0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LM4040A20IDBZR

LM4040A20IDBZR

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOT23

  • 描述:

    电压基准 IC 0.1% SOT23-3

  • 数据手册
  • 价格&库存
LM4040A20IDBZR 数据手册
Product Folder Order Now Support & Community Tools & Software Technical Documents LM4040A, LM4040B LM4040C, LM4040D SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 LM4040 Precision Micropower Shunt Voltage Reference 1 Features 3 Description • The LM4040 series of shunt voltage references are versatile, easy-to-use references that cater to a vast array of applications. The 2-pin fixed-output device requires no external capacitors for operation and is stable with all capacitive loads. Additionally, the reference offers low dynamic impedance, low noise, and low temperature coefficient to ensure a stable output voltage over a wide range of operating currents and temperatures. The LM4040 uses fuse and Zener-zap reverse breakdown voltage trim during wafer sort to offer four output voltage tolerances, ranging from 0.1% (max) for the A grade to 1% (max) for the D grade. Thus, a great deal of flexibility is offered to designers in choosing the best cost-toperformance ratio for their applications. 1 • • • • • Fixed Output Voltages of 2.048 V, 2.5 V, 3 V, 4.096 V, 5 V, 8.192 V, and 10 V Tight Output Tolerances and Low Temperature Coefficient – Max 0.1%, 100 ppm/°C – A Grade – Max 0.2%, 100 ppm/°C – B Grade – Max 0.5%, 100 ppm/°C – C Grade – Max 1.0%, 150 ppm/°C – D Grade Low Output Noise: 35 μVRMS Typ Wide Operating Current Range: 45 μA Typ to 15 mA Stable With All Capacitive Loads; No Output Capacitor Required Available in Extended Temperature Range: –40°C to 125°C 2 Applications • • • • • • • • Data-Acquisition Systems Power Supplies and Power-Supply Monitors Instrumentation and Test Equipment Process Controls Precision Audio Automotive Electronics Energy Management Battery-Powered Equipment Packaged in space-saving SC-70 and SOT-23-3 packages and requiring a minimum current of 45 μA (typ), the LM4040 also is ideal for portable applications. The LM4040xI is characterized for operation over an ambient temperature range of –40°C to 85°C. The LM4040xQ is characterized for operation over an ambient temperature range of –40°C to 125°C. Device Information(1) PART NUMBER LM4040 PACKAGE (PIN) BODY SIZE (NOM) SOT-23 (3) 2.92 mm × 1.30 mm SC70 (6) 2.00 mm × 1.25 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. Simplified Schematic VS RS IZ + IL IL VZ IZ LM4040 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. LM4040A, LM4040B LM4040C, LM4040D SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 www.ti.com Table of Contents 1 2 3 4 5 6 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 6.17 LM4040C50I, LM4040D50I Electrical Characteristics ......................................................... 6.18 LM4040C50Q, LM4040D50Q Electrical Characteristics ......................................................... 6.19 LM4040A82I, LM4040B82I Electrical Characteristics ......................................................... 6.20 LM4040C82I, LM4040D82I Electrical Characteristics ......................................................... 6.21 LM4040A10I, LM4040B10I Electrical Characteristics ......................................................... 6.22 LM4040C10I, LM4040D10I Electrical Characteristics ......................................................... 6.23 Typical Characteristics .......................................... 1 1 1 2 4 5 6.1 6.2 6.3 6.4 6.5 Absolute Maximum Ratings ...................................... 5 ESD Ratings.............................................................. 5 Recommended Operating Conditions....................... 5 Thermal Information .................................................. 5 LM4040A20I, LM4040B20I Electrical Characteristics ........................................................... 6 6.6 LM4040C20I, LM4040D20I Electrical Characteristics ........................................................... 7 6.7 LM4040C20Q, LM4040D20Q Electrical Characteristics ........................................................... 8 6.8 LM4040A25I, LM4040B25I Electrical Characteristics ........................................................... 9 6.9 LM4040C25I, LM4040D25I Electrical Characteristics ......................................................... 10 6.10 LM4040C25Q, LM4040D25Q Electrical Characteristics ......................................................... 11 6.11 LM4040A30I, LM4040B30I Electrical Characteristics ......................................................... 12 6.12 LM4040C30I, LM4040D30I Electrical Characteristics ......................................................... 13 6.13 LM4040C30Q, LM4040D30Q Electrical Characteristics ......................................................... 14 6.14 LM4040A41I, LM4040B41I Electrical Characteristics ......................................................... 15 6.15 LM4040C41I, LM4040D41I Electrical Characteristics ......................................................... 16 6.16 LM4040A50I, LM4040B50I Electrical Characteristics ......................................................... 17 7 19 20 21 22 23 24 Detailed Description ............................................ 25 7.1 7.2 7.3 7.4 8 18 Overview ................................................................. Functional Block Diagram ....................................... Feature Description................................................. Device Functional Modes........................................ 25 25 25 25 Applications and Implementation ...................... 26 8.1 Application Information............................................ 26 8.2 Typical Applications ................................................ 26 9 Power Supply Recommendations...................... 29 10 Layout................................................................... 29 10.1 Layout Guidelines ................................................. 29 10.2 Layout Example .................................................... 29 11 Device and Documentation Support ................. 30 11.1 11.2 11.3 11.4 Related Links ........................................................ Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 30 30 30 30 12 Mechanical, Packaging, and Orderable Information ........................................................... 30 4 Revision History Changes from Revision M (January 2015) to Revision N Page • Changed generic part number to include shorter list (LM4040A/B/C/D) ................................................................................ 1 • Added Average temperature coefficient of reverse breakdown voltage footnote to all electrical tables ................................ 6 • Changed Thermal hysteresis in electrical characteristics tables............................................................................................ 6 Changes from Revision L (January 2009) to Revision M Page • Added Applications, Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section. ..................................................................................................................... 1 • Deleted Ordering Information table. ....................................................................................................................................... 