Product
Folder
Order
Now
Support &
Community
Tools &
Software
Technical
Documents
LM4040A, LM4040B
LM4040C, LM4040D
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
LM4040 Precision Micropower Shunt Voltage Reference
1 Features
3 Description
•
The LM4040 series of shunt voltage references are
versatile, easy-to-use references that cater to a vast
array of applications. The 2-pin fixed-output device
requires no external capacitors for operation and is
stable with all capacitive loads. Additionally, the
reference offers low dynamic impedance, low noise,
and low temperature coefficient to ensure a stable
output voltage over a wide range of operating
currents and temperatures. The LM4040 uses fuse
and Zener-zap reverse breakdown voltage trim during
wafer sort to offer four output voltage tolerances,
ranging from 0.1% (max) for the A grade to 1% (max)
for the D grade. Thus, a great deal of flexibility is
offered to designers in choosing the best cost-toperformance ratio for their applications.
1
•
•
•
•
•
Fixed Output Voltages of 2.048 V, 2.5 V, 3 V,
4.096 V, 5 V, 8.192 V, and 10 V
Tight Output Tolerances and Low Temperature
Coefficient
– Max 0.1%, 100 ppm/°C – A Grade
– Max 0.2%, 100 ppm/°C – B Grade
– Max 0.5%, 100 ppm/°C – C Grade
– Max 1.0%, 150 ppm/°C – D Grade
Low Output Noise: 35 μVRMS Typ
Wide Operating Current Range: 45 μA Typ to 15
mA
Stable With All Capacitive Loads; No Output
Capacitor Required
Available in Extended Temperature Range: –40°C
to 125°C
2 Applications
•
•
•
•
•
•
•
•
Data-Acquisition Systems
Power Supplies and Power-Supply Monitors
Instrumentation and Test Equipment
Process Controls
Precision Audio
Automotive Electronics
Energy Management
Battery-Powered Equipment
Packaged in space-saving SC-70 and SOT-23-3
packages and requiring a minimum current of 45 μA
(typ), the LM4040 also is ideal for portable
applications. The LM4040xI is characterized for
operation over an ambient temperature range of
–40°C to 85°C. The LM4040xQ is characterized for
operation over an ambient temperature range of
–40°C to 125°C.
Device Information(1)
PART NUMBER
LM4040
PACKAGE (PIN)
BODY SIZE (NOM)
SOT-23 (3)
2.92 mm × 1.30 mm
SC70 (6)
2.00 mm × 1.25 mm
(1) For all available packages, see the orderable addendum at
the end of the data sheet.
Simplified Schematic
VS
RS
IZ + IL
IL
VZ
IZ
LM4040
1
An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications,
intellectual property matters and other important disclaimers. PRODUCTION DATA.
LM4040A, LM4040B
LM4040C, LM4040D
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
www.ti.com
Table of Contents
1
2
3
4
5
6
Features ..................................................................
Applications ...........................................................
Description .............................................................
Revision History.....................................................
Pin Configuration and Functions .........................
Specifications.........................................................
6.17 LM4040C50I, LM4040D50I Electrical
Characteristics .........................................................
6.18 LM4040C50Q, LM4040D50Q Electrical
Characteristics .........................................................
6.19 LM4040A82I, LM4040B82I Electrical
Characteristics .........................................................
6.20 LM4040C82I, LM4040D82I Electrical
Characteristics .........................................................
6.21 LM4040A10I, LM4040B10I Electrical
Characteristics .........................................................
6.22 LM4040C10I, LM4040D10I Electrical
Characteristics .........................................................
6.23 Typical Characteristics ..........................................
1
1
1
2
4
5
6.1
6.2
6.3
6.4
6.5
Absolute Maximum Ratings ...................................... 5
ESD Ratings.............................................................. 5
Recommended Operating Conditions....................... 5
Thermal Information .................................................. 5
LM4040A20I, LM4040B20I Electrical
Characteristics ........................................................... 6
6.6 LM4040C20I, LM4040D20I Electrical
Characteristics ........................................................... 7
6.7 LM4040C20Q, LM4040D20Q Electrical
Characteristics ........................................................... 8
6.8 LM4040A25I, LM4040B25I Electrical
Characteristics ........................................................... 9
6.9 LM4040C25I, LM4040D25I Electrical
Characteristics ......................................................... 10
6.10 LM4040C25Q, LM4040D25Q Electrical
Characteristics ......................................................... 11
6.11 LM4040A30I, LM4040B30I Electrical
Characteristics ......................................................... 12
6.12 LM4040C30I, LM4040D30I Electrical
Characteristics ......................................................... 13
6.13 LM4040C30Q, LM4040D30Q Electrical
Characteristics ......................................................... 14
6.14 LM4040A41I, LM4040B41I Electrical
Characteristics ......................................................... 15
6.15 LM4040C41I, LM4040D41I Electrical
Characteristics ......................................................... 16
6.16 LM4040A50I, LM4040B50I Electrical
Characteristics ......................................................... 17
7
19
20
21
22
23
24
Detailed Description ............................................ 25
7.1
7.2
7.3
7.4
8
18
Overview .................................................................
Functional Block Diagram .......................................
Feature Description.................................................
Device Functional Modes........................................
25
25
25
25
Applications and Implementation ...................... 26
8.1 Application Information............................................ 26
8.2 Typical Applications ................................................ 26
9 Power Supply Recommendations...................... 29
10 Layout................................................................... 29
10.1 Layout Guidelines ................................................. 29
10.2 Layout Example .................................................... 29
11 Device and Documentation Support ................. 30
11.1
11.2
11.3
11.4
Related Links ........................................................
Trademarks ...........................................................
Electrostatic Discharge Caution ............................
Glossary ................................................................
30
30
30
30
12 Mechanical, Packaging, and Orderable
Information ........................................................... 30
4 Revision History
Changes from Revision M (January 2015) to Revision N
Page
•
Changed generic part number to include shorter list (LM4040A/B/C/D) ................................................................................ 1
•
Added Average temperature coefficient of reverse breakdown voltage footnote to all electrical tables ................................ 6
•
Changed Thermal hysteresis in electrical characteristics tables............................................................................................ 6
Changes from Revision L (January 2009) to Revision M
Page
•
Added Applications, Device Information table, Pin Functions table, ESD Ratings table, Thermal Information table,
Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply
Recommendations section, Layout section, Device and Documentation Support section, and Mechanical,
Packaging, and Orderable Information section. ..................................................................................................................... 1
•
Deleted Ordering Information table. ....................................................................................................................................... 1
2
Submit Documentation Feedback
Copyright © 2005–2017, Texas Instruments Incorporated
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
LM4040A, LM4040B
LM4040C, LM4040D
www.ti.com
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
Device Comparison Table (1)
TA
DEVICE
GRADE
2.048 V
LM4040A20I
2.5 V
LM4040A25I
3V
LM4040A30I
4.096 V
LM4040A41I
5V
LM4040A50I
8.192 V
LM4040A82I
10 V
LM4040A10I
2.048 V
LM4040B20I
2.5 V
LM4040B25I
3V
LM4040B30I
4.096 V
LM4040B41I
5V
LM4040B50I
8.192 V
LM4040B82I
10 V
LM4040B10I
2.048 V
LM4040C20I
2.5 V
LM4040C25I
3V
LM4040C30I
4.096 V
LM4040C41I
5V
LM4040C50I
8.192 V
LM4040C82I
10 V
LM4040C10I
2.048 V
LM4040D20I
2.5 V
LM4040D25I
3V
LM4040D30I
4.096 V
LM4040D41I
5V
LM4040D50I
8.192 V
LM4040D82I
10 V
LM4040D10I
C grade:
0.5% initial
accuracy
and
100 ppm/°C
temperature
coefficient
2.048 V
LM4040C20Q
2.5 V
LM4040C25Q
3V
LM4040C30Q
5V
LM4040C50Q
D grade:
1.0% initial
accuracy
and
150 ppm/°C
temperature
coefficient
2.048 V
LM4040D20Q
2.5 V
LM4040D25Q
3V
LM4040D30Q
5V
LM4040D50Q
A grade:
0.1% initial
accuracy
and
100 ppm/°C
temperature
coefficient
–40°C to 85°C
B grade:
0.2% initial
accuracy
and
100 ppm/°C
temperature
coefficient
–40°C to 85°C
–40°C to 85°C
–40°C to 125°C
(1)
ORDERABLE
PART NUMBER
VKA
C grade:
0.5% initial
accuracy
and
100 ppm/°C
temperature
coefficient
D grade:
1.0% initial
accuracy
and
150 ppm/°C
temperature
coefficient
For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI
web site at www.ti.com.
Copyright © 2005–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
3
LM4040A, LM4040B
LM4040C, LM4040D
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
www.ti.com
5 Pin Configuration and Functions
DBZ (SOT-23) PACKAGE
(TOP VIEW)
CATHODE
1
3*
ANODE
2
* Pin 3 is attached to substrate and must be
connected to ANODE or left open.
