0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LM2902KAVQPWRQ1

LM2902KAVQPWRQ1

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    TSSOP14

  • 描述:

    LM2902-Q1 AUTOMOTIVE CATALOG QUA

  • 详情介绍
  • 数据手册
  • 价格&库存
LM2902KAVQPWRQ1 数据手册
LM2902-Q1, LM2902B-Q1, LM2902BA-Q1 SGLS178F – AUGUST 2003 – REVISED MAY 2022 LM2902-Q1, LM2902B-Q1, and LM2902BA-Q1 Industry-Standard Quad Operational Amplifiers for Automotive Applications 1 Features 3 Description • This device consists of four independent high-gain frequency-compensated operational amplifiers that are designed specifically to operate from a single supply over a wide range of voltages. Operation from split supplies is possible when the difference between the two supplies is 3 V to 36 V (for B-version devices), 3 V to 32 V (for V-version devices) or 3 V to 26 V (for all other devices), and VCC is at least 1.5 V more positive than the input common-mode voltage. The low supply-current drain is independent of the magnitude of the supply voltage. • • • • • • • AEC Q-100 qualified for automotive applications – Temperature grade 1: –40°C to +125°C – Device HBM ESD classification 2 – Device CDM ESD classification C5 Wide supply range of: – 3 V to 36 V (LM2902B-Q1 and LM2902BA-Q1) – 3 V to 32 V (LM2902KV and LM2902KAV) – 3 V to 26 V (all other products) Input offset voltage maximum at 25°C of: – 2 mV (LM2902BA-Q1 and LM2902KAV) – 3 mV (LM2902B-Q1) – 7 mV (all other products) Internal RF and EMI filter (LM2902B-Q1 and LM2902BA-Q1) Supply-current of 175 µA per channel, typical Unity-gain bandwidth of 1.2 MHz Common-mode input voltage range includes V– Differential input voltage range equal to maximumrated supply voltage Applications include transducer amplifiers, dc amplification blocks, and all the conventional operational-amplifier circuits that now can be more easily implemented in single-supply-voltage systems. For example, the LM2902 can be operated directly from the standard 5-V supply that is used in digital systems and easily provides the required interface electronics without requiring additional ±15-V supplies. 2 Applications • • • • • • • Device Information Automotive lighting Body electronics Automotive head unit Telematics control unit Emergency call (eCall) Passive safety: brake system Electric vehicle / hybrid electric: – Inverter and motor control – On-board (OBC) and wireless charger – Battery management system (BMS) PART NUMBER (1) LM2902B-Q1(2) LM2902BA-Q1(2) LM2902-Q1 (1) (2) RG PACKAGE BODY SIZE (NOM) SOIC 8.65 mm × 3.91 mm TSSOP (14) 5.00 mm × 4.40 mm SOIC (14) 8.65 mm × 3.91 mm TSSOP (14) 5.00 mm × 4.40 mm SOIC (14) 8.65 mm × 3.91 mm TSSOP (14) 5.00 mm × 4.40 mm For all available packages, see the orderable addendum at the end of the data sheet. This product is preview only. RF R1 VOUT VIN C1 f-3 dB = ( RF VOUT = 1+ RG VIN (( 1 1 + sR1C1 1 2pR1C1 ( Single-Pole, Low-Pass Filter An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. LM2902-Q1, LM2902B-Q1, LM2902BA-Q1 www.ti.com SGLS178F – AUGUST 2003 – REVISED MAY 2022 Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 1 3 Description.......................................................................1 4 Revision History.............................................................. 2 5 Pin Configurations and Functions.................................3 6 Specifications.................................................................. 4 6.1 Absolute Maximum Ratings........................................ 4 6.2 ESD Ratings............................................................... 4 6.3 Recommended Operating Conditions.........................4 6.4 Thermal Information....................................................5 6.5 Electrical Characteristics - LM2902B-Q1 and LM2902BA-Q1...............................................................6 6.6 Electrical Characteristics: LM2902-Q1, LM2902KV-Q1, LM2902KAV-Q1................................... 8 6.7 Operating Conditions: LM2902-Q1, LM2902KVQ1, LM2902KAV-Q1......................................................9 7 Parameter Measurement Information.......................... 