Product
Folder
Order
Now
Tools &
Software
Technical
Documents
Support &
Community
ISO7740, ISO7741, ISO7742
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
ISO774x EMC 性能优异的增强型高速四通道数字隔离器
1 特性
•
•
1
•
•
•
•
•
•
•
•
•
•
100Mbps 数据传输速率
稳健可靠的隔离栅:
– 1500VRMS 工作电压下,可实现 100 年以上的
预期使用寿命
– 高达 5000VRMS 隔离额定值
– 高达 12.8kV 的浪涌能力
– ±100kV/μs 典型 CMTI
宽电源电压范围:2.25V 至 5.5V
2.25V 至 5.5V 电平转换
默认输出高电平 (ISO774x) 和低电平 (ISO774xF)
选项
宽温度范围:-55°C 至 +125°C
低功耗,1Mbps 时每通道的电流典型值为 1.5mA
低传播延迟:典型值为 10.7ns
(由 5V 电源供电)
优异的电磁兼容性 (EMC)
– 系统级 ESD、EFT 和浪涌抗扰性
– ±8kV IEC 61000-4-2 跨隔离栅接触放电保护
– 低辐射
Wide-SOIC (DW-16) 和 QSOP (DBQ-16) 封装选
项
可用的汽车版本:ISO774x-Q1ISO774x-Q1”
安全相关认证:
– DIN V VDE V 0884-11:2017-01
– UL 1577 组件认证计划
– CSA 组件验收通知 5A、IEC 60950-1 和 IEC
60601-1 终端设备标准
– 符合 GB4943.1-2011 的 CQC 认证
– 符合 EN 60950-1 和 EN 61010-1 标准的 TUV
认证
– 所有认证均已完成
3 说明
ISO774x 器件是高性能四通道数字隔离器,可提供符
合 UL 1577 标准的 5000VRMS(DW 封装)和
3000VRMS(DBQ 封装)隔离额定值。该系列器件具有
符合 VDE、CSA、TUV 和 CQC 标准的增强型隔离额
定值。
ISO774x 器件能够以较低的功耗提供高电磁抗扰度和
低辐射,同时还能够隔离 CMOS 或 LVCMOS 数字
I/O。每条隔离通道的逻辑输入和输出缓冲器均由双电
容二氧化硅 (SiO2) 绝缘栅相隔离。该器件配有使能引
脚,可用于将多主驱动 应用 中的相应输出置于高阻抗
状态,也可用于降低功耗。ISO7740 器件具有四条全
部同向的通道,ISO7741 器件具有三条正向通道和一
条反向通道,而 ISO7742 器件具有两条正向通道和两
条反向通道。如果输入功率或信号出现损失,不带后缀
F 的器件默认输出高电平,带后缀 F 的器件默认输出
低电平。有关更多详细信息,请参阅 Device
Functional Modes器件功能模式 部分。
器件信息(1)
器件型号
ISO7740
ISO7741
ISO7742
封装
封装尺寸(标称值)
SOIC (DW)
10.30mm × 7.50mm
SSOP (DBQ)
4.90mm × 3.90mm
(1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附
录。
简化原理图
VCCO
VCCI
Series Isolation
Capacitors
INx
OUTx
2 应用
•
•
•
•
•
工业自动化
电机控制
电源
光伏逆变器
医疗设备
ENx
GNDI
GNDO
Copyright © 2016, Texas Instruments Incorporated
VCCI = 输入电源,VCCO = 输出电源
GNDI=输入接地,GNDO=输出接地
1
本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确
性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。
English Data Sheet: SLLSEP4
ISO7740, ISO7741, ISO7742
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
www.ti.com.cn
目录
1
2
3
4
5
6
7
特性 ..........................................................................
应用 ..........................................................................
说明 ..........................................................................
修订历史记录 ...........................................................
说明 (续) ..............................................................
Pin Configuration and Functions .........................
Specifications.........................................................
7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16
7.17
1
1
1
2
5
6
8
Absolute Maximum Ratings ...................................... 8
ESD Ratings.............................................................. 8
Recommended Operating Conditions....................... 8
Thermal Information .................................................. 9
Power Rating............................................................. 9
Insulation Specifications.......................................... 10
Safety-Related Certifications................................... 11
Safety Limiting Values ............................................ 11
Electrical Characteristics—5-V Supply ................... 12
Supply Current Characteristics—5-V Supply ........ 13
Electrical Characteristics—3.3-V Supply .............. 14
Supply Current Characteristics—3.3-V Supply ..... 15
Electrical Characteristics—2.5-V Supply .............. 16
Supply Current Characteristics—2.5-V Supply ..... 17
Switching Characteristics—5-V Supply................. 18
Switching Characteristics—3.3-V Supply.............. 18
Switching Characteristics—2.5-V Supply.............. 19
7.18 Insulation Characteristics Curves ......................... 20
7.19 Typical Characteristics .......................................... 21
8
9
Parameter Measurement Information ................ 23
Detailed Description ............................................ 25
9.1
9.2
9.3
9.4
Overview .................................................................
Functional Block Diagram .......................................
Feature Description.................................................
Device Functional Modes........................................
25
25
26
27
10 Application and Implementation........................ 29
10.1 Application Information.......................................... 29
10.2 Typical Application ................................................ 29
11 Power Supply Recommendations ..................... 32
12 Layout................................................................... 33
12.1 Layout Guidelines ................................................. 33
12.2 Layout Example .................................................... 33
13 器件和文档支持 ..................................................... 34
13.1
13.2
13.3
13.4
13.5
13.6
13.7
文档支持................................................................
相关链接................................................................
接收文档更新通知 .................................................
社区资源................................................................
商标 .......................................................................
静电放电警告.........................................................
Glossary ................................................................
34
34
34
34
34
34
35
14 机械、封装和可订购信息 ....................................... 35
4 修订历史记录
注:之前版本的页码可能与当前版本有所不同。
Changes from Revision E (January 2018) to Revision F
Page
•
对文档通篇进行了编辑性和修饰性更改................................................................................................................................... 1
•
将特性中的“隔离栅寿命大于 40 年”更改为“1500VRMS 工作电压下,可实现 100 年以上的预期使用寿命” .............................. 1
•
在特性中添加了“高达 5000VRMS 隔离额定值” ......................................................................................................................... 1
•
在特性中添加了“高达 12.8kV 的浪涌能力”.............................................................................................................................. 1
•
在特性中添加了“±8kV IEC 61000-4-2 跨隔离栅接触放电保护” .............................................................................................. 1
•
在特性中添加了“可用的汽车版本:......................................................................................................................................... 1
•
将特性中的“除 DBQ-16 封装器件的 CQC 认证外,其余所有认证均已完成”更改为“所有认证均已完成” ................................ 1
•
更新了简化原理图,以显示每个通道的两个串联隔离电容,而不是单个隔离电容 .................................................................. 1
•
Added "Contact discharge per IEC 61000-4-2" specification of ±8000 V in ESD Ratings..................................................... 8
•
Added the following table note to Data rate specification: "100 Mbps is the maximum specified data rate, although
higher data rates are possible." ............................................................................................................................................. 8
•
Changed VIORM value for DW-16 package From: "1414 VPK" To: "2121 VPK" in Insulation Specifications table.................. 10
•
Changed VIOWM values for DW-16 package From: "1000 VRMS" and "1414 VDC" To: "1500 VRMS" and "2121 VDC" in
Insulation Specifications table ............................................................................................................................................. 10
•
Added 'see Figure 28' to TEST CONDITIONS of VIOWM specification in Insulation Specifications ...................................... 10
•
Changed VIOSM TEST CONDITIONS From: "Test method per IEC 60065" To: "Test method per IEC 62368-1" in
Insulation Specifications table .............................................................................................................................................. 10
•
Updated certification information in Safety-Related Certifications table .............................................................................. 11
•
Switched the line colors for VCC at 2.5 V and VCC at 3.3 V in Figure 12 .............................................................................. 21
•
Added Insulation Lifetime sub-section under Application Curve section.............................................................................. 31
•
向文档支持部分添加了“......................................................................................................................................................... 34
2
版权 © 2016–2019, Texas Instruments Incorporated
ISO7740, ISO7741, ISO7742
www.ti.com.cn
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
修订历史记录 (接
接下页)
Changes from Revision D (May 2017) to Revision E
Page
•
已更改 通篇更改了 DIN 认证编号和认证状态 ......................................................................................................................... 1
•
已更改 将 DBQ 封装的隔离额定值从 2500VRMS 更改成了 3000VRMS ..................................................................................... 1
•
Added VTEST to the conditions for the maximum transient isolation voltage parameter in the Insulation Specifications
table ...................................................................................................................................................................................... 10
•
Changed the value for the DBQ package from 3600 VPK to 4242 VPK throughout the document...................................... 10
•
