LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
Industry-Standard Dual Operational Amplifiers
offset (300 µV, typical), common-mode input range to
ground, and high differential input voltage capability.
1 Features
•
•
•
•
•
•
•
•
Wide supply range of 3 V to 36 V (B, BA versions)
Quiescent current: 300 µA/ch (B, BA versions)
Unity-gain bandwidth of 1.2 MHz (B, BA versions)
Common-mode input voltage range includes
ground, enabling direct sensing near ground
2-mV input offset voltage max. at 25°C (BA
version)
3-mV input offset voltage max. at 25°C (A, B
versions)
Internal RF and EMI filter (B, BA versions)
On products compliant to MIL-PRF-38535, all
parameters are tested unless otherwise noted. On
all other products, production processing does not
necessarily include testing of all parameters.
The LM358B and LM2904B op amps simplify circuit
design with enhanced features such as unity-gain
stability, lower offset voltage maximum of 3 mV (2 mV
maximum for LM358BA and LM2904BA), and lower
quiescent current of 300 µA per amplifier (typical).
High ESD (2 kV, HBM) and integrated EMI and RF
filters enable the LM358B and LM2904B devices to be
used in the most rugged, environmentally challenging
applications.
The LM358B and LM2904B amplifiers are available
in micro-sized packaging, such as the SOT23-8, as
well as industry standard packages including SOIC,
TSSOP, and VSSOP.
2 Applications
•
•
•
•
•
•
•
•
•
•
Device Information
Merchant network and server power supply units
Multi-function printers
Power supplies and mobile chargers
Motor control: AC induction, brushed DC,
brushless DC, high-voltage, low-voltage,
permanent magnet, and stepper motor
Desktop PC and motherboard
Indoor and outdoor air conditioners
Washers, dryers, and refrigerators
AC inverters, string inverters, central inverters, and
voltage frequency drives
Uninterruptible power supplies
Electronic point-of-sale systems
3 Description
PART NUMBER(1)
PACKAGE
LM358B, LM358BA,
LM2904B, LM2904BA,
LM358, LM358A, LM2904,
LM2904V, LM258, LM258A
SOIC (8)
4.90 mm × 3.90 mm
LM358B, LM358BA,
LM2904B, LM2904BA,
LM358, LM358A, LM2904,
LM2490V
TSSOP (8)
3.00 mm × 4.40 mm
LM358B, LM358BA,
LM2904B, LM2904BA,
LM358, LM358A, LM2904,
LM2904V, LM258, LM258A
VSSOP (8)
3.00 mm × 3.00 mm
LM358B, LM358BA,
LM2904B, LM2904BA
SOT-23 (8)
2.90 mm × 1.60 mm
LM358, LM2904
SO (8)
5.20 mm × 5.30 mm
LM358, LM2904, LM358A,
LM258, LM258A
PDIP (8)
9.81 mm × 6.35 mm
CDIP (8)
9.60 mm × 6.67 mm
LCCC (20)
8.89 mm × 8.89 mm
The LM358B and LM2904B devices are the
next-generation versions of the industry-standard
LM158, LM158A
operational amplifiers (op amps) LM358 and LM2904,
LM158, LM158A
which include two high-voltage (36 V) op amps.
These devices provide outstanding value for costsensitive applications, with features including low
Family Comparison
Specification
Supply voltage
Offset voltage (max, 25°C)
Input bias current (typ / max)
Gain bandwidth product
Supply current (typ, per channel)
ESD (HBM)
Operating ambient temperature
(1)
BODY SIZE (NOM)
LM358B
LM358BA
LM2904B
LM2904BA
LM358
LM358A
LM2904
LM2904V
LM2904AV
LM258
LM258A
LM158
LM158A
Units
3 to 36
3 to 36
3 to 30
3 to 26
3 to 30
3 to 30
3 to 30
V
±3
±2
±3
±2
±7
±3
±7
±7
±2
±5
±3
±5
±2
mV
10 / 35
10 / 35
20 / 250
15 / 100
20 / 250
20 / 250
20 / 150
15 / 80
20 / 150
15 / 50
nA
1.2
1.2
0.7
0.7
0.7
0.7
0.7
MHz
mA
0.3
0.3
0.35
0.35
0.35
0.35
0.35
2000
2000
500
500
500
500
500
V
−40 to 85
−40 to 125
0 to 70
−40 to 125
−40 to 125
−25 to 85
−55 to 125
°C
For all available packages, see the orderable addendum at the end of the data sheet.
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
Table of Contents
1 Features............................................................................1
2 Applications..................................................................... 1
3 Description.......................................................................1
4 Revision History.............................................................. 2
5 Pin Configuration and Functions...................................4
6 Specifications.................................................................. 5
6.1 Absolute Maximum Ratings........................................ 5
6.2 ESD Ratings............................................................... 5
6.3 Recommended Operating Conditions.........................6
6.4 Thermal Information....................................................6
6.5 Electrical Characteristics: LM358B and LM358BA..... 7
6.6 Electrical Characteristics: LM2904B and
LM2904BA.....................................................................9
6.7 Electrical Characteristics: LM358, LM358A.............. 11
6.8 Electrical Characteristics: LM2904, LM2904V.......... 12
6.9 Electrical Characteristics: LM158, LM158A.............. 13
6.10 Electrical Characteristics: LM258, LM258A............ 15
6.11 Typical Characteristics: LM358B and LM2904B..... 16
6.12 Typical Characteristics: LM158, LM158A,
LM258, LM258A, LM358, LM358A, LM2904, and
LM2904V..................................................................... 23
7 Parameter Measurement Information.......................... 25
8 Detailed Description......................................................26
8.1 Overview................................................................... 26
8.2 Functional Block Diagram: LM358B, LM358BA,
LM2904B, LM2904BA................................................. 26
8.3 Feature Description...................................................27
8.4 Device Functional Modes..........................................27
9 Application and Implementation.................................. 28
9.1 Application Information............................................. 28
9.2 Typical Application.................................................... 28
10 Power Supply Recommendations..............................29
11 Layout........................................................................... 29
11.1 Layout Guidelines................................................... 29
11.2 Layout Examples.....................................................30
12 Device and Documentation Support..........................31
12.1 Receiving Notification of Documentation Updates..31
12.2 Support Resources................................................. 31
12.3 Trademarks............................................................. 31
12.4 Electrostatic Discharge Caution..............................31
12.5 Glossary..................................................................31
13 Mechanical, Packaging, and Orderable
Information.................................................................... 32
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision Z (July 2021) to Revision AA (March 2022)
Page
• Added LM358BA and LM2904BA to the Device Information table..................................................................... 1
• Added Family Comparison table to the Description section .............................................................................. 1
• Raised ESD (CDM) for B-versions and BA-versions from 1 kV to 1.5 kV in the ESD Ratings table ................. 5
• Changed Input Offset Voltage Max of LM2904BA from TA = –40℃ to +125℃ from ±2.5 mV to ±3.0 mV......... 9
Changes from Revision Y (February 2021) to Revision Z (July 2021)
Page
• Deleted preview tag from LM358B and LM2904B SOT-23 (8) package in Device Information table................. 1
• Updated DDF (SOT-23) package thermal information in the Thermal Information table....................................6
• Deleted Related Links from the Device and Documentation Support section.................................................. 31
Changes from Revision X (June 2020) to Revision Y (February 2021)
Page
• Updated the numbering format for tables, figures, and cross-references throughout the document..................1
• Added SOT23-8 (DDF) package information throughout data sheet..................................................................1
• Deleted preview tag from LM358B and LM2904B VSSOP (8) package in Device Information table................. 1
• Added SOT23-8 (DDF) package information to the Pin Configuration and Functions section........................... 4
• Added DDF (SOT-23) package to the Thermal Information table.......................................................................6
Changes from Revision W (October 2019) to Revision X (June 2020)
Page
• Added application links to Applications section.................................................................................................. 1
• Deleted preview tag from LM358B and LM2904B TSSOP (8) package in Device Information table ................ 1
Changes from Revision V (September 2018) to Revision W (October 2019)
Page
• Changed CDM ESD rating for LM358B and LM2904B in ESD Ratings ............................................................ 5
2
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
•
•
•
•
•
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
Changed VS to V+ in Recommended Operating Conditions ..............................................................................6
Changed Thermal Information for the LM158FK and LM158JG devices........................................................... 6
Added Typical Characteristics section for the LM358B and LM2490B op amps.............................................. 16
Added test circuit for THD+N and small-signal step response, G = –1 in the Parameter Measurement
Information section........................................................................................................................................... 25
