www.ti.com
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A,
ISO7221B,
ISO7221M
SLLS755Q
– JULY 2006 ISO7221C,
– REVISED JANUARY
2021
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
ISO722x Dual-Channel Digital Isolators
1 Features
•
•
•
•
•
•
•
•
1, 5, 25, and 150-Mbps Signaling Rate Options
– Low Channel-to-Channel Output Skew;
1-ns Max
– Low Pulse-Width Distortion (PWD); 1-ns Max
– Low Jitter Content; 1 ns Typ at 150 Mbps
50 kV/μs Typical Transient Immunity
Operates with 2.8-V (C-Grade),
3.3-V, or 5-V Supplies
4-kV ESD Protection
High Electromagnetic Immunity
–40°C to +125°C Operating Range
Typical 28-Year Life at Rated Voltage
(see High-Voltage Lifetime of the ISO72x Family of
Digital Isolators and Isolation Capacitor Lifetime
Projection)
Safety-Related Certifications
– VDE Basic Insulation with 4000-VPK VIOTM, 560
VPK VIORM per DIN VDE V 0884-11:2017-01
and DIN EN 61010-1 (VDE 0411-1)
– 2500 VRMS Isolation per UL 1577
– CSA Approved for IEC 60950-1 and IEC
62368-1
2 Applications
•
•
•
•
Industrial Fieldbus
– Modbus
– Profibus™
– DeviceNet™ Data Buses
Computer Peripheral Interface
Servo Control Interface
Data Acquisition
3 Description
The ISO7220x and ISO7221x family devices are dualchannel digital isolators. To facilitate PCB layout, the
channels are oriented in the same direction in the
ISO7220x and in opposite directions in the ISO7221x.
These devices have a logic input and output buffer
separated by TI’s silicon-dioxide (SiO2) isolation
barrier, providing galvanic isolation of up to 4000 VPK
per VDE. Used in conjunction with isolated power
supplies, these devices block high voltage and isolate
grounds, as well as prevent noise currents on a data
bus or other circuits from entering the local ground
and interfering with or damaging sensitive circuitry.
isolation barrier. Across the isolation barrier, a
differential comparator receives the logic transition
information, then sets or resets a flip-flop and the
output circuit accordingly. A periodic update pulse is
sent across the barrier to ensure the proper dc level of
the output. If this dc-refresh pulse is not received
every 4 μs, the input is assumed to be unpowered or
not being actively driven, and the failsafe circuit drives
the output to a logic high state.
The small capacitance and resulting time constant
provide fast operation with signaling rates available
from 0 Mbps (DC) to 150 Mbps (The signaling rate of
a line is the number of voltage transitions that are
made per second expressed in the units bps). The Aoption, B-option, and C-option devices have TTL input
thresholds and a noise filter at the input that prevents
transient pulses from being passed to the output of
the device. The M-option devices have CMOS VCC/2
input thresholds and do not have the input noise filter
and the additional propagation delay.
The ISO7220x and ISO7221x family of devices
require two supply voltages of 2.8 V (C-Grade), 3.3 V,
5 V, or any combination. All inputs are 5-V tolerant
when supplied from a 2.8-V or 3.3-V supply and all
outputs are 4-mA CMOS.
The ISO7220x and ISO7221x family of devices are
characterized for operation over the ambient
temperature range of –40°C to +125°C.
Device Information (1)
PART NUMBER
PACKAGE
ISO7220x
SOIC (8)
ISO7221x
(1)
BODY SIZE (NOM)
4.90 mm × 3.91 mm
For all available packages, see the orderable addendum at
the end of the data sheet.
VCCI
Isolation
Capacitor
VCCO
INx
OUTx
GNDI
GNDO
VCCI and GNDI are supply and ground connections respectively
for the input channels.
VCCO and GNDO are supply and ground connections
respectively for the output channels.
Simplified Schematic
A binary input signal is conditioned, translated to a
balanced signal, then differentiated by the capacitive
An©IMPORTANT
NOTICEIncorporated
at the end of this data sheet addresses availability, warranty, changes, use in
safety-critical
applications,
Copyright
2021 Texas Instruments
Submit
Document
Feedback
intellectual property matters and other important disclaimers. PRODUCTION DATA.
1
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
www.ti.com
Table of Contents
1 Features............................................................................1
2 Applications..................................................................... 1
3 Description.......................................................................1
4 Revision History.............................................................. 2
5 Pin Configuration and Functions...................................6
6 Specifications.................................................................. 6
6.1 Absolute Maximum Ratings........................................ 6
6.2 ESD Ratings............................................................... 7
6.3 Recommended Operating Conditions.........................8
6.4 Thermal Information....................................................8
6.5 Power Ratings.............................................................8
6.6 Insulation Specifications............................................. 9
6.7 Safety-Related Certifications.................................... 10
6.8 Safety Limiting Values...............................................10
6.9 Electrical Characteristics—5-V VCC1 and VCC2
Supplies.......................................................................11
6.10 Electrical Characteristics—5-V VCC1 and 3.3-V
VCC2 Supply.................................................................12
6.11 Electrical Characteristics—3.3-V VCC1 and 5-V
VCC2 Supply.................................................................13
6.12 Electrical Characteristics—3.3-V VCC1 and
VCC2 Supplies..............................................................14
6.13 Electrical Characteristics—2.8-V VCC1 and
VCC2 Supplies..............................................................14
6.14 Switching Characteristics—5-V VCC1 and VCC2
Supplies.......................................................................16
6.15 Switching Characteristics—5-V VCC1 and 3.3-V
VCC2 Supply.................................................................17
6.16 Switching Characteristics—3.3-VCC1 and 5-V
VCC2 Supplies..............................................................18
6.17 Switching Characteristics—3.3-V VCC1 and
VCC2 Supplies..............................................................19
6.18 Switching Characteristics—2.8-V VCC1 and
VCC2 Supplies..............................................................19
6.19 Insulation Characteristics Curves........................... 20
6.20 Typical Characteristics............................................ 21
7 Parameter Measurement Information.......................... 23
8 Detailed Description......................................................25
8.1 Overview................................................................... 25
8.2 Functional Block Diagram......................................... 25
8.3 Feature Description...................................................26
8.4 Device Functional Modes..........................................26
9 Application and Implementation.................................. 27
9.1 Application Information............................................. 27
9.2 Typical Application.................................................... 27
10 Power Supply Recommendations..............................29
11 Layout........................................................................... 29
11.1 Layout Guidelines................................................... 29
11.2 Layout Example...................................................... 29
12 Device and Documentation Support..........................30
12.1 Device Support....................................................... 30
12.2 Documentation Support.......................................... 30
12.3 Related Links.......................................................... 30
12.4 Receiving Notification of Documentation Updates..30
12.5 Support Resources................................................. 30
12.6 Trademarks............................................................. 31
12.7 Electrostatic Discharge Caution..............................31
12.8 Glossary..................................................................31
13 Mechanical, Packaging, and Orderable
Information.................................................................... 31
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision P (August 2018) to Revision Q (January 2021)
Page
• Removed nominal specifications in the RECOMMENDED OPERATING CONDITIONS table.......................... 8
Changes from Revision O (April 2017) to Revision P (August 2018)
Page
• Changed (VDE V 0884-10):2006-12 to DIN VDE V 0884-11:2017-01 throughout the document...................... 1
• Changed CSA Approved for Component Acceptance Notice 5A and IEC 60950-1 to CSA Approved for IEC
60950-1 and IEC 62368-1 throughout the document......................................................................................... 1
• Added the basic insulation working voltage for CSA in the Safety-Related Certifications table....................... 10
• Changed the VDE certification number from 40016131 to 40047657 in the Safety-Related Certifications table
..........................................................................................................................................................................10
• Changed the maximum propagation delay and pulse-width distortion in each Switching Characteristics table ..
