LM2904-Q1, LM2904B-Q1, LM2904BA-Q1
SLOS414K – MAY 2003 – REVISED APRIL 2022
LM2904-Q1, LM2904B-Q1, and LM2904BA-Q1 Industry-Standard Dual Operational
Amplifiers for Automotive Applications
1 Features
3 Description
•
The LM2904-Q1, LM2904B-Q1, and LM2904BA-Q1
are industry-standard operational amplifiers that have
been qualified for automotive use in accordance to
the AEC-Q100 specifications. The LM2904B-Q1 and
LM2904BA-Q1 are the next-generation versions of
the LM2904-Q1, which include two high-voltage (36
V) operational amplifiers (op amps). The LM2904BQ1 and LM2904BA-Q1 provide outstanding value
for cost-sensitive applications, with features including
low offset (3 mV and 2 mV maximum, respectively),
common-mode input range to ground, and high
differential input voltage capability.
•
•
•
•
•
•
•
•
AEC Q-100 qualified for automotive applications
– Temperature grade 1: –40°C to +125°C
– Device HBM ESD classification 2
– Device CDM ESD classification C5
Wide supply range of 3 V to 36 V (LM2904B-Q1
and LM2904BA-Q1)
Supply-current of 300 µA per channel (LM2904BQ1 and LM2904BA-Q1, typical)
Unity-gain bandwidth of 1.2 MHz (LM2904B-Q1
and LM2904BA-Q1)
Common-mode input voltage range includes
ground, enabling direct sensing near ground
Low input offset voltage of 2 mV at 25°C
(LM2904BA-Q1, maximum)
Low input offset voltage of 3 mV at 25°C
(LM2904B-Q1, maximum)
Internal RF and EMI filter (LM2904B-Q1 and
LM2904BA-Q1)
Functional Safety-Capable
– Documentation available to aid functional safety
system design
The LM2904B-Q1 and LM2904BA-Q1 simplify circuit
design with enhanced features such as unity-gain
stability, lower offset voltage of 0.3 mV (typical), and
lower quiescent current of 300 µA (typical). High ESD
(2 kV, HBM) and integrated EMI and RF filters enable
the LM2904B-Q1 and LM2904BA-Q1 devices to be
used in the most rugged, environmentally challenging
applications for the automotive marketplace.
Device Information
2 Applications
•
•
•
•
•
•
•
PART NUMBER(1)
Automotive lighting
Body electronics
Automotive head unit
Telematics control unit
Emergency call (eCall)
Passive safety: brake system
Electric vehicle / hybrid electric:
– Inverter and motor control
– On-board (OBC) and wireless charger
– Battery management system (BMS)
LM2904B-Q1
LM2904BA-Q1
LM2904-Q1
(1)
RG
PACKAGE
BODY SIZE (NOM)
SOIC (8)
4.90 mm × 3.90 mm
TSSOP (8)
3.00 mm × 4.40 mm
VSSOP (8)
3.00 mm × 3.00 mm
SOIC (8)
4.90 mm × 3.90 mm
TSSOP (8)
3.00 mm × 4.40 mm
VSSOP (8)
3.00 mm × 3.00 mm
SOIC (8)
4.90 mm × 3.90 mm
TSSOP (8)
3.00 mm × 4.40 mm
For all available packages, see the orderable addendum at
the end of the data sheet.
RF
R1
VOUT
VIN
C1
f-3 dB =
(
RF
VOUT
= 1+
RG
VIN
((
1
1 + sR1C1
1
2pR1C1
(
Single-Pole, Low-Pass Filter
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
LM2904-Q1, LM2904B-Q1, LM2904BA-Q1
www.ti.com
SLOS414K – MAY 2003 – REVISED APRIL 2022
Table of Contents
1 Features............................................................................1
2 Applications..................................................................... 1
3 Description.......................................................................1
4 Revision History.............................................................. 2
5 Device Comparison Table...............................................4
6 Pin Configuration and Functions...................................5
7 Specifications.................................................................. 6
7.1 Absolute Maximum Ratings........................................ 6
7.2 ESD Ratings............................................................... 6
7.3 Recommended Operating Conditions.........................7
7.4 Thermal Information....................................................7
7.5 Electrical Characteristics: LM2904B-Q1 and
LM2904BA-Q1...............................................................8
7.6 Electrical Characteristics: LM2904-Q1,
LM2904AV-Q1, LM2904V-Q1......................................10
7.7 Typical Characteristics.............................................. 11
8 Parameter Measurement Information.......................... 18
9 Detailed Description......................................................19
9.1 Overview................................................................... 19
9.2 Functional Block Diagram......................................... 19
9.3 Feature Description...................................................20
9.4 Device Functional Modes..........................................20
10 Application and Implementation................................ 21
10.1 Application Information........................................... 21
10.2 Typical Application.................................................. 21
11 Power Supply Recommendations..............................23
12 Layout...........................................................................24
12.1 Layout Guidelines................................................... 24
12.2 Layout Examples.................................................... 24
13 Device and Documentation Support..........................25
13.1 Documentation Support.......................................... 25
13.2 Related Links.......................................................... 25
13.3 Receiving Notification of Documentation Updates..25
13.4 Support Resources................................................. 25
13.5 Trademarks............................................................. 25
13.6 Electrostatic Discharge Caution..............................25
13.7 Glossary..................................................................25
14 Mechanical, Packaging, and Orderable
Information.................................................................... 26
4 Revision History
NOTE: Page numbers for previous revisions may differ from page numbers in the current version.
