0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LM2903QDRQ1

LM2903QDRQ1

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC-8

  • 描述:

    IC DUAL DIFF COMPARATOR 8-SOIC

  • 数据手册
  • 价格&库存
LM2903QDRQ1 数据手册
LM2903-Q1, LM2903B-Q1 SLCS141K – MAY 2003 – REVISED AUGUST 2022 LM2903-Q1 and LM2903B-Q1 Automotive Dual Comparators Features Description • • The LM2903B-Q1 device is the next generation version of the industry-standard LM2903-Q1 comparator family. This next generation family provides outstanding value for cost-sensitive applications, with features including lower offset voltage, higher supply voltage capability, lower supply current, lower input bias current, lower propagation delay, and improved 2kV ESD performance with dropin replacement convenience. • • • • • • • • • • • Qualified for automotive applications AEC-Q100 qualified with the following results: – Device temperature grade 0: –40°C to 150°C ambient operating temperature range (LM2903E-Q1) – Device temperature grade 1: –40°C to 125°C ambient operating temperature range – Device HBM ESD classification level H1C – Device CDM ESD classification level C4B Improved 2 kV HBM ESD for "B" device Tri-Temp testing available for "B" device Single supply or dual supplies Low supply-current independent of supply voltage 200 uA typical per comparator ("B" Versions) Low input bias current 3.5 nA typical ("B" device) Low input offset current 0.5 nA typ ("B" device) Low input offset voltage ±0.37 mV typ ("B" device) Common-mode input voltage range includes ground Differential input voltage range equal to maximumrated supply voltage ±36 V Output compatible with TTL, MOS, and CMOS Functional Safety-Capable – Documentation available to aid functional safety system design All devices consist of two independent voltage comparators that are designed to operate over a wide range of voltages. Operation from dual supplies also is possible as long as the difference between the two supplies is within 2 V to 36 V, and VCC is at least 1.5 V more positive than the input common-mode voltage. The outputs can be connected to other open-collector outputs. The LM2903-Q1 and LM2903B-Q1 are qualified for the AEC-Q100 Grade 1 temperature range of -40°C to +125°C. The LM2903E-Q1 is Qualified for the Grade 0 extended temperature range of -40°C to +150°C. Device Information PART NUMBER Applications • • • LM2903B-Q1 Automotive – HEV/EV and power train – Infotainment and cluster – Body control module Industrial Appliances LM2903-Q1 LM2903E-Q1 (1) PACKAGE (1) BODY SIZE (NOM) SOIC (8) 4.90 mm × 3.91 mm TSSOP (8) 3.00 mm × 4.40 mm VSSOP(8) 3.00 mm x 3.00 mm WSON (8) 2.00 mm x 2.00 mm SOT-23 (8) 1.60 mm × 2.90 mm SOIC (8) 4.90 mm × 3.91 mm TSSOP (8) 3.00 mm × 4.40 mm VSSOP(8) 3.00 mm x 3.00 mm TSSOP (8) 3.00 mm × 4.40 mm For all available packages, see the orderable addendum at the end of the datasheet. Family Comparison Table Specification Specified Supply Votlage LM2903B-Q1 LM2903-Q1 LM2903-Q1 "A" Devices LM2903-Q1 "AV" Devices LM2903E-Q1 Units 2 to 36 2 to 30 2 to 30 2 to 32 2 to 30 V Total Supply Current (5 V to VS max) 0.6 to 0.8 1 to 2.5 1 to 2.5 1 to 2.5 1 to 2.5 mA Temperature Range −40 to 125 −40 to 125 −40 to 125 −40 to 125 -40 to 150 °C ESD (HBM / CDM) 2k / 1k 1k / 750 1k / 750 1k / 750 1k / 750 V Offset Voltage (max over temp) Input Bias Current (typ / max) Response Time (typ) ±4 ± 15 ±4 ±4 ± 15 mV 3.5 / 25 25 / 250 25 / 250 25 / 250 25 / 250 nA 1 1.3 1.3 1.3 1.3 µsec An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. LM2903-Q1, LM2903B-Q1 www.ti.com SLCS141K – MAY 2003 – REVISED AUGUST 2022 Table of Contents Features...............................................................................1 Applications........................................................................ 1 Description..........................................................................1 1 Revision History.............................................................. 2 2 Pin Configuration and Functions...................................4 2.1 Pin Functions.............................................................. 4 3 Specifications.................................................................. 5 3.1 Absolute Maximum Ratings, LM2903-Q1 and LM2903E-Q1................................................................. 5 3.2 Absolute Maximum Ratings, LM2903B-Q1.................5 3.3 ESD Ratings, LM2903-Q1 and LM2903E-Q1............. 5 3.4 ESD Ratings, LM2903B-Q1........................................ 5 3.5 Recommended Operating Conditions, LM2903B-Q1................................................................. 6 3.6 Recommended Operating Conditions, LM2903-Q1....6 3.7 Recommended Operating Conditions, LM2903E-Q1................................................................. 6 3.8 Thermal Information, LM2903-Q1 and LM2903E-Q1................................................................. 6 3.9 Thermal Information, LM2903B-Q1............................ 6 3.10 Electrical Characteristics LM2903B - Q1 ................. 7 3.11 Switching Characteristics LM2903B - Q1 .................7 3.12 LM2903B-Q1 "T", "R" and "H" Temperature Test Options.................................................................. 