LDC131x and LDC161x EVM User’s Guide
User's Guide
Literature Number: SNOU135A
August 2015 – Revised September 2016
Contents
1
2
Overview ............................................................................................................................. 6
Sensing Solutions EVM GUI .................................................................................................. 7
2.1
System Requirements ................................................................................................... 7
2.2
Installation Instructions .................................................................................................. 7
2.3
Starting the GUI ......................................................................................................... 14
2.4
Navigating the GUI ..................................................................................................... 15
2.5
Connecting the EVM ................................................................................................... 17
2.6
Configuring the EVM Using the Register Page .....................................................................
2.6.1
Automatically Update GUI Register Values Using Auto Read ........................................
2.6.2
Manually Update Device Register Values ...............................................................
2.6.3
Reading Register Values Without Auto Read ...........................................................
2.6.4
Saving Device Configurations .............................................................................
2.6.5
Loading Previously Saved Configurations ...............................................................
17
17
18
20
22
23
2.7
Configuring the EVM Using the Configuration Page ...............................................................
2.7.1
Enabling and Disabling Channel Measurements .......................................................
2.7.2
Selecting the Clocking Source ............................................................................
2.7.3
Setting the Measurement Timings ........................................................................
2.7.4
Using a Different Sensor ..................................................................................
2.7.5
Setting the Input Deglitch Filter ...........................................................................
2.7.6
Setting the Power Mode and Sensor Initialization Currents ...........................................
24
24
25
25
26
26
26
2.8
Streaming Measurement Data ........................................................................................
2.8.1
Choosing the Graph and Visible Channels ..............................................................
2.8.2
Logging Data to a File ......................................................................................
2.8.3
Starting and Stopping Data Streaming ...................................................................
2.8.4
Data Statistics ...............................................................................................
2.8.5
Configuring the Graph ......................................................................................
2.8.6
Navigating the Data Streaming BµFfer ...................................................................
27
27
28
29
30
32
35
2.9
3
4
5
6
7
8
Updating the EVM Firmware .......................................................................................... 37
LDC1312/1612 EVM REV B Schematics and Layout ................................................................
LDC1314/1614 EVM REV B Schematics and Layout ................................................................
LDC1312/1314/1612/1614 EVM REV B Bill of Materials ............................................................
Appendix 1: LDC1312/1612 EVM REV A Schematics and Layout ..............................................
Appendix 2: LDC1314/1614 EVM REV A Schematics and Layout ..............................................
Appendix 3: LDC1312/1314/1612/1614 EVM REV A Bill of Materials ..........................................
42
50
58
66
71
76
Revision History .......................................................................................................................... 84
2
Table of Contents
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
www.ti.com
List of Figures
1
LDC1312/1612 Evaluation Module ........................................................................................ 6
2
User Account Control Prompt .............................................................................................. 7
3
Software Installer Wizard ................................................................................................... 8
4
Software Installer License Agreement .................................................................................... 8
5
Software Installation Directory ............................................................................................. 9
6
Software Installer Ready .................................................................................................. 10
7
Software Installer in Progress
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
............................................................................................
Device Driver Installer Wizard ............................................................................................
Device Driver Installer in Progress .......................................................................................
Device Driver Installer Completed .......................................................................................
Software Installer Completed .............................................................................................
Splash Screen ..............................................................................................................
Introduction Page...........................................................................................................
Mouse Hovered Over Menu Button ......................................................................................
Menu Display After Clicking Button ......................................................................................
EVM Connected to GUI ...................................................................................................
Selecting Auto Read Interval on Register Page .......................................................................
Selecting a Register's Current Value for Editing on Register Page .................................................
Hovering Mouse Over Register Bit Value on Register Page ........................................................
Selecting a Register on Register Page ..................................................................................
Reading the Current Device Register Value on Register Page .....................................................
Save Register Values to File on Register Page ........................................................................
Loading Previously Saved Register Values from File on Register Page ...........................................
Measurement Settings on Configuration Page .........................................................................
Sensor Properties and Input Adjustments on Configuration Page...................................................
Current Drive on Configuration Page ....................................................................................
Select the Data Graph on Data Streaming Page ......................................................................
Select Log File Button on Data Streaming Page .......................................................................
Start Button on Data Streaming Page ...................................................................................
Show Statistics Button on Data Streaming Page ......................................................................
Hide Statistics Button on Data Streaming Page .......................................................................
Show Graph Configuration Button on Data Streaming Page .........................................................
Graph Configuration Button on Data Streaming Page ................................................................
Hide Graph Configuration Button on Data Streaming Page ..........................................................
Changing Number of Samples Displayed in Data Graph ............................................................
Displaying Previous Data Samples on the Data Streaming Page ...................................................
Select TI-TXT File Button on Firmware Upload Page ................................................................
Selecting TI-TXT Firmware File for Upload to EVM ..................................................................
Upload Firmware Button on Firmware Upload Page .................................................................
Firmware Upload in Progress ............................................................................................
Firmware Upload Success ...............................................................................................
LDC1312/1612 USB Connection .........................................................................................
LDC1312/1612 Power Circuit .............................................................................................
LDC1312/1612 ..............................................................................................................
LDC1312/1612 MSP430 Connections ...................................................................................
LDC1312/1612 Layout Top Layer – Signals and Components ......................................................
LDC1312/1612 Layout MidLayer 1 – Ground Plane ...................................................................
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
List of Figures
10
11
12
13
13
14
15
16
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
40
41
42
43
44
45
46
47
3
www.ti.com
48
LDC1312/1612 Layout MidLayer 2 – Signals and Power Plane ..................................................... 48
49
LDC1312/1612 Layout Bottom Layer – Signals Plane ................................................................ 49
50
LDC1314/1614 USB Connection ......................................................................................... 50
51
LDC1314/1614 Power Circuit ............................................................................................. 51
52
LDC1314/1614 .............................................................................................................. 52
53
LDC1314/1614 MSP430 Connections ................................................................................... 53
54
LDC1314/1614 Layout Top Layer – Signals and Components ...................................................... 54
55
LDC1314/1614 Layout MidLayer 1 – Ground Plane ................................................................... 55
56
LDC1314/1614 Layout MidLayer 2 – Signals and Power Plane ..................................................... 56
57
LDC1314/1614 Layout Bottom Layer – Signals Plane ................................................................ 57
58
LDC1312/1612 REV A USB Connection ................................................................................ 66
59
LDC1312/1612 REV A Power Circuit .................................................................................... 66
60
LDC1312/1612 REV A Clocking.......................................................................................... 67
61
LDC1312/1612 REV A
62
63
64
65
66
67
68
69
70
71
72
73
74
75
4
....................................................................................................
LDC1312/1612 REV A MSP430 Connections ..........................................................................
LDC1312/1612 REV A Layout Top Layer – Signals and Components .............................................
LDC1312/1612 REV A Layout MidLayer 1 – Ground Plane ..........................................................
LDC1312/1612 REV A Layout MidLayer 2 – Signals and Power Plane ............................................
LDC1312/1612 REV A Layout Bottom Layer – Signals Plane .......................................................
LDC1314/1614 REV A USB Connection ................................................................................
LDC1314/1614 REV A Power Circuit ....................................................................................
LDC1314/1614 REV A Clocking..........................................................................................
LDC1314/1614 REV A .....................................................................................................
LDC1314/1614 REV A MSP430 Connections ..........................................................................
LDC1314/1614 REV A Layout Top Layer – Signals and Components .............................................
LDC1314/1614 REV A Layout MidLayer 1 – Ground Plane ..........................................................
LDC1314/1614 REV A Layout MidLayer 2 – Signals and Power Plane ............................................
LDC1314/1614 REV A Layout Bottom Layer – Signals Plane .......................................................
List of Figures
67
68
69
69
70
70
71
71
72
72
73
74
74
75
75
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
www.ti.com
List of Tables
1
BOM for LDC1312 EVM REV B .......................................................................................... 58
2
BOM for LDC1612 EVM REV B .......................................................................................... 60
3
BOM for LDC1314 EVM REV B .......................................................................................... 62
4
BOM for LDC1614 EVM REV B
5
BOM for LDC1312 EVM REV A .......................................................................................... 76
6
BOM for LDC1612 EVM REV A .......................................................................................... 78
7
BOM for LDC1314 EVM REV A .......................................................................................... 80
8
BOM for LDC1614 EVM REV A .......................................................................................... 82
.........................................................................................
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
List of Tables
64
5
User's Guide
SNOU135A – August 2015 – Revised September 2016
LDC131x and LDC161x EVM User’s Guide
1
Overview
The LDC131x/161x Rev B EVM demonstrates the use of inductive sensing technology to sense and
measure the presence or position of conductive target objects. The EVM contains two example LC tank
sensors that are connected to the LDC131x/161x input channels. The latter is controlled by an MSP430,
which interfaces to a host computer.
PCB
Perforations
Sensor
Capacitors
Channel 0
Sensor
Connector for
Custom Coil
MSP430
LDC1312 /
LDC1612
Figure 1. LDC1312/1612 Evaluation Module
The LDC1312/1612 EVM includes two example PCB sensors which are PCB inductors with 330 pF 1%
COG/NP0 capacitors connected in parallel to form an LC tank. LDC1x14/1614 includes two additional
spaces to which two sensors can be connected.
6
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
Sensing Solutions EVM GUI
www.ti.com
PCB perforations allow removal of the sensor coils or the microcontroller, so that custom sensors or a
different microcontroller can be connected.
2
Sensing Solutions EVM GUI
The Sensing Solutions EVM GUI provides direct device register access, user-friendly configuration, and
data streaming.
2.1
System Requirements
The host machine is required for device configuration and data streaming. The following steps are
necessary to prepare the EVM for the GUI:
• The GUI and EVM driver must be installed on a host computer.
• The EVM must be connected to a full speed USB port (USB 1.0 or above).
The Sensing Solutions EVM GUI supports the following operating systems (both 32-bit and 64-bit):
• Windows XP
• Windows 7
• Windows 8 and 8.1
• Windows 10
2.2
Installation Instructions
The Sensing Solutions GUI and EVM driver installer is packaged in a zip file. Follow these steps to install
the software:
1. Download the software ZIP file from the EVM tool page.
2. Extract the downloaded ZIP file.
3. Run the included executable.
4. If prompted by the User Account Control about making changes to the computer, click Yes.
Figure 2. User Account Control Prompt
5. After the setup wizard starts, click Next.
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
7
Sensing Solutions EVM GUI
www.ti.com
Figure 3. Software Installer Wizard
6. Read the license agreement, select I accept the agreement, and click Next.
Figure 4. Software Installer License Agreement
8
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
Sensing Solutions EVM GUI
www.ti.com
7. Use the preselected installation directory and click Next.
Figure 5. Software Installation Directory
8. Start the installation by clicking Next.
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
9
Sensing Solutions EVM GUI
www.ti.com
Figure 6. Software Installer Ready
9. Wait for the installation to complete.
Figure 7. Software Installer in Progress
10
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
Sensing Solutions EVM GUI
www.ti.com
10. When the Device Driver Installation Wizard appears, click Next to install the EVM driver.
Figure 8. Device Driver Installer Wizard
11. Wait for the driver installation to complete.
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
11
Sensing Solutions EVM GUI
www.ti.com
Figure 9. Device Driver Installer in Progress
12. After the driver installation is completed, click Finish.
12
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
Sensing Solutions EVM GUI
www.ti.com
Figure 10. Device Driver Installer Completed
13. Click Finish to complete the installation.
Figure 11. Software Installer Completed
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
13
Sensing Solutions EVM GUI
2.3
www.ti.com
Starting the GUI
Follow these steps to start the GUI:
1. Select the Windows start menu.
2. Select All programs.
3. Select Texas Instruments.
4. Select Sensing Solutions EVM GU.
5. Click Sensing Solutions EVM GU.
6. The splash screen will appear for at least two seconds.
Figure 12. Splash Screen
7. After the splash screen is displayed the main window will open.
14
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
Sensing Solutions EVM GUI
www.ti.com
Figure 13. Introduction Page
2.4
Navigating the GUI
To navigate to different pages of the GUI follow these steps:
1. Click Menu in the upper left corner.
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
15
Sensing Solutions EVM GUI
www.ti.com
Figure 14. Mouse Hovered Over Menu Button
2. Select the desired page from the menu shown on the left.
Figure 15. Menu Display After Clicking Button
16
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
Sensing Solutions EVM GUI
www.ti.com
2.5
Connecting the EVM
Follow these steps to connect the EVM to the GUI:
1. Attach the EVM to the computer through USB.
2. The GUI always shows the connection status on the bottom left corner of the GUI.
Figure 16. EVM Connected to GUI
2.6
Configuring the EVM Using the Register Page
The register page allows users to control the device directly with the register values. The user may also
use this page to read the current register values on the device.
2.6.1
Automatically Update GUI Register Values Using Auto Read
Auto read will periodically request the register values on the device. Click the drop down box next to Auto
Read to select the update interval.
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
17
Sensing Solutions EVM GUI
www.ti.com
Figure 17. Selecting Auto Read Interval on Register Page
2.6.2
Manually Update Device Register Values
There are two methods to change register values: update the entire register value or change a single bit
within the register. The recommended update mode is always Immediate and not Deferred. To update
register values, follow these steps.
1. Double-click the current value of the register that needs to be changed. The text will turn into an
editable text box.
18
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
Sensing Solutions EVM GUI
www.ti.com
Figure 18. Selecting a Register's Current Value for Editing on Register Page
2. Type the new hexadecimal value into the box and click enter. The text box changes to normal text and
the GUI will send a command to the EVM to update the device register.
To change individual bit values rather that entire register values follow these steps.
