Product
Folder
Order
Now
Technical
Documents
Support &
Community
Tools &
Software
Reference
Design
LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V
SLCS005Z – OCTOBER 1979 – REVISED OCTOBER 2017
LM393, LM293, LM193, LM2903 Dual Differential Comparators
1 Features
3 Description
•
•
These devices consist of two independent voltage
comparators that are designed to operate from a
single power supply over a wide range of voltages.
Operation from dual supplies also is possible as long
as the difference between the two supplies is 2 V to
36 V, and VCC is at least 1.5 V more positive than the
input common-mode voltage. Current drain is
independent of the supply voltage. The outputs can
be connected to other open-collector outputs to
achieve wired-AND relationships.
1
•
•
•
•
•
•
•
•
•
Single-Supply or Dual Supplies
Wide Range of Supply Voltage
– Maximum Rating: 2 V to 36 V
– Tested to 30 V: Non-V Devices
– Tested to 32 V: V-Suffix Devices
Low Supply-Current Drain Independent of Supply
Voltage: 0.4 mA (Typical) Per Comparator
Low Input Bias Current: 25 nA (Typical)
Low Input Offset Current: 3 nA (Typical) (LM193)
Low Input Offset Voltage: 2 mV (Typical)
Common-Mode Input Voltage Range
Includes Ground
Differential Input Voltage Range Equal to
Maximum-Rated Supply Voltage: ±36 V
Low Output Saturation Voltage
Output Compatible With TTL, MOS, and CMOS
On Products Compliant to MIL-PRF-38535,
All Parameters Are Tested Unless Otherwise
Noted. On All Other Products, Production
Processing Does Not Necessarily Include Testing
of All Parameters.
2 Applications
•
•
•
•
Chemical or Gas Sensor
Desktop PC
Motor Control: AC Induction
Weigh Scale
The LM193 device is characterized for operation from
−55°C to +125°C. The LM293 and LM293A devices
are characterized for operation from −25°C to +85°C.
The LM393 and LM393A devices are characterized
for operation from 0°C to 70°C. The LM2903,
LM2903V, and LM2903AV devices are characterized
for operation from −40°C to +125°C.
Device Information(1)
PART NUMBER
PACKAGE
BODY SIZE (NOM)
LM193D, LM293D,
LM293AD, LM393D,
LM393AD, LM2903D,
LM2903QD,
LM2903VQD,
LM2903AVQD
SOIC (8)
4.90 mm x 6.00 mm
LM293DGK,
LM293ADGK,
LM393DGK,
LM393ADGK,
LM2903DGK
VSSOP (8)
3.00 mm x 5.00 mm
LM293P, LM393P,
LM393AP, LM2903P
PDIP (8)
9.50 mm × 6.30 mm
LM393PS, LM393APS,
LM2903PS
SO (8)
6.20 mm x 7.90 mm
LM393PW, LM393APW,
LM2903PW,
TSSOP (8)
LM2903VQPW,
LM2903AVQPW
6.40 mm x 3.00 mm
LM193JG
CDIP (8)
10.00 mm x 7.00 mm
LM193FK
LCCC (20)
9.00 mm x 9.00 mm
(1) For all available packages, see the orderable addendum at
the end of the data sheet.
Simplified Schematic
IN+
OUT
IN−
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V
SLCS005Z – OCTOBER 1979 – REVISED OCTOBER 2017
www.ti.com
Table of Contents
1
2
3
4
5
6
Features ..................................................................
Applications ...........................................................
Description .............................................................
Revision History.....................................................
Pin Configuration and Functions .........................
Specifications.........................................................
1
1
1
2
3
4
6.1
6.2
6.3
6.4
Absolute Maximum Ratings ...................................... 4
ESD Ratings.............................................................. 4
Recommended Operating Conditions....................... 4
Thermal Information LM293, LM393, LM2903 (all
suffixes)...................................................................... 5
6.5 Thermal Information LM193 ...................................... 5
6.6 Electrical Characteristics for LM193, LM293, and
LM393 (without A suffix) ............................................ 6
6.7 Electrical Characteristics for LM293A and LM393A . 7
6.8 Electrical Characteristics for LM2903, LM2903V, and
LM2903AV ................................................................. 8
6.9 Switching Characteristics (all devices)...................... 8
6.10 Typical Characteristics ............................................ 9
7
Detailed Description ............................................ 10
7.1
7.2
7.3
7.4
8
Overview .................................................................
Functional Block Diagram .......................................
Feature Description.................................................
Device Functional Modes........................................
