0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LM2902KAVQPWR

LM2902KAVQPWR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    TSSOP14

  • 描述:

    LM2902KAV QUADRUPLE OPERATIONAL

  • 详情介绍
  • 数据手册
  • 价格&库存
LM2902KAVQPWR 数据手册
LM124, LM124A, LM224, LM224A, LM224K, LM224KA LM324, LM324A, LM324B, LM324K, LM324KA LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV SLOS066Y – SEPTEMBER 1975 – REVISED OCTOBER 2022 LMx24, LMx24x, LMx24xx, LM2902, LM2902x, LM2902xx, LM2902xxx Quadruple Operational Amplifiers The LM324B and LM2902B op amps simplify circuit design with enhanced features such as unity-gain stability, lower offset voltage maximum of 3 mV (2 mV maximum for LM324BA and LM2902BA), and lower quiescent current of 240 µA per amplifier (typical). High ESD (2 kV, HBM) and integrated EMI and RF filters enable the LM324B and LM2902B devices to be used in the most rugged, environmentally challenging applications. 1 Features • • • • • • • Wide supply range: 3 V to 36 V (B, BA versions) Low input offset voltage maximum at 25°C: ±2 mV (BA versions, LM2902A, LM124A) 2-kV ESD protection (HBM) (B, BA, K versions) Internal RF and EMI filter (B, BA versions) Common-mode input voltage range includes V– Input voltage differential can be driven up to supply voltage On products compliant to MIL-PRF-38535, all parameters are tested unless otherwise noted. On all other products, production processing does not necessarily include testing of all parameters. Device Information PART NUMBER(1) 2 Applications • • • • • • • • PACKAGE LM324B(2), LM324BA(2), LM2902B(2), LM2902BA(2), SOIC (14) LM324xx, LM224xx, LM124, LM2902xxx Merchant network and server power supply units Multi-function printers Power supplies and mobile chargers Desktop PC and motherboard Indoor and outdoor air conditioners Washers, dryers, and refrigerators AC inverters, string inverters, central inverters, and voltage frequency drives Uninterruptible power supplies 3 Description BODY SIZE (NOM) 8.65 mm × 3.91 mm LM324B, LM324BA(2), LM2902B, LM2902BA(2), LM324xx, LM124, LM2902xxx TSSOP (14) 5.00 mm × 4.40 mm LM324xx, LM224xx, LM2902xxx PDIP (14) 19.30 mm × 6.35 mm LM324, LM324A, LM324K, LM324KA, LM2902, LM2902K SO (14) 9.20 mm × 5.30 mm LM324A, LM2902K SSOP (14) 6.20 mm × 5.30 mm CDIP (14) 19.56 mm × 6.67 mm CFP (14) 9.21 mm × 5.97 mm LM124A The LM324B and LM2902B devices are the LCCC (20) 8.90 mm × 8.90 mm next-generation versions of the industry-standard (1) For all available packages, see the orderable addendum at operational amplifiers (op amps) LM324 and LM2902, the end of the data sheet. which include four high-voltage (36 V) op amps. (2) This product is preview only. These devices provide outstanding value for costsensitive applications, with features including low offset (600 µV, typical), common-mode input range to ground, and high differential input voltage capability. Family Comparison LM324B LM324BA LM2902B LM2902BA LM324 LM324A LM324K LM324KA LM2902 LM2902K LM2902KV LM2902KAV LM224 LM224A LM224K LM224KA LM124 LM124A Units 3 to 36 3 to 36 3 to 30 3 to 30 3 to 26 3 to 26 3 to 30 3 to 30 3 to 30 3 to 30 3 to 30 V Offset voltage (max, 25°C) ±3 ±2 ±3 ±2 ±7 ±3 ±7 ±3 ±7 ±7 ±7 ±2 ±5 ±3 ±5 ±3 ±5 ±2 mV Input bias current at 25 °C (typ / max) 10 / 35 10 / 35 20 / 250 15 / 100 20 / 250 15 / 100 20 / 250 20 / 250 20 / 150 15 / 80 20 / 150 15 / 80 20 / 150 – / 50 nA 2000 2000 500 2000 500 2000 500 2000 500 V −40 to 85 −40 to 125 0 to 70 0 to 70 −40 to 125 −40 to 125 −25 to 85 −25 to 85 −55 to 125 °C SPECIFICATION Supply voltage ESD (HBM) Operating ambient temperature An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. LM124, LM124A, LM224, LM224A, LM224K, LM224KA LM324, LM324A, LM324B, LM324K, LM324KA LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV www.ti.com SLOS066Y – SEPTEMBER 1975 – REVISED OCTOBER 2022 Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 1 3 Description.......................................................................1 4 Revision History.............................................................. 2 5 Pin Configuration and Functions...................................4 6 Specifications.................................................................. 5 6.1 Absolute Maximum Ratings........................................ 5 6.2 ESD Ratings............................................................... 5 6.3 Recommended Operating Conditions.........................5 6.4 Thermal Information....................................................6 6.5 Electrical Characteristics - LM324B and LM324BA.... 7 6.6 Electrical Characteristics - LM2902B and LM2902BA.....................................................................9 6.7 Electrical Characteristics for LMx24 and LM324K.... 11 6.8 Electrical Characteristics for LM2902 and LM2902V..................................................................... 12 6.9 Electrical Characteristics for LMx24A and LM324KA.....................................................................13 6.10 Operating Conditions.............................................. 13 6.11 Typical Characteristics............................................ 14 6.12 Typical Characteristics: All Devices Except B and BA versions.......................................................... 19 7 Parameter Measurement Information.......................... 20 8 Detailed Description......................................................21 8.1 Overview................................................................... 21 8.2 Functional Block Diagram......................................... 21 8.3 Feature Description...................................................22 8.4 Device Functional Modes..........................................22 9 Application and Implementation.................................. 23 9.1 Application Information............................................. 23 9.2 Typical Application.................................................... 23 9.3 Power Supply Recommendations.............................24 9.4 Layout....................................................................... 24 10 Device and Documentation Support..........................26 10.1 Receiving Notification of Documentation Updates..26 10.2 Support Resources................................................. 26 10.3 Trademarks............................................................. 26 10.4 Electrostatic Discharge Caution..............................26 10.5 Glossary..................................................................26 11 Mechanical, Packaging, and Orderable Information.................................................................... 26 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision X (May 2022) to Revision Y (October 2022) Page • Removed preview note from TSSOP-14 B devices in Device Information table................................................ 1 • Updated Description information........................................................................................................................ 1 • Updated LM324B and LM324BA Electrical Characteristics table for RTM revision........................................... 7 • Updated LM2902B and LM2902BA Electrical Characteriscs table for RTM revision......................................... 9 • Added graphs for LM324Bx and LM2902Bx to Typical Characteristics ...........................................................14 Changes from Revision W (March 2015) to Revision X (May 2022) Page • Updated Features to include the B and BA versions.......................................................................................... 1 • Added application links to Applications section.................................................................................................. 1 • Corrected available packages in the Device Information table...........................................................................1 • Added B and BA versions to Device Information table....................................................................................... 1 • Updated package images in the Pin Configuration and Functions section to new format - no specification changes.............................................................................................................................................................. 