Changes from Revision J (February 2021) to Revision K (April 2022)
Page
• Added LM2904BA-Q1 to data sheet...................................................................................................................1
• Increased ESD (CDM) rating for LM2904B-Q1 and LM2904BA-Q1 from ±750 V to ±1500 V............................6
Changes from Revision I (June 2020) to Revision J (February 2021)
Page
• Updated the numbering format for tables, figures, and cross-references throughout the document .................1
• Added Functional Safety-Capable feature and link to supporting document in Features section ..................... 1
• Deleted preview tag on VSSOP (8) package throughout the data sheet............................................................1
• Deleted SOT-23 (8) package information throughout the data sheet................................................................. 1
• Deleted preview tag from VSSOP package in Pin Configuration and Functions section................................... 5
• Deleted DDF (SOT23-8) package in Pin Configuration and Functions section.................................................. 5
• Updated VSSOP package thermal information in Thermal Information section................................................. 7
Changes from Revision H (December 2019) to Revision I (June 2020)
Page
• Added applications link in Application section.................................................................................................... 1
• Deleted preview tag on TSSOP (8) package in Device Information table ......................................................... 1
• Added information on VSSOP-8 package to Device Information table...............................................................1
• Added information on VSSOP-8 package to the Device Comparison Table section.......................................... 4
• Deleted preview tag on TSSOP-8 package in the Device Comparison Table section........................................4
• Deleted preview tag from TSSOP package in Pin Configuration and Functions section....................................5
• Added VSSOP package information in Pin Configuration and Functions section.............................................. 5
• Added VSSOP package to Thermal Information table ...................................................................................... 7
• Changed section title from Community Resources to Support Resources in the Device and Documentation
Support section.................................................................................................................................................25
Changes from Revision G (February 2019) to Revision H (December 2019)
Page
• Added information on SOT23-8 package to Device Information table................................................................1
2
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM2904-Q1 LM2904B-Q1 LM2904BA-Q1
LM2904-Q1, LM2904B-Q1, LM2904BA-Q1
www.ti.com
•
•
•
•
•
SLOS414K – MAY 2003 – REVISED APRIL 2022
Added information on SOT23-8 package to the Device Comparison Table ...................................................... 4
Added the Typical Characteristics section for the LM2904B-Q1 device........................................................... 11
Added test circuit for THD+N and small-signal step response, G = –1 in the Parameter Measurement
Information section........................................................................................................................................... 18
Changed specific voltages to a Recommended Operating Conditions reference............................................ 19
Changed the functional block diagram for LM2904B-Q1 in the Detailed Description section.......................... 19
Changes from Revision F (April 2008) to Revision G (February 2019)
Page
• Added Applications section, ESD Ratings table, Feature Description section, Device Functional Modes,
Application and Implementation section, Power Supply Recommendations section, Layout section, Device
and Documentation Support section, and Mechanical, Packaging, and Orderable Information section ........... 1
• Added new device to data sheet.........................................................................................................................1
• Added AEC-Q100 qualification statement.......................................................................................................... 1
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM2904-Q1 LM2904B-Q1 LM2904BA-Q1
Submit Document Feedback
3
LM2904-Q1, LM2904B-Q1, LM2904BA-Q1
www.ti.com
SLOS414K – MAY 2003 – REVISED APRIL 2022
5 Device Comparison Table
4
PART NUMBER
SUPPLY
VOLTAGE
AMBIENT
TEMPERATURE
RANGE
VOS
(MAXIMUM AT 25°C)
IQ / CH
(TYPICAL AT 25°C)
INTEGRATED EMI
FILTER
PACKAGE
LM2904B-Q1
3 V to 36 V
–40°C to 125°C
3 mV
300 µA
Yes
D, DGK, PW
LM2904BA-Q1
3 V to 36 V
–40°C to 125°C
2 mV
300 µA
Yes
D, DGK, PW
LM2904-Q1
3 V to 26 V
–40°C to 125°C
7 mV
350 µA
No
D, PW
LM2904V-Q1
3 V to 32 V
–40°C to 125°C
7 mV
350 µA
No
D, PW
LM2904AV-Q1
3 V to 32 V
–40°C to 125°C
2 mV
350 µA
No
D, PW
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM2904-Q1 LM2904B-Q1 LM2904BA-Q1
LM2904-Q1, LM2904B-Q1, LM2904BA-Q1
www.ti.com
SLOS414K – MAY 2003 – REVISED APRIL 2022
6 Pin Configuration and Functions
OUT1
1
8
V+
IN1±
2
7
OUT2
IN1+
3
6
IN2±
V±
4
5
IN2+
Not to scale
Figure 6-1. D, DGK, and PW Package
8-Pin SOIC, VSSOP, and TSSOP
Top View
Table 6-1. Pin Functions
PIN(1)
NAME
I/O
NO.
DESCRIPTION
IN1–
2
I
Negative input
IN1+
3
I
Positive input
IN2–
6
I
Negative input
IN2+
5
I
Positive input
OUT1
1
O
Output
OUT2
7
O
Output
V–
4
—
Negative (lowest) supply or ground (for single-supply operation)
V+
8
—
Positive (highest) supply
(1)
For a listing of which devices are available in what packages, see Section 5.
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM2904-Q1 LM2904B-Q1 LM2904BA-Q1
Submit Document Feedback
5
LM2904-Q1, LM2904B-Q1, LM2904BA-Q1
www.ti.com
SLOS414K – MAY 2003 – REVISED APRIL 2022
7 Specifications
7.1 Absolute Maximum Ratings
over operating ambient temperature range (unless otherwise noted)(1)
MIN
Supply voltage, VS = ([V+] – [V–])
Differential input voltage, VID (2)
Input voltage, VI
Either input
MAX
LM2904B-Q1, LM2904BA-Q1
40
LM2904V-Q1, LM2904AV-Q1
32
LM2904-Q1
26
LM2904B-Q1, LM290BA-Q1,
LM2904V-Q1, LM2904AV-Q1
–32
32
LM2904-Q1
–26
26
LM2904B-Q1, LM2904BA-Q1
–0.3
40
LM2904V-Q1, LM2904AV-Q1
–0.3
32
LM2904-Q1
–0.3
26
Duration of output short circuit (one amplifier) to V– at (or below) TA = 25°C,
VS ≤ 15 V(3)
Unlimited
Operating ambient temperature, TA
–40
Operating virtual-junction temperature, TJ
Storage temperature, Tstg
(1)
(2)
(3)
–65
UNIT
V
V
V
s
125
°C
150
°C
150
°C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended
Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
Differential voltages are at IN+, with respect to IN−.
Short circuits from outputs to the supply pins can cause excessive heating and eventual destruction.
7.2 ESD Ratings
VALUE
UNIT
LM2904B-Q1 and LM2904BA-Q1
V(ESD)
Electrostatic discharge
Human-body model (HBM), per AEC Q100-002(1)
±2000
Charged-device model (CDM), per AEC Q100-011
±1500
V
LM2904-Q1, LM2904AV-Q1, AND LM2904V-Q1
V(ESD)
(1)
6
Electrostatic discharge
Human-body model (HBM), per AEC Q100-002(1)
±1000
Charged-device model (CDM), per AEC Q100-011
±500
V
AEC Q100-002 indicates that HBM stressing shall be in accordance with the ANSI/ESDA/JEDEC JS-001 specification.
