0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LM2904VQDR

LM2904VQDR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOIC8_150MIL

  • 描述:

    双路、30V、700kHz 运算放大器,工作温度为 -40°C 至 125°C

  • 数据手册
  • 价格&库存
LM2904VQDR 数据手册
Order Now Product Folder Technical Documents Support & Community Tools & Software LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 行业标准双路运算放大器 1 特性 • • • • • 1 • • 3 说明 3V 至 36V 宽电源范围(B 版本) 静态电流:每个放大器 300µA(B 版本,典型值) 单位增益带宽为 1.2MHz(B 版本) 共模输入电压范围包括接地,支持近地直接检测 3mV(25°C 时)的低输入失调电压(A 和 B 版 本,最大值) 内部射频和 EMI 滤波器(B 版本) 对于符合 MIL-PRF-38535 标准的产品,所有参数 均经过测试,除非另外注明。对于所有其他产品, 生产流程不一定包含对所有参数的测试。 2 应用 • • • • • • • • • • • 商用网络和服务器电源单元 多功能打印机 电源和移动充电器 电机控制:交流感应、刷式直流、无刷直流、高电 压、低电压、永久磁性和步进电机 台式计算机和主板 室内外空调 洗衣机、烘干机和冰箱 交流逆变器、串式逆变器、中央逆变器和变频器 不间断电源 可编程逻辑控制器 电子销售点系统 单极低通滤波器 RG RF R1 VOUT VIN C1 f-3 dB = ( RF VOUT = 1+ RG VIN (( 1 1 + sR1C1 LM358B 和 LM2904B 是业界通用运算放大器 LM358 和 LM2904 的下一代版本,其中包括两个高压 (36V) 运算放大器。这些器件为成本敏感型 应用带来了出色 的价值,该器件的 特性 包括低失调电压(300µV,典 型值)、接地共模输入范围以及高差分输入电压能力。 LM358B 和 LM2904B 运算放大器具有增强的 功能, 例如单位增益稳定性、较低的 3mV(室温下的最大 值)失调电压和每个放大器 300µA(典型值)的静态 电流,从而简化了电路设计。高 ESD(2kV,HBM) 和集成 EMI 以及射频滤波器可支持将 LM358B 和 LM2904B 器件用于最严苛、最具环境挑战性的 应用。 LM358B 和 LM2904B 放大器采用行业通用封装(包括 SOIC、TSSOP 和 VSSOP)。 器件信息(1) 器件型号 封装 封装尺寸(标称值) LM358B、LM2904B、 LM358、LM358A、 LM2904、LM2904V、 LM258、LM258A SOIC (8) 4.90mm × 3.90mm LM358B(2)、LM2904B(2)、 LM358、LM358A、 LM2904、LM2490V TSSOP (8) 3.00mm × 4.40mm LM358B(2)、LM2904B(2)、 LM358、LM358A、 LM2904、LM2904V、 LM258、LM258A VSSOP (8) 3.00mm × 3.00mm LM358、LM2904 SO (8) 5.20mm × 5.30mm LM358、LM2904、 LM358A、LM258、 LM258A PDIP (8) 9.81mm × 6.35mm LM158、LM158A CDIP (8) 9.60mm × 6.67mm LM158、LM158A LCCC (20) 8.89mm × 8.89mm (1) 如需了解所有可用封装,请参阅数据表末尾的可订购产品附 录。 (2) 封装仅供预览。 1 2pR1C1 ( 1 本文档旨在为方便起见,提供有关 TI 产品中文版本的信息,以确认产品的概要。 有关适用的官方英文版本的最新信息,请访问 www.ti.com,其内容始终优先。 TI 不保证翻译的准确 性和有效性。 在实际设计之前,请务必参考最新版本的英文版本。 English Data Sheet: SLOS068 LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 www.ti.com.cn 目录 1 2 3 4 5 6 7 特性 .......................................................................... 应用 .......................................................................... 说明 .......................................................................... 修订历史记录 ........................................................... Device Comparison Table..................................... Pin Configuration and Functions ......................... Specifications......................................................... 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 7.10 7.11 7.12 8 9 1 1 1 2 4 5 6 Absolute Maximum Ratings ...................................... 6 ESD Ratings.............................................................. 6 Recommended Operating Conditions....................... 7 Thermal Information .................................................. 7 Electrical Characteristics: LM358B and LM358BA ... 8 Electrical Characteristics: LM2904B and LM2904B.. 9 Electrical Characteristics: LM358, LM358A ............ 10 Electrical Characteristics: LM2904, LM2904V ........ 11 Electrical Characteristics: LM158, LM158A ............ 12 Electrical Characteristics: LM258, LM258A .......... 13 Typical Characteristics .......................................... 14 Typical Characteristics .......................................... 21 Parameter Measurement Information ................ 23 Detailed Description ............................................ 24 9.1 Overview ................................................................. 9.2 Functional Block Diagram - LM358B, LM358BA, LM2904B, LM2904BA .............................................. 9.3 Feature Description................................................. 9.4 Device Functional Modes........................................ 24 24 25 25 10 Application and Implementation........................ 26 10.1 Application Information.......................................... 26 10.2 Typical Application ............................................... 26 11 Power Supply Recommendations ..................... 27 12 Layout................................................................... 27 12.1 Layout Guidelines ................................................. 27 12.2 Layout Examples................................................... 28 13 器件和文档支持 ..................................................... 29 13.1 13.2 13.3 13.4 13.5 13.6 13.7 文档支持................................................................ 相关链接................................................................ 接收文档更新通知 ................................................. 社区资源................................................................ 商标 ....................................................................... 静电放电警告......................................................... 术语表 ................................................................... 29 29 29 29 29 29 29 14 机械、封装和可订购信息 ....................................... 30 4 修订历史记录 注:之前版本的页码可能与当前版本有所不同。 Changes from Revision V (September 2018) to Revision W Page • Added specification in the Device Comparison Table ............................................................................................................ 4 • Changed CDM ESD rating for LM358B and LM2904B in ESD Ratings ................................................................................ 6 • Changed VS to V+ in Recommended Operating Conditions .................................................................................................. 7 • Changed Thermal Information for the LM158FK and LM158JG devices............................................................................... 7 • 已添加 Typical Characteristics section for the LM358B and LM2490B op amps................................................................. 14 • 已添加 test circuit for THD+N and small-signal step response, G = –1 in the Parameter Measurement Information section .................................................................................................................................................................................. 23 • 已更改 the Functional Block Diagram................................................................................................................................... 24 • 已删除 在相关链接 部分中删除了 LM358B 和 LM2904B 的预览标识符 ............................................................................... 29 Changes from Revision U (January 2017) to Revision V Page • 更改了数据表标题 ................................................................................................................................................................... 1 • 更改了特性 部分的前四个项目 ................................................................................................................................................ 1 • 更改了 应用 部分中的第一项并添加了四个新项...................................................................................................................... 1 • 在说明 部分的第一段中更改了电压值 ..................................................................................................................................... 1 • 更改了说明 部分第二段中的文本 ............................................................................................................................................ 1 • 已添加 在数据表中添加了器件 LM358B 和 LM2904B ............................................................................................................ 1 • 更改了器件信息 表的前三行,并为预览状态器件添加了交叉引用的注释 ............................................................................... 