www.ti.com
User’s Guide
LM25149-Q1 EVM User's Guide
ABSTRACT
With an input operating voltage as low as 3.5 V and up to 100 V as specified in Table 1-1, the LM514x-Q1 family
of automotive synchronous buck controllers from TI provides flexibility, scalability, and optimized solution size
for a range of applications. These controllers enable DC/DC solutions with high density, low EMI, and increased
flexibility. Available EMI mitigation features include dual-random spread spectrum (DRSS) or triangular spread
spectrum (TRSS), split gate driver outputs for slew rate (SR) control, and integrated active EMI filtering (AEF).
All controllers are rated for a maximum operating junction temperature of 150°C and have AEC-Q100 grade 1
qualification.
Table 1-1. Automotive Synchronous Buck DC/DC Controller Family
DC/DC
Controller
Single or
Dual
VIN Range
Control Method
Gate Drive
Voltage
Sync Output
EMI Mitigation
LM5140-Q1
Dual
3.8 V to 65 V
Peak current mode
5V
180° phase shift
N/A
LM25149-Q1
Single
3.5 V to 42 V
Peak current mode
5V
180° phase shift
AEF, DRSS
LM25148-Q1
Single
3.5 V to 42 V
Peak current mode
5V
180° phase shift
DRSS
LM5141-Q1
Single
3.8 V to 65 V
Peak current mode
5V
N/A
SR control, TRSS
LM25141-Q1
Single
3.8 V to 42 V
Peak current mode
5V
N/A
SR control, TRSS
LM5143-Q1
Dual
3.5 V to 65 V
Peak current mode
5V
90° phase shift
SR control, TRSS
LM5145-Q1
Single
5.5 V to 75 V
Voltage mode
7.5 V
180° phase shift
N/A
LM5146-Q1
Single
5.5 V to 100 V
Voltage mode
7.5 V
180° phase shift
N/A
The LM25149-Q1EVM-2100 evaluation module (EVM) is a synchronous buck DC/DC regulator that employs
synchronous rectification to achieve high conversion efficiency in a small footprint. It operates over a wide input
voltage range of 5.5 V to 36 V, providing a regulated output of 5 V. The output voltage has better than 1%
setpoint accuracy and are adjustable by modifying the feedback resistor values, permitting the user to customize
the output voltage from 3.3 V to 5.5 V as needed.
The LM25149-Q1 synchronous buck controller used in the EVM has the following features:
•
•
•
•
•
•
•
•
•
Wide input voltage (wide VIN) range of 3.5 V to 42 V
Spread spectrum modulation and active EMI filtering for lower EMI
Wide duty cycle range with low tON(min) and tOFF(min)
Ultra-low shutdown and no-load standby quiescent currents
Multiphase capability
Peak current-mode control loop architecture
Integrated, high-current MOSFET gate drivers
Cycle-by-cycle overcurrent protection with hiccup
Functional-safety capable
The free-running switching frequency of the EVM is 2.1 MHz and is synchronizable to a higher or lower
frequency, if required. Moreover, a synchronization output signal (SYNCOUT) 180° phase-shifted relative to the
internal clock is available for dual-phase leader-follower configurations. VCC and gate drive UVLO protects the
regulator at low input voltage conditions, and EN pins for each channel support application-specific power-up
and power-down requirements.
The LM25149-Q1 is available in a 24-pin VQFN package with 5.5-mm × 3.5-mm footprint to enable DC/DC
solutions with high density and low component count. See the LM25149-Q1 3.5-V to 42-V Synchronous Buck
DC/DC Controller Data Sheet for more information. Use the LM25149-Q1 with WEBENCH® Power Designer
SNVU773A – MARCH 2021 – REVISED APRIL 2022
Submit Document Feedback
LM25149-Q1 EVM User's Guide
Copyright © 2022 Texas Instruments Incorporated
1
Table of Contents
www.ti.com
to create a custom regulator design. To optimize component selection and examine predicted efficiency
performance across line and load ranges, download the LM25149-Q1 Quickstart Calculator.
The LM25149-Q1 on the EVM can be substituted with LM25148-Q1 for evaluation.