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM2904-Q1 LM2904B-Q1 LM2904BA-Q1
LM2904-Q1, LM2904B-Q1, LM2904BA-Q1
www.ti.com
SLOS414K – MAY 2003 – REVISED APRIL 2022
7.3 Recommended Operating Conditions
over operating ambient temperature range (unless otherwise noted)
VS
Supply voltage, VS = ([V+] – [V–])
VCM
Common-mode voltage
TA
Operating ambient temperature
MIN
MAX
LM2904B-Q1, LM2904BA-Q1
3
36
LM2904AV-Q1, LM2904V-Q1
3
30
LM2904-Q1
UNIT
V
3
26
V–
(V+) – 2
V
–40
125
°C
7.4 Thermal Information
LM2904-Q1, LM2904AV-Q1, LM2904B-Q1, LM2904BA-Q1, LM2904V-Q1(2)
THERMAL
METRIC(1)
D (SOIC)
DGK (VSSOP)
PW (TSSOP)
8 PINS
8 PINS
8 PINS
UNIT
RθJA
Junction-to-ambient thermal resistance
124.7
186.1
171.7
°C/W
RθJC(top)
Junction-to-case (top) thermal resistance
66.9
77.1
68.8
°C/W
RθJB
Junction-to-board thermal resistance
67.9
107.7
99.2
°C/W
ψJT
Junction-to-top characterization parameter
19.2
17.2
11.5
°C/W
ψJB
Junction-to-board characterization parameter
67.2
106.1
97.9
°C/W
(1)
(2)
For more information about traditional and new thermal metrics, see Semiconductor and IC Package Thermal Metrics.
For a listing of which devices are available in what packages, see Section 5.
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM2904-Q1 LM2904B-Q1 LM2904BA-Q1
Submit Document Feedback
7
LM2904-Q1, LM2904B-Q1, LM2904BA-Q1
www.ti.com
SLOS414K – MAY 2003 – REVISED APRIL 2022
7.5 Electrical Characteristics: LM2904B-Q1 and LM2904BA-Q1
VS = (V+) – (V–) = 5 V – 36 V (±2.5 V – ±18 V), TA = 25°C, VCM = VOUT = VS / 2, RL = 10k connected to VS / 2
(unless otherwise noted)
PARAMETER
TEST CONDITIONS
MIN
TYP
MAX
±0.3
±3.0
UNIT
OFFSET VOLTAGE
LM2904B-Q1
VOS
TA = –40°C to +125°C
Input offset voltage
±2.0
LM2904BA-Q1
dVOS/dT
Input offset voltage drift
PSRR
Power supply rejection ratio
Channel separation, dc
±4
TA = –40°C to +125°C
±3.0
TA = –40°C to +125°C(1)
f = 1 kHz to 20 kHz
mV
mV
mV
±3.5
12
µV/°C
±2
15
µV/V
±1
µV/V
INPUT VOLTAGE RANGE
VCM
Common-mode voltage range
CMRR
Common-mode rejection ratio
VS = 3 V to 36 V
VS = 5 V to 36 V
TA = –40°C to +125°C
(V–)
(V+) – 1.5
(V–)
(V+) – 2
(V–) ≤ VCM ≤ (V+) – 1.5 V VS = 3 V to 36 V
(V–) ≤ VCM ≤ (V+) – 2.0 V VS = 5 V to 36 V
TA = –40°C to +125°C
20
100
25
316
±10
±35
V
µV/V
INPUT BIAS CURRENT
IB
Input bias current
IOS
Input offset current
dIOS/dT
Input offset current drift
TA = –40°C to +125°C(1)
±50
0.5
TA = –40°C to +125°C(1)
4
5
TA = –40°C to +125°C
10
nA
nA
pA/℃
NOISE
En
Input voltage noise
f = 0.1 to 10 Hz
en
Input voltage noise density
f = 1 kHz
3
µVPP
40
nV/√/Hz
10 || 0.1
MΩ|| pF
4 || 1.5
GΩ|| pF
INPUT IMPEDANCE
ZID
Differential
ZIC
Common-mode
OPEN-LOOP GAIN
AOL
Open-loop voltage gain
VS = 15 V; VO = 1 V to 11 V; RL ≥ 10 kΩ, connected to (V-)
70
TA = –40°C to +125°C
140
V/mV
35
FREQUENCY RESPONSE
GBW
Gain bandwidth product
1.2
MHz
SR
Slew rate
G=+1
0.5
V/µs
Θm
Phase margin
G = + 1, RL = 10 kΩ, CL = 20 pF
56
°
tOR
Overload recovery time
VIN × gain > VS
10
µs
ts
Settling time
To 0.1%, VS = 5 V, 2-V Step , G = +1, CL = 100 pF
4
µs
THD+N
Total harmonic distortion + noise
G = + 1, f = 1 kHz, VO = 3.53 VRMS, VS = 36 V, RL = 100k, IOUT ≤ ±50 µA, BW = 80 kHz
0.001%
OUTPUT
Positive rail (V+)
VO
Voltage output swing from rail
Negative rail (V-)
VS = 5 V, RL ≤ 10 kΩ connected to (V–)
VS = 15 V; VO = V-; VID =
1V
IO
Output current
Source(1)
VS = 15 V; VO = V+; VID =
Sink(1)
-1 V
IOUT = 50 µA
1.35
1.42
IOUT = 1 mA
1.4
1.48
IOUT = 5 mA(1)
1.5
1.61
IOUT = 50 µA
100
150
IOUT = 1 mA
0.75
1
V
5
20
mV
TA = –40°C to +125°C
-20
TA = –40°C to +125°C
TA = –40°C to +125°C
VID = -1 V; VO = (V-) + 200 mV
ISC
Short-circuit current
CLOAD
Capacitive load drive
RO
Open-loop output resistance
100
±40
f = 1 MHz, IO = 0 A
mA
20
5
60
VS = 20 V, (V+) = 10 V, (V-) = -10 V, VO = 0 V
mV
-30
-10
10
V
μA
±60
mA
100
pF
300
Ω
POWER SUPPLY
8
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM2904-Q1 LM2904B-Q1 LM2904BA-Q1
LM2904-Q1, LM2904B-Q1, LM2904BA-Q1
www.ti.com
SLOS414K – MAY 2003 – REVISED APRIL 2022
7.5 Electrical Characteristics: LM2904B-Q1 and LM2904BA-Q1 (continued)
VS = (V+) – (V–) = 5 V – 36 V (±2.5 V – ±18 V), TA = 25°C, VCM = VOUT = VS / 2, RL = 10k connected to VS / 2
(unless otherwise noted)
PARAMETER
IQ
(1)
Quiescent current per amplifier
TEST CONDITIONS
VS = 5 V; IO = 0 A
VS = 36 V; IO = 0 A
MIN
TA = –40°C to +125°C
TYP
MAX
300
460
800
UNIT
µA
Specified by characterization only.
