0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LM4869MH/NOPB

LM4869MH/NOPB

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    TSSOP20_EP

  • 描述:

    IC AMP AUDIO PWR 2.6W AB 20TSSOP

  • 数据手册
  • 价格&库存
LM4869MH/NOPB 数据手册
OBSOLETE LM4869 www.ti.com LM4869 SNAS168D – MAY 2002 – REVISED APRIL 2013 1.9W Differential Input, BTL Output Stereo Audio Amplifier with Selectable Gain and Shutdown Check for Samples: LM4869 FEATURES DESCRIPTION • • The LM4869 features differential stereo inputs, BTL (bridge-tied load) outputs, and four externally selectable fixed gains. Operating on a single 5V supply, the LM4869 delivers 1.2W and 1.9W (typ) of output power to an 8Ω and 4Ω BTL load (1), respectively, with less than 1% THD+N. The LM4869's gain is selected using two digital inputs. The nominal gain values are 6dB, 10dB, 15.6dB, and 21.6dB. 1 2 • • • • • Fully Differential Input and Output Internal Gain set: 6dB, 10dB, 15.6dB, and 21.6dB Improved "Click and Pop" Suppression Thermal Shutdown Protection Circuit Ultra Low Current Micropower Shutdown Mode 2.0V to 5.5V Operation Available in Space-Saving Exposed-DAP TSSOP Package APPLICATIONS • • • Notebook Computers PDAs Portable Electronic Devices The LM4869 is designed for notebook and other handheld portable applications. It delivers high quality output power from a surface-mount package and requires few external components. Other features include an active-low micropower shutdown mode input and thermal shutdown protection. KEY SPECIFICATIONS • • • • BTL Output Power – RL = 4Ω, VDD = 5.0V, and THD+N = 1%: 1.9W (typ) BTL Output Power – RL = 8Ω, VDD = 5.0V, and THD+N = 1%: 1.2W (typ) Micropower Shutdown Current: 0.1μA (typ) PSRR (at 1kHz, VDD = 5V, Figure 1): 62dB (typ) (1) An LM4869MH that has been properly mounted to a circuit board with a copper heatsink area of at least 2in2 will deliver 1.9W into 4Ω. 1 2 Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. All trademarks are the property of their respective owners. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright © 2002–2013, Texas Instruments Incorporated OBSOLETE LM4869 SNAS168D – MAY 2002 – REVISED APRIL 2013 www.ti.com These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. Exposed-DAP TSSOP (Top View) See Package Number PWP Typical Application Figure 1. Typical Audio Amplifier Application Circuit 2 Submit Documentation Feedback Copyright © 2002–2013, Texas Instruments Incorporated Product Folder Links: LM4869 OBSOLETE LM4869 www.ti.com SNAS168D – MAY 2002 – REVISED APRIL 2013 These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. Absolute Maximum Ratings (1) (2) (3) Supply Voltage 6.0V Storage Temperature -65°C to + 150°C −0.3V to VDD + 0.3V Input Voltage (4) Internally Limited ESD Susceptibility (5) 2000V ESD Susceptibility (6) 200V Junction Temperature 150°C Power Dissipation Soldering Information Small Outline Package Vapor Phase (60 sec.) 215°C Infrared (15 sec.) Thermal Resistance (1) (2) (3) (4) (5) (6) (7) (8) 220°C θJC (typ) PWP 2°C/W θJA (typ) PWP 47°C/W (7) θJA (typ) PWP 27°C/W (8) All voltages are measured with respect to the GND pin unless otherwise specified. Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional but do not ensure specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions that ensure specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not ensured for parameters where no limit is given, however, the typical value is a good indication of device performance. If Military/Aerospace specified devices are required, please contact the TI Sales Office/ Distributors for availability and specifications. The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX, θJA, and the ambient temperature, TA. The maximum allowable power dissipation is PDMAX = (TJMAX - TA/θJA or the number given in Absolute Maximum Ratings, whichever is lower. For the LM4869, see power derating currents for more information. Human body model, 100 pF discharged through a 1.5 kΩ resistor. Machine Model, 220pF-240pF discharged through all pins. The given θJA is for an LM4869 packaged in an PWP with the exposed-DAP soldered to an exposed 4in2 area of 1oz printed circuit board copper. When driving 4Ω loads from a 5V supply, the LM4869MH must be mounted to the circuit board and its exposed-DAP soldered to an exposed 2in2 area of 1oz PCB copper. The given θJAis for an LM4869 packaged in an PWP with the exposed DAP soldered to an exposed 8in2 area of 1oz printed circuit board (PCB) copper and two 