0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LM4050AEM3-2.0

LM4050AEM3-2.0

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOT-23

  • 描述:

    IC VREF SHUNT 0.1% SOT23-3

  • 数据手册
  • 价格&库存
LM4050AEM3-2.0 数据手册
Sample & Buy Product Folder Support & Community Tools & Software Technical Documents LM4050-N, LM4050-N-Q1 SNOS455G – MAY 2000 – REVISED SEPTEMBER 2015 LM4050-N/-Q1 Precision Micropower Shunt Voltage Reference 1 Features 3 Description • • • • Ideal for space-critical applications, the LM4050-N precision voltage reference is available in the subminiature (3 mm × 1.3 mm) SOT-23 surface-mount package. The LM4050-N design eliminates the need for an external stabilizing capacitor while ensuring stability with any capacitive load, thus making the LM4050-N easy to use. Further reducing design effort is the availability of several fixed reverse breakdown voltages: 2.048 V, 2.5 V, 4.096 V, 5 V, 8.192 V, and 10 V. The minimum operating current increases from 60 μA for the LM4050-N-2.0 to 100 μA for the LM4050-N-10.0. All versions have a maximum operating current of 15 mA. 1 • Small Package: SOT-23 No Output Capacitor Required Tolerates Capacitive Loads Fixed Reverse Breakdown Voltages of 2.048 V, 2.5 V, 4.096 V, 5 V, 8.192 V, and 10 V Key Specifications (LM4050-N) – Output Voltage Tolerance (A Grade, 25°C) ±0.1% (Maximum) – Low Output Noise (10 Hz to 10 kHz) 41 μVrms (Typical) – Wide Operating Current Range 60 μA to 15 mA – Industrial Temperature Range −40°C to 85°C – Extended Temperature Range −40°C to 125°C – Low Temperature Coefficient 50 ppm/°C (max) – LM4050-N-Q1 is AEC-Q100 Grade 1 Qualified and are Manufactured on an Automotive Grade Flow All grades and voltage options of the LM4050-N are available in both an industrial temperature range (−40°C and 85°C) and an extended temperature range (−40°C and 125°C). 2 Applications • • • • • • • • The LM4050-N utilizes fuse and Zener-zap reverse breakdown voltage trim during wafer sort to ensure that the prime parts have an accuracy of better than ±0.1% (A grade) at 25°C. Bandgap reference temperature drift curvature correction and low dynamic impedance ensure stable reverse breakdown voltage accuracy over a wide range of operating temperatures and currents. Portable, Battery-Powered Equipment Data Acquisition Systems Instrumentation Process Control Energy Management Product Testing Automotive Precision Audio Components Device Information(1) PART NUMBER LM4050-N LM4050-N-Q1 PACKAGE SOT-23 (3) BODY SIZE (NOM) 2.92 mm × 1.30 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. Shunt Regulator Schematic IQ+IL IL Vout Vs Rs Cathode Anode IQ Cout 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. LM4050-N, LM4050-N-Q1 SNOS455G – MAY 2000 – REVISED SEPTEMBER 2015 www.ti.com Table of Contents 1 2 3 4 5 6 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 6.10 6.11 7 8 1 1 1 2 3 3 Absolute Maximum Ratings ...................................... 3 ESD Ratings.............................................................. 3 Recommended Operating Conditions ...................... 4 Thermal Information .................................................. 4 Electrical Characteristics: 2-V Option ....................... 5 Electrical Characteristics: 2.5-V Option .................... 6 Electrical Characteristics: 4.1-V Option .................... 7 Electrical Characteristics: 5-V Option ...................... 8 Electrical Characteristics: 8.2-V Option ................... 9 Electrical Characteristics: 10-V Option ................ 10 Typical Characteristics .......................................... 11 Parameter Measurement Information ................ 12 Detailed Description ............................................ 13 8.1 8.2 8.3 8.4 9 Overview ................................................................. Functional Block Diagram ....................................... Feature Description................................................. Device Functional Modes........................................ 13 13 13 13 Application and Implementation ........................ 14 9.1 Application Information............................................ 14 9.2 Typical Applications ................................................ 15 10 Power Supply Recommendations ..................... 21 11 Layout................................................................... 21 11.1 Layout Guidelines ................................................. 21 11.2 Layout Example .................................................... 21 12 Device and Documentation Support ................. 22 12.1 12.2 12.3 12.4 12.5 Related Links ........................................................ Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 22 22 22 22 22 13 Mechanical, Packaging, and Orderable Information ........................................................... 22 4 Revision History NOTE: Page numbers for previous revisions may differ from page numbers in the current version. Changes from Revision F (June 2015) to Revision G Page • Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section .................................................................................................. 1 • Removed Vapor Phase and Infrared Lead Temperatures from Abs Max Ratings table. ...................................................... 3 Changes from Revision E (April 2013) to Revision F Page • Deleted "-25" from (LM4050-N) in Key Specifications title and "A/-Q1B/-Q1C" from Key Specification re: auto grade ........ 1 • Added Maximum Junction Temperature to Abs Max Ratings table ...................................................................................... 