0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LM4128DQ1MF3.0/NOPB

LM4128DQ1MF3.0/NOPB

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    SOT23-5

  • 描述:

    IC VREF SERIES 1% SOT23-5

  • 详情介绍
  • 数据手册
  • 价格&库存
LM4128DQ1MF3.0/NOPB 数据手册
LM4128, LM4128Q www.ti.com SNVS475E – NOVEMBER 2006 – REVISED APRIL 2013 LM4128/LM4128Q SOT-23 Precision Micropower Series Voltage Reference Check for Samples: LM4128, LM4128Q FEATURES DESCRIPTION • • • • • • Ideal for space critical applications, the LM4128 precision voltage reference is available in the SOT-23 surface-mount package. The LM4128’s advanced design eliminates the need for an external stabilizing capacitor while ensuring stability with capacitive loads up to 10 µF, thus making the LM4128 easy to use. 1 2 • • • • • • Output Voltage Initial Accuracy 0.1% Low Temperature Coefficient 75 ppm/°C Low Supply Current, 60 µA Enable Pin Allowing a 3 µA Shutdown Mode Up to 20 mA Output Current Voltage Options 1.8V, 2.048V, 2.5V, 3.0V, 3.3V, 4.096V Custom Voltage Options Available (1.8V to 4.096V) VIN Range of VREF + 400 mV to 5.5V @10 mA Stable with Low ESR Ceramic Capacitors 5-Pin SOT-23 Package −40°C to 125°C Junction Temperature Range LM4128AQ/BQ/CQ/DQ are AEC-Q100 Grade 1 Qualified and are Manufactured on an Automotive Grade Flow Series references provide lower power consumption than shunt references, since they do not have to idle the maximum possible load current under no load conditions. This advantage, the low quiescent current (60 µA), and the low dropout voltage (400 mV) make the LM4128 ideal for battery-powered solutions. The LM4128 is available in four grades (A, B, C, and D) for greater flexibility. The best grade devices (A) have an initial accuracy of 0.1% with ensured temperature coefficient of 75 ppm/°C or less, while the lowest grade parts (D) have an initial accuracy of 1.0% and a tempco of 100 ppm/°C. Typical Application Circuit APPLICATIONS • • • • • • • • • • • Instrumentation & Process Control Test Equipment Data Acquisition Systems Base Stations Servo Systems Portable, Battery Powered Equipment Automotive & Industrial Electronics Precision Regulators Battery Chargers Communications Medical Equipment VREF VIN Input Output COUT * CIN* LM4128 Enable EN GND *Note: The capacitor CIN is required and the capacitor COUT is optional. 1 2 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2006–2013, Texas Instruments Incorporated LM4128, LM4128Q SNVS475E – NOVEMBER 2006 – REVISED APRIL 2013 www.ti.com Connection Diagram N/C 1 5 VREF GND 2 EN 3 4 VIN 5-Pin SOT-23 Package – Top View See Package Number DBV (R-PDSO-G5) PIN DESCRIPTIONS Pin # Name Function 1 N/C No connect pin, leave floating 2 GND Ground 3 EN Enable pin 4 VIN Input supply 5 VREF Reference output These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. Absolute Maximum Ratings (1) Maximum Voltage on any input -0.3 to 6V Output short circuit duration Indefinite Power Dissipation (TA = 25°C) (2) 350 mW −65°C to 150°C Storage Temperature Range Lead Temperature ESD Susceptibility (1) (2) (3) (3) (soldering, 10sec) 260°C Vapor Phase (60 sec) 215°C Infrared (15sec) 220°C Human Body Model 2 kV Absolute Maximum Ratings indicate limits beyond which damage may occur to the device. Operating Ratings indicate conditions for which the device is intended to be functional, but do not ensure specific performance limits. For ensured specifications, see Electrical Characteristics. Without PCB copper enhancements. The maximum power dissipation must be de-rated at elevated temperatures and is limited by TJMAX (maximum junction temperature), θJ-A (junction to ambient thermal resistance) and TA (ambient temperature). The maximum power dissipation at any temperature is: PDissMAX = (TJMAX - TA) /θJ-A up to the value listed in the Absolute Maximum Ratings. θJ-A for SOT-23 package is 220°C/W, TJMAX = 125°C. The human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin. Operating Ratings Maximum Input Supply Voltage 5.5V Maximum Enable Input Voltage VIN Maximum Load Current 20mA −40°C to +125°C Junction Temperature Range (TJ) 2 Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated Product Folder Links: LM4128 LM4128Q LM4128, LM4128Q www.ti.com SNVS475E – NOVEMBER 2006 – REVISED APRIL 2013 Electrical Characteristics LM4128-1.8 (VOUT = 1.8V) Limits in standard type are for TJ = 25°C only, and limits in boldface type apply over the junction temperature (TJ) range of 40°C to +125°C unless otherwise specified. Minimum