1. Hover the mouse over the desired bit to change.
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
19
Sensing Solutions EVM GUI
www.ti.com
Figure 19. Hovering Mouse Over Register Bit Value on Register Page
2. Double-click the bit to toggle its value and the register’s current value will update automatically.
2.6.3
Reading Register Values Without Auto Read
To read register values follow these steps.
1. Select the register to update by clicking any column of the register row in the table.
20
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
Sensing Solutions EVM GUI
www.ti.com
Figure 20. Selecting a Register on Register Page
2. Click the Read Register button to update the selected register’s current value and bit values in the
table.
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
21
Sensing Solutions EVM GUI
www.ti.com
Figure 21. Reading the Current Device Register Value on Register Page
2.6.4
Saving Device Configurations
To save the current register settings of the device follow these steps.
1. Click the button immediately right to the Auto Read selection drop down.
22
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
Sensing Solutions EVM GUI
www.ti.com
Figure 22. Save Register Values to File on Register Page
2. Choose a name for the JSON file and the directory to save it within. Then click Save.
2.6.5
Loading Previously Saved Configurations
To load previously saved register settings from a JSON file follow these steps.
1. Click the button furthest right from the Auto Read selection drop down.
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
23
Sensing Solutions EVM GUI
www.ti.com
Figure 23. Loading Previously Saved Register Values from File on Register Page
2. Select the JSON file with the desired settings and click Open.
2.7
Configuring the EVM Using the Configuration Page
The Sensing Solutions GUI is capable on configuring the device more intuitively than the direct register
values. The Configuration page provides an easy-to-use tool for updating the device configuration and
provides additional information about how the device will perform.
2.7.1
Enabling and Disabling Channel Measurements
The LDC131x and LDC161x devices take measurements in two different modes: repeated single channel
measurement and measuring single channels sequentially. When the device repeatedly measures a single
channel any channel can be selected for measurement. To measure a single channel follow these steps.
1. Select Repeat single channel measurement in the Measurement Settings.
2. Choose which channel to measure by clicking the enable check-box of the desired channel (any
channel may be selected).
If measuring more than one channel, they are always measured sequentially from channel 0 to the highest
selected channel. To measure multiple channels follow these steps.
1. Select Sequence channel measurements in the Measurement Settings.
2. Choose which channels to measure by clicking the highest channel desired:
Channel 0 and 1 will always be enabled in this mode
24
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
Sensing Solutions EVM GUI
www.ti.com
Figure 24. Measurement Settings on Configuration Page
2.7.2
Selecting the Clocking Source
While the device contains an internal oscillator which requires fewer components in a system, TI
recommends using an external oscillator for precision applications. The EVM includes a 40-MHz oscillator
on-board, but an external off-board signal can be used.
To choose the oscillator source select one of the options in the Reference Clock Source section of the
Measurement Settings. If using an external oscillator, enter the oscillation frequency so that the GUI
correctly displays data measurements of frequency and capacitance. Note that changing the value of the
clock in the GUI is purely for calculations in the GUI, the actually clock frequency on the EVM will not
change.
2.7.3
Setting the Measurement Timings
Determining the best timing settings for the device is largely dependent on the application and sensor
design, but in general the following items should be considered
• Each channel should have the maximum reference frequency possible. Most applications should have
the channel Fref dividers set to one.
• Settle count needs to be long enough, but increasing it arbitrary holds no value and only decreases the
sampling rate. Reference the datasheet for calculating the optimal settle count.
• Reference count has the largest effect on the accuracy of a measurement. Increasing the reference
count leads to a more accurate measurement, but at the cost of decreased sampling rate. The
effective number of bits for each channel is calculated in the table for each channel based on the
reference count.
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
25
Sensing Solutions EVM GUI
2.7.4
www.ti.com
Using a Different Sensor
When using a different sensor, several parameters could be changed. The sensor’s resonant frequency
could be vastly different or a different sensor inductor could be used. If the resonant frequency of the
sensor is less than 8.75 MHz the Fin select should be set to one. If the sensor frequency is greater than
8.75 MHz, Fin select should be two. The sensor filter inductor for each channel should be updated to
reflect to actual component value on the sensor.
Figure 25. Sensor Properties and Input Adjustments on Configuration Page
While the LDC161x doesn't support any gain or offset adjustments, the LDC131x device has a limited
measurement resolution and so a gain or offset may need to be set. The code offset may be set in the
Sensor Properties and Input Adjustments table and the input gain is globally set for all channels. Please
reference the device datasheet for more information to correctly set these values. The Inductive sensing:
Improve the ENOB of a multichannel LDCby 4 bits in 3 simple steps blog post also provides valuable
information.
2.7.5
Setting the Input Deglitch Filter
The input deglitch filter suppresses EMI and ringing above the sensor frequency. It does not impact the
conversion result as long as its bandwidth is configured to be above the maximum sensor frequency. After
the sensor frequency is determined, select the lowest setting which exceeds the sensor frequency.
2.7.6
Setting the Power Mode and Sensor Initialization Currents
Most applications do not need maximum channel initialization currents and the low power sensor
activation mode should be enabled. When low power sensor activation mode is enabled, the IDRIVE code
determines how much current the device supplies to the sensor. To determine the optimal current drive
setting, move the system target to its furthest distance from the sensor and click the Detect iDriveInit with
Auto-Amplitude Correction button. This will take a measurement to determine an appropriate current
setting. After the setting has been measured, the code value of Idrive must be adjusted.
26
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
Sensing Solutions EVM GUI
www.ti.com
If the low power sensor activation mode is disabled, the Idrive settings are ignored. If only measuring
channel 0 and the sensor requires maximum drive current, enable the high current sensor drive.
Figure 26. Current Drive on Configuration Page
2.8
Streaming Measurement Data
The Sensing Solutions GUI and EVM provide a tool to capture, display, and log measurement data. The
section describes how to use the data measurement tools from the Data Streaming page accessible from
the GUI menu.
2.8.1
Choosing the Graph and Visible Channels
Select the drop down menu on top of the y-axis to choose the graph to display.
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
27
Sensing Solutions EVM GUI
www.ti.com
Figure 27. Select the Data Graph on Data Streaming Page
To select which channel measurements are displayed in the graph, check or uncheck the available
channels shown next to the graph units. Selecting or not selecting the channels only affects the graph and
not the data logged to a file. If a channel is not enabled in the Configuration page it will not appear on the
Data Streaming page.
2.8.2
Logging Data to a File
Follow these steps to log measurement data to a file.
1. Click the button in the upper right under next to Click to Select Log File.
28
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
Sensing Solutions EVM GUI
www.ti.com
Figure 28. Select Log File Button on Data Streaming Page
2. Select a file name and directory to save the data to and then click the Save button.
3. Whenever data streaming is running the data for all channels will be logged to this file. The selected
file is shown next to the button.
2.8.3
Starting and Stopping Data Streaming
To start data streaming click the Start button.
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
29
Sensing Solutions EVM GUI
www.ti.com
Figure 29. Start Button on Data Streaming Page
To stop data streaming click the Stop button.
2.8.4
Data Statistics
Click the Show Statistics button to view the measurement statistics.
30
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
Sensing Solutions EVM GUI
www.ti.com
Figure 30. Show Statistics Button on Data Streaming Page
Click the Hide Statistics button to hide the measurement statistics.
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
31
Sensing Solutions EVM GUI
www.ti.com
Figure 31. Hide Statistics Button on Data Streaming Page
2.8.5
Configuring the Graph
To configure the graph, click the Show Graph Configuration button.
32
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
Sensing Solutions EVM GUI
www.ti.com
Figure 32. Show Graph Configuration Button on Data Streaming Page
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
33
Sensing Solutions EVM GUI
www.ti.com
Figure 33. Graph Configuration Button on Data Streaming Page
The configuration window displays the actual frame rate of the graph, the rate at which data is added to
the graph, the vertical scaling, and the sample bµFfer size. The display rate is the rate at which the graph
updates on the computer display and is not configurable. It is automatically optimized by the GUI.
The New Data Sample Rate allows the user to choose when new data is added to the graph. Selecting
EVM Output Rate will display data on the graph as fast as is available from the EVM. This should not be
confused with the actual sampling rate of the device on the EVM which could be different. The Add
sample to graph every ... ms will add a new sample to the graph at the specified rate.
The Vertical Scaling allows the user to either manually set the minimum and maximum values of the y-axis
on the graph or use auto-scaling. The Autoscale & Lock button scales the graph based on the data of the
current display and then locks those vertical scaling settings.
The Sample Counts allows the user to specify the number of samples displayed on the graph and the total
number of samples stored in the bµFfer. Please note the bµFfer size does not affect data logging to a file.
To hide the configuration window, click the Hide Graph Configuration button.
34
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
Sensing Solutions EVM GUI
www.ti.com
Figure 34. Hide Graph Configuration Button on Data Streaming Page
2.8.6
Navigating the Data Streaming BµFfer
The Sensing Solutions EVM GUI stores a bµFfer of data samples and then displays a subset of those
samples. The data bµFfer can be navigated using the horizontal slider below the graph. To show more
samples on the graph, click either the slider on the left or right side of the green bar and drag it closer or
further from the other slider. The number of samples displayed is shown between the left and right sliders
in the green bar.
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
35
Sensing Solutions EVM GUI
www.ti.com
Figure 35. Changing Number of Samples Displayed in Data Graph
By clicking on the green bar and dragging the mouse left or right, previous samples in the bµFfer can be
displayed.
36
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
Sensing Solutions EVM GUI
www.ti.com
Figure 36. Displaying Previous Data Samples on the Data Streaming Page
2.9
Updating the EVM Firmware
To upload new firmware to the EVM, navigate to the Firmware page from the GUI menu and follow these
steps. The images below show uploading the FDC2214 EVM firmware, but the steps are identical for any
LDC, FDC, or HDC EVM when using their respective firmware files.
1. Click the button to select a TI-TXT firmware file.
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
37
Sensing Solutions EVM GUI
www.ti.com
Figure 37. Select TI-TXT File Button on Firmware Upload Page
2. Select the firmware file and click Open.
38
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
Sensing Solutions EVM GUI
www.ti.com
Figure 38. Selecting TI-TXT Firmware File for Upload to EVM
3. Click the Upload Firmware button.
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
39
Sensing Solutions EVM GUI
www.ti.com
Figure 39. Upload Firmware Button on Firmware Upload Page
4. Wait for the firmware to upload. Do NOT disconnect the EVM from the PC at this time! Also note that
the GUI will disconnect from the EVM. The upload process should not take more than one minute. If
the upload fails or lasts longer than one minute, unplug the EVM and restart the GUI.
Figure 40. Firmware Upload in Progress
40
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
Sensing Solutions EVM GUI
www.ti.com
Figure 41. Firmware Upload Success
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
41
LDC1312/1612 EVM REV B Schematics and Layout
3
www.ti.com
LDC1312/1612 EVM REV B Schematics and Layout
Figure 42. LDC1312/1612 USB Connection
42
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
LDC1312/1612 EVM REV B Schematics and Layout
www.ti.com
Figure 43. LDC1312/1612 Power Circuit
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
43
LDC1312/1612 EVM REV B Schematics and Layout
www.ti.com
In case of EMI issues with long wires, replace these EMI filter
component placeholders:
Populate in case
of EMI
susceptibility
issues.
+3.3V +3.3V
R12
R13
4.70k 4.70k
Replace with
Common-mode
chokes (e.g.
SRF3216-222Y) in
case of EMI emissions
or susceptibility
Populate in case
of EMI emissions
issues.
R19
U1
ADDR
4
SCL
SDA
1
2
INTB
SD
ADDR
SCL
SDA
5
6
INTB
SD
+3.3V
PAD
GND
13
8
GND
IN1B
IN1A
12
11
IN1B
IN1A
IN0B
IN0A
10
9
IN0B
IN0A
C23
18pF GND
0
R10
7
VDD
CLKIN
C25
1µF
C34
0.1uF
J13
1
2
1729018
C17
330pF
TSW-102-07-G-S
COIL1
GND
C39
18pF
C10
330pF
C41
18pF
R33
1
2
J6
1
2
1729018
C24
330pF
TSW-102-07-G-S
COIL0
GND
0
C6
0.01µF
R22
0
GND
VDD
1
1
2
J4
0
C38
18pF GND
R11
50
J8
TSW-102-07-G-SJ2
C44
18pF
R20
C7
330pF
CLKIN
LDC1612DNT
0
2
1
3
C42
18pF
0
R23
C37
18pF
R18
VDD
J5
0
C20
18pF
R14
GND
2
3
4
5
0
3
4
C5
0.01µF
901-144-8RFX
Y2
OUT
GND
VCC
E/D
625L3C040M00000
40 MHz
2
1
R16
0
GND
GND
GND
J3
SCL
1
SDA
3
ADDR 5
SD
7
INTB
9
GND 11
+3.3V 13
2 SCL
4 SDA
6 ADDR
8 SD
10 INTB
12 GND
14 +3.3V
GND
CLKIN options:
(1) 40MHz from Crystal oscillator (default)
(2) External clock: populate J2, R14, R11
TSW-107-07-G-D
Copyright © 2016, Texas Instruments Incorporated
Figure 44. LDC1312/1612
44
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
LDC1312/1612 EVM REV B Schematics and Layout
www.ti.com
Figure 45. LDC1312/1612 MSP430 Connections
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
45
LDC1312/1612 EVM REV B Schematics and Layout
www.ti.com
Figure 46. LDC1312/1612 Layout Top Layer – Signals and Components
46
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
LDC1312/1612 EVM REV B Schematics and Layout
www.ti.com
Figure 47. LDC1312/1612 Layout MidLayer 1 – Ground Plane
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
47
LDC1312/1612 EVM REV B Schematics and Layout
www.ti.com
Figure 48. LDC1312/1612 Layout MidLayer 2 – Signals and Power Plane
48
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
LDC1312/1612 EVM REV B Schematics and Layout
www.ti.com
Figure 49. LDC1312/1612 Layout Bottom Layer – Signals Plane
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
49
LDC1314/1614 EVM REV B Schematics and Layout
4
www.ti.com
LDC1314/1614 EVM REV B Schematics and Layout
Figure 50. LDC1314/1614 USB Connection
50
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
LDC1314/1614 EVM REV B Schematics and Layout
www.ti.com
Figure 51. LDC1314/1614 Power Circuit
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
51
LDC1314/1614 EVM REV B Schematics and Layout
www.ti.com
In case of EMI issues with long wires, replace these EMI filter
component placeholders:
Populate in case
of EMI
susceptibility
issues.