7 3.13 Electrical Characteristics, LM2903-Q1 and LM2903E-Q1................................................................. 8 2 3.14 Switching Characteristics, LM2903-Q1 and LM2903E-Q1................................................................. 8 3.15 Typical Characteristics, LM2903-Q1 and LM2903E-Q1 Only.........................................................9 3.16 Typical Characteristics, LM2903B-Q1 Only............ 10 4 Detailed Description......................................................16 4.1 Overview................................................................... 16 4.2 Functional Block Diagram......................................... 16 4.3 Feature Description...................................................16 4.4 Device Functional Modes..........................................16 5 Application and Implementation.................................. 17 5.1 Application Information............................................. 17 5.2 Typical Application.................................................... 17 5.3 Power Supply Recommendations.............................19 5.4 Layout....................................................................... 19 6 Device and Documentation Support............................20 6.1 Documentation Support............................................ 20 6.2 Receiving Notification of Documentation Updates....20 6.3 Support Resources................................................... 20 6.4 Trademarks............................................................... 20 6.5 Electrostatic Discharge Caution................................20 6.6 Glossary....................................................................20 7 Mechanical, Packaging, and Orderable Information.. 21 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2903-Q1 LM2903B-Q1 LM2903-Q1, LM2903B-Q1 www.ti.com SLCS141K – MAY 2003 – REVISED AUGUST 2022 1 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision J (November 2020) to Revision K (August 2022) Page • Added T, R and H Temp Test Options table........................................................................................................7 Changes from Revision I (June 2020) to Revision J (November 2020) Page • Changed LM2903B-Q1 Minimum Recommended Supply Voltage to 2V throughout the datasheet.................. 1 • Added Operating Virtual Temp to Abs Max Table for both versions................................................................... 5 • Updated Supply Voltage vs Supply Current graph for 2V...................................................................................5 Changes from Revision H (January 2020) to Revision I (June 2020) Page • Added Functional Safety text and links...............................................................................................................1 • Added VSSOP package to Device Info list for "B"..............................................................................................1 • Added DGK to "B" Thermal Table.......................................................................................................................6 • Added text to Apps Overview section for ESD................................................................................................. 16 Changes from Revision G (November 2018) to Revision H (January 2020) Page • Added LM2903B-Q1 to datasheet...................................................................................................................... 1 • Added Device Information table. ........................................................................................................................1 • Added "B" device graphs ................................................................................................................................. 10 • Changed incorrect input text in Feature Description in Apps Section...............................................................16 Changes from Revision F (May 2018) to Revision G (November 2018) Page • Changed previous Q1 graphs to match new format .......................................................................................... 9 • Added LM2903E-Q1 specific graphs.................................................................................................................. 9 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2903-Q1 LM2903B-Q1 3 LM2903-Q1, LM2903B-Q1 www.ti.com SLCS141K – MAY 2003 – REVISED AUGUST 2022 2 Pin Configuration and Functions 1OUT 1IN− 1IN+ GND 1 8 2 7 3 6 4 5 VCC 2OUT 2IN− 2IN+ Figure 2-1. D, DGK, DDF OR PW PACKAGE Top View 1OUT 1 1IN± 2 1IN+ 3 GND 4 Exposed Thermal Die Pad on Underside 8 V+ 7 2OUT 6 2IN± 5 2IN+ Connect thermal pad directly to GND pin. Figure 2-2. DSG Package 8-Pin WSON With Exposed Pad Top View 2.1 Pin Functions PIN 4 NAME SOIC, VSSOP, PDIP, SO, DDF and TSSOP DSG 1OUT 1 1 Output 1IN– 2 2 Input Negative input pin of comparator 1 1IN+ 3 3 Input Positive input pin of comparator 1 GND 4 4 — 2IN+ 5 5 Input Positive input pin of comparator 2 2IN- 6 6 Input Negative input pin of comparator 2 2OUT 7 7 Output VCC 8 8 — Positive Supply Thermal Pad — PAD — Connect directly to