10
10
10
10
Application and Implementation ........................ 11
8.1 Application Information............................................ 11
8.2 Typical Application ................................................. 11
9 Power Supply Recommendations...................... 14
10 Layout................................................................... 14
10.1 Layout Guidelines ................................................. 14
10.2 Layout Example .................................................... 14
11 Device and Documentation Support ................. 15
11.1
11.2
11.3
11.4
11.5
11.6
Related Links ........................................................
Receiving Notification of Documentation Updates
Community Resources..........................................
Trademarks ...........................................................
Electrostatic Discharge Caution ............................
Glossary ................................................................
15
15
15
15
15
15
12 Mechanical, Packaging, and Orderable
Information ........................................................... 15
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision Y (June 2015) to Revision Z
Page
•
Changed text from: LM139 to: LM193.................................................................................................................................... 1
•
Changed data sheet title ........................................................................................................................................................ 1
•
Added LM2903 part numbers ................................................................................................................................................ 1
•
Added LM2903 part numbers ................................................................................................................................................ 1
•
Changed VCC and ground pin function from: input to: – ....................................................................................................... 3
•
Changed TJ to TA, split part numbers ..................................................................................................................................... 4
•
Changed 25C to -25C due to typo in LM293 Temperature Tablenote .................................................................................. 6
•
Remove text "four comparators" from ICC ............................................................................................................................... 7
•
Changed 25C to -25C due to typo in LM293 Temperature Tablenote .................................................................................. 7
•
Changed input error in Feature Description text ................................................................................................................. 10
•
Changed Design Paramter maximum current from: 20 mA to: 4 mA................................................................................... 11
•
Changed and revised text in Response Time section .......................................................................................................... 12
•
Added Receiving Notification of Documentation Updates section ....................................................................................... 15
Changes from Revision X (January 2014) to Revision Y
•
2
Page
Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation
section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and
Mechanical, Packaging, and Orderable Information section. ................................................................................................ 1
Submit Documentation Feedback
Copyright © 1979–2017, Texas Instruments Incorporated
Product Folder Links: LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V
LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V
www.ti.com
SLCS005Z – OCTOBER 1979 – REVISED OCTOBER 2017
Changes from Revision W (July 2010) to Revision X
Page
•
Updated document to new TI data sheet format - no specification changes. ........................................................................ 1
•
Updated Features ................................................................................................................................................................... 1
•
Removed Ordering Information table ..................................................................................................................................... 3
•
Added ESD warning. ............................................................................................................................................................ 15
Copyright © 1979–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V
3
LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V
SLCS005Z – OCTOBER 1979 – REVISED OCTOBER 2017
www.ti.com
5 Pin Configuration and Functions
D, DGK, JG, P, PS, or PW
8-Pin SOIC, VSSOP, CDIP, PDIP, SO, or TSSOP
Top View
8
2
7
3
6
4
5
NC
1OUT
NC
VCC
NC
1
VCC
2OUT
2IN−
2IN+
3 2
NC
1IN−
NC
1IN+
NC
4
1 20 19
18
5
17
6
16
7
15
8
14
9 10 11 12 13
NC
2OUT
NC
2IN−
NC
NC
GND
NC
2IN+
NC
1OUT
1IN−
1IN+
GND
FK Package
20-Pin LCCC
Top View
NC – No internal connection
Pin Functions
PIN
NAME
SOIC, VSSOP,
CDIP, PDIP, SO,
and TSSOP
LCCC
1OUT
1
2
Output
1IN–
2
5
Input
Negative input pin of comparator 1
1IN+
3
7
Input
Positive input pin of comparator 1
GND
4
10
—
2IN+
5
12
Input
Positive input pin of comparator 2
2IN-
6
15
Input
Negative input pin of comparator 2
2OUT
7
17
Output
VCC
8
20
—
I/O
DESCRIPTION
Output pin of comparator 1
Ground
Output pin of comparator 2
Supply Pin
1
3
4
6
8
NC
—
9
11
N/A
No Connect (No Internal Connection)
13
14
16
18
19
4
Submit Documentation Feedback
Copyright © 1979–2017, Texas Instruments Incorporated
Product Folder Links: LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V
LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V
www.ti.com
SLCS005Z – OCTOBER 1979 – REVISED OCTOBER 2017
6 Specifications
6.1 Absolute Maximum Ratings
over operating free-air temperature range (unless otherwise noted) (1)
MIN
MAX
UNIT
36
V
±36
V
Supply voltage (2)
VCC
(3)
VID
Differential input voltage
VI
Input voltage (either input)
IIK
–0.3
36
V
Input current (4)
-50
mA
VO
Output voltage
36
V
IO
Output current
20
mA
Duration of output short circuit to ground (5)
TJ
Operating virtual-junction temperature
150
°C
FK package
260
°C
Lead temperature 1.6 mm (1/16 in) from case for 60 s JG package
300
°C
150
°C
Case temperature for 60 s
Tstg
(1)
(2)
(3)
(4)
(5)
Unlimited
Storage temperature
–65
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values, except differential voltages, are with respect to network ground.
