0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ISO7721DR

ISO7721DR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC8

  • 描述:

    EMC 性能优异的双通道、1/1、增强型数字隔离器

  • 数据手册
  • 价格&库存
ISO7721DR 数据手册
Product Folder Order Now Support & Community Tools & Software Technical Documents Reference Design ISO7720, ISO7721 ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 EMC 性能优异的 ISO772x 高速双通道增强型数字隔离器 1 特性 • • • • • • • 1 • • • • • 信号传输速率:高达 100Mbps 宽电源电压范围:2.25V 至 5.5V 2.25V 至 5.5V 电平转换 默认输出高电平 和低电平 选项 宽温度范围:–55°C 至 +125°C 低功耗,1Mbps 时每通道的电流典型值为 1.7mA 低传播延迟:典型值为 11ns (由 5V 电源供电) 高 CMTI:±100kV/μs(典型值) 优异的电磁兼容性 (EMC) – 系统级 ESD、EFT 和浪涌抗扰性 – 低辐射 隔离栅寿命:> 40 年 宽体 SOIC(DW-16 和 DWV-8)和窄体 SOIC (D8) 封装选项 安全相关认证: – 符合 DIN V VDE V 0884-11:2017-01 标准的 VDE 增强型绝缘 – 符合 UL 1577 的 5000VRMS(DW 和 DWV)和 3000VRMS (D) 隔离额定值 – 符合 IEC 60950-1、IEC 62368-1、IEC 610101 和 IEC 60601-1 终端设备标准的 CSA 认证 – 符合 GB4943.1-2011 的 CQC 认证 – 符合 EN 60950-1 和 EN 61010-1 的 TUV 认证 – DWV 封装认证已提上日程,所有其他认证均已 完成 2 应用 • • • • • • 工业自动化 混合动力电动汽车 电机控制 电源 光伏逆变器 医疗设备 3 说明 ISO772x 器件是一款高性能双通道数字隔离器,可提 供符合 UL 1577 标准的 5000VRMS(DW 和 DWV 封 装)和 3000VRMS(D 封装)隔离额定值。这些器件还 通过了 VDE、TUV、CSA 和 CQC 认证。 在隔离互补金属氧化物半导体 (CMOS) 或者低电压互 补金属氧化物半导体 (LVCMOS) 数字 I/O 的同 时,ISO772x 器件还可提供高电磁抗扰度和低辐射, 同时具备低功耗特性。每个隔离通道都有一个由二氧化 硅 (SiO2) 绝缘隔栅分开的逻辑输入和输出缓冲器。 ISO7720 器件具有两条同向通道,而 ISO7721 器件具 有两条反向通道。如果输入功率或信号出现损失,不带 后缀 F 的器件默认输出高电平,带后缀 F 的器件默认 输出低电平。更多详细信息,请参见 器件功能模式 部 分。 与隔离式电源一起使用时,这些器件有助于防止数据总 线或者其他电路上的噪声电流进入本地接地并且干扰或 损坏敏感电路。凭借创新型芯片设计和布线技 术,ISO772x 器件的电磁兼容性得到了显著增强,可 缓解系统级 ESD、EFT 和浪涌问题并符合辐射标准。 ISO772x 系列器件可提供 16 引脚 SOIC 宽体 (DW)、 8 引脚 SOIC 宽体 (DWV) 和 8 引脚 SOIC 窄体 (D) 封 装。 器件信息(1) 器件型号 封装 ISO7720,ISO7721 ,ISO7721F,ISO7721F 封装尺寸(标称值) D (8) 4.90 mm × 3.91 mm DWV (8) 5.85mm × 7.50mm DW (16) 10.30mm × 7.50mm (1) 要了解所有可用封装,请参见数据表末尾的可订购产品附录。 简化原理图 VCCI Isolation Capacitor VCCO INx OUTx GNDI GNDO Copyright © 2016, Texas Instruments Incorporated VCCI 和 GNDI 分别是输入通道的电源和接地 连接引脚。 VCCO 和 GNDO 分别是输出通道的电源和接 地连接引脚。 1 本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。 English Data Sheet: SLLSEP3 ISO7720, ISO7721 ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 www.ti.com.cn 目录 1 2 3 4 5 6 特性 .......................................................................... 应用 .......................................................................... 说明 .......................................................................... 修订历史记录 ........................................................... Pin Configuration and Functions ......................... Specifications......................................................... 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 6.12 6.13 6.14 6.15 6.16 6.17 6.18 1 1 1 2 4 5 Absolute Maximum Ratings ..................................... 5 ESD Ratings.............................................................. 5 Recommended Operating Conditions....................... 5 Thermal Information .................................................. 6 Power Ratings........................................................... 6 Insulation Specifications............................................ 7 Safety-Related Certifications..................................... 8 Safety Limiting Values .............................................. 9 Electrical Characteristics—5-V Supply ................... 10 Supply Current Characteristics—5-V Supply ........ 10 Electrical Characteristics—3.3-V Supply .............. 11 Supply Current Characteristics—3.3-V Supply ..... 11 Electrical Characteristics—2.5-V Supply .............. 12 Supply Current Characteristics—2.5-V Supply ..... 12 Switching Characteristics—5-V Supply................. 13 Switching Characteristics—3.3-V Supply.............. 13 Switching Characteristics—2.5-V Supply.............. 13 Insulation Characteristics Curves ......................... 14 6.19 Typical Characteristics .......................................... 15 7 8 Parameter Measurement Information ................ 17 Detailed Description ............................................ 18 8.1 8.2 8.3 8.4 9 Overview ................................................................. Functional Block Diagram ....................................... Feature Description................................................. Device Functional Modes........................................ 18 18 19 20 Application and Implementation ........................ 21 9.1 Application Information............................................ 21 9.2 Typical Application .................................................. 21 10 Power Supply Recommendations ..................... 23 11 Layout................................................................... 23 11.1 Layout Guidelines ................................................. 23 11.2 Layout Example .................................................... 23 12 器件和文档支持 ..................................................... 24 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 器件支持................................................................ 文档支持................................................................ 相关链接................................................................ 接收文档更新通知 ................................................. 社区资源................................................................ 商标 ....................................................................... 静电放电警告......................................................... 术语表 ................................................................... 24 24 24 24 24 24 24 25 13 机械、封装和可订购信息 ....................................... 26 4 修订历史记录 注:之前版本的页码可能与当前版本有所不同。 Changes from Revision B (March 2017) to Revision C Page • 已添加 在数据表中添加了 8 引脚 SOIC 封装 (DWV).............................................................................................................. 1 • 通篇更新了 VDE 和 CSA 认证 说明........................................................................................................................................ 1 • 已更改 在特性 部分中,更改了所有需要为 DW 和 D 封装完成的认证 ................................................................................... 1 • Changed the climatic category for the D package from 5/125/21 to 55/125/21 .................................................................... 