16
• Added ± 10% for the VCC1 and VCC2 voltages in the condition statement of the Switching Characteristics—5-V
VCC1 and VCC2 Supplies table ..........................................................................................................................16
• Changed ISO722x to ISO7220 for all part numbers for the Channel-to-channel output skew parameter in
each Switching Characteristic table..................................................................................................................16
2
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
Changes from Revision N (September 2015) to Revision O (April 2017)
Page
• Changed the Dissipation Characteristics table to Power Ratings. Combined the DIN V VDE V 0884-10 (VDE
V 0884-10):2006-12 Insulation Characteristics table IEC Package Characteristics, and IEC 60664-1 Ratings
Table in the Insulation Specifications table. Changed the Regulatory Information table to Safety-Related
Certifications ...................................................................................................................................................... 8
• Deleted the maximum surge voltage, 4000 VPK for VDE in the Safety-Related Certifications table................ 10
• Changed the CSA information in the Safety-Related Certifications table.........................................................10
Changes from Revision M (October 2014) to Revision N (September 2015)
Page
• Changed the VDE Cerification from: DIN EN 60747-5-5 (VDE 0884-5) to: DIN V VDE V 0884-10 (VDE V
0884-10):2006-12 throughout the document...................................................................................................... 1
• Updated the Simplified Schematic to a higher quality version............................................................................1
• Changed the max value of the IN and OUT voltage from 6 to VCC + 0.5 in the Absolute Maximum Ratings
table.................................................................................................................................................................... 6
• Changed L(I01) MIN value from 4.8 to 4 in the IEC Package Characteristics table........................................... 9
• Added the JEDEC package dimensions note in the IEC Package Characteristics table................................... 9
• Changed L(I01) MIN value from 4.8 to 4 in the IEC Package Characteristics table........................................... 9
• Added the DTI parameter to the IEC Package Characteristics table..................................................................9
• Changed the DTI test condition From: IEC 60112 / VDE 0303 Part 1 To: DIN EN 60112 (VDE 0303-11); IEC
60112.................................................................................................................................................................. 9
• Added = 150°C to insulation resistance test condition in the DIN V VDE V 0884-10 (VDE V 0884-10):2006-12
Insulation Characteristics table. .........................................................................................................................9
• Added table row with input side VCC = X to the ISO7220x or ISO7221x Function table.................................. 26
Changes from Revision L (January 2012) to Revision M (August 2014)
Page
• Changed the title of this data sheet to ISO722x Dual Channel Digital Isolators ................................................1
• Added Pin Configuration and Functions section, Handling Rating table, Dissipation Ratings table, Feature
Description section, Device Functional Modes, Application and Implementation section, Power Supply
Recommendations section, Layout section, Device and Documentation Support section, and Mechanical,
Packaging, and Orderable Information section, changed Thermal Information table ........................................1
• Updated the Features section ............................................................................................................................1
• Added per VDE to 4000 VPK in second sentence of Description .......................................................................1
• Updated the Regulatory Information Table......................................................................................................... 6
• Added the min and max values to the Storage temperature parameter in the Absolute Maximum Ratings
table.................................................................................................................................................................... 6
• Changed in ROC table Max col, VIH row from VCC to 5.5 .................................................................................8
• Changed the L(I01) parameter name to external clearance (CLR) and L(I02) to external creepage (CPG).
Also changed the input-to-output test voltage (VPR) parameter name to apparent charge (qpd) .......................9
• Changed the Device Options table, Input Threshold column from ≠ symbol to ~ symbol 6 places ................. 26
• Changed Isolation Glossary .............................................................................................................................30
Changes from Revision K (January 2010) to Revision L (January 2012)
Page
• Changed Feature From: Operates with 3.3-V or 5-V Supplies To: Operates with 2.8-V (C-Grade), 3.3-V or 5-V
Supplies.............................................................................................................................................................. 1
• Changed Feature From: 4000-Vpeak Isolation, 560 Vpeak VIORM To: 4000-VPK VIOTM, 560 VPK VIORM per IEC
60747-5-2 (VDE 0884, Rev2) ............................................................................................................................ 1
• Added device options to VCC in the RECOMMENDED OPERATING CONDITIONS table................................ 8
• Changed Note: (1) in the RECOMMENDED OPERATING CONDITIONS table................................................ 8
• Changed the CTI MIN value From: ≥175 V To: ≥400 V...................................................................................... 9
• Updated the Regulatory Information table........................................................................................................ 10
• Changed ICC1 and ICC2 test conditions in the 5-V table.................................................................................... 11
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
3
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
•
•
•
•
•
•
•
•
•
•
www.ti.com
Changed Table Note: (1)...................................................................................................................................11
Changed ICC1 and ICC2 test conditions in the VCC1 at 5 V, VCC2 at 3.3 V table.................................................12
Changed Table Note: (1)...................................................................................................................................12
Changed ICC1 and ICC2 test conditions in the VCC1 at 3.3 V, VCC2 at 5 V table.................................................13
Changed Table Note (1)....................................................................................................................................13
Changed ICC1 and ICC2 test conditions in the VCC1 and VCC2 at 3.3 V table.....................................................14
Changed Table Note (1)....................................................................................................................................14
Added ELECTRICAL and Switching CHARACTERISTICS table for VCC1 and VCC2 at 2.8 V (ISO722xC-Only)
..........................................................................................................................................................................14
Changed VCC Undervoltage Threshold vs Free-Air Temperature ....................................................................21
Changed Failsafe Delay Time Test Circuit and Voltage Waveforms ............................................................... 23
Changes from Revision J (May 2009) to Revision K ()
Page
• Changed the RECOMMENDED OPERATING CONDITIONS so that Note (2) is associated with all device
options in the Input pulse width and Signaling rate............................................................................................ 8
• Changed Note (2) From: Typical signaling rate under ideal conditions at 25°C. To: Typical signaling rate and
Input pulse width are measured at ideal conditions at 25°C...............................................................................8
• Changed column 2 of the AVAILABLE OPTIONS table From: Signaling Rate To: Max Signaling Rate........... 26
Changes from Revision I (December 2008) to Revision J ()
Page
• Changed ISO7221C Marked As column From: TI7221C To: I7221C in the AVAILABLE OPTIONS table....... 26
Changes from Revision H (May 2008) to Revision I ()
Page
• Added "IEC 61010-1, IEC 60950-1 and CSA Approved" to the UL 1577 FEATURES bullet..............................1
Changes from Revision G (March 2008) to Revision H ()
Page
• Added Note: (1) to the RECOMMENDED OPERATING CONDITIONS table.................................................... 8
• Added Note: (1) to the ELECTRICAL CHARACTERISTICS: VCC1 and VCC2 at 5-V table................................11
• Added Note: (1) to the ELECTRICAL CHARACTERISTICS: VCC1 at 5 V, VCC2 at 3.3 V table........................ 12
• Added Note (1): to the ELECTRICAL CHARACTERISTICS: VCC1 at 3.3 V, VCC2 at 5 V table........................ 13
• Added Note (1): to the ELECTRICAL CHARACTERISTICS: VCC1 and VCC2 at 3.3 V..................................... 14
Changes from Revision F (August 2007) to Revision G ()
Page
• Added Part Numbers ISO7220B and ISO7221B to the data sheet.................................................................... 1
• Added 5-Mbps Signaling rate to the FEATURES list.......................................................................................... 1
• Added Part Numbers ISO7220B and ISO7221B to the ELECTRICAL CHARACTERISTICS: VCC1 and VCC2 at
5-V table............................................................................................................................................................11
• Added Part Numbers ISO7220B and ISO7221B to the ELECTRICAL CHARACTERISTICS: VCC1 at 5 V, VCC2
at 3.3 V table.....................................................................................................................................................12
• Added Part Numbers ISO7220B and ISO7221B to the ELECTRICAL CHARACTERISTICS: VCC1 at 3.3 V,
VCC2 at 5 V table...............................................................................................................................................13
• Added Part Numbers ISO7220B and ISO7221B to the ELECTRICAL CHARACTERISTICS: VCC1 and VCC2 at
3.3 V................................................................................................................................................................. 14
• Added PROPAGATION DELAY vs FREE-AIR TEMPERATURE, ISO722xB, Propagation Delay vs Free-Air
Temperature, ISO722xB .................................................................................................................................. 21
• Added Part Numbers ISO7220B and ISO7221B to the AVAILABLE OPTIONS table...................................... 26
Changes from Revision E (July 2007) to Revision F ()
Page
• Added tsk(pp) footnote to the SWITCHING CHARACTERISTICS: VCC1 and VCC2 at 5-V OPERATION table.. 16
• Added tsk(o) footnote to the SWITCHING CHARACTERISTICS: VCC1 and VCC2 at 5-V OPERATION table.... 16
4
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
•
•
•
•
•
•
•
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
Added tsk(pp) footnote to the SWITCHING CHARACTERISTICS: VCC1 at 5 V, VCC2 at 3.3 V OPERATION table
..........................................................................................................................................................................17
Added tsk(o) footnote to the SWITCHING CHARACTERISTICS: VCC1 at 5 V, VCC2 at 3.3 V OPERATION table
..........................................................................................................................................................................17
Added tsk(pp) footnote to the SWITCHING CHARACTERISTICS: VCC1 at 3.3 V, VCC2 at 5 V OPERATION table
..........................................................................................................................................................................18
Added tsk(o) footnote to the SWITCHING CHARACTERISTICS: VCC1 at 3.3 V, VCC2 at 5 V OPERATION table
..........................................................................................................................................................................18
Added tsk(pp) footnote to the SWITCHING CHARACTERISTICS table.............................................................19
Changed 3.3-VRMS Supply Current vs Signaling Rate - Re-scaled the Y-axis..................................................21
Changed 5-VRMS Supply Current vs Signaling Rate - New Curves..................................................................21
Changes from Revision D (June 2007) to Revision E ()
Page
• Changed 3.3-VRMS Supply Current vs Signaling Rate - New Curves...............................................................21
• Changed 5-VRMS Supply Current vs Signaling Rate - Re-scaled the Y-axis ....................................................21
Changes from Revision C (May 2007) to Revision D ()
Page
• Changed Typical ISO7220x Circuit Hook-Up - Pin 2 (INA) label From: OUTPUT to INPUT............................ 28
Changes from Revision B (May 2007) to Revision C ()
Page
• Added the Signaling rate values to the RECOMMENDED OPERATING CONDITIONS table...........................8
• Changed the IEC 60664-1 RATINGS TABLE - Specification I-III test conditions From: Rated mains voltage
≤150 VRMS To: Rated mains voltage ≤300 VRMS. Added a row for the I-II specifications............................... 9
• Added ISO722xM Jitter vs Signaling Rate cross reference to the Peak-to-peak eye-pattern jitter of the
SWITCHING CHARACTERISTICS table......................................................................................................... 16
• Added Time-Dependent Dielectric Breakdown Test Results ........................................................................... 28
Changes from Revision A (August 2006) to Revision B ()
Page
• Added the TYPICAL CHARACTERISTIC CURVES to the data sheet............................................................. 21
• Added the PARAMETER MEASUREMENT INFORMATION to the data sheet................................................23
• Added the APPLICATION INFORMATION section to the data sheet...............................................................27
• Added the ISOLATION GLOSSARY section to the data sheet ........................................................................30
Changes from Revision * (July 2006) to Revision A ()
Page
• Deleted "and CSA Apporved" from the UL 1577 FEATURES bullet...................................................................1
• Added option A to the AVAILABLE OPTIONS table......................................................................................... 26
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
5
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
5 Pin Configuration and Functions
INA 2
INB 3
8 VCC2
ISOLATION
VCC1 1
7 OUTA
6 OUTB
5 GND2
GND1 4
Figure 5-1. ISO7220x D Package 8-Pin SOIC Top View
OUTA 2
INB 3
8 VCC2
ISOLATION
VCC1 1
GND1 4
7 INA
6 OUTB
5 GND2
Figure 5-2. ISO7221x D Package 8-Pin SOIC Top View
Table 5-1. Pin Functions
PIN
NAME
ISO7220x
ISO7221x
INA
2
7
INB
3
GND1
4
GND2
OUTA
I/O
DESCRIPTION
I
Input, channel A
3
I
Input, channel B
4
—
Ground connection for VCC1
5
5
—
Ground connection for VCC2
7
2
O
Output, channel A
OUTB
6
6
O
Output, channel B
VCC1
1
1
—
Power supply, VCC1
VCC2
8
8
—
Power supply, VCC2
6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted)(1)
MIN
MAX
UNIT
VCC
Supply voltage(2), VCC1, VCC2
–0.5
6
V
VI
Voltage at IN, OUT
–0.5
VCC + 0.5(3)
V
–15
IO
Output current
TJ
Maximum junction temperature
Tstg
Storage temperature
(1)
(2)
(3)
6
–65
15
mA
170
°C
150
°C
Stresses beyond those listed under Absolute Maximum Ratings can cause permanent damage to the device. These ratings are stress
ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended
Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods can affect device reliability.