8in2 inner layer ground planes in a four-layer PCB. Operating Ratings Temperature Range TMIN ≤ TA ≤TMAX −40°C ≤ TA ≤ 85°C 2.0 V ≤ VDD ≤ 5.5V Supply Voltage Submit Documentation Feedback Copyright © 2002–2013, Texas Instruments Incorporated Product Folder Links: LM4869 3 OBSOLETE LM4869 SNAS168D – MAY 2002 – REVISED APRIL 2013 www.ti.com Electrical Characteristics for LM4869 (1) (2) The following specifications applies to the LM4869 when used in the circuit shown in Figure 1 and operating with VDD = 5V and AV = 6dB, unless otherwise specified. Limits apply for TA = 25°C. Symbol Parameter LM4869 Conditions Typical (2) Limit (3) (4) Units (Limits) VDD Supply Voltage IDD Quiescent Power Supply Current VIN = 0V, IO = 0A, RL = ∞ ISD Shutdown Current Vshutdown = GND VOS Output Offset Voltage PSRR Output Supply Rejection Ratio VDD = 5V, VRIPPLE = 200mVP-P sinewave, CBYPASS = 0.47µF, RL = 8Ω PO Output Power ( (5)) THD+N = 1% (max), f = 1kHz ( (6)) RL = 4Ω RL = 8Ω 1.9 1.2 THD+N = 10% (max), f = 1kHz ( (6)) RL = 4Ω RL = 8Ω 2.6 1.5 W W 20Hz ≤ f ≤ 20kHz RL = 4Ω, PO = 2W RL = 8Ω, PO = 1W 0.3 0.3 % % dB THD+N Total Harmonic Distortion + Noise 2 5.5 V (min) V (max) 9.0 12.0 mA (max) 0.1 1.0 µA (max) 7 50 mV (max) 62 dB 1.0 W W (min) S/N Signal-to-Noise Ratio f = 1kHz, CBYPASS = 0.47µF, PO = 1.1W, RL = 8Ω 97 RIN Input Resistance Pins 5, 7, 9, and 17 25 20 kΩ (min) ΔAV Gain Accuracy RL = 8Ω Logic Low Applied to Pin 2 Logic Low Applied to Pin 3 6 5.70 6.30 dB (min) dB (max) Logic Low Applied to Pin 2 Logic High Applied to Pin 3 10 9.65 10.35 dB (min) dB (max) Logic High Applied to Pin 2 Logic Low Applied to Pin 3 15.6 15.25 15.95 dB (min) dB (max) Logic High Applied to Pin 2 Logic High Applied to Pin 3 21.6 21.25 21.95 dB (min) dB (max) Logic Low Applied to Pin 2 Logic Low Applied to Pin 3 0.12 0.3 dB (max) Logic Low Applied to Pin 2 Logic High Applied to Pin 3 0.12 0.3 dB (max) Logic High Applied to Pin 2 Logic Low Applied to Pin 3 0.12 0.3 dB (max) Logic High Applied to Pin 2 Logic High Applied to Pin 3 0.12 0.3 dB (max) ΔAV CH-CH (1) (2) (3) (4) (5) (6) 4 Channel-to-Channel Gain Mismatch RL = 8Ω All voltages are measured with respect to the GND pin unless otherwise specified. Typicals are measured at 25°C and represent the parametric norm. Limits are ensured to TI's AOQL (Average Outgoing Quality Level). Datasheet minimum and maximum specification limits are ensured by design, test, or statistical analysis. Output power is measured at the amplifier's package pins. When driving 4Ω loads and operating on a 5V supply, the LM4869MH must be mounted to a circuit board that has a minimum of 2.5in2 of exposed, uninterrupted copper area connected to the LLP package's exposed DAP. Submit Documentation Feedback Copyright © 2002–2013, Texas Instruments Incorporated Product Folder Links: LM4869 OBSOLETE LM4869 www.ti.com SNAS168D – MAY 2002 – REVISED APRIL 2013 External Components Description ( Refer to Figure 1.) Components Functional Description 1. Ci The input coupling capacitor blocks DC voltage at the amplifier's inverting input terminals. Ci, along with the LM4869's fixed input resistance Ri (25kΩ, typ), creates a highpass filter with fC = 1/(2πRiCi). Both inverting and noninverting inputs require a Ci. Refer to the Application Information section, Selecting External Components, for an explanation of determining the value of Ci. 2. CS The supply bypass capacitor. Refer to the Power Supply Bypassing section for information about properly placing, and selecting the value of, this capacitor. 3. CB The capacitor, CB, filters the half-supply voltage present on the BYPASS pin. Refer to the Application Information section, Selecting External Components, for information concerning proper placement and selecting CB's value. Submit Documentation Feedback Copyright © 2002–2013, Texas Instruments Incorporated Product Folder Links: LM4869 5 OBSOLETE LM4869 SNAS168D – MAY 2002 – REVISED APRIL 2013 www.ti.com Typical Performance Characteristics MH Specific Characteristics 6 THD vs Frequency THD vs Frequency Figure 2. VDD = 5V, RL = 4Ω, POUT = 1000mW, at (from top to bottom at 1kHz): AV = 21.6dB, AV = 15.6dB, AV = 10dB, AV = 6dB Figure 3. VDD = 5V, RL = 8Ω, POUT = 400mW, at (from top to bottom at 1kHz): AV = 21.6dB, AV = 15.6dB, AV = 10dB, AV = 6dB THD vs Frequency THD vs Output Power Figure 4. VDD = 5V, RL = 8Ω, POUT = 400mW, at (from top to bottom at 1kHz): AV = 21.6dB, AV = 15.6dB, AV = 10dB, AV = 6dB Figure 5. VDD = 5V, RL = 4Ω, fIN = 20Hz, at (from top to