GND pin I/O DESCRIPTION Output pin of comparator 1 Ground Output pin of comparator 2 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2903-Q1 LM2903B-Q1 LM2903-Q1, LM2903B-Q1 www.ti.com SLCS141K – MAY 2003 – REVISED AUGUST 2022 3 Specifications 3.1 Absolute Maximum Ratings, LM2903-Q1 and LM2903E-Q1 over operating free-air temperature range (unless otherwise noted) (1) MIN VCC Supply VCC Supply voltage, LM2903E-Q1 Only(2) VID Differential input voltage(3) VI Input voltage range (either input) VO Output voltage IO Output current TJ Operating virtual-junction temperature TSCG Duration of output short-circuit to ground (1) (2) (3) MAX voltage(2) UNIT 36 V 32 V –36 36 V −0.3 36 V 36 V 20 mA 150 °C Unlimited s Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values, except differential voltages, are with respect to GND. Differential voltages are at IN+ with respect to IN−. 3.2 Absolute Maximum Ratings, LM2903B-Q1 over operating free-air temperature range (unless otherwise noted)(1) MIN Supply voltage: VS = (V+) – (V–) MAX -0.3 Differential input voltage : VID (2) Input pins (IN+, IN–) -0.3 Current into input pins (IN+, IN–) Output pin (OUT) -0.3 Output sink current Operating virtual-junction temperature Output short-circuit duration(3) (1) (2) (3) UNIT 38 V ±38 V 38 V -50 mA 38 V 25 mA 150 °C Unlimited s Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Differential voltages are at IN+ with respect to INShort circuits from outputs to V+ can cause excessive heating and eventual destruction. 3.3 ESD Ratings, LM2903-Q1 and LM2903E-Q1 MIN Tstg Storage temperature range V(ESD) (1) Electrostatic discharge LM2903-Q1 Only Human body model (HBM), per AEC Q100-002(1) Charged device model (CDM), per AEC Q100-011 All pins MAX UNIT °C –65 150 -1000 1000 -750 750 V AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification. 3.4 ESD Ratings, LM2903B-Q1 MIN Tstg Storage temperature range V(ESD) (1) Electrostatic discharge Human body model (HBM), per AEC Q100-002(1) Charged device model (CDM), per AEC Q100-011 All pins MAX UNIT °C –65 150 -2000 2000 -1000 1000 V AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2903-Q1 LM2903B-Q1 5 LM2903-Q1, LM2903B-Q1 www.ti.com SLCS141K – MAY 2003 – REVISED AUGUST 2022 3.5 Recommended Operating Conditions, LM2903B-Q1 over operating free-air temperature range (unless otherwise noted) MIN MAX 2 36 V Ambient temperature, TA, LM2903B –40 125 °C Input voltage range, VIVR –0.1 (V+) – 2 V Supply voltage: VS = (V+) – (V–) UNIT 3.6 Recommended Operating Conditions, LM2903-Q1 over operating free-air temperature range (unless otherwise noted) MIN MAX UNIT VCC (non-V devices) 2 30 V VCC (V devices) 2 32 V -40 125 °C MIN MAX UNIT 2 30 V -40 150 °C TJ Junction Temperature 3.7 Recommended Operating Conditions, LM2903E-Q1 over operating free-air temperature range (unless otherwise noted) VCC TJ Junction Temperature 3.8 Thermal Information, LM2903-Q1 and LM2903E-Q1 LM2903E-Q1 LM2903-Q1 PW (TSSOP) DGK (VSSOP) PW (TSSOP) D (SOIC) 8 PINS 8 PINS 8 PINS 8 PINS 178.9 199.4 186.6 126.0 RθJC(top) Junction-to-case (top) thermal resistance 70.7 120.8 79.6 74.2 RθJB Junction-to-board thermal resistance 108.9 90.2 116.5 66.4 ψJT Junction-to-top characterization parameter 11.9 21.5 17.7 25.4 ψJB Junction-to-board characterization parameter 107.3 119.1 114.9 65.9 THERMAL METRIC(1) RθJA (1) Junction-to-ambient thermal resistance UNIT °C/W For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. 3.9 Thermal Information, LM2903B-Q1 LM2903B-Q1 THERMAL METRIC(1) RθJA Junction-to-ambient thermal resistance DGK (VSSOP) PW (TSSOP) DSG (WSON) DDF (SOT-23) 8 PINS 8 PINS 8 PINS 8 PINS 8 PINS 148.5 193.7 200.6 96.9 197.9 RθJC(top) Junction-to-case (top) thermal resistance 90.2 82.9 89.6 119.0 119.2 RθJB Junction-to-board thermal resistance 91.8 115.5 131.3 63.1 115.4 ψJT Junction-to-top characterization parameter 38.5 20.8 22.1 12.4 19.4 ψJB Junction-to-board characterization parameter 91.1 113.9 129.6 63.0 113.7 - - - 38.7 - RθJC(bot) Junction-to-case (bottom) thermal resistance (1) 6 D (SOIC) UNIT °C/W For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2903-Q1 LM2903B-Q1 LM2903-Q1, LM2903B-Q1 www.ti.com SLCS141K – MAY 2003 – REVISED AUGUST 2022 3.10 Electrical Characteristics LM2903B - Q1 VS = 5 V, VCM = (V–) ; TA = 25°C (unless otherwise noted). PARAMETER VIO TEST CONDITIONS VS = 5 to 36V Input offset voltage VS = 5 to 36V, TA = –40°C to +125°C IB IOS MAX 2.5 mV 4 mV ±0.37 3.5 mV 5 mV –3.5 –25 nA –50 nA 10 nA –3.5 VS = 5 to 36V, TA = –40°C to +125°C Input bias current TYP ±0.37 –4 VS = 5 to 36V Input offset voltage, DGK package only VIO MIN –2.5 –5 TA = –40°C to +125°C –10 Input offset current TA = –40°C to +125°C ±0.5 UNIT –25 25 nA VS = 3 to 36V (V–) (V+) – 1.5 V VS = 3 to 36V, TA = –40°C to +125°C (V–) (V+) – 2.0 V VCM Common mode range(1) AVD Large signal differential voltage amplification VOL Low level output Voltage {swing from (V–)} IOH-LKG High-level output leakage current (V+) = VO = 5 V; VID = 1V IOL Low level output current VOL = 1.5V; VID = -1V; VS = 5V IQ Quiescent current (all comparators) VS = 5 V, no load 400 600 µA VS = 36 V, no load, TA = –40°C to +125°C 550 800 µA (1) VS = 15V, VO = 1.4V to 11.4V; RL ≥ 15k to (V+) 50 ISINK ≤ 4mA, VID = -1V 200 110 400 mV 550 mV 0.1 20 nA 0.3 50 ISINK ≤ 4mA, VID = -1V TA = –40°C to +125°C (V+) = VO = 36V; VID = 1V 6 V/mV 21 nA mA The voltage at any input should not be allowed to go negative by more than 0.3 V. The upper end of the input voltage range is VCC − 1.5 V for one input, and the other input can exceed the VCC level; the comparator provides a proper output state. Either or both inputs can go to 36 V without damage. 