0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
ISOW7741DFMR

ISOW7741DFMR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC20_300MIL

  • 描述:

    ISOW7741DFMR

  • 数据手册
  • 价格&库存
ISOW7741DFMR 数据手册
ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 ISOW774x Quad-Channel Digital Isolator with Integrated Low-Emissions, Low-Noise DC-DC Converter 1 Features 2 Applications • • • • • • • • • • • • • • • 100 Mbps data rate Integrated DC-DC converter with low-emissions, low-noise – Emission optimized to meet CISPR 32 and EN 55032 Class B with >5 dB margin on 2 layer board – Low frequency power converter at 25 MHz enabling low noise performance – Low output ripple: 24 mV High efficiency output power – Efficiency at max load: 46% – Up to 0.55-W output power – VISOOUT accuracy of 5% – 5 V to 5 V: Max available load current = 110 mA – 5 V to 3.3 V: Max available load current = 140 mA – 3.3 V to 3.3 V: Max available load current = 60 mA Independent power supply for channel isolator & power converter – Logic supply (VIO): 1.71-V to 5.5-V – Power converter supply (VDD): 3-V to 5.5-V Robust electromagnetic compatibility (EMC) – System-level ESD, EFT, and surge immunity – ±8 kV IEC 61000-4-2 contact discharge protection across isolation barrier Reinforced and Basic isolation options High CMTI: 100-kV/µs (typical) Safety Related Certifications: – VDE reinforced and basic insulation per DIN VDE V 0884-11:2017-01 – UL 1577 component recognition program – IEC 62368-1, IEC 61010-1, IEC 60601-1 and GB 4943.1-2011 certifications – ISOW774xB devices are planned Extended temperature range: –40°C to +125°C 20-pin wide body SOIC package Factory automation Motor control Grid infrastructure Medical equipment Test and measurement 3 Description The ISOW77xx family of devices are galvanicallyisolated quad-channel digital isolator with an integrated high-efficiency power converter with low emissions. The integrated DC-DC converter provides up to 550 mW of isolated power, eliminating the need for a separate isolated power supply in spaceconstrained isolated designs. Device Information FEATURE ISOW774x ISOW774xF ISOW774xB ISOW774xFB Protection Level Reinforced Basic Surge Test Voltage 10 kVPK 7.8 kVPK Isolation Rating 5000 VRMS 5000 VRMS Working Voltage 1000 VRMS/ 1500VPK 1000 VRMS/ 1500VPK Package DFM (20) DFM (20) Body Size (Nom) 12.83 mm × 7.5 mm 12.83 mm × 7.5 mm VISOIN VIO INA Tx Rx EN_IO2 OUTA INB Tx Rx OUTB INC Tx Rx OUTC OUTD Rx Tx IND EN_IO1 GISOIN GNDIO GND1 GN D2 VSEL VDD EN/FLT DC-DC Primary DC-DC Secondary GND1 VISOOUT GND2 ISOW7741 Simplified Schematic An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 1 3 Description.......................................................................1 4 Revision History.............................................................. 2 5 Description (continued).................................................. 3 6 Pin Configuration and Functions...................................4 7 Specifications.................................................................. 8 7.1 Absolute Maximum Ratings........................................ 8 7.2 ESD Ratings............................................................... 8 7.3 Recommended Operating Conditions.........................9 7.4 Thermal Information..................................................10 7.5 Power Ratings...........................................................10 7.6 Insulation Specifications............................................11 7.7 Safety-Related Certifications.................................... 12 7.8 Safety Limiting Values...............................................12 7.9 Electrical Characteristics - Power Converter............ 13 7.10 Supply Current Characteristics - Power Converter.....................................................................14 7.11 Electrical Characteristics Channel Isolator VIO, VISOIN = 5-V..........................................................15 7.12 Supply Current Characteristics Channel Isolator - VIO, VISOIN = 5-V...........................................15 7.13 Electrical Characteristics Channel Isolator VIO, VISOIN = 3.3-V.......................................................18 7.14 Supply Current Characteristics Channel Isolator - VIO, VISOIN = 3.3-V........................................18 7.15 Electrical Characteristics Channel Isolator VIO, VISOIN = 2.5-V.......................................................21 7.16 Supply Current Characteristics Channel Isolator - VIO, VISOIN = 2.5-V........................................21 7.17 Electrical Characteristics Channel Isolator VIO, VISOIN = 1.8-V.......................................................24 7.18 Supply Current Characteristics Channel Isolator - VIO, VISOIN = 1.8-V........................................24 7.19 Switching Characteristics - 5-V Supply................... 27 7.20 Switching Characteristics - 3.3-V Supply................ 28 7.21 Switching Characteristics - 2.5-V Supply................ 29 7.22 Switching Characteristics - 1.8-V Supply................ 30 7.23 Insulation Characteristics Curves........................... 31 7.24 Typical Characteristics............................................ 32 8 Parameter Measurement Information.......................... 38 9 Detailed Description......................................................40 9.1 Overview................................................................... 40 9.2 Functional Block Diagram......................................... 41 9.3 Feature Description...................................................42 9.4 Device Functional Modes..........................................45 10 Application and Implementation................................ 47 10.1 Application Information........................................... 47 10.2 Typical Application.................................................. 47 11 Power Supply Recommendations..............................51 12 Layout...........................................................................52 12.1 Layout Guidelines................................................... 52 12.2 Layout Example...................................................... 53 13 Device and Documentation Support..........................54 13.1 Device Support....................................................... 54 13.2 Documentation Support.......................................... 54 13.3 Receiving Notification of Documentation Updates..54 13.4 Support Resources................................................. 54 13.5 Trademarks............................................................. 54 13.6 Electrostatic Discharge Caution..............................54 13.7 Glossary..................................................................54 14 Mechanical, Packaging, and Orderable Information.................................................................... 55 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision B (January 2022) to Revision C (April 2022) Page • Added ISOW7740, ISOW7742, ISOW7743 and ISOW7744 Typical Characteristics....................................... 32 Changes from Revision A (October 2021) to Revision B (January 2022) Page • Added ISOW7740, ISOW7742, ISOW7743, and ISOW7744 to data sheet....................................................... 1 Changes from Revision * (September 2021) to Revision A (October 2021) Page • Updated device status to Production Data......................................................................................................... 1 2 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 5 Description (continued) The high-efficiency of the power converter allows for operation at a wide operating ambient temperature range of –40°C to +125°C. This device provides improved emissions performance, allowing for simplified board design and has provisions for ferrite beads to further attenuate emissions. The ISOW774x has been designed with enhanced protection features in mind, including soft-start to limit inrush current, over-voltage and under-voltage lock out, fault detection on the EN/FLT pin, overload and short-circuit protection, and thermal shutdown. The ISOW77xx family of devices provide high electromagnetic immunity while isolating CMOS or LVCMOS digital I/Os. The signal-isolation channel has a logic input and output buffer separated by a double capacitive silicon dioxide (SiO2) insulation barrier, whereas, power isolation uses on-chip transformers separated by thin film polymer as insulating material. There are five orderable configurations of four channel ISOW77xx flavor using the last part number digit to note the number of reverse channels. For example, the ISOW7740 has 4 forward channels and 0 reverse channels, while the ISOW7743 would have 1 forward channel and 3 reverse channels. If the input signal is lost, the default output is high for the ISOW77xx devices without the F suffix and low for the ISOW77xx devices with the F suffix. The ISOW774x can operate from a single supply voltage of 3 V to 5.5 V by connecting VIO and VDD together on PCB. If lower logic levels are required, these devices support 1.71 V to 5.5 V logic supply (VIO) that can be independent from the power converter supply (VDD) of 3 V to 5.5 V. VISOIN and VISOOUT needs to be connected on board with either a ferrite bead or fed through a LDO. These devices help prevent noise currents on data buses, such as UART, SPI, RS-485, RS-232, and CAN, or other circuits from entering the local ground and interfering with or damaging sensitive circuitry. Through innovative chip design and layout techniques, electromagnetic compatibility of the device has been significantly enhanced to ease system-level ESD, EFT, surge and emissions compliance. The device is available in a 20-pin SOIC wide-body (SOIC-WB) DFM package. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 3 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 6 Pin Configuration and Functions 1 20 VISOIN INA 2 19 OUTA INB 3 18 OUTB INC 4 17 OUTC IND 5 16 OUTD GNDIO 6 15 GISOIN EN_IO1 7 14 EN_IO2 EN/FLT 8 13 VSEL VDD 9 12 VISOOUT GND1 10 11 GND2 I S O LAT I O N VIO Figure 6-1. ISOW7740 DFM Package 20-Pin SOIC-WB Top View 1 20 VISOIN INA 2 19 OUTA INB 3 18 OUTB INC 4 17 OUTC OUTD 5 16 IND GNDIO 6 15 GISOIN EN_IO1 7 14 EN_IO2 EN/FLT 8 13 VSEL VDD 9 12 VISOOUT GND1 10 11 GND2 I S O LAT I O N VIO Figure 6-2. ISOW7741 DFM Package 20-Pin SOIC-WB Top View 4 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 1 20 VISOIN INA 2 19 OUTA INB 3 18 OUTB OUTC 4 17 INC OUTD 5 16 IND GNDIO 6 15 GISOIN EN_IO1 7 14 EN_IO2 EN/FLT 8 13 VSEL VDD 9 12 VISOOUT GND1 10 11 GND2 I S O LAT I O N VIO Figure 6-3. ISOW7742 DFM Package 20-Pin SOIC-WB Top View Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 5 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 1 20 VISOIN INA 2 19 OUTA OUTB 3 18 INB OUTC 4 17 INC OUTD 5 16 IND GNDIO 6 15 GISOIN EN_IO1 7 14 EN_IO2 EN/FLT 8 13 VSEL VDD 9 12 VISOOUT GND1 10 11 GND2 I S O LAT I O N VIO Figure 6-4. ISOW7743 DFM Package 20-Pin SOIC-WB Top View 1 20 VISOIN OUTA 2 19 INA OUTB 3 18 INB OUTC 4 17 INC OUTD 5 16 IND GNDIO 6 15 GISOIN EN_IO1 7 14 EN_IO2 EN/FLT 8 13 VSEL VDD 9 12 VISOOUT GND1 10 11 GND2 I S O LAT I O N VIO Figure 6-5. ISOW7744 DFM Package 20-Pin SOIC-WB Top View PIN NAME 6 NO. I/O DESCRIPTION ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 GNDIO 6 6 6 6 6 — Ground connection for VIO. GND1 and GNDIO needs to be shorted on board. GND1 10 10 10 10 10 — Ground connection for VDD. GND1 and GNDIO needs to be shorted on board. GND2 11 11 11 11 11 — Ground connection for VISOOUT. GND2 and GISOIN pins can be shorted on board or connected through a ferrite bead. See the Layout Section for more information. GISOIN 15 15 15 15 15 — Ground connection for VISOIN. GND2 and GISOIN pins can be shorted on board or connected through a ferrite bead. See the Layout Section for more information. INA 2 2 2 2 19 I Submit Document Feedback Input channel A Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 PIN NAME NO. I/O DESCRIPTION ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 INB 3 3 3 18 18 I Input channel B INC 4 4 17 17 17 I Input channel C IND 5 16 16 16 16 I Input channel D OUTA 19 19 19 19 2 O Output channel A OUTB 18 18 18 3 3 O Output channel B OUTC 17 17 4 4 4 O Output channel C OUTD 16 5 5 5 5 O Output channel D I Output Enable 1: When EN_IO1 is high or open then the channel output pins on side 1 are enabled. When EN_IO1 is low then the channel output pins on side 1 are in a high impedance state and the transmitter of the channel input pins on side 1 are disabled. I Output Enable 2: When EN_IO2 is high or open then the channel output pins on side 2 are enabled. When EN_IO2 is low then the channel output pins on side 2 are in a high impedance state and the transmitter of the channel input pins on side 2 are disabled. EN_IO1 EN_IO2 7 14 7 14 7 14 7 14 7 14 Multi-function power converter enable input pin or fault output pin. Can only be used as either an input pin or an output pin. Power converter enable input pin: enables and disables the integrated DC-DC power converter. Connect directly to microcontroller or through a series current limiting resistor to use as an enable input pin. DC-DC power EN/FLT 8 8 8 8 8 I/O converted is enabled when EN/FLT is high to the VIO voltage level and disabled when low at GND1 voltage level. Fault output pin: Alert signal if power converter is not operating properly. This pin is active low. Connect to microcontroller through a 5 kΩ or greater pull-up resistor in order to use as a fault outpin pin. See Section 9.3.3 for more information VISOOUT selection pin. VISOOUT = 5 V when VSEL shorted to VISOOUT. VISOOUT = 3.3 V, when VSEL shorted to GND2. For more information see the Device Functional Modes. VSEL 13 13 13 13 13 I VIO 1 1 1 1 1 — Side 1 logic supply. VDD 9 9 9 9 9 — Side 1 DC-DC converter power supply. VISOIN 20 20 20 20 20 — Side 2 supply voltage for isolation channels. VISOIN and VISOOUT pins can be shorted on board or connected through a ferrite bead. See Application and Implementation for more information. VISOOUT 12 12 12 12 12 — Isolated power converter output voltage. VISOIN and VISOOUT pins can be shorted on board or connected through a ferrite bead. See Application and Implementation for more information. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 7 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 7 Specifications 7.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) (2) MIN MAX UNIT VDD Power converter supply voltage –0.5 6 V VISOIN Isolated supply voltage, input supply for secondary side isolation channels –0.5 6 V VISOOUT Isolated supply voltage, Power converter output VSEL shorted to GND2 –0.5 4 V VISOOUT Isolated supply voltage, Power converter output VSEL shorted to VISOOUT –0.5 6 V VIO Primary side logic supply voltage –0.5 6 V Voltage at INx, OUTx, EN_IOx(3) –0.5 VSI + 0.5 V Voltage at EN/FLT –0.5 VSI + 0.5 V Voltage at VSEL –0.5 VISOOUT + 0.5 V IO Maximum output current through data channels –15 15 mA TJ Junction temperature –40 150 °C Tstg Storage temperature –65 150 °C V (1) (2) (3) Stresses beyond those listed under Absolute Maximum Rating may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Condition. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. VDD, VISOIN VISOOUT, and VIO are with respect to the local ground pin (GND1 or GND2). All voltage values except differential I/O bus voltages are peak voltage values. VSI = input side supply; Cannot exceed 6 V. 7.2 ESD Ratings VALUE V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) HBM ESD Classification Level 2 ±3000 Charged-device model (CDM), per AEC Q100-011 CDM ESD Classification Level C6 ±1500 61000-4-2(2) Contact discharge per IEC Isolation barrier withstand test (1) (2) 8 UNIT V ±8000 AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. IEC ESD strike is applied across the barrier with all pins on each side tied together creating a two-terminal device. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 7.3 Recommended Operating Conditions Over recommended operating conditions, typical values are at VDD = VIO = 3.3 V and TA =25°C, GND1 = GNDIO, GND2 = GISOIN (unless otherwise noted) MIN NOM MAX UNIT 2.97 3.3 3.63 V 4.5 5 5.5 V 2.7 2.95 V Power Converter 3.3 V operation VDD Power converter supply voltage VDD(UVLO+) Positive threshold when power converter supply is rising Positive threshold when power converter supply is rising VDD(UVLO-) Positive threshold when power converter supply is falling Positive threshold when power converter supply is falling 2.40 VDD(HYS) Power converter supply voltage hysteresis Power converter supply voltage hysteresis 0.15 1.8 V operation 1.71 2.5 V, 3.3 V, and 5 V operation 2.25 5 V operation 2.55 V V Channel Isolation VIO, VISOIN (3) Channel logic supply voltage V 5.5 V 1.7 V VIO(UVLO+) Rising threshold of logic supply voltage VIO(UVLO-) Falling threshold of logic supply voltage 1.0 VIO(HYS) Logic supply voltage hysteresis 75 mV VISOIN = 5 V –4 mA VISOIN = 3.3 V –2 mA VISOIN = 2.5 V –1 mA VISOIN = 1.8 V –1 mA High level output current(1) IOH Low level output current(1) IOL High-level input VIL Low-level input voltage DR Data rate tPWRUP Channel isolator ready after power up or EN/FLT high TA Ambient temperature (1) (2) (3) 1.41 V VISOIN = 5 V 4 mA VISOIN = 3.3 V 2 mA VISOIN = 2.5 V 1 mA VISOIN = 1.8 V 1 mA voltage(2) VIH 1.55 1.89 0.7 × VSI VSI V 0 0.3 × VSI V 100 VISOIN > VIO(UVLO+) 5 –40 Mbps ms 125 °C This current is for data output channel. VSI = input side supply; VSO = output side supply The channel outputs are in undetermined state when 1.89 V < VSI < 2.25 V and 1.05 V < VSI < 1.71 V Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 9 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 7.4 Thermal Information ISOW774x THERMAL METRIC(1) UNIT DFM (SOIC) 20 PINS RθJA Junction-to-ambient thermal resistance 68.5 °C/W RθJC(top) Junction-to-case (top) thermal resistance 24.6 °C/W RθJB Junction-to-board thermal resistance 53.7 °C/W ΨJT Junction-to-top characterization parameter 17.1 °C/W ΨJB Junction-to-board characterization parameter 50.9 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance — °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 7.5 Power Ratings VDD = VIO = 5.5 V, IISO = 110 mA, TJ = 150°C, TA ≤ 80°C, CL = 15 pF, input a 50-MHz 50% duty-cycle square wave PARAMETER PD PD1 PD2 10 TEST CONDITIONS MIN TYP Maximum power dissipation (both sides) VDD = 5.5 V, VIO = 5.5 V, VISOOUT = VISOIN, IISOOUT = 100 mA, TJ = 150°C, Maximum power dissipation (side-1) TA ≤ 80°C, CL = 15 pF, input a 50-MHz Maximum power dissipation (side-2) 50% duty-cycle square wave Submit Document Feedback MAX UNIT 1.48 W 0.74 W 0.74 W Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 7.6 Insulation Specifications PARAMETER TEST CONDITIONS VALUE UNIT GENERAL CLR External clearance(1) Shortest terminal-to-terminal distance through air >8 mm CPG External creepage(1) Shortest terminal-to-terminal distance across the package surface >8 mm DTI Minimum internal gap (internal clearance – capacitive signal isolation) > 17 Minimum internal gap (internal clearance – transformer power isolation) >120 Comparative tracking index DIN EN 60112 (VDE 0303-11); IEC 60112 > 600 Material group According to IEC 60664-1 Distance through the insulation CTI Overvoltage category per IEC 60664-1 DIN VDE V µm V I Rated mains voltage ≤ 300 VRMS I-IV Rated mains voltage ≤ 600 VRMS I-IV Rated mains voltage ≤ 1000 VRMS I-III 0884-11:2017-01(2) VIORM Maximum repetitive peak isolation voltage VIOWM Maximum working isolation voltage AC voltage (bipolar) 1500 VPK AC voltage; Time dependent dielectric breakdown (TDDB) Test 1000 VRMS DC voltage 1500 VDC 7071 VPK VIOTM Maximum transient isolation voltage VTEST = VIOTM; t = 60 s (qualification); VTEST = 1.2 × VIOTM; t = 1 s (100% production) VIOSM Maximum surge isolation voltage ISOW774x(3) Test method per IEC 62368-1, 1.2/50 µs waveform, VTEST = 1.6 × VIOSM = 10000 VPK(qualification) 6250 VPK VIOSM Maximum surge isolation voltage ISOW774xB(3) Test method per IEC 62368-1, 1.2/50 µs waveform, VTEST = 1.3 × VIOSM = 7800 VPK(qualification) 6000 VPK Apparent charge(4) qpd Barrier capacitance, input to output(5) CIO Insulation resistance(5) RIO Method a, after input/output safety test subgroup 2/3, Vini = VIOTM, tini = 60 s; Vpd(m) = 1.2 × VIORM, tm = 10 s ≤5 Method a, after environmental tests subgroup 1, Vini = VIOTM, tini = 60 s; ISOW774x: Vpd(m) = 1.6 × VIORM, tm = 10 s, ISOW774xB: Vpd(m) = 1.2 × VIORM, tm = 10 s ≤5 Method b1, at routine test (100% production) and preconditioning (type test), Vini = 1.2 × VIOTM, tini = 1 s; ISOW774x: Vpd(m) = 1.875 × VIORM, tm = 1 s, ISOW774xB: Vpd(m) = 1.5 × VIORM, tm = 1 s ≤5 VIO = 0.4 × sin (2πft), f = 1 MHz ~3.5 pC VIO = 500 V, TA = 25°C > VIO = 500 V, 100°C ≤ TA ≤ 125°C > 1011 VIO = 500 V, TS = 150°C > pF 1012 Ω 109 Pollution degree 2 Climatic category 40/125/21 UL 1577 VISO(UL) (1) Withstand isolation voltage VTEST = VISO(UL)= 5000 VRMS, t = 60 s (qualification), VTEST = 1.2 × VISO(UL) = 6000 VRMS, t = 1 s (100% production) 5000 VRMS Creepage and clearance requirements should be applied according to the specific equipment isolation standards of an application. Care should be taken to maintain the creepage and clearance distance of a board design to ensure that the mounting pads of the isolator on the printed-circuit board do not reduce this distance. Creepage and clearance on a printed-circuit board become equal in certain cases. Techniques such as inserting grooves, ribs, or both on a printed circuit board are used to help increase these specifications. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 11 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 (2) (3) (4) (5) ISOW77xx is suitable for safe electrical insulation and ISOW77xxB is suitable for basic electrical insulation only within the safety ratings.. Compliance with the safety ratings shall be ensured by means of suitable protective circuits. Testing is carried out in air or oil to determine the intrinsic surge immunity of the isolation barrier. Apparent charge is electrical discharge caused by a partial discharge (pd). All pins on each side of the barrier tied together creating a two-terminal device. 7.7 Safety-Related Certifications VDE CSA UL Certified according to DIN Certified according to IEC VDE V 0884-11:2017-01 62368-1, and IEC 60601-1 Recognized under UL 1577 Component Recognition Program CQC TUV Certified according to GB 4943.1-2011 Certified according to EN 61010-1:2010/A1:2019 and EN 62368-1:2014 Reinforced insulation; Maximum transient isolation voltage, 7071 VPK; Maximum repetitive peak isolation voltage, 1500 VPK; Maximum surge isolation voltage, 6250 VPK for ISOW774x (Reinforced), 6000 VPK for ISOW774xB (Basic). CSA 62368-1-19 and IEC 62368-1:2018 Ed. 3 and EN 62368-1:2020. (pollution degree 2, material group I) 600 VRMS (ISOW774x Reinforced), 1000VRMS (ISOW774xB Basic) maximum working voltage; Single protection, 5000 2 MOPP (Means of Patient VRMS Protection) per CSA 60601-1:14 and IEC 60601-1 Ed. 3+A1, 250 VRMS maximum working voltage. Temperature rating is 90°C for reinforced insulation and 125°C for basic insulation; see certificate for details. 