1 2 Submit Documentation Feedback Copyright © 2005–2017, Texas Instruments Incorporated Product Folder Links: LM4040A LM4040B LM4040C LM4040D LM4040A, LM4040B LM4040C, LM4040D www.ti.com SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 Device Comparison Table (1) TA DEVICE GRADE 2.048 V LM4040A20I 2.5 V LM4040A25I 3V LM4040A30I 4.096 V LM4040A41I 5V LM4040A50I 8.192 V LM4040A82I 10 V LM4040A10I 2.048 V LM4040B20I 2.5 V LM4040B25I 3V LM4040B30I 4.096 V LM4040B41I 5V LM4040B50I 8.192 V LM4040B82I 10 V LM4040B10I 2.048 V LM4040C20I 2.5 V LM4040C25I 3V LM4040C30I 4.096 V LM4040C41I 5V LM4040C50I 8.192 V LM4040C82I 10 V LM4040C10I 2.048 V LM4040D20I 2.5 V LM4040D25I 3V LM4040D30I 4.096 V LM4040D41I 5V LM4040D50I 8.192 V LM4040D82I 10 V LM4040D10I C grade: 0.5% initial accuracy and 100 ppm/°C temperature coefficient 2.048 V LM4040C20Q 2.5 V LM4040C25Q 3V LM4040C30Q 5V LM4040C50Q D grade: 1.0% initial accuracy and 150 ppm/°C temperature coefficient 2.048 V LM4040D20Q 2.5 V LM4040D25Q 3V LM4040D30Q 5V LM4040D50Q A grade: 0.1% initial accuracy and 100 ppm/°C temperature coefficient –40°C to 85°C B grade: 0.2% initial accuracy and 100 ppm/°C temperature coefficient –40°C to 85°C –40°C to 85°C –40°C to 125°C (1) ORDERABLE PART NUMBER VKA C grade: 0.5% initial accuracy and 100 ppm/°C temperature coefficient D grade: 1.0% initial accuracy and 150 ppm/°C temperature coefficient For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI web site at www.ti.com. Copyright © 2005–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM4040A LM4040B LM4040C LM4040D 3 LM4040A, LM4040B LM4040C, LM4040D SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 www.ti.com 5 Pin Configuration and Functions DBZ (SOT-23) PACKAGE (TOP VIEW) CATHODE 1 3* ANODE 2 * Pin 3 is attached to substrate and must be connected to ANODE or left open. DCK (SC-70) PACKAGE (TOP VIEW) ANODE NC CATHODE 1 5 NC 4 NC 2 3 NC – No internal connection Pin Functions PIN NAME TYPE DESCRIPTION DBZ DCK CATHODE 1 3 I/O Shunt Current/Voltage input ANODE 2 1 O Common pin, normally connected to ground NC — 2, 4, 5 I No Internal Connection * 3 — I Substrate Connection 4 Submit Documentation Feedback Copyright © 2005–2017, Texas Instruments Incorporated Product Folder Links: LM4040A LM4040B LM4040C LM4040D LM4040A, LM4040B LM4040C, LM4040D www.ti.com SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 6 Specifications 6.1 Absolute Maximum Ratings over free-air temperature range (unless otherwise noted) (1) IZ Continuous cathode current TJ Operating virtual junction temperature Tstg Storage temperature range (1) MIN MAX –10 25 mA 150 °C 150 °C –65 UNIT Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditionsis not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. 6.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1) ±2000 Charged device model (CDM), per JEDEC specification JESD22-C101, all pins (2) ±1000 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions IZ Cathode current TA Free-air temperature (1) MIN MAX (1) 15 LM4040xxxI –40 85 LM4040xxxQ –40 125 UNIT mA °C See parametric tables 6.4 Thermal Information LM4040 THERMAL METRIC (1) RθJA (1) Junction-to-ambient thermal resistance DBZ DCK 3 PINS 5 PINS 206 252 UNIT °C/W For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report. Copyright © 2005–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM4040A LM4040B LM4040C LM4040D 5 LM4040A, LM4040B LM4040C, LM4040D SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 www.ti.com 6.5 LM4040A20I, LM4040B20I Electrical Characteristics at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted) PARAMETER VZ TEST CONDITIONS Reverse breakdown voltage IZ = 100 μA ΔVZ Reverse breakdown voltage tolerance IZ,min Minimum cathode current αVZ IZ = 10 mA Average temperature coefficient of reverse breakdown voltage IZ = 1 mA IZ = 100 μA LM4040A20I MIN 25°C TYP LM4040B20I MAX MIN 2.048 IZ,min < IZ < 1 mA Reverse breakdown voltage change with cathode current change 1 mA < IZ < 15 mA MAX 2.048 2 –4.1 4.1 Full range –15 15 –17 17 45 75 25°C ±20 25°C ±15 Full range ±15 25°C 0.3 75 80 mV μA ±20 ±15 ±100 25°C ±100 ppm/°C ±15 0.8 Full range 25°C 45 80 UNIT V –2 25°C IZ = 100 μA TYP 25°C Full range (1) DVZ DI Z TA 0.3 1 2.5 6 Full range 0.8 1 2.5 8 6 mV 8 ZZ Reverse dynamic impedance IZ = 1 mA, f = 120 Hz, IAC = 0.1 IZ 25°C 0.3 eN Wideband noise IZ = 100 μA, 10 Hz ≤ f ≤ 10 kHz 25°C 35 35 μVRMS Long-term stability of reverse breakdown voltage t = 1000 h, TA = 25°C ± 0.1°C, IZ = 100 μA 120 120 ppm Thermal hysteresis (2) ΔTA = –40°C to 125°C 0.08% 0.08% VHYST (1) (2) 6 0.8 0.3 0.8 Ω — The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75% = ±19 mV. Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C. Submit Documentation Feedback Copyright © 2005–2017, Texas Instruments Incorporated Product Folder Links: LM4040A LM4040B LM4040C LM4040D LM4040A, LM4040B LM4040C, LM4040D www.ti.com SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 6.6 LM4040C20I, LM4040D20I Electrical Characteristics at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted) PARAMETER VZ Reverse breakdown voltage TEST CONDITIONS IZ = 100 μA ΔVZ Reverse breakdown voltage tolerance IZ,min Minimum cathode current αVZ IZ = 10 mA Average temperature coefficient of reverse breakdown voltage IZ = 1 mA IZ = 100 μA MIN 25°C TYP LM4040D20I MAX MIN 2.048 IZ,min < IZ < 1 mA 1 mA < IZ < 15 mA TYP 2.048 V –10 10 –20 20 Full range –23 23 –40 40 45 75 ±20 25°C ±15 Full range ±15 25°C 0.3 mV 75 μA 80 ±20 ±15 ±100 25°C ±150 ppm/°C ±15 0.8 Full range 25°C 45 80 25°C UNIT MAX 25°C 25°C IZ = 100 μA Reverse breakdown voltage change with cathode current change LM4040C20I Full range (1) DVZ DI Z TA 0.3 1 2.5 6 Full range 1 1.2 2.5 8 8 mV 10 ZZ Reverse dynamic impedance IZ = 1 mA, f = 120 Hz, IAC = 0.1 IZ 25°C 0.3 eN Wideband noise IZ = 100 μA, 10 Hz ≤ f ≤ 10 kHz 25°C 35 35 μVRMS Long-term stability of reverse breakdown voltage t = 1000 h, TA = 25°C ± 0.1°C, IZ = 100 μA 120 120 ppm Thermal hysteresis (2) ΔTA = –40°C to 125°C 0.08% 0.08% VHYST (1) (2) 0.9 0.3 1.1 Ω — The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75% = ±19 mV. Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C. Copyright © 2005–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM4040A LM4040B LM4040C LM4040D 7 LM4040A, LM4040B LM4040C, LM4040D SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 www.ti.com 6.7 LM4040C20Q, LM4040D20Q Electrical Characteristics at extended temperature range, full-range TA = –40°C to 125°C (unless otherwise noted) PARAMETER VZ TEST CONDITIONS Reverse breakdown voltage IZ = 100 μA ΔVZ Reverse breakdown voltage tolerance IZ,min Minimum cathode current αVZ IZ = 10 mA Average temperature coefficient of reverse breakdown voltage IZ = 1 mA IZ = 100 μA LM4040C20Q MIN 25°C TYP LM4040D20Q MAX MIN 2.048 IZ,min < IZ < 1 mA Reverse breakdown voltage change with cathode current change 1 mA < IZ < 15 mA MAX 2.048 10 –20 20 Full range –30 30 –50 50 45 75 25°C ±20 25°C ±15 Full range ±15 25°C 0.3 75 80 mV μA ±20 ±15 ±100 25°C ±150 ppm/°C ±15 0.8 Full range 25°C 45 80 UNIT V –10 25°C IZ = 100 μA TYP 25°C Full range (1) DVZ DI Z TA 0.3 1 2.5 6 Full range 1 1.2 2.5 8 8 mV 10 ZZ Reverse dynamic impedance IZ = 1 mA, f = 120 Hz, IAC = 0.1 IZ 25°C 0.3 eN Wideband noise IZ = 100 μA, 10 Hz ≤ f ≤ 10 kHz 25°C 35 35 μVRMS Long-term stability of reverse breakdown voltage t = 1000 h, TA = 25°C ± 0.1°C, IZ = 100 μA 120 120 ppm Thermal hysteresis (2) ΔTA = –40°C to 125°C 0.08% 0.08% VHYST (1) (2) 8 0.9 0.3 1.1 Ω — The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75% = ±19 mV. Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C. Submit Documentation Feedback Copyright © 2005–2017, Texas Instruments Incorporated Product Folder Links: LM4040A LM4040B LM4040C LM4040D LM4040A, LM4040B LM4040C, LM4040D www.ti.com SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 6.8 LM4040A25I, LM4040B25I Electrical Characteristics at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted) PARAMETER VZ Reverse breakdown voltage TEST CONDITIONS IZ = 100 μA ΔVZ Reverse breakdown voltage tolerance IZ,min Minimum cathode current αVZ IZ = 10 mA Average temperature coefficient of reverse breakdown voltage IZ = 1 mA IZ = 100 μA MIN 25°C TYP LM4040B25I MAX MIN 2.5 IZ,min < IZ < 1 mA 1 mA < IZ < 15 mA TYP 2.5 V –2.5 2.5 –5 5 Full range –19 19 –21 21 45 75 ±20 25°C ±15 Full range ±15 25°C 0.3 mV 75 μA 80 ±20 ±15 ±100 25°C ±100 ppm/°C ±15 0.8 Full range 25°C 45 80 25°C UNIT MAX 25°C 25°C IZ = 100 μA Reverse breakdown voltage change with cathode current change LM4040A25I Full range (1) DVZ DI Z TA 0.3 1 2.5 6 Full range 0.8 1 2.5 8 6 mV 8 ZZ Reverse dynamic impedance IZ = 1 mA, f = 120 Hz, IAC = 0.1 IZ 25°C 0.3 eN Wideband noise IZ = 100 μA, 10 Hz ≤ f ≤ 10 kHz 25°C 35 35 μVRMS Long-term stability of reverse breakdown voltage t = 1000 h, TA = 25°C ± 0.1°C, IZ = 100 μA 120 120 ppm Thermal hysteresis (2) ΔTA = –40°C to 125°C 0.08% 0.08% VHYST (1) (2) 0.8 0.3 0.8 Ω — The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75% = ±19 mV. Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C. Copyright © 2005–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM4040A LM4040B LM4040C LM4040D 9 LM4040A, LM4040B LM4040C, LM4040D SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 www.ti.com 6.9 LM4040C25I, LM4040D25I Electrical Characteristics at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted) PARAMETER VZ TEST CONDITIONS Reverse breakdown voltage IZ = 100 μA ΔVZ Reverse breakdown voltage tolerance IZ,min Minimum cathode current αVZ IZ = 10 mA Average temperature coefficient of reverse breakdown voltage IZ = 1 mA IZ = 100 μA LM4040C25I MIN 25°C TYP LM4040D25I MAX MIN 2.5 IZ,min < IZ < 1 mA Reverse breakdown voltage change with cathode current change 1 mA < IZ < 15 mA MAX 2.5 12 –25 25 Full range –29 29 –49 49 45 75 25°C ±20 25°C ±15 Full range ±15 25°C 0.3 75 80 mV μA ±20 ±15 ±100 25°C ±150 ppm/°C ±15 0.8 Full range 25°C 45 80 UNIT V –12 25°C IZ = 100 μA TYP 25°C Full range (1) DVZ DI Z TA 0.3 1 2.5 6 Full range 1 1.2 2.5 8 8 mV 10 ZZ Reverse dynamic impedance IZ = 1 mA, f = 120 Hz, IAC = 0.1 IZ 25°C 0.3 eN Wideband noise IZ = 100 μA, 10 Hz ≤ f ≤ 10 kHz 25°C 35 35 μVRMS Long-term stability of reverse breakdown voltage t = 1000 h, TA = 25°C ± 0.1°C, IZ = 100 μA 120 120 ppm Thermal hysteresis (2) ΔTA = –40°C to 125°C 0.08% 0.08% VHYST (1) (2) 10 0.9 0.3 1.1 Ω — The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75% = ±19 mV. Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C. Submit Documentation Feedback Copyright © 2005–2017, Texas Instruments Incorporated Product Folder Links: LM4040A LM4040B LM4040C LM4040D LM4040A, LM4040B LM4040C, LM4040D www.ti.com SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 6.10 LM4040C25Q, LM4040D25Q Electrical Characteristics at extended temperature range, full-range TA = –40°C to 125°C (unless otherwise noted) PARAMETER VZ Reverse breakdown voltage TEST CONDITIONS IZ = 100 μA ΔVZ Reverse breakdown voltage tolerance IZ,min Minimum cathode current αVZ IZ = 10 mA Average temperature coefficient of reverse breakdown voltage IZ = 1 mA IZ = 100 μA MIN 25°C TYP LM4040D25Q MAX MIN 2.5 IZ,min < IZ < 1 mA 1 mA < IZ < 15 mA TYP 2.5 V –12 12 –25 25 Full range –38 38 –63 63 45 75 ±20 25°C ±15 Full range ±15 25°C 0.3 mV 75 μA 80 ±20 ±15 ±100 25°C ±150 ppm/°C ±15 0.8 Full range 25°C 45 80 25°C UNIT MAX 25°C 25°C IZ = 100 μA Reverse breakdown voltage change with cathode current change LM4040C25Q Full range (1) DVZ DI Z TA 0.3 1 2.5 6 Full range 1 1.2 2.5 8 8 mV 10 ZZ Reverse dynamic impedance IZ = 1 mA, f = 120 Hz, IAC = 0.1 IZ 25°C 0.3 eN Wideband noise IZ = 100 μA, 10 Hz ≤ f ≤ 10 kHz 25°C 35 35 μVRMS Long-term stability of reverse breakdown voltage t = 1000 h, TA = 25°C ± 0.1°C, IZ = 100 μA 120 120 ppm Thermal hysteresis (2) ΔTA = –40°C to 125°C 0.08% 0.08% VHYST (1) (2) 0.9 0.3 1.1 Ω — The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75% = ±19 mV. Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C. Copyright © 2005–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM4040A LM4040B LM4040C LM4040D 11 LM4040A, LM4040B LM4040C, LM4040D SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 www.ti.com 6.11 LM4040A30I, LM4040B30I Electrical Characteristics at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted) PARAMETER VZ TEST CONDITIONS Reverse breakdown voltage IZ = 100 μA ΔVZ Reverse breakdown voltage tolerance IZ,min Minimum cathode current αVZ IZ = 10 mA Average temperature coefficient of reverse breakdown voltage IZ = 1 mA IZ = 100 μA LM4040A30I MIN 25°C TYP LM4040B30I MAX MIN 3 IZ,min < IZ < 1 mA Reverse breakdown voltage change with cathode current change 1 mA < IZ < 15 mA MAX 3 3 –6 6 Full range –22 22 –26 26 47 77 25°C ±20 25°C ±15 Full range ±15 25°C 0.6 Full range 77 82 mV μA ±20 ±15 ±100 25°C 25°C 47 82 UNIT V –3 25°C IZ = 100 μA TYP 25°C Full range (1) DVZ DI Z TA ±100 ppm/°C ±15 0.8 0.6 1.1 2.7 6 Full range 0.8 1.1 2.7 9 6 mV 9 ZZ Reverse dynamic impedance IZ = 1 mA, f = 120 Hz, IAC = 0.1 IZ 25°C 0.4 eN Wideband noise IZ = 100 μA, 10 Hz ≤ f ≤ 10 kHz 25°C 35 35 μVRMS Long-term stability of reverse breakdown voltage t = 1000 h, TA = 25°C ± 0.1°C, IZ = 100 μA 120 120 ppm Thermal hysteresis (2) ΔTA = –40°C to 125°C 0.08% 0.08% VHYST (1) (2) 12 0.9 0.4 0.9 Ω — The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75% = ±19 mV. Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C. Submit Documentation Feedback Copyright © 2005–2017, Texas Instruments Incorporated Product Folder Links: LM4040A LM4040B LM4040C LM4040D LM4040A, LM4040B LM4040C, LM4040D www.ti.com SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 6.12 LM4040C30I, LM4040D30I Electrical Characteristics at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted) PARAMETER VZ Reverse breakdown voltage TEST CONDITIONS IZ = 100 μA ΔVZ Reverse breakdown voltage tolerance IZ,min Minimum cathode current αVZ IZ = 10 mA Average temperature coefficient of reverse breakdown voltage IZ = 1 mA IZ = 100 μA MIN 25°C TYP LM4040D30I MAX MIN 3 IZ,min < IZ < 1 mA 1 mA < IZ < 15 mA TYP 3 V –15 15 –30 30 Full range –34 34 –59 59 45 77 ±20 25°C ±15 Full range ±15 25°C 0.4 Full range mV 77 μA 82 ±20 ±15 ±100 25°C 25°C 45 82 25°C UNIT MAX 25°C 25°C IZ = 100 μA Reverse breakdown voltage change with cathode current change LM4040C30I Full range (1) DVZ DI Z TA ±150 ppm/°C ±15 0.8 1.4 1.1 2.7 6 Full range 1 1.3 2.7 9 8 mV 11 ZZ Reverse dynamic impedance IZ = 1 mA, f = 120 Hz, IAC = 0.1 IZ 25°C 0.4 eN Wideband noise IZ = 100 μA, 10 Hz ≤ f ≤ 10 kHz 25°C 35 35 μVRMS Long-term stability of reverse breakdown voltage t = 1000 h, TA = 25°C ± 0.1°C, IZ = 100 μA 120 120 ppm Thermal hysteresis (2) ΔTA = –40°C to 125°C 0.08% 0.08% VHYST (1) (2) 0.9 0.4 1.2 Ω — The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75% = ±19 mV. Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C. Copyright © 2005–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM4040A LM4040B LM4040C LM4040D 13 LM4040A, LM4040B LM4040C, LM4040D SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 www.ti.com 6.13 LM4040C30Q, LM4040D30Q Electrical Characteristics at extended temperature range, full-range TA = –40°C to 125°C (unless otherwise noted) PARAMETER VZ TEST CONDITIONS Reverse breakdown voltage IZ = 100 μA ΔVZ Reverse breakdown voltage tolerance IZ,min Minimum cathode current αVZ IZ = 10 mA Average temperature coefficient of reverse breakdown voltage IZ = 1 mA IZ = 100 μA LM4040C30Q MIN 25°C TYP LM4040D30Q MAX MIN 3 IZ,min < IZ < 1 mA Reverse breakdown voltage change with cathode current change 1 mA < IZ < 15 mA MAX 3 15 –30 30 Full range –45 45 –75 75 47 77 25°C ±20 25°C ±15 Full range ±15 25°C 0.4 Full range 77 82 mV μA ±20 ±15 ±100 25°C 25°C 47 82 UNIT V –15 25°C IZ = 100 μA TYP 25°C Full range (1) DVZ DI Z TA ±150 ppm/°C ±15 0.8 0.4 1.1 2.7 6 Full range 1.1 1.3 2.7 9 8 mV 11 ZZ Reverse dynamic impedance IZ = 1 mA, f = 120 Hz, IAC = 0.1 IZ 25°C 0.4 eN Wideband noise IZ = 100 μA, 10 Hz ≤ f ≤ 10 kHz 25°C 35 35 μVRMS Long-term stability of reverse breakdown voltage t = 1000 h, TA = 25°C ± 0.1°C, IZ = 100 μA 120 120 ppm Thermal hysteresis (2) ΔTA = –40°C to 125°C 0.08% 0.08% VHYST (1) (2) 14 0.9 0.4 1.2 Ω — The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75% = ±19 mV. Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C. Submit Documentation Feedback Copyright © 2005–2017, Texas Instruments Incorporated Product Folder Links: LM4040A LM4040B LM4040C LM4040D LM4040A, LM4040B LM4040C, LM4040D www.ti.com SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 6.14 LM4040A41I, LM4040B41I Electrical Characteristics at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted) PARAMETER VZ Reverse breakdown voltage TEST CONDITIONS IZ = 100 μA ΔVZ Reverse breakdown voltage tolerance IZ,min Minimum cathode current αVZ IZ = 10 mA Average temperature coefficient of reverse breakdown voltage IZ = 1 mA IZ = 100 μA MIN 25°C TYP LM4040B41I MAX MIN 4.096 IZ,min < IZ < 1 mA 1 mA < IZ < 15 mA TYP 4.096 V –4.1 4.1 –8.2 8.2 Full range –31 31 –35 35 50 83 ±30 25°C ±20 Full range ±20 25°C 0.5 Full range mV 83 μA 88 ±30 ±20 ±100 25°C 25°C 50 88 25°C UNIT MAX 25°C 25°C IZ = 100 μA Reverse breakdown voltage change with cathode current change LM4040A41I Full range (1) DVZ DI Z TA ±100 ppm/°C ±20 0.9 0.5 1.2 3 7 Full range 0.9 1.2 3 10 7 mV 10 ZZ Reverse dynamic impedance IZ = 1 mA, f = 120 Hz, IAC = 0.1 IZ 25°C 0.5 eN Wideband noise IZ = 100 μA, 10 Hz ≤ f ≤ 10 kHz 25°C 80 80 μVRMS Long-term stability of reverse breakdown voltage t = 1000 h, TA = 25°C ± 0.1°C, IZ = 100 μA 120 120 ppm Thermal hysteresis (2) ΔTA = –40°C to 125°C 0.08% 0.08% VHYST (1) (2) 1 0.5 1 Ω — The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75% = ±19 mV. Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C. Copyright © 2005–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM4040A LM4040B LM4040C LM4040D 15 LM4040A, LM4040B LM4040C, LM4040D SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 www.ti.com 6.15 LM4040C41I, LM4040D41I Electrical Characteristics at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted) PARAMETER VZ TEST CONDITIONS Reverse breakdown voltage IZ = 100 μA ΔVZ Reverse breakdown voltage tolerance IZ,min Minimum cathode current αVZ IZ = 10 mA Average temperature coefficient of reverse breakdown voltage IZ = 1 mA IZ = 100 μA LM4040C41I MIN 25°C TYP LM4040D41I MAX MIN 4.096 IZ,min < IZ < 1 mA Reverse breakdown voltage change with cathode current change 1 mA < IZ < 15 mA MAX 4.096 20 –41 41 Full range –47 47 –81 81 50 83 25°C ±30 25°C ±20 Full range ±20 25°C 0.5 Full range 83 88 mV μA ±30 ±20 ±100 25°C 25°C 50 88 UNIT V –20 25°C IZ = 100 μA TYP 25°C Full range (1) DVZ DI Z TA ±150 ppm/°C ±20 0.9 0.5 1.2 3 Full range 7 1.2 1.5 3 10 9 mV 13 ZZ Reverse dynamic impedance IZ = 1 mA, f = 120 Hz, IAC = 0.1 IZ 25°C 0.5 eN Wideband noise IZ = 100 μA, 10 Hz ≤ f ≤ 10 kHz 25°C 80 80 μVRMS Long-term stability of reverse breakdown voltage t = 1000 h, TA = 25°C ± 0.1°C, IZ = 100 μA 120 120 ppm Thermal hysteresis (2) ΔTA = –40°C to 125°C 0.08% 0.08% VHYST (1) (2) 16 1 0.5 1.3 Ω — The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75% = ±19 mV. Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C. Submit Documentation Feedback Copyright © 2005–2017, Texas Instruments Incorporated Product Folder Links: LM4040A LM4040B LM4040C LM4040D LM4040A, LM4040B LM4040C, LM4040D www.ti.com SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 6.16 LM4040A50I, LM4040B50I Electrical Characteristics at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted) PARAMETER VZ Reverse breakdown voltage TEST CONDITIONS IZ = 100 μA ΔVZ Reverse breakdown voltage tolerance IZ,min Minimum cathode current αVZ IZ = 10 mA Average temperature coefficient of reverse breakdown voltage IZ = 1 mA IZ = 100 μA MIN 25°C TYP LM4040B50I MAX MIN 5 IZ,min < IZ < 1 mA 1 mA < IZ < 15 mA TYP 5 V –5 5 –10 10 Full range –38 38 –43 43 65 89 ±30 25°C ±20 Full range ±20 25°C 0.5 Full range mV 89 μA 95 ±30 ±20 ±100 25°C 25°C 65 95 25°C UNIT MAX 25°C 25°C IZ = 100 μA Reverse breakdown voltage change with cathode current change LM4040A50I Full range (1) DVZ DI Z TA ±100 ppm/°C ±20 1 0.5 1.4 3.5 8 Full range 1 1.4 3.5 12 8 mV 12 ZZ Reverse dynamic impedance IZ = 1 mA, f = 120 Hz, IAC = 0.1 IZ 25°C 0.5 eN Wideband noise IZ = 100 μA, 10 Hz ≤ f ≤ 10 kHz 25°C 80 80 μVRMS Long-term stability of reverse breakdown voltage t = 1000 h, TA = 25°C ± 0.1°C, IZ = 100 μA 120 120 ppm Thermal hysteresis (2) ΔTA = –40°C to 125°C 0.08% 0.08% VHYST (1) (2) 1.1 0.5 1.1 Ω — The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75% = ±19 mV. Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C. Copyright © 2005–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM4040A LM4040B LM4040C LM4040D 17 LM4040A, LM4040B LM4040C, LM4040D SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 www.ti.com 6.17 LM4040C50I, LM4040D50I Electrical Characteristics at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted) PARAMETER VZ TEST CONDITIONS Reverse breakdown voltage IZ = 100 μA ΔVZ Reverse breakdown voltage tolerance IZ,min Minimum cathode current αVZ IZ = 10 mA Average temperature coefficient of reverse breakdown voltage IZ = 1 mA IZ = 100 μA LM4040C50I MIN 25°C TYP LM4040D50I MAX MIN 5 IZ,min < IZ < 1 mA Reverse breakdown voltage change with cathode current change 1 mA < IZ < 15 mA MAX 5 25 –50 50 Full range –58 58 –99 99 65 89 25°C ±30 25°C ±20 Full range ±20 25°C 0.5 Full range 89 95 mV μA ±30 ±20 ±100 25°C 25°C 65 95 UNIT V –25 25°C IZ = 100 μA TYP 25°C Full range (1) DVZ DI Z TA ±150 ppm/°C ±20 1 0.5 1.4 3.5 8 Full range 1.3 1.8 3.5 12 10 mV 15 ZZ Reverse dynamic impedance IZ = 1 mA, f = 120 Hz, IAC = 0.1 IZ 25°C 0.5 eN Wideband noise IZ = 100 μA, 10 Hz ≤ f ≤ 10 kHz 25°C 80 80 μVRMS Long-term stability of reverse breakdown voltage t = 1000 h, TA = 25°C ± 0.1°C, IZ = 100 μA 120 120 ppm Thermal hysteresis (2) ΔTA = –40°C to 125°C 0.08% 0.08% VHYST (1) (2) 18 1.1 0.5 1.5 Ω — The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75% = ±19 mV. Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C. Submit Documentation Feedback Copyright © 2005–2017, Texas Instruments Incorporated Product Folder Links: LM4040A LM4040B LM4040C LM4040D LM4040A, LM4040B LM4040C, LM4040D www.ti.com SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 6.18 LM4040C50Q, LM4040D50Q Electrical Characteristics at extended temperature range, full-range TA = –40°C to 125°C (unless otherwise noted) PARAMETER VZ Reverse breakdown voltage TEST CONDITIONS IZ = 100 μA ΔVZ Reverse breakdown voltage tolerance IZ,min Minimum cathode current αVZ IZ = 10 mA Average temperature coefficient of reverse breakdown voltage IZ = 1 mA IZ = 100 μA MIN 25°C TYP LM4040D50Q MAX MIN 5 IZ,min < IZ < 1 mA 1 mA < IZ < 15 mA TYP 5 V –25 25 –50 50 Full range –75 75 –125 125 65 89 ±30 25°C ±20 Full range ±20 25°C 0.5 Full range mV 89 μA 95 ±30 ±20 ±100 25°C 25°C 65 95 25°C UNIT MAX 25°C 25°C IZ = 100 μA Reverse breakdown voltage change with cathode current change LM4040C50Q Full range (1) DVZ DI Z TA ±150 ppm/°C ±20 1 0.5 1.4 3.5 8 Full range 1 1.8 3.5 12 8 mV 12 ZZ Reverse dynamic impedance IZ = 1 mA, f = 120 Hz, IAC = 0.1 IZ 25°C 0.5 eN Wideband noise IZ = 100 μA, 10 Hz ≤ f ≤ 10 kHz 25°C 80 80 μVRMS Long-term stability of reverse breakdown voltage t = 1000 h, TA = 25°C ± 0.1°C, IZ = 100 μA 120 120 ppm Thermal hysteresis (2) ΔTA = –40°C to 125°C 0.08% 0.08% VHYST (1) (2) 1.1 0.5 1.1 Ω — The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75% = ±19 mV. Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C. Copyright © 2005–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM4040A LM4040B LM4040C LM4040D 19 LM4040A, LM4040B LM4040C, LM4040D SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 www.ti.com 6.19 LM4040A82I, LM4040B82I Electrical Characteristics at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted) PARAMETER VZ TEST CONDITIONS Reverse breakdown voltage IZ = 150 μA ΔVZ Reverse breakdown voltage tolerance IZ,min Minimum cathode current αVZ IZ = 10 mA Average temperature coefficient of reverse breakdown voltage IZ = 1 mA IZ = 150 μA LM4040A82I MIN 25°C TYP IZ,min < IZ < 1 mA Reverse breakdown voltage change with cathode current change 1 mA < IZ < 15 mA MAX MIN 8.192 TYP MAX 8.192 8.2 –16 16 Full range –61 61 –70 70 67 67 110 25°C ±40 25°C ±20 Full range ±20 25°C 0.6 Full range 106 110 mV μA ±40 ±20 ±100 25°C 25°C 106 UNIT V –8.2 25°C IZ = 150 μA LM4040B82I 25°C Full range (1) DVZ DI Z TA ±100 ppm/°C ±20 1.3 0.6 2.5 7 10 Full range 1.6 2.5 7 18 10 mV 18 ZZ Reverse dynamic impedance IZ = 1 mA, f = 120 Hz, IAC = 0.1 IZ 25°C 0.6 eN Wideband noise IZ = 150 μA, 10 Hz ≤ f ≤ 10 kHz 25°C 130 130 μVRMS Long-term stability of reverse breakdown voltage t = 1000 h, TA = 25°C ± 0.1°C, IZ = 150 μA 120 120 ppm Thermal hysteresis (2) ΔTA = –40°C to 125°C 0.08% 0.08% VHYST (1) (2) 20 1.5 0.6 1.5 Ω — The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75% = ±19 mV. Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C. Submit Documentation Feedback Copyright © 2005–2017, Texas Instruments Incorporated Product Folder Links: LM4040A LM4040B LM4040C LM4040D LM4040A, LM4040B LM4040C, LM4040D www.ti.com SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 6.20 LM4040C82I, LM4040D82I Electrical Characteristics at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted) PARAMETER VZ Reverse breakdown voltage TEST CONDITIONS IZ = 150 μA ΔVZ Reverse breakdown voltage tolerance IZ,min Minimum cathode current αVZ IZ = 10 mA Average temperature coefficient of reverse breakdown voltage IZ = 1 mA IZ = 150 μA MIN 25°C TYP IZ,min < IZ < 1 mA 1 mA < IZ < 15 mA LM4040D82I MAX MIN 8.192 TYP 8.192 V –41 41 –82 82 Full range –94 94 –162 162 67 ±40 25°C ±20 Full range 67 ±20 25°C 0.6 Full range mV 111 μA 115 ±40 ±20 ±100 25°C 25°C 106 110 25°C UNIT MAX 25°C 25°C IZ = 150 μA Reverse breakdown voltage change with cathode current change LM4040C82I Full range (1) DVZ DI Z TA ±150 ppm/°C ±20 1.3 0.6 1.7 7 15 2.5 7 10 Full range 3 18 mV 24 ZZ Reverse dynamic impedance IZ = 1 mA, f = 120 Hz, IAC = 0.1 IZ 25°C 0.6 eN Wideband noise IZ = 150 μA, 10 Hz ≤ f ≤ 10 kHz 25°C 130 130 μVRMS Long-term stability of reverse breakdown voltage t = 1000 h, TA = 25°C ± 0.1°C, IZ = 150 μA 120 120 ppm Thermal hysteresis (2) ΔTA = –40°C to 125°C 0.08% 0.08% VHYST (1) (2) 1.5 0.6 1.9 Ω — The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75% = ±19 mV. Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C. Copyright © 2005–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM4040A LM4040B LM4040C LM4040D 21 LM4040A, LM4040B LM4040C, LM4040D SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 www.ti.com 6.21 LM4040A10I, LM4040B10I Electrical Characteristics at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted) PARAMETER VZ TEST CONDITIONS Reverse breakdown voltage IZ = 150 μA ΔVZ Reverse breakdown voltage tolerance IZ,min Minimum cathode current αVZ IZ = 10 mA Average temperature coefficient of reverse breakdown voltage IZ = 1 mA IZ = 150 μA LM4040A10I MIN 25°C TYP IZ,min < IZ < 1 mA Reverse breakdown voltage change with cathode current change 1 mA < IZ < 15 mA MAX MIN 10 TYP MAX 10 10 –20 20 Full range –75 75 –85 85 75 75 125 25°C ±40 25°C ±20 Full range ±20 25°C 0.8 Full range 120 125 mV μA ±40 ±20 ±100 25°C 25°C 120 UNIT V –10 25°C IZ = 150 μA LM4040B10I 25°C Full range (1) DVZ DI Z TA ±100 ppm/°C ±20 1.5 0.8 3.5 8 14 Full range 1.5 3.5 8 24 14 mV 24 ZZ Reverse dynamic impedance IZ = 1 mA, f = 120 Hz, IAC = 0.1 IZ 25°C 0.7 eN Wideband noise IZ = 150 μA, 10 Hz ≤ f ≤ 10 kHz 25°C 180 180 μVRMS Long-term stability of reverse breakdown voltage t = 1000 h, TA = 25°C ± 0.1°C, IZ = 150 μA 120 120 ppm Thermal hysteresis (2) ΔTA = –40°C to 125°C 0.08% 0.08% VHYST (1) (2) 22 1.7 0.7 1.7 Ω — The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75% = ±19 mV. Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C. Submit Documentation Feedback Copyright © 2005–2017, Texas Instruments Incorporated Product Folder Links: LM4040A LM4040B LM4040C LM4040D LM4040A, LM4040B LM4040C, LM4040D www.ti.com SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 6.22 LM4040C10I, LM4040D10I Electrical Characteristics at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted) PARAMETER VZ Reverse breakdown voltage TEST CONDITIONS IZ = 150 μA ΔVZ Reverse breakdown voltage tolerance IZ,min Minimum cathode current αVZ IZ = 10 mA Average temperature coefficient of reverse breakdown voltage IZ = 1 mA IZ = 150 μA MIN 25°C TYP IZ,min < IZ < 1 mA 1 mA < IZ < 15 mA LM4040D10I MAX MIN 10 TYP 10 V –50 50 –100 100 Full range –115 115 –198 198 75 ±40 25°C ±20 Full range 75 ±20 25°C 0.8 Full range mV 130 μA 135 ±40 ±20 ±100 25°C 25°C 120 125 25°C UNIT MAX 25°C 25°C IZ = 150 μA Reverse breakdown voltage change with cathode current change LM4040C10I Full range (1) DVZ DI Z TA ±150 ppm/°C ±20 1.5 0.8 2 8 18 3.5 8 14 Full range 4 24 mV 29 ZZ Reverse dynamic impedance IZ = 1 mA, f = 120 Hz, IAC = 0.1 IZ 25°C 0.7 eN Wideband noise IZ = 150 μA, 10 Hz ≤ f ≤ 10 kHz 25°C 180 180 μVRMS Long-term stability of reverse breakdown voltage t = 1000 h, TA = 25°C ± 0.1°C, IZ = 150 μA 120 120 ppm Thermal hysteresis (2) ΔTA = –40°C to 125°C 0.08% 0.08% VHYST (1) (2) 1.7 0.7 2.3 Ω — The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below: C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75% = ±19 mV. Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C. Copyright © 2005–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM4040A LM4040B LM4040C LM4040D 23 LM4040A, LM4040B LM4040C, LM4040D SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 www.ti.com 6.23 Typical Characteristics 0.5 VZ, Change (%) 0.4 0.3 0.2 0.1 ZZ, Dynamic Output Impedance (Ω) 0.6 VZ = 2.5 V IZ = 150 mA 50 ppm/°C 20 ppm/°C 7 ppm/°C 0 −0.1 −0.2 −0.3 −0.4 20 40 60 80 100 120 Temperature (°C) Figure 1. Temperature Drift for Different Average Temperature Coefficients −20 0 No Capacitor 1 µF Tantanlum Capacitor 10 VZ = 2.5 V IZ = 150 µA TJ = 25°C IZ,AC = 0.1 IZ 1 0.1 100 XC 1k 120 1000 No Capacitor 100 VZ = 2.5 V IZ = 1 mA TJ = 25°C IZ,AC = 0.1 IZ 10 1-mF Tantanlum Capacitor 1 0.1 100 XC 10k 100k 1M Frequency (Hz) Figure 3. Output Impedance vs Frequency 1k Noise (mV/eHz) 10 Submit Documentation Feedback VZ = 2.5 V TJ = 25°C 100 80 60 40 20 0 0 0.5 1 1.5 2 2.5 3 VZ, Reverse Voltage (V) Figure 4. Temperature Drift for Different Average Temperature Coefficient VZ = 2.5 V IZ = 200 mA TJ = 25°C 1 0.1 24 100 10k 100k 1M Frequency (Hz) Figure 2. Output Impedance vs Frequency IZ, Cathode Current (mA) ZZ, Dynamic Output Impedance (W) −40 1000 1 100 1k 10k Frequency (Hz) Figure 5. Noise Voltage vs Frequency 10 100k Copyright © 2005–2017, Texas Instruments Incorporated Product Folder Links: LM4040A LM4040B LM4040C LM4040D LM4040A, LM4040B LM4040C, LM4040D www.ti.com SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 7 Detailed Description 7.1 Overview The LM4040 is a precision micro-power curvature-corrected bandgap shunt voltage reference. The LM4040 has been designed for stable operation without the need of an external capacitor connected between the “+” pin and the “−” pin. If, however, a bypass capacitor is used, the LM4040 remains stable. LM4040 offers several fixed reverse breakdown voltages: 2.048 V, 2.500 V, 3.000 V, 4.096 V, 5.000 V, 6.000, 8.192 V, and 10.000 V. The minimum operating current increases from 60 µA for the LM4040-N-2.048 and LM4040-N-2.5 to 100 μA for the 10.0-V LM4040. All versions have a maximum operating current of 15 mA. Each reverse voltage options can be purchased with initial tolerances (at 25°C) of 0.1%, 0.2%, 0.5% and 1.0%. These reference options are denoted by A (0.1%), B (0.2%), C (0.5%) and D for (1.0%). The LM4040xxxI devices are characterized for operation from –40°C to 85°C, and the LM4040xxxQ devices are characterized for operation from –40°C to 125°C. 7.2 Functional Block Diagram CATHODE + _ ANODE 7.3 Feature Description A temperature compensated band gap voltage reference controls high gain amplifier and shunt pass element to maintain a nearly constant voltage between cathode and anode. Regulation occurs after a minimum current is provided to power the voltage divider and amplifier. Internal frequency compensation provides a stable loop for all capacitor loads. Floating shunt design is useful for both positive and negative regulation applications. 