LM2903-Q1, LM2903B-Q1
LM2903-Q1,
LM2903B-Q1
SLCS141J – MAY 2003
– REVISED NOVEMBER
2020
SLCS141J – MAY 2003 – REVISED NOVEMBER 2020
www.ti.com
LM2903-Q1 and LM2903B-Q1 Automotive Dual Comparators
Features
Description
•
•
The LM2903B-Q1 device is the next generation
version of the industry-standard LM2903-Q1
comparator family. This next generation family
provides outstanding value for cost-sensitive
applications, with features including lower offset
voltage, higher supply voltage capability, lower supply
current, lower input bias current, lower propagation
delay, and improved 2kV ESD performance with dropin replacement convenience.
•
•
•
•
•
•
•
•
•
•
Qualified for automotive applications
AEC-Q100 qualified with the following results:
– Device temperature grade 0: –40°C to 150°C
ambient operating temperature range
(LM2903E-Q1)
– Device temperature grade 1: –40°C to 125°C
ambient operating temperature range
– Device HBM ESD classification level H1C
– Device CDM ESD classification level C4B
Improved 2 kV HBM ESD for "B" device
Single supply or dual supplies
Low supply-current independent of
supply voltage 200 uA Typ Per
comparator ("B" Versions)
Low input bias current 3.5 nA Typ ("B" device)
Low input offset current 0.5 nA Typ ("B" device)
Low input offset voltage ±0.37 mV Typ ("B" device)
Common-mode input voltage range includes
ground
Differential input voltage range equal to maximumrated supply voltage ±36 V
Output compatible with TTL, MOS, and CMOS
Functional Safety-Capable
– Documentation available to aid functional safety
system design
All devices consist of two independent voltage
comparators that are designed to operate over a wide
range of voltages. Operation from dual supplies also
is possible as long as the difference between the two
supplies is within 2 V to 36 V, and VCC is at least 1.5
V more positive than the input common-mode voltage.
The outputs can be connected to other open-collector
outputs.
The LM2903-Q1 and LM2903B-Q1 are qualified for
the AEC-Q100 Grade 1 temperature range of -40°C to
+125°C. The LM2903E-Q1 is Qualified for the Grade
0 extended temperature range of -40°C to +150°C.
Device Information (1)
PART NUMBER
LM2903B-Q1
Applications
•
•
•
Automotive
– HEV/EV and power train
– Infotainment and cluster
– Body control module
Industrial
Appliances
LM2903-Q1
LM2903E-Q1
(1)
PACKAGE
BODY SIZE (NOM)
SOIC (8)
4.90 mm × 3.91 mm
TSSOP (8)
3.00 mm × 4.40 mm
VSSOP(8)
3.00 mm x 3.00 mm
WSON (8)
2.00 mm x 2.00 mm
SOT-23 (8)
1.60 mm × 2.90 mm
SOIC (8)
4.90 mm × 3.91 mm
TSSOP (8)
3.00 mm × 4.40 mm
VSSOP(8)
3.00 mm x 3.00 mm
TSSOP (8)
3.00 mm × 4.40 mm
For all available packages, see the orderable addendum at
the end of the datasheet.
Family Comparison Table
Specification
Specified Supply Votlage
LM2903B-Q1
LM2903-Q1
LM2903-Q1
"A" Devices
LM2903-Q1
"AV" Devices
LM2903E-Q1
Units
2 to 36
2 to 30
2 to 30
2 to 32
2 to 30
V
Total Supply Current (5 V to VS max)
0.6 to 0.8
1 to 2.5
1 to 2.5
1 to 2.5
1 to 2.5
mA
Temperature Range
−40 to 125
−40 to 125
−40 to 125
−40 to 125
-40 to 150
°C
ESD (HBM / CDM)
2k / 1k
1k / 750
1k / 750
1k / 750
1k / 750
V
Offset Voltage (max over temp)
Input Bias Current (typ / max)
Response Time (typ)
±4
± 15
±4
±4
± 15
mV
3.5 / 25
25 / 250
25 / 250
25 / 250
25 / 250
nA
1
1.3
1.3
1.3
1.3
µsec
An©IMPORTANT
NOTICEIncorporated
at the end of this data sheet addresses availability, warranty, changes, use in
safety-critical
applications,
Copyright
2020 Texas Instruments
Submit
Document
Feedback
intellectual property matters and other important disclaimers. PRODUCTION DATA.