Differential voltages are at IN+ with respect to IN–.
Input current flows thorough parasitic diode to ground and will turn on parasitic transistors that will increase ICC and may cause output
to be incorrect. Normal operation resumes when input current is removed.
Short circuits from outputs to VCC can cause excessive heating and eventual destruction.
6.2 ESD Ratings
VALUE
V(ESD)
(1)
(2)
Electrostatic discharge
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001
(1)
UNIT
1000
Charged-device model (CDM), per JEDEC specification JESD22-C101 (2)
V
750
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
6.3 Recommended Operating Conditions
over operating free-air temperature range (unless otherwise noted)
VCC
TA
non-V devices
Supply voltage
V devices
Operating temperature
MAX
2
30
UNIT
V
2
32
V
LM193
–55
125
°C
LM293, LM293A
–25
85
°C
LM393, LM393A
0
70
°C
–40
125
°C
LM2903, LM2903V,
LM2903AV
Copyright © 1979–2017, Texas Instruments Incorporated
MIN
Submit Documentation Feedback
Product Folder Links: LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V
5
LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V
SLCS005Z – OCTOBER 1979 – REVISED OCTOBER 2017
www.ti.com
6.4 Thermal Information LM293, LM393, LM2903 (all suffixes)
LM293, LM393, LM2903
THERMAL METRIC
(1)
D (SOIC)
DGK
(VSSOP)
P (PDIP)
PS (SO)
PW (TSSOP)
8 PINS
8 PINS
8 PINS
8 PINS
8 PINS
UNIT
RθJA
Junction-to-ambient thermal resistance
131.8
199.4
73.7
139
194.1
°C/W
RθJC(top)
Junction-to-case (top) thermal
resistance
78.4
90.2
62.6
98.9
77
°C/W
RθJB
Junction-to-board thermal resistance
72.2
120.8
50.8
83.7
123
°C/W
ψJT
Junction-to-top characterization
parameter
26.5
21.5
39.2
47.4
13.1
°C/W
ψJB
Junction-to-board characterization
parameter
71.7
119.1
50.7
83
121.3
°C/W
(1)
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.
6.5 Thermal Information LM193
LM193
THERMAL METRIC (1)
RθJC(top)
(1)
6
Junction-to-case (top) thermal resistance
JG (GDIP)
FK (LCCC)
8 PINS
20 PINS
14.5
5.61
UNIT
°C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.
Submit Documentation Feedback
Copyright © 1979–2017, Texas Instruments Incorporated
Product Folder Links: LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V
LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V
www.ti.com
SLCS005Z – OCTOBER 1979 – REVISED OCTOBER 2017
6.6 Electrical Characteristics for LM193, LM293, and LM393 (without A suffix)
at specified free-air temperature, VCC = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA (1)
MIN
VIO
Input offset voltage
VCC = 5 V to 30 V,
VIC = VICR min,
VO = 1.4 V
IIO
Input offset current
VO = 1.4 V
IIB
Input bias current
VO = 1.4 V
VICR
Common-mode input-voltage
range (2)
AVD
Large-signal differential-voltage
amplification
IOH
High-level output current
25°C
3
Full range
VCC = 15 V,
VO = 1.4 V to 11.4 V,
RL ≥ 15 kΩ to VCC
25°C
VOH = 5 V
VID = 1 V
25°C
VOH = 30 V
VID = 1 V
Full range
–25
Low-level output current
VOL = 1.5 V,
VID = –1 V
25°C
VCC = 5 V
25°C
VCC = 30 V
Full range
MAX
2
5
9
25
5
–100
–25
0 to
VCC – 1.5
0 to
VCC – 2
0 to
VCC – 2
200
50
0.1
Full range
400
200
nA
V/mV
50
nA
1
µA
130
400
700
6
0.8
nA
0.1
700
6
mV
V
1
150
–250
–400
0 to
VCC – 1.5
50
50
250
–300
25°C
IOL
UNIT
TYP
100
25°C
VID = –1 V
(2)
5
Full range
IOL = 4 mA,
(1)
2
MIN
9
25°C
25°C
RL = ∞
MAX
Full range
Low-level output voltage
Supply current
TYP
Full range
VOL
ICC
LM293
LM393
LM193
mV
mA
1
0.45
1
2.5
0.55
2.5
mA
Full range (minimum or maximum) for LM193 is –55°C to 125°C, for LM293 is –25°C to 85°C, and for LM393 is 0°C to 70°C. All
characteristics are measured with zero common-mode input voltage, unless otherwise specified.
