0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LM2903P

LM2903P

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    PDIP8_10.16X6.6MM

  • 描述:

    双比较器

  • 数据手册
  • 价格&库存
LM2903P 数据手册
LM393B, LM2903B, LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V LM393B, LM2903B, LM193, LM293, LM293A,– OCTOBER LM393, LM393A, LM2903, LM2903V SLCS005AE 1979 – REVISED NOVEMBER 2020 www.ti.com SLCS005AE – OCTOBER 1979 – REVISED NOVEMBER 2020 LM393B, LM2903B, LM193, LM293, LM393 and LM2903 Dual Comparators 1 Features 3 Description • • The LM393B and LM2903B devices are the next generation versions of the industry-standard LM393 and LM2903 comparator family. These next generation B-version comparators feature lower offset voltage, higher supply voltage capability, lower supply current, lower input bias current, lower propagation delay, and improved 2 kV ESD performance and input ruggedness through dedicated ESD clamps. The LM393B and LM2903B can drop-in replace the LM293, LM393 and LM2903, for both "A" and "V" grades. • • • • • NEW LM393B and LM2903B Improved specifications of B-version – Maximum rating: up to 38 V – ESD rating (HBM): 2k V – Low input offset: 0.37 mV – Low input bias current: 3.5 nA – Low supply-current: 200 µA per comparator – Faster response time of 1 µsec – Extended temperature range for LM393B – Available in tiny 2 x 2mm WSON package B-version is drop-in replacement for LM293, LM393 and LM2903, A and V versions Common-mode input voltage range includes ground Differential input voltage range equal to maximumrated supply voltage: ±38 V Low output saturation voltage Output compatible with TTL, MOS, and CMOS 2 Applications • • • • • • • • • • Vacuum robot Single phase UPS Server PSU Cordless power tool Wireless infrastructure Applicances Building automation Factory automation & control Motor drives Infotainment & cluster All devices consist of two independent voltage comparators that are designed to operate from a single power supply over a wide range of voltages. Quiescent current is independent of the supply voltage. Device Information PART NUMBER PACKAGE(1) BODY SIZE (NOM) LM393B, LM2903B, LM193, LM293, LM293A, SOIC (8) LM393, LM393A, LM2903, LM2903V, LM2903AV 4.90 mm x 3.91 mm LM393B, LM2903B, LM293, LM293A, LM393, LM393A, LM2903 VSSOP (8) 3.00 mm x 3.00 mm LM293, LM393, LM393A, LM2903 PDIP (8) 9.81 mm × 6.35 mm LM393, LM393A, LM2903 SO (8) 6.20 mm x 5.30 mm LM393B, LM2903B, LM393, LM393A, LM2903, TSSOP (8) LM2903V, LM2903AV 3.00 mm x 4.40 mm LM393B, LM2903B SOT-23 (8) 2.90 mm x 1.60 mm LM393B, LM2903B WSON (8) 2.00 mm × 2.00 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. Family Comparison Table Specification Supply Votlage LM393B LM2903B LM393 LM393A LM2903 LM2903V LM2903AV LM193 LM293 LM293A Units 2 to 36 2 to 36 2 to 30 2 to 30 2 to 32 2 to 30 2 to 30 V Total Supply Current (5V to 36V max) 0.6 to 0.8 0.6 to 0.8 1 to 2.5 1 to 2.5 1 to 2.5 1 to 2.5 1 to 2.5 mA Temperature Range −40 to 85 −40 to 125 0 to 70 −40 to 125 −40 to 125 −55 to 125 −25 to 85 °C 2000 2000 1000 1000 1000 1000 1000 V ±4 ±4 ±9 ±4 ± 15 ± 15 ±4 ±9 ±9 ±4 mV 3.5 / 25 3.5 / 25 25 / 250 25 / 250 25 / 250 25 / 100 25 / 250 nA 1 1 1.3 1.3 1.3 1.3 1.3 µsec ESD (HBM) Offset Voltage (Max over temp) Input Bias Current (typ / max) Response Time (typ) An©IMPORTANT NOTICEIncorporated at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, Copyright 2020 Texas Instruments Submit Document Feedback intellectual property matters and other important disclaimers. PRODUCTION DATA. Product Folder Links: LM393B LM2903B LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V 1 LM393B, LM2903B, LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V www.ti.com SLCS005AE – OCTOBER 1979 – REVISED NOVEMBER 2020 Table of Contents 1 Features............................................................................1 2 Applications..................................................................... 1 3 Description.......................................................................1 4 Revision History.............................................................. 2 5 Pin Configuration and Functions...................................3 6 Specifications.................................................................. 4 6.1 Absolute Maximum Ratings........................................ 4 6.2 Recommended Operating Conditions.........................4 6.3 Thermal Information: LM193.......................................5 6.4 Thermal Information: LM293, LM393, LM2903 (all 'V' and 'A' suffixes)...................................................5 6.5 Thermal Information: LM393B and LM2903B............. 5 6.6 ESD Ratings............................................................... 5 6.7 Electrical Characteristics LM393B ............................. 6 6.8 Electrical Characteristics LM2903B ........................... 7 6.9 Switching Characteristics LM393B and LM2903B...... 7 6.10 Electrical Characteristics for LM193, LM293, and LM393 (without A suffix).........................................8 6.11 Electrical Characteristics for LM293A and LM393A......................................................................... 9 6.12 Electrical Characteristics for LM2903, LM2903V, and LM2903AV...........................................10 6.13 Switching Characteristics: LM193, LM239, LM393, LM2903, all 'A' and 'V' versions......................10 6.14 Typical Characteristics, LMx93, LM2903 (all 'V' and 'A' suffixes)............................................................11 6.15 Typical Characteristics, LM393B and LM2903B..... 12 7 Detailed Description......................................................18 7.1 Overview................................................................... 18 7.2 Functional Block Diagram......................................... 18 7.3 Feature Description...................................................18 7.4 Device Functional Modes..........................................18 8 Application and Implementation.................................. 19 8.1 Application Information............................................. 19 8.2 Typical Application.................................................... 19 9 Power Supply Recommendations................................21 10 Layout...........................................................................21 10.1 Layout Guidelines................................................... 21 10.2 Layout Example...................................................... 21 11 Device and Documentation Support..........................22 11.1 Receiving Notification of Documentation Updates.. 22 11.2 Support Resources................................................. 