Replace with
Common-mode
chokes (e.g.
SRF3216-222Y) in
case of EMI emissions
or susceptibility
Populate in case
of EMI emissions
issues.
R24
J7
0
C11
18pF
C16
18pF GND
C12
18pF
2
1
C15
330pF
COIL3
C18
18pF GND
R26
1729018
0
R27
C35
18pF GND
U1
+3.3V +3.3V
17
8
R12
R13
4.70k 4.70k
GND
ADDR
4
SCL
SDA
1
2
INTB
SD
5
6
PAD
GND
ADDR
SCL
SDA
INTB
SD
+3.3V
IN3B
IN3A
16
15
IN3B
IN3A
IN2B
IN2A
14
13
IN2B
IN2A
C20
18pF
IN1B
IN1A
12
11
IN1B
IN1A
C23
18pF GND
IN0B
IN0A
10
9
IN0B
IN0A
0
R10
7
VDD
C25
1µF
C34
0.1uF
J5
C42
18pF
C7
330pF
1
2
C44
18pF GND
R20
J13
1
2
1729018
J4
0
C38
18pF GND
C17
330pF
TSW-102-07-G-S
COIL1
C39
18pF
C41
18pF GND
R33
C10
330pF
1
2
J6
1
2
1729018
C24
330pF
TSW-102-07-G-S
COIL0
0
C6
0.01µF
R22
0
GND
VDD
1
R19
CLKIN
R11
50
J8
TSW-102-07-G-SJ2
COIL2
1729018
0
R23
LDC1314RGH
0
2
1
CLKIN
2
1
C22
330pF
C36
18pF GND
0
C37
18pF
3
C21
18pF
R28
0
R18
VDD
J10
0
C19
18pF
R14
GND
2
3
4
5
0
OUT
GND
2
4
VCC
E/D
1
C5
0.01µF
901-144-8RFX
Y2
3
625L3C040M00000
40 MHz
R16
0
GND
GND
J3
SCL
1
SDA
3
ADDR 5
SD
7
INTB
9
GND 11
+3.3V 13
2 SCL
4 SDA
6 ADDR
8 SD
10 INTB
12 GND
14 +3.3V
GND
GND
CLKIN options:
(1) 40MHz from Crystal oscillator (default)
(2) External clock: populate J2, R14, R11
TSW-107-07-G-D
Copyright © 2016, Texas Instruments Incorporated
Figure 52. LDC1314/1614
52
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
LDC1314/1614 EVM REV B Schematics and Layout
www.ti.com
Figure 53. LDC1314/1614 MSP430 Connections
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
53
LDC1314/1614 EVM REV B Schematics and Layout
www.ti.com
Figure 54. LDC1314/1614 Layout Top Layer – Signals and Components
54
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
LDC1314/1614 EVM REV B Schematics and Layout
www.ti.com
Figure 55. LDC1314/1614 Layout MidLayer 1 – Ground Plane
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
55
LDC1314/1614 EVM REV B Schematics and Layout
www.ti.com
Figure 56. LDC1314/1614 Layout MidLayer 2 – Signals and Power Plane
56
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
LDC1314/1614 EVM REV B Schematics and Layout
www.ti.com
Figure 57. LDC1314/1614 Layout Bottom Layer – Signals Plane
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
57
LDC1312/1314/1612/1614 EVM REV B Bill of Materials
5
www.ti.com
LDC1312/1314/1612/1614 EVM REV B Bill of Materials
Table 1. BOM for LDC1312 EVM REV B
58
DESIGNATOR
QTY.
VALUE
C1, C31
2
10 µF
CAP, CERM, 10 µF, 10 V, +/-20%, X5R, 0603
C1608X5R1A106M
TDK
C2, C9,
C30,
C32,
C33,
C34
6
0.1 µF
CAP CER 0.1 µF 16 V 5% X7R 0402
GRM155R71C104JA88D
Murata Electronics
North America
C3
1
2.2 µF
CAP, CERM, 2.2 µF, 10 V, +/-10%, X5R, 0603
C0603C225K8PACTU
Kemet
C4, C5
2
0.01 µF
CAP, CERM, 0.01 µF, 25 V, +/-5%, C0G/NP0,
0603
C1608C0G1E103J
TDK
C6
1
0.01 µF
CAP, CERM, 0.01 µF, 16 V, +/- 10%, X7R,
0402
C1005X7R1C103K
TDK
C8
1
22 µF
CAP, CERM, 22 µF, 16 V, +/-10%, X5R, 0805
C2012X5R1C226K125AC
TDK
C13,
C14
2
18 pF
CAP, CERM, 18 pF, 100 V, +/-5%, C0G/NP0,
0603
GRM1885C2A180JA01D
MuRata
C17,
C24
2
330 pF
CAP, CERM, 330 pF, 50 V, +/-1%, C0G/NP0,
0603
C1608C0G1H331F080AA
TDK
C25
1
1 µF
CAP, CERM, 1 µF, 10 V, +/-10%, X5R, 0402
GRM155R61A105KE15D
MuRata
C26
1
220 pF
CAP, CERM, 220 pF, 50 V, +/-1%, C0G/NP0,
0603
06035A221FAT2A
AVX
C27
1
2200 pF CAP, CERM, 2200 pF, 50 V, +/-10%, X7R,
0603
C0603X222K5RACTU
Kemet
C28
1
0.47 µF
CAP, CERM, 0.47 µF, 10 V, +/-10%, X7R, 0603 C0603C474K8RACTU
Kemet
C29
1
220 PF
CAP CER 220PF 50 V 1% NP0 0402
C1005C0G1H221F050BA
TDK Corporation
D1
1
5.6 V
Diode, Zener, 5.6 V, 500 mW, SOD-123
MMSZ5232B-7-F
Diodes Inc.
D2
1
Green
LED, Green, SMD
LG L29K-G2J1-24-Z
OSRAM
D3
1
Red
LED, Super Red, SMD
SML-LX0603SRW-TR
Lumex
GND1,
GND2
2
SMT
Test Point, Miniature, SMT
5015
Keystone
J1
1
Connector, Receptacle, Micro-USB Type B,
SMT
ZX62R-B-5P
Hirose Electric Co.
Ltd.
L10
1
Inductor, Shielded, Ferrite, 10 µH, 0.4 A, 1.38
Ω, SMD
VLS201610ET-100M
TDK
LBL1
1
Thermal Transfer Printable Labels, 0.650" W x
0.200" H - 10,000 per roll
THT-14-423-10
Brady
R1, R2,
R3, R4,
R10,
R18,
R22
7
0
RES, 0 Ω, 5%, 0.1 W, 0603
CRCW06030000Z0EA
Vishay-Dale
R6
1
1.5 K
RES 1.5 KΩ 1/16 W 5% 0402 SMD
CRCW04021K50JNED
Vishay Dale
R7, R17
2
33
RES, 33 Ω, 5%, 0.1 W, 0603
CRCW060333R0JNEA
Vishay-Dale
R8, R9
2
10.0
RES, 10.0, 1%, 0.063 W, 0402
CRCW040210R0FKED
Vishay-Dale
R12,
R13
2
4.70 k
RES, 4.70 kΩ, 1%, 0.1 W, 0603
RC0603FR-074K7L
Yageo America
R15
1
1M
RES,1 MΩ, 5%, 0.063 W, 0402
RC0402JR-071ML
Yageo
R19,
R20,
R23,
R33
4
0
RES, 0 Ω, 5%, 0.125 W, 0805
CRCW08050000Z0EA
Vishay-Dale
R21,
R25
2
1.0 k
RES, 1.0 kΩ, 5%, 0.063 W, 0402
CRCW04021K00JNED
Vishay-Dale
R29
1
33 k
RES, 33 kΩ, 5%, 0.063 W, 0402
CRCW040233K0JNED
Vishay-Dale
10 µH
DESCRIPTION
LDC131x and LDC161x EVM User’s Guide
PART NUMBER
MANµFACTURER
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
LDC1312/1314/1612/1614 EVM REV B Bill of Materials
www.ti.com
Table 1. BOM for LDC1312 EVM REV B (continued)
DESIGNATOR
QTY.
VALUE
DESCRIPTION
PART NUMBER
MANµFACTURER
U1
1
Multi-Channel 12-Bit Inductance to Digital
Converter with I2C, DNT0012B
LDC1312DNT
Texas Instruments
U2
1
Micropower 150 mA Low-Noise Ultra LowDropout Regulator, 5-pin SOT-23, Pb-Free
LP2985AIM5-3.3/NOPB
Texas Instruments
U3
1
Low-Capacitance + / - 15 kV ESD-Protection
Array for High-Speed Data Interfaces, 2
Channels, –40 to +85°C, 5-pin SOT (DRL),
Green (RoHS & no Sb/Br)
TPD2E001DRLR
Texas Instruments
U5
1
Mixed Signal MicroController, RGC0064B
MSP430F5528IRGC
Texas Instruments
Y1
1
Crystal, 24.000 MHz, 18 pF, SMD
ABM8-24.000MHZ-B2-T
Abracon
Corportation
Y2
1
OSC, 40 MHz, 3.3 V, SMD
625L3C040M00000
CTS
Electrocomponents
C7, C10
0
330 pF
CAP, CERM, 330 pF, 50 V, +/-1%, C0G/NP0,
0603
C1608C0G1H331F080AA
TDK
C20,
C23,
C37,
C38,
C39,
C41,
C42,
C44
0
18 pF
CAP, CERM, 18 pF, 100 V, +/-5%, C0G/NP0,
0603
GRM1885C2A180JA01D
MuRata
FID1,
FID2,
FID3
0
Fiducial mark. There is nothing to buy or mount. N/A
N/A
J2
0
SMA Straight Jack, Gold, 50 Ω, TH
901-144-8RFX
Amphenol RF
J3
0
Header, 100mil, 7x2, Gold, TH
TSW-107-07-G-D
Samtec
J4, J5
0
TERM BLOCK 2POS 5mm, TH
1729018
Phoenix Contact
J6, J8,
J9, J13
0
Header, TH, 100 mil, 2x1, Gold plated, 230 mil
above insulator
TSW-102-07-G-S
Samtec, Inc.
R5, R14,
R16
0
0
RES, 0 Ω, 5%, 0.1W, 0603
CRCW06030000Z0EA
Vishay-Dale
R11
0
50
RES, 50, 1%, 0.1 W, 0603
CRCW060350R0FKEA
Vishay-Dale
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
59
LDC1312/1314/1612/1614 EVM REV B Bill of Materials
www.ti.com
Table 2. BOM for LDC1612 EVM REV B
DESIGNATOR
QTY.
VALUE
C1, C31
2
10 µF
CAP, CERM, 10 µF, 10 V, +/-20%, X5R, 0603
C1608X5R1A106M
TDK
C2, C9,
C30,
C32,
C33, C34
6
0.1 µF
CAP CER 0.1 µF 16 V 5% X7R 0402
GRM155R71C104JA88D
Murata Electronics
North America
C3
1
2.2 µF
CAP, CERM, 2.2 µF, 10 V, +/-10%, X5R, 0603
C0603C225K8PACTU
Kemet
C4, C5
2
0.01 µF
CAP, CERM, 0.01 µF, 25V, +/-5%, C0G/NP0,
0603
C1608C0G1E103J
TDK
C6
1
0.01 µF
CAP, CERM, 0.01 µF, 16 V, +/- 10%, X7R, 0402
C1005X7R1C103K
TDK
C8
1
22 µF
CAP, CERM, 22 µF, 16 V, +/-10%, X5R, 0805
C2012X5R1C226K125AC
TDK
C13, C14
2
18 pF
CAP, CERM, 18 pF, 100 V, +/-5%, C0G/NP0,
0603
GRM1885C2A180JA01D
MuRata
C17, C24
2
330 pF
CAP, CERM, 330 pF, 50 V, +/-1%, C0G/NP0,
0603
C1608C0G1H331F080AA
TDK
C25
1
1 µF
CAP, CERM, 1 µF, 10 V, +/-10%, X5R, 0402
GRM155R61A105KE15D
MuRata
C26
1
220 pF
CAP, CERM, 220 pF, 50 V, +/-1%, C0G/NP0,
0603
06035A221FAT2A
AVX
C27
1
2200 pF
CAP, CERM, 2200 pF, 50 V, +/-10%, X7R, 0603
C0603X222K5RACTU
Kemet
C28
1
0.47 µF
CAP, CERM, 0.47 µF, 10 V, +/-10%, X7R, 0603
C0603C474K8RACTU
Kemet
C29
1
220 PF
CAP CER 220PF 50 V 1% NP0 0402
C1005C0G1H221F050BA
TDK Corporation
D1
1
5.6 V
Diode, Zener, 5.6 V, 500 mW, SOD-123
MMSZ5232B-7-F
Diodes Inc.
D2
1
Green
LED, Green, SMD
LG L29K-G2J1-24-Z
OSRAM
D3
1
Red
LED, Super Red, SMD
SML-LX0603SRW-TR
Lumex
GND1,
GND2
2
SMT
Test Point, Miniature, SMT
5015
Keystone
J1
1
Connector, Receptacle, Micro-USB Type B, SMT
ZX62R-B-5P
Hirose Electric Co.
Ltd.