1 • Added Device Comparison table ........................................................................................................................................... 4 • Added a table note to the Pin Functions table ...................................................................................................................... 5 • Changed "free-air temperature" to "ambient temperature" in the Absolute Maximum Ratings condition statement ............. 6 • Changed all entries in the Absolute Maximum Ratings table except TJ and Tstg .................................................................. 6 2 版权 © 1976–2019, Texas Instruments Incorporated LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V www.ti.com.cn ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 • Deleted lead temperature and case temperature from Absolute Maximum Ratings.............................................................. 6 • Changed device listings and their voltage values in the ESD Ratings table ......................................................................... 6 • Changed "free-air temperature" to "ambient temperature" in the Recommended Operating Conditions condition statement ............................................................................................................................................................................... 7 • Changed table entries for all parameters in the Recommended Operating Conditions table ................................................ 7 • Added rows to the Thermal Information table, and a table note regarding device-package combinations .......................... 7 • Deleted the Operating Conditions table................................................................................................................................ 13 • Added a condition statement to the Typical Characteristics section .................................................................................... 21 • Changed specific voltages to a Recommended Operating Conditions reference................................................................ 24 • Changed unity-gain bandwidth from 0.7 MHz for all devices to 1.2 MHz for B-version devices.......................................... 25 • Changed slew rate from.3 V/µs for all devices to o.5 V/µs for B-version devices................................................................ 25 • Changed the Input Common Mode Range section in multiple places throughout ............................................................... 25 • Changed VCC to VS in the Application Information section .................................................................................................. 26 • Subscripted the suffixes fro RI and RF .................................................................................................................................. 26 • 已更改 Operational Amplifier Board Layout for Noninverting Configuration with an image that includes a dual op amp.... 28 • 在表 1 .................................................................................................................................................................................. 29 Changes from Revision T (April 2015) to Revision U Page • 已更改 数据表标题 .................................................................................................................................................................. 1 • 已添加 接收文档更新通知 部分和社区资源 部分................................................................................................................... 29 Changes from Revision S (January 2014) to Revision T • Page 已添加 应用 部分、ESD 额定值 表、特性 说明 部分、器件功能模式、应用和实现 部分、电源推荐 部分、布局 部 分、器件和文档支持 部分以及机械、封装和可订购信息 部分 ................................................................................................ 1 Changes from Revision R (July 2010) to Revision S Page • 使用 Web 上的 PDF 将此数据表从 QS 格式转换为 DocZone ................................................................................................ 1 • 删除了订单信息 表 .................................................................................................................................................................. 1 • 更新了特性 以包含“军用免责声明” .......................................................................................................................................... 1 • 已添加 Typical Characteristics section ................................................................................................................................. 21 • 添加了 ESD 警告 .................................................................................................................................................................. 29 Copyright © 1976–2019, Texas Instruments Incorporated 3 LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 www.ti.com.cn 5 Device Comparison Table 4 PART NUMBER SUPPLY VOLTAGE TEMPERATURE RANGE VOS (MAXIMUM AT 25°C) IQ / CH (TYPICAL AT 25°C) INTEGRATED EMI FILTER PACKAGE LM358B 3 V–36 V –40°C to 85°C 3 mV 300 µA Yes D, DGK, PW LM2904B 3 V–36 V –40°C to 125°C 3 mV 300 µA Yes D, DGK, PW LM358 3 V–32 V 0°C to 70°C 7 mV 350 µA No D, PW, DGK, P, PS LM2904 3 V–26 V –40°C to 125°C 7 mV 350 µA No D, PW, DGK, P, PS LM358A 3 V–32 V 0°C to 70°C 3 mV 350 µA No D, PW, DGK, P LM2904V 3 V–32 V –40°C to 125°C 7 mV 350 µA No D, PW LM158 3 V–32 V –55°C to 125°C 5 mV 350 µA No JG, FK LM158A 3 V–32 V –55°C to 125°C 3 mV 350 µA No JG, FK LM258 3 V–32 V –25°C to 85°C 5 mV 350 µA No D, DGK, P LM258A 3 V–32 V –25°C to 85°C 3 mV 350 µA No D, DGK, P Copyright © 1976–2019, Texas Instruments Incorporated LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V www.ti.com.cn ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 6 Pin Configuration and Functions D, DGK, P, PS, PW, and JG Packages 8-Pin SOIC, VSSOP, PDIP, SO, TSSOP, and CDIP Top View 6 IN2± V± 4 5 IN2+ NC 3 19 IN1+ V+ OUT2 20 7 NC 2 1 IN1± OUT1 V+ 2 8 NC 1 3 OUT1 FK Package 20-Pin LCCC Top View NC 4 18 NC IN1± 5 17 OUT2 NC 6 16 NC IN1+ 7 15 IN2± NC 8 14 NC 13 NC 12 IN2+ 11 NC 10 V± NC 9 Not to scale Not to scale NC - No internal connection Pin Functions PIN I/O DESCRIPTION LCCC (1) SOIC, SSOP, CDIP, PDIP, SO, TSSOP, CFP (1) IN1– 5 2 I Negative input IN1+ 7 3 I Positive input IN2– 15 6 I Negative input IN2+ 12 5 I Positive input OUT1 2 1 O Output OUT2 17 7 O Output V– 10 4 — Negative (lowest) supply or ground (for singlesupply operation) NC 1, 3, 4, 6, 8, 9, 11, 13, 14, 16, 18, 19 — — No internal connection V+ 20 8 — Positive (highest) supply NAME (1) For a listing of which devices are available in what packages, see Device Comparison Table. Copyright © 1976–2019, Texas Instruments Incorporated 5 LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 www.ti.com.cn 7 Specifications 7.1 Absolute Maximum Ratings over operating ambient temperature range (unless otherwise noted) (1) MIN Supply voltage, VS = ([V+] – [V–]) Differential input voltage, VID (2) Input voltage, VI Either input MAX LM358B, LM358BA, LM2904B, LM2904BA ±20 or 40 LM158, LM258, LM358, LM158A, LM258A, LM358A, LM2904V ±16 or 32 LM2904 ±13 or 26 LM358B, LM358BA, LM2904B, LM2904BA,LM158, LM258, LM358, LM158A, LM258A, LM358A, LM2904V –32 32 LM2904 –26 26 LM358B, LM358BA, LM2904B, LM2904BA –0.3 40 LM158, LM258, LM358, LM158A, LM258A, LM358A, LM2904V –0.3 32 LM2904 –0.3 26 Duration of output short circuit (one amplifier) to ground at (or below) TA = 25°C, VS ≤ 15 V (3) Operating ambient temperature, TA Unlimited LM158, LM158A –55 125 LM258, LM258A –25 85 LM358B, LM358BA –40 85 0 70 –40 125 LM358, LM358A LM2904B, LM2904BA, LM2904, LM2904V Operating virtual-junction temperature, TJ Storage temperature, Tstg (1) (2) (3) –65 UNIT V V V s °C 150 °C 150 °C Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. Differential voltages are at IN+, with respect to IN−. Short circuits from outputs to VS can cause excessive heating and eventual destruction. 