5000 VRMS Reinforced insulation per EN 610101:2010 up to working Reinforced Insulation, voltage of 600 VRMS; Altitude ≤ 5000 m, 5000 VRMS Reinforced insulation per EN Tropical Climate, 700 VRMS maximum working 62368-1:2014 up to voltage; working voltage of 600 VRMS (ISOW774x Reinforced), 1000 VRMS (ISOW774xB Basic) Certificate #: Reinforced: 40040142 Basic: 40047657 Master Contract#: 220991 Certificate #: CQC21001297517 File #: E181974 Client ID: 77311 7.8 Safety Limiting Values Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry. PARAMETER IS Safety input, output, or supply TEST CONDITIONS current(1) PS Safety input, output, or total power(1) TS Maximum safety temperature(1) (1) 12 MIN TYP MAX UNIT RθJA = 68.5°C/W, VI = 5.5 V, TJ = 150°C, TA = 25°C 332 RθJA = 68.5°C/W, VI = 3.6 V, TJ = 150°C, TA = 25°C 507 RθJA = 68.5°C/W, TJ = 150°C, TA = 25°C 1825 mW 150 °C mA The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be exceeded. These limits vary with the ambient temperature, TA. The junction-to-air thermal resistance, RθJA, in the Thermal Information table is that of a device installed on a high-K test board for leaded surface-mount packages. Use the following equations to calculate the value for each parameter: TJ = TA + RθJA × P, where P is the power dissipated in the device. TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature. PS = IS × VI, where VI is the maximum input voltage. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 7.9 Electrical Characteristics - Power Converter VDD = 5 V ±10% or 3.3 V ±10% and VISOIN power externally, GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise specified) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT VDD = 5 V, VISOOUT = 5 V, VSEL = VISOOUT VISOOUT Isolated supply voltage External IISOOUT = 0 to 55 mA 4.75 5 5.25 V VISOOUT Isolated supply voltage External IISOOUT = 0 to 110 mA 4.5 5 5.25 V VISOOUT(LINE DC line regulation IISOOUT = 55 mA, VDD = 4.5 V to 5.5 V DC load regulation IISOOUT = 0 to 110 mA EFF Efficiency at maximum load current (1) IISOOUT = 110 mA, CLOAD = 0.01 µF || 10 µF; VI = VDD (ISOW774x); VI =0 V (ISOW774x with F suffix). VISOOUT(RIP) Output ripple on isolated supply (pk-pk) 20-MHz bandwidth, CLOAD = 0.01 µF || 20 µF, IISOOUT = 110 mA IISOOUT_SC DC current from VDD supply under short circuit on VISOOUT VISOOUT shorted to GND2 ) VISOOUT(LOA D) 2 mV/V 1% 46% 24 mV 250 mA VDD = 5 V, VISOOUT = 3.3 V, VSEL = GND2 VISOOUT Isolated supply voltage External IISOOUT = 0 to 70 mA 3.135 3.3 3.465 V VISOOUT Isolated supply voltage External IISOOUT = 0 to 140 mA 3.135 3.3 3.465 V VISOOUT(LINE DC line regulation IISOOUT = 70 mA, VDD = 4.5 V to 5.5 V DC load regulation IISOOUT = 0 to 140 mA EFF Efficiency at maximum load current (1) IISOOUT = 140 mA, CLOAD = 0.01 µF || 10 µF; VI = VDD (ISOW774x); VI =0 V (ISOW774x with F suffix). VISOOUT(RIP) Output ripple on isolated supply (pk-pk) 20-MHz bandwidth , CLOAD = 0.01 µF || 20 µF, IISOOUT = 110 mA IISOOUT_SC DC current from VDD supply under short circuit on VISOOUT VISOOUT shorted to GND2 ) VISOOUT(LOA D) 2 mV/V 1% 36% 30 mV 250 mA VDD = 3.3 V, VISOOUT = 3.3 V, VSEL = GND2 VISOOUT Isolated supply voltage External IISOOUT = 0 to 30 mA 3.135 3.3 3.465 V VISOOUT Isolated supply voltage External IISOOUT = 0 to 60 mA 3.135 3.3 3.465 V VISOOUT(LINE DC line regulation IISOOUT = 30 mA, VDD = 3.0 V to 3.6 V DC load regulation IISOOUT = 0 to 60 mA EFF Efficiency at maximum load current (1) IISOOUT = 60 mA, CLOAD = 0.01 µF || 10 µF; VI = VDD (ISOW774x); VI =0 V (ISOW774x with F suffix). VISOOUT(RIP) Output ripple on isolated supply (pk-pk) 20-MHz bandwidth, CLOAD = 0.01 µF || 20 µF, IISOOUT = 60 mA IISOOUT_SC DC current from VDD supply under short circuit on VISOOUT VISOOUT shorted to GND2 ) VISOOUT(LOA D) (1) 2 mV/V 1% 43% 14 mV 185 mA Power converter ILOAD = current required to power the secondary side. ILOAD does not take into account the channel isolator current. See Supply Current Characteristics Channel Isolator section for details. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 13 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 7.10 Supply Current Characteristics - Power Converter VDD = 5 V ±10% or 3.3 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions unless otherwise noted). PARAMETER TEST CONDITIONS SUPPLY CURRENT MIN TYP MAX UNIT Power Converter Disabled Power converter supply current EN/FLT = GND1, VISOOUT = No ILOAD IDD 0.28 0.45 mA Logic supply current EN/FLT = GND1 IIO 0.27 0.57 mA Power Converter Enabled Power converter supply current input Power converter output current (1) (1) 14 VDD = 5 V, VSEL = VISOOUT ILOAD = 55 mA 115 171 mA VDD = 5 V, VSEL = VISOOUT ILOAD = 110 mA 225 316 mA VDD = 5 V, VSEL = GND2 ILOAD = 70 mA 127 169 mA VDD = 5 V, VSEL = GND2 ILOAD = 140 mA 250 310 mA VDD = 3.3 V, VSEL = GND2 ILOAD = 30 mA 74 112 mA VDD = 3.3 V, VSEL = GND2 ILOAD = 60 mA 143 216 mA VDD = 5 V VSEL = VISOOUT VDD = 5 V VSEL = GND2 VDD = 3.3 V VSEL = GND2 IDD IISOOUT 110 mA 140 mA 60 mA ILOAD does not take into account the channel isolator current. See Supply Current Characteristics Channel Isolator section for details. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 7.11 Electrical Characteristics Channel Isolator - VIO, VISOIN = 5-V VIO, VISOIN = 5 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise specified) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT Channel Isolation VITH Input pin rising threshold VITL Input pin falling threshold 0.3 x VSI V VI(HYS) Input pin threshold hysteresis (INx) 0.1 x VSI V IIL Low level input current –25 µA IIH 0.7 x VSI VIL = 0 at INx (1) High level input current VIH = VSI VOH High level output voltage IO = –4 mA, see Switching Characteristics Test Circuit and Voltage Waveforms VOL Low level output voltage IO = 4 mA, see Switching Characteristics Test Circuit and Voltage Waveforms CMTI Common mode transient immunity VI = VSI or 0 V, VCM = 1000 V; see CommonMode Transient Immunity Test Circuit (1) at INx V 25 µA VSO (1) – 0.4 V 0.4 85 V 100 kV/us VSI = input side supply; VSO = output side supply 7.12 Supply Current Characteristics Channel Isolator - VIO, VISOIN = 5-V VIO, VISOIN = 5 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise specified) PARAMETER TEST CONDITIONS SUPPLY CURRENT MIN TYP MAX UNIT ISOW7740 Channel Supply Current Supply current - Disable Channel Supply current DC signal EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7740); VI = 0 V (ISOW7740 with F suffix) IDD_IO 2.5 3.6 mA IISOIN 4.6 6.9 mA EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7740); VI = VCCI (ISOW7740 with F suffix) IDD_IO 2.5 3.6 mA IISOIN 4.6 6.9 mA EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7740); VI = 0 V (ISOW7740 with F suffix) IDD_IO 2.5 3.6 mA IISOIN 4.6 6.9 mA EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7740); VI = VCCI (ISOW7740 with F suffix) IDD_IO 6.9 9.2 mA IISOIN 4.8 7.2 mA IDD_IO 4.7 6.4 mA IISOIN 4.8 7 mA IDD_IO 4.9 6.7 mA IISOIN 7.3 9.7 mA IDD_IO 6.5 8.4 mA IISOIN 31 35 mA EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7741); VI = 0 V (ISOW7741 with F suffix) IDD_IO 2.8 4.1 mA IISOIN 4.3 6.3 mA EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7741); VI = VCCI (ISOW7741 with F suffix) IDD_IO 2.8 4.1 mA IISOIN 4.3 6.3 mA EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7741); VI = 0 V (ISOW7741 with F suffix) IDD_IO 2.8 4.1 mA IISOIN 4.3 6.3 mA EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7741); VI = VCCI (ISOW7741 with F suffix) IDD_IO 6.1 8.4 mA IISOIN 5.5 7.9 mA 1 Mbps Channel Supply current AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps 100 Mbps ISOW7741 Channel Supply Current Supply current - Disable Channel Supply current DC signal Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 15 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 VIO, VISOIN = 5 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise specified) PARAMETER TEST CONDITIONS 1 Mbps Channel Supply current AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps SUPPLY CURRENT MIN TYP MAX UNIT IDD_IO 4.4 6.3 mA IISOIN 4.9 7.1 mA IDD_IO 5 7 mA IISOIN 6.3 8.9 mA IDD_IO 12.2 14.2 mA IISOIN 25 32 mA EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7742); VI = 0 V (ISOW7742 with F suffix) IDD_IO 3.1 4.7 mA IISOIN 3.9 5.6 mA EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7742); VI = VCCI (ISOW7742 with F suffix) IDD_IO 3.1 4.7 mA IISOIN 3.9 5.6 mA EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7742); VI = 0 V (ISOW7742 with F suffix) IDD_IO 3.1 4.7 mA IISOIN 3.9 5.6 mA EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7742); VI = VCCI (ISOW7742 with F suffix) IDD_IO 5.4 7.7 mA IISOIN 6.2 8.5 mA IDD_IO 4.2 6.3 mA IISOIN 5.1 7.2 mA IDD_IO 5.5 7.6 mA IISOIN 6.3 8.3 mA IDD_IO 16.7 20 mA IISOIN 17.33 22 mA EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7743); VI = 0 V (ISOW7743 with F suffix) IDD_IO 3.5 5.2 mA IISOIN 3.6 5.1 mA EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7743); VI = VCCI (ISOW7743 with F suffix) IDD_IO 3.5 5.2 mA IISOIN 3.6 5.1 mA EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7743); VI = 0 V (ISOW7743 with F suffix) IDD_IO 3.5 5.2 mA IISOIN 3.6 5.1 mA EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7743); VI = VCCI (ISOW7743 with F suffix) IDD_IO 4.7 6.9 mA IISOIN 7 9.4 mA IDD_IO 4 6.2 mA IISOIN 5.3 7.2 mA IDD_IO 6 8.2 mA IISOIN 6.2 8 mA IDD_IO 24 27 mA IISOIN 14 17 mA EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7744); VI = 0 V (ISOW7744 with F suffix) IDD_IO 3.8 5.8 mA IISOIN 3.3 4.6 mA EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7744); VI = VCCI (ISOW7744 with F suffix) IDD_IO 3.8 5.8 mA IISOIN 3.3 4.6 mA 100 Mbps ISOW7742 Channel Supply Current Supply current - Disable Channel Supply current DC signal 1 Mbps Channel Supply current AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps 100 Mbps ISOW7743 Channel Supply Current Supply current - Disable Channel Supply current DC signal 1 Mbps Channel Supply current AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps 100 Mbps ISOW7744 Channel Supply Current Supply current - Disable 16 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 VIO, VISOIN = 5 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise specified) PARAMETER Channel Supply current DC signal TEST CONDITIONS TYP MAX UNIT IDD_IO 3.8 5.8 mA IISOIN 3.3 4.6 mA EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7744); VI = VCCI (ISOW7744 with F suffix) IDD_IO 4 6.2 mA IISOIN 7.7 10.2 mA IDD_IO 3.8 6.1 mA IISOIN 5.5 7.3 mA IDD_IO 6.4 8.6 mA IISOIN 5.6 7.3 mA IDD_IO 30 34 mA IISOIN 7.4 9 mA All channels switching with square wave clock input; CL = 15 pF 10 Mbps 100 Mbps (1) MIN EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7744); VI = 0 V (ISOW7744 with F suffix) 1 Mbps Channel Supply current AC signal SUPPLY CURRENT VCCI = VIO or VISOIN Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 17 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 7.13 Electrical Characteristics Channel Isolator - VIO, VISOIN = 3.3-V VIO, VISOIN = 3.3 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise specified) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT Channel Isolation VITH Input pin rising threshold VITL Input pin falling threshold 0.3 x VSI V VI(HYS) Input pin threshold