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM2904-Q1 LM2904B-Q1 LM2904BA-Q1
Submit Document Feedback
9
LM2904-Q1, LM2904B-Q1, LM2904BA-Q1
www.ti.com
SLOS414K – MAY 2003 – REVISED APRIL 2022
7.6 Electrical Characteristics: LM2904-Q1, LM2904AV-Q1, LM2904V-Q1
For VS = (V+) – (V–) = 5 V, TA = 25°C, RL = 10 kΩ connected to V– (unless otherwise noted)
TEST CONDITIONS(1)
PARAMETER
MIN
TYP
MAX
UNIT
OFFSET VOLTAGE
VOS
Input offset voltage
LM2904-Q1,
LM2904V-A1
VS = 5 V to maximum;
VC M = 0 V; VO = 1.4 V
LM2904AV-Q1
dVOS/dT
Input offset voltage drift
PSRR
Input offset voltage vs power supply
(ΔVIO/ΔVS)
VS = 5 V to 30 V
VO1/ VO2
Channel separation
f = 1 kHz to 20 kHz
±3
TA = –40°C to 125°C
±7
±10
±1
TA = –40°C to 125°C
±2
mV
±4
TA = –40°C to 125°C
65
±7
µV/°C
100
dB
120
dB
INPUT VOLTAGE RANGE
VCM
Common-mode voltage range
VS = 5 V to maximum
CMRR
Common-mode rejection ratio
VS = 5 V to maximum; VCM = 0 V
TA = –40°C to 125°C
(V–)
(V+) – 1.5
(V–)
(V+) – 2
65
80
V
dB
INPUT BIAS CURRENT
IB
Input bias current
–20
VO = (V–) + 1.4 V
TA = –40°C to 125°C
LM2904-Q1
IOS
Input offset current
VO = (V–) + 1.4 V
LM2904AV-Q1,
LM2904V-Q1
dIOS/dT
Input offset current drift
–250
–500
2
TA = –40°C to 125°C
50
300
2
TA = –40°C to 125°C
nA
50
nA
150
TA = –40°C to 125°C
10
pA/°C
40
nV/√ Hz
NOISE
en
Input voltage noise density
f = 1 kHz
OPEN-LOOP GAIN
AOL
Open-loop voltage gain
VS = 15 V; VO = (V–) + 1 V to (V–) + 11 V; RL ≥ 2 kΩ,
connected to (V–)
25
TA = –40°C to 125°C
100
V/mV
15
FREQUENCY RESPONSE
GBW
Gain bandwidth product
SR
Slew rate
G = +1
0.7
MHz
0.3
V/µs
OUTPUT
RL ≥ 10 kΩ
LM2904-Q1
Positive rail
VO
Voltage output swing from rail
LM2904AV-Q1,
LM2904V-Q1
Negative rail
IO
Output current
Short-circuit current
VS = maximum;
RL ≥ 10 kΩ
VS = maximum;
RL = 2 kΩ
4
3
VS = 5 V;
RL ≤ 10 kΩ
Source
VS = 15 V; VO = V+;
VID = –1 V
Sink
2
V
TA = –40°C to 125°C
6
VS = maximum;
RL ≥ 10 kΩ
VS = 15 V; VO = V–; VID = 1 V
VID = –1 V; VO = (V–) + 200 mV
ISC
VS – 1.5
VS = maximum;
RL = 2 kΩ
5
4
–20
–30
TA = –40°C to 125°C
TA = –40°C to 125°C
5
–10
10
TA = –40°C to 125°C
20
mA
20
5
LM2904-Q1
30
LM2904AV-Q1, LM2904V-Q1
12
VS = 10 V; VO = VS / 2
mV
µA
40
±40
±60
mA
POWER SUPPLY
IQ
(1)
10
Quiescent current per amplifier
VO = VS / 2; IO = 0 A
VS = maximum; VO = maximum / 2; IO = 0 A
TA = –40°C to 125°C
350
600
500
1000
µA
All characteristics are measured with zero common-mode input voltage, unless otherwise specified. Maximum VS for testing purposes
is 26 V for LM2904-Q1 and 32 V for LM2904AV-Q1/LM2904V-Q1.
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM2904-Q1 LM2904B-Q1 LM2904BA-Q1
LM2904-Q1, LM2904B-Q1, LM2904BA-Q1
www.ti.com
SLOS414K – MAY 2003 – REVISED APRIL 2022
7.7 Typical Characteristics
20
30
18
27
16
24
14
21
Amplifiers (%)
Amplifiers (%)
Typical characteristics section is applicable for LM2904B-Q1 and LM2904BA-Q1. The typical characteristics data section was
taken with TA = 25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted).
