0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ISO7760QDWQ1

ISO7760QDWQ1

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC16

  • 描述:

    ISO7760QDWQ1

  • 数据手册
  • 价格&库存
ISO7760QDWQ1 数据手册
ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 ISO776x-Q1 High-speed, robust EMC, reinforced six-channel digital isolators – Traction inverter – DC/DC converter – Starter/generator 1 Features • • • • • • • • • • • • • Qualified for automotive applications AEC-Q100 qualified with the following results: – Device temperature grade 1: –40°C to +125°C ambient temperature range – Device HBM ESD classification level 3A – Device CDM ESD classification level C6 Functional Safety-Capable – Documentation available to aid functional safety system design: ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 100 Mbps data rate Robust isolation barrier: – >100-Year projected lifetime – Up to 5000 VRMS isolation rating – Up to 12.8 kV surge capability – ±100 kV/μs Typical CMTI Wide supply range: 2.25 V to 5.5 V 2.25-V to 5.5-V Level translation Default output high (ISO776x) and low (ISO776xF) Options Low power consumption, typical 1.4 mA per channel at 1 Mbps Low propagation delay: 11 ns typical at 5 V Robust Electromagnetic Compatibility (EMC): – System-level ESD, EFT, and surge immunity – ±8 kV IEC 61000-4-2 Contact discharge protection across isolation barrier – Low emissions Wide-SOIC (DW-16) and SSOP (DBQ-16) package options Safety-related certifications: – Reinforced insulation per DIN V VDE V 0884-11:2017-01 – UL 1577 component recognition program – CSA Certification per IEC 60950-1, IEC 62368-1, and IEC 60601-1 – CQC Certification per GB4943.1-2011 – TUV Certification according to EN 60950-1 and EN 61010-1 2 Applications • Hybrid, electric and power train system (EV/HEV) – Battery management system (BMS) – On-board charger 3 Description The ISO776x-Q1 devices are high-performance, sixchannel digital isolators with 5000-V RMS (DW package) and 3000-V RMS (DBQ package) isolation ratings per UL 1577. This family of devices is also certified according to VDE, CSA, TUV and CQC. The ISO776x-Q1 family of devices provides highelectromagnetic immunity and low emissions at lowpower consumption, while isolating CMOS or LVCMOS digital I/Os. Each isolation channel has a logic-input and logic-output buffer separated by a double capacitive silicon dioxide (SiO 2) insulation barrier. The ISO776x-Q1 family of devices is available in all possible pin configurations such that all six channels are in the same direction, or one, two, or three channels are in reverse direction while the remaining channels are in forward direction. If the input power or signal is lost, the default output is high for devices without suffix F and low for devices with suffix F. See the Device Functional Modes section for further details. Device Information PART NUMBER(1) ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 IOS7763-Q1 (1) PACKAGE BODY SIZE (NOM) SOIC (16) 10.30 mm × 7.50 mm SSOP (16) 4.90 mm × 3.90 mm For all available packages, see the orderable addendum at the end of the datasheet. VCCO VCCI Series Isolation Capacitors INx OUTx GNDI GNDO Copyright © 2016, Texas Instruments Incorporated VCCI=Input VCC, VCCO=Output VCC GNDI=Input ground, GNDO=Output ground Simplified Schematic An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated intellectual property matters and other important disclaimers. PRODUCTION DATA. Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 1 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 1 3 Description.......................................................................1 4 Revision History.............................................................. 2 5 Description (Continued)..................................................2 6 Pin Configuration and Functions...................................3 7 Specifications.................................................................. 6 7.1 Absolute Maximum Ratings........................................ 6 7.2 ESD Ratings .............................................................. 6 7.3 Recommended Operating Conditions.........................6 7.4 Thermal Information....................................................7 7.5 Power Ratings.............................................................7 7.6 Insulation Specifications............................................. 8 7.7 Safety-Related Certifications.................................... 10 7.8 Safety Limiting Values...............................................10 7.9 Electrical Characteristics—5-V Supply..................... 12 7.10 Supply Current Characteristics—5-V Supply.......... 13 7.11 Electrical Characteristics—3.3-V Supply.................14 7.12 Supply Current Characteristics—3.3-V Supply....... 15 7.13 Electrical Characteristics—2.5-V Supply................ 16 7.14 Supply Current Characteristics—2.5-V Supply....... 17 7.15 Switching Characteristics—5-V Supply...................18 7.16 Switching Characteristics—3.3-V Supply................18 7.17 Switching Characteristics—2.5-V Supply................19 7.18 Insulation Characteristics Curves........................... 20 7.19 Typical Characteristics............................................ 21 8 Detailed Description......................................................25 8.1 Overview................................................................... 25 8.2 Functional Block Diagram......................................... 25 8.3 Feature Description...................................................26 8.4 Device Functional Modes..........................................27 9 Application and Implementation.................................. 28 9.1 Application Information............................................. 28 9.2 Typical Application.................................................... 28 10 Power Supply Recommendations..............................31 11 Layout........................................................................... 32 11.1 Layout Guidelines................................................... 32 11.2 Layout Example...................................................... 32 12 Device and Documentation Support..........................33 12.1 Documentation Support.......................................... 33 12.2 Related Links.......................................................... 33 12.3 Receiving Notification of Documentation Updates..33 12.4 Support Resources................................................. 33 12.5 Trademarks............................................................. 33 12.6 Electrostatic Discharge Caution..............................33 12.7 Glossary..................................................................34 13 Mechanical, Packaging, and Orderable Information.................................................................... 