All voltage values except differential I/O bus voltages are with respect to network ground pin and are peak voltage values.
Maximum voltage must not exceed 6 V.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
6.2 ESD Ratings
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all
V(ESD)
(1)
(2)
Electrostatic
discharge
pins(1)
VALUE
UNIT
±4000
V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2)
±1000
V
Machine Model, ANSI/ESDS5.2-1996
±200
V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
7
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
6.3 Recommended Operating Conditions
MIN
VCC
Supply voltage(2), VCC1, VCC2
IOH
High-level output current
IOL
Low-level output current
ISO722xA, ISO722xB, ISO722xM
ISO722xC
5.5
2.8
5.5
UNIT
V
mA
4
Signaling rate(1)
1/tui
MAX
–4
Input pulse width(1)
tui
NOM
3
ISO722xA
1
ISO722xB
200
ISO722xC
40
ISO722xM
6.67
ISO722xA
0
1000
ISO722xB
0
5
ISO722xC
0
25
ISO722xM
0
150
mA
μs
ns
kbps
Mbps
VIH
High-level input voltage
ISO722xA, ISO722xB, ISO722xC
2
5.5
V
VIL
Low-level input voltage
ISO722xA, ISO722xB, ISO722xC
0
0.8
V
VIH
High-level input voltage
ISO722xM
0.7 VCC
VCC
V
VIL
Low-level input voltage
ISO722xM
0
0.3 VCC
V
TJ
Junction temperature
–40
150
°C
H
External magnetic field-strength immunity per IEC 61000-4-8 and IEC 61000-4-9 certification
1000
A/m
(1)
(2)
Typical signaling rate and Input pulse width are measured at ideal conditions at 25°C.
For the 5-V operation, VCC1 or VCC2 is specified from 4.5 V to 5.5 V.
For the 3.3-V operation, VCC1 or VCC2 is specified from 3 V to 3.6 V.
For the 2.8-V operation, VCC1 or VCC2 is specified at 2.8 V.
6.4 Thermal Information
ISO7220x
ISO7221x
THERMAL METRIC(1)
UNIT
D (SOIC)
8 PINS
RθJA
Junction-to-ambient thermal resistance
Low-K Thermal
Resistance(2)
212
High-K Thermal Resistance
°C/W
122
RθJC(top)
Junction-to-case (top) thermal resistance
69.1
°C/W
RθJB
Junction-to-board thermal resistance
47.7
°C/W
ψJT
Junction-to-top characterization parameter
15.2
°C/W
ψJB
Junction-to-board characterization parameter
47.2
°C/W
RθJC(bot)
Junction-to-case (bottom) thermal resistance
—
°C/W
(1)
(2)
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.
Tested in accordance with the Low-K or High-K thermal metric definitions of EIA/JESD51-3 for leaded surface mount packages.
6.5 Power Ratings
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, Input a 150 Mbps 50% duty cycle square wave
PARAMETER
PD
8
Device power dissipation, ISO722xM
Submit Document Feedback
TEST CONDITIONS
MIN
TYP
MAX
UNIT
390
mW
Copyright © 2021 Texas Instruments Incorporated
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
6.6 Insulation Specifications
PARAMETER
TEST CONDITIONS
VALUE
UNIT
GENERAL
CLR
External clearance(1)
Shortest terminal-to-terminal distance through air
4
mm
CPG
External creepage(1)
Shortest terminal-to-terminal distance across the
package surface
4
mm
DTI
Distance through the insulation
Minimum internal gap (internal clearance)
0.008
mm
CTI
Comparative tracking index
DIN EN 60112 (VDE 0303-11); IEC 60112
400
V
Rated mains voltage ≤150 VRMS
I-IV
Rated mains voltage ≤300 VRMS
I-III
Rated mains voltage ≤400 VRMS
I-II
Material group
Overvoltage category
DIN VDE V
II
0884-11:2017-01(2)
VIORM
Maximum repetitive peak isolation voltage AC voltage (bipolar)
VIOTM
Maximum transient isolation voltage
qpd
Apparent
charge(3)
Barrier capacitance, input to output(4)
CIO
Isolation resistance, input to output(4)
RIO
VTEST = VIOTM
t = 60 s (qualification), t = 1 s (100% production)
560
VPK
4000
VPK
Method a: After I/O safety test subgroup 2/3, Vini =
VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM , tm = 10 s
≤5
Method a: After environmental tests subgroup 1,
Vini = VIOTM, tini = 60 s; Vpd(m) = 1.3 × VIORM, tm =
10 s
≤5
Method b1: At routine test (100% production) and
preconditioning (type test) Vini = VIOTM, tini = 1 s;
Vpd(m) = 1.5 × VIORM, tm = 1 s
≤5
VIO = 0.4 sin (4E6πt)
1
VIO = 500 V, TA = 25°C
>1012
VIO = 500 V, 100°C ≤ TA ≤ 125°C
>1011
VIO = 500 V at TS = 150°C
>109
Pollution degree
2
Climatic category
40/125/21
pC
pF
Ω
UL 1577
VISO
(1)
(2)
(3)
(4)
Withstand isolation voltage
VTEST = VISO = 2500 VRMS, t = 60 s (qualification);
VTEST = 1.2 × VISO = 3000 VRMS, t = 1 s (100%
production)
2500
VRMS
Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application.
Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the
isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in
certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these
specifications.
This coupler is suitable for basic electrical insulation only within the maximum operating ratings. Compliance with the safety ratings
shall be ensured by means of suitable protective circuits.
Apparent charge is electrical discharge caused by a partial discharge (pd).
All pins on each side of the barrier tied together creating a two-terminal device
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
9
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
6.7 Safety-Related Certifications
VDE
CSA
UL
Certified according to DIN VDE V
0884-11:2017-01 and DIN EN 61010-1 (VDE
0411-1):2011-07
Certified according to IEC 60950-1 and IEC
62368-1
Recognized under UL 1577 Component
Recognition Program
Basic Insulation
Maximum Transient Overvoltage, 4000 VPK;
Maximum Repetitive Peak Isolation Voltage,
560 VPK
2000 VRMS Isolation rating
400 VRMS Basic insulation and 148 VRMS
Reinforced insulation working voltage per CSA
60950-1-07+A1+A2 and IEC 60950-1 2nd Ed.
+A1+A2.
300 VRMS Basic insulation working voltage per
CSA 62369-1-14 and IEC 62368-1:2014 Ed. 2.
Single protection, 2500 VRMS
Certificate number: 40047657
Master contract number: 220991
File number: E181974
6.8 Safety Limiting Values
Safety limiting(1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure
of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat
the die and damage the isolation barrier, potentially leading to secondary system failures.