Changed the Functional Block Diagram .......................................................................................................... 26
Changes from Revision U (January 2017) to Revision V (September 2018)
Page
• Changed the data sheet title ..............................................................................................................................1
• Changed first four items in the Features section ............................................................................................... 1
• Changed the first item in the Applications section and added four new items ...................................................1
• Changed voltage values in the first paragraph of the Description section..........................................................1
• Changed text in the second paragraph of the Description section..................................................................... 1
• Added devices LM358B and LM2904B to data sheet.........................................................................................1
• Changed the first three rows of the Device Information table and added a a cross-referenced note for
PREVIEW-status devices................................................................................................................................... 1
• Added a table note to the Pin Functions table ................................................................................................... 4
• Changed "free-air temperature" to "ambient temperature" in the Absolute Maximum Ratings condition
statement............................................................................................................................................................ 5
• Changed all entries in the Absolute Maximum Ratings table except TJ and Tstg .............................................. 5
• Deleted lead temperature and case temperature from Absolute Maximum Ratings ......................................... 5
• Changed device listings and their voltage values in the ESD Ratings table ......................................................5
• Changed "free-air temperature" to "ambient temperature" in the Recommended Operating Conditions
condition statement ............................................................................................................................................6
• Changed table entries for all parameters in the Recommended Operating Conditions table.............................6
• Added rows to the Thermal Information table, and a table note regarding device-package combinations ....... 6
• Deleted the Operating Conditions table............................................................................................................15
• Added a condition statement to the Typical Characteristics section.................................................................23
• Changed specific voltages to a Recommended Operating Conditions reference............................................ 26
• Changed unity-gain bandwidth from 0.7 MHz for all devices to 1.2 MHz for B-version devices.......................27
• Changed slew rate from.3 V/µs for all devices to o.5 V/µs for B-version devices............................................ 27
• Changed the Section 8.3.3 section in multiple places throughout.................................................................... 27
• Changed VCC to VS in the Section 9.1 section .................................................................................................28
• Subscripted the suffixes fro RI and RF .............................................................................................................28
• Changed Operational Amplifier Board Layout for Noninverting Configuration with an image that includes a
dual op amp...................................................................................................................................................... 30
Changes from Revision T (April 2015) to Revision U (January 2017)
Page
• Changed data sheet title.....................................................................................................................................1
Changes from Revision S (January 2014) to Revision T (April 2015)
Page
• Added Applications section, ESD Ratings table, Feature Description section, Device Functional Modes,
Application and Implementation section, Power Supply Recommendations section, Layout section, Device
and Documentation Support section, and Mechanical, Packaging, and Orderable Information section ........... 1
Changes from Revision R (July 2010) to Revision S (Jauary 2014)
Page
• Converted this data sheet from the QS format to DocZone using the PDF on the web..................................... 1
• Deleted Ordering Information table.....................................................................................................................1
• Updated Features to include Military Disclaimer................................................................................................ 1
• Added Typical Characteristics section.............................................................................................................. 23
Copyright © 2022 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
3
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
IN2+
Not to scale
Figure 5-1. D, DDF, DGK, P, PS, PW, and JG
Package
8-Pin SOIC, SOT23-8, VSSOP, PDIP, SO, TSSOP,
and CDIP
Top View
V+
NC
20
19
NC
IN1±
5
17
OUT2
NC
6
16
NC
IN1+
7
15
IN2±
NC
8
14
NC
13
5
18
NC
4
4
12
V±
NC
IN2+
IN2±
NC
6
1
3
11
IN1+
NC
OUT2
OUT1
7
2
2
10
IN1±
V±
V+
NC
8
9
1
NC
OUT1
3
5 Pin Configuration and Functions
Not to scale
NC - No internal connection
Figure 5-2. FK Package
20-Pin LCCC
Top View
Table 5-1. Pin Functions
PIN
LCCC(1)
SOIC, SOT23-8, VSSOP, CDIP,
PDIP, SO, TSSOP, CFP(1)
I/O
IN1–
5
2
I
Negative input
IN1+
7
3
I
Positive input
IN2–
15
6
I
Negative input
IN2+
12
5
I
Positive input
OUT1
2
1
O
Output
OUT2
17
7
O
Output
V–
10
4
—
Negative (lowest) supply or ground (for singlesupply operation)
NC
1, 3, 4, 6, 8, 9, 11,
13, 14, 16, 18, 19
—
—
No internal connection
V+
20
8
—
Positive (highest) supply
NAME
(1)
4
DESCRIPTION
For a listing of which devices are available in what packages, see Section 3.
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
6 Specifications
6.1 Absolute Maximum Ratings
over operating ambient temperature range (unless otherwise noted)(1)
MIN
Supply voltage, VS = ([V+] – [V–])
Differential input voltage, VID (2)
Input voltage, VI
Either input
±20 or 40
LM158, LM258, LM358,
LM158A, LM258A, LM358A,
LM2904V
±16 or 32
LM2904
±13 or 26
LM358B, LM358BA,
LM2904B, LM2904BA,LM158,
LM258, LM358, LM158A,
LM258A, LM358A, LM2904V
–32
32
LM2904
–26
26
LM358B, LM358BA,
LM2904B, LM2904BA
–0.3
40
LM158, LM258, LM358,
LM158A, LM258A, LM358A,
LM2904V
–0.3
32
LM2904
–0.3
26
Duration of output short circuit (one amplifier) to ground at (or below) TA = 25°C,
VS ≤ 15 V(3)
Operating ambient temperature, TA
MAX
LM358B, LM358BA,
LM2904B, LM2904BA
Unlimited
LM158, LM158A
–55
125
LM258, LM258A
–25
85
LM358B, LM358BA
–40
85
0
70
–40
125
LM358, LM358A
LM2904B, LM2904BA,
LM2904, LM2904V
Operating virtual-junction temperature, TJ
Storage temperature, Tstg
(1)
(2)
(3)
–65
UNIT
V
V
V
s
°C
150
°C
150
°C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
Differential voltages are at IN+, with respect to IN−.
Short circuits from outputs to VS can cause excessive heating and eventual destruction.
6.2 ESD Ratings
VALUE
UNIT
LM358B, LM358BA, LM2904B, AND LM2904BA
V(ESD)
Electrostatic discharge
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)
±2000
Charged-device model (CDM), per JEDEC specification JESD22-C101(2)
±1500
V
LM158, LM258, LM358, LM158, LM258A, LM358A, LM2904, AND LM2904V
V(ESD)
(1)
(2)
Electrostatic discharge
Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1)
Charged-device model (CDM), per JEDEC specification
±500
JESD22-C101(2)
±1000
V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
Copyright © 2022 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
5
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
6.3 Recommended Operating Conditions
over operating ambient temperature range (unless otherwise noted)
VS
Supply voltage, VS= ([V+] – [V–])
VCM
MIN
MAX
LM358B, LM358BA, LM2904B,
LM2904BA
3
36
LM158, LM258, LM358, LM158A,
LM258A, LM358A, LM2904V
3
30
LM2904
3
26
Common-mode voltage
TA
Operating ambient temperature
V–
V+ – 2
LM358B, LM358BA
–40
85
LM2904B, LM2904BA, LM2904,
LM2904V
–40
125
LM358, LM358A
0
70
LM258, LM258A
–20
85
LM158, LM158A
–55
125
UNIT
V
V
°C
6.4 Thermal Information
LM258, LM258A, LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B,
LM2904BA, LM2904V(2)
THERMAL
LM158, LM158A
D
(SOIC)
DGK
(VSSOP)
P
(PDIP)
PS
(SO)
PW
(TSSOP)
DDF
(SOT-23)
FK
(LCCC)
JG
(CDIP)
8 PINS
8 PINS
8 PINS
8 PINS
8 PINS
8PINS
20 PINS
8 PINS
UNIT
RθJA
Junction-to-ambient
thermal resistance
124.7
181.4
80.9
116.9
171.7
164.3
84.0
112.4
°C/W
RθJC(top)
Junction-to-case (top)
thermal resistance
66.9
69.4
70.4
62.5
68.8
98.1
56.9
63.6
°C/W
RθJB
Junction-to-board thermal
resistance
67.9
102.9
57.4
68.6
99.2
82.1
57.5
100.3
°C/W
ψJT
Junction-to-top
characterization
parameter
19.2
11.8
40
21.9
11.5
11.4
51.7
35.7
°C/W
ψJB
Junction-to-board
characterization
parameter
67.2
101.2
56.9
67.6
97.9
81.7
57.1
93.3
°C/W
RθJC(bot)
Junction-to-case (bottom)
thermal resistance
—
—
—
—
—
—
10.6
22.3
°C/W
(1)
(2)
6
METRIC(1)
For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.
For a listing of which devices are available in what packages, see Section 3.