Changed the method b1 Vini condition for apparent charge in the Insulation Specifications table ...................................... 10
•
Switched the labels for VCC1 falling and VCC2 rising in the graph legend of Power Supply Undervoltage Threshold vs
Free-Air Temperature ........................................................................................................................................................... 21
Changes from Revision C (December 2016) to Revision D
Page
•
Updated the Safety-Related Certifications table................................................................................................................... 11
•
Changed the minimum CMTI from 40 to 85 in all Electrical Characteristics tables ............................................................ 12
Changes from Revision B (October 2016) to Revision C
Page
•
Changed the Regulatory Information table to Safety-Related Certifications and updated content...................................... 11
•
Changed the certifications from planned to certified in the Safety-Related Certifications table........................................... 11
Changes from Revision A (June 2016) to Revision B
Page
•
将特性 从“高 CMTI:±75kV/μs 典型值”更改为“高 CMTI:±100kV/μs 典型值” ....................................................................... 1
•
将特性中的“所有认证均已计划”更改为“DW 封装的 VDE、UL 和 TUV 认证已完成,所有其他认证均已计划” ....................... 1
•
Changed the unit value of CLR and CPG From: μm To: mm in Insulation Specifications................................................... 10
•
Changed From: "Plan to certify" To: "Certified" in column VDE of Safety-Related Certifications ........................................ 11
•
Added a conditions statement to Safety-Related Certifications .......................................................................................... 11
•
Changed From: "Plan to certify" To: "Certified" in column UL of Safety-Related Certifications ........................................... 11
•
Changed From: "Plan to certify" To: "Certified" in column TUV of Safety-Related Certifications ........................................ 11
•
Changed From: "Certification Planned" To: 'Certificate number: 40040142" in column VDE of Safety-Related
Certifications ......................................................................................................................................................................... 11
•
Changed From: "Certification Planned" To: "File number: E181974" in column VDE of Safety-Related Certifications....... 11
•
Changed From: "Certification Planned" To: "Client ID number: 77311" in column TUV of Safety-Related Certifications ... 11
•
Changed the CMTI TYP value From: 75 kV/μs To: 100 kV/μs in the Electrical Characteristics—5-V Supply..................... 12
•
Changed the CMTI TYP value From: 75 kV/μs To: 100 kV/μs in the Electrical Characteristics—3.3-V Supply .................. 14
•
Changed the CMTI TYP value From: 75 kV/μs To: 100 kV/μs in the Electrical Characteristics—2.5-V Supply .................. 16
•
Changed the tDO TYP value From: 6 μs To: 0.1 μs and the MAX value From: 9 µs To: 0.3 µs in the Switching
Characteristics—5-V Supply................................................................................................................................................. 18
•
Changed the tDO TYP value From: 6 μs To: 0.1 μs and the MAX value From: 9 µs To: 0.3 µs in the Switching
Characteristics—3.3-V Supply.............................................................................................................................................. 18
•
Changed the tDO TYP value From: 6 μs To: 0.1 μs and the MAX value From: 9 µs To: 0.3 µs in the Switching
Characteristics—2.5-V Supply.............................................................................................................................................. 19
•
Added Note B to Figure 17................................................................................................................................................... 24
•
Changed the Design Requirements paragraph ................................................................................................................... 30
•
Replaced the Power Supply Recommendations section ..................................................................................................... 32
版权 © 2016–2019, Texas Instruments Incorporated
3
ISO7740, ISO7741, ISO7742
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
Changes from Original (March 2016) to Revision A
www.ti.com.cn
Page
•
将器件状态从“预览”更改为“生产”。......................................................................................................................................... 1
4
版权 © 2016–2019, Texas Instruments Incorporated
ISO7740, ISO7741, ISO7742
www.ti.com.cn
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
5 说明 (续)
这些器件与隔离式电源搭配使用,有助于防止数据总线(例如,RS-485、RS-232 以及 CAN)或其他电路上的噪
声电流进入本地接地以及干扰或损坏敏感电路。凭借创新型芯片设计和布局技术,ISO774x 器件的电磁兼容性得到
了显著增强,可轻松满足系统级 ESD、EFT、浪涌和辐射方面的合规要求。ISO774x 器件采用 16 引脚 SOIC 和
QSOP 封装。
Copyright © 2016–2019, Texas Instruments Incorporated
5
ISO7740, ISO7741, ISO7742
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
www.ti.com.cn
6 Pin Configuration and Functions
ISO7740 DW and DBQ Packages
16-Pin SOIC-WB and QSOP
Top View
ISO7741 DW and DBQ Packages
16-Pin SOIC-WB and QSOP
Top View
1
16 VCC2
VCC1
1
16 VCC2
GND1 2
15 GND2
GND1 2
15 GND2
3
INB
4
INC
5
IND
6
11 OUTD
NC
7
10
ISOLATION
INA
14 OUTA
INA
3
13 OUTB
INB
4
12 OUTC
INC
5
GND1 8
14 OUTA
ISOLATION
VCC1
OUTD 6
EN2
EN1
9 GND2
7
GND1 8
13 OUTB
12 OUTC
11
IND
10
EN2
9 GND2
ISO7742 DW and DBQ Packages
16-Pin SOIC-WB and QSOP
Top View
1
16 VCC2
GND1 2
15 GND2
INA
3
INB
4
OUTC 5
OUTD 6
EN1
7
GND1 8
6
14 OUTA
ISOLATION
VCC1
13 OUTB
12
INC
11
IND
10
EN2
9 GND2
Copyright © 2016–2019, Texas Instruments Incorporated
ISO7740, ISO7741, ISO7742
www.ti.com.cn
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
Pin Functions
PIN
NAME
I/O
DESCRIPTION
7
I
Output enable 1. Output pins on side 1 are enabled when EN1 is high
or open and in high-impedance state when EN1 is low.
10
10
I
Output enable 2. Output pins on side 2 are enabled when EN2 is high
or open and in high-impedance state when EN2 is low.
2
2
2
8
8
8
ISO7740
ISO7741
ISO7742
EN1
—
7
EN2
10
GND1
—
Ground connection for VCC1
—
Ground connection for VCC2
9
9
9
15
15
15
INA
3
3
3
I
Input, channel A
INB
4
4
4
I
Input, channel B
INC
5
5
12
I
Input, channel C
IND
6
11
11
I
Input, channel D
NC
7
—
—
—
Not connected
OUTA
14
14
14
O
Output, channel A
OUTB
13
13
13
O
Output, channel B
OUTC
12
12
5
O
Output, channel C
OUTD
11
6
6
O
Output, channel D
VCC1
1
1
1
—
Power supply, side 1
VCC2
16
16
16
—
Power supply, side 2
GND2
Copyright © 2016–2019, Texas Instruments Incorporated
7
ISO7740, ISO7741, ISO7742
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
www.ti.com.cn
7 Specifications
7.1 Absolute Maximum Ratings
See
(1)
VCC1, VCC2
Supply voltage (2)
MIN
MAX
–0.5
6
V
Voltage at INx, OUTx, ENx
–0.5
IO
Output current
–15
TJ
Junction temperature
Tstg
Storage temperature
(1)
(2)
(3)
UNIT
V
VCCX + 0.5
–65
(3)
V
15
mA
150
°C
150
°C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak
voltage values.
Maximum voltage must not exceed 6 V.
7.2 ESD Ratings
VALUE
V(ESD)
Electrostatic discharge
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1)
±6000
Charged device model (CDM), per JEDEC specification JESD22-C101, all
pins (2)
±1500
Contact discharge per IEC 61000-4-2; Isolation barrier withstand test
(1)
(2)
(3)
(4)
(3) (4)
UNIT
V
±8000
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
IEC ESD strike is applied across the barrier with all pins on each side tied together creating a two-terminal device.
Testing is carried out in air or oil to determine the intrinsic contact discharge capability of the device.
7.3 Recommended Operating Conditions
MIN
NOM
UNIT
Supply voltage
VCC(UVLO+)
UVLO threshold when supply voltage is rising
VCC(UVLO-)
UVLO threshold when supply voltage is falling
1.7
1.8
V
VHYS(UVLO)
Supply voltage UVLO hysteresis
100
200
mV
IOH
IOL
High-level output current
Low-level output current
VCCO (1) = 5 V
–4
VCCO = 3.3 V
–2
VCCO = 2.5 V
–1
V
2.25
V
mA
VCCO = 5 V
4
VCCO = 3.3 V
2
VCCO = 2.5 V
1
mA
VCCI
Low-level input voltage
0
0.3 × VCCI
Data rate (2)
0
100
Mbps
125
°C
High-level input voltage
VIL
DR
TA
Ambient temperature
8
2
5.5
(1)
VIH
(1)
(2)
2.25
MAX
VCC1, VCC2
0.7 × VCCI
–55
25
V
V
VCCI = Input-side VCC; VCCO = Output-side VCC.
100 Mbps is the maximum specified data rate, although higher data rates are possible.
Copyright © 2016–2019, Texas Instruments Incorporated
ISO7740, ISO7741, ISO7742
www.ti.com.cn
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
7.4 Thermal Information
ISO774x
THERMAL METRIC (1)
DW (SOIC)
DBQ (QSOP)
16 Pins
16 Pins
UNIT
83.4
109
°C/W
RθJA
Junction-to-ambient thermal resistance
RθJC(top)
Junction-to-case(top) thermal resistance
46
54.4
°C/W
RθJB
Junction-to-board thermal resistance
48
51.9
°C/W
ψJT
Junction-to-top characterization parameter
19.1
14.2
°C/W
ψJB
Junction-to-board characterization parameter
47.5
51.4
°C/W
RθJC(bottom)
Junction-to-case(bottom) thermal resistance
—
—
°C/W
(1)
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.
