0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LM4893MABD

LM4893MABD

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    -

  • 描述:

    BOARD EVALUATION LM4893MA

  • 数据手册
  • 价格&库存
LM4893MABD 数据手册
LM4893 LM4893 1.1 Watt Audio Power Amplifier Literature Number: SNAS159D October 5, 2011 1.1 Watt Audio Power Amplifier General Description Key Specifications The LM4893 is an audio power amplifier primarily designed for demanding applications in mobile phones and other portable communication device applications. It is capable of delivering 1.1 watt of continuous average power to an 8Ω BTL load with less than 1% distortion (THD+N) from a 5VDC power supply. Boomer audio power amplifiers were designed specifically to provide high quality output power with a minimal amount of external components. The LM4893 does not require output coupling capacitors or bootstrap capacitors, and therefore is ideally suited for lower-power portable applications where minimal space and power consumption are primary requirements. The LM4893 features a low-power consumption global shutdown mode, which is achieved by driving the shutdown pin with logic low. Additionally, the LM4893 features an internal thermal shutdown protection mechanism. The LM4893 contains advanced pop & click circuitry which eliminates noises which would otherwise occur during turn-on and turn-off transitions. The LM4893 is unity-gain stable and can be configured by external gain-setting resistors. ■ Improved PSRR at 5V, 3V, & 217Hz 62dB (typ) ■ Higher Power Output at 5V & 1% THD 1.1W (typ) ■ Higher Power Output at 3V & 1% THD 350mW (typ) ■ Shutdown Current 0.1µA (typ) Features ■ No output coupling capacitors, snubber networks or bootstrap capacitors required Unity gain stable Ultra low current shutdown mode Instantaneous turn-on time BTL output can drive capacitive loads up to 100pF Advanced pop & click circuitry eliminates noises during turn-on and turn-off transitions ■ 2.2V - 5.5V operation ■ Available in space-saving µSMD, SO, and MSOP packages ■ ■ ■ ■ ■ Applications ■ Mobile Phones ■ PDAs ■ Portable electronic devices Typical Application 20038001 FIGURE 1. Typical Audio Amplifier Application Circuit Boomer® is a registered trademark of National Semiconductor Corporation. © 2011 National Semiconductor Corporation 200380 200380 Version 5 Revision 8 www.national.com Print Date/Time: 2011/10/05 07:43:13 LM4893 1.1 Watt Audio Power Amplifier OBSOLETE LM4893 LM4893 9 Bump micro SMD Marking Connection Diagrams 9 Bump micro SMD 20038087 Top View X - Date Code T - Die Traceability G - Boomer Family 93 - LM4893ITL SO Marking 20038086 Top View Order Number LM4893ITL, LM4893ITLX See NS Package Number TLA09AAA Small Outline (SO) Package 20038092 Top View XY - Date Code TT - Die Traceability Bottom 2 lines - Part Number MSOP Marking 20038091 Top View Order Number LM4893MA See NS package Number M08A Mini Small Outline (MSOP) Package 20038085 Top View G - Boomer Family 93 - LM4893MM 20038084 Top View NC = No Connect Order Number LM4893MM See NS Package Number MUB10A www.national.com 2 200380 Version 5 Revision 8 Print Date/Time: 2011/10/05 07:43:13  θJA (TLA09AAA) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.  θJC (MUB10A) 56°C/W  θJA (MUB10A) 190°C/W Supply Voltage (Note 9) Storage Temperature Input Voltage Power Dissipation (Note 3) ESD Susceptibility (Note 4) ESD Susceptibility (Note 5) Junction Temperature Thermal Resistance 6.0V −65°C to +150°C −0.3V to VDD +0.3V Internally Limited 2000V 200V 150°C Electrical Characteristics VDD = 5V 180°C/W (Note 10)  θJC (M08A) 35°C/W  θJA (M08A) 150°C/W Operating Ratings Temperature Range TMIN ≤ TA ≤ TMAX Supply Voltage −40°C ≤ TA ≤ 85°C 2.2V ≤ VDD ≤ 5.5V (Note 1, Note 2) The following specifications apply for the circuit shown in Figure 1 unless otherwise specified. Limits apply for TA = 25°C. LM4893 Symbol Parameter Conditions