4 • Renamed GND and Vcc to Vcc- and Vcc+, respectively, in the Pin Functions table .........................................4 • Added B and BA versions to Absolute Maximum Ratings table ........................................................................ 5 • Added the B and BA versions to the ESD Ratings table ................................................................................... 5 • Added B and BA versions to Recommended Operating Conditions table .........................................................5 • Added the Electrical Characteristics - LM324B and LM324BA table .................................................................7 • Added the Electrical Characteristics - LM2902B and LM2902BA table..............................................................9 • Removed Documentation Support and Related Links in the Device and Documentation Support section......26 Changes from Revision V (January 2014) to Revision W (March 2014) Page • Added Applications ............................................................................................................................................ 1 • Added Device Information table..........................................................................................................................1 2 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324K LM324KA LM2902 LM2902B LM2902K LM2902KV LM2902KAV LM124, LM124A, LM224, LM224A, LM224K, LM224KA LM324, LM324A, LM324B, LM324K, LM324KA LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV www.ti.com • SLOS066Y – SEPTEMBER 1975 – REVISED OCTOBER 2022 Added Mechanical, Packaging, and Orderable Information section................................................................. 26 Changes from Revision U (August 2010) to Revision V (January 2014) Page • Updated document to new TI data sheet format - no specification changes...................................................... 1 • Updated Features .............................................................................................................................................. 1 • Removed Ordering Information table..................................................................................................................4 • Added Pin Functions table .................................................................................................................................4 Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324K LM324KA LM2902 LM2902B LM2902K LM2902KV LM2902KAV 3 LM124, LM124A, LM224, LM224A, LM224K, LM224KA LM324, LM324A, LM324B, LM324K, LM324KA LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV www.ti.com SLOS066Y – SEPTEMBER 1975 – REVISED OCTOBER 2022 5 10 3IN+ 2IN± 6 9 3IN± 2OUT 7 8 3OUT 4IN± 2IN+ 19 VCC± 1IN+ 4 18 4IN+ NC 5 17 NC VCC+ 6 16 VCC± NC 7 15 NC 2IN+ 8 14 3IN+ 2IN± 9 Not to scale Figure 5-1. D, DB, J, N, NS, PW, and W Package 14-Pin SOIC, SSOP, CDIP, PDIP, SO, TSSOP, and CFP (Top View) 13 11 3IN± 4 4OUT VCC+ 20 4IN+ 12 12 3OUT 3 NC 1IN+ 1 4IN± 11 13 NC 2 1OUT 1IN± 2 4OUT 10 14 2OUT 1 1IN± 1OUT 3 5 Pin Configuration and Functions Not to scale Figure 5-2. FK Package 20-Pin LCCC (Top View) Table 5-1. Pin Functions PIN LCCC SOIC, TSSOP, PDIP, SSOP, SO, CDIP, and CFP I/O 1IN– 3 2 I Negative input 1IN+ 4 3 I Positive input 1OUT 2 1 O Output 2IN– 9 6 I Negative input 2IN+ 8 5 I Positive input 2OUT 10 7 O Output 3IN– 13 9 I Negative input 3IN+ 14 10 I Positive input 3OUT 12 8 O Output 4IN– 19 13 I Negative input 4IN+ 18 12 I Positive input 4OUT 20 14 O Output VCC- 16 11 — Negative (lowest) supply or ground (for single-supply operation) NC 1, 5, 7, 11, 15, 17 — — Do not connect 6 4 — Positive (highest) supply NAME VCC+ 4 Submit Document Feedback DESCRIPTION Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324K LM324KA LM2902 LM2902B LM2902K LM2902KV LM2902KAV LM124, LM124A, LM224, LM224A, LM224K, LM224KA LM324, LM324A, LM324B, LM324K, LM324KA LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV www.ti.com SLOS066Y – SEPTEMBER 1975 – REVISED OCTOBER 2022 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted)(1) LM324B, LM324BA, LM2902B, LM2902BA MIN MAX LM324xx, LM224xx, LM2902xxx, LM124x LM2902 MIN MAX MIN UNIT MAX Supply voltage, VCC (2) 40 26 32 V Differential input voltage, VID (3) ±40 ±26 ±32 V 32 V 150 °C 260 °C 300 °C 150 °C Input voltage, VI (either input) –0.3 Duration of output short circuit (one amplifier) to ground at (or below) TA = 25°C, VCC ≤ 15 V(4) 40 Unlimited Operating virtual junction temperature, TJ FK package Lead temperature 1.6 mm (1/16 inch) from case for 60 seconds J or W package Storage temperature, Tstg (2) (3) (4) 26 –0.3 Unlimited 150 Case temperature for 60 seconds (1) –0.3 Unlimited 150 300 –65 150 –65 150 –65 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values (except differential voltages and VCC specified for the measurement of IOS) are with respect to the network GND. Differential voltages are at IN+, with respect to IN−. Short circuits from outputs to VCC can cause excessive heating and eventual destruction. 6.2 ESD Ratings VALUE UNIT LM324B, LM324BA, LM2902B, LM2902BA, LM224K, LM224KA, LM324K, LM324KA, LM2902K, LM2902KV, LM2902KAV V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 Charged-device model (CDM), per JEDEC specification JESD22-C101 ±1000 V LM124, LM124A, LM224, LM224A, LM324, LM324A, LM2902 V(ESD) (1) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±500 Charged-device model (CDM), per JEDEC specification JESD22-C101 ±1000 V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) LM324B, LM324BA, LM2902B, LM2902BA MIN LM324xx, LM224xx, LM2902xxx, LM124x LM2902 MAX MIN MAX MIN UNIT MAX VCC Supply voltage 3 36 3 26 3 30 V VCM Common-mode voltage 0 VCC – 2 0 VCC – 2 0 VCC – 2 V –55 125 LM124x TA Operating free air temperature LM2902xxx, LM2902Bx -40 125 LM324Bx -40 85 –40 125 °C LM224xx –25 85 LM324xx 0 70 Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324K LM324KA LM2902 LM2902B LM2902K LM2902KV LM2902KAV 5 LM124, LM124A, LM224, LM224A, LM224K, LM224KA LM324, LM324A, LM324B, LM324K, LM324KA LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV www.ti.com SLOS066Y – SEPTEMBER 1975 – REVISED OCTOBER 2022 6.4 Thermal Information LMx24, LM2902 THERMAL METRIC(1) D (SOIC) DB (SSOP) N (PDIP) NS (SO) PW (TSSOP) FK (LCCC) J (CDIP) W (CFP) UNIT 14 PINS 14 PINS 14 PINS 14 PINS 14 PINS 20 PINS 14 PINS 14 PINS RθJA (2) (3) Junction-toambient thermal resistance 86 86 80 76 113 — — — °C/W RθJC (4) Junction-to-case (top) thermal resistance — — — — — 5.61 15.05 14.65 °C/W (1) (2) (3) (4) 6 LMx24 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Short circuits from outputs to VCC can cause excessive heating and eventual destruction. Maximum power dissipation is a function of TJ(max), RθJA, and TA. The maximum allowable power dissipation at any allowable ambient temperature is PD = (TJ(max) – TA)/RθJA. Operating at the absolute maximum TJ of 150°C can affect reliability. Maximum power dissipation is a function of TJ(max), RθJA, and TC. The maximum allowable power dissipation at any allowable case temperature is PD = (TJ(max) – TC)/RθJC. Operating at the absolute maximum TJ of 150°C can affect reliability. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324K LM324KA LM2902 LM2902B LM2902K LM2902KV LM2902KAV LM124, LM124A, LM224, LM224A, LM224K, LM224KA LM324, LM324A, LM324B, LM324K, LM324KA LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV www.ti.com SLOS066Y – SEPTEMBER 1975 – REVISED OCTOBER 2022 6.5 Electrical Characteristics - LM324B and LM324BA For VS = (V+) – (V–) = 5 V to 36 V (±2.5 V to ±18 V), at TA = 25°C, VCM = VOUT = VS / 2, and RL = 10k connected to VS / 2 (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX ±0.6 ±3.0 UNIT OFFSET VOLTAGE LM324B VOS TA = –40°C to 85°C Input offset voltage LM324BA dVOS/dT Input offset voltage drift PSRR Input offset voltage versus power supply Channel separation ±4.0 ±0.3 ±2 TA = –40°C to 85°C RS = 0 Ω mV 2.5 TA = –40°C to 85°C 65 f = 1 kHz to 20 kHz ±7 μV/°C 100 dB 120 dB INPUT VOLTAGE RANGE VCM Common-mode voltage range VS = 3 V to 36 V CMRR Common-mode rejection ratio (V–) ≤ VCM ≤ (V+) – 1.5 V VS = 3 V to 36 V (V–) ≤ VCM ≤ (V+) – 2 V VS = 5 V to 36 V VS = 5 V to 36 V TA = –40°C to 85°C TA = –40°C to 85°C V– (V+) – 1.5 V– (V+) – 2 70 80 65 80 V dB INPUT BIAS CURRENT IB Input bias current dIOS/dT Input offset current drift IOS Input offset current dIOS/dT Input offset current drift -10 TA = –40°C to 85°C -35 -60 TA = –40°C to 85°C 10 ±0.5 TA = –40°C to 85°C pA/°C ±4 ±5 TA = –40°C to 85°C nA 10 nA pA/°C NOISE EN Input voltage noise f = 0.1 to 10 Hz eN Input voltage noise density RS = 100 Ω, VI = 0 V, f = 1 kHz (see Figure 7-2 for test circuit) 3 μVPP 35 nV/√Hz 10 || 0.1 MΩ || pF 4 || 1.5 GΩ || pF INPUT CAPACITANCE ZID Differential ZICM Common-mode OPEN-LOOP GAIN AOL Open-loop voltage gain VS = 15 V, VO = 1 V to 11 V, RL ≥ 10 kΩ, connected to (V-) 50 TA = –40°C to 85°C 100 V/mV 25 FREQUENCY RESPONSE GBW Gain-bandwidth product RL = 1 MΩ, CL = 20 pF (see Figure 7-1 for test circuit) 1.2 MHz SR Slew rate RL = 1 MΩ, CL = 30 pF, VI = ±10 V (see Figure 7-1 for test circuit) 0.5 V/μs Θm Phase margin G = + 1, RL = 10 kΩ, CL = 20 pF 56 ° tS Settling time To 0.1%, VS = 5 V, 2-V Step , G = +1, CL = 100 pF 4 μs Overload recovery time VIN × gain > VS 10 μs Total harmonic distortion + noise G = + 1, f = 1 kHz, VO = 3.53 VRMS, VS = 36 V, RL = 100 k, IOUT ≤ 50 µA, BW = 80 kHz THD+N 0.001% OUTPUT VO VO VO VO Positive Rail (V+) Voltage output swing from rail VO Negative Rail (V-) VS = 5 V, RL ≤ 10 kΩ connected to (V–) VO VS = 15 V; VO = V-; VID = 1 V IO Output current VS = 15 V; VO = V+; VID = -1 V Source Sink VID = -1 V; VO = (V-) + 200 mV ISC Short-circuit current CLOAD Capacitive load drive VS = 20 V, (V+) = 10 V, (V-) = -10 V, VO = 0 V Copyright © 2022 Texas Instruments Incorporated IOUT = -50 µA 1.35 1.5 V IOUT = -1 mA 1.4 1.6 V IOUT = -5 mA 1.5 1.75 V IOUT = 50 µA 100 150 mV IOUT = 1 mA 0.75 1 V 5 20 mV TA = –40°C to 85°C -20(1) TA = –40°C to 85°C 10(1) TA = –40°C to 85°C -30 mA -10(1) mA 20 mA 5(1) 50 mA 85 ±40 100 μA ±60 mA pF Submit Document Feedback Product Folder Links: LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324K LM324KA LM2902 LM2902B LM2902K LM2902KV LM2902KAV 7 LM124, LM124A, LM224, LM224A, LM224K, LM224KA LM324, LM324A, LM324B, LM324K, LM324KA LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV www.ti.com SLOS066Y – SEPTEMBER 1975 – REVISED OCTOBER 2022 6.5 Electrical Characteristics - LM324B and LM324BA (continued) For VS = (V+) – (V–) = 5 V to 36 V (±2.5 V to ±18 V), at TA = 25°C, VCM = VOUT = VS / 2, and RL = 10k connected to VS / 2 (unless otherwise noted) PARAMETER RO Open-loop output impedance TEST CONDITIONS MIN f = 1 MHz, IO = 0 A TYP MAX 300 UNIT Ω POWER SUPPLY IQ (1) 8 Quiescent current per amplifier VS = 5 V; IO = 0 A TA = –40°C to 85°C 240 300 μA VS = 36 V; IO = 0 A TA = –40°C to 85°C 350 750 μA Specified by design and characterization only. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324K LM324KA LM2902 LM2902B LM2902K LM2902KV LM2902KAV LM124, LM124A, LM224, LM224A, LM224K, LM224KA LM324, LM324A, LM324B, LM324K, LM324KA LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV www.ti.com SLOS066Y – SEPTEMBER 1975 – REVISED OCTOBER 2022 6.6 Electrical Characteristics - LM2902B and LM2902BA For VS = (V+) – (V–) = 5 V to 36 V (±2.5 V to ±18 V), at TA = 25°C, VCM = VOUT = VS / 2, and RL = 10k connected to VS / 2 (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX ±0.6 ±3.0 UNIT OFFSET VOLTAGE LM2902B VOS TA = –40°C to 125°C Input offset voltage LM2902BA dVOS/dT Input offset voltage drift PSRR Input offset voltage versus power supply Channel separation ±4.0 ±0.3 ±2 TA = –40°C to 125°C RS = 0 Ω mV 2.5 TA = –40°C to 125°C 65 f = 1 kHz to 20 kHz ±7 μV/°C 100 dB 120 dB INPUT VOLTAGE RANGE VCM Common-mode voltage range VS = 3 V to 36 V CMRR Common-mode rejection ratio (V–) ≤ VCM ≤ (V+) – 1.5 V VS = 3 V to 36 V (V–) ≤ VCM ≤ (V+) – 2 V VS = 5 V to 36 V VS = 5 V to 36 V TA = –40°C to 125°C TA = –40°C to 125°C V– (V+) – 1.5 V– (V+) – 2 70 80 65 80 V dB INPUT BIAS CURRENT IB Input bias current dIOS/dT Input offset current drift IOS Input offset current dIOS/dT Input offset current drift -10 TA = –40°C to 125°C -35 -50 TA = –40°C to 125°C 10 ±0.5 TA = –40°C to 125°C pA/°C ±4 ±5 TA = –40°C to 125°C nA 10 nA pA/°C NOISE EN Input voltage noise f = 0.1 to 10 Hz eN Input voltage noise density RS = 100 Ω, VI = 0 V, f = 1 kHz (see Figure 7-2 for test circuit) 3 μVPP 35 nV/√Hz 10 || 0.1 MΩ || pF 4 || 1.5 GΩ || pF INPUT CAPACITANCE ZID Differential ZICM Common-mode OPEN-LOOP GAIN AOL Open-loop voltage gain VS = 15 V, VO = 1 V to 11 V, RL ≥ 10 kΩ, connected to (V-) 50 TA = –40°C to 125°C 100 V/mV 25 FREQUENCY RESPONSE GBW Gain-bandwidth product RL = 1 MΩ, CL = 20 pF (see Figure 7-1 for test circuit) 1.2 MHz SR Slew rate RL = 1 MΩ, CL = 30 pF, VI = ±10 V (see Figure 7-1 for test circuit) 0.5 V/μs Θm Phase margin G = + 1, RL = 10 kΩ, CL = 20 pF 56 ° tS Settling time To 0.1%, VS = 5 V, 2-V Step , G = +1, CL = 100 pF 4 μs Overload recovery time VIN × gain > VS 10 μs Total harmonic distortion + noise G = + 1, f = 1 kHz, VO = 3.53 VRMS, VS = 36 V, RL = 100 k, IOUT ≤ 50 µA, BW = 80 kHz THD+N 0.001% OUTPUT VO VO VO VO Positive Rail (V+) Voltage output swing from rail VO Negative Rail (V-) VS = 5 V, RL ≤ 10 kΩ connected to (V–) VO VS = 15 V; VO = V-; VID = 1 V IO Output current VS = 15 V; VO = V+; VID = -1 V Source Sink VID = -1 V; VO = (V-) + 200 mV ISC Short-circuit current CLOAD Capacitive load drive VS = 20 V, (V+) = 10 V, (V-) = -10 V, VO = 0 V Copyright © 2022 Texas Instruments Incorporated IOUT = -50 µA 1.35 1.5 V IOUT = -1 mA 1.4 1.6 V IOUT = -5 mA 1.5 1.75 V IOUT = 50 µA 100 150 mV IOUT = 1 mA 0.75 1 V 5 20 mV TA = –40°C to 125°C -20(1) TA = –40°C to 125°C 10(1) TA = –40°C to 125°C -30 mA -10(1) mA 20 mA 5(1) 50 mA 85 ±40 100 μA ±60 mA pF Submit Document Feedback Product Folder Links: LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324K LM324KA LM2902 LM2902B LM2902K LM2902KV LM2902KAV 9 LM124, LM124A, LM224, LM224A, LM224K, LM224KA LM324, LM324A, LM324B, LM324K, LM324KA LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV www.ti.com SLOS066Y – SEPTEMBER 1975 – REVISED OCTOBER 2022 6.6 Electrical Characteristics - LM2902B and LM2902BA (continued) For VS = (V+) – (V–) = 5 V to 36 V (±2.5 V to ±18 V), at TA = 25°C, VCM = VOUT = VS / 2, and RL = 10k connected to VS / 2 (unless otherwise noted) PARAMETER RO Open-loop output impedance TEST CONDITIONS MIN f = 1 MHz, IO = 0 A TYP MAX 300 UNIT Ω POWER SUPPLY IQ (1) 10 Quiescent current per amplifier VS = 5 V; IO = 0 A TA = –40°C to 125°C VS = 36 V; IO = 0 A TA = –40°C to 125°C 240 300 μA 750 μA Specified by design and characterization only. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324K LM324KA LM2902 LM2902B LM2902K LM2902KV LM2902KAV LM124, LM124A, LM224, LM224A, LM224K, LM224KA LM324, LM324A, LM324B, LM324K, LM324KA LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV www.ti.com SLOS066Y – SEPTEMBER 1975 – REVISED OCTOBER 2022 6.7 Electrical Characteristics for LMx24 and LM324K at specified free-air temperature, VCC = 5 V (unless otherwise noted) TEST CONDITIONS(1) PARAMETER VIO Input offset voltage VCC = 5 V to MAX, VIC = VICRmin, VO = 1.4 V IIO Input offset current VO = 1.4 V IIB Input bias current VO = 1.4 V VICR Common-mode input voltage range VCC = 5 V to MAX TA (2) 25°C VCC = MAX 25°C 2 –20 50 150 –150 –20 –300 –250 –500 0 to VCC – 1.5 0 to VCC – 1.5 0 to VCC – 2 0 to VCC – 2 VCC – 1.5 VCC – 1.5 nA nA V 28 25°C 50 100 Full range 25 25°C 70 80 65 80 dB 25°C 65 100 65 100 dB VIC = VICRmin kSVR Supply-voltage rejection ratio (ΔVCC /ΔVIO) VO1/ VO2 Crosstalk attenuation Full range 25°C VCC = 15 V, VID = 1 V, VO = 0 25°C –20 Full range –10 25°C 10 Source Sink 26 5 f = 1 kHz to 20 kHz VID = –1 V, VO = 200 mV (2) (3) 30 100 mV 27 Common-mode rejection ratio (1) 9 Full range CMRR Supply current (four amplifiers) 7 RL ≥ 10 kΩ AVD ICC 3 UNIT 26 VCC+ = 15 V, VO = 1 V to 11 V, RL ≥ 2 kΩ Short-circuit output current MAX Full range RL ≤ 10 kΩ VCC = 15 V, VID = –1 V, VO = 15 V TYP(3) RL = 2 kΩ Large-signal differential voltage amplification IOS 2 25°C Low-level output voltage Output current 5 Full range VOL IO 3 MIN 7 25°C RL = 2 kΩ High-level output voltage MAX Full range Full range LM324, LM324K TYP(3) Full range 25°C VOH LM124, LM224 MIN 28 25 100 20 5 5 25°C 12 20 –30 120 –60 –20 –30 mV V/mV 15 120 Full range V 27 dB –60 –10 20 10 30 12 mA 20 5 30 μA VCC at 5 V, VO = 0, VCC- at –5 V 25°C ±40 ±60 ±40 ±60 VO = 2.5 V, no load Full range 0.7 1.2 0.7 1.2 VCC = MAX, VO = 0.5 VCC, no load Full range 1.4 3 1.4 3 mA mA All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX VCC for testing purposes is 26 V for LM2902 and 30 V for the others. Full range is –55°C to +125°C for LM124, –25°C to +85°C for LM224, and 0°C to 70°C for LM324. All typical values are at TA = 25°C. Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324K LM324KA LM2902 LM2902B LM2902K LM2902KV LM2902KAV 11 LM124, LM124A, LM224, LM224A, LM224K, LM224KA LM324, LM324A, LM324B, LM324K, LM324KA LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV www.ti.com SLOS066Y – SEPTEMBER 1975 – REVISED OCTOBER 2022 6.8 Electrical Characteristics for LM2902 and LM2902V at specified free-air temperature, VCC = 5 V (unless otherwise noted) PARAMETER TEST CONDITIONS(1) VIO Input offset voltage Non-A-suffix VCC = 5 V to MAX, devices VIC = VICRmin, VO = 1.4 V A-suffix devices ΔVIO/ΔT Input offset voltage temperature drift RS = 0 Ω IIO Input offset current ΔIIO/ΔT Input offset voltage temperature drift IIB Input bias current TA (2) 25°C Common-mode input voltage range VOL Full range VCC = MAX AVD Large-signal differential voltage amplification CMRR Common-mode rejection ratio VIC = VICRmin kSVR Supply-voltage rejection ratio (ΔVCC /ΔVIO) VO1/ VO2 Crosstalk attenuation Short-circuit output current ICC Supply current (four amplifiers) (1) (2) (3) 12 2 mV 4 2 50 2 300 μV/°C 50 150 10 –20 Full range 25°C UNIT 7 7 25°C VCC = 5 V to MAX MAX 10 1 Full range VO = 1.4 V VCC = 15 V, VO = 1 V to 11 V, RL ≥ 2 kΩ IOS 3 Ful range RL ≤ 10 kΩ Output current 7 TYP(3) 10 25°C VO = 1.4 V Low-level output voltage IO MIN Ful range RL = 10 kΩ High-level output voltage 3 MAX 25°C Full range VOH LM2902V TYP(3) Full range 25°C VICR LM2902 MIN –250 –20 –500 pA/°C –250 –500 0 to VCC – 1.5 0 to VCC – 1.5 0 to VCC – 2 0 to VCC – 2 VCC – 1.5 VCC – 1.5 nA nA V V RL = 2 kΩ Full range 22 RL ≥ 10 kΩ Full range 23 24 25°C 25 100 Full range 15 25°C 50 80 60 80 dB 25°C 50 100 60 100 dB Full range 26 5 f = 1 kHz to 20 kHz 25°C VCC = 15 V, VID = 1 V, VO = 0 25°C –20 Source Full range –10 VCC = 15 V, VID = –1 V, VO = 15 V 25°C 10 Sink Full range 5 27 20 5 25 20 V/mV 15 120 –30 120 –60 –20 mV 100 –30 dB –60 –10 20 10 12 mA 20 5 VID = –1 V, VO = 200 mV 25°C 30 VCC at 5 V, VO = 0, VCC- at –5 V 25°C ±40 ±60 ±40 40 ±60 μA VO = 2.5 V, no load Full range 0.7 1.2 0.7 1.2 VCC = MAX, VO = 0.5 VCC, no load Full range 1.4 3 1.4 3 mA mA All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. MAX VCC for testing purposes is 26 V for LM2902 and 32 V for LM2902V. Full range is –40°C to +125°C for LM2902. All typical values are at TA = 25°C. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324K LM324KA LM2902 LM2902B LM2902K LM2902KV LM2902KAV LM124, LM124A, LM224, LM224A, LM224K, LM224KA LM324, LM324A, LM324B, LM324K, LM324KA LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV www.ti.com SLOS066Y – SEPTEMBER 1975 – REVISED OCTOBER 2022 6.9 Electrical Characteristics for LMx24A and LM324KA at specified free-air temperature, VCC = 5 V (unless otherwise noted) PARAMETER TEST CONDITIONS(1) VIO Input offset voltage VCC = 5 V to 30 V, VIC = VICRmin, VO = 1.4 V IIO Input offset current VO = 1.4 V IIB Input bias current VO = 1.4 V VICR Common-mode input voltage range 25°C –50 Full range –100 50 mV nA nA V V 27 28 20 mV Full range 25 25 25°C 70 70 80 65 80 dB 25°C 65 65 100 65 100 dB –20 120 –20 Full range –10 –10 25°C 10 10 25 20 50 25°C 100 5 25°C 25°C Sink UNIT 26 28 5 100 –100 –200 VCC – 1.5 VCC = 15 V, VID = 1 V, VO = 0 VCC = 15 V, VID = –1 V, VO = 15 V –15 0 to VCC – 2 f = 1 kHz to 20 kHz Source –80 0 to VCC – 2 20 30 75 0 to VCC − 2 27 Crosstalk attenuation 3 2 0 to VCC – 1.5 27 VO1/ VO2 2 15 0 to VCC – 1.5 Full range Supply-voltage rejection ratio (ΔVCC /ΔVIO) MAX 5 0 to VCC − 1.5 Full range TYP(3) –100 RL≥ 10 kΩ kSVR 3 –15 26 VIC = VICRmin 2 MIN 30 VCC – 1.5 Common-mode rejection ratio MAX 2 26 CMRR (1) (2) (3) 30 VCC − 1.5 VCC = 15 V, VO = 1 V to 11 V, RL ≥ 2 kΩ Supply current (four amplifiers) 10 25°C Large-signal differential voltage amplification ICC 25°C Full range LM324A, LM324KA TYP(3) 4 Full range AVD IOS 4 MIN RL= 2 kΩ RL ≤ 10 kΩ Short-circuit output current LM224A MAX Full range Full range Low-level output voltage Output current TYP(3) 2 VCC = 30 V VOL IO LM124A MIN 25°C 25°C RL = 2 kΩ High-level output voltage VCC = 30 V VOH TA (2) 100 V/mV 15 120 –30 120 –60 –20 –30 dB –60 –10 20 1 30 12 mA 20 Full range 5 5 VID = −1 V, VO = 200 mV 25°C 12 12 5 VCC at 5 V, VCC- at –5 V, VO = 0 25°C ±40 ±60 ±40 ±60 ±40 ±60 VO = 2.5 V, no load Full range 0.7 1.2 0.7 1.2 0.7 1.2 VCC = 30 V, VO = 15 V, no load Full range 1.4 3. 1.4 3 1.4 3 30 μA mA mA All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. Full range is –55°C to +125°C for LM124A, –25°C to +85°C for LM224A, and 0°C to 70°C for LM324A. All typical values are at TA = 25°C. 6.10 Operating Conditions VCC = ±15 V, TA = 25°C PARAMETER TEST CONDITIONS TYP UNIT SR Slew rate at unity gain RL = 1 MΩ, CL = 30 pF, VI = ±10 V (see Figure 7-1) 0.5 V/μs B1 Unity-gain bandwidth RL = 1 MΩ, CL = 20 pF (see Figure 7-1) 1.2 MHz Vn Equivalent input noise voltage RS = 100 Ω, VI = 0 V, f = 1 kHz (see Figure 7-2) 35 nV/√Hz Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324K LM324KA LM2902 LM2902B LM2902K LM2902KV LM2902KAV 13 LM124, LM124A, LM224, LM224A, LM224K, LM224KA LM324, LM324A, LM324B, LM324K, LM324KA LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV www.ti.com SLOS066Y – SEPTEMBER 1975 – REVISED OCTOBER 2022 6.11 Typical Characteristics This typical characteristics section is applicable for LM324B and LM2902B. Typical characteristics data in this section was taken with TA = 25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted). 20 17.5 Amplifiers (%) 15 12.5 10 7.5 5 2.5 0 -3000 -1800 -600 600 1800 3000 Offset Voltage (µV) Figure 6-1. Offset Voltage Production Distribution Figure 6-2. Offset Voltage Drift Distribution 3000 2400 1800 VOS (µV) 1200 600 0 -600 -1200 -1800 -2400 -3000 -18 150 90 135 80 120 70 105 60 90 50 75 40 60 30 45 10 0 -10 -20 100 30 10k 100k Frequency (Hz) -2 2 VCM (V) 6 10 14 15 Gain, VS = 36 V Phase, VS = 36 V Gain, VS = 5 V Phase, VS = 5 V 1k -6 Figure 6-4. Offset Voltage vs Common-Mode Voltage 100 20 -10 Phase (degree) Gain (dB) Figure 6-3. Offset Voltage vs Temperature -14 0 -15 -30 1M Figure 6-5. Open-Loop Gain and Phase vs Frequency Figure 6-6. Closed-Loop Gain vs Frequency 14 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324K LM324KA LM2902 LM2902B LM2902K LM2902KV LM2902KAV LM124, LM124A, LM224, LM224A, LM224K, LM224KA LM324, LM324A, LM324B, LM324K, LM324KA LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV www.ti.com SLOS066Y – SEPTEMBER 1975 – REVISED OCTOBER 2022 6.11 Typical Characteristics (continued) This typical characteristics section is applicable for LM324B and LM2902B. Typical characteristics data in this section was taken with TA = 25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted). Figure 6-7. Output Voltage Swing vs Output Current (Sourcing) Figure 6-8. Common-Mode Rejection Ratio vs Temperature (dB) 16 Amplitude (500 nV/div) Power-Supply Rejection Ratio (µV/V) 20 12 8 4 0 -40 -20 0 20 40 60 Temperature (°C) 80 100 120 Time (1 s/div) VS = 5 V to 36 V Figure 6-10. 