Table of Contents
1 High Density EVM Description.............................................................................................................................................. 3
1.1 Typical Applications............................................................................................................................................................3
1.2 Features and Electrical Performance.................................................................................................................................3
2 EVM Characteristics............................................................................................................................................................... 4
3 Application Circuit Diagram...................................................................................................................................................5
4 EVM Photo...............................................................................................................................................................................5
5 Test Setup and Procedure......................................................................................................................................................6
5.1 EVM Connections.............................................................................................................................................................. 6
5.2 Test Equipment.................................................................................................................................................................. 7
5.3 Recommended Test Setup.................................................................................................................................................7
5.4 Test Procedure................................................................................................................................................................... 7
6 Test Data and Performance Curves...................................................................................................................................... 8
6.1 Conversion Efficiency.........................................................................................................................................................8
6.2 Operating Waveforms........................................................................................................................................................ 9
6.3 Bode Plot..........................................................................................................................................................................14
6.4 CISPR 25 EMI Performance............................................................................................................................................ 14
6.5 Thermal Performance...................................................................................................................................................... 15
7 EVM Documentation.............................................................................................................................................................16
7.1 Schematic........................................................................................................................................................................ 16
7.2 Bill of Materials.................................................................................................................................................................17
7.3 PCB Layout...................................................................................................................................................................... 18
7.4 Component Drawings.......................................................................................................................................................21
8 Device and Documentation Support...................................................................................................................................22
8.1 Device Support.................................................................................................................................................................22
8.2 Documentation Support................................................................................................................................................... 22
9 Revision History................................................................................................................................................................... 22
List of Figures
Figure 3-1. LM25149-Q1 Synchronous Buck Regulator Simplified Schematic........................................................................... 5
Figure 4-1. LM25149-Q1 EVM Photo, 70 mm × 40 mm.............................................................................................................. 5
Figure 5-1. EVM Test Setup.........................................................................................................................................................6
Figure 6-1. Efficiency, VOUT = 5 V................................................................................................................................................8
Figure 6-2. Efficiency, VIN = 12 V, VOUT = 5 V, PFM (Log Scale).................................................................................................8
Figure 6-3. SW Node Voltage, VIN = 12 V, IOUT = 8 A .................................................................................................................9
Figure 6-4. SW Node Voltage, VIN = 8 V, IOUT = 8 A....................................................................................................................9
Figure 6-5. PFM Mode SW Node Voltage, VIN = 12 V, IOUT = 0 A............................................................................................. 10
Figure 6-6. Load Transient Response, VIN = 12 V, FPWM, 0 A to 8 A at 1 A/µs....................................................................... 10
Figure 6-7. Load Transient Response, VIN = 12 V, FPWM, 4 A to 8 A at 1 A/µs....................................................................... 11
Figure 6-8. Line Transient Response to VIN = 8 V to 36 V, IOUT = 4 A....................................................................................... 11
Figure 6-9. Cold-Crank Response to VIN = 3.8 V, IOUT = 1 A CC, EN tied to VIN......................................................................12
Figure 6-10. ENABLE ON and OFF, VIN = 12 V, IOUT = 8 A.......................................................................................................12
Figure 6-11. Start-Up, VIN = 12 V, IOUT = 8-A Resistive Load.................................................................................................... 13
Figure 6-12. Shutdown, VIN = 12 V, IOUT = 8-A Resistive Load................................................................................................. 13
Figure 6-13. Bode Plot, VIN = 12 V, VOUT = 5 V, IOUT = 8-A Resistive Load.............................................................................. 14
Figure 6-14. CISPR 25 Class 5 Conducted Emissions Plot, 150 kHz to 30 MHz, VIN = 12 V, IOUT = 8 A Resistive Load,
(a) No EMI Mitigation, (b) Active EMI and Spread-Spectrum Enabled.................................................................................. 14
Figure 6-15. Thermal Performance, VIN = 12 V, IOUT = 8 A, Tamb = 25°C, Free Convection Airflow......................................... 15
Figure 7-1. EVM Schematic.......................................................................................................................................................16
Figure 7-2. Top Copper (Top View)............................................................................................................................................ 18
Figure 7-3. Layer 2 Copper (Top View)......................................................................................................................................18
Figure 7-4. Layer 3 Copper (Top View)......................................................................................................................................19
Figure 7-5. Layer 4 Copper (Top View)......................................................................................................................................19
Figure 7-6. Layer 5 Copper (Top View)......................................................................................................................................20
Figure 7-7. Bottom Copper (Top View)...................................................................................................................................... 20
2
LM25149-Q1 EVM User's Guide
SNVU773A – MARCH 2021 – REVISED APRIL 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
www.ti.com
Trademarks
Figure 7-8. Top Component Drawing.........................................................................................................................................21
Figure 7-9. Bottom Component Drawing................................................................................................................................... 21
List of Tables
Table 1-1. Automotive Synchronous Buck DC/DC Controller Family.......................................................................................... 1
Table 2-1. Electrical Performance Characteristics....................................................................................................................... 4
Table 5-1. EVM Power Connections............................................................................................................................................ 6
Table 5-2. EVM Signal Connections............................................................................................................................................ 6
Table 7-1. Bill of Materials..........................................................................................................................................................17
Trademarks
WEBENCH® is a registered trademark of Texas Instruments.
All trademarks are the property of their respective owners.
1 High Density EVM Description
The LM25149-Q1EVM-2100 high-density EVM is designed to use a regulated or non-regulated high-voltage
input rail ranging from 5.5 V to 36 V to produce a tightly-regulated output voltage of 5 V at load currents up to 8
A. This wide VIN range DC/DC solution offers outsized voltage rating and operating margin to withstand supply
rail voltage transients.
The free-running switching frequency is 2.1 MHz and is synchronizable to an external clock signal at a higher
or lower frequency. The power-train passive components selected for this EVM, including buck inductors and
ceramic input and output capacitors, are automotive AEC-Q200 rated and are available from multiple component
vendors.