7.2 ESD Ratings VALUE UNIT LM358B, LM358BA, LM2904B, AND LM2904BA V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±2000 Charged-device model (CDM), per JEDEC specification JESD22-C101 (2) ±1000 V LM158, LM258, LM358, LM158, LM258A, LM358A, LM2904, AND LM2904V V(ESD) (1) (2) 6 Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) Charged-device model (CDM), per JEDEC specification JESD22-C101 ±500 (2) ±1000 V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Copyright © 1976–2019, Texas Instruments Incorporated LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V www.ti.com.cn ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 7.3 Recommended Operating Conditions over operating ambient temperature range (unless otherwise noted) VS Supply voltage, VS= ([V+] – [V–]) VCM Common-mode voltage MIN MAX LM358B, LM358BA, LM2904B, LM2904BA 3 36 LM158, LM258, LM358, LM158A, LM258A, LM358A, LM2904V 3 30 LM2904 TA Operating ambient temperature 3 26 V– V+ – 2 LM358B, LM358BA –40 85 LM2904B, LM2904BA, LM2904, LM2904V –40 125 LM358, LM358A 0 70 LM258, LM258A –20 85 LM158, LM158A –55 125 UNIT V V °C 7.4 Thermal Information LM258, LM258A, LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V (2) THERMAL METRIC (1) LM158, LM158A D (SOIC) DGK (VSSOP) P (PDIP) PS (SO) PW (TSSOP) FK (LCCC) JG (CDIP) UNIT 8 PINS 8 PINS 8 PINS 8 PINS 8 PINS 20 PINS 8 PINS RθJA Junction-to-ambient thermal resistance 124.7 181.4 80.9 116.9 171.7 84.0 112.4 °C/W RθJC(top) Junction-to-case (top) thermal resistance 66.9 69.4 70.4 62.5 68.8 56.9 63.6 °C/W RθJB Junction-to-board thermal resistance 67.9 102.9 57.4 68.6 99.2 57.5 100.3 °C/W ψJT Junction-to-top characterization parameter 19.2 11.8 40 21.9 11.5 51.7 35.7 °C/W ψJB Junction-to-board characterization parameter 67.2 101.2 56.9 67.6 97.9 57.1 93.3 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance — — — — — 10.6 22.3 °C/W (1) (2) For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics. For a listing of which devices are available in what packages, see Device Comparison Table. Copyright © 1976–2019, Texas Instruments Incorporated 7 LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 www.ti.com.cn 7.5 Electrical Characteristics: LM358B and LM358BA VS = (V+) – (V–) = 5 V - 36 V (±2.5 V - ±18 V), TA = 25°C, VCM = VOUT = VS/2, RL = 10k connected to VS/2 (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ±0.3 ±3.0 mV ±4 mV ±2.0 mV OFFSET VOLTAGE LM358B VOS TA = –40°C to +85°C Input offset voltage LM358BA TA = –40°C to +85°C dVOS/dT Input offset voltage drift PSRR Power Supply Rejection Ratio Channel separation, dc ±2.5 TA = -40°C to +85°C (1) f = 1 kHz to 20 kHz mV ±3.5 11 µV/°C ±2 15 µV/V ±1 µV/V INPUT VOLTAGE RANGE VCM Common-mode voltage range VS = 3 V to 36 V VS = 5 V to 36 V CMRR Common-mode rejection ratio TA = –40°C to +85°C (V–) ≤ VCM ≤ (V+) – 1.5 V VS = 3 V to 36 V (V–) ≤ VCM ≤ (V+) – 2.0 V VS = 5 V to 36 V (V–) (V+) – 1.5 V (V–) (V+) – 2 V 20 100 25 316 ±10 ±35 nA ±50 nA 4 nA µV/V TA = –40°C to +85°C INPUT BIAS CURRENT IB Input bias current TA = –40°C to +85°C (1) 0.5 IOS Input offset current dIOS/dT Input offset current drift TA = –40°C to +85°C (1) 5 TA = –40°C to +85°C 10 nA pA/℃ NOISE En Input voltage noise f = 0.1 to 10 Hz en Input voltage noise density f = 1 kHz 3 µVPP 40 nV/√/Hz 10 || 0.1 MΩ|| pF 4 || 1.5 GΩ|| pF INPUT IMPEDANCE ZID Differential ZIC Common-mode OPEN-LOOP GAIN AOL Open-loop voltage gain VS = 15 V; VO = 1 V to 11 V; RL ≥ 10 kΩ, connected to (V-) 70 TA = –40°C to +85°C 140 V/mV 35 V/mV FREQUENCY RESPONSE GBW Gain bandwidth product 1.2 MHz SR Slew rate G=+1 0.5 V/µs Θm Phase margin G = + 1, RL = 10kΩ, CL = 20 pF 56 ° tOR Overload recovery time VIN × gain > VS 10 µs ts Settling time To 0.1%, VS = 5 V, 2-V Step , G = +1, CL = 100 pF 4 µs THD+N Total harmonic distortion + noise G = + 1, f = 1 kHz, VO = 3.53 VRMS, VS = 36V, RL = 100k, IOUT ≤ ±50µA, BW = 80 kHz 0.001 % OUTPUT Positive Rail (V+) VO Voltage output swing from rail Negative Rail (V-) VS = 5 V, RL ≤ 10 kΩ connected to (V–) IO Output current VS = 15 V; VO = V-; VID = 1 V Source (1) VS = 15 V; VO = V+; VID = -1 V Sink (1) IOUT = 50 µA 1.35 1.42 V IOUT = 1 mA 1.4 1.48 V IOUT = 5 mA (1) 1.5 1.61 V IOUT = 50 µA 100 150 mV IOUT = 1 mA 0.75 1 V 5 20 mV TA = –40°C to +85°C -20 TA = –40°C to +85°C ISC Short-circuit current CLOAD Capacitive load drive RO Open-loop output resistance mA 10 TA = –40°C to +85°C VID = -1 V; VO = (V-) + 200 mV 20 5 60 VS = 20 V, (V+) = 10 V, (V-) = -10 V, VO = 0 V -30 -10 100 ±40 f = 1 MHz, IO = 0 A μA ±60 mA 100 pF 300 Ω POWER SUPPLY IQ Quiescent current per amplifier VS = 5 V; IO = 0 A IQ Quiescent current per amplifier VS = 36 V; IO = 0 A (1) 8 300 TA = –40°C to +85°C 460 µA 800 µA Specified by characterization only Copyright © 1976–2019, Texas Instruments Incorporated LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V www.ti.com.cn ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 7.6 Electrical Characteristics: LM2904B and LM2904B VS = (V+) – (V–) = 5 V - 36 V (±2.5 V - ±18 V), TA = 25°C, VCM = VOUT = VS/2, RL = 10k connected to VS/2 (unless otherwise noted) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT ±0.3 ±3.0 mV ±4 mV ±2.0 mV OFFSET VOLTAGE LM2904B VOS TA = –40°C to +125°C Input offset voltage LM2904BA TA = –40°C to +125°C dVOS/dT Input offset voltage drift PSRR Power Supply Rejection Ratio Channel separation, dc ±2.5 TA = –40°C to +125°C (1) f = 1 kHz to 20 kHz mV ±3.5 12 µV/°C ±2 15 µV/V ±1 µV/V INPUT VOLTAGE RANGE VCM Common-mode voltage range VS = 3 V to 36 V VS = 5 V to 36 V CMRR Common-mode rejection ratio TA = –40°C to +125°C (V–) ≤ VCM ≤ (V+) – 1.5 V VS = 3 V to 36 V (V–) ≤ VCM ≤ (V+) – 2.0 V VS = 5 V to 36 V (V–) (V+) – 1.5 V (V–) (V+) – 2 V 20 100 25 316 ±10 ±35 nA ±50 nA 4 nA µV/V TA = –40°C to +125°C INPUT BIAS CURRENT IB Input bias current TA = –40°C to +125°C (1) 0.5 IOS Input offset current dIOS/dT Input offset current drift TA = –40°C to +125°C (1) 5 TA = –40°C to +125°C 10 nA pA/℃ NOISE En Input voltage noise f = 0.1 to 10 Hz en Input voltage noise density f = 1 kHz 3 µVPP 40 nV/√/Hz 10 || 0.1 MΩ|| pF 4 || 1.5 GΩ|| pF INPUT IMPEDANCE ZID Differential ZIC Common-mode OPEN-LOOP GAIN AOL Open-loop voltage gain VS = 15 V; VO = 1 V to 11 V; RL ≥ 10 kΩ, connected to (V-) 70 TA = –40°C to +125°C 140 V/mV 35 V/mV FREQUENCY RESPONSE GBW Gain bandwidth product 1.2 MHz SR Slew rate G=+1 0.5 V/µs Θm Phase margin G = + 1, RL = 10kΩ, CL = 20 pF 56 ° tOR Overload recovery time VIN × gain > VS 10 µs ts Settling time To 0.1%, VS = 5 V, 2-V Step , G = +1, CL = 100 pF 4 µs THD+N Total harmonic distortion + noise G = + 1, f = 1 kHz, VO = 3.53 VRMS, VS = 36V, RL = 100k, IOUT ≤ ±50µA, BW = 80 kHz 0.001 % OUTPUT Positive Rail (V+) VO Voltage output swing from rail Negative Rail (V-) VS = 5 V, RL ≤ 10 kΩ connected to (V–) IO Output current VS = 15 V; VO = V-; VID = 1V Source (1) VS = 15 V; VO = V+; VID = -1 V Sink (1) IOUT = 50 µA 1.35 1.42 V IOUT = 1 mA 1.4 1.48 V IOUT = 5 mA (1) 1.5 1.61 V IOUT = 50 µA 100 150 mV IOUT = 1 mA 0.75 1 V 5 20 mV TA = –40°C to +125°C -20 TA = –40°C to +125°C ISC Short-circuit current CLOAD Capacitive load drive RO Open-loop output resistance mA 10 TA = –40°C to +125°C VID = -1 V; VO = (V-) + 200 mV 20 5 60 VS = 20 V, (V+) = 10 V, (V-) = -10 V, VO = 0 V -30 -10 100 ±40 f = 1 MHz, IO = 0 A μA ±60 mA 100 pF 300 Ω POWER SUPPLY IQ Quiescent current per amplifier VS = 5 V; IO = 0 A IQ Quiescent current per amplifier VS = 36 V; IO = 0 A (1) 300 TA = –40°C to +125°C 460 µA 800 µA Specified by characterization only Copyright © 1976–2019, Texas Instruments Incorporated 9 LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 www.ti.com.cn 7.7 Electrical Characteristics: LM358, LM358A For VS = (V+) – (V–) = 5 V, TA = 25 °C, (unless otherwise noted) TEST CONDITIONS (1) PARAMETER MIN TYP (2) MAX 3 7 UNIT OFFSET VOLTAGE LM358 VOS Input offset voltage VS = 5 V to 30 V; VCM = 0 V; VO = 1.4 V TA = 0°C to 70°C 9 mV LM358A 2 TA = 0°C to 70°C dVOS/dT Input offset voltage drift PSRR Input offset voltage vs power supply (ΔVIO/ΔVS) VS = 5 V to 30 V VO1/ VO2 Channel separation f = 1 kHz to 20 kHz 3 5 LM358 TA = 0°C to 70°C 7 LM358A TA = 0°C to 70°C 7 µV/°C 65 20 100 dB 120 dB INPUT VOLTAGE RANGE VCM Common-mode voltage range CMRR Common-mode rejection ratio VS = 5 V to 30 V LM358 VS = 30 V LM358A VS = 5 V to 30 V LM358 VS = 30 V LM358A (V–) (V+) – 1.5 (V–) (V+) – 2 V TA = 0°C to 70°C VS = 5 V to 30 V; VCM = 0 V 65 80 dB INPUT BIAS CURRENT –20 –250 LM358 IB Input bias current TA = 0°C to 70°C VO = 1.4 V –500 nA –15 –100 LM358A TA = 0°C to 70°C –200 2 50 LM358 IOS Input offset current TA = 0°C to 70°C VO = 1.4 V 150 nA 2 30 LM358A TA = 0°C to 70°C 75 10 dIOS/dT Input offset current drift pA/°C LM358A TA = 0°C to 70°C 300 NOISE en Input voltage noise density f = 1 kHz 40 nV/√Hz OPEN-LOOP GAIN AOL Open-loop voltage gain 25 VS = 15 V; VO = 1 V to 11 V; RL ≥ 2 kΩ 100 V/mV TA = 0°C to 70°C 15 FREQUENCY RESPONSE GBW Gain bandwidth product SR Slew rate G = +1 0.7 MHz 0.3 V/µs OUTPUT VS = 30 V; RL = 2 kΩ Positive rail VO Voltage output swing from rail TA = 0°C to 70°C 4 VS = 30 V; RL ≥ 10 kΩ 2 VS = 5 V; RL ≥ 2 kΩ Negative rail VS = 5 V; RL ≤ 10 kΩ TA = 0°C to 70°C 5 –20 VS = 15 V; VO = 0 V; VID =1V IO Source VS = 15 V; VO = 15 V; VID = –1 V Short-circuit current 20 mV –60 –10 10 mA 20 Sink TA = 0°C to 70°C VID = –1 V; VO = 200 mV ISC V –30 LM358A TA = 0°C to 70°C Output current 3 1.5 5 12 VS = 10 V; VO = VS / 2 30 ±40 µA ±60 mA POWER SUPPLY IQ (1) (2) 10 Quiescent current per amplifier VO = 2.5 V; IO = 0 A VS = 30 V; VO = 15 V; IO = 0 A TA = 0°C to 70°C 350 600 500 1000 µA All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. Maximum VS for testing purposes is 30 V for LM358 and LM358A. All typical values are TA = 25°C. 版权 © 1976–2019, Texas Instruments Incorporated LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V www.ti.com.cn ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 7.8 Electrical Characteristics: LM2904, LM2904V For VS = (V+) – (V–) = 5 V, TA = 25 °C, (unless otherwise noted) TEST CONDITIONS (1) PARAMETER MIN TYP (2) MAX UNIT OFFSET VOLTAGE VOS Input offset voltage VS = 5 V to maximum; VCM = 0 V; VO = 1.4 V dVOS/dT Input offset voltage drift PSRR Input offset voltage vs power supply (ΔVIO/ΔVS) VS = 5 V to 30 V VO1/ VO2 Channel separation f = 1 kHz to 20 kHz Non-A suffix devices A-suffix devices 3 TA = –40°C to 125°C 7 10 mV 1 TA = –40°C to 125°C 2 4 TA = –40°C to 125°C 7 65 µV/°C 100 dB 120 dB INPUT VOLTAGE RANGE VCM Common-mode voltage range CMRR Common-mode rejection ratio VS = 5 V to maximum (V–) (V+) – 1.5 (V–) (V+) – 2 V TA = –40°C to 125°C VS = 5 V to maximum; VCM = 0 V 65 80 dB INPUT BIAS CURRENT –20 IB Input bias current VO = 1.4 V Non-V suffix device IOS Input offset current VO = 1.4 V V-suffix device dIOS/dT –250 nA TA = –40°C to 125°C Input offset current drift –500 2 TA = –40°C to 125°C 50 300 nA 2 TA = –40°C to 125°C 50 150 TA = –40°C to 125°C 10 pA/°C 40 nV/√Hz NOISE en Input voltage noise density f = 1 kHz OPEN-LOOP GAIN AOL Open-loop voltage gain VS = 15 V; VO = 1 V to 11 V; RL ≥ 2 kΩ 25 100 V/mV TA = –40°C to 125°C 15 FREQUENCY RESPONSE GBW Gain bandwidth product SR Slew rate G = +1 0.7 MHz 0.3 V/µs OUTPUT RL ≥ 10 kΩ Non-V suffix device Positive rail VO VS – 1.5 VS = maximum; RL = 2 kΩ Voltage output swing from rail VS = maximum; RL = 2 kΩ V-suffix device Negative rail 4 VS = maximum; RL ≥ 10 kΩ 2 TA = –40°C to 125°C –20 VS = 15 V; VO = 0 V; VID = 1 V Source VS = 15 V; VO = 15 V; VID = –1 V Sink TA = –40°C to 125°C Output current TA = –40°C to 125°C ISC Short-circuit current 5 5 20 mV –30 mA 20 5 Non-V suffix device VID = -1 V; VO = 200 mV 4 –10 10 IO V 6 VS = maximum; RL ≥ 10 kΩ VS = 5 V; RL ≤ 10 kΩ 3 TA = –40°C to 125°C 30 µA V-suffix device 12 VS = 10 V; VO = VS / 2 40 ±40 ±60 mA POWER SUPPLY IQ (1) (2) Quiescent current per amplifier VO = 2.5 V; IO = 0 A VS = maximum; VO = maximum / 2; IO = 0 A TA = –40°C to 125°C 350 600 500 1000 µA All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. Maximum VS for testing purposes is 26 V for LM2904 and 32 V for LM2904V. All typical values are TA = 25°C. 版权 © 1976–2019, Texas Instruments Incorporated 11 LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 www.ti.com.cn 7.9 Electrical Characteristics: LM158, LM158A For VS = (V+) – (V–) = 5 V, TA = 25 °C, (unless otherwise noted) TEST CONDITIONS (1) PARAMETER MIN TYP (2) MAX 3 5 UNIT OFFSET VOLTAGE LM158 VOS Input offset voltage TA = –55°C to 125°C VS = 5 V to 30 V; VCM = 0 V; VO = 1.4 V 7 mV 2 LM158A TA = –55°C to 125°C dVOS/dT Input offset voltage drift PSRR Input offset voltage vs power supply (ΔVIO/ΔVS) VS = 5 V to 30 V VO1/ VO2 Channel separation f = 1 kHz to 20 kHz 4 LM158 TA = –55°C to 125°C 7 LM158A TA = –55°C to 125°C 7 65 15 (3) µV/°C 100 dB 120 dB INPUT VOLTAGE RANGE VCM Common-mode voltage range CMRR Common-mode rejection ratio VS = 5 V to 30 V LM158 VS = 30 V LM158A VS = 5 V to 30 V LM158 VS = 30 V LM158A (V–) (V+) – 1.5 (V–) (V+) – 2 V TA = –55°C to 125°C VS = 5 V to 30 V; VCM = 0 V 70 80 dB INPUT BIAS CURRENT –20 –150 LM158 IB Input bias current TA = –55°C to 125°C VO = 1.4 V –300 nA –15 –50 LM158A TA = –55°C to 125°C –100 2 30 LM158 IOS Input offset current TA = –55°C to 125°C VO = 1.4 V 100 nA 2 10 LM158A TA = –55°C to 125°C 30 10 dIOS/dT Input offset current drift pA/°C LM158A TA = –55°C to 125°C 200 NOISE en Input voltage noise density f = 1 kHz 40 nV/√Hz OPEN-LOOP GAIN AOL Open-loop voltage gain 50 VS = 15 V; VO = 1 V to 11 V; RL ≥ 2 kΩ 100 V/mV TA = –55°C to 125°C 25 FREQUENCY RESPONSE GBW Gain bandwidth product SR Slew rate G = +1 0.7 MHz 0.3 V/µs OUTPUT VS = 30 V; RL = 2 kΩ Positive rail VO Voltage output swing from rail TA = –55°C to 125°C 4 VS = 30 V; RL ≥ 10 kΩ 2 VS = 5 V; RL ≥ 2 kΩ Negative rail VS = 5 V; RL ≤ 10 kΩ TA = –55°C to 125°C 5 –20 VS = 15 V; VO = 0 V; VID = 1 V IO Source VS = 15 V; VO = 15 V; VID = –1 V Short-circuit current 20 mV –60 –10 10 mA 20 Sink TA = –55°C to 125°C VID = –1 V; VO = 200 mV ISC V –30 LM158A TA = –55°C to 125°C Output current 3 1.5 5 12 VS = 10 V; VO = VS / 2 30 ±40 µA ±60 mA POWER SUPPLY IQ (1) (2) (3) 12 Quiescent current per amplifier VO = 2.5 V; IO = 0 A VS = 30 V; VO = 15 V; IO = 0 A TA = –55°C to 125°C 350 600 500 1000 µA All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. Maximum VS for testing purposes is 30 V for LM158 and LM158A. All typical values are TA = 25°C. On products compliant to MIL-PRF-38535, this parameter is not production tested. 