hysteresis (INx) 0.1 x VSI V IIL Low level input current -25 µA IIH 0.7 x VSI VIL = 0 at INx (1) High level input current VIH = VSI VOH High level output voltage IO = –2 mA, see Switching Characteristics Test Circuit and Voltage Waveforms VOL Low level output voltage IO = 2 mA, see Switching Characteristics Test Circuit and Voltage Waveforms CMTI Common mode transient immunity VI = VSI or 0 V, VCM = 1000 V; see CommonMode Transient Immunity Test Circuit (1) at INx V 25 µA VSO (1) – 0.3 V 0.3 85 V 100 kV/us VSI = input side supply; VSO = output side supply 7.14 Supply Current Characteristics Channel Isolator - VIO, VISOIN = 3.3-V VIO, VISOIN = 3.3 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise specified) PARAMETER TEST CONDITIONS SUPPLY CURRENT MIN TYP MAX UNIT ISOW7740 Channel Supply Current Supply current - Disable Channel Supply current DC signal EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7740); VI = 0 V (ISOW7740 with F suffix) IDD_IO 2.4 3.5 mA IISOIN 4.6 6.9 mA EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7740); VI = VCCI (ISOW7740 with F suffix) IDD_IO 2.4 3.5 mA IISOIN 4.5 6.9 mA EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7740); VI = 0 V (ISOW7740 with F suffix) IDD_IO 2.4 3.5 mA IISOIN 4.5 6.9 mA EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7740); VI = VCCI (ISOW7740 with F suffix) IDD_IO 6.8 9.1 mA IISOIN 4.8 7.2 mA IDD_IO 4.6 6.4 mA IISOIN 4.7 7 mA IDD_IO 4.7 6.4 mA IISOIN 6 8.6 mA IDD_IO 5.5 7.8 mA IISOIN 22 30 mA EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7741); VI = 0 V (ISOW7741 with F suffix) IDD_IO 2.8 4 mA IISOIN 4.2 6.3 mA EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7741); VI = VCCI (ISOW7741 with F suffix) IDD_IO 2.8 4 mA IISOIN 4.2 6.3 mA EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7741); VI = 0 V (ISOW7741 with F suffix) IDD_IO 2.8 4 mA IISOIN 4.2 6.3 mA EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7741); VI = VCCI (ISOW7741 with F suffix) IDD_IO 6.1 8.3 mA IISOIN 5.5 7.9 mA 1 Mbps Channel Supply current AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps 100 Mbps ISOW7741 Channel Supply Current Supply current - Disable Channel Supply current DC signal 18 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 VIO, VISOIN = 3.3 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise specified) PARAMETER TEST CONDITIONS TYP MAX IDD_IO 4.4 6.3 mA IISOIN 4.9 7.1 mA IDD_IO 4.8 6.7 mA IISOIN 5.9 8.3 mA IDD_IO 9.4 12 mA IISOIN 17.5 25 mA EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7742); VI = 0 V (ISOW7742 with F suffix) IDD_IO 3.1 4.6 mA IISOIN 3.9 5.5 mA EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7742); VI = VCCI (ISOW7742 with F suffix) IDD_IO 3.1 4.6 mA IISOIN 3.9 5.5 mA EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7742); VI = 0 V (ISOW7742 with F suffix) IDD_IO 3.1 4.6 mA IISOIN 3.9 5.5 mA EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7742); VI = VCCI (ISOW7742 with F suffix) IDD_IO 5.4 7.6 mA IISOIN 6.2 8.5 mA IDD_IO 4.2 6.3 mA IISOIN 5.1 7.2 mA IDD_IO 4.9 7 mA IISOIN 5.7 7.9 mA IDD_IO 13 16.6 mA IISOIN 13.7 17.5 mA EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7743); VI = 0 V (ISOW7743 with F suffix) IDD_IO 3.4 5.1 mA IISOIN 3.6 5 mA EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7743); VI = VCCI (ISOW7743 with F suffix) IDD_IO 3.4 5.1 mA IISOIN 3.6 5 mA EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7743); VI = 0 V (ISOW7743 with F suffix) IDD_IO 3.4 5.1 mA IISOIN 3.6 5 mA EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7743); VI = VCCI (ISOW7743 with F suffix) IDD_IO 4.7 6.8 mA IISOIN 6.9 9.3 mA IDD_IO 4 6.2 mA IISOIN 5.3 7.2 mA IDD_IO 5 7.4 mA IISOIN 5.6 7.6 mA IDD_IO 17 23 mA IISOIN 10.5 14 mA EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7744); VI = 0 V (ISOW7744 with F suffix) IDD_IO 3.7 5.7 mA IISOIN 3.2 4.5 mA EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7744); VI = VCCI (ISOW7744 with F suffix) IDD_IO 3.7 5.7 mA IISOIN 3.2 4.5 mA 1 Mbps Channel Supply current AC signal SUPPLY CURRENT All channels switching with square wave clock input; CL = 15 pF 10 Mbps 100 Mbps MIN UNIT ISOW7742 Channel Supply Current Supply current - Disable Channel Supply current DC signal 1 Mbps Channel Supply current AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps 100 Mbps ISOW7743 Channel Supply Current Supply current - Disable Channel Supply current DC signal 1 Mbps Channel Supply current AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps 100 Mbps ISOW7744 Channel Supply Current Supply current - Disable Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 19 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 VIO, VISOIN = 3.3 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise specified) PARAMETER Channel Supply current DC signal TEST CONDITIONS 20 TYP MAX UNIT IDD_IO 3.7 5.7 mA IISOIN 3.2 4.5 mA EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7744); VI = VCCI (ISOW7744 with F suffix) IDD_IO 4 6.1 mA IISOIN 7.6 10.1 mA IDD_IO 3.8 6.1 mA IISOIN 5.5 7.3 mA IDD_IO 5.5 7.8 mA IISOIN 5.5 7.3 mA IDD_IO 21 29 mA IISOIN 6.3 8.3 mA All channels switching with square wave clock input; CL = 15 pF 10 Mbps 100 Mbps (1) MIN EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7744); VI = 0 V (ISOW7744 with F suffix) 1 Mbps Channel Supply current AC signal SUPPLY CURRENT VCCI = VIO or VISOIN Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 7.15 Electrical Characteristics Channel Isolator - VIO, VISOIN = 2.5-V VIO, VISOIN = 2.5 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise specified) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT Channel Isolation VITH Input pin rising threshold VITL Input pin falling threshold 0.3 x VSI V VI(HYS) Input pin threshold hysteresis (INx) 0.1 x VSI V IIL Low level input current -25 µA IIH 0.7 x VSI VIL = 0 at INx (1) High level input current VIH = VSI VOH High level output voltage IO = –1 mA, see Switching Characteristics Test Circuit and Voltage Waveforms VOL Low level output voltage IO = 1 mA, see Switching Characteristics Test Circuit and Voltage Waveforms CMTI Common mode transient immunity VI = VSI or 0 V, VCM = 1000 V; see CommonMode Transient Immunity Test Circuit (1) at INx V 25 µA VSO (1) – 0.1 V 0.1 85 V 100 kV/us VSI = input side supply; VSO = output side supply 7.16 Supply Current Characteristics Channel Isolator - VIO, VISOIN = 2.5-V VIO, VISOIN = 2.5 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise specified) PARAMETER TEST CONDITIONS SUPPLY CURRENT MIN TYP MAX UNIT ISOW7740 Channel Supply Current Supply current - Disable Channel Supply current DC signal EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7740); VI = 0 V (ISOW7740 with F suffix) IDD_IO 2.4 3.8 mA IISOIN 4.5 6.9 mA EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7740); VI = VCCI (ISOW7740 with F suffix) IDD_IO 2.4 3.8 mA IISOIN 4.5 6.9 mA EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7740); VI = 0 V (ISOW7740 with F suffix) IDD_IO 2.4 3.8 mA IISOIN 4.5 6.9 mA EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7740); VI = VCCI (ISOW7740 with F suffix) IDD_IO 6.8 9 mA IISOIN 4.7 7.2 mA IDD_IO 4.6 6.4 mA IISOIN 4.7 7 mA IDD_IO 4.7 6.4 mA IISOIN 5.7 8.1 mA IDD_IO 5.3 7.2 mA IISOIN 18 24 mA EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7741); VI = 0 V (ISOW7741 with F suffix) IDD_IO 2.7 4.3 mA IISOIN 4.2 6.3 mA EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7741); VI = VCCI (ISOW7741 with F suffix) IDD_IO 2.7 4.3 mA IISOIN 4.2 6.3 mA EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7741); VI = 0 V (ISOW7741 with F suffix) IDD_IO 2.7 4.3 mA IISOIN 4.2 6.3 mA EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7741); VI = VCCI (ISOW7741 with F suffix) IDD_IO 6.1 8.3 mA IISOIN 5.4 7.9 mA 1 Mbps Channel Supply current AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps 100 Mbps ISOW7741 Channel Supply Current Supply current - Disable Channel Supply current DC signal Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 21 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 VIO, VISOIN = 2.5 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise specified) PARAMETER TEST CONDITIONS TYP MAX IDD_IO 4.4 6.3 mA IISOIN 4.9 7.1 mA IDD_IO 4.7 8.3 mA IISOIN 5.6 7.9 mA IDD_IO 8.2 11.2 mA IISOIN 14.6 18.8 mA EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7742); VI = 0 V (ISOW7742 with F suffix) IDD_IO 3.1 4.6 mA IISOIN 3.8 5.5 mA EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7742); VI = VCCI (ISOW7742 with F suffix) IDD_IO 3.1 4.6 mA IISOIN 3.8 5.5 mA EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7742); VI = 0 V (ISOW7742 with F suffix) IDD_IO 3.1 4.6 mA IISOIN 3.8 5.4 mA EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7742); VI = VCCI (ISOW7742 with F suffix) IDD_IO 5.3 7.5 mA IISOIN 6.1 8.4 mA IDD_IO 4.2 6.3 mA IISOIN 5.1 7.2 mA IDD_IO 4.7 6.8 mA 1 Mbps Channel Supply current AC signal SUPPLY CURRENT All channels switching with square wave clock input; CL = 15 pF 10 Mbps 100 Mbps MIN UNIT ISOW7742 Channel Supply Current Supply current - Disable Channel Supply current DC signal 1 Mbps Channel Supply current AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps IISOIN 5.6 7.7 mA IDD_IO 10.9 14.5 mA IISOIN 11.7 15.5 mA EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7743); VI = 0 V (ISOW7743 with F suffix) IDD_IO 3.4 5.1 mA IISOIN 3.5 4.9 mA EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7743); VI = VCCI (ISOW7743 with F suffix) IDD_IO 3.4 5.1 mA IISOIN 3.5 4.9 mA EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7743); VI = 0 V (ISOW7743 with F suffix) IDD_IO 3.4 5.1 mA IISOIN 3.5 4.9 mA EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7743); VI = VCCI (ISOW7743 with F suffix) IDD_IO 4.6 6.7 mA IISOIN 6.8 9.3 mA IDD_IO 4 6.2 mA IISOIN 5.3 7.2 mA IDD_IO 4.8 7 mA IISOIN 5.6 7.5 mA IDD_IO 13.8 17 mA IISOIN 8.3 13 mA EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7744); VI = 0 V (ISOW7744 with F suffix) IDD_IO 3.7 5.9 mA IISOIN 3.2 4.4 mA EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7744); VI = VCCI (ISOW7744 with F suffix) IDD_IO 3.7 5.7 mA IISOIN 3.2 4.4 mA 100 Mbps ISOW7743 Channel Supply Current Supply current - Disable Channel Supply current DC signal 1 Mbps Channel Supply current AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps 100 Mbps ISOW7744 Channel Supply Current Supply current - Disable 22 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 VIO, VISOIN = 2.5 V ±10% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise specified) PARAMETER Channel Supply current DC signal TEST CONDITIONS TYP MAX UNIT IDD_IO 3.7 5.7 mA IISOIN 3.2 4.4 mA EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7744); VI = VCCI (ISOW7744 with F suffix) IDD_IO 3.9 6.2 mA IISOIN 7.5 10 mA IDD_IO 3.8 6.1 mA IISOIN 5.5 7.3 mA IDD_IO 4.8 7.2 mA IISOIN 5.5 7.3 mA IDD_IO 16.5 22 mA IISOIN 6 8.1 mA All channels switching with square wave clock input; CL = 15 pF 10 Mbps 100 Mbps (1) MIN EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7744); VI = 0 V (ISOW7744 with F suffix) 1 Mbps Channel Supply current AC signal SUPPLY CURRENT VCCI = VIO or VISOIN Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 23 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 7.17 Electrical Characteristics Channel Isolator - VIO, VISOIN = 1.8-V VIO, VISOIN = 1.8 V ±5% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise specified) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT Channel Isolation VITH Input pin rising