Typical Limit (Note 6) (Note 7) (Note 8) 5 10 0.1 2.0 µA (max) 5 40 mV (max) 0.9 W (min) Units (Limits) IDD Quiescent Power Supply Current VIN = 0V, 8Ω BTL ISD Shutdown Current Vshutdown = GND VOS Output Offset Voltage Po Output Power THD = 1% (max); f = 1kHz 1.1 THD+N Total Harmonic Distortion+Noise Po = 0.4Wrms; f = 1kHz 0.1 PSRR Power Supply Rejection Ratio VSDIH Shutdown High Input Voltage 1.4 V (min) VSDIL Shutdown Low Input Voltage 0.4 V (max) NOUT Output Noise % Vripple = 200mVsine p-p, CB = 1.0µF 68 (f = 1kHz) Input terminated with 10Ω to ground 62 (f = 217Hz) A-Weighted; Measured across 8Ω BTL Input terminated with 10Ω to ground Electrical Characteristics VDD = 3.0V mA (max) 55 dB (min) µVRMS 26 (Note 1, Note 2) The following specifications apply for the circuit shown in Figure 1 unless otherwise specified. Limits apply for TA = 25°C. LM4893 Symbol Parameter Conditions Typical Limit (Note 6) (Note 7) (Note 8) Units (Limits) IDD Quiescent Power Supply Current VIN = 0V, 8Ω BTL 4.5 9 mA (max) ISD Shutdown Current Vshutdown = GND 0.1 2.0 µA (max) VOS Output Offset Voltage 5 40 mV (max) Po Output Power THD = 1% (max); f = 1kHz 350 320 mW THD+N Total Harmonic Distortion+Noise Po = 0.15Wrms; f = 1kHz 0.1 Vripple = 200mVsine p-p, CB = 1.0µF 68 (f = 1kHz) 62 (f = 217Hz) Input terminated with 10Ω to ground % PSRR Power Supply Rejection Ratio VSDIH Shutdown High Input Voltage 1.4 V (min) VSDIL Shutdown Low Input Voltage 0.4 V (max) NOUT Output Noise A-Weighted; Measured across 8Ω BTL Input terminated with 10Ω to ground 26 3 200380 Version 5 Revision 8 Print Date/Time: 2011/10/05 07:43:13 55 dB (min) µVRMS www.national.com LM4893 Absolute Maximum Ratings (Note 2) LM4893 Electrical Characteristics VDD = 2.6V (Note 1, Note 2) The following specifications apply for the circuit shown in Figure 1 unless otherwise specified. Limits apply for TA = 25°C. LM4893 Symbol Parameter Conditions Typical Limit (Note 6) (Note 7) (Note 8) Units (Limits) IDD Quiescent Power Supply Current VIN = 0V, 8Ω BTL 3.5 mA ISD Shutdown Current Vshutdown = GND 0.1 µA VOS Output Offset Voltage 5 mV THD = 1% (max); f = 1kHz Po THD+N PSRR Output Power Total Harmonic Distortion+Noise Power Supply Rejection Ratio RL = 8Ω 250 RL = 4Ω 350 Po = 0.1Wrms; f = 1kHz 0.1 Vripple = 200mVsine p-p, CB = 1.0µF 55 (f = 1kHz) 55 (f = 217Hz) Input terminated with 10Ω to ground mW % dB Note 1: All voltages are measured with respect to the ground pin, unless otherwise specified. Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance. Note 3: The maximum power dissipation must be derated at elevated temperatures and is dictated by TJMAX, θJA, and the ambient temperature TA. The maximum allowable power dissipation is PDMAX = (TJMAX–TA)/θJA or the number given in Absolute Maximum Ratings, whichever is lower. For the LM4893, see power derating curves for additional information. Note 4: Human body model, 100 pF discharged through a 1.5 kΩ resistor. Note 5: Machine Model, 220pF–240pF discharged through all pins. Note 6: Typicals are measured at 25°C and represent the parametric norm. Note 7: Limits are guaranteed to National's AOQL (Average Outgoing Quality Level). Note 8: For micro SMD only, shutdown current is measured in a Normal Room Environment. Exposure to direct sunlight will increase ISD by a maximum of 2µA. Note 9: If the product is in shutdown mode, and VDD exceeds 6V (to a max of 8V VDD), then most of the excess current will flow through the ESD protection circuits. If the source impedance limits the current to a max of 10ma, then the part will be protected. If the part is enabled when VDD is above 6V, circuit performance will be curtailed or the part may be permanently damaged. Note 10: All bumps have the same thermal resistance and contribute equally when used to lower thermal resistance. Note 11: Maximum power dissipation (PDMAX) in the device occurs at an output power