版权 © 1976–2019, Texas Instruments Incorporated LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V www.ti.com.cn ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 7.10 Electrical Characteristics: LM258, LM258A For VS = (V+) – (V–) = 5 V, TA = 25 °C, (unless otherwise noted) TEST CONDITIONS (1) PARAMETER MIN TYP (2) MAX 3 5 UNIT OFFSET VOLTAGE LM258 VOS Input offset voltage TA = –25°C to 85°C VS = 5 V to 30 V; VCM = 0 V; VO = 1.4 V 7 mV 2 3 LM258A TA = –25°C to 85°C 4 LM258 dVOS/dT Input offset voltage drift PSRR Input offset voltage vs power supply (ΔVIO/ΔVS) VS = 5 V to 30 V VO1/ VO2 Channel separation f = 1 kHz to 20 kHz LM258A 7 TA = –25°C to 85°C µV/°C 7 65 15 100 dB 120 dB INPUT VOLTAGE RANGE VCM Common-mode voltage range CMRR Common-mode rejection ratio VS = 5 V to 30 V LM258 VS = 30 V LM258A VS = 5 V to 30 V LM258 VS = 30 V LM258A (V–) (V+) – 1.5 (V–) (V+) – 2 V TA = –25°C to 85°C VS = 5 V to 30 V; VCM = 0 V 70 80 dB INPUT BIAS CURRENT –20 –150 LM258 IB Input bias current TA = –25°C to 85°C VO = 1.4 V –300 nA –15 –80 LM258A TA = –25°C to 85°C –100 2 30 LM258 IOS Input offset current TA = –25°C to 85°C VO = 1.4 V 100 nA 2 15 LM258A TA = –25°C to 85°C 30 10 dIOS/dT Input offset current drift pA/°C LM258A TA = –25°C to 85°C 200 NOISE en Input voltage noise density f = 1 kHz 40 nV/√Hz OPEN-LOOP GAIN AOL Open-loop voltage gain 50 VS = 15 V; VO = 1 V to 11 V; RL ≥ 2 kΩ 100 V/mV TA = –25°C to 85°C 25 FREQUENCY RESPONSE GBW Gain bandwidth product SR Slew rate G = +1 0.7 MHz 0.3 V/µs OUTPUT VS = 30 V; RL = 2 kΩ Positive rail VO Voltage output swing from rail TA = –25°C to 85°C 4 VS = 30 V; RL ≥ 10 kΩ 2 VS = 5 V; RL ≥ 2 kΩ Negative rail VS = 5 V; RL ≤ 10 kΩ TA = –25°C to 85°C 5 –20 VS = 15 V; VO = 0 V; VID = 1 V IO Source VS = 15 V; VO = 15 V; VID = –1 V Short-circuit current 20 mV –60 –10 10 mA 20 Sink TA = –25°C to 85°C VID = –1 V; VO = 200 mV ISC V –30 LM258A TA = –25°C to 85°C Output current 3 1.5 5 12 VS = 10 V; VO = VS / 2 30 ±40 µA ±60 mA POWER SUPPLY IQ (1) (2) Quiescent current per amplifier VO = 2.5 V; IO = 0 A VS = 30 V; VO = 15 V; IO = 0 A TA = –25°C to 85°C 350 600 500 1000 µA All characteristics are measured under open-loop conditions, with zero common-mode input voltage, unless otherwise specified. Maximum VS for testing purposes is 30 V for LM258 and LM258A. All typical values are TA = 25°C. 版权 © 1976–2019, Texas Instruments Incorporated 13 LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 www.ti.com.cn 7.11 Typical Characteristics 20 30 18 27 16 24 14 21 Amplifiers (%) Amplifiers (%) Typical characteristics section is applicable for LM358B and LM2904B. The typical characteristics data section was taken with TA = 25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted). 12 10 8 18 15 12 6 9 4 6 2 3 0 -1800 0 -1200 -600 0 600 Offset Voltage (µV) 1200 1800 0 DC11 0.25 0.5 0.75 1 1.25 1.5 1.75 2 Offset Voltage Drift (µV/°C) 750 500 450 300 150 -150 -450 -750 -40 100 -100 -300 -20 0 20 40 60 Temperature (°C) 80 100 -500 -18 120 80 90 60 70 80 60 70 50 60 40 50 30 40 20 30 10 20 10 Gain (dB) Phase (°) -20 10k 100k Frequency (Hz) 12 17 DC10 40 30 20 10 0 -10 -20 -10 -30 1M G=1 G = 10 G = 100 G = 1000 G = –1 50 0 1k D012 图 5. Open-Loop Gain and Phase vs Frequency 14 Closed Lopp Voltage Gain (dB) 70 0 -6 0 6 Common-Mode Voltage (V) 图 4. Offset Voltage vs Common-Mode Voltage 100 Phase ( ) Open Loop Voltage Gain (dB) 图 3. Offset Voltage vs Temperature 1k -12 DC10 90 -10 DC12 图 2. Offset Voltage Drift Distribution Offset Voltage (µV) Offset Voltage (µV) 图 1. Offset Voltage Production Distribution 2.25 2.5 2.75 10k 100k Frequency (Hz) 1M D017 图 6. Closed-Loop Gain vs Frequency 版权 © 1976–2019, Texas Instruments Incorporated LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V www.ti.com.cn ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 Typical Characteristics (接 接下页) Typical characteristics section is applicable for LM358B and LM2904B. The typical characteristics data section was taken with TA = 25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted). -5 120 IB+ IB– Input Offset Current (pA) 100 Input Bias Current (nA) -7.5 -10 -12.5 80 60 40 20 0 -20 -15 -20 -15 -10 -5 0 5 10 Common-Mode Voltage (V) 15 -40 -20 20 -10 -5 0 5 10 Common-Mode Voltage (V) 15 20 DC3I 图 8. Input Offset Current vs Common-Mode Voltage 0.06 -7 0.045 Input Offset Current (nA) Input Bias Current (nA) 图 7. Input Bias Current vs Common-Mode Voltage -6 -8 -9 IB+ IB– -10 -15 DC3I 0.03 0.015 0 -0.015 -11 -12 -40 -10 20 50 Temperature (°C) 80 110 -0.03 -40 130 -10 20 50 Temperature (°C) DCIB 图 9. Input Bias Current vs Temperature 80 110 130 DCIO 图 10. Input Offset Current vs Temperature V+ (V–) + 18 V –40 C 25 C 125 C (V–) + 15 V Output Voltage (V) Output Voltage (V) (V+) – 3 V (V+) – 6 V (V–) + 12 V (V–) + 9 V (V–) + 6 V (V+) – 9 V –40 C 25 C 125 C (V–) + 3 V V– (V+) – 12 V 0 10 20 30 Output Current (mA) 图 11. Output Voltage Swing vs Output Current (Sourcing) 版权 © 1976–2019, Texas Instruments Incorporated 40 50 DC13 0 5 10 15 20 25 Output Current (mA) 30 35 40 DC1- 图 12. Output Voltage Swing vs Output Current (Sinking) 15 LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 www.ti.com.cn Typical Characteristics (接 接下页) Typical characteristics section is applicable for LM358B and LM2904B. The typical characteristics data section was taken with TA = 25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted). 120 100 90 PSRR and CMRR (dB) 80 Common-Mode Rejection Ratio (dB) PSRR+ PSRRCMRR 70 60 50 40 30 20 10 10k 100k Frequency (Hz) 110 105 100 95 90 VS = 36V VS = 5V 85 -40 0 1k 115 1M 20 50 Temperature (°C) D001 图 13. CMRR and PSRR vs Frequency 80 110 130 DC2_ 图 14. Common-Mode Rejection Ratio vs Temperature (dB) -118 1.6 1.2 -119 0.8 Voltage (µV) Power Supply Rejection Ratio (dB) -10 -120 -121 0.4 0 -0.4 -0.8 -1.2 -122 -1.6 -123 -40 -2 -20 0 20 40 60 80 Temperature (°C) 100 120 0 140 1 2 3 DC8_ 4 5 6 Time (s) 7 8 9 10 D011 VS = 5 V to 36 V 图 16. 0.1-Hz to 10-Hz Noise 100 -32 90 -40 80 -48 70 -56 THD+N (dB) Voltage Noise Spectral Density (nV/—Hz) 图 15. Power Supply Rejection Ratio vs Temperature (dB) 60 50 40 -64 -72 -80 -88 30 20 -96 10 -104 0 10 10 k 2k -112 100 1k Frequency (Hz) 10k 100k D010 100 1k Frequency (Hz) 10k D013 G = 1, f = 1 kHz, BW = 80 kHz, VOUT = 10 VPP, RL connected to V– 图 17. Input Voltage Noise Spectral Density vs Frequency 16 图 18. THD+N Ratio vs Frequency, G = 1 版权 © 1976–2019, Texas Instruments Incorporated LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V www.ti.com.cn ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 Typical Characteristics (接 接下页) Typical characteristics section is applicable for LM358B and LM2904B. The typical characteristics data section was taken with TA = 25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted). -32 -40 -48 -50 -56 -60 THD+N (dB) THD+N (dB) -40 -30 10 k 2k -64 -72 -70 -80 -80 -90 -88 -100 -96 -110 -104 100 1k Frequency (Hz) 10 k 2k -120 0.001 10k G = –1, f = 1 kHz, BW = 80 kHz, VOUT = 10 VPP, RL connected to V– 0.1 Amplitude (VPP) 1 10 20 D015 G = 1, f = 1 kHz, BW = 80 kHz, RL connected to V– 图 19. THD+N Ratio vs Frequency, G = –1 图 20. THD+N vs Output Amplitude, G = 1 -20 460 -35 430 Quiescent Current (µA) THD+N (dB) 0.01 D014 -50 -65 -80 400 370 340 310 -95 10 k 2k 280 -110 0.001 0.01 0.1 Amplitude (VPP) 1 3 10 20 9 15 21 Supply Voltage (V) D016 27 33 36 DC_S G = –1, f = 1 kHz, BW = 80 kHz, RL connected to V– 图 21. THD+N vs Output Amplitude, G = –1 图 22. Quiescent Current vs Supply Voltage 540 500 VS = 36V VS = 5V Open Loop Output Impedance ( ) Quiescent Current per Amplifier (µA) 600 480 420 360 300 240 -40 -20 0 20 40 60 Temperature (°C) 80 100 图 23. Quiescent Current vs Temperature 版权 © 1976–2019, Texas Instruments Incorporated 120 DC4_ 400 300 200 100 1k 10k 100k Frequency (Hz) 1M D006 图 24. Open-Loop Output Impedance vs Frequency 17 LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 www.ti.com.cn Typical Characteristics (接 接下页) Typical characteristics section is applicable for LM358B and LM2904B. The typical characteristics data section was taken with TA = 25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted). 