0.1-Hz to 10-Hz Noise Figure 6-9. Power Supply Rejection Ratio vs Temperature (dB) -40 -50 RL = 2 k RL = 10 k THD+N (dB) -60 -70 -80 -90 -100 -110 100 Figure 6-11. Input Voltage Noise Spectral Density vs Frequency 1k Frequency (Hz) 10k G = 1, f = 1 kHz, BW = 80 kHz, VOUT = 10 VPP, RL connected to V– Figure 6-12. THD+N Ratio vs Frequency, G = 1 Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324K LM324KA LM2902 LM2902B LM2902K LM2902KV LM2902KAV 15 LM124, LM124A, LM224, LM224A, LM224K, LM224KA LM324, LM324A, LM324B, LM324K, LM324KA LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV www.ti.com SLOS066Y – SEPTEMBER 1975 – REVISED OCTOBER 2022 6.11 Typical Characteristics (continued) This typical characteristics section is applicable for LM324B and LM2902B. Typical characteristics data in this section was taken with TA = 25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted). G = –1, f = 1 kHz, BW = 80 kHz, VOUT = 10 VPP, RL connected to V– See Section 7 G = 1, f = 1 kHz, BW = 80 kHz, RL connected to V– Figure 6-13. THD+N Ratio vs Frequency, G = –1 Figure 6-14. THD+N vs Output Amplitude, G = 1 600 -40°C 25°C 125°C IQ (µA) 500 400 300 200 100 3 6 9 12 15 18 21 24 Supply Voltage (V) 27 30 33 36 G = –1, f = 1 kHz, BW = 80 kHz, RL connected to V– See Section 7 Figure 6-16. Quiescent Current vs Supply Voltage Figure 6-15. THD+N vs Output Amplitude, G = –1 650 10000 Open-Loop Output Impedance () VS = 5 V VS = 36 V 600 550 IQ (µA) 500 450 400 350 300 250 200 150 -40 0 20 40 60 Temperature (°C) 80 100 Figure 6-17. Quiescent Current vs Temperature 16 1000 500 300 200 100 50 30 20 10 1k -20 Submit Document Feedback 120 IOUT = 0 mA IOUT = 5 mA 5000 3000 2000 10k 100k Frequency (Hz) 1M 10M Figure 6-18. Open-Loop Output Impedance vs Frequency Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324K LM324KA LM2902 LM2902B LM2902K LM2902KV LM2902KAV LM124, LM124A, LM224, LM224A, LM224K, LM224KA LM324, LM324A, LM324B, LM324K, LM324KA LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV www.ti.com SLOS066Y – SEPTEMBER 1975 – REVISED OCTOBER 2022 6.11 Typical Characteristics (continued) This typical characteristics section is applicable for LM324B and LM2902B. Typical characteristics data in this section was taken with TA = 25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted). 30 10 RISO = 0 , overshoot (+) RISO = 0 , overshoot (−) 9 8 7 20 Overshoot (%) Overshoot (%) 25 15 10 6 5 4 3 2 5 RISO = 0 , overshoot (+) RISO = 0 , overshoot (−) 0 0 50 100 150 200 250 Capacitive Load (pF) 300 1 0 350 0 G = 1, 100-mV output step, RL = open 40 80 120 Capacitive Load (pF) 160 200 G = –1, 100-mV output step, RL = open Figure 6-20. Small-Signal Overshoot vs Capacitive Load Amplitude (2 V/div) Figure 6-19. Small-Signal Overshoot vs Capacitive Load Input Output Time (500 ns/div) G = –10 G = +1, RL = 10 kΩ, CL = 20 pF Figure 6-22. Overload Recovery (Positive Rail) Figure 6-21. Phase Margin vs Capacitive Load Input Output Amplitude (2 V/div) Amplitude (2 mV/div) Input Output Time (1 s/div) Time (20 µs/div) G = –10 G = 1, RL = open Figure 6-23. Overload Recovery (Negative Rail) Figure 6-24. Small-Signal Step Response, G = 1 Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324K LM324KA LM2902 LM2902B LM2902K LM2902KV LM2902KAV 17 LM124, LM124A, LM224, LM224A, LM224K, LM224KA LM324, LM324A, LM324B, LM324K, LM324KA LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV www.ti.com SLOS066Y – SEPTEMBER 1975 – REVISED OCTOBER 2022 6.11 Typical Characteristics (continued) Amplitude (2 mV/div) This typical characteristics section is applicable for LM324B and LM2902B. Typical characteristics data in this section was taken with TA = 25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted). Input Output Time (20 µs/div) G = –1, RL = open, RFB = 10K See Section 7 G = 1, RL = open Figure 6-26. Large-Signal Step Response, G = 1 Amplitude (1 V/div) Figure 6-25. Small-Signal Step Response, G = –1 Input Output Time (20 µs/div) G = –1, RL = open Figure 6-27. Large-Signal Step Response, G = –1 18 Submit Document Feedback Figure 6-28. Short-Circuit Current vs Temperature Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324K LM324KA LM2902 LM2902B LM2902K LM2902KV LM2902KAV LM124, LM124A, LM224, LM224A, LM224K, LM224KA LM324, LM324A, LM324B, LM324K, LM324KA LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV www.ti.com SLOS066Y – SEPTEMBER 1975 – REVISED OCTOBER 2022 6.12 Typical Characteristics: All Devices Except B and BA versions 8 Output Voltage Referenced to +Vcc (V) 10 Output Voltage (V) 5 3 2 1 0.5 0.3 0.2 0.1 0.05 0.03 0.02 VCC = 15 V VCC = 5 V VCC = 30 V 0.01 0.001 0.01 0.1 0.2 0.5 1 2 3 5 710 20 Output Sink Current (mA) VCC = 15 V 7 6 5 4 3 2 1 0.001 50 100 D001 Figure 6-29. Output Sinking Characteristics 0.01 0.1 0.2 0.5 1 2 3 5 710 20 Output Source Current (mA) 50 100 D002 Figure 6-30. Output Sourcing Characteristics 0.09 3.25 3 0.08 2.75 0.07 Output Voltage (V) 2.5 Iout (A) 0.06 0.05 0.04 0.03 2.25 2 1.75 1.5 1.25 1 0.02 Input Output 0.75 0.01 0.5 0 -55 -40 -25 -10 0.25 5 20 35 50 65 Temperature (qC) 80 5 D003 10 15 20 25 30 Time (PS) 35 40 45 50 D004 Figure 6-32. Voltage Follower Large Signal Response (50 pF) Figure 6-31. Source Current Limiting 90 20 80 17.5 70 Output Swing (Vpp) Common-Mode Rejection Ratio (dB) 0 95 110 125 60 50 40 30 15 12.5 10 7.5 5 20 2.5 10 0 100 200 500 1000 10000 Frequency (Hz) 100000 Figure 6-33. Common-Mode Rejection Ratio Copyright © 2022 Texas Instruments Incorporated 1000000 D006 0 1000 2000 5000 10000 100000 Frequency (Hz) 1000000 D007 Figure 6-34. Maximum Output Swing vs. Frequency (VCC = 15 V) Submit Document Feedback Product Folder Links: LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324K LM324KA LM2902 LM2902B LM2902K LM2902KV LM2902KAV 19 LM124, LM124A, LM224, LM224A, LM224K, LM224KA LM324, LM324A, LM324B, LM324K, LM324KA LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV www.ti.com SLOS066Y – SEPTEMBER 1975 – REVISED OCTOBER 2022 7 Parameter Measurement Information 900 Ω VCC+ VCC+ − VI VO + 100 Ω − VI = 0 V RS VCC− CL RL VO + VCC− Figure 7-2. Noise-Test Circuit Figure 7-1. Unity-Gain Amplifier 20 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324K LM324KA LM2902 LM2902B LM2902K LM2902KV LM2902KAV LM124, LM124A, LM224, LM224A, LM224K, LM224KA LM324, LM324A, LM324B, LM324K, LM324KA LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV www.ti.com SLOS066Y – SEPTEMBER 1975 – REVISED OCTOBER 2022 8 Detailed Description 8.1 Overview These devices consist of four independent high-gain frequency-compensated operational amplifiers that are designed specifically to operate from a single supply over a wide range of voltages. Operation from split supplies is also possible if the difference between the two supplies is 3 V to 36 V (B and BA versions), 3 V to 26 V (for LM2902 devices), or 3 V to 30 V (for all other devices), and VCC is at least 1.5 V more positive than the input common-mode voltage. The low supply-current drain is independent of the magnitude of the supply voltage. Applications include transducer amplifiers, DC amplification blocks, and all the conventional operational-amplifier circuits that can be more easily implemented in single-supply-voltage systems. For example, the LM324B and LM2902B devices can be operated directly from the standard 5-V supply that is used in digital systems and provides the required interface electronics, without requiring additional ±15-V supplies. 8.2 Functional Block Diagram ESD protection cells - available on B, BA, and K versions only Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324K LM324KA LM2902 LM2902B LM2902K LM2902KV LM2902KAV 21 LM124, LM124A, LM224, LM224A, LM224K, LM224KA LM324, LM324A, LM324B, LM324K, LM324KA LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV www.ti.com SLOS066Y – SEPTEMBER 1975 – REVISED OCTOBER 2022 8.3 Feature Description 8.3.1 Unity-Gain Bandwidth Gain bandwidth product is found by multiplying the measured bandwidth of an amplifier by the gain at which that bandwidth was measured. These devices have a high gain bandwidth of 1.2 MHz. 8.3.2 Slew Rate The slew rate is the rate at which an operational amplifier can change the output when there is a change on the input. These devices have a 0.5-V/μs slew rate. 8.3.3 Input Common Mode Range The valid common mode range is from device ground to VCC – 1.5 V (VCC – 2 V across temperature). Inputs may exceed VCC up to the maximum VCC without device damage. At least one input must be in the valid input common mode range for output to be correct phase. If both inputs exceed valid range then output phase is undefined. If either input is less than –0.3 V then input current should be limited to 1 mA and output phase is undefined. 8.4 Device Functional Modes These devices are powered on when the supply is connected. This device can be operated as a single supply operational amplifier or dual supply amplifier depending on the application. 22 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324K LM324KA LM2902 LM2902B LM2902K LM2902KV LM2902KAV LM124, LM124A, LM224, LM224A, LM224K, LM224KA LM324, LM324A, LM324B, LM324K, LM324KA LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV www.ti.com SLOS066Y – SEPTEMBER 1975 – REVISED OCTOBER 2022 9 Application and Implementation Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. 