10 8 Detailed Description...................................................... 11 8.1 Overview................................................................... 11 8.2 Functional Block Diagram......................................... 11 8.3 Feature Description...................................................11 8.4 Device Functional Modes..........................................12 9 Application and Implementation.................................. 13 9.1 Application Information............................................. 13 9.2 Typical Application.................................................... 13 9.3 Design Requirements............................................... 13 9.4 Detailed Design Procedure....................................... 13 9.5 Application Curve......................................................14 10 Power Supply Recommendations..............................15 11 Layout........................................................................... 16 11.1 Layout Guidelines................................................... 16 11.2 Layout Example...................................................... 16 12 Device and Documentation Support..........................17 12.1 Documentation Support.......................................... 17 12.2 Receiving Notification of Documentation Updates..17 12.3 Support Resources................................................. 17 12.4 Trademarks............................................................. 17 12.5 Electrostatic Discharge Caution..............................17 12.6 Glossary..................................................................17 13 Mechanical, Packaging, and Orderable Information.................................................................... 18 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision E (April 2008) to Revision F (May 2022) Page • Changed the name of the data sheet................................................................................................................. 1 • Revised Features section to include LM2902B-Q1 and LM2902BA-Q1.............................................................1 • Added Applications section ................................................................................................................................1 • Added LM2902B-Q1 and LM2902BA-Q1 to the Device Information table......................................................... 1 • Added LM2902B-Q1 and LM2902BA-Q1 to the Description section..................................................................1 • Updated Pin Configurations and Functions section to include Pin Functions table............................................3 • Added LM2902B-Q1 and LM2902BA-Q1 to the Absolute Maximum Ratings table............................................4 • Added ESD Ratings table with LM2902B-Q1 and LM2902BA-Q1..................................................................... 4 • Added LM2902B-Q1 and LM2902B-Q1 to Recommended Operating Conditions section................................. 4 • Added LM2902B-Q1 and LM2902BA-Q1 to Thermal Information section..........................................................5 • Added Overview section to the data sheet........................................................................................................11 • Added Feature Description section...................................................................................................................11 • Added Input Common Mode Range section to Feature Description section.................................................... 11 • Added Device Functional Modes information for LM2902B-Q1 and LM2902BA-Q1........................................12 • Added Application and Implementation section for LM2902B-Q1 and LM2902BA-Q1.................................... 13 • Added Application Information section for LM2902B-Q1 and LM2902BA-Q1.................................................. 