44 18 Overshoot (+) Overshoot (-) 36 14 32 12 28 24 20 10 8 6 16 4 12 2 8 0 40 80 Overshoot (+) Overshoot (–) 16 Overshoot (%) Overshoot (%) 40 120 160 200 240 Capacitance load (pF) 280 320 0 40 360 G = 1, 100-mV output step, RL = open 120 160 200 240 Capacitance load (pF) 280 320 360 D020 G = –1, 100-mV output step, RL = open 图 25. Small-Signal Overshoot vs Capacitive Load 图 26. Small-Signal Overshoot vs Capacitive Load 20 60 Input Output 57 54 10 51 Voltage (V) Phase Margin (°) 80 D019 48 45 42 39 0 -10 36 33 -20 30 0 40 80 120 160 200 240 Capacitance Load (pF) 280 320 0 360 200 D018 400 600 Time ( s) 800 1000 D021 G = –10 图 28. Overload Recovery 10 7.5 7.5 5 5 Voltage (mV) Voltage (mV) 图 27. Phase Margin vs Capacitive Load 10 2.5 0 -2.5 -5 0 -2.5 -5 -7.5 -7.5 Input Output -10 Input Output -10 0 20 40 60 80 Time ( s) G = 1, RL = open 图 29. Small-Signal Step Response, G = 1 18 2.5 100 D022 0 20 40 60 80 Time ( s) 100 D023 G = –1, RL = open, RFB = 10K 图 30. Small-Signal Step Response, G = –1 版权 © 1976–2019, Texas Instruments Incorporated LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V www.ti.com.cn ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 Typical Characteristics (接 接下页) 20 40 16 32 Output Delta from Final Value (mV) Output Delta from Final Value (mV) Typical characteristics section is applicable for LM358B and LM2904B. The typical characteristics data section was taken with TA = 25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted). 12 8 4 0 -4 -8 -12 -16 24 16 8 0 -8 -16 -24 -32 -20 -40 0 0.5 1 1.5 2 2.5 3 Time ( s) 3.5 4 4.5 5 0 0.5 1 1.5 G = 1, RL = open 2.5 3 Time ( s) 3.5 4 4.5 5 D004 G = 1, RL = open 图 31. Large-Signal Step Response (Rising) 图 32. Large-Signal Step Response (Falling) 2.5 0.675 Output Input 2 Positive Negative 1.5 0.625 Slew Rate(V/ s) 1 Votlage (V) 2 D003 0.5 0 -0.5 -1 -1.5 0.575 0.525 0.475 -2 -2.5 0 20 40 60 80 100 Time (µs) 0.425 -40 -25 -10 5 20 AC_S 35 50 65 Temp( C) 80 95 110 125 D009 G = 1, RL = open 图 34. Slew Rate vs Temperature 图 33. Large-Signal Step Response Short-Circuit Current (mA) 40 20 Sinking Sourcing 0 -20 -40 -60 -40 -25 -10 5 20 35 50 65 Temperature (°C) 80 95 110 125 DC7_ Maximum Output Voltage (V PP) 60 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 1k 10k 100k Frequency (Hz) 1M D005 VS = 15 V 图 35. Short-Circuit Current vs Temperature 版权 © 1976–2019, Texas Instruments Incorporated 图 36. Maximum Output Voltage vs Frequency 19 LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 www.ti.com.cn Typical Characteristics (接 接下页) Typical characteristics section is applicable for LM358B and LM2904B. The typical characteristics data section was taken with TA = 25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted). -75 90 84 78 72 -95 EMIRR (dB) Channel Separation (dB) -85 -105 -115 66 60 54 48 42 36 -125 30 -135 1k 10k 100k Frequency (Hz) 图 37. Channel Separation vs Frequency 20 24 1M 1M D008 10M 100M Frequency (Hz) 1G D007 图 38. EMIRR (Electromagnetic Interference Rejection Ratio) vs Frequency 版权 © 1976–2019, Texas Instruments Incorporated LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V www.ti.com.cn ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 7.12 Typical Characteristics Typical characteristics section is applicable for LM158, LM158A, LM258, LM258A, LM358, LM358A, LM2904, and LM2904V. 20 0.36 18 0.34 –55C 0C 125C Supply Current (mA) Input Current (nAdc) 16 14 12 10 8 5Vdc 15Vdc 30Vdc 6 4 0.32 0.3 0.28 0.26 0.24 0.22 2 0 –55 –35 –15 5 45 25 65 Temperature (°C) 85 105 0.2 125 0 5 图 39. Input Current vs Temperature 25 30 图 40. Supply Current vs Supply Voltage 160 100 CMRR 90 RL=20K RL=2K 140 80 120 70 100 CMRR (dB) Avol Voltage Gain (dB) 10 15 20 Supply Voltage (Vdc) 80 60 60 50 40 30 40 20 20 10 0 0 0 5 10 15 20 25 30 V+ Supply Voltage (Vdc) 35 0.1 40 10 100 1000 Frequency (kHz) 图 41. Voltage Gain vs Supply Voltage C001 图 42. Common-Mode Rejection Ratio vs Frequency 0.50 3.5 VOUT 3.0 0.45 Voltage (V) 2.5 Voltage (V) 1 2.0 1.5 0.40 0.35 0.30 1.0 0.25 0.5 VOUT 0.20 0.0 0 4 8 12 16 20 24 Time ( s) 28 32 36 40 C001 图 43. Voltage Follower Large Signal Response (50 pF) 版权 © 1976–2019, Texas Instruments Incorporated 0 2 4 6 Time ( s) 8 10 C001 图 44. Voltage Follower Small Signal Response (50 pF) 21 LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 www.ti.com.cn Typical Characteristics (接 接下页) Typical characteristics section is applicable for LM158, LM158A, LM258, LM258A, LM358, LM358A, LM2904, and LM2904V. 8 Output Voltage (Vdc) relative to Vcc 20 17.5 Output Swing (Vp-p) 15 12.5 10 7.5 5 2.5 0 1 10 100 Frequency (kHz) 7 6 5 4 3 2 1 0.001 1k 图 45. Maximum Output Swing vs Frequency (VCC = 15 V) 0.1 1 Output Sink Current (mAdc) 10 100 图 46. Output Sourcing Characteristics 90 10 5Vdc 15Vdc 30Vdc 80 Output Current (mAdc) Output Voltage (Vdc) 0.01 1 0.1 70 60 50 40 30 20 10 0.01 0.001 0 0.01 0.1 1 10 Output Sink Current (mAdc) 图 47. Output Sinking Characteristics 22 100 –55 –35 –15 5 45 25 65 Temperature (°C) 85 105 125 图 48. Source Current Limiting 版权 © 1976–2019, Texas Instruments Incorporated LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V www.ti.com.cn ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 8 Parameter Measurement Information 900 Ω VCC+ VCC+ − VI VO + 100 Ω − VI = 0 V RS VCC− CL RL VO + VCC− 图 49. Unity-Gain Amplifier 图 50. Noise-Test Circuit 10 k – +18V VIN + RL -18V GND GND 图 51. Test Circuit, G = –1, for THD+N and Small-Signal Step Response 版权 © 1976–2019, Texas Instruments Incorporated 23 LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 www.ti.com.cn 9 Detailed Description 9.1 Overview These devices consist of two independent, high-gain frequency-compensated operational amplifiers designed to operate from a single supply over a wide range of voltages. Operation from split supplies also is possible if the difference between the two supplies is within the supply voltage range specified in the Recommended Operating Conditions section, and VS is at least 1.5 V more positive than the input common-mode voltage. The low supplycurrent drain is independent of the magnitude of the supply voltage. Applications include transducer amplifiers, dc amplification blocks, and all the conventional operational amplifier circuits that now can be implemented more easily in single-supply-voltage systems. For example, these devices can be operated directly from the standard 5-V supply used in digital systems and easily can provide the required interface electronics without additional ±5-V supplies. 9.2 Functional Block Diagram - LM358B, LM358BA, LM2904B, LM2904BA VCC+ ~6 µA Curren t Regula tor ~6 µA Curren t Regula tor ~100 µA Curren t Regula tor IN- IN+ 24 OUT ~120 µA Curren t Regula tor 版权 © 1976–2019, Texas Instruments Incorporated LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V www.ti.com.cn ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 9.3 Feature Description 9.3.1 Unity-Gain Bandwidth The unity-gain bandwidth is the frequency up to which an amplifier with a unity gain may be operated without greatly distorting the signal. These devices have a 1.2-MHz unity-gain bandwidth (B Version). 