7.5 Power Rating
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
200
mW
40
mW
160
mW
200
mW
75
mW
125
mW
200
mW
100
mW
100
mW
ISO7740
PD
Maximum power dissipation
PD1
Maximum power dissipation by side-1
PD2
Maximum power dissipation by side-2
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,
Input a 50-MHz 50% duty cycle square wave
ISO7741
PD
Maximum power dissipation
PD1
Maximum power dissipation by side-1
PD2
Maximum power dissipation by side-2
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,
Input a 50-MHz 50% duty cycle square wave
ISO7742
PD
Maximum power dissipation
PD1
Maximum power dissipation by side-1
PD2
Maximum power dissipation by side-2
Copyright © 2016–2019, Texas Instruments Incorporated
VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF,
Input a 50-MHz 50% duty cycle square wave
9
ISO7740, ISO7741, ISO7742
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
www.ti.com.cn
7.6 Insulation Specifications
PARAMETER
VALUE
TEST CONDITIONS
DW-16
DBQ-16
UNIT
External clearance (1)
Shortest terminal-to-terminal distance through air
>8
>3.7
mm
CPG
External creepage (1)
Shortest terminal-to-terminal distance across the package
surface
>8
>3.7
mm
DTI
Distance through the insulation
Minimum internal gap (internal clearance)
>21
>21
μm
CTI
Comparative tracking index
DIN EN 60112 (VDE 0303-11); IEC 60112
>600
>600
V
Material group
According to IEC 60664-1
I
I
Rated mains voltage ≤ 300 VRMS
I-IV
I-III
Rated mains voltage ≤ 600 VRMS
I-IV
n/a
Rated mains voltage ≤ 1000 VRMS
I-III
n/a
CLR
Overvoltage category per IEC 60664-1
DIN V VDE V 0884-11:2017-01 (2)
VIORM
VIOWM
Maximum repetitive peak isolation voltage
AC voltage (bipolar)
2121
566
VPK
Maximum working isolation voltage
AC voltage; Time dependent dielectric breakdown (TDDB)
Test; see Figure 28
1500
400
VRMS
DC voltage
2121
566
VDC
8000
4242
VPK
8000
4000
VPK
Method a, After Input/Output safety test subgroup 2/3,
Vini = VIOTM, tini = 60 s;
Vpd(m) = 1.2 × VIORM, tm = 10 s
≤5
≤5
Method a, After environmental tests subgroup 1,
Vini = VIOTM, tini = 60 s;
Vpd(m) = 1.6 × VIORM, tm = 10 s
≤5
≤5
Method b1; At routine test (100% production) and
preconditioning (type test)
Vini = 1.2 × VIOTM, tini = 1 s;
Vpd(m) = 1.875 × VIORM, tm = 1 s
≤5
≤5
VIOTM
Maximum transient isolation voltage
VTEST = VIOTM,
t = 60 s (qualification);
VTEST = 1.2 × VIOTM,
t= 1 s (100% production)
VIOSM
Maximum surge isolation voltage (3)
Test method per IEC 62368-1, 1.2/50 µs waveform,
VTEST = 1.6 × VIOSM (qualification)
Apparent charge (4)
qpd
Barrier capacitance, input to output (5)
CIO
~1
~1
VIO = 500 V, TA = 25°C
>1012
>1012
VIO = 500 V, 100°C ≤ TA ≤ 125°C
>1011
>1011
VIO = 500 V at TS = 150°C
>109
>109
Pollution degree
2
2
Climatic category
55/125/21
55/125/21
5000
3000
Isolation resistance (5)
RIO
VIO = 0.4 × sin (2πft), f = 1 MHz
pC
pF
Ω
UL 1577
VISO
(1)
Maximum withstanding isolation voltage
VTEST = VISO , t = 60 s (qualification),
VTEST = 1.2 × VISO , t = 1 s (100% production)
VRMS
(3)
(4)
(5)
Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care
should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on
the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases.
Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications.
This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by
means of suitable protective circuits.
Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier.
Apparent charge is electrical discharge caused by a partial discharge (pd).
All pins on each side of the barrier tied together creating a two-terminal device.
10
Copyright © 2016–2019, Texas Instruments Incorporated
(2)
ISO7740, ISO7741, ISO7742
www.ti.com.cn
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
7.7 Safety-Related Certifications
VDE
CSA
UL
Certified according to IEC
Certified according to DIN
60950-1, IEC 62368-1 and IEC
V VDE V 0884-11:2017-01
60601-1
Certified according to UL 1577
Component Recognition
Program
CQC
Certified according to GB
4943.1-2011
Maximum transient
isolation voltage, 8000 VPK
(DW-16) and 4242 VPK
(DBQ-16);
Maximum repetitive peak
isolation voltage, 2121 VPK
(DW-16, Reinforced) and
566 VPK (DBQ-16);
Maximum surge isolation
voltage, 8000 VPK (DW16) and 4000 VPK (DBQ16)
Reinforced insulation per CSA
60950-1-07+A1+A2 and IEC
60950-1 2nd Ed.,
800 VRMS (DW-16) and 370 VRMS
(DBQ-16) max working voltage
(pollution degree 2, material
group I);
2 MOPP (Means of Patient
Protection) per CSA 60601-1:14
and IEC 60601-1 Ed. 3.1, 250
VRMS (DW-16) max working
voltage
DW-16: Reinforced Insulation,
Altitude ≤ 5000 m, Tropical
DW-16: Single protection, 5000 Climate, 700 VRMS maximum
VRMS;
working voltage;
DBQ-16: Single protection,
DBQ-16: Basic Insulation,
3000 VRMS
Altitude ≤ 5000 m, Tropical
Climate, 400 VRMS maximum
working voltage
Certificate number:
40040142
Master contract number: 220991
File number: E181974
Certificate numbers:
CQC15001121716 (DW-16)
CQC18001199097 (DBQ-16)
TUV
Certified according to EN
61010-1:2010 (3rd Ed) and
EN 60950-1:2006/A2:2013
5000 VRMS (DW-16) and
3000 VRMS (DBQ-16)
Reinforced insulation per
EN 61010-1:2010 (3rd Ed)
up to working voltage of 600
VRMS (DW-16) and 300
VRMS (DBQ-16)
5000 VRMS (DW-16)
and3000 VRMS (DBQ-16)
Reinforced insulation per
EN 60950-1:2006/A2:2013
up to working voltage of 800
VRMS (DW-16) and 370
VRMS (DBQ-16)
Client ID number: 77311
7.8 Safety Limiting Values
Safety limiting (1) intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. A failure
of the I/O can allow low resistance to ground or the supply and, without current limiting, dissipate sufficient power to overheat
the die and damage the isolation barrier potentially leading to secondary system failures.
PARAMETER
TEST CONDITIONS
MIN
TYP MAX
UNIT
DW-16 PACKAGE
IS
Safety input, output, or supply
current
RθJA = 83.4 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see Figure 1
273
RθJA = 83.4 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see Figure 1
416
RθJA = 83.4 °C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see
Figure 1
545
PS
Safety input, output, or total power RθJA = 83.4 °C/W, TJ = 150°C, TA = 25°C, see Figure 3
TS
Maximum safety temperature
mA
1499
mW
150
°C
DBQ-16 PACKAGE
IS
Safety input, output, or supply
current
RθJA = 109 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see Figure 2
209
RθJA = 109 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see Figure 2
319
RθJA = 109 °C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see
Figure 2
417
PS
Safety input, output, or total power RθJA = 109 °C/W, TJ = 150°C, TA = 25°C, see Figure 4
TS
Maximum safety temperature
(1)
mA
1147
mW
150
°C
The maximum safety temperature is the maximum junction temperature specified for the device. The power dissipation and junction-toair thermal impedance of the device installed in the application hardware determines the junction temperature. The assumed junction-toair thermal resistance in the Thermal Information is that of a device installed on a High-K test board for leaded Surface Mount Packages.
The power is the recommended maximum input voltage times the current. The junction temperature is then the ambient temperature
plus the power times the junction-to-air thermal resistance
Copyright © 2016–2019, Texas Instruments Incorporated
11
ISO7740, ISO7741, ISO7742
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
www.ti.com.cn
7.9 Electrical Characteristics—5-V Supply
VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted)
PARAMETER
TEST CONDITIONS
VOH
High-level output voltage
IOH = –4 mA; see Figure 15
VOL
Low-level output voltage
IOL = 4 mA; see Figure 15
VCCO
(1)
MIN
TYP
– 0.4
4.8
VIT+(IN) Rising input voltage threshold
VIT-(IN) Falling input voltage threshold
VI(HYS)
Input threshold voltage
hysteresis
(1)
IIH
High-level input current
VIH = VCCI
IIL
Low-level input current
VIL = 0 V at INx or ENx
CMTI
Common-mode transient
immunity
VI = VCCI or 0 V, VCM = 1200 V; see
Figure 18
CI
Input Capacitance (2)
VI = VCC/ 2 + 0.4×sin(2πft), f = 1 MHz,
VCC = 5 V
(1)
(2)
12
MAX
UNIT
V
0.2
0.4
V
0.6 × VCCI
0.7 × VCCI
V
0.3 × VCCI
0.4 × VCCI
V
0.1 × VCCI
0.2 × VCCI
V
10
at INx or ENx
–10
85
μA
μA
100
2
kV/μs
pF
VCCI = Input-side VCC; VCCO = Output-side VCC.