12
10
8
18
15
12
6
9
4
6
2
3
0
-1800
0
-1200
-600
0
600
Offset Voltage (µV)
1200
1800
0
DC11
750
500
450
300
150
-150
-450
-750
-40
-20
0
20
40
60
Temperature (°C)
80
100
100
-100
-500
-18
120
70
90
60
70
80
60
70
50
60
40
50
30
40
20
30
10
20
10
Gain (dB)
Phase (°)
-20
10k
100k
Frequency (Hz)
Closed Lopp Voltage Gain (dB)
100
80
0
-6
0
6
Common-Mode Voltage (V)
12
17
DC10
Figure 7-4. Offset Voltage vs Common-Mode Voltage
90
1k
-12
DC10
Phase ( )
Open Loop Voltage Gain (dB)
DC12
-300
Figure 7-3. Offset Voltage vs Temperature
-10
2.25 2.5 2.75
Figure 7-2. Offset Voltage Drift Distribution
Offset Voltage (µV)
Offset Voltage (µV)
Figure 7-1. Offset Voltage Production Distribution
0.25 0.5 0.75 1 1.25 1.5 1.75 2
Offset Voltage Drift (µV/°C)
50
40
30
20
10
0
-10
0
-20
-10
-30
1M
G=1
G = 10
G = 100
G = 1000
G = –1
1k
D012
Figure 7-5. Open-Loop Gain and Phase vs Frequency
10k
100k
Frequency (Hz)
1M
D017
Figure 7-6. Closed-Loop Gain vs Frequency
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM2904-Q1 LM2904B-Q1 LM2904BA-Q1
Submit Document Feedback
11
LM2904-Q1, LM2904B-Q1, LM2904BA-Q1
www.ti.com
SLOS414K – MAY 2003 – REVISED APRIL 2022
7.7 Typical Characteristics (continued)
Typical characteristics section is applicable for LM2904B-Q1 and LM2904BA-Q1. The typical characteristics data section was
taken with TA = 25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted).
-5
120
IB+
IB–
Input Offset Current (pA)
100
Input Bias Current (nA)
-7.5
-10
-12.5
80
60
40
20
0
-20
-15
-20
-15
-10
-5
0
5
10
Common-Mode Voltage (V)
15
-40
-20
20
-10
-5
0
5
10
Common-Mode Voltage (V)
15
20
DC3I
Figure 7-8. Input Offset Current vs Common-Mode Voltage
-6
0.06
-7
0.045
Input Offset Current (nA)
Input Bias Current (nA)
Figure 7-7. Input Bias Current vs Common-Mode Voltage
-8
-9
IB+
IB–
-10
-15
DC3I
0.03
0.015
0
-0.015
-11
-12
-40
-10
20
50
Temperature (°C)
80
110
-0.03
-40
130
-10
20
50
Temperature (°C)
DCIB
Figure 7-9. Input Bias Current vs Temperature
80
110
130
DCIO
Figure 7-10. Input Offset Current vs Temperature
V+
(V–) + 18 V
–40 C
25 C
125 C
(V–) + 15 V
Output Voltage (V)
Output Voltage (V)
(V+) – 3 V
(V+) – 6 V
(V–) + 12 V
(V–) + 9 V
(V–) + 6 V
(V+) – 9 V
–40 C
25 C
125 C
(V–) + 3 V
V–
(V+) – 12 V
0
10
20
30
Output Current (mA)
40
50
DC13
Figure 7-11. Output Voltage Swing vs Output Current (Sourcing)
12
Submit Document Feedback
0
5
10
15
20
25
Output Current (mA)
30
35
40
DC1-
Figure 7-12. Output Voltage Swing vs Output Current (Sinking)
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM2904-Q1 LM2904B-Q1 LM2904BA-Q1
LM2904-Q1, LM2904B-Q1, LM2904BA-Q1
www.ti.com
SLOS414K – MAY 2003 – REVISED APRIL 2022
7.7 Typical Characteristics (continued)
Typical characteristics section is applicable for LM2904B-Q1 and LM2904BA-Q1. The typical characteristics data section was
taken with TA = 25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted).
100
120
PSRR and CMRR (dB)
80
Common-Mode Rejection Ratio (dB)
PSRR+
PSRRCMRR
90
70
60
50
40
30
20
10
115
110
105
100
95
90
85
-40
0
1k
10k
100k
Frequency (Hz)
1M
-10
20
50
Temperature (°C)
D001
Figure 7-13. CMRR and PSRR vs Frequency
80
110
130
DC2_
Figure 7-14. Common-Mode Rejection Ratio vs
Temperature (dB)
1.6
-118
1.2
-119
0.8
Voltage (µV)
Power Supply Rejection Ratio (dB)
VS = 36V
VS = 5V
-120
-121
0.4
0
-0.4
-0.8
-1.2
-122
-1.6
-123
-40
-2
-20
0
20
40
60
80
Temperature (°C)
100
120
0
140
1
2
3
4
DC8_
5
6
Time (s)
7
8
9
10
D011
VS = 5 V to 36 V
Figure 7-16. 0.1-Hz to 10-Hz Noise
100
-32
90
-40
80
-48
70
-56
THD+N (dB)
Voltage Noise Spectral Density (nV/—Hz)
Figure 7-15. Power Supply Rejection Ratio vs Temperature (dB)
60
50
40
10 k
2k
-64
-72
-80
-88
30
-96
20
-104
10
0
10
-112
100
100
1k
Frequency (Hz)
10k
100k
D010
Figure 7-17. Input Voltage Noise Spectral Density vs Frequency
1k
Frequency (Hz)
10k
D013
G = 1, f = 1 kHz, BW = 80 kHz,
VOUT = 10 VPP, RL connected to V–
Figure 7-18. THD+N Ratio vs Frequency, G = 1
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM2904-Q1 LM2904B-Q1 LM2904BA-Q1
Submit Document Feedback
13
LM2904-Q1, LM2904B-Q1, LM2904BA-Q1
www.ti.com
SLOS414K – MAY 2003 – REVISED APRIL 2022
7.7 Typical Characteristics (continued)
Typical characteristics section is applicable for LM2904B-Q1 and LM2904BA-Q1. The typical characteristics data section was
taken with TA = 25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted).