Product Folder Links: LM2903-Q1 LM2903B-Q1
1
LM2903-Q1, LM2903B-Q1
www.ti.com
SLCS141J – MAY 2003 – REVISED NOVEMBER 2020
Table of Contents
Features...............................................................................1
Applications........................................................................ 1
Description..........................................................................1
1 Revision History.............................................................. 2
2 Pin Configuration and Functions...................................3
2.1 Pin Functions.............................................................. 3
3 Specifications.................................................................. 4
3.1 Absolute Maximum Ratings, LM2903-Q1 and
LM2903E-Q1................................................................. 4
3.2 Absolute Maximum Ratings, LM2903B-Q1.................4
3.3 ESD Ratings, LM2903-Q1 and LM2903E-Q1............. 4
3.4 ESD Ratings, LM2903B-Q1........................................ 4
3.5 Recommended Operating Conditions,
LM2903B-Q1................................................................. 5
3.6 Recommended Operating Conditions, LM2903-Q1....5
3.7 Recommended Operating Conditions,
LM2903E-Q1................................................................. 5
3.8 Thermal Information, LM2903-Q1 and
LM2903E-Q1................................................................. 5
3.9 Thermal Information, LM2903B-Q1............................ 5
3.10 Electrical Characteristics LM2903B - Q1 ................. 6
3.11 Switching Characteristics LM2903B - Q1 .................6
3.12 Electrical Characteristics, LM2903-Q1 and
LM2903E-Q1................................................................. 7
3.13 Switching Characteristics, LM2903-Q1 and
LM2903E-Q1................................................................. 7
3.14 Typical Characteristics, LM2903-Q1 and
LM2903E-Q1 Only.........................................................8
3.15 Typical Characteristics, LM2903B-Q1 Only.............. 9
4 Detailed Description......................................................15
4.1 Overview................................................................... 15
4.2 Functional Block Diagram......................................... 15
4.3 Feature Description...................................................15
4.4 Device Functional Modes..........................................15
5 Application and Implementation.................................. 16
5.1 Application Information............................................. 16
5.2 Typical Application.................................................... 16
6 Power Supply Recommendations................................18
7 Layout.............................................................................18
7.1 Layout Guidelines..................................................... 18
7.2 Layout Example........................................................ 18
8 Device and Documentation Support............................18
8.1 Documentation Support............................................ 18
8.2 Receiving Notification of Documentation Updates....18
8.3 Support Resources................................................... 18
8.4 Trademarks............................................................... 18
8.5 Electrostatic Discharge Caution................................19
8.6 Glossary....................................................................19
9 Mechanical, Packaging, and Orderable Information.. 20
1 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision I (June 2020) to Revision J (November 2020)
Page
• Changed LM2903B-Q1 Minimum Recommmended Supply Voltage to 2V throughout the datasheet............... 1
• Added Operating Virtual Temp to Abs Max Table for both versions................................................................... 4
• Updated Supply Voltage vs Supply Current graph for 2V...................................................................................4
Changes from Revision H (January 2020) to Revision I (June 2020)
Page
• Added Functional Safety text and links...............................................................................................................1
• Added VSSOP package to Device Info list for "B"..............................................................................................1
• Added DGK to "B" Thermal Table.......................................................................................................................5
• Added text to Apps Overview section for ESD................................................................................................. 15
Changes from Revision G (November 2018) to Revision H (January 2020)
Page
• Added LM2903B-Q1 to datasheet...................................................................................................................... 1
• Added Device Information table. ........................................................................................................................1
• Added "B" device graphs ................................................................................................................................... 9
• Changed incorrect input text in Feature Description in Apps Section...............................................................15
Changes from Revision F (May 2018) to Revision G (November 2018)
Page
• Changed previous Q1 graphs to match new format .......................................................................................... 8
• Added LM2903E-Q1 specific graphs.................................................................................................................. 8
2
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: LM2903-Q1 LM2903B-Q1
LM2903-Q1, LM2903B-Q1
www.ti.com
SLCS141J – MAY 2003 – REVISED NOVEMBER 2020
2 Pin Configuration and Functions
1OUT
1IN−
1IN+
GND
1
8
2
7
3
6
4
5
VCC
2OUT
2IN−
2IN+
Figure 2-1. D, DGK, DDF OR PW PACKAGE
Top View
1OUT
1
1IN±
2
1IN+
3
GND
4
Exposed
Thermal
Die Pad
on
Underside
8
V+
7
2OUT
6
2IN±
5
2IN+
Connect thermal pad directly to GND pin.
Figure 2-2. DSG Package
8-Pin WSON With Exposed Pad
Top View
2.1 Pin Functions
PIN
NAME
SOIC, VSSOP,
PDIP, SO, DDF and
TSSOP
DSG
I/O
1OUT
1
1
Output
1IN–
2
2
Input
DESCRIPTION
Output pin of comparator 1
Negative input pin of comparator 1
1IN+
3
3
Input
GND
4
4
—
Positive input pin of comparator 1
2IN+
5
5
Input
Positive input pin of comparator 2
2IN-
6
6
Input
Negative input pin of comparator 2
2OUT
7
7
Output
VCC
8
8
—
Positive Supply
Thermal
Pad
—
PAD
—
Connect directly to GND pin
Ground
Output pin of comparator 2
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: LM2903-Q1 LM2903B-Q1
3
LM2903-Q1, LM2903B-Q1
www.ti.com
SLCS141J – MAY 2003 – REVISED NOVEMBER 2020
3 Specifications
3.1 Absolute Maximum Ratings, LM2903-Q1 and LM2903E-Q1
over operating free-air temperature range (unless otherwise noted) (1)
MIN
VCC
Supply
VCC
Supply voltage, LM2903E-Q1 Only(2)
VID
Differential input voltage(3)
VI
Input voltage range (either input)
VO
Output voltage
IO
Output current
TJ
Operating virtual-junction temperature
TSCG
Duration of output short-circuit to ground
(1)
(2)
(3)
MAX
voltage(2)
UNIT
36
V
32
V
–36
36
V
−0.3
36
V
36
V
20
mA
150
°C
Unlimited
s
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
All voltage values, except differential voltages, are with respect to GND.
Differential voltages are at IN+ with respect to IN−.
3.2 Absolute Maximum Ratings, LM2903B-Q1
over operating free-air temperature range (unless otherwise noted)(1)
MIN
Supply voltage: VS = (V+) – (V–)
MAX
-0.3
Differential input voltage : VID (2)
Input pins (IN+, IN–)
-0.3
Current into input pins (IN+, IN–)
Output pin (OUT)
-0.3
Output sink current
Operating virtual-junction temperature
Output short-circuit duration(3)
(1)
(2)
(3)
UNIT
38
V
±38
V
38
V
-50
mA
38
V
25
mA
150
°C
Unlimited
s
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under
Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device
reliability.
Differential voltages are at IN+ with respect to INShort circuits from outputs to V+ can cause excessive heating and eventual destruction.
3.3 ESD Ratings, LM2903-Q1 and LM2903E-Q1
MIN
Tstg
Storage temperature range
V(ESD)
(1)
LM2903-Q1 Only
Human body model (HBM), per AEC Q100-002(1)
Electrostatic discharge
Charged device model (CDM), per AEC Q100-011
All pins
MAX
UNIT
°C
–65
150
-1000
1000
-750
750
V
AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.