34 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision A (February 2019) to Revision B (October 2020) Page • Added Functional Safety Bullets.........................................................................................................................1 Changes from Revision * (November 2018) to Revision A (February 2019) Page • Changed CPG parameter description From: "External clearance" To: "External creepage" in Section 7.6 table ............................................................................................................................................................................8 5 Description (Continued) Used in conjunction with isolated power supplies, this family of devices helps prevent noise currents on data buses, such as CAN and LIN, or other circuits from entering the local ground and interfering with or damaging sensitive circuitry. Through innovative chip design and layout techniques, electromagnetic compatibility of the ISO776x-Q1 family of devices has been significantly enhanced to ease system-level ESD, EFT, surge, and emissions compliance. The ISO776x-Q1 family of devices is available in 16-pin SOIC and SSOP packages. 2 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 6 Pin Configuration and Functions 1 16 VCC2 INA 2 15 OUTA INB 3 14 OUTB INC 4 IND 5 INE 6 11 OUTE INF 7 10 OUTF GND1 8 9 GND2 ISOLATION VCC1 13 OUTC 12 OUTD Figure 6-1. ISO7760-Q1 DW and DBQ Packages 16-Pin SOIC and SSOP Top View Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 3 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 1 16 VCC2 INA 2 15 OUTA INB 3 14 OUTB INC 4 IND 5 INE 6 ISOLATION VCC1 13 OUTC 12 OUTD 11 OUTE OUTF 7 10 GND1 8 INF 9 GND2 Figure 6-2. ISO7761-Q1 DW and DBQ Packages 16-Pin SOIC and SSOP Top View 1 16 VCC2 INA 2 15 OUTA INB 3 14 OUTB INC 4 IND 5 ISOLATION VCC1 13 OUTC 12 OUTD OUTE 6 11 INE OUTF 7 10 INF GND1 8 9 GND2 Figure 6-3. ISO7762-Q1 DW and DBQ Packages 16-Pin SOIC and SSOP Top View 4 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 1 16 VCC2 INA 2 15 OUTA INB 3 14 OUTB INC 4 ISOLATION VCC1 OUTD 5 13 OUTC 12 IND OUTE 6 11 INE OUTF 7 10 INF GND1 8 9 GND2 Figure 6-4. ISO7763-Q1 DW and DBQ Packages 16-Pin SOIC and SSOP Top View Table 6-1. Pin Functions PIN NAME NO. I/O DESCRIPTION ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 GND1 8 8 8 8 — Ground connection for VCC1 GND2 9 9 9 9 — Ground connection for VCC2 INA 2 2 2 2 I Input, channel A INB 3 3 3 3 I Input, channel B INC 4 4 4 4 I Input, channel C IND 5 5 5 12 I Input, channel D INE 6 6 11 11 I Input, channel E INF 7 10 10 10 I Input, channel F OUTA 15 15 15 15 O Output, channel A OUTB 14 14 14 14 O Output, channel B OUTC 13 13 13 13 O Output, channel C OUTD 12 12 12 5 O Output, channel D OUTE 11 11 6 6 O Output, channel E OUTF 10 7 7 7 O Output, channel F VCC1 1 1 1 1 — Power supply, side 1 VCC2 16 16 16 16 — Power supply, side 2 Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 5 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 7 Specifications 7.1 Absolute Maximum Ratings See (1) MIN MAX UNIT Supply voltage(2) –0.5 6 V V Voltage at INx, OUTx –0.5 VCCX + 0.5(3) V IO Output current –15 15 mA TJ Junction temperature 150 °C Tstg Storage temperature –65 150 °C VCC1, VCC2 (1) (2) (3) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values except differential I/O bus voltages are with respect to the local ground terminal (GND1 or GND2) and are peak voltage values. Maximum voltage must not exceed 6 V 7.2 ESD Ratings VALUE Human-body model (HBM), per AEC Q100-002(1) V(ESD) Electrostatic discharge Charged-device model (CDM), per AEC Q100-011 ±1500 Contact discharge per IEC 61000-4-2; Isolation barrier withstand test(2) (3) (1) (2) (3) UNIT ±6000 V ±8000 AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. IEC ESD strike is applied across the barrier with all pins on each side tied together creating a two-terminal device. Testing is carried out in air or oil to determine the intrinsic contact discharge capability of the device. 7.3 Recommended Operating Conditions MIN VCC1, VCC2 Supply voltage NOM MAX 5.5 V 2 2.25 V 2.25 VCC(UVLO+) UVLO threshold when supply voltage is rising VCC(UVLO-) UVLO threshold when supply voltage is falling VHYS(UVLO) Supply voltage UVLO hysteresis IOH High-level output current 1.7 1.8 V 100 200 mV VCCO (1) = 5 V –4 VCCO = 3.3 V –2 VCCO = 2.5 V –1 mA VCCO = 5 V 4 VCCO = 3.3 V 2 IOL Low-level output current VIH High-level input voltage 0.7 × VCCI (1) VCCI VIL Low-level input voltage 0 0.3 × VCCI DR(2) Data rate 0 100 Mbps TA Ambient temperature 125 °C VCCO = 2.5 V (1) (2) 6 UNIT mA 1 -40 25 V V VCCI = Input-side VCC; VCCO = Output-side VCC. 100 Mbps is the maximum specified data rate, although higher data rates are possible. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 7.4 Thermal Information ISO776x-Q1 THERMAL METRIC(1) DW (SOIC) DBQ (SSOP) 16 PINS 16 PINS UNIT RθJA Junction-to-ambient thermal resistance 60.3 86.5 °C/W RθJC(top) Junction-to-case(top) thermal resistance 24.0 26.9 °C/W RθJB Junction-to-board thermal resistance 29.3 36.6 °C/W ψJT Junction-to-top characterization parameter 3.3 1.7 °C/W ψJB Junction-to-board characterization parameter 28.7 36.1 °C/W n/a n/a °C/W RθJC(bottom) Junction-to-case(bottom) thermal resistance (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 7.5 Power Ratings PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ISO7760-Q1 PD Maximum power dissipation (both sides) VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, input a 50-MHz 50% duty cycle square wave 292 mW PD1 Maximum power dissipation (side 1) VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, input a 50-MHz 50% duty cycle square wave 50 mW PD2 Maximum power dissipation (side 2) VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, input a 50-MHz 50% duty cycle square wave 242 mW ISO7761-Q1 PD Maximum power dissipation (both sides) VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, input a 50-MHz 50% duty cycle square wave 292 mW PD1 Maximum power dissipation (side 1) VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, input a 50-MHz 50% duty cycle square wave 83 mW PD2 Maximum power dissipation (side 2) VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, input a 50-MHz 50% duty cycle square wave 209 mW ISO7762-Q1 PD Maximum power dissipation (both sides) VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, input a 50-MHz 50% duty cycle square wave 292 mW PD1 Maximum power dissipation (side 1) VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, input a 50-MHz 50% duty cycle square wave 116 mW PD2 Maximum power dissipation (side 2) VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, input a 50-MHz 50% duty cycle square wave 176 mW ISO7763-Q1 PD Maximum power dissipation (both sides) VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, input a 50-MHz 50% duty cycle square wave 292 mW PD1 Maximum power dissipation (side 1) VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, input a 50-MHz 50% duty cycle square wave 146 mW PD2 Maximum power dissipation (side 2) VCC1 = VCC2 = 5.5 V, TJ = 150°C, CL = 15 pF, input a 50-MHz 50% duty cycle square wave 146 mW Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 7 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 7.6 Insulation