-32
-30
10 k
2k
-40
-48
-50
-56
-60
THD+N (dB)
THD+N (dB)
-40
-64
-72
-70
-80
-80
-90
-88
-100
-96
-110
-104
100
1k
Frequency (Hz)
10 k
2k
-120
0.001
10k
0.01
D014
G = –1, f = 1 kHz, BW = 80 kHz,
VOUT = 10 VPP, RL connected to V–
See Figure 8-3
1
10 20
D015
G = 1, f = 1 kHz, BW = 80 kHz,
RL connected to V–
Figure 7-19. THD+N Ratio vs Frequency, G = –1
Figure 7-20. THD+N vs Output Amplitude, G = 1
-20
460
-35
430
Quiescent Current (µA)
THD+N (dB)
0.1
Amplitude (VPP)
-50
-65
-80
400
370
340
310
-95
10 k
2k
280
-110
0.001
0.01
0.1
Amplitude (VPP)
1
3
10 20
9
15
21
Supply Voltage (V)
D016
27
33
36
DC_S
G = –1, f = 1 kHz, BW = 80 kHz,
RL connected to V–
See Figure 8-3
Figure 7-21. THD+N vs Output Amplitude, G = –1
Figure 7-22. Quiescent Current vs Supply Voltage
540
500
VS = 36V
VS = 5V
Open Loop Output Impedance ( )
Quiescent Current per Amplifier (µA)
600
480
420
360
300
240
-40
-20
0
20
40
60
Temperature (°C)
80
100
120
Figure 7-23. Quiescent Current vs Temperature
14
Submit Document Feedback
DC4_
400
300
200
100
1k
10k
100k
Frequency (Hz)
1M
D006
Figure 7-24. Open-Loop Output Impedance vs Frequency
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM2904-Q1 LM2904B-Q1 LM2904BA-Q1
LM2904-Q1, LM2904B-Q1, LM2904BA-Q1
www.ti.com
SLOS414K – MAY 2003 – REVISED APRIL 2022
7.7 Typical Characteristics (continued)
Typical characteristics section is applicable for LM2904B-Q1 and LM2904BA-Q1. The typical characteristics data section was
taken with TA = 25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted).
44
18
Overshoot (+)
Overshoot (-)
36
14
32
12
28
24
20
10
8
6
16
4
12
2
8
0
40
80
Overshoot (+)
Overshoot (–)
16
Overshoot (%)
Overshoot (%)
40
120 160 200 240
Capacitance load (pF)
280
320
0
40
360
80
120
D019
G = 1, 100-mV output step, RL = open
160
200
240
Capacitance load (pF)
280
320
360
D020
G = –1, 100-mV output step, RL = open
Figure 7-25. Small-Signal Overshoot vs Capacitive Load
Figure 7-26. Small-Signal Overshoot vs Capacitive Load
60
20
Input
Output
57
10
51
Voltage (V)
Phase Margin (°)
54
48
45
42
39
0
-10
36
33
-20
30
0
40
80
120 160 200 240
Capacitance Load (pF)
280
320
0
360
200
D018
400
600
Time ( s)
800
1000
D021
G = –10
Figure 7-28. Overload Recovery
10
7.5
7.5
5
5
Voltage (mV)
Voltage (mV)
Figure 7-27. Phase Margin vs Capacitive Load
10
2.5
0
-2.5
-5
2.5
0
-2.5
-5
-7.5
-7.5
Input
Output
-10
Input
Output
-10
0
20
40
60
80
Time ( s)
G = 1, RL = open
Figure 7-29. Small-Signal Step Response, G = 1
100
0
20
40
60
80
Time ( s)
D022
100
D023
G = –1, RL = open, RFB = 10K
See Figure 8-3
Figure 7-30. Small-Signal Step Response, G = –1
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM2904-Q1 LM2904B-Q1 LM2904BA-Q1
Submit Document Feedback
15
LM2904-Q1, LM2904B-Q1, LM2904BA-Q1
www.ti.com
SLOS414K – MAY 2003 – REVISED APRIL 2022
7.7 Typical Characteristics (continued)
20
40
16
32
Output Delta from Final Value (mV)
Output Delta from Final Value (mV)
Typical characteristics section is applicable for LM2904B-Q1 and LM2904BA-Q1. The typical characteristics data section was
taken with TA = 25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted).
12
8
4
0
-4
-8
-12
-16
-20
24
16
8
0
-8
-16
-24
-32
-40
0
0.5
1
1.5
2
2.5
3
Time ( s)
3.5
4
4.5
5
0
0.5
1
1.5
G = 1, RL = open
2.5
3
Time ( s)
3.5
4
4.5
5
D004
G = 1, RL = open
Figure 7-31. Large-Signal Step Response (Rising)
Figure 7-32. Large-Signal Step Response (Falling)
2.5
0.675
Positive
Negative
Output
Input
2
0.625
1.5
Slew Rate(V/ s)
1
Votlage (V)
2
D003
0.5
0
-0.5
0.575
0.525
-1
0.475
-1.5
-2
0.425
-40
-2.5
0
20
40
60
80
100
Time (µs)
-25
-10
5
20
35 50 65
Temp( C)
80
95
110 125
D009
AC_S
G = 1, RL = open
Figure 7-34. Slew Rate vs Temperature
Figure 7-33. Large-Signal Step Response
Short-Circuit Current (mA)
40
20
Sinking
Sourcing
0
-20
-40
-60
-40 -25 -10
5
20 35 50 65
Temperature (°C)
80
95
110 125
DC7_
Maximum Output Voltage (V PP)
60
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
0
1k
10k
100k
Frequency (Hz)
1M
D005
VS = 15 V
Figure 7-35. Short-Circuit Current vs Temperature
16
Submit Document Feedback
Figure 7-36. Maximum Output Voltage vs Frequency
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM2904-Q1 LM2904B-Q1 LM2904BA-Q1
LM2904-Q1, LM2904B-Q1, LM2904BA-Q1
www.ti.com
SLOS414K – MAY 2003 – REVISED APRIL 2022
7.7 Typical Characteristics (continued)
Typical characteristics section is applicable for LM2904B-Q1 and LM2904BA-Q1. The typical characteristics data section was
taken with TA = 25°C, VS = 36 V (±18 V), VCM = VS / 2, RLOAD = 10 kΩ connected to VS / 2 (unless otherwise noted).
90
-75
84
78
72
-95
EMIRR (dB)
Channel Separation (dB)
-85
-105
-115
66
60
54
48
42
-125
36
30
-135
1k
10k
100k
Frequency (Hz)
24
1M
1M
Figure 7-37. Channel Separation vs Frequency
D008
10M
100M
Frequency (Hz)
1G
D007
Figure 7-38. EMIRR (Electromagnetic Interference Rejection
Ratio) vs Frequency
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM2904-Q1 LM2904B-Q1 LM2904BA-Q1
Submit Document Feedback
17
LM2904-Q1, LM2904B-Q1, LM2904BA-Q1
www.ti.com
SLOS414K – MAY 2003 – REVISED APRIL 2022
8 Parameter Measurement Information
900 Ω
VCC+
VCC+
−
VI
VO
+
100 Ω
−
VI = 0 V
RS
VCC−
CL
VO
+
RL
VCC−
Figure 8-2. Noise-Test Circuit
Figure 8-1. Unity-Gain Amplifier
10 k
–
+18V
VIN
+
RL
-18V
GND
GND
Figure 8-3. Test Circuit, G = –1, for THD+N and Small-Signal Step Response
18
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM2904-Q1 LM2904B-Q1 LM2904BA-Q1
LM2904-Q1, LM2904B-Q1, LM2904BA-Q1
www.ti.com
SLOS414K – MAY 2003 – REVISED APRIL 2022
9 Detailed Description
9.1 Overview
The LM2904-Q1, LM2904B-Q1, and LM2904BA-Q1 devices consist of two independent, high-gain frequencycompensated operational amplifiers designed to operate from a single supply over a wide range of voltages.