13 • Added Typical Application section for LM2902B-Q1 and LM2902BA-Q1.........................................................13 • Added Power Supply Recommendations section to data sheet....................................................................... 15 • Added Layout section to data sheet................................................................................................................. 16 • Added Device and Documentation Support section to data sheet................................................................... 17 • Added Mechanical, Packaging, and Orderable Information section to data sheet........................................... 18 2 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2902-Q1 LM2902B-Q1 LM2902BA-Q1 LM2902-Q1, LM2902B-Q1, LM2902BA-Q1 www.ti.com SGLS178F – AUGUST 2003 – REVISED MAY 2022 5 Pin Configurations and Functions OUT1 1 14 OUT4 IN1± 2 13 IN4± IN1+ 3 12 IN4+ V+ 4 11 V± IN2+ 5 10 IN3+ IN2± 6 9 IN3± OUT2 7 8 OUT3 Not to scale Figure 5-1. D and PW Package 14-Pin SOIC and TSSOP (Top View) Table 5-1. Pin Functions PIN NAME NO. I/O DESCRIPTION IN1– 2 I Inverting input, channel 1 IN1+ 3 I Noninverting input, channel 1 IN2– 6 I Inverting input, channel 2 IN2+ 5 I Noninverting input, channel 2 IN3– 9 I Inverting input, channel 3 IN3+ 10 I Noninverting input, channel 3 IN4– 13 I Inverting input, channel 4 IN4+ 12 I Noninverting input, channel 4 NC — — No internal connection OUT1 1 O Output, channel 1 OUT2 7 O Output, channel 2 OUT3 8 O Output, channel 3 OUT4 14 O Output, channel 4 V– 11 — Negative (lowest) supply or ground (for single-supply operation) V+ 4 — Positive (highest) supply Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2902-Q1 LM2902B-Q1 LM2902BA-Q1 Submit Document Feedback 3 LM2902-Q1, LM2902B-Q1, LM2902BA-Q1 www.ti.com SGLS178F – AUGUST 2003 – REVISED MAY 2022 6 Specifications 6.1 Absolute Maximum Ratings For TA = 25°C (unless otherwise noted)(1) LM2902B-Q1, LM2902BA-Q1 LM2902-Q1 LM2902KV-Q1 UNIT Supply voltage, VCC (2) 40 26 32 V Differential input voltage, VID (3) ±40 ±26 ±32 V Input voltage, VI –0.3 to 40 –0.3 to 26 –0.3 to 32 V Duration of output short circuit (one amplifier) to ground at (or below) TA = 25°C, VCC ≤ 15 V(4) Unlimited Unlimited Unlimited 150 142 142 °C –65 to 150 –65 to 150 –65 to 150 °C Operating virtual junction temperature, TJ Storage temperature range, Tstg (1) (2) (3) (4) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to network ground terminal GND. Differential voltages are at IN+ with respect to IN−. Short circuits from outputs to VCC can cause excessive heating and eventual destruction. 6.2 ESD Ratings VALUE UNIT LM2902B-Q1, LM2902BA-Q1, LM2902KV-Q1, and LM2902KAV-Q1 V(ESD) Electrostatic discharge Human-body model (HBM), per AEC Q100-002(1) ±2000 Charged-device model (CDM), per AEC Q100-011 ±2000 Charged-device model (CDM), per AEC Q100-011 ±1500 V LM2902-Q1 V(ESD) (1) Electrostatic discharge V AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification. 6.3 Recommended Operating Conditions over operating ambient temperature range (unless otherwise noted) VS Supply voltage, VS = ([V+] – [V–]) VCM Common-mode voltage TA Operating ambient temperature MIN MAX LM2902B-Q1, LM2902BA-Q1 3 36 LM2902KV-Q1, LM2902KAV-Q1 3 30 LM2902-Q1 4 Submit Document Feedback UNIT V 3 26 V– (V+) – 2 V –40 125 °C Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2902-Q1 LM2902B-Q1 LM2902BA-Q1 LM2902-Q1, LM2902B-Q1, LM2902BA-Q1 www.ti.com SGLS178F – AUGUST 2003 – REVISED MAY 2022 6.4 Thermal Information LM2902-Q1, LM2902KV-Q1, LM2902KAV-Q1 THERMAL METRIC(1) LM2902B-Q1, LM2902BA-Q1 UNIT D (SOIC) PW (TSSOP) D (SOIC) PW (TSSOP) 14 PINS 14 PINS 14 PINS 14 PINS 101 86 TBD TBD °C/W RθJA Junction-to-ambient thermal resistance RθJC Junction-to-case (top) thermal resistance — — TBD TBD °C/W RθJB Junction-to-board thermal resistance — — TBD TBD °C/W ψJT Junction-to-top characterization parameter — — TBD TBD °C/W ψJB Junction-to-board characterization parameter — — TBD TBD °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC package thermal metrics application report. Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2902-Q1 LM2902B-Q1 LM2902BA-Q1 Submit Document Feedback 5 LM2902-Q1, LM2902B-Q1, LM2902BA-Q1 www.ti.com SGLS178F – AUGUST 2003 – REVISED MAY 2022 6.5 Electrical Characteristics - LM2902B-Q1 and LM2902BA-Q1 For VS = (V+) – (V–) = 5 V to 36 V (±2.5 V to ±18 V), at TA = 25°C, VCM = VOUT = VS / 2, and RL = 10k connected to VS / 2 (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX ±0.3 ±3.0 UNIT OFFSET VOLTAGE LM2902B-Q1 VOS TA = –40°C to 125°C Input offset voltage LM2902BA-Q1 dVOS/dT Input offset voltage drift PSRR Input offset voltage versus power supply Channel separation ±4.0 ±0.3 TA = –40°C to 125°C RS = 0 Ω ±2 mV 2.5 TA = –40°C to 125°C 65 f = 1 kHz to 20 kHz ±7 μV/°C 100 dB 120 dB INPUT VOLTAGE RANGE VCM Common-mode voltage range VS = 3 V to 36 V CMRR Common-mode rejection ratio (V–) ≤ VCM ≤ (V+) – 1.5 V VS = 3 V to 36 V (V–) ≤ VCM ≤ (V+) – 2 V VS = 5 V to 36 V VS = 5 V to 36 V TA = –40°C to 125°C TA = –40°C to 125°C V– (V+) – 1.5 V– (V+) – 2 70 80 65 80 V dB INPUT BIAS CURRENT IB Input bias current dIOS/dT Input offset current drift IOS Input offset current dIOS/dT Input offset current drift -10 TA = –40°C to 125°C -35 -50 TA = –40°C to 125°C 10 ±0.5 TA = –40°C to 125°C pA/°C ±4 ±5 TA = –40°C to 125°C nA 10 nA pA/°C NOISE EN Input voltage noise f = 0.1 to 10 Hz eN Input voltage noise density RS = 100 Ω, VI = 0 V, f = 1 kHz (see Figure 8) 3 μVPP 35 nV/√Hz 10 || 0.1 MΩ || pF 4 || 1.5 GΩ || pF INPUT IMPEDANCE ZID Differential ZICM Common-mode OPEN-LOOP GAIN AOL Open-loop voltage gain VS = 15 V, VO = 1 V to 11 V, RL ≥ 2 kΩ, connected to (V-) 50 TA = –40°C to 125°C 100 V/mV 25 FREQUENCY RESPONSE GBW Gain-bandwidth product RL = 1 MΩ, CL = 20 pF (see Figure 7) 1.2 MHz SR Slew rate RL = 1 MΩ, CL = 30 pF, VI = ±10 V (see Figure 7) 0.5 V/μs Θm Phase margin G = + 1, RL = 10kΩ, CL = 20 pF 56 ° tS Settling time To 0.1%, VS = 5 V, 2-V Step , G = +1, CL = 100 pF 4 μs Overload recovery time VIN × gain > VS 10 μs Total harmonic distortion + noise G = + 1, f = 1 kHz, VO = 3.53 VRMS, VS = 36V, RL = 100k, IOUT ≤ 50µA, BW = 80 kHz THD+N 0.001% OUTPUT VO VO VO VO Positive Rail (V+) Voltage output swing from rail VO Negative Rail (V-) VS = 5 V, RL ≤ 10 kΩ connected to (V–) VO VS = 15 V; VO = V-; VID = 1 V IO Output current VS = 15 V; VO = V+; VID = -1 V Source Sink IOUT = -50 µA 1.35 1.5 V IOUT = -1 mA 1.4 1.6 V IOUT = -5 mA 1.5 1.75 V IOUT = 50 µA 100 150 mV IOUT = 1 mA 0.75 1 V 5 20 mV TA = –40°C to 125°C -20 TA = –40°C to 125°C 10 TA = –40°C to 125°C 6 Short-circuit current CLOAD Capacitive load drive 50 VS = 20 V, (V+) = 10 V, (V-) = -10 V, VO = 0 V Submit Document Feedback mA mA 20 mA 5 VID = -1 V; VO = (V-) + 200 mV ISC -30 -10 mA 85 ±40 100 μA ±60 mA pF Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2902-Q1 LM2902B-Q1 LM2902BA-Q1 LM2902-Q1, LM2902B-Q1, LM2902BA-Q1 www.ti.com SGLS178F – AUGUST 2003 – REVISED MAY 2022 6.5 Electrical Characteristics - LM2902B-Q1 and LM2902BA-Q1 (continued) For VS = (V+) – (V–) = 5 V to 36 V (±2.5 V to ±18 V), at TA = 25°C, VCM = VOUT = VS / 2, and RL = 10k connected to VS / 2 (unless otherwise noted) PARAMETER RO Open-loop output impedance TEST CONDITIONS MIN f = 1 MHz, IO = 0 A TYP MAX 300 UNIT Ω POWER SUPPLY IQ Quiescent current per amplifier VS = 5 V; IO = 0 A TA = –40°C to 125°C 175 300 μA VS = 36 V; IO = 0 A TA = –40°C to 125°C 350 750 μA Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2902-Q1 LM2902B-Q1 LM2902BA-Q1 Submit Document Feedback 7 LM2902-Q1, LM2902B-Q1, LM2902BA-Q1 www.ti.com SGLS178F – AUGUST 2003 – REVISED MAY 2022 6.6 Electrical Characteristics: LM2902-Q1, LM2902KV-Q1, LM2902KAV-Q1 For VS = (V+) – (V–) = 5 V, at TA = 25°C (unless otherwise noted) PARAMETER TEST CONDITIONS VIO Input offset voltage VCC = 5 V to 26 V, VIC = VICRmin, VO = 1.4 V IIO Input offset current VO = 1.4 V IIB Input bias current VO = 1.4 V VICR Common-mode input voltage range VCC = 5 V to 26 V VOH High-level output voltage Low-level output voltage f = 1 kHz to 20 kHz VCC = 15 V, VO = 15 V VID = −1 V, 25°C 50 80 dB 25°C 50 100 dB 120 25°C –20 Full Range –10 25°C 10 Full Range 5 –30 dB –60 mA 20 VO = 0 