3 • Added table notes to Operating Ratings table to clarify operating and high junction temperature ranges ............................ 4 • Deleted "-N" from part numbers in EC table "Limits" column headers .................................................................................. 5 Changes from Revision D (April 2013) to Revision E • 2 Page Changed layout of National Data Sheet to TI format ........................................................................................................... 20 Submit Documentation Feedback Copyright © 2000–2015, Texas Instruments Incorporated Product Folder Links: LM4050-N LM4050-N-Q1 LM4050-N, LM4050-N-Q1 www.ti.com SNOS455G – MAY 2000 – REVISED SEPTEMBER 2015 5 Pin Configuration and Functions DBZ Package 3-Pin SOT-23 Top View *This pin must be left floating or connected to pin 2. Pin Functions PIN NAME I/O NO. DESCRIPTION Cathode 1 I/O Shunt current and input voltage Anode 2 O Common pin, normally connected to ground NC 3 — No internal connection 6 Specifications 6.1 Absolute Maximum Ratings See (1) (2) , MAX UNIT Reverse Current MIN 20 mA Forward Current 10 mA 280 mW 150 °C 150 °C Power Dissipation (TA = 25°C) (3) Maximum Junction Temperature (4) Storage Temperature (1) (2) (3) (4) –65 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications. The maximum power dissipation must be derated at elevated temperatures and is dictated by TJmax (maximum junction temperature), RθJA (junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is PDmax = (TJmax − TA)/RθJA or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4050-N, TJmax = 150°C, and the typical thermal resistance (RθJA), when board mounted, is 326°C/W for the SOT-23 package. High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C. 6.2 ESD Ratings VALUE V(ESD) (1) (2) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1) ±2000 Charged device model (CDM), per JEDEC specification JESD22-C101 (2) ±1000 Machine model (MM) ±200 UNIT V JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process. JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process. Copyright © 2000–2015, Texas Instruments Incorporated Product Folder Links: LM4050-N LM4050-N-Q1 Submit Documentation Feedback 3 LM4050-N, LM4050-N-Q1 SNOS455G – MAY 2000 – REVISED SEPTEMBER 2015 www.ti.com 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) Industrial Temperature Range Extended Temperature Range (1) (2) (1) (2) MIN MAX UNIT Ambient Temperature Range –40 85 °C Junction Temperature Range –40 85 °C Ambient Temperature Range –40 125 °C Junction Temperature –40 125 °C The maximum power dissipation must be derated at elevated temperatures and is dictated by TJmax (maximum junction temperature), RθJA (junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is PDmax = (TJmax − TA)/RθJA or the number given in the Absolute Maximum Ratings, whichever is lower. For the LM4050-N, TJmax = 150°C, and the typical thermal resistance (RθJA), when board mounted, is 326°C/W for the SOT-23 package. Recommended Operating Conditions are conditions under the device is intended to be functional. For specifications and conditions, see Electrical Characteristics section. 6.4 Thermal Information LM4050-N/-Q1 THERMAL METRIC (1) DBZ (SOT-23) UNIT 3 PINS RθJA Junction-to-ambient thermal resistance 287 °C/W RθJC(top) Junction-to-case (top) thermal resistance 106.6 °C/W RθJB Junction-to-board thermal resistance 57.7 °C/W ψJT Junction-to-top characterization parameter 5.5 °C/W ψJB Junction-to-board characterization parameter 56.4 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance N/A °C/W (1) 4 For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. Submit Documentation Feedback Copyright © 2000–2015, Texas Instruments Incorporated Product Folder Links: LM4050-N LM4050-N-Q1 LM4050-N, LM4050-N-Q1 www.ti.com SNOS455G – MAY 2000 – REVISED SEPTEMBER 2015 6.5 Electrical Characteristics: 2-V Option All other limits TA = TJ = 25°C. The grades A, B and C designate initial Reverse Breakdown Voltage tolerances of ±0.1%, ±0.2%, and 0.5% respectively. PARAMETER TEST CONDITIONS Reverse Breakdown Voltage IR = 100 μA IR = 100 μA VR Reverse breakdown voltage tolerance (3) Industrial temperature range TA = TJ = TMIN to TMAX Extended temperature range TA = TJ = TMIN to TMAX MIN (1) TYP (2) 2.048 ±2.048 LM4050BIM3, LM4050BEM3 ±4.096 LM4050CIM3, LM4050CEM3 ±1024 LM4050AIM3, LM4050AEM3 ±9.0112 LM4050BIM3, LM4050BEM3 ±11.4688 LM4050CIM3, LM4050CEM3 ±14.7456 LM4050AIM3, LM4050AEM3 ±12.288 LM4050BIM3, LM4050BEM3 ±14.7456 Minimum operating current ΔVR/ΔT Average reverse breakdown voltage temperature coefficient (3) TA = TJ = 25°C ΔVR/ΔIR Reverse breakdown voltage change with operating current change (4) 60 65 IR = 10 mA ±20 IR = 1 mA ±15 IR = 100 μA, TA = TJ = 25°C ±15 IR = 100 μA, TA = TJ = TMIN to TMAX μA ppm/°C ±50 0.3 IRMIN ≤ IR ≤ 1 mA, TA = TJ = TMIN to TMAX 1 mA ≤ IR ≤ 15 mA, TA = TJ = 25°C mV ±17.2032 41 TA = TJ = TMIN to TMAX IRMIN ≤ IR ≤ 1 mA, TA = TJ = 25°C UNIT V LM4050AIM3, LM4050AEM3 LM4050CIM3, LM4050CEM3 IRMIN MAX (1) 0.8 1.2 2.3 1 mA ≤ IR ≤ 15 mA, TA = TJ = TMIN to TMAX 6 mV 8 ZR Reverse dynamic impedance IR = 1 mA, f = 120 Hz, IAC = 0.1 IR 0.3 Ω eN Wideband noise IR = 100 μA, 10 Hz ≤ f ≤ 10 kHz 34 μVrms ΔVR Reverse breakdown voltage long term stability t = 1000 hrs, T = 25°C ±0.1°C, IR = 100 μA 120 ppm ΔT = −40°C to 125°C 0.7 mV VHYST (1) (2) (3) (4) (5) Thermal hysteresis (5) Limits are 100% production tested at 25°C. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's AOQL. Typicals are at TJ = 25°C and represent most likely parametric norm. The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV R/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.425% = ±0.1% ±50 ppm/°C × 65°C B-grade: ±0.525% = ±0.2% ±50 ppm/°C × 65°C C-grade: ±0.825% = ±0.5% ±50 ppm/°C × 65°C. Therefore, as an example, the A-grade LM4050-N-2.5 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.425% = ±11 mV. Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately. Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C. Copyright © 2000–2015, Texas Instruments Incorporated Product Folder Links: LM4050-N LM4050-N-Q1 Submit Documentation Feedback 5 LM4050-N, LM4050-N-Q1 SNOS455G – MAY 2000 – REVISED SEPTEMBER 2015 www.ti.com 6.6 Electrical Characteristics: 2.5-V Option All other limits TA = TJ = 25°C. The grades A, B and C designate initial Reverse Breakdown Voltage tolerances of ±0.1%, ±0.2%, and 0.5% respectively. PARAMETER MIN (1) TEST CONDITIONS IR = 100 μA Reverse breakdown voltage VR TYP (2) 2.500 LM4050AIM3, LM4050AEM3 IR = 100 μA Industrial temperature range, TA = TJ = TMIN to TMAX Reverse breakdown voltage tolerance (3) Extended temperature range, TA = TJ = TMIN to TMAX Minimum operating current V LM4050BIM3, LM4050BEM3 ±5 LM4050CIM3, LM4050CEM3 ±13 LM4050AIM3, LM4050AEM3 ±11 LM4050BIM3, LM4050BEM3 ±24 LM4050CIM3, LM4050CEM3 ±21 LM4050AIM3, LM4050AEM3 ±15 LM4050BIM3, LM4050BEM3 ±18 TA = TJ = 25°C UNIT ±2.5 LM4050CIM3, LM4050CEM3 IRMIN MAX (1) mV mV ±25 41 TA = TJ = TMIN to TMAX 60 65 IR = 10 mA ±20 IR = 1 mA ±15 IR = 100 μA, TA = TJ = 25°C ±15 μA ΔVR/ΔT Average reverse breakdown voltage temperature coefficient (3) IRMIN ≤ IR ≤ 1 mA, TA = TJ = 25°C ΔVR/ΔIR Reverse breakdown voltage change with operating current change (4) Reverse breakdown voltage change with operating current change (4) 1 mA ≤ IR ≤ 15 mA, TA = TJ = 25°C ΔVR/ΔIR ZR Reverse dynamic impedance IR = 1 mA, f = 120 Hz, IAC = 0.1 IR 0.3 Ω eN Wideband noise IR = 100 μA, 10 Hz ≤ f ≤ 10 kHz 41 μVrms ΔVR Reverse breakdown voltage long term stability 120 ppm 07 mV IR = 100 μA, TA = TJ = TMIN to TMAX VHYST (1) (2) (3) (4) (5) 6 Thermal hysteresis (5) ppm/°C ±50 0.3 IRMIN ≤ IR ≤ 1 mA TA = TJ = TMIN to TMAX 0.8 1.2 2.3 1 mA ≤ IR ≤ 15 mA, TA = TJ = TMIN to TMAX 6 8 t = 1000 hrs, T = 25°C ±0.1°C, IR = 100 μA ΔT = −40°C to 125°C mV mV Limits are 100% production tested at 25°C. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's AOQL. Typicals are at TJ = 25°C and represent most likely parametric norm. The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV R/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.425% = ±0.1% ±50 ppm/°C × 65°C B-grade: ±0.525% = ±0.2% ±50 ppm/°C × 65°C C-grade: ±0.825% = ±0.5% ±50 ppm/°C × 65°C. Therefore, as an example, the A-grade LM4050-N-2.5 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.425% = ±11 mV. Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately. Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C. Submit Documentation Feedback Copyright © 2000–2015, Texas Instruments Incorporated Product Folder Links: LM4050-N LM4050-N-Q1 LM4050-N, LM4050-N-Q1 www.ti.com SNOS455G – MAY 2000 – REVISED SEPTEMBER 2015 6.7 Electrical Characteristics: 4.1-V Option All other limits TA = TJ = 25°C. The grades A, B and C designate initial Reverse Breakdown Voltage tolerances of ±0.1%, ±0.2%, and 0.5% respectively. PARAMETER Reverse Breakdown Voltage TEST CONDITIONS IR = 100 μA IR = 100 μA VR Reverse Breakdown Voltage Tolerance (2) Industrial temperature range, TA = TJ = TMIN to TMAX Extended temperature range, TA = TJ = TMIN to TMAX MIN TYP (1) ±4.1 LM4050BIM3,LM4050BEM3 ±8.2 LM4050CIM3, LM4050CEM3 ±21 LM4050AIM3, LM4050AEM3 ±18 LM4050BIM3,LM4050BEM3 ±22 LM4050CIM3, LM4050CEM3 ±34 LM4050AIM3, LM4050AEM3 ±25 LM4050BIM3,LM4050BEM3 ±29 TA = TJ = 25°C Minimum Operating Current Average reverse breakdown voltage temperature coefficient (2) Industrial temperature range, TA = TJ = TMIN to TMAX 68 μA 73 78 IR = 10 mA ±30 IR = 1 mA ±20 IR = 100 μA, TA = TJ = 25°C ±20 IR = 100 μA, TA = TJ = TMIN to TMAX IRMIN ≤ IR ≤ 1 mA, TA = TJ = 25°C mV ±41 52 Extended temperature range, TA = TJ = TMIN to TMAX ΔVR/ΔT UNIT V LM4050AIM3, LM4050AEM3 LM4050CIM3, LM4050CEM3 IRMIN MAX 4.096 ppm/°C ±50 0.2 IRMIN ≤ IR ≤ 1 mA, TA = TJ = TMIN to TMAX 0.9 1.2 ΔVR/ΔIR Reverse breakdown voltage change with operating current change (3) ZR Reverse dynamic impedance IR = 1 mA, f = 120 Hz, IAC = 0.1 IR 0.5 Ω eN Wideband noise IR = 100 μA, 10 Hz ≤ f ≤ 10 kHz 93 μVrms ΔVR Reverse breakdown voltage long term stability 120 ppm 1.148 mV 1 mA ≤ IR ≤ 15 mA, TA = TJ = 25°C 2 1 mA ≤ IR ≤ 15 mA, TA = TJ = TMIN to TMAX VHYST (1) (2) (3) (4) Thermal hysteresis (4) t = 1000 hrs, T = 25°C ±0.1°C, IR = 100 μA ΔT = −40°C to 125°C 7 mV 10 Typicals are at TJ = 25°C and represent most likely parametric norm. The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV R/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.425% = ±0.1% ±50 ppm/°C × 65°C B-grade: ±0.525% = ±0.2% ±50 ppm/°C × 65°C C-grade: ±0.825% = ±0.5% ±50 ppm/°C × 65°C. Therefore, as an example, the A-grade LM4050-N-2.5 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.425% = ±11 mV. Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately. Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C. Copyright © 2000–2015, Texas Instruments Incorporated Product Folder Links: LM4050-N LM4050-N-Q1 Submit Documentation Feedback 7 LM4050-N, LM4050-N-Q1 SNOS455G – MAY 2000 – REVISED SEPTEMBER 2015 www.ti.com 6.8 Electrical Characteristics: 5-V Option All other limits TA = TJ = 25°C. The grades A, B and C designate initial Reverse Breakdown Voltage tolerances of ±0.1%, ±0.2% and 0.5% respectively. PARAMETER Reverse Breakdown Voltage IR = 100 μA IR = 100 μA VR Reverse Breakdown Voltage Tolerance (3) MIN (1) TEST CONDITIONS Industrial Temp. Range TA = TJ = TMIN to TMAX Extended Temp. Range TA = TJ = TMIN to TMAX TYP (2) 5 ±5 LM4050BIM3. LM4050BEM3 ±10 LM4050CIM3, LM4050CEM3 ±25 LM4050AIM3, LM4050AEM3 ±22 LM4050BIM3, LM4050BEM3 ±27 LM4050CIM3, LM4050CEM3 ±42 LM4050AIM3, LM4050AEM3 ±30 LM4050BIM3, LM4050BEM3 ±35 IRMIN Average Reverse Breakdown Voltage Temperature Coefficient (3) ΔVR/ΔT TA = TJ = 25°C ΔVR/ΔIR 80 Extended Temp. Range TA = TJ = TMIN to TMAX 90 IR = 10 mA ±30 IR = 1 mA ±20 IR = 100 μA, TA = TJ = 25°C ±20 IRMIN ≤ IR ≤ 1 mA, TA = TJ = 25°C 0.2 IRMIN ≤ IR ≤ 1 mA TA = TJ = TMIN to TMAX 2 IR = 100 μA 10 Hz ≤ f ≤ 10 kHz ΔVR Reverse Breakdown Voltage Long Term Stability VHYST Thermal Hysteresis (5) (1) (2) (3) (4) (5) 8 1 8 mV 12 IR = 1 mA, f = 120 Hz Wideband Noise ppm/°C 1.4 0.5 IAC = 0.1 IR eN μA ±50 1 mA ≤ IR ≤ 15 mA, TA = TJ = 25°C Reverse Dynamic Impedance 74 Industrial Temp. Range TA = TJ = TMIN to TMAX 1 mA ≤ IR ≤ 15 mA TA = TJ = TMIN to TMAX ZR mV ±50 56 IR = 100 μA TA = TJ = TMIN to TMAX Reverse Breakdown Voltage Change with Operating Current Change (4) UNIT V LM4050AIM3, LM4050AEM3 LM4050CIM3, LM4050CEM3 Minimum Operating Current MAX (1) Ω 93 μVrms t = 1000 hrs T = 25°C ±0.1°C IR = 100 μA 120 ppm ΔT = –40°C to 125°C 1.4 mV Limits are 100% production tested at 25°C. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's AOQL. Typicals are at TJ = 25°C and represent most likely parametric norm. The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV R/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.425% = ±0.1% ±50 ppm/°C × 65°C B-grade: ±0.525% = ±0.2% ±50 ppm/°C × 65°C C-grade: ±0.825% = ±0.5% ±50 ppm/°C × 65°C. Therefore, as an example, the A-grade LM4050-N-2.5 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.425% = ±11 mV. Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately. Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C. Submit Documentation Feedback Copyright © 2000–2015, Texas Instruments Incorporated Product Folder Links: LM4050-N LM4050-N-Q1 LM4050-N, LM4050-N-Q1 www.ti.com SNOS455G – MAY 2000 – REVISED SEPTEMBER 2015 6.9 Electrical Characteristics: 8.2-V Option All other limits TA = TJ = 25°C. The grades A, B and C designate initial Reverse Breakdown Voltage tolerances of ±0.1% and ±0.2% and 0.5% respectively. PARAMETER TEST CONDITIONS IR = 150 μA Reverse Breakdown Voltage IR = 150 μA VR Reverse Breakdown Voltage Tolerance (3) Industrial Temp. Range TA = TJ = TMIN to TMAX Extended Temp. Range TA = TJ = TMIN to TMAX MIN (1) TYP (2) ΔVR/ΔT Average Reverse Breakdown Voltage Temperature Coefficient (3) ±8.2 LM4050BIM3, LM4050BEM3 ±16 LM4050CIM3, LM4050CEM3 ±41 LM4050AIM3, LM4050AEM3 ±35 LM4050BIM3, LM4050BEM3 ±43 LM4050CIM3, LM4050CEM3 ±68 LM4050AIM3, LM4050AEM3 ±49 LM4050BIM3, LM4050BEM3 ±57 ΔVR/ΔIR 95 Extended Temp. Range TA = TJ = TMIN to TMAX 100 IR = 10 mA ±40 IR = 1 mA ±20 IR = 150 μA, TA = TJ = 25°C ±20 0.6 IRMIN ≤ IR ≤ 1 mA TA = TJ = TMIN to TMAX 1 mA ≤ IR ≤ 15 mA, TA = TJ = 25°C eN ΔVR VHYST (1) (2) (3) (4) (5) μA ppm/°C ±50 1.3 2.5 7 1 mA ≤ IR ≤ 15 mA TA = TJ = TMIN to TMAX ZR 91 Industrial Temp. Range TA = TJ = TMIN to TMAX IRMIN ≤ IR ≤ 1 mA, TA = TJ = 25°C mV ±82 74 IR = 150 μA TA = TJ = TMIN to TMAX Reverse Breakdown Voltage Change with Operating Current Change (4) V LM4050AIM3, LM4050AEM3 TA = TJ = 25°C Minimum Operating Current UNIT 8.192 LM4050CIM3, LM4050CEM3 IRMIN MAX (1) mV 10 18 Reverse Dynamic Impedance IR = 1 mA, f = 120 Hz, IAC = 0.1 IR 0.6 Ω Wideband Noise IR = 150 μA 10 Hz ≤ f ≤ 10 kHz 150 μVrms Reverse Breakdown Voltage Long Term Stability t = 1000 hrs T = 25°C ±0.1°C IR = 150 μA 120 ppm Thermal Hysteresis ΔT = −40°C to 125°C 2.3 mV (5) Limits are 100% production tested at 25°C. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's AOQL. Typicals are at TJ = 25°C and represent most likely parametric norm. The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV R/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.425% = ±0.1% ±50 ppm/°C × 65°C B-grade: ±0.525% = ±0.2% ±50 ppm/°C × 65°C C-grade: ±0.825% = ±0.5% ±50 ppm/°C × 65°C. Therefore, as an example, the A-grade LM4050-N-2.5 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.425% = ±11 mV. Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately. Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C. Copyright © 2000–2015, Texas Instruments Incorporated Product Folder Links: LM4050-N LM4050-N-Q1 Submit Documentation Feedback 9 LM4050-N, LM4050-N-Q1 SNOS455G – MAY 2000 – REVISED SEPTEMBER 2015 www.ti.com 6.10 Electrical Characteristics: 10-V Option All other limits TA = TJ = 25°C. The grades A, B and C designate initial Reverse Breakdown Voltage tolerances of ±0.1% and ±0.2% and 0.5% respectively. PARAMETER IR = 150 μA Reverse Breakdown Voltage IR = 150 μA VR MIN (1) TEST CONDITIONS Reverse Breakdown Voltage Tolerance (3) Industrial Temp. Range TA = TJ = TMIN to TMAX Extended Temp. Range TA = TJ = TMIN to TMAX Minimum Operating Current ΔVR/ΔT Average Reverse Breakdown Voltage Temperature Coefficient (3) ±10 LM4050BIM3, LM4050BEM3 ±20 LM4050CIM3, LM4050CEM3 ±50 LM4050AIM3, LM4050AEM3 ±43 LM4050BIM3, LM4050BEM3 ±53 LM4050CIM3, LM4050CEM3 ±83 LM4050AIM3, LM4050AEM3 ±60 LM4050BIM3, LM4050BEM3 ±70 LM4050CIM3, LM4050CEM3 ±100 80 103 Extended Temp. Range TA = TJ = TMIN to TMAX 110 μA IR = 10 mA ±40 IR = 1 mA ±20 IR = 150 μA, TA = TJ = 25°C ±20 0.8 IRMIN ≤ IR ≤ 1 mA TA = TJ = TMIN to TMAX 1 mA ≤ IR ≤ 15 mA, TA = TJ = 25°C 8 IR = 1 mA, f = 120 Hz, IAC = 0.1 IR 0.7 eN Wideband Noise IR = 150 μA 10 Hz ≤ f ≤ 10 kHz 150 Reverse Breakdown Voltage Long Term Stability t = 1000 hrs T = 25°C ±0.1°C IR = 150 μA 120 ΔVR VHYST Thermal Hysteresis (5) ΔT = −40°C to 125°C 2.8 (5) 10 12 mV 23 Reverse Dynamic Impedance (4) 1.5 3.5 ZR (2) (3) ppm/°C ±50 1 mA ≤ IR ≤ 15 mA TA = TJ = TMIN to TMAX (1) mV (max) 100 Industrial Temp. Range TA = TJ = TMIN to TMAX IRMIN ≤ IR ≤ 1 mA, TA = TJ = 25°C Reverse Breakdown Voltage Change with Operating Current Change (4) UNIT V LM4050AIM3, LM4050AEM3 IR = 150 μA TA = TJ = TMIN to TMAX ΔVR/ΔIR MAX (1) 10 TA = TJ = 25°C IRMIN TYP (2) Ω μVrms ppm mV Limits are 100% production tested at 25°C. Limits over temperature are guaranteed through correlation using Statistical Quality Control (SQC) methods. The limits are used to calculate National's AOQL. Typicals are at TJ = 25°C and represent most likely parametric norm. The overtemperature limit for Reverse Breakdown Voltage Tolerance is defined as the room temperature Reverse Breakdown Voltage Tolerance ±[(ΔV R/ΔT)(maxΔT)(VR)]. Where, ΔVR/ΔT is the VR temperature coefficient, maxΔT is the maximum difference in temperature from the reference point of 25°C to T MIN or TMAX, and VR is the reverse breakdown voltage. The total overtemperature tolerance for the different grades in the industrial temperature range where maxΔT = 65°C is shown below: A-grade: ±0.425% = ±0.1% ±50 ppm/°C × 65°C B-grade: ±0.525% = ±0.2% ±50 ppm/°C × 65°C C-grade: ±0.825% = ±0.5% ±50 ppm/°C × 65°C. Therefore, as an example, the A-grade LM4050-N-2.5 has an overtemperature Reverse Breakdown Voltage tolerance of ±2.5V × 0.425% = ±11 mV. Load regulation is measured on pulse basis from no load to the specified load current. Output changes due to die temperature change must be taken into account separately. Thermal hysteresis is defined as the difference in voltage measured at 25°C after cycling to temperature –40°C and the 25°C measurement after cycling to temperature 125°C. Submit Documentation Feedback Copyright © 2000–2015, Texas Instruments Incorporated Product Folder Links: LM4050-N LM4050-N-Q1 LM4050-N, LM4050-N-Q1 www.ti.com SNOS455G – MAY 2000 – REVISED SEPTEMBER 2015 6.11 Typical Characteristics Figure 1. Output Impedance vs Frequency Figure 2. Output Impedance vs Frequency Figure 3. Reverse Characteristics and Minimum Operating Current Figure 4. Noise Voltage vs Frequency Figure 5. Thermal Hysteresis Copyright © 2000–2015, Texas Instruments Incorporated Product Folder Links: LM4050-N LM4050-N-Q1 Submit Documentation Feedback 11 LM4050-N, LM4050-N-Q1 SNOS455G – MAY 2000 – REVISED SEPTEMBER 2015 www.ti.com 6.11.1 Start-Up Characteristics Figure 6. Input Voltage Step Response LM4050-N-2.5 Figure 7. Input Voltage Step Response LM4050-N-5 Figure 8. Input Voltage Step Response LM4050-N-10 7 Parameter Measurement Information Figure 9. Test Circuit 12 Submit Documentation Feedback Copyright © 2000–2015, Texas Instruments Incorporated Product Folder Links: LM4050-N LM4050-N-Q1 LM4050-N, LM4050-N-Q1 www.ti.com SNOS455G – MAY 2000 – REVISED SEPTEMBER 2015 8 Detailed Description 8.1 Overview The LM4050-N device is a precision micropower shunt voltage reference. The part comes in 6 different fixedoutput voltage options for space-constrained applications, removing the need for feedback resistors. The voltage tolerance accuracies are ±0.1%, ±0.2%, and ±0.5% for Versions A, B, and C, respectively. The LM4050-N comes in two application versions, Industrial and Extended temperature range, which are operational from –40°C to 85°C and –40°C to 125°C, respectively. 8.2 Functional Block Diagram 8.3 Feature Description The LM4050-N behaves as a high-precision Zener diode. The voltage is regulated between its cathode and anode which is dependent on the current being supplied to the cathode. This current is needed for the LM4050-N to regulate within the specified limits. Refer to the minimum and maximum operating requirements for the specific voltage option used. The LM4050-N is internally compensated to be stable without the use of an output capacitor. However, if desired, a bypass capacitor may be used. 8.4 Device Functional Modes The LM4050-N can only operate in closed loop due to the fact that the feedback resistors are internal to the device. Additionally, the output voltage cannot be adjusted for the same reason. The output voltage is regulated in a closed loop, provided the Rs (see Functional Block Diagram) resistor is sized to deliver the current to the cathode within the limits specified for the fixed-voltage version being used. Copyright © 2000–2015, Texas Instruments Incorporated Product Folder Links: LM4050-N LM4050-N-Q1 Submit Documentation Feedback 13 LM4050-N, LM4050-N-Q1 SNOS455G – MAY 2000 – REVISED SEPTEMBER 2015 www.ti.com 9 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 9.1 Application Information The LM4050-N is a precision micropower curvature-corrected bandgap shunt voltage reference. For space critical applications, the LM4050-N is available in the sub-miniature SOT-23 surface-mount package. The LM4050-N has been designed for stable operation without the need of an external capacitor connected between the + pin and the − pin. If, however, a bypass capacitor is used, the LM4050-N remains stable. Reducing design effort is the availability of several fixed reverse breakdown voltages: 2.048 V, 2.5 V, 4.096 V, 5 V, 8.192 V, and 10 V. The minimum operating current increases from 60 μA for the LM4050-N-2.0 to 100 μA for the LM4050-N10.0. All versions have a maximum operating current of 15 mA. LM4050-Ns in the SOT-23 packages have a parasitic Schottky diode between pin 2 (−) and pin 3 (Die attach interface contact). Therefore, pin 3 of the SOT-23 package must be left floating or connected to pin 2. The 4.096-V version allows single 5-V 12-bit ADCs or DACs to