22 11.3 Trademarks............................................................. 22 11.4 Electrostatic Discharge Caution.............................. 22 11.5 Glossary.................................................................. 22 12 Mechanical, Packaging, and Orderable Information.................................................................... 22 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision AC (February 2020) to Revision AD (October 2020) Page • Updated the numbering format for tables, figures and cross-references throughout the document...................1 Changes from Revision AB (December 2019) to Revision AC (February 2020) Page • Changed front page Features, Applications and Description text to highlight B version.................................... 1 • Added WSON and SOT-23-8 packages............................................................................................................. 1 • Added Links to Family Table ..............................................................................................................................1 • Added DDF and DSG pkgs to Thermal Table.....................................................................................................5 Changes from Revision AA (September 2019) to Revision AB (December 2019) Page • Changed LM393B and LM2903B from Preview to Active status........................................................................ 1 • Added Family Comparison Table........................................................................................................................1 Changes from Revision Z (October 2017) to Revision AA (September 2019) Page • Added "B" devices with various text changes throughout datasheet..................................................................1 • Deleted from Device Information old LM193 CDIP and LCCC package references and drawings. These are on the LM139-MIL datasheet..............................................................................................................................1 • Added "B" devices Thermal Information table.................................................................................................... 5 • Added "B" device electrical tables...................................................................................................................... 5 • Added "B" device graphs ................................................................................................................................. 12 2 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: LM393B LM2903B LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V LM393B, LM2903B, LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V www.ti.com SLCS005AE – OCTOBER 1979 – REVISED NOVEMBER 2020 5 Pin Configuration and Functions 1OUT 1IN− 1IN+ GND 1 8 2 7 3 6 4 5 VCC 2OUT 2IN− 2IN+ Figure 5-1. D, DGK, JG, P, PS, DDF or PW Package 8-Pin SOIC, VSSOP, PDIP, SO, or TSSOP Top View 1OUT 1 1IN± 2 1IN+ 3 GND 4 Exposed Thermal Die Pad on Underside 8 V+ 7 2OUT 6 2IN± 5 2IN+ Connect thermal pad directly to GND pin. Figure 5-2. DSG Package 8-Pin WSON With Exposed Pad Top View Table 5-1. Pin Functions PIN NAME SOIC, VSSOP, PDIP, SO, DDF and TSSOP DSG 1OUT 1 1 Output 1IN– 2 2 Input Negative input pin of comparator 1 1IN+ 3 3 Input Positive input pin of comparator 1 I/O DESCRIPTION Output pin of comparator 1 GND 4 4 — 2IN+ 5 5 Input Positive input pin of comparator 2 2IN- 6 6 Input Negative input pin of comparator 2 2OUT 7 7 Output VCC 8 8 — Positive Supply Thermal Pad — PAD — Connect directly to GND pin Copyright © 2020 Texas Instruments Incorporated Ground Output pin of comparator 2 Submit Document Feedback Product Folder Links: LM393B LM2903B LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V 3 LM393B, LM2903B, LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V www.ti.com SLCS005AE – OCTOBER 1979 – REVISED NOVEMBER 2020 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) MIN VCC Supply voltage(2) VID Differential input voltage(3) VI Input voltage (either input) IIK Input current(5) 36 -38 38 V 36 –0.3 V 38 -50 Output voltage IO Output current ISC Duration of output short circuit to ground(4) TJ Operating virtual-junction temperature Tstg Storage temperature (2) (3) (4) (5) -36 B Versions Only B Versions Only V 38 Non-B Versions Non-B Versions UNIT 36 –0.3 B Versions Only Non-B Versions VO (1) Non-B Versions MAX –0.3 B Versions Only mA 36 V 38 Non-B Versions 20 B Versions Only 25 mA Unlimited –65 150 °C 150 °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Production Processing Does Not Necessarily Include Testing of All Parameters. All voltage values, except differential voltages, are with respect to network ground. Differential voltages are at IN+ with respect to IN–. Short circuits from outputs to VCC can cause excessive heating and eventual destruction. Input current flows thorough parasitic diode to ground and turns on parasitic transistors that increases ICC and may cause output to be incorrect. Normal operation resumes when input current is removed. 6.2 Recommended Operating Conditions Over operating free-air temperature range (unless otherwise noted) Supply voltage, VS = (V+) – (V–) Input voltage range, VIVR Ambient temperature, TA 4 Submit Document Feedback MIN MAX non-V devices 2 30 V devices 2 32 "B" version devices 2 36 non-B devices 0 (V+) – 2.0 "B" version devices –0.1 LM193 –55 125 LM2903, LM2903V, LM2903AV, LM2903B –40 125 LM393B –40 85 LM293, LM293A –25 85 LM393, LM393A 0 70 UNIT V V °C Copyright © 2020 Texas Instruments Incorporated Product Folder Links: LM393B LM2903B LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V LM393B, LM2903B, LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V www.ti.com SLCS005AE – OCTOBER 1979 – REVISED NOVEMBER 2020 6.3 Thermal Information: LM193 LM193 D (SOIC) THERMAL METRIC(1) UNIT 8 pin RθJA Junction-to-ambient thermal resistance 126.4 RθJC(top) Junction-to-case (top) thermal resistance °C/W 70 °C/W RθJB ψJT Junction-to-board thermal resistance 64.9 °C/W Junction-to-top characterization parameter 20.3 °C/W ψJB Junction-to-board characterization parameter 64.5 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance n/a °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics report. 6.4 Thermal Information: LM293, LM393, LM2903 (all 'V' and 'A' suffixes) LM293, LM393, LM2903 THERMAL METRIC(1) D (SOIC) DGK (VSSOP) P (PDIP) PS (SO) PW (TSSOP) UNIT 8 pin 8 pin 8 pin 8 pin 8 pin RθJA Junction-to-ambient thermal resistance 131.8 199.4 73.7 139 194.1 °C/W RθJC(top) Junction-to-case (top) thermal resistance 78.4 90.2 62.6 98.9 77.0 °C/W RθJB Junction-to-board thermal resistance 72.2 120.8 50.8 83.7 123.0 °C/W ψJT Junction-to-top characterization parameter 26.5 21.5 39.2 47.4 13.1 °C/W ψJB Junction-to-board characterization parameter 71.1 119.1 50.7 83 121.3 °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics report. 