DCK (SC-70) PACKAGE
(TOP VIEW)
ANODE
NC
CATHODE
1
5
NC
4
NC
2
3
NC – No internal connection
Pin Functions
PIN
NAME
TYPE
DESCRIPTION
DBZ
DCK
CATHODE
1
3
I/O
Shunt Current/Voltage input
ANODE
2
1
O
Common pin, normally connected to ground
NC
—
2, 4, 5
I
No Internal Connection
*
3
—
I
Substrate Connection
4
Submit Documentation Feedback
Copyright © 2005–2017, Texas Instruments Incorporated
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
LM4040A, LM4040B
LM4040C, LM4040D
www.ti.com
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
6 Specifications
6.1 Absolute Maximum Ratings
over free-air temperature range (unless otherwise noted) (1)
IZ
Continuous cathode current
TJ
Operating virtual junction temperature
Tstg
Storage temperature range
(1)
MIN
MAX
–10
25
mA
150
°C
150
°C
–65
UNIT
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings
only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating
Conditionsis not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
6.2 ESD Ratings
VALUE
V(ESD)
(1)
(2)
Electrostatic discharge
Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins (1)
±2000
Charged device model (CDM), per JEDEC specification JESD22-C101,
all pins (2)
±1000
UNIT
V
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.
6.3 Recommended Operating Conditions
IZ
Cathode current
TA
Free-air temperature
(1)
MIN
MAX
(1)
15
LM4040xxxI
–40
85
LM4040xxxQ
–40
125
UNIT
mA
°C
See parametric tables
6.4 Thermal Information
LM4040
THERMAL METRIC (1)
RθJA
(1)
Junction-to-ambient thermal resistance
DBZ
DCK
3 PINS
5 PINS
206
252
UNIT
°C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application
report.
Copyright © 2005–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
5
LM4040A, LM4040B
LM4040C, LM4040D
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
www.ti.com
6.5 LM4040A20I, LM4040B20I Electrical Characteristics
at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted)
PARAMETER
VZ
TEST CONDITIONS
Reverse breakdown voltage
IZ = 100 μA
ΔVZ
Reverse breakdown voltage
tolerance
IZ,min
Minimum cathode current
αVZ
IZ = 10 mA
Average temperature coefficient
of reverse breakdown voltage
IZ = 1 mA
IZ = 100 μA
LM4040A20I
MIN
25°C
TYP
LM4040B20I
MAX
MIN
2.048
IZ,min < IZ < 1 mA
Reverse breakdown voltage
change with cathode current
change
1 mA < IZ < 15 mA
MAX
2.048
2
–4.1
4.1
Full range
–15
15
–17
17
45
75
25°C
±20
25°C
±15
Full range
±15
25°C
0.3
75
80
mV
μA
±20
±15
±100
25°C
±100
ppm/°C
±15
0.8
Full range
25°C
45
80
UNIT
V
–2
25°C
IZ = 100 μA
TYP
25°C
Full range
(1)
DVZ
DI Z
TA
0.3
1
2.5
6
Full range
0.8
1
2.5
8
6
mV
8
ZZ
Reverse dynamic impedance
IZ = 1 mA, f = 120 Hz,
IAC = 0.1 IZ
25°C
0.3
eN
Wideband noise
IZ = 100 μA,
10 Hz ≤ f ≤ 10 kHz
25°C
35
35
μVRMS
Long-term stability of reverse
breakdown voltage
t = 1000 h,
TA = 25°C ± 0.1°C,
IZ = 100 μA
120
120
ppm
Thermal hysteresis (2)
ΔTA = –40°C to 125°C
0.08%
0.08%
VHYST
(1)
(2)
6
0.8
0.3
0.8
Ω
—
The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75%
= ±19 mV.
Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C
measurement after cycling to temperature 125°C.
Submit Documentation Feedback
Copyright © 2005–2017, Texas Instruments Incorporated
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
LM4040A, LM4040B
LM4040C, LM4040D
www.ti.com
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
6.6 LM4040C20I, LM4040D20I Electrical Characteristics
at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted)
PARAMETER
VZ
Reverse breakdown voltage
TEST CONDITIONS
IZ = 100 μA
ΔVZ
Reverse breakdown voltage
tolerance
IZ,min
Minimum cathode current
αVZ
IZ = 10 mA
Average temperature coefficient
of reverse breakdown voltage
IZ = 1 mA
IZ = 100 μA
MIN
25°C
TYP
LM4040D20I
MAX
MIN
2.048
IZ,min < IZ < 1 mA
1 mA < IZ < 15 mA
TYP
2.048
V
–10
10
–20
20
Full range
–23
23
–40
40
45
75
±20
25°C
±15
Full range
±15
25°C
0.3
mV
75
μA
80
±20
±15
±100
25°C
±150
ppm/°C
±15
0.8
Full range
25°C
45
80
25°C
UNIT
MAX
25°C
25°C
IZ = 100 μA
Reverse breakdown voltage
change with cathode current
change
LM4040C20I
Full range
(1)
DVZ
DI Z
TA
0.3
1
2.5
6
Full range
1
1.2
2.5
8
8
mV
10
ZZ
Reverse dynamic impedance
IZ = 1 mA, f = 120 Hz,
IAC = 0.1 IZ
25°C
0.3
eN
Wideband noise
IZ = 100 μA,
10 Hz ≤ f ≤ 10 kHz
25°C
35
35
μVRMS
Long-term stability of reverse
breakdown voltage
t = 1000 h,
TA = 25°C ± 0.1°C,
IZ = 100 μA
120
120
ppm
Thermal hysteresis (2)
ΔTA = –40°C to 125°C
0.08%
0.08%
VHYST
(1)
(2)
0.9
0.3
1.1
Ω
—
The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75%
= ±19 mV.
Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C
measurement after cycling to temperature 125°C.
Copyright © 2005–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
7
LM4040A, LM4040B
LM4040C, LM4040D
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
www.ti.com
6.7 LM4040C20Q, LM4040D20Q Electrical Characteristics
at extended temperature range, full-range TA = –40°C to 125°C (unless otherwise noted)
PARAMETER
VZ
TEST CONDITIONS
Reverse breakdown voltage
IZ = 100 μA
ΔVZ
Reverse breakdown voltage
tolerance
IZ,min
Minimum cathode current
αVZ
IZ = 10 mA
Average temperature coefficient
of reverse breakdown voltage
IZ = 1 mA
IZ = 100 μA
LM4040C20Q
MIN
25°C
TYP
LM4040D20Q
MAX
MIN
2.048
IZ,min < IZ < 1 mA
Reverse breakdown voltage
change with cathode current
change
1 mA < IZ < 15 mA
MAX
2.048
10
–20
20
Full range
–30
30
–50
50
45
75
25°C
±20
25°C
±15
Full range
±15
25°C
0.3
75
80
mV
μA
±20
±15
±100
25°C
±150
ppm/°C
±15
0.8
Full range
25°C
45
80
UNIT
V
–10
25°C
IZ = 100 μA
TYP
25°C
Full range
(1)
DVZ
DI Z
TA
0.3
1
2.5
6
Full range
1
1.2
2.5
8
8
mV
10
ZZ
Reverse dynamic impedance
IZ = 1 mA, f = 120 Hz,
IAC = 0.1 IZ
25°C
0.3
eN
Wideband noise
IZ = 100 μA,
10 Hz ≤ f ≤ 10 kHz
25°C
35
35
μVRMS
Long-term stability of reverse
breakdown voltage
t = 1000 h,
TA = 25°C ± 0.1°C,
IZ = 100 μA
120
120
ppm
Thermal hysteresis (2)
ΔTA = –40°C to 125°C
0.08%
0.08%
VHYST
(1)
(2)
8
0.9
0.3
1.1
Ω
—
The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75%
= ±19 mV.
Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C
measurement after cycling to temperature 125°C.
Submit Documentation Feedback
Copyright © 2005–2017, Texas Instruments Incorporated
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
LM4040A, LM4040B
LM4040C, LM4040D
www.ti.com
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
6.8 LM4040A25I, LM4040B25I Electrical Characteristics
at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted)
PARAMETER
VZ
Reverse breakdown voltage
TEST CONDITIONS
IZ = 100 μA
ΔVZ
Reverse breakdown voltage
tolerance
IZ,min
Minimum cathode current
αVZ
IZ = 10 mA
Average temperature coefficient
of reverse breakdown voltage
IZ = 1 mA
IZ = 100 μA
MIN
25°C
TYP
LM4040B25I
MAX
MIN
2.5
IZ,min < IZ < 1 mA
1 mA < IZ < 15 mA
TYP
2.5
V
–2.5
2.5
–5
5
Full range
–19
19
–21
21
45
75
±20
25°C
±15
Full range
±15
25°C
0.3
mV
75
μA
80
±20
±15
±100
25°C
±100
ppm/°C
±15
0.8
Full range
25°C
45
80
25°C
UNIT
MAX
25°C
25°C
IZ = 100 μA
Reverse breakdown voltage
change with cathode current
change
LM4040A25I
Full range
(1)
DVZ
DI Z
TA
0.3
1
2.5
6
Full range
0.8
1
2.5
8
6
mV
8
ZZ
Reverse dynamic impedance
IZ = 1 mA, f = 120 Hz,
IAC = 0.1 IZ
25°C
0.3
eN
Wideband noise
IZ = 100 μA,
10 Hz ≤ f ≤ 10 kHz
25°C
35
35
μVRMS
Long-term stability of reverse
breakdown voltage
t = 1000 h,
TA = 25°C ± 0.1°C,
IZ = 100 μA
120
120
ppm
Thermal hysteresis (2)
ΔTA = –40°C to 125°C
0.08%
0.08%
VHYST
(1)
(2)
0.8
0.3
0.8
Ω
—
The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75%
= ±19 mV.
Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C
measurement after cycling to temperature 125°C.
Copyright © 2005–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
9
LM4040A, LM4040B
LM4040C, LM4040D
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
www.ti.com
6.9 LM4040C25I, LM4040D25I Electrical Characteristics
at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted)
PARAMETER
VZ
TEST CONDITIONS
Reverse breakdown voltage
IZ = 100 μA
ΔVZ
Reverse breakdown voltage
tolerance
IZ,min
Minimum cathode current
αVZ
IZ = 10 mA
Average temperature coefficient
of reverse breakdown voltage
IZ = 1 mA
IZ = 100 μA
LM4040C25I
MIN
25°C
TYP
LM4040D25I
MAX
MIN
2.5
IZ,min < IZ < 1 mA
Reverse breakdown voltage
change with cathode current
change
1 mA < IZ < 15 mA
MAX
2.5
12
–25
25
Full range
–29
29
–49
49
45
75
25°C
±20
25°C
±15
Full range
±15
25°C
0.3
75
80
mV
μA
±20
±15
±100
25°C
±150
ppm/°C
±15
0.8
Full range
25°C
45
80
UNIT
V
–12
25°C
IZ = 100 μA
TYP
25°C
Full range
(1)
DVZ
DI Z
TA
0.3
1
2.5
6
Full range
1
1.2
2.5
8
8
mV
10
ZZ
Reverse dynamic impedance
IZ = 1 mA, f = 120 Hz,
IAC = 0.1 IZ
25°C
0.3
eN
Wideband noise
IZ = 100 μA,
10 Hz ≤ f ≤ 10 kHz
25°C
35
35
μVRMS
Long-term stability of reverse
breakdown voltage
t = 1000 h,
TA = 25°C ± 0.1°C,
IZ = 100 μA
120
120
ppm
Thermal hysteresis (2)
ΔTA = –40°C to 125°C
0.08%
0.08%
VHYST
(1)
(2)
10
0.9
0.3
1.1
Ω
—
The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75%
= ±19 mV.
Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C
measurement after cycling to temperature 125°C.
Submit Documentation Feedback
Copyright © 2005–2017, Texas Instruments Incorporated
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
LM4040A, LM4040B
LM4040C, LM4040D
www.ti.com
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
6.10 LM4040C25Q, LM4040D25Q Electrical Characteristics
at extended temperature range, full-range TA = –40°C to 125°C (unless otherwise noted)
PARAMETER
VZ
Reverse breakdown voltage
TEST CONDITIONS
IZ = 100 μA
ΔVZ
Reverse breakdown voltage
tolerance
IZ,min
Minimum cathode current
αVZ
IZ = 10 mA
Average temperature coefficient
of reverse breakdown voltage
IZ = 1 mA
IZ = 100 μA
MIN
25°C
TYP
LM4040D25Q
MAX
MIN
2.5
IZ,min < IZ < 1 mA
1 mA < IZ < 15 mA
TYP
2.5
V
–12
12
–25
25
Full range
–38
38
–63
63
45
75
±20
25°C
±15
Full range
±15
25°C
0.3
mV
75
μA
80
±20
±15
±100
25°C
±150
ppm/°C
±15
0.8
Full range
25°C
45
80
25°C
UNIT
MAX
25°C
25°C
IZ = 100 μA
Reverse breakdown voltage
change with cathode current
change
LM4040C25Q
Full range
(1)
DVZ
DI Z
TA
0.3
1
2.5
6
Full range
1
1.2
2.5
8
8
mV
10
ZZ
Reverse dynamic impedance
IZ = 1 mA, f = 120 Hz,
IAC = 0.1 IZ
25°C
0.3
eN
Wideband noise
IZ = 100 μA,
10 Hz ≤ f ≤ 10 kHz
25°C
35
35
μVRMS
Long-term stability of reverse
breakdown voltage
t = 1000 h,
TA = 25°C ± 0.1°C,
IZ = 100 μA
120
120
ppm
Thermal hysteresis (2)
ΔTA = –40°C to 125°C
0.08%
0.08%
VHYST
(1)
(2)
0.9
0.3
1.1
Ω
—
The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75%
= ±19 mV.
Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C
measurement after cycling to temperature 125°C.
Copyright © 2005–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
11
LM4040A, LM4040B
LM4040C, LM4040D
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
www.ti.com
6.11 LM4040A30I, LM4040B30I Electrical Characteristics
at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted)
PARAMETER
VZ
TEST CONDITIONS
Reverse breakdown voltage
IZ = 100 μA
ΔVZ
Reverse breakdown voltage
tolerance
IZ,min
Minimum cathode current
αVZ
IZ = 10 mA
Average temperature coefficient
of reverse breakdown voltage
IZ = 1 mA
IZ = 100 μA
LM4040A30I
MIN
25°C
TYP
LM4040B30I
MAX
MIN
3
IZ,min < IZ < 1 mA
Reverse breakdown voltage
change with cathode current
change
1 mA < IZ < 15 mA
MAX
3
3
–6
6
Full range
–22
22
–26
26
47
77
25°C
±20
25°C
±15
Full range
±15
25°C
0.6
Full range
77
82
mV
μA
±20
±15
±100
25°C
25°C
47
82
UNIT
V
–3
25°C
IZ = 100 μA
TYP
25°C
Full range
(1)
DVZ
DI Z
TA
±100
ppm/°C
±15
0.8
0.6
1.1
2.7
6
Full range
0.8
1.1
2.7
9
6
mV
9
ZZ
Reverse dynamic impedance
IZ = 1 mA, f = 120 Hz,
IAC = 0.1 IZ
25°C
0.4
eN
Wideband noise
IZ = 100 μA,
10 Hz ≤ f ≤ 10 kHz
25°C
35
35
μVRMS
Long-term stability of reverse
breakdown voltage
t = 1000 h,
TA = 25°C ± 0.1°C,
IZ = 100 μA
120
120
ppm
Thermal hysteresis (2)
ΔTA = –40°C to 125°C
0.08%
0.08%
VHYST
(1)
(2)
12
0.9
0.4
0.9
Ω
—
The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75%
= ±19 mV.
Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C
measurement after cycling to temperature 125°C.
Submit Documentation Feedback
Copyright © 2005–2017, Texas Instruments Incorporated
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
LM4040A, LM4040B
LM4040C, LM4040D
www.ti.com
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
6.12 LM4040C30I, LM4040D30I Electrical Characteristics
at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted)
PARAMETER
VZ
Reverse breakdown voltage
TEST CONDITIONS
IZ = 100 μA
ΔVZ
Reverse breakdown voltage
tolerance
IZ,min
Minimum cathode current
αVZ
IZ = 10 mA
Average temperature coefficient
of reverse breakdown voltage
IZ = 1 mA
IZ = 100 μA
MIN
25°C
TYP
LM4040D30I
MAX
MIN
3
IZ,min < IZ < 1 mA
1 mA < IZ < 15 mA
TYP
3
V
–15
15
–30
30
Full range
–34
34
–59
59
45
77
±20
25°C
±15
Full range
±15
25°C
0.4
Full range
mV
77
μA
82
±20
±15
±100
25°C
25°C
45
82
25°C
UNIT
MAX
25°C
25°C
IZ = 100 μA
Reverse breakdown voltage
change with cathode current
change
LM4040C30I
Full range
(1)
DVZ
DI Z
TA
±150
ppm/°C
±15
0.8
1.4
1.1
2.7
6
Full range
1
1.3
2.7
9
8
mV
11
ZZ
Reverse dynamic impedance
IZ = 1 mA, f = 120 Hz,
IAC = 0.1 IZ
25°C
0.4
eN
Wideband noise
IZ = 100 μA,
10 Hz ≤ f ≤ 10 kHz
25°C
35
35
μVRMS
Long-term stability of reverse
breakdown voltage
t = 1000 h,
TA = 25°C ± 0.1°C,
IZ = 100 μA
120
120
ppm
Thermal hysteresis (2)
ΔTA = –40°C to 125°C
0.08%
0.08%
VHYST
(1)
(2)
0.9
0.4
1.2
Ω
—
The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75%
= ±19 mV.
Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C
measurement after cycling to temperature 125°C.