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
6.5 Electrical Characteristics: LM358B and LM358BA
VS = (V+) – (V–) = 5 V – 36 V (±2.5 V – ±18 V), TA = 25°C, VCM = VOUT = VS / 2, RL = 10k connected to VS / 2
(unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
±0.3
±3.0
mV
±4
mV
±2.0
mV
OFFSET VOLTAGE
LM358B
VOS
TA = –40°C to +85°C
Input offset voltage
LM358BA
dVOS/dT
Input offset voltage drift
PSRR
Power supply rejection ratio
Channel separation, dc
TA = –40°C to +85°C
±2.5
TA = -40°C to +85°C(1)
f = 1 kHz to 20 kHz
mV
±3.5
11
µV/°C
±2
15
µV/V
±1
µV/V
INPUT VOLTAGE RANGE
VCM
CMRR
Common-mode voltage range
Common-mode rejection ratio
VS = 3 V to 36 V
VS = 5 V to 36 V
TA = –40°C to +85°C
(V–)
(V+) – 1.5
V
(V–)
(V+) – 2
V
(V–) ≤ VCM ≤ (V+) – 1.5 V VS = 3 V to 36 V
(V–) ≤ VCM ≤ (V+) – 2.0 V VS = 5 V to 36 V
TA = –40°C to +85°C
20
100
25
316
±10
±35
nA
±50
nA
4
nA
µV/V
INPUT BIAS CURRENT
IB
Input bias current
IOS
Input offset current
dIOS/dT
Input offset current drift
TA = –40°C to +85°C(1)
0.5
TA = –40°C to +85°C(1)
5
TA = –40°C to +85°C
10
nA
pA/℃
NOISE
En
Input voltage noise
f = 0.1 to 10 Hz
en
Input voltage noise density
f = 1 kHz
3
µVPP
40
nV/√/Hz
10 || 0.1
MΩ|| pF
4 || 1.5
GΩ|| pF
INPUT IMPEDANCE
ZID
Differential
ZIC
Common-mode
OPEN-LOOP GAIN
AOL
Open-loop voltage gain
VS = 15 V; VO = 1 V to 11 V; RL ≥ 10 kΩ, connected to (V–)
70
TA = –40°C to +85°C
140
V/mV
35
V/mV
FREQUENCY RESPONSE
GBW
Gain bandwidth product
1.2
MHz
SR
Slew rate
G=+1
0.5
V/µs
Θm
Phase margin
G = + 1, RL = 10kΩ, CL = 20 pF
56
°
tOR
Overload recovery time
VIN × gain > VS
10
µs
ts
Settling time
To 0.1%, VS = 5 V, 2-V step , G = +1, CL = 100 pF
4
µs
THD+N
Total harmonic distortion + noise
G = + 1, f = 1 kHz, VO = 3.53 VRMS, VS = 36 V, RL = 100k, IOUT ≤ ±50 µA, BW = 80 kHz
0.001
%
OUTPUT
Positive rail (V+)
VO
Voltage output swing from rail
Negative rail (V–)
VS = 5 V, RL ≤ 10 kΩ connected to (V–)
IO
Output current
VS = 15 V; VO = V–;
VID = 1 V
Source(1)
VS = 15 V; VO = V+;
VID = –1 V
Sink(1)
VID = –1 V; VO = (V–) + 200 mV
ISC
Short-circuit current
CLOAD
Capacitive load drive
RO
Open-loop output resistance
VS = 20 V, (V+) = 10 V, (V–) = –10 V, VO = 0 V
f = 1 MHz, IO = 0 A
Copyright © 2022 Texas Instruments Incorporated
IOUT = 50 µA
1.35
1.42
V
IOUT = 1 mA
1.4
1.48
V
IOUT = 5 mA(1)
1.5
1.61
V
IOUT = 50 µA
100
150
mV
IOUT = 1 mA
0.75
1
V
5
20
mV
TA = –40°C to +85°C
-20
TA = –40°C to +85°C
10
TA = –40°C to +85°C
-30
-10
mA
20
5
60
100
±40
μA
±60
mA
100
pF
300
Ω
Submit Document Feedback
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
7
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
6.5 Electrical Characteristics: LM358B and LM358BA (continued)
VS = (V+) – (V–) = 5 V – 36 V (±2.5 V – ±18 V), TA = 25°C, VCM = VOUT = VS / 2, RL = 10k connected to VS / 2
(unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
300
460
µA
800
µA
POWER SUPPLY
IQ
Quiescent current per amplifier
VS = 5 V; IO = 0 A
IQ
Quiescent current per amplifier
VS = 36 V; IO = 0 A
(1)
8
TA = –40°C to +85°C
Specified by characterization only.
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
6.6 Electrical Characteristics: LM2904B and LM2904BA
VS = (V+) – (V–) = 5 V - 36 V (±2.5 V - ±18 V), TA = 25°C, VCM = VOUT = VS/2, RL = 10k connected to VS/2
(unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
UNIT
±0.3
±3.0
mV
±4
mV
±2.0
mV
OFFSET VOLTAGE
LM2904B
VOS
TA = –40°C to +125°C
Input offset voltage
LM2904BA
dVOS/dT
Input offset voltage drift
PSRR
Power Supply Rejection Ratio
Channel separation, dc
TA = –40°C to +125°C
±3.0
TA = –40°C to +125°C(1)
f = 1 kHz to 20 kHz
mV
±3.5
12
µV/°C
±2
15
µV/V
±1
µV/V
INPUT VOLTAGE RANGE
VCM
CMRR
Common-mode voltage range
Common-mode rejection ratio
VS = 3 V to 36 V
VS = 5 V to 36 V
TA = –40°C to +125°C
(V–)
(V+) – 1.5
V
(V–)
(V+) – 2
V
(V–) ≤ VCM ≤ (V+) – 1.5 V VS = 3 V to 36 V
(V–) ≤ VCM ≤ (V+) – 2.0 V VS = 5 V to 36 V
TA = –40°C to +125°C
20
100
25
316
±10
±35
nA
±50
nA
4
nA
µV/V
INPUT BIAS CURRENT
IB
Input bias current
IOS
Input offset current
dIOS/dT
Input offset current drift
TA = –40°C to +125°C(1)
0.5
TA = –40°C to +125°C(1)
5
TA = –40°C to +125°C
10
nA
pA/℃
NOISE
En
Input voltage noise
f = 0.1 to 10 Hz
en
Input voltage noise density
f = 1 kHz
3
µVPP
40
nV/√/Hz
10 || 0.1
MΩ|| pF
4 || 1.5
GΩ|| pF
INPUT IMPEDANCE
ZID
Differential
ZIC
Common-mode
OPEN-LOOP GAIN
AOL
Open-loop voltage gain
VS = 15 V; VO = 1 V to 11 V; RL ≥ 10 kΩ, connected to (V-)
70
TA = –40°C to +125°C
140
V/mV
35
V/mV
FREQUENCY RESPONSE
GBW
Gain bandwidth product
1.2
MHz
SR
Slew rate
G=+1
0.5
V/µs
Θm
Phase margin
G = + 1, RL = 10kΩ, CL = 20 pF
56
°
tOR
Overload recovery time
VIN × gain > VS
10
µs
ts
Settling time
To 0.1%, VS = 5 V, 2-V Step , G = +1, CL = 100 pF
4
µs
THD+N
Total harmonic distortion + noise
G = + 1, f = 1 kHz, VO = 3.53 VRMS, VS = 36V, RL = 100k, IOUT ≤ ±50µA, BW = 80 kHz
0.001
%
OUTPUT
Positive Rail (V+)
VO
Voltage output swing from rail
Negative Rail (V-)
VS = 5 V, RL ≤ 10 kΩ connected to (V–)
VS = 15 V; VO = V-; VID =
1V
IO
Output current
Source(1)
VS = 15 V; VO = V+; VID =
Sink(1)
-1 V
VID = -1 V; VO = (V-) + 200 mV
ISC
Short-circuit current
CLOAD
Capacitive load drive
RO
Open-loop output resistance
VS = 20 V, (V+) = 10 V, (V-) = -10 V, VO = 0 V
f = 1 MHz, IO = 0 A
IOUT = 50 µA
1.35
1.42
V
IOUT = 1 mA
1.4
1.48
V
IOUT = 5 mA(1)
1.5
1.61
V
IOUT = 50 µA
100
150
mV
IOUT = 1 mA
0.75
1
V
5
20
mV
TA = –40°C to +125°C
-20
TA = –40°C to +125°C
10
TA = –40°C to +125°C
-30
-10
mA
20
5
60
100
±40
μA
±60
mA
100
pF
300
Ω
POWER SUPPLY
Copyright © 2022 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
9
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
VS = (V+) – (V–) = 5 V - 36 V (±2.5 V - ±18 V), TA = 25°C, VCM = VOUT = VS/2, RL = 10k connected to VS/2
(unless otherwise noted)
PARAMETER
TEST CONDITIONS
IQ
Quiescent current per amplifier
VS = 5 V; IO = 0 A
IQ
Quiescent current per amplifier
VS = 36 V; IO = 0 A
(1)
10
MIN
TA = –40°C to +125°C
TYP
MAX
UNIT
300
460
µA
800
µA
Specified by characterization only
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
6.7 Electrical Characteristics: LM358, LM358A
For VS = (V+) – (V–) = 5 V, TA = 25°C (unless otherwise noted)
TEST CONDITIONS(1)
PARAMETER
MIN
TYP(2)
MAX
3
7
UNIT
OFFSET VOLTAGE
LM358
VOS
Input offset voltage
VS = 5 V to 30 V; VC M = 0 V; VO = 1.4
V
TA = 0°C to 70°C
9
LM358A
2
3
TA = 0°C to 70°C
dVOS/dT
Input offset voltage drift
PSRR
Input offset voltage vs power
supply (ΔVIO/ΔVS)
VS = 5 V to 30 V
VO1/ VO2
Channel separation