6.5 Thermal Information: LM393B and LM2903B LM393B, LM2903B THERMAL METRIC(1) D (SOIC) PW (TSSOP) DGK (VSSOP) DDF (SOT-23) DSG (WSON) 8 pins UNIT 8 pin 8 pin 8 pin 8 pin RθJA Junction-to-ambient thermal resistance 148.5 200.6 193.7 197.9 96.9 °C/W RθJC(top) Junction-to-case (top) thermal resistance 90.2 89.6 82.9 119.2 119.0 °C/W RθJB Junction-to-board thermal resistance 91.8 131.3 115.5 115.4 63.1 °C/W ψJT Junction-to-top characterization parameter 38.5 22.1 20.8 19.4 12.4 °C/W ψJB Junction-to-board characterization parameter 91.1 129.6 113.9 113.7 63.0 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance - - - - 37.8 °C/W (1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics report. 6.6 ESD Ratings VALUE UNIT LM393B and LM2903B Only V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1000 Human body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±1000 Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±750 V All Other Versions V(ESD) (1) (2) Electrostatic discharge V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: LM393B LM2903B LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V 5 LM393B, LM2903B, LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V www.ti.com SLCS005AE – OCTOBER 1979 – REVISED NOVEMBER 2020 6.7 Electrical Characteristics LM393B VS = 5 V, VCM = (V–) ; TA = 25°C (unless otherwise noted). PARAMETER Input offset voltage VIO Input offset voltage, DGK package only IB Input bias current IOS VS = 5 to 36V, TA = –40°C to +85°C VS = 5 to 36V VS = 5 to 36V, TA = –40°C to +85°C MIN TYP MAX –2.5 ±0.37 2.5 ±0.37 3.5 –3.5 –25 nA –50 nA 10 nA -4 –3.5 4 –5 TA = –40°C to +85°C mV 5 TA = –40°C to +85°C –10 UNIT ±0.5 –25 25 nA VS = 3 to 36V (V–) (V+) – 1.5 V VS = 3 to 36V, TA = –40°C to +85°C (V–) (V+) – 2.0 V VCM Common mode range (1) AVD Large signal differential voltage amplification VOL Low level output Voltage {swing from (V–)} IOH-LKG High-level output leakage current (V+) = VO = 5 V; VID = 1V IOL Low level output current VOL = 1.5V; VID = -1V; VS = 5V IQ Quiescent current (all comparators) VS = 5 V, no load 400 600 µA VS = 36 V, no load, TA = –40°C to +85°C 550 800 µA (1) 6 Input offset current TEST CONDITIONS VS = 5 to 36V VS = 15V, VO = 1.4V to 11.4V; RL ≥ 15k to (V+) 50 ISINK ≤ 4mA, VID = -1V 200 110 400 mV 550 mV 0.1 20 nA 0.3 50 ISINK ≤ 4mA, VID = -1V TA = –40°C to +85°C (V+) = VO = 36V; VID = 1V 6 V/mV 21 nA mA The voltage at either input should not be allowed to go negative by more than 0.3 V otherwise output may be incorrect and excessive input current can flow. The upper end of the common-mode voltage range is limited by VCC – 2V. However only one input needs to be in the valid common mode range, the other input can go up the maximum VCC level and the comparator provides a proper output state. Either or both inputs can go to maximum VCC level without damage. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: LM393B LM2903B LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V LM393B, LM2903B, LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V www.ti.com SLCS005AE – OCTOBER 1979 – REVISED NOVEMBER 2020 6.8 Electrical Characteristics LM2903B VS = 5 V, VCM = (V–) ; TA = 25°C (unless otherwise noted). PARAMETER Input offset voltage VIO Input offset voltage, DGK package only IB Input bias current IOS Input offset current TEST CONDITIONS VS = 5 to 36V VS = 5 to 36V, TA = –40°C to +125°C VS = 5 to 36V VS = 5 to 36V, TA = –40°C to +125°C MIN TYP MAX –2.5 ±0.37 2.5 ±0.37 3.5 –3.5 –25 nA –50 nA 10 nA –4 -3.5 4 -5 TA = –40°C to +125°C mV 5 TA = –40°C to +125°C –10 UNIT ±0.5 –25 25 nA VS = 3 to 36V (V–) (V+) – 1.5 V VS = 3 to 36V, TA = –40°C to +125°C (V–) (V+) – 2.0 V VCM Common mode range (1) AVD Large signal differential voltage amplification VOL Low level output Voltage {swing from (V–)} IOH-LKG High-level output leakage current (V+) = VO = 5 V; VID = 1V IOL Low level output current VOL = 1.5V; VID = -1V; VS = 5V IQ Quiescent current (all comparators) VS = 5 V, no load 400 600 µA VS = 36 V, no load, TA = –40°C to +125°C 550 800 µA (1) VS = 15V, VO = 1.4V to 11.4V; RL ≥ 15k to (V+) 50 ISINK ≤ 4mA, VID = -1V 200 110 400 mV 550 mV 0.1 20 nA 0.3 50 ISINK ≤ 4mA, VID = -1V TA = –40°C to +125°C (V+) = VO = 36V; VID = 1V 6 V/mV 21 nA mA The voltage at either input should not be allowed to go negative by more than 0.3 V otherwise output may be incorrect and excessive input current can flow. The upper end of the common-mode voltage range is limited by VCC – 2V. However only one input needs to be in the valid common mode range, the other input can go up the maximum VCC level and the comparator provides a proper output state. Either or both inputs can go to maximum VCC level without damage. 6.9 Switching Characteristics LM393B and LM2903B VS = 5V, VO_PULLUP = 5V, VCM = VS/2, CL = 15pF, RL = 5.1k Ohm, TA = 25°C (unless otherwise noted). PARAMETER TEST CONDITIONS tresponse Propagation delay time, high-to-low; TTL input with Vref = 1.4V TTL input signal (1) tresponse Propagation delay time, high-to-low; Input overdrive = 5mV, Input step = 100mV Small scale input signal (1) (1) MIN TYP MAX UNIT 300 ns 1000 ns High-to-low and low-to-high refers to the transition at the input. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: LM393B LM2903B LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V 7 LM393B, LM2903B, LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V www.ti.com SLCS005AE – OCTOBER 1979 – REVISED NOVEMBER 2020 6.10 Electrical Characteristics for LM193, LM293, and LM393 (without A suffix) at specified free-air temperature, VCC = 5 V (unless otherwise noted) PARAMETER TEST CONDITIONS TA (1) MIN VIO Input offset voltage VCC = 5 V to 30 V, VIC = VICR min, VO = 1.4 V IIO Input offset current VO = 1.4 V IIB Input bias current VO = 1.4 V VICR Common-mode input-voltage range(2) AVD Large-signal differential-voltage amplification IOH High-level output current 5 3 25°C Full range VCC = 15 V, VO = 1.4 V to 11.4 V, RL ≥ 15 kΩ to VCC 25°C VOH = 5 V VID = 1 V 25°C VOH = 30 V VID = 1 V Full range –25 Low-level output current VOL = 1.5 V, VID = –1 V 25°C VCC = 5 V 25°C VCC = 30 V Full range MAX 2 5 9 25 5 –100 –25 0 to VCC – 1.5 0 to VCC – 2 0 to VCC – 2 200 50 0.1 Full range 400 200 nA V/mV 50 nA 1 µA 130 400 700 6 0.8 nA 0.1 700 6 mV V 1 150 –250 –400 0 to VCC – 1.5 50 50 250 –300 25°C IOL UNIT TYP 100 Full range VID = –1 V (2) 2 MIN 9 25°C 25°C RL = ∞ MAX Full range IOL = 4 mA, Supply current TYP Full range Low-level output voltage (1) 8 25°C VOL ICC LM293 LM393 LM193 mV mA 1 0.45 1 2.5 0.55 2.5 mA Full range (minimum or maximum) for LM193 is –55°C to 125°C, for LM293 is –25°C to 85°C, and for LM393 is 0°C to 70°C. All characteristics are measured with zero common-mode input voltage, unless otherwise specified. The voltage at either input should not be allowed to go negative by more than 0.3 V otherwise output may be incorrect and excessive input current can flow. The upper end of the common-mode voltage range is limited by VCC – 2V. However only one input needs to be in the valid common mode range, the other input can go up the maximum VCC level and the comparator provides a proper output state. Either or both inputs can go to maximum VCC level without damage. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: LM393B LM2903B LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V LM393B, LM2903B, LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V www.ti.com SLCS005AE – OCTOBER 1979 – REVISED NOVEMBER 2020 6.11 Electrical Characteristics for LM293A and LM393A at specified free-air temperature, VCC = 5 V (unless otherwise noted) PARAMETER TEST CONDITIONS TA (1) LM293A LM393A MIN VIO Input offset voltage VCC = 5 V to 30 V, VO = 1.4 V VIC = VICR(min) IIO Input offset current VO = 1.4 V IIB Input bias current VO = 1.4 V IOH High-level output current 2 4 25°C 5 Full range 25°C VCC = 15 V, VO = 1.4 V to 11.4 V, RL ≥ 15 kΩ to VCC 25°C VOH = 5 V, VID = 1 V 25°C VOH = 30 V, VID = 1 V Full range 50 150 –25 Full range Full range Large-signal differential-voltage amplification 1 Full range Common-mode input-voltage range(2) AVD MAX 25°C 25°C VICR UNIT TYP –250 –400 0 to VCC – 1.5 25°C 200 0.1 50 nA 1 µA 110 400 Low-level output voltage IOL = 4 mA, VID = –1 V IOL Low-level output current VOL = 1.5 V, VID = –1 V, 25°C VCC = 5 V 25°C 0.60 1 VCC = 30 V Full range 0.72 2.5 (1) (2) Supply current RL = ∞ nA V/mV VOL ICC nA V 0 to VCC – 2 50 mV Full range 700 6 mV mA mA Full range (minimum or maximum) for LM293A is –25°C to 85°C, and for LM393A is 0°C to 70°C. All characteristics are measured with zero common-mode input voltage, unless otherwise specified. The voltage at either input should not be allowed to go negative by more than 0.3 V otherwise output may be incorrect and excessive input current can flow. The upper end of the common-mode voltage range is limited by VCC – 2V. However only one input needs to be in the valid common mode range, the other input can go up the maximum VCC level and the comparator provides a proper output state. Either or both inputs can go to maximum VCC level without damage. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: LM393B LM2903B LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V 9 LM393B, LM2903B, LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V www.ti.com SLCS005AE – OCTOBER 1979 – REVISED NOVEMBER 2020 6.12 Electrical Characteristics for LM2903, LM2903V, and LM2903AV at specified free-air temperature, VCC = 5 V (unless otherwise noted) PARAMETER TEST CONDITIONS VIO Input offset voltage VCC = 5 V to MAX(2) , VO = 1.4 V, VIC = VICR(min), IIO Input offset current VO = 1.4 V IIB Input bias current VO = 1.4 V VICR Common-mode inputvoltage range(3) AVD Large-signal differentialvoltage amplification IOH High-level output current VOL IOL ICC (1) (2) (3) TA (1) MIN 25°C 2 7 25°C 5 25°C –25 VID = 1 V 25°C VID = 1 V Full range Low-level output voltage IOL = 4 mA, VID = –1 V, Low-level output current VOL = 1.5 V, VID = –1 V 25°C VCC = 5 V 25°C VCC = MAX MAX 1 2 4 50 5 50 200 –250 –25 –500 0 to VCC – 1.5 0 to VCC – 2 0 to VCC – 2 25 100 25 0.1 –250 –500 0 to VCC – 1.5 25°C VOH = VCC MAX(2), TYP 200 Full range VCC = 15 V, VO = 1.4 V to 11.4 V, RL ≥ 15 kΩ to VCC MIN 15 Full range RL = ∞ MAX Full range 25°C LM2903AV TYP Full range VOH = 5 V, Supply current LM2903, LM2903V 50 25°C 150 100 0.1 400 150 700 6 Full range nA 50 nA 1 µA 400 700 1 nA V/mV 6 0.8 mV V 1 Full range UNIT mV mA 0.8 2.5 1 2.5 mA Full range (minimum or maximum) for LM2903 is –40°C to 125°C. All characteristics are measured with zero common-mode input voltage, unless otherwise specified. VCC MAX = 30 V for non-V devices and 32 V for V-suffix devices. The voltage at either input should not be allowed to go negative by more than 0.3 V otherwise output may be incorrect and excessive input current can flow. The upper end of the common-mode voltage range is limited by VCC – 2V. However only one input needs to be in the valid common mode range, the other input can go up the maximum VCC level and the comparator provides a proper output state. Either or both inputs can go to maximum VCC level without damage. 6.13 Switching Characteristics: LM193, LM239, LM393, LM2903, all 'A' and 'V' versions VCC = 5 V, TA = 25°C PARAMETER Response time (1) (2) 10 TEST CONDITIONS RL connected to 5 V through 5.1 kΩ, CL = 15 pF(1) (2) TYP 100-mV input step with 5-mV overdrive 1.3 TTL-level input step 0.3 UNIT µs CL includes probe and jig capacitance. The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V. Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: LM393B LM2903B LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V LM393B, LM2903B, LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V www.ti.com SLCS005AE – OCTOBER 1979 – REVISED NOVEMBER 2020 6.14 Typical Characteristics, LMx93, LM2903 (all 'V' and 'A' suffixes) TA= 25°C, VS= 5V, RPULLUP=5.1k, CL = 15 pF, VCM=0V unless otherwise noted. 80 1.8 1.6 IIN – Input Bias Current – nA ICC – Supply Current – mA 70 TA = –55°C 1.4 TA = 25°C TA = 0°C 1.2 1 TA = 70°C 0.8 TA = 125°C 0.6 0.4 TA = –55°C 60 TA = 0°C 50 TA = 25°C 40 TA = 70°C 30 TA = 125°C 20 10 0.2 0 0 0 5 10 15 20 25 30 35 0 5 VCC – Supply Voltage – V 10 15 20 25 30 35 VCC – Supply Voltage – V Figure 6-1. Supply Current vs Supply Voltage Figure 6-2. Input Bias Current vs Supply Voltage 10 6 Overdrive = 5 mV VO – Output Voltage – V VO – Saturation Voltage – V 5 1 TA = 125°C TA = 25°C 0.1 TA = –55°C 0.01 4 Overdrive = 20 mV 3 Overdrive = 100 mV 2 1 0 0.001 0.01 0.1 1 10 -1 -0.3 100 IO – Output Sink Current – mA 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 t – Time – µs Figure 6-3. Output Saturation Voltage Figure 6-4. Response Time for Various Overdrives Negative Transition 6 VO – Output Voltage – V 5 Overdrive = 5 mV 4 Overdrive = 20 mV 3 Overdrive = 100 mV 2 1 0 -1 -0.3 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 t – Time – µs Figure 6-5. Response Time for Various Overdrives Positive Transition Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: LM393B LM2903B LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V 11 LM393B, LM2903B, LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V www.ti.com SLCS005AE – OCTOBER 1979 – REVISED NOVEMBER 2020 6.15 Typical Characteristics, LM393B and LM2903B TA = 25°C, VS = 5 V, RPULLUP = 5.1k, CL = 15 pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise noted. 