Measured from input pin to ground.
Copyright © 2016–2019, Texas Instruments Incorporated
ISO7740, ISO7741, ISO7742
www.ti.com.cn
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
7.10 Supply Current Characteristics—5-V Supply
VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted).
PARAMETER
SUPPLY
CURRENT
TEST CONDITIONS
MIN
TYP
MAX
UNIT
ISO7740
EN2 = 0 V; VI = VCC1 (ISO7740);
VI = 0 V (ISO7740 with F suffix)
ICC1
1.2
1.6
ICC2
0.3
0.5
EN2 = 0 V; VI = 0 V (ISO7740);
VI = VCC1 (ISO7740 with F suffix)
ICC1
5.5
7.8
ICC2
0.3
0.5
EN2 = VCC2; VI = VCC1 (ISO7740);
VI = 0 V (ISO7740 with F suffix)
ICC1
1.2
1.6
ICC2
2
3.2
EN2 = VCC2; VI = 0 V (ISO7740);
VI = VCC1 (ISO7740 with F suffix)
ICC1
5.5
7.8
ICC2
2.2
3.6
ICC1
3.3
4.7
ICC2
2.3
3.6
ICC1
3.4
4.8
ICC2
4.2
5.8
ICC1
3.8
5.7
ICC2
22.7
28
Supply current - Disable
Supply current - DC signal
1 Mbps
Supply current - AC signal
All channels switching with square
wave clock input; CL = 15 pF
10 Mbps
100 Mbps
mA
ISO7741
EN1 = EN2 = 0 V; VI = VCCI (1) (ISO7741);
VI = 0 V (ISO7741 with F suffix)
ICC1
1
1.5
ICC2
0.8
1.1
EN1 = EN2 = 0 V; VI = 0 V (ISO7741);
VI = VCCI (ISO7741 with F suffix)
ICC1
4.3
6.3
ICC2
1.8
2.7
EN1 = EN2 = VCCI; VI = VCCI (ISO7741);
VI = 0 V (ISO7741 with F suffix)
ICC1
1.5
2.3
ICC2
2
3
EN1 = EN2 = VCCI; VI = 0 V (ISO7741);
VI = VCCI (ISO7741 with F suffix)
ICC1
4.8
6.8
ICC2
3.2
4.9
ICC1
3.2
4.6
ICC2
2.8
4.1
ICC1
3.7
5.2
ICC2
4.2
5.7
ICC1
8.6
11.3
ICC2
18
22
EN1 = EN2 = 0 V; VI = VCCI (ISO7742);
VI = 0 V (ISO7742 with F suffix)
ICC1, ICC2
0.9
1.3
EN1 = EN2 = 0 V; VI = 0 V (ISO7742);
VI = VCCI (ISO7742 with F suffix)
ICC1, ICC2
3
4.6
EN1 = EN2 = VCCI; VI = VCCI (ISO7742);
VI = 0 V (ISO7742 with F suffix)
ICC1, ICC2
1.7
2.7
EN1 = EN2 = VCCI; VI = 0 V (ISO7742);
VI = VCCI (ISO7742 with F suffix)
ICC1, ICC2
4
5.9
1 Mbps
ICC1, ICC2
3
4.4
10 Mbps
ICC1, ICC2
4
5.5
100 Mbps
ICC1, ICC2
13.4
17
Supply current - Disable
Supply current - DC signal
1 Mbps
Supply current - AC signal
All channels switching with square
wave clock input; CL = 15 pF
10 Mbps
100 Mbps
mA
ISO7742
Supply current - Disable
Supply current - DC signal
Supply current - AC signal
(1)
All channels switching with square
wave clock input; CL = 15 pF
mA
VCCI = Input-side VCC
Copyright © 2016–2019, Texas Instruments Incorporated
13
ISO7740, ISO7741, ISO7742
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
www.ti.com.cn
7.11 Electrical Characteristics—3.3-V Supply
VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
VCCO (1) – 0.3
3.2
VOH
High-level output voltage
IOH = –2 mA; see Figure 15
VOL
Low-level output voltage
IOL = 2 mA; see Figure 15
VIT+(IN)
Rising input voltage threshold
VIT-(IN)
Falling input voltage threshold
0.3 × VCCI
0.4 × VCCI
VI(HYS)
Input threshold voltage hysteresis
0.1 × VCCI
0.2 × VCCI
IIH
High-level input current
VIH = VCCI (1) at INx or ENx
IIL
Low-level input current
VIL = 0 V at INx or ENx
CMTI
Common-mode transient
immunity
VI = VCCI or 0 V, VCM = 1200 V; see Figure 18
(1)
14
MAX
V
0.1
0.3
V
0.6 × VCCI
0.7 × VCCI
V
V
V
10
–10
85
UNIT
μA
μA
100
kV/μs
VCCI = Input-side VCC; VCCO = Output-side VCC.
Copyright © 2016–2019, Texas Instruments Incorporated
ISO7740, ISO7741, ISO7742
www.ti.com.cn
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
7.12 Supply Current Characteristics—3.3-V Supply
VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted).
PARAMETER
SUPPLY
CURRENT
TEST CONDITIONS
MIN
TYP
MAX
UNIT
ISO7740
EN2 = 0 V; VI = VCC1 (ISO7740);
VI = 0 V (ISO7740 with F suffix)
ICC1
1.2
1.6
ICC2
0.3
0.5
EN2 = 0 V; VI = 0 V (ISO7740);
VI = VCC1 (ISO7740 with F suffix)
ICC1
5.5
7.8
ICC2
0.3
0.5
EN2 = VCC2; VI = VCC1 (ISO7740);
VI = 0 V (ISO7740 with F suffix)
ICC1
1.2
1.6
ICC2
1.9
3.2
EN2 = VCC2; VI = 0 V (ISO7740);
VI = VCC1 (ISO7740 with F suffix)
ICC1
5.5
7.8
ICC2
2.2
3.6
ICC1
3.3
4.7
ICC2
2.2
3.6
ICC1
3.4
4.8
ICC2
3.6
5
ICC1
3.3
5.5
ICC2
17
20
Supply current - Disable
Supply current - DC signal
1 Mbps
Supply current - AC signal
All channels switching with square
wave clock input; CL = 15 pF
10 Mbps
100 Mbps
mA
ISO7741
EN1 = EN2 = 0 V; VI = VCCI (1) (ISO7741);
VI = 0 V (ISO7741 with F suffix)
ICC1
1
1.5
ICC2
0.8
1.1
EN1 = EN2 = 0 V; VI = 0 V (ISO7741);
VI = VCCI (ISO7741 with F suffix)
ICC1
4.3
6.3
ICC2
1.9
2.7
EN1 = EN2 = VCCI; VI = VCCI (ISO7741);
VI = 0 V (ISO7741 with F suffix)
ICC1
1.5
2.3
ICC2
2
3
EN1 = EN2 = VCCI; VI = 0 V (ISO7741);
VI = VCCI (ISO7741 with F suffix)
ICC1
4.8
6.8
ICC2
3.2
4.9
ICC1
3.2
4.6
ICC2
2.7
4.1
ICC1
3.5
5
ICC2
3.7
5.2
Supply current - Disable
Supply current - DC signal
1 Mbps
Supply current - AC signal
All channels switching with square
wave clock input; CL = 15 pF
10 Mbps
ICC1
6.8
9.3
ICC2
13.7
16.4
EN1 = EN2 = 0 V; VI = VCCI (ISO7742);
VI = 0 V (ISO7742 with F suffix)
ICC1, ICC2
0.9
1.3
EN1 = EN2 = 0 V; VI = 0 V (ISO7742);
VI = VCCI (ISO7742 with F suffix)
ICC1, ICC2
3
4.6
EN1 = EN2 = VCCI; VI = VCCI (ISO7742);
VI = 0 V (ISO7742 with F suffix)
ICC1, ICC2
1.7
2.7
EN1 = EN2 = VCCI; VI = 0 V (ISO7742);
VI = VCCI (ISO7742 with F suffix)
ICC1, ICC2
4
5.9
1 Mbps
ICC1, ICC2
2.9
4.3
10 Mbps
ICC1, ICC2
3.6
5.1
100 Mbps
ICC1, ICC2
10.3
13
100 Mbps
mA
ISO7742
Supply current - Disable
Supply current - DC signal
Supply current - AC signal
(1)
All channels switching with square
wave clock input; CL = 15 pF
mA
VCCI = Input-side VCC
Copyright © 2016–2019, Texas Instruments Incorporated
15
ISO7740, ISO7741, ISO7742
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
www.ti.com.cn
7.13 Electrical Characteristics—2.5-V Supply
VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
VCCO (1) – 0.2
2.45
VOH
High-level output voltage
IOH = –1 mA; see Figure 15
VOL
Low-level output voltage
IOL = 1 mA; see Figure 15
VIT+(IN)
Rising input voltage threshold
VIT-(IN)
Falling input voltage threshold
0.3 × VCCI
0.4 × VCCI
VI(HYS)
Input threshold voltage hysteresis
0.1 × VCCI
0.2 × VCCI
IIH
High-level input current
VIH = VCCI (1) at INx or ENx
IIL
Low-level input current
VIL = 0 V at INx or ENx
CMTI
Common-mode transient
immunity
VI = VCCI or 0 V, VCM = 1200 V; see Figure 18
(1)
16
MAX
V
0.05
0.2
V
0.6 × VCCI
0.7 × VCCI
V
V
V
10
–10
85
UNIT
μA
μA
100
kV/μs
VCCI = Input-side VCC; VCCO = Output-side VCC.