3.4 ESD Ratings, LM2903B-Q1
Tstg
Storage temperature range
V(ESD)
(1)
4
Electrostatic
discharge
Human body model (HBM), per AEC
Q100-002(1)
Charged device model (CDM), per AEC Q100-011
All pins
MIN
MAX
UNIT
–65
150
°C
-2000
2000
-1000
1000
V
AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: LM2903-Q1 LM2903B-Q1
LM2903-Q1, LM2903B-Q1
www.ti.com
SLCS141J – MAY 2003 – REVISED NOVEMBER 2020
3.5 Recommended Operating Conditions, LM2903B-Q1
over operating free-air temperature range (unless otherwise noted)
MIN
MAX
2
36
V
Ambient temperature, TA, LM2903B
–40
125
°C
Input voltage range, VIVR
–0.1
(V+) – 2
V
Supply voltage: VS = (V+) – (V–)
UNIT
3.6 Recommended Operating Conditions, LM2903-Q1
over operating free-air temperature range (unless otherwise noted)
MIN
MAX
UNIT
VCC (non-V devices)
2
30
V
VCC (V devices)
2
32
V
-40
125
°C
MIN
MAX
UNIT
2
30
V
-40
150
°C
TJ
Junction Temperature
3.7 Recommended Operating Conditions, LM2903E-Q1
over operating free-air temperature range (unless otherwise noted)
VCC
TJ
Junction Temperature
3.8 Thermal Information, LM2903-Q1 and LM2903E-Q1
LM2903E-Q1
THERMAL METRIC(1)
RθJA
Junction-to-ambient thermal resistance
LM2903-Q1
PW
(TSSOP)
DGK
(VSSOP)
PW
(TSSOP)
D
(SOIC)
8 PINS
8 PINS
8 PINS
8 PINS
178.9
199.4
186.6
126.0
RθJC(top) Junction-to-case (top) thermal resistance
70.7
120.8
79.6
74.2
RθJB
Junction-to-board thermal resistance
108.9
90.2
116.5
66.4
ψJT
Junction-to-top characterization parameter
11.9
21.5
17.7
25.4
ψJB
Junction-to-board characterization parameter
107.3
119.1
114.9
65.9
(1)
UNIT
°C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.
3.9 Thermal Information, LM2903B-Q1
LM2903B-Q1
THERMAL METRIC(1)
RθJA
Junction-to-ambient thermal resistance
D
(SOIC)
DGK
(VSSOP)
PW
(TSSOP)
DSG
(WSON)
DDF
(SOT-23)
8 PINS
8 PINS
8 PINS
8 PINS
8 PINS
148.5
193.7
200.6
96.9
197.9
RθJC(top) Junction-to-case (top) thermal resistance
90.2
82.9
89.6
119.0
119.2
RθJB
Junction-to-board thermal resistance
91.8
115.5
131.3
63.1
115.4
ψJT
Junction-to-top characterization parameter
38.5
20.8
22.1
12.4
19.4
ψJB
Junction-to-board characterization parameter
91.1
113.9
129.6
63.0
113.7
-
-
-
38.7
-
RθJC(bot) Junction-to-case (bottom) thermal resistance
(1)
UNIT
°C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: LM2903-Q1 LM2903B-Q1
5
LM2903-Q1, LM2903B-Q1
www.ti.com
SLCS141J – MAY 2003 – REVISED NOVEMBER 2020
3.10 Electrical Characteristics LM2903B - Q1
VS = 5 V, VCM = (V–) ; TA = 25°C (unless otherwise noted).
PARAMETER
VIO
Input offset voltage
Input offset voltage, DGK
package only
VIO
IB
Input bias current
IOS
Input offset current
TEST CONDITIONS
VS = 5 to 36V
VS = 5 to 36V, TA = –40°C to +125°C
VS = 5 to 36V
VS = 5 to 36V, TA = –40°C to +125°C
MIN
TYP
MAX
–2.5
±0.37
2.5
mV
4
mV
±0.37
3.5
mV
5
mV
–3.5
–25
nA
–50
nA
10
nA
–4
–3.5
–5
TA = –40°C to +125°C
–10
TA = –40°C to +125°C
±0.5
UNIT
–25
25
nA
VS = 3 to 36V
(V–)
(V+) – 1.5
V
VS = 3 to 36V, TA = –40°C to +125°C
(V–)
(V+) – 2.0
V
VCM
Common mode range(1)
AVD
Large signal differential
voltage amplification
VOL
Low level output Voltage
{swing from (V–)}
IOH-LKG
High-level output leakage
current
(V+) = VO = 5 V; VID = 1V
IOL
Low level output current
VOL = 1.5V; VID = -1V; VS = 5V
IQ
Quiescent current (all
comparators)
VS = 5 V, no load
400
600
µA
VS = 36 V, no load, TA = –40°C to +125°C
550
800
µA
(1)
VS = 15V, VO = 1.4V to 11.4V;
RL ≥ 15k to (V+)
50
ISINK ≤ 4mA, VID = -1V
200
110
400
mV
550
mV
0.1
20
nA
0.3
50
ISINK ≤ 4mA, VID = -1V
TA = –40°C to +125°C
(V+) = VO = 36V; VID = 1V
6
V/mV
21
nA
mA
The voltage at any input should not be allowed to go negative by more than 0.3 V. The upper end of the input voltage range is VCC −
1.5 V for one input, and the other input can exceed the VCC level; the comparator provides a proper output state. Either or both inputs
can go to 36 V without damage.
3.11 Switching Characteristics LM2903B - Q1
VS = 5V, VO_PULLUP = 5V, VCM = VS/2, CL = 15pF, RL = 5.1k Ohm, TA = 25°C (unless otherwise noted).