and Maximum limits are ensured through test, design, or statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise specified VIN = 5V and ILOAD = 0A. Symbol VREF Parameter Conditions Min (1) Typ (2) LM4128A-1.8 (A Grade - 0.1%) -0.1 +0.1 LM4128B-1.8 (B Grade - 0.2%) -0.2 +0.2 LM4128C-1.8 (C Grade - 0.5%) -0.5 +0.5 LM4128D-1.8 (D Grade - 1.0%) -1.0 +1.0 Temperature Coefficient LM4128A-1.8 75 LM4128B-1.8 75 LM4128C-1.8 100 LM4128D-1.8 IQ_SD ppm / °C 100 Supply Current 60 100 7 µA Supply Current in Shutdown EN = 0V 3 Line Regulation VREF + 400 mV ≤ VIN ≤ 5.5V 30 ΔVREF/ΔILOAD Load Regulation 0 mA ≤ ILOAD ≤ 20 mA 25 Long Term Stability (4) 1000 Hrs 50 Thermal Hysteresis (5) -40°C ≤ TJ ≤ +125°C 75 Dropout Voltage (6) ILOAD = 10 mA 200 VN Output Noise Voltage 0.1 Hz to 10 Hz 170 ISC Short Circuit Current 75 mA VIL Enable Pin Maximum Low Input Level 35 %V VIH Enable Pin Minimum High Input Level VIN - VREF (2) (3) (4) (5) (6) % ΔVREF/ΔVIN ΔVREF (1) Unit Output Voltage Initial Accuracy TCVREF / °C (3) IQ Max (1) 65 µA ppm / V 120 ppm / mA ppm 400 mV µVPP %V Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlation using Statistical Quality Control. Typical numbers are at 25°C and represent the most likely parametric norm. Temperature coefficient is measured by the "Box" method; i.e., the maximum ΔVREF is divided by the maximum ΔT. Long term stability is VREF @25°C measured during 1000 hrs. Thermal hysteresis is defined as the change in +25°C output voltage before and after cycling the device from (-40°C to 125°C). Dropout voltage is defined as the minimum input to output differential at which the output voltage drops by 0.5% below the value measured with a 5V input. Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated Product Folder Links: LM4128 LM4128Q 3 LM4128, LM4128Q SNVS475E – NOVEMBER 2006 – REVISED APRIL 2013 www.ti.com Electrical Characteristics LM4128-2.0 (VOUT = 2.048V) Limits in standard type are for TJ = 25°C only, and limits in boldface type apply over the junction temperature (TJ) range of 40°C to +125°C unless otherwise specified. Minimum and Maximum limits are ensured through test, design, or statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise specified VIN = 5V and ILOAD = 0A. Symbol VREF Parameter Conditions Min (1) Typ (2) LM4128A-2.0 (A Grade - 0.1%) -0.1 +0.1 LM4128B-2.0 (B Grade - 0.2%) -0.2 +0.2 LM4128C-2.0 (C Grade - 0.5%) -0.5 +0.5 LM4128D-2.0 (D Grade - 1.0%) -1.0 +1.0 Temperature Coefficient LM4128A-2.0 75 LM4128B-2.0 75 LM4128C-2.0 100 LM4128D-2.0 IQ_SD 4 ppm / °C 100 Supply Current 60 100 7 µA Supply Current in Shutdown EN = 0V 3 Line Regulation VREF + 400 mV ≤ VIN ≤ 5.5V 30 ΔVREF/ΔILOAD Load Regulation 0 mA ≤ ILOAD ≤ 20 mA 25 Long Term Stability (4) 1000 Hrs 50 Thermal Hysteresis (5) -40°C ≤ TJ ≤ +125°C 75 Dropout Voltage (6) ILOAD = 10 mA 175 VN Output Noise Voltage 0.1 Hz to 10 Hz 190 ISC Short Circuit Current 75 mA VIL Enable Pin Maximum Low Input Level 35 %V VIH Enable Pin Minimum High Input Level VIN - VREF (2) (3) (4) (5) (6) % ΔVREF/ΔVIN ΔVREF (1) Unit Output Voltage Initial Accuracy TCVREF / °C (3) IQ Max (1) 65 µA ppm / V 120 ppm / mA ppm 400 mV µVPP %V Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlation using Statistical Quality Control. Typical numbers are at 25°C and represent the most likely parametric norm. Temperature coefficient is measured by the "Box" method; i.e., the maximum ΔVREF is divided by the maximum ΔT. Long term stability is VREF @25°C measured during 1000 hrs. Thermal hysteresis is defined as the change in +25°C output voltage before and after cycling the device from (-40°C to 125°C). Dropout voltage is defined as the minimum input to output differential at which the output voltage drops by 0.5% below the value measured with a 5V input. Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated Product Folder Links: LM4128 LM4128Q LM4128, LM4128Q www.ti.com SNVS475E – NOVEMBER 2006 – REVISED APRIL 2013 Electrical Characteristics LM4128-2.5 (VOUT = 2.5V) Limits in standard type are for TJ = 25°C only, and limits in boldface type apply over the junction temperature (TJ) range of 40°C to +125°C unless otherwise specified. Minimum and Maximum limits are ensured through test, design, or statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise specified VIN = 5V and ILOAD = 0A. Symbol VREF Parameter Conditions Min (1) Typ (2) LM4128A-2.5 (A Grade - 0.1%) -0.1 +0.1 LM4128B-2.5 (B Grade - 0.2%) -0.2 +0.2 LM4128C-2.5 (C Grade - 0.5%) -0.5 +0.5 