9.1 Application Information The LMx24 and LM2902 operational amplifiers are useful in a wide range of signal conditioning applications. Inputs can be powered before VCC for flexibility in multiple supply circuits. 9.2 Typical Application A typical application for an operational amplifier in an inverting amplifier. This amplifier takes a positive voltage on the input, and makes it a negative voltage of the same magnitude. In the same manner, it also makes negative voltages positive. RF RI Vsup+ VOUT VIN + Vsup- Figure 9-1. Application Schematic 9.2.1 Design Requirements The supply voltage must be chosen such that it is larger than the input voltage range and output range. For instance, this application will scale a signal of ±0.5 V to ±1.8 V. Setting the supply at ±12 V is sufficient to accommodate this application. 9.2.2 Detailed Design Procedure Determine the gain required by the inverting amplifier using Equation 1 and Equation 2: AV VOUT VIN AV 1.8 0.5 (1) 3.6 (2) Once the desired gain is determined, choose a value for RI or RF. Choosing a value in the kilohm range is desirable because the amplifier circuit uses currents in the milliamp range. This choice makes sure that the part does not draw too much current. This example chooses 10 kΩ for RI, which means 36 kΩ is used for RF. This was determined by Equation 3. AV RF RI (3) Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324K LM324KA LM2902 LM2902B LM2902K LM2902KV LM2902KAV 23 LM124, LM124A, LM224, LM224A, LM224K, LM224KA LM324, LM324A, LM324B, LM324K, LM324KA LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV www.ti.com SLOS066Y – SEPTEMBER 1975 – REVISED OCTOBER 2022 9.2.3 Application Curve 2 VIN 1.5 VOUT 1 Volts 0.5 0 -0.5 -1 -1.5 -2 0 0.5 1 Time (ms) 1.5 2 Figure 9-2. Input and Output Voltages of the Inverting Amplifier 9.3 Power Supply Recommendations CAUTION Supply voltages larger than 32 V for a single supply, or outside the range of ±16 V for a dual supply can permanently damage the device (see the Section 6.1). Place 0.1-μF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high impedance power supplies. For more detailed information on bypass capacitor placement, refer to the Section 9.4. 9.4 Layout 9.4.1 Layout Guidelines For best operational performance of the device, use good PCB layout practices, including: • • • • • • 24 Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low impedance power sources local to the analog circuitry. – Connect low-ESR, 0.1-μF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for single supply applications. Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds, paying attention to the flow of the ground current. To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as opposed to in parallel with the noisy trace. Place the external components as close to the device as possible. Keeping RF and RG close to the inverting input minimizes parasitic capacitance, as shown in Section 9.4.2. Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit. Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324K LM324KA LM2902 LM2902B LM2902K LM2902KV LM2902KAV LM124, LM124A, LM224, LM224A, LM224K, LM224KA LM324, LM324A, LM324B, LM324K, LM324KA LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV www.ti.com SLOS066Y – SEPTEMBER 1975 – REVISED OCTOBER 2022 9.4.2 Layout Examples Place components close to device and to each other to reduce parasitic errors Run the input traces as far away from the supply lines as possible RF NC NC IN1í VCC+ IN1+ OUT VCCí NC VS+ Use low-ESR, ceramic bypass capacitor RG GND VIN RIN GND Only needed for dual-supply operation GND VS(or GND for single supply) VOUT Ground (GND) plane on another layer Figure 9-3. Operational Amplifier Board Layout for Noninverting Configuration RIN VIN + VOUT RG RF Figure 9-4. Operational Amplifier Schematic for Noninverting Configuration Copyright © 2022 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324K LM324KA LM2902 LM2902B LM2902K LM2902KV LM2902KAV 25 LM124, LM124A, LM224, LM224A, LM224K, LM224KA LM324, LM324A, LM324B, LM324K, LM324KA LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV www.ti.com SLOS066Y – SEPTEMBER 1975 – REVISED OCTOBER 2022 10 Device and Documentation Support 10.1 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Subscribe to updates to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. 10.2 Support Resources TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 10.3 Trademarks TI E2E™ is a trademark of Texas Instruments. All trademarks are the property of their respective owners. 10.4 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 10.5 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. 11 Mechanical, Packaging, and Orderable Information The following pages include mechanical packaging and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation. 26 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM124 LM124A LM224 LM224A LM224K LM224KA LM324 LM324A LM324B LM324K LM324KA LM2902 LM2902B LM2902K LM2902KV LM2902KAV PACKAGE OPTION ADDENDUM www.ti.com 15-Oct-2022 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) 5962-7704301VCA ACTIVE CDIP J 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 5962-9950403V9B ACTIVE XCEPT KGD 0 100 RoHS & Green Call TI N / A for Pkg Type -55 to 125 5962-9950403VCA ACTIVE CDIP J 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 5962-9950403VC A LM124AJQMLV 77043012A ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 77043012A LM124FKB Samples 7704301CA ACTIVE CDIP J 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 7704301CA LM124JB Samples 7704301DA ACTIVE CFP W 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 7704301DA LM124WB Samples 77043022A ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 77043022A LM124AFKB Samples 7704302CA ACTIVE CDIP J 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 7704302CA LM124AJB Samples 7704302DA ACTIVE CFP W 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 7704302DA LM124AWB Samples JM38510/11005BCA ACTIVE CDIP J 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 JM38510 /11005BCA Samples LM124AFKB ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 77043022A LM124AFKB Samples LM124AJ ACTIVE CDIP J 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 LM124AJ Samples LM124AJB ACTIVE CDIP J 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 7704302CA LM124AJB Samples LM124AWB ACTIVE CFP W 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 7704302DA LM124AWB Samples LM124D ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 LM124 Samples LM124DG4 ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 LM124 Samples Addendum-Page 1 5962-7704301VC A LM124JQMLV Samples Samples Samples PACKAGE OPTION ADDENDUM www.ti.com 15-Oct-2022 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) LM124DR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 LM124 Samples LM124DRG4 ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 LM124 Samples LM124FKB ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 77043012A LM124FKB Samples LM124J ACTIVE CDIP J 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 LM124J Samples LM124JB ACTIVE CDIP J 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 7704301CA LM124JB Samples LM124W ACTIVE CFP W 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 LM124W Samples LM124WB ACTIVE CFP W 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 7704301DA LM124WB Samples LM224AD ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -25 to 85 LM224A Samples LM224ADR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -25 to 85 LM224A Samples LM224ADRE4 ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -25 to 85 LM224A Samples LM224ADRG4 ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -25 to 85 LM224A Samples LM224AN ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type -25 to 85 LM224AN Samples LM224D ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -25 to 85 LM224 Samples LM224DG4 ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -25 to 85 LM224 Samples LM224DR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -25 to 85 LM224 Samples LM224DRG3 ACTIVE SOIC D 14 2500 RoHS & Green SN Level-1-260C-UNLIM -25 to 85 LM224 Samples LM224DRG4 ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -25 