25°C ±40 ±60 VO = 2.5 V No load Full Range 0.7 1.2 No load Full Range 1.4 3 3 7 ∆VIO/∆T Temperature drift RS = 0 Ω IIO Input offset current VO = 1.4 V ∆IIO/∆T Temperature drift IIB Input bias current VO = 1.4 V VICR Common-mode input voltage range VCC = 5 V to 32 V A-suffix devices 25°C Full Range 1 Full Range 2 mA mA mV 4 Full Range 7 25°C 2 Full Range µV/°C 50 150 Full Range 10 25°C –20 Full Range 0 to VCC– 1.5 Full Range 0 to VCC – 2 nA pA/°C –250 –500 25°C 25°C µA 10 25°C nA V VCC – 1.5 VCC = 32 V RL = 2 kΩ Full Range 26 VCC = 32 V RL ≥ 10 kΩ Full Range 27 RL ≤ 10 kΩ mV V/mV VCC at 5 V, GND at −5 V Input offset voltage V 15 30 Non-A devices nA Full Range 25°C VIO Submit Document Feedback 20 100 VO = 200 mV VCC = 5 V to 32 V, VIC = VICRmin VO = 1.4 V nA V VID = −1 V Supply current (four amplifiers) VCC = 26 V, VO = 0.5 VCC mV 24 5 25°C 25°C VID = 1 V, UNIT (V+) – 1.5 Full Range RL = 10 kΩ 8 (V+) - 2 23 ICC Low-level output voltage (V+) - 1.5 V22 Short-circuit output current VOL V- Full Range IOS High-level output voltage 25°C RL ≥ 10 kΩ Supply-voltage rejection ratio (∆VCC /∆VIO) –250 –500 VCC = 26 V kSVR VOH –20 Full Range 25°C VIC = VICRmin 50 300 Full Range Common-mode rejection ratio Output current 2 RL = 2 kΩ CMRR 7 10 25°C Large-signal differential voltage VCC= 15 V, VO= 1 V to 11 V, RL ≥ 2 kΩ amplification MAX 3 Full Range AVD IO 25°C Full Range VCC = 26 V, VCC = 15 V, VO = 0 TYP(2) 25°C RL ≤ 10 kΩ VO1/ VO2 Crosstalk attenuation MIN Full Range RL = 10 kΩ VOL TA(1) Full Range V 5 20 mV Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2902-Q1 LM2902B-Q1 LM2902BA-Q1 LM2902-Q1, LM2902B-Q1, LM2902BA-Q1 www.ti.com SGLS178F – AUGUST 2003 – REVISED MAY 2022 6.6 Electrical Characteristics: LM2902-Q1, LM2902KV-Q1, LM2902KAV-Q1 (continued) For VS = (V+) – (V–) = 5 V, at TA = 25°C (unless otherwise noted) TEST CONDITIONS TA(1) MIN TYP(2) Large-signal differential voltage VCC = 15 V, VO = 1 V to 11 V, amplification RL ≥ 2 kΩ 25°C 25 100 Full Range 15 PARAMETER AVD Amplifier-to-amplifier coupling(3) f = 1 kHz to 20 kHz, input referred 25°C CMRR Common-mode rejection ratio VIC = VICRmin 25°C kSVR Supply-voltage rejection ratio (∆VCC /∆VIO) 25°C VO1/ VO2 Crosstalk attenuation f = 1 kHz to 20 kHz VCC = 15, VO = 0 IO Output current dB 60 80 dB 60 100 dB 120 25°C –20 Full Range –10 25°C 10 dB –30 –60 mA 20 VID = −1 V Full Range 5 VID = −1 V VO = 200 mV 25°C 12 VCC at 5 V, GND at −5 V VO = 0 25°C ±40 ±60 VO = 2.5 V No load Full Range 0.7 1.2 No load Full Range 1.4 3 Short-circuit output current ICC Supply current (four amplifiers) VCC = 32 V, VO = 0.5 VCC (1) (2) (3) V/mV VCC = 15, VO = 15 V IOS UNIT 120 25°C VID = 1 V MAX 40 µA mA mA Full range is −40°C to 125°C. All typical values are at TA = 25°C Due to proximity of external components, ensure that coupling is not originating via stray capacitance between these external parts. Typically, this can be detected, as this type of coupling increases at higher frequencies. 6.7 Operating Conditions: LM2902-Q1, LM2902KV-Q1, LM2902KAV-Q1 For VS = (V+) – (V–) = 15 V, at TA = 25°C PARAMETER TEST CONDITIONS TYP UNIT SR Slew rate at unity gain RL = 1 MΩ, CL = 30 pF, VI = ±10 V (see Figure 7-1) 0.5 V/µs B1 Unity-gain bandwidth RL = 1 MΩ, CL = 20 pF (see Figure 7-1) 1.2 MHz VN Equivalent input noise voltage RS = 100 Ω, VI = 0 V, f = 1 kHz (see Figure 7-2) 35 nV/√Hz Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2902-Q1 LM2902B-Q1 LM2902BA-Q1 Submit Document Feedback 9 LM2902-Q1, LM2902B-Q1, LM2902BA-Q1 www.ti.com SGLS178F – AUGUST 2003 – REVISED MAY 2022 7 Parameter Measurement Information Figure 7-1. Unity-Gain Amplifier Figure 7-2. Noise-Test Circuit 10 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2902-Q1 LM2902B-Q1 LM2902BA-Q1 LM2902-Q1, LM2902B-Q1, LM2902BA-Q1 www.ti.com SGLS178F – AUGUST 2003 – REVISED MAY 2022 8 Detailed Description 8.1 Overview The LM2902-Q1, LM2902B-Q1, and LM2902BA-Q1 devices consist of four independent, high-gain frequencycompensated operational amplifiers designed to operate from a single supply over a wide range of voltages. Operation from