LM4128D-2.5 (D Grade - 1.0%) -1.0 +1.0 Temperature Coefficient LM4128A-2.5 75 LM4128B-2.5 75 LM4128C-2.5 100 LM4128D-2.5 IQ_SD ppm / °C 100 Supply Current 60 100 7 µA Supply Current in Shutdown EN = 0V 3 Line Regulation VREF + 400 mV ≤ VIN ≤ 5.5V 50 ΔVREF/ΔILOAD Load Regulation 0 mA ≤ ILOAD ≤ 20 mA 25 Long Term Stability (4) 1000 Hrs 50 Thermal Hysteresis (5) -40°C ≤ TJ ≤ +125°C 75 Dropout Voltage (6) ILOAD = 10 mA 175 VN Output Noise Voltage 0.1 Hz to 10 Hz 275 ISC Short Circuit Current 75 mA VIL Enable Pin Maximum Low Input Level 35 %V VIH Enable Pin Minimum High Input Level VIN - VREF (2) (3) (4) (5) (6) % ΔVREF/ΔVIN ΔVREF (1) Unit Output Voltage Initial Accuracy TCVREF / °C (3) IQ Max (1) 65 µA ppm / V 120 ppm / mA ppm 400 mV µVPP %V Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlation using Statistical Quality Control. Typical numbers are at 25°C and represent the most likely parametric norm. Temperature coefficient is measured by the "Box" method; i.e., the maximum ΔVREF is divided by the maximum ΔT. Long term stability is VREF @25°C measured during 1000 hrs. Thermal hysteresis is defined as the change in +25°C output voltage before and after cycling the device from (-40°C to 125°C). Dropout voltage is defined as the minimum input to output differential at which the output voltage drops by 0.5% below the value measured with a 5V input. Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated Product Folder Links: LM4128 LM4128Q 5 LM4128, LM4128Q SNVS475E – NOVEMBER 2006 – REVISED APRIL 2013 www.ti.com Electrical Characteristics LM4128-3.0 (VOUT = 3.0V) Limits in standard type are for TJ = 25°C only, and limits in boldface type apply over the junction temperature (TJ) range of 40°C to +125°C unless otherwise specified. Minimum and Maximum limits are ensured through test, design, or statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise specified VIN = 5V and ILOAD = 0A. Symbol VREF Parameter Conditions Min (1) Typ (2) LM4128A-3.0 (A Grade - 0.1%) -0.1 +0.1 LM4128B-3.0 (B Grade - 0.2%) -0.2 +0.2 LM4128C-3.0 (C Grade - 0.5%) -0.5 +0.5 LM4128D-3.0 (D Grade - 1.0%) -1.0 +1.0 Temperature Coefficient LM4128A-3.0 75 LM4128B-3.0 75 LM4128C-3.0 100 LM4128D-3.0 IQ_SD 6 ppm / °C 100 Supply Current 60 100 7 µA Supply Current in Shutdown EN = 0V 3 Line Regulation VREF + 400 mV ≤ VIN ≤ 5.5V 70 ΔVREF/ΔILOAD Load Regulation 0 mA ≤ ILOAD ≤ 20 mA 25 Long Term Stability (4) 1000 Hrs 50 Thermal Hysteresis (5) -40°C ≤ TJ ≤ +125°C 75 Dropout Voltage (6) ILOAD = 10 mA 175 VN Output Noise Voltage 0.1 Hz to 10 Hz 285 ISC Short Circuit Current 75 mA VIL Enable Pin Maximum Low Input Level 35 %V VIH Enable Pin Minimum High Input Level VIN - VREF (2) (3) (4) (5) (6) % ΔVREF/ΔVIN ΔVREF (1) Unit Output Voltage Initial Accuracy TCVREF / °C (3) IQ Max (1) 65 µA ppm / V 120 ppm / mA ppm 400 mV µVPP %V Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlation using Statistical Quality Control. Typical numbers are at 25°C and represent the most likely parametric norm. Temperature coefficient is measured by the "Box" method; i.e., the maximum ΔVREF is divided by the maximum ΔT. Long term stability is VREF @25°C measured during 1000 hrs. Thermal hysteresis is defined as the change in +25°C output voltage before and after cycling the device from (-40°C to 125°C). Dropout voltage is defined as the minimum input to output differential at which the output voltage drops by 0.5% below the value measured with a 5V input. Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated Product Folder Links: LM4128 LM4128Q LM4128, LM4128Q www.ti.com SNVS475E – NOVEMBER 2006 – REVISED APRIL 2013 Electrical Characteristics LM4128-3.3 (VOUT = 3.3V) Limits in standard type are for TJ = 25°C only, and limits in boldface type apply over the junction temperature (TJ) range of 40°C to +125°C unless otherwise specified. Minimum and Maximum limits are ensured through test, design, or statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise specified VIN = 5V and ILOAD = 0A. Symbol VREF Parameter Conditions Min (1) Typ (2) LM4128A-3.3 (A Grade - 0.1%) -0.1 +0.1 LM4128B-3.3 (B Grade - 0.2%) -0.2 +0.2 LM4128C-3.3 (C Grade - 0.5%) -0.5 +0.5 LM4128D-3.3 (D Grade - 1.0%) -1.0 +1.0 Temperature Coefficient LM4128A-3.3 75 LM4128B-3.3 75 LM4128C-3.3 100 LM4128D-3.3 IQ_SD ppm / °C 100 Supply Current 60 100 7 µA Supply Current in Shutdown EN = 0V 3 Line Regulation VREF + 400 mV ≤ VIN ≤ 5.5V 85 ΔVREF/ΔILOAD Load Regulation 0 mA ≤ ILOAD ≤ 20 mA 25 Long Term Stability (4) 1000 Hrs 