PARAMETER
IS
TS
(1)
10
Safety input, output, or supply
current
Safety temperature
TEST CONDITIONS
MIN
TYP
MAX
RθJA = 212°C/W, VI = 5.5 V, TJ = 170°C, TA = 25°C, see
Figure 6-1
124
RθJA = 212°C/W, VI = 3.6 V, TJ = 170°C, TA = 25°C, see
Figure 6-1
190
UNIT
mA
150
°C
The safety-limiting constraint is the maximum junction temperature specified in the data sheet. The power dissipation and junction-toair thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junctionto-air thermal resistance in the Section 6.4 table is that of a device installed on a high-K test board for leaded surface-mount packages.
The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature
plus the power times the junction-to-air thermal resistance.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
6.9 Electrical Characteristics—5-V VCC1 and VCC2 Supplies
VCC1 and VCC2 at 5 V ± 10% (over recommended operating conditions unless otherwise noted.)
PARAMETER
TEST CONDITIONS
MIN
ISO7220x quiescent, VI = VCC or 0 V, no load
ICC1
VCC1 supply current
VCC2 supply current
VOH
High-level output voltage
VOL
Low-level output voltage
VI(HYS)
Input voltage hysteresis
IIH
High-level input current
1
2
8.5
17
ISO7220A and ISO7220B 1 Mbps, 0.5-MHz
input clock signal, no load
2
3
10
18
4
9
ISO7221C and ISO7221M 25 Mbps, 12.5-MHz
input clock signal, no load
12
22
ISO7220x quiescent, VI = VCC or 0 V, no load
16
31
ISO7221x quiescent, VI = VCC or 0 V, no load
8.5
17
ISO7220A and ISO7220B 1 Mbps, 0.5-MHz
input clock signal, no load
17
32
ISO7221A, ISO7221B 1 Mbps, 0.5-MHz input
clock signal, no load
10
18
ISO7220C, ISO7220M 25 Mbps, 12.5-MHz
input clock signal, no load
20
34
ISO7221C and ISO7221M 25 Mbps, 12.5-MHz
input clock signal, no load
12
22
mA
VCC – 0.8
4.6
VCC – 0.1
5
V
IOL = 4 mA, See Figure 7-1
0.2
0.4
IOL = 20 μA, See Figure 7-1
0
0.1
150
IN from 0 V to VCC
Low-level input current
IN from 0 V to VCC
IN at VCC, VI = 0.4 sin (4E6πt)
CMTI
Common-mode transient immunity
VI = VCC or 0 V, See Figure 7-3
mA
mA
IOH = –20 μA, See Figure 7-1
Input capacitance to ground
mA
mA
IOH = –4 mA, See Figure 7-1
CI
UNIT
mA
ISO7221A, ISO7221B 1 Mbps, 0.5-MHz input
clock signal, no load
IIL
Copyright © 2021 Texas Instruments Incorporated
MAX
ISO7221 quiescent, VI = VCC or 0 V, no load
ISO7220C, ISO7220M 25 Mbps, 12.5-MHz
input clock signal, no load
ICC2
TYP
mV
10
–10
25
V
μA
μA
1
pF
50
kV/μs
Submit Document Feedback
11
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
6.10 Electrical Characteristics—5-V VCC1 and 3.3-V VCC2 Supply
VCC1 at 5 V ± 10%, VCC2 at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted.)
PARAMETER
ICC1
ICC2
VOH
VOL
VCC1 supply current
VCC2 supply current
High-level output voltage
Low-level output voltage
VI(HYS)
Input voltage hysteresis
IIH
High-level input current
TYP
MAX
ISO7220x quiescent, VI = VCC or 0 V, no load
TEST CONDITIONS
1
2
ISO7221x quiescent, VI = VCC or 0 V, no load
8.5
17
ISO7220A and ISO7220B 1 Mbps, 0.5-MHz input
clock signal, no load
2
3
ISO7221A and ISO7221B 1 Mbps, 0.5-MHz input
clock signal, no load
10
18
ISO7220C and ISO7220M 25 Mbps, 12.5-MHz
input clock signal, no load
4
9
ISO7221C and ISO7221M 25 Mbps, 12.5-MHz
input clock signal, no load
12
22
8
18
4.3
9.5
ISO7220A and ISO7220B 1 Mbps, 0.5-MHz input
clock signal, no load
9
19
ISO7221A and ISO7221B 1 Mbps, 0.5-MHz input
clock signal, no load
5
11
ISO7220C and ISO7220M 25 Mbps, 12.5-MHz
input clock signal, no load
10
20
ISO7221C and ISO7221M 25 Mbps, 12.5-MHz
input clock signal, no load
6
12
ISO7221x (5-V side), IOH = –4 mA, See Figure 7-1
VCC – 0.8
All devices, IOH = –20 μA, See Figure 7-1
VCC – 0.1
V
IOL = 4 mA, See Figure 7-1
0.4
IOL = 20 μA, See Figure 7-1
0.1
150
IN from 0 V to VCC
IN from 0 V to VCC
IN at VCC, VI = 0.4 sin (4E6πt)
CMTI
Common-mode transient immunity
VI = VCC or 0 V, See Figure 7-3
Submit Document Feedback
mA
VCC – 0.4
Low-level input current
mA
mA
ISO7220x, ISO7221x (3.3-V side), IOH = –4 mA,
See Figure 7-1
Input capacitance to ground
mA
mA
ISO7221x quiescent, VI = VCC or 0 V, no load
CI
UNIT
mA
ISO7220x quiescent, VI = VCC or 0 V, no load
IIL
12
MIN
mV
10
–10
15
V
μA
μA
1
pF
40
kV/μs
Copyright © 2021 Texas Instruments Incorporated
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
6.11 Electrical Characteristics—3.3-V VCC1 and 5-V VCC2 Supply
VCC1 at 3.3 V ± 10%, VCC2 at 5 V ± 10% (over recommended operating conditions unless otherwise noted.)
PARAMETER
ICC1
ICC2
VOH
VCC1 supply current
VCC2 supply current
High-level output voltage
VOL
Low-level output voltage
VI(HYS)
Input threshold voltage hysteresis
IIH
High-level input current
TYP
MAX
ISO7220x quiescent, VI = VCC or 0 V, no load
TEST CONDITIONS
0.6
1
ISO7221x quiescent, VI = VCC or 0 V, no load
4.3
9.5
ISO7220A and ISO7220B 1 Mbps, 0.5-MHz input clock signal,
no load
1
2
ISO7221A and ISO7221B 1 Mbps, 0.5-MHz input clock signal,
no load
5
11
ISO7220C and ISO7220M 25 Mbps, 12.5-MHz input clock
signal, no load
2
4
ISO7221C and ISO7221M 25 Mbps, 12.5-MHz input clock
signal, no load
6
12
ISO7220x quiescent, VI = VCC or 0 V, no load
16
31
ISO7221x quiescent, VI = VCC or 0 V, no load
8.5
17
ISO7220A and ISO7220B 1 Mbps, 0.5-MHz input clock signal,
no load
18
32
ISO7221A and ISO7221B 1 Mbps, 0.5-MHz input clock signal,
no load
10
18
ISO7220C and ISO7220M 25 Mbps, 12.5-MHz input clock
signal, no load
20
34
ISO7221C and ISO7221M 25 Mbps, 12.5-MHz input clock
signal, no load
12
22
mA
VCC – 0.4
All devices, IOH = –20 μA, See Figure 7-1
VCC – 0.1
V
IOL = 4 mA, See Figure 7-1
0.4
IOL = 20 μA, See Figure 7-1
0
0.1
150
IN from 0 V or VCC
Low-level input current
IN from 0 V or VCC
IN at VCC, VI = 0.4 sin (4E6πt)
CMTI
Common-mode transient immunity
VI = VCC or 0 V, See Figure 7-3
mA
mA
ISO7221x (3.3-V side), IOH = –4 mA, See Figure 7-1
Input capacitance to ground
mA
mA
VCC – 0.8
CI
UNIT
mA
ISO7220x and ISO7221x (5-V side), IOH = –4 mA, See Figure
7-1
IIL
Copyright © 2021 Texas Instruments Incorporated
MIN
mV
10
–10
15
μA
μA
1
pF
40
kV/μs
Submit Document Feedback
13
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
6.12 Electrical Characteristics—3.3-V VCC1 and VCC2 Supplies
VCC1 and VCC2 at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted.)(1)
PARAMETER
ICC1
VCC2 supply current
ICC2
VCC2 supply current
TYP
MAX
ISO7220x quiescent, VI = VCC or 0 V, no load
TEST CONDITIONS
0.6
1
ISO7221x quiescent, VI = VCC or 0 V, no load
4.3
9.5
ISO7220A and ISO7220B 1 Mbps, 0.5-MHz input clock signal,
no load
1
2
ISO7221A and ISO7221B 1 Mbps, 0.5-MHz input clock signal,
no load
5
11
ISO7220C and ISO7220M 25 Mbps, 12.5-MHz input clock
signal, no load
2
4
ISO7221C and ISO7221M 25 Mbps, 12.5-MHz input clock
signal, no load
6
12
8
18
4.3
9.5
ISO7220A and ISO7220B 1 Mbps, 0.5-MHz input clock signal,
no load
9
19
ISO7221A and ISO7221B 1 Mbps, 0.5-MHz input clock signal,
no load
5
11
ISO7220C and ISO7220M 25 Mbps, 12.5-MHz input clock
signal, no load
10
20
ISO7221C and ISO7221M 25 Mbps, 12.5-MHz input clock
signal, no load
6
12
mA
IOH = –4 mA, See Figure 7-1
VCC – 0.4
3
VCC – 0.1
3.3
Low-level output voltage
VI(HYS)
Input voltage hysteresis
IIH
High-level input current
IN from 0 V or VCC
IIL
Low-level input current
IN from 0 V or VCC
CI
Input capacitance to ground
IN at VCC, VI = 0.4 sin (4E6πt)
CMTI
Common-mode transient immunity
VI = VCC or 0 V, See Figure 7-3
mA
mA
IOH = –20 μA, See Figure 7-1
VOL
mA
mA
ISO7220x quiescent, VI = VCC or 0 V, no load
High-level output voltage
UNIT
mA
ISO7221x quiescent, VI = VCC or 0 V, no load
VOH
(1)
MIN
IOL = 4 mA, See Figure 7-1
IOL = 20 μA, See Figure 7-1
0.2
0.4
0
0.1
150
mV
10
–10
15
V
μA
μA
1
pF
40
kV/μs
For the 3.3-V operation, VCC1 or VCC2 is specified from 3 V to 3.6 V.