bottom at 100mW): AV = 21.6dB, AV = 15.6dB, AV = 6dB, AV = 10dB THD vs Output Power THD vs Output Power Figure 6. VDD = 5V, RL = 4Ω, fIN = 1kHz, at (from top to bottom at 200mW): AV = 21.6dB, AV = 15.6dB, AV = 10dB, AV = 6dB Figure 7. VDD = 5V, RL = 4Ω, fIN = 20kHz, at (from top to bottom at 200mW): AV = 21.6dB, AV = 15.6dB, AV = 10dB, AV = 6dB Submit Documentation Feedback Copyright © 2002–2013, Texas Instruments Incorporated Product Folder Links: LM4869 OBSOLETE LM4869 www.ti.com SNAS168D – MAY 2002 – REVISED APRIL 2013 Typical Performance Characteristics MH Specific Characteristics (continued) THD vs Output Power THD vs Output Power Figure 8. VDD = 5V, RL = 8Ω, fIN = 20Hz, at (from top to bottom at 200mW): AV = 21.6dB, AV = 15.6dB, AV = 10dB, AV = 6dB Figure 9. VDD = 5V, RL = 8Ω, fIN = 1kHz, at (from top to bottom at 200mW): AV = 21.6dB, AV = 15.6dB, AV = 10dB, AV = 6dB THD vs Output Power Output Power vs Supply Voltage Figure 10. VDD = 5V, RL = 8Ω, fIN = 20kHz, at (from top to bottom at 200mW): AV = 21.6dB, AV = 15.6dB, AV = 10dB, AV = 6dB Figure 11. RL = 4Ω, fIN = 1kHz, at (from top to bottom at 4V): THD+N = 10%, THD+N = 1% Output Power vs Supply Voltage PSRR vs Frequency Figure 12. RL = 8Ω, fIN = 1kHz, at (from top to bottom at 4V): THD+N = 10%, THD+N = 1% Figure 13. VDD = 5V, RL = 4Ω, RSOURCE = 10Ω VRIPPLE = 200mVP-P, at (from top to bottom at 1kHz): AV = 21.6dB, AV = 15.6dB, AV = 10dB, AV = 6dB Submit Documentation Feedback Copyright © 2002–2013, Texas Instruments Incorporated Product Folder Links: LM4869 7 OBSOLETE LM4869 SNAS168D – MAY 2002 – REVISED APRIL 2013 www.ti.com Typical Performance Characteristics MH Specific Characteristics (continued) 8 PSRR vs Frequency THD vs Frequency Figure 14. VDD = 5V, RL = 8Ω, RSOURCE = 10Ω VRIPPLE = 200mVP-P, at (from top to bottom at 1kHz): AV = 21.6dB, AV = 15.6dB, AV = 10dB, AV = 6dB Figure 15. VDD = 3V, RL = 4Ω, POUT = 150mW, at (from top to bottom at 1kHz): AV = 21.6dB, AV = 15.6dB, AV = 10dB, AV = 6dB THD vs Frequency THD vs Output Power Figure 16. VDD = 3V, RL = 8Ω, POUT = 150mW, at (from top to bottom at 1kHz): AV = 21.6dB, AV = 15.6dB, AV = 10dB, AV = 6dB Figure 17. VDD = 3V, RL = 4Ω, fIN = 1kHz, at (from top to bottom at 200mW): AV = 21.6dB, AV = 6dB, AV = 15.6dB, AV = 10dB THD vs Output Power THD vs Output Power Figure 18. VDD = 3V, RL = 4Ω, fIN = 20Hz, at (from top to bottom at 100mW): AV = 21.6dB, AV = 15.6dB, AV = 6dB, AV = 10dB Figure 19. VDD = 3V, RL = 4Ω, fIN = 20kHz, at (from top to bottom at 200mW): AV = 21.6dB, AV = 15.6dB, AV = 10dB, AV = 6dB Submit Documentation Feedback Copyright © 2002–2013, Texas Instruments Incorporated Product Folder Links: LM4869 OBSOLETE LM4869 www.ti.com SNAS168D – MAY 2002 – REVISED APRIL 2013 Typical Performance Characteristics MH Specific Characteristics (continued) THD vs Output Power THD vs Output Power Figure 20. VDD = 3V, RL = 8Ω, fIN = 20Hz, at (from top to bottom at 100mW): AV = 21.6dB, AV = 6dB, AV = 15.6dB, AV = 10dB Figure 21. VDD = 3V, RL = 8Ω, fIN = 1kHz, at (from top to bottom at 200mW): AV = 21.6dB, AV = 15.6dB, AV = 6dB, AV = 10dB THD vs Output Power PSRR vs Frequency Figure 22. VDD = 3V, RL = 8Ω, fIN = 20kHz, at (from top to bottom at 200mW): AV = 21.6dB, AV = 15.6dB, AV = 10dB, AV = 6dB Figure 23. VDD = 3V, RL = 4Ω, RSOURCE = 10Ω, VRIPPLE = 200mVP-P, at (from top to bottom at 1kHz): AV = 21.6dB, AV = 15.6dB, AV = 10dB, AV = 6dB PSRR vs Frequency Output Power vs Load Resistance Figure 24. VDD = 3V, RL = 8Ω, RSOURCE = 10Ω, VRIPPLE = 200mVP-P, at (from top to bottom at 1kHz): AV = 21.6dB, AV = 15.6dB, AV = 10dB, AV = 6dB Figure 25. fIN = 1kHz, at (from top to bottom at 20Ω): VDD = 5V, THD = 10%; VDD = 5V, THD = 1%; VDD = 3V, THD = 10%; VDD = 3V, THD = 1% Submit Documentation Feedback Copyright © 2002–2013, Texas Instruments Incorporated Product Folder Links: LM4869 9 OBSOLETE LM4869 SNAS168D – MAY 2002 – REVISED APRIL 2013 www.ti.com Typical Performance Characteristics MH Specific Characteristics (continued) 10 Channel-to-Channel gain Mismatch vs Power Supply Voltage Channel-to-Channel gain Mismatch vs Power Supply Voltage Figure 26. RL = 4Ω, fIN = 1kHz, at (from top to bottom at 4V): AV = 21.6dB, AV = 15.6dB, AV = 10dB, AV = 6dB Figure 27. RL = 8Ω, fIN = 1kHz, at (from top to bottom at 4V): AV = 21.6dB, AV = 15.6dB, AV = 10dB, AV = 6dB Dropout Voltage vs Power Supply Voltage Dropout Voltage vs Power Supply Voltage Figure 28. RL = 8Ω, fIN = 1kHz, both channels driven and loaded at (from top to bottom at 4V): positive