1.1 Typical Applications
•
•
•
•
High-current automotive electronic systems
ADAS and body electronics
Infotainment systems and instrument clusters
Automotive HEV/EV powertrain systems
1.2 Features and Electrical Performance
•
•
•
•
•
•
•
•
•
•
•
•
•
Wide input voltage operating range of 5.5 V to 36 V
1% accurate fixed 3.3 V, 5 V, or adjustable output down to 0.8 V
Switching frequency of 2.1 MHz externally synchronizable up or down by 20%
Full-load efficiency of 92.8% at VIN = 12 V
12-µA controller standby current at VIN = 12 V
Optimized for ultra-low EMI
– Dual-Random Spread Spectrum and Active EMI filtering
– Meets CISPR 25 and UNECE Reg 10 EMI standards
Peak current-mode control architecture provides fast line and load transient response
– Integrated slope compensation adaptive with switching frequency
– Forced PWM (FPWM) or Pulsed-Frequency Modulation (PFM) operation
– Optional internal or external loop compensation
Integrated high-side and low-side power MOSFET gate drivers
– 2.2-A and 3.2-A sink and source gate drive current capability
– 13-ns adaptive dead-time control reduces power dissipation and MOSFET temperature rise
Overcurrent protection (OCP) with hiccup mode for sustained overload conditions
SYNCOUT signal 180° out-of-phase with internal clock
Power Good signal with 100-kΩ pullup resistor to VCC
Internal 3-ms soft start
Fully assembled, tested, and proven PCB layout with 70-mm × 40-mm total footprint
SNVU773A – MARCH 2021 – REVISED APRIL 2022
Submit Document Feedback
LM25149-Q1 EVM User's Guide
Copyright © 2022 Texas Instruments Incorporated
3
EVM Characteristics
www.ti.com
2 EVM Characteristics
Table 2-1 lists the electrical characteristics.
Table 2-1. Electrical Performance Characteristics
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
5.5
12
36
UNIT
INPUT CHARACTERISTICS
Input voltage range, VIN
Input current, no load, IIN-NL
Input current, shutdown, IIN-OFF
Operating
IOUT = 0 A, PFM tied to
VDDA, UVLO removed
VEN = 0 V
VIN = 12 V
12
VIN = 24 V
9
VIN = 36 V
9
VIN = 12 V
3
V
µA
µA
OUTPUT CHARACTERISTICS
Output voltage, VOUT (1)
Output current, IOUT
Output voltage regulation, ΔVOUT
4.95
VIN = 5.5 V to 36 V, airflow = 100 LFM(2)
Load regulation
IOUT = 0 A to 8 A
Line regulation
VIN = 5.5 V to 36 V
Output voltage ripple, VOUT-AC
VIN = 12 V, IOUT = 8 A
Output overcurrent protection, IOCP
VIN = 12 V
5
0
5.05
V
8
A
0.1%
1%
Soft-start time, tSS
5
mVrms
10
A
3
ms
SYSTEM CHARACTERISTICS
Switching frequency, FSW-nom
VIN = 12 V
Half-load efficiency, ηHALF (1)
IOUT = 4 A
Full load efficiency, ηFULL
IOUT = 8 A
2.1
VIN = 8 V
94.3%
VIN = 12 V
92.9%
VIN = 18 V
90.5%
VIN = 8 V
93.5%
VIN = 12 V
92.8%
VIN = 18 V
90.7%
LM25149-Q1 junction temperature, TJ
(1)
(2)
4
–40
MHz
150
°C
The default output voltage of this EVM is 5 V. Efficiency and other performance metrics can change based on operating input voltage,
load currents, externally-connected output capacitors, and other parameters.
The recommended airflow when operating at input voltages greater than 18 V is 100 LFM.
LM25149-Q1 EVM User's Guide
SNVU773A – MARCH 2021 – REVISED APRIL 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
www.ti.com
Application Circuit Diagram
3 Application Circuit Diagram
Figure 3-1 shows the schematic of an LM25149-Q1-based synchronous buck regulator with active EMI filter.
LIN
0.68 µH
VIN = 5.5 V...36 V
RINC
0.24
CINJ
CSEN
0.1 F
CDAMP1
0.47
F
RDAMP
CINC
0.1 F
6.81
CAEFC RAEFC
4.7 nF 200
Tie to VOUT
or GND
47 F
VOUT
RFB1
100 k
VIN
EN
VCCX
VCC
CBOOT
FB
RFB2
22.1 k
CBOOT
0.1 F
Q1
LO
CHF
LM25149-Q1
VOUT = 5 V
IOUT = 8 A
Q2
LO
AGND
RS
5 m
0.68 H
SW
22 pF
CCOMP
2.7 nF
RAEFDC
49.9 k
HO
EXTCOMP
RCOMP
10 k
CIN
2 10 F
CVCC
2.2 F
CO
4
47 F
PGND
INJ
ISNS+
SENSE
To AEF
sense point
VCC
VOUT
REFAGND
PGOOD
PFM/SYNC
AEFVDDA
RAEFVDD
3
AVSS
CNFG
RT
VDDA
Tie to VDDA
or GND
CVDDA
0.1 F
CAEFVDD
4.7 F
RCNFG
41.2 k
* VOUT tracks VIN if VIN < 5.2 V
RT
9.53 k
Figure 3-1. LM25149-Q1 Synchronous Buck Regulator Simplified Schematic
4 EVM Photo
Figure 4-1 shows the EVM photo.