7 • Changed the maximum working voltages for DW-16 and D-8 from 400 to 700 VRMS and 250 to 400 VRMS (respectively) in the Safety-Related Certifications table......................................................................................................... 8 • Switched the line colors for VCC at 2.5 V and VCC at 3.3 V in the Low-Level Output Voltage vs Low-Level Output Current graph........................................................................................................................................................................ 15 • Deleted EN from the Common-Mode Transient Immunity Test Circuit figure ...................................................................... 17 • 已添加 器件支持 部分 ........................................................................................................................................................... 24 Changes from Revision A (December 2016) to Revision B Page • Added D-8 values for TUV in the Safety-Related Certifications table ................................................................................... 8 • Changed the minimum CMTI value from 40 kV/μs to 85 kV/μs in all Electrical Characteristics tables................................ 10 • 已添加 接收文档更新通知 部分 ............................................................................................................................................. 24 • 已更改 静电放电注意事项 声明 ............................................................................................................................................ 24 2 版权 © 2016–2018, Texas Instruments Incorporated ISO7720, ISO7721 www.ti.com.cn Changes from Original (November 2016) to Revision A ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 Page • 将特性 从“IEC 60950-1、IEC 60601-1 和 IEC 61010-1 终端设备标准”更改为“IEC 60950-1 和 IEC 60601-1 终端设备 标准” ....................................................................................................................................................................................... 1 • Added Climatic category to the Insulation Specifications....................................................................................................... 7 • Changed the CSA column of Regulatory Information ........................................................................................................... 8 • Changed DW package) To: (DW-16) in the TUV column of Regulatory Information ............................................................ 8 • Changed tie TYP value From: 1.5 To 1 in Switching Characteristics—5-V Supply .............................................................. 13 • Changed tie TYP value From: 1.5 To 1 in Switching Characteristics—3.3-V Supply ........................................................... 13 • Changed tie TYP value From: 1.5 To 1 in Switching Characteristics—2.5-V Supply ........................................................... 13 Copyright © 2016–2018, Texas Instruments Incorporated 3 ISO7720, ISO7721 ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 www.ti.com.cn 5 Pin Configuration and Functions ISO7720 DW Package 16-Pin SOIC Top View 16 GND2 2 15 VCC1 3 INA 4 INB 5 NC ISOLATION NC GND1 1 NC 16 GND2 NC 2 15 14 VCC2 VCC1 3 14 VCC2 13 OUTA OUTA 4 ISOLATION GND1 1 ISO7721 DW Package 16-Pin SOIC Top View 13 NC INA 12 OUTB INB 5 6 11 NC NC 6 11 NC GND1 7 10 NC GND1 7 10 NC 8 9 GND2 NC 8 9 GND2 VCC1 1 INA 2 INB 3 ISOLATION ISO7720 D and DWV Package 8-Pin SOIC Top View ISO7721 D and DWV Package 8-Pin SOIC Top View 8 VCC2 VCC1 7 OUTA OUTA 2 6 OUTB GND1 4 INB 5 GND2 1 8 VCC2 ISOLATION NC 12 OUTB 3 GND1 4 7 INA 6 OUTB 5 GND2 Pin Functions PIN NAME DW PACKAGE D, DWV PACKAGE I/O DESCRIPTION ISO7720 ISO7721 ISO7720 ISO7721 1, 7 1, 7 4 4 — Ground connection for VCC1 9 9 16 16 5 5 — Ground connection for VCC2 INA 4 13 2 7 I Input, channel A INB 5 5 3 3 I Input, channel B NC 2, 6, 8, 10, 11, 15 2, 6, 8, 10, 11, 15 — — — Not connected GND1 GND2 OUTA 13 4 7 2 O Output, channel A OUTB 12 12 6 6 O Output, channel B VCC1 3 3 1 1 — Power supply, VCC1 VCC2 14 14 8 8 — Power supply, VCC2 4 Copyright © 2016–2018, Texas Instruments Incorporated ISO7720, ISO7721 www.ti.com.cn ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 6 Specifications 6.1 Absolute Maximum Ratings See (1) . Supply voltage (2) VCC1, VCC2 MIN MAX –0.5 6 V Voltage at INx, OUTx –0.5 IO Output current –15 TJ Junction temperature Tstg Storage temperature (1) (2) (3) VCC + 0.5 –65 UNIT V (3) V 15 mA 150 °C 150 °C Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak voltage values. Maximum voltage must not exceed 6 V. 6.2 ESD Ratings VALUE UNIT (1) ±6000 V Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2) ±1500 V Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins VESD (1) (2) Electrostatic discharge JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions MIN NOM MAX 5.5 V 2 2.25 V VCC1, VCC2 Supply voltage VCC(UVLO+) UVLO threshold when supply voltage is rising VCC(UVLO-) UVLO threshold when supply voltage is falling 1.7 1.8 V VHYS(UVLO) Supply voltage UVLO hysteresis 100 200 mV IOH IOL High-level output current Low-level output current 2.25 UNIT VCCO (1) = 5 V –4 VCCO = 3.3 V –2 VCCO = 2.5 V –1 mA VCCO = 5 V 4 VCCO = 3.3 V 2 VCCO = 2.5 V 1 mA VIH High-level input voltage 0.7 × VCCI (1) VCCI VIL Low-level input voltage 0 0.3 × VCCI DR Signaling rate 0 100 Mbps TA Ambient temperature 125 °C (1) –55 25 V V VCCI = Input-side VCC; VCCO = Output-side VCC. Copyright © 2016–2018, Texas Instruments Incorporated 5 ISO7720, ISO7721 ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 www.ti.com.cn 6.4 Thermal Information ISO772x THERMAL METRIC (1) DW (SOIC) DWV (SOIC) D (SOIC) 16 PINS 16 PINS 8 PINS UNIT RθJA Junction-to-ambient thermal resistance 86.5 84.3 137.7 °C/W RθJC(top) Junction-to-case(top) thermal resistance 49.6 36.3 54.9 °C/W RθJB Junction-to-board thermal resistance 49.7 47.0 71.7 °C/W ψJT Junction-to-top characterization parameter 32.3 7.4 7.1 °C/W ψJB Junction-to-board characterization parameter 49.2 45.1 70.7 °C/W RθJC(botto Junction-to-case(bottom) thermal resistance N/A N/A N/A °C/W m) (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 6.5 Power Ratings PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ISO7720 