The voltage at either input should not be allowed to go negative by more than 0.3 V otherwise output may be incorrect and excessive
input current can flow. The upper end of the common-mode voltage range is limited by VCC – 2V. However only one input needs to be in
the valid common mode range, the other input can go up the maximum VCC level and the comparator provides a proper output state.
Either or both inputs can go to maximum VCC level without damage.
Copyright © 1979–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V
7
LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V
SLCS005Z – OCTOBER 1979 – REVISED OCTOBER 2017
www.ti.com
6.7 Electrical Characteristics for LM293A and LM393A
at specified free-air temperature, VCC = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA (1)
LM293A
LM393A
MIN
VIO
Input offset voltage
VCC = 5 V to 30 V, VO = 1.4 V
VIC = VICR(min)
IIO
Input offset current
VO = 1.4 V
IIB
Input bias current
VO = 1.4 V
25°C
Common-mode input-voltage range
Large-signal differential-voltage
amplification
IOH
High-level output current
VOL
IOL
ICC
(1)
(2)
8
1
2
4
25°C
5
Full range
25°C
(2)
VCC = 15 V, VO = 1.4 V to 11.4 V,
RL ≥ 15 kΩ to VCC
25°C
50
150
–25
Full range
Full range
AVD
MAX
Full range
25°C
VICR
UNIT
TYP
–250
–400
0 to
VCC – 1.5
200
VID = 1 V
25°C
VOH = 30 V,
VID = 1 V
Full range
Low-level output voltage
IOL = 4 mA,
VID = –1 V
Low-level output current
VOL = 1.5 V,
VID = –1 V,
25°C
VCC = 5 V
25°C
0.60
1
VCC = 30 V
Full range
0.72
2.5
RL = ∞
Supply current
nA
0.1
V/mV
VOH = 5 V,
25°C
nA
V
0 to
VCC – 2
50
mV
110
Full range
50
nA
1
µA
400
700
6
mV
mA
mA
Full range (minimum or maximum) for LM293A is –25°C to 85°C, and for LM393A is 0°C to 70°C. All characteristics are measured with
zero common-mode input voltage, unless otherwise specified.
The voltage at either input should not be allowed to go negative by more than 0.3 V otherwise output may be incorrect and excessive
input current can flow. The upper end of the common-mode voltage range is limited by VCC – 2V. However only one input needs to be in
the valid common mode range, the other input can go up the maximum VCC level and the comparator provides a proper output state.
Either or both inputs can go to maximum VCC level without damage.
Submit Documentation Feedback
Copyright © 1979–2017, Texas Instruments Incorporated
Product Folder Links: LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V
LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V
www.ti.com
SLCS005Z – OCTOBER 1979 – REVISED OCTOBER 2017
6.8 Electrical Characteristics for LM2903, LM2903V, and LM2903AV
at specified free-air temperature, VCC = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
VIO
Input offset voltage
VCC = 5 V to MAX (2) ,
VO = 1.4 V,
VIC = VICR(min),
IIO
Input offset current
VO = 1.4 V
IIB
Input bias current
VO = 1.4 V
VICR
Common-mode inputvoltage range (3)
IOH
High-level output current
25°C
VOH = 5 V,
VID = 1 V
25°C
VID = 1 V
Full range
(2)
VOH = VCC MAX ,
IOL
Low-level output current
VOL = 1.5 V,
VID = –1 V
25°C
VCC = 5 V
25°C
RL = ∞
VCC = MAX
TYP
MAX
1
2
4
50
5
200
–25
–250
–25
0 to
VCC – 1.5
0 to
VCC – 2
0 to
VCC – 2
100
25
0.1
50
150
400
100
Full range
nA
50
nA
1
µA
150
400
700
1
nA
V/mV
6
0.8
mV
0.1
700
6
UNIT
V
1
Full range
–250
–500
0 to
VCC – 1.5
25
50
200
–500
25°C
VID = –1 V,
(2)
(3)
5
25°C
IOL = 4 mA,
(1)
7
Full range
Low-level output voltage
Supply current
2
MIN
15
25°C
VOL
ICC
MAX
Full range
VCC = 15 V, VO = 1.4 V to 11.4 V,
RL ≥ 15 kΩ to VCC
LM2903AV
TYP
Full range
Full range
Large-signal differentialvoltage amplification
MIN
25°C
25°C
AVD
LM2903, LM2903V
TA (1)
mV
mA
0.8
2.5
1
2.5
mA
Full range (minimum or maximum) for LM2903 is –40°C to 125°C. All characteristics are measured with zero common-mode input
voltage, unless otherwise specified.