3.11 Switching Characteristics LM2903B - Q1 VS = 5V, VO_PULLUP = 5V, VCM = VS/2, CL = 15pF, RL = 5.1k Ohm, TA = 25°C (unless otherwise noted). PARAMETER TEST CONDITIONS tresponse Propagation delay time, highto-low; TTL input signal (1) TTL input with Vref = 1.4V tresponse Propagation delay time, highto-low; Small scale input signal Input overdrive = 5mV, Input step = 100mV (1) (1) MIN TYP MAX UNIT 300 ns 1000 ns High-to-low and low-to-high refers to the transition at the input. 3.12 LM2903B-Q1 "T", "R" and "H" Temperature Test Options The following table describes the production temperature testing for the LM2903B-Q1 "H", "R" and "T" options. Specifications are the same as the LM2903B-Q1 above. Test LM2903B-Q1 LM2903BR-Q1 LM2903BH-Q1 LM2903BT-Q1 Probe (Wafer) - 25°C 125°C -40°C and 125°C Final (Packaged) 25°C 25°C 25°C 25°C Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2903-Q1 LM2903B-Q1 7 LM2903-Q1, LM2903B-Q1 www.ti.com SLCS141K – MAY 2003 – REVISED AUGUST 2022 3.13 Electrical Characteristics, LM2903-Q1 and LM2903E-Q1 at specified free-air temperature, VCC = 5 V (unless otherwise noted) PARAMETER VIO Input offset voltage TA (1) TEST CONDITIONS Non-A devices VO = 1.4 V, VIC = VIC(min), VCC = 5 V to MAX(2) A-suffix devices 7 1 2 5 50 Full range IIB Input bias current VO = 1.4 V VICR Common-mode input voltage range(3) AVD Large-signal differential-voltage amplification VCC = 15 V, VO = 1.4 V to 11.4 V, RL ≥ 15 kΩ to VCC IOH High-level output current VOH = 5 V VOL Low-level output voltage IOL = 4 mA, VID = −1 V IOL Low-level output current VOL = 1.5 V, VID = −1 V 25°C ICC Supply current RL = ∞ VCC = 5 V 25°C Full range 200 25°C −25 Full range 25°C Full range VID = 1 V VCC = MAX(2) −250 −500 0 to VCC−1.5 mV 25 25°C 100 nA V/mV 0.1 50 nA 1 µA 150 400 Full range 25°C nA V 0 to VCC−2 25°C MAX(2) UNIT 4 25°C VO = 1.4 V (2) (3) MAX 2 15 25°C Input offset current (1) TYP Full range IIO VOH = VCC MIN 25°C Full range 700 6 mV mA 0.8 Full range 1 2.5 mA Full range (MIN or MAX) for LM2903-Q1 is −40°C to 125°C and −40°C to 150°C for the LM2903E-Q1 . All characteristics are measured with zero common-mode input voltage, unless otherwise specified. VCC MAX = 30 V for non-V devices and 32 V for V-suffix devices. The voltage at either input or common-mode should not be allowed to go negative by more than 0.3 V. The upper end of the common-mode voltage range is VCC+ − 1.5 V for the inverting input (−), and the non-inverting input (+) can exceed the VCC level; the comparator provides a proper output state. Either or both inputs can go to 30 V (32V for V-suffix devices) without damage. 3.14 Switching Characteristics, LM2903-Q1 and LM2903E-Q1 VCC = 5 V, TA = 25°C PARAMETER Response time (1) (2) 8 TEST CONDITIONS TYP RL connected to 5 V through 5.1 kΩ, 100-mV input step with 5-mV overdrive 1.3 CL = 15 pF(1) (2) TTL-level input step 0.3 UNIT µs CL includes probe and jig capacitance. The response time specified is the interval between the input step function and the instant when the output crosses 1.4 V. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2903-Q1 LM2903B-Q1 LM2903-Q1, LM2903B-Q1 www.ti.com SLCS141K – MAY 2003 – REVISED AUGUST 2022 3.15 Typical Characteristics, LM2903-Q1 and LM2903E-Q1 Only 1 1 -40C 0C 25C 85C 125C 0.8 Supply Current (mA) Supply Current (mA) 0.8 0.6 0.4 0.2 0.4 0 0 10 20 VCC (V) 30 40 Figure 3-1. Supply Current vs. Supply Voltage 0 10 20 VCC (V) 30 40 Figure 3-2. Supply Current vs. Supply Voltage LM2903E-Q1 Only 70 70 -40C 0C 25C 85C 125C 50 -40C 25C 85C 125C 150C 60 Input Bias Current (nA) 60 Input Bias Current (nA) 0.6 0.2 0 40 30 20 10 50 40 30 20 10 0 0 0 10 20 VCC (V) 30 40 0 20 VCC (V) 30 40 Figure 3-4. Input Bias Current vs. Supply Voltage LM2903E-Q1 Only 10 125C 85C 25C 0C -40C 1 0.1 0.01 0.1 1 10 Ouptut Sink Current, IO(mA) Figure 3-5. Output Low Voltage vs. Output Current 100 Output Low Voltage, VOL (V) 10 0.001 0.01 10 lm29 Figure 3-3. Input Bias Current vs. Supply Voltage Output Low Voltage, VOL(V) -40C 25C 125C 150C 150C 125C 25C -40C 1 0.1 0.01 0.001 0.01 0.1 1 10 Output Sinking Current , IO(mA) 100 Figure 3-6. Output Low Voltage vs. Output Current LM2903E-Q1 Only Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2903-Q1 LM2903B-Q1 9 LM2903-Q1, LM2903B-Q1 www.ti.com SLCS141K – MAY 2003 – REVISED AUGUST 2022 3.16 Typical Characteristics, LM2903B-Q1 Only TA = 25°C, VS = 5 V, RPULLUP = 5.1k, CL = 15 pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise noted. 