signal swing, negative signal swing Figure 29. RL = 4Ω, fIN = 1kHz, both channels driven and loaded at (from top to bottom at 4V): positive signal swing, negative signal swing Amplifier Power Dissipation vs Amplifier Load Dissipation Amplifier Power Dissipation vs Amplifier Load Dissipation Figure 30. VDD = 5V, fIN = 1kHz, at (from top to bottom at 1W): RL = 4Ω, RL = 8Ω, single channel driven and loaded Figure 31. VDD = 3V, fIN = 1kHz, at (from top to bottom at 0.3W): RL = 4Ω, RL = 8Ω, single channel driven and loaded Submit Documentation Feedback Copyright © 2002–2013, Texas Instruments Incorporated Product Folder Links: LM4869 OBSOLETE LM4869 www.ti.com SNAS168D – MAY 2002 – REVISED APRIL 2013 Typical Performance Characteristics MH Specific Characteristics (continued) Cross Talk vs Frequency Cross Talk vs Frequency Figure 32. VDD = 5V, RL = 8Ω, AV = 6dB, A = Left channel driven, right channel measured; B = Right channel driven, left channel measured Figure 33. VDD = 5V, RL = 8Ω, AV = 10dB, A = Left channel driven, right channel measured; B = Right channel driven, left channel measured Cross Talk vs Frequency Cross Talk vs Frequency Figure 34. VDD = 5V, RL = 8Ω, AV = 15.6dB, A = Left channel driven, right channel measured; B = Right channel driven, left channel measured Figure 35. VDD = 5V, RL = 8Ω, AV = 21.6dB, A = Left channel driven, right channel measured; B = Right channel driven, left channel measured Cross Talk vs Frequency Cross Talk vs Frequency Figure 36. VDD = 3V, RL = 8Ω, AV = 6dB, A = Left channel driven, right channel measured; B = Right channel driven, left channel measured Figure 37. VDD = 3V, RL = 8Ω, AV = 10dB, A = Left channel driven, right channel measured; B = Right channel driven, left channel measured Submit Documentation Feedback Copyright © 2002–2013, Texas Instruments Incorporated Product Folder Links: LM4869 11 OBSOLETE LM4869 SNAS168D – MAY 2002 – REVISED APRIL 2013 www.ti.com Typical Performance Characteristics MH Specific Characteristics (continued) Cross Talk vs Frequency Cross Talk vs Frequency Figure 38. VDD = 3V, RL = 8Ω, AV = 15.6dB, A = Left channel driven, right channel measured; B = Right channel driven, left channel measured Figure 39. VDD = 3V, RL = 8Ω, AV = 21.6dB, A = Left channel driven, right channel measured; B = Right channel driven, left channel measured Power Dissipation Derating Curves Figure 40. VDD = 5V, RL = 8Ω, fIN = 1kHz, (from top to bottom at 40°C): 3in x 3in four-layer PCB with bottom and two inner layers connected to the package's DAP, 1.5in x 1.5in two-layer PCB with bottom and top layer planes connected to the package's DAP 12 Submit Documentation Feedback Copyright © 2002–2013, Texas Instruments Incorporated Product Folder Links: LM4869 OBSOLETE LM4869 www.ti.com SNAS168D – MAY 2002 – REVISED APRIL 2013 APPLICATION INFORMATION PCB LAYOUT AND SUPPLY REGULATION CONSIDERATIONS FOR DRIVING 3W AND 4W LOADS Power dissipated by a load is a function of the voltage swing across the load and the load's impedance. As load impedance decreases, load dissipation becomes increasingly dependent on the interconnect (PCB trace and wire) resistance between the amplifier output pins and the load's connections. Residual trace resistance causes a voltage drop, which results in power dissipated in the trace and not in the load as desired. For example, 0.1Ω trace resistance reduces the output power dissipated by a 4Ω load from 2.1W to 2.0W. This problem of decreased load dissipation is exacerbated as load impedance decreases. Therefore, to maintain the highest load dissipation and widest output voltage swing, PCB traces that connect the output pins to a load must be as wide as possible. Poor power supply regulation also adversely affects maximum output power. A poorly regulated supply's output voltage decreases with increasing load current. Reduced supply voltage causes decreased headroom, output signal clipping, and reduced output power. Even with tightly regulated supplies, trace resistance creates the same effects as poor supply regulation. Therefore, making the power supply traces as wide as possible helps maintain full output voltage swing. BRIDGE CONFIGURATION EXPLANATION As shown in Figure 1, each of the LM4869's stereo channels consists of two operational amplifiers. The LM4869 can be used to drive a speaker connected between the two outputs of each channel's amplifiers. Figure 1 shows that the output of Amp1 serves as the input to Amp2, which results in both amplifiers