PD Maximum power dissipation VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, input a 50 MHz 50% duty cycle square wave 100 mW PD1 Maximum power dissipation by side-1 VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, input a 50 MHz 50% duty cycle square wave 20 mW PD2 Maximum power dissipation by side-2 VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, input a 50 MHz 50% duty cycle square wave 80 mW PD Maximum power dissipation VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, input a 50 MHz 50% duty cycle square wave 100 mW PD1 Maximum power dissipation by side-1 VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, input a 50 MHz 50% duty cycle square wave 50 mW PD2 Maximum power dissipation by side-2 VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, input a 50 MHz 50% duty cycle square wave 50 mW ISO7721 6 Copyright © 2016–2018, Texas Instruments Incorporated ISO7720, ISO7721 www.ti.com.cn ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 6.6 Insulation Specifications PARAMETER CLR External clearance TEST CONDITIONS DWV D UNIT (1) Shortest terminal-to-terminal distance through air 8 8.5 4 mm (1) Shortest terminal-to-terminal distance across the package surface 8 8.5 4 mm 21 21 21 μm >600 >600 >600 V CPG External creepage DTI Distance through the insulation Minimum internal gap (internal clearance) Comparative tracking index DIN EN 60112 (VDE 0303-11); IEC 60112; UL 746A Material group According to IEC 60664-1 CTI VALUE DW Overvoltage category per IEC 60664-1 I I I Rated mains voltage ≤ 150 VRMS I–IV I–IV I–IV Rated mains voltage ≤ 300 VRMS I–IV I–IV I–III Rated mains voltage ≤ 600 VRMS I–IV I–IV n/a Rated mains voltage ≤ 1000 VRMS I–III I–III n/a AC voltage (bipolar) 1414 1414 637 VPK AC voltage; Time dependent dielectric breakdown (TDDB) test 1000 1000 450 VRMS DIN V VDE V 0884-11:2017-01 (2) VIORM Maximum repetitive peak isolation voltage VIOWM Maximum working isolation voltage DC voltage 1414 1414 637 VDC VIOTM Maximum transient isolation voltage VTEST = VIOTM, t = 60 s (qualification); t = 1 s (100% production) 8000 7071 4242 VPK VIOSM Maximum surge isolation voltage (3) Test method per IEC 60065, 1.2/50 µs waveform, VTEST = 1.6 × VIOSM (qualification) 8000 8000 5000 VPK Method a, After Input/Output safety test subgroup 2/3, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM, tm = 10 s ≤5 ≤5 ≤5 Method a, After environmental tests subgroup 1, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.6 × VIORM, tm = 10 s ≤5 ≤5 ≤5 Method b1; At routine test (100% production) and preconditioning (type test), Vini = VIOTM, tini = 1 s; Vpd(m) = 1.875 × VIORM, tm = 1 s ≤5 ≤5 ≤5 ~0.5 ~0.5 ~0.5 Apparent charge (4) qpd Barrier capacitance, input to output (5) CIO Isolation resistance (5) RIO VIO = 0.4 × sin (2πft), f = 1 MHz 12 12 pC VIO = 500 V, TA = 25°C >10 >10 VIO = 500 V, 100°C ≤ TA ≤ 125°C >1011 >1011 >1011 9 9 9 VIO = 500 V at TS = 150°C pF 12 >10 >10 >10 Pollution degree 2 2 2 Climatic category 55/125/21 55/125/21 55/125/21 5000 5000 3000 Ω >10 UL 1577 VISO (1) (2) (3) (4) (5) Withstanding isolation voltage VTEST = VISO, t = 60 s(qualification); VTEST = 1.2 × VISO, t = 1 s (100% production) VRMS Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications. This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits. Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier. Apparent charge is electrical discharge caused by a partial discharge (pd). All pins on each side of the barrier tied together creating a two-terminal device. Copyright © 2016–2018, Texas Instruments Incorporated 7 ISO7720, ISO7721 ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 www.ti.com.cn 6.7 Safety-Related Certifications DWV package certifications are planned; all other certifications are complete. VDE Certified according to DIN V VDE V 0884-11:2017-01 Maximum transient isolation voltage, 8000 VPK (DW-16, Reinforced) and 4242 VPK (D-8); Maximum repetitive peak isolation voltage, 1414 VPK (DW-16, Reinforced) and 637 VPK (D-8); Maximum surge isolation voltage, 8000 VPK (DW-16, Reinforced) and 5000 VPK (D-8) Certificate number: 40040142 8 CSA Certified according to IEC 60950-1, IEC 62368-1, IEC 61010-1, and IEC 60601-1 Reinforced insulation per CSA 60950-107+A1+A2 and IEC 60950-1 2nd Ed., 800 VRMS (DW-16) and 400 VRMS (D-8) max working voltage (pollution degree 2, material group I); UL CQC Certified according to UL Certified according to 1577 Component GB4943.1-2011 Recognition Program DW-16: Single protection, 5000 VRMS; D-8: Single protection, 3000 VRMS DW-16: Reinforced Insulation, Altitude ≤ 5000 m, Tropical Climate, 700 VRMS maximum working voltage; D-8: Basic Insulation, Altitude ≤ 5000 m, Tropical Climate, 400 VRMS maximum working voltage Master contract number: File number: E181974 220991 Certificate number: CQC15001121716 (DW-16), CQC15001121656 (D-8) 2 MOPP (Means of Patient Protection) per CSA 60601-1:14 and IEC 60601-1 Ed. 3.1, 250 VRMS (DW-16) max working voltage TUV Certified according to EN 61010-1:2010 (3rd Ed) and EN 609501:2006/A11:2009/A1:201 0/A12:2011/A2:2013 5000 VRMS (DW-16) and 3000 VRMS (D-8) Reinforced insulation per EN 61010-1:2010 (3rd Ed) up to working voltage of 600 VRMS (DW-16) and 300 VRMS (D-8) 5000 VRMS (DW-16) and 3000 VRMS (D-8) Reinforced insulation per EN 609501:2006/A11:2009/A1:201 0/A12:2011/A2:2013 up to working voltage of 800 VRMS (DW-16) and 400 VRMS (D-8) Client ID number: 77311 Copyright © 2016–2018, Texas Instruments Incorporated ISO7720, ISO7721 www.ti.com.cn ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 6.8 Safety Limiting Values Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT DW-16 PACKAGE IS Safety input, output, or supply current (1) PS Safety input, output, or total power (1) TS Maximum safety temperature (1) RθJA = 86.5 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see Figure 1 263 RθJA = 86.5 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see Figure 1 401 RθJA = 86.5 °C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see Figure 1 525 RθJA = 86.5 °C/W, TJ = 150°C, TA = 25°C, see Figure 2 mA 1445 mW 150 °C DWV-8 PACKAGE IS Safety input, output, or supply current (1) PS Safety input, output, or total power (1) TS Maximum