500 Total Supply Current (PA) 460 420 380 340 300 260 220 -40°C 0°C 25°C 85°C 125°C 180 140 VS=3V 100 -0.5 -0.25 460 460 420 420 Total Supply Current (PA) 500 380 340 300 260 -40°C 0°C 25°C 85°C 125°C 140 VS=3.3V 100 -0.5 -0.25 0 0.25 0.5 0.75 1 1.25 Input Voltage (V) 1.5 1.75 Total Supply Current (PA) 220 470 380 340 300 260 -40°C 0°C 25°C 85°C 125°C 0.5 1 1.5 2 2.5 Input Voltage (V) 3 3.5 4 Figure 3-10. Total Supply Current vs. Input Voltage at 5V 510 VS=12V -40°C 0°C 25°C 85°C 125°C 180 420 430 390 350 310 270 -40°C 0°C 25°C 85°C 125°C 230 190 VS=36V 150 0 1 2 3 4 5 6 7 Input Voltage (V) 8 9 10 11 Figure 3-11. Total Supply Current vs. Input Voltage at 12V 10 260 550 100 -1 2 300 460 140 1.75 340 500 180 1.5 380 VS=5V 100 -0.5 0 2 Figure 3-9. Total Supply Current vs. Input Voltage at 3.3V 220 0.5 0.75 1 1.25 Input Voltage (V) 140 Total Supply Current (PA) Total Supply Current (PA) 500 180 0.25 Figure 3-8. Total Supply Current vs. Input Voltage at 3V Figure 3-7. Total Supply Current vs. Supply Voltage 220 0 0 3 6 9 12 15 18 21 24 Input Voltage (V) 27 30 33 36 Figure 3-12. Total Supply Current vs. Input Voltage at 36V Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2903-Q1 LM2903B-Q1 LM2903-Q1, LM2903B-Q1 www.ti.com SLCS141K – MAY 2003 – REVISED AUGUST 2022 3.16 Typical Characteristics, LM2903B-Q1 Only (continued) 2 2 1.5 1.5 Input Offset Voltage (mV) Input Offset Voltage (mV) TA = 25°C, VS = 5 V, RPULLUP = 5.1k, CL = 15 pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise noted. 1 0.5 0 -0.5 -1 -2 -40 0 -0.5 -1 -25 -10 5 20 35 50 65 Temperature (°C) 80 95 -2 -40 110 125 1.5 1.5 Input Offset Voltage (mV) 2 1 0.5 0 -0.5 -1 -25 -10 5 20 35 50 65 Temperature (°C) 80 95 5 20 35 50 65 Temperature (°C) 80 95 110 125 0.5 0 -0.5 -1 VS = 36V 62 Channels -1.5 -2 -40 110 125 Figure 3-15. Input Offset Voltage vs. Temperature at 12V 1.5 1.5 Input Offset Voltage (mV) 2 1 0.5 0 -0.5 -1 TA = -40°C 62 Channels -25 -10 5 20 35 50 65 Temperature (°C) 80 110 125 1 0.5 0 -0.5 -1 TA = 25°C 62 Channels -1.5 -2 95 Figure 3-16. Input Offset Voltage vs. Temperature at 36 2 -1.5 -10 1 VS = 12V 62 Channels -2 -40 -25 Figure 3-14. Input Offset Voltage vs. Temperature at 5V 2 -1.5 VS = 5V 62 Channels -1.5 Figure 3-13. Input Offset Voltage vs. Temperature at 3V Input Offset Voltage (mV) 0.5 VS = 3V 63 Channels -1.5 Input Offset Voltage (mV) 1 -2 3 6 9 12 15 18 21 24 Supply Voltage (V) 27 30 33 36 Figure 3-17. Input Offset Voltage vs. Supply Voltage at -40°C 3 6 9 12 15 18 21 24 Supply Voltage (V) 27 30 33 36 Figure 3-18. Input Offset Voltage vs. Supply Voltage at 25°C Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2903-Q1 LM2903B-Q1 11 LM2903-Q1, LM2903B-Q1 www.ti.com SLCS141K – MAY 2003 – REVISED AUGUST 2022 3.16 Typical Characteristics, LM2903B-Q1 Only (continued) 2 2 1.5 1.5 Input Offset Voltage (mV) Input Offset Voltage (mV) TA = 25°C, VS = 5 V, RPULLUP = 5.1k, CL = 15 pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise noted. 1 0.5 0 -0.5 -1 TA = 85°C 62 Channels -1.5 6 9 12 15 18 21 24 Supply Voltage (V) 27 30 33 -0.5 -1 36 Figure 3-19. Input Offset Voltage vs. Supply Voltage at 85°C TA = 125qC 62 Channels 3 6 9 12 15 18 21 24 Supply Voltage (V) 27 30 33 36 Figure 3-20. Input Offset Voltage vs. Supply Voltage at 125°C 0 0 -1 -1.5 -2 -2.5 -3 -3.5 -0.5 -1.5 -2 -2.5 -3 -4 -4 -4.5 -5 -0.5 -5 6 9 12 15 18 21 24 Supply Voltage (V) 27 30 33 36 0 0.5 1 1.5 2 Input Voltage (V) 2.5 3 3.5 Figure 3-22. Input Bias Current vs. Input Voltage at 5V Figure 3-21. Input Bias Current vs. Supply Voltage 1 0 -0.5 125°C 85°C 25°C 0°C -40°C -3.5 -4.5 3 VS=5V -1 Input Bias Current (nA) 125°C 85°C 25°C 0°C -40°C VCM=0V -0.5 Input Bias Current (nA) 0 -2 3 VS=12V 0 -2 -2.5 -3 125°C 85°C 25°C 0°C -40°C -3.5 -4 -4.5 1.5 2.5 3.5 4.5 5.5 6.5 Input Voltage (V) 7.5 8.5 9.5 10.5 Figure 3-23. Input Bias Current vs. Input Voltage at 12V Input Bias Current (nA) -1.5 -5 -0.5 0.5 VS=36V 0.5 -1 Input Bias Current (nA) 0.5 -1.5 -2 12 1 -0.5 -1 -1.5 -2 -2.5 -3 125°C 85°C 25°C 0°C -40°C -3.5 -4 -4.5 -5 0 4 8 12 16 20 24 Input Voltage (V) 28 32 36 Figure 3-24. Input Bias Current vs. Input Voltage at 36V Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2903-Q1 LM2903B-Q1 LM2903-Q1, LM2903B-Q1 www.ti.com SLCS141K – MAY 2003 – REVISED AUGUST 2022 3.16 Typical Characteristics, LM2903B-Q1 Only (continued) TA = 25°C, VS = 5 V, RPULLUP = 5.1k, CL = 15 pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise noted. 10 10 VS = 5V 1 100m 125°C 85°C 25°C 0°C -40°C 10m 1m 10P 100P 1m 10m Output Sinking Current (A) Output Voltage to GND (V) Output Voltage to GND (V) VS = 3V 100m 125°C 85°C 25°C 0°C -40°C 10m 1m 10P 100m Figure 3-25. Output Low Voltage vs. Output Sinking Current at 3V 1 10 VS = 36V 1 100m 125°C 85°C 25°C 0°C -40°C 10m 1m 10P 100P 1m 10m Output Sinking Current (A) 0.2 0.1 0.05 5 20 35 50 65 Temperature (°C) 80 95 110 125 Figure 3-29. Output High Leakage Current vs.Temperature at 5V 125°C 85°C 25°C 0°C -40°C 10m 100P 1m 10m Output Sinking Current (A) 100m Figure 3-28. Output Low Voltage vs.Output Sinking Current at 36V Output High Leakage to GND (nA) Output High Leakage to GND (nA) 2 1 0.5 -10 100m 100 50 Output set high VOUT = VS -25 1 1m 10P 100m Figure 3-27. Output Low Voltage vs. Output Sinking Current at 12V 0.02 0.01 -40 Output Voltage to GND (V) Output Voltage to GND (V) VS = 12V 20 10 5 100m Figure 3-26. Output Low Voltage vs. Output Sinking Current at 5V 10 100 50 100P 1m 10m Output Sinking Current (A) 20 10 5 Output set high VOUT = VS 2 1 0.5 0.2 0.1 0.05 0.02 0.01 -40 -25 -10 5 20 35 50 65 Temperature (°C) 80 95 110 125 Figure 3-30. Output High Leakage Current vs. Temperature at 36V Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2903-Q1 LM2903B-Q1 13 LM2903-Q1, LM2903B-Q1 www.ti.com SLCS141K – MAY 2003 – REVISED AUGUST 2022 3.16 Typical Characteristics, LM2903B-Q1 Only (continued) TA = 25°C, VS = 5 V, RPULLUP = 5.1k, CL = 15 pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise noted. 