Copyright © 2016–2019, Texas Instruments Incorporated
ISO7740, ISO7741, ISO7742
www.ti.com.cn
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
7.14 Supply Current Characteristics—2.5-V Supply
VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted).
PARAMETER
TEST CONDITIONS
SUPPLY
CURRENT
MIN
TYP
MAX
UNIT
ISO7740
EN2 = 0 V; VI = VCC1 (ISO7740);
VI = 0 V (ISO7740 with F suffix)
ICC1
1.2
1.6
ICC2
0.3
0.5
EN2 = 0 V; VI = 0 V (ISO7740);
VI = VCC1 (ISO7740 with F suffix)
ICC1
5.5
7.8
ICC2
0.3
0.5
EN2 = VCC2; VI = VCC1 (ISO7740);
VI = 0 V (ISO7740 with F suffix)
ICC1
1.2
1.6
ICC2
1.9
3.2
EN2 = VCC2; VI = 0 V (ISO7740);
VI = VCC1 (ISO7740 with F suffix)
ICC1
5.4
7.8
ICC2
2.2
3.6
ICC1
3.3
4.7
ICC2
2.2
3.5
ICC1
3.4
4.8
ICC2
3.2
4.7
ICC1
3.2
5.4
ICC2
13
17
Supply current - Disable
Supply current - DC signal
1 Mbps
Supply current - AC signal
All channels switching with square
wave clock input; CL = 15 pF
10 Mbps
100 Mbps
mA
ISO7741
EN1 = EN2 = 0 V; VI = VCCI (1) (ISO7741);
VI = 0 V (ISO7741 with F suffix)
ICC1
1
1.5
ICC2
0.8
1.1
EN1 = EN2 = 0 V; VI = 0 V (ISO7741);
VI = VCCI (ISO7741 with F suffix)
ICC1
4.3
6.3
ICC2
1.8
2.7
EN1 = EN2 = VCCI; VI = VCCI (ISO7741);
VI = 0 V (ISO7741 with F suffix)
ICC1
1.4
2.3
ICC2
2
3
EN1 = EN2 = VCCI; VI = 0 V (ISO7741);
VI = VCCI (ISO7741 with F suffix)
ICC1
4.7
6.8
ICC2
3.2
4.9
ICC1
3.1
4.6
ICC2
2.7
4
ICC1
3.4
4.9
ICC2
3.5
4.9
ICC1
5.6
8.3
ICC2
10.8
13.8
EN1 = EN2 = 0 V; VI = VCCI (ISO7742);
VI = 0 V (ISO7742 with F suffix)
ICC1, ICC2
0.9
1.3
EN1 = EN2 = 0 V; VI = 0 V (ISO7742);
VI = VCCI (ISO7742 with F suffix)
ICC1, ICC2
3
4.6
EN1 = EN2 = VCCI; VI = VCCI (ISO7742);
VI = 0 V (ISO7742 with F suffix)
ICC1, ICC2
1.7
2.7
EN1 = EN2 = VCCI; VI = 0 V (ISO7742);
VI = VCCI (ISO7742 with F suffix)
ICC1, ICC2
4
5.9
1 Mbps
ICC1, ICC2
2.9
4.3
10 Mbps
ICC1, ICC2
3.4
4.9
100 Mbps
ICC1, ICC2
8.3
11.5
Supply current - Disable
Supply current - DC signal
1 Mbps
Supply current - AC signal
All channels switching with square
wave clock input; CL = 15 pF
10 Mbps
100 Mbps
mA
ISO7742
Supply current - Disable
Supply current - DC signal
Supply current - AC signal
(1)
All channels switching with square
wave clock input; CL = 15 pF
mA
VCCI = Input-side VCC
Copyright © 2016–2019, Texas Instruments Incorporated
17
ISO7740, ISO7741, ISO7742
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
www.ti.com.cn
7.15 Switching Characteristics—5-V Supply
VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted)
PARAMETER
MIN
TYP
MAX
6
10.7
16
ns
0
4.9
ns
4
ns
4.4
ns
2.4
3.9
ns
2.4
3.9
ns
Disable propagation delay, high-to-high impedance output
9
20
ns
Disable propagation delay, low-to-high impedance output
9
20
ns
Enable propagation delay, high impedance-to-high output
for ISO774x
7
20
ns
3
8.5
μs
Enable propagation delay, high impedance-to-low output for
ISO774x
3
8.5
μs
Enable propagation delay, high impedance-to-low output for
ISO774x with F suffix
7
20
ns
0.1
0.3
μs
tPLH, tPHL
Propagation delay time
PWD
Pulse width distortion (1) |tPHL – tPLH|
tsk(o)
Channel-to-channel output skew time (2)
tsk(pp)
Part-to-part skew time (3)
tr
Output signal rise time
tf
Output signal fall time
tPHZ
tPLZ
tPZH
tDO
Same-direction channels
See Figure 15
See Figure 16
Measured from the time VCC goes
below 1.7 V. See Figure 18
Default output delay time from input power loss
tie
(3)
See Figure 15
Enable propagation delay, high impedance-to-high output
for ISO774x with F suffix
tPZL
(1)
(2)
TEST CONDITIONS
16
Time interval error
2
0.8
– 1 PRBS data at 100 Mbps
UNIT
ns
Also known as pulse skew.
tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same
direction while driving identical loads.
tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same
direction while operating at identical supply voltages, temperature, input signals and loads.
7.16 Switching Characteristics—3.3-V Supply
VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted)
PARAMETER
MIN
TYP
MAX
6
11
16
ns
0.1
5
ns
4.1
ns
4.5
ns
1.3
3
ns
1.3
3
ns
Disable propagation delay, high-to-high impedance output
17
30
ns
Disable propagation delay, low-to-high impedance output
17
30
ns
Enable propagation delay, high impedance-to-high output
for ISO774x
17
30
ns
3.2
8.5
μs
Enable propagation delay, high impedance-to-low output
for ISO774x
3.2
8.5
μs
Enable propagation delay, high impedance-to-low output
for ISO774x with F suffix
17
30
ns
0.1
0.3
μs
tPLH, tPHL
Propagation delay time
PWD
Pulse width distortion (1) |tPHL – tPLH|
tsk(o)
Channel-to-channel output skew time (2)
tsk(pp)
Part-to-part skew time (3)
tr
Output signal rise time
tf
Output signal fall time
tPHZ
tPLZ
tPZH
tPZL
tDO
tie
(1)
(2)
(3)
18
Enable propagation delay, high impedance-to-high output
for ISO774x with F suffix
Default output delay time from input power loss
Time interval error
TEST CONDITIONS
See Figure 15
Same-direction channels
See Figure 15
See Figure 16
Measured from the time VCC goes
below 1.7 V. See Figure 18
16
2
– 1 PRBS data at 100 Mbps
0.9
UNIT
ns
Also known as pulse skew.
tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same
direction while driving identical loads.
tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same
direction while operating at identical supply voltages, temperature, input signals and loads.
Copyright © 2016–2019, Texas Instruments Incorporated
ISO7740, ISO7741, ISO7742
www.ti.com.cn
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
7.17 Switching Characteristics—2.5-V Supply
VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted)
PARAMETER
tPLH, tPHL
Propagation delay time
PWD
Pulse width distortion (1) |tPHL – tPLH|
tsk(o)
Channel-to-channel output skew time (2)
tsk(pp)
Part-to-part skew time (3)
tr
Output signal rise time
tf
Output signal fall time
tPHZ
tPLZ
tPZH
tPZL
tDO
tie
(1)
(2)
(3)
TEST CONDITIONS
MIN
TYP
MAX
UNIT
12
18.5
ns
0.2
5.1
ns
4.1
ns
4.6
ns
1
3.5
ns
1
3.5
ns
Disable propagation delay, high-to-high impedance output
22
40
ns
Disable propagation delay, low-to-high impedance output
22
40
ns
Enable propagation delay, high impedance-to-high output
for ISO774x
18
40
ns
3.3
8.5
μs
Enable propagation delay, high impedance-to-low output
for ISO774x
3.3
8.5
μs
Enable propagation delay, high impedance-to-low output
for ISO774x with F suffix
18
40
ns
0.1
0.3
μs
Enable propagation delay, high impedance-to-high output
for ISO774x with F suffix
Default output delay time from input power loss
Time interval error
See Figure 15
7.5
Same-direction Channels
See Figure 15
See Figure 16
Measured from the time VCC goes
below 1.7 V. See Figure 18
16
2
– 1 PRBS data at 100 Mbps
0.7
ns
Also known as pulse skew.
tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same
direction while driving identical loads.
tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same
direction while operating at identical supply voltages, temperature, input signals and loads.