to 85 LM224 Samples LM224KAD ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -25 to 85 LM224KA Samples LM224KADG4 ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -25 to 85 LM224KA Samples LM224KADR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -25 to 85 LM224KA Samples Addendum-Page 2 PACKAGE OPTION ADDENDUM www.ti.com 15-Oct-2022 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) LM224KADRG4 ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -25 to 85 LM224KA Samples LM224KAN ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type -25 to 85 LM224KAN Samples LM224KDR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -25 to 85 LM224K Samples LM224KN ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type -25 to 85 LM224KN Samples LM224N ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type -25 to 85 LM224N Samples LM224NE4 ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type -25 to 85 LM224N Samples LM2902BIPWR ACTIVE TSSOP PW 14 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LM2902B Samples LM2902D ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LM2902 Samples LM2902DR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 125 LM2902 Samples LM2902DRE4 ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LM2902 Samples LM2902DRG3 ACTIVE SOIC D 14 2500 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 LM2902 Samples LM2902DRG4 ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LM2902 Samples LM2902KAVQDR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2902KA Samples LM2902KAVQDRG4 ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2902KA Samples LM2902KAVQPWR ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2902KA Samples LM2902KAVQPWRG4 ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2902KA Samples LM2902KD ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LM2902K Samples LM2902KDB ACTIVE SSOP DB 14 80 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2902K Samples LM2902KDR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LM2902K Samples LM2902KN ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type -40 to 125 LM2902KN Samples LM2902KNSR ACTIVE SO NS 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LM2902K Samples Addendum-Page 3 PACKAGE OPTION ADDENDUM www.ti.com 15-Oct-2022 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) LM2902KNSRG4 ACTIVE SO NS 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LM2902K Samples LM2902KPW ACTIVE TSSOP PW 14 90 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2902K Samples LM2902KPWR ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2902K Samples LM2902KVQDR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2902KV Samples LM2902KVQDRG4 ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2902KV Samples LM2902KVQPWR ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2902KV Samples LM2902KVQPWRG4 ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2902KV Samples LM2902N ACTIVE PDIP N 14 25 RoHS & Green NIPDAU | SN N / A for Pkg Type -40 to 125 LM2902N Samples LM2902NE4 ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type -40 to 125 LM2902N Samples LM2902NSR ACTIVE SO NS 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LM2902 Samples LM2902PW ACTIVE TSSOP PW 14 90 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2902 Samples LM2902PWR ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 125 L2902 Samples LM2902PWRE4 ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2902 Samples LM2902PWRG3 ACTIVE TSSOP PW 14 2000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 L2902 Samples LM2902PWRG4 ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2902 Samples LM324AD ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM324A Samples LM324ADBR ACTIVE SSOP DB 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM324A Samples LM324ADE4 ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM324A Samples LM324ADR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM 0 to 70 LM324A Samples LM324ADRE4 ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM324A Samples LM324ADRG4 ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM324A Samples Addendum-Page 4 PACKAGE OPTION ADDENDUM www.ti.com 15-Oct-2022 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) LM324AN ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type 0 to 70 LM324AN Samples LM324ANSR ACTIVE SO NS 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM324A Samples LM324ANSRG4 ACTIVE SO NS 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM324A Samples LM324APW ACTIVE TSSOP PW 14 90 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 L324A Samples LM324APWE4 ACTIVE TSSOP PW 14 90 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 L324A Samples LM324APWR ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM 0 to 70 L324A Samples LM324APWRG4 ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 L324A Samples LM324BIPWR ACTIVE TSSOP PW 14 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 LM324B Samples LM324D ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM324 Samples LM324DE4 ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM324 Samples LM324DG4 ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM324 Samples LM324DR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM 0 to 70 LM324 Samples LM324DRE4 ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM324 Samples LM324DRG3 ACTIVE SOIC D 14 2500 RoHS & Green SN Level-1-260C-UNLIM 0 to 70 LM324 Samples LM324DRG4 ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM324 Samples LM324KAD ACTIVE SOIC D 14 50 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM324KA Samples LM324KADR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM324KA Samples LM324KADRG4 ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM324KA Samples LM324KAN ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type 0 to 70 LM324KAN Samples LM324KANSR ACTIVE SO NS 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM324KA Samples LM324KAPW ACTIVE TSSOP PW 14 90 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 L324KA Samples Addendum-Page 5 PACKAGE OPTION ADDENDUM www.ti.com 15-Oct-2022 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) LM324KAPWR ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 L324KA Samples LM324KAPWRG4 ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 L324KA Samples LM324KDR ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM324K Samples LM324KN ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type 0 to 70 LM324KN Samples LM324KNSR ACTIVE SO NS 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM324K Samples LM324KPW ACTIVE TSSOP PW 14 90 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 L324K Samples LM324KPWR ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 L324K Samples LM324N ACTIVE PDIP N 14 25 RoHS & Green NIPDAU | SN N / A for Pkg Type 0 to 70 LM324N Samples LM324NE3 ACTIVE PDIP N 14 25 RoHS & Non-Green SN N / A for Pkg Type 0 to 70 LM324N Samples LM324NE4 ACTIVE PDIP N 14 25 RoHS & Green NIPDAU N / A for Pkg Type 0 to 70 LM324N Samples LM324NSR ACTIVE SO NS 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM324 Samples LM324NSRE4 ACTIVE SO NS 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM324 Samples LM324NSRG4 ACTIVE SO NS 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM324 Samples LM324PW ACTIVE TSSOP PW 14 90 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 L324 Samples LM324PWR ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM 0 to 70 L324 Samples LM324PWRE4 ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 L324 Samples LM324PWRG3 ACTIVE TSSOP PW 14 2000 RoHS & Green SN Level-1-260C-UNLIM 0 to 70 L324 Samples LM324PWRG4 ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 L324 Samples M38510/11005BCA ACTIVE CDIP J 14 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 JM38510 /11005BCA Samples PLM2902BIPWR ACTIVE TSSOP PW 14 3000 TBD Call TI Call TI -40 to 125 Samples PLM324BIPWR ACTIVE TSSOP PW 14 3000 TBD Call TI Call TI -40 to 85 Samples Addendum-Page 6 PACKAGE OPTION ADDENDUM www.ti.com 15-Oct-2022 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
LM2902KAVQPWR
物料型号: - LM124, LM124A, LM224, LM224A, LM224K, LM224KA, LM324, LM324A, LM324B, LM324K, LM324KA, LM2902, LM2902B, LM2902K, LM2902KV, LM2902KAV