Specifications PARAMETER VALUE TEST CONDITIONS CLR External clearance(1) CPG External creepage(1) DTI Distance through the insulation CTI Tracking resistance (comparative tracking index) DIN EN 60112 (VDE 0303-11); IEC 60112; UL 746A DW-16 DBQ-16 Shortest terminal-to-terminal distance through air Material group >8 >3.7 mm Shortest terminal-to-terminal distance across the package surface >8 >3.7 mm Minimum internal gap (internal clearance) >21 >21 μm >600 >600 V According to IEC 60664-1 Rated mains voltage ≤ 150 VRMS Overvoltage category per IEC 60664-1 UNIT I I I–IV I–IV Rated mains voltage ≤ 300 VRMS I–IV I–III Rated mains voltage ≤ 600 VRMS I–IV n/a Rated mains voltage ≤ 1000 VRMS I–III n/a 2121 566 VPK AC voltage; Time dependent dielectric breakdown (TDDB) test; see Figure 9-7 1500 400 VRMS DC voltage 2121 566 VDC DIN V VDE V 0884-11:2017-01(2) VIORM Maximum repetitive peak isolation AC voltage (bipolar) voltage VIOWM Maximum working isolation voltage VIOTM Maximum transient isolation voltage VTEST = VIOTM , t = 60 s (qualification) VTEST = 1.2 x VIOTM, t = 1 s (100% production) 8000 4242 VPK VIOSM Maximum surge isolation voltage(3) Test method per IEC 62368-1, 1.2/50 µs waveform, VTEST = 1.6 × VIOSM (qualification) 8000 4000 VPK Method a, After Input/Output safety test subgroup 2/3, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM, tm = 10 s ≤5 ≤5 Method a, After environmental tests subgroup 1, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.6 × VIORM, tm = 10 s ≤5 ≤5 Method b1; At routine test (100% production) and preconditioning (type test) Vini = 1.2 x VIOTM, tini = 1 s; Vpd(m) = 1.875 × VIORM, tm = 1 s ≤5 ≤5 VIO = 0.4 × sin (2πft), f = 1 MHz ~1.1 ~0.9 VIO = 500 V, TA = 25°C >1012 >1012 VIO = 500 V, 100°C ≤ TA ≤ 125°C >1011 >1011 VIO = 500 V, TS = 150°C >109 >109 2 2 qpd CIO RIO Apparent charge(4) Barrier capacitance, input to output(5) Isolation resistance(5) Pollution degree pC pF Ω 55/125/ 55/125/ 21 21 Climatic category UL 1577 VISO (1) (2) (3) (4) 8 Withstanding isolation voltage VTEST = VISO , t = 60 s (qualification), VTEST = 1.2 × VISO , t = 1 s (100% production) 5000 3000 VRMS Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves and/or ribs on a printed circuit board are used to help increase these specifications. This coupler is suitable for safe electrical insulation only within the safety ratings. Compliance with the safety ratings shall be ensured by means of suitable protective circuits Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier. Apparent charge is electrical discharge caused by a partial discharge (pd). Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com (5) SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 All pins on each side of the barrier tied together creating a two-terminal device. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 9 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 7.7 Safety-Related Certifications VDE CSA UL CQC TUV Certified according to EN 61010-1:2010 (3rd Ed) and EN 60950-1:2006/A2:2013 Certified according to DIN V VDE V 0884-11:2017-01 Certified according to IEC 60950-1, IEC 62368-1 and IEC 60601-1 Recognized under UL 1577 Certified according to GB Component Recognition 4943.1-2011 Program Reinforced Insulation; Maximum transient isolation voltage, 8000 VPK (DW-16) and 4242 VPK (DBQ-16); Maximum repetitive peak isolation voltage, 2121 VPK (DW-16) and 566 VPK (DBQ-16); Maximum surge isolation voltage, 8000 VPK (DW-16) and 4000 VPK (DBQ-16) Reinforced insulation per CSA 60950-1-07+A1+A2, IEC 60950-1 2nd Ed.+A1+A2, CSA 62368-1-14 and IEC 62368-1:2014 800 VRMS (DW-16) and 370 VRMS (DBQ-16) maximum working voltage (pollution degree 2, material group I); DW-16: 2 MOPP (Means of Patient Protection) per CSA 60601-1:14 and IEC 60601-1 Ed. 3.1, 250 VRMS maximum working voltage 5000 VRMS Reinforced insulation per EN DW-16: Reinforced 61010-1:2010 (3rd Ed) Insulation, Altitude ≤ 5000 up to working voltage of m, Tropical Climate, 400 V 600 VRMS (DW-16) and DW-16: Single protection, RMS maximum working 300 VRMS (DBQ-16) 5000 VRMS ; voltage; 5000 VRMS Reinforced DBQ-16: Single protection, DBQ-16: Basic Insulation, 3000 VRMS insulation per EN Altitude ≤ 5000 m, Tropical 60950-1:2006/A2:2013 Climate, 250 VRMS up to working voltage of maximum working voltage 800 VRMS (DW-16) and 370 VRMS (DBQ-16) Certificate number: 40040142 Master contract number: 220991 File number: E181974 Certificate number: CQC15001121716 (DW) Certificate number: CQC18001199097 (DBQ) Client ID number: 77311 7.8 Safety Limiting Values Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT DW-16 PACKAGE IS Safety input, output, or supply current(1) PS Safety input, output, or total power(1) TS Maximum safety temperature(1) RθJA = 60.3 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see Figure 7-1 377 RθJA = 60.3 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see Figure 7-1 576 RθJA = 60.3 °C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see Figure 7-1 754 RθJA = 60.3 °C/W, TJ = 150°C, TA = 25°C, see Figure 7-3 mA 2073 mW 150 °C DBQ-16 PACKAGE IS Safety input, output, or supply current(1) PS Safety input, output, or total power(1) TS Maximum safety temperature(1) (1) RθJA = 86.5 °C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C, see Figure 7-2 263 RθJA = 86.5 °C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C, see Figure 7-2 401 RθJA = 86.5 °C/W, VI = 2.75 V, TJ = 150°C, TA = 25°C, see Figure 7-2 525 RθJA = 86.5 °C/W, TJ = 150°C, TA = 25°C, see Figure 7-4 mA 1445 mW 150 °C The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be exceeded. These limits vary with the ambient temperature, TA. The junction-to-air thermal resistance, RθJA, in the Section 7.4 table is that of a device installed on a high-K test board for leaded surface-mount packages. Use these equations to calculate the value for each parameter: TJ = TA + RθJA × P, where P is the power dissipated in the device. TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature. 10 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 PS = IS × VI, where VI is the maximum input voltage. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 11 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 7.9 Electrical Characteristics—5-V Supply VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted) PARAMETER TEST CONDITIONS VOH High-level output voltage IOH = –4 mA; see Figure 8-1 VOL Low-level output voltage IOL = 4 mA; see Figure 8-1 VIT+(IN) Rising input threshold voltage VIT-(IN) Falling input threshold voltage VI(HYS) Input threshold voltage hysteresis IIH High-level input current Low-level input current VIL = 0 V at INx CMTI Common-mode transient immunity VI = VCCI or 0 V, VCM = 1200 V; see Figure 8-3 CI Input capacitance(2) VI = VCC / 2 + 0.4 × sin (2πft), f = 1 MHz, VCC = 5 V 12 MIN TYP – 0.4 4.8 MAX UNIT V 0.2 0.4 V 0.6 x VCCI 0.7 x VCCI V 0.3 x VCCI 0.4 x VCCI 0.1 × VCCI 0.2 x VCCI VIH = VCCI (1) at INx IIL (1) (2) VCCO (1) V V 10 –10 85 μA μA 100 2 kV/μs pF VCCI = Input-side VCC; VCCO = Output-side VCC. Measured from input pin to ground. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 7.10 Supply Current Characteristics—5-V Supply VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted). PARAMETER SUPPLY CURRENT TEST CONDITIONS MIN TYP MAX ICC1 1.6 2.3 ICC2 3 4.9 ICC1 8 11.3 UNIT ISO7760-Q1 Supply current - DC signal VI = VCC1 (ISO7760-Q1); VI = 0 V (ISO7760-Q1 with F suffix) VI = 0 V (ISO7760-Q1); VI = VCC1 (ISO7760-Q1 with F suffix) ICC2 3.3 5.3 ICC1 5 6.4 ICC2 3.5 5.6 ICC1 5.2 6.7 ICC2 6.4 9 ICC1 7 9 ICC2 35 44 VI = VCCI (1)(ISO7761-Q1); VI = 0 V (ISO7761-Q1 with F suffix) ICC1 1.9 2.7 ICC2 2.9 4.7 VI = 0 V (ISO7761-Q1); VI = VCCI (ISO7761-Q1 with F suffix) ICC1 7.3 10.6 ICC2 4.2 6.6 ICC1 4.7 6.4 ICC2 3.8 5.9 ICC1 5.3 7.2 ICC2 6.3 8.8 ICC1 11.5 15 ICC2 30.5 38 ICC1 2.1 3.2 ICC2 2.6 4.2 ICC1 6.5 9.3 ICC2 5 7.5 ICC1 4.5 6.3 ICC2 4 6.1 ICC1 5.6 7.6 ICC2 6 8.4 ICC1 16.5 21 ICC2 25.7 32 VI = VCCI (ISO7763-Q1); VI = 0 V (ISO7763-Q1 with F suffix) ICC1, ICC2 2.4 3.7 VI = 0 V (ISO7763-Q1); VI = VCCI (ISO7763-Q1 with F suffix) ICC1, ICC2 5.7 8.6 ICC1, ICC2 4.2 6.1 ICC1, ICC2 5.8 8 ICC1, ICC2 21 26.5 1 Mbps Supply current - AC signal All channels switching with square wave clock 10 Mbps input; CL = 15 pF 100 Mbps mA mA ISO7761-Q1 Supply current - DC signal 1 Mbps Supply current - AC signal All channels switching with square wave clock 10 Mbps input; CL = 15 pF 100 Mbps mA mA ISO7762-Q1 Supply current - DC signal VI = VCCI (ISO7762-Q1); VI = 0 V (ISO7762-Q1 with F suffix) VI = 0 V (ISO7762-Q1); VI = VCCI (ISO7762-Q1 with F suffix) 1 Mbps Supply current - AC signal All channels switching with square wave clock 10 Mbps input; CL = 15 pF 100 Mbps mA mA ISO7763-Q1 Supply current - DC signal Supply current - AC signal (1) 1 Mbps All channels switching with square wave clock 10 Mbps input; CL = 15 pF 100 Mbps mA mA VCCI = Input-side VCC Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 13 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 7.11 Electrical Characteristics—3.3-V Supply VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted) PARAMETER TEST CONDITIONS VOH High-level output voltage IOH = –2 mA; see Figure 8-1 VOL Low-level output voltage IOL = 2 mA; see Figure 8-1 VIT+(IN) Rising input threshold voltage VIT-(IN) Falling input threshold voltage VI(HYS) Input threshold voltage hysteresis IIH High-level input current TYP – 0.3 3.2 0.1 0.3 x VCCI 0.4 x VCCI 0.1 × VCCI 0.2 x VCCI VCCI IH = V(1) at INx Low-level input current VIL = 0 V at INx CMTI Common-mode transient immunity VI = VCCI or 0 V, VCM = 1200 V; see Figure 8-3 14 MIN 0.6 x VCCI IIL (1) VCCO (1) MAX V 0.3 0.7 x V CCI 85 V V V V 10 –10 UNIT μA μA 100 kV/μs VCCI = Input-side VCC; VCCO = Output-side VCC. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 7.12 Supply Current Characteristics—3.3-V Supply VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted). PARAMETER SUPPLY CURRENT TEST CONDITIONS MIN TYP MAX 2.2 UNIT ISO7760-Q1 Supply current - DC signal VI = VCC1 (ISO7760-Q1); VI = 0 V (ISO7760-Q1 with F suffix) ICC1 1.6 ICC2 3 4.8 VI = 0 V (ISO7760-Q1); VI = VCC1 (ISO7760-Q1 with F suffix) ICC1 8 11.4 ICC2 3.3 5.3 ICC1 4.9 6.6 ICC2 3.4 5.3 ICC1 5 6.7 ICC2 5.5 7.8 ICC1 6.3 8.2 ICC2 26 33 VI = VCCI (1) (ISO7761-Q1); VI = 0 V (ISO7761-Q1 with F suffix) ICC1 1.8 2.7 ICC2 2.9 4.7 VI = 0 V (ISO7761-Q1); VI = VCCI (ISO7761-Q1 with F suffix) ICC1 7.2 10.3 ICC2 4.2 6.6 ICC1 4.6 6.5 ICC2 3.7 5.7 ICC1 5.1 7 ICC2 5.5 7.8 ICC1 9.4 12 ICC2 22.8 29 ICC1 2.1 3.2 ICC2 2.5 4.2 ICC1 6.5 9.4 1 Mbps Supply current - AC signal All channels switching with square wave clock 10 Mbps input; CL = 15 pF 100 Mbps mA mA ISO7761-Q1 Supply current - DC signal 1 Mbps Supply current - AC signal All channels switching with square wave clock 10 Mbps input; CL = 15 pF 100 Mbps mA mA ISO7762-Q1 Supply current - DC signal VI = VCCI (ISO7762-Q1); VI = 0 V (ISO7762-Q1 with F suffix) VI = 0 V (ISO7762-Q1); VI = VCCI (ISO7762-Q1 with F suffix) ICC2 5 7.5 ICC1 4.4 6.2 ICC2 3.9 5.8 ICC1 5.2 7.1 ICC2 5.4 7.5 ICC1 12.9 16.5 ICC2 19.5 25 VI = VCCI (ISO7763-Q1); VI = 0 V (ISO7763-Q1 with F suffix) ICC1, ICC2 2.4 3.7 VI = 0 V (ISO7763-Q1); VI = VCCI (ISO7763-Q1 with F suffix) ICC1, ICC2 5.7 8.4 ICC1, ICC2 4.2 6.2 ICC1, ICC2 5.2 7.5 ICC1, ICC2 16 20.5 1 Mbps Supply current - AC signal All channels switching with square wave clock 10 Mbps input; CL = 15 pF 100 Mbps mA mA ISO7763-Q1 Supply current - DC signal Supply current - AC signal (1) 1 Mbps All channels switching with square wave clock 10 Mbps input; CL = 15 pF 100 Mbps mA mA VCCI = Input-side VCC Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 15 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 7.13 Electrical Characteristics—2.5-V Supply VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted) PARAMETER TEST CONDITIONS VOH High-level output voltage IOH = –1 mA; see Figure 8-1 VOL Low-level output voltage IOL = 1 mA; see Figure 8-1 VIT+(IN) Rising input threshold voltage VIT-(IN) Falling input threshold voltage VI(HYS) Input threshold voltage hysteresis IIH High-level input current VIH = VCCI (1) at INx IIL Low-level input current VIL = 0 V at INx Common-mode transient immunity VI = VCCI or 0 V, VCM = 1200 V; see Figure 8-3 CMTI (1) 16 VCCO (1) MIN TYP – 0.2 2.45 0.05 0.6 x VCCI 0.3 x VCCI 0.4 x VCCI 0.1 × VCCI 0.2 x VCCI MAX V 0.2 0.7 x V CCI 85 V V V V 10 –10 UNIT μA μA 100 kV/μs VCCI = Input-side VCC; VCCO = Output-side VCC. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 7.14 Supply Current Characteristics—2.5-V Supply VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted). PARAMETER SUPPLY CURRENT TEST CONDITIONS MIN TYP MAX 2.2 UNIT ISO7760-Q1 Supply current - DC signal VI = VCC1 (ISO7760-Q1); VI = 0 V (ISO7760-Q1 with F suffix) ICC1 1.6 ICC2 3 4.8 VI = 0 V (ISO7760-Q1); VI = VCC1 (ISO7760-Q1 with F suffix) ICC1 8 11.6 ICC2 3.3 5.3 ICC1 4.9 6.8 ICC2 3.4 5.3 ICC1 5 7 ICC2 4.9 7.2 ICC1 6 8 ICC2 20.3 26 VI = VCCI (1) (ISO7761-Q1); VI = 0 V (ISO7761-Q1 with F suffix) ICC1 1.8 2.7 ICC2 2.9 4.6 VI = 0 V (ISO7761-Q1); VI = VCCI (ISO7761-Q1 with F suffix) ICC1 7.2 10.3 ICC2 4.2 6.5 ICC1 4.6 6.7 ICC2 3.7 5.8 ICC1 4.9 7.1 ICC2 5 7.3 ICC1 8.3 10.7 ICC2 18.1 24 ICC1 2.1 3.2 ICC2 2.6 4.1 ICC1 6.5 9.6 1 Mbps Supply current - AC signal All channels switching with square wave clock 10 Mbps input; CL = 15 pF 100 Mbps mA mA ISO7761-Q1 Supply current - DC signal 1 Mbps Supply current - AC signal All channels switching with square wave clock 10 Mbps input; CL = 15 pF 100 Mbps mA mA ISO7762-Q1 Supply current - DC signal VI = VCCI (ISO7762-Q1); VI = 0 V (ISO7762-Q1 with F suffix) VI = 0 V (ISO7762-Q1); VI = VCCI (ISO7762-Q1 with F suffix) ICC2 4.9 7.5 ICC1 4.4 6.4 ICC2 3.9 5.8 ICC1 5 7.1 ICC2 5 7.1 ICC1 10.9 14.1 ICC2 15.6 20.1 VI = VCCI (ISO7763-Q1); VI = 0 V (ISO7763-Q1 with F suffix) ICC1, ICC2 2.3 3.7 VI = 0 V (ISO7763-Q1); VI = VCCI (ISO7763-Q1 with F suffix) ICC1, ICC2 5.7 8.4 ICC1, ICC2 4.1 6.1 ICC1, ICC2 4.9 7.1 ICC1, ICC2 13 17 1 Mbps Supply current - AC signal All channels switching with square wave clock 10 Mbps input; CL = 15 pF 100 Mbps mA mA ISO7763-Q1 Supply current - DC signal Supply current - AC signal (1) 1 Mbps All channels switching with square wave clock 10 Mbps input; CL = 15 pF 100 Mbps mA mA VCCI = Input-side VCC Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 17 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 7.15 Switching Characteristics—5-V Supply VCC1 = VCC2 = 5 V ±10% (over recommended operating conditions unless otherwise noted) PARAMETER tPLH, tPHL Propagation delay time PWD Pulse width distortion(1) |tPHL – tPLH| tsk(o) Channel-to-channel output skew time(2) tsk(pp) Part-to-part skew time(3) TEST CONDITIONS MIN TYP 6 See Figure 8-1 11 16 ns 0.4 4.9 ns Same-direction channels 4 ns 4.5 ns 1.1 3.9 ns 1.4 3.9 ns 0.3 μs tr Output signal rise time tf Output signal fall time tDO Default output delay time from input power loss Measured from the time VCC goes below 1.7 V. See Figure 8-2 0.2 tie Time interval error 216 – 1 PRBS data at 100 Mbps 1.3 (1) (2) (3) MAX UNIT See Figure 8-1 ns Also known as pulse skew. tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads. tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads. 7.16 Switching Characteristics—3.3-V Supply VCC1 = VCC2 = 3.3 V ±10% (over recommended operating conditions unless otherwise noted) PARAMETER tPLH, tPHL TEST CONDITIONS Propagation delay time distortion(1) PWD Pulse width tsk(o) Channel-to-channel output skew time(2) |tPHL – tPLH| See Figure 8-1 Part-to-part skew Output signal rise time tf Output signal fall time tDO Measured from the time VCC goes Default output delay time from input power loss below 1.7 V. See Figure 8-2 tie Time interval error 18 MAX 12 16 ns 5 ns 4.1 ns 0.5 time(3) tr (3) TYP 6 Same-direction channels tsk(pp) (1) (2) MIN See Figure 8-1 216 – 1 PRBS data at 100 Mbps UNIT 4.5 ns 1 3 ns 1 3 ns 0.2 0.3 μs 1.3 ns Also known as pulse skew. tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads. tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 7.17 Switching Characteristics—2.5-V Supply VCC1 = VCC2 = 2.5 V ±10% (over recommended operating conditions unless otherwise noted) PARAMETER tPLH, tPHL Propagation delay time PWD Pulse width distortion(1) |tPHL – tPLH| tsk(o) Channel-to-channel output skew time(2) tsk(pp) Part-to-part skew time(3) tr Output signal rise time tf Output signal fall time tDO Default output delay time from input power loss tie Time interval error (1) (2) (3) TEST CONDITIONS See Figure 8-1 MIN 7.5 TYP MAX 13 18.5 ns 0.6 5.1 ns 4.1 ns 4.6 ns Same-direction channels UNIT 1 3.5 ns 1 3.5 ns Measured from the time VCC goes below 1.7 V. See Figure 8-2 0.1 0.3 μs 216 – 1 PRBS data at 100 Mbps 1.3 See Figure 8-1 ns Also known as pulse skew. tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads. tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 19 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 7.18 Insulation Characteristics Curves 600 800 Safety Liming Current (mA) 700 Safety Liming Current (mA) VCC1 = VCC2 = 2.75 V VCC1 = VCC2 = 3.6 V VCC1 = VCC2 = 5.5 V 600 500 400 300 200 100 0 VCC1 = VCC2 = 2.75 V VCC1 = VCC2 = 3.6 V VCC1 = VCC2 = 5.5 V 500 400 300 200 100 0 0 50 100 150 Ambient Temperature (qC) 200 0 D008 Figure 7-1. Thermal Derating Curve for Limiting Current per VDE for DW-16 Package 50 100 150 Ambient Temperature (qC) 200 D009 Figure 7-2. Thermal Derating Curve for Limiting Current per VDE for DBQ-16 Package 1600 2500 Safety Limiting Power (mW) Safety Limiting Power (mW) 1400 2000 1500 1000 500 1200 1000 800 600 400 200 0 0 0 50 100 150 Ambient Temperature (qC) 200 D010 Figure 7-3. Thermal Derating Curve for Limiting Power per VDE for DW-16 Package 20 Submit Document Feedback 0 50 100 150 Ambient Temperature (qC) 200 D011 Figure 7-4. Thermal Derating Curve for Limiting Power per VDE for DBQ-16 Package Copyright © 2020 Texas Instruments Incorporated Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 7.19 Typical Characteristics 48 14 ICC1 at 2.5 V ICC2 at 2.5 V ICC1 at 3.3 V ICC2 at 3.3 V ICC1 at 5 V ICC2 at 5 V Supply Current (mA) 40 36 32 ICC1 at 2.5 V ICC2 at 2.5 V ICC1 at 3.3 V ICC2 at 3.3 V ICC1 at 5 V ICC2 at 5 V 12 Supply Current (mA) 44 28 24 20 16 12 8 10 8 6 4 2 4 0 0 0 25 TA = 25°C 50 Data Rate (Mbps) 75 100 0 CL = 15 pF TA = 25°C Figure 7-5. ISO7760-Q1 Supply Current vs Data Rate (With 15-pF Load) 50 Data Rate (Mbps) 75 100 D002 CL = No Load Figure 7-6. ISO7760-Q1 Supply Current vs Data Rate (With No Load) 14 48 ICC1 at 2.5 V ICC2 at 2.5 V ICC1 at 3.3 V ICC2 at 3.3 V ICC1 at 5 V ICC2 at 5 V 40 36 32 ICC1 at 2.5 V ICC2 at 2.5 V ICC1 at 3.3 V ICC2 at 3.3 V ICC1 at 5 V ICC2 at 5 V 12 Supply Current (mA) 44 Supply Current (mA) 25 D001 28 24 20 16 12 8 10 8 6 4 2 4 0 0 0 25 TA = 25°C 50 Data Rate (Mbps) 75 100 CL = 15 pF Figure 7-7. ISO7761-Q1 Supply Current vs Data Rate (With 15-pF Load) Copyright © 2020 Texas Instruments Incorporated 0 25 D012 TA = 25°C 50 Data Rate (Mbps) 75 100 D013 CL = No Load Figure 7-8. ISO7761-Q1 Supply Current vs Data Rate (With No Load) Submit Document Feedback Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 21 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 14 48 ICC1 at 2.5 V ICC2 at 2.5 V ICC1 at 3.3 V ICC2 at 3.3 V ICC1 at 5 V ICC2 at 5 V Supply Current (mA) 40 36 32 ICC1 at 2.5 V ICC2 at 2.5 V ICC1 at 3.3 V ICC2 at 3.3 V ICC1 at 5 V ICC2 at 5 V 12 Supply Current (mA) 44 28 24 20 16 12 8 10 8 6 4 2 4 0 0 0 25 TA = 25°C 50 Data Rate (Mbps) 75 100 0 CL = 15 pF TA = 25°C Figure 7-9. ISO7762-Q1 Supply Current vs Data Rate (With 15-pF Load) 50 Data Rate (Mbps) 75 100 D015 CL = No Load Figure 7-10. ISO7762-Q1 Supply Current vs Data Rate (With No Load) 14 48 ICC1 at 2.5 V ICC2 at 2.5 V ICC1 at 3.3 V ICC2 at 3.3 V ICC1 at 5 V ICC2 at 5 V 40 36 32 ICC1 at 2.5 V ICC2 at 2.5 V ICC1 at 3.3 V ICC2 at 3.3 V ICC1 at 5 V ICC2 at 5 V 12 Supply Current (mA) 44 Supply Current (mA) 25 D014 28 24 20 16 12 8 10 8 6 4 2 4 0 0 0 25 TA = 25°C 50 Data Rate (Mbps) 75 100 CL = 15 pF Figure 7-11. ISO7763-Q1 Supply Current vs Data Rate (With 15-pF Load) 22 Submit Document Feedback 0 25 D016 TA = 25°C 50 Data Rate (Mbps) 75 100 D017 CL = No Load Figure 7-12. ISO7763-Q1 Supply Current vs Data Rate (With No Load) Copyright © 2020 Texas Instruments Incorporated Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 6 1 VCC = 2.5 V VCC = 3.3 V VCC = 5 V 5 Low-Level Output Voltage (V) High-Level Output Voltage (V) 0.9 4 3 2 VCC = 2.5 V VCC = 3.3 V VCC = 5 V 1 0 -15 -10 -5 High-Level Output Current (mA) 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0 Figure 7-13. High-Level Output Voltage vs HighLevel Output Current 14 VCC1 Rising VCC1 Falling VCC2 Rising VCC2 Falling Propagation Delay Time (ns) Power-Supply UVLO Threshold (V) 2.1 2.05 2 1.95 1.9 1.85 1.8 13 12 11 10 tPLH at 2.5 V tPHL at 2.5 V tPLH at 3.3 V 1.75 1.7 -60 D004 Figure 7-14. Low-Level Output Voltage vs LowLevel Output Current 2.25 2.15 15 TA = 25°C TA = 25°C 2.2 5 10 Low-Level Output Current (mA) D003 -30 0 30 60 Free-Air Temperature (qC) 90 9 -55 120 -10 D005 Figure 7-15. Power Supply Undervoltage Threshold vs Free-Air Temperature 35 80 Free-Air Temperature (qC) tPHL at 3.3 V tPLH at 5 V tPHL at 5 V 125 D006 Figure 