safety temperature (1) RθJA = 84.3 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see Figure 3 270 RθJA = 84.3 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see Figure 3 412 RθJA = 84.3 °C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see Figure 3 539 RθJA = 84.3 °C/W, TJ = 150°C, TA = 25°C, see Figure 4 mA 1483 mW 150 °C D-8 PACKAGE IS Safety input, output, or supply current (1) PS Safety input, output, or total power (1) TS Maximum safety temperature (1) (1) RθJA = 137.7 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see Figure 5 165 RθJA = 137.7 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see Figure 5 252 RθJA = 137.7 °C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see Figure 5 330 RθJA = 137.7 °C/W, TJ = 150°C, TA = 25°C, see Figure 6 908 mW 150 °C mA The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be exceeded. These limits vary with the ambient temperature, TA. The junction-to-air thermal resistance, RθJA, in the Thermal Information table is that of a device installed on a high-K test board for leaded surface-mount packages. Use these equations to calculate the value for each parameter: TJ = TA + RθJA × P, where P is the power dissipated in the device. TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature. PS = IS × VI, where VI is the maximum input voltage. Copyright © 2016–2018, Texas Instruments Incorporated 9 ISO7720, ISO7721 ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 www.ti.com.cn 6.9 Electrical Characteristics—5-V Supply VCC1 = VCC2 = 5 V ± 10% (over recommended operating conditions unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP VCCO (1) – 0.4 4.8 VOH High-level output voltage IOH = –4 mA; see Figure 15 VOL Low-level output voltage IOL = 4 mA; see Figure 15 VIT+(IN) Rising input threshold voltage VIT-(IN) Falling input threshold voltage 0.3 x VCCI 0.4 x VCCI VI(HYS) Input threshold voltage hysteresis 0.1 × VCCI 0.2 × VCCI IIH High-level input current VIH = VCCI (1) at INx IIL Low-level input current VIL = 0 V at INx CMTI Common-mode transient immunity VI = VCCI or 0 V, VCM = 1200 V; see Figure 17 CI Input Capacitance (2) VI = VCC/ 2 + 0.4×sin(2πft), f = 1 MHz, VCC = 5 V (1) (2) MAX V 0.2 0.4 V 0.6 x VCCI 0.7 x VCCI V V V 10 –10 85 UNIT μA µA 100 kV/μs 2 pF VCCI = Input-side VCC; VCCO = Output-side VCC. Measured from input pin to ground. 6.10 Supply Current Characteristics—5-V Supply VCC1 = VCC2 = 5 V ± 10% (over recommended operating conditions unless otherwise noted) PARAMETER SUPPLY CURRENT TEST CONDITIONS MIN TYP MAX ICC1 0.8 1.1 ICC2 1.1 1.7 ICC1 2.9 4.2 ICC2 1.2 1.9 ICC1 1.8 2.7 ICC2 1.3 1.9 ICC1 1.9 2.7 ICC2 2.2 3 ICC1 2.5 3.2 ICC2 11.6 14 UNIT ISO7720 VI = VCCI (ISO7720), VI = 0 V (ISO7720 with F suffix) Supply current - DC signal VI = 0 V (ISO7720), VI = VCCI (ISO7720 with F suffix) 1 Mbps Supply current - AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps 100 Mbps mA ISO7721 Supply current - DC signal Supply current - AC signal 10 VI = VCCI (ISO7721), VI = 0 V (ISO7721 with F suffix) ICC1, ICC2 1 1.6 VI = 0 V (ISO7721), VI = VCCI (ISO7721 with F suffix) ICC1, ICC2 2.2 3.2 1 Mbps ICC1, ICC2 1.7 2.4 10 Mbps ICC1, ICC2 2.2 3 100 Mbps ICC1, ICC2 7.3 9 All channels switching with square wave clock input; CL = 15 pF mA Copyright © 2016–2018, Texas Instruments Incorporated ISO7720, ISO7721 www.ti.com.cn ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 6.11 Electrical Characteristics—3.3-V Supply VCC1 = VCC2 = 3.3 V ± 10% (over recommended operating conditions unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP VCCO (1) – 0.3 3.2 VOH High-level output voltage IOH = –2 mA; see Figure 15 VOL Low-level output voltage IOL = 2 mA; see Figure 15 VIT+(IN) Rising input voltage threshold VIT-(IN) Falling input voltage threshold 0.3 x VCCI 0.4 x VCCI VI(HYS) Input threshold voltage hysteresis 0.1 × VCCI 0.2 × VCCI IIH High-level input current VIH = VCCI (1) at INx IIL Low-level input current VIL = 0 V at INx CMTI Common-mode transient immunity VI = VCCI or 0 V, VCM = 1200 V; see Figure 17 (1) MAX UNIT V 0.1 0.3 V 0.6 x VCCI 0.7 x VCCI V V V 10 –10 μA µA 85 100 kV/μs MIN TYP MAX ICC1 0.8 1.1 ICC2 1.1 1.7 ICC1 2.9 4.2 ICC2 1.2 1.9 ICC1 1.8 2.7 ICC2 1.2 1.9 ICC1 1.9 2.7 ICC2 1.9 2.6 ICC1 2.2 3.1 ICC2 8.6 11 VCCI = Input-side VCC; VCCO = Output-side VCC. 6.12 Supply Current Characteristics—3.3-V Supply VCC1 = VCC2 = 3.3 V ± 10% (over recommended operating conditions unless otherwise noted) PARAMETER SUPPLY CURRENT TEST CONDITIONS UNIT ISO7720 VI = VCCI (ISO7720), VI = 0 V (ISO7720 with F suffix) Supply current - DC signal VI = 0 V (ISO7720), VI = VCCI (ISO7720 with F suffix) 1 Mbps Supply current - AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps 100 Mbps mA ISO7721 Supply current - DC signal Supply current - AC signal VI = VCCI (ISO7721), VI = 0 V (ISO7721 with F suffix) ICC1, ICC2 1 1.6 VI = 0 V (ISO7721), VI = VCCI (ISO7721 with F suffix) ICC1, ICC2 2.2 3.2 1 Mbps ICC1, ICC2 1.6 2.4 10 Mbps ICC1, ICC2 2 2.8 100 Mbps ICC1, ICC2 5.6 7 All channels switching with square wave clock input; CL = 15 pF Copyright © 2016–2018, Texas Instruments Incorporated mA 11 ISO7720, ISO7721 ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 www.ti.com.cn 6.13 Electrical Characteristics—2.5-V Supply VCC1 = VCC2 = 2.5 V ± 10% (over recommended operating conditions unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP VCCO (1) – 0.2 2.45 VOH High-level output voltage IOH = –1 mA; see Figure 15 VOL Low-level output voltage IOL = 1 mA; see Figure 15 VIT+(IN) Rising input voltage threshold VIT-(IN) Falling input voltage threshold 0.3 x VCCI 0.4 x VCCI VI(HYS) Input threshold voltage hysteresis 0.1 × VCCI 0.2 × VCCI IIH High-level input current VIH = VCCI (1) at INx IIL Low-level input current VIL = 0 V at INx CMTI Common-mode transient immunity VI = VCCI or 0 V, VCM = 1200 V; see Figure 17 (1) MAX V 0.05 0.2 V 0.6 x VCCI 0.7 x VCCI V V V 10 –10 85 UNIT μA μA 100 kV/μs VCCI = Input-side VCC; VCCO = Output-side VCC. 6.14 Supply Current Characteristics—2.5-V Supply VCC1 = VCC2 = 2.5 V ± 10% (over recommended operating conditions unless otherwise noted) PARAMETER TEST CONDITIONS SUPPLY CURRENT MIN TYP MAX ICC1 0.8 1.1 ICC2 1.1 1.7 ICC1 