operate with an LSB equal to 1 mV. For 12-bit ADCs or DACs that operate on supplies of 10 V or greater, the 8.192-V version gives 2 mV per LSB. The typical thermal hysteresis specification is defined as the change in 25°C voltage measured after thermal cycling. The device is thermal cycled to temperature –40°C and then measured at 25°C. Next the device is thermal cycled to temperature 125°C and again measured at 25°C. The resulting VOUT delta shift between the 25°C measurements is thermal hysteresis. Thermal hysteresis is common in precision references and is induced by thermal-mechanical package stress. Changes in environmental storage temperature, operating temperature and board mounting temperature are all factors that can contribute to thermal hysteresis. In a conventional shunt regulator application (Figure 10) , an external series resistor (RS) is connected between the supply voltage and the LM4050-N. RS determines the current that flows through the load (IL) and the LM4050-N (IQ). Since load current and supply voltage may vary, RS should be small enough to supply at least the maximum guaranteed IRMIN (spec. table) to the LM4050-N even when the supply voltage is at its minimum and the load current is at its maximum value. When the supply voltage is at its maximum and IL is at its minimum, RS should be large enough so that the current flowing through the LM4050-N is less than 15 mA. RS is determined by the supply voltage, (VS), the load and operating current, (IL and IQ), and the LM4050-N's reverse breakdown voltage, VR. V - VR RS = S IL + IQ (1) 14 Submit Documentation Feedback Copyright © 2000–2015, Texas Instruments Incorporated Product Folder Links: LM4050-N LM4050-N-Q1 LM4050-N, LM4050-N-Q1 www.ti.com SNOS455G – MAY 2000 – REVISED SEPTEMBER 2015 9.2 Typical Applications 9.2.1 Shunt Regulator IQ+IL IL Vout Vs Rs Cathode IQ Cout Anode Figure 10. Shunt Regulator Schematic 9.2.1.1 Design Requirements For this design example, use the parameters listed in Table 1 as the input parameters. Table 1. Design Parameters DESIGN PARAMETER VALUE Output Voltage 2 V, 2.5 V, 4.1 V, 5 V, 8.2 V, 10 V Minimum Cathode Current 41 µA, 41 µA, 52 µA, 56 µA, 74 µA, 80 µA (Typical) (Respective to Above field) 9.2.1.2 Detailed Design Procedure RS sets the cathode current of the shunt reference. Ensure that this current is greater than the minimum cathode current to ensure regulation and less that the maximum reverse current to prevent overheating of the shunt reference. A suggested good starting value for most designs is from approximately 0.5 mA to 1 mA. V - Vout IRMIN < s < 0.015A Rs (2) 9.2.1.3 Application Curve Figure 11. Reverse Characteristics and Minimum Operating Current Copyright © 2000–2015, Texas Instruments Incorporated Product Folder Links: LM4050-N LM4050-N-Q1 Submit Documentation Feedback 15 LM4050-N, LM4050-N-Q1 SNOS455G – MAY 2000 – REVISED SEPTEMBER 2015 www.ti.com 9.2.2 Precision Reference for an Analog-to-Digital Converter **Ceramic monolithic *Tantalum Figure 12. LM4050-N-4.1'S Nominal 4.096 Breakdown Voltage Gives ADC12451 1 MV/LSB 9.2.2.1 Design Requirements For this design example, use the parameters listed in Table 2 as the input parameters. Table 2. Design Parameters DESIGN PARAMETER VALUE Output Voltage 4.1 V 9.2.2.2 Detailed Design Procedure Set IQ to approximately 1 mA. V - Vout Rs = s IQ where • 16 Rs = 900 Ω, nearest preferred Value = 909 Ω Submit Documentation Feedback (3) Copyright © 2000–2015, Texas Instruments Incorporated Product Folder Links: LM4050-N LM4050-N-Q1 LM4050-N, LM4050-N-Q1 www.ti.com SNOS455G – MAY 2000 – REVISED SEPTEMBER 2015 9.2.3 VOUT Bounded Amplifier Bounded amplifier reduces saturation-induced delays and can prevent succeeding stage damage. Nominal clamping voltage is ±11.5 V (LM4050-N's reverse breakdown voltage +2 diode VF). Figure 13. Bounded Amplifier 9.2.3.1 Design Requirements The only design requirement is VOUT bounded to ±11.5 V. 9.2.3.2 Detailed Design Procedure Vbound = 2 ´ Vwd + Vout (4) Vf wd = 0.7 V (5) Vbound = (2 ´ 0.7 V) + 10 V (6) Set IQ to approximately 0.6 mA. Vs + - Vs - Vout Rs = IQ (7) 30 V - 10 V Rs = 0.0006A where • RS (total) = 33 kΩ (select 2 × 15 kΩ) Copyright © 2000–2015, Texas Instruments Incorporated Product Folder Links: LM4050-N LM4050-N-Q1 (8) Submit Documentation Feedback 17 LM4050-N, LM4050-N-Q1 SNOS455G – MAY 2000 – REVISED SEPTEMBER 2015 www.ti.com 9.2.4 VIN Bounded Amplifier The bounding voltage is ±4 V with the LM4050-N-2.5 (LM4050-N's reverse breakdown voltage + 3 diode VF). Figure 14. Protecting Op Amp Input 9.2.4.1 Design Requirements The only design requirement is VIN bounded to ±4.6 V. 9.2.4.2 Detailed Design Procedure Vbound = 3 ´ Vwd + Vout (9) Vf wd = 0.7 V (10) Vbound = (3 ´ 0.7 V) + 2.5 V (11) Set IQ to approximately 0.6 mA. Vs + - Vs - Vout Rs = IQ (12) where • 18 RS (total) = 12.5 kΩ (select 2 × 5 kΩ) Submit Documentation Feedback (13) Copyright © 2000–2015, Texas Instruments Incorporated Product Folder Links: LM4050-N LM4050-N-Q1 LM4050-N, LM4050-N-Q1 www.ti.com SNOS455G – MAY 2000 – REVISED SEPTEMBER 2015 9.2.5 ±4.096 Precision Reference Figure 15. Precision ±4.096v Reference 9.2.5.1 Design Requirements The only design requirement is a positive and negative reference generated from a positive reference, ±4.096 V. 9.2.5.2 Detailed Design Procedure Follow the design procedure set in Precision Reference for an Analog-to-Digital Converter. Copyright © 2000–2015, Texas Instruments Incorporated Product Folder Links: LM4050-N LM4050-N-Q1 Submit Documentation Feedback 19 LM4050-N, LM4050-N-Q1 SNOS455G – MAY 2000 – REVISED SEPTEMBER 2015 www.ti.com 9.2.6 ±1-mA Precision Current Sources Iout = Vout R2 Figure 16. Precision 1-µA to 1-mA Current Source (±) 9.2.6.1 Design Requirements The only design requirement is a dual ±1-mA current source. 