Figure 4-1. LM25149-Q1 EVM Photo, 70 mm × 40 mm
CAUTION
Caution Hot surface.
Contact may cause burns.
Do not touch.
SNVU773A – MARCH 2021 – REVISED APRIL 2022
Submit Document Feedback
LM25149-Q1 EVM User's Guide
Copyright © 2022 Texas Instruments Incorporated
5
Test Setup and Procedure
www.ti.com
5 Test Setup and Procedure
5.1 EVM Connections
Referencing the EVM connections described in Table 5-1, the recommended test setup to evaluate the
LM25149-Q1EVM-2100 is shown in Figure 5-1. Working at an ESD-protected workstation, make sure that any
wrist straps, boot straps, or mats are connected and referencing the user to earth ground before handling the
EVM.
Power Supply
-
+
Ammeter 1
A
V
Ammeter 2
A
COM
COM
COM
COM
Voltmeter 1
Electronic Load
+
-
V
Voltmeter 2
Figure 5-1. EVM Test Setup
CAUTION
Refer to the LM25149-Q1 data sheet, LM25149-Q1 Quickstart Calculator and WEBENCH® Power
Designer for additional guidance pertaining to component selection and controller operation.
Table 5-1. EVM Power Connections
Label
Description
VIN+
Positive input voltage power and sense connection
VIN –
Negative input voltage power and sense connection
VOUT+
Positive output voltage power and sense connection
VOUT–
Negative output voltage power and sense connection
Label
Description
GND
GND connection
CNFG
Configuration input - tie to GND to disable AEF
COMP
Error amplifier output
FB
FB node
VDDA
Bias supply connection for the analog circuits
PFM
PFM/FPWM selection and Synchronization input
GND
GND connection
BODE
50-Ω injection point for loop response
VOUT
Output voltage
EN
ENABLE input – tie to GND to disable the device
VCC
Bias supply connection for the gate drivers and AEF
PGOOD
Power Good indicator
Table 5-2. EVM Signal Connections
6
LM25149-Q1 EVM User's Guide
SNVU773A – MARCH 2021 – REVISED APRIL 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
www.ti.com
Test Setup and Procedure
5.2 Test Equipment
Voltage Source: Use an input voltage source capable of supplying 0 V to 40 V and 12 A.
Multimeters:
•
•
•
•
Voltmeter 1: Input voltage at VIN+ to VIN–. Set voltmeter to an input impedance of 100 MΩ.
Voltmeter 2: Output voltage at VOUT to GND. Set voltmeter to an input impedance of 100 MΩ.
Ammeter 1: Input current. Set ammeter to 1-second aperture time.
Ammeter 2: Output current. Set ammeter to 1-second aperture time.
Electronic Load: The load must be an electronic constant-resistance (CR) or constant-current (CC) mode load
capable of 0 Adc to 10 Adc at 12 V. For a no-load input current measurement, disconnect the electronic load as
it may draw a small residual current.
Oscilloscope: With the scope set to 20-MHz bandwidth and AC coupling, measure the output voltage ripple
directly across an output capacitor with a short ground lead normally provided with the scope probe. Place the
oscilloscope probe tip on the positive terminal of the output capacitor, holding the ground barrel of the probe
through the ground lead to the negative terminal of the capacitor. TI does not recommend using a long-leaded
ground connection because this can induce additional noise given a large ground loop. To measure other
waveforms, adjust the oscilloscope as needed.
Safety: Always use caution when touching any circuits that may be live or energized.
5.3 Recommended Test Setup
5.3.1 Input Connections
•
•
•
Prior to connecting the DC input source, set the current limit of the input supply to 0.1 A maximum. Ensure
the input source is initially set to 0 V and connected to the VIN+ and VIN– connection points as shown in
Figure 5-1. An additional input bulk capacitor is recommended to provide damping if long input lines are used.
Connect voltmeter 1 at VIN+ and VIN– connection points to measure the input voltage.
Connect ammeter 1 to measure the input current and set to at least 1-second aperture time.
5.3.2 Output Connections
•
•
•
Connect electronic load to VOUT connection. Set the load to constant-resistance mode or constant-current
mode at 0 A before applying input voltage.
Connect voltmeter 2 at VOUT and GND connections to measure the output voltage.
Connect ammeter 2 to measure the output current.
5.4 Test Procedure
5.4.1 Line and Load Regulation, Efficiency
•
•
•
•
•
•
•
Set up the EVM as previously described.