Copyright © 2005–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
13
LM4040A, LM4040B
LM4040C, LM4040D
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
www.ti.com
6.13 LM4040C30Q, LM4040D30Q Electrical Characteristics
at extended temperature range, full-range TA = –40°C to 125°C (unless otherwise noted)
PARAMETER
VZ
TEST CONDITIONS
Reverse breakdown voltage
IZ = 100 μA
ΔVZ
Reverse breakdown voltage
tolerance
IZ,min
Minimum cathode current
αVZ
IZ = 10 mA
Average temperature coefficient
of reverse breakdown voltage
IZ = 1 mA
IZ = 100 μA
LM4040C30Q
MIN
25°C
TYP
LM4040D30Q
MAX
MIN
3
IZ,min < IZ < 1 mA
Reverse breakdown voltage
change with cathode current
change
1 mA < IZ < 15 mA
MAX
3
15
–30
30
Full range
–45
45
–75
75
47
77
25°C
±20
25°C
±15
Full range
±15
25°C
0.4
Full range
77
82
mV
μA
±20
±15
±100
25°C
25°C
47
82
UNIT
V
–15
25°C
IZ = 100 μA
TYP
25°C
Full range
(1)
DVZ
DI Z
TA
±150
ppm/°C
±15
0.8
0.4
1.1
2.7
6
Full range
1.1
1.3
2.7
9
8
mV
11
ZZ
Reverse dynamic impedance
IZ = 1 mA, f = 120 Hz,
IAC = 0.1 IZ
25°C
0.4
eN
Wideband noise
IZ = 100 μA,
10 Hz ≤ f ≤ 10 kHz
25°C
35
35
μVRMS
Long-term stability of reverse
breakdown voltage
t = 1000 h,
TA = 25°C ± 0.1°C,
IZ = 100 μA
120
120
ppm
Thermal hysteresis (2)
ΔTA = –40°C to 125°C
0.08%
0.08%
VHYST
(1)
(2)
14
0.9
0.4
1.2
Ω
—
The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75%
= ±19 mV.
Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C
measurement after cycling to temperature 125°C.
Submit Documentation Feedback
Copyright © 2005–2017, Texas Instruments Incorporated
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
LM4040A, LM4040B
LM4040C, LM4040D
www.ti.com
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
6.14 LM4040A41I, LM4040B41I Electrical Characteristics
at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted)
PARAMETER
VZ
Reverse breakdown voltage
TEST CONDITIONS
IZ = 100 μA
ΔVZ
Reverse breakdown voltage
tolerance
IZ,min
Minimum cathode current
αVZ
IZ = 10 mA
Average temperature coefficient
of reverse breakdown voltage
IZ = 1 mA
IZ = 100 μA
MIN
25°C
TYP
LM4040B41I
MAX
MIN
4.096
IZ,min < IZ < 1 mA
1 mA < IZ < 15 mA
TYP
4.096
V
–4.1
4.1
–8.2
8.2
Full range
–31
31
–35
35
50
83
±30
25°C
±20
Full range
±20
25°C
0.5
Full range
mV
83
μA
88
±30
±20
±100
25°C
25°C
50
88
25°C
UNIT
MAX
25°C
25°C
IZ = 100 μA
Reverse breakdown voltage
change with cathode current
change
LM4040A41I
Full range
(1)
DVZ
DI Z
TA
±100
ppm/°C
±20
0.9
0.5
1.2
3
7
Full range
0.9
1.2
3
10
7
mV
10
ZZ
Reverse dynamic impedance
IZ = 1 mA, f = 120 Hz,
IAC = 0.1 IZ
25°C
0.5
eN
Wideband noise
IZ = 100 μA,
10 Hz ≤ f ≤ 10 kHz
25°C
80
80
μVRMS
Long-term stability of reverse
breakdown voltage
t = 1000 h,
TA = 25°C ± 0.1°C,
IZ = 100 μA
120
120
ppm
Thermal hysteresis (2)
ΔTA = –40°C to 125°C
0.08%
0.08%
VHYST
(1)
(2)
1
0.5
1
Ω
—
The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75%
= ±19 mV.
Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C
measurement after cycling to temperature 125°C.
Copyright © 2005–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
15
LM4040A, LM4040B
LM4040C, LM4040D
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
www.ti.com
6.15 LM4040C41I, LM4040D41I Electrical Characteristics
at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted)
PARAMETER
VZ
TEST CONDITIONS
Reverse breakdown voltage
IZ = 100 μA
ΔVZ
Reverse breakdown voltage
tolerance
IZ,min
Minimum cathode current
αVZ
IZ = 10 mA
Average temperature coefficient
of reverse breakdown voltage
IZ = 1 mA
IZ = 100 μA
LM4040C41I
MIN
25°C
TYP
LM4040D41I
MAX
MIN
4.096
IZ,min < IZ < 1 mA
Reverse breakdown voltage
change with cathode current
change
1 mA < IZ < 15 mA
MAX
4.096
20
–41
41
Full range
–47
47
–81
81
50
83
25°C
±30
25°C
±20
Full range
±20
25°C
0.5
Full range
83
88
mV
μA
±30
±20
±100
25°C
25°C
50
88
UNIT
V
–20
25°C
IZ = 100 μA
TYP
25°C
Full range
(1)
DVZ
DI Z
TA
±150
ppm/°C
±20
0.9
0.5
1.2
3
Full range
7
1.2
1.5
3
10
9
mV
13
ZZ
Reverse dynamic impedance
IZ = 1 mA, f = 120 Hz,
IAC = 0.1 IZ
25°C
0.5
eN
Wideband noise
IZ = 100 μA,
10 Hz ≤ f ≤ 10 kHz
25°C
80
80
μVRMS
Long-term stability of reverse
breakdown voltage
t = 1000 h,
TA = 25°C ± 0.1°C,
IZ = 100 μA
120
120
ppm
Thermal hysteresis (2)
ΔTA = –40°C to 125°C
0.08%
0.08%
VHYST
(1)
(2)
16
1
0.5
1.3
Ω
—
The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75%
= ±19 mV.
Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C
measurement after cycling to temperature 125°C.
Submit Documentation Feedback
Copyright © 2005–2017, Texas Instruments Incorporated
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
LM4040A, LM4040B
LM4040C, LM4040D
www.ti.com
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
6.16 LM4040A50I, LM4040B50I Electrical Characteristics
at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted)
PARAMETER
VZ
Reverse breakdown voltage
TEST CONDITIONS
IZ = 100 μA
ΔVZ
Reverse breakdown voltage
tolerance
IZ,min
Minimum cathode current
αVZ
IZ = 10 mA
Average temperature coefficient
of reverse breakdown voltage
IZ = 1 mA
IZ = 100 μA
MIN
25°C
TYP
LM4040B50I
MAX
MIN
5
IZ,min < IZ < 1 mA
1 mA < IZ < 15 mA
TYP
5
V
–5
5
–10
10
Full range
–38
38
–43
43
65
89
±30
25°C
±20
Full range
±20
25°C
0.5
Full range
mV
89
μA
95
±30
±20
±100
25°C
25°C
65
95
25°C
UNIT
MAX
25°C
25°C
IZ = 100 μA
Reverse breakdown voltage
change with cathode current
change
LM4040A50I
Full range
(1)
DVZ
DI Z
TA
±100
ppm/°C
±20
1
0.5
1.4
3.5
8
Full range
1
1.4
3.5
12
8
mV
12
ZZ
Reverse dynamic impedance
IZ = 1 mA, f = 120 Hz,
IAC = 0.1 IZ
25°C
0.5
eN
Wideband noise
IZ = 100 μA,
10 Hz ≤ f ≤ 10 kHz
25°C
80
80
μVRMS
Long-term stability of reverse
breakdown voltage
t = 1000 h,
TA = 25°C ± 0.1°C,
IZ = 100 μA
120
120
ppm
Thermal hysteresis (2)
ΔTA = –40°C to 125°C
0.08%
0.08%
VHYST
(1)
(2)
1.1
0.5
1.1
Ω
—
The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75%
= ±19 mV.
Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C
measurement after cycling to temperature 125°C.
Copyright © 2005–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
17
LM4040A, LM4040B
LM4040C, LM4040D
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
www.ti.com
6.17 LM4040C50I, LM4040D50I Electrical Characteristics
at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted)
PARAMETER
VZ
TEST CONDITIONS
Reverse breakdown voltage
IZ = 100 μA
ΔVZ
Reverse breakdown voltage
tolerance
IZ,min
Minimum cathode current
αVZ
IZ = 10 mA
Average temperature coefficient
of reverse breakdown voltage
IZ = 1 mA
IZ = 100 μA
LM4040C50I
MIN
25°C
TYP
LM4040D50I
MAX
MIN
5
IZ,min < IZ < 1 mA
Reverse breakdown voltage
change with cathode current
change
1 mA < IZ < 15 mA
MAX
5
25
–50
50
Full range
–58
58
–99
99
65
89
25°C
±30
25°C
±20
Full range
±20
25°C
0.5
Full range
89
95
mV
μA
±30
±20
±100
25°C
25°C
65
95
UNIT
V
–25
25°C
IZ = 100 μA
TYP
25°C
Full range
(1)
DVZ
DI Z
TA
±150
ppm/°C
±20
1
0.5
1.4
3.5
8
Full range
1.3
1.8
3.5
12
10
mV
15
ZZ
Reverse dynamic impedance
IZ = 1 mA, f = 120 Hz,
IAC = 0.1 IZ
25°C
0.5
eN
Wideband noise
IZ = 100 μA,
10 Hz ≤ f ≤ 10 kHz
25°C
80
80
μVRMS
Long-term stability of reverse
breakdown voltage
t = 1000 h,
TA = 25°C ± 0.1°C,
IZ = 100 μA
120
120
ppm
Thermal hysteresis (2)
ΔTA = –40°C to 125°C
0.08%
0.08%
VHYST
(1)
(2)
18
1.1
0.5
1.5
Ω
—
The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75%
= ±19 mV.
Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C
measurement after cycling to temperature 125°C.
Submit Documentation Feedback
Copyright © 2005–2017, Texas Instruments Incorporated
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
LM4040A, LM4040B
LM4040C, LM4040D
www.ti.com
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
6.18 LM4040C50Q, LM4040D50Q Electrical Characteristics
at extended temperature range, full-range TA = –40°C to 125°C (unless otherwise noted)
PARAMETER
VZ
Reverse breakdown voltage
TEST CONDITIONS
IZ = 100 μA
ΔVZ
Reverse breakdown voltage
tolerance
IZ,min
Minimum cathode current
αVZ
IZ = 10 mA
Average temperature coefficient
of reverse breakdown voltage
IZ = 1 mA
IZ = 100 μA
MIN
25°C
TYP
LM4040D50Q
MAX
MIN
5
IZ,min < IZ < 1 mA
1 mA < IZ < 15 mA
TYP
5
V
–25
25
–50
50
Full range
–75
75
–125
125
65
89
±30
25°C
±20
Full range
±20
25°C
0.5
Full range
mV
89
μA
95
±30
±20
±100
25°C
25°C
65
95
25°C
UNIT
MAX
25°C
25°C
IZ = 100 μA
Reverse breakdown voltage
change with cathode current
change
LM4040C50Q
Full range
(1)
DVZ
DI Z
TA
±150
ppm/°C
±20
1
0.5
1.4
3.5
8
Full range
1
1.8
3.5
12
8
mV
12
ZZ
Reverse dynamic impedance
IZ = 1 mA, f = 120 Hz,
IAC = 0.1 IZ
25°C
0.5
eN
Wideband noise
IZ = 100 μA,
10 Hz ≤ f ≤ 10 kHz
25°C
80
80
μVRMS
Long-term stability of reverse
breakdown voltage
t = 1000 h,
TA = 25°C ± 0.1°C,
IZ = 100 μA
120
120
ppm
Thermal hysteresis (2)
ΔTA = –40°C to 125°C
0.08%
0.08%
VHYST
(1)
(2)
1.1
0.5
1.1
Ω
—
The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75%
= ±19 mV.
Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C
measurement after cycling to temperature 125°C.
Copyright © 2005–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
19
LM4040A, LM4040B
LM4040C, LM4040D
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
www.ti.com
6.19 LM4040A82I, LM4040B82I Electrical Characteristics
at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted)
PARAMETER
VZ
TEST CONDITIONS
Reverse breakdown voltage
IZ = 150 μA
ΔVZ
Reverse breakdown voltage
tolerance
IZ,min
Minimum cathode current
αVZ
IZ = 10 mA
Average temperature coefficient
of reverse breakdown voltage
IZ = 1 mA
IZ = 150 μA
LM4040A82I
MIN
25°C
TYP
IZ,min < IZ < 1 mA
Reverse breakdown voltage
change with cathode current
change
1 mA < IZ < 15 mA
MAX
MIN
8.192
TYP
MAX
8.192
8.2
–16
16
Full range
–61
61
–70
70
67
67
110
25°C
±40
25°C
±20
Full range
±20
25°C
0.6
Full range
106
110
mV
μA
±40
±20
±100
25°C
25°C
106
UNIT
V
–8.2
25°C
IZ = 150 μA
LM4040B82I
25°C
Full range
(1)
DVZ
DI Z
TA
±100
ppm/°C
±20
1.3
0.6
2.5
7
10
Full range
1.6
2.5
7
18
10
mV
18
ZZ
Reverse dynamic impedance
IZ = 1 mA, f = 120 Hz,
IAC = 0.1 IZ
25°C
0.6
eN
Wideband noise
IZ = 150 μA,
10 Hz ≤ f ≤ 10 kHz
25°C
130
130
μVRMS
Long-term stability of reverse
breakdown voltage
t = 1000 h,
TA = 25°C ± 0.1°C,
IZ = 150 μA
120
120
ppm
Thermal hysteresis (2)
ΔTA = –40°C to 125°C
0.08%
0.08%
VHYST
(1)
(2)
20
1.5
0.6
1.5
Ω
—
The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75%
= ±19 mV.
Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C
measurement after cycling to temperature 125°C.
Submit Documentation Feedback
Copyright © 2005–2017, Texas Instruments Incorporated
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
LM4040A, LM4040B
LM4040C, LM4040D
www.ti.com
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
6.20 LM4040C82I, LM4040D82I Electrical Characteristics
at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted)
PARAMETER
VZ
Reverse breakdown voltage
TEST CONDITIONS
IZ = 150 μA
ΔVZ
Reverse breakdown voltage
tolerance
IZ,min
Minimum cathode current
αVZ
IZ = 10 mA
Average temperature coefficient
of reverse breakdown voltage
IZ = 1 mA
IZ = 150 μA
MIN
25°C
TYP
IZ,min < IZ < 1 mA
1 mA < IZ < 15 mA
LM4040D82I
MAX
MIN
8.192
TYP
8.192
V
–41
41
–82
82
Full range
–94
94
–162
162
67
±40
25°C
±20
Full range
67
±20
25°C
0.6
Full range
mV
111
μA
115
±40
±20
±100
25°C
25°C
106
110
25°C
UNIT
MAX
25°C
25°C
IZ = 150 μA
Reverse breakdown voltage
change with cathode current
change
LM4040C82I
Full range
(1)
DVZ
DI Z
TA
±150
ppm/°C
±20
1.3
0.6
1.7
7
15
2.5
7
10
Full range
3
18
mV
24
ZZ
Reverse dynamic impedance
IZ = 1 mA, f = 120 Hz,
IAC = 0.1 IZ
25°C
0.6
eN
Wideband noise
IZ = 150 μA,
10 Hz ≤ f ≤ 10 kHz
25°C
130
130
μVRMS
Long-term stability of reverse
breakdown voltage
t = 1000 h,
TA = 25°C ± 0.1°C,
IZ = 150 μA
120
120
ppm
Thermal hysteresis (2)
ΔTA = –40°C to 125°C
0.08%
0.08%
VHYST
(1)
(2)
1.5
0.6
1.9
Ω
—
The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75%
= ±19 mV.
Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C
measurement after cycling to temperature 125°C.
Copyright © 2005–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
21
LM4040A, LM4040B
LM4040C, LM4040D
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
www.ti.com
6.21 LM4040A10I, LM4040B10I Electrical Characteristics
at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted)
PARAMETER
VZ
TEST CONDITIONS
Reverse breakdown voltage
IZ = 150 μA
ΔVZ
Reverse breakdown voltage
tolerance
IZ,min
Minimum cathode current
αVZ
IZ = 10 mA
Average temperature coefficient
of reverse breakdown voltage
IZ = 1 mA
IZ = 150 μA
LM4040A10I
MIN
25°C
TYP
IZ,min < IZ < 1 mA
Reverse breakdown voltage
change with cathode current
change
1 mA < IZ < 15 mA
MAX
MIN
10
TYP
MAX
10
10
–20
20
Full range
–75
75
–85
85
75
75
125
25°C
±40
25°C
±20
Full range
±20
25°C
0.8
Full range
120
125
mV
μA
±40
±20
±100
25°C
25°C
120
UNIT
V
–10
25°C
IZ = 150 μA
LM4040B10I
25°C
Full range
(1)
DVZ
DI Z
TA
±100
ppm/°C
±20
1.5
0.8
3.5
8
14
Full range
1.5
3.5
8
24
14
mV
24
ZZ
Reverse dynamic impedance
IZ = 1 mA, f = 120 Hz,
IAC = 0.1 IZ
25°C
0.7
eN
Wideband noise
IZ = 150 μA,
10 Hz ≤ f ≤ 10 kHz
25°C
180
180
μVRMS
Long-term stability of reverse
breakdown voltage
t = 1000 h,
TA = 25°C ± 0.1°C,
IZ = 150 μA
120
120
ppm
Thermal hysteresis (2)
ΔTA = –40°C to 125°C
0.08%
0.08%
VHYST
(1)
(2)
22
1.7
0.7
1.7
Ω
—
The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75%
= ±19 mV.
Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C
measurement after cycling to temperature 125°C.