producing signals identical in magnitude, but 180° out of phase. Taking advantage of this phase difference, a load is placed between OUT+ and OUT- and driven differentially (commonly referred to as "bridge mode"). This results in a differential gain of AVD = 2(RF/RI) (1) Bridge mode is different from single-ended amplifiers that drive loads connected between a single amplifier's output and ground. For a given supply voltage, bridge mode has a distinct advantage over the single-ended configuration: its differential output doubles the voltage swing across the load. This results in four times the output power when compared to a single-ended amplifier under the same conditions. This increase in attainable output assumes that the amplifier is not current limited or the output signal is not clipped. To ensure minimum output signal clipping when selecting one of the amplifier's four closed-loop gains, refer to the Audio Power Amplifier Design section. Another advantage of the differential bridge output is no net DC voltage across the load. This results from biasing OUT+ and OUT- at half-supply. This eliminates the coupling capacitor that single supply, single-ended amplifiers require. Eliminating an output coupling capacitor in a single-ended configuration forces a single supply amplifier's half-supply bias voltage across the load. The current flow created by the half-supply bias voltage increases internal IC power dissipation and may permanently damage loads such as speakers. POWER DISSIPATION Power dissipation is a major concern when designing a successful bridged or single-ended amplifier. Equation 2 states the maximum power dissipation point for a single-ended amplifier operating at a given supply voltage and driving a specified output load. PDMAX = (VDD)2/(2π2RL) Single-Ended (2) However, a direct consequence of the increased power delivered to the load by a bridge amplifier is an increase in the internal power dissipation point for a bridge amplifier operating at the same given conditions. PDMAX = 4 * (VDD)2/(2π2RL) Bridge Mode (3) Submit Documentation Feedback Copyright © 2002–2013, Texas Instruments Incorporated Product Folder Links: LM4869 13 OBSOLETE LM4869 SNAS168D – MAY 2002 – REVISED APRIL 2013 www.ti.com The LM4869 has four operational amplifiers in one package and the maximum internal power dissipation is four times that of a single-ended amplifier. From Equation 3, assuming a 5V power supply and an 8Ω load, the maximum power dissipation point is 2W. The maximum power dissipation point obtained from Equation 3 must not exceed the power dissipation predicted by Equation 4: PDMAX = (TJMAX − TA)/θJA (4) For the exposed DAP TSSOP package, θJA= 41°C/W. TJAMAX = 150°C for the LM4869. For a given ambient temperature TA, Equation 4 can be used to find the maximum internal power dissipation supported by the IC packaging. If the result of Equation (3) is greater than that of Equation 4, decrease the supply voltage, increase the load impedance, or reduce the ambient temperature. For a typical application with a 5V power supply and an 8Ω load, the maximum ambient temperature that does not violate the maximum junction temperature is approximately 68°C. This further assumes that a device is a surface mount part operating around the maximum power dissipation point. Since internal power dissipation is a function of output power, higher ambient temperatures are allowed as output power decreases. Refer to the Typical Performance Characteristics curves for power dissipation information at lower output power levels. BTL GAIN SELECTION The LM4869 features four fixed, internally set, BTL voltage gains: 6dB, 10dB, 15.6dB, and 21.6dB. Select one of the four gains by applying a logic level signal to the GAIN0 (MSB) and GAIN1 (LSB) digital inputs. The closed-loop gain of the first amplifier is adjustable, having four different gains, whereas two internal 20kΩ resistors set the second amplifier's gain at -1. Table 1. LOGIC LEVEL TRUTH TABLE FOR SHUTDOWN OPERATION section, shows the state of the two logic inputs required to select one of the four gain values. GAIN 0 GAIN 1 Selected Gain (dB) 0 0 6 0 1 10 1 0 15.6 1 1 21.6 POWER SUPPLY BYPASSING As with any power amplifier, proper supply bypassing is critical for low noise performance and high power supply rejection. The capacitors connected to the bypass and power supply pins should be placed as close to the LM4869 as possible. The capacitor connected between the bypass pin and ground