Set load to constant resistance or constant current mode and to sink 0 A.
Increase input source from 0 V to 12 V; use voltmeter 1 to measure the input voltage.
Increase the current limit of the input supply to 12 A.
Using voltmeter 2 to measure the output voltage, VOUT, vary the load current from 0 A to 8 A DC; VOUT must
remain within the load regulation specification.
Set the load current to 4 A (50% rated load) and vary the input source voltage from 5.5 V to 36 V; VOUT must
remain within the line regulation specification.
Decrease load to 0 A. Decrease input source voltage to 0 V.
SNVU773A – MARCH 2021 – REVISED APRIL 2022
Submit Document Feedback
LM25149-Q1 EVM User's Guide
Copyright © 2022 Texas Instruments Incorporated
7
Test Data and Performance Curves
www.ti.com
6 Test Data and Performance Curves
Figure 6-1 through Figure 6-15 present typical performance curves for the LM25149-Q1EVM-2100. Because
actual performance data can be affected by measurement techniques and environmental variables, these curves
are presented for reference and can differ from actual field measurements.
6.1 Conversion Efficiency
100
Efficiency (%)
95
90
85
80
VIN = 8V
VIN = 12V
VIN = 18V
75
70
0
1
2
3
4
Load (A)
5
6
7
8
The curves with higher efficiency at light load correspond to when diode emulation is enabled (PFM tied to VDDA).
Figure 6-1. Efficiency, VOUT = 5 V
100
Efficiency (%)
90
80
70
60
50
0.001
VIN = 8V
VIN = 12V
VIN = 18V
0.01
0.1
Load (A)
1
8
Figure 6-2. Efficiency, VIN = 12 V, VOUT = 5 V, PFM (Log Scale)
8
LM25149-Q1 EVM User's Guide
SNVU773A – MARCH 2021 – REVISED APRIL 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
www.ti.com
Test Data and Performance Curves
6.2 Operating Waveforms
6.2.1 Switching
Figure 6-3. SW Node Voltage, VIN = 12 V, IOUT = 8 A
Figure 6-4. SW Node Voltage, VIN = 8 V, IOUT = 8 A
SNVU773A – MARCH 2021 – REVISED APRIL 2022
Submit Document Feedback
LM25149-Q1 EVM User's Guide
Copyright © 2022 Texas Instruments Incorporated
9
Test Data and Performance Curves
www.ti.com
Figure 6-5. PFM Mode SW Node Voltage, VIN = 12 V, IOUT = 0 A
6.2.2 Load Transient Response
Figure 6-6. Load Transient Response, VIN = 12 V, FPWM, 0 A to 8 A at 1 A/µs
10
LM25149-Q1 EVM User's Guide
SNVU773A – MARCH 2021 – REVISED APRIL 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
www.ti.com
Test Data and Performance Curves
Figure 6-7. Load Transient Response, VIN = 12 V, FPWM, 4 A to 8 A at 1 A/µs
6.2.3 Line Transient Response
Figure 6-8. Line Transient Response to VIN = 8 V to 36 V, IOUT = 4 A
SNVU773A – MARCH 2021 – REVISED APRIL 2022
Submit Document Feedback
LM25149-Q1 EVM User's Guide
Copyright © 2022 Texas Instruments Incorporated
11
Test Data and Performance Curves
www.ti.com
Figure 6-9. Cold-Crank Response to VIN = 3.8 V, IOUT = 1 A CC, EN tied to VIN
6.2.4 Start-Up and Shutdown With ENABLE ON and OFF
Figure 6-10. ENABLE ON and OFF, VIN = 12 V, IOUT = 8 A
12
LM25149-Q1 EVM User's Guide
SNVU773A – MARCH 2021 – REVISED APRIL 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
www.ti.com
Test Data and Performance Curves
6.2.5 Start-Up and Shutdown with EN Tied to VIN
Figure 6-11. Start-Up, VIN = 12 V, IOUT = 8-A Resistive Load
Figure 6-12. Shutdown, VIN = 12 V, IOUT = 8-A Resistive Load
SNVU773A – MARCH 2021 – REVISED APRIL 2022
Submit Document Feedback
LM25149-Q1 EVM User's Guide
Copyright © 2022 Texas Instruments Incorporated
13
Test Data and Performance Curves
www.ti.com
6.3 Bode Plot
50
150
45
135
40
120
35
105
30
90
25
75
20
60
15
45
10
30
5
15
0
Phase (°)
Gain (dB)
PM = 48°
0
fc = 75.6 kHz
Gain
Phase
-5
-15
-10
103
-30
105
104
Frequency (Hz)
fc = crossover frequency, PM = phase margin
Figure 6-13. Bode Plot, VIN = 12 V, VOUT = 5 V, IOUT = 8-A Resistive Load
6.4 CISPR 25 EMI Performance
Figure 6-14 presents the EMI performance of the LM25149-Q1 EVM at 12-V input with and without the EMI
mitigation techniques enabled. Conducted emissions are measured over a frequency range of 150 kHz to 30
MHz using a 5-µH LISN according to the CISPR 25 low-frequency specification. CISPR 25 class 5 peak and
average limit lines are denoted in red. The yellow and blue spectra are measured using peak and average
detection, respectively.