split supplies also is possible if the difference between the two supplies is within the supply voltage range, and VS is at least 1.5 V more positive than the input common-mode voltage. The low supplycurrent drain is independent of the magnitude of the supply voltage. Applications include transducer amplifiers, DC amplification blocks, and all the conventional operational amplifier circuits that now can be implemented more easily in single-supply-voltage systems. For example, these devices can be operated directly from the standard 5-V supply used in digital systems and easily can provide the required interface electronics without additional ±5-V supplies. 8.2 Functional Block Diagram Schematic (Each Amplifier) 8.3 Feature Description 8.3.1 Input Common Mode Range The valid common mode range is from device ground to VS – 1.5 V (VS – 2 V across temperature). Inputs may exceed VS up to the maximum VS without device damage. At least one input must be in the valid input common-mode range for the output to be the correct phase. If both inputs exceed the valid range, then the output phase is undefined. If either input more than 0.3 V below V– then input current should be limited to 1 mA and the output phase is undefined. Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2902-Q1 LM2902B-Q1 LM2902BA-Q1 Submit Document Feedback 11 LM2902-Q1, LM2902B-Q1, LM2902BA-Q1 www.ti.com SGLS178F – AUGUST 2003 – REVISED MAY 2022 8.4 Device Functional Modes The LM2902-Q1, LM2902B-Q1, and LM2902BA-Q1 devices are powered on when the supply is connected. This device can be operated as a single-supply operational amplifier or dual-supply amplifier, depending on the application. 12 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2902-Q1 LM2902B-Q1 LM2902BA-Q1 LM2902-Q1, LM2902B-Q1, LM2902BA-Q1 www.ti.com SGLS178F – AUGUST 2003 – REVISED MAY 2022 9 Application and Implementation Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. 9.1 Application Information The LM2902-Q1, LM2902B-Q1, LM2902BA-Q1 operational amplifiers are useful in a wide range of signal conditioning applications. Inputs can be powered before VS for flexibility in multiple supply circuits. For full application design guidelines related to this family of devices, please refer to the application report Application design guidelines for LM324/LM358 devices. 9.2 Typical Application A typical application for an operational amplifier is an inverting amplifier. This amplifier takes a positive voltage on the input, and makes it a negative voltage of the same magnitude. In the same manner, it also makes negative voltages positive. RF RI Vsup+ VOUT VIN + Vsup- Figure 9-1. Application Schematic 9.3 Design Requirements The supply voltage must be chosen such that it is larger than the input voltage range and output range. For instance, this application scales a signal of ±0.5 V to ±1.8 V. Setting the supply at ±12 V is sufficient to accommodate this application. 9.4 Detailed Design Procedure Determine the gain required by the inverting amplifier using Equation 1 and Equation 2: AV VOUT VIN AV 1.8 0.5 (1) 3.6 (2) Once the desired gain is determined, choose a value for RI or RF. Choosing a value in the kilohm range is desirable because the amplifier circuit uses currents in the milliampere range. This ensures the part does not draw too much current. This example uses 10 kΩ for RI which means 36 kΩ is used for RF. This was determined by Equation 3. AV RF RI (3) Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2902-Q1 LM2902B-Q1 LM2902BA-Q1 Submit Document Feedback 13 LM2902-Q1, LM2902B-Q1, LM2902BA-Q1 www.ti.com SGLS178F – AUGUST 2003 – REVISED MAY 2022 9.5 Application Curve 2 VIN 1.5 VOUT 1 Volts 0.5 0 -0.5 -1 -1.5 -2 0 0.5 1 Time (ms) 1.5 2 Figure 9-2. Input and Output Voltages of the Inverting Amplifier 14 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2902-Q1 LM2902B-Q1 LM2902BA-Q1 LM2902-Q1, LM2902B-Q1, LM2902BA-Q1 www.ti.com SGLS178F – AUGUST 2003 – REVISED MAY 2022 10 Power Supply Recommendations CAUTION Supply voltages larger than specified in the recommended operating region can permanently damage the device (see Section 6.1). Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or high-impedance power supplies. For more detailed information on bypass capacitor placement, see Section 11. Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2902-Q1 LM2902B-Q1 LM2902BA-Q1 Submit Document Feedback 15 LM2902-Q1, LM2902B-Q1, LM2902BA-Q1 www.ti.com SGLS178F – AUGUST 2003 – REVISED MAY 2022 11 Layout 11.1 Layout Guidelines For best operational performance of the device, use good PCB layout practices, including: • • • • • • Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources local to the analog circuitry. – Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for singlesupply applications. Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds, paying attention to the flow of the ground current. To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as opposed to in parallel with the noisy trace. Place the external components as close to the device as possible. Keeping RF and RG close to the inverting input minimizes parasitic capacitance, as shown in Section 11.2. Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit. Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials. 11.2 Layout Example Place components close to device and to each other to reduce parasitic errors Run the input traces as far away from the supply lines as possible VS+ RF OUT1 V+ GND IN1í OUT2 VIN IN1+ IN2í Ví IN2+ RG GND R IN Only needed for dual-supply operation GND Use low-ESR, ceramic bypass capacitor VSí (or GND for single supply) Ground (GND) plane on another layer Figure 11-1. Operational Amplifier Board Layout for Noninverting Configuration RIN VIN + VOUT RG RF Figure 11-2. Operational Amplifier Schematic for Noninverting Configuration 16 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2902-Q1 LM2902B-Q1 LM2902BA-Q1 LM2902-Q1, LM2902B-Q1, LM2902BA-Q1 www.ti.com SGLS178F – AUGUST 2003 – REVISED MAY 2022 12 Device and Documentation Support 12.1 Documentation Support 12.1.1 Related Documentation For related documentation, see the following: • Texas Instruments, Application Design Guidelines for LM324/LM358 Devices application note 12.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Subscribe to updates to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. 12.3 Support Resources TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 12.4 Trademarks TI E2E™ is a trademark of Texas Instruments. All trademarks are the property of their respective owners. 12.5 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 12.6 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2902-Q1 LM2902B-Q1 LM2902BA-Q1 Submit Document Feedback 17 LM2902-Q1, LM2902B-Q1, LM2902BA-Q1 www.ti.com SGLS178F – AUGUST 2003 – REVISED MAY 2022 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 18 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2902-Q1 LM2902B-Q1 LM2902BA-Q1 PACKAGE OPTION ADDENDUM www.ti.com 3-Jun-2022 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) LM2902KAVQDRQ1 ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2902KAQ Samples LM2902KAVQPWRG4Q1 ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2902KAQ Samples LM2902KAVQPWRQ1 ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2902KAQ Samples LM2902KVQDRQ1 ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2902KVQ Samples LM2902KVQPWRG4Q1 ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2902KVQ Samples LM2902KVQPWRQ1 ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2902KVQ Samples LM2902QDRG4Q1 ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2902Q1 Samples LM2902QDRQ1 ACTIVE SOIC D 14 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2902Q1 Samples LM2902QPWRG4Q1 ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2902Q1 Samples LM2902QPWRQ1 ACTIVE TSSOP PW 14 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2902Q1 Samples PLM2902BQPWRQ1 ACTIVE TSSOP PW 14 3000 TBD Call TI Call TI -40 to 125 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
LM2902KAVQPWRQ1
物料型号: - LM2902-Q1 - LM2902B-Q1 - LM2902BA-Q1