2.9 4.2 ICC2 1.2 1.9 ICC1 1.8 2.7 ICC2 1.3 1.9 ICC1 1.9 2.7 ICC2 1.7 2.4 ICC1 2.2 3 ICC2 6.8 9 UNIT ISO7720 VI = VCCI (ISO7720), VI = 0 V (ISO7720 with F suffix) Supply current - DC signal VI = 0 V (ISO7720), VI = VCCI (ISO7720 with F suffix) 1 Mbps Supply current - AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps 100 Mbps mA ISO7721 Supply current - DC signal Supply current - AC signal 12 VI = VCCI (ISO7721), VI = 0 V (ISO7721 with F suffix) ICC1, ICC2 1 1.6 VI = 0 V (ISO7721), VI = VCCI (ISO7721 with F suffix) ICC1, ICC2 2.2 3.2 1 Mbps ICC1, ICC2 1.6 2.4 10 Mbps ICC1, ICC2 1.9 2.7 100 Mbps ICC1, ICC2 4.6 6 All channels switching with square wave clock input; CL = 15 pF mA Copyright © 2016–2018, Texas Instruments Incorporated ISO7720, ISO7721 www.ti.com.cn ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 6.15 Switching Characteristics—5-V Supply VCC1 = VCC2 = 5 V ± 10% (over recommended operating conditions unless otherwise noted) PARAMETER tPLH, tPHL Propagation delay time PWD Pulse width distortion (1) |tPHL – tPLH| tsk(o) Channel-to-channel output skew time (2) tsk(pp) Part-to-part skew time (3) tr Output signal rise time tf Output signal fall time TEST CONDITIONS MAX 11 16 ns 0.5 4.9 ns 4 ns 4.5 ns 1.8 3.9 ns 1.9 3.9 ns 0.1 0.3 μs Same direction channels See Figure 15 tDO Default output delay time from input power loss tie Time interval error 216 – 1 PRBS data at 100 Mbps (3) TYP 6 See Figure 15 Measured from the time VCC goes below 1.7 V. See Figure 16 (1) (2) MIN 1 UNIT ns Also known as pulse skew. tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads. tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads. 6.16 Switching Characteristics—3.3-V Supply VCC1 = VCC2 = 3.3 V ± 10% (over recommended operating conditions unless otherwise noted) PARAMETER TEST CONDITIONS tPLH, tPHL Propagation delay time PWD Pulse width distortion (1) |tPHL – tPLH| tsk(o) Channel-to-channel output skew time (2) tsk(pp) Part-to-part skew time (3) tr Output signal rise time tf Output signal fall time See Figure 15 MAX 11 16 ns 0.5 5 ns 4.1 ns 4.5 ns 0.7 3 ns 0.7 3 ns 0.1 0.3 μs See Figure 15 tDO Default output delay time from input power loss tie Time interval error 216 – 1 PRBS data at 100 Mbps (3) TYP 6 Same direction channels Measured from the time VCC goes below 1.7 V. See Figure 16 (1) (2) MIN 1 UNIT ns Also known as pulse skew. tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads. tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads. 6.17 Switching Characteristics—2.5-V Supply VCC1 = VCC2 = 2.5 V ± 10% (over recommended operating conditions unless otherwise noted) PARAMETER tPLH, tPHL Propagation delay time PWD Pulse width distortion (1) |tPHL – tPLH| tsk(o) Channel-to-channel output skew time tsk(pp) Part-to-part skew time (3) tr Output signal rise time tf Output signal fall time tDO tie (1) (2) (3) TEST CONDITIONS See Figure 15 (2) Default output delay time from input power loss Time interval error MIN TYP MAX UNIT 7.5 12 18.5 ns 0.5 5.1 ns 4.1 ns 4.6 ns 1 3.5 ns 1 3.5 ns 0.1 0.3 μs Same direction channels See Figure 15 Measured from the time VCC goes below 1.7 V. See Figure 16 16 2 – 1 PRBS data at 100 Mbps 1 ns Also known as pulse skew. tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads. tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads. Copyright © 2016–2018, Texas Instruments Incorporated 13 ISO7720, ISO7721 ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 www.ti.com.cn 6.18 Insulation Characteristics Curves 1600 VCC1 = VCC2 = 2.75 V VCC1 = VCC2 = 3.6 V VCC1 = VCC2 = 5.5 V 500 1400 Safety Limiting Current (mA) Safety Limiting Current (mA) 600 400 300 200 100 50 100 150 Ambient Temperature (qC) 600 400 0 200 50 D001 Figure 1. Thermal Derating Curve for Limiting Current per VDE for DW-16 Package 100 150 Ambient Temperature (qC) 200 D002 Figure 2. Thermal Derating Curve for Limiting Power per VDE for DW-16 Package 600 1600 VCC1 = VCC2 = 2.75 V VCC1 = VCC2 = 3.6 V VCC1 = VCC2 = 5.5 V 500 1400 Safety Limiting Current (mA) Safety Limiting Current (mA) 800 0 0 400 300 200 100 1200 1000 800 600 400 200 0 0 0 50 100 150 Ambient Temperature (qC) 200 0 50 D013 Figure 3. Thermal Derating Curve for Limiting Current per VDE for DWV-8 Package 100 150 Ambient Temperature (qC) 200 D014 Figure 4. Thermal Derating Curve for Limiting Power per VDE for DWV-8 Package 350 1000 VCC1 = VCC2 = 2.75 V VCC1 = VCC2 = 3.6 V VCC1 = VCC2 = 5.5 V 900 Safety Limiting Current (mA) 300 Safety Limiting Current (mA) 1000 200 0 250 200 150 100 50 800 700 600 500 400 300 200 100 0 0 0 50 100 150 Ambient Temperature (qC) 200 D003 Figure 5. Thermal Derating Curve for Limiting Current per VDE for D-8 Package 14 1200 0 50 100 150 Ambient Temperature (qC) 200 D004 Figure 6. Thermal Derating Curve for Limiting Power per VDE for D-8 Package Copyright © 2016–2018, Texas Instruments Incorporated ISO7720, ISO7721 www.ti.com.cn ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 6.19 Typical Characteristics 5 14 ICC1 at 2.5 V ICC2 at 2.5 V ICC1 at 3.3 V ICC1 at 2.5 V ICC2 at 2.5 V ICC1 at 3.3 V 4.5 4 10 Supply Current (mA) Supply Current (mA) 12 ICC2 at 3.3 V ICC1 at 5 V ICC2 at 5 V 8 6 4 ICC2 at 3.3 V ICC1 at 5 V ICC2 at 5 V 3.5 3 2.5 2 1.5 1 2 0.5 0 0 0 25 50 Data Rate (Mbps) TA = 25°C 75 0 100 CL = 15 pF 50 Data Rate (Mbps) TA = 25°C Figure 7. ISO7720 Supply Current vs Data Rate (With 15-pF Load) 75 100 D006 CL = No Load Figure 8. ISO7720 Supply Current vs Data Rate (With No Load) 4 9 ICC1, ICC2 at 2.5 V ICC1, ICC2 at 3.3 V ICC1, ICC2 at 5 V 8 ICC1, ICC2 at 2.5 V ICC1, ICC2 at 3.3 V ICC1, ICC2 at 5 V 3.5 Supply Current (mA) 7 Supply Current (mA) 25 D005 6 5 4 3 2 3 2.5 2 1.5 1 0.5 1 0 0 0 25 TA = 25°C 50 Data Rate (Mbps) 75 0 100 25 D007 CL = 15 pF TA = 25°C Figure 9. ISO7721 Supply Current vs Data Rate (With 15-pF Load) 50 Data Rate (Mbps) 75 100 D008 CL = No Load Figure 10. ISO7721 Supply Current vs Data Rate (With No Load) 6 0.9 Low-Level Output Voltage (V) High-Level Output Voltage (V) 0.8 5 4 3 2 VCC at 2.5 V VCC at 3.3 V VCC at 5 V 1 0 -15 0.7 0.6 0.5 0.4 0.3 0.2 VCC at 2.5 V VCC at 3.3 V VCC at 5 V 0.1 0 -10 -5 High-Level Output Current (mA) 0 TA = 25°C Figure 11. High-Level Output Voltage vs High-level Output