6.13 Electrical Characteristics—2.8-V VCC1 and VCC2 Supplies
VCC1 and VCC2 at 2.8 V (over recommended operating conditions unless otherwise noted.) 2.8-V operation is only specified
for ISO722xC with production screening starting in January 2012. The first two digits of the Lot Trace Code (YMSLLLLG4)
written on top of each device can be used to identify year and month of production respectively.
PARAMETER
ICC1
ICC2
VOH
VCC1 supply current
VCC2 supply current
High-level output voltage
TYP
MAX
ISO7220C quiescent, VI = VCC or 0 V, no load
TEST CONDITIONS
0.4
0.9
ISO7221C quiescent, VI = VCC or 0 V, no load
3.7
7.5
ISO7220C 25 Mbps, 12.5-MHz input clock signal, no load
1.5
3.5
ISO7221C 25 Mbps, 12.5-MHz input clock signal, no load
4.5
10
ISO7220C quiescent, VI = VCC or 0 V, no load
6.8
15
ISO7221C quiescent, VI = VCC or 0 V, no load
3.7
7.5
ISO7220C 25 Mbps, 12.5-MHz input clock signal, no load
9
17
ISO7221C 25 Mbps, 12.5-MHz input clock signal, no load
4.5
10
IOH = –4 mA, See Figure 7-1
VCC – 0.6
IOH = –20 μA, See Figure 7-1
VCC – 0.1
IOL = 4 mA, See Figure 7-1
VOL
Low-level output voltage
VI(HYS)
Input voltage hysteresis
IIH
High-level input current
IN from 0 V or VCC
IIL
Low-level input current
IN from 0 V or VCC
14
Submit Document Feedback
MIN
IOL = 20 μA, See Figure 7-1
mA
mA
mA
mA
2.55
2.8
0.25
0.6
0
0.1
150
V
mV
10
–10
UNIT
μA
μA
Copyright © 2021 Texas Instruments Incorporated
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
VCC1 and VCC2 at 2.8 V (over recommended operating conditions unless otherwise noted.) 2.8-V operation is only specified
for ISO722xC with production screening starting in January 2012. The first two digits of the Lot Trace Code (YMSLLLLG4)
written on top of each device can be used to identify year and month of production respectively.
PARAMETER
TEST CONDITIONS
CI
Input capacitance to ground
IN at VCC, VI = 0.4 sin (4E6πt)
CMTI
Common-mode transient immunity
VI = VCC or 0 V, See Figure 7-3
Copyright © 2021 Texas Instruments Incorporated
MIN
10
TYP
MAX
UNIT
1
pF
30
kV/μs
Submit Document Feedback
15
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
6.14 Switching Characteristics—5-V VCC1 and VCC2 Supplies
VCC1 and VCC2 at 5 V ± 10% (over recommended operating conditions unless otherwise noted.)
PARAMETER
TEST CONDITIONS
tPLH, tPHL
Propagation delay
PWD
Pulse-width distortion |tPHL – tPLH|(1)
tPLH, tPHL
Propagation delay
tPLH|(1)
PWD
Pulse-width distortion |tPHL –
tPLH, tPHL
Propagation delay
PWD
Pulse-width distortion |tPHL – tPLH|(1)
tPLH, tPHL
Propagation delay
PWD
Pulse-width distortion |tPHL – tPLH|(1)
tsk(pp)
Part-to-part skew (2)
ISO722xA, see Figure 7-1
ISO722xB, see Figure 7-1
ISO722xC, see Figure 7-1
MIN
TYP
MAX
UNIT
280
405
600
ns
1
18
ns
42
55
70
ns
1
3
ns
22
32
42
ns
1
2
ns
10
16
ns
0.5
1
ns
6
ISO722xM, see Figure 7-1
ISO722xA
180
ISO722xB
17
ISO722xC
10
ISO722xM
tsk(o)
Channel-to-channel output skew (3)
tr
Output signal rise time
tf
Output signal fall time
tfs
Failsafe output delay time from input power
loss
tjit(pp)
Peak-to-peak eye-pattern jitter
(1)
(2)
(3)
16
ns
3
ISO7220A
3
15
ISO7220B
0.6
3
ISO7220C, ISO7220M
0.2
1
ns
1
ns
1
ns
See Figure 7-2
3
μs
ISO722xM, 150 Mbps PRBS NRZ data, 5-bit max same
polarity input, both channels, See Figure 7-4, Figure 6-13
1
ISO722xM, 150 Mbps unrestricted bit run length data
input, both channels, See Figure 7-4
2
See Figure 7-1
ns
Also referred to as pulse skew.
tsk(pp) is the magnitude of the difference in propagation delay times between any specified pins of two devices when both devices
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.
tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the
same direction while driving identical specified loads.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
6.15 Switching Characteristics—5-V VCC1 and 3.3-V VCC2 Supply
VCC1 at 5 V ± 10%, VCC2 at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted.)
PARAMETER
TEST CONDITIONS
tPLH, tPHL
Propagation delay
PWD
Pulse-width distortion |tPHL – tPLH|(1)
tPLH, tPHL
Propagation delay
|(1)
PWD
Pulse-width distortion |tPHL – tPLH
tPLH, tPHL
Propagation delay
PWD
Pulse-width distortion |tPHL – tPLH|(1)
tPLH, tPHL
Propagation delay
PWD
Pulse-width distortion |tPHL – tPLH|(1)
tsk(pp)
Part-to-part skew (2)
ISO722xA, see Figure 7-1
ISO722xB, see Figure 7-1
ISO722xC, see Figure 7-1
ISO722xM, see Figure 7-1
MIN
TYP
MAX
UNIT
285
410
585
ns
1
18
ns
45
58
75
ns
1
3
ns
25
36
48
ns
1
2
ns
12
20
ns
0.5
1
ns
7
ISO722xA
180
ISO722xB
17
ISO722xC
10
ISO722xM
tsk(o)
Channel-to-channel output skew (3)
tr
Output signal rise time
tf
Output signal fall time
tfs
Failsafe output delay time from input power
loss
tjit(pp)
(1)
(2)
(3)
Peak-to-peak eye-pattern jitter
ns
5
ISO7220A
3
15
ISO7220B
0.6
3
ISO7220C, ISO7220M
0.2
1
ns
2
ns
2
ns
See Figure 7-2
3
μs
ISO722xM, 150 Mbps PRBS NRZ data, 5-bit max same
polarity input, both channels, See Figure 7-4, Figure
6-13
1
ISO722xM, 150 Mbps unrestricted bit run length data
input, both channels, See Figure 7-4
2
See Figure 7-1
ns
Also referred to as pulse skew.
tsk(pp) is the magnitude of the difference in propagation delay times between any specified pins of two devices when both devices
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.
tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the
same direction while driving identical specified loads.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
17
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
6.16 Switching Characteristics—3.3-VCC1 and 5-V VCC2 Supplies
VCC1 at 3.3 V ± 10%, VCC2 at 5 V ± 10% (over recommended operating conditions unless otherwise noted.)
PARAMETER
TEST CONDITIONS
tPLH, tPHL
Propagation delay
PWD
Pulse-width distortion |tPHL – tPLH|(1)
tPLH, tPHL
Propagation delay
tPLH|(1)
PWD
Pulse-width distortion |tPHL –
tPLH, tPHL
Propagation delay
PWD
Pulse-width distortion |tPHL – tPLH|(1)
tPLH, tPHL
Propagation delay
PWD
Pulse-width distortion |tPHL – tPLH|(1)
tsk(pp)
Part-to-part skew (2)
ISO722xA, see Figure 7-1
ISO722xB, see Figure 7-1
ISO722xC, see Figure 7-1
MIN
TYP
MAX
UNIT
285
395
605
ns
1
22
ns
45
58
75
ns
1
4
ns
25
36
48
ns
1
3
ns
12
21
ns
0.5
1
ns
7
ISO722xM, see Figure 7-1
ISO722xA
190
ISO722xB
17
ISO722xC
10
ISO722xM
tsk(o)
Channel-to-channel output skew (3)
tr
Output signal rise time
tf
Output signal fall time
tfs
Failsafe output delay time from input power
loss
tjit(pp)
Peak-to-peak eye-pattern jitter
(1)
(2)
(3)
18
ns
5
ISO7220A
3
15
ISO7220B
0.6
3
ISO7220C, ISO7220M
0.2
1
ns
1
ns
1
ns
See Figure 7-2
3
μs
ISO722xM, 150 Mbps PRBS NRZ data, 5-bit max same
polarity input, both channels, see Figure 7-4, Figure 6-13
1
ISO722xM, 150 Mbps unrestricted bit run length data
input, both channels, see Figure 7-4
2
See Figure 7-1
ns
Also referred to as pulse skew.
tsk(pp) is the magnitude of the difference in propagation delay times between any specified pins of two devices when both devices
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.
tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the
same direction while driving identical specified loads.