f = 1 kHz to 20 kHz
mV
5
LM358
TA = 0°C to 70°C
7
LM358A
TA = 0°C to 70°C
7
65
20
µV/°C
100
dB
120
dB
INPUT VOLTAGE RANGE
VCM
Common-mode voltage range
CMRR
Common-mode rejection ratio
VS = 5 V to 30 V
LM358
VS = 30 V
LM358A
VS = 5 V to 30 V
LM358
VS = 30 V
LM358A
(V–)
(V+) – 1.5
(V–)
(V+) – 2
V
TA = 0°C to 70°C
VS = 5 V to 30 V; VCM = 0 V
65
80
dB
INPUT BIAS CURRENT
LM358
IB
Input bias current
VO = 1.4 V
LM358A
LM358
IOS
Input offset current
VO = 1.4 V
LM358A
dIOS/dT
–20
TA = 0°C to 70°C
–250
–500
–15
TA = 0°C to 70°C
–200
2
TA = 0°C to 70°C
50
150
2
TA = 0°C to 70°C
LM358A
nA
30
75
10
Input offset current drift
nA
–100
TA = 0°C to 70°C
300
pA/°C
NOISE
en
Input voltage noise density
f = 1 kHz
40
nV/√ Hz
OPEN-LOOP GAIN
AOL
Open-loop voltage gain
25
VS = 15 V; VO = 1 V to 11 V; RL ≥ 2 kΩ
TA = 0°C to 70°C
100
V/mV
15
FREQUENCY RESPONSE
GBW
Gain bandwidth product
SR
Slew rate
G = +1
0.7
MHz
0.3
V/µs
OUTPUT
VS = 30 V; RL = 2 kΩ
VO
Voltage output swing from rail
Positive rail
TA = 0°C to 70°C
4
VS = 30 V; RL ≥ 10 kΩ
2
VS = 5 V; RL ≥ 2 kΩ
Negative rail
VS = 5 V; RL ≤ 10 kΩ
TA = 0°C to 70°C
5
–20
VS = 15 V; VO = 0 V; VID
Source
=1V
IO
VS = 15 V; VO = 15 V;
VID = –1 V
Sink
Short-circuit current
20
mV
–60
TA = 0°C to 70°C
20
5
12
VS = 10 V; VO = VS / 2
mA
–10
10
VID = –1 V; VO = 200 mV
ISC
V
–30
LM358A
TA = 0°C to 70°C
Output current
3
1.5
30
±40
µA
±60
mA
POWER SUPPLY
IQ
(1)
(2)
Quiescent current per amplifier
VO = 2.5 V; IO = 0 A
VS = 30 V; VO = 15 V; IO = 0 A
TA = 0°C to 70°C
350
600
500
1000
µA
All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified.
Maximum VS for testing purposes is 30 V for LM358 and LM358A.
All typical values are TA = 25°C.
Copyright © 2022 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
11
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
6.8 Electrical Characteristics: LM2904, LM2904V
For VS = (V+) – (V–) = 5 V, TA = 25°C (unless otherwise noted)
TEST CONDITIONS(1)
PARAMETER
MIN
(2)
TYP
MAX
UNIT
OFFSET VOLTAGE
VOS
Input offset voltage
VS = 5 V to maximum; VC M = 0 V; VO =
1.4 V
dVOS/dT
Input offset voltage drift
PSRR
Input offset voltage vs power supply
VS = 5 V to 30 V
(ΔVIO/ΔVS)
VO1/ VO2 Channel separation
Non-A suffix
devices
A-suffix
devices
3
TA = –40°C to 125°C
7
10
1
TA = –40°C to 125°C
mV
2
4
TA = –40°C to 125°C
7
65
f = 1 kHz to 20 kHz
µV/°C
100
dB
120
dB
INPUT VOLTAGE RANGE
VCM
Common-mode voltage range
VS = 5 V to maximum
CMRR
Common-mode rejection ratio
VS = 5 V to maximum; VCM = 0 V
TA = –40°C to 125°C
(V–)
(V+) – 1.5
(V–)
(V+) – 2
65
V
80
dB
INPUT BIAS CURRENT
IB
Input bias current
–20
VO = 1.4 V
TA = –40°C to 125°C
Non-V suffix
device
IOS
Input offset current
VO = 1.4 V
V-suffix
device
dIOS/dT
Input offset current drift
–250
nA
–500
2
TA = –40°C to 125°C
50
300
2
TA = –40°C to 125°C
nA
50
150
TA = –40°C to 125°C
10
pA/°C
40
nV/√ Hz
NOISE
en
Input voltage noise density
f = 1 kHz
OPEN-LOOP GAIN
AOL
Open-loop voltage gain
VS = 15 V; VO = 1 V to 11 V; RL ≥ 2 kΩ
25
TA = –40°C to 125°C
100
V/mV
15
FREQUENCY RESPONSE
GBW
Gain bandwidth product
SR
Slew rate
G = +1
0.7
MHz
0.3
V/µs
OUTPUT
RL ≥ 10 kΩ
Non-V suffix
device
VO
Voltage output swing from rail
Positive rail
V-suffix device
Negative rail
IO
Output current
Short-circuit current
VS = maximum; RL ≥
10 kΩ
VS = maximum; RL =
2 kΩ
4
2
VS = 5 V; RL ≤ 10 kΩ
Source
VS = 15 V; VO = 15 V; VID = –1 V
Sink
3
TA = –40°C to 125°C
V
6
VS = maximum; RL ≥
10 kΩ
VS = 15 V; VO = 0 V; VID = 1 V
VID = -1 V; VO = 200 mV
ISC
VS – 1.5
VS = maximum; RL =
2 kΩ
TA = –40°C to 125°C
–20
TA = –40°C to 125°C
5
5
20
mA
20
5
Non-V suffix device
30
V-suffix device
12
VS = 10 V; VO = VS / 2
mV
–30
–10
10
TA = –40°C to 125°C
4
µA
40
±40
±60
mA
POWER SUPPLY
IQ
(1)
(2)
12
Quiescent current per amplifier
VO = 2.5 V; IO = 0 A
VS = maximum; VO = maximum / 2; IO = 0 A
TA = –40°C to 125°C
350
600
500
1000
µA
All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified.
Maximum VS for testing purposes is 26 V for LM2904 and 32 V for LM2904V.
All typical values are TA = 25°C.
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
6.9 Electrical Characteristics: LM158, LM158A
For VS = (V+) – (V–) = 5 V, TA = 25°C (unless otherwise noted)
TEST CONDITIONS(1)
PARAMETER
MIN
TYP(2)
MAX
3
5
UNIT
OFFSET VOLTAGE
LM158
VOS
Input offset voltage
VS = 5 V to 30 V; VC M = 0 V; VO = 1.4 V
LM158A
dVOS/dT
Input offset voltage drift
PSRR
Input offset voltage vs power supply
(ΔVIO/ΔVS)
VS = 5 V to 30 V
VO1/ VO2
Channel separation
f = 1 kHz to 20 kHz
TA = –55°C to 125°C
7
2
TA = –55°C to 125°C
mV
4
LM158
TA = –55°C to 125°C
7
LM158A
TA = –55°C to 125°C
7
65
15(3)
µV/°C
100
dB
120
dB
INPUT VOLTAGE RANGE
VCM
CMRR
Common-mode voltage range
Common-mode rejection ratio
VS = 5 V to 30 V
LM158
VS = 30 V
LM158A
VS = 5 V to 30 V
LM158
VS = 30 V
LM158A
(V–)
(V+) – 1.5
(V–)
(V+) – 2
V
TA = –55°C to 125°C
VS = 5 V to 30 V; VCM = 0 V
70
80
dB
INPUT BIAS CURRENT
LM158
IB
Input bias current
VO = 1.4 V
LM158A
LM158
IOS
Input offset current
VO = 1.4 V
LM158A
dIOS/dT
–20
TA = –55°C to 125°C
–150
–300
–15
TA = –55°C to 125°C
–50
–100
2
TA = –55°C to 125°C
30
100
2
TA = –55°C to 125°C
10
LM158A
nA
30
10
Input offset current drift
nA
TA = –55°C to 125°C
200
pA/°C
NOISE
en
Input voltage noise density
f = 1 kHz
40
nV/√ Hz
OPEN-LOOP GAIN
AOL
Open-loop voltage gain
50
VS = 15 V; VO = 1 V to 11 V; RL ≥ 2 kΩ
TA = –55°C to 125°C
100
V/mV
25
FREQUENCY RESPONSE
GBW
Gain bandwidth product
SR
Slew rate
G = +1
0.7
MHz
0.3
V/µs
OUTPUT
VS = 30 V; RL = 2 kΩ
VO
Voltage output swing from rail
Positive rail
TA = –55°C to 125°C
4
VS = 30 V; RL ≥ 10 kΩ
2
VS = 5 V; RL ≥ 2 kΩ
Negative rail
VS = 5 V; RL ≤ 10 kΩ
TA = –55°C to 125°C
5
–20
VS = 15 V; VO = 0 V; VID = 1 V
IO
Output current
VID = –1 V; VO = 200 mV
Short-circuit current
VS = 10 V; VO = VS / 2
Copyright © 2022 Texas Instruments Incorporated
Sink
V
20
mV
–30
LM158A
–60
TA = –55°C to 125°C
VS = 15 V; VO = 15 V; VID = –1
V
ISC
Source
3
1.5
10
TA = –55°C to 125°C
mA
–10
20
5
12
30
±40
µA
±60
mA
Submit Document Feedback
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
13
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
6.9 Electrical Characteristics: LM158, LM158A (continued)
For VS = (V+) – (V–) = 5 V, TA = 25°C (unless otherwise noted)
TEST CONDITIONS(1)
PARAMETER
MIN
TYP(2)
MAX
UNIT
POWER SUPPLY
IQ
(1)
(2)
(3)
14
Quiescent current per amplifier
VO = 2.5 V; IO = 0 A
VS = 30 V; VO = 15 V; IO = 0 A
TA = –55°C to 125°C
350
600
500
1000
µA
All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified.