level significantly below full output power. PDMAX can be calculated using Equation 1 shown in the Application section. It may also be obtained from the power dissipation graphs. www.national.com 4 200380 Version 5 Revision 8 Print Date/Time: 2011/10/05 07:43:13 LM4893 External Components Description (Figure 1) Components Functional Description 1. Ri Inverting input resistance which sets the closed-loop gain in conjunction with Rf. This resistor also forms a high 2. Ci Input coupling capacitor which blocks the DC voltage at the amplifiers input terminals. Also creates a highpass filter 3. Rf Feedback resistance which sets the closed-loop gain in conjunction with Ri. 4. CS Supply bypass capacitor which provides power supply filtering. Refer to the Power Supply Bypassing section for information concerning proper placement and selection of the supply bypass capacitor. 5. CB Bypass pin capacitor which provides half-supply filtering. Refer to the section, Proper Selection of External Components, for information concerning proper placement and selection of CB. pass filter with Ci at fC= 1/(2π RiCi). with Ri at fc = 1/(2π RiCi). Refer to the section, Proper Selection of External Components, for an explanation of how to determine the value of Ci. 5 200380 Version 5 Revision 8 Print Date/Time: 2011/10/05 07:43:13 www.national.com LM4893 Typical Performance Characteristics THD+N vs Frequency at VDD = 5V, 8Ω RL, and PWR = 250mW THD+N vs Frequency at VDD = 3.0V, 8Ω RL, and PWR = 150mW 20038037 20038038 THD+N vs Frequency at VDD = 2.6V, 8Ω RL, and PWR = 100mW THD+N vs Frequency at VDD = 2.6V, 4Ω RL, and PWR = 100mW 20038039 www.national.com 20038040 6 200380 Version 5 Revision 8 Print Date/Time: 2011/10/05 07:43:13 LM4893 THD+N vs Power Out @ VDD = 5V, 8Ω RL, 1kHz THD+N vs Power Out @ VDD = 3.0V, 8Ω RL, 1kHz 20038041 20038042 THD+N vs Power Out @ VDD = 2.6V, 8Ω RL, 1kHz THD+N vs Power Out @ VDD = 2.6V, 4Ω RL, 1kHz 20038043 20038044 7 200380 Version 5 Revision 8 Print Date/Time: 2011/10/05 07:43:13 www.national.com LM4893 Power Supply Rejection Ratio (PSRR) @ VDD = 5V Power Supply Rejection Ratio (PSRR) @ VDD = 3V 20038045 20038073 Input terminated with 10Ω R Input terminated with 10Ω R Power Supply Rejection Ratio (PSRR) @ VDD = 2.6V Power Dissipation vs Output Power @ VDD = 5V 20038046 20038047 Input terminated with 10Ω R www.national.com 8 200380 Version 5 Revision 8 Print Date/Time: 2011/10/05 07:43:13 LM4893 Power Dissipation vs Output Power VDD = 3.0V Power Dissipation vs Output Power @ VDD = 2.6V 20038049 20038048 Power Derating - MSOP PDMAX = 670mW for 5V, 8Ω Power Derating - SOP PDMAX = 670mW for 5V, 8Ω 20038079 20038093 Power Derating - 9 Bump µSMD PDMAX = 670mW for 5V, 8Ω Output Power vs Supply Voltage 20038051 20038081 9 200380 Version 5 Revision 8 Print Date/Time: 2011/10/05 07:43:13 www.national.com LM4893 Output Power vs Supply Voltage Output Power vs Load Resistance 20038050 20038074 Clipping (Dropout) Voltage vs Supply Voltage Supply Current vs Shutdown Voltage 20038075 20038052 Shutdown Hysterisis Voltage VDD = 5V Shutdown Hysterisis Voltage VDD = 3V 20038076 www.national.com 20038077 10 200380 Version 5 Revision 8 Print Date/Time: 2011/10/05 07:43:13 LM4893 Shutdown Hysterisis Voltage VDD = 2.6V Open Loop Frequency Response 20038054 20038078 Frequency Response vs Input Capacitor Size 20038056 11 200380 Version 5 Revision 8 Print Date/Time: 2011/10/05 07:43:13 www.national.com LM4893 voltage, higher load impedance, or reduced ambient temperature. Internal power dissipation is a function of output power. Refer to the Typical Performance Characteristics curves for power dissipation information for different output powers and output loading. Application Information BRIDGE CONFIGURATION EXPLANATION As shown in Figure 1, the LM4893 has two operational amplifiers internally, allowing for a few different amplifier configurations. The