1000 VS = 5V VCM = 0V CL = 15pF RP = 5.1k 900 800 125°C 85°C 25°C -40°C 700 600 500 400 300 200 100 Propagation Delay, Low to High (ns) Propagation Delay, High to Low (ns) 1000 0 10 100 Input Overdrive (mV) 600 500 400 300 200 100 5 10 100 Input Overdrive (mV) 1000 Figure 3-32. Low to High Propagation Delay vs. Input Overdrive Voltage, 5V 1000 VS = 12V VCM = 0V CL = 15pF RP = 5.1k 900 800 125°C 85°C 25°C -40°C 700 600 500 400 300 200 100 Propagation Delay, Low to High (ns) 1000 Propagation Delay, High to Low (ns) 700 1000 Figure 3-31. High to Low Propagation Delay vs. Input Overdrive Voltage, 5V 0 VS = 12V VCM = 0V CL = 15pF RP = 5.1k 900 800 700 125°C 85°C 25°C -40°C 600 500 400 300 200 100 0 5 10 100 Input Overdrive (mV) 1000 Figure 3-33. High to Low Propagation Delay vs. Input Overdrive Voltage, 12V 5 10 100 Input Overdrive (mV) 1000 Figure 3-34. Low to High Propagation Delay vs. Input Overdrive Voltage, 12V 1000 VS = 36V VCM = 0V CL = 15pF RP = 5.1k 900 800 125°C 85°C 25°C -40°C 700 600 500 400 300 200 100 0 Propagation Delay, Low to High (ns) 1000 Propagation Delay, High to Low (ns) 800 125°C 85°C 25°C -40°C 0 5 VS = 36V VCM = 0V CL = 15pF RP = 5.1k 900 800 125°C 85°C 25°C -40°C 700 600 500 400 300 200 100 0 5 10 100 Input Overdrive (mV) 1000 Figure 3-35. High to Low Propagation Delay vs. Input Overdrive Voltage, 36V 14 VS = 5V VCM = 0V CL = 15pF RP = 5.1k 900 5 10 100 Input Overdrive (mV) 1000 Figure 3-36. Low to High Propagation Delay vs. Input Overdrive Voltage, 36V Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2903-Q1 LM2903B-Q1 LM2903-Q1, LM2903B-Q1 www.ti.com SLCS141K – MAY 2003 – REVISED AUGUST 2022 3.16 Typical Characteristics, LM2903B-Q1 Only (continued) TA = 25°C, VS = 5 V, RPULLUP = 5.1k, CL = 15 pF, VCM = 0 V, VUNDERDRIVE = 100 mV, VOVERDRIVE = 100 mV unless otherwise noted. 6 6 VREF = VCC/2 VREF = VCC/2 5 4 Output Voltage (V) Output Voltage (V) 5 20mV Overdrive 3 5mV Overdrive 2 1 100mV Overdrive 0 -1 -0.1 4 20mV Overdrive 3 2 100mV Overdrive 5mV Overdrive 1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Time (Ps) 1 1.1 Figure 3-37. Response Time for Various Overdrives, High-toLow Transition -1 -0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 Time (Ps) 1 1.1 Figure 3-38. Response Time for Various Overdrives, Low-toHigh Transition Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2903-Q1 LM2903B-Q1 15 LM2903-Q1, LM2903B-Q1 www.ti.com SLCS141K – MAY 2003 – REVISED AUGUST 2022 4 Detailed Description 4.1 Overview The LM2903-Q1 family is a dual comparator with the ability to operate up to 36 V on the supply pin. This standard device has proven ubiquity and versatility across a wide range of applications. This is due to it's very wide supply voltages range (2 V to 36 V), low Iq and fast response. This device is AEC-Q100 qualified and can operate over a wide temperature range of –40°C to 125°C (LM2903Q1 and LM2903B-Q1) or –40°C to 150°C (LM2903E-Q1). The open-drain output allows the user to configure the output's logic low voltage (VOL) and can be utilized to enable the comparator to be used in AND functionality. The "B" versions add dedicated ESD protections on all the pins for improved ESD performance as well as improved negative input voltage handling. Please see Application Note SNOAA35 for more information 4.2 Functional Block Diagram VCC 80-µA Current Regulator 10 µA IN+ 60 µA 10 µA 80 µA COMPONENT COUNT OUT Epi-FET Diodes Resistors Transistors 1 2 2 30 IN− GND Figure 4-1. Schematic (Each Comparator) 4.3 Feature Description LM2903-Q1 family consists of a PNP darlington pair input, allowing the device to operate with very high gain and fast response with minimal input bias current. The input Darlington pair creates a limit on the input common mode voltage capability, allowing LM2903-Q1 to accurately function from ground to VCC–1.5V differential input. This is enables much head room for modern day supplies of 3.3 V and 5.0 V. The output consists of an open drain NPN (pull-down or low side) transistor. The output NPN will sink current when the negative input voltage is higher than the positive input voltage and the offset voltage. The VOL is resistive and will scale with the output current. Please see Figure 3-3 in the Section 3.15 section for VOL values with respect to the output current. 4.4 Device Functional Modes 4.4.1 Voltage Comparison The LM2903-Q1 family operates solely as a voltage comparator, comparing the differential voltage between the positive and negative pins and outputting a logic low or high impedance (logic high with pull-up) based on the input differential polarity. 