Start 150 kHz
Stop 30 MHz
Start 150 kHz
(a)
Stop 30 MHz
(b)
Figure 6-14. CISPR 25 Class 5 Conducted Emissions Plot, 150 kHz to 30 MHz, VIN = 12 V, IOUT = 8 A
Resistive Load, (a) No EMI Mitigation, (b) Active EMI and Spread-Spectrum Enabled
14
LM25149-Q1 EVM User's Guide
SNVU773A – MARCH 2021 – REVISED APRIL 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
www.ti.com
Test Data and Performance Curves
6.5 Thermal Performance
Figure 6-15 shows the thermal performance image.
Figure 6-15. Thermal Performance, VIN = 12 V, IOUT = 8 A, Tamb = 25°C, Free Convection Airflow
SNVU773A – MARCH 2021 – REVISED APRIL 2022
Submit Document Feedback
LM25149-Q1 EVM User's Guide
Copyright © 2022 Texas Instruments Incorporated
15
EVM Documentation
www.ti.com
7 EVM Documentation
7.1 Schematic
Figure 7-1 shows the EVM schematic.
VIN_AEF: Vin
TP1
VIN
L1
VIN = 5.5-36V
J1
VIN_AEF
2
1
680nH
C1
0.1uF
C4
10nF
100V
TP2
C3
470nF
C5
10nF
R1
6.81
C2
C8
10nF
C9
10nF
C10
2.2µF
47uF
C11
2.2µF
R3
0
R2
0.24
R4
4700pF
NT1
Net-Tie
C12
C7
0.1uF
200
GND
R5
49.9k
SEN
GND
INJ
AEFGND
VIN
VDDA
AEFVDDA
VCC
VIN
VCC
VIN
R6
3.32
R7
100k
VDDA VCC VOUT
C24
0.1µF
C23
4.7µF
C25
4.7µF
C14
10uF
C26
470nF
C15
10uF
C17
0.01uF
C16
10uF
C18
0.01uF
C19
0.01uF
J2
C21
0.01uF
C22
0.01uF
GND
AGND
PGSYNC
AVSS
GND
GND
D1
5-6-7-8
12
11
10
9
8
7
6
5
4
3
2
1
45V
U1
PFMSYNC
FBA
C27
12
9
COMP
8
VIN
CBOOT
HO
VCC
SW
VDDA
LO
CNFG
ISNS+
R8
19
EN
VOUT
15
13
0.1uF
0
AEFVDDA
PGSYNC
VDDA
PFMSYNC
FBA
R15
17
18
6
5
100k
COMP
CNFG
INJ
3
22
2
23
VCCX
PG
PFM/SYNC
RT
FB
AVSS
EXTCOMP
CNFG
AEFVDDA
INJ
SEN
AGND
PGND
REFAGND
EP
20
21
VCCX
16
4
R13
9.53k
1
R11
680nH
5m
TP3
VOUT = 5.0VDC
J3
C28
47uF
C29
47uF
C30
47uF
C31
47uF
C32
0.1uF
1
2
C33
0.1uF
R14
0
7
10
24
TP4
GND
R16
49.9
GND
25
GND
R17
LM25149QRGYRQ1
49.9
C35
22pF
AEFGND
AVSS
VDDA
R20
100k
Net-Tie
GND
VBODE
C34
33pF
NT2
Net-Tie
C37
2700pF
L3
Q2
IAUC60N04S6L039ATMA1
4
NT3
R19
41.2k
VOUT
R10
0
SEN
R18
10.0k
VCCX
14
11
23.7k
GND
Q1
IAUC60N04S6L039ATMA1
4
R9
1-2-3
R12
100k
5-6-7-8
VBODE
1-2-3
PG/SYNCOUT
VCC
EN/OFF
VOUT
VBODE
GND
SYNC_IN
VDDA
FBA
COMP
CNFG
GND
C20
0.01uF
R23
24.9k
AGND
FBA
R22
19.1k
AGND
AGND
Figure 7-1. EVM Schematic
16
LM25149-Q1 EVM User's Guide
SNVU773A – MARCH 2021 – REVISED APRIL 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
www.ti.com
EVM Documentation
7.2 Bill of Materials
Table 7-1. Bill of Materials
COUNT
REF DES
DESCRIPTION
PART NUMBER
3
C1, C7, C27
Capacitor, Ceramic, 0.1 μF, 50 V, X7R, 0402, AEC-Q200
CGA2B3X7R1H104K050BB TDK
1
C2
Capacitor, Ceramic, 4700 pF, 50 V, X7R, 0402, AEC-Q200
CGA6P1X7S0J476M250AC TDK
1
C3
Capacitor, Ceramic, 0.47 μF, 50 V, X7R, 0603
CGA3E3X7R1H474K080AB TDK
2
C8, C9
Capacitor, Ceramic, 0.01 μF, 50 V, X7R, 0603
C1608X7R1H103K080AA
TDK
2
C10, C11
Capacitor, Ceramic, 2.2 μF, 50 V, X7R, 0805
UMK212BB7225KG-T
Taiyo Yuden
1
C12
Capacitor, Aluminum, 47 µF, 50 V, 0.68 Ω, AEC-Q200
EEE-FK1H470P
Panasonic
12105C106K4Z2A
AVX
Capacitor, Ceramic, 10 μF, 50 V, X7R, 1210, AEC-Q200
MFR
2
C14, C15
6
C17, C18, C19, C20, C21,
Capacitor, Ceramic, 0.01 μF, 50 V, X7R, 0402 AEC-Q200