500 Total Supply Current (PA) 460 420 380 340 300 260 220 -40°C 0°C 25°C 85°C 125°C 180 140 VS=3V 100 -0.5 -0.25 460 420 420 Total Supply Current (PA) 500 460 380 340 300 260 -40°C 0°C 25°C 85°C 125°C 140 VS=3.3V 100 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 Input Voltage (V) 1.5 1.75 Total Supply Current (PA) 220 470 380 340 300 260 -40°C 0°C 25°C 85°C 125°C 0.5 1 1.5 2 2.5 Input Voltage (V) 3 3.5 4 Figure 6-9. Total Supply Current vs. Input Voltage at 5V 510 VS=12V -40°C 0°C 25°C 85°C 125°C 180 420 430 390 350 310 270 -40°C 0°C 25°C 85°C 125°C 230 190 VS=36V 150 0 1 2 3 4 5 6 7 Input Voltage (V) 8 9 10 11 Figure 6-10. Total Supply Current vs. Input Voltage at 12V 12 260 550 100 -1 2 300 460 140 1.75 340 500 180 1.5 380 VS=5V 100 -0.5 0 2 Figure 6-8. Total Supply Current vs. Input Voltage at 3.3V 220 0.5 0.75 1 1.25 Input Voltage (V) 140 Total Supply Current (PA) Total Supply Current (PA) 500 180 0.25 Figure 6-7. Total Supply Current vs. Input Voltage at 3V Figure 6-6. Total Supply Current vs. Supply Voltage 220 0 Submit Document Feedback 0 3 6 9 12 15 18 21 24 Input Voltage (V) 27 30 33 36 Figure 6-11. Total Supply Current vs. Input Voltage at 36V Copyright © 2020 Texas Instruments Incorporated Product Folder Links: LM393B LM2903B LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V LM393B, LM2903B, LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V www.ti.com SLCS005AE – OCTOBER 1979 – REVISED NOVEMBER 2020 6.15 Typical Characteristics, LM393B and LM2903B (continued) 2 2 1.5 1.5 Input Offset Voltage (mV) Input Offset Voltage (mV) TA = 25°C, VS = 5 V, RPULLUP = 5.1k, CL = 15 pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise noted. 1 0.5 0 -0.5 -1 -2 -40 0 -0.5 -1 -25 -10 5 20 35 50 65 Temperature (°C) 80 95 -2 -40 110 125 1.5 1.5 Input Offset Voltage (mV) 2 1 0.5 0 -0.5 -1 -25 -10 5 20 35 50 65 Temperature (°C) 80 95 5 20 35 50 65 Temperature (°C) 80 95 110 125 0.5 0 -0.5 -1 VS = 36V 62 Channels -1.5 -2 -40 110 125 Figure 6-14. Input Offset Voltage vs. Temperature at 12V 1.5 1.5 Input Offset Voltage (mV) 2 1 0.5 0 -0.5 -1 TA = -40°C 62 Channels -25 -10 5 20 35 50 65 Temperature (°C) 80 110 125 1 0.5 0 -0.5 -1 TA = 25°C 62 Channels -1.5 -2 95 Figure 6-15. Input Offset Voltage vs. Temperature at 36 2 -1.5 -10 1 VS = 12V 62 Channels -2 -40 -25 Figure 6-13. Input Offset Voltage vs. Temperature at 5V 2 -1.5 VS = 5V 62 Channels -1.5 Figure 6-12. Input Offset Voltage vs. Temperature at 3V Input Offset Voltage (mV) 0.5 VS = 3V 63 Channels -1.5 Input Offset Voltage (mV) 1 -2 3 6 9 12 15 18 21 24 Supply Voltage (V) 27 30 33 36 Figure 6-16. Input Offset Voltage vs. Supply Voltage at -40°C Copyright © 2020 Texas Instruments Incorporated 3 6 9 12 15 18 21 24 Supply Voltage (V) 27 30 33 36 Figure 6-17. Input Offset Voltage vs. Supply Voltage at 25°C Submit Document Feedback Product Folder Links: LM393B LM2903B LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V 13 LM393B, LM2903B, LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V www.ti.com SLCS005AE – OCTOBER 1979 – REVISED NOVEMBER 2020 6.15 Typical Characteristics, LM393B and LM2903B (continued) 2 2 1.5 1.5 Input Offset Voltage (mV) Input Offset Voltage (mV) TA = 25°C, VS = 5 V, RPULLUP = 5.1k, CL = 15 pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise noted. 1 0.5 0 -0.5 -1 TA = 85°C 62 Channels -1.5 6 9 12 15 18 21 24 Supply Voltage (V) 27 30 33 -0.5 -1 36 Figure 6-18. Input Offset Voltage vs. Supply Voltage at 85°C TA = 125qC 62 Channels 3 6 9 12 15 18 21 24 Supply Voltage (V) 27 30 33 36 Figure 6-19. Input Offset Voltage vs. Supply Voltage at 125°C 0 0 -1 -1.5 -2 -2.5 -3 -3.5 -0.5 -1.5 -2 -2.5 -3 -4 -4 -4.5 -5 -0.5 -5 6 9 12 15 18 21 24 Supply Voltage (V) 27 30 33 36 0 0.5 1 1.5 2 Input Voltage (V) 2.5 3 3.5 Figure 6-21. Input Bias Current vs. Input Voltage at 5V Figure 6-20. Input Bias Current vs. Supply Voltage 1 0 -0.5 125°C 85°C 25°C 0°C -40°C -3.5 -4.5 3 VS=5V -1 Input Bias Current (nA) 125°C 85°C 25°C 0°C -40°C VCM=0V -0.5 Input Bias Current (nA) 0 -2 3 VS=12V 0 -2 -2.5 -3 125°C 85°C 25°C 0°C -40°C -3.5 -4 -4.5 1.5 2.5 3.5 4.5 5.5 6.5 Input Voltage (V) 7.5 8.5 9.5 10.5 Figure 6-22. Input Bias Current vs. Input Voltage at 12V Submit Document Feedback Input Bias Current (nA) -1.5 -5 -0.5 0.5 VS=36V 0.5 -1 Input Bias Current (nA) 0.5 -1.5 -2 14 1 -0.5 -1 -1.5 -2 -2.5 -3 125°C 85°C 25°C 0°C -40°C -3.5 -4 -4.5 -5 0 4 8 12 16 20 24 Input Voltage (V) 28 32 36 Figure 6-23. Input Bias Current vs. Input Voltage at 36V Copyright © 2020 Texas Instruments Incorporated Product Folder Links: LM393B LM2903B LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V LM393B, LM2903B, LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V www.ti.com SLCS005AE – OCTOBER 1979 – REVISED NOVEMBER 2020 6.15 Typical Characteristics, LM393B and LM2903B (continued) TA = 25°C, VS = 5 V, RPULLUP = 5.1k, CL = 15 pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise noted. 10 10 VS = 5V 1 100m 125°C 85°C 25°C 0°C -40°C 10m 1m 10P 100P 1m 10m Output Sinking Current (A) Output Voltage to GND (V) Output Voltage to GND (V) VS = 3V 100m 125°C 85°C 25°C 0°C -40°C 10m 1m 10P 100m Figure 6-24. Output Low Voltage vs. Output Sinking Current at 3V 1 10 VS = 36V 1 100m 125°C 85°C 25°C 0°C -40°C 10m 1m 10P 100P 1m 10m Output Sinking Current (A) 0.2 0.1 0.05 5 20 35 50 65 Temperature (°C) 80 95 110 125 Figure 6-28. Output High Leakage Current vs.Temperature at 5V Copyright © 2020 Texas Instruments Incorporated 125°C 85°C 25°C 0°C -40°C 10m 100P 1m 10m Output Sinking Current (A) 100m Figure 6-27. Output Low Voltage vs.Output Sinking Current at 36V Output High Leakage to GND (nA) Output High Leakage to GND (nA) 2 1 0.5 -10 100m 100 50 Output set high VOUT = VS -25 1 1m 10P 100m Figure 6-26. Output Low Voltage vs. Output Sinking Current at 12V 0.02 0.01 -40 Output Voltage to GND (V) Output Voltage to GND (V) VS = 12V 20 10 5 100m Figure 6-25. Output Low Voltage vs. Output Sinking Current at 5V 10 100 50 100P 1m 10m Output Sinking Current (A) 20 10 5 Output set high VOUT = VS 2 1 0.5 0.2 0.1 0.05 0.02 0.01 -40 -25 -10 5 20 35 50 65 Temperature (°C) 80 95 110 125 Figure 6-29. Output High Leakage Current vs. Temperature at 36V Submit Document Feedback Product Folder Links: LM393B LM2903B LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V 15 LM393B, LM2903B, LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V www.ti.com SLCS005AE – OCTOBER 1979 – REVISED NOVEMBER 2020 6.15 Typical Characteristics, LM393B and LM2903B (continued) TA = 25°C, VS = 5 V, RPULLUP = 5.1k, CL = 15 pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise noted. 