Current Copyright © 2016–2018, Texas Instruments Incorporated 0 5 10 Low-Level Output Current (mA) D011 15 D012 TA = 25°C Figure 12. Low-Level Output Voltage vs Low-Level Output Current 15 ISO7720, ISO7721 ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 www.ti.com.cn Typical Characteristics (continued) 14 Propagation Delay Time (ns) Power Supply UVLO Threshold (V) 2.1 2.05 2 1.95 1.9 1.85 1.8 1.75 1.7 VCC1+ VCC1- 1.65 1.6 -55 -25 5 35 65 Free-Air Temperature (qC) 12 11 10 tPLH at 2.5 V tPHL at 2.5 V tPLH at 3.3 V 9 VCC2+ VCC295 125 D011 Figure 13. Power Supply Undervoltage Threshold vs Free-Air Temperature 16 13 8 -55 -25 5 35 65 Free Air Temperature (qC) tPHL at 3.3 V tPLH at 5 V tPHL at 5 V 95 125 D012 Figure 14. Propagation Delay Time vs Free-Air Temperature Copyright © 2016–2018, Texas Instruments Incorporated ISO7720, ISO7721 www.ti.com.cn ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 7 Parameter Measurement Information Isolation Barrier IN Input Generator (See Note A) VI VCCI VI OUT 50% 50% 0V tPLH CL See Note B VO 50 tPHL VOH 90% 50% VO 50% 10% VOL tf tr A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3 ns, tf ≤ 3 ns, ZO = 50 Ω. At the input, 50 Ω resistor is required to terminate Input Generator signal. It is not needed in actual application. B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%. Figure 15. Switching Characteristics Test Circuit and Voltage Waveforms VI See Note B VCC VCC Isolation Barrier IN = 0 V (Devices without suffix F) IN = VCC (Devices with suffix F) VI IN 1.7 V 0V OUT VO tDO CL See Note A default high VOH 50% VO VOL default low A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%. B. Power Supply Ramp Rate = 10 mV/ns Figure 16. Default Output Delay Time Test Circuit and Voltage Waveforms VCCI VCCO C = 0.1 µF ±1% Pass-fail criteria: The output must remain stable. Isolation Barrier S1 C = 0.1 µF ±1% IN OUT + VOH or VOL CL See Note A GNDI A. + VCM ± ± GNDO CL = 15 pF and includes instrumentation and fixture capacitance within ±20%. Figure 17. Common-Mode Transient Immunity Test Circuit Copyright © 2016–2018, Texas Instruments Incorporated 17 ISO7720, ISO7721 ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 www.ti.com.cn 8 Detailed Description 8.1 Overview The ISO772x family of devices has an ON-OFF keying (OOK) modulation scheme to transmit the digital data across a silicon dioxide based isolation barrier. The transmitter sends a high frequency carrier across the barrier to represent one digital state and sends no signal to represent the other digital state. The receiver demodulates the signal after advanced signal conditioning and produces the output through a buffer stage. These devices also incorporate advanced circuit techniques to maximize the CMTI performance and minimize the radiated emissions due the high frequency carrier and IO buffer switching. The conceptual block diagram of a digital capacitive isolator, Figure 18, shows a functional block diagram of a typical channel. 8.2 Functional Block Diagram Transmitter TX IN Receiver OOK Modulation TX Signal Conditioning Oscillator SiO2 based Capacitive Isolation Barrier RX Signal Conditioning Envelope Detection RX OUT Emissions Reduction Techniques Copyright © 2017, Texas Instruments Incorporated Figure 18. Conceptual Block Diagram of a Digital Capacitive Isolator Figure 19 shows a conceptual detail of how the OOK scheme works. TX IN Carrier signal through isolation barrier RX OUT Figure 19. On-Off Keying (OOK) Based Modulation Scheme 18 Copyright © 2016–2018, Texas Instruments Incorporated ISO7720, ISO7721 www.ti.com.cn ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 8.3 Feature Description The ISO772x family of devices is available in two channel configurations and default output state options to enable a variety of application uses. Table 1 lists the device features of the ISO772x devices. Table 1. Device Features PART NUMBER MAXIMUM DATA RATE CHANNEL DIRECTION DEFAULT OUTPUT STATE PACKAGE RATED ISOLATION (1) DW-16 5000 VRMS / 8000 VPK ISO7720 100 Mbps 2 Forward, 0 Reverse High DWV-8 5000 VRMS / 7071 VPK ISO7720F ISO7721 ISO7721F (1) 100 Mbps 100 Mbps 100 Mbps 2 Forward, 0 Reverse 1 Forward, 1 Reverse 1 Forward, 1 Reverse Low High Low D-8 3000 VRMS / 4242 VPK DW-16 5000 VRMS / 8000 VPK DWV-8 5000 VRMS / 7071 VPK D-8 3000 VRMS / 4242 VPK DW-16 5000 VRMS / 8000 VPK DWV-8 5000 VRMS / 7071 VPK D-8 3000 VRMS / 4242 VPK DW-16 5000 VRMS / 8000 VPK DWV-8 5000 VRMS / 7071 VPK D-8 3000 VRMS / 4242 VPK See the Safety-Related Certifications section for detailed isolation ratings. 8.3.1 Electromagnetic Compatibility (EMC) Considerations Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge (ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level performance and reliability depends, to a large extent, on the application board design and layout, the ISO772x family of devices incorporates many chip-level design improvements for overall system robustness. Some of these improvements include: • Robust ESD protection cells for input and output signal pins and inter-chip bond pads. • Low-resistance connectivity of ESD cells to supply and ground pins. • Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events. • Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance path. • PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic SCRs. • Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation. Copyright © 2016–2018, Texas Instruments Incorporated 19 ISO7720, ISO7721 ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 www.ti.com.cn 8.4 Device Functional Modes Table 2 lists the functional modes for the ISO772x devices. Table 2. Function Table (1) VCCI VCCO PU (1) (2) (3) INPUT (INx) (2) OUTPUT (OUTx) H H L L Open Default Default mode: When INx is open, the corresponding channel output goes to the default high logic state. The default is High for ISO772x and Low for ISO772x with F suffix. Default mode: When VCCI is unpowered, a channel output assumes the logic state based on the selected default option. The default is High for ISO772x and Low for ISO772x with F suffix. When VCCI transitions from unpowered to powered-up, a channel output assumes the logic state of the input. When VCCI transitions from powered-up