L10
1
Inductor, Shielded, Ferrite, 10 µH, 0.4 A, 1.38 Ω,
SMD
VLS201610ET-100M
TDK
LBL1
1
Thermal Transfer Printable Labels, 0.650" W x
0.200" H - 10,000 per roll
THT-14-423-10
Brady
R1, R2,
R3, R5,
R10,
R18, R22
7
0
RES, 0 Ω, 5%, 0.1 W, 0603
CRCW06030000Z0EA
Vishay-Dale
R6
1
1.5 K
RES 1.5 KΩ 1/16 W 5% 0402 SMD
CRCW04021K50JNED
Vishay Dale
R7, R17
2
33
RES, 33 Ω, 5%, 0.1 W, 0603
CRCW060333R0JNEA
Vishay-Dale
R8, R9
2
10.0
RES, 10.0, 1%, 0.063 W, 0402
CRCW040210R0FKED
Vishay-Dale
R12, R13
2
4.70 k
RES, 4.70 kΩ, 1%, 0.1 W, 0603
RC0603FR-074K7L
Yageo America
R15
1
1M
RES,1 MΩ, 5%, 0.063 W, 0402
RC0402JR-071ML
Yageo
R19,
R20,
R23, R33
4
0
RES, 0 Ω, 5%, 0.125 W, 0805
CRCW08050000Z0EA
Vishay-Dale
R21, R25
2
1.0 k
RES, 1.0 kΩ, 5%, 0.063 W, 0402
CRCW04021K00JNED
Vishay-Dale
R29
1
33 k
RES, 33 kΩ, 5%, 0.063 W, 0402
CRCW040233K0JNED
Vishay-Dale
U1
1
Multi-Channel 28-Bit Inductance to Digital
Converter with I2C, DNT0012B
LDC1612DNT
Texas Instruments
U2
1
Micropower 150 mA Low-Noise Ultra Low-Dropout LP2985AIM5-3.3/NOPB
Regulator, 5-pin SOT-23, Pb-Free
Texas Instruments
U3
1
Low-Capacitance + / - 15 kV ESD-Protection
TPD2E001DRLR
Array for High-Speed Data Interfaces, 2 Channels,
–40 to +85°C, 5-pin SOT (DRL), Green (RoHS &
no Sb/Br)
Texas Instruments
U5
1
Mixed Signal MicroController, RGC0064B
Texas Instruments
60
10 µH
DESCRIPTION
LDC131x and LDC161x EVM User’s Guide
PART NUMBER
MSP430F5528IRGC
MANµFACTURER
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
LDC1312/1314/1612/1614 EVM REV B Bill of Materials
www.ti.com
Table 2. BOM for LDC1612 EVM REV B (continued)
DESIGNATOR
QTY.
VALUE
DESCRIPTION
PART NUMBER
MANµFACTURER
Y1
1
Crystal, 24.000 MHz, 18 pF, SMD
ABM8-24.000MHZ-B2-T
Abracon Corportation
Y2
1
OSC, 40 MHz, 3.3 V, SMD
625L3C040M00000
CTS
Electrocomponents
C7, C10
0
330 pF
CAP, CERM, 330 pF, 50 V, +/-1%, C0G/NP0,
0603
C1608C0G1H331F080AA
TDK
C20,
C23,
C37,
C38,
C39,
C41,
C42, C44
0
18 pF
CAP, CERM, 18 pF, 100 V, +/-5%, C0G/NP0,
0603
GRM1885C2A180JA01D
MuRata
FID1,
FID2,
FID3
0
Fiducial mark. There is nothing to buy or mount.
N/A
N/A
J2
0
SMA Straight Jack, Gold, 50 Ω, TH
901-144-8RFX
Amphenol RF
J3
0
Header, 100mil, 7x2, Gold, TH
TSW-107-07-G-D
Samtec
J4, J5
0
TERM BLOCK 2POS 5mm, TH
1729018
Phoenix Contact
J6, J8,
J9, J13
0
Header, TH, 100 mil, 2x1, Gold plated, 230 mil
above insulator
TSW-102-07-G-S
Samtec, Inc.
R4, R14,
R16
0
0
RES, 0 Ω, 5%, 0.1W, 0603
CRCW06030000Z0EA
Vishay-Dale
R11
0
50
RES, 50, 1%, 0.1 W, 0603
CRCW060350R0FKEA
Vishay-Dale
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
61
LDC1312/1314/1612/1614 EVM REV B Bill of Materials
www.ti.com
Table 3. BOM for LDC1314 EVM REV B
DESIGNATOR
QTY.
VALUE
C1, C31
2
10 µF
CAP, CERM, 10 µF, 10 V, +/-20%, X5R, 0603
C1608X5R1A106M
TDK
C2, C9,
C30,
C32,
C33, C34
6
0.1 µF
CAP CER 0.1 µF 16V 5% X7R 0402
GRM155R71C104JA88D
Murata Electronics
North America
C3
1
2.2 µF
CAP, CERM, 2.2 µF, 10 V, +/-10%, X5R, 0603
C0603C225K8PACTU
Kemet
C4, C5
2
0.01 µF
CAP, CERM, 0.01 µF, 25 V, +/-5%, C0G/NP0,
0603
C1608C0G1E103J
TDK
C6
1
0.01 µF
CAP, CERM, 0.01 µF, 16 V, +/- 10%, X7R, 0402
C1005X7R1C103K
TDK
C8
1
22 µF
CAP, CERM, 22 µF, 16 V, +/-10%, X5R, 0805
C2012X5R1C226K125AC
TDK
C13, C14
2
18 pF
CAP, CERM, 18 pF, 100 V, +/-5%, C0G/NP0,
0603
GRM1885C2A180JA01D
MuRata
C17, C24
2
330 pF
CAP, CERM, 330 pF, 50 V, +/-1%, C0G/NP0,
0603
C1608C0G1H331F080AA
TDK
C25
1
1 µF
CAP, CERM, 1 µF, 10 V, +/-10%, X5R, 0402
GRM155R61A105KE15D
MuRata
C26
1
220 pF
CAP, CERM, 220 pF, 50 V, +/-1%, C0G/NP0,
0603
06035A221FAT2A
AVX
C27
1
2200 pF
CAP, CERM, 2200 pF, 50 V, +/-10%, X7R, 0603
C0603X222K5RACTU
Kemet
C28
1
0.47 µF
CAP, CERM, 0.47 µF, 10 V, +/-10%, X7R, 0603
C0603C474K8RACTU
Kemet
C29
1
220 PF
CAP CER 220PF 50 V 1% NP0 0402
C1005C0G1H221F050BA
TDK Corporation
D1
1
5.6 V
Diode, Zener, 5.6 V, 500 mW, SOD-123
MMSZ5232B-7-F
Diodes Inc.
D2
1
Green
LED, Green, SMD
LG L29K-G2J1-24-Z
OSRAM
D3
1
Red
LED, Super Red, SMD
SML-LX0603SRW-TR
Lumex
GND1,
GND2
2
SMT
Test Point, Miniature, SMT
5015
Keystone
J1
1
Connector, Receptacle, Micro-USB Type B, SMT
ZX62R-B-5P
Hirose Electric Co.
Ltd.
L10
1
Inductor, Shielded, Ferrite, 10 µH, 0.4 A, 1.38 Ω,
SMD
VLS201610ET-100M
TDK
LBL1
1
Thermal Transfer Printable Labels, 0.650" W x
0.200" H - 10,000 per roll
THT-14-423-10
Brady
R1, R2,
R3, R10,
R18, R22
6
0
RES, 0 Ω, 5%, 0.1W, 0603
CRCW06030000Z0EA
Vishay-Dale
R6
1
1.5 K
RES 1.5 KΩ 1/16 W 5% 0402 SMD
CRCW04021K50JNED
Vishay Dale
R7, R17
2
33
RES, 33 Ω, 5%, 0.1 W, 0603
CRCW060333R0JNEA
Vishay-Dale
R8, R9
2
10.0
RES, 10.0, 1%, 0.063 W, 0402
CRCW040210R0FKED
Vishay-Dale
R12, R13
2
4.70 k
RES, 4.70 kΩ, 1%, 0.1 W, 0603
RC0603FR-074K7L
Yageo America
R15
1
1M
RES,1 MΩ, 5%, 0.063 W, 0402
RC0402JR-071ML
Yageo
R19,
R20,
R23,
R24,
R26,
R27,
R28, R33
8
0
RES, 0 Ω, 5%, 0.125 W, 0805
CRCW08050000Z0EA
Vishay-Dale
R21, R25
2
1.0 k
RES, 1.0 kΩ, 5%, 0.063 W, 0402
CRCW04021K00JNED
Vishay-Dale
R29
1
33 k
RES, 33 kΩ, 5%, 0.063 W, 0402
CRCW040233K0JNED
Vishay-Dale
U1
1
Multi-Channel 12-Bit Inductance to Digital
Converter with I2C, DNT0012B
LDC1314RGH
Texas Instruments
U2
1
Micropower 150 mA Low-Noise Ultra Low-Dropout LP2985AIM5-3.3/NOPB
Regulator, 5-pin SOT-23, Pb-Free
62
10 µH
DESCRIPTION
LDC131x and LDC161x EVM User’s Guide
PART NUMBER
MANµFACTURER
Texas Instruments
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
LDC1312/1314/1612/1614 EVM REV B Bill of Materials
www.ti.com
Table 3. BOM for LDC1314 EVM REV B (continued)
DESIGNATOR
QTY.
VALUE
DESCRIPTION
PART NUMBER
MANµFACTURER
U3
1
Low-Capacitance + / - 15 kV ESD-Protection
TPD2E001DRLR
Array for High-Speed Data Interfaces, 2 Channels,
–40 to +85°C, 5-pin SOT (DRL), Green (RoHS &
no Sb/Br)
Texas Instruments
U5
1
Mixed Signal MicroController, RGC0064B
MSP430F5528IRGC
Texas Instruments
Y1
1
Crystal, 24.000 MHz, 18 pF, SMD
ABM8-24.000MHZ-B2-T
Abracon Corportation
Y2
1
OSC, 40 MHz, 3.3 V, SMD
625L3C040M00000
CTS
Electrocomponents
C7, C10,
C15, C22
0
330 pF
CAP, CERM, 330 pF, 50 V, +/-1%, C0G/NP0,
0603
C1608C0G1H331F080AA
TDK
C11,
C12,
C16,
C18,
C19,
C20,
C21,
C23,
C35,
C36,
C37,
C38,
C39,
C41,
C42, C44
0
18 pF
CAP, CERM, 18 pF, 100 V, +/-5%, C0G/NP0,
0603
GRM1885C2A180JA01D
MuRata
FID1,
FID2,
FID3
0
Fiducial mark. There is nothing to buy or mount.
N/A
N/A
J2
0
SMA Straight Jack, Gold, 50 Ω, TH
901-144-8RFX
Amphenol RF
J3
0
Header, 100 mil, 7x2, Gold, TH
TSW-107-07-G-D
Samtec
J4, J5,
J7, J10
0
TERM BLOCK 2POS 5mm, TH
1729018
Phoenix Contact
J6, J8,
J9, J13
0
Header, TH, 100mil, 2x1, Gold plated, 230 mil
above insulator
TSW-102-07-G-S
Samtec, Inc.
R4, R5,
R14, R16
0
0
RES, 0 Ω, 5%, 0.1W, 0603
CRCW06030000Z0EA
Vishay-Dale
R11
0
50
RES, 50, 1%, 0.1 W, 0603
CRCW060350R0FKEA
Vishay-Dale
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
63
LDC1312/1314/1612/1614 EVM REV B Bill of Materials
www.ti.com
Table 4. BOM for LDC1614 EVM REV B
DESIGNATOR
QTY.
VALUE
C1, C31
2
10 µF
CAP, CERM, 10 µF, 10 V, +/-20%, X5R, 0603
C1608X5R1A106M
TDK
C2, C9,
C30,
C32,
C33, C34
6
0.1 µF
CAP CER 0.1 µF 16 V 5% X7R 0402
GRM155R71C104JA88D
Murata Electronics
North America
C3
1
2.2 µF
CAP, CERM, 2.2 µF, 10 V, +/-10%, X5R, 0603
C0603C225K8PACTU
Kemet
C4, C5
2
0.01 µF
CAP, CERM, 0.01 µF, 25V, +/-5%, C0G/NP0,
0603
C1608C0G1E103J
TDK
C6
1
0.01 µF
CAP, CERM, 0.01 µF, 16 V, +/- 10%, X7R, 0402
C1005X7R1C103K
TDK
C8
1
22 µF
CAP, CERM, 22 µF, 16 V, +/-10%, X5R, 0805
C2012X5R1C226K125AC
TDK
C13, C14
2
18 pF
CAP, CERM, 18 pF, 100 V, +/-5%, C0G/NP0,
0603
GRM1885C2A180JA01D
MuRata
C17, C24
2
330 pF
CAP, CERM, 330 pF, 50 V, +/-1%, C0G/NP0,
0603
C1608C0G1H331F080AA
TDK
C25
1
1 µF
CAP, CERM, 1 µF, 10 V, +/-10%, X5R, 0402
GRM155R61A105KE15D
MuRata
C26
1
220 pF
CAP, CERM, 220 pF, 50 V, +/-1%, C0G/NP0,
0603
06035A221FAT2A
AVX
C27
1
2200 pF
CAP, CERM, 2200 pF, 50 V, +/-10%, X7R, 0603
C0603X222K5RACTU
Kemet
C28
1
0.47 µF
CAP, CERM, 0.47 µF, 10 V, +/-10%, X7R, 0603
C0603C474K8RACTU
Kemet
C29
1
220 PF
CAP CER 220PF 50 V 1% NP0 0402
C1005C0G1H221F050BA
TDK Corporation
D1
1
5.6 V
Diode, Zener, 5.6 V, 500 mW, SOD-123
MMSZ5232B-7-F
Diodes Inc.