1000 VS = 5V VCM = 0V CL = 15pF RP = 5.1k 900 800 125°C 85°C 25°C -40°C 700 600 500 400 300 200 100 Propagation Delay, Low to High (ns) Propagation Delay, High to Low (ns) 1000 0 10 100 Input Overdrive (mV) 600 500 400 300 200 100 5 10 100 Input Overdrive (mV) 1000 Figure 6-31. Low to High Propagation Delay vs. Input Overdrive Voltage, 5V 1000 VS = 12V VCM = 0V CL = 15pF RP = 5.1k 900 800 125°C 85°C 25°C -40°C 700 600 500 400 300 200 100 Propagation Delay, Low to High (ns) 1000 Propagation Delay, High to Low (ns) 700 1000 Figure 6-30. High to Low Propagation Delay vs. Input Overdrive Voltage, 5V 0 VS = 12V VCM = 0V CL = 15pF RP = 5.1k 900 800 700 125°C 85°C 25°C -40°C 600 500 400 300 200 100 0 5 10 100 Input Overdrive (mV) 1000 Figure 6-32. High to Low Propagation Delay vs. Input Overdrive Voltage, 12V 5 10 100 Input Overdrive (mV) 1000 Figure 6-33. Low to High Propagation Delay vs. Input Overdrive Voltage, 12V 1000 VS = 36V VCM = 0V CL = 15pF RP = 5.1k 900 800 125°C 85°C 25°C -40°C 700 600 500 400 300 200 100 0 Propagation Delay, Low to High (ns) 1000 Propagation Delay, High to Low (ns) 800 125°C 85°C 25°C -40°C 0 5 VS = 36V VCM = 0V CL = 15pF RP = 5.1k 900 800 125°C 85°C 25°C -40°C 700 600 500 400 300 200 100 0 5 10 100 Input Overdrive (mV) 1000 Figure 6-34. High to Low Propagation Delay vs. Input Overdrive Voltage, 36V 16 VS = 5V VCM = 0V CL = 15pF RP = 5.1k 900 Submit Document Feedback 5 10 100 Input Overdrive (mV) 1000 Figure 6-35. Low to High Propagation Delay vs. Input Overdrive Voltage, 36V Copyright © 2020 Texas Instruments Incorporated Product Folder Links: LM393B LM2903B LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V LM393B, LM2903B, LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V www.ti.com SLCS005AE – OCTOBER 1979 – REVISED NOVEMBER 2020 6.15 Typical Characteristics, LM393B and LM2903B (continued) TA = 25°C, VS = 5 V, RPULLUP = 5.1k, CL = 15 pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise noted. 6 6 VREF = VCC/2 VREF = VCC/2 5 4 Output Voltage (V) Output Voltage (V) 5 20mV Overdrive 3 5mV Overdrive 2 1 100mV Overdrive 0 -1 -0.1 4 20mV Overdrive 3 2 100mV Overdrive 5mV Overdrive 1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Time (Ps) 1 1.1 Figure 6-36. Response Time for Various Overdrives, High-toLow Transition Copyright © 2020 Texas Instruments Incorporated -1 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Time (Ps) 1 1.1 Figure 6-37. Response Time for Various Overdrives, Low-toHigh Transition Submit Document Feedback Product Folder Links: LM393B LM2903B LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V 17 LM393B, LM2903B, LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V www.ti.com SLCS005AE – OCTOBER 1979 – REVISED NOVEMBER 2020 7 Detailed Description 7.1 Overview These dual comparators have the ability to operate up to absolute maximum of 36 V (38 V for the "B" version) on the supply pin. This device has proven ubiquity and versatility across a wide range of applications. This is due to very wide supply voltages range, low Iq and fast response of the devices. The open-drain output allows the user to configure the output's logic high voltage (V OH) and can be used to enable the comparator to be used in AND functionality. 7.2 Functional Block Diagram VCC 80-µA Current Regulator 10 µA IN+ 60 µA 10 µA 80 µA COMPONENT COUNT OUT Epi-FET Diodes Resistors Transistors 1 2 2 30 IN− GND Figure 7-1. Schematic (Each Comparator) 7.3 Feature Description The comparator consists of a PNP darlington pair input, allowing the device to operate with very high gain and fast response with minimal input bias current. The input Darlington pair creates a limit on the input common mode voltage capability, allowing the comparator to accurately function from ground to V CC– 1.5 V input. Allow for VCC– 2 V at cold temperature. The output consists of an open drain NPN (pull-down or low side) transistor. The output NPN sinks current when the negative input voltage is higher than the positive input voltage and the offset voltage. The V OL is resistive and scales with the output current. See Figure 6-3 for VOL values with respect to the output current. 7.4 Device Functional Modes 7.4.1 Voltage Comparison The device operates solely as a voltage comparator, comparing the differential voltage between the positive and negative pins and outputting a logic low or high impedance (logic high with pullup) based on the input differential polarity. 18 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: LM393B LM2903B LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V LM393B, LM2903B, LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V www.ti.com SLCS005AE – OCTOBER 1979 – REVISED NOVEMBER 2020 8 Application and Implementation Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 8.1 Application Information The device is typically used to compare a single signal to a reference or two signals against each other. Many users take advantage of the open drain output to drive the comparison logic output to a logic voltage level to an MCU or logic device. The wide supply range and high voltage capability makes this comaprator optimal for level shifting to a higher or lower voltage. 8.2 Typical Application VLOGIC VLOGIC VSUP Vin VSUP Rpullup + Vin+ ½ LM2903 Rpullup + ½ LM2903 Vin- Vref CL CL Figure 8-1. Single-Ended and Differential Comparator Configurations 8.2.1 Design Requirements For this design example, use the parameters listed in Table 8-1 as the input parameters. Table 8-1. Design Parameters DESIGN PARAMETER Input Voltage Range Supply Voltage Logic Supply Voltage Output Current (RPULLUP) Input Overdrive Voltage EXAMPLE VALUE 0 V to Vsup-2 V 4.5 V to VCC maximum 0 V to VCC maximum 1 µA to 4 mA 100 mV Reference Voltage 2.5 V Load Capacitance (CL) 15 pF 8.2.2 Detailed Design Procedure When using the device in a general comparator application, determine the following: • • • • Input Voltage Range Minimum Overdrive Voltage Output and Drive Current Response Time 8.2.2.1 Input Voltage Range When choosing the input voltage range, the input common mode voltage range (V ICR) must be taken in to account. If temperature operation is below 25°C the V ICR can range from 0 V to VCC– 2.0 V. This limits the input voltage range to as high as V CC– 2.0 V and as low as 0 V. Operation outside of this range can yield incorrect comparisons. Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: LM393B LM2903B LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V 19 LM393B, LM2903B, LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V www.ti.com SLCS005AE – OCTOBER 1979 – REVISED NOVEMBER 2020 The following is a list of input voltage situation and their outcomes: 1. When both IN- and IN+ are both within the common-mode range: a. If IN- is higher than IN+ and the offset voltage, the output is low and the output transistor is sinking current b. If IN- is lower than IN+ and the offset voltage, the output is high impedance and the output transistor is not conducting 2. When IN- is higher than common-mode and IN+ is within common-mode, the output is low and the output transistor is sinking current 3. When IN+ is higher than common-mode and IN- is within common-mode, the output is high impedance and the output transistor is not conducting 4. When IN- and IN+ are both higher than common-mode, the output is low and the output transistor is sinking current 8.2.2.2 Minimum Overdrive Voltage Overdrive Voltage is the differential voltage produced between the positive and negative inputs of the comparator over the offset voltage (V IO). To make an accurate comparison the Overdrive Voltage (V OD) should be higher than the input offset voltage (V IO). Overdrive voltage can also determine the response time of the comparator, with the response time decreasing with increasing overdrive. Figure 8-2 and Figure 8-3 show positive and negative response times with respect to overdrive voltage. 8.2.2.3 Output and Drive Current Output current is determined by the load/pull-up resistance and logic/pullup voltage. The output current produces a output low voltage (V OL) from the comparator. In which V OL is proportional to the output current. Use Section 6.14 to determine VOL based on the output current. The output current can also effect the transient response. See Section 8.2.2.4 for more information. 8.2.2.4 Response Time Response time is a function of input over drive. See Section 8.2.3 for typical response times. The rise and falls times can be determined by the load capacitance (CL), load/pullup resistance (RPULLUP) and equivalent collectoremitter resistance (RCE). • • The rise time (τR) is approximately τR ~ RPULLUP × CL The fall time (τF) is approximately τF ~ RCE × CL – RCE can be determine by taking the slope of Section 6.14 in its linear region at the desired temperature, or by dividing the VOL by Iout 8.2.3 Application Curves 6 6 5 5 Output Voltage (Vo) Output Voltage, Vo(V) The following curves were generated with 5 V on VCC and VLogic, RPULLUP = 5.1 kΩ, and 50 pF scope probe. 4 3 2 5mV OD 1 20mV OD 0 4 3 2 5mV OD 1 20mV OD 0 100mV OD ±1 -0.25 0.25 0.75 1.25 Time (usec) 1.75 2.25 C004 Figure 8-2. Response Time for Various Overdrives (Positive Transition) 20 Submit Document Feedback 100mV OD ±1 ±0.25 0.00 0.25 0.50 0.75 1.00 1.25 1.50 Time (usec) 1.75 2.00 C006 Figure 8-3. Response Time for Various Overdrives (Negative Transition) Copyright © 2020 Texas Instruments Incorporated Product Folder Links: LM393B LM2903B LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V LM393B, LM2903B, LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V www.ti.com SLCS005AE – OCTOBER 1979 – REVISED NOVEMBER 2020 9 Power Supply Recommendations For fast response and comparison applications with noisy or AC inputs, TI recommends to use a bypass capacitor on the supply pin to reject any variation on the supply voltage. This variation can eat into the input common-mode range of the comparator and create an inaccurate comparison. 10 Layout 10.1 Layout Guidelines For accurate comparator applications without hysteresis it is important maintain a stable power supply with minimized noise and glitches. To achieve this, it is best to add a bypass capacitor between the supply voltage and ground. This should be implemented on the positive power supply and negative supply (if available). If a negative supply is not being used, do not put a capacitor between the IC's GND pin and system ground. Minimize coupling between outputs and inverting inputs to prevent output oscillations. Do not run output and inverting input traces in parallel unless there is a V CC or GND trace between output and inverting input traces to reduce coupling. When series resistance is added to inputs, place resistor close to the device. 10.2 Layout Example Better Ground PF Input Resistors Close to device 1 1OUT 2 1IN- VCC 8 VCC 2OUT 7 OK VCC or GND Ground 3 1IN+ 2IN- 6 4 GND 2IN+ 5 Figure 10-1. LM2903 Layout Example Copyright © 2020 Texas Instruments Incorporated Submit Document Feedback Product Folder Links: LM393B LM2903B LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V 21 LM393B, LM2903B, LM193, LM293, LM293A, LM393, LM393A, LM2903, LM2903V www.ti.com SLCS005AE – OCTOBER 1979 – REVISED NOVEMBER 2020 11 Device and Documentation Support 11.1 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on Subscribe to updates to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. 11.2 Support Resources TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 11.3 Trademarks TI E2E™ is a trademark of Texas Instruments. All trademarks are the property of their respective owners. 11.4 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 11.5 Glossary TI Glossary This glossary lists and explains terms, acronyms, and definitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser based versions of this data sheet, refer to the left hand navigation. 22 Submit Document Feedback Copyright © 2020 Texas Instruments Incorporated Product Folder Links: LM393B LM2903B LM193 LM293 LM293A LM393 LM393A LM2903 LM2903V PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2022 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) LM193DR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 LM193 Samples LM193DRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -55 to 125 LM193 Samples LM2903AVQDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2903AV Samples LM2903AVQDRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2903AV Samples LM2903AVQPWR ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2903AV Samples LM2903AVQPWRG4 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2903AV Samples LM2903BIDDFR ACTIVE SOT-23-THIN DDF 8 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2903B Samples LM2903BIDGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 903B Samples LM2903BIDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2903B Samples LM2903BIDSGR ACTIVE WSON DSG 8 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 903B Samples LM2903BIPWR ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2903B Samples LM2903D ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LM2903 Samples LM2903DE4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LM2903 Samples LM2903DG4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LM2903 Samples LM2903DGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAUAG | SN Level-1-260C-UNLIM -40 to 125 (MAP, MAS, MAU) Samples