16 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2903-Q1 LM2903B-Q1 LM2903-Q1, LM2903B-Q1 www.ti.com SLCS141K – MAY 2003 – REVISED AUGUST 2022 5 Application and Implementation Note Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes, as well as validating and testing their design implementation to confirm system functionality. 5.1 Application Information LM2903-Q1 will typically be used to compare a single signal to a reference or two signals against each other. Many users take advantage of the open drain output to drive the comparison logic output to a logic voltage level to an MCU or logic device. The wide supply range and high voltage capability makes LM2903Q1 optimal for level shifting to a higher or lower voltage. 5.2 Typical Application VLOGIC VLOGIC VSUP Vin VSUP Rpullup + Vin+ ½ LM2903 Rpullup + ½ LM2903 Vin- Vref CL CL Figure 5-1. Single-ended and Differential Comparator Configurations 5.2.1 Design Requirements For this design example, use the parameters listed in Table 5-1 as the input parameters. Table 5-1. Design Parameters DESIGN PARAMETER EXAMPLE VALUE Input Voltage Range 0 V to Vsup-1.5 V Supply Voltage 2 V to 36 V Logic Supply Voltage 2 V to 36 V Output Current (RPULLUP) 1 µA to 20 mA Input Overdrive Voltage 100 mV Reference Voltage 2.5 V Load Capacitance (CL) 15 pF 5.2.2 Detailed Design Procedure When using LM2903-Q1 family in a general comparator application, determine the following: • • • • Input Voltage Range Minimum Overdrive Voltage Output and Drive Current Response Time 5.2.2.1 Input Voltage Range When choosing the input voltage range, the input common mode voltage range (VICR) must be taken in to account. If temperature operation is above or below 25°C the VICR can range from 0 V to VCC– 2.0 V. This limits the input voltage range to as high as VCC– 2.0 V and as low as 0 V. Operation outside of this range can yield incorrect comparisons. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2903-Q1 LM2903B-Q1 17 LM2903-Q1, LM2903B-Q1 www.ti.com SLCS141K – MAY 2003 – REVISED AUGUST 2022 Below is a list of input voltage situation and their outcomes: 1. When both IN- and IN+ are both within the common mode range: a. If IN- is higher than IN+ and the offset voltage, the output is low and the output transistor is sinking current b. If IN- is lower than IN+ and the offset voltage, the output is high impedance and the output transistor is not conducting 2. When IN- is higher than common mode and IN+ is within common mode, the output is low and the output transistor is sinking current 3. When IN+ is higher than common mode and IN- is within common mode, the output is high impedance and the output transistor is not conducting 4. When IN- and IN+ are both higher than common mode, the output is low and the output transistor is sinking current. The "B" version output will go high. 5.2.2.2 Minimum Overdrive Voltage Overdrive Voltage is the differential voltage produced between the positive and negative inputs of the comparator over the offset voltage (VIO). In order to make an accurate comparison the Overdrive Voltage (VOD) should be higher than the input offset voltage (VIO). Overdrive voltage can also determine the response time of the comparator, with the response time decreasing with increasing overdrive. Figure 5-2 and Figure 5-3 show positive and negative response times with respect to overdrive voltage. 5.2.2.3 Output and Drive Current Output current is determined by the load/pull-up resistance and logic/pull-up voltage. The output current will produce a output low voltage (VOL) from the comparator. In which VOL is proportional to the output current. Use Figure 3-5 to determine VOL based on the output current. The output current can also effect the transient response. More will be explained in the next section. 5.2.2.4 Response Time The transient response can be determined by the load capacitance (CL), load/pull-up resistance (RPULLUP) and equivalent collector-emitter resistance (RCE). • • The positive response time (τp) is approximately τP ~ RPULLUP × CL The negative response time (τN) is approximately τN ~ RCE × CL – RCE can be determine by taking the slope of Figure 3-5 in it's linear region at the desired temperature, or by dividing the VOL by Iout 5.2.3 Application Curves The following curves were generated with 5 V on VCC and VLogic, RPULLUP = 5.1 kΩ, and 50 pF scope probe. 18 Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2903-Q1 LM2903B-Q1 LM2903-Q1, LM2903B-Q1 SLCS141K – MAY 2003 – REVISED AUGUST 2022 6 6 5 5 Output Voltage (Vo) Output Voltage, Vo(V) www.ti.com 4 3 5mV OD 2 1 20mV OD 0 4 3 2 5mV OD 1 20mV OD 0 100mV OD ±1 -0.25 0.25 0.75 1.25 1.75 100mV OD ±1 ±0.25 0.00 2.25 Time (usec) 0.25 0.50 0.75 1.00 1.25 Time (usec) C004 Figure 5-2. Response Time for Various Overdrives (Positive Transition) 1.50 1.75 2.00 C006 Figure 5-3. Response Time for Various Overdrives (Negative Transition) 5.3 Power Supply Recommendations For fast response and comparison applications with noisy or AC inputs, it is recommended to use a bypass capacitor on the supply pin to reject any variation on the supply voltage. This variation can eat into the comparator's input common mode range and create an inaccurate comparison. 