threshold VITL Input pin falling threshold 0.3 x VSI V VI(HYS) Input pin threshold hysteresis (INx) 0.1 x VSI V IIL Low level input current -25 µA IIH 0.7 x VSI VIL = 0 at INx (1) High level input current VIH = VSI VOH High level output voltage IO = –1 mA, see Switching Characteristics Test Circuit and Voltage Waveforms VOL Low level output voltage IO = 1 mA, see Switching Characteristics Test Circuit and Voltage Waveforms CMTI Common mode transient immunity VI = VSI or 0 V, VCM = 1000 V; see CommonMode Transient Immunity Test Circuit (1) at INx V 25 µA VSO (1) – 0.1 V 0.1 85 V 100 kV/us VSI = input side supply; VSO = output side supply 7.18 Supply Current Characteristics Channel Isolator - VIO, VISOIN = 1.8-V VIO, VISOIN = 1.8 V ±5% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise specified) PARAMETER TEST CONDITIONS SUPPLY CURRENT MIN TYP MAX UNIT ISOW7740 Channel Supply Current Supply current - Disable Channel Supply current DC signal EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7740); VI = 0 V (ISOW7740 with F suffix) IDD_IO 1.9 3 mA IISOIN 4.2 6.3 mA EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7740); VI = VCCI (ISOW7740 with F suffix) IDD_IO 1.9 3 mA IISOIN 4.2 6.3 mA EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7740); VI = 0 V (ISOW7740 with F suffix) IDD_IO 1.9 3 mA IISOIN 4.2 6.3 mA EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7740); VI = VCCI (ISOW7740 with F suffix) IDD_IO 6.1 8.7 mA IISOIN 4.4 6.7 mA IDD_IO 4.0 6.4 mA IISOIN 4.7 7 mA IDD_IO 4.0 6.4 mA IISOIN 5.4 7.7 mA IDD_IO 4.6 9.5 mA IISOIN 14.6 19 mA EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7741); VI = 0 V (ISOW7741 with F suffix) IDD_IO 2.4 3.6 mA IISOIN 3.8 5.6 mA EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7741); VI = VCCI (ISOW7741 with F suffix) IDD_IO 2.4 3.6 mA IISOIN 3.8 5.6 mA EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7741); VI = 0 V (ISOW7741 with F suffix) IDD_IO 2.4 3.6 mA IISOIN 3.8 5.6 mA EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7741); VI = VCCI (ISOW7741 with F suffix) IDD_IO 5.5 7.8 mA IISOIN 4.9 7.3 mA 1 Mbps Channel Supply current AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps 100 Mbps ISOW7741 Channel Supply Current Supply current - Disable Channel Supply current DC signal 24 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 VIO, VISOIN = 1.8 V ±5% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise specified) PARAMETER TEST CONDITIONS TYP MAX IDD_IO 4 5.7 mA IISOIN 4.4 6.5 mA IDD_IO 4.2 6 mA IISOIN 5.2 7.3 mA IDD_IO 6.9 9.6 mA IISOIN 12 15.8 mA EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7742); VI = 0 V (ISOW7742 with F suffix) IDD_IO 2.8 4.3 mA IISOIN 3.4 5.1 mA EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7742); VI = VCCI (ISOW7742 with F suffix) IDD_IO 2.8 4.3 mA IISOIN 3.4 5.1 mA EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7742); VI = 0 V (ISOW7742 with F suffix) IDD_IO 2.8 4.3 mA IISOIN 3.4 5.1 mA EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7742); VI = VCCI (ISOW7742 with F suffix) IDD_IO 5 7.4 mA IISOIN 5.6 8.1 mA IDD_IO 4.2 6.3 mA IISOIN 4.5 7.2 mA IDD_IO 4.3 6.6 mA IISOIN 5.0 7.5 mA IDD_IO 9.1 12.5 mA IISOIN 9.7 13.3 mA EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7743); VI = 0 V (ISOW7743 with F suffix) IDD_IO 3.2 5 mA IISOIN 3 4.5 mA EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7743); VI = VCCI (ISOW7743 with F suffix) IDD_IO 3.2 5 mA IISOIN 3 4.5 mA EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7743); VI = 0 V (ISOW7743 with F suffix) IDD_IO 3.2 5 mA IISOIN 3 4.5 mA EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7743); VI = VCCI (ISOW7743 with F suffix) IDD_IO 4.4 6.6 mA IISOIN 6.2 8.9 mA IDD_IO 4 6.2 mA IISOIN 4.6 7.2 mA IDD_IO 4.6 6.7 mA IISOIN 4.9 7.4 mA IDD_IO 11.4 15 mA IISOIN 7.8 9.8 mA EN_IO1 = EN_IO2 = 0 V; VI = VCCI (1) (ISOW7744); VI = 0 V (ISOW7744 with F suffix) IDD_IO 3.6 5.7 mA IISOIN 2.6 3.8 mA EN_IO1 = EN_IO2 = 0 V; VI = 0 V (ISOW7744); VI = VCCI (ISOW7744 with F suffix) IDD_IO 3.6 5.7 mA IISOIN 2.6 3.8 mA 1 Mbps Channel Supply current AC signal SUPPLY CURRENT All channels switching with square wave clock input; CL = 15 pF 10 Mbps 100 Mbps MIN UNIT ISOW7742 Channel Supply Current Supply current - Disable Channel Supply current DC signal 1 Mbps Channel Supply current AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps 100 Mbps ISOW7743 Channel Supply Current Supply current - Disable Channel Supply current DC signal 1 Mbps Channel Supply current AC signal All channels switching with square wave clock input; CL = 15 pF 10 Mbps 100 Mbps ISOW7744 Channel Supply Current Supply current - Disable Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 25 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 VIO, VISOIN = 1.8 V ±5% GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions, unless otherwise specified) PARAMETER Channel Supply current DC signal TEST CONDITIONS 26 TYP MAX UNIT IDD_IO 3.6 5.7 mA IISOIN 2.6 3.8 mA EN_IO1 = EN_IO2 = VCCI; VI = 0 V (ISOW7744); VI = VCCI (ISOW7744 with F suffix) IDD_IO 3.8 6.1 mA IISOIN 6.7 9.6 mA IDD_IO 3.8 6.1 mA IISOIN 4.7 7.3 mA IDD_IO 4.5 7 mA All channels switching with square wave clock input; CL = 15 pF 10 Mbps 100 Mbps (1) MIN EN_IO1 = EN_IO2 = VCCI; VI = VCCI (ISOW7744); VI = 0 V (ISOW7744 with F suffix) 1 Mbps Channel Supply current AC signal SUPPLY CURRENT IISOIN 4.7 7.3 mA IDD_IO 13.8 16.9 mA IISOIN 5.2 7.7 mA VCCI = VIO or VISOIN Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 7.19 Switching Characteristics - 5-V Supply VISOIN = 5 V ±10%, VIO = 5 V ±10%, GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions unless otherwise noted) PARAMETER tPLH, tPHL Propagation delay time PWD Pulse width distortion(1) |tPHL – tPLH| TEST CONDITIONS See Switching Characteristics Test Circuit and Voltage Waveforms ENIO_tPLH, ENIO_tPHL ENIO propagation delay time (opposite side) See Enable/Disable Propagation Delay Time Test Circuit and Waveform tsk(o) Channel-to-channel output skew time(2) Same-direction channels tsk(pp) Part-to-part skew time(3) tr Output signal rise time tf Output signal fall time MIN TYP MAX UNIT 7.6 10.7 15.7 ns 0.9 5 ns 210 473.8 ns 4 ns 5.5 ns 2.5 3.6 ns 2.4 3.5 ns tPHZ Channel disable propagation delay, high-to-high impedance output 217 286 ns tPLZ Channel disable propagation delay, low-to-high impedance output 217 286 ns 237 333 ns 237 333 ns Channel enable propagation delay, high impedance-to-low output for ISOW774x 237 333 ns Channel enable propagation delay, high impedance-to-low output for ISOW774x with F suffix 237 333 ns 0.3 μs tPZH tPZL Channel enable propagation delay, high impedance-to-high output for ISOW774x Channel enable propagation delay, high impedance-to-high output for ISOW774x with F suffix See Switching Characteristics Test Circuit and Voltage Waveforms See Enable/Disable Propagation Delay Time Test Circuit and Waveform tDO Default output delay time from input power loss Measured from the time VIO or VISOIN goes below 1.6 V at 10 mV/ns. See Default Output Delay Time Test Circuit and Voltage Waveforms 0.1 tie Time interval error 216 – 1 PRBS data at 100 Mbps 0.7 (1) (2) (3) ns Also known as pulse skew. tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads. tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 27 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 7.20 Switching Characteristics - 3.3-V Supply VISOIN = 3.3 V ±10%, VIO = 3.3 V ±10%, GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions unless otherwise noted) PARAMETER tPLH, tPHL Propagation delay time PWD Pulse width distortion(1) |tPHL – tPLH| TEST CONDITIONS MIN 6 See Switching Characteristics Test Circuit and Voltage Waveforms ENIO_tPLH, ENIO_tPHL ENIO propagation delay time (opposite side) See Enable/Disable Propagation Delay Time Test Circuit and Waveform tsk(o) Channel-to-channel output skew time(2) Same-direction channels tsk(pp) Part-to-part skew time(3) tr Output signal rise time tf Output signal fall time TYP MAX UNIT 11 16.2 ns 0.6 4.7 ns 220 474 ns 4.1 ns 4.5 ns 1.8 2.7 ns 1.6 2.4 ns tPHZ Channel disable propagation delay, high-to-high impedance output 230 300.4 ns tPLZ Channel disable propagation delay, low-to-high impedance output 230 299.6 ns 226 318.9 ns 226 319.1 ns Channel enable propagation delay, high impedance-to-low output for ISOW774x 225 317.9 ns Channel enable propagation delay, high impedance-to-low output for ISOW774x with F suffix 225 317.6 ns 0.1 0.3 μs tPZH tPZL Channel enable propagation delay, high impedance-to-high output for ISOW774x Channel enable propagation delay, high impedance-to-high output for ISOW774x with F suffix See Switching Characteristics Test Circuit and Voltage Waveforms See Enable/Disable Propagation Delay Time Test Circuit and Waveform tDO Default output delay time from input power loss Measured from the time VIO or VISOIN goes below 1.6 V at 10 mV/ns. See Default Output Delay Time Test Circuit and Voltage Waveforms tie Time interval error 216 – 1 PRBS data at 100 Mbps (1) (2) (3) 28 0.65 ns Also known as pulse skew. tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads. tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 7.21 Switching Characteristics - 2.5-V Supply VISOIN = 2.5 V ±10%, VIO = 2.5 V ±10%, GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions unless otherwise noted) PARAMETER tPLH, tPHL Propagation delay time PWD Pulse width distortion(1) |tPHL – tPLH| TEST CONDITIONS See Switching Characteristics Test Circuit and Voltage Waveforms ENIO_tPLH, ENIO_tPHL ENIO propagation delay time (opposite side) See Enable/Disable Propagation Delay Time Test Circuit and Waveform tsk(o) Channel-to-channel output skew time(2) Same-direction channels tsk(pp) Part-to-part skew time(3) tr Output signal rise time tf Output signal fall time MIN 7.5 TYP MAX UNIT 12 18 ns 0.36 5.1 ns 225 478 ns 4.1 ns 6 ns 2 3.26 ns 1.8 3.2 ns tPHZ Channel disable propagation delay, high-to-high impedance output 237 326 ns tPLZ Channel disable propagation delay, low-to-high impedance output 236 325 ns 228 360 ns 228 360 ns Channel enable propagation delay, high impedance-to-low output for ISOW774x 227 350 ns Channel enable propagation delay, high impedance-to-low output for ISOW774x with F suffix 227 350 ns 0.3 μs tPZH tPZL Channel enable propagation delay, high impedance-to-high output for ISOW774x Channel enable propagation delay, high impedance-to-high output for ISOW774x with F suffix See Switching Characteristics Test Circuit and Voltage Waveforms See Enable/Disable Propagation Delay Time Test Circuit and Waveform tDO Default output delay time from input power loss Measured from the time VIO or VISOIN goes below 1.6 V at 10 mV/ns. See Default Output Delay Time Test Circuit and Voltage Waveforms 0.1 tie Time interval error 216 – 1 PRBS data at 100 Mbps 0.7 (1) (2) (3) ns Also known as pulse skew. tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads. tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 29 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 7.22 Switching Characteristics - 1.8-V Supply VISOIN = 1.8 V ±5%, VIO = 1.8 V ±5%, GND1 = GNDIO, GND2 = GISOIN (over recommended operating conditions unless otherwise noted) PARAMETER tPLH, tPHL Propagation delay time PWD Pulse width distortion(1) |tPHL – tPLH| TEST CONDITIONS See Switching Characteristics Test Circuit and Voltage Waveforms ENIO_tPLH, ENIO_tPHL ENIO propagation delay time (opposite side) See Enable/Disable Propagation Delay Time Test Circuit and Waveform tsk(o) Channel-to-channel output skew time(2) Same-direction channels tsk(pp) Part-to-part skew time(3) tr Output signal rise time tf Output signal fall time MIN TYP MAX UNIT 7.5 15 21.5 ns 0 5.8 ns 243 475 ns 4.1 ns 8.6 ns 1.9 3 ns 1.8 3 ns tPHZ Channel disable propagation delay, high-to-high impedance output 260 410 ns tPLZ Channel disable propagation delay, low-to-high impedance output 260 406 ns 240 444 ns 240 444 ns Channel enable propagation delay, high impedance-to-low output for ISOW774x 237 439 ns Channel enable propagation delay, high impedance-to-low output for ISOW774x with F suffix 237 439 ns 0.3 μs tPZH tPZL Channel enable propagation delay, high impedance-to-high output for ISOW774x Channel enable propagation delay, high impedance-to-high output for ISOW774x with F suffix See Switching Characteristics Test Circuit and Voltage Waveforms See Enable/Disable Propagation Delay Time Test Circuit and Waveform tDO Default output delay time from input power loss Measured from the time VIO or VISOIN goes below 1.6 V at 10 mV/ns. See Default Output Delay Time Test Circuit and Voltage Waveforms 0.1 tie Time interval error 216 – 1 PRBS data at 100 Mbps 0.7 (1) (2) (3) 30 ns Also known as pulse skew. tsk(o) is the skew between outputs of a single device with all driving inputs connected together and the outputs switching in the same direction while driving identical loads. tsk(pp) is the magnitude of the difference in propagation delay times between any terminals of different devices switching in the same direction while operating at identical supply voltages, temperature, input signals and loads. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 7.23 Insulation Characteristics Curves 550 VDD = VIO = VISOIN = 3.6 V VDD = VIO = VISOIN = 5.5 V Safety Limiting Current (mA) 500 450 400 350 300 250 200 150 100 50 0 0 20 40 60 80 100 120 Ambient Temperature (C) 140 160 Figure 7-1. Thermal Derating Curve for Safety Limiting Current for DFM-20 Package Copyright © 2022 Texas Instruments Incorporated Figure 7-2. Thermal Derating Curve for Safety Limiting Power for DFM-20 Package Submit Document Feedback Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 31 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 7.24 Typical Characteristics 3.4 5.1 VDD = 5 V VDD = 3.3 V 5.08 3.36 5.06 3.34 5.04 Output Voltage (V) Output Voltage (V) 3.38 3.32 3.3 3.28 3.26 5 4.98 4.96 3.24 4.94 3.22 4.92 3.2 4.9 0 20 40 60 80 100 Load Current (mA) VSEL = GND2 TA = 25°C 120 140 0 VISOOUT = 3.3 V Figure 7-3. Isolated Supply Voltage (VISOOUT) vs Load Current (IISOOUT) 48 240 45 210 42 180 39 120 90 VDD = 5 V, VISOOUT = 5 V VDD = 3.3 V, VISOOUT = 3.3 V VDD = 5 V, VISOOUT = 3.3 V 60 30 20 40 60 80 100 Load Current (mA) 120 VISOOUT = 5 V 30 VDD = 5 V, VISOOUT = 5 V VDD = 3.3 V, VISOOUT = 3.3 V VDD = 5 V, VISOOUT = 3.3 V 21 0 20 40 60 80 100 Load Current (mA) 120 140 600 500 400 300 VDD = 5 V, VISOOUT = 5 V VDD = 3.3 V, VISOOUT = 3.3 V VDD = 5 V, VISOOUT = 3.3 V 200 100 0 40 60 80 100 Output Load Current (mA) 120 140 Figure 7-6. Efficiency vs Load Current (IVISOOUT) Output Power Supply Voltage, VISOOUT (V) 700 Power Dissipation (mW) TA = 25°C TA = 25°C 800 3.35 3.34 3.33 3.32 3.31 3.3 3.29 3.28 3.27 3.26 3.25 -40 -25 -10 5 VSEL = GND2 TA = 25°C Figure 7-7. Power Dissipation vs Load Current (IISOOUT) 32 90 100 110 120 33 24 140 Figure 7-5. Supply Current (IDD) vs Load Current (IISOOUT) 20 40 50 60 70 80 Load Current (mA) 36 TA = 25°C 0 30 27 0 0 20 Figure 7-4. Isolated Supply Voltage (VISOOUT) vs Load Current (IISOOUT) 270 150 10 VSEL = VISOOUT Efficiency (%) Input Supply Current (mA) 5.02 Submit Document Feedback 20 35 50 65 Temperature (C) VDD = 5 V 80 95 110 125 No VISOOUT Load Figure 7-8. 3.3-V Isolated Supply Voltage (VISOOUT) vs Free-Air Temperature Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 5.05 340 5.04 320 Short-Circuit Supply Current (mA) Output Power Supply Voltage, VISOOUT (V) www.ti.com 5.03 5.02 5.01 5 4.99 4.98 4.97 4.96 4.95 -40 -25 -10 5 20 35 50 65 Temperature (C) VSEL = VISOOUT 80 VDD = 5 V 95 300 280 260 240 220 200 180 160 110 125 3 No VISOOUT Load Figure 7-9. 5-V Isolated Supply Voltage (VISOOUT) vs Free-Air Temperature 11.5 18 15 12 9 6 5.25 5.5 VISOOUT = GND2 TA = 25°C = GND1 9.5 8.5 7.5 6.5 5.5 4.5 3 3.5 0 0 10 20 30 40 50 60 70 Data Rate (Mbps) CL = 15 pF 80 90 0 100 10 20 30 40 50 60 70 Data Rate (Mbps) CL = 0 pF TA = 25°C Figure 7-11. ISOW7740 Channel Supply Currents vs Data Rate For CL = 15 pF 80 90 100 TA = 25°C Figure 7-12. ISOW7740 Channel Supply Currents vs Data Rate For CL = 0 pF 24 20 IIO, VIO = 5 V IISOIN, VISOIN = 5 V IIO, VIO = 3.3 V IISOIN, VISOIN = 3.3 V 20 18 IIO, VIO = 5 V IISOIN, VISOIN = 5 V IIO, VIO = 3.3 V IISOIN, VISOIN = 3.3 V 18 16 Supply Current (mA) 22 Supply Current (mA) 5 IIO, VIO = 5 V IISOIN, VISOIN = 5 V IIO, VIO = 3.3 V IISOIN, VISOIN = 3.3 V 10.5 Supply Current (mA) Supply Current (mA) 21 3.75 4 4.25 4.5 4.75 Input Supply Voltage, VDD (mA) Figure 7-10. Short-Circuit Supply Current (ICC) vs Supply Voltage (VCC) IIO, VIO = 5 V IISOIN, VISOIN = 5 V IIO, VIO = 3.3 V IISOIN, VISOIN = 3.3 V 24 3.5 VSEL = VISOOUT 30 27 3.25 16 14 12 10 8 14 12 10 8 6 6 4 4 2 2 0 10 20 30 CL = 15 pF 40 50 60 Data Rate (Mbps) 70 80 90 100 TA = 25°C Figure 7-13. ISOW7741 Channel Supply Currents vs Data Rate For CL = 15 pF Copyright © 2022 Texas Instruments Incorporated 0 10 20 30 CL = 0 pF 40 50 60 Data Rate (Mbps) 70 80 90 100 TA = 25°C Figure 7-14. ISOW7741 Channel Supply Currents vs Data Rate For CL = 0 pF Submit Document Feedback Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 33 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 18 IIO, VIO = 5 V IISOIN, VISOIN = 5 V IIO, VIO = 3.3 V IISOIN, VISOIN = 3.3 V Supply Current (mA) 16 14 12 10 8 6 4 2 0 10 20 30 40 50 60 70 Data Rate (Mbps) CL = 15 pF TA = 25°C 80 90 100 CL = 0 pF Figure 7-15. ISOW7742 Channel Supply Currents vs Data Rate For CL = 15 pF TA = 25°C Figure 7-16. ISOW7742 Channel Supply Currents vs Data Rate For CL = 0 pF 24 IIO, VIO = 5 V IISOIN, VISOIN = 5 V IIO, VIO = 3.3 V IISOIN, VISOIN = 3.3 V 22 Supply Current (mA) 20 18 16 14 12 10 8 6 4 2 0 10 20 30 40 50 60 70 Data Rate (Mbps) CL = 15 pF TA = 25°C 80 90 100 CL = 0 pF Figure 7-17. ISOW7743 Channel Supply Currents vs Data Rate For CL = 15 pF Figure 7-18. ISOW7743 Channel Supply Currents vs Data Rate For CL = 0 pF 24 12.5 IIO, VIO = 5 V IISOIN, VISOIN = 5 V IIO, VIO = 3.3 V IISOIN, VISOIN = 3.3 V Supply Current (mA) 20 18 IIO, VIO = 5 V IISOIN, VISOIN = 5 V IIO, VIO = 3.3 V IISOIN, VISOIN = 3.3 V 11.5 10.5 Supply Current (mA) 22 16 14 12 10 8 9.5 8.5 7.5 6.5 5.5 6 4.5 4 3.5 2 0 10 20 30 40 50 60 70 Data Rate (Mbps) CL = 15 pF TA = 25°C 80 90 100 Figure 7-19. ISOW7744 Channel Supply Currents vs Data Rate For CL = 15 pF 34 TA = 25°C Submit Document Feedback 0 10 20 30 CL = 0 pF 40 50 60 70 Data Rate (Mbps) 80 90 100 TA = 25°C Figure 7-20. ISOW7744 Channel Supply Currents vs Data Rate For CL = 0 pF Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 3 17 2.75 16 Propogation Delay Time (ns) Power Supply UVLO Threshold (V) www.ti.com 2.5 VIO UVLO+ VIO UVLOVISOIN UVLO+ VISOIN UVLOVDD UVLO+ VDD UVLO- 2.25 2 1.75 1.5 15 14 VIO VIO VIO VIO VIO VIO = = = = = = 5 V, VISOIN = 5 V 5 V, VISOIN = 5 V 5 V, VISOIN = 3.3 V 5 V, VISOIN = 3.3 V 3.3 V, VISOIN = 3.3 V 3.3 V, VISOIN = 3.3 V 13 12 11 10 1.25 -40 -25 -10 5 20 35 50 65 Temperature (C) 80 95 9 -40 110 125 -25 -10 5 20 35 50 65 Temperature (C) 80 95 110 125 Figure 7-22. Propagation Delay Time vs Free-Air Temperature Figure 7-21. Power-Supply Undervoltage Threshold vs Free Air Temperature 5 0.8 Low-Level Output Voltage (V) High-Level Output Voltage (V) tPHL, tPLH, tPHL, tPLH, tPHL, tPLH, 4.5 VSO = 3.3 V VSO = 5 V 4 3.5 3 2.5 -15 0.6 0.4 0.2 VSO = 3.3 V VSO = 5 V 0 -12 -9 -6 -3 High-Level Output Current (mA) 0 0 3 6 9 12 Low-Level Output Current (mA) 15 TA = 25°C TA = 25°C Figure 7-23. High-Level Output Voltage vs HighLevel Output Current VDD = 5 V VISOOUT = 3.3 V TA = 25°C Figure 7-25. 10-mA to 110-mA Load Transient Response Copyright © 2022 Texas Instruments Incorporated Figure 7-24. Low-Level Output Voltage vs LowLevel Output Current VDD = 5 V VISOOUT = 3.3 V 10 uF Capacitor on VISOOUT Figure 7-26. Soft Start at 10-mA Load For VISOOUT = 3.3 V Submit Document Feedback Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 35 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 VDD = 5 V VISOOUT = 3.3 V 10 uF Capacitor on VISOOUT VDD = 5 V VISOOUT = 3.3 V 10 uF Capacitor on VISOOUT Figure 7-27. Soft Start at 50-mA Load For VISOOUT = Figure 7-28. Soft Start at 110-mA Load For VISOOUT = 3.3 V 3.3 V VDD = 5 V VISOOUT = 5 V 10 uF Capacitor on VISOOUT VDD = 5 V VISOOUT = 5 V 10 uF Capacitor on VISOOUT Figure 7-29. Soft Start at 10-mA Load For VISOOUT = Figure 7-30. Soft Start at 50-mA Load For VISOOUT = 5V 5V VDD = 5 V VISOOUT = 5 V 10 uF Capacitor on VISOOUT Figure 7-31. Soft Start at 110-mA Load For VISOOUT =5V 36 Submit Document Feedback VDD = 3.3 V VISOOUT = 3.3 V 10 uF Capacitor on VISOOUT Figure 7-32. VISOOUT Ripple Voltage at 3.3 V with 10 uF Capacitor and 60 mA load Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 VDD = 5 V VISOOUT = 5 V 10 uF Capacitor on VISOOUT Figure 7-33. VISOOUT Ripple Voltage at 5 V with 10 uF Capacitor and 110 mA load VDD = 5 V VISOOUT = 5 V 100 uF Capacitor on VISOOUT Figure 7-35. VISOOUT Ripple Voltage at 5 V with 100 uF Capacitor and 110 mA load Copyright © 2022 Texas Instruments Incorporated VDD = 3.3 V VISOOUT = 3.3 V 100 uF Capacitor on VISOOUT Figure 7-34. VISOOUT Ripple Voltage at 3.3 V with 100 uF Capacitor and 60 mA load TA = 25°C Figure 7-36. VISOOUT Ripple Voltage vs Load Capacitor Submit Document Feedback Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 37 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 8 Parameter Measurement Information In the below images, VCCI and VCCO refers to the power supplies VIO and VISOIN, respectively. Isolation Barrier IN Input Generator (See Note A) VI VCCI VI OUT 50% 50% 0V tPLH VO 50 tPHL CL See Note B VOH 90% 50% VO 50% 10% VOL tf tr Copyright © 2016, Texas Instruments Incorporated A. B. CL = 15 pF and The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3 ns, tf ≤ 3ns, ZO = 50 Ω. At the input, 50 Ω resistor is required to terminate Input Generator signal. It is not needed in actual application. B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%. Figure 8-1. Switching Characteristics Test Circuit and Voltage Waveforms VCC1 Isolation Barrier 0 V or 3 V IN 0V OUT tPZH VO VOH 50% VO EN RL = 1 k Input Generator (See Note A) VCC / 2 VCC / 2 VI ±1% 0.5 V 0V tPHZ CL See Note B tPZL tPLZ VOH VI 50 VO 0.5 V 50% VOL A. B. A. The input pulse is supplied by a generator having the following characteristics: PRR ≤ 50 kHz, 50% duty cycle, tr ≤ 3 ns, tf ≤ 3ns, ZO = 50 Ω. At the input, 50 Ω resistor is required to terminate Input Generator signal. It is not needed in actual application. B. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%. Figure 8-2. Enable/Disable Propagation Delay Time Test Circuit and Waveform VCCI See Note B IN = 0 V (Devices without suffix F) IN = VCC (Devices with suffix F) IN Isolation Barrier VCCI VI OUT 1.4 V 0V VO CL See Note A tDO VO default high VOH 50% VOL default low Note A. CL = 15 pF and includes instrumentation and fixture capacitance within ±20%. 