7-16. Propagation Delay Time vs Free-Air Temperature Peak-to-Peak Output Jitter (ps) 1600 Rising Edge Jitter at 2.5 V Falling Edge Jitter at 2.5 V Rising Edge Jitter at 3.3 V Falling Edge Jitter at 3.3 V Rising Edge Jitter at 5 V Falling Edge Jitter at 5 V 1400 1200 1000 800 600 0 25 50 Data Rate (Mbps) 75 100 D007 TA = 25°C Figure 7-17. Peak-to-Peak Output Jitter vs Data Rate Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 23 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 Parameter Measurement Information Isolation Barrier IN Input Generator (See Note A) VI VCCI 50 VI OUT 50% 50% 0V tPLH tPHL CL See Note B VO VOH 90% 50% VO 50% 10% VOL tf tr Copyright © 2016, Texas Instruments Incorporated A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3 ns, tf ≤ 3 ns, ZO = 50 Ω. At the input, a 50-Ω resistor is required to terminate Input Generator signal. It is not needed in actual application. B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%. Figure 8-1. Switching Characteristics Test Circuit and Voltage Waveforms VI See Note B VCC VCC Isolation Barrier IN = 0 V (Devices without suffix F) IN = VCC (Devices with suffix F) VI IN 1.7 V 0V OUT VO tDO CL See Note A default high VOH 50% VO VOL default low A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%. B. Power-supply ramp rate = 10 mV/ns Figure 8-2. Default Output Delay Time Test Circuit and Voltage Waveforms VCCI VCCO C = 0.1 µF ±1% Pass-fail criteria: The output must remain stable. Isolation Barrier IN S1 C = 0.1 µF ±1% OUT + VOH or VOL CL See Note A GNDI + VCM ± ± GNDO A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%. Figure 8-3. Common-Mode Transient Immunity Test Circuit 24 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 8 Detailed Description 8.1 Overview The ISO776x-Q1 family of devices uses an ON-OFF keying (OOK) modulation scheme to transmit the digital data across a silicon-dioxide based isolation barrier. The transmitter sends a high-frequency carrier across the barrier to represent one digital state and sends no signal to represent the other digital state. The receiver demodulates the signal after advanced signal conditioning and produces the output through a buffer stage. The ISO776x-Q1 family of devices also incorporates advanced circuit techniques to maximize the CMTI performance and minimize the radiated emissions because of the high-frequency carrier and IO buffer switching. The conceptual block diagram of a digital capacitive isolator, Figure 8-1, shows a functional block diagram of a typical channel. Figure 8-2 shows a conceptual detail of how the ON-OFF keying scheme works. 8.2 Functional Block Diagram Transmitter TX IN Receiver OOK Modulation TX Signal Conditioning Oscillator SiO2 based Capacitive Isolation Barrier RX Signal Conditioning Envelope Detection RX OUT Emissions Reduction Techniques Copyright © 2016, Texas Instruments Incorporated Figure 8-1. Conceptual Block Diagram of a Digital Capacitive Isolator TX IN Carrier signal through isolation barrier RX OUT Figure 8-2. ON-OFF Keying (OOK) Based Modulation Scheme Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 25 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 8.3 Feature Description Table 8-1 lists the device features. Table 8-1. Device Features CHANNEL DIRECTION MAXIMUM DATA RATE DEFAULT OUTPUT ISO7760-Q1 6 Forward, 0 Reverse 100 Mbps High ISO7760-Q1 with F suffix 6 Forward, 0 Reverse 100 Mbps Low ISO7761-Q1 5 Forward, 1 Reverse 100 Mbps High ISO7761-Q1 with F suffix 5 Forward, 1 Reverse 100 Mbps Low PART NUMBER ISO7762-Q1 4 Forward, 2 Reverse ISO7762-Q1 with F suffix 4 Forward, 2 Reverse 100 Mbps Low ISO7763-Q1 3 Forward, 3 Reverse 100 Mbps High ISO7763-Q1 with F suffix 3 Forward, 3 Reverse 100 Mbps Low (1) 100 Mbps High PACKAGE RATED ISOLATION(1) DW-16 5000 VRMS / 8000 VPK DBQ-16 3000 VRMS / 4242 VPK DW-16 5000 VRMS / 8000 VPK DBQ-16 3000 VRMS / 4242 VPK DW-16 5000 VRMS / 8000VPK DBQ-16 3000 VRMS / 4242 VPK DW-16 5000 VRMS / 8000 VPK DBQ-16 3000 VRMS / 4242 VPK DW-16 5000 VRMS / 8000VPK DBQ-16 3000 VRMS / 4242 VPK DW-16 5000 VRMS / 8000VPK DBQ-16 3000 VRMS / 4242 VPK DW-16 5000 VRMS / 8000VPK DBQ-16 3000 VRMS / 4242 VPK DW-16 5000 VRMS / 8000 VPK DBQ-16 3000 VRMS / 4242 VPK See Section 7.7 for detailed isolation ratings. 8.3.1 Electromagnetic Compatibility (EMC) Considerations Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge (ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances are regulated by international standards such as IEC 61000-4-x and CISPR 22. Although system-level performance and reliability depends, to a large extent, on the application board design and layout, the ISO776xQ1 family of devices incorporates many chip-level design improvements for overall system robustness. Some of these improvements include: • Robust ESD protection for input and output signal pins and inter-chip bond pads. • Low-resistance connectivity of ESD cells to supply and ground pins. • Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events. • Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance path. • PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic SCRs. • Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation. 26 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 8.4 Device Functional Modes Table 8-2 lists the functional modes for the ISO776x-Q1. Table 8-2. Function Table VCCI (1) VCCO PU (1) (2) (3) INPUT (INx)(3) OUTPUT (OUTx) H H L L Open Default Default mode: When INx is open, the corresponding channel output goes to its default logic state. Default is High for ISO776x-Q1 and Low for ISO776x-Q1 with F suffix. Default mode: When VCCI is unpowered, a channel output assumes the logic state based on the selected default option. Default is High for ISO776x-Q1 and Low for ISO776x-Q1 with F suffix. When VCCI transitions from unpowered to powered-up, a channel output assumes the logic state of its input. When VCCI transitions from powered-up to unpowered, channel output assumes the selected default state. COMMENTS Normal Operation: A channel output assumes the logic state of the input. PU PD PU X Default X PD X Undetermined When VCCO is unpowered, a channel output is undetermined (2). When VCCO transitions from unpowered to powered-up, a channel output assumes the logic state of the input VCCI = Input-side VCC; VCCO = Output-side VCC; PU = Powered up (VCC ≥ 2.25 V); PD = Powered down (VCC ≤ 1.7 V); X = Irrelevant; H = High level; L = Low level The outputs are in undetermined state when 1.7 V < VCCI, VCCO < 2.25 V. A strongly driven input signal can weakly power the floating VCC via an internal protection diode and cause undetermined output. 