7.4 Device Functional Modes 7.4.1 Shunt Reference LM4040 will operate in one mode, which is as a fixed voltage reference that cannot be adjusted. LM4040 does offer various Reverse Voltage options that have unique electrical characteristics detailed in the Specifications section. In order for a proper Reverse Voltage to be developed, current must be sourced into the cathode of LM4040. The minimum current needed for proper regulation is denoted in the Specifications section as IZ,min. Copyright © 2005–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM4040A LM4040B LM4040C LM4040D 25 LM4040A, LM4040B LM4040C, LM4040D SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 www.ti.com 8 Applications and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 8.1 Application Information LM4040 is a well known industry standard device used in several applications and end equipment where a reference is required. Below describes this device being used in a data acquisition system. Analog to Digital conversion systems are the most common applications to use LM4040 due to its low reference tolerance which allows high precision in these systems. 8.2 Typical Applications ADS7842 0 V to VREF 1 AIN0 5V 2 AIN1 909 + 2.2 mF LM4040A-41 VANA VDIG 28 + 27 3 AIN2 A1 26 4 AIN3 A0 25 5 VREF CLK 24 5-V Analog Supply + 0.1 mF 10 mF 3.2-MHz Clock BUSY 23 BUSY Output 7 DB11 WR 22 Write Input 8 DB10 CS 21 9 DB9 RD 20 6 AGND 10 DB8 DB0 19 11 DB7 DB1 18 12 DB6 DB2 17 13 DB5 DB3 16 14 DGND DB4 15 Read Input Figure 6. Data-Acquisition Circuit With LM4040x-41 8.2.1 Design Requirements For this design example, use the parameters listed in Table 1 as the input parameters. Table 1. Design Parameters DESIGN PARAMETER 26 EXAMPLE VALUE ADC FSR (Full Scale Range) 4.096 ADC Resolution 12 Bits Supply Voltage 5V Cathode Current (Ik) 100 µA Submit Documentation Feedback Copyright © 2005–2017, Texas Instruments Incorporated Product Folder Links: LM4040A LM4040B LM4040C LM4040D LM4040A, LM4040B LM4040C, LM4040D www.ti.com SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 8.2.2 Detailed Design Procedure When using LM4040 as a comparator with reference, determine the following: • Input voltage range • Reference voltage accuracy • Output logic input high and low level thresholds • Current source resistance 8.2.2.1 LM4040 Voltage and Accuracy Choice When using LM4040 as a reference for an ADC, the ADC's FSR (Full Scale Range), Resolution and LSB must be determined. LSB can be determined by: LSB=FSR/(2N-1) With N being the resolution or Number of Bits. FSR and Resolution can be determined by the ADC's datasheet. Vref can be determined by: Vref=FSR+LSB Though modern data converters use calibration techniques to compensate for any error introduced by a Vref's inaccuracy, it is best to use the highest accuracy available. This is due to errors in the calibration method that may allow some non-linearities introduced by the Vref's initial accuracy. A good example is the LM4040x-41 that is designed to be a cost-effective voltage reference as required in 12-bit data-acquisition systems. For 12-bit systems operating from 5-V supplies (see Figure 6), the LM4040A-41 (4.096 V, 0.01%) only introduces 4 LSBs (4mV) of possible error in a system that consists of 4096 LSBs. 8.2.2.2 Cathode and Load Currents In a typical shunt-regulator configuration (see Figure 7), an external resistor, RS, is connected between the supply and the cathode of the LM4040. RS must be set properly, as it sets the total current available to supply the load (IL) and bias the LM4040 (IZ). In all cases, IZ must stay within a specified range for proper operation of the reference. Taking into consideration one extreme in the variation of the load and supply voltage (maximum IL and minimum VS), RS must be small enough to supply the minimum IZ required for operation of the regulator, as given by data-sheet parameters. At the other extreme, maximum VS and minimum IL, RS must be large enough to limit IZ to less than its maximum-rated value of 15 mA. RS is calculated according to Equation 1: (V - VZ ) RS = S (IL + IZ ) (1) VS RS IZ + IL IL VZ IZ LM4040 Figure 7. Shunt Regulator 8.2.2.3 Output Capacitor The LM4040 does not require an output capacitor across cathode and anode for stability. However, if an output bypass capacitor is desired, the LM4040 is designed to be stable with all capacitive loads. Copyright © 2005–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM4040A LM4040B LM4040C LM4040D 27 LM4040A, LM4040B LM4040C, LM4040D SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 www.ti.com 8.2.2.4 SOT-23 Connections There is a parasitic Schottky diode connected between pins 2 and 3 of the SOT-23 packaged device. Thus, pin 3 of the SOT-23 package must be left floating or connected to pin 2. 8.2.2.5 Start-Up Characteristics In any data conversion system, start-up characteristics are important, as to determine when it is safe begin conversion based upon a steady and settled reference value. As shown in Figure 9 it is best to allow for >20µs from supply start-up to begin conversion. RS VIN LM4040 VZ 1 Hz Rate Figure 8. Test Circuit 8.2.3 Application Curve 6 6 4 VZ = 2.5 V TJ = 25°C RS = 30 kW VZ (V) 4 2 VIN 0 3 −2 −4 2 VZ VIN (V) 5 −6 1 −8 0 −1 −10 −10 −12 0 10 20 30 40 50 60 70 80 90 Response Time (ms) Figure 9. Startup Response 28 Submit Documentation Feedback Copyright © 2005–2017, Texas Instruments Incorporated Product Folder Links: LM4040A LM4040B LM4040C LM4040D LM4040A, LM4040B LM4040C, LM4040D www.ti.com SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 9 Power Supply Recommendations In order to not exceed the maximum cathode current, be sure that the supply voltage is current limited. For applications shunting high currents (15 mA max), pay attention to the cathode and anode trace lengths, adjusting the width of the traces to have the proper current density. 10 Layout 10.1 Layout Guidelines Figure 10 shows an example of a PCB layout of LM4040XXXDBZ. Some key Vref noise considerations are: • Connect a low-ESR, 0.1-μF (CL) ceramic bypass capacitor on the cathode pin node. • Decouple other active devices in the system per the device specifications. • Using a solid ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup. • Place the external components as close to the device as possible. This configuration prevents parasitic errors (such as the Seebeck effect) from occurring. • Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if possible and only make perpendicular crossings when absolutely necessary. 10.2 Layout Example GND DBZ (TOP VIEW) CL Rsup Vsup CATHODE GND ANODE 1 3 2 Figure 10. DBZ Layout example Copyright © 2005–2017, Texas Instruments Incorporated Submit Documentation Feedback Product Folder Links: LM4040A LM4040B LM4040C LM4040D 29 LM4040A, LM4040B LM4040C, LM4040D SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017 www.ti.com 11 Device and Documentation Support 11.1 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to order now. Table 2. Related Links PARTS PRODUCT FOLDER ORDER NOW TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY LM4040A Click here Click here Click here Click here Click here LM4040B Click here Click here Click here Click here Click here LM4040C Click here Click here Click here Click here Click here LM4040D Click here Click here Click here Click here Click here 11.2 Trademarks All trademarks are the property of their respective owners. 