器件简介: - LM324B和LM2902B是工业标准运算放大器(op amps)LM324和LM2902的下一代版本,包含四个高电压(36V)运算放大器。这些设备为成本敏感型应用提供了出色的价值,特点包括低偏置(典型值600微伏)、共模输入范围到地、高差分输入电压能力。

引脚分配: - 引脚分配表格详细列出了不同封装类型的引脚功能,例如SOIC(14)、TSSOP(14)、PDIP(14)等,每个引脚的功能包括输入(IN+、IN-)、输出(OUT)、电源(VCC+、VCC-)和不连接(NC)。

参数特性: - 包括宽电源范围(3V至36V)、低输入偏置电压(25°C时最大±2mV)、2kV ESD保护(HBM)、内部RF和EMI滤波器等。

功能详解: - 详细描述了运算放大器的工作原理,包括功能框图、特性描述、设备功能模式等。

应用信息: - 应用领域包括商业网络和服务器电源单元、多功能打印机、电源和移动充电器、桌面PC和主板、室内外空调等。

封装信息: - 提供了不同封装类型的尺寸信息,包括SOIC、TSSOP、PDIP、SO、CDIP、CFP和LCCC等。
LM2902KAVQPWR 价格&库存

很抱歉,暂时无法提供与“LM2902KAVQPWR”相匹配的价格&库存,您可以联系我们找货

免费人工找货
LM2902KAVQPWR
  •  国内价格
  • 1+6.01296
  • 5+3.39696
  • 25+2.96935
  • 43+2.47106
  • 116+2.33571
  • 500+2.24707

库存:229

LM2902KAVQPWR
  •  国内价格 香港价格
  • 1+3.713221+0.46063
  • 10+2.5671010+0.31845
  • 25+2.2864325+0.28363
  • 100+1.98159100+0.24582
  • 250+1.83549250+0.22770
  • 500+1.74770500+0.21681
  • 1000+1.675431000+0.20784

库存:6220

LM2902KAVQPWR
  •  国内价格 香港价格
  • 2000+1.603872000+0.19896
  • 4000+1.555164000+0.19292
  • 6000+1.530766000+0.18989
  • 10000+1.5037410000+0.18654
  • 14000+1.4879414000+0.18458
  • 20000+1.4727520000+0.18270
  • 50000+1.4400450000+0.17864

库存:6220