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
6.17 Switching Characteristics—3.3-V VCC1 and VCC2 Supplies
VCC1 and VCC2 at 3.3 V ± 10% (over recommended operating conditions unless otherwise noted.)
PARAMETER
TEST CONDITIONS
tPLH, tPHL
Propagation delay
PWD
Pulse-width distortion |tPHL – tPLH|(1)
tPLH, tPHL
Propagation delay
tPLH|(1)
PWD
Pulse-width distortion |tPHL –
tPLH, tPHL
Propagation delay
PWD
Pulse-width distortion |tPHL – tPLH|(1)
tPLH, tPHL
Propagation delay
PWD
Pulse-width distortion |tPHL – tPLH|(1)
Part-to-part skew(2)
tsk(pp)
ISO722xA, see Figure 7-1
ISO722xB, see Figure 7-1
ISO722xC, see Figure 7-1
ISO722xM, see Figure 7-1
MIN
TYP
MAX
UNIT
290
400
610
ns
1
22
ns
46
62
78
ns
1
4
ns
26
40
52
ns
1
3
ns
16
25
ns
0.5
1
ns
8
ISO722xA
190
ISO722xB
17
ISO722xC
10
ISO722xM
Channel-to-channel output skew (3)
tsk(o)
tr
Output signal rise time
tf
Output signal fall time
tfs
Failsafe output delay time from input power
loss
tjit(pp)
(1)
(2)
(3)
Peak-to-peak eye-pattern jitter
ns
5
ISO7220A
3
15
ISO7220B
0.6
3
ISO7220C, ISO7220M
0.2
1
ns
2
ns
2
ns
See Figure 7-2
3
μs
ISO722xM, 150 Mbps PRBS NRZ data, 5-bit max same
polarity input, both channels, See Figure 7-4, Figure
6-13
1
ISO722xM, 150 Mbps unrestricted bit run length data
input, both channels, See Figure 7-4
2
See Figure 7-1
ns
Also referred to as pulse skew.
tsk(pp) is the magnitude of the difference in propagation delay times between any specified pins of two devices when both devices
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.
tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the
same direction while driving identical specified loads.
6.18 Switching Characteristics—2.8-V VCC1 and VCC2 Supplies
VCC1 and VCC2 at 2.8 V (over recommended operating conditions unless otherwise noted.)
PARAMETER
TEST CONDITIONS
tPLH, tPHL
Propagation delay
PWD
Pulse-width distortion |tPHL – tPLH|(1)
tsk(pp)
Part-to-part skew(2)
ISO722xC
tsk(o)
Channel-to-channel output skew (3)
ISO7220C
tr
Output signal rise time
tf
Output signal fall time
tfs
Failsafe output delay time from input power
loss
(1)
(2)
(3)
ISO722xC, see Figure 7-1
See Figure 7-1
See Figure 7-2
MIN
TYP
MAX
26
45
65
ns
1.5
5
ns
12
ns
5
ns
0.2
UNIT
2
ns
2
ns
4.6
μs
Also referred to as pulse skew.
tsk(pp) is the magnitude of the difference in propagation delay times between any specified pins of two devices when both devices
operate with the same supply voltages, at the same temperature, and have identical packages and test circuits.
tsk(o) is the skew between specified outputs of a single device with all driving inputs connected together and the outputs switching in the
same direction while driving identical specified loads.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
19
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
www.ti.com
6.19 Insulation Characteristics Curves
250
Safety Limiting Current - mA
225
VCC1,2 at 3.6 V
200
175
150
125
VCC1,2 at 5.5 V
100
75
50
25
0
0
50
100
150
TC - Case Temperature - °C
200
Figure 6-1. Thermal Derating Curve for Limiting Current per VDE
20
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
6.20 Typical Characteristics
20
30
TA = 25°C,
15 pF Load
18
26
16
ISO7220x ICC2
12
10
ISO7221x ICC1&2
8
6
4
ISO7220x ICC1
22
20
ISO7221x ICC1&2
18
16
14
12
10
ISO7220x ICC1
8
6
4
2
2
0
0
0
25
50
75
100
0
25
Signaling Rate - Mbps
Figure 6-2. 3.3-VRMS Supply Current vs Signaling
Rate (Mbps)
50
75
Signaling Rate - Mbps
100
Figure 6-3. 5-VRMS Supply Current vs Signaling
Rate (Mbps)
450
70
TA = 25°C,
15 pF Load
15 pF Load
440
65
Propagation Delay - ns
430
Propagation Delay - ns
ISO7220x ICC2
24
14
ICC - Supply Current - mA
ICC - Supply Current - mA
TA = 25°C,
15 pF Load
28
420
VCC = 3.3 V
410
tpLH & tpHL
400
VCC = 5 V
390
tpLH & tpHL
380
370
tPLH & tPHL
VCC = 3.3 V
60
VCC = 5 V
55
tPLH & tPHL
50
360
350
-40
-15
10
35
60
85
45
-40
110 125
25
Temperature - °C
Temperature - °C
Figure 6-4. Propagation Delay vs Free-Air
Temperature, ISO722xA
Figure 6-5. Propagation Delay vs Free-Air
Temperature, ISO722xB
30
20
VCC = 3.3 V
25
VCC = 3.3 V
tpLH & tpHL
15
Propagation Delay - ns
Propagation Delay - ns
125
20
15
tpLH & tpHL
VCC = 5 V
10
tpLH & tpHL
10
tpLH & tpHL
VCC = 5 V
5
5
0
-40
15 pF Load
-15
10
35
60
85
110 125
Temperature - °C
Figure 6-6. Propagation Delay vs Free-Air
Temperature, ISO722xC
Copyright © 2021 Texas Instruments Incorporated
15 pF Load
0
-40
-15
10
35
60
85
110 125
Temperature - °C
Figure 6-7. Propagation Delay vs Free-Air
Temperature, ISO722xM
Submit Document Feedback
21
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
2.5
1.4
2.4
5-V Vth+
1.35
5-V Vth+
1.3
Input Voltage Threshold - V
Input Voltage Threshold - V
2.3
3.3-V Vth+
1.25
15 pF Load
1.2
1.15
5-V Vth1.1
2.2
5-V Vth-
2.1
2
15 pF Load
1.9
1.8
3.3-V Vth+
1.7
1.6
1.05
1.5
3.3-V Vth-40 -25 -10
5
20
35
50
65
80
95
3.3-V Vth-
1.4
-40 -25 -10
1
110 125
5
20
35
50
65
80
95
110 125
Temperature - °C
Temperature - °C
Figure 6-9. ISO722xM Input Voltage High-to-Low vs
Figure 6-8. ISO722xA, ISO722xB and ISO722xC
Free-Air Temperature
Input Voltage Low-to-High Switching Threshold vs
Free-Air Temperature
-80
15 pF Load
TA = 25°C
-70
2.64
-60
VCC = 5 V
VCC Rising
-50
2.6
IOUT - mA
Power Supply Undervoltage Threshold - V
2.68
2.56
-40
-30
VCC Falling
VCC = 3.3 V
-20
2.52
-10
2.48
-40 -25 -10
0
5
20
35
50
65
80
95
110 125
0
2
Free-Air Temperature - °C
Figure 6-10. VCC Undervoltage Threshold vs FreeAir Temperature
6
Figure 6-11. High-Level Output Current vs HighLevel Output Voltage
70
2000
15 pF Load
TA = 25°C
60
15 pF Load
TA = 25°C
1800
VCC = 5 V
1600
50
1400
1200
40
Jitter − ps
IOUT - mA
4
VOUT - V
VCC = 3.3 V
30
VCC1 = VCC2 = 5 V
1000
800
600
20
VCC1 = VCC2 = 3.3 V
400
10
200
0
0
0
1
2
3
4
5
VOUT - V
Figure 6-12. Low-Level Output Current vs LowLevel Output Voltage
22
Submit Document Feedback
0
50
100
150
200
Signaling Rate - Mbps
Figure 6-13. ISO722xM Jitter vs Signaling Rate
Copyright © 2021 Texas Instruments Incorporated
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
ISOLATION BARRIER
7 Parameter Measurement Information
IN
Input
Generator
VI
50 W
NOTE A
VCC
VI
VCC/2
VCC/2
OUT
0V
tPHL
tPLH
CL
NOTE B
VO
VO
VOH
90%
50%
50%
10%
tr
tf
VOL
A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3 ns, tf ≤ 3 ns, ZO =
50 Ω.