8.4.1 Device I/O Schematics Input (Devices with F suffix) Input (Devices without F suffix) VCCI VCCI VCCI VCCI VCCI VCCI VCCI 1.5 M 985 985 INx INx 1.5 M Output VCCO ~20 OUTx Copyright © 2016, Texas Instruments Incorporated Figure 8-3. Device I/O Schematics Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 27 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 9 Application and Implementation Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 9.1 Application Information The ISO776x-Q1 family of devices is a high-performance, six-channel digital isolators. The ISO776x-Q1 family of devices uses single-ended CMOS-logic switching technology. The voltage range is from 2.25 V to 5.5 V for both supplies, V CC1 and V CC2. When designing with digital isolators, keep in mind that because of the single-ended design structure, digital isolators do not conform to any specific interface standard and are only intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the data controller (that is, μC or UART), and a data converter or a line transceiver, regardless of the interface type or standard. 9.2 Typical Application Figure 9-1 shows the isolated serial-peripheral interface (SPI) and controller-area network (CAN) interface implementation. VS 10 F 3.3 V 2 Vcc MBR0520L 1:1.33 D2 3 1 SN6501-Q1 D1 GND 4 10 F 0.1 F 1 IN OUT 5 ISO 3.3V TPS76333-Q1 10 F 3 2 EN GND 2 1 µF 22 µF GND 0.1 µF 0.1 F 0.1 F 2 SPISTEA 44 SPICLKA SPISIMOA SPISOMIA TMS320F28035Q CANRXA CANTXA VSS 6, 28 3 33 4 36 6 34 5 25 31 32 INA OUTA OUTB INB INC ISO7762-Q1 15 33 14 34 OUTC INE OUTF INF 36 5 4 CS CH0 SCLK 28 16 Analog Inputs ADS7953-Q1 SDI SDO CH15 27 13 AGND 11 REFM 30 1, 22 11 0.1 F 10 IND OUTD 12 GND1 GND2 8 7 AINP MXO +VBD +VA REFP BDGND OUTE 7 26 8 16 VCC2 1 VCC1 0.1 F VDDIO 6 5 ISO Barrier 29, 57 VOUT REF5025A-Q1 4 MBR0520L GND VIN 3 4 9 1 VCC R RS 8 10 CANH SN65HVD231Q-Q1 D CANL GND (optional) CAN Bus 7 6 10 (optional) Vref 5 SM712 2 4.7 nF / 2 kV Copyright © 2016, Texas Instruments Incorporated Multiple pins and discrete components omitted for clarity purpose. Figure 9-1. Isolated SPI and CAN Interface 28 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 9.2.1 Design Requirements For this design example, use the parameters listed in Table 9-1. Table 9-1. Design Parameters PARAMETER VALUE Supply voltage, VCC1 and VCC2 2.25 to 5.5 V Decoupling capacitor between VCC1 and GND1 0.1 µF Decoupling capacitor from VCC2 and GND2 0.1 µF 9.2.2 Detailed Design Procedure Unlike optocouplers, which require external components to improve performance, provide bias, or limit current, the ISO776x-Q1 family of devices only requires two external bypass capacitors to operate. 0.1 µF 0.1 µF VCC1 1 16 VCC2 INA 2 15 OUTA INB 3 14 OUTB INC 4 13 OUTC IND 5 12 OUTD INE 6 11 OUTE OUTF 7 10 INF 8 9 GND2 GND1 Figure 9-2. Typical ISO7761-Q1 Circuit Hook-up Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 29 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 9.2.3 Application Curves The typical eye diagram of the ISO776x-Q1 family of devices indicates low jitter and a wide open eye at the maximum data rate of 100 Mbps. Figure 9-3. Eye Diagram at 100 Mbps PRBS 216 – 1 Data, 5 V and 25°C Figure 9-4. Eye Diagram at 100 Mbps PRBS 216 – 1 Data, 3.3 V and 25°C Figure 9-5. Eye Diagram at 100 Mbps PRBS 216 – 1 Data, 2.5 V and 25°C 9.2.3.1 Insulation Lifetime Insulation lifetime projection data is collected by using industry-standard Time Dependent Dielectric Breakdown (TDDB) test method. In this test, all pins on each side of the barrier are tied together creating a two-terminal device and high voltage applied between the two sides; See Figure 9-6 for TDDB test setup. The insulation breakdown data is collected at various high voltages switching at 60 Hz over temperature. For reinforced insulation, VDE standard requires the use of TDDB projection line with failure rate of less than 1 part per million (ppm). Even though the expected minimum insulation lifetime is 20 years at the specified working isolation voltage, VDE reinforced certification requires additional safety margin of 20% for working voltage and 87.5% for lifetime which translates into minimum required insulation lifetime of 37.5 years at a working voltage that's 20% higher than the specified value. Figure 9-7 shows the intrinsic capability of the isolation barrier to withstand high voltage stress over its lifetime. Based on the TDDB data, the intrinsic capability of the insulation is 1500 VRMS with a lifetime of 135 years. Other factors, such as package size, pollution degree, material group, etc. can further limit the working voltage of the component. The working voltage of DW-16 package is specified upto 1500 V RMS and DBQ-16 package up to 400 VRMS. At the lower working voltages, the corresponding insulation lifetime is much longer than 135 years. 30 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 A Vcc 1 Vcc 2 Time Counter > 1 mA DUT GND 1 GND 2 VS Oven at 150 °C Figure 9-6. Test Setup for Insulation Lifetime Measurement Figure 9-7. Insulation Lifetime Projection Data 10 Power Supply Recommendations To help ensure reliable operation at data rates and supply voltages, a 0.1-μF bypass capacitor is recommended at input and output supply pins (VCC1 and VCC2). The capacitors should be placed as close to the supply pins as possible. If only a single primary-side power supply is available in an application, isolated power can be generated for the secondary-side with the help of a transformer driver such as Texas Instruments' SN6501 or SN6505. For such applications, detailed power supply design and transformer selection recommendations are available in the SN6501 Transformer Driver for Isolated Power Supplies data sheet or the SN6505 Low-Noise 1A Transformer Drivers for Isolated Power Supplies data sheet. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 31 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 11 Layout 11.1 Layout Guidelines A minimum of four layers is required to accomplish a low EMI PCB design (see Figure 11-1). Layer stacking should be in the following order (top-to-bottom): high-speed signal layer, ground plane, power plane and lowfrequency signal layer. • • • • Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits of the data link. Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for transmission line interconnects and provides an excellent low-inductance path for the return current flow. Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of approximately 100 pF/inch2. Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links usually have margin to tolerate discontinuities such as vias. If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the power and ground plane of each power system can be placed closer together, thus increasing the highfrequency bypass capacitance significantly. For detailed layout recommendations, see the Digital Isolator Design Guide application report. 11.1.1 PCB Material For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and the self-extinguishing flammability-characteristics. 