Maximum VS for testing purposes is 30 V for LM158 and LM158A.
All typical values are TA = 25°C.
On products compliant to MIL-PRF-38535, this parameter is not production tested.
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
6.10 Electrical Characteristics: LM258, LM258A
For VS = (V+) – (V–) = 5 V, TA = 25°C (unless otherwise noted)
TEST CONDITIONS(1)
PARAMETER
MIN
TYP(2)
MAX
3
5
UNIT
OFFSET VOLTAGE
LM258
VOS
Input offset voltage
VS = 5 V to 30 V; VC M = 0 V; VO = 1.4 V
LM258A
LM258
dVOS/dT
Input offset voltage drift
PSRR
Input offset voltage vs power supply
(ΔVIO/ΔVS)
VS = 5 V to 30 V
VO1/ VO2
Channel separation
f = 1 kHz to 20 kHz
LM258A
TA = –25°C to 85°C
7
2
TA = –25°C to 85°C
mV
3
4
7
TA = –25°C to 85°C
7
65
µV/°C
15
100
dB
120
dB
INPUT VOLTAGE RANGE
VCM
Common-mode voltage range
CMRR
Common-mode rejection ratio
VS = 5 V to 30 V
LM258
VS = 30 V
LM258A
VS = 5 V to 30 V
LM258
VS = 30 V
LM258A
(V–)
(V+) – 1.5
(V–)
(V+) – 2
V
TA = –25°C to 85°C
VS = 5 V to 30 V; VCM = 0 V
70
80
dB
INPUT BIAS CURRENT
LM258
IB
Input bias current
VO = 1.4 V
LM258A
LM258
IOS
Input offset current
VO = 1.4 V
LM258A
dIOS/dT
–20
TA = –25°C to 85°C
–150
–300
–15
TA = –25°C to 85°C
nA
–80
–100
2
TA = –25°C to 85°C
30
100
2
TA = –25°C to 85°C
nA
15
30
10
Input offset current drift
LM258A
TA = –25°C to 85°C
pA/°C
200
NOISE
en
Input voltage noise density
f = 1 kHz
40
nV/√ Hz
OPEN-LOOP GAIN
AOL
Open-loop voltage gain
50
VS = 15 V; VO = 1 V to 11 V; RL ≥ 2 kΩ
TA = –25°C to 85°C
100
V/mV
25
FREQUENCY RESPONSE
GBW
Gain bandwidth product
SR
Slew rate
G = +1
0.7
MHz
0.3
V/µs
OUTPUT
VS = 30 V; RL = 2 kΩ
VO
Voltage output swing from rail
Positive rail
TA = –25°C to 85°C
4
VS = 30 V; RL ≥ 10 kΩ
2
VS = 5 V; RL ≥ 2 kΩ
Negative rail
VS = 5 V; RL ≤ 10 kΩ
TA = –25°C to 85°C
5
–20
VS = 15 V; VO = 0 V; VID = 1 V
IO
Source
VS = 15 V; VO = 15 V; VID = –1
V
Sink
Short-circuit current
20
mV
–60
TA = –25°C to 85°C
20
5
12
VS = 10 V; VO = VS / 2
mA
–10
10
VID = –1 V; VO = 200 mV
ISC
V
–30
LM258A
TA = –25°C to 85°C
Output current
3
1.5
30
±40
µA
±60
mA
POWER SUPPLY
IQ
(1)
(2)
Quiescent current per amplifier
VO = 2.5 V; IO = 0 A
VS = 30 V; VO = 15 V; IO = 0 A
TA = –25°C to 85°C
350
600
500
1000
µA
All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified.
Maximum VS for testing purposes is 30 V for LM258 and LM258A.
All typical values are TA = 25°C.
Copyright © 2022 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
15
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
6.11 Typical Characteristics: LM358B and LM2904B
20
30
18
27
16
24
14
21
Amplifiers (%)
Amplifiers (%)
This typical characteristics section is applicable for LM358B and LM2904B. Typical characteristics data in this section was
taken with TA = 25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted).
12
10
8
18
15
12
6
9
4
6
2
3
0
-1800
0
-1200
-600
0
600
Offset Voltage (µV)
1200
1800
0
DC11
750
500
450
300
150
-150
-450
-750
-40
-20
0
20
40
60
Temperature (°C)
80
100
-100
-500
-18
120
100
70
80
90
60
70
80
60
70
50
60
40
50
30
40
20
30
10
20
0
10
Gain (dB)
Phase (°)
10k
100k
Frequency (Hz)
-6
0
6
Common-Mode Voltage (V)
12
17
DC10
40
30
20
10
0
-10
-20
-10
-30
1M
G=1
G = 10
G = 100
G = 1000
G = –1
50
0
1k
D012
Figure 6-5. Open-Loop Gain and Phase vs Frequency
Submit Document Feedback
Closed Lopp Voltage Gain (dB)
90
1k
-12
Figure 6-4. Offset Voltage vs Common-Mode Voltage
Phase ( )
Open Loop Voltage Gain (dB)
100
DC10
-20
16
DC12
-300
Figure 6-3. Offset Voltage vs Temperature
-10
2.25 2.5 2.75
Figure 6-2. Offset Voltage Drift Distribution
Offset Voltage (µV)
Offset Voltage (µV)
Figure 6-1. Offset Voltage Production Distribution
0.25 0.5 0.75 1 1.25 1.5 1.75 2
Offset Voltage Drift (µV/°C)
10k
100k
Frequency (Hz)
1M
D017
Figure 6-6. Closed-Loop Gain vs Frequency
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
6.11 Typical Characteristics: LM358B and LM2904B (continued)
This typical characteristics section is applicable for LM358B and LM2904B. Typical characteristics data in this section was
taken with TA = 25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted).
-5
120
IB+
IB–
Input Offset Current (pA)
100
Input Bias Current (nA)
-7.5
-10
-12.5
80
60
40
20
0
-20
-15
-20
-15
-10
-5
0
5
10
Common-Mode Voltage (V)
15
-40
-20
20
-10
-5
0
5
10
Common-Mode Voltage (V)
15
20
DC3I
Figure 6-8. Input Offset Current vs Common-Mode Voltage
-6
0.06
-7
0.045
Input Offset Current (nA)
Input Bias Current (nA)
Figure 6-7. Input Bias Current vs Common-Mode Voltage
-8
-9
IB+
IB–
-10
-15
DC3I
0.03
0.015
0
-0.015
-11
-12
-40
-10
20
50
Temperature (°C)
80
110
-0.03
-40
130
-10
20
50
Temperature (°C)
DCIB
Figure 6-9. Input Bias Current vs Temperature
80
110
130
DCIO
Figure 6-10. Input Offset Current vs Temperature
V+
(V–) + 18 V
–40 C
25 C
125 C
(V–) + 15 V
Output Voltage (V)
Output Voltage (V)
(V+) – 3 V
(V+) – 6 V
(V–) + 12 V
(V–) + 9 V
(V–) + 6 V
(V+) – 9 V
–40 C
25 C
125 C
(V–) + 3 V
V–
(V+) – 12 V
0
10
20
30
Output Current (mA)
40
50
DC13
Figure 6-11. Output Voltage Swing vs Output Current (Sourcing)
Copyright © 2022 Texas Instruments Incorporated
0
5
10
15
20
25
Output Current (mA)
30
35
40
DC1-
Figure 6-12. Output Voltage Swing vs Output Current (Sinking)
Submit Document Feedback
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
17
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
6.11 Typical Characteristics: LM358B and LM2904B (continued)
This typical characteristics section is applicable for LM358B and LM2904B. Typical characteristics data in this section was
taken with TA = 25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted).