9.3.2 Slew Rate The slew rate is the rate at which an operational amplifier can change its output when there is a change on the input. These devices have a 0.5-V/µs slew rate (B Version). 9.3.3 Input Common Mode Range The valid common mode range is from device ground to VS – 1.5 V (VS – 2 V across temperature). Inputs may exceed VS up to the maximum VS without device damage. At least one input must be in the valid input commonmode range for the output to be the correct phase. If both inputs exceed the valid range, then the output phase is undefined. If either input more than 0.3 V below V– then input current should be limited to 1 mA and the output phase is undefined. 9.4 Device Functional Modes These devices are powered on when the supply is connected. This device can be operated as a single-supply operational amplifier or dual-supply amplifier, depending on the application. 版权 © 1976–2019, Texas Instruments Incorporated 25 LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 www.ti.com.cn 10 Application and Implementation 注 Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 10.1 Application Information The LMx58 and LM2904 operational amplifiers are useful in a wide range of signal conditioning applications. Inputs can be powered before VS for flexibility in multiple supply circuits. 10.2 Typical Application A typical application for an operational amplifier is an inverting amplifier. This amplifier takes a positive voltage on the input, and makes it a negative voltage of the same magnitude. In the same manner, it also makes negative voltages positive. RF RI Vsup+ VOUT VIN + Vsup- 图 52. Application Schematic 10.2.1 Design Requirements The supply voltage must be chosen such that it is larger than the input voltage range and output range. For instance, this application scales a signal of ±0.5 V to ±1.8 V. Setting the supply at ±12 V is sufficient to accommodate this application. 10.2.2 Detailed Design Procedure Determine the gain required by the inverting amplifier using 公式 1 and 公式 2: VOUT AV VIN 1.8 AV 3.6 0.5 (1) (2) Once the desired gain is determined, choose a value for RI or RF. [Subscripts should be fixed in the accompanying figures and equations also.] Choosing a value in the kilohm range is desirable because the amplifier circuit uses currents in the milliampere range. This ensures the part does not draw too much current. This example uses 10 kΩ for RI which means 36 kΩ is used for RF. This was determined by 公式 3. RF AV (3) RI 26 版权 © 1976–2019, Texas Instruments Incorporated LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V www.ti.com.cn ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 Typical Application (接 接下页) 10.2.3 Application Curve 2 VIN 1.5 VOUT 1 Volts 0.5 0 -0.5 -1 -1.5 -2 0 0.5 1 Time (ms) 1.5 2 图 53. Input and Output Voltages of the Inverting Amplifier 11 Power Supply Recommendations CAUTION Supply voltages larger than specified in the recommended operating region can permanently damage the device (see the Absolute Maximum Ratings). Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or highimpedance power supplies. For more detailed information on bypass capacitor placement, see the Layout section. 12 Layout 12.1 Layout Guidelines For best operational performance of the device, use good PCB layout practices, including: • Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low-impedance power sources local to the analog circuitry. – Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as close to the device as possible. A single bypass capacitor from V+ to ground is applicable for singlesupply applications. • Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes. A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital and analog grounds, paying attention to the flow of the ground current. • To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If it is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as opposed to in parallel with the noisy trace. [Things in parallel never cross, by definition] • Place the external components as close to the device as possible. Keeping RF and RG close to the inverting input minimizes parasitic capacitance, as shown in Layout Examples. • Keep the length of input traces as short as possible. Always remember that the input traces are the most sensitive part of the circuit. • Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce leakage currents from nearby traces that are at different potentials. 版权 © 1976–2019, Texas Instruments Incorporated 27 LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 www.ti.com.cn 12.2 Layout Examples Place components close to device and to each other to reduce parasitic errors Run the input traces as far away from the supply lines as possible VS+ RF OUT1 V+ GND IN1í OUT2 VIN IN1+ IN2í Ví IN2+ RG GND R IN Only needed for dual-supply operation GND Use low-ESR, ceramic bypass capacitor VSí (or GND for single supply) Ground (GND) plane on another layer 图 54. Operational Amplifier Board Layout for Noninverting Configuration RIN VIN + VOUT RG RF 图 55. Operational Amplifier Schematic for Noninverting Configuration 28 版权 © 1976–2019, Texas Instruments Incorporated LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V www.ti.com.cn ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 13 器件和文档支持 13.1 文档支持 13.1.1 相关文档 • 德州仪器 (TI),《电路板布局技巧》。 13.2 相关链接 下表列出了快速访问链接。类别包括技术文档、支持和社区资源、工具和软件,以及立即订购快速访问。 表 1. 相关链接 器件 产品文件夹 立即订购 技术文档 工具与软件 支持和社区 LM158 单击此处 单击此处 单击此处 单击此处 单击此处 LM158A 单击此处 单击此处 单击此处 单击此处 单击此处 LM258 单击此处 单击此处 单击此处 单击此处 单击此处 LM258A 单击此处 单击此处 单击此处 单击此处 单击此处 LM358 单击此处 单击此处 单击此处 单击此处 单击此处 LM358A 单击此处 单击此处 单击此处 单击此处 单击此处 LM358B中为 LM358B 和 LM2904B 器件添 加了预览标识 单击此处 单击此处 单击此处 单击此处 单击此处 LM2904 单击此处 单击此处 单击此处 单击此处 单击此处 LM2904B 单击此处 单击此处 单击此处 单击此处 单击此处 LM2904V 单击此处 单击此处 单击此处 单击此处 单击此处 13.3 接收文档更新通知 要接收文档更新通知,请导航至 ti.com. 上的器件产品文件夹。单击右上角的通知我进行注册,即可每周接收产品 信息更改摘要。有关更改的详细信息,请查看任何已修订文档中包含的修订历史记录。 13.4 社区资源 TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight from the experts. Search existing answers or ask your own question to get the quick design help you need. Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. 13.5 商标 E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 13.6 静电放电警告 ESD 可能会损坏该集成电路。德州仪器 (TI) 建议通过适当的预防措施处理所有集成电路。如果不遵守正确的处理措施和安装程序 , 可 能会损坏集成电路。 ESD 的损坏小至导致微小的性能降级 , 大至整个器件故障。 精密的集成电路可能更容易受到损坏 , 这是因为非常细微的参数更改都可 能会导致器件与其发布的规格不相符。 13.7 术语表 SLYZ022 - TI 术语表。 本术语表列出并解释了术语、首字母缩略词和定义。 版权 © 1976–2019, Texas Instruments Incorporated 29 LM158, LM158A, LM258, LM258A LM358, LM358A, LM358B, LM358BA, LM2904, LM2904B, LM2904BA, LM2904V ZHCSIT6W – JUNE 1976 – REVISED OCTOBER 2019 www.ti.com.cn 14 机械、封装和可订购信息 以下页中包括机械、封装和可订购信息。这些信息是针对指定器件可提供的最新数据。数据如有变更,恕不另行通 知和修订此文档。如需获取此数据表的浏览器版本,请查看左侧的导航面板。 