38 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 Note B. Power Supply Ramp Rate = 10 mV/ns. Figure 8-3. Default Output Delay Time Test Circuit and Voltage Waveforms 5V Connected to Visoout on PCB VISOIN VIO 10uF 1uF 0.01uF 0.01uF 1uF 10uF VIO GND1 OUT IN 5V GND1 VDD CL 10uF 1uF 0.01uF GND2 GND1 + – VCM Note CL = 15 pF and includes instrumentation and fixture capacitance within ±20%. Note Pass-fail criteria: Outputs must remain stable. Figure 8-4. Common-Mode Transient Immunity Test Circuit Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 39 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 9 Detailed Description 9.1 Overview The ISOW774x family of devices have low-noise, low-emissions isolated DC-DC converter, and four high- speed isolated data channels. Section 9.2 shows the functional block diagram of the ISOW774x device. 9.1.1 Power Isolation The integrated isolated DC-DC converter uses advanced circuit and on-chip layout techniques to reduce radiated emissions and achieve upto 46% typical efficiency. The integrated transformer uses thin film polymer as the insulation barrier. Output voltage of power converter can be controlled to 3.3 V or 5 V using VSEL pin. The DC-DC converter can be switched off using the EN/FLT pin to save power. The output voltage, VISOOUT , is monitored and feedback information is conveyed to the primary side through a dedicated isolation channel. VISOOUT needs to be connected to VISOIN to ensure the feedback channel is properly powered to regulate the DC-DC converter. This can be achieved by connecting the pins directly or through an LDO that remains powered up at all times. A ferrite bead is recommended between Visoout and Visoin to further reduce emissions. See the Section 10.2 section. The duty cycle of the primary switching stage is adjusted accordingly. The fast feedback control loop of the power converter ensures low overshoots and undershoots during load transients. Undervoltage lockout (UVLO) with hysteresis is integrated on the VIO, VDD and VISOIN supplies which ensures robust fails-safe system performance under noisy conditions. An integrated soft-start mechanism ensures controlled inrush current and avoids any overshoot on the output during power up. 9.1.2 Signal Isolation The integrated signal isolation channels employ an ON-OFF keying (OOK) modulation scheme to transmit the digital data across a silicon-dioxide based isolation barrier. The transmitter sends a high frequency carrier across the barrier to represent one state and sends no signal to represent the other state. The receiver demodulates the signal after signal conditioning and produces the output through a buffer stage. The signalisolation channels incorporate advanced circuit techniques to maximize the CMTI performance and minimize the radiated emissions from the high frequency carrier and IO buffer switching. Figure 9-1 shows a functional block diagram of a typical signal isolation channel. In order to keep any noise coupling from power converter away from signal path, power supplies on side 1 for power converter (VDD) and signal path(VIO) are kept separate. Similarly on side 2, power converter output (VISOOUT) needs to be connected to VISOIN externally on PCB. Emissions can be further improved by placing a ferrite bead between VISOOUT and VISOIN as well as between the GND2 pins. For more details, refer to the Layout Guidelines section. 40 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 9.2 Functional Block Diagram VISOIN VIO Isolation Barrier I/O Channels Data Channels (4) Data Channels (4) FB Channel (Rx) FB Channel (Tx) VISOOUT and VISOIN needs to be directly connected or through an LDO on board that is always powered. I/O Channels FB Controller Vref Thermal Shutdown, UVLO, Soft-start UVLO, Soft-start Transformer Driver Power Controller Rectifier VISOOUT VDD Transformer Figure 9-1. Block Diagram Receiver Transmitter TX IN OOK Modulation TX Signal Conditioning Oscillator SiO2 based Capacitive Isolation Barrier RX Signal Conditioning Envelope Detection RX OUT Emissions Reduction Techniques Figure 9-2. Conceptual Block Diagram of a Capacitive Data Channel Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 41 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 Figure 9-3 shows a conceptual detail of how the OOK scheme works. TX IN Carrier signal through isolation barrier RX OUT Figure 9-3. On-Off Keying (OOK) Based Modulation Scheme 9.3 Feature Description Table 9-1 shows an overview of the device features. Table 9-1. Device Features PART NUMBER1 ISOW7740 ISOW7740F ISOW7741 ISOW7741F ISOW7742 ISOW7742F ISOW7743 ISOW7743F ISOW7744 ISOW7744F CHANNEL DIRECTION MAXIMUM DATA RATE RATED ISOLATION2 High 4 forward, 0 reverse Low High 3 forward, 1 reverse 2 forward, 2 reverse DEFAULT OUTPUT STATE Low 100 Mbps 1 forward, 3 reverse 0 forward, 4 reverse High Low 5 kVRMS / 7071 VPK High Low High Low 1. The F suffix is part of the orderable part number. See the Section 14 section for the full orderable part number. 2. For detailed isolation ratings, see the Section 7.7 table. 9.3.1 Electromagnetic Compatibility (EMC) Considerations The ISOW774x devices use emissions reduction schemes for the internal oscillator and advanced internal layout scheme to minimize radiated emissions at the system level. Many applications in harsh industrial environment are sensitive to disturbances such as electrostatic discharge (ESD), electrical fast transient (EFT), surge and electromagnetic emissions. These electromagnetic disturbances are regulated by international standards such as IEC 61000-4-x and CISPR 32. Although system-level performance and reliability depends, to a large extent, on the application board design and layout, the ISOW774x devices incorporate many chip-level design improvements for overall system robustness. Some of these improvements include: • Robust ESD protection cells for input and output signal pins and inter-chip bond pads. • Low-resistance connectivity of ESD cells to supply and ground pins. • Enhanced performance of high voltage isolation capacitor for better tolerance of ESD, EFT and surge events. • Bigger on-chip decoupling capacitors to bypass undesirable high energy signals through a low impedance path. 42 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com • • • • SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 PMOS and NMOS devices isolated from each other by using guard rings to avoid triggering of parasitic SCRs. Reduced common mode currents across the isolation barrier by ensuring purely differential internal operation. Power path and signal path separated to minimize internal high frequency coupling and allowing for an external filtering knob using ferrite beads available to further reduce emissions Reduced power converter switching frequency to 25 Mhz to reduce strength of high frequency components in emissions spectrum 9.3.2 Power-Up and Power-Down Behavior The ISOW774x device has built-in UVLO on the VIO, VDD, and VISOIN supplies with positive-going and negativegoing thresholds and hysteresis. Both the power converter supply (VDD) and logic supply (VIO) need to be present for the device to work. If either of them is below its UVLO, both the signal path and the power converter are disabled. When the VDD voltage crosses the positive-going UVLO threshold during power-up, the DC-DC converter initializes and the power converter duty cycle is increased in a controlled manner. This soft-start scheme limits primary peak currents drawn from the VDD supply and charges the VISOOUT output in a controlled manner, avoiding overshoots. Outputs of the isolated data channels are in an indeterminate state until the VIO or VDD voltage crosses the positive-going UVLO threshold. When the UVLO positive-going threshold is crossed on the secondary side VISOOUT pin, the feedback data channel starts providing feedback to the primary controller. The regulation loop takes over and the isolated data channels go to the normal state defined by the respective input channels or their default states. Design should consider a sufficient time margin (typically 10 ms with 10-µF load capacitance) to allow this power up sequence before valid data channels are accounted for system functionality. When either VIO or VDD power is lost, the primary side DC-DC controller turns off when the UVLO lower threshold is reached. The VISOOUT capacitor then discharges depending on the external load. The isolated data outputs on the VISOIN side are returned to the default state for the brief time that the VISOIN voltage takes to discharge to zero. 9.3.3 Protection Features The ISOW774x devices have multiple protection features to create a robust system level solution. • The Enable DC-DC / FAULT protection feature (EN/FLT) can be used as either an input pin, to enable or disable the integrated DC-DC power converter, or as an output pin, which works as an alert signal if the power converter is not operating properly. In the /FAULT use case, an alert is reported if VDD > 7 V, VDD < 2.5 V, or if the junction temperature >170°C. When a fault is detected, this pin will go low, disabling the DC-DC converter to prevent any damage. MCU OUTPUT  5 kΩ EN/FLT Powers Down Isolator Channels and DC-DC Converter. IQ < 1 mA Typical MCU INPUT Fault Reported If VDD < 2.5 V VDD > 7 V Junction Temp > 170° C Figure 9-4. EN/FLT Fault Pin Diagram • • • An over-voltage clamp feature is present on VISOOUT which will clamp the voltage at 6 V, when VSEL = VISOOUT, or 4 V, when VSEL = GND2, if there is an increase in voltage seen on VISOOUT. It is recommended that the VISOOUT stays lower than the over-clamp voltage for device reliability. Over-voltage lock out on VDD will occur when a voltage higher than 7 V is seen. The device will go into a low power state and the EN/FLT pin will go low. The device is protected against output overload and short circuit. Output voltage starts dropping when the power converter is not able to deliver the current demanded during overload conditions. For a VISOOUT short-circuit to ground, the duty cycle of the converter is limited to help protect against any damage. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 43 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 • • • 44 The device is protected against output overload and short circuit. Output voltage starts dropping when the power converter is not able to deliver the current demanded during overload conditions. For a VISOOUT short-circuit to ground, the duty cycle of the converter is limited to help protect against any damage. The device is protected against output overload and short circuit. Output voltage starts dropping when the power converter is not able to deliver the current demanded during overload conditions. For a VISOOUT short-circuit to ground, the duty cycle of the converter is limited to help protect against any damage. Thermal protection is also integrated to help prevent the device from getting damaged during overload and short-circuit conditions on the isolated output. Under these conditions, the device temperature starts to increase. When the temperature goes above 165°C, thermal shutdown activates and the primary controller turns off which removes the energy supplied to the VISOOUT load, which causes the device to cool off. When the junction temperature goes below 150°C, the device starts to function normally. If an overload or output short-circuit condition prevails, this protection cycle is repeated. Care should be taken in the design to prevent the device junction temperatures from reaching such high values. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 9.4 Device Functional Modes Table 9-2 lists the supply configurations for these devices. Table 9-2. Supply Configuration Function Table VDD (1) < VDD(UVLO+) (3) VSEL VISOOUT(3) >VIO(UVLO+) X OFF OFF >VDD(UVLO+) 1.7 V, VISOIN > 1.7 V); PD = Powered down (VIO < 1 V, VISOIN < 1 V); X = Irrelevant; H = High level; L = Low level. In the default condition, the output is high for the ISOW774x device and low with the F suffix. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 45 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 9.4.1 Device I/O Schematics INx (Devices without F suffix) VCC I VCC I VCC I INx (Devices with F suffix) VCC I VCC I VCC I VCC I 1.5 M INx INx 1.5 M VSEL OUTx VCC O VISOOU T VISOOU T VISOOU T a OUTx SEL 2M EN_IOx VCC I VCC I EN/FLT VCC I VCC I VIO VIO 550 k INx VIO VIO 550 k INx Fault 1mA Figure 9-5. Device I/O Schematics 46 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 10 Application and Implementation Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 10.1 Application Information The device is a high-performance, quad channel digital isolator with integrated DC-DC converter. Typically digital isolators require two power supplies isolated from each other to power up both sides of device. Due to the integrated DC-DC converter in the device, the isolated supply is generated inside the device that can be used to power isolated side of the device and peripherals on isolated side, thus saving board space. The device uses single-ended CMOS-logic switching technology. When designing with digital isolators, keep in mind that because of the single-ended design structure, digital isolators do not conform to any specific interface standard and are only intended for isolating single-ended CMOS or TTL digital signal lines. The isolator is typically placed between the data controller (that is Microcontroller or UART), and a data converter or a line transceiver, regardless of the interface type or standard. The device is suitable for applications that have limited board space and desire more integration. The device is also suitable for very high voltage applications, where power transformers meeting the required isolation specifications are bulky and expensive. 10.2 Typical Application For step-by-step design procedure, circuit schematics, bill of materials, printed circuit board (PCB) files, simulation results, and test results, refer to TI Design TIDA-01333, Eight-Channel, Isolated, High-Voltage Analog Input Module With ISOW7841 Reference Design. Figure 10-1 shows the typical schematic for SPI isolation. Reference 10 F 1 F 10 nF 3.3 VIN 10 nF 1 F 10 F VIO VISOIN CS INA OUTA CS SCLK INB OUTB SCLK SDO INC OUTC SDI 3.3VOUT DVCC MCU OUTD SDI DVSS GNDIO IND VDD 1 F 10 nF GND1 330 at 100 MHz (BLM15EX331SN 1D) VISOOUT GND2 REF ADC SDO AGND ISOW7741 GISOIN VSEL 10 F DVDD AVDD 10 nF 1 F 10 F HV+ to Chassis HV- to Chassis DGND IN OUT GND 330 at 100 MHz (BLM15EX331SN 1D) Optional LDO Figure 10-1. Isolated Power and SPI for ADC Sensing Application with ISOW7741 Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 47 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 10.2.1 Design Requirements To design with this device, use the parameters listed in Table 10-1. Table 10-1. Design Parameters PARAMETER VALUE VDD input voltage 3 V to 5.5 V VIO input voltage 1.71 V to 5.5 V VISOIN input voltage 1.71 V to 5.5 V VDD decoupling capacitors 10 µF + 1 µF + 0.01 µF + optional additional capacitance VIO decoupling capacitors 0.1 µF + optional additional capacitance VISOIN decoupling capacitors 0.1 µF + optional additional capacitance VISOOUT decoupling capacitors 10 µF + 1 µF + 0.01 µF + optional additional capacitance VISOOUT to VISOIN series inductor BLM15ELX9331SN1D GND2 to GISOIN series inductor BLM15ELX9331SN1D VIO series inductor BLM15ELX9331SN1D VDD series inductor BLM15ELX9331SN1D GND1 to GNDIO series inductor BLM15ELX9331SN1D Because of very-high current flowing through the ISOW7741 device device VDD and VISOOUT supplies, higher decoupling capacitors typically provide better noise and ripple performance. Although a 10-µF capacitor is adequate, higher decoupling capacitors (such as 47 µF) on both the VDD and VISOOUT pins to the respective grounds are strongly recommended to achieve the best performance. 10.2.2 Detailed Design Procedure The devices requires specific placement of external bypass capacitors and ferrite beads to operate at high performance. These low-ESR ceramic bypass capacitors must be placed as close to the chip pads as possible. 48 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 10 F 10 F VIO 330 at 100 MHz (BLM15EX331SN1D) 1 F 1 F 10 nF 10 nF VISOIN 1 20 INA 2 19 OUTA INB 3 18 OUTB INC 4 17 OUTC OUTD 5 16 IND 6 15 7 14 8 13 9 12 10 11 GNDIO EN_IO1 VIO EN/FLT FAULT OUT EN_IO2 330 at 100 MHz (BLM15EX331SN1D) VDD 10 F 1 F 10 nF GND1 330 at 100 MHz (BLM15EX331SN1D) GISOIN VISOIN VSEL VISOOUT 330  at 100 MHz (BLM15EX331SN1D) VISOOUT GND2 10 nF VISOIN 1 F 10 F 330  at 100 MHz (BLM15EX331SN1D) Figure 10-2. Typical ISOW7741 Circuit Hook-Up 10.2.3 Application Curve VDD = 5 V VISOOUT = 5 V IISOOUT = 100 mA Figure 10-3. ISOW7741 Radiated Emissions versus CISPR32B line (Blue) 10.2.4 Insulation Lifetime Insulation lifetime projection data is collected by using industry-standard Time Dependent Dielectric Breakdown (TDDB) test method. In this test, all pins on each side of the barrier are tied together creating a two-terminal device and high voltage applied between the two sides; See Figure 10-4 for TDDB test setup. The insulation breakdown data is collected at various high voltages switching at 60 Hz over temperature. For reinforced insulation, VDE standard requires the use of TDDB projection line with failure rate of less than 1 part per million (ppm). Even though the expected minimum insulation lifetime is 20 years at the specified working isolation voltage, VDE reinforced certification requires additional safety margin of 20% for working voltage and 87.5% for Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 49 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 lifetime which translates into minimum required insulation lifetime of 37.5 years at a working voltage that's 20% higher than the specified value. Figure 10-5 shows the intrinsic capability of the isolation barrier to withstand high voltage stress over its lifetime. Based on the TDDB data, the intrinsic capability of the insulation is 1000 VRMS with a lifetime of 1184 years. A Vcc 1 Vcc 2 Time Counter > 1 mA DUT GND 1 GND 2 VS Oven at 150 °C Figure 10-4. Test Setup for Insulation Lifetime Measurement Figure 10-5. Insulation Lifetime Projection Data 50 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 11 Power Supply Recommendations To help make sure that operation is reliable at data rates and supply voltages, adequate decoupling capacitors must be located as close to supply pins as possible. VISOOUT needs to be connected to VISOIN to ensure the feedback channel is properly powered to regulate the DC-DC converter. If VISOOUT and VISOIN are not connected, the DC-DC converter will run open loop and the VISOOUT voltage will drift until the over-voltage clamp clamps at 6 V. There are two ways to connect VISOOUTand VISOIN: 1) connect VISOOUT and VISOIN directly with a ferrite bead. A ferrite bead is recommended between VISOOUTand VISOIN to further reduce emissions. 2) connect VISOOUT and VISOIN with a ferrite bead through an LDO that remains powered up at all times. If the LDO has an EN pin then keep the EN high at all times. The input supply (VIO and VDD) must have an appropriate current rating to support output load and switching at the maximum data rate required by the end application. For more information, refer to the Section 10.2 section. For an output load current of 110 mA, it is recommended to have >600 mA of input current limit and for lower output load currents, the input current limit can be proportionally lower. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 51 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 12 Layout 12.1 Layout Guidelines A low cost two layer PCB should be sufficient to achieve good EMC performance: • • • • Routing the high-speed traces on the top layer avoids the use of vias (and the introduction of their inductances) and allows for clean interconnects between the isolator and the transmitter and receiver circuits of the data link. Placing a solid ground plane next to the high-speed signal layer establishes controlled impedance for transmission line interconnects and provides an excellent low-inductance path for the return current flow. Placing the power plane next to the ground plane creates additional high-frequency bypass capacitance of approximately 100 pF/in2. Routing the slower speed control signals on the bottom layer allows for greater flexibility as these signal links usually have margin to tolerate discontinuities such as vias. If an additional supply voltage plane or signal layer is needed, add a second power or ground plane system to the stack to keep it symmetrical. This makes the stack mechanically stable and prevents it from warping. Also the power and ground plane of each power system can be placed closer together, thus increasing the high-frequency bypass capacitance significantly. Because the device has no thermal pad to dissipate heat, the device dissipates heat through the respective GND pins. Ensure that enough copper is present on both GND pins to prevent the internal junction temperature of the device from rising to unacceptable levels. Figure 12-1 shows the recommended placement and routing of device bypass capacitors. Below guidelines must be followed to meet application EMC requirements: • • • • • • High frequency bypass capacitors 10 nF must be placed close to VDD and VISOOUT pins, less than 1 mm distance away from device pins. This is very essential for optimised radiated emissions performance. Ensure that these capacitors are 0402 size so that they offer least inductance (ESL). Bulk capacitors of atleast 10 μF must be placed on power converter input (VDD) and output (VISOOUT) supply pins. Traces on VDD and GND1 must be symmetric till bypass capacitors. Similarly traces on VISOOUT and GND2 must be symmetric. Place two 0402 size Ferrite beads (Part number: BLM15EX331SN1) on VISOOUT and GND2 path so that any high frequency noise from power converter output sees a high impedance before it goes to other components on PCB. Do not have any metal traces or ground pour within 4 mm of power converter output terminals VISOOUT pin12 and GND2 pin11. VSEL pin is also in VISOOUT domain and should be shorted to either pin 11 or pin 12 for output voltage selection. Following the layout guidelines of EVM as much as possible is highly recommended for a low radiated emissions design. 12.1.1 PCB Material For digital circuit boards operating at less than 150 Mbps, (or rise and fall times greater than 1 ns), and trace lengths of up to 10 inches, use standard FR-4 UL94V-0 printed circuit board. This PCB is preferred over cheaper alternatives because of lower dielectric losses at high frequencies, less moisture absorption, greater strength and stiffness, and the self-extinguishing flammability-characteristics. 52 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: ISOW7740 ISOW7741 ISOW7742 ISOW7743 ISOW7744 ISOW7740, ISOW7741, ISOW7742, ISOW7743, ISOW7744 www.ti.com SLLSFK1C – SEPTEMBER 2021 – REVISED APRIL 2022 12.2 Layout Example FB 5 Input supply 1 C C C 10 F 1 F 10 nF Ground plane on side 1 Ground plane on side 2
ISOW7741DFMR 价格&库存

很抱歉,暂时无法提供与“ISOW7741DFMR”相匹配的价格&库存,您可以联系我们找货

免费人工找货