100
120
PSRR and CMRR (dB)
80
Common-Mode Rejection Ratio (dB)
PSRR+
PSRRCMRR
90
70
60
50
40
30
20
10
0
1k
10k
100k
Frequency (Hz)
115
110
105
100
95
90
85
-40
1M
-10
20
50
Temperature (°C)
D001
Figure 6-13. CMRR and PSRR vs Frequency
80
110
130
DC2_
Figure 6-14. Common-Mode Rejection Ratio vs
Temperature (dB)
1.6
-118
1.2
-119
0.8
Voltage (µV)
Power Supply Rejection Ratio (dB)
VS = 36V
VS = 5V
-120
-121
0.4
0
-0.4
-0.8
-1.2
-122
-1.6
-123
-40
-2
-20
0
20
40
60
80
Temperature (°C)
100
120
0
140
1
2
DC8_
3
4
5
6
Time (s)
7
8
9
10
D011
VS = 5 V to 36 V
Figure 6-16. 0.1-Hz to 10-Hz Noise
100
-32
90
-40
80
-48
70
-56
THD+N (dB)
Voltage Noise Spectral Density (nV/—Hz)
Figure 6-15. Power Supply Rejection Ratio vs Temperature (dB)
60
50
40
-64
-72
-80
-88
30
20
-96
10
-104
0
10
10 k
2k
-112
100
1k
Frequency (Hz)
10k
100k
D010
Figure 6-17. Input Voltage Noise Spectral Density vs Frequency
100
1k
Frequency (Hz)
10k
D013
G = 1, f = 1 kHz, BW = 80 kHz,
VOUT = 10 VPP, RL connected to V–
Figure 6-18. THD+N Ratio vs Frequency, G = 1
18
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
6.11 Typical Characteristics: LM358B and LM2904B (continued)
This typical characteristics section is applicable for LM358B and LM2904B. Typical characteristics data in this section was
taken with TA = 25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted).
-32
-30
10 k
2k
-40
-48
-50
-56
-60
THD+N (dB)
THD+N (dB)
-40
-64
-72
-70
-80
-80
-90
-88
-100
-96
-110
-104
100
1k
Frequency (Hz)
10 k
2k
-120
0.001
10k
0.01
D014
G = –1, f = 1 kHz, BW = 80 kHz,
VOUT = 10 VPP, RL connected to V–
See Figure 7-3
1
10 20
D015
G = 1, f = 1 kHz, BW = 80 kHz,
RL connected to V–
Figure 6-19. THD+N Ratio vs Frequency, G = –1
Figure 6-20. THD+N vs Output Amplitude, G = 1
-20
460
-35
430
Quiescent Current (µA)
THD+N (dB)
0.1
Amplitude (VPP)
-50
-65
-80
400
370
340
310
-95
10 k
2k
280
-110
0.001
0.01
0.1
Amplitude (VPP)
1
3
10 20
9
15
21
Supply Voltage (V)
D016
27
33
36
DC_S
G = –1, f = 1 kHz, BW = 80 kHz,
RL connected to V–
See Figure 7-3
Figure 6-21. THD+N vs Output Amplitude, G = –1
Figure 6-22. Quiescent Current vs Supply Voltage
540
500
VS = 36V
VS = 5V
Open Loop Output Impedance ( )
Quiescent Current per Amplifier (µA)
600
480
420
360
300
240
-40
-20
0
20
40
60
Temperature (°C)
80
100
120
Figure 6-23. Quiescent Current vs Temperature
Copyright © 2022 Texas Instruments Incorporated
DC4_
400
300
200
100
1k
10k
100k
Frequency (Hz)
1M
D006
Figure 6-24. Open-Loop Output Impedance vs Frequency
Submit Document Feedback
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
19
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
6.11 Typical Characteristics: LM358B and LM2904B (continued)
This typical characteristics section is applicable for LM358B and LM2904B. Typical characteristics data in this section was
taken with TA = 25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted).
44
18
Overshoot (+)
Overshoot (-)
36
14
32
12
28
24
20
10
8
6
16
4
12
2
0
40
8
0
40
80
Overshoot (+)
Overshoot (–)
16
Overshoot (%)
Overshoot (%)
40
120 160 200 240
Capacitance load (pF)
280
320
360
80
120
D019
160
200
240
Capacitance load (pF)
280
320
360
D020
G = –1, 100-mV output step, RL = open
G = 1, 100-mV output step, RL = open
Figure 6-25. Small-Signal Overshoot vs Capacitive Load
Figure 6-26. Small-Signal Overshoot vs Capacitive Load
60
20
Input
Output
57
10
51
Voltage (V)
Phase Margin (°)
54
48
45
42
39
0
-10
36
33
-20
30
0
40
80
120 160 200 240
Capacitance Load (pF)
280
320
0
360
200
D018
400
600
Time ( s)
800
1000
D021
G = –10
Figure 6-28. Overload Recovery
10
10
7.5
7.5
5
5
Voltage (mV)
Voltage (mV)
Figure 6-27. Phase Margin vs Capacitive Load
2.5
0
-2.5
-5
0
-2.5
-5
-7.5
-7.5
Input
Output
-10
Input
Output
-10
0
20
40
60
80
Time ( s)
G = 1, RL = open
Figure 6-29. Small-Signal Step Response, G = 1
20
2.5
Submit Document Feedback
100
D022
0
20
40
60
80
100
Time ( s)
D023
G = –1, RL = open, RFB = 10K
See Figure 7-3
Figure 6-30. Small-Signal Step Response, G = –1
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
6.11 Typical Characteristics: LM358B and LM2904B (continued)
20
40
16
32
Output Delta from Final Value (mV)
Output Delta from Final Value (mV)
This typical characteristics section is applicable for LM358B and LM2904B. Typical characteristics data in this section was
taken with TA = 25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted).
12
8
4
0
-4
-8
-12
-16
-20
24
16
8
0
-8
-16
-24
-32
-40
0
0.5
1
1.5
2
2.5
3
Time ( s)
3.5
4
4.5
5
0
0.5
1
1.5
G = 1, RL = open
2.5
3
Time ( s)
3.5
4
4.5
5
D004
G = 1, RL = open
Figure 6-31. Large-Signal Step Response (Rising)
Figure 6-32. Large-Signal Step Response (Falling)
0.675
2.5
Output
Input
2
Positive
Negative
1.5
0.625
Slew Rate(V/ s)
1
Votlage (V)
2
D003
0.5
0
-0.5
-1
-1.5
0.575
0.525
0.475
-2
-2.5
0
20
40
60
80
0.425
-40
100
Time (µs)
-25
-10
5
AC_S
20
35 50 65
Temp( C)
80
95
110 125
D009
G = 1, RL = open
Figure 6-34. Slew Rate vs Temperature
Figure 6-33. Large-Signal Step Response
Short-Circuit Current (mA)
40
20
Sinking
Sourcing
0
-20
-40
-60
-40 -25 -10
5
20 35 50 65
Temperature (°C)
80
95
110 125
DC7_
Maximum Output Voltage (V PP)
60
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
1k
10k
100k
Frequency (Hz)
1M
D005
VS = 15 V
Figure 6-35. Short-Circuit Current vs Temperature
Copyright © 2022 Texas Instruments Incorporated
Figure 6-36. Maximum Output Voltage vs Frequency
Submit Document Feedback
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
21
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
6.11 Typical Characteristics: LM358B and LM2904B (continued)
This typical characteristics section is applicable for LM358B and LM2904B. Typical characteristics data in this section was
taken with TA = 25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted).
90
-75
84
78
72
-95
EMIRR (dB)
Channel Separation (dB)
-85
-105
-115
66
60
54
48
42
-125
36
30
-135
1k
10k
100k
Frequency (Hz)
Figure 6-37. Channel Separation vs Frequency
22
Submit Document Feedback
24
1M
1M
D008
10M
100M
Frequency (Hz)
1G
D007
Figure 6-38. EMIRR (Electromagnetic Interference Rejection
Ratio) vs Frequency
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
6.12 Typical Characteristics: LM158, LM158A, LM258, LM258A, LM358, LM358A, LM2904, and
LM2904V
Typical characteristics section is applicable for LM158, LM158A, LM258, LM258A, LM358, LM358A, LM2904, and LM2904V.