VCC MAX = 30 V for non-V devices and 32 V for V-suffix devices.
The voltage at either input should not be allowed to go negative by more than 0.3 V otherwise output may be incorrect and excessive
input current can flow. The upper end of the common-mode voltage range is limited by VCC – 2V. However only one input needs to be in
the valid common mode range, the other input can go up the maximum VCC level and the comparator provides a proper output state.
Either or both inputs can go to maximum VCC level without damage.
6.9 Switching Characteristics (all devices)
VCC = 5 V, TA = 25°C
PARAMETER
Response time
(1)
(2)
TEST CONDITIONS
RL connected to 5 V through 5.1 kΩ,
CL = 15 pF (1) (2)
TYP
100-mV input step with 5-mV overdrive
1.3
TTL-level input step
0.3
UNIT
µs
CL includes probe and jig capacitance.
The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.
Copyright © 1979–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V
9
LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V
SLCS005Z – OCTOBER 1979 – REVISED OCTOBER 2017
www.ti.com
6.10 Typical Characteristics
80
1.8
1.6
IIN – Input Bias Current – nA
ICC – Supply Current – mA
70
TA = –55°C
1.4
TA = 25°C
TA = 0°C
1.2
1
TA = 70°C
0.8
TA = 125°C
0.6
0.4
TA = –55°C
60
TA = 0°C
50
TA = 25°C
40
TA = 70°C
30
TA = 125°C
20
10
0.2
0
0
0
5
10
15
20
25
30
35
0
5
10
15
20
25
30
35
VCC – Supply Voltage – V
VCC – Supply Voltage – V
Figure 1. Supply Current vs Supply Voltage
Figure 2. Input Bias Current vs Supply Voltage
6
10
Overdrive = 5 mV
VO – Output Voltage – V
VO – Saturation Voltage – V
5
1
TA = 125°C
TA = 25°C
0.1
TA = –55°C
0.01
4
Overdrive = 20 mV
3
Overdrive = 100 mV
2
1
0
0.001
0.01
0.1
1
10
-1
-0.3
100
0
0.25 0.5 0.75
IO – Output Sink Current – mA
1
1.25 1.5 1.75
2
2.25
t – Time – µs
Figure 4. Response Time for Various Overdrives
Negative Transition
Figure 3. Output Saturation Voltage
6
VO – Output Voltage – V
5
Overdrive = 5 mV
4
Overdrive = 20 mV
3
Overdrive = 100 mV
2
1
0
-1
-0.3
0
0.25 0.5 0.75
1
1.25 1.5 1.75
2
2.25
t – Time – µs
Figure 5. Response Time for Various Overdrives
Positive Transition
10
Submit Documentation Feedback
Copyright © 1979–2017, Texas Instruments Incorporated
Product Folder Links: LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V
LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V
www.ti.com
SLCS005Z – OCTOBER 1979 – REVISED OCTOBER 2017
7 Detailed Description
7.1 Overview
These dual comparators have the ability to operate up to absolute maximum of 36 V on the supply pin. This
device has proven ubiquity and versatility across a wide range of applications. This is due to very wide supply
voltages range (2 V to 36 V), low Iq and fast response of the devices.
The open-drain output allows the user to configure the output's logic high voltage (VOH) and can be used to
enable the comparator to be used in AND functionality.
7.2 Functional Block Diagram
VCC
80-µA
Current Regulator
60 µA
10 µA
IN+
10 µA
80 µA
COMPONENT COUNT
OUT
Epi-FET
Diodes
Resistors
Transistors
1
2
2
30
IN−
GND
Figure 6. Schematic (Each Comparator)
7.3 Feature Description
The comparator consists of a PNP darlington pair input, allowing the device to operate with very high gain and
fast response with minimal input bias current. The input Darlington pair creates a limit on the input common
mode voltage capability, allowing the comparator to accurately function from ground to VCC– 1.5 V input. Allow
for VCC– 2 V at cold temperature.
The output consists of an open drain NPN (pull-down or low side) transistor. The output NPN will sink current
when the negative input voltage is higher than the positive input voltage and the offset voltage. The VOL is
resistive and will scale with the output current. See Figure 3 for VOL values with respect to the output current.
7.4 Device Functional Modes
7.4.1 Voltage Comparison
The device operates solely as a voltage comparator, comparing the differential voltage between the positive and
negative pins and outputting a logic low or high impedance (logic high with pullup) based on the input differential
polarity.