first amplifier's gain is externally configurable, while the second amplifier is internally fixed in a unity-gain, inverting configuration. The closed-loop gain of the first amplifier is set by selecting the ratio of Rf to Ri while the second amplifier's gain is fixed by the two internal 20 kΩ resistors. Figure 1 shows that the output of amplifier one serves as the input to amplifier two which results in both amplifiers producing signals identical in magnitude, but out of phase by 180°. Consequently, the differential gain for the IC is POWER SUPPLY BYPASSING As with any amplifier, proper supply bypassing is critical for low noise performance and high power supply rejection. The capacitor location on both the bypass and power supply pins should be as close to the device as possible. Typical applications employ a 5V regulator with 10 µF tantalum or electrolytic capacitor and a ceramic bypass capacitor which aid in supply stability. This does not eliminate the need for bypassing the supply nodes of the LM4893. The selection of a bypass capacitor, especially CB, is dependent upon PSRR requirements, click and pop performance (as explained in the section, Proper Selection of External Components), system cost, and size constraints. AVD= 2 *(Rf/Ri) By driving the load differentially through outputs Vo1 and Vo2, an amplifier configuration commonly referred to as “bridged mode” is established. Bridged mode operation is different from the classical single-ended amplifier configuration where one side of the load is connected to ground. A bridge amplifier design has a few distinct advantages over the single-ended configuration, as it provides differential drive to the load, thus doubling output swing for a specified supply voltage. Four times the output power is possible as compared to a single-ended amplifier under the same conditions. This increase in attainable output power assumes that the amplifier is not current limited or clipped. In order to choose an amplifier's closed-loop gain without causing excessive clipping, please refer to the Audio Power Amplifier Design section. A bridge configuration, such as the one used in LM4893, also creates a second advantage over single-ended amplifiers. Since the differential outputs, Vo1 and Vo2, are biased at halfsupply, no net DC voltage exists across the load. This eliminates the need for an output coupling capacitor which is required in a single supply, single-ended amplifier configuration. Without an output coupling capacitor, the half-supply bias across the load would result in both increased internal IC power dissipation and also possible loudspeaker damage. SHUTDOWN FUNCTION In order to reduce power consumption while not in use, the LM4893 contains a SHUTDOWN pin to externally turn off the amplifier's bias circuitry. This shutdown feature turns the amplifier off when a logic low is placed on the SHUTDOWN pin. By switching the SHUTDOWN pin to ground, the LM4893 supply current draw will be minimized in idle mode. While the device will be disabled with SHUTDOWN pin voltages less than 0.4VDC, the idle current may be greater than the typical value of 0.1µA. (Idle current is measured with the SHUTDOWN pin tied to ground). In many applications, a microcontroller or microprocessor output is used to control the shutdown circuitry to provide a quick, smooth transition into shutdown. Another solution is to use a single-pole, single-throw switch in conjunction with an external pull-up resistor. When the switch is closed, the SHUTDOWN pin is connected to ground which disables the amplifier. If the switch is open, then the external pull-up resistor to VDD will enable the LM4893. This scheme guarantees that the SHUTDOWN pin will not float thus preventing unwanted state changes. PROPER SELECTION OF EXTERNAL COMPONENTS Proper selection of external components in applications using integrated power