Copyright © 2016–2019, Texas Instruments Incorporated
19
ISO7740, ISO7741, ISO7742
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
www.ti.com.cn
7.18 Insulation Characteristics Curves
450
VCC1 = VCC2 = 2.75 V
VCC1 = VCC2 = 3.6 V
VCC1 = VCC2 = 5.5 V
500
VCC1 = VCC2 = 2.75 V
VCC1 = VCC2 = 3.6 V
VCC1 = VCC2 = 5.5 V
400
Safety Limiting Current (mA)
Safety Limiting Current (mA)
600
400
300
200
100
350
300
250
200
150
100
50
0
0
0
50
100
150
Ambient Temperature (qC)
0
200
1600
1400
1400
1200
1200
1000
800
600
400
100
150
Ambient Temperature (qC)
200
D002
Figure 2. Thermal Derating Curve for Safety Limiting
Current for DBQ-16 Package
Safety Limiting Power (mW)
Safety Limiting Power (mW)
Figure 1. Thermal Derating Curve for Safety Limiting
Current for DW-16 Package
1000
800
600
400
200
200
0
0
0
50
100
150
Ambient Temperature (qC)
200
D003
Figure 3. Thermal Derating Curve for Safety Limiting Power
for DW-16 Package
20
50
D001
0
50
100
150
Ambient Temperature (qC)
200
D004
Figure 4. Thermal Derating Curve for Safety Limiting Power
for DBQ-16 Package
Copyright © 2016–2019, Texas Instruments Incorporated
ISO7740, ISO7741, ISO7742
www.ti.com.cn
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
7.19 Typical Characteristics
9
25
ICC1 at 2.5 V
ICC2 at 2.5 V
ICC1 at 3.3 V
ICC2 at 3.3 V
ICC1 at 5 V
ICC2 at 5 V
15
7
Supply Current (mA)
Supply Current (mA)
20
ICC1 at 2.5 V
ICC2 at 2.5 V
ICC1 at 3.3 V
ICC2 at 3.3 V
ICC1 at 5 V
ICC2 at 5 V
8
10
6
5
4
3
2
5
1
0
0
0
25
TA = 25°C
50
Data Rate (Mbps)
75
0
100
CL = 15 pF
TA = 25°C
Figure 5. ISO7740 Supply Current vs Data Rate
(With 15-pF Load)
75
100
D006
CL = No Load
9
ICC1 at 2.5 V
ICC2 at 2.5 V
ICC1 at 3.3 V
ICC2 at 3.3 V
ICC1 at 5 V
ICC2 at 5 V
16
14
12
ICC1 at 2.5 V
ICC2 at 2.5 V
ICC1 at 3.3 V
ICC2 at 3.3 V
ICC1 at 5 V
ICC2 at 5 V
8
7
Supply Current (mA)
18
Supply Current (mA)
50
Data Rate (Mbps)
Figure 6. ISO7740 Supply Current vs Data Rate
(With No Load)
20
10
8
6
6
5
4
3
4
2
2
1
0
0
0
25
TA = 25°C
50
Data Rate (Mbps)
75
100
0
25
D007
CL = 15 pF
TA = 25°C
Figure 7. ISO7741 Supply Current vs Data Rate
(With 15-pF Load)
50
Data Rate (Mbps)
75
100
D008
CL = No Load
Figure 8. ISO7741 Supply Current vs Data Rate
(With No Load)
8
16
ICC1 at 2.5 V
ICC2 at 2.5 V
ICC1 at 3.3 V
ICC2 at 3.3 V
ICC1 at 5 V
ICC2 at 5 V
12
10
ICC1 at 2.5 V
ICC2 at 2.5 V
ICC1 at 3.3 V
ICC2 at 3.3 V
ICC1 at 5 V
ICC2 at 5 V
7
Supply Current (mA)
14
Supply Current (mA)
25
D005
8
6
4
6
5
4
3
2
1
2
0
0
0
25
TA = 25°C
50
Data Rate (Mbps)
75
100
CL = 15 pF
Figure 9. ISO7742 Supply Current vs Data Rate
(With 15-pF Load)
Copyright © 2016–2019, Texas Instruments Incorporated
0
25
D009
TA = 25°C
50
Data Rate (Mbps)
75
100
D010
CL = No Load
Figure 10. ISO7742 Supply Current vs Data Rate
(With No Load)
21
ISO7740, ISO7741, ISO7742
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
www.ti.com.cn
Typical Characteristics (continued)
6
0.9
Low-Level Output Voltage (V)
High-Level Output Voltage (V)
0.8
5
4
3
2
VCC at 2.5 V
VCC at 3.3 V
VCC at 5 V
1
0
-15
0.7
0.6
0.5
0.4
0.3
0.2
VCC at 2.5 V
VCC at 3.3 V
VCC at 5 V
0.1
0
-10
-5
High-Level Output Current (mA)
0
0
15
D012
TA = 25°C
Figure 11. High-Level Output Voltage vs High-level Output
Current
Figure 12. Low-Level Output Voltage vs Low-Level Output
Current
2.10
14
2.05
Propagation Delay Time (ns)
Power Supply UVLO Threshold (V)
TA = 25°C
2.00
1.95
1.90
1.85
1.80
VCC1 Rising
VCC2 Rising
VCC1 Falling
VCC2 Falling
1.75
1.70
1.65
-55
-5
45
Free-Air Temperature (qC)
95
125
D013
Figure 13. Power Supply Undervoltage Threshold vs FreeAir Temperature
22
5
10
Low-Level Output Current (mA)
D011
13
12
11
10
tPHL at 2.5 V
tPLH at 2.5 V
tPHL at 3.3 V
9
8
-55
-25
5
35
65
Free-Air Temperature (qC)
tPLH at 3.3 V
tPHL at 5 V
tPLH at 5 V
95
125
D014
Figure 14. Propagation Delay Time vs Free-Air Temperature
Copyright © 2016–2019, Texas Instruments Incorporated
ISO7740, ISO7741, ISO7742
www.ti.com.cn
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
8 Parameter Measurement Information
Isolation Barrier
IN
Input
Generator
(See Note A)
VI
VCCI
VI
OUT
50%
50%
0V
tPLH
CL
See Note B
VO
50
tPHL
VO
VOH
90%
50%
50%
10%
VOL
tf
tr
Copyright © 2016, Texas Instruments Incorporated
A.
The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3
ns, tf ≤ 3ns, ZO = 50 Ω. At the input, 50 Ω resistor is required to terminate Input Generator signal. It is not needed in
actual application.
B.
CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.
Figure 15. Switching Characteristics Test Circuit and Voltage Waveforms
VCCO
VCC
Isolation Barrier
IN
0V
VO
VI
tPZL
0V
tPLZ
VOH
EN
0.5 V
VO
50%
VOL
50
OUT
VCC
VO
VCC / 2
VCC / 2
VI
0V
EN
CL
See Note B
VI
VCC / 2
VCC / 2
VI
CL
See Note B
IN
Input
Generator
(See Note A)
±1%
OUT
Isolation Barrier
Input
Generator
(See Note A)
3V
RL = 1 k
tPZH
RL = 1 k
±1%
VOH
VO
50
50%
0.5 V
tPHZ
0V
Copyright © 2016, Texas Instruments Incorporated
A.
The input pulse is supplied by a generator having the following characteristics: PRR ≤ 10 kHz, 50% duty cycle,
tr ≤ 3 ns, tf ≤ 3 ns, ZO = 50 Ω.
B.
CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.
Figure 16. Enable/Disable Propagation Delay Time Test Circuit and Waveform
Copyright © 2016–2019, Texas Instruments Incorporated
23
ISO7740, ISO7741, ISO7742
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
www.ti.com.cn
Parameter Measurement Information (continued)
VI
See Note B
VCC
VCC
Isolation Barrier
IN = 0 V (Devices without suffix F)
IN = VCC (Devices with suffix F)
VI
IN
1.7 V
0V
OUT
VO
tDO
CL
See Note A
default high
VOH
50%
VO
VOL
default low
A.
CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.
B.
Power Supply Ramp Rate = 10 mV/ns
Figure 17. Default Output Delay Time Test Circuit and Voltage Waveforms
VCCI
VCCO
C = 0.1 µF ±1%
S1
Isolation Barrier
C = 0.1 µF ±1%
IN
Pass-fail criteria:
The output must
remain stable.
OUT
+
CL
See Note A
VOH or VOL
±
GNDI
A.
+
VCM ±
GNDO
CL = 15 pF and includes instrumentation and fixture capacitance within ±20%.
Figure 18. Common-Mode Transient Immunity Test Circuit
24
Copyright © 2016–2019, Texas Instruments Incorporated
ISO7740, ISO7741, ISO7742
www.ti.com.cn
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
9 Detailed Description
9.1 Overview
The ISO774x family of devices an ON-OFF keying (OOK) modulation scheme to transmit the digital data across
a silicon dioxide based isolation barrier. The transmitter sends a high frequency carrier across the barrier to
represent one digital state and sends no signal to represent the other digital state. The receiver demodulates the
signal after advanced signal conditioning and produces the output through a buffer stage. If the ENx pin is low
then the output goes to high impedance. The ISO774x devices also incorporate advanced circuit techniques to
maximize the CMTI performance and minimize the radiated emissions due to the high frequency carrier and IO
buffer switching. The conceptual block diagram of a digital capacitive isolator, Figure 19, shows a functional
block diagram of a typical channel.