PARAMETER
tresponse
TTL input with Vref = 1.4V
tresponse
Propagation delay time, highto-low; Small scale input signal
Input overdrive = 5mV, Input step = 100mV
(1)
6
TEST CONDITIONS
Propagation delay time, highto-low; TTL input signal (1)
(1)
MIN
TYP
MAX
UNIT
300
ns
1000
ns
High-to-low and low-to-high refers to the transition at the input.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: LM2903-Q1 LM2903B-Q1
LM2903-Q1, LM2903B-Q1
www.ti.com
SLCS141J – MAY 2003 – REVISED NOVEMBER 2020
3.12 Electrical Characteristics, LM2903-Q1 and LM2903E-Q1
at specified free-air temperature, VCC = 5 V (unless otherwise noted)
PARAMETER
VIO
Input offset voltage
TA (1)
TEST CONDITIONS
Non-A devices
VO = 1.4 V,
VIC = VIC(min),
VCC = 5 V to MAX(2)
A-suffix devices
7
1
2
5
50
Full range
IIB
Input bias current
VO = 1.4 V
VICR
Common-mode input
voltage range(3)
AVD
Large-signal
differential-voltage
amplification
VCC = 15 V,
VO = 1.4 V to 11.4 V,
RL ≥ 15 kΩ to VCC
IOH
High-level output
current
VOH = 5 V
VOL
Low-level output
voltage
IOL = 4 mA,
VID = −1 V
IOL
Low-level output
current
VOL = 1.5 V,
VID = −1 V
25°C
ICC
Supply current
RL = ∞
VCC = 5 V
25°C
Full range
200
25°C
−25
Full range
25°C
Full range
VID = 1 V
VCC =
MAX(2)
−250
−500
0 to VCC−1.5
mV
25
25°C
100
nA
V/mV
0.1
50
nA
1
µA
150
400
Full range
25°C
nA
V
0 to VCC−2
25°C
MAX(2)
UNIT
4
25°C
VO = 1.4 V
(2)
(3)
MAX
2
15
25°C
Input offset current
(1)
TYP
Full range
IIO
VOH = VCC
MIN
25°C
Full range
700
6
mV
mA
0.8
Full range
1
2.5
mA
Full range (MIN or MAX) for LM2903-Q1 is −40°C to 125°C and −40°C to 150°C for the LM2903E-Q1 . All characteristics are
measured with zero common-mode input voltage, unless otherwise specified.
VCC MAX = 30 V for non-V devices and 32 V for V-suffix devices.
The voltage at either input or common-mode should not be allowed to go negative by more than 0.3 V. The upper end of the commonmode voltage range is VCC+ − 1.5 V for the inverting input (−), and the non-inverting input (+) can exceed the VCC level; the
comparator provides a proper output state. Either or both inputs can go to 30 V (32V for V-suffix devices) without damage.
3.13 Switching Characteristics, LM2903-Q1 and LM2903E-Q1
VCC = 5 V, TA = 25°C
PARAMETER
Response time
(1)
(2)
TEST CONDITIONS
TYP
RL connected to 5 V through 5.1 kΩ,
100-mV input step with 5-mV overdrive
1.3
CL = 15 pF(1) (2)
TTL-level input step
0.3
UNIT
µs
CL includes probe and jig capacitance.
The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: LM2903-Q1 LM2903B-Q1
7
LM2903-Q1, LM2903B-Q1
www.ti.com
SLCS141J – MAY 2003 – REVISED NOVEMBER 2020
3.14 Typical Characteristics, LM2903-Q1 and LM2903E-Q1 Only
1
1
-40C
0C
25C
85C
125C
0.8
Supply Current (mA)
Supply Current (mA)
0.8
0.6
0.4
0.2
10
20
VCC (V)
30
40
Figure 3-1. Supply Current vs. Supply Voltage
0
10
20
VCC (V)
30
40
Figure 3-2. Supply Current vs. Supply Voltage LM2903E-Q1
Only
70
70
-40C
0C
25C
85C
125C
50
-40C
25C
85C
125C
150C
60
Input Bias Current (nA)
60
Input Bias Current (nA)
0.4
0
0
40
30
20
10
50
40
30
20
10
0
0
0
10
20
VCC (V)
30
40
0
20
VCC (V)
30
40
Figure 3-4. Input Bias Current vs. Supply Voltage LM2903E-Q1
Only
10
125C
85C
25C
0C
-40C
1
0.1
0.01
0.1
1
10
Ouptut Sink Current, IO(mA)
Figure 3-5. Output Low Voltage vs. Output Current
100
Output Low Voltage, VOL (V)
10
0.001
0.01
10
lm29
Figure 3-3. Input Bias Current vs. Supply Voltage
Output Low Voltage, VOL(V)
0.6
0.2
0
8
-40C
25C
125C
150C
150C
125C
25C
-40C
1
0.1
0.01
0.001
0.01
0.1
1
10
Output Sinking Current , IO(mA)
100
Figure 3-6. Output Low Voltage vs. Output Current LM2903E-Q1
Only
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: LM2903-Q1 LM2903B-Q1
LM2903-Q1, LM2903B-Q1
www.ti.com
SLCS141J – MAY 2003 – REVISED NOVEMBER 2020
3.15 Typical Characteristics, LM2903B-Q1 Only
TA = 25°C, VS = 5 V, RPULLUP = 5.1k, CL = 15 pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise
noted.