improves the internal bias voltage's stability, producing improved PSRR. The improvements to PSRR increase as the bypass pin capacitor value increases. Typical applications employ a 5V regulator with 10µF and a 0.1µF filter capacitors that aid in supply stability. Their presence, however, does not eliminate the need for bypassing the LM4869's supply pins. The selection of bypass capacitor values, especially CB, depends on desired PSRR requirements, click and pop performance (as explained in the Selecting External Components section), system cost, and size constraints. MICRO-POWER SHUTDOWN The LM4869 features an active-low micro-power shutdown mode. The voltage applied to the SHUTDOWN pin controls the LM4869's shutdown function. Activate micro-power shutdown by applying 0V to the SHUTDOWN pin. The logic threshold is typically 0.4V for a logic low and 1.5V for a logic high. When active, the LM4869's micro-power shutdown feature turns off the amplifier's bias circuitry, disables the internal VDD/2 generator, and forces the amplifier outputs into a high impedance state. The result is greatly reduced power supply current. The low 0.1µA typical shutdown current is achieved by applying a voltage to the SHUTDOWN pin that is as near to GND as possible. A voltage that is greater than GND may increase the shutdown current. 14 Submit Documentation Feedback Copyright © 2002–2013, Texas Instruments Incorporated Product Folder Links: LM4869 OBSOLETE LM4869 www.ti.com SNAS168D – MAY 2002 – REVISED APRIL 2013 There are a few methods to control the micro-power shutdown. These include using a single-pole, single-throw switch (SPST), a microprocessor, or a microcontroller. When using a switch, connect a 100kΩ pull-down resistor between the SHUTDOWN pin and GND and the SPST switch between the SHUTDOWN pin and VDD. Select normal amplifier operation by closing the switch. Opening the switch applies GND to the SHUTDOWN pin, activating micro-power shutdown. The switch and resistor ensure that the SHUTDOWN pin will not float. This prevents unwanted state changes. In a system with a microprocessor or a microcontroller, use a digital output to apply the active-state voltage to the SHUTDOWN pin. Driving the SHUTDOWN pin with active circuitry eliminates the pull-down resistor. Table 1. LOGIC LEVEL TRUTH TABLE FOR SHUTDOWN OPERATION SHUTDOWN OPERATIONAL MODE High Full Power, stereo BTL amplifiers Low Micro-power Shutdown SELECTING PROPER EXTERNAL COMPONENTS Optimizing the LM4869's performance requires properly selecting external components. Though the LM4869 operates well when using external components with wide tolerances, best performance is achieved by optimizing component values. The LM4869 is unity-gain stable, giving a designer maximum design flexibility. The gain should be set to no more than a given application requires. This allows the amplifier to achieve minimum THD+N and maximum signal-to-noise ratio. These parameters are compromised as the closed-loop gain increases. However, low gain demands input signals with greater voltage swings to achieve maximum output power. Fortunately, many signal sources such as audio CODECs have outputs of 1VRMS (2.83VP-P). Please refer to the Audio Power Amplifier Design section for more information on selecting the proper gain. Input Capacitor Value Selection Amplifying the lowest audio frequencies requires high value input coupling capacitors (CI, C2 and C3, C4) in Figure 1. A high value capacitor can be expensive and may compromise space efficiency in portable designs. In many cases, however, the speakers used in portable systems, whether internal or external, have little ability to reproduce signals with frequencies below 150Hz. Applications using speakers with this limited frequency response reap little improvement by using large input capacitor. Besides effecting system cost and size, CI - C4 can also affect on the LM4869's turn-on and turn-off transient ("click and pop") performance. When the supply voltage is first applied, a transient may be created as the charge on the input capacitor changes from zero to a quiescent state. The magnitude of the transient is proportional to the value of, and more importantly, the mismatch between, the capacitors connected to a given pair of inverting and non-inverting inputs. The better the match, the less the transient magnitude. Higher value capacitors need more time to reach a quiescent DC voltage (usually VDD/2) when charged with a fixed current. This fixed current