C22
CGA2B3X7R1H103K050BB TDK
1
C23
Capacitor, Ceramic, 4.7 μF, 25 V, X7R, 0805,AEC-Q200
CGA4J1X7R1E475K125AC TDK
1
C24
Capacitor, Ceramic, 0.1 µF, 10 V, X7R, 0402, AEC-Q200
Std
Std
1
C25
Capacitor, Ceramic, 4.7 μF, 10 V, X7R, 0603
GRM188Z71A475ME15D
Murata
1
C26
Capacitor, Ceramic, 0.47 μF, 50 V, X7R, 0805 AEC-Q200
GCM21BR71H474KA55L
Murata
4
C28, C29, C30, C31
Capacitor, Ceramic, 47 μF, 10 V, X7R, 1210
GRM32ER71A476KE15L
Murata
1
C32, C33
Capacitor, Ceramic, 0.1 μF, 50 V, X7R, 0603
C0603C104K5RAC-TU
KEMET
1
C34
Capacitor, Ceramic, 33 pF, 50 V, C0G/NP0, 0402, AEC-Q200
GCM1555C1H330JA16D
Murata
1
C35
Capacitor, Ceramic, 22 pF, 50 V, C0G/NP0, 0402, AEC-Q200
CGA2B2NP01H220J050BA TDK
1
C37
Capacitor, Ceramic, 2700 pF, 50 V, X7R, 0402
CL05B272KB5NNNC
4
H3, H4, H5, H6
Standoff, Hex, 0.5"L #4-40 Nylon
18K5088
4
H7, H8, H9, H10
Screw, Pan Head , 4-40, 3/8", Nylon
H544-ND
2
J1, J3
Terminal Block, 2 position, 5 mm, TH
Std
Std
1
J2
Header, 100 mil, 10×1, Au, TH
PBC12SABN
TSW-110-07-G-S
1
L1
Inductor, 0.68 μH, 9 mΩ typ, 8.2 A, 6 mm typ,
744383560068
Würth Electronik
Inductor, 0.68 μH, 2.9 mΩ typ, 15.3 A, 3.1 mm typ, AEC-Q200
XGL6030-681MEB
Coilcraft
Inductor, 0.56 μH, 3.6 mΩ typ, 13 A, 4.8 mm typ, AEC-Q200
744373490056
Würth Electronik
Inductor, 0.68 μH, 5 mΩ typ, 15.5 A, 3 mm typ
IHLP2525CZERR68M01
Vishay
Capacitor, Ceramic, 10 μF, 50 V, X7R, 1206, AEC-Q200
1
L3
CNA6P1X7R1H106K250AE TDK
CGA5L1X7R1H106K160AC TDK
Samsung
2
Q1, Q2
MOSFET, N-Channel, 40 V, 4 mΩ, AEC-Q101
IAUC60N04S6L039
Infineon
1
R1
Resistor, Chip, 6.81 Ω, 1/10W, 1%, 0603
Std
Std
1
R2
Resistor, Chip, 0.24 Ω, 1/4W, 5%, 0603
Std
Std
1
R3
Resistor, Chip, 0 Ω, 1/8W, 1%, 0805
Std
Std
1
R4
Resistor, Chip, 200 Ω, 1/16W, 1%, 0402
Std
Std
1
R5
Resistor, Chip, 49.9 kΩ, 1/8W, 1%, 0402
Std
Std
1
R6
Resistor, Chip, 3.32 Ω, 1/16W, 1%, 0402
Std
Std
3
R7, R12, R20
Resistor, Chip, 100 kΩ, 1/16W, 1%, 0402
Std
Std
1
R8
Resistor, Chip, 22.1 kΩ, 1/16W, 1%, 0402
Std
Std
3
R9, R10, R14
Resistor, Chip, 0 kΩ, 1/5W, 1%, 0603
Std
Std
1
R11
Resistor, Chip, 5 mΩ, 1W, 1%, 0508, AEC-Q200
KRL2012E-M-R005-F-T5
Susumu
1
R13
Resistor, Chip, 9.53 kΩ, 1/16W, 1%, 0402
Std
Std
2
R16, R17
Resistor, Chip, 49.9 Ω, 1/16W, 1%, 0402
Std
Std
1
R18
Resistor, Chip, 10 kΩ, 1/16W, 1%, 0402
Std
Std
1
R19
Resistor, Chip, 41.2 kΩ, 1/16W, 1%, 0402
Std
Std
1
R22
Resistor, Chip, 19.1 kΩ, 1/16 W, 1%, 0402
Std
Std
1
R23
Resistor, Chip, 24.9 kΩ, 1/16 W, 1%, 0402
Std
Std
4
TP1, TP2, TP3, TP4
Test Point, Miniature, SMT
5019
Keystone
1
U1
IC, LM25149-Q1, 42-V Synchronous Buck Controller, VQFN-24
LM25149QRGYRQ1
TI
1
PCB1
PCB, FR4, 6 layer, 2 oz, 70 mm × 40 mm
PCB
—
SNVU773A – MARCH 2021 – REVISED APRIL 2022
Submit Document Feedback
LM25149-Q1 EVM User's Guide
Copyright © 2022 Texas Instruments Incorporated
17
EVM Documentation
www.ti.com
7.3 PCB Layout
Figure 7-2 through Figure 7-9 show the design of the LM25149-Q1 EVM using a six-layer PCB with 2-oz copper
thickness. The power stage is essentially a single-sided design and the input filtering is located on the bottom
side.
