND OUTD 12 GND1 GND2 8 7 AINP MXO +VBD +VA REFP 3 4 9 1 VCC R RS 8 10 CANH SN65HVD231Q-Q1 D CANL GND (optional) CAN Bus 7 6 10 (optional) Vref 5 2 SM712 4.7 nF / 2 kV 图 9-1. Isolated SPI and CAN Interface 30 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 9.2.1 Design Requirements To design with these devices, use the parameters listed in 表 9-1. 表 9-1. Design Parameters PARAMETER VALUE Supply voltage, VCC1 and VCC2 1.71 V to 1.89 V and 2.25 V to 5.5 V Decoupling capacitor between VCC1 and GND1 0.1 µF Decoupling capacitor from VCC2 and GND2 0.1 µF 9.2.2 Detailed Design Procedure Unlike optocouplers, which require external components to improve performance, provide bias, or limit current, the ISO676x-Q1 family of devices only require two external bypass capacitors to operate. 0.1 µF 0.1 µF VCC1 1 16 VCC2 INA 2 15 OUTA INB 3 14 OUTB INC 4 13 OUTC OUTD 5 12 IND OUTE 6 11 INE OUTF 7 10 INF 8 9 GND2 GND1 图 9-2. Typical ISO676x-Q1 Circuit Hook-up Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 31 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 9.2.3 Application Curve 1 V/ div 0.75 V/ div The following typical eye diagrams of the ISO676x-Q1 family of devices indicates low jitter and wide open eye at the maximum data rate of 50 Mbps. Time = 5 ns / div 图 9-3. Eye Diagram at 50 Mbps PRBS 216 – 1, 5 V and 25°C 图 9-4. Eye Diagram at 50 Mbps PRBS 216 – 1, 3.3 V and 25°C 0.5 V/ div 0.5 V/ div Time = 5 ns / div Time = 5 ns / div Time = 5 ns / div 图 9-5. Eye Diagram at 50 Mbps PRBS V and 25°C 216 – 1, 2.5 图 9-6. Eye Diagram at 50 Mbps PRBS 216 – 1, 1.8 V and 25°C 9.2.3.1 Insulation Lifetime Insulation lifetime projection data is collected by using industry-standard Time Dependent Dielectric Breakdown (TDDB) test method. In this test, all pins on each side of the barrier are tied together creating a two-terminal device and high voltage applied between the two sides; See 图 9-7 for TDDB test setup. The insulation breakdown data is collected at various high voltages switching at 60 Hz over temperature. For reinforced insulation, VDE standard requires the use of TDDB projection line with failure rate of less than 1 part per million (ppm). Even though the expected minimum insulation lifetime is 20 years at the specified working isolation voltage, VDE reinforced certification requires additional safety margin of 20% for working voltage and 87.5% for lifetime which translates into minimum required insulation lifetime of 37.5 years at a working voltage that's 20% higher than the specified value. 图 9-8 shows the intrinsic capability of the isolation barrier to withstand high voltage stress over its lifetime. Based on the TDDB data, the intrinsic capability of the insulation is 1500 VRMS with a lifetime of 220 years. Other factors, such as package size, pollution degree, material group, etc. can further limit the working voltage of the component. The working voltage of DW-16 package is specified upto 1500 VRMS. At the lower working voltages, the corresponding insulation lifetime is much longer than 220 years. 32 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 A Vcc 1 Vcc 2 Time Counter > 1 mA DUT GND 1 GND 2 VS Oven at 150 °C 图 9-7. Test Setup for Insulation Lifetime Measurement 图 9-8. Insulation Lifetime Projection Data 10 Power Supply Recommendations To help ensure reliable operation at data rates and supply voltages, a 0.1-μF bypass capacitor is recommended at the input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply pins as possible. If only a single primary-side power supply is available in an application, isolated power can be generated for the secondary-side with the help of a transformer driver. For automotive applications, please use SN6501-Q1 or SN6505B-Q1. For such applications, detailed power supply design and transformer selection recommendations are available in SN6501-Q1 Transformer Driver for Isolated Power Supplies or SN6505B-Q1 Automotive, low-noise, 1-A, 420-kHz transformer driver with soft start for isolated power supplies. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 33 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 11 Layout 11.1 Layout Guidelines A minimum of two layers is required to accomplish a low EMI PCB design. To further improve EMI, a four layer board can be used (see 图 11-2). Layer stacking for a four layer board should be in the following order (top-tobottom): high-speed signal layer, ground plane, power plane and low-frequency signal layer. • Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits of the data link. • Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for transmission line interconnects and provides an excellent low-inductance path for the return current flow. • Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of approximately 100 pF/inch2. • Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links usually have margin to tolerate discontinuities such as vias. If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the power and ground plane of each power system can be placed closer together, thus increasing the highfrequency bypass capacitance significantly. For detailed layout recommendations, refer to the Digital Isolator Design Guide. 11.1.1 PCB Material For digital circuit boards operating below 150 Mbps, (or rise and fall times higher than 1 ns), and trace lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit boards. This PCB is preferred over cheaper alternatives due to its lower dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and self-extinguishing flammability-characteristics. 34 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 11.2 Layout Example Solid supply islands reduce inductance because large peak currents flow into the VCC pin 0.5 mm maximum from VCC1 0.5 mm maximum from VCC2 VCC1 VCC2 1 16 0.1 …F 0.1 …F I/O pins routed through alternate layer with vias 2 15 3 14 4 13 5 12 6 11 7 10 8 9 GND2 GND1 Solid ground islands help dissipate heat through PCB 图 11-1. Layout Example High-speed traces 10 mils Ground plane 40 mils Keep this space free from planes, traces, pads, and vias FR-4 0r ~ 4.5 Power plane 10 mils Low-speed traces 图 11-2. Four Layer Board Layout Example Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 35 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 12 Device and Documentation Support 12.1 Documentation Support 12.1.1 Related Documentation For related documentation, see the following: • Texas Instruments, Digital Isolator Design Guide • Texas Instruments, Digital Isolator Design Guide • Texas Instruments, Isolation Glossary • Texas Instruments, How to use isolation to improve ESD, EFT, and Surge immunity in industrial systems application report • Texas Instruments, SN6505x-Q1 Low-Noise 1-A Transformer Drivers for Isolated Power Supplies • Texas Instruments, TCAN1044-Q1 Automotive Fault-Protected CAN FD Transceiver • Texas Instruments, TPS763xx-Q1 Low-Power, 150-mA, Low-Dropout Linear Regulators data sheet • Texas Instruments, TMS320F2803x Piccolo™ Microcontrollers data sheet 12.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. 12.3 支持资源 TI E2E™ 支持论坛是工程师的重要参考资料,可直接从专家获得快速、经过验证的解答和设计帮助。搜索现有解 答或提出自己的问题可获得所需的快速设计帮助。 链接的内容由各个贡献者“按原样”提供。这些内容并不构成 TI 技术规范,并且不一定反映 TI 的观点;请参阅 TI 的《使用条款》。 12.4 Trademarks TI E2E™ is a trademark of Texas Instruments. 所有商标均为其各自所有者的财产。 12.5 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 12.6 术语表 TI 术语表 本术语表列出并解释了术语、首字母缩略词和定义。 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 36 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 PACKAGE OUTLINE DW0016A SOIC - 2.65 mm max height SCALE 1.500 SOIC C 10.63 TYP 9.97 SEATING PLANE PIN 1 ID AREA A 0.1 C 14X 1.27 16 1 2X 8.89 10.5 10.1 NOTE 3 8 9 0.51 0.31 0.25 C A B 16X 7.6 7.4 NOTE 4 B 2.65 MAX 0.33 TYP 0.10 SEE DETAIL A 0.25 GAGE PLANE 0.3 0.1 0 -8 1.27 0.40 DETAIL A (1.4) TYPICAL 4220721/A 07/2016 NOTES: 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side. 5. Reference JEDEC registration MS-013. www.ti.com Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 37 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 EXAMPLE BOARD LAYOUT DW0016A SOIC - 2.65 mm max height SOIC 16X (2) SEE DETAILS SYMM 16 1 16X (0.6) SYMM 14X (1.27) 9 8 R0.05 TYP (9.3) LAND PATTERN EXAMPLE SCALE:7X METAL SOLDER MASK OPENING SOLDER MASK OPENING 0.07 MAX ALL AROUND METAL 0.07 MIN ALL AROUND SOLDER MASK DEFINED NON SOLDER MASK DEFINED SOLDER MASK DETAILS 4220721/A 07/2016 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com 38 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 EXAMPLE STENCIL DESIGN DW0016A