50 Thermal Hysteresis (5) -40°C ≤ TJ ≤ +125°C 75 Dropout Voltage (6) ILOAD = 10 mA 175 VN Output Noise Voltage 0.1 Hz to 10 Hz 310 ISC Short Circuit Current 75 mA VIL Enable Pin Maximum Low Input Level 35 %V VIH Enable Pin Minimum High Input Level VIN - VREF (2) (3) (4) (5) (6) % ΔVREF/ΔVIN ΔVREF (1) Unit Output Voltage Initial Accuracy TCVREF / °C (3) IQ Max (1) 65 µA ppm / V 120 ppm / mA ppm 400 mV µVPP %V Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlation using Statistical Quality Control. Typical numbers are at 25°C and represent the most likely parametric norm. Temperature coefficient is measured by the "Box" method; i.e., the maximum ΔVREF is divided by the maximum ΔT. Long term stability is VREF @25°C measured during 1000 hrs. Thermal hysteresis is defined as the change in +25°C output voltage before and after cycling the device from (-40°C to 125°C). Dropout voltage is defined as the minimum input to output differential at which the output voltage drops by 0.5% below the value measured with a 5V input. Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated Product Folder Links: LM4128 LM4128Q 7 LM4128, LM4128Q SNVS475E – NOVEMBER 2006 – REVISED APRIL 2013 www.ti.com Electrical Characteristics LM4128-4.1 (VOUT = 4.096V) Limits in standard type are for TJ = 25°C only, and limits in boldface type apply over the junction temperature (TJ) range of 40°C to +125°C unless otherwise specified. Minimum and Maximum limits are ensured through test, design, or statistical correlation. Typical values represent the most likely parametric norm at TJ = 25°C, and are provided for reference purposes only. Unless otherwise specified VIN = 5V and ILOAD = 0A. Symbol VREF Parameter Conditions Min (1) Typ (2) LM4128A-4.1 (A Grade - 0.1%) -0.1 +0.1 LM4128B-4.1 (B Grade - 0.2%) -0.2 +0.2 LM4128C-4.1 (C Grade - 0.5%) -0.5 +0.5 LM4128D-4.1 (D Grade - 1.0%) -1.0 +1.0 Temperature Coefficient LM4128A-4.1 75 LM4128B-4.1 75 LM4128C-4.1 100 LM4128D-4.1 IQ_SD 8 ppm / °C 100 Supply Current 60 100 3 7 µA Supply Current in Shutdown EN = 0V Line Regulation VREF + 400 mV ≤ VIN ≤ 5.5V 100 ΔVREF/ΔILOAD Load Regulation 0 mA ≤ ILOAD ≤ 20 mA 25 Long Term Stability (4) 1000 Hrs 50 Thermal Hysteresis (5) -40°C ≤ TJ ≤ +125°C 75 Dropout Voltage (6) ILOAD = 10 mA 175 VN Output Noise Voltage 0.1 Hz to 10 Hz 350 ISC Short Circuit Current 75 mA VIL Enable Pin Maximum Low Input Level 35 %V VIH Enable Pin Minimum High Input Level VIN - VREF (2) (3) (4) (5) (6) % ΔVREF/ΔVIN ΔVREF (1) Unit Output Voltage Initial Accuracy TCVREF / °C (3) IQ Max (1) 65 µA ppm / V 120 ppm / mA ppm 400 mV µVPP %V Limits are 100% production tested at 25°C. Limits over the operating temperature range are ensured through correlation using Statistical Quality Control. Typical numbers are at 25°C and represent the most likely parametric norm. Temperature coefficient is measured by the "Box" method; i.e., the maximum ΔVREF is divided by the maximum ΔT. Long term stability is VREF @25°C measured during 1000 hrs. Thermal hysteresis is defined as the change in +25°C output voltage before and after cycling the device from (-40°C to 125°C). Dropout voltage is defined as the minimum input to output differential at which the output voltage drops by 0.5% below the value measured with a 5V input. Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated Product Folder Links: LM4128 LM4128Q LM4128, LM4128Q www.ti.com SNVS475E – NOVEMBER 2006 – REVISED APRIL 2013 Typical Performance Characteristics for 2.5V Output Voltage vs Temperature Load Regulation 2.506 2.5075 2.505 5 Typical Units OUTPUT VOLTAGE (V) OUTPUT VOLTAGE (V) 2.505 2.5025 2.5 2.4975 125°C 2.504 2.503 2.502 25°C 2.501 2.500 2.499 2.498 2.495 -40°C 2.497 2.4925 -40 2.496 -20 0 20 40 60 80 100 120 1 10 100 1000 10000 100000 LOAD CURRENT (PA) o TEMPERATURE ( C) Figure 1. Figure 2. Line Regulation 0.1 - 10 Hz Noise 2.502 OUTPUT VOLTAGE (V) 125°C 2.501 2.500 25°C 2.499 -40°C 2.498 2.497 3.0 3.5 4.0 4.5 5.0 5.5 Figure 3. Figure 4. Output Voltage Noise Spectrum Power Supply Rejection Ratio vs Frequency 3.3V 2.0V 20 15 10 1.8V 5 0 10 100 1000 10000 COUT = 1 PF 70 60 PF 2.5V 50 0.1 3.0V 25 80 = 4.096V 30 90 40 OU T 35 C POWER SUPPLY REJECTION RATIO (dB) OUTPUT NOISE VOLTAGE (PVrms/rt(Hz)) INPUT VOLTAGE (V) 30 No COUT 20 10 0 10 100 1k 10k 100k 1M FREQUENCY (Hz) FREQUENCY (Hz) Figure 5. Figure 6. Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated Product Folder Links: LM4128 LM4128Q 9 LM4128, LM4128Q SNVS475E – NOVEMBER 2006 – REVISED APRIL 2013 www.ti.com Typical Performance Characteristics for 2.5V (continued) Dropout vs Load to 0.5% Accuracy Typical Long Term Stability 600 200 1 TYPICAL UNIT FROM EACH VOLTAGE OPTION 100 DRIFT (ppm) °C 400 25 VDROPOUT (mV) 12 5° C 150 °C -4 0 200 50 0 -50 -100 -150 0 0 5 10 15 -200 20 0 200 400 600 800 1000 LOAD CURRENT (mA) TIME (Hours) Figure 7. Figure 8. Supply Current vs Input Voltage Shutdown IQ vs Input Voltage 100 5.0 4.5 80 SHUTDOWN IQ (PA) SUPPLY CURRENT (PA) 90 70 60 50 40 30 20 125°C 4.0 25°C 3.5 3.0 -40°C 2.5 10 2.0 2.0 0 0 1 2 3 4 5 2.5 3.0 3.5 4.0 4.5 5.0 5.5 INPUT VOLTAGE (V) INPUT VOLTAGE (V) Figure 9. Figure 10. Ground Current vs Load Current Line Transient Response VIN = 3V to 5V 100 GROUND CURRENT (PA) 90 125oC 80 25oC 70 60 50 -40oC 40 30 20 10 0 0 5 10 15 20 LOAD CURRENT (mA) Figure 11. 10 Figure 12. Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated Product Folder Links: LM4128 LM4128Q LM4128, LM4128Q www.ti.com SNVS475E – NOVEMBER 2006 – REVISED APRIL 2013 Typical Performance Characteristics for 2.5V (continued) Load Transient Response ILOAD = 0 to 10mA Short-Circuit Protection and Recovery Figure 13. Figure 14. Start-Up Response Figure 15. Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated Product Folder Links: LM4128 LM4128Q 11 LM4128, LM4128Q SNVS475E – NOVEMBER 2006 – REVISED APRIL 2013 www.ti.com APPLICATION INFORMATION THEORY OF OPERATION The foundation of any voltage reference is the band-gap circuit. While the reference in the LM4128 is developed from the gate-source voltage of transistors in the IC, principles of the band-gap circuit are easily understood using a bipolar example. For a detailed analysis of the bipolar band-gap circuit, see the AN-56 Application Report (SNVA514). SUPPLY AND ENABLE VOLTAGES To ensure proper operation, VEN and VIN must be within a specified range. An acceptable range of input voltages is VIN > VREF + 400 mV (ILOAD ≤ 10 mA) (1) The enable pin uses an internal pull-up current source (IPULL_UP ≊ 2 µA) that may be left floating or triggered by an external source. If the part is not enabled by an external source, it may be connected to VIN. An acceptable range of enable voltages is given by the enable transfer characteristics. See the Electrical Characteristics section and Enable Transfer Characteristics figure for more detail. Note, the part will not operate correctly for VEN > VIN. COMPONENT SELECTION A small ceramic (X5R or X7R) capacitor on the input must be used to ensure stable operation. The value of CIN must be sized according to the output capacitor value. The value of CIN must satisfy the relationship CIN ≥ COUT. When no output capacitor is used, CIN must have a minimum value of 0.1 µF. Noise on the power-supply input may affect the output noise. Larger input capacitor values (typically 4.7 µF to 22 µF) may help reduce noise on the output and significantly reduce overshoot during startup. Use of an additional optional bypass capacitor between the input and ground may help further reduce noise on the output. With an input capacitor, the LM4128 will drive any combination of resistance and capacitance up to VREF/20 mA and 10 µF respectively. The LM4128 is designed to operate with or without an output capacitor and is stable with capacitive loads up to 10 µF. Connecting a capacitor between the output and ground will significantly improve the load transient response when switching from a light load to a heavy load. The output capacitor should not be made arbitrarily large because it will effect the turn-on time as well as line and load transients. While a variety of capacitor chemistry types may be used, it is typically advisable to use low esr ceramic capacitors. Such capacitors provide a low impedance to high frequency signals, effectively bypassing them to ground. Bypass capacitors should be mounted close to the part. Mounting bypass capacitors close to the part will help reduce the parasitic trace components thereby improving performance. SHORT CIRCUITED OUTPUT The LM4128 features indefinite short circuit protection. This protection limits the output current to 75 mA when the output is shorted to ground. TURN ON TIME Turn on time is defined as the time taken for the output voltage to rise to 90% of the preset value. The turn on time depends on the load. The turn on time is typically 33.2 µs when driving a 1µF load and 78.8 µs when driving a 10 µF load. Some users may experience an extended turn on time (up to 10 ms) under brown out conditions and low temperatures (-40°C). THERMAL HYSTERESIS Thermal hysteresis is defined as the change in output voltage at 25ºC after some deviation from 25ºC. This is to say that thermal hysteresis is the difference in output voltage between two points in a given temperature profile. An illustrative temperature profile is shown in Figure 16. 