LM2903DGKRG4 ACTIVE VSSOP DGK 8 2500 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 (MAP, MAS, MAU) Samples LM2903DR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 125 LM2903 Samples LM2903DRE4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LM2903 Samples LM2903DRG3 ACTIVE SOIC D 8 2500 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 LM2903 Samples LM2903DRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LM2903 Samples Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2022 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) LM2903P ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type -40 to 125 LM2903P Samples LM2903PSR ACTIVE SO PS 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2903 Samples LM2903PWR ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 125 L2903 Samples LM2903PWRG3 ACTIVE TSSOP PW 8 2000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 L2903 Samples LM2903PWRG4 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2903 Samples LM2903QD ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2903Q Samples LM2903QDG4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2903Q Samples LM2903QDRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2903Q Samples LM2903VQDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2903V Samples LM2903VQDRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2903V Samples LM2903VQPWR ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2903V Samples LM2903VQPWRG4 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2903V Samples LM293AD ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -25 to 85 LM293A Samples LM293ADE4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -25 to 85 LM293A Samples LM293ADGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU | SN | NIPDAUAG Level-1-260C-UNLIM -25 to 85 (MDP, MDS, MDU) Samples LM293ADGKRG4 ACTIVE VSSOP DGK 8 2500 RoHS & Green SN Level-1-260C-UNLIM -25 to 85 (MDP, MDS, MDU) Samples LM293ADR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -25 to 85 LM293A Samples LM293ADRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -25 to 85 LM293A Samples LM293D ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -25 to 85 LM293 Samples LM293DGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU | SN | NIPDAUAG Level-1-260C-UNLIM -25 to 85 (MCP, MCS, MCU) Samples LM293DGKRG4 ACTIVE VSSOP DGK 8 2500 RoHS & Green SN Level-1-260C-UNLIM -25 to 85 (MCP, MCS, MCU) Samples Addendum-Page 2 PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2022 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) LM293DR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -25 to 85 LM293 Samples LM293DRE4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -25 to 85 LM293 Samples LM293DRG3 ACTIVE SOIC D 8 2500 RoHS & Green SN Level-1-260C-UNLIM -25 to 85 LM293 Samples LM293DRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -25 to 85 LM293 Samples LM293P ACTIVE PDIP P 8 50 RoHS & Green NIPDAU | SN N / A for Pkg Type -25 to 85 LM293P Samples LM293PE4 ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type -25 to 85 LM293P Samples LM393AD ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM393A Samples LM393ADE4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM393A Samples LM393ADG4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM393A Samples LM393ADGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM 0 to 70 (M8P, M8S, M8U) Samples LM393ADGKRG4 ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 (M8P, M8S, M8U) Samples LM393ADR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM 0 to 70 LM393A Samples LM393ADRE4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM393A Samples LM393ADRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM393A Samples LM393AP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU | SN N / A for Pkg Type 0 to 70 LM393AP Samples LM393APE4 ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type 0 to 70 LM393AP Samples LM393APSR ACTIVE SO PS 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 L393A Samples LM393APWR ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM 0 to 70 L393A Samples LM393APWRE4 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 L393A Samples LM393APWRG4 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 L393A Samples LM393BIDDFR ACTIVE SOT-23-THIN DDF 8 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 393B Samples Addendum-Page 3 PACKAGE OPTION ADDENDUM www.ti.com 14-Oct-2022 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) LM393BIDGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 393B Samples LM393BIDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 LM393B Samples LM393BIDSGR ACTIVE WSON DSG 8 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 393B Samples LM393BIPWR ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 LM393B Samples LM393D ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM393 Samples LM393DE4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM393 Samples LM393DG4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM393 Samples LM393DGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU | SN | NIPDAUAG Level-1-260C-UNLIM 0 to 70 (M9P, M9S, M9U) Samples LM393DGKRG4 ACTIVE VSSOP DGK 8 2500 RoHS & Green SN Level-1-260C-UNLIM 0 to 70 (M9P, M9S, M9U) Samples LM393DR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM 0 to 70 LM393 Samples LM393DRE4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM393 Samples LM393DRG3 ACTIVE SOIC D 8 2500 RoHS & Green SN Level-1-260C-UNLIM 0 to 70 LM393 Samples LM393DRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM393 Samples LM393P ACTIVE PDIP P 8 50 RoHS & Green NIPDAU | SN N / A for Pkg Type 0 to 70 LM393P Samples LM393PE3 ACTIVE PDIP P 8 50 RoHS & Non-Green SN N / A for Pkg Type 0 to 70 LM393P Samples LM393PE4 ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type 0 to 70 LM393P Samples LM393PSR ACTIVE SO PS 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 L393 Samples LM393PSRG4 ACTIVE SO PS 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 L393 Samples LM393PW ACTIVE TSSOP PW 8 150 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 L393 Samples LM393PWG4 ACTIVE TSSOP PW 8 150 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 L393 Samples LM393PWR ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM 0 to 70 L393 Samples Addendum-Page 4 PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 14-Oct-2022 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) LM393PWRG3 ACTIVE TSSOP PW 8 2000 RoHS & Green SN Level-1-260C-UNLIM 0 to 70 L393 Samples LM393PWRG4 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 L393 Samples (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of