D2
1
Green
LED, Green, SMD
LG L29K-G2J1-24-Z
OSRAM
D3
1
Red
LED, Super Red, SMD
SML-LX0603SRW-TR
Lumex
GND1,
GND2
2
SMT
Test Point, Miniature, SMT
5015
Keystone
J1
1
Connector, Receptacle, Micro-USB Type B, SMT
ZX62R-B-5P
Hirose Electric Co.
Ltd.
L10
1
Inductor, Shielded, Ferrite, 10 µH, 0.4 A, 1.38 Ω,
SMD
VLS201610ET-100M
TDK
LBL1
1
Thermal Transfer Printable Labels, 0.650" W x
0.200" H - 10,000 per roll
THT-14-423-10
Brady
R1, R2,
R4, R5,
R10,
R18, R22
7
0
RES, 0 Ω, 5%, 0.1 W, 0603
CRCW06030000Z0EA
Vishay-Dale
R6
1
1.5 K
RES 1.5 KΩ 1/16 W 5% 0402 SMD
CRCW04021K50JNED
Vishay Dale
R7, R17
2
33
RES, 33 Ω, 5%, 0.1 W, 0603
CRCW060333R0JNEA
Vishay-Dale
R8, R9
2
10.0
RES, 10.0, 1%, 0.063 W, 0402
CRCW040210R0FKED
Vishay-Dale
R12, R13
2
4.70 k
RES, 4.70 kΩ, 1%, 0.1 W, 0603
RC0603FR-074K7L
Yageo America
R15
1
1M
RES,1 MΩ, 5%, 0.063 W, 0402
RC0402JR-071ML
Yageo
R19,
R20,
R23,
R24,
R26,
R27,
R28, R33
8
0
RES, 0 Ω, 5%, 0.125 W, 0805
CRCW08050000Z0EA
Vishay-Dale
R21, R25
2
1.0 k
RES, 1.0 kΩ, 5%, 0.063 W, 0402
CRCW04021K00JNED
Vishay-Dale
R29
1
33 k
RES, 33 kΩ, 5%, 0.063 W, 0402
CRCW040233K0JNED
Vishay-Dale
U1
1
Multi-Channel 12/28-Bit Inductance to Digital
Converter with I2C, RGH0016A
LDC1614RGH
Texas Instruments
U2
1
Micropower 150 mA Low-Noise Ultra Low-Dropout LP2985AIM5-3.3/NOPB
Regulator, 5-pin SOT-23, Pb-Free
64
10 µH
DESCRIPTION
LDC131x and LDC161x EVM User’s Guide
PART NUMBER
MANµFACTURER
Texas Instruments
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
LDC1312/1314/1612/1614 EVM REV B Bill of Materials
www.ti.com
Table 4. BOM for LDC1614 EVM REV B (continued)
DESIGNATOR
QTY.
VALUE
DESCRIPTION
PART NUMBER
MANµFACTURER
U3
1
Low-Capacitance + / - 15 kV ESD-Protection
TPD2E001DRLR
Array for High-Speed Data Interfaces, 2 Channels,
–40 to +85°C, 5-pin SOT (DRL), Green (RoHS &
no Sb/Br)
Texas Instruments
U5
1
Mixed Signal MicroController, RGC0064B
MSP430F5528IRGC
Texas Instruments
Y1
1
Crystal, 24.000 MHz, 18 pF, SMD
ABM8-24.000MHZ-B2-T
Abracon Corportation
Y2
1
OSC, 40 MHz, 3.3 V, SMD
625L3C040M00000
CTS
Electrocomponents
C7, C10,
C15, C22
0
330 pF
CAP, CERM, 330 pF, 50 V, +/-1%, C0G/NP0,
0603
C1608C0G1H331F080AA
TDK
C11,
C12,
C16,
C18,
C19,
C20,
C21,
C23,
C35,
C36,
C37,
C38,
C39,
C41,
C42, C44
0
18 pF
CAP, CERM, 18 pF, 100 V, +/-5%, C0G/NP0,
0603
GRM1885C2A180JA01D
MuRata
FID1,
FID2,
FID3
0
Fiducial mark. There is nothing to buy or mount.
N/A
N/A
J2
0
SMA Straight Jack, Gold, 50 Ω, TH
901-144-8RFX
Amphenol RF
J3
0
Header, 100 mil, 7x2, Gold, TH
TSW-107-07-G-D
Samtec
J4, J5,
J7, J10
0
TERM BLOCK 2POS 5mm, TH
1729018
Phoenix Contact
J6, J8,
J9, J13
0
Header, TH, 100mil, 2x1, Gold plated, 230 mil
above insulator
TSW-102-07-G-S
Samtec, Inc.
R3, R14,
R16
0
0
RES, 0 Ω, 5%, 0.1W, 0603
CRCW06030000Z0EA
Vishay-Dale
R11
0
50
RES, 50, 1%, 0.1 W, 0603
CRCW060350R0FKEA
Vishay-Dale
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
65
Appendix 1: LDC1312/1612 EVM REV A Schematics and Layout
6
www.ti.com
Appendix 1: LDC1312/1612 EVM REV A Schematics and Layout
Figure 58. LDC1312/1612 REV A USB Connection
Figure 59. LDC1312/1612 REV A Power Circuit
66
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
Appendix 1: LDC1312/1612 EVM REV A Schematics and Layout
www.ti.com
Figure 60. LDC1312/1612 REV A Clocking
Figure 61. LDC1312/1612 REV A
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
67
Appendix 1: LDC1312/1612 EVM REV A Schematics and Layout
www.ti.com
Figure 62. LDC1312/1612 REV A MSP430 Connections
68
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
Appendix 1: LDC1312/1612 EVM REV A Schematics and Layout
www.ti.com
Figure 63. LDC1312/1612 REV A Layout Top Layer – Signals and Components
Figure 64. LDC1312/1612 REV A Layout MidLayer 1 – Ground Plane
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
69
Appendix 1: LDC1312/1612 EVM REV A Schematics and Layout
www.ti.com
Figure 65. LDC1312/1612 REV A Layout MidLayer 2 – Signals and Power Plane
Figure 66. LDC1312/1612 REV A Layout Bottom Layer – Signals Plane
70
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
Appendix 2: LDC1314/1614 EVM REV A Schematics and Layout
www.ti.com
7
Appendix 2: LDC1314/1614 EVM REV A Schematics and Layout
Figure 67. LDC1314/1614 REV A USB Connection
Figure 68. LDC1314/1614 REV A Power Circuit
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
71
Appendix 2: LDC1314/1614 EVM REV A Schematics and Layout
www.ti.com
Figure 69. LDC1314/1614 REV A Clocking
Figure 70. LDC1314/1614 REV A
72
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
www.ti.com
Appendix 2: LDC1314/1614 EVM REV A Schematics and Layout
Figure 71. LDC1314/1614 REV A MSP430 Connections
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
73
Appendix 2: LDC1314/1614 EVM REV A Schematics and Layout
www.ti.com
Figure 72. LDC1314/1614 REV A Layout Top Layer – Signals and Components
Figure 73. LDC1314/1614 REV A Layout MidLayer 1 – Ground Plane
74
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
Appendix 2: LDC1314/1614 EVM REV A Schematics and Layout
www.ti.com
Figure 74. LDC1314/1614 REV A Layout MidLayer 2 – Signals and Power Plane
Figure 75. LDC1314/1614 REV A Layout Bottom Layer – Signals Plane
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
75
Appendix 3: LDC1312/1314/1612/1614 EVM REV A Bill of Materials
8
www.ti.com
Appendix 3: LDC1312/1314/1612/1614 EVM REV A Bill of Materials
Table 5. BOM for LDC1312 EVM REV A
DESIGNATOR
!PCB1
1
C1, C31
2
VALUE
10 µF
DESCRIPTION
PART NUMBER
MANµFACTURER
Printed-Circuit Board
SV601147
Any
CAP, CERM, 10 µF, 10 V, +/-20%, X5R, 0603
C1608X5R1A106M
TDK
CAP CER 0.1 µF 16 V 5% X7R 0402
GRM155R71C104JA88D
Murata Electronics
North America
C2, C6,
C9, C11,
C12,
C30,
C32,
C33
8
0.1 µF
C3
1
2.2 µF
CAP, CERM, 2.2 µF, 10V, +/-10%, X5R, 0603
C0603C225K8PACTU
Kemet
1
0.01 µF
CAP, CERM, 0.01 µF, 25V, +/-5%, C0G/NP0,
0603
C1608C0G1E103J
TDK
1
6.8 pF
CAP, CERM, 6.8 pF, 50V, +/-4%, C0G/NP0,
0603
06035A6R8CAT2A
AVX
C7
1
2.2 µF
CAP, CERM, 2.2 µF, 16V, +/-10%, X7R, 0805
C0805C225K4RACTU
Kemet
C8
1
22 µF
CAP, CERM, 22 µF, 16V, +/-10%, X5R, 0805
C2012X5R1C226K125AC TDK
C10,
C25
2
1 µF
CAP, CERM, 1 µF, 10V, +/-10%, X5R, 0402
GRM155R61A105KE15D
MuRata
1
220 pF
CAP, CERM, 220 pF, 50V, +/-1%, C0G/NP0,
0603
06035A221FAT2A
AVX
C27
1
2200 pF CAP, CERM, 2200 pF, 50V, +/-10%, X7R, 0603
C0603X222K5RACTU
Kemet
C28
1
0.47 µF
CAP, CERM, 0.47 µF, 10V, +/-10%, X7R, 0603
C0603C474K8RACTU
Kemet
C29
1
220 PF
CAP CER 220PF 50 V 1% NP0 0402
C1005C0G1H221F050BA TDK Corporation
CAP, CERM, 330 pF, 50V, +/-1%, C0G/NP0,
0603
C1608C0G1H331F080AA TDK
C4
C5
C26
C_Tank
1,
C_Tank
2
2
330 pF
D1
1
5.6 V
Diode, Zener, 5.6 V, 500mW, SOD-123
MMSZ5232B-7-F
Diodes Inc.
D2
1
Green
LED, Green, SMD
LG L29K-G2J1-24-Z
OSRAM
D3
1
Red
LED, Super Red, SMD
SML-LX0603SRW-TR
Lumex
Test Point, Miniature, Black, TH
5001
Keystone
Connector, Receptacle, Micro-USB Type B,
SMT
ZX62R-B-5P
Hirose Electric Co.
Ltd.
GND,
GND1
J1
L10
LBL1
76
QTY.
2
Black
1
1
10 µH
1
Inductor, Shielded, Ferrite, 10 µH, 0.4 A, 1.38 Ω, VLS201610ET-100M
SMD
TDK
Thermal Transfer Printable Labels, 0.650" W x
0.200" H - 10,000 per roll
THT-14-423-10
Brady
R1, R4
2
10.0
RES, 10.0 Ω, 1%, 0.1 W, 0603
CRCW060310R0FKEA
Vishay-Dale
R2
1
1.5 K
RES 1.5 KΩ 1/16W 5% 0402 SMD
CRCW04021K50JNED
Vishay Dale
R5
1
1M
RES,1 MΩ, 5%, 0.063 W, 0402
RC0402JR-071ML
Yageo
RES, 33 Ω, 5%, 0.1 W, 0603
CRCW060333R0JNEA
Vishay-Dale
RES, 0 Ω, 5%, 0.1 W, 0603
CRCW06030000Z0EA
Vishay-Dale
RES, 4.70 kΩ, 1%, 0.1 W, 0603
RC0603FR-074K7L
Yageo America
RES, 0 Ω, 5%, 0.125 W, 0805
CRCW08050000Z0EA
Vishay-Dale
RES, 1.0 kΩ, 5%, 0.063 W, 0402
CRCW04021K00JNED
Vishay-Dale
R7, R10,
R11
3
33
R8, R9,
R32
3
0
R12,
R13
2
4.70 k
R19,
R20,
R23,
R33
4
0
R21,
R25
2
1.0 k
LDC131x and LDC161x EVM User’s Guide
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
Appendix 3: LDC1312/1314/1612/1614 EVM REV A Bill of Materials
www.ti.com
Table 5. BOM for LDC1312 EVM REV A (continued)
DESIGNATOR
R29
U1
U2
QTY.
VALUE
1
33 k
U5
U6
Y1
C13,
C14,
C20,
C23,
C37,
C38,
C39,
C41,
C42,
C44
C34
PART NUMBER
MANµFACTURER
RES, 33 kΩ, 5%, 0.063 W, 0402
CRCW040233K0JNED
Vishay-Dale
1
Multi-Channel 12-Bit Inductance to Digital
Converter with I2C, DNT0012B
LDC1312DNT
Texas Instruments
1
Micropower 150 mA Low-Noise Ultra LowDropout Regulator, 5-pin SOT-23, Pb-Free
LP2985AIM5-3.3/NOPB
Texas Instruments
Low-Capacitance + / - 15 kV ESD-Protection
Array for High-Speed Data Interfaces, 2
Channels, –40 to +85°C, 5-pin SOT (DRL),
Green (RoHS & no Sb/Br)
TPD2E001DRLR
Texas Instruments
1
1
Programmable 1-PLL VCXO Clock Synthesizer
With 1.8-V, 2.5-V, and 3.3-V Outputs, PW0014A
CDCE913PW
Texas Instruments
1
Mixed Signal MicroController, RGC0064B
MSP430F5528IRGC
Texas Instruments
1
Micropower, 150 mA Low-Dropout CMOS
Voltage Regulator, 5-pin SC-70, Pb-Free
LP5951MG-1.8/NOPB
Texas Instruments
Crystal, 24.000 MHz, 18 pF, SMD
ABMM-24.000MHZ-B2-T
Abracon
Corportation
CAP, CERM, 18 pF, 100 V, +/-5%, C0G/NP0,
0603
GRM1885C2A180JA01D
MuRata
CAP CER 0.1 µF 16 V 5% X7R 0402
GRM155R71C104JA88D
Murata Electronics
North America
Fiducial mark. There is nothing to buy or mount.