9.2.6.2 Detailed Design Procedure Set worse-case cathode current to 0.6 mA. Voutopampmax = 12 V R1= (14) VoutOpampmax - Vout IQ (15) 12 V - 2.5 V R1 = 0.0006A (16) 4 R1 = 1.583 ´ 10 W V Iout = out R2 20 Submit Documentation Feedback (17) (18) Copyright © 2000–2015, Texas Instruments Incorporated Product Folder Links: LM4050-N LM4050-N-Q1 LM4050-N, LM4050-N-Q1 www.ti.com SNOS455G – MAY 2000 – REVISED SEPTEMBER 2015 10 Power Supply Recommendations Noise on the power supply input to RS can affect output noise performance. Noise performance can be reduced by using an optional bypass capacitor at the input side of RS and Ground. TI recommends a 0.1-µF ceramic capacitor or higher. 11 Layout 11.1 Layout Guidelines Place RS as close to the cathode as possible. If an input and output capacitor is used, place this as close to the reference as possible. 11.2 Layout Example Set Rs Close to Ref Rs Vout Vs Cathode Cin Cout Anode Set Cin Close to Ref Set Cout Close to Ref Figure 17. Layout Recommendation Copyright © 2000–2015, Texas Instruments Incorporated Product Folder Links: LM4050-N LM4050-N-Q1 Submit Documentation Feedback 21 LM4050-N, LM4050-N-Q1 SNOS455G – MAY 2000 – REVISED SEPTEMBER 2015 www.ti.com 12 Device and Documentation Support 12.1 Related Links The table below lists quick access links. Categories include technical documents, support and community resources, tools and software, and quick access to sample or buy. Table 3. Related Links PARTS PRODUCT FOLDER SAMPLE & BUY TECHNICAL DOCUMENTS TOOLS & SOFTWARE SUPPORT & COMMUNITY LM4050-N Click here Click here Click here Click here Click here LM4050-N-Q1 Click here Click here Click here Click here Click here 12.2 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. 12.3 Trademarks E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 12.4 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 12.5 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 13 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. 22 Submit Documentation Feedback Copyright © 2000–2015, Texas Instruments Incorporated Product Folder Links: LM4050-N LM4050-N-Q1 PACKAGE OPTION ADDENDUM www.ti.com 23-Aug-2017 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM4050AEM3-10/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RGA LM4050AEM3-2.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RNA LM4050AEM3-2.5 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI -40 to 125 RCA LM4050AEM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RCA LM4050AEM3-5.0 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI -40 to 125 REA LM4050AEM3-5.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 REA LM4050AEM3-8.2/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RFA LM4050AEM3X-10/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RGA LM4050AEM3X-2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RCA LM4050AEM3X-5.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 REA LM4050AIM3-10/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RGA LM4050AIM3-2.5 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI -40 to 85 RCA LM4050AIM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RCA LM4050AIM3-4.1 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI -40 to 85 RDA LM4050AIM3-4.1/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RDA LM4050AIM3-5.0 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI -40 to 85 REA LM4050AIM3-5.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 REA LM4050AIM3X-2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RCA LM4050AIM3X-4.1/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RDA Addendum-Page 1 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 23-Aug-2017 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM4050AIM3X-5.0 NRND SOT-23 DBZ 3 TBD Call TI Call TI -40 to 85 REA LM4050AIM3X-5.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 REA LM4050BEM3-10/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RGB LM4050BEM3-2.5 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI -40 to 125 RCB LM4050BEM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RCB LM4050BEM3-4.1/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RDB LM4050BEM3-5.0 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI -40 to 125 REB LM4050BEM3-5.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 REB LM4050BEM3-8.2/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RFB LM4050BEM3X-10/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RGB LM4050BEM3X-2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RCB LM4050BEM3X-5.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 REB LM4050BIM3-10/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RGB LM4050BIM3-2.5 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI -40 to 85 RCB LM4050BIM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RCB LM4050BIM3-4.1/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RDB LM4050BIM3-5.0 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI -40 to 85 REB LM4050BIM3-5.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 REB LM4050BIM3X-2.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RNB LM4050BIM3X-2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RCB Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 23-Aug-2017 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM4050BIM3X-4.1/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RDB LM4050BIM3X-5.