to unpowered, channel output assumes the selected default state. COMMENTS Normal Operation: A channel output assumes the logic state of the input. PU PD PU X Default X PD X Undetermined When VCCO is unpowered, a channel output is undetermined (3). When VCCO transitions from unpowered to powered-up, a channel output assumes the logic state of the input VCCI = Input-side VCC; VCCO = Output-side VCC; PU = Powered up (VCC ≥ 2.25 V); PD = Powered down (VCC ≤ 1.7 V); X = Irrelevant; H = High level; L = Low level A strongly driven input signal can weakly power the floating VCC via an internal protection diode and cause undetermined output. The outputs are in undetermined state when 1.7 V < VCCI, VCCO < 2.25 V. 8.4.1 Device I/O Schematics Input (Devices without F suffix) VCCI VCCI VCCI Input (Devices with F suffix) VCCI VCCI VCCI VCCI 1.5 M 985 985 INx INx 1.5 M Output VCCO ~20 OUTx Figure 20. Device I/O Schematics 20 Copyright © 2016–2018, Texas Instruments Incorporated ISO7720, ISO7721 www.ti.com.cn ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant the accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 9.1 Application Information The ISO772x devices are high-performance, dual-channel digital isolators. The devices use single-ended CMOSlogic switching technology. The supply voltage range is from 2.25 V to 5.5 V for both supplies, VCC1 and VCC2. When designing with digital isolators, keep in mind that because of the single-ended design structure, digital isolators do not conform to any specific interface standard and are only intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the data controller (that is, μC or UART), and a data converter or a line transceiver, regardless of the interface type or standard. 9.2 Typical Application The ISO7721 device can be used with Texas Instruments' mixed signal microcontroller, digital-to-analog converter, transformer driver, and voltage regulator to create an isolated 4-mA to 20-mA current loop. VS 0.1 F 3.3 V 2 VCC D2 3 1:1.33 MBR0520L 1 SN6501 10 F GND D1 0.1 F IN OUT 5 3.3VISO 10 F TPS76333 3 1 EN GND 2 10 F MBR0520L 4, 5 ISO Barrier 0.1 F 0.1 F 20 LOOP+ 0.1 F 0.1 F 15 0.1 F 10 3 8 2 5 6 VCC1 DVCC XOUT MSP430G2132 XIN DVSS 4 14 P3.0 11 12 P3.1 4 5 VCC2 OUTA ISO7721 INB GND1 1, 7 INA OUTB GND2 9, 16 13 12 5 4 3 VA VD LOW BASE ERRLVL 16 0.1 F DAC161P997 22 DBACK DIN C1 14 3 × 2.2 nF 1 F C2 13 C3 COMA 12 1 OUT COMD 9 LOOP± 2 Copyright © 2017, Texas Instruments Incorporated Figure 21. Isolated 4-mA to 20-mA Current Loop Copyright © 2016–2018, Texas Instruments Incorporated 21 ISO7720, ISO7721 ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 www.ti.com.cn Typical Application (continued) 9.2.1 Design Requirements To design with these devices, use the parameters listed in Table 3. Table 3. Design Parameters PARAMETER VALUE Supply voltage, VCC1 and VCC2 2.25 V to 5.5 V Decoupling capacitor between VCC1 and GND1 0.1 µF Decoupling capacitor from VCC2 and GND2 0.1 µF 9.2.2 Detailed Design Procedure Unlike optocouplers, which require external components to improve performance, provide bias, or limit current, the ISO772x devices only require two external bypass capacitors to operate. VCC1 VCC2 GND1 1 GND1 16 GND2 GND2 0.1 µF 0.1 µF NC 2 15 NC VCC1 3 14 VCC2 GND2 OUTA OUTA 4 INB ISOLATION GND1 13 INA INA INB 5 12 OUTB NC 6 11 NC GND1 7 10 NC OUTB GND1 NC 8 9 GND2 GND2 Figure 22. Typical ISO7721 Circuit Hook-up 9.2.3 Application Curve 1 V/ div 1 V/ div The following typical eye diagrams of the ISO772x family of devices indicate low jitter and wide open eye at the maximum data rate of 100 Mbps. Time = 3.5 ns / div Figure 23. ISO7720 Eye Diagram at 100 Mbps PRBS, 5-V Supplies and 25°C 22 Time = 3.5 ns / div Figure 24. ISO7721 Eye Diagram at 100 Mbps PRBS, 5-V Supplies and 25°C Copyright © 2016–2018, Texas Instruments Incorporated ISO7720, ISO7721 www.ti.com.cn ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 10 Power Supply Recommendations To help ensure reliable operation at data rates and supply voltages, a 0.1-μF bypass capacitor is recommended at the input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply pins as possible. If only a single primary-side power supply is available in an application, isolated power can be generated for the secondary-side with the help of a transformer driver such as Texas Instruments' SN6501 or SN6505A. For such applications, detailed power supply design and transformer selection recommendations are available in SN6501 Transformer Driver for Isolated Power Supplies or SN6505 Low-Noise 1-A Transformer Drivers for Isolated Power Supplies. 11 Layout 11.1 Layout Guidelines A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 25). Layer stacking should be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency signal layer. • Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits of the data link. • Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for transmission line interconnects and provides an excellent low-inductance path for the return current flow. • Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of approximately 100 pF/in2. • Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links usually have margin to tolerate discontinuities such as vias. If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the power and ground plane of each power system can be placed closer together, thus increasing the high-frequency bypass capacitance significantly. For detailed layout recommendations, refer to the Digital Isolator Design Guide. 11.1.1 PCB Material For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and the self-extinguishing flammability-characteristics. 11.2 Layout Example High-speed traces 10 mils Ground plane 40 mils Keep this space free from planes, traces, pads, and vias FR-4 0r ~ 4.5 Power plane 10 mils Low-speed traces Figure 25. Layout Example 版权 © 2016–2018, Texas Instruments Incorporated 23 ISO7720, ISO7721 ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 www.ti.com.cn 12 器件和文档支持 12.1 器件支持 12.1.1 开发支持 有关开发支持,请参阅: • 隔离式 CAN 灵活数据 (FD) 速率中继器参考设计 • 采用双同步采样 ADC 的隔离式 16 通道交流模拟输入模块参考设计 • 具有隔离式 AFE 的多相分流计量参考设计 • 电源隔离型超紧凑模拟输出模块参考设计 12.2 文档支持 12.2.1 相关文档 请参阅如下相关文档: • 德州仪器 (TI),《适用于 4mA 至 20mA 回路的 DAC161P997 单线 16 位 DAC》数据表 • 德州仪器 (TI),《数字隔离器设计指南》 • 德州仪器 (TI),《隔离相关术语》 • 德州仪器 (TI),MSP430G2132《混合信号微控制器》数据表 • 德州仪器 (TI),《SN6501 用于隔离式电源的变压器驱动器》数据表 • 德州仪器 (TI),《TPS76333 低功耗 150mA 低压降线性稳压器》数据表 12.3 相关链接 下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链 接。 