amplifiers is critical to optimize device and system performance. While the LM4893 is tolerant of external component combinations, consideration to component values must be used to maximize overall system quality. The LM4893 is unity-gain stable which gives the designer maximum system flexibility. The LM4893 should be used in low gain configurations to minimize THD+N values, and maximize the signal to noise ratio. Low gain configurations require large input signals to obtain a given output power. Input signals equal to or greater than 1 Vrms are available from sources such as audio codecs. Please refer to the section, Audio Power Amplifier Design, for a more complete explanation of proper gain selection. Besides gain, one of the major considerations is the closedloop bandwidth of the amplifier. To a large extent, the bandwidth is dictated by the choice of external components shown in Figure 1. The input coupling capacitor, Ci, forms a first order high pass filter which limits low frequency response. This value should be chosen based on needed frequency response for a few distinct reasons. POWER DISSIPATION Power dissipation is a major concern when designing a successful amplifier, whether the amplifier is bridged or singleended. A direct consequence of the increased power delivered to the load by a bridge amplifier is an increase in internal power dissipation. Since the LM4893 has two operational amplifiers in one package, the maximum internal power dissipation is 4 times that of a single-ended amplifier. The maximum power dissipation for a given application can be derived from the power dissipation graphs or from Equation 1. PDMAX = 4*(VDD)2/(2π2RL) (1) It is critical that the maximum junction temperature (TJMAX) of 150°C is not exceeded. TJMAX can be determined from the power derating curves by using PDMAX and the PC board foil area. By adding additional copper foil, the thermal resistance of the application can be reduced from a free air value of 150° C/W, resulting in higher PDMAX. Additional copper foil can be added to any of the leads connected to the LM4893. It is especially effective when connected to VDD, GND, and the output pins. Refer to the application information on the LM4893 reference design board for an example of good heat sinking. If TJMAX still exceeds 150°C, then additional changes must be made. These changes can include reduced supply www.national.com 12 200380 Version 5 Revision 8 Print Date/Time: 2011/10/05 07:43:13 LM4893 AUDIO POWER AMPLIFIER DESIGN Selection Of Input Capacitor Size Large input capacitors are both expensive and space hungry for portable designs. Clearly, a certain sized capacitor is needed to couple in low frequencies without severe attenuation. But in many cases the speakers used in portable systems, whether internal or external, have little ability to reproduce signals below 100 Hz to 150 Hz. Thus, using a large input capacitor may not increase actual system performance. In addition to system cost and size, click and pop performance is effected by the size of the input coupling capacitor, Ci. A larger input coupling capacitor requires more charge to reach its quiescent DC voltage (nominally 1/2 VDD). This charge comes from the output via the feedback and is apt to create pops upon device enable. Thus, by minimizing the capacitor size based on necessary low frequency response, turn-on pops can be minimized. Besides minimizing the input capacitor size, careful consideration should be paid to the bypass capacitor value. Bypass capacitor, CB, is the most critical component to minimize turnon pops since it determines how fast the LM4893 turns on. The slower the LM4893's outputs ramp to their quiescent DC voltage (nominally 1/2 VDD), the smaller the turn-on pop. Choosing CB equal to 1.0 µF along with a small value of Ci (in the range of 0.1 µF to 0.39 µF), should produce a virtually