500
Total Supply Current (PA)
460
420
380
340
300
260
220
-40°C
0°C
25°C
85°C
125°C
180
140
VS=3V
100
-0.5 -0.25
460
420
420
Total Supply Current (PA)
500
460
380
340
300
260
-40°C
0°C
25°C
85°C
125°C
140
VS=3.3V
100
-0.5 -0.25
0
0.25
0.5 0.75 1 1.25
Input Voltage (V)
1.5
1.75
Total Supply Current (PA)
260
220
510
470
380
340
300
260
-40°C
0°C
25°C
85°C
125°C
0.5
1
1.5
2
2.5
Input Voltage (V)
3
3.5
4
Figure 3-10. Total Supply Current vs. Input Voltage at 5V
420
VS=12V
-40°C
0°C
25°C
85°C
125°C
180
550
100
-1
2
300
460
140
1.75
340
500
180
1.5
380
VS=5V
100
-0.5
0
2
Figure 3-9. Total Supply Current vs. Input Voltage at 3.3V
220
0.5 0.75 1 1.25
Input Voltage (V)
140
Total Supply Current (PA)
Total Supply Current (PA)
500
180
0.25
Figure 3-8. Total Supply Current vs. Input Voltage at 3V
Figure 3-7. Total Supply Current vs. Supply Voltage
220
0
430
390
350
310
270
-40°C
0°C
25°C
85°C
125°C
230
190
VS=36V
150
0
1
2
3
4
5
6
7
Input Voltage (V)
8
9
10
11
Figure 3-11. Total Supply Current vs. Input Voltage at 12V
0
3
6
9
12
15 18 21 24
Input Voltage (V)
27
30
33
36
Figure 3-12. Total Supply Current vs. Input Voltage at 36V
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: LM2903-Q1 LM2903B-Q1
9
LM2903-Q1, LM2903B-Q1
www.ti.com
SLCS141J – MAY 2003 – REVISED NOVEMBER 2020
3.15 Typical Characteristics, LM2903B-Q1 Only (continued)
2
2
1.5
1.5
Input Offset Voltage (mV)
Input Offset Voltage (mV)
TA = 25°C, VS = 5 V, RPULLUP = 5.1k, CL = 15 pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise
noted.
1
0.5
0
-0.5
-1
-2
-40
-0.5
-1
-25
-10
5
20 35 50 65
Temperature (°C)
80
95
2
1.5
1.5
1
0.5
0
-0.5
-1
-25
-10
5
20 35 50 65
Temperature (°C)
80
95
5
20 35 50 65
Temperature (°C)
80
95
110 125
0.5
0
-0.5
-1
VS = 36V
62 Channels
-1.5
-2
-40
110 125
Figure 3-15. Input Offset Voltage vs. Temperature at 12V
1.5
1.5
Input Offset Voltage (mV)
2
1
0.5
0
-0.5
-1
TA = -40°C
62 Channels
-25
-10
5
20 35 50 65
Temperature (°C)
80
110 125
1
0.5
0
-0.5
-1
TA = 25°C
62 Channels
-1.5
-2
95
Figure 3-16. Input Offset Voltage vs. Temperature at 36
2
-1.5
-10
1
VS = 12V
62 Channels
-2
-40
-25
Figure 3-14. Input Offset Voltage vs. Temperature at 5V
2
-1.5
VS = 5V
62 Channels
-2
-40
110 125
Input Offset Voltage (mV)
Input Offset Voltage (mV)
0
-1.5
Figure 3-13. Input Offset Voltage vs. Temperature at 3V
Input Offset Voltage (mV)
0.5
VS = 3V
63 Channels
-1.5
-2
3
6
9
12
15 18 21 24
Supply Voltage (V)
27
30
33
36
Figure 3-17. Input Offset Voltage vs. Supply Voltage at -40°C
10
1
3
6
9
12
15 18 21 24
Supply Voltage (V)
27
30
33
36
Figure 3-18. Input Offset Voltage vs. Supply Voltage at 25°C
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: LM2903-Q1 LM2903B-Q1
LM2903-Q1, LM2903B-Q1
www.ti.com
SLCS141J – MAY 2003 – REVISED NOVEMBER 2020
3.15 Typical Characteristics, LM2903B-Q1 Only (continued)
2
2
1.5
1.5
Input Offset Voltage (mV)
Input Offset Voltage (mV)
TA = 25°C, VS = 5 V, RPULLUP = 5.1k, CL = 15 pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise
noted.
1
0.5
0
-0.5
-1
TA = 85°C
62 Channels
-1.5
0
-0.5
-1
TA = 125qC
62 Channels
-2
3
6
9
12
15 18 21 24
Supply Voltage (V)
27
30
33
36
Figure 3-19. Input Offset Voltage vs. Supply Voltage at 85°C
3
6
9
12
15 18 21 24
Supply Voltage (V)
27
30
33
36
Figure 3-20. Input Offset Voltage vs. Supply Voltage at 125°C
0
0
-1
-1.5
-2
-2.5
-3
-3.5
-0.5
-1.5
-2
-2.5
-3
-4
-4
-4.5
-5
-0.5
-5
6
9
12
15 18 21 24
Supply Voltage (V)
27
30
33
36
0
0.5
1
1.5
2
Input Voltage (V)
2.5
3
3.5
Figure 3-22. Input Bias Current vs. Input Voltage at 5V
Figure 3-21. Input Bias Current vs. Supply Voltage
1
0
-0.5
125°C
85°C
25°C
0°C
-40°C
-3.5
-4.5
3
VS=5V
-1
Input Bias Current (nA)
125°C
85°C
25°C
0°C
-40°C
VCM=0V
-0.5
Input Bias Current (nA)
0.5
-1.5
-2
VS=12V
0
-2
-2.5
-3
125°C
85°C
25°C
0°C
-40°C
-3.5
-4
-4.5
1.5
2.5
3.5 4.5 5.5 6.5
Input Voltage (V)
7.5
8.5
9.5 10.5
Figure 3-23. Input Bias Current vs. Input Voltage at 12V
Input Bias Current (nA)
-1.5
-5
-0.5 0.5
VS=36V
0.5
-1
Input Bias Current (nA)
1
-0.5
-1
-1.5
-2
-2.5
-3
125°C
85°C
25°C
0°C
-40°C
-3.5
-4
-4.5
-5
0
4
8
12
16
20
24
Input Voltage (V)
28
32
36
Figure 3-24. Input Bias Current vs. Input Voltage at 36V
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: LM2903-Q1 LM2903B-Q1
11
LM2903-Q1, LM2903B-Q1
www.ti.com
SLCS141J – MAY 2003 – REVISED NOVEMBER 2020
3.15 Typical Characteristics, LM2903B-Q1 Only (continued)
TA = 25°C, VS = 5 V, RPULLUP = 5.1k, CL = 15 pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise
noted.