12 Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated Product Folder Links: LM4128 LM4128Q LM4128, LM4128Q www.ti.com SNVS475E – NOVEMBER 2006 – REVISED APRIL 2013 125°C VREF1 25°C Time VREF2 -40°C Figure 16. Illustrative Temperature Profile This may be expressed analytically as the following: lVREF1 - VREF2l x 103 mV VHYS = VREF where • • • • VHYS = Thermal hysteresis expressed in ppm VREF = Nominal preset output voltage VREF1 = VREF before temperature fluctuation VREF2 = VREF after temperature fluctuation (2) The LM4128 features a low thermal hysteresis of 190 µV from -40°C to 125°C. TEMPERATURE COEFFICIENT Temperature drift is defined as the maximum deviation in output voltage over the operating temperature range. This deviation over temperature may be illustrated as shown in Figure 17. Temperature Change in Output Voltage Voltage VREF_MAX VREF_MIN Temperature Range Figure 17. Illustrative Temperature Coefficient Profile Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated Product Folder Links: LM4128 LM4128Q 13 LM4128, LM4128Q SNVS475E – NOVEMBER 2006 – REVISED APRIL 2013 www.ti.com Temperature coefficient may be expressed analytically as the following: (VREF_MAX - VREF_MIN) x 106 ppm TD = VREF x 'T where • • • • • TD = Temperature drift VREF = Nominal preset output voltage VREF_MIN = Minimum output voltage over operating temperature range VREF_MAX = Maximum output voltage over operating temperature range ΔT = Operating temperature range (3) The LM4128 features a low temperature drift of 75 ppm (max) to 100 ppm (max), depending on the grade, from 40°C to 125°C. LONG TERM STABILITY Long-term stability refers to the fluctuation in output voltage over a long period of time (1000 hours). The LM4128 features a typical long-term stability of 50 ppm over 1000 hours. The measurements are made using 5 units of each voltage option, at a nominal input voltage (5V), with no load, at room temperature. EXPRESSION OF ELECTRICAL CHARACTERISTICS Electrical characteristics are typically expressed in mV, ppm, or a percentage of the nominal value. Depending on the application, one expression may be more useful than the other. To convert one quantity to the other one may apply the following: ppm to mV error in output voltage: VREF x ppmERROR 103 = VERROR where • VREF is in volts (V) and VERROR is in milli-volts (mV) (4) Bit error (1 bit) to voltage error (mV): VREF 2 n x 103 = VERROR where • • • VREF is in volts (V) VERROR is in milli-volts (mV) and n is the number of bits (5) mV to ppm error in output voltage: VERROR x 103 = ppmERROR VREF where • • VREF is in volts (V) VERROR is in milli-volts (mV) (6) Voltage error (mV) to percentage error (percent): VERROR x 0.1 = Percent_Error VREF where • • 14 VREF is in volts (V) VERROR is in milli-volts (mV) (7) Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated Product Folder Links: LM4128 LM4128Q LM4128, LM4128Q www.ti.com SNVS475E – NOVEMBER 2006 – REVISED APRIL 2013 PRINTED CIRCUIT BOARD and LAYOUT CONSIDERATIONS References in SOT packages are generally less prone to PC board mounting than devices in Small Outline (SOIC) packages. To minimize the mechanical stress due to PC board mounting that can cause the output voltage to shift from its initial value, mount the reference on a low flex area of the PC board, such as near the edge or a corner. The part may be isolated mechanically by cutting a U shape slot on the PCB for mounting the device. This approach also provides some thermal isolation from the rest of the circuit. Bypass capacitors must be mounted close to the part. Mounting bypass capacitors close to the part will reduce the parasitic trace components thereby improving performance. Typical Application Circuits V REF Input VIN VREF C OUT CIN R R +5V -VREF LM4128 -5V Enable R/2 EN GND 4.7 µF < C OUT < 10 µF Figure 18. Voltage Reference with Complimentary Output +5V Input VIN VREF CIN LM4128 Enable EN VREF_FORCE 0.1 µF 100 k: VREF_SENSE GND Figure 19. Precision Voltage Reference with Force and Sense Output Input VIN Output VREF CIN R1 500 : LM4128 0.1 µF Enable EN RSET GND I OUT IOUT = (VREF/(R1 + RSET)) + IGND IGND RL 1 k: Figure 20. Programmable Current Source Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated Product Folder Links: LM4128 LM4128Q 15 LM4128, LM4128Q SNVS475E – NOVEMBER 2006 – REVISED APRIL 2013 www.ti.com REVISION HISTORY Changes from Revision D (April 2013) to Revision E • 16 Page Changed layout of National Data Sheet to TI format .......................................................................................................... 