clickless and popless shutdown function. While the device will function properly, (no oscillations or motorboating), with CB equal to 0.1 µF, the device will be much more susceptible to turn-on clicks and pops. Thus, a value of CB equal to 1.0 µF is recommended in all but the most cost sensitive designs. Figure 2 shows the LM4893's turn-on characteristics when coming out of shutdown mode. Trace B is the differential output signal across a BTL 8Ω load. The LM4893's active-low SHUTDOWN pin is driven by the logic signal shown in Trace A. Trace C is the Vo1- output signal and Trace D is the Vo2+ output signal. A shown in Figure 2, the differential output signal Trace B appears just as Trace A transitions from logic low to logic high (turn-on condition). A 1W/8Ω Audio Amplifier Given: Power Output 1 Wrms 8Ω Load Impedance Input Level 1 Vrms Input Impedance 20 kΩ Bandwidth 100 Hz–20 kHz ± 0.25 dB A designer must first determine the minimum supply rail to obtain the specified output power. By extrapolating from the Output Power vs Supply Voltage graphs in the Typical Performance Characteristics section, the supply rail can be easily found. A second way to determine the minimum supply rail is to calculate the required Vopeak using Equation 2 and add the output voltage. Using this method, the minimum supply voltage would be (Vopeak + (VODTOP + VODBOT)), where VODBOT and VODTOP are extrapolated from the Dropout Voltage vs Supply Voltage curve in the Typical Performance Characteristics section. (2) 5V is a standard voltage, in most applications, chosen for the supply rail. Extra supply voltage creates headroom that allows the LM4893 to reproduce peaks in excess of 1W without producing audible distortion. At this time, the designer must make sure that the power supply choice along with the output impedance does not violate the conditions explained in the Power Dissipation section. Once the power dissipation equations have been addressed, the required differential gain can be determined from Equation 3. (3) AVD = (Rf/Ri) 2 From Equation 3, the minimum AVD is 2.83; use AVD = 3. Since the desired input impedance was 20 kΩ, and with a AVD of 3, a ratio of 1.5:1 of Rf to Ri results in an allocation of Ri = 20 kΩ and Rf = 30 kΩ. The final design step is to address the bandwidth requirements which must be stated as a pair of −3 dB frequency points. Five times away from a −3 dB point is 0.17 dB down from passband response which is better than the required ±0.25 dB specified. fL = 100 Hz/5 = 20 Hz fH = 20 kHz * 5 = 100 kHz As stated in the External Components section, Ri in conjunction with Ci create a highpass filter. Ci ≥ 1/(2π*20 kΩ*20 Hz) = 0.397 µF; use 0.39 µF The high frequency pole is determined by the product of the desired frequency pole, fH, and the differential gain, AVD. With a AVD = 3 and fH = 100 kHz, the resulting GBWP = 300 kHz which is much smaller than the LM4893 GBWP of 10 MHz. This figure displays that if a designer has a need to design an amplifier with a higher differential gain, the LM4893 can still be used without running into bandwidth limitations. 20038097 FIGURE 2. LM4893 Turn-on Characteristics Differential output signal (Trace B) is devoid of transients. The SHUTDOWN pin is driven by a shutdown signal (Trace A). The inverting output (Trace C) and the non-inverting output (Trace D) are applied across an 8Ω BTL load. 13 200380 Version 5 Revision 8 Print Date/Time: 2011/10/05 07:43:13 www.national.com LM4893 20038088 FIGURE 3. HIGHER GAIN AUDIO AMPLIFIER The LM4893 is unity-gain stable and requires no external components besides gain-setting resistors, an input coupling capacitor, and proper supply bypassing in the typical application. However, if a closed-loop differential gain of greater than 10 is required, a feedback capacitor (C4) may be needed as shown in Figure 2 to bandwidth limit the amplifier. This feedback