10
10
VS = 5V
1
100m
125°C
85°C
25°C
0°C
-40°C
10m
1m
10P
100P
1m
10m
Output Sinking Current (A)
Output Voltage to GND (V)
Output Voltage to GND (V)
VS = 3V
100m
125°C
85°C
25°C
0°C
-40°C
10m
1m
10P
100m
Figure 3-25. Output Low Voltage vs. Output Sinking Current at
3V
1
10
VS = 36V
1
100m
125°C
85°C
25°C
0°C
-40°C
10m
1m
10P
100P
1m
10m
Output Sinking Current (A)
0.2
0.1
0.05
5
20 35 50 65
Temperature (°C)
80
95
110 125
Figure 3-29. Output High Leakage Current vs.Temperature at 5V
12
125°C
85°C
25°C
0°C
-40°C
10m
100P
1m
10m
Output Sinking Current (A)
100m
Figure 3-28. Output Low Voltage vs.Output Sinking Current at
36V
Output High Leakage to GND (nA)
Output High Leakage to GND (nA)
2
1
0.5
-10
100m
100
50
Output set high
VOUT = VS
-25
1
1m
10P
100m
Figure 3-27. Output Low Voltage vs. Output Sinking Current at
12V
0.02
0.01
-40
Output Voltage to GND (V)
Output Voltage to GND (V)
VS = 12V
20
10
5
100m
Figure 3-26. Output Low Voltage vs. Output Sinking Current at
5V
10
100
50
100P
1m
10m
Output Sinking Current (A)
20
10
5
Output set high
VOUT = VS
2
1
0.5
0.2
0.1
0.05
0.02
0.01
-40
-25
-10
5
20 35 50 65
Temperature (°C)
80
95
110 125
Figure 3-30. Output High Leakage Current vs. Temperature at
36V
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: LM2903-Q1 LM2903B-Q1
LM2903-Q1, LM2903B-Q1
www.ti.com
SLCS141J – MAY 2003 – REVISED NOVEMBER 2020
3.15 Typical Characteristics, LM2903B-Q1 Only (continued)
TA = 25°C, VS = 5 V, RPULLUP = 5.1k, CL = 15 pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise
noted.
1000
VS = 5V
VCM = 0V
CL = 15pF
RP = 5.1k
900
800
125°C
85°C
25°C
-40°C
700
600
500
400
300
200
100
Propagation Delay, Low to High (ns)
Propagation Delay, High to Low (ns)
1000
0
10
100
Input Overdrive (mV)
700
600
500
400
300
200
100
1000
Figure 3-31. High to Low Propagation Delay vs. Input Overdrive
Voltage, 5V
5
10
100
Input Overdrive (mV)
1000
Figure 3-32. Low to High Propagation Delay vs. Input Overdrive
Voltage, 5V
1000
VS = 12V
VCM = 0V
CL = 15pF
RP = 5.1k
900
800
125°C
85°C
25°C
-40°C
700
600
500
400
300
200
100
Propagation Delay, Low to High (ns)
1000
Propagation Delay, High to Low (ns)
800
125°C
85°C
25°C
-40°C
0
5
0
VS = 12V
VCM = 0V
CL = 15pF
RP = 5.1k
900
800
700
125°C
85°C
25°C
-40°C
600
500
400
300
200
100
0
5
10
100
Input Overdrive (mV)
1000
Figure 3-33. High to Low Propagation Delay vs. Input Overdrive
Voltage, 12V
5
10
100
Input Overdrive (mV)
1000
Figure 3-34. Low to High Propagation Delay vs. Input Overdrive
Voltage, 12V
1000
VS = 36V
VCM = 0V
CL = 15pF
RP = 5.1k
900
800
125°C
85°C
25°C
-40°C
700
600
500
400
300
200
100
0
Propagation Delay, Low to High (ns)
1000
Propagation Delay, High to Low (ns)
VS = 5V
VCM = 0V
CL = 15pF
RP = 5.1k
900
VS = 36V
VCM = 0V
CL = 15pF
RP = 5.1k
900
800
125°C
85°C
25°C
-40°C
700
600
500
400
300
200
100
0
5
10
100
Input Overdrive (mV)
1000
Figure 3-35. High to Low Propagation Delay vs. Input Overdrive
Voltage, 36V
5
10
100
Input Overdrive (mV)
1000
Figure 3-36. Low to High Propagation Delay vs. Input Overdrive
Voltage, 36V
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: LM2903-Q1 LM2903B-Q1
13
LM2903-Q1, LM2903B-Q1
www.ti.com
SLCS141J – MAY 2003 – REVISED NOVEMBER 2020
3.15 Typical Characteristics, LM2903B-Q1 Only (continued)
TA = 25°C, VS = 5 V, RPULLUP = 5.1k, CL = 15 pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise
noted.