Submit Documentation Feedback
Copyright © 2005–2017, Texas Instruments Incorporated
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
LM4040A, LM4040B
LM4040C, LM4040D
www.ti.com
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
6.22 LM4040C10I, LM4040D10I Electrical Characteristics
at industrial temperature range, full-range TA = –40°C to 85°C (unless otherwise noted)
PARAMETER
VZ
Reverse breakdown voltage
TEST CONDITIONS
IZ = 150 μA
ΔVZ
Reverse breakdown voltage
tolerance
IZ,min
Minimum cathode current
αVZ
IZ = 10 mA
Average temperature coefficient
of reverse breakdown voltage
IZ = 1 mA
IZ = 150 μA
MIN
25°C
TYP
IZ,min < IZ < 1 mA
1 mA < IZ < 15 mA
LM4040D10I
MAX
MIN
10
TYP
10
V
–50
50
–100
100
Full range
–115
115
–198
198
75
±40
25°C
±20
Full range
75
±20
25°C
0.8
Full range
mV
130
μA
135
±40
±20
±100
25°C
25°C
120
125
25°C
UNIT
MAX
25°C
25°C
IZ = 150 μA
Reverse breakdown voltage
change with cathode current
change
LM4040C10I
Full range
(1)
DVZ
DI Z
TA
±150
ppm/°C
±20
1.5
0.8
2
8
18
3.5
8
14
Full range
4
24
mV
29
ZZ
Reverse dynamic impedance
IZ = 1 mA, f = 120 Hz,
IAC = 0.1 IZ
25°C
0.7
eN
Wideband noise
IZ = 150 μA,
10 Hz ≤ f ≤ 10 kHz
25°C
180
180
μVRMS
Long-term stability of reverse
breakdown voltage
t = 1000 h,
TA = 25°C ± 0.1°C,
IZ = 150 μA
120
120
ppm
Thermal hysteresis (2)
ΔTA = –40°C to 125°C
0.08%
0.08%
VHYST
(1)
(2)
1.7
0.7
2.3
Ω
—
The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage
Tolerance ±[(ΔVR/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature
from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the
different grades in the industrial temperature range where maxΔT = 65°C is shown below:
A-grade: ±0.75% = ±0.1% ±100 ppm/°C × 65°C
B-grade: ±0.85% = ±0.2% ±100 ppm/°C × 65°C
C-grade: ±1.15% = ±0.5% ±100 ppm/°C × 65°C
D-grade: ±1.98% = ±1.0% ±150 ppm/°C × 65°C
The total overtemperature tolerance for the different grades in the extended temperature range where max ΔT = 100 °C is shown below:
C-grade: ±1.5% = ±0.5% ±100 ppm/°C × 100°C
D-grade: ±2.5% = ±1.0% ±150 ppm/°C × 100°C
Therefore, as an example, the A-grade 2.5-V LM4040 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5 V × 0.75%
= ±19 mV.
Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C
measurement after cycling to temperature 125°C.
Copyright © 2005–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
23
LM4040A, LM4040B
LM4040C, LM4040D
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
www.ti.com
6.23 Typical Characteristics
0.5
VZ, Change (%)
0.4
0.3
0.2
0.1
ZZ, Dynamic Output Impedance (Ω)
0.6
VZ = 2.5 V
IZ = 150 mA
50 ppm/°C
20 ppm/°C
7 ppm/°C
0
−0.1
−0.2
−0.3
−0.4
20
40
60
80 100 120
Temperature (°C)
Figure 1. Temperature Drift for Different Average
Temperature Coefficients
−20
0
No Capacitor
1 µF
Tantanlum
Capacitor
10
VZ = 2.5 V
IZ = 150 µA
TJ = 25°C
IZ,AC = 0.1 IZ
1
0.1
100
XC
1k
120
1000
No Capacitor
100
VZ = 2.5 V
IZ = 1 mA
TJ = 25°C
IZ,AC = 0.1 IZ
10
1-mF
Tantanlum
Capacitor
1
0.1
100
XC
10k
100k
1M
Frequency (Hz)
Figure 3. Output Impedance vs Frequency
1k
Noise (mV/eHz)
10
Submit Documentation Feedback
VZ = 2.5 V
TJ = 25°C
100
80
60
40
20
0
0
0.5
1
1.5
2
2.5
3
VZ, Reverse Voltage (V)
Figure 4. Temperature Drift for Different Average
Temperature Coefficient
VZ = 2.5 V
IZ = 200 mA
TJ = 25°C
1
0.1
24
100
10k
100k
1M
Frequency (Hz)
Figure 2. Output Impedance vs Frequency
IZ, Cathode Current (mA)
ZZ, Dynamic Output Impedance (W)
−40
1000
1
100
1k
10k
Frequency (Hz)
Figure 5. Noise Voltage vs Frequency
10
100k
Copyright © 2005–2017, Texas Instruments Incorporated
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
LM4040A, LM4040B
LM4040C, LM4040D
www.ti.com
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
7 Detailed Description
7.1 Overview
The LM4040 is a precision micro-power curvature-corrected bandgap shunt voltage reference. The LM4040 has
been designed for stable operation without the need of an external capacitor connected between the “+” pin and
the “−” pin. If, however, a bypass capacitor is used, the LM4040 remains stable.
LM4040 offers several fixed reverse breakdown voltages: 2.048 V, 2.500 V, 3.000 V, 4.096 V, 5.000 V, 6.000,
8.192 V, and 10.000 V. The minimum operating current increases from 60 µA for the LM4040-N-2.048 and
LM4040-N-2.5 to 100 μA for the 10.0-V LM4040. All versions have a maximum operating current of 15 mA.
Each reverse voltage options can be purchased with initial tolerances (at 25°C) of 0.1%, 0.2%, 0.5% and 1.0%.
These reference options are denoted by A (0.1%), B (0.2%), C (0.5%) and D for (1.0%).
The LM4040xxxI devices are characterized for operation from –40°C to 85°C, and the LM4040xxxQ devices are
characterized for operation from –40°C to 125°C.
7.2 Functional Block Diagram
CATHODE
+
_
ANODE
7.3 Feature Description
A temperature compensated band gap voltage reference controls high gain amplifier and shunt pass element to
maintain a nearly constant voltage between cathode and anode. Regulation occurs after a minimum current is
provided to power the voltage divider and amplifier. Internal frequency compensation provides a stable loop for
all capacitor loads. Floating shunt design is useful for both positive and negative regulation applications.
7.4 Device Functional Modes
7.4.1 Shunt Reference
LM4040 will operate in one mode, which is as a fixed voltage reference that cannot be adjusted. LM4040 does
offer various Reverse Voltage options that have unique electrical characteristics detailed in the Specifications
section.
In order for a proper Reverse Voltage to be developed, current must be sourced into the cathode of LM4040. The
minimum current needed for proper regulation is denoted in the Specifications section as IZ,min.
Copyright © 2005–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
25
LM4040A, LM4040B
LM4040C, LM4040D
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
www.ti.com
8 Applications and Implementation
NOTE
Information in the following applications sections is not part of the TI component
specification, and TI does not warrant its accuracy or completeness. TI’s customers are
responsible for determining suitability of components for their purposes. Customers should
validate and test their design implementation to confirm system functionality.
8.1 Application Information
LM4040 is a well known industry standard device used in several applications and end equipment where a
reference is required. Below describes this device being used in a data acquisition system. Analog to Digital
conversion systems are the most common applications to use LM4040 due to its low reference tolerance which
allows high precision in these systems.
8.2 Typical Applications
ADS7842
0 V to VREF
1 AIN0
5V
2 AIN1
909
+
2.2 mF
LM4040A-41
VANA
VDIG
28
+
27
3 AIN2
A1 26
4 AIN3
A0 25
5 VREF
CLK 24
5-V Analog Supply
+
0.1 mF
10 mF
3.2-MHz Clock
BUSY
23
BUSY Output
7 DB11
WR
22
Write Input
8 DB10
CS
21
9 DB9
RD
20
6 AGND
10 DB8
DB0 19
11 DB7
DB1 18
12 DB6
DB2 17
13 DB5
DB3 16
14 DGND
DB4 15
Read Input
Figure 6. Data-Acquisition Circuit With LM4040x-41
8.2.1 Design Requirements
For this design example, use the parameters listed in Table 1 as the input parameters.
Table 1. Design Parameters
DESIGN PARAMETER
26
EXAMPLE VALUE
ADC FSR (Full Scale Range)
4.096
ADC Resolution
12 Bits
Supply Voltage
5V
Cathode Current (Ik)
100 µA
Submit Documentation Feedback
Copyright © 2005–2017, Texas Instruments Incorporated
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
LM4040A, LM4040B
LM4040C, LM4040D
www.ti.com
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
8.2.2 Detailed Design Procedure
When using LM4040 as a comparator with reference, determine the following:
• Input voltage range
• Reference voltage accuracy
• Output logic input high and low level thresholds
• Current source resistance
8.2.2.1 LM4040 Voltage and Accuracy Choice
When using LM4040 as a reference for an ADC, the ADC's FSR (Full Scale Range), Resolution and LSB must
be determined. LSB can be determined by:
LSB=FSR/(2N-1)
With N being the resolution or Number of Bits. FSR and Resolution can be determined by the ADC's datasheet.