capacitor creates a low pass filter that eliminates www.national.com possible high frequency oscillations. Care should be taken when calculating the -3dB frequency in that an incorrect combination of R3 and C4 will cause rolloff before 20kHz. A typical combination of feedback resistor and capacitor that will not produce audio band high frequency rolloff is R3 = 20kΩ and C4 = 25pf. These components result in a -3dB point of approximately 320 kHz. 14 200380 Version 5 Revision 8 Print Date/Time: 2011/10/05 07:43:13 LM4893 20038089 FIGURE 4. DIFFERENTIAL AMPLIFIER CONFIGURATION FOR LM4893 20038090 FIGURE 5. REFERENCE DESIGN BOARD and LAYOUT - micro SMD 15 200380 Version 5 Revision 8 Print Date/Time: 2011/10/05 07:43:13 www.national.com LM4893 LM4893 SO BOARD ARTWORK Silk Screen 20038098 Top Layer 20038095 Bottom Layer 20038096 www.national.com 16 200380 Version 5 Revision 8 Print Date/Time: 2011/10/05 07:43:13 LM4893 20038068 FIGURE 6. REFERENCE DESIGN BOARD and PCB LAYOUT GUIDELINES - MSOP & SO Boards 17 200380 Version 5 Revision 8 Print Date/Time: 2011/10/05 07:43:13 www.national.com LM4893 LM4893 MSOP DEMO BOARD ARTWORK Silk Screen 20038065 Top Layer 20038066 Bottom Layer 20038067 www.national.com 18 200380 Version 5 Revision 8 Print Date/Time: 2011/10/05 07:43:13 LM4893 Mono LM4893 Reference Design Boards Bill of Material for all 3 Demo Boards Item Part Number Part Description Qty 1 551011208-001 LM4893 Mono Reference Design Board 1 10 482911183-001 LM4893 Audio AMP 1 U1 20 151911207-001 Tant Cap 1uF 16V 10 1 C1 21 151911207-002 Cer Cap 0.39uF 50V Z5U 20% 1210 1 C2 25 152911207-001 Tant Cap 1.0uF 16V 10 1 C3 30 472911207-001 Res 20K Ohm 1/10W 5 3 R1, R2, R3 35 210007039-002 Jumper Header Vertical Mount 2X1 0.100 2 J1, J2 PCB LAYOUT GUIDELINES This section provides practical guidelines for mixed signal PCB layout that involves various digital/analog power and ground traces. Designers should note that these are only "rule-of-thumb" recommendations and the actual results will depend heavily on the final layout. SINGLE-POINT POWER / GROUND CONNECTIONS The analog power traces should be connected to the digital traces through a single point (link). A "Pi-filter" can be helpful in minimizing high frequency noise coupling between the analog and digital sections. It is further recommended to put digital and analog power traces over the corresponding digital and analog ground traces to minimize noise coupling. General Mixed Signal Layout Recommendations PLACEMENT OF DIGITAL AND ANALOG COMPONENTS All digital components and high-speed digital signals traces should be located as far away as possible from analog components and circuit traces. POWER AND GROUND CIRCUITS For 2 layer mixed signal design, it is important to isolate the digital power and ground trace paths from the analog power and ground trace paths. Star trace routing techniques (bringing individual traces back to a central point rather than daisy chaining traces together in a serial manner) can have a major impact on low level signal performance. Star trace routing refers to using individual traces to feed power and ground to each circuit or even device. This technique will take require a greater amount of design time but will not increase the final price of the board. The only extra parts required may be some jumpers. AVOIDING TYPICAL DESIGN / LAYOUT PROBLEMS Avoid ground loops or running digital and analog traces parallel to each other (side-by-side) on the same PCB layer. When traces must cross over each other do it at 90 degrees. Running digital and analog traces at 90 degrees to each other from the top to the bottom side as much as possible will minimize capacitive noise coupling and cross talk. 19 200380 Version 5 Revision 8 Ref Designator Print Date/Time: 2011/10/05 07:43:13 www.national.com LM4893 Physical Dimensions inches (millimeters) unless otherwise noted 9-Bump