20
0.36
18
0.34
–55C
0C
125C
Supply Current (mA)
Input Current (nAdc)
16
14
12
10
8
5Vdc
15Vdc
30Vdc
6
4
0.32
0.3
0.28
0.26
0.24
0.22
2
0
–55
–35
–15
5
45
25
65
Temperature (°C)
85
105
0.2
125
0
Figure 6-39. Input Current vs Temperature
25
30
100
CMRR
90
RL=20K
RL=2K
140
80
120
70
100
CMRR (dB)
Avol Voltage Gain (dB)
10
15
20
Supply Voltage (Vdc)
Figure 6-40. Supply Current vs Supply Voltage
160
80
60
60
50
40
30
40
20
20
10
0
0
0
5
10
15
20
25
30
V+ Supply Voltage (Vdc)
35
0.1
40
1
10
100
1000
Frequency (kHz)
Figure 6-41. Voltage Gain vs Supply Voltage
C001
Figure 6-42. Common-Mode Rejection Ratio vs Frequency
3.5
0.50
VOUT
3.0
0.45
Voltage (V)
2.5
Voltage (V)
5
2.0
1.5
0.40
0.35
0.30
1.0
0.5
0.25
0.0
0.20
VOUT
0
4
8
12
16
20
24
Time ( s)
28
32
36
40
C001
Figure 6-43. Voltage Follower Large Signal Response (50 pF)
Copyright © 2022 Texas Instruments Incorporated
0
2
4
6
8
Time ( s)
10
C001
Figure 6-44. Voltage Follower Small Signal Response (50 pF)
Submit Document Feedback
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
23
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
6.12 Typical Characteristics: LM158, LM158A, LM258, LM258A, LM358, LM358A, LM2904, and
LM2904V (continued)
Typical characteristics section is applicable for LM158, LM158A, LM258, LM258A, LM358, LM358A, LM2904, and LM2904V.
8
Output Voltage (Vdc) relative to Vcc
20
17.5
Output Swing (Vp-p)
15
12.5
10
7.5
5
2.5
0
1
10
100
Frequency (kHz)
7
6
5
4
3
2
1
0.001
1k
Figure 6-45. Maximum Output Swing vs Frequency (VCC = 15 V)
0.1
1
Output Sink Current (mAdc)
10
100
Figure 6-46. Output Sourcing Characteristics
90
10
5Vdc
15Vdc
30Vdc
80
Output Current (mAdc)
Output Voltage (Vdc)
0.01
1
0.1
70
60
50
40
30
20
10
0.01
0.001
0
0.01
0.1
1
10
Output Sink Current (mAdc)
Figure 6-47. Output Sinking Characteristics
24
Submit Document Feedback
100
–55
–35
–15
5
45
25
65
Temperature (°C)
85
105
125
Figure 6-48. Source Current Limiting
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
7 Parameter Measurement Information
900 Ω
VCC+
VCC+
−
VI
VO
+
100 Ω
−
VI = 0 V
RS
VCC−
CL
RL
VO
+
VCC−
Figure 7-2. Noise-Test Circuit
Figure 7-1. Unity-Gain Amplifier
10 k
–
+18V
VIN
+
RL
-18V
GND
GND
Figure 7-3. Test Circuit, G = –1, for THD+N and Small-Signal Step Response
Copyright © 2022 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
25
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
8 Detailed Description
8.1 Overview
These devices consist of two independent, high-gain frequency-compensated operational amplifiers designed to
operate from a single supply over a wide range of voltages. Operation from split supplies also is possible if the
difference between the two supplies is within the supply voltage range specified in Section 6.3 and VS is at least
1.5 V more positive than the input common-mode voltage. The low supply-current drain is independent of the
magnitude of the supply voltage.
Applications include transducer amplifiers, dc amplification blocks, and all the conventional operational amplifier
circuits that now can be implemented more easily in single-supply-voltage systems. For example, these devices
can be operated directly from the standard 5-V supply used in digital systems and easily can provide the
required interface electronics without additional ±5-V supplies.
8.2 Functional Block Diagram: LM358B, LM358BA, LM2904B, LM2904BA
26
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
8.3 Feature Description
8.3.1 Unity-Gain Bandwidth
The unity-gain bandwidth is the frequency up to which an amplifier with a unity gain may be operated without
greatly distorting the signal. These devices have a 1.2-MHz unity-gain bandwidth (B Version).
8.3.2 Slew Rate
The slew rate is the rate at which an operational amplifier can change its output when there is a change on the
input. These devices have a 0.5-V/µs slew rate (B Version).
8.3.3 Input Common Mode Range
The valid common mode range is from device ground to VS – 1.5 V (VS – 2 V across temperature). Inputs
may exceed VS up to the maximum VS without device damage. At least one input must be in the valid input
common-mode range for the output to be the correct phase. If both inputs exceed the valid range, then the
output phase is undefined. If either input more than 0.3 V below V– then input current should be limited to 1 mA
and the output phase is undefined.
8.4 Device Functional Modes
These devices are powered on when the supply is connected. This device can be operated as a single-supply
operational amplifier or dual-supply amplifier, depending on the application.
Copyright © 2022 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
27
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
9 Application and Implementation
Note
Information in the following applications sections is not part of the TI component specification, and
TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining
suitability of components for their purposes. Customers should validate and test their design
implementation to confirm system functionality.
9.1 Application Information
The LMx58 and LM2904 operational amplifiers are useful in a wide range of signal conditioning applications.
Inputs can be powered before VSfor flexibility in multiple supply circuits.
9.2 Typical Application
A typical application for an operational amplifier is an inverting amplifier. This amplifier takes a positive voltage
on the input, and makes it a negative voltage of the same magnitude. In the same manner, it also makes
negative voltages positive.
RF
RI
Vsup+
VOUT
VIN
+
Vsup-
Figure 9-1. Application Schematic
9.2.1 Design Requirements
The supply voltage must be chosen such that it is larger than the input voltage range and output range. For
instance, this application scales a signal of ±0.5 V to ±1.8 V. Setting the supply at ±12 V is sufficient to
accommodate this application.
9.2.2 Detailed Design Procedure
Determine the gain required by the inverting amplifier using Equation 1 and Equation 2:
AV
VOUT
VIN
AV
1.8
0.5
(1)
3.6
(2)
Once the desired gain is determined, choose a value for RI or RF. [Subscripts should be fixed in the
accompanying figures and equations also.] Choosing a value in the kilohm range is desirable because the
amplifier circuit uses currents in the milliampere range. This ensures the part does not draw too much current.
This example uses 10 kΩ for RI which means 36 kΩ is used for RF. This was determined by Equation 3.
AV
28
RF
RI
(3)
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
9.2.3 Application Curve
2
VIN
1.5
VOUT
1
Volts
0.5
0
-0.5
-1
-1.5
-2
0
0.5
1
Time (ms)
1.5
2
Figure 9-2. Input and Output Voltages of the Inverting Amplifier
10 Power Supply Recommendations
CAUTION
Supply voltages larger than specified in the recommended operating region can permanently
damage the device (see Section 6.1).
Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or
high-impedance power supplies. For more detailed information on bypass capacitor placement, see Section 11.
11 Layout
11.1 Layout Guidelines
For best operational performance of the device, use good PCB layout practices, including:
•
•
•
•
•
•
Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the
operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low-impedance
power sources local to the analog circuitry.
– Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for singlesupply applications.
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.
A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital
and analog grounds, paying attention to the flow of the ground current.
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If it
is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as opposed
to in parallel with the noisy trace.
Place the external components as close to the device as possible. Keeping RF and RG close to the inverting
input minimizes parasitic capacitance, as shown in Section 11.2.
Keep the length of input traces as short as possible. Always remember that the input traces are the most
sensitive part of the circuit.
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce
leakage currents from nearby traces that are at different potentials.
Copyright © 2022 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
29
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
11.2 Layout Examples
Place components close to
device and to each other to
reduce parasitic errors
Run the input traces as far
away from the supply lines
as possible
VS+
RF
OUT1
V+
GND
IN1í
OUT2
VIN
IN1+
IN2í
Ví
IN2+
RG
GND
R IN
Only needed for
dual-supply
operation
GND
Use low-ESR, ceramic
bypass capacitor
VSí
(or GND for single supply)
Ground (GND) plane on another layer
Figure 11-1. Operational Amplifier Board Layout for Noninverting Configuration
RIN
VIN
+
VOUT
RG
RF
Figure 11-2. Operational Amplifier Schematic for Noninverting Configuration
30
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
12 Device and Documentation Support
12.1 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For
change details, review the revision history included in any revised document.
12.2 Support Resources
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight
from the experts. Search existing answers or ask your own question to get the quick design help you need.
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do
not necessarily reflect TI's views; see TI's Terms of Use.
12.3 Trademarks
TI E2E™ is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.
12.4 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may
be more susceptible to damage because very small parametric changes could cause the device not to meet its published
specifications.
12.5 Glossary
TI Glossary
This glossary lists and explains terms, acronyms, and definitions.
Copyright © 2022 Texas Instruments Incorporated
Submit Document Feedback
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
31
LM158, LM158A, LM258, LM258A
LM2904, LM2904B, LM2904BA, LM2904V
LM358, LM358A, LM358B, LM358BA
www.ti.com
SLOS068AA – JUNE 1976 – REVISED MARCH 2022
13 Mechanical, Packaging, and Orderable Information
The following pages include mechanical packaging and orderable information. This information is the mostcurrent data available for the designated devices. This data is subject to change without notice and without
revision of this document. For browser based versions of this data sheet, see the left-hand navigation pane.