Operation from split supplies also is possible if the difference between the two supplies is within the supply
voltage range specified in Section 7.3, and VS is at least 1.5 V more positive than the input common-mode
voltage. The low supply-current drain is independent of the magnitude of the supply voltage.
Applications include transducer amplifiers, DC amplification blocks, and all the conventional operational amplifier
circuits that now can be implemented more easily in single-supply-voltage systems. For example, these devices
can be operated directly from the standard 5-V supply used in digital systems and easily can provide the
required interface electronics without additional ±5-V supplies.
9.2 Functional Block Diagram
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM2904-Q1 LM2904B-Q1 LM2904BA-Q1
Submit Document Feedback
19
LM2904-Q1, LM2904B-Q1, LM2904BA-Q1
www.ti.com
SLOS414K – MAY 2003 – REVISED APRIL 2022
9.3 Feature Description
9.3.1 Unity-Gain Bandwidth
The unity-gain bandwidth is the frequency up to which an amplifier with a unity gain may be operated without
greatly distorting the signal. These devices have a 1.2-MHz unity-gain bandwidth (LM2904B-Q1 and LM2904BAQ1).
9.3.2 Slew Rate
The slew rate is the rate at which an operational amplifier can change its output when there is a change on the
input. These devices have a 0.5-V/µs slew rate (LM2904B-Q1 and LM2904BA-Q1).
9.3.3 Input Common Mode Range
The valid common mode range is from device ground to VS – 1.5 V (VS – 2 V across temperature). Inputs
may exceed VS up to the maximum VS without device damage. At least one input must be in the valid input
common-mode range for the output to be the correct phase. If both inputs exceed the valid range, then the
output phase is undefined. If either input more than 0.3 V below V– then input current should be limited to 1 mA
and the output phase is undefined.
9.4 Device Functional Modes
The LM2904-Q1, LM2904B-Q1, and LM2904BA-Q1 devices are powered on when the supply is connected.
This device can be operated as a single-supply operational amplifier or dual-supply amplifier, depending on the
application.
20
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM2904-Q1 LM2904B-Q1 LM2904BA-Q1
LM2904-Q1, LM2904B-Q1, LM2904BA-Q1
www.ti.com
SLOS414K – MAY 2003 – REVISED APRIL 2022
10 Application and Implementation
Note
Information in the following applications sections is not part of the TI component specification, and
TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining
suitability of components for their purposes. Customers should validate and test their design
implementation to confirm system functionality.
10.1 Application Information
The LM2904-Q1, LM2904B-Q1, LM2904BA-Q1 operational amplifiers are useful in a wide range of signal
conditioning applications. Inputs can be powered before VS for flexibility in multiple supply circuits. For full
application design guidelines related to this family of devices, please refer to the application report Application
design guidelines for LM324/LM358 devices.
10.2 Typical Application
A typical application for an operational amplifier is an inverting amplifier. This amplifier takes a positive voltage
on the input, and makes it a negative voltage of the same magnitude. In the same manner, it also makes
negative voltages positive.
RF
RI
Vsup+
VOUT
VIN
+
Vsup-
Figure 10-1. Application Schematic
10.2.1 Design Requirements
The supply voltage must be chosen such that it is larger than the input voltage range and output range. For
instance, this application scales a signal of ±0.5 V to ±1.8 V. Setting the supply at ±12 V is sufficient to
accommodate this application.
10.2.2 Detailed Design Procedure
Determine the gain required by the inverting amplifier using Equation 1 and Equation 2:
AV
VOUT
VIN
AV
1.8
0.5
(1)
3.6
(2)
Once the desired gain is determined, choose a value for RI or RF. Choosing a value in the kilohm range is
desirable because the amplifier circuit uses currents in the milliampere range. This ensures the part does not
draw too much current. This example uses 10 kΩ for RI which means 36 kΩ is used for RF. This was determined
by Equation 3.
AV
RF
RI
(3)
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM2904-Q1 LM2904B-Q1 LM2904BA-Q1
Submit Document Feedback
21
LM2904-Q1, LM2904B-Q1, LM2904BA-Q1
www.ti.com
SLOS414K – MAY 2003 – REVISED APRIL 2022
10.2.3 Application Curve
2
VIN
1.5
VOUT
1
Volts
0.5
0
-0.5
-1
-1.5
-2
0
0.5
1
Time (ms)
1.5
2
Figure 10-2. Input and Output Voltages of the Inverting Amplifier
22
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM2904-Q1 LM2904B-Q1 LM2904BA-Q1
LM2904-Q1, LM2904B-Q1, LM2904BA-Q1
www.ti.com
SLOS414K – MAY 2003 – REVISED APRIL 2022
11 Power Supply Recommendations
CAUTION
Supply voltages larger than specified in the recommended operating region can permanently
damage the device (see Section 7.1).
Place 0.1-µF bypass capacitors close to the power-supply pins to reduce errors coupling in from noisy or
high-impedance power supplies. For more detailed information on bypass capacitor placement, see Section 12.
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM2904-Q1 LM2904B-Q1 LM2904BA-Q1
Submit Document Feedback
23
LM2904-Q1, LM2904B-Q1, LM2904BA-Q1
www.ti.com
SLOS414K – MAY 2003 – REVISED APRIL 2022
12 Layout
12.1 Layout Guidelines
For best operational performance of the device, use good PCB layout practices, including:
•
•
•
•
•
•
Noise can propagate into analog circuitry through the power pins of the circuit as a whole, as well as the
operational amplifier. Bypass capacitors are used to reduce the coupled noise by providing low-impedance
power sources local to the analog circuitry.