15 Submit Documentation Feedback Copyright © 2006–2013, Texas Instruments Incorporated Product Folder Links: LM4128 LM4128Q PACKAGE OPTION ADDENDUM www.ti.com 30-Sep-2021 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) LM4128AMF-1.8/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5AA LM4128AMF-2.0/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5BA LM4128AMF-2.5/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5CA LM4128AMF-3.0/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5DA LM4128AMF-3.3/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5EA LM4128AMF-4.1/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5FA LM4128AMFX-1.8/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5AA LM4128AMFX-2.0/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5BA LM4128AMFX-2.5/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5CA LM4128AMFX-3.0/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5DA LM4128AMFX-3.3/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5EA LM4128AMFX-4.1/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM LM4128AQ1MF1.8/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6AA LM4128AQ1MF2.0/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6BA LM4128AQ1MF2.5/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6CA LM4128AQ1MF3.0/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6DA LM4128AQ1MF3.3/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6EA LM4128AQ1MF4.1/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6FA LM4128AQ1MFX1.8/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6AA LM4128AQ1MFX2.0/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6BA Addendum-Page 1 R5FA Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 30-Sep-2021 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) LM4128AQ1MFX2.5/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6CA LM4128AQ1MFX3.0/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6DA LM4128AQ1MFX3.3/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6EA LM4128AQ1MFX4.1/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6FA LM4128BMF-1.8/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5AB LM4128BMF-2.0/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5BB LM4128BMF-2.5 NRND SOT-23 DBV 5 1000 Non-RoHS & Green Call TI Level-1-260C-UNLIM -40 to 125 R5CB LM4128BMF-2.5/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5CB LM4128BMF-3.0/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5DB LM4128BMF-3.3/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5EB LM4128BMF-4.1/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5FB LM4128BMFX-1.8/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5AB LM4128BMFX-2.0/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5BB LM4128BMFX-2.5/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5CB LM4128BMFX-3.0/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5DB LM4128BMFX-3.3/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5EB LM4128BMFX-4.1/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5FB LM4128BQ1MF1.8/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6AB LM4128BQ1MF2.0/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6BB LM4128BQ1MF2.5/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6CB LM4128BQ1MF3.0/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6DB Addendum-Page 2 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 30-Sep-2021 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) LM4128BQ1MF3.3/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6EB LM4128BQ1MF4.1/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6FB LM4128BQ1MFX1.8/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6AB LM4128BQ1MFX2.0/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6BB LM4128BQ1MFX2.5/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6CB LM4128BQ1MFX3.0/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6DB LM4128BQ1MFX3.3/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6EB LM4128BQ1MFX4.1/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6FB