6
6
VREF = VCC/2
VREF = VCC/2
5
4
Output Voltage (V)
Output Voltage (V)
5
20mV Overdrive
3
5mV
Overdrive
2
1
100mV
Overdrive
0
-1
-0.1
20mV Overdrive
3
2
100mV
Overdrive
5mV Overdrive
1
0
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (Ps)
1
1.1
Figure 3-37. Response Time for Various Overdrives, High-toLow Transition
14
4
-1
-0.1
0
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Time (Ps)
1
1.1
Figure 3-38. Response Time for Various Overdrives, Low-toHigh Transition
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: LM2903-Q1 LM2903B-Q1
LM2903-Q1, LM2903B-Q1
www.ti.com
SLCS141J – MAY 2003 – REVISED NOVEMBER 2020
4 Detailed Description
4.1 Overview
The LM2903-Q1 family is a dual comparator with the ability to operate up to 36 V on the supply pin. This
standard device has proven ubiquity and versatility across a wide range of applications. This is due to it's very
wide supply voltages range (2 V to 36 V), low Iq and fast response.
This device is AEC-Q100 qualified and can operate over a wide temperature range of –40°C to 125°C (LM2903Q1 and LM2903B-Q1) or –40°C to 150°C (LM2903E-Q1).
The open-drain output allows the user to configure the output's logic low voltage (V OL) and can be utilized to
enable the comparator to be used in AND functionality.
The "B" versions add dedicated ESD protections on all the pins for improved ESD performance as well as
improved negative input voltage handling. Please see Application Note SNOAA35 for more information
4.2 Functional Block Diagram
VCC
80-µA
Current Regulator
60 µA
10 µA
IN+
10 µA
80 µA
COMPONENT COUNT
OUT
Epi-FET
Diodes
Resistors
Transistors
1
2
2
30
IN−
GND
Figure 4-1. Schematic (Each Comparator)
4.3 Feature Description
LM2903-Q1 family consists of a PNP darlington pair input, allowing the device to operate with very high gain and
fast response with minimal input bias current. The input Darlington pair creates a limit on the input common
mode voltage capability, allowing LM2903-Q1 to accurately function from ground to V CC–1.5V differential input.
This is enables much head room for modern day supplies of 3.3 V and 5.0 V.
The output consists of an open drain NPN (pull-down or low side) transistor. The output NPN will sink current
when the negative input voltage is higher than the positive input voltage and the offset voltage. The VOL is
resistive and will scale with the output current. Please see Figure 3-3 in the Section 3.14 section for V OL values
with respect to the output current.
4.4 Device Functional Modes
4.4.1 Voltage Comparison
The LM2903-Q1 family operates solely as a voltage comparator, comparing the differential voltage between the
positive and negative pins and outputting a logic low or high impedance (logic high with pull-up) based on the
input differential polarity.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: LM2903-Q1 LM2903B-Q1
15
LM2903-Q1, LM2903B-Q1
www.ti.com
SLCS141J – MAY 2003 – REVISED NOVEMBER 2020
5 Application and Implementation
Note
Information in the following applications sections is not part of the TI component specification, and TI
does not warrant its accuracy or completeness. TI’s customers are responsible for determining
suitability of components for their purposes. Customers should validate and test their design
implementation to confirm system functionality.
5.1 Application Information
LM2903-Q1 will typically be used to compare a single signal to a reference or two signals against each other.
Many users take advantage of the open drain output to drive the comparison logic output to a logic voltage level
to an MCU or logic device. The wide supply range and high voltage capability makes LM2903Q1 optimal for level
shifting to a higher or lower voltage.
5.2 Typical Application
VLOGIC
VLOGIC
VSUP
Vin
VSUP
Rpullup
+
Vin+
½ LM2903
Rpullup
+
½ LM2903
Vin-
Vref
CL
CL
Figure 5-1. Single-ended and Differential Comparator Configurations
5.2.1 Design Requirements
For this design example, use the parameters listed in Table 5-1 as the input parameters.
Table 5-1. Design Parameters
DESIGN PARAMETER
EXAMPLE VALUE
Input Voltage Range
0 V to Vsup-1.5 V
Supply Voltage
2 V to 36 V
Logic Supply Voltage
2 V to 36 V
Output Current (RPULLUP)
1 µA to 20 mA
Input Overdrive Voltage
100 mV
Reference Voltage
2.5 V
Load Capacitance (CL)
15 pF
5.2.2 Detailed Design Procedure
When using LM2903-Q1 family in a general comparator application, determine the following:
•
•
•
•
Input Voltage Range
Minimum Overdrive Voltage
Output and Drive Current
Response Time
5.2.2.1 Input Voltage Range
When choosing the input voltage range, the input common mode voltage range (V ICR) must be taken in to
account. If temperature operation is above or below 25°C the V ICR can range from 0 V to V CC– 2.0 V. This limits
the input voltage range to as high as V CC– 2.0 V and as low as 0 V. Operation outside of this range can yield
incorrect comparisons.
16
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: LM2903-Q1 LM2903B-Q1
LM2903-Q1, LM2903B-Q1
www.ti.com
SLCS141J – MAY 2003 – REVISED NOVEMBER 2020
Below is a list of input voltage situation and their outcomes:
1. When both IN- and IN+ are both within the common mode range:
a. If IN- is higher than IN+ and the offset voltage, the output is low and the output transistor is sinking current
b. If IN- is lower than IN+ and the offset voltage, the output is high impedance and the output transistor is not
conducting
2. When IN- is higher than common mode and IN+ is within common mode, the output is low and the output
transistor is sinking current
3. When IN+ is higher than common mode and IN- is within common mode, the output is high impedance and
the output transistor is not conducting
4. When IN- and IN+ are both higher than common mode, the output is low and the output transistor is sinking
current
5.2.2.2 Minimum Overdrive Voltage
Overdrive Voltage is the differential voltage produced between the positive and negative inputs of the
comparator over the offset voltage (V IO). In order to make an accurate comparison the Overdrive Voltage (V OD)
should be higher than the input offset voltage (V IO). Overdrive voltage can also determine the response time of
the comparator, with the response time decreasing with increasing overdrive. Figure 5-2 and Figure 5-3 show
positive and negative response times with respect to overdrive voltage.