表 4. 相关链接 器件 产品文件夹 立即订购 技术文档 工具与软件 支持和社区 ISO7720 请单击此处 请单击此处 请单击此处 请单击此处 请单击此处 ISO7721 请单击此处 请单击此处 请单击此处 请单击此处 请单击此处 12.4 接收文档更新通知 要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产 品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 12.5 社区资源 下列链接提供到 TI 社区资源的连接。链接的内容由各个分销商“按照原样”提供。这些内容并不构成 TI 技术规范, 并且不一定反映 TI 的观点;请参阅 TI 的 《使用条款》。 TI E2E™ 在线社区 TI 的工程师对工程师 (E2E) 社区。此社区的创建目的在于促进工程师之间的协作。在 e2e.ti.com 中,您可以咨询问题、分享知识、拓展思路并与同行工程师一道帮助解决问题。 设计支持 TI 参考设计支持 可帮助您快速查找有帮助的 E2E 论坛、设计支持工具以及技术支持的联系信息。 12.6 商标 E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 12.7 静电放电警告 ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可 能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可 能会导致器件与其发布的规格不相符。 24 版权 © 2016–2018, Texas Instruments Incorporated ISO7720, ISO7721 www.ti.com.cn ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 12.8 术语表 SLYZ022 — TI 术语表。 这份术语表列出并解释术语、缩写和定义。 版权 © 2016–2018, Texas Instruments Incorporated 25 ISO7720, ISO7721 ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 www.ti.com.cn 13 机械、封装和可订购信息 以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且 不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。 26 版权 © 2016–2018, Texas Instruments Incorporated ISO7720, ISO7721 www.ti.com.cn ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 PACKAGE OUTLINE D0008B SOIC - 1.75 mm max height SCALE 2.800 SOIC C SEATING PLANE .228-.244 TYP [5.80-6.19] A .004 [0.1] C PIN 1 ID AREA 6X .050 [1.27] 8 1 2X .150 [3.81] .189-.197 [4.81-5.00] NOTE 3 4 5 B .150-.157 [3.81-3.98] NOTE 4 8X .012-.020 [0.31-0.51] .010 [0.25] C A B .069 MAX [1.75] .005-.010 TYP [0.13-0.25] SEE DETAIL A .010 [0.25] .004-.010 [ 0.11 -0.25] 0 -8 .016-.050 [0.41-1.27] DETAIL A .041 [1.04] TYPICAL 4221445/B 04/2014 NOTES: 1. Linear dimensions are in inches [millimeters]. Dimensions in parenthesis are for reference only. Controlling dimensions are in inches. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed .006 [0.15], per side. 4. This dimension does not include interlead flash. 5. Reference JEDEC registration MS-012, variation AA. www.ti.com 版权 © 2016–2018, Texas Instruments Incorporated 27 ISO7720, ISO7721 ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 www.ti.com.cn EXAMPLE BOARD LAYOUT D0008B SOIC - 1.75 mm max height SOIC 8X (.061 ) [1.55] SEE DETAILS SYMM 8X (.055) [1.4] SEE DETAILS SYMM 1 1 8 8X (.024) [0.6] 8 SYMM 8X (.024) [0.6] 5 4 6X (.050 ) [1.27] SYMM 5 4 6X (.050 ) [1.27] (.213) [5.4] (.217) [5.5] HV / ISOLATION OPTION .162 [4.1] CLEARANCE / CREEPAGE IPC-7351 NOMINAL .150 [3.85] CLEARANCE / CREEPAGE LAND PATTERN EXAMPLE SCALE:6X METAL SOLDER MASK OPENING SOLDER MASK OPENING .0028 MAX [0.07] ALL AROUND METAL .0028 MIN [0.07] ALL AROUND SOLDER MASK DEFINED NON SOLDER MASK DEFINED SOLDER MASK DETAILS 4221445/B 04/2014 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com 28 版权 © 2016–2018, Texas Instruments Incorporated ISO7720, ISO7721 www.ti.com.cn ZHCSFQ6C – NOVEMBER 2016 – REVISED JULY 2018 EXAMPLE STENCIL DESIGN D0008B SOIC - 1.75 mm max height SOIC 8X (.061 ) [1.55] 8X (.055) [1.4] SYMM SYMM 1 1 8 8X (.024) [0.6] 6X (.050 ) [1.27] 8 SYMM 8X (.024) [0.6] 5 4 6X (.050 ) [1.27] SYMM 5 4 (.217) [5.5] (.213) [5.4] HV / ISOLATION OPTION .162 [4.1] CLEARANCE / CREEPAGE IPC-7351 NOMINAL .150 [3.85] CLEARANCE / CREEPAGE SOLDER PASTE EXAMPLE BASED ON .005 INCH [0.127 MM] THICK STENCIL SCALE:6X 4221445/B 04/2014 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com 版权 © 2016–2018, Texas Instruments Incorporated 29 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) ISO7720D ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 7720 ISO7720DR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 7720 ISO7720DW ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 ISO7720 ISO7720DWR ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 ISO7720 ISO7720DWV ACTIVE SOIC DWV 8 64 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 7720 ISO7720DWVR ACTIVE SOIC DWV 8 1000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 7720 ISO7720FD ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 7720F ISO7720FDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 7720F ISO7720FDW ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 ISO7720F ISO7720FDWR ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 ISO7720F ISO7720FDWV ACTIVE SOIC DWV 8 64 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 7720F ISO7720FDWVR ACTIVE SOIC DWV 8 1000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 7720F ISO7721BDW ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 ISO7721B ISO7721BDWR ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 ISO7721B ISO7721D ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 7721 ISO7721DR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 7721 ISO7721DW ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 ISO7721 ISO7721DWR ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 ISO7721 ISO7721DWV ACTIVE SOIC DWV 8 64 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 7721 ISO7721DWVR ACTIVE SOIC DWV 8 1000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 7721 Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) ISO7721FBDW ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 ISO7721FB ISO7721FBDWR ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 ISO7721FB ISO7721FD ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 7721F ISO7721FDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 7721F ISO7721FDW ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 ISO7721F ISO7721FDWR ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 ISO7721F ISO7721FDWV ACTIVE SOIC DWV 8 64 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 7721F ISO7721FDWVR ACTIVE SOIC DWV 8 1000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -55 to 125 7721F (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
ISO7721DR 价格&库存

很抱歉,暂时无法提供与“ISO7721DR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ISO7721DR
  •  国内价格
  • 1+2.77500
  • 10+2.65000

库存:1820