– Connect low-ESR, 0.1-µF ceramic bypass capacitors between each supply pin and ground, placed as
close to the device as possible. A single bypass capacitor from V+ to ground is applicable for singlesupply applications.
Separate grounding for analog and digital portions of circuitry is one of the simplest and most-effective
methods of noise suppression. One or more layers on multilayer PCBs are usually devoted to ground planes.
A ground plane helps distribute heat and reduces EMI noise pickup. Make sure to physically separate digital
and analog grounds, paying attention to the flow of the ground current.
To reduce parasitic coupling, run the input traces as far away from the supply or output traces as possible. If it
is not possible to keep them separate, it is much better to cross the sensitive trace perpendicular as opposed
to in parallel with the noisy trace.
Place the external components as close to the device as possible. Keeping RF and RG close to the inverting
input minimizes parasitic capacitance, as shown in Section 12.2.
Keep the length of input traces as short as possible. Always remember that the input traces are the most
sensitive part of the circuit.
Consider a driven, low-impedance guard ring around the critical traces. A guard ring can significantly reduce
leakage currents from nearby traces that are at different potentials.
12.2 Layout Examples
Place components close to
device and to each other to
reduce parasitic errors
Run the input traces as far
away from the supply lines
as possible
VS+
RF
OUT1
V+
GND
IN1í
OUT2
VIN
IN1+
IN2í
Ví
IN2+
RG
GND
R IN
Only needed for
dual-supply
operation
GND
Use low-ESR, ceramic
bypass capacitor
VSí
(or GND for single supply)
Ground (GND) plane on another layer
Figure 12-1. Operational Amplifier Board Layout for Noninverting Configuration
RIN
VIN
+
VOUT
RG
RF
Figure 12-2. Operational Amplifier Schematic for Noninverting Configuration
24
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM2904-Q1 LM2904B-Q1 LM2904BA-Q1
LM2904-Q1, LM2904B-Q1, LM2904BA-Q1
www.ti.com
SLOS414K – MAY 2003 – REVISED APRIL 2022
13 Device and Documentation Support
13.1 Documentation Support
13.1.1 Related Documentation
For related documentation see the following:
Texas Instruments, Application Design Guidelines for LM324/LM358 Devices application report
13.2 Related Links
The table below lists quick access links. Categories include technical documents, support and community
resources, tools and software, and quick access to order now.
Table 13-1. Related Links
PARTS
PRODUCT FOLDER
ORDER NOW
TECHNICAL
DOCUMENTS
TOOLS &
SOFTWARE
SUPPORT &
COMMUNITY
LM2904-Q1
Click here
Click here
Click here
Click here
Click here
LM2904B-Q1
Click here
Click here
Click here
Click here
Click here
LM2904BA-Q1
Click here
Click here
Click here
Click here
Click here
13.3 Receiving Notification of Documentation Updates
To receive notification of documentation updates, navigate to the device product folder on ti.com. Click on
Subscribe to updates to register and receive a weekly digest of any product information that has changed. For
change details, review the revision history included in any revised document.
13.4 Support Resources
TI E2E™ support forums are an engineer's go-to source for fast, verified answers and design help — straight
from the experts. Search existing answers or ask your own question to get the quick design help you need.
Linked content is provided "AS IS" by the respective contributors. They do not constitute TI specifications and do
not necessarily reflect TI's views; see TI's Terms of Use.
13.5 Trademarks
TI E2E™ is a trademark of Texas Instruments.
All trademarks are the property of their respective owners.
13.6 Electrostatic Discharge Caution
This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled
with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.
ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may
be more susceptible to damage because very small parametric changes could cause the device not to meet its published
specifications.
13.7 Glossary
TI Glossary
This glossary lists and explains terms, acronyms, and definitions.
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM2904-Q1 LM2904B-Q1 LM2904BA-Q1
Submit Document Feedback
25
LM2904-Q1, LM2904B-Q1, LM2904BA-Q1
www.ti.com
SLOS414K – MAY 2003 – REVISED APRIL 2022
14 Mechanical, Packaging, and Orderable Information
The following pages include mechanical packaging and orderable information. This information is the mostcurrent data available for the designated devices. This data is subject to change without notice and without
revision of this document. For browser based versions of this data sheet, see the left-hand navigation pane.
26
Submit Document Feedback
Copyright © 2022 Texas Instruments Incorporated
Product Folder Links: LM2904-Q1 LM2904B-Q1 LM2904BA-Q1
PACKAGE OPTION ADDENDUM
www.ti.com
9-Apr-2022
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
(4/5)
(6)
LM2904AVQDRG4Q1
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2904AVQ
LM2904AVQDRQ1
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2904AVQ
LM2904AVQPWRG4Q1
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2904AVQ
LM2904AVQPWRQ1
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2904AVQ
LM2904BAQDGKRQ1
ACTIVE
VSSOP
DGK
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2EMB
LM2904BAQDRQ1
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2904BA
LM2904BAQPWRQ1
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
294BAQ
LM2904BQDGKRQ1
ACTIVE
VSSOP
DGK
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
27ZB
LM2904BQDRQ1
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2904BQ
LM2904BQPWRQ1
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2904BQ
LM2904BTQDGKRQ1
ACTIVE
VSSOP
DGK
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
4BTQ
LM2904BTQDRQ1
ACTIVE
SOIC
D
8
3000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2904TQ
LM2904BTQPWRQ1
ACTIVE
TSSOP
PW
8
3000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2904BT
LM2904QDRG4Q1
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2904Q1
LM2904QDRQ1
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2904Q1
LM2904QPWRG4Q1
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2904Q1
LM2904QPWRQ1
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2904Q1
LM2904VQDRG4Q1
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2904VQ
LM2904VQDRQ1
ACTIVE
SOIC
D
8
2500
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2904VQ1
LM2904VQPWRG4Q1
ACTIVE
TSSOP
PW
8
2000
RoHS & Green
NIPDAU
Level-1-260C-UNLIM
-40 to 125
2904VQ
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
9-Apr-2022
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
(2)
Lead finish/
Ball material
RoHS & Green
NIPDAU
MSL Peak Temp
Op Temp (°C)
Device Marking
(3)
(4/5)
(6)
LM2904VQPWRQ1
ACTIVE
TSSOP
PW
8
2000
Level-1-260C-UNLIM
-40 to 125
2904VQ
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of