micro SMD Order Number LM4893ITL, LM4893ITLX NS Package Number TLA09AAA X1 = 1.514±0.03 X2 = 1.514±0.03 X3 = 0.60±0.075 www.national.com 20 200380 Version 5 Revision 8 Print Date/Time: 2011/10/05 07:43:13 LM4893 SO Order Number LM4893MA NS Package Number M08A 21 200380 Version 5 Revision 8 Print Date/Time: 2011/10/05 07:43:13 www.national.com LM4893 MSOP Order Number LM4893MM NS Package Number MUB10A www.national.com 22 200380 Version 5 Revision 8 Print Date/Time: 2011/10/05 07:43:13 LM4893 Notes 23 200380 Version 5 Revision 8 Print Date/Time: 2011/10/05 07:43:13 www.national.com LM4893 1.1 Watt Audio Power Amplifier Notes For more National Semiconductor product information and proven design tools, visit the following Web sites at: www.national.com Products Design Support Amplifiers www.national.com/amplifiers WEBENCH® Tools www.national.com/webench Audio www.national.com/audio App Notes www.national.com/appnotes Clock and Timing www.national.com/timing Reference Designs www.national.com/refdesigns Data Converters www.national.com/adc Samples www.national.com/samples Interface www.national.com/interface Eval Boards www.national.com/evalboards LVDS www.national.com/lvds Packaging www.national.com/packaging Power Management www.national.com/power Green Compliance www.national.com/quality/green Switching Regulators www.national.com/switchers Distributors www.national.com/contacts LDOs www.national.com/ldo Quality and Reliability www.national.com/quality LED Lighting www.national.com/led Feedback/Support www.national.com/feedback Voltage References www.national.com/vref Design Made Easy www.national.com/easy www.national.com/powerwise Applications & Markets www.national.com/solutions Mil/Aero www.national.com/milaero PowerWise® Solutions Serial Digital Interface (SDI) www.national.com/sdi Temperature Sensors www.national.com/tempsensors SolarMagic™ www.national.com/solarmagic PLL/VCO www.national.com/wireless www.national.com/training PowerWise® Design University THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION (“NATIONAL”) PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL’S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS. EXCEPT AS PROVIDED IN NATIONAL’S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. LIFE SUPPORT POLICY NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein: Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness. National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders. Copyright© 2011 National Semiconductor Corporation For the most current product information visit us at www.national.com National Semiconductor Americas Technical Support Center Email: support@nsc.com www.national.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com 200380 Version 5 Revision 8 National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com Print Date/Time: 2011/10/05 07:43:13 National Semiconductor Japan Technical Support Center Email: jpn.feedback@nsc.com IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI’s terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI’s standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Applications Audio www.ti.com/audio Communications and Telecom www.ti.com/communications Amplifiers amplifier.ti.com Computers and Peripherals www.ti.com/computers Data Converters dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps DLP® Products www.dlp.com Energy and Lighting www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security Logic logic.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive Microcontrollers microcontroller.ti.com Video and Imaging RFID www.ti-rfid.com OMAP Mobile Processors www.ti.com/omap Wireless Connectivity www.ti.com/wirelessconnectivity TI E2E Community Home Page www.ti.com/video e2e.ti.com Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated
LM4893MABD 价格&库存

很抱歉,暂时无法提供与“LM4893MABD”相匹配的价格&库存,您可以联系我们找货

免费人工找货