is supplied through amplifiers input pins. Thus, selecting an input capacitor value that is no higher than necessary to meet the desired -3dB frequency will reduce turn-on time and help ensure that transients are minimized. The LM4869's nominal input resistance (Ri) is 25kΩ (20kΩ, minimum) and the input capacitor, Ci, form high pass filter with a -3dB low frequency limit defined by Equation 5. f-3dB = 1/2π(25kΩ)Ci (5) As an example when using a speaker with a low frequency limit of 150Hz, CI, is 0.047µF. The 0.47µF CI shown in Figure 1 allows the LM4869 to drive high efficiency, full range speaker whose response extends below 30Hz. Submit Documentation Feedback Copyright © 2002–2013, Texas Instruments Incorporated Product Folder Links: LM4869 15 OBSOLETE LM4869 SNAS168D – MAY 2002 – REVISED APRIL 2013 www.ti.com Bypass Capacitor Value Selection Besides optimizing the input capacitor value, careful consideration should be paid to value of CB, the capacitor connected between the BYPASS pin and ground. Since CB determines how fast the LM4869 settles to its quiescent operating state, its value is critical when minimizing turn-on transients. The slower the LM4869's outputs ramp to their quiescent DC voltage (nominally ½ VDD), the smaller the turn-on transient. Choosing CB equal to 0.47µF along with a small value of Ci (in the range of 0.047µF to 0.47µF), produces a transient-free turn-on and shutdown function. As discussed above, choosing Ci no larger than necessary for the desired bandwidth helps minimize turn-on transients. OPTIMIZING OUTPUT TRANSIENT REDUCTION (CLICK AND POP PERFORMANCE) The LM4869 contains circuitry to minimize turn-on and shutdown transients or 'clicks and pop'. For this discussion, turn-on refers to either applying the power supply voltage or when the shutdown mode is deactivated. While the power supply voltage is ramping to its final value, the LM4869's internal amplifiers are configured as unity gain buffers. An internal current source changes the voltage of the BYPASS pin in a controlled, linear manner. Ideally, the amplifier inputs and outputs track the voltage applied to the BYPASS pin. The gain of the internal amplifiers remains unity until the voltage on the bypass pin reaches 1/2 VDD. As soon as the voltage on the BYPASS pin is stable, the device becomes fully operational. Although the bypass pin current can not be modified, changing the size of CB alters the device's turn-on time and the magnitude of output transients. Increasing the value of CB reduces the magnitude of turn-on transients. However, this presents a tradeoff: as the size of CB increases, the turn-on time increases. There is a linear relationships between the size of CB + 2(CI) and the turn-on time. The table shows some typical turn-on times for various values of CB: Ton CB Ci = 0.47µF Ci = 0.33µF 0.01µF 110ms 80ms 0.1µF 120ms 90ms 0.22µF 140ms 100ms 0.47µF 170ms 140ms 1.0µF 240ms 210ms In order eliminate 'clicks and pops', all capacitors must be discharged before turn-on. Rapidly switching VDD may not allow the capacitors to fully discharge, which may cause 'clicks and pops'. AUDIO POWER AMPLIFIER DESIGN Audio Amplifier Design: Driving 1W into an 8Ω Load The following are the desired operational parameters: Power Output: 1 WRMS Load Impedance: 8Ω Input Level: 1 VRMS Input Impedance: 20 kΩ Bandwidth: 100 Hz−20 kHz ± 0.25 dB The design begins by specifying the minimum supply voltage necessary to obtain the desired output power. One way to find the minimum supply voltage is to use the Output Power vs Supply Voltage curve in the Typical Performance Characteristics section. Another way, using Equation 6, is to calculate the peak output voltage necessary to achieve the desired output power for a given load impedance. To ac-count for the amplifier's dropout voltage, two additional volt-ages, based on the Dropout Voltage vs Supply Voltage in the Typical Performance Characteristics curves, must be added to the result obtained by Equation 6. The result is Equation 7. 