32
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM158 LM158A LM258 LM258A LM2904 LM2904B LM2904BA LM2904V LM358
LM358A LM358B LM358BA
PACKAGE OPTION ADDENDUM
www.ti.com
6-Dec-2022
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
5962-87710012A
ACTIVE
LCCC
FK
20
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
596287710012A
LM158FKB
5962-8771001PA
ACTIVE
CDIP
JG
8
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
8771001PA
LM158
5962-87710022A
ACTIVE
LCCC
FK
20
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
596287710022A
LM158AFKB
5962-8771002PA
ACTIVE
CDIP
JG
8
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
8771002PA
LM158A
LM158 MW8
ACTIVE
WAFERSALE
YS
0
1
RoHS & Green
Call TI
Level-1-NA-UNLIM
-55 to 125
LM158AFKB
ACTIVE
LCCC
FK
20
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
596287710022A
LM158AFKB
LM158AJG
ACTIVE
CDIP
JG
8
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
LM158AJG
Samples
LM158AJGB
ACTIVE
CDIP
JG
8
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
8771002PA
LM158A
Samples
LM158FKB
ACTIVE
LCCC
FK
20
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
596287710012A
LM158FKB
LM158JG
ACTIVE
CDIP
JG
8
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
LM158JG
Samples
LM158JGB
ACTIVE
CDIP
JG
8
1
Non-RoHS
& Green
SNPB
N / A for Pkg Type
-55 to 125
8771001PA
LM158
Samples
LM258ADGKR
ACTIVE
VSSOP
DGK
8
2500
RoHS & Green
NIPDAU | SN
| NIPDAUAG
Level-1-260C-UNLIM
-25 to 85
(M3L, M3P, M3S, M3
U)
Samples
LM258ADR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU | SN
Level-1-260C-UNLIM
-25 to 85
LM258A
Samples
LM258ADRE4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-25 to 85
LM258A
Samples
LM258ADRG4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-25 to 85
LM258A
Samples
LM258AP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU | SN
N / A for Pkg Type
-25 to 85
LM258AP
Samples
Addendum-Page 1
Samples
Samples
Samples
Samples
Samples
Samples
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
6-Dec-2022
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
LM258APE4
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
-25 to 85
LM258AP
Samples
LM258DGKR
ACTIVE
VSSOP
DGK
8
2500
RoHS & Green
NIPDAU | SN
| NIPDAUAG
Level-1-260C-UNLIM
-25 to 85
(M2L, M2P, M2S, M2
U)
Samples
LM258DR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU | SN
Level-1-260C-UNLIM
-25 to 85
LM258
Samples
LM258DRG3
ACTIVE
SOIC
D
8
2500
RoHS & Green
SN
Level-1-260C-UNLIM
-25 to 85
LM258
Samples
LM258DRG4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-25 to 85
LM258
Samples
LM258P
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU | SN
N / A for Pkg Type
-25 to 85
LM258P
Samples
LM258PE4
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
-25 to 85
LM258P
Samples
LM2904AVQDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2904AV
Samples
LM2904AVQDRG4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2904AV
Samples
LM2904AVQPWR
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2904AV
Samples
LM2904AVQPWRG4
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2904AV
Samples
LM2904BAIDDFR
ACTIVE
SOT-23-THIN
DDF
8
3000
RoHS & Green
NIPDAU
Level-2-260C-1 YEAR
-40 to 125
2904A
Samples
LM2904BAIDGKR
ACTIVE
VSSOP
DGK
8
2500
RoHS & Green
SN
Level-1-260C-UNLIM
-40 to 125
28CB
Samples
LM2904BAIDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2904BA
Samples
LM2904BAIPWR
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2904BA
Samples
LM2904BIDDFR
ACTIVE
SOT-23-THIN
DDF
8
3000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2904
Samples
LM2904BIDGKR
ACTIVE
VSSOP
DGK
8
2500
RoHS & Green
SN
Level-1-260C-UNLIM
-40 to 125
28BB
Samples
LM2904BIDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2904B
Samples
LM2904BIPWR
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2904B
Samples
LM2904DE4
LIFEBUY
SOIC
D
8
75
TBD
Call TI
Call TI
-40 to 125
LM2904DGKR
ACTIVE
VSSOP
DGK
8
2500
RoHS & Green
NIPDAU | SN
| NIPDAUAG
Level-1-260C-UNLIM
-40 to 125
(MBL, MBP, MBS, MB
U)
Samples
Addendum-Page 2
PACKAGE OPTION ADDENDUM
www.ti.com
6-Dec-2022
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
LM2904DR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU | SN
Level-1-260C-UNLIM
-40 to 125
LM2904
Samples
LM2904DRE4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
LM2904
Samples
LM2904DRG3
ACTIVE
SOIC
D
8
2500
RoHS & Green
SN
Level-1-260C-UNLIM
-40 to 125
LM2904
Samples
LM2904DRG4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
LM2904
Samples
LM2904P
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU | SN
N / A for Pkg Type
-40 to 125
LM2904P
Samples
LM2904PE4
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
-40 to 125
LM2904P
Samples
LM2904PSR
ACTIVE
SO
PS
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2904
Samples
LM2904PW
ACTIVE
TSSOP
PW
8
150
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2904
Samples
LM2904PWR
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU | SN
Level-1-260C-UNLIM
-40 to 125
L2904
Samples
LM2904PWRG3
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
SN
Level-1-260C-UNLIM
-40 to 125
L2904
Samples
LM2904PWRG4
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2904
Samples
LM2904PWRG4-JF
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2904
Samples
LM2904QDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2904Q1
Samples
LM2904QDRG4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2904Q1
Samples
LM2904VQDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2904V
Samples
LM2904VQDRG4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2904V
Samples
LM2904VQPWR
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2904V
Samples
LM2904VQPWRG4
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
L2904V
Samples
LM358ADE4
LIFEBUY
SOIC
D
8
75
TBD
Call TI
Call TI
0 to 70
LM358ADGKR
ACTIVE
VSSOP
DGK
8
2500
RoHS & Green
NIPDAU | SN
| NIPDAUAG
Level-1-260C-UNLIM
0 to 70
(M6L, M6P, M6S, M6
U)
Samples
LM358ADR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU | SN
Level-1-260C-UNLIM
0 to 70
LM358A
Samples
Addendum-Page 3
PACKAGE OPTION ADDENDUM
www.ti.com
6-Dec-2022
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
LM358ADRE4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
LM358A
Samples
LM358ADRG4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
LM358A
Samples
LM358AP
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU | SN
N / A for Pkg Type
0 to 70
LM358AP
Samples
LM358APE4
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
0 to 70
LM358AP
Samples
LM358APW
ACTIVE
TSSOP
PW
8
150
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
L358A
Samples
LM358APWR
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU | SN
Level-1-260C-UNLIM
0 to 70
L358A
Samples
LM358APWRG4
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
L358A
Samples
LM358BAIDDFR
ACTIVE
SOT-23-THIN
DDF
8
3000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
358BA
Samples
LM358BAIDGKR
ACTIVE
VSSOP
DGK
8
2500
RoHS & Green
SN
Level-1-260C-UNLIM
-40 to 85
28DB
Samples
LM358BAIDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
L358BA
Samples
LM358BAIPWR
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
L358BA
Samples
LM358BIDDFR
ACTIVE
SOT-23-THIN
DDF
8
3000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
LM358
Samples
LM358BIDGKR
ACTIVE
VSSOP
DGK
8
2500
RoHS & Green
SN
Level-1-260C-UNLIM
-40 to 85
358B
Samples
LM358BIDR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
LM358B
Samples
LM358BIPWR
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 85
LM358B
Samples
LM358DGKR
ACTIVE
VSSOP
DGK
8
2500
RoHS & Green
NIPDAU | SN
| NIPDAUAG
Level-1-260C-UNLIM
0 to 70
(M5L, M5P, M5S, M5
U)
Samples
LM358DR
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU | SN
Level-1-260C-UNLIM
0 to 70
LM358
Samples
LM358DRE4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
LM358
Samples
LM358DRG3
ACTIVE
SOIC
D
8
2500
RoHS & Green
SN
Level-1-260C-UNLIM
0 to 70
LM358
Samples
LM358DRG4
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
LM358
Samples
LM358P
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU | SN
N / A for Pkg Type
0 to 70
LM358P
Samples
Addendum-Page 4
PACKAGE OPTION ADDENDUM
www.ti.com
6-Dec-2022
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
Samples
(4/5)
(6)
LM358PE3
ACTIVE
PDIP
P
8
50
RoHS &
Non-Green
SN
N / A for Pkg Type
0 to 70
LM358P
Samples
LM358PE4
ACTIVE
PDIP
P
8
50
RoHS & Green
NIPDAU
N / A for Pkg Type
0 to 70
LM358P
Samples
LM358PSR
ACTIVE
SO
PS
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
L358
Samples
LM358PW
ACTIVE
TSSOP
PW
8
150
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
L358
Samples
LM358PWR
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU | SN
Level-1-260C-UNLIM
0 to 70
L358
Samples
LM358PWRG3
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
SN
Level-1-260C-UNLIM
0 to 70
L358
Samples
LM358PWRG4
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
L358
Samples
LM358PWRG4-JF
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
0 to 70
L358
Samples
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of