N/A
N/A
Header, TH, 100 mil, 2x1, Gold plated, 230 mil
above insulator
TSW-102-07-G-S
Samtec, Inc.
TERM BLOCK 2POS 5 mm, TH
1729018
Phoenix Contact
RES, 33 Ω, 5%, 0.1 W, 0603
CRCW060333R0JNEA
Vishay-Dale
U3
U4
DESCRIPTION
1
0
18 pF
0
0.1 µF
FID1,
FID2,
FID3
0
J2, J6,
J8, J9,
J13
0
J4, J5
0
R14
0
33
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
77
Appendix 3: LDC1312/1314/1612/1614 EVM REV A Bill of Materials
www.ti.com
Table 6. BOM for LDC1612 EVM REV A
DESIGNATOR
QTY.
!PCB1
1
C1, C31
2
VALUE
10 µF
DESCRIPTION
PART NUMBER
MANµFACTURER
Printed-Circuit Board
SV601147
Any
CAP, CERM, 10 µF, 10 V, +/-20%, X5R, 0603
C1608X5R1A106M
TDK
CAP CER 0.1 µF 16 V 5% X7R 0402
GRM155R71C104JA88D
C2, C6,
C9, C11,
C12,
C30,
C32, C33
8
0.1 µF
C3
1
2.2 µF
CAP, CERM, 2.2 µF, 10 V, +/-10%, X5R, 0603
C4
1
0.01 µF
CAP, CERM, 0.01 µF, 25 V, +/-5%, C0G/NP0, 0603 C1608C0G1E103J
TDK
C5
1
6.8 pF
CAP, CERM, 6.8 pF, 50 V, +/-4%, C0G/NP0, 0603
06035A6R8CAT2A
AVX
C7
1
2.2 µF
CAP, CERM, 2.2 µF, 16 V, +/-10%, X7R, 0805
C0805C225K4RACTU
Kemet
C8
1
22 µF
CAP, CERM, 22 µF, 16 V, +/-10%, X5R, 0805
C2012X5R1C226K125AC
TDK
C10, C25
2
1 µF
CAP, CERM, 1 µF, 10 V, +/-10%, X5R, 0402
GRM155R61A105KE15D
MuRata
C26
1
220 pF
CAP, CERM, 220 pF, 50 V, +/-1%, C0G/NP0, 0603
06035A221FAT2A
AVX
C27
1
2200 pF
CAP, CERM, 2200 pF, 50 V, +/-10%, X7R, 0603
C0603X222K5RACTU
Kemet
C28
1
0.47 µF
CAP, CERM, 0.47 µF, 10 V, +/-10%, X7R, 0603
C0603C474K8RACTU
Kemet
C29
1
220 PF
CAP CER 220 PF 50 V 1% NP0 0402
C1005C0G1H221F050BA
TDK Corporation
CAP, CERM, 330 pF, 50 V, +/-1%, C0G/NP0, 0603
C1608C0G1H331F080AA
Murata Electronics
North America
C0603C225K8PACTU
Kemet
C_Tank1
,
C_Tank2
2
D1
1
5.6 V
Diode, Zener, 5.6 V, 500 mW, SOD-123
MMSZ5232B-7-F
Diodes Inc.
D2
1
Green
LED, Green, SMD
LG L29K-G2J1-24-Z
OSRAM
D3
1
Red
LED, Super Red, SMD
SML-LX0603SRW-TR
Lumex
Test Point, Miniature, Black, TH
5001
Connector, Receptacle, Micro-USB Type B, SMT
ZX62R-B-5P
Inductor, Shielded, Ferrite, 10 µH, 0.4 A, 1.38 Ω,
SMD
VLS201610ET-100M
Thermal Transfer Printable Labels, 0.650" W x
0.200" H - 10,000 per roll
THT-14-423-10
GND,
GND1
2
J1
330 pF
Black
1
L10
1
LBL1
10 µH
1
TDK
Keystone
Hirose Electric Co.
Ltd.
TDK
Brady
R1, R4
2
10.0
RES, 10.0 Ω, 1%, 0.1 W, 0603
CRCW060310R0FKEA
Vishay-Dale
R2
1
1.5 K
RES 1.5 KΩ 1/16 W 5% 0402 SMD
CRCW04021K50JNED
Vishay Dale
R5
1
1M
RES,1 MΩ, 5%, 0.063 W, 0402
RC0402JR-071ML
Yageo
RES, 33 Ω, 5%, 0.1 W, 0603
CRCW060333R0JNEA
RES, 0 Ω, 5%, 0.1 W, 0603
CRCW06030000Z0EA
RES, 4.70 kΩ, 1%, 0.1 W, 0603
RC0603FR-074K7L
RES, 0 Ω, 5%, 0.125 W, 0805
CRCW08050000Z0EA
R7, R10,
R11
3
33
R8, R9,
R32
3
0
R12, R13
2
4.70 k
Vishay-Dale
Vishay-Dale
Yageo America
R19,
R20,
R23, R33
4
0
R21, R25
2
1.0 k
RES, 1.0 kΩ, 5%, 0.063 W, 0402
CRCW04021K00JNED
Vishay-Dale
R29
1
33 k
RES, 33 kΩ, 5%, 0.063 W, 0402
CRCW040233K0JNED
Vishay-Dale
U1
U2
1
Multi-Channel 28-Bit Inductance to Digital Converter LDC1612DNT
with I2C, DNT0012B
Texas Instruments
1
Micropower 150 mA Low-Noise Ultra Low-Dropout
Regulator, 5-pin SOT-23, Pb-Free
Texas Instruments
1
Low-Capacitance + / - 15 kV ESD-Protection Array TPD2E001DRLR
for High-Speed Data Interfaces, 2 Channels, –40 to
+85°C, 5-pin SOT (DRL), Green (RoHS & no Sb/Br)
Texas Instruments
1
Programmable 1-PLL VCXO Clock Synthesizer
With 1.8-V, 2.5-V, and 3.3-V Outputs, PW0014A
Texas Instruments
U3
U4
78
Vishay-Dale
LDC131x and LDC161x EVM User’s Guide
LP2985AIM5-3.3/NOPB
CDCE913PW
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
Appendix 3: LDC1312/1314/1612/1614 EVM REV A Bill of Materials
www.ti.com
Table 6. BOM for LDC1612 EVM REV A (continued)
DESIGNATOR
U5
U6
Y1
C13,
C14,
C20,
C23,
C37,
C38,
C39,
C41,
C42, C44
C34
QTY.
VALUE
DESCRIPTION
PART NUMBER
1
Mixed Signal MicroController, RGC0064B
MSP430F5528IRGC
1
Micropower, 150-mA Low-Dropout CMOS Voltage
Regulator, 5-pin SC-70, Pb-Free
LP5951MG-1.8/NOPB
1
Crystal, 24.000 MHz, 18 pF, SMD
ABMM-24.000MHZ-B2-T
CAP, CERM, 18 pF, 100 V, +/-5%, C0G/NP0, 0603
GRM1885C2A180JA01D
0
18 pF
0
0.1 µF
FID1,
FID2,
FID3
0
J2, J6,
J8, J9,
J13
0
J4, J5
0
R14
0
MANµFACTURER
Texas Instruments
Texas Instruments
Abracon Corportation
MuRata
CAP CER 0.1 µF 16 V 5% X7R 0402
GRM155R71C104JA88D
Fiducial mark. There is nothing to buy or mount.
N/A
Murata Electronics
North America
N/A
33
Header, TH, 100 mil, 2x1, Gold plated, 230 mil
above insulator
TSW-102-07-G-S
TERM BLOCK 2POS 5mm, TH
1729018
Phoenix Contact
RES, 33 Ω, 5%, 0.1 W, 0603
CRCW060333R0JNEA
Vishay-Dale
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Samtec, Inc.
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
79
Appendix 3: LDC1312/1314/1612/1614 EVM REV A Bill of Materials
www.ti.com
Table 7. BOM for LDC1314 EVM REV A
DESIGNATOR
QTY.
!PCB1
1
C1, C31
2
VALUE
10 µF
DESCRIPTION
PART NUMBER
MANµFACTURER
Printed-Circuit Board
SV601126
Any
CAP, CERM, 10 µF, 10 V, +/-20%, X5R, 0603
C1608X5R1A106M
TDK
CAP CER 0.1 µF 16 V 5% X7R 0402
GRM155R71C104JA88D
Murata Electronics
North America
C0603C225K8PACTU
Kemet
C2, C6,
C9, C11,
C12,
C30,
C32, C33
8
0.1 µF
C3
1
2.2 µF
CAP, CERM, 2.2 µF, 10 V, +/-10%, X5R, 0603
C4
1
0.01 µF
CAP, CERM, 0.01 µF, 25 V, +/-5%, C0G/NP0, 0603 C1608C0G1E103J
TDK
C5
1
6.8 pF
CAP, CERM, 6.8 pF, 50 V, +/-4%, C0G/NP0, 0603
06035A6R8CAT2A
AVX
C7
1
2.2 µF
CAP, CERM, 2.2 µF, 16 V, +/-10%, X7R, 0805
C0805C225K4RACTU
Kemet
C8
1
22 µF
CAP, CERM, 22 µF, 16 V, +/-10%, X5R, 0805
C2012X5R1C226K125AC
TDK
C10, C25
2
1 µF
CAP, CERM, 1 µF, 10 V, +/-10%, X5R, 0402
GRM155R61A105KE15D
MuRata
C26
1
220 pF
CAP, CERM, 220 pF, 50 V, +/-1%, C0G/NP0, 0603
06035A221FAT2A
AVX
C27
1
2200 pF
CAP, CERM, 2200 pF, 50 V, +/-10%, X7R, 0603
C0603X222K5RACTU
Kemet
C28
1
0.47 µF
CAP, CERM, 0.47 µF, 10 V, +/-10%, X7R, 0603
C0603C474K8RACTU
Kemet
C29
1
220 PF
CAP CER 220 PF 50 V 1% NP0 0402
C1005C0G1H221F050BA
TDK Corporation
CAP, CERM, 330 pF, 50 V, +/-1%, C0G/NP0, 0603
C1608C0G1H331F080AA
TDK
C_Tank1
,
C_Tank2
2
D1
1
5.6 V
Diode, Zener, 5.6 V, 500 mW, SOD-123
MMSZ5232B-7-F
Diodes Inc.
D2
1
Green
LED, Green, SMD
LG L29K-G2J1-24-Z
OSRAM
D3
1
Red
LED, Super Red, SMD
SML-LX0603SRW-TR
Lumex
Test Point, Miniature, Black, TH
5001
Keystone
Connector, Receptacle, Micro-USB Type B, SMT
ZX62R-B-5P
Hirose Electric Co.
Ltd.
Inductor, Shielded, Ferrite, 10 µH, 0.4A, 1.38 Ω,
SMD
VLS201610ET-100M
TDK
Thermal Transfer Printable Labels, 0.650" W x
0.200" H - 10,000 per roll
THT-14-423-10
Brady
GND,
GND1
2
J1
330 pF
Black
1
L10
1
LBL1
10 µH
1
R1, R4
2
10.0
RES, 10.0 Ω, 1%, 0.1 W, 0603
CRCW060310R0FKEA
Vishay-Dale
R2
1
1.5 K
RES 1.5 KΩ 1/16 W 5% 0402 SMD
CRCW04021K50JNED
Vishay Dale
R5
1
1M
RES,1 MΩ, 5%, 0.063 W, 0402
RC0402JR-071ML
Yageo
RES, 33 Ω, 5%, 0.1 W, 0603
CRCW060333R0JNEA
Vishay-Dale
RES, 0 Ω, 5%, 0.1 W, 0603
CRCW06030000Z0EA
Vishay-Dale
RES, 4.70 kΩ, 1%, 0.1 W, 0603
RC0603FR-074K7L
Yageo America
RES, 0 Ω, 5%, 0.125 W, 0805
CRCW08050000Z0EA
Vishay-Dale
R7, R10,
R11
3
33
R8, R9,
R32
3
0
R12, R13
2
4.70 k
R15,
R16,
R17,
R18,
R19,
R20,
R23, R33
8
0
R21, R25
2
1.0 k
RES, 1.0 kΩ, 5%, 0.063 W, 0402
CRCW04021K00JNED
Vishay-Dale
R29
1
33 k
RES, 33 kΩ, 5%, 0.063 W, 0402
CRCW040233K0JNED
Vishay-Dale
U1
U2
80
1
Multi-Channel 12-Bit Inductance to Digital Converter LDC1314RGH
with I2C, RGH0016A
Texas Instruments
1
Micropower 150 mA Low-Noise Ultra Low-Dropout
Regulator, 5-pin SOT-23, Pb-Free
Texas Instruments
LDC131x and LDC161x EVM User’s Guide
LP2985AIM5-3.3/NOPB
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
Appendix 3: LDC1312/1314/1612/1614 EVM REV A Bill of Materials
www.ti.com
Table 7. BOM for LDC1314 EVM REV A (continued)
DESIGNATOR
QTY.