Vref can be determined by:
Vref=FSR+LSB
Though modern data converters use calibration techniques to compensate for any error introduced by a Vref's
inaccuracy, it is best to use the highest accuracy available. This is due to errors in the calibration method that
may allow some non-linearities introduced by the Vref's initial accuracy.
A good example is the LM4040x-41 that is designed to be a cost-effective voltage reference as required in 12-bit
data-acquisition systems. For 12-bit systems operating from 5-V supplies (see Figure 6), the LM4040A-41 (4.096
V, 0.01%) only introduces 4 LSBs (4mV) of possible error in a system that consists of 4096 LSBs.
8.2.2.2 Cathode and Load Currents
In a typical shunt-regulator configuration (see Figure 7), an external resistor, RS, is connected between the
supply and the cathode of the LM4040. RS must be set properly, as it sets the total current available to supply
the load (IL) and bias the LM4040 (IZ). In all cases, IZ must stay within a specified range for proper operation of
the reference. Taking into consideration one extreme in the variation of the load and supply voltage (maximum IL
and minimum VS), RS must be small enough to supply the minimum IZ required for operation of the regulator, as
given by data-sheet parameters. At the other extreme, maximum VS and minimum IL, RS must be large enough
to limit IZ to less than its maximum-rated value of 15 mA.
RS is calculated according to Equation 1:
(V - VZ )
RS = S
(IL + IZ )
(1)
VS
RS
IZ + IL
IL
VZ
IZ
LM4040
Figure 7. Shunt Regulator
8.2.2.3 Output Capacitor
The LM4040 does not require an output capacitor across cathode and anode for stability. However, if an output
bypass capacitor is desired, the LM4040 is designed to be stable with all capacitive loads.
Copyright © 2005–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
27
LM4040A, LM4040B
LM4040C, LM4040D
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
www.ti.com
8.2.2.4 SOT-23 Connections
There is a parasitic Schottky diode connected between pins 2 and 3 of the SOT-23 packaged device. Thus, pin 3
of the SOT-23 package must be left floating or connected to pin 2.
8.2.2.5 Start-Up Characteristics
In any data conversion system, start-up characteristics are important, as to determine when it is safe begin
conversion based upon a steady and settled reference value. As shown in Figure 9 it is best to allow for >20µs
from supply start-up to begin conversion.
RS
VIN
LM4040
VZ
1 Hz Rate
Figure 8. Test Circuit
8.2.3 Application Curve
6
6
4
VZ = 2.5 V
TJ = 25°C
RS = 30 kW
VZ (V)
4
2
VIN
0
3
−2
−4
2
VZ
VIN (V)
5
−6
1
−8
0
−1
−10
−10
−12
0
10
20
30
40
50
60
70
80
90
Response Time (ms)
Figure 9. Startup Response
28
Submit Documentation Feedback
Copyright © 2005–2017, Texas Instruments Incorporated
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
LM4040A, LM4040B
LM4040C, LM4040D
www.ti.com
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
9 Power Supply Recommendations
In order to not exceed the maximum cathode current, be sure that the supply voltage is current limited.
For applications shunting high currents (15 mA max), pay attention to the cathode and anode trace lengths,
adjusting the width of the traces to have the proper current density.
10 Layout
10.1 Layout Guidelines
Figure 10 shows an example of a PCB layout of LM4040XXXDBZ. Some key Vref noise considerations are:
• Connect a low-ESR, 0.1-μF (CL) ceramic bypass capacitor on the cathode pin node.
• Decouple other active devices in the system per the device specifications.
• Using a solid ground plane helps distribute heat and reduces electromagnetic interference (EMI) noise pickup.
• Place the external components as close to the device as possible. This configuration prevents parasitic errors
(such as the Seebeck effect) from occurring.
• Do not run sensitive analog traces in parallel with digital traces. Avoid crossing digital and analog traces if
possible and only make perpendicular crossings when absolutely necessary.
10.2 Layout Example
GND
DBZ
(TOP VIEW)
CL
Rsup
Vsup
CATHODE
GND
ANODE
1
3
2
Figure 10. DBZ Layout example
Copyright © 2005–2017, Texas Instruments Incorporated
Submit Documentation Feedback
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
29
LM4040A, LM4040B
LM4040C, LM4040D
SLOS456N – JANUARY 2005 – REVISED OCTOBER 2017
www.ti.com
11 Device and Documentation Support
11.1 Related Links
The table below lists quick access links. Categories include technical documents, support and community
resources, tools and software, and quick access to order now.
Table 2. Related Links
PARTS
PRODUCT FOLDER
ORDER NOW
TECHNICAL
DOCUMENTS
TOOLS &
SOFTWARE
SUPPORT &
COMMUNITY
LM4040A
Click here
Click here
Click here
Click here
Click here
LM4040B
Click here
Click here
Click here
Click here
Click here
LM4040C
Click here
Click here
Click here
Click here
Click here
LM4040D
Click here
Click here
Click here
Click here
Click here
11.2 Trademarks
All trademarks are the property of their respective owners.
11.3 Electrostatic Discharge Caution
These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam
during storage or handling to prevent electrostatic damage to the MOS gates.
11.4 Glossary
SLYZ022 — TI Glossary.
This glossary lists and explains terms, acronyms, and definitions.
12 Mechanical, Packaging, and Orderable Information
The following pages include mechanical, packaging, and orderable information. This information is the most
current data available for the designated devices. This data is subject to change without notice and revision of
this document. For browser-based versions of this data sheet, refer to the left-hand navigation.
30
Submit Documentation Feedback
Copyright © 2005–2017, Texas Instruments Incorporated
Product Folder Links: LM4040A LM4040B LM4040C LM4040D
PACKAGE OPTION ADDENDUM
www.ti.com
6-Feb-2020
PACKAGING INFORMATION
Orderable Device
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
LM4040A10IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NQ3, 4NQU)
LM4040A10IDBZRG4
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NQ3, 4NQU)
LM4040A10IDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NQ3, 4NQU)
LM4040A10IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
PHU
LM4040A20IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4MC3, 4MCU)
LM4040A20IDBZRG4
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4MC3, 4MCU)
LM4040A20IDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4MC3, 4MCU)
LM4040A20IDBZTG4
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4MC3, 4MCU)
LM4040A20IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
MSU
LM4040A25IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NG3, 4NGU)
LM4040A25IDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NG3, 4NGU)
LM4040A25IDBZTG4
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NG3, 4NGU)
LM4040A25IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
P2U
LM4040A30IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M63, 4M6U)
LM4040A30IDBZRG4
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M63, 4M6U)
LM4040A30IDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M63, 4M6U)
LM4040A30IDBZTG4
ACTIVE
SOT-23
DBZ
3
250
TBD
Call TI
Call TI
-40 to 85
(4M63, 4M6U)
Addendum-Page 1
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
6-Feb-2020
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
LM4040A30IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
P9U
LM4040A30IDCKRE4
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
P9U
LM4040A41IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M23, 4M2U)
LM4040A41IDBZRG4
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M23, 4M2U)
LM4040A41IDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M23, 4M2U)
LM4040A41IDBZTG4
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M23, 4M2U)
LM4040A41IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
P4U
LM4040A50IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NA3, 4NAU)
LM4040A50IDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NA3, 4NAU)
LM4040A50IDBZTG4
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NA3, 4NAU)
LM4040A50IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
N5U
LM4040A82IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NL3, 4NLU)
LM4040A82IDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NL3, 4NLU)
LM4040A82IDBZTG4
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NL3, 4NLU)
LM4040A82IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
PDU
LM4040B10IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NR3, 4NRU)
LM4040B10IDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NR3, 4NRU)
LM4040B10IDBZTG4
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NR3, 4NRU)
Addendum-Page 2
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
6-Feb-2020
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
LM4040B10IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
PJU
LM4040B20IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4MD3, 4MDU)
LM4040B20IDBZRG4
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4MD3, 4MDU)
LM4040B20IDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4MD3, 4MDU)
LM4040B20IDBZTG4
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4MD3, 4MDU)
LM4040B20IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(MTS, MTU)
LM4040B25IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NH3, 4NHU)
LM4040B25IDBZRG4
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NH3, 4NHU)
LM4040B25IDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NH3, 4NHU)
LM4040B25IDBZTG4
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NH3, 4NHU)
LM4040B25IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
P3U
LM4040B30IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M73, 4M7U)
LM4040B30IDBZRG4
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M73, 4M7U)
LM4040B30IDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M73, 4M7U)
LM4040B30IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
PAU
LM4040B41IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M33, 4M3U)
LM4040B41IDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M33, 4M3U)
LM4040B41IDBZTG4
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M33, 4M3U)
Addendum-Page 3
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
6-Feb-2020
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
LM4040B41IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
P5U
LM4040B50IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NB3, 4NBU)
LM4040B50IDBZRG4
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NB3, 4NBU)
LM4040B50IDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NB3, 4NBU)
LM4040B50IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
MXU
LM4040B82IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NM3, 4NMU)
LM4040C10IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NS3, 4NSU)
LM4040C10IDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NS3, 4NSU)
LM4040C10IDBZTG4
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NS3, 4NSU)
LM4040C10IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
PKU
LM4040C10ILP
ACTIVE
TO-92
LP
3
1000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFC10I
LM4040C10ILPR
ACTIVE
TO-92
LP
3