5.2.2.3 Output and Drive Current
Output current is determined by the load/pull-up resistance and logic/pull-up voltage. The output current will
produce a output low voltage (V OL) from the comparator. In which V OL is proportional to the output current. Use
Figure 3-5 to determine VOL based on the output current.
The output current can also effect the transient response. More will be explained in the next section.
5.2.2.4 Response Time
The transient response can be determined by the load capacitance (C L), load/pull-up resistance (R PULLUP) and
equivalent collector-emitter resistance (RCE).
•
•
The positive response time (τp) is approximately τP ~ RPULLUP × CL
The negative response time (τN) is approximately τN ~ RCE × CL
– RCE can be determine by taking the slope of Figure 3-5 in it's linear region at the desired temperature, or
by dividing the VOL by Iout
5.2.3 Application Curves
6
6
5
5
Output Voltage (Vo)
Output Voltage, Vo(V)
The following curves were generated with 5 V on VCC and VLogic, RPULLUP = 5.1 kΩ, and 50 pF scope probe.
4
3
5mV OD
2
1
20mV OD
0
4
3
2
5mV OD
1
20mV OD
0
100mV OD
±1
-0.25
0.25
0.75
1.25
Time (usec)
1.75
100mV OD
±1
±0.25 0.00
2.25
Figure 5-2. Response Time for Various Overdrives
(Positive Transition)
0.25
0.50
0.75
1.00
Time (usec)
C004
1.25
1.50
1.75
2.00
C006
Figure 5-3. Response Time for Various Overdrives
(Negative Transition)
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: LM2903-Q1 LM2903B-Q1
17
LM2903-Q1, LM2903B-Q1
www.ti.com
SLCS141J – MAY 2003 – REVISED NOVEMBER 2020
6 Power Supply Recommendations
For fast response and comparison applications with noisy or AC inputs, it is recommended to use a bypass
capacitor on the supply pin to reject any variation on the supply voltage. This variation can eat into the
comparator's input common mode range and create an inaccurate comparison.
7 Layout
7.1 Layout Guidelines
For accurate comparator applications without hysteresis it is important maintain a stable power supply with
minimized noise and glitches, which can affect the high level input common mode voltage range. In order to
achieve this, it is best to add a bypass capacitor between the supply voltage and ground. This should be
implemented on the positive power supply and negative supply (if available). If a negative supply is not being
used, do not put a capacitor between the IC's GND pin and system ground.
7.2 Layout Example
Ground
Bypass
Capacitor
Negative Supply or Ground
Only needed
for dual power
supplies
1OUT
1INí
1IN+
GND
1
2
3
4
0.1PF
VCC
7 2OUT
6 2INí
5 2IN+
8
Positive Supply
0.1PF
Ground
Figure 7-1. LM2903Q1 Layout Example
8 Device and Documentation Support
8.1 Documentation Support
8.1.1 Related Documentation
LM2903B-Q1 Functional Safety FIT Rate, FMD and Pin FMA - SLCA005
Application Design Guidelines for LM339, LM393, TL331 Family Comparators - SNOAA35
Analog Engineers Circuit Cookbook: Amplifiers (See Comparators section) - SLYY137
8.2 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper
right corner, click on Alert me to register and receive a weekly digest of any product information that has
changed. For change details, review the revision history included in any revised document.
8.3 Support Resources
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight
from the experts. Search existing answers or ask your own question to get the quick design help you need.
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do
not necessarily reflect TI's views; see TI's Terms of Use.
8.4 Trademarks
TI E2E™ is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.
18
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: LM2903-Q1 LM2903B-Q1
LM2903-Q1, LM2903B-Q1
www.ti.com
SLCS141J – MAY 2003 – REVISED NOVEMBER 2020
8.5 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may
be more susceptible to damage because very small parametric changes could cause the device not to meet its published
specifications.
8.6 Glossary
TI Glossary
This glossary lists and explains terms, acronyms, and definitions.
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: LM2903-Q1 LM2903B-Q1
19
LM2903-Q1, LM2903B-Q1
SLCS141J – MAY 2003 – REVISED NOVEMBER 2020
www.ti.com
9 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
20
Submit Document Feedback
Copyright © 2020 Texas Instruments Incorporated
Product Folder Links: LM2903-Q1 LM2903B-Q1
PACKAGE OPTION ADDENDUM
www.ti.com
7-Oct-2021
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
(4/5)
(6)
LM2903AVQDRG4Q1
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2903AVQ
LM2903AVQDRQ1
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2903AVQ
LM2903AVQPWRG4Q1
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2903AVQ
LM2903AVQPWRQ1
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2903AVQ
LM2903BQDDFRQ1
ACTIVE
SOT-23-THIN
DDF
8
3000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
903BQ
LM2903BQDGKRQ1
ACTIVE
VSSOP
DGK
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
03BQ
LM2903BQDRQ1
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2903BQ
LM2903BQPWRQ1
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2903BQ
LM2903BWDSGRQ1
PREVIEW
WSON
DSG
8
3000
RoHS & Green
SN
Level-2-260C-1 YEAR
-40 to 125
3BWQ
LM2903EPWRQ1
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-40 to 150
2903Q0
LM2903QDGKRQ1
ACTIVE
VSSOP
DGK
8
2500
RoHS & Green
NIPDAUAG
Level-2-260C-1 YEAR
-40 to 125
KACQ
LM2903QDRG4Q1
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2903Q1
LM2903QDRQ1
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2903Q1
LM2903QPWRG4Q1
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2903Q1
LM2903QPWRQ1
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2903Q1
LM2903VQDRG4Q1
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2903VQ1
LM2903VQDRQ1
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2903VQ1
LM2903VQPWRG4Q1
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2903VQ
LM2903VQPWRQ1
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2903VQ
PLM2903BWDSGRQ1
ACTIVE
WSON
DSG
8
3000
TBD
Call TI
Call TI
-40 to 125
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
7-Oct-2021
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of