9.2 Functional Block Diagram
Transmitter
Receiver
EN
TX IN
OOK
Modulation
TX Signal
Conditioning
Oscillator
SiO2 based
Capacitive
Isolation
Barrier
RX Signal
Conditioning
Envelope
Detection
RX OUT
Emissions
Reduction
Techniques
Copyright © 2016, Texas Instruments Incorporated
Figure 19. Conceptual Block Diagram of a Digital Capacitive Isolator
Figure 20 shows a conceptual detail of how the ON-OFF keying scheme works.
TX IN
Carrier signal through
isolation barrier
RX OUT
Figure 20. On-Off Keying (OOK) Based Modulation Scheme
Copyright © 2016–2019, Texas Instruments Incorporated
25
ISO7740, ISO7741, ISO7742
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
www.ti.com.cn
9.3 Feature Description
Table 1 provides an overview of the device features.
Table 1. Device Features
PART NUMBER
CHANNEL DIRECTION
MAXIMUM DATA
RATE
DEFAULT
OUTPUT
ISO7740
4 Forward,
0 Reverse
100 Mbps
High
ISO7740 with F
suffix
4 Forward,
0 Reverse
100 Mbps
Low
ISO7741
3 Forward,
1 Reverse
100 Mbps
High
ISO7741 with F
suffix
3 Forward,
1 Reverse
ISO7742
2 Forward,
2 Reverse
ISO7742 with F
suffix
(1)
2 Forward,
2 Reverse
100 Mbps
100 Mbps
100 Mbps
Low
High
Low
PACKAGE
RATED ISOLATION (1)
DW-16
5000 VRMS / 8000 VPK
DBQ-16
3000 VRMS / 4242 VPK
DW-16
5000 VRMS / 8000 VPK
DBQ-16
3000 VRMS / 4242 VPK
DW-16
5000 VRMS / 8000 VPK
DBQ-16
3000 VRMS / 4242 VPK
DW-16
5000 VRMS / 8000 VPK
DBQ-16
3000 VRMS / 4242 VPK
DW-16
5000 VRMS / 8000 VPK
DBQ-16
3000 VRMS / 4242 VPK
DW-16
5000 VRMS / 8000 VPK
DBQ-16
3000 VRMS / 4242 VPK
See Safety-Related Certifications for detailed isolation ratings.
9.3.1 Electromagnetic Compatibility (EMC) Considerations
Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge
(ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances
are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level
performance and reliability depends, to a large extent, on the application board design and layout, the ISO774x
family of devices incorporates many chip-level design improvements for overall system robustness. Some of
these improvements include:
• Robust ESD protection cells for input and output signal pins and inter-chip bond pads.
• Low-resistance connectivity of ESD cells to supply and ground pins.
• Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events.
• Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance
path.
• PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic
SCRs.
• Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation.
26
Copyright © 2016–2019, Texas Instruments Incorporated
ISO7740, ISO7741, ISO7742
www.ti.com.cn
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
9.4 Device Functional Modes
Table 2 lists the functional modes for the ISO774x devices.
Table 2. Function Table (1)
VCCI
PU
X
(1)
(2)
(3)
VCCO
INPUT
(INx) (2)
OUTPUT
ENABLE
(ENx)
OUTPUT
(OUTx)
H
H or open
H
L
H or open
L
Open
H or open
Default
X
L
Z
PU
PU
PD
PU
X
H or open
Default
X
PD
X
X
Undetermined
COMMENTS
Normal Operation:
A channel output assumes the logic state of its input.
Default mode: When INx is open, the corresponding channel output
goes to its default logic state. Default is High for ISO774x and Low for
ISO774x with F suffix.
A low value of output enable causes the outputs to be highimpedance.
Default mode: When VCCI is unpowered, a channel output assumes
the logic state based on the selected default option. Default is High
for ISO774x and Low for ISO774x with F suffix.
When VCCI transitions from unpowered to powered-up, a channel
output assumes the logic state of the input.
When VCCI transitions from powered-up to unpowered, channel output
assumes the selected default state.
When VCCO is unpowered, a channel output is undetermined (3).
When VCCO transitions from unpowered to powered-up, a channel
output assumes the logic state of the input.
VCCI = Input-side VCC; VCCO = Output-side VCC; PU = Powered up (VCC ≥ 2.25 V); PD = Powered down (VCC ≤ 1.7 V); X = Irrelevant; H
= High level; L = Low level ; Z = High Impedance
A strongly driven input signal can weakly power the floating VCC through an internal protection diode and cause undetermined output.
The outputs are in undetermined state when 1.7 V < VCCI, VCCO < 2.25 V.
Copyright © 2016–2019, Texas Instruments Incorporated
27
ISO7740, ISO7741, ISO7742
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
www.ti.com.cn
9.4.1 Device I/O Schematics
Input (ISO774x)
VCCI
VCCI
Input (ISO774xF)
VCCI
VCCI
VCCI
VCCI
VCCI
1.5 MW
985 W
985 W
INx
INx
1.5 MW
Enable
Output
VCCO
VCCO
VCCO VCCO
VCCO
2 MW
~20 W
OUTx
1970 W
ENx
Copyright © 2016, Texas Instruments Incorporated
Figure 21. Device I/O Schematics
28
Copyright © 2016–2019, Texas Instruments Incorporated
ISO7740, ISO7741, ISO7742
www.ti.com.cn
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
10 Application and Implementation
NOTE
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
10.1 Application Information
The ISO774x devices are high-performance, quad-channel digital isolators. These devices come with enable pins
on each side which can be used to put the respective outputs in high impedance for multi master driving
applications and reduce power consumption. The ISO774x devices use single-ended CMOS-logic switching
technology. The voltage range is from 2.25 V to 5.5 V for both supplies, VCC1 and VCC2. When designing with
digital isolators, keep in mind that because of the single-ended design structure, digital isolators do not conform
to any specific interface standard and are only intended for isolating single-ended CMOS or TTL digital signal
lines. The isolator is typically placed between the data controller (that is, μC or UART), and a data converter or a
line transceiver, regardless of the interface type or standard.
10.2 Typical Application
Figure 22 shows the isolated serial peripheral interface (SPI).
VS
3.3 V
0.1 F
2
Vcc D2 3
1:1.33
MBR0520L
4
SN6501
GND D1
10 F 0.1 F 3
1
OUT
1
3.3 VISO
TLV70733
EN
GND
10 F
2
2
10 F
4,5
IN
MBR0520L
1 F
VIN
VOUT
6
22 F
REF5025
4
GND
ISO-BARRIER
0.1 F
0.1 F
0.1 F
0.1 F
1
4.7 k
2
DVcc
7
6
P1.4
XOUT MSP430 SCLK 7
G2132
8
6
(14-PW) SDO
XIN
9
SDI
DVss
5
4
3
Vcc1
EN1
16
Vcc2
EN2
4.7 k
14
OUTA
ISO7741
13
OUTB
5
12
INC
OUTC
6
11
OUTD
IND
4
INA
INB
GND1
2,8
3
10
GND2
9,15
23
24
25
26
2
28
32
31
AINP MXO VBD VA REFP
20
CS
CH0
SCLK
ADS7953
SDI
SDO
CH15
BDGND AGND REFM
27
1,22
5
16
Analog
Inputs
30
Copyright © 2016, Texas Instruments Incorporated
Figure 22. Isolated SPI for an Analog Input Module With 16 Input
Copyright © 2016–2019, Texas Instruments Incorporated
29
ISO7740, ISO7741, ISO7742
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
www.ti.com.cn
Typical Application (continued)
10.2.1 Design Requirements
To design with these devices, use the parameters listed in Table 3.
Table 3. Design Parameters
PARAMETER
VALUE
Supply voltage, VCC1 and VCC2
2.25 to 5.5 V
Decoupling capacitor between VCC1 and GND1
0.1 µF
Decoupling capacitor from VCC2 and GND2
0.1 µF
10.2.2 Detailed Design Procedure
Unlike optocouplers, which require external components to improve performance, provide bias, or limit current,
the ISO774x family of devices only require two external bypass capacitors to operate.
2 mm maximum
from VCC2
2 mm maximum
from VCC1
0.1 µF
0.1 µF
VCC2
VCC1
1
16
2
15
INA
3
14
OUTA
INB
4
13
OUTB
INC
5
12
OUTC
OUTD
6
11
IND
7
10
8
9
GND1
GND2
EN2
EN1
GND2
GND1
Figure 23. Typical ISO774x Circuit Hook-up
30
Copyright © 2016–2019, Texas Instruments Incorporated
ISO7740, ISO7741, ISO7742
www.ti.com.cn
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
10.2.3 Application Curve
Ch4 = 1 V / div
Ch4 = 1 V / div
The following typical eye diagrams of the ISO774x family of devices indicates low jitter and wide open eye at the
maximum data rate of 100 Mbps.