2000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFC10I
LM4040C20IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4MQ3, 4MQU)
LM4040C20IDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4MQ3, 4MQU)
LM4040C20IDBZTG4
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4MQ3, 4MQU)
LM4040C20IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
MVU
LM4040C20ILP
ACTIVE
TO-92
LP
3
1000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFC20I
LM4040C20ILPE3
ACTIVE
TO-92
LP
3
1000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFC20I
Addendum-Page 4
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
6-Feb-2020
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
LM4040C20ILPR
ACTIVE
TO-92
LP
3
2000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFC20I
LM4040C20QDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 125
(4MW3, 4MWU)
LM4040C20QDBZRG4
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 125
(4MW3, 4MWU)
LM4040C20QDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 125
(4MW3, 4MWU)
LM4040C20QDBZTG4
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 125
(4MW3, 4MWU)
LM4040C25IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4MU3, 4MUU)
LM4040C25IDBZRG4
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4MU3, 4MUU)
LM4040C25IDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4MU3, 4MUU)
LM4040C25IDBZTG4
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4MU3, 4MUU)
LM4040C25IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
MUU
LM4040C25IDCKT
ACTIVE
SC70
DCK
5
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
MUU
LM4040C25IDCKTE4
ACTIVE
SC70
DCK
5
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
MUU
LM4040C25ILP
ACTIVE
TO-92
LP
3
1000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFC25I
LM4040C25ILPR
ACTIVE
TO-92
LP
3
2000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFC25I
LM4040C25QDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 125
(4MA3, 4MAU)
LM4040C25QDBZRG4
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 125
(4MA3, 4MAU)
LM4040C25QDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 125
(4MA3, 4MAU)
LM4040C25QDBZTG4
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 125
(4MA3, 4MAU)
Addendum-Page 5
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
6-Feb-2020
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
LM4040C30IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M83, 4M8U)
LM4040C30IDBZRG4
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M83, 4M8U)
LM4040C30IDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M83, 4M8U)
LM4040C30IDBZTG4
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M83, 4M8U)
LM4040C30IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
PBU
LM4040C30ILP
ACTIVE
TO-92
LP
3
1000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFC30I
LM4040C30ILPE3
ACTIVE
TO-92
LP
3
1000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFC30I
LM4040C30ILPR
ACTIVE
TO-92
LP
3
2000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFC30I
LM4040C30QDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 125
(4NJ3, 4NJU)
LM4040C30QDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 125
(4NJ3, 4NJU)
LM4040C41IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M43, 4M4U)
LM4040C41IDBZRG4
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M43, 4M4U)
LM4040C41IDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M43, 4M4U)
LM4040C41IDBZTG4
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M43, 4M4U)
LM4040C41IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
P6U
LM4040C41ILP
ACTIVE
TO-92
LP
3
1000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFC41I
LM4040C41ILPR
ACTIVE
TO-92
LP
3
2000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFC41I
LM4040C50IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NC3, 4NCU)
Addendum-Page 6
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
6-Feb-2020
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
LM4040C50IDBZRG4
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NC3, 4NCU)
LM4040C50IDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NC3, 4NCU)
LM4040C50IDBZTG4
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NC3, 4NCU)
LM4040C50IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
MZU
LM4040C50ILP
ACTIVE
TO-92
LP
3
1000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFC50I
LM4040C50ILPE3
ACTIVE
TO-92
LP
3
1000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFC50I
LM4040C50ILPR
ACTIVE
TO-92
LP
3
2000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFC50I
LM4040C50QDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 125
(4NE3, 4NEU)
LM4040C50QDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 125
(4NE3, 4NEU)
LM4040C50QDBZTG4
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 125
(4NE3, 4NEU)
LM4040C82IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NN3, 4NNU)
LM4040C82IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
PFU
LM4040C82ILP
ACTIVE
TO-92
LP
3
1000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFC82I
LM4040C82ILPR
ACTIVE
TO-92
LP
3
2000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFC82I
LM4040D10IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NT3, 4NTU)
LM4040D10IDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NT3, 4NTU)
LM4040D10IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
PLU
LM4040D10ILP
ACTIVE
TO-92
LP
3
1000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFD10I
Addendum-Page 7
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
6-Feb-2020
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
LM4040D20IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4MV3, 4MVU)
LM4040D20IDBZRG4
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4MV3, 4MVU)
LM4040D20IDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4MV3, 4MVU)
LM4040D20IDBZTG4
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4MV3, 4MVU)
LM4040D20IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
MWU
LM4040D20ILPR
ACTIVE
TO-92
LP
3
2000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFD20I
LM4040D20ILPRE3
ACTIVE
TO-92
LP
3
2000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFD20I
LM4040D20QDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 125
(4MY3, 4MYU)
LM4040D20QDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 125
(4MY3, 4MYU)
LM4040D20QDBZTG4
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 125
(4MY3, 4MYU)
LM4040D25IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4ME3, 4MEU)
LM4040D25IDBZRG4
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4ME3, 4MEU)
LM4040D25IDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4ME3, 4MEU)
LM4040D25IDBZTG4
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4ME3, 4MEU)
LM4040D25IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
MEU
LM4040D25IDCKRG4
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
MEU
LM4040D25IDCKT
ACTIVE
SC70
DCK
5
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
MEU
LM4040D25ILP
ACTIVE
TO-92
LP
3
1000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFD25I
Addendum-Page 8
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
6-Feb-2020
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
LM4040D25ILPR
ACTIVE
TO-92
LP
3
2000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFD25I
LM4040D25QDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 125
(4MB3, 4MBU)
LM4040D25QDBZRG4
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 125
(4MB3, 4MBU)
LM4040D25QDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 125
(4MB3, 4MBU)
LM4040D25QDBZTG4
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 125
(4MB3, 4MBU)
LM4040D30IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M93, 4M9U)
LM4040D30IDBZRG4
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M93, 4M9U)
LM4040D30IDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M93, 4M9U)
LM4040D30IDBZTG4
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M93, 4M9U)
LM4040D30IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
PCU
LM4040D30ILP
ACTIVE
TO-92
LP
3
1000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFD30I
LM4040D30ILPR
ACTIVE
TO-92
LP
3
2000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFD30I
LM4040D30ILPRE3
ACTIVE
TO-92
LP
3
2000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFD30I
LM4040D30QDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 125
(4NK3, 4NKU)
LM4040D30QDBZRG4
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 125
(4NK3, 4NKU)
LM4040D41IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M53, 4M5U)
LM4040D41IDBZRG4
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M53, 4M5U)
LM4040D41IDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M53, 4M5U)
Addendum-Page 9
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
6-Feb-2020
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
LM4040D41IDBZTG4
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4M53, 4M5U)
LM4040D41IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
P7U
LM4040D41ILP
ACTIVE
TO-92
LP
3
1000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFD41I
LM4040D41ILPE3
ACTIVE
TO-92
LP
3
1000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFD41I
LM4040D41ILPR
ACTIVE
TO-92
LP
3
2000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFD41I
LM4040D50IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4ND3, 4NDU)
LM4040D50IDBZRG4
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4ND3, 4NDU)
LM4040D50IDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4ND3, 4NDU)
LM4040D50IDBZTG4
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4ND3, 4NDU)
LM4040D50IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
M4U
LM4040D50IDCKRG4
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
M4U
LM4040D50ILP
ACTIVE
TO-92
LP
3
1000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFD50I
LM4040D50ILPR
ACTIVE
TO-92
LP
3
2000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFD50I
LM4040D50ILPRE3
ACTIVE
TO-92
LP
3
2000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFD50I
LM4040D50QDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 125
(4NF3, 4NFU)
LM4040D50QDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 125
(4NF3, 4NFU)
LM4040D82IDBZR
ACTIVE
SOT-23
DBZ
3
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NP3, 4NPU)
LM4040D82IDBZT
ACTIVE
SOT-23
DBZ
3
250
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
(4NP3, 4NPU)
Addendum-Page 10
Samples
PACKAGE OPTION ADDENDUM
www.ti.com
Orderable Device
6-Feb-2020
Status
(1)
Package Type Package Pins Package
Drawing
Qty
Eco Plan
Lead/Ball Finish
MSL Peak Temp
(2)
(6)
(3)
Op Temp (°C)
Device Marking
(4/5)
LM4040D82IDCKR
ACTIVE
SC70
DCK
5
3000
Green (RoHS
& no Sb/Br)
NIPDAU
Level-1-260C-UNLIM
-40 to 85
PGU
LM4040D82ILP
ACTIVE
TO-92
LP
3
1000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFD82I
LM4040D82ILPR
ACTIVE
TO-92
LP
3
2000
Pb-Free
(RoHS)
SN
N / A for Pkg Type
-40 to 85
NFD82I
(1)
The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2)
RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance
do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may
reference these types of products as "Pb-Free".
RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.
Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of