5.4 Layout 5.4.1 Layout Guidelines For accurate comparator applications without hysteresis it is important maintain a stable power supply with minimized noise and glitches, which can affect the high level input common mode voltage range. In order to achieve this, it is best to add a bypass capacitor between the supply voltage and ground. This should be implemented on the positive power supply and negative supply (if available). If a negative supply is not being used, do not put a capacitor between the IC's GND pin and system ground. 5.4.2 Layout Example Ground Bypass Capacitor Negative Supply or Ground Only needed for dual power supplies 1OUT 1INí 1IN+ GND 1 2 3 4 VCC 7 2OUT 6 2INí 5 2IN+ 8 0.1PF Positive Supply 0.1PF Ground Figure 5-4. LM2903Q1 Layout Example Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2903-Q1 LM2903B-Q1 19 LM2903-Q1, LM2903B-Q1 www.ti.com SLCS141K – MAY 2003 – REVISED AUGUST 2022 6 Device and Documentation Support 6.1 Documentation Support 6.1.1 Related Documentation LM2903B-Q1 Functional Safety FIT Rate, FMD and Pin FMA - SLCA005 Application Design Guidelines for LM339, LM393, TL331 Family Comparators - SNOAA35 Analog Engineers Circuit Cookbook: Amplifiers (See Comparators section) - SLYY137 6.2 Receiving Notification of Documentation Updates To receive notification of documentation updates, navigate to the device product folder on ti.com. In the upper right corner, click on Alert me to register and receive a weekly digest of any product information that has changed. For change details, review the revision history included in any revised document. 6.3 Support Resources TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 6.4 Trademarks TI E2E™ is a trademark of Texas Instruments. All trademarks are the property of their respective owners. 6.5 Electrostatic Discharge Caution This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage. ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications. 6.6 Glossary TI Glossary 20 This glossary lists and explains terms, acronyms, and definitions. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2903-Q1 LM2903B-Q1 LM2903-Q1, LM2903B-Q1 www.ti.com SLCS141K – MAY 2003 – REVISED AUGUST 2022 7 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Submit Document Feedback Copyright © 2022 Texas Instruments Incorporated Product Folder Links: LM2903-Q1 LM2903B-Q1 21 PACKAGE OPTION ADDENDUM www.ti.com 18-Oct-2022 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) LM2903AVQDRG4Q1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2903AVQ Samples LM2903AVQDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2903AVQ Samples LM2903AVQPWRG4Q1 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2903AVQ Samples LM2903AVQPWRQ1 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2903AVQ Samples LM2903BHQDGKRQ1 ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 3BHQ Samples LM2903BHQDRQ1 ACTIVE SOIC D 8 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 903BHQ Samples LM2903BHQPWRQ1 ACTIVE TSSOP PW 8 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2903BH Samples LM2903BQDDFRQ1 ACTIVE SOT-23-THIN DDF 8 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 903BQ Samples LM2903BQDGKRQ1 ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 03BQ Samples LM2903BQDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2903BQ Samples LM2903BQPWRQ1 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2903BQ Samples LM2903BRQDGKRQ1 ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 3BRQ Samples LM2903BRQDRQ1 ACTIVE SOIC D 8 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 903BRQ Samples LM2903BRQPWRQ1 ACTIVE TSSOP PW 8 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2903BR Samples LM2903BTQDGKRQ1 ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 3BTQ Samples LM2903BTQDRQ1 ACTIVE SOIC D 8 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 903BTQ Samples LM2903BTQPWRQ1 ACTIVE TSSOP PW 8 3000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2903BT Samples LM2903BWDSGRQ1 ACTIVE WSON DSG 8 3000 RoHS & Green SN Level-2-260C-1 YEAR -40 to 125 3BWQ Samples LM2903EPWRQ1 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 150 2903Q0 Samples LM2903QDGKRQ1 ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAUAG Level-2-260C-1 YEAR -40 to 125 KACQ Samples Addendum-Page 1 PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 18-Oct-2022 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) Samples (4/5) (6) LM2903QDRG4Q1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2903Q1 Samples LM2903QDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2903Q1 Samples LM2903QPWRG4Q1 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2903Q1 Samples LM2903QPWRQ1 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2903Q1 Samples LM2903VQDRG4Q1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2903VQ1 Samples LM2903VQDRQ1 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2903VQ1 Samples LM2903VQPWRG4Q1 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2903VQ Samples LM2903VQPWRQ1 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2903VQ Samples (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
LM2903QDRQ1 价格&库存

很抱歉,暂时无法提供与“LM2903QDRQ1”相匹配的价格&库存,您可以联系我们找货

免费人工找货