Copyright © 1979–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V
11
LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V
SLCS005Z – OCTOBER 1979 – REVISED OCTOBER 2017
www.ti.com
8 Application and Implementation
NOTE
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
8.1 Application Information
The device will typically be used to compare a single signal to a reference or two signals against each other.
Many users take advantage of the open drain output to drive the comparison logic output to a logic voltage level
to an MCU or logic device. The wide supply range and high voltage capability makes this comaprator optimal for
level shifting to a higher or lower voltage.
8.2 Typical Application
VLOGIC
VLOGIC
VSUP
Vin
VSUP
Rpullup
+
Vin+
½ LM2903
Rpullup
+
½ LM2903
Vin-
Vref
CL
CL
Figure 7. Single-Ended and Differential Comparator Configurations
8.2.1 Design Requirements
For this design example, use the parameters listed in Table 1 as the input parameters.
Table 1. Design Parameters
DESIGN PARAMETER
Input Voltage Range
Supply Voltage
Logic Supply Voltage
Output Current (RPULLUP)
Input Overdrive Voltage
EXAMPLE VALUE
0 V to Vsup-2 V
4.5 V to VCC maximum
0 V to VCC maximum
1 µA to 4 mA
100 mV
Reference Voltage
2.5 V
Load Capacitance (CL)
15 pF
8.2.2 Detailed Design Procedure
When using the device in a general comparator application, determine the following:
• Input Voltage Range
• Minimum Overdrive Voltage
• Output and Drive Current
• Response Time
8.2.2.1 Input Voltage Range
When choosing the input voltage range, the input common mode voltage range (VICR) must be taken in to
account. If temperature operation is below 25°C the VICR can range from 0 V to VCC– 2.0 V. This limits the input
voltage range to as high as VCC– 2.0 V and as low as 0 V. Operation outside of this range can yield incorrect
comparisons.
12
Submit Documentation Feedback
Copyright © 1979–2017, Texas Instruments Incorporated
Product Folder Links: LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V
LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V
www.ti.com
SLCS005Z – OCTOBER 1979 – REVISED OCTOBER 2017
The following is a list of input voltage situation and their outcomes:
1. When both IN- and IN+ are both within the common-mode range:
a. If IN- is higher than IN+ and the offset voltage, the output is low and the output transistor is sinking
current
b. If IN- is lower than IN+ and the offset voltage, the output is high impedance and the output transistor is
not conducting
2. When IN- is higher than common-mode and IN+ is within common-mode, the output is low and the output
transistor is sinking current
3. When IN+ is higher than common-mode and IN- is within common-mode, the output is high impedance and
the output transistor is not conducting
4. When IN- and IN+ are both higher than common-mode, the output is low and the output transistor is sinking
current
8.2.2.2 Minimum Overdrive Voltage
Overdrive Voltage is the differential voltage produced between the positive and negative inputs of the comparator
over the offset voltage (VIO). To make an accurate comparison the Overdrive Voltage (VOD) should be higher
than the input offset voltage (VIO). Overdrive voltage can also determine the response time of the comparator,
with the response time decreasing with increasing overdrive. Figure 8 and Figure 9 show positive and negative
response times with respect to overdrive voltage.
8.2.2.3 Output and Drive Current
Output current is determined by the load/pull-up resistance and logic/pullup voltage. The output current will
produce a output low voltage (VOL) from the comparator. In which VOL is proportional to the output current. Use
Typical Characteristics to determine VOL based on the output current.
The output current can also effect the transient response. See Response Time for more information.
8.2.2.4 Response Time
Response time is a function of input over drive. See Application Curves for typical response times. The rise and
falls times can be determined by the load capacitance (CL), load/pullup resistance (RPULLUP) and equivalent
collector-emitter resistance (RCE).
•
•
The rise time (τR) is approximately τR ~ RPULLUP × CL
The fall time (τF) is approximately τF ~ RCE × CL
– RCE can be determine by taking the slope of Typical Characteristics in its linear region at the desired
temperature, or by dividing the VOL by Iout
8.2.3 Application Curves
The following curves were generated with 5 V on VCC and VLogic, RPULLUP = 5.1 kΩ, and 50 pF scope probe.