器件简介: 这些是专为汽车应用设计的四通道运算放大器,符合AEC Q-100标准,具有宽电源范围和低功耗特性。

引脚分配: - IN1-, IN1+:第一通道的反相和非反相输入 - IN2-, IN2+:第二通道的反相和非反相输入 - IN3, IN3+:第三通道的反相和非反相输入 - IN4-, IN4+:第四通道的反相和非反相输入 - OUT1, OUT2, OUT3, OUT4:各通道的输出 - V+:正电源 - V-:负电源或地(单电源操作)

参数特性: - 工作温度范围:-40°C 至 +125°C - 电源电压范围:不同型号有不同的电压范围,例如LM2902B-Q1和LM2902BA-Q1为3V至36V - 输入偏置电压最大值:不同型号有不同最大值,例如LM2902BA-Q1为2mV - 电源电流:每通道典型值为175µA - 增益带宽积:1.2MHz

功能详解: 这些运算放大器设计用于在单电源电压范围内工作,并且可以处理分电源操作。它们具有低功耗电流消耗,适用于传感器放大器、直流放大块以及所有传统的运算放大器电路。

应用信息: - 汽车照明 - 车身电子 - 汽车主机单元 - 远程信息处理控制单元 - 紧急呼叫(eCall) - 被动安全:制动系统 - 电动汽车/混合动力:逆变器和电机控制

封装信息: - SOIC(塑料小外形)14引脚 - TSSOP(薄小外形封装)14引脚
LM2902KAVQPWRQ1 价格&库存

很抱歉,暂时无法提供与“LM2902KAVQPWRQ1”相匹配的价格&库存,您可以联系我们找货

免费人工找货
LM2902KAVQPWRQ1
    •  国内价格
    • 1+1.18080

    库存:28294

    LM2902KAVQPWRQ1
    •  国内价格
    • 1+2.04120
    • 10+1.88420
    • 100+1.72710
    • 1000+1.57010

    库存:18247

    LM2902KAVQPWRQ1
      •  国内价格
      • 1+1.46448
      • 100+1.34244
      • 250+1.22040

      库存:18247

      LM2902KAVQPWRQ1
      •  国内价格 香港价格
      • 1+4.750421+0.56765
      • 10+3.3492510+0.40022
      • 25+3.0019325+0.35872
      • 100+2.61440100+0.31241
      • 250+2.42967250+0.29033
      • 500+2.31823500+0.27702
      • 1000+2.226481000+0.26605

      库存:3691

      LM2902KAVQPWRQ1
      •  国内价格 香港价格
      • 2000+2.150972000+0.25703
      • 4000+2.088834000+0.24961
      • 6000+2.057736000+0.24589
      • 10000+2.0232510000+0.24177
      • 14000+2.0031014000+0.23936
      • 20000+1.9837420000+0.23705

      库存:3691