30 版权 © 1976–2019, Texas Instruments Incorporated PACKAGE OPTION ADDENDUM www.ti.com 7-Aug-2021 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) 5962-87710012A ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 596287710012A LM158FKB 5962-8771001PA ACTIVE CDIP JG 8 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 8771001PA LM158 5962-87710022A ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 596287710022A LM158AFKB 5962-8771002PA ACTIVE CDIP JG 8 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 8771002PA LM158A LM158 MW8 ACTIVE WAFERSALE YS 0 1 RoHS & Green Call TI Level-1-NA-UNLIM -55 to 125 LM158AFKB ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 596287710022A LM158AFKB LM158AJG ACTIVE CDIP JG 8 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 LM158AJG LM158AJGB ACTIVE CDIP JG 8 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 8771002PA LM158A LM158FKB ACTIVE LCCC FK 20 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 596287710012A LM158FKB LM158JG ACTIVE CDIP JG 8 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 LM158JG LM158JGB ACTIVE CDIP JG 8 1 Non-RoHS & Green SNPB N / A for Pkg Type -55 to 125 8771001PA LM158 LM258AD LIFEBUY SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -25 to 85 LM258A LM258ADGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -25 to 85 (M3L, M3P, M3S, M3 U) LM258ADR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -25 to 85 LM258A LM258ADRE4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -25 to 85 LM258A LM258ADRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -25 to 85 LM258A Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com 7-Aug-2021 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) LM258AP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU | SN N / A for Pkg Type -25 to 85 LM258AP LM258APE4 ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type -25 to 85 LM258AP LM258D LIFEBUY SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -25 to 85 LM258 LM258DG4 LIFEBUY SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -25 to 85 LM258 LM258DGKR ACTIVE VSSOP DGK 8 2500 Level-1-260C-UNLIM -25 to 85 (M2L, M2P, M2S, M2 U) LM258DGKRG4 LIFEBUY VSSOP DGK 8 2500 TBD Call TI Call TI -25 to 85 LM258DR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -25 to 85 LM258 LM258DRG3 ACTIVE SOIC D 8 2500 RoHS & Green SN Level-1-260C-UNLIM -25 to 85 LM258 LM258DRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -25 to 85 LM258 LM258P ACTIVE PDIP P 8 50 RoHS & Green NIPDAU | SN N / A for Pkg Type -25 to 85 LM258P LM258PE4 ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type -25 to 85 LM258P LM2904AVQDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2904AV LM2904AVQDRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2904AV LM2904AVQPWR ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2904AV LM2904AVQPWRG4 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2904AV LM2904BAIDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 2904BA LM2904BIDGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 28BB LM2904BIDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 125 L2904B LM2904BIPWR ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2904B RoHS & Green NIPDAU | NIPDAUAG LM2904D LIFEBUY SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LM2904 LM2904DE4 ACTIVE SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LM2904 LM2904DG4 LIFEBUY SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LM2904 Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com 7-Aug-2021 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) LM2904DGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM -40 to 125 (MBL, MBP, MBS, MB U) LM2904DGKRG4 LIFEBUY VSSOP DGK 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 (MBL, MBP, MBS, MB U) LM2904DR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 125 LM2904 LM2904DRE4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LM2904 LM2904DRG3 ACTIVE SOIC D 8 2500 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 LM2904 LM2904DRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 LM2904 LM2904P ACTIVE PDIP P 8 50 RoHS & Green NIPDAU | SN N / A for Pkg Type -40 to 125 LM2904P LM2904PE4 ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type -40 to 125 LM2904P LM2904PSR ACTIVE SO PS 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2904 LM2904PW ACTIVE TSSOP PW 8 150 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2904 LM2904PWR ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM -40 to 125 L2904 LM2904PWRG3 ACTIVE TSSOP PW 8 2000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 L2904 LM2904PWRG4 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2904 LM2904PWRG4-JF ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2904 LM2904QDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2904Q1 LM2904QDRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 2904Q1 LM2904VQDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2904V LM2904VQDRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2904V LM2904VQPWR ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2904V LM2904VQPWRG4 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 125 L2904V LM358AD LIFEBUY SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM358A Addendum-Page 3 Samples PACKAGE OPTION ADDENDUM www.ti.com 7-Aug-2021 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM358A RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM358A Level-1-260C-UNLIM 0 to 70 (M6L, M6P, M6S, M6 U) (3) (4/5) (6) LM358ADE4 ACTIVE SOIC D 8 LM358ADG4 LIFEBUY SOIC D 8 75 LM358ADGKR ACTIVE VSSOP DGK 8 2500 LM358ADGKRG4 LIFEBUY VSSOP DGK 8 2500 TBD Call TI Call TI 0 to 70 LM358ADR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM 0 to 70 LM358A LM358ADRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM358A LM358AP ACTIVE PDIP P 8 50 RoHS & Green NIPDAU | SN N / A for Pkg Type 0 to 70 LM358AP LM358APE4 ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type 0 to 70 LM358AP LM358APW ACTIVE TSSOP PW 8 150 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 L358A LM358APWR ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM 0 to 70 L358A LM358APWRG4 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 L358A LM358BAIDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 85 L358BA LM358BIDGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 358B LM358BIDR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-2-260C-1 YEAR -40 to 85 LM358B LM358BIPWR ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM -40 to 85 LM358B LM358D LIFEBUY SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM358 LM358D-JF LIFEBUY SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM358 LM358DG4 LIFEBUY SOIC D 8 75 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM358 LM358DGKR ACTIVE VSSOP DGK 8 2500 RoHS & Green NIPDAU | NIPDAUAG Level-1-260C-UNLIM 0 to 70 (M5L, M5P, M5S, M5 U) LM358DGKRG4 LIFEBUY VSSOP DGK 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 (M5L, M5P, M5S, M5 U) LM358DR ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM 0 to 70 LM358 LM358DRE4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM358 RoHS & Green NIPDAU | NIPDAUAG Addendum-Page 4 Samples PACKAGE OPTION ADDENDUM www.ti.com 7-Aug-2021 Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) LM358DRG3 ACTIVE SOIC D 8 2500 RoHS & Green SN Level-1-260C-UNLIM 0 to 70 LM358 LM358DRG4 ACTIVE SOIC D 8 2500 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 LM358 LM358P ACTIVE PDIP P 8 50 RoHS & Green NIPDAU | SN N / A for Pkg Type 0 to 70 LM358P LM358PE3 ACTIVE PDIP P 8 50 RoHS & Non-Green SN N / A for Pkg Type 0 to 70 LM358P LM358PE4 ACTIVE PDIP P 8 50 RoHS & Green NIPDAU N / A for Pkg Type 0 to 70 LM358P LM358PSR ACTIVE SO PS 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 L358 LM358PW ACTIVE TSSOP PW 8 150 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 L358 LM358PWR ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU | SN Level-1-260C-UNLIM 0 to 70 L358 LM358PWRG3 ACTIVE TSSOP PW 8 2000 RoHS & Green SN Level-1-260C-UNLIM 0 to 70 L358 LM358PWRG4 ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 L358 LM358PWRG4-JF ACTIVE TSSOP PW 8 2000 RoHS & Green NIPDAU Level-1-260C-UNLIM 0 to 70 L358 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
LM2904VQDR 价格&库存

很抱歉,暂时无法提供与“LM2904VQDR”相匹配的价格&库存,您可以联系我们找货

免费人工找货