11.3 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 11.4 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 30 Submit Documentation Feedback Copyright © 2005–2017, Texas Instruments Incorporated Product Folder Links: LM4040A LM4040B LM4040C LM4040D PACKAGE OPTION ADDENDUM www.ti.com 9-Oct-2017 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM4040A10IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NQ3, 4NQU) LM4040A10IDBZRG4 ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NQ3, 4NQU) LM4040A20IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4MC3, 4MCU) LM4040A20IDBZRG4 ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4MC3, 4MCU) LM4040A20IDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4MC3, 4MCU) LM4040A20IDBZTG4 ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4MC3, 4MCU) LM4040A20IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MSU LM4040A20IDCKRE4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MSU LM4040A25IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NG3, 4NGU) LM4040A25IDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NG3, 4NGU) LM4040A25IDBZTG4 ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NG3, 4NGU) LM4040A25IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 P2U LM4040A30IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M63, 4M6U) LM4040A30IDBZRG4 ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M63, 4M6U) LM4040A30IDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M63, 4M6U) LM4040A30IDBZTG4 ACTIVE SOT-23 DBZ 3 250 TBD Call TI Call TI -40 to 85 (4M63, 4M6U) LM4040A30IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 P9U Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 9-Oct-2017 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM4040A30IDCKRE4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 P9U LM4040A41IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M23, 4M2U) LM4040A41IDBZRG4 ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M23, 4M2U) LM4040A41IDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M23, 4M2U) LM4040A41IDBZTG4 ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M23, 4M2U) LM4040A41IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 P4U LM4040A50IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NA3, 4NAU) LM4040A50IDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NA3, 4NAU) LM4040A50IDBZTG4 ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NA3, 4NAU) LM4040A50IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 N5U LM4040A50IDCKRG4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 N5U LM4040A82IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NL3, 4NLU) LM4040A82IDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NL3, 4NLU) LM4040A82IDBZTG4 ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NL3, 4NLU) LM4040A82IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 PDU LM4040B10IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NR3, 4NRU) LM4040B10IDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NR3, 4NRU) LM4040B10IDBZTG4 ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NR3, 4NRU) Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 9-Oct-2017 Status (1) LM4040B10IDCKR ACTIVE Package Type Package Pins Package Drawing Qty SC70 DCK 5 3000 Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 Device Marking (4/5) PJU LM4040B10ILPR PREVIEW TO-92 LP 3 2000 TBD Call TI Call TI -40 to 85 LM4040B20IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4MD3, 4MDU) LM4040B20IDBZRG4 ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4MD3, 4MDU) LM4040B20IDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4MD3, 4MDU) LM4040B20IDBZTG4 ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4MD3, 4MDU) LM4040B20IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (MTS, MTU) LM4040B25IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NH3, 4NHU) LM4040B25IDBZRG4 ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NH3, 4NHU) LM4040B25IDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NH3, 4NHU) LM4040B25IDBZTG4 ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NH3, 4NHU) LM4040B25IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 P3U LM4040B25IDCKRG4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 P3U LM4040B30IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M73, 4M7U) LM4040B30IDBZRG4 ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M73, 4M7U) LM4040B30IDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M73, 4M7U) LM4040B30IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 PAU LM4040B30IDCKRG4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 PAU Addendum-Page 3 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 9-Oct-2017 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM4040B41IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M33, 4M3U) LM4040B41IDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M33, 4M3U) LM4040B41IDBZTG4 ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M33, 4M3U) LM4040B41IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 P5U LM4040B50IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NB3, 4NBU) LM4040B50IDBZRG4 ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NB3, 4NBU) LM4040B50IDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NB3, 4NBU) LM4040B50IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MXU LM4040B82IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NM3, 4NMU) LM4040C10IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NS3, 4NSU) LM4040C10IDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NS3, 4NSU) LM4040C10IDBZTG4 ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NS3, 4NSU) LM4040C10IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 PKU LM4040C10ILP ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFC10I LM4040C10ILPE3 ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFC10I LM4040C10ILPR ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFC10I LM4040C10ILPRE3 ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFC10I LM4040C20IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4MQ3, 4MQU) Addendum-Page 4 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 9-Oct-2017 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM4040C20IDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4MQ3, 4MQU) LM4040C20IDBZTG4 ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4MQ3, 4MQU) LM4040C20IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MVU LM4040C20ILP ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFC20I LM4040C20ILPE3 ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFC20I LM4040C20ILPR ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFC20I LM4040C20QDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (4MW3, 4MWU) LM4040C20QDBZRG4 ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (4MW3, 4MWU) LM4040C20QDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (4MW3, 4MWU) LM4040C20QDBZTG4 ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (4MW3, 4MWU) LM4040C25IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4MU3, 4MUU) LM4040C25IDBZRG4 ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4MU3, 4MUU) LM4040C25IDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4MU3, 4MUU) LM4040C25IDBZTG4 ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4MU3, 4MUU) LM4040C25IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MUU LM4040C25IDCKT ACTIVE SC70 DCK 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MUU LM4040C25IDCKTE4 ACTIVE SC70 DCK 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MUU LM4040C25IDCKTG4 ACTIVE SC70 DCK 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MUU Addendum-Page 5 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 9-Oct-2017 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM4040C25ILP ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFC25I LM4040C25ILPE3 ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFC25I LM4040C25ILPR ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFC25I LM4040C25ILPRE3 ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFC25I LM4040C25QDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (4MA3, 4MAU) LM4040C25QDBZRG4 ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (4MA3, 4MAU) LM4040C25QDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (4MA3, 4MAU) LM4040C25QDBZTG4 ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (4MA3, 4MAU) LM4040C30IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M83, 4M8U) LM4040C30IDBZRG4 ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M83, 4M8U) LM4040C30IDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M83, 4M8U) LM4040C30IDBZTG4 ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M83, 4M8U) LM4040C30IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 PBU LM4040C30ILP ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFC30I LM4040C30ILPE3 ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFC30I LM4040C30ILPR ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFC30I LM4040C30QDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (4NJ3, 4NJU) LM4040C30QDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (4NJ3, 4NJU) Addendum-Page 