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 REB LM4050CEM3-10/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM LM4050CEM3-2.5 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI -40 to 125 RCC LM4050CEM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RCC RGC LM4050CEM3-5.0 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI REC LM4050CEM3-5.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM REC LM4050CEM3X-2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM LM4050CEM3X-5.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM LM4050CIM3-10/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RGC LM4050CIM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RCC LM4050CIM3-4.1 NRND SOT-23 DBZ 3 TBD Call TI Call TI -40 to 85 RDC LM4050CIM3-4.1/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RDC -40 to 125 RCC REC LM4050CIM3-5.0 NRND SOT-23 DBZ 3 1000 TBD Call TI Call TI -40 to 85 REC LM4050CIM3-5.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 REC LM4050CIM3X-2.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RNC LM4050CIM3X-2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RCC LM4050CIM3X-4.1/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RDC LM4050CIM3X-5.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 REC LM4050QAEM3-10/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RYA Addendum-Page 3 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 23-Aug-2017 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM4050QAEM3-2.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RSA LM4050QAEM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RTA LM4050QAEM3-4.1/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RUA LM4050QAEM3-5.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RVA LM4050QAEM3-8.2/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RXA LM4050QAEM3X10/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RYA LM4050QAEM3X2.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RSA LM4050QAEM3X2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RTA LM4050QAEM3X4.1/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RUA LM4050QAEM3X5.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RVA LM4050QAEM3X8.2/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RXA LM4050QAIM3-10/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RYA LM4050QAIM3-2.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RSA LM4050QAIM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RTA LM4050QAIM3-4.1/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RUA LM4050QAIM3-8.2/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RXA LM4050QAIM3X4.1/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RUA LM4050QBEM3-10/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RYB Addendum-Page 4 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 23-Aug-2017 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM4050QBEM3-2.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RSB LM4050QBEM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RTB LM4050QBEM3-4.1/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RUB LM4050QBEM3-5.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RVB LM4050QBEM3-8.2/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RXB LM4050QBEM3X10/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RYB LM4050QBEM3X2.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RSB LM4050QBEM3X2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RTB LM4050QBEM3X4.1/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RUB LM4050QBEM3X5.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RVB LM4050QBEM3X8.2/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RXB LM4050QBIM3-10/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RYB LM4050QBIM3-2.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RSB LM4050QBIM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RTB LM4050QBIM3-4.1/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RUB LM4050QBIM3-5.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RVB LM4050QBIM3-8.2/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RXB LM4050QCEM3-10/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RYC Addendum-Page 5 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 23-Aug-2017 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan Lead/Ball Finish MSL Peak Temp (2) (6) (3) Op Temp (°C) Device Marking (4/5) LM4050QCEM3-2.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RSC LM4050QCEM3-2.5/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RTC LM4050QCEM3-4.1/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RUC LM4050QCEM3-5.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RVC LM4050QCEM3-8.2/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RXC LM4050QCEM3X10/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RYC LM4050QCEM3X2.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RSC LM4050QCEM3X2.5/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RTC LM4050QCEM3X4.1/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RUC LM4050QCEM3X5.0/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RVC LM4050QCEM3X8.2/NOPB ACTIVE SOT-23 DBZ 3 3000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 125 RXC LM4050QCIM3-2.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RSC LM4050QCIM3-4.1/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RUC LM4050QCIM3-5.0/NOPB ACTIVE SOT-23 DBZ 3 1000 Green (RoHS & no Sb/Br) CU SN Level-1-260C-UNLIM -40 to 85 RVC (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. Addendum-Page 6 Samples PACKAGE OPTION ADDENDUM www.ti.com 23-Aug-2017 (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
LM4050AEM3-2.0 价格&库存

很抱歉,暂时无法提供与“LM4050AEM3-2.0”相匹配的价格&库存,您可以联系我们找货

免费人工找货