Time = 2.5 ns / div
Time = 2.5 ns / div
Figure 25. Eye Diagram at 100 Mbps PRBS 216 – 1, 3.3 V
and 25°C
Ch4 = 500 mV / div
Figure 24. Eye Diagram at 100 Mbps PRBS 216 – 1, 5 V and
25°C
Time = 2.5 ns / div
Figure 26. Eye Diagram at 100 Mbps PRBS 216 – 1, 2.5 V and 25°C
10.2.3.1 Insulation Lifetime
Insulation lifetime projection data is collected by using industry-standard Time Dependent Dielectric Breakdown
(TDDB) test method. In this test, all pins on each side of the barrier are tied together creating a two-terminal
device and high voltage applied between the two sides; See Figure 27 for TDDB test setup. The insulation
breakdown data is collected at various high voltages switching at 60 Hz over temperature. For reinforced
insulation, VDE standard requires the use of TDDB projection line with failure rate of less than 1 part per million
(ppm). Even though the expected minimum insulation lifetime is 20 years at the specified working isolation
voltage, VDE reinforced certification requires additional safety margin of 20% for working voltage and 87.5% for
lifetime which translates into minimum required insulation lifetime of 37.5 years at a working voltage that's 20%
higher than the specified value.
Figure 28 shows the intrinsic capability of the isolation barrier to withstand high voltage stress over its lifetime.
Based on the TDDB data, the intrinsic capability of the insulation is 1500 VRMS with a lifetime of 135 years. Other
factors, such as package size, pollution degree, material group, etc. can further limit the working voltage of the
component. The working voltage of DW-16 package is specified upto 1500 VRMS and DBQ-16 package up to 400
VRMS. At the lower working voltages, the corresponding insulation lifetime is much longer than 135 years.
Copyright © 2016–2019, Texas Instruments Incorporated
31
ISO7740, ISO7741, ISO7742
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
www.ti.com.cn
A
Vcc 1
Vcc 2
Time Counter
> 1 mA
DUT
GND 1
GND 2
VS
Oven at 150 °C
Figure 27. Test Setup for Insulation Lifetime Measurement
Figure 28. Insulation Lifetime Projection Data
11 Power Supply Recommendations
To help ensure reliable operation at data rates and supply voltages, a 0.1-μF bypass capacitor is recommended
at the input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply pins
as possible. If only a single primary-side power supply is available in an application, isolated power can be
generated for the secondary-side with the help of a transformer driver such as Texas Instruments' SN6501 or
SN6505A. For such applications, detailed power supply design and transformer selection recommendations are
available in SN6501 Transformer Driver for Isolated Power Supplies data sheet or SN6505A Low-Noise 1-A
Transformer Drivers for Isolated Power Supplies data sheet.
32
Copyright © 2016–2019, Texas Instruments Incorporated
ISO7740, ISO7741, ISO7742
www.ti.com.cn
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
12 Layout
12.1 Layout Guidelines
A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 29). Layer stacking should
be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and low-frequency
signal layer.
• Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their
inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits
of the data link.
• Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for
transmission line interconnects and provides an excellent low-inductance path for the return current flow.
• Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of
approximately 100 pF/inch2.
• Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links
usually have margin to tolerate discontinuities such as vias.
If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to
the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the
power and ground plane of each power system can be placed closer together, thus increasing the high-frequency
bypass capacitance significantly.
For detailed layout recommendations, refer to the Digital Isolator Design Guide.
12.1.1 PCB Material
For digital circuit boards operating below 150 Mbps, (or rise and fall times higher than 1 ns), and trace lengths of
up to 10 inches, use standard FR-4 UL94V-0 printed circuit boards. This PCB is preferred over cheaper
alternatives due to its lower dielectric losses at high frequencies, less moisture absorption, greater strength and
stiffness, and self-extinguishing flammability-characteristics.
12.2 Layout Example
High-speed traces
10 mils
Ground plane
40 mils
Keep this
space free
from planes,
traces, pads,
and vias
FR-4
0r ~ 4.5
Power plane
10 mils
Low-speed traces
Figure 29. Layout Example Schematic
版权 © 2016–2019, Texas Instruments Incorporated
33
ISO7740, ISO7741, ISO7742
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
www.ti.com.cn
13 器件和文档支持
13.1 文档支持
13.1.1 相关文档
请参阅如下相关文档:
• 德州仪器 (TI),《ADS79xx 12/10/8 位、1 MSPS、16/12/8/4 通道、单端、微功耗串行接口 ADC》数据表
• 德州仪器 (TI),《数字隔离器设计指南》
• 德州仪器 (TI),《隔离相关术语》
• 德州仪器 (TI),《如何通过隔离改善工业系统的 ESD、EFT 和浪涌抗扰性》应用报告如何通过隔离改善工业系
统的 ESD、EFT 和浪涌抗扰性”应用报告如何通过隔离改善工业系统的 ESD、EFT 和浪涌抗扰性”应用报告
• 德州仪器 (TI),MSP430G2132《混合信号微控制器》数据表
• 德州仪器 (TI),《REF50xx 低噪声、极低漂移、精密电压基准》数据表
• 德州仪器 (TI),《SN6501 用于隔离式电源的变压器驱动器》数据表
• 德州仪器 (TI),《SN6505A 用于隔离式电源的低噪声 1A 变压器驱动器》数据表
• 德州仪器 (TI),《TLV707、TLV707P 用于便携式设备的 200mA、低 IQ、低噪声、低压降稳压器》数据表
13.2 相关链接
下表列出了快速访问链接。类别包括技术文档、支持与社区资源、工具和软件,以及申请样片或购买产品的快速链
接。
表 4. 相关链接
器件
产品文件夹
立即订购
技术文档
工具与软件
支持和社区
ISO7740
请单击此处
请单击此处
请单击此处
请单击此处
请单击此处
ISO7741
请单击此处
请单击此处
请单击此处
请单击此处
请单击此处
ISO7742
请单击此处
请单击此处
请单击此处
请单击此处
请单击此处
13.3 接收文档更新通知
要接收文档更新通知,请导航至 TI.com.cn 上的器件产品文件夹。单击右上角的通知我 进行注册,即可每周接收产
品信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。
13.4 社区资源
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of
Use.
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help
solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and
contact information for technical support.
13.5 商标
E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
13.6 静电放电警告
ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可
能会损坏集成电路。
ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可
能会导致器件与其发布的规格不相符。
34
版权 © 2016–2019, Texas Instruments Incorporated
ISO7740, ISO7741, ISO7742
www.ti.com.cn
ZHCSF48F – MARCH 2016 – REVISED MAY 2019
13.7 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
14 机械、封装和可订购信息
以下页面包含机械、封装和可订购信息。这些信息是指定器件的最新可用数据。数据如有变更,恕不另行通知,且
不会对此文档进行修订。如需获取此数据表的浏览器版本,请查阅左侧的导航栏。
版权 © 2016–2019, Texas Instruments Incorporated
35
PACKAGE OPTION ADDENDUM
www.ti.com
12-May-2021
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
(4/5)
(6)
ISO7740DBQ
ACTIVE
SSOP
DBQ
16
75
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
7740
ISO7740DBQR
ACTIVE
SSOP
DBQ
16
2500
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
7740
ISO7740DW
ACTIVE
SOIC
DW
16
40
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
ISO7740
ISO7740DWR
ACTIVE
SOIC
DW
16
2000
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
ISO7740
ISO7740FDBQ
ACTIVE
SSOP
DBQ
16
75
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
7740F
ISO7740FDBQR
ACTIVE
SSOP
DBQ
16
2500
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
7740F
ISO7740FDW
ACTIVE
SOIC
DW
16
40
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
ISO7740F
ISO7740FDWR
ACTIVE
SOIC
DW
16
2000
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
ISO7740F
ISO7741BDW
ACTIVE
SOIC
DW
16
40
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
ISO7741B
ISO7741BDWR
ACTIVE
SOIC
DW
16
2000
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
ISO7741B
ISO7741DBQ
ACTIVE
SSOP
DBQ
16
75
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
7741
ISO7741DBQR
ACTIVE
SSOP
DBQ
16
2500
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
7741
ISO7741DW
ACTIVE
SOIC
DW
16
40
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
ISO7741
ISO7741DWR
ACTIVE
SOIC
DW
16
2000
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
ISO7741
ISO7741FBDW
ACTIVE
SOIC
DW
16
40
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
(ISO7731FB, ISO774
1FB)
ISO7741FBDWR
ACTIVE
SOIC
DW
16
2000
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
ISO7741FB
ISO7741FDBQ
ACTIVE
SSOP
DBQ
16
75
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
7741F
ISO7741FDBQR
ACTIVE
SSOP
DBQ
16
2500
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
7741F
ISO7741FDW
ACTIVE
SOIC
DW
16
40
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
ISO7741F
ISO7741FDWR
ACTIVE
SOIC
DW
16
2000
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
ISO7741F
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
12-May-2021
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
(4/5)
(6)
ISO7742DBQ
ACTIVE
SSOP
DBQ
16
75
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
7742
ISO7742DBQR
ACTIVE
SSOP
DBQ
16
2500
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
7742
ISO7742DW
ACTIVE
SOIC
DW
16
40
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
ISO7742
ISO7742DWR
ACTIVE
SOIC
DW
16
2000
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
ISO7742
ISO7742FDBQ
ACTIVE
SSOP
DBQ
16
75
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
7742F
ISO7742FDBQR
ACTIVE
SSOP
DBQ
16
2500
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
7742F
ISO7742FDW
ACTIVE
SOIC
DW
16
40
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
ISO7742F
ISO7742FDWR
ACTIVE
SOIC
DW
16
2000
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-55 to 125
ISO7742F
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of