11.2 Layout Example High-speed traces 10 mils Ground plane 40 mils Keep this space free from planes, traces, pads, and vias FR-4 0r ~ 4.5 Power plane 10 mils Low-speed traces Figure 11-1. Layout Example Schematic 32 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 12 Device and Documentation Support 12.1 Documentation Support 12.1.1 Related Documentation For related documentation see the following: • Texas Instruments, Digital Isolator Design Guide application report • Texas Instruments, How to use isolation to improve ESD, EFT and Surge immunity in industrial systems application report • Texas Instruments, Isolation Glossary • Texas Instruments, TMS320F2803xPiccolo™ Microcontrollers data sheet • Texas Instruments, ADS7953-Q1 Automotive 12-Bit, 1MSPS, 16-Channel Single-Ended Micropower, Serial Interface ADC data sheet • Texas Instruments, REF50xxA-Q1 Low-Noise, Very Low Drift, Precision Voltage Reference data sheet • Texas Instruments, SN6501-Q1 Transformer Driver for Isolated Power Supplies data sheet • Texas Instruments, SN65HVD231Q-Q1 3.3-V CAN Transceiver data sheet • Texas Instruments, TPS76333-Q1 Low-Power 150-mA Low-Dropout Linear Regulators data sheet 12.2 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 12-1. Related Links PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY ISO7760-Q1 Click here Click here Click here Click here Click here ISO7761-Q1 Click here Click here Click here Click here Click here ISO7762-Q1 Click here Click here Click here Click here Click here ISO7763-Q1 Click here Click here Click here Click here Click here 12.3 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. 12.4 Support Resources TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 12.5 Trademarks Piccolo™ is a trademark of Texas Instruments. TI E2E™ is a trademark of Texas Instruments. All trademarks are the property of their respective owners. 12.6 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 33 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 12.7 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 34 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 PACKAGE OUTLINE DW0016B SOIC - 2.65 mm max height SCALE 1.500 SOIC C 10.63 TYP 9.97 SEATING PLANE PIN 1 ID AREA A 0.1 C 14X 1.27 16 1 2X 8.89 10.5 10.1 NOTE 3 8 9 0.51 0.31 0.25 C A 16X 7.6 7.4 NOTE 4 B 2.65 MAX B 0.33 TYP 0.10 SEE DETAIL A 0.25 GAGE PLANE 0.3 0.1 0 -8 1.27 0.40 DETAIL A (1.4) TYPICAL 4221009/B 07/2016 NOTES: 1. All linear dimensions are in millimeters. Dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm, per side. 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm, per side. 5. Reference JEDEC registration MS-013. www.ti.com Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 35 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 EXAMPLE BOARD LAYOUT DW0016B SOIC - 2.65 mm max height SOIC SYMM SYMM 16X (2) 16X (1.65) SEE DETAILS 1 SEE DETAILS 1 16 16 16X (0.6) 16X (0.6) SYMM SYMM 14X (1.27) 14X (1.27) 9 8 9 8 R0.05 TYP R0.05 TYP (9.75) (9.3) HV / ISOLATION OPTION 8.1 mm CLEARANCE/CREEPAGE IPC-7351 NOMINAL 7.3 mm CLEARANCE/CREEPAGE LAND PATTERN EXAMPLE SCALE:4X METAL SOLDER MASK OPENING SOLDER MASK OPENING 0.07 MAX ALL AROUND METAL 0.07 MIN ALL AROUND SOLDER MASK DEFINED NON SOLDER MASK DEFINED SOLDER MASK DETAILS 4221009/B 07/2016 NOTES: (continued) 6. Publication IPC-7351 may have alternate designs. 7. Solder mask tolerances between and around signal pads can vary based on board fabrication site. www.ti.com 36 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 ISO7760-Q1, ISO7761-Q1, ISO7762-Q1, ISO7763-Q1 www.ti.com SLLSEU7B – NOVEMBER 2018 – REVISED OCTOBER 2020 EXAMPLE STENCIL DESIGN DW0016B SOIC - 2.65 mm max height SOIC SYMM SYMM 16X (1.65) 16X (2) 1 1 16 16 16X (0.6) 16X (0.6) SYMM SYMM 14X (1.27) 14X (1.27) 9 8 9 8 R0.05 TYP R0.05 TYP (9.3) (9.75) IPC-7351 NOMINAL 7.3 mm CLEARANCE/CREEPAGE HV / ISOLATION OPTION 8.1 mm CLEARANCE/CREEPAGE SOLDER PASTE EXAMPLE BASED ON 0.125 mm THICK STENCIL SCALE:4X 4221009/B 07/2016 NOTES: (continued) 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations. 9. Board assembly site may have different recommendations for stencil design. www.ti.com Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISO7760-Q1 ISO7761-Q1 ISO7762-Q1 ISO7763-Q1 37 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) ISO7760FQDBQQ1 ACTIVE SSOP DBQ 16 75 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 7760FQ ISO7760FQDBQRQ1 ACTIVE SSOP DBQ 16 2500 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 7760FQ ISO7760FQDWQ1 ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7760FQ ISO7760FQDWRQ1 ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7760FQ ISO7760QDBQQ1 ACTIVE SSOP DBQ 16 75 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 7760Q ISO7760QDBQRQ1 ACTIVE SSOP DBQ 16 2500 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 7760Q ISO7760QDWQ1 ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7760Q ISO7760QDWRQ1 ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7760Q ISO7761FQDBQQ1 ACTIVE SSOP DBQ 16 75 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 7761FQ ISO7761FQDBQRQ1 ACTIVE SSOP DBQ 16 2500 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 7761FQ ISO7761FQDWQ1 ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7761FQ ISO7761FQDWRQ1 ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7761FQ ISO7761QDBQQ1 ACTIVE SSOP DBQ 16 75 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 7761Q ISO7761QDBQRQ1 ACTIVE SSOP DBQ 16 2500 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 7761Q ISO7761QDWQ1 ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7761Q ISO7761QDWRQ1 ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7761Q ISO7762FQDBQQ1 ACTIVE SSOP DBQ 16 75 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 7762FQ ISO7762FQDBQRQ1 ACTIVE SSOP DBQ 16 2500 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 7762FQ ISO7762FQDWQ1 ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7762FQ ISO7762FQDWRQ1 ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7762FQ Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 10-Dec-2020 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) ISO7762QDBQQ1 ACTIVE SSOP DBQ 16 75 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 7762Q ISO7762QDBQRQ1 ACTIVE SSOP DBQ 16 2500 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 7762Q ISO7762QDWQ1 ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7762Q ISO7762QDWRQ1 ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7762Q ISO7763FQDBQQ1 ACTIVE SSOP DBQ 16 75 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 7763FQ ISO7763FQDBQRQ1 ACTIVE SSOP DBQ 16 2500 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 7763FQ ISO7763FQDWQ1 ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7763FQ ISO7763FQDWRQ1 ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7763FQ ISO7763QDBQQ1 ACTIVE SSOP DBQ 16 75 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 7763Q ISO7763QDBQRQ1 ACTIVE SSOP DBQ 16 2500 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 7763Q ISO7763QDWQ1 ACTIVE SOIC DW 16 40 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7763Q ISO7763QDWRQ1 ACTIVE SOIC DW 16 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 ISO7763Q (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
ISO7760QDWQ1 价格&库存

很抱歉,暂时无法提供与“ISO7760QDWQ1”相匹配的价格&库存,您可以联系我们找货

免费人工找货
ISO7760QDWQ1
  •  国内价格 香港价格
  • 1+48.197401+6.13860
  • 10+35.5212010+4.52410
  • 120+33.50380120+4.26710
  • 280+30.14520280+3.83940
  • 520+30.06360520+3.82900
  • 1000+24.186201000+3.08040

库存:0