VALUE
U3
U4
U5
U6
Y1
C13,
C14,
C15,
C16,
C18,
C19,
C20,
C21,
C22,
C23,
C35,
C36,
C37,
C38,
C39,
C41,
C42, C44
C34
DESCRIPTION
PART NUMBER
MANµFACTURER
Low-Capacitance + / - 15 kV ESD-Protection Array TPD2E001DRLR
for High-Speed Data Interfaces, 2 Channels, –40 to
+85°C, 5-pin SOT (DRL), Green (RoHS & no Sb/Br)
Texas Instruments
1
1
Programmable 1-PLL VCXO Clock Synthesizer
With 1.8-V, 2.5-V, and 3.3-V Outputs, PW0014A
CDCE913PW
Texas Instruments
1
Mixed Signal MicroController, RGC0064B
MSP430F5528IRGC
Texas Instruments
1
Micropower, 150-mA Low-Dropout CMOS Voltage
Regulator, 5-pin SC-70, Pb-Free
LP5951MG-1.8/NOPB
Texas Instruments
1
Crystal, 24.000 MHz, 18 pF, SMD
ABMM-24.000MHZ-B2-T
Abracon Corportation
CAP, CERM, 18 pF, 100 V, +/-5%, C0G/NP0, 0603
GRM1885C2A180JA01D
MuRata
CAP CER 0.1 µF 16 V 5% X7R 0402
GRM155R71C104JA88D
Murata Electronics
North America
Fiducial mark. There is nothing to buy or mount.
N/A
N/A
Header, TH, 100 mil, 2x1, Gold plated, 230 mil
above insulator
TSW-102-07-G-S
Samtec, Inc.
TERM BLOCK 2POS 5mm, TH
1729018
Phoenix Contact
RES, 33 Ω, 5%, 0.1 W, 0603
CRCW060333R0JNEA
Vishay-Dale
0
18 pF
0
0.1 µF
FID1,
FID2,
FID3
0
J2, J6,
J8, J9,
J13
0
J3, J4,
J5, J10
0
R14
0
33
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
81
Appendix 3: LDC1312/1314/1612/1614 EVM REV A Bill of Materials
www.ti.com
Table 8. BOM for LDC1614 EVM REV A
DESIGNATOR
QTY.
!PCB1
1
C1, C31
2
VALUE
10 µF
DESCRIPTION
PART NUMBER
MANµFACTURER
Printed-Circuit Board
SV601126
Any
CAP, CERM, 10 µF, 10 V, +/-20%, X5R, 0603
C1608X5R1A106M
TDK
CAP CER 0.1 µF 16 V 5% X7R 0402
GRM155R71C104JA88D
Murata Electronics
North America
C0603C225K8PACTU
Kemet
C2, C6,
C9, C11,
C12,
C30,
C32, C33
8
0.1 µF
C3
1
2.2 µF
CAP, CERM, 2.2 µF, 10 V, +/-10%, X5R, 0603
C4
1
0.01 µF
CAP, CERM, 0.01 µF, 25 V, +/-5%, C0G/NP0, 0603 C1608C0G1E103J
TDK
C5
1
6.8 pF
CAP, CERM, 6.8 pF, 50 V, +/-4%, C0G/NP0, 0603
06035A6R8CAT2A
AVX
C7
1
2.2 µF
CAP, CERM, 2.2 µF, 16 V, +/-10%, X7R, 0805
C0805C225K4RACTU
Kemet
C8
1
22 µF
CAP, CERM, 22 µF, 16 V, +/-10%, X5R, 0805
C2012X5R1C226K125AC
TDK
C10, C25
2
1 µF
CAP, CERM, 1 µF, 10 V, +/-10%, X5R, 0402
GRM155R61A105KE15D
MuRata
C26
1
220 pF
CAP, CERM, 220 pF, 50 V, +/-1%, C0G/NP0, 0603
06035A221FAT2A
AVX
C27
1
2200 pF
CAP, CERM, 2200 pF, 50 V, +/-10%, X7R, 0603
C0603X222K5RACTU
Kemet
C28
1
0.47 µF
CAP, CERM, 0.47 µF, 10 V, +/-10%, X7R, 0603
C0603C474K8RACTU
Kemet
C29
1
220 PF
CAP CER 220 PF 50 V 1% NP0 0402
C1005C0G1H221F050BA
TDK Corporation
CAP, CERM, 330 pF, 50 V, +/-1%, C0G/NP0, 0603
C1608C0G1H331F080AA
TDK
C_Tank1
,
C_Tank2
2
D1
1
5.6 V
Diode, Zener, 5.6 V, 500 mW, SOD-123
MMSZ5232B-7-F
Diodes Inc.
D2
1
Green
LED, Green, SMD
LG L29K-G2J1-24-Z
OSRAM
D3
1
Red
LED, Super Red, SMD
SML-LX0603SRW-TR
Lumex
Test Point, Miniature, Black, TH
5001
Keystone
Connector, Receptacle, Micro-USB Type B, SMT
ZX62R-B-5P
Hirose Electric Co.
Ltd.
Inductor, Shielded, Ferrite, 10 µH, 0.4 A, 1.38 Ω,
SMD
VLS201610ET-100M
TDK
Thermal Transfer Printable Labels, 0.650" W x
0.200" H - 10,000 per roll
THT-14-423-10
Brady
GND,
GND1
2
J1
330 pF
Black
1
L10
1
LBL1
10 µH
1
R1, R4
2
10.0
RES, 10.0 Ω, 1%, 0.1 W, 0603
CRCW060310R0FKEA
Vishay-Dale
R2
1
1.5 K
RES 1.5 KΩ 1/16 W 5% 0402 SMD
CRCW04021K50JNED
Vishay Dale
R5
1
1M
RES,1 MΩ, 5%, 0.063 W, 0402
RC0402JR-071ML
Yageo
RES, 33 Ω, 5%, 0.1 W, 0603
CRCW060333R0JNEA
Vishay-Dale
RES, 0 Ω, 5%, 0.1 W, 0603
CRCW06030000Z0EA
Vishay-Dale
RES, 4.70 kΩ, 1%, 0.1 W, 0603
RC0603FR-074K7L
Yageo America
RES, 0 Ω, 5%, 0.125 W, 0805
CRCW08050000Z0EA
Vishay-Dale
R7, R10,
R11
3
33
R8, R9,
R32
3
0
R12, R13
2
4.70 k
R15,
R16,
R17,
R18,
R19,
R20,
R23, R33
8
0
R21, R25
2
1.0 k
RES, 1.0 kΩ, 5%, 0.063 W, 0402
CRCW04021K00JNED
Vishay-Dale
R29
1
33 k
RES, 33 kΩ, 5%, 0.063 W, 0402
CRCW040233K0JNED
Vishay-Dale
U1
U2
82
1
Multi-Channel 28-Bit Inductance to Digital Converter LDC1614RGH
with I2C, RGH0016A
Texas Instruments
1
Micropower 150 mA Low-Noise Ultra Low-Dropout
Regulator, 5-pin SOT-23, Pb-Free
Texas Instruments
LDC131x and LDC161x EVM User’s Guide
LP2985AIM5-3.3/NOPB
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
Appendix 3: LDC1312/1314/1612/1614 EVM REV A Bill of Materials
www.ti.com
Table 8. BOM for LDC1614 EVM REV A (continued)
DESIGNATOR
QTY.
VALUE
U3
U4
U5
U6
Y1
C13,
C14,
C15,
C16,
C18,
C19,
C20,
C21,
C22,
C23,
C35,
C36,
C37,
C38,
C39,
C41,
C42, C44
C34
DESCRIPTION
PART NUMBER
MANµFACTURER
Low-Capacitance + / - 15 kV ESD-Protection Array TPD2E001DRLR
for High-Speed Data Interfaces, 2 Channels, –40 to
+85°C, 5-pin SOT (DRL), Green (RoHS & no Sb/Br)
Texas Instruments
1
1
Programmable 1-PLL VCXO Clock Synthesizer
With 1.8-V, 2.5-V, and 3.3-V Outputs, PW0014A
CDCE913PW
Texas Instruments
1
Mixed Signal MicroController, RGC0064B
MSP430F5528IRGC
Texas Instruments
1
Micropower, 150-mA Low-Dropout CMOS Voltage
Regulator, 5-pin SC-70, Pb-Free
LP5951MG-1.8/NOPB
Texas Instruments
1
Crystal, 24.000 MHz, 18 pF, SMD
ABMM-24.000MHZ-B2-T
Abracon Corportation
CAP, CERM, 18 pF, 100 V, +/-5%, C0G/NP0, 0603
GRM1885C2A180JA01D
MuRata
CAP CER 0.1 µF 16 V 5% X7R 0402
GRM155R71C104JA88D
Murata Electronics
North America
Fiducial mark. There is nothing to buy or mount.
N/A
N/A
Header, TH, 100 mil, 2x1, Gold plated, 230 mil
above insulator
TSW-102-07-G-S
Samtec, Inc.
TERM BLOCK 2POS 5 mm, TH
1729018
Phoenix Contact
RES, 33 Ω, 5%, 0.1W, 0603
CRCW060333R0JNEA
Vishay-Dale
0
18 pF
0
0.1 µF
FID1,
FID2,
FID3
0
J2, J6,
J8, J9,
J13
0
J3, J4,
J5, J10
0
R14
0
33
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
LDC131x and LDC161x EVM User’s Guide
Copyright © 2015–2016, Texas Instruments Incorporated
83
Revision History
www.ti.com
Revision History
Changes from Original (August 2015) to A Revision ..................................................................................................... Page
•
84
Revised to reflect new Sensing Solutions GUI, added Appendix with EVM rev A Schematics, BOM, and Layout for
reference ................................................................................................................................... 6
Revision History
SNOU135A – August 2015 – Revised September 2016
Submit Documentation Feedback
Copyright © 2015–2016, Texas Instruments Incorporated
STANDARD TERMS AND CONDITIONS FOR EVALUATION MODULES
1.
Delivery: TI delivers TI evaluation boards, kits, or modules, including demonstration software, components, and/or documentation
which may be provided together or separately (collectively, an “EVM” or “EVMs”) to the User (“User”) in accordance with the terms
and conditions set forth herein. Acceptance of the EVM is expressly subject to the following terms and conditions.
1.1 EVMs are intended solely for product or software developers for use in a research and development setting to facilitate feasibility
evaluation, experimentation, or scientific analysis of TI semiconductors products. EVMs have no direct function and are not
finished products. EVMs shall not be directly or indirectly assembled as a part or subassembly in any finished product. For
clarification, any software or software tools provided with the EVM (“Software”) shall not be subject to the terms and conditions
set forth herein but rather shall be subject to the applicable terms and conditions that accompany such Software
1.2 EVMs are not intended for consumer or household use. EVMs may not be sold, sublicensed, leased, rented, loaned, assigned,
or otherwise distributed for commercial purposes by Users, in whole or in part, or used in any finished product or production
system.
2
Limited Warranty and Related Remedies/Disclaimers:
2.1 These terms and conditions do not apply to Software. The warranty, if any, for Software is covered in the applicable Software
License Agreement.
2.2 TI warrants that the TI EVM will conform to TI's published specifications for ninety (90) days after the date TI delivers such EVM
to User. Notwithstanding the foregoing, TI shall not be liable for any defects that are caused by neglect, misuse or mistreatment
by an entity other than TI, including improper installation or testing, or for any EVMs that have been altered or modified in any
way by an entity other than TI. Moreover, TI shall not be liable for any defects that result from User's design, specifications or
instructions for such EVMs. Testing and other quality control techniques are used to the extent TI deems necessary or as
mandated by government requirements. TI does not test all parameters of each EVM.
2.3 If any EVM fails to conform to the warranty set forth above, TI's sole liability shall be at its option to repair or replace such EVM,
or credit User's account for such EVM. TI's liability under this warranty shall be limited to EVMs that are returned during the
warranty period to the address designated by TI and that are determined by TI not to conform to such warranty. If TI elects to
repair or replace such EVM, TI shall have a reasonable time to repair such EVM or provide replacements. Repaired EVMs shall
be warranted for the remainder of the original warranty period. Replaced EVMs shall be warranted for a new full ninety (90) day
warranty period.
3
Regulatory Notices:
3.1 United States
3.1.1
Notice applicable to EVMs not FCC-Approved:
This kit is designed to allow product developers to evaluate electronic components, circuitry, or software associated with the kit
to determine whether to incorporate such items in a finished product and software developers to write software applications for
use with the end product. This kit is not a finished product and when assembled may not be resold or otherwise marketed unless
all required FCC equipment authorizations are first obtained. Operation is subject to the condition that this product not cause
harmful interference to licensed radio stations and that this product accept harmful interference. Unless the assembled kit is
designed to operate under part 15, part 18 or part 95 of this chapter, the operator of the kit must operate under the authority of
an FCC license holder or must secure an experimental authorization under part 5 of this chapter.
3.1.2
For EVMs annotated as FCC – FEDERAL COMMUNICATIONS COMMISSION Part 15 Compliant:
CAUTION
This device complies with part 15 of the FCC Rules. Operation is subject to the following two conditions: (1) This device may not
cause harmful interference, and (2) this device must accept any interference received, including interference that may cause
undesired operation.
Changes or modifications not expressly approved by the party responsible for compliance could void the user's authority to
operate the equipment.
FCC Interference Statement for Class A EVM devices
NOTE: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of
the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is
operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not
installed and used in accordance with the instruction manual, may cause harmful interference to radio communications.
Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to
correct the interference at his own expense.
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
FCC Interference Statement for Class B EVM devices
NOTE: This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of
the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential
installation. This equipment generates, uses and can radiate radio frequency energy and, if not installed and used in accordance
with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference
will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which
can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more
of the following measures:
•
•
•
•
Reorient or relocate the receiving antenna.
Increase the separation between the equipment and receiver.
Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
Consult the dealer or an experienced radio/TV technician for help.
3.2 Canada
3.2.1
For EVMs issued with an Industry Canada Certificate of Conformance to RSS-210
Concerning EVMs Including Radio Transmitters:
This device complies with Industry Canada license-exempt RSS standard(s). Operation is subject to the following two conditions:
(1) this device may not cause interference, and (2) this device must accept any interference, including interference that may
cause undesired operation of the device.