B. CL = 15 pF and includes instrumentation and fixture capacitance within ± 20%.
Figure 7-1. Switching Characteristic Test Circuit and Voltage Waveforms
VI
ISOLATION BARRIER
VCC
IN = 0 V
VCC
OUT
VI
2.7 V
VO
0V
VOH
tfs
CL
NOTE A
VO
FAILSAFE HIGH
VOL
50%
A. CL = 15 pF and includes instrumentation and fixture capacitance within ± 20%.
Figure 7-2. Failsafe Delay Time Test Circuit and Voltage Waveforms
VCCI
VCCO
S1
Isolation Barrier
C = 0.1 µF ±1%
IN
C = 0.1 µF ±1%
Pass-fail criteria:
The output must
remain stable.
OUT
+
EN
CL
See Note A
GNDI
+
VCM ±
VOH or VOL
±
GNDO
Copyright © 2016, Texas Instruments Incorporated
A. CL = 15 pF and includes instrumentation and fixture capacitance within ± 20%.
Figure 7-3. Common-Mode Transient Immunity Test Circuit
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
23
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
VCC
DUT
Tektronix
HFS9009
IN
OUT
0V
Tektronix
784D
PATTERN
GENERATOR
VCC/2
Jitter
PRBS bit pattern run length is 216 – 1. Transition time is 800 ps.
Figure 7-4. Peak-to-Peak Eye-Pattern Jitter Test Circuit and Voltage Waveform
24
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
8 Detailed Description
8.1 Overview
The isolator in theSection 8.2 is based on a capacitive isolation barrier technique. The I/O channel of the
ISO7220x and ISO7221x family of devices consists of two internal data channels, a high-frequency channel (HF)
with a bandwidth from 100 kbps up to 150 Mbps, and a low-frequency channel (LF) covering the range from 100
kbps down to DC. In principle, a single-ended input signal entering the HF-channel is split into a differential
signal via the inverter gate at the input. The following capacitor-resistor networks differentiate the signal into
transients, which then are converted into differential pulses by two comparators. The comparator outputs drive a
NOR-gate flip-flop whose output feeds an output multiplexer. A decision logic (DCL) at the driving output of the
flip-flop measures the durations between signal transients. If the duration between two consecutive transients
exceeds a certain time limit, (as in the case of a low-frequency signal), the DCL forces the output-multiplexer to
switch from the high-frequency to the low-frequency channel.
Because low-frequency input signals require the internal capacitors to assume prohibitively large values, these
signals are pulse-width modulated (PWM) with the carrier frequency of an internal oscillator, thus creating a
sufficiently high frequency signal, capable of passing the capacitive barrier. As the input is modulated, a lowpass filter (LPF) is needed to remove the high-frequency carrier from the actual data before passing it on to the
output multiplexer.
8.2 Functional Block Diagram
Isolation Barrier
OSC
LPF
Low t Frequency
Channel
(DC...100 kbps)
PWM
VREF
0
OUT
1 S
IN
DCL
High t Frequency
Channel
(100 kbps...150 Mbps)
VREF
Copyright © 2016, Texas Instruments Incorporated
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
25
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
8.3 Feature Description
Table 8-1 provides an overview of the device features.
Table 8-1. Device Features
PART NUMBER
MAXIMUM SIGNALING
RATE
INPUT
THRESHOLD
CHANNEL
DIRECTION
ISO7220A
1 Mbps
≈ 1.5 V (TTL)
(CMOS compatible)
ISO7220B
5 Mbps
≈ 1.5 V (TTL)
(CMOS compatible
ISO7220C
25 Mbps
≈ 1.5 V (TTL)
(CMOS compatible)
ISO7220M
150 Mbps
VCC/ 2 (CMOS)
ISO7221A
1 Mbps
≈ 1.5 V (TTL)
(CMOS compatible)
ISO7221B
5 Mbps
≈ 1.5 V (TTL)
(CMOS compatible)
ISO7221C
25 Mbps
≈ 1.5 V (TTL)
(CMOS compatible)
ISO7221M
150 Mbps
VCC/ 2 (CMOS)
Same direction
Opposite directions
8.4 Device Functional Modes
The ISO7220x and ISO7221x family of devices functional modes are listed in Table 8-2.
Table 8-2. ISO7220x or ISO7221x Function Table (1)
(1)
INPUT SIDE VCC
OUTPUT SIDE VCC
PU
PU
PD
PU
X
PD
INPUT (IN)
OUTPUT (OUT)
H
H
L
L
Open
H
X
H
X
Undetermined
PU = Powered Up (VCC ≥ 3.0 V), PD = Powered Down (VCC ≤ 2.5 V), X = Irrelevant, H = High
Level,
L = Low Level
Input
VCC1
VCC1
VCC1
Output
VCC2
750 kW
IN
500 W
8W
OUT
13 W
Figure 8-1. Device I/O Schematics
26
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
9 Application and Implementation
Note
Information in the following applications sections is not part of the TI component specification, and TI
does not warrant its accuracy or completeness. TI’s customers are responsible for determining
suitability of components for their purposes, as well as validating and testing their design
implementation to confirm system functionality.
9.1 Application Information
The ISO7220x and ISO7221x family devices use single-ended TTL or CMOS-logic switching technology. The
supply voltage range is from 3 V (2.8 V for C-grade) to 5.5 V for both supplies, VCC1 and VCC2. When designing
with digital isolators, because of the single-ended design structure, digital isolators do not conform to any
specific interface standard and are only intended for isolating single-ended CMOS or TTL digital signal lines. The
isolator is typically placed between the data controller (that is, μC or UART), and a data converter or a line
transceiver, regardless of the interface type or standard.
9.2 Typical Application
The ISO7221x family of devices can be used with Texas Instruments' mixed signal micro-controller, digital-toanalog converter, transformer driver, and voltage regulator to create an isolated 4- to 20-mA current loop.
VS
3.3 V
0.1 F
2
VCC D2 3
1:1.33
MBR0520L
1
SN6501
10 F
GND D1
0.1 F
IN
OUT
3.3VISO
5
10 F
TPS76333
3
1
EN
GND
2
10 F
MBR0520L
4, 5
0.1 F
ISO-BARRIER
0.1 F
20
LOOP+
0.1 F
0.1 F
15
0.1 F
10
1
8
2
5
6
VCC1
DVCC
XOUT
XIN
MSP430
G2132
8
VCC2
2 OUTA
P3.0 11
12
P3.1
INA
ISO7221
3 INB
GND1
DVSS
4
4
OUTB
GND2
5
7
5
6
4
3
VA
VD
LOW
BASE
ERRLVL
16
0.1 F
DAC161P997
22
DBACK
DIN
C1
14
3 × 22 nF
1 F
C2
13
C3 COMA
12
1
OUT
COMD
9
LOOP±
2
Figure 9-1. Isolated 4- to 20-mA Current Loop
9.2.1 Design Requirements
Unlike optocouplers, which require external components to improve performance, provide bias (or limit current),
the ISO7220x and ISO7221x devices require only two external bypass capacitors to operate.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
27
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
9.2.2 Detailed Design Procedure
Figure 9-2 and Figure 9-3 show the hookup of a typical ISO7220x and ISO7221x circuit. The only external
components are two bypass capacitors.
V CC1
V CC 2
0.1mF
2 mm
max .
from
Vcc 1
INA
INPUT
INB
INPUT
1
2
3
4
8
OUTA
7
OUTB
6
5
2 mm
max .
from
Vcc 2
0.1mF
OUTPUT
OUTPUT
ISO7220
GND 1
GND 2
Figure 9-2. Typical ISO7220x Circuit Hook-Up
V CC1
V CC2
0.1mF
2 mm
max .
from
Vcc1
OUTPUT
1
OUTA
2
INB
INPUT
3
4
8
INA
7
OUTB
6
5
2 mm
max .
from
Vcc 2
0.1mF
INPUT
OUTPUT
ISO7221
GND 1
GND 2
Figure 9-3. Typical ISO7221x Circuit Hook-Up
9.2.3 Application Curve
At maximum working voltage, the isolation barrier of the ISO7220x and ISO7221x family of devices has more
than 28 years of life.
Working Life (Years)
100
VIORM at 560 VPK
28
10
0
120
250
500
750
880
1000
Working Voltage, VIORM (VPK)
Figure 9-4. Time-Dependent Dielectric Breakdown Test Results
28
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
10 Power Supply Recommendations
To help ensure reliable operation at all data rates and supply voltages, a 0.1-μF bypass capacitor is
recommended at input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the
supply pins as possible. If only a single primary-side power supply is available in an application, isolated power
can be generated for the secondary-side with the help of a transformer driver such as Texas Instruments
SN6501 device. For such applications, detailed power supply design and transformer selection
recommendations are available in SN6501 Transformer Driver for Isolated Power Supplies.
11 Layout
11.1 Layout Guidelines
A minimum of four layers are required to accomplish a low EMI PCB design (see Figure 11-1). Layer stacking
should be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and lowfrequency signal layer.
• Route the high-speed traces on the top layer to avoid the use of vias (and the introduction of the inductances)
and allow for clean interconnects between the isolator and the transmitter and receiver circuits of the data
link.
• Place a solid ground plane next to the high-speed signal layer to establish controlled impedance for
transmission line interconnects and provide an excellent low-inductance path for the return current flow.