6 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 9-Oct-2017 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM4040C41IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M43, 4M4U) LM4040C41IDBZRG4 ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M43, 4M4U) LM4040C41IDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M43, 4M4U) LM4040C41IDBZTG4 ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M43, 4M4U) LM4040C41IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 P6U LM4040C41IDCKRE4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 P6U LM4040C41IDCKRG4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 P6U LM4040C41ILP ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFC41I LM4040C41ILPE3 ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFC41I LM4040C41ILPR ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFC41I LM4040C50IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NC3, 4NCU) LM4040C50IDBZRG4 ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NC3, 4NCU) LM4040C50IDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NC3, 4NCU) LM4040C50IDBZTG4 ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NC3, 4NCU) LM4040C50IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MZU LM4040C50ILP ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFC50I LM4040C50ILPE3 ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFC50I LM4040C50ILPR ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFC50I Addendum-Page 7 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 9-Oct-2017 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM4040C50QDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (4NE3, 4NEU) LM4040C50QDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (4NE3, 4NEU) LM4040C50QDBZTG4 ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (4NE3, 4NEU) LM4040C82IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NN3, 4NNU) LM4040C82IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 PFU LM4040C82ILP ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFC82I LM4040C82ILPR ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFC82I LM4040D10IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NT3, 4NTU) LM4040D10IDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NT3, 4NTU) LM4040D10IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 PLU LM4040D10ILP ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFD10I LM4040D20IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4MV3, 4MVU) LM4040D20IDBZRG4 ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4MV3, 4MVU) LM4040D20IDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4MV3, 4MVU) LM4040D20IDBZTG4 ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4MV3, 4MVU) LM4040D20IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MWU LM4040D20IDCKRE4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MWU LM4040D20IDCKRG4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MWU Addendum-Page 8 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 9-Oct-2017 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM4040D20ILPR ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFD20I LM4040D20ILPRE3 ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFD20I LM4040D20QDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (4MY3, 4MYU) LM4040D20QDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (4MY3, 4MYU) LM4040D20QDBZTG4 ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (4MY3, 4MYU) LM4040D25IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4ME3, 4MEU) LM4040D25IDBZRG4 ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4ME3, 4MEU) LM4040D25IDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4ME3, 4MEU) LM4040D25IDBZTG4 ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4ME3, 4MEU) LM4040D25IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MEU LM4040D25IDCKRG4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MEU LM4040D25IDCKT ACTIVE SC70 DCK 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MEU LM4040D25IDCKTG4 ACTIVE SC70 DCK 5 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 MEU LM4040D25ILP ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFD25I LM4040D25ILPE3 ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFD25I LM4040D25ILPR ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFD25I LM4040D25QDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (4MB3, 4MBU) LM4040D25QDBZRG4 ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (4MB3, 4MBU) Addendum-Page 9 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 9-Oct-2017 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM4040D25QDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (4MB3, 4MBU) LM4040D25QDBZTG4 ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (4MB3, 4MBU) LM4040D30IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M93, 4M9U) LM4040D30IDBZRG4 ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M93, 4M9U) LM4040D30IDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M93, 4M9U) LM4040D30IDBZTG4 ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M93, 4M9U) LM4040D30IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 PCU LM4040D30ILP ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFD30I LM4040D30ILPE3 ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFD30I LM4040D30ILPR ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFD30I LM4040D30ILPRE3 ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFD30I LM4040D30QDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (4NK3, 4NKU) LM4040D30QDBZRG4 ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (4NK3, 4NKU) LM4040D41IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M53, 4M5U) LM4040D41IDBZRG4 ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M53, 4M5U) LM4040D41IDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M53, 4M5U) LM4040D41IDBZTG4 ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4M53, 4M5U) LM4040D41IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 P7U Addendum-Page 10 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 9-Oct-2017 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM4040D41ILP ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFD41I LM4040D41ILPE3 ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFD41I LM4040D41ILPR ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFD41I LM4040D41ILPRE3 ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFD41I LM4040D50IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4ND3, 4NDU) LM4040D50IDBZRG4 ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4ND3, 4NDU) LM4040D50IDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4ND3, 4NDU) LM4040D50IDBZTG4 ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4ND3, 4NDU) LM4040D50IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 M4U LM4040D50IDCKRG4 ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 M4U LM4040D50ILP ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFD50I LM4040D50ILPE3 ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFD50I LM4040D50ILPR ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFD50I LM4040D50ILPRE3 ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFD50I LM4040D50QDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (4NF3, 4NFU) LM4040D50QDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 125 (4NF3, 4NFU) LM4040D82IDBZR ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NP3, 4NPU) LM4040D82IDBZT ACTIVE SOT-23 DBZ 3 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 (4NP3, 4NPU) Addendum-Page 11 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 9-Oct-2017 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM4040D82IDCKR ACTIVE SC70 DCK 5 3000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM -40 to 85 PGU LM4040D82ILP ACTIVE TO-92 LP 3 1000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFD82I LM4040D82ILPR ACTIVE TO-92 LP 3 2000 Pb-Free (RoHS) CU SN N / A for Pkg Type -40 to 85 NFD82I (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
LM4040A20IDBZR 价格&库存

很抱歉,暂时无法提供与“LM4040A20IDBZR”相匹配的价格&库存,您可以联系我们找货

免费人工找货