Concernant les EVMs avec appareils radio:
Le présent appareil est conforme aux CNR d'Industrie Canada applicables aux appareils radio exempts de licence. L'exploitation
est autorisée aux deux conditions suivantes: (1) l'appareil ne doit pas produire de brouillage, et (2) l'utilisateur de l'appareil doit
accepter tout brouillage radioélectrique subi, même si le brouillage est susceptible d'en compromettre le fonctionnement.
Concerning EVMs Including Detachable Antennas:
Under Industry Canada regulations, this radio transmitter may only operate using an antenna of a type and maximum (or lesser)
gain approved for the transmitter by Industry Canada. To reduce potential radio interference to other users, the antenna type
and its gain should be so chosen that the equivalent isotropically radiated power (e.i.r.p.) is not more than that necessary for
successful communication. This radio transmitter has been approved by Industry Canada to operate with the antenna types
listed in the user guide with the maximum permissible gain and required antenna impedance for each antenna type indicated.
Antenna types not included in this list, having a gain greater than the maximum gain indicated for that type, are strictly prohibited
for use with this device.
Concernant les EVMs avec antennes détachables
Conformément à la réglementation d'Industrie Canada, le présent émetteur radio peut fonctionner avec une antenne d'un type et
d'un gain maximal (ou inférieur) approuvé pour l'émetteur par Industrie Canada. Dans le but de réduire les risques de brouillage
radioélectrique à l'intention des autres utilisateurs, il faut choisir le type d'antenne et son gain de sorte que la puissance isotrope
rayonnée équivalente (p.i.r.e.) ne dépasse pas l'intensité nécessaire à l'établissement d'une communication satisfaisante. Le
présent émetteur radio a été approuvé par Industrie Canada pour fonctionner avec les types d'antenne énumérés dans le
manuel d’usage et ayant un gain admissible maximal et l'impédance requise pour chaque type d'antenne. Les types d'antenne
non inclus dans cette liste, ou dont le gain est supérieur au gain maximal indiqué, sont strictement interdits pour l'exploitation de
l'émetteur
3.3 Japan
3.3.1
Notice for EVMs delivered in Japan: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page 日本国内に
輸入される評価用キット、ボードについては、次のところをご覧ください。
http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_01.page
3.3.2
Notice for Users of EVMs Considered “Radio Frequency Products” in Japan: EVMs entering Japan may not be certified
by TI as conforming to Technical Regulations of Radio Law of Japan.
If User uses EVMs in Japan, not certified to Technical Regulations of Radio Law of Japan, User is required by Radio Law of
Japan to follow the instructions below with respect to EVMs:
1.
2.
3.
Use EVMs in a shielded room or any other test facility as defined in the notification #173 issued by Ministry of Internal
Affairs and Communications on March 28, 2006, based on Sub-section 1.1 of Article 6 of the Ministry’s Rule for
Enforcement of Radio Law of Japan,
Use EVMs only after User obtains the license of Test Radio Station as provided in Radio Law of Japan with respect to
EVMs, or
Use of EVMs only after User obtains the Technical Regulations Conformity Certification as provided in Radio Law of Japan
with respect to EVMs. Also, do not transfer EVMs, unless User gives the same notice above to the transferee. Please note
that if User does not follow the instructions above, User will be subject to penalties of Radio Law of Japan.
SPACER
SPACER
SPACER
SPACER
SPACER
【無線電波を送信する製品の開発キットをお使いになる際の注意事項】 開発キットの中には技術基準適合証明を受けて
いないものがあります。 技術適合証明を受けていないもののご使用に際しては、電波法遵守のため、以下のいずれかの
措置を取っていただく必要がありますのでご注意ください。
1.
2.
3.
電波法施行規則第6条第1項第1号に基づく平成18年3月28日総務省告示第173号で定められた電波暗室等の試験設備でご使用
いただく。
実験局の免許を取得後ご使用いただく。
技術基準適合証明を取得後ご使用いただく。
なお、本製品は、上記の「ご使用にあたっての注意」を譲渡先、移転先に通知しない限り、譲渡、移転できないものとします。
上記を遵守頂けない場合は、電波法の罰則が適用される可能性があることをご留意ください。 日本テキサス・イ
ンスツルメンツ株式会社
東京都新宿区西新宿6丁目24番1号
西新宿三井ビル
3.3.3
Notice for EVMs for Power Line Communication: Please see http://www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page
電力線搬送波通信についての開発キットをお使いになる際の注意事項については、次のところをご覧ください。http:/
/www.tij.co.jp/lsds/ti_ja/general/eStore/notice_02.page
SPACER
4
EVM Use Restrictions and Warnings:
4.1 EVMS ARE NOT FOR USE IN FUNCTIONAL SAFETY AND/OR SAFETY CRITICAL EVALUATIONS, INCLUDING BUT NOT
LIMITED TO EVALUATIONS OF LIFE SUPPORT APPLICATIONS.
4.2 User must read and apply the user guide and other available documentation provided by TI regarding the EVM prior to handling
or using the EVM, including without limitation any warning or restriction notices. The notices contain important safety information
related to, for example, temperatures and voltages.
4.3 Safety-Related Warnings and Restrictions:
4.3.1
User shall operate the EVM within TI’s recommended specifications and environmental considerations stated in the user
guide, other available documentation provided by TI, and any other applicable requirements and employ reasonable and
customary safeguards. Exceeding the specified performance ratings and specifications (including but not limited to input
and output voltage, current, power, and environmental ranges) for the EVM may cause personal injury or death, or
property damage. If there are questions concerning performance ratings and specifications, User should contact a TI
field representative prior to connecting interface electronics including input power and intended loads. Any loads applied
outside of the specified output range may also result in unintended and/or inaccurate operation and/or possible
permanent damage to the EVM and/or interface electronics. Please consult the EVM user guide prior to connecting any
load to the EVM output. If there is uncertainty as to the load specification, please contact a TI field representative.
During normal operation, even with the inputs and outputs kept within the specified allowable ranges, some circuit
components may have elevated case temperatures. These components include but are not limited to linear regulators,
switching transistors, pass transistors, current sense resistors, and heat sinks, which can be identified using the
information in the associated documentation. When working with the EVM, please be aware that the EVM may become
very warm.
4.3.2
EVMs are intended solely for use by technically qualified, professional electronics experts who are familiar with the
dangers and application risks associated with handling electrical mechanical components, systems, and subsystems.
User assumes all responsibility and liability for proper and safe handling and use of the EVM by User or its employees,
affiliates, contractors or designees. User assumes all responsibility and liability to ensure that any interfaces (electronic
and/or mechanical) between the EVM and any human body are designed with suitable isolation and means to safely
limit accessible leakage currents to minimize the risk of electrical shock hazard. User assumes all responsibility and
liability for any improper or unsafe handling or use of the EVM by User or its employees, affiliates, contractors or
designees.
4.4 User assumes all responsibility and liability to determine whether the EVM is subject to any applicable international, federal,
state, or local laws and regulations related to User’s handling and use of the EVM and, if applicable, User assumes all
responsibility and liability for compliance in all respects with such laws and regulations. User assumes all responsibility and
liability for proper disposal and recycling of the EVM consistent with all applicable international, federal, state, and local
requirements.
5.
Accuracy of Information: To the extent TI provides information on the availability and function of EVMs, TI attempts to be as accurate
as possible. However, TI does not warrant the accuracy of EVM descriptions, EVM availability or other information on its websites as
accurate, complete, reliable, current, or error-free.
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
SPACER
6.
Disclaimers:
6.1 EXCEPT AS SET FORTH ABOVE, EVMS AND ANY WRITTEN DESIGN MATERIALS PROVIDED WITH THE EVM (AND THE
DESIGN OF THE EVM ITSELF) ARE PROVIDED "AS IS" AND "WITH ALL FAULTS." TI DISCLAIMS ALL OTHER
WARRANTIES, EXPRESS OR IMPLIED, REGARDING SUCH ITEMS, INCLUDING BUT NOT LIMITED TO ANY IMPLIED
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF ANY
THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER INTELLECTUAL PROPERTY RIGHTS.
6.2 EXCEPT FOR THE LIMITED RIGHT TO USE THE EVM SET FORTH HEREIN, NOTHING IN THESE TERMS AND
CONDITIONS SHALL BE CONSTRUED AS GRANTING OR CONFERRING ANY RIGHTS BY LICENSE, PATENT, OR ANY
OTHER INDUSTRIAL OR INTELLECTUAL PROPERTY RIGHT OF TI, ITS SUPPLIERS/LICENSORS OR ANY OTHER THIRD
PARTY, TO USE THE EVM IN ANY FINISHED END-USER OR READY-TO-USE FINAL PRODUCT, OR FOR ANY
INVENTION, DISCOVERY OR IMPROVEMENT MADE, CONCEIVED OR ACQUIRED PRIOR TO OR AFTER DELIVERY OF
THE EVM.
7.
USER'S INDEMNITY OBLIGATIONS AND REPRESENTATIONS. USER WILL DEFEND, INDEMNIFY AND HOLD TI, ITS
LICENSORS AND THEIR REPRESENTATIVES HARMLESS FROM AND AGAINST ANY AND ALL CLAIMS, DAMAGES, LOSSES,
EXPENSES, COSTS AND LIABILITIES (COLLECTIVELY, "CLAIMS") ARISING OUT OF OR IN CONNECTION WITH ANY
HANDLING OR USE OF THE EVM THAT IS NOT IN ACCORDANCE WITH THESE TERMS AND CONDITIONS. THIS OBLIGATION
SHALL APPLY WHETHER CLAIMS ARISE UNDER STATUTE, REGULATION, OR THE LAW OF TORT, CONTRACT OR ANY
OTHER LEGAL THEORY, AND EVEN IF THE EVM FAILS TO PERFORM AS DESCRIBED OR EXPECTED.
8.
Limitations on Damages and Liability:
8.1 General Limitations. IN NO EVENT SHALL TI BE LIABLE FOR ANY SPECIAL, COLLATERAL, INDIRECT, PUNITIVE,
INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF THESE
TERMS ANDCONDITIONS OR THE USE OF THE EVMS PROVIDED HEREUNDER, REGARDLESS OF WHETHER TI HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. EXCLUDED DAMAGES INCLUDE, BUT ARE NOT LIMITED
TO, COST OF REMOVAL OR REINSTALLATION, ANCILLARY COSTS TO THE PROCUREMENT OF SUBSTITUTE GOODS
OR SERVICES, RETESTING, OUTSIDE COMPUTER TIME, LABOR COSTS, LOSS OF GOODWILL, LOSS OF PROFITS,
LOSS OF SAVINGS, LOSS OF USE, LOSS OF DATA, OR BUSINESS INTERRUPTION. NO CLAIM, SUIT OR ACTION SHALL
BE BROUGHT AGAINST TI MORE THAN ONE YEAR AFTER THE RELATED CAUSE OF ACTION HAS OCCURRED.
8.2 Specific Limitations. IN NO EVENT SHALL TI'S AGGREGATE LIABILITY FROM ANY WARRANTY OR OTHER OBLIGATION
ARISING OUT OF OR IN CONNECTION WITH THESE TERMS AND CONDITIONS, OR ANY USE OF ANY TI EVM
PROVIDED HEREUNDER, EXCEED THE TOTAL AMOUNT PAID TO TI FOR THE PARTICULAR UNITS SOLD UNDER
THESE TERMS AND CONDITIONS WITH RESPECT TO WHICH LOSSES OR DAMAGES ARE CLAIMED. THE EXISTENCE
OF MORE THAN ONE CLAIM AGAINST THE PARTICULAR UNITS SOLD TO USER UNDER THESE TERMS AND
CONDITIONS SHALL NOT ENLARGE OR EXTEND THIS LIMIT.
9.
Return Policy. Except as otherwise provided, TI does not offer any refunds, returns, or exchanges. Furthermore, no return of EVM(s)
will be accepted if the package has been opened and no return of the EVM(s) will be accepted if they are damaged or otherwise not in
a resalable condition. If User feels it has been incorrectly charged for the EVM(s) it ordered or that delivery violates the applicable
order, User should contact TI. All refunds will be made in full within thirty (30) working days from the return of the components(s),
excluding any postage or packaging costs.
10. Governing Law: These terms and conditions shall be governed by and interpreted in accordance with the laws of the State of Texas,
without reference to conflict-of-laws principles. User agrees that non-exclusive jurisdiction for any dispute arising out of or relating to
these terms and conditions lies within courts located in the State of Texas and consents to venue in Dallas County, Texas.
Notwithstanding the foregoing, any judgment may be enforced in any United States or foreign court, and TI may seek injunctive relief
in any United States or foreign court.
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated
spacer
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest
issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and
complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale
supplied at the time of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of
non-designated products, TI will not be responsible for any failure to meet ISO/TS16949.
Products
Applications
Audio
www.ti.com/audio
Automotive and Transportation
www.ti.com/automotive
Amplifiers
amplifier.ti.com
Communications and Telecom
www.ti.com/communications
Data Converters
dataconverter.ti.com
Computers and Peripherals
www.ti.com/computers
DLP® Products
www.dlp.com
Consumer Electronics
www.ti.com/consumer-apps
DSP
dsp.ti.com
Energy and Lighting
www.ti.com/energy
Clocks and Timers
www.ti.com/clocks
Industrial
www.ti.com/industrial
Interface
interface.ti.com
Medical
www.ti.com/medical
Logic
logic.ti.com
Security
www.ti.com/security
Power Mgmt
power.ti.com
Space, Avionics and Defense
www.ti.com/space-avionics-defense
Microcontrollers
microcontroller.ti.com
Video and Imaging
www.ti.com/video
RFID
www.ti-rfid.com
OMAP Applications Processors
www.ti.com/omap
TI E2E Community
e2e.ti.com
Wireless Connectivity
www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2016, Texas Instruments Incorporated