Copyright © 1979–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V
13
LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V
www.ti.com
6
6
5
5
Output Voltage (Vo)
Output Voltage, Vo(V)
SLCS005Z – OCTOBER 1979 – REVISED OCTOBER 2017
4
3
2
5mV OD
1
20mV OD
0
4
3
2
5mV OD
1
20mV OD
0
100mV OD
±1
-0.25
0.25
0.75
1.25
1.75
2.25
Time (usec)
Figure 8. Response Time for Various Overdrives
(Positive Transition)
14
Submit Documentation Feedback
100mV OD
±1
±0.25 0.00
C004
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
Time (usec)
C006
Figure 9. Response Time for Various Overdrives
(Negative Transition)
Copyright © 1979–2017, Texas Instruments Incorporated
Product Folder Links: LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V
LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V
www.ti.com
SLCS005Z – OCTOBER 1979 – REVISED OCTOBER 2017
9 Power Supply Recommendations
For fast response and comparison applications with noisy or AC inputs, TI recommends to use a bypass
capacitor on the supply pin to reject any variation on the supply voltage. This variation can eat into the input
common-mode range of the comparator and create an inaccurate comparison.
10 Layout
10.1 Layout Guidelines
For accurate comparator applications without hysteresis it is important maintain a stable power supply with
minimized noise and glitches. To achieve this, it is best to add a bypass capacitor between the supply voltage
and ground. This should be implemented on the positive power supply and negative supply (if available). If a
negative supply is not being used, do not put a capacitor between the IC's GND pin and system ground.
Minimize coupling between outputs and inverting inputs to prevent output oscillations. Do not run output and
inverting input traces in parallel unless there is a VCC or GND trace between output and inverting input traces to
reduce coupling. When series resistance is added to inputs, place resistor close to the device.
10.2 Layout Example
Better
Ground
PF
Input Resistors
Close to device
1 1OUT
2 1IN-
VCC 8
VCC
2OUT 7
OK
VCC or GND
Ground
3 1IN+
2IN- 6
4 GND
2IN+ 5
Figure 10. LM2903 Layout Example
Copyright © 1979–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V
15
LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V
SLCS005Z – OCTOBER 1979 – REVISED OCTOBER 2017
www.ti.com
11 Device and Documentation Support
11.1 Related Links
The table below lists quick access links. Categories include technical documents, support and community
resources, tools and software, and quick access to order now.
Table 2. Related Links
PARTS
PRODUCT FOLDER
ORDER NOW
TECHNICAL
DOCUMENTS
TOOLS &
SOFTWARE
SUPPORT &
COMMUNITY
LM193
Click here
Click here
Click here
Click here
Click here
LM293
Click here
Click here
Click here
Click here
Click here
LM293A
Click here
Click here
Click here
Click here
Click here
LM393
Click here
Click here
Click here
Click here
Click here
LM393A
Click here
Click here
Click here
Click here
Click here
LM2903
Click here
Click here
Click here
Click here
Click here
LM2903V
Click here
Click here
Click here
Click here
Click here
11.2 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper
right corner, click on Alert me to register and receive a weekly digest of any product information that has
changed. For change details, review the revision history included in any revised document.
11.3 Community Resources
The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective
contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of
Use.
TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration
among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help
solve problems with fellow engineers.
Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and
contact information for technical support.
11.4 Trademarks
E2E is a trademark of Texas Instruments.
All other trademarks are the property of their respective owners.
11.5 Electrostatic Discharge Caution
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
11.6 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
12 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser based versions of this data sheet, refer to the left hand navigation.
16
Submit Documentation Feedback
Copyright © 1979–2017, Texas Instruments Incorporated
Product Folder Links: LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V
PACKAGE OPTION ADDENDUM
www.ti.com
24-Aug-2018
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
LM193DR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-55 to 125
LM193
LM193DRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-55 to 125
LM193
LM2903AVQDR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2903AV
LM2903AVQDRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2903AV
LM2903AVQPWR
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2903AV
LM2903AVQPWRG4
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2903AV
LM2903D
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
LM2903
LM2903DE4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
LM2903
LM2903DG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
LM2903
LM2903DGKR
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU |
CU NIPDAUAG
Level-1-260C-UNLIM
-40 to 125
(MAP, MAS, MAU)
LM2903DGKRG4
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAUAG
Level-1-260C-UNLIM
-40 to 125
(MAP, MAS, MAU)
LM2903DR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN
Level-1-260C-UNLIM
-40 to 125
LM2903
LM2903DRE4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
LM2903
LM2903DRG3
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
-40 to 125
LM2903
LM2903DRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
LM2903
LM2903P
ACTIVE
PDIP
P
8
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
N / A for Pkg Type
-40 to 125
LM2903P
LM2903PSR
ACTIVE
SO
PS
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2903