• Place the power plane next to the ground plane to create additional high-frequency bypass capacitance of
approximately 100 pF/in2.
• Route the slower speed control signals on the bottom layer to allow for greater flexibility as these signal links
usually have margin to tolerate discontinuities such as vias.
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to
the stack to keep it symmetrical. Adding a second plane system to the stack makes the stack mechanically
stable and prevents it from warping. The power and ground plane of each power system can be placed closer
together, thus increasing the high-frequency bypass capacitance significantly.
For detailed layout recommendations, refer to the Digital Isolator Design Guide.
11.1.1 PCB Material
For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace
lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper
alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength
and stiffness, and the self-extinguishing flammability-characteristics.
11.2 Layout Example
High-speed traces
10 mils
Ground plane
40 mils
Keep this space
free from planes,
traces, pads, and
vias
FR-4
0r ~ 4.5
Power plane
10 mils
Low-speed traces
Figure 11-1. Recommended Layer Stack
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
29
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
12 Device and Documentation Support
12.1 Device Support
12.1.1 Development Support
For development support, refer to:
•
•
•
•
•
AC-mains LED Lighting with DALI DMX512 & Power Line Communications Reference Design
Industrial Servo Drive and AC Inverter Drive Reference Design
Low-Cost Single/Dual-Phase Isolated Electricity Measurement Reference Design
Noise Tolerant Capacitive Touch HMI Reference Design
Type 2 PoE PSE, 6kV Lightning Surge Reference Design
12.2 Documentation Support
12.2.1 Related Documentation
For related documentation, see the following:
• Texas Instruments, DAC161P997 Single-Wire 16-bit DAC for 4- to 20-mA Loops data sheet
• Texas Instruments, Digital Isolator Design Guide
• Texas Instruments, High-Voltage Lifetime of the ISO72x Family of Digital Isolators application report
• Texas Instruments, Isolation Glossary
• Texas Instruments, MSP430G2x32 Mixed Signal Microcontroller data sheet
• Texas Instruments, SN6501 Transformer Driver for Isolated Power Supplies data sheet
• Texas Instruments, TPS763xx Low-Power 150-mA Low-Dropout Linear Regulators data sheet
12.3 Related Links
The table below lists quick access links. Categories include technical documents, support and community
resources, tools and software, and quick access to sample or buy.
Table 12-1. Related Links
PARTS
PRODUCT FOLDER
ORDER NOW
TECHNICAL
DOCUMENTS
TOOLS &
SOFTWARE
SUPPORT &
COMMUNITY
ISO7220A
Click here
Click here
Click here
Click here
Click here
ISO7220B
Click here
Click here
Click here
Click here
Click here
ISO7220C
Click here
Click here
Click here
Click here
Click here
ISO7220M
Click here
Click here
Click here
Click here
Click here
ISO7221A
Click here
Click here
Click here
Click here
Click here
ISO7221B
Click here
Click here
Click here
Click here
Click here
ISO7221C
Click here
Click here
Click here
Click here
Click here
ISO7221M
Click here
Click here
Click here
Click here
Click here
12.4 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For
change details, review the revision history included in any revised document.
12.5 Support Resources
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight
from the experts. Search existing answers or ask your own question to get the quick design help you need.
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do
not necessarily reflect TI's views; see TI's Terms of Use.
30
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
12.6 Trademarks
Profibus™ is a trademark of Profibus.
DeviceNet™ is a trademark of Open DeviceNet Vendors Association.
TI E2E™ is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.
12.7 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may
be more susceptible to damage because very small parametric changes could cause the device not to meet its published
specifications.
12.8 Glossary
TI Glossary
This glossary lists and explains terms, acronyms, and definitions.
13 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
31
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
PACKAGE OUTLINE
D0008B
SOIC - 1.75 mm max height
SCALE 2.800
SMALL OUTLINE INTEGRATED CIRCUIT
C
SEATING PLANE
.228-.244 TYP
[5.80-6.19]
A
.004 [0.1] C
PIN 1 ID AREA
6X .050
[1.27]
8
1
2X
.150
[3.81]
.189-.197
[4.81-5.00]
NOTE 3
4X (0 -15 )
4
5
B
8X .012-.020
[0.31-0.51]
.150-.157
[3.81-3.98]
NOTE 4
.010 [0.25]
C A B
.069 MAX
[1.75]
.005-.010 TYP
[0.13-0.25]
4X (0 -15 )
SEE DETAIL A
.010
[0.25]
.004-.010
[0.11-0.25]
0 -8
.016-.050
[0.41-1.27]
DETAIL A
.041
[1.04]
TYPICAL
4221445/C 02/2019
NOTES:
1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches.
Dimensioning and tolerancing per ASME Y14.5M.
2. This drawing is subject to change without notice.
3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
exceed .006 [0.15], per side.
4. This dimension does not include interlead flash.
5. Reference JEDEC registration MS-012, variation AA.
www.ti.com
32
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
EXAMPLE BOARD LAYOUT
D0008B
SOIC - 1.75 mm max height
SMALL OUTLINE INTEGRATED CIRCUIT
8X (.061 )
[1.55]
8X (.055)
[1.4]
SEE
DETAILS
SYMM
SEE
DETAILS
SYMM
1
1
8
8X (.024)
[0.6]
8
SYMM
5
4
6X (.050 )
[1.27]
8X (.024)
[0.6]
(R.002 ) TYP
[0.05]
SYMM
5
4
6X (.050 )
[1.27]
(.213)
[5.4]
(R.002 )
[0.05]
TYP
(.217)
[5.5]
HV / ISOLATION OPTION
.162 [4.1] CLEARANCE / CREEPAGE
IPC-7351 NOMINAL
.150 [3.85] CLEARANCE / CREEPAGE
LAND PATTERN EXAMPLE
EXPOSED METAL SHOWN
SCALE:6X
SOLDER MASK
OPENING
METAL
EXPOSDE
METAL
SOLDER MASK
OPENING
METAL UNDER
SOLDER MASK
EXPOSED
METAL
.0028 MIN
[0.07]
ALL AROUND
.0028 MAX
[0.07]
ALL AROUND
SOLDER MASK
DEFINED
NON SOLDER MASK
DEFINED
SOLDER MASK DETAILS
4221445/C 02/2019
NOTES: (continued)
6. Publication IPC-7351 may have alternate designs.
7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.
www.ti.com
Copyright © 2021 Texas Instruments Incorporated
Submit Document Feedback
33
ISO7220A, ISO7220B, ISO7220C, ISO7220M, ISO7221A, ISO7221B, ISO7221C, ISO7221M
www.ti.com
SLLS755Q – JULY 2006 – REVISED JANUARY 2021
EXAMPLE STENCIL DESIGN
D0008B
SOIC - 1.75 mm max height
SMALL OUTLINE INTEGRATED CIRCUIT
8X (.061 )
[1.55]
8X (.055)
[1.4]
SYMM
SYMM
1
1
8
8X (.024)
[0.6]
6X (.050 )
[1.27]
8
SYMM
5
4
8X (.024)
[0.6]
SYMM
(R.002 ) TYP
[0.05]
6X (.050 )
[1.27]
5
4
(R.002 )
[0.05]
TYP
(.217)
[5.5]
(.213)
[5.4]
HV / ISOLATION OPTION
.162 [4.1] CLEARANCE / CREEPAGE
IPC-7351 NOMINAL
.150 [3.85] CLEARANCE / CREEPAGE
SOLDER PASTE EXAMPLE
BASED ON .005 INCH [0.127 MM] THICK STENCIL
SCALE:6X
4221445/C 02/2019
NOTES: (continued)
8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate
design recommendations.
9. Board assembly site may have different recommendations for stencil design.
www.ti.com
34
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
PACKAGE OPTION ADDENDUM
www.ti.com
14-Oct-2022
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
ISO7220AD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
I7220A
Samples
ISO7220ADG4
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
I7220A
Samples
ISO7220ADR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
I7220A
Samples
ISO7220ADRG4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
I7220A
Samples
ISO7220BD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
I7220B
Samples
ISO7220BDG4
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
I7220B
Samples
ISO7220BDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
I7220B
Samples
ISO7220CD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
I7220C
Samples
ISO7220CDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
I7220C
Samples
ISO7220MD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
I7220M
Samples
ISO7220MDG4
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
I7220M
Samples
ISO7220MDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
I7220M
Samples
ISO7220MDRG4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
I7220M
Samples
ISO7221AD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
I7221A
Samples
ISO7221ADG4
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
I7221A
Samples
ISO7221ADR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
I7221A
Samples
ISO7221ADRG4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
I7221A
Samples
ISO7221BD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
I7221B
Samples
ISO7221BDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
I7221B
Samples
ISO7221BDRG4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
I7221B
Samples
Addendum-Page 1
PACKAGE OPTION ADDENDUM
www.ti.com
14-Oct-2022
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
ISO7221CD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
I7221C
Samples
ISO7221CDG4
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
I7221C
Samples
ISO7221CDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
I7221C
Samples
ISO7221CDRG4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
I7221C
Samples
ISO7221MD
ACTIVE
SOIC
D
8
75
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
I7221M
Samples
ISO7221MDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
I7221M
Samples
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of