16 Submit Documentation Feedback Copyright © 2002–2013, Texas Instruments Incorporated Product Folder Links: LM4869 OBSOLETE LM4869 www.ti.com SNAS168D – MAY 2002 – REVISED APRIL 2013 (6) (7) VDD ≥ (VOUTPEAK+ (VODTOP + VODBOT)) The Output Power vs Supply Voltage graph for an 8Ω load indicates a minimum supply voltage of 4.6V. This is easily met by the commonly used 5V supply voltage. The additional voltage creates the benefit of headroom, allowing the LM4869 to produce peak output power in excess of 1W without clipping or other audible distortion. The choice of supply voltage must also not create a situation that violates of maximum power dissipation as explained above in the Power Dissipation section. After satisfying the LM4869's power dissipation requirements, the minimum differential gain is found using Equation (8). (8) Thus, a minimum gain of 2.83 allows the LM4869's to reach full output swing and maintain low noise and THD+N performance. For this example, let AVD = 3. In the example design, the gain will be set to 10dB (AVD = 3.2) by applying a logic low to GAIN 0 and a logic high to GAIN 1. The last step in this design example is setting the amplifier's -3dB frequency bandwidth. To achieve the desired ±0.25dB pass band magnitude variation limit, the low frequency response must extend to at least one-fifth the lower bandwidth limit and the high frequency response must extend to at least five times the upper bandwidth limit. This extended bandwith produces a gain variation of -0.17dB at the bandwith's limits, well within the ±0.25dB desired limit. The results are an fL = 100Hz/5 = 20Hz (9) and an fH = 20kHz x 5 = 100kHz (10) As mentioned in the External Components section, the internal input resistor and Ci create a high pass filter that sets the amplifier's lower bandpass frequency limit. Find the coupling capacitor's value using Equation (11). f-3dB = 1/2π(20kΩ)CI (11) The result is (using the minimum RIN resistor value to ensure correct magnitude response at 20Hz) 1/(2π*20kΩ*20Hz) = 0.398μF (12) Use a 0.39μF capacitor, the closest standard value. The product of the desired high frequency cutoff (100kHz in this example) and the differential gain, AVD, determines the upper passband response limit. With AVD = 3.2 and fH = 100kHz, the closed-loop gain bandwidth product (GBWP) is 320kHz. This is less than the LM4869's 3.5MHz GBWP. With this margin, the amplifier can be used in designs that require more differential gain while avoiding performance-restricting bandwidth limitations. Submit Documentation Feedback Copyright © 2002–2013, Texas Instruments Incorporated Product Folder Links: LM4869 17 OBSOLETE LM4869 SNAS168D – MAY 2002 – REVISED APRIL 2013 www.ti.com Recommended Printed Circuit Board Layout Figure 41 through Figure 45 show the recommended four-layer PC board layout that is optimized for the 20-pin PWP-packaged LM4869 and associated external components. This circuit is designed for use with an external 5V supply and 3Ω (or higher) speakers (or load resistors). This circuit board is easy to use. Apply 5V and ground to the board's VDD and GND terminals, respectively. Connect speakers (or load resistors) between the board's -OUTA and +OUTA and -OUTB and +OUTB pads. Apply balanced differential stereo input signals to the input pins labeled "-INA," "+INA," "-INB," and "+INB." Figure 41. Recommended MH PC Board Layout: Component-Side Silkscreen 18 Submit Documentation Feedback Copyright © 2002–2013, Texas Instruments Incorporated Product Folder Links: LM4869 OBSOLETE LM4869 www.ti.com SNAS168D – MAY 2002 – REVISED APRIL 2013 Figure 42. Recommended MH PC Board Layout: Component-Side Layout Figure 43. Recommended MH PC Board Layout: Upper Inner-Layer Layout Submit Documentation Feedback Copyright © 2002–2013, Texas Instruments Incorporated Product Folder Links: LM4869 19 OBSOLETE LM4869 SNAS168D – MAY 2002 – REVISED APRIL 2013 www.ti.com Figure 44. Recommended MH PC Board Layout: Lower Inner-Layer Layout Figure 45. Recommended MH PC Board Layout: Bottom-Side Layout 20 Submit Documentation Feedback Copyright © 2002–2013, Texas Instruments Incorporated Product Folder Links: LM4869 OBSOLETE LM4869 www.ti.com SNAS168D – MAY 2002 – REVISED APRIL 2013 REVISION HISTORY Changes from Revision C (April 2013) to Revision D • Page Changed layout of National Data Sheet to TI format .......................................................................................................... 20 Submit Documentation Feedback Copyright © 2002–2013, Texas Instruments Incorporated Product Folder Links: LM4869 21 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components as meeting ISO/TS16949 requirements, mainly for automotive use. In any case of use of non-designated products, TI will not be responsible for any failure to meet ISO/TS16949. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2013, Texas Instruments Incorporated
LM4869MH/NOPB 价格&库存

很抱歉,暂时无法提供与“LM4869MH/NOPB”相匹配的价格&库存,您可以联系我们找货

免费人工找货