LM4128CMF-1.8/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5AC LM4128CMF-2.0/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5BC LM4128CMF-2.5/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5CC LM4128CMF-3.0/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5DC LM4128CMF-3.3/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5EC LM4128CMF-4.1/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5FC LM4128CMFX-1.8/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5AC LM4128CMFX-2.0/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5BC LM4128CMFX-2.5/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5CC LM4128CMFX-3.0/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5DC LM4128CMFX-3.3/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5EC LM4128CMFX-4.1/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5FC LM4128CQ1MF1.8/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6AC Addendum-Page 3 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 30-Sep-2021 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) LM4128CQ1MF2.0/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6BC LM4128CQ1MF2.5/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6CC LM4128CQ1MF3.0/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6DC LM4128CQ1MF3.3/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6EC LM4128CQ1MF4.1/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6FC LM4128CQ1MFX1.8/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6AC LM4128CQ1MFX2.0/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6BC LM4128CQ1MFX2.5/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6CC LM4128CQ1MFX3.0/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6DC LM4128CQ1MFX3.3/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6EC LM4128CQ1MFX4.1/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6FC LM4128DMF-1.8/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5AD LM4128DMF-2.0/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5BD LM4128DMF-2.5/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5CD LM4128DMF-3.0/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5DD LM4128DMF-3.3/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5ED LM4128DMF-4.1/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5FD LM4128DMFX-1.8/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5AD LM4128DMFX-2.0/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5BD LM4128DMFX-3.0/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5DD LM4128DMFX-3.3/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5ED Addendum-Page 4 Samples PACKAGE OPTION ADDENDUM www.ti.com Orderable Device 30-Sep-2021 Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) LM4128DMFX-4.1/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R5FD LM4128DQ1MF1.8/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6AD LM4128DQ1MF2.0/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6BD LM4128DQ1MF2.5/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6CD LM4128DQ1MF3.0/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6DD LM4128DQ1MF3.3/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6ED LM4128DQ1MF4.1/NOPB ACTIVE SOT-23 DBV 5 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6FD LM4128DQ1MFX1.8/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6AD LM4128DQ1MFX2.0/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6BD LM4128DQ1MFX2.5/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6CD LM4128DQ1MFX3.0/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6DD LM4128DQ1MFX3.3/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6ED LM4128DQ1MFX4.1/NOPB ACTIVE SOT-23 DBV 5 3000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 R6FD (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
LM4128DQ1MF3.0/NOPB
物料型号:LM4128, LM4128Q

器件简介: LM4128是一款精密微功耗电压参考源,采用SOT-23封装。它具有高精度、低温度系数、低供电电流和可编程输出电压等特点,适用于电池供电解决方案和对空间要求严格的应用。

引脚分配: 1. N/C (无连接,留空) 2. GND (地) 3. EN (使能端) 4. VIN (输入供电) 5. VREF (参考电压输出)

参数特性: - 输出电压初始精度:A级为0.1%,B级为0.2%,C级为0.5%,D级为1.0%。 - 温度系数:A级和B级为75ppm/°C,C级和D级为100ppm/°C。 - 供电电流:典型值为60µA。 - 关断模式下供电电流:典型值为3µA。 - 输出电流:可达20mA。 - 输出电压选项:1.8V、2.048V、2.5V、3.0V、3.3V、4.096V,还提供定制电压选项。

功能详解: LM4128的先进设计消除了外部稳定电容的需求,确保了在高达10µF的电容性负载下的稳定性,使得LM4128易于使用。系列参考提供了比齐纳参考更低的功耗,因为它们不需要在无负载条件下空闲最大可能的负载电流。

应用信息: - 仪器仪表与过程控制 - 测试设备 - 数据采集系统 - 基站 - 伺服系统 - 便携式、电池供电设备 - 汽车与工业电子 - 精密调节器 - 电池充电器 - 通信设备 - 医疗设备

封装信息: - 5引脚SOT-23封装 - 工作结温范围:-40°C至125°C
LM4128DQ1MF3.0/NOPB 价格&库存

很抱歉,暂时无法提供与“LM4128DQ1MF3.0/NOPB”相匹配的价格&库存,您可以联系我们找货

免费人工找货