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
24-Aug-2018
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
LM2903PSRG4
ACTIVE
SO
PS
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2903
LM2903PWR
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN
Level-1-260C-UNLIM
-40 to 125
L2903
LM2903PWRG3
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
-40 to 125
L2903
LM2903PWRG4
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2903
LM2903QD
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
2903Q
LM2903QDG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
2903Q
LM2903QDRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
2903Q
LM2903VQDR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2903V
LM2903VQDRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2903V
LM2903VQPWR
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2903V
LM2903VQPWRG4
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2903V
LM293AD
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-25 to 85
LM293A
LM293ADE4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-25 to 85
LM293A
LM293ADGKR
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU |
CU NIPDAUAG
Level-1-260C-UNLIM
-25 to 85
(MDP, MDS, MDU)
LM293ADGKRG4
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAUAG
Level-1-260C-UNLIM
-25 to 85
(MDP, MDS, MDU)
LM293ADR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN
Level-1-260C-UNLIM
-25 to 85
LM293A
LM293ADRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-25 to 85
LM293A
LM293D
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-25 to 85
LM293
Addendum-Page 2
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
24-Aug-2018
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
LM293DGKR
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU |
CU NIPDAUAG
Level-1-260C-UNLIM
-25 to 85
(MCP, MCS, MCU)
LM293DGKRG4
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAUAG
Level-1-260C-UNLIM
-25 to 85
(MCP, MCS, MCU)
LM293DR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN
Level-1-260C-UNLIM
-25 to 85
LM293
LM293DRE4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-25 to 85
LM293
LM293DRG3
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
-25 to 85
LM293
LM293DRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
-25 to 85
LM293
LM293P
ACTIVE
PDIP
P
8
50
Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN
N / A for Pkg Type
-25 to 85
LM293P
LM293PE4
ACTIVE
PDIP
P
8
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
N / A for Pkg Type
-25 to 85
LM293P
LM393AD
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
LM393A
LM393ADE4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
LM393A
LM393ADG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
LM393A
LM393ADGKR
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU |
CU NIPDAUAG
Level-1-260C-UNLIM
0 to 70
(M8P, M8S, M8U)
LM393ADGKRG4
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAUAG
Level-1-260C-UNLIM
0 to 70
(M8P, M8S, M8U)
LM393ADR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN
Level-1-260C-UNLIM
0 to 70
LM393A
LM393ADRE4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
LM393A
LM393ADRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
LM393A
LM393AP
ACTIVE
PDIP
P
8
50
Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN
N / A for Pkg Type
0 to 70
LM393AP
LM393APE4
ACTIVE
PDIP
P
8
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
N / A for Pkg Type
0 to 70
LM393AP
Addendum-Page 3
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
24-Aug-2018
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
LM393APSR
ACTIVE
SO
PS
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
L393A
LM393APWR
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN
Level-1-260C-UNLIM
0 to 70
L393A
LM393APWRE4
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
L393A
LM393APWRG4
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
L393A
LM393D
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
LM393
LM393DE4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
LM393
LM393DG4
ACTIVE
SOIC
D
8
75
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
LM393
LM393DGKR
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU |
CU NIPDAUAG
Level-1-260C-UNLIM
0 to 70
(M9P, M9S, M9U)
LM393DGKRG4
ACTIVE
VSSOP
DGK
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAUAG
Level-1-260C-UNLIM
0 to 70
(M9P, M9S, M9U)
LM393DR
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN
Level-1-260C-UNLIM
0 to 70
LM393
LM393DRE4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
LM393
LM393DRG3
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
0 to 70
LM393
LM393DRG4
ACTIVE
SOIC
D
8
2500
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
LM393
LM393P
ACTIVE
PDIP
P
8
50
Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN
N / A for Pkg Type
0 to 70
LM393P
LM393PE3
ACTIVE
PDIP
P
8
50
Pb-Free
(RoHS)
CU SN
N / A for Pkg Type
0 to 70
LM393P
LM393PE4
ACTIVE
PDIP
P
8
50
Green (RoHS
& no Sb/Br)
CU NIPDAU
N / A for Pkg Type
0 to 70
LM393P
LM393PSR
ACTIVE
SO
PS
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
L393
LM393PSRG4
ACTIVE
SO
PS
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
L393
Addendum-Page 4
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
24-Aug-2018
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
LM393PW
ACTIVE
TSSOP
PW
8
150
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
L393
LM393PWG4
ACTIVE
TSSOP
PW
8
150
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
L393
LM393PWR
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU | CU SN
Level-1-260C-UNLIM
0 to 70
L393
LM393PWRG3
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU SN
Level-1-260C-UNLIM
0 to 70
L393
LM393PWRG4
ACTIVE
TSSOP
PW
8
2000
Green (RoHS
& no Sb/Br)
CU NIPDAU
Level-1-260C-UNLIM
0 to 70
L393
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of