SOIC - 2.65 mm max height SOIC 16X (2) SYMM 1 16 16X (0.6) SYMM 14X (1.27) 9 8 R0.05 TYP (9.3) SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:7X 4220721/A 07/2016 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 39 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 13.1 Package Option Addendum Packaging Information Package Type Package Drawing Pins Package Qty Eco Plan(2) ISO6760QDWR ACTIVE Q1 SOIC DW 16 2000 Green (RoHS & NIPDAU no Sb/Br) Level-2-260C-1 -40 to 125 YEAR ISO6760 ISO6760FQDW ACTIVE RQ1 SOIC DW 16 2000 Green (RoHS & NIPDAU no Sb/Br) Level-2-260C-1 -40 to 125 YEAR ISO6760 F ISO6761QDWR ACTIVE Q1 SOIC DW 16 2000 Green (RoHS & NIPDAU no Sb/Br) Level-2-260C-1 -40 to 125 YEAR ISO6761 ISO6761FQDW ACTIVE RQ1 SOIC DW 16 2000 Green (RoHS & NIPDAU no Sb/Br) Level-2-260C-1 -40 to 125 YEAR ISO6761 F ISO6762QDWR ACTIVE Q1 SOIC DW 16 2000 Green (RoHS & NIPDAU no Sb/Br) Level-2-260C-1 -40 to 125 YEAR ISO6762 ISO6762FQDW ACTIVE RQ1 SOIC DW 16 2000 Green (RoHS & NIPDAU no Sb/Br) Level-2-260C-1 -40 to 125 YEAR ISO6762 F ISO6763QDWR ACTIVE Q1 SOIC DW 16 2000 Green (RoHS & NIPDAU no Sb/Br) Level-2-260C-1 -40 to 125 YEAR ISO6763 ISO6763FQDW ACTIVE RQ1 SOIC DW 16 2000 Green (RoHS & NIPDAU no Sb/Br) Level-2-260C-1 -40 to 125 YEAR ISO6763 F Orderable Device 40 Status(1) Lead/Ball Finish(6) Submit Document Feedback MSL Peak Temp(3) Op Temp (°C) Device Marking(4) (5) Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 13.2 Tape and Reel Information REEL DIMENSIONS TAPE DIMENSIONS K0 P1 B0 W Reel Diameter Cavity A0 B0 K0 W P1 A0 Dimension designed to accommodate the component width Dimension designed to accommodate the component length Dimension designed to accommodate the component thickness Overall width of the carrier tape Pitch between successive cavity centers Reel Width (W1) QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE Sprocket Holes Q1 Q2 Q1 Q2 Q3 Q4 Q3 Q4 User Direction of Feed Pocket Quadrants Device Package Type Package Drawing Pins SPQ Reel Diameter (mm) Reel Width W1 (mm) A0 (mm) B0 (mm) K0 (mm) P1 (mm) W (mm) Pin1 Quadrant ISO6760QDWRQ1 SOIC DW 16 2000 330.0 24.4 10.9 10.7 2.7 12.0 24.0 Q1 ISO6760FQDWRQ1 SOIC DW 16 2000 330.0 24.4 10.9 10.7 2.7 12.0 24.0 Q1 ISO6761FQDWRQ1 SOIC DW 16 2000 330.0 24.4 10.9 10.7 2.7 12.0 24.0 Q1 ISO6761QDWRQ1 SOIC DW 16 2000 330.0 24.4 10.9 10.7 2.7 12.0 24.0 Q1 ISO6762FQDWRQ1 SOIC DW 16 2000 330.0 24.4 10.9 10.7 2.7 12.0 24.0 Q1 ISO6762QDWRQ1 SOIC DW 16 2000 330.0 24.4 10.9 10.7 2.7 12.0 24.0 Q1 ISO6763FQDWRQ1 SOIC DW 16 2000 330.0 24.4 10.9 10.7 2.7 12.0 24.0 Q1 ISO6763QDWRQ1 SOIC DW 16 2000 330.0 24.4 10.9 10.7 2.7 12.0 24.0 Q1 Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 41 ISO6760-Q1, ISO6761-Q1, ISO6762-Q1, ISO6763-Q1 www.ti.com.cn ZHCSLW8B – AUGUST 2021 – REVISED MAY 2022 TAPE AND REEL BOX DIMENSIONS Width (mm) L W 42 H Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) ISO6760QDWRQ1 SOIC DW 16 2000 367.0 367.0 45.0 ISO6760FQDWRQ1 SOIC DW 16 2000 367.0 367.0 45.0 ISO6761FQDWRQ1 SOIC DW 16 2000 367.0 367.0 45.0 ISO6761QDWRQ1 SOIC DW 16 2000 367.0 367.0 45.0 ISO6762FQDWRQ1 SOIC DW 16 2000 367.0 367.0 45.0 ISO6762QDWRQ1 SOIC DW 16 2000 367.0 367.0 45.0 ISO6763FQDWRQ1 SOIC DW 16 2000 367.0 367.0 45.0 ISO6763QDWRQ1 SOIC DW 16 2000 367.0 367.0 45.0 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISO6760-Q1 ISO6761-Q1 ISO6762-Q1 ISO6763-Q1 PACKAGE OPTION ADDENDUM www.ti.com 29-Apr-2022 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) ISO6760FQDWRQ1 ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO6760F ISO6760QDWRQ1 ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO6760 ISO6761FQDWRQ1 ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO6761F ISO6761QDWRQ1 ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO6761 ISO6762FQDWRQ1 ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO6762F ISO6762QDWRQ1 ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO6762 ISO6763FQDWRQ1 ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO6763F ISO6763QDWRQ1 ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO6763 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
ISO6760FQDWRQ1 价格&库存

很抱歉,暂时无法提供与“ISO6760FQDWRQ1”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ISO6760FQDWRQ1
    •  国内价格
    • 1000+8.47000

    库存:9760