Figure 7-2. Top Copper (Top View)
Figure 7-3. Layer 2 Copper (Top View)
18
LM25149-Q1 EVM User's Guide
SNVU773A – MARCH 2021 – REVISED APRIL 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
www.ti.com
EVM Documentation
Figure 7-4. Layer 3 Copper (Top View)
Figure 7-5. Layer 4 Copper (Top View)
SNVU773A – MARCH 2021 – REVISED APRIL 2022
Submit Document Feedback
LM25149-Q1 EVM User's Guide
Copyright © 2022 Texas Instruments Incorporated
19
EVM Documentation
www.ti.com
Figure 7-6. Layer 5 Copper (Top View)
Figure 7-7. Bottom Copper (Top View)
20
LM25149-Q1 EVM User's Guide
SNVU773A – MARCH 2021 – REVISED APRIL 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
www.ti.com
EVM Documentation
7.4 Component Drawings
Figure 7-8. Top Component Drawing
Figure 7-9. Bottom Component Drawing
SNVU773A – MARCH 2021 – REVISED APRIL 2022
Submit Document Feedback
LM25149-Q1 EVM User's Guide
Copyright © 2022 Texas Instruments Incorporated
21
Device and Documentation Support
www.ti.com
8 Device and Documentation Support
8.1 Device Support
8.1.1 Development Support
For development support see the following:
•
•
•
For TI's reference design library, visit TI reference designs
For TI's WEBENCH Design Environments, visit the WEBENCH® Design Center
LM25149-Q1 DC/DC Controller Quickstart Calculator
8.2 Documentation Support
8.2.1 Related Documentation
For related documentation see the following:
•
•
•
•
•
LM25149-Q1 3.5-V to 42-V Synchronous Buck DC/DC Controller Data Sheet
Improve High-current DC/DC Regulator Performance for Free with Optimized Power Stage Layout
Application Brief
Reduce Buck Converter EMI and Voltage Stress by Minimizing Inductive Parasitics Analog Applications
Journal
AN-2162 Simple Success with Conducted EMI from DC-DC Converters Application Report
White Papers:
– Valuing Wide VIN, Low EMI Synchronous Buck Circuits for Cost-driven, Demanding Applications
– An Overview of Conducted EMI Specifications for Power Supplies
– An Overview of Radiated EMI Specifications for Power Supplies
8.2.1.1 PCB Layout Resources
•
•
•
•
•
AN-1149 Layout Guidelines for Switching Power Supplies Application Report
AN-1229 Simple Switcher PCB Layout Guidelines Application Report
Constructing Your Power Supply – Layout Considerations Power Supply Design Seminar
Low Radiated EMI Layout Made SIMPLE with LM4360x and LM4600x Application Report
Power House Blogs:
– High-Density PCB Layout of DC-DC Converters
8.2.1.2 Thermal Design Resources
•
•
•
•
•
•
•
AN-2020 Thermal Design by Insight, Not Hindsight Application Report
AN-1520 A Guide to Board Layout for Best Thermal Resistance for Exposed Pad Packages Application
Report
Semiconductor and IC Package Thermal Metrics Application Report
Thermal Design Made Simple with LM43603 and LM43602 Application Report
PowerPAD Thermally Enhanced Package Application Report
PowerPAD Made Easy Application Brief
Using New Thermal Metrics Application Report
9 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision * (March 2021) to Revision A (April 2022)
Page
• Updated simplified schematic values for C3, R1, and R2...................................................................................5
• Updated schematic........................................................................................................................................... 16
• Updated BOM entries....................................................................................................................................... 17
22
LM25149-Q1 EVM User's Guide
SNVU773A – MARCH 2021 – REVISED APRIL 2022
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated