0
登录后你可以
  • 下载海量资料
  • 学习在线课程
  • 观看技术视频
  • 写文章/发帖/加入社区
会员中心
创作中心
发布
  • 发文章

  • 发资料

  • 发帖

  • 提问

  • 发视频

创作活动
LM5022QDGSTQ1

LM5022QDGSTQ1

  • 厂商:

    BURR-BROWN(德州仪器)

  • 封装:

    TFSOP10

  • 描述:

    IC REG CTRLR BOOST/SEPIC 10VSSOP

  • 数据手册
  • 价格&库存
LM5022QDGSTQ1 数据手册
Sample & Buy Product Folder Support & Community Tools & Software Technical Documents Reference Design LM5022-Q1 SNVSAG9 – MARCH 2016 LM5022-Q1 2.2MHz, 60 V Low-Side Controller For Boost and SEPIC 1 Features 3 Description • The LM5022-Q1 is a high voltage low-side N-channel MOSFET controller ideal for use in boost and SEPIC regulators. It contains all of the features needed to implement single-ended primary topologies. Output voltage regulation is based on current-mode control, which eases the design of loop compensation while providing inherent input voltage feed-forward. The LM5022-Q1 includes a start-up regulator that operates over a wide input range of 6 V to 60 V. The PWM controller is designed for high-speed capability including an oscillator frequency range up to 2.2 MHz and total propagation delays less than 100 ns. Additional features include an error amplifier, precision reference, line undervoltage lockout, cycleby-cycle current limit, slope compensation, soft-start, external synchronization capability, and thermal shutdown. The LM5022-Q1 is available in the 10-pin VSSOP package. 1 • • • • • • • • • • • • AEC-Q100 Grade 1 Qualified with the following results: – Device Temperature Grade 1: -40°C to 125°C Ambient Operating Temperature Range – Device HBM ESD Classification Level 2 – Device CDM ESD Classification Level C5 Internal 60-V Start-Up Regulator 1-A Peak MOSFET Gate Driver VIN Range: 6 V to 60 V (operate down to 3 V after startup) Duty Cycle Limit of 90% Programmable UVLO with Hysteresis Cycle-by-Cycle Current Limit Single Resistor Oscillator Frequency Set Adjustable Switching Frequency to 2.2MHz External Clock Synchronization Slope Compensation Adjustable Soft Start 10-Pin VSSOP Package Device Information(1) PART NUMBER LM5022-Q1 PACKAGE BODY SIZE (NOM) VSSOP (10) 3.00 mm × 3.00 mm (1) For all available packages, see the orderable addendum at the end of the data sheet. 2 Applications • • Boost Converter SEPIC Converter Typical Application VIN L1 VO D1 Q1 CIN CO RS1 VIN OUT RUV2 RT UVLO CSS RUV1 SS LM5022 RT COMP RSNS CS CCS GND CF VCC RFB2 FB R1 C2 RFB1 C1 1 An IMPORTANT NOTICE at the end of this data sheet addresses availability, warranty, changes, use in safety-critical applications, intellectual property matters and other important disclaimers. PRODUCTION DATA. LM5022-Q1 SNVSAG9 – MARCH 2016 www.ti.com Table of Contents 1 2 3 4 5 6 7 Features .................................................................. Applications ........................................................... Description ............................................................. Revision History..................................................... Pin Configuration and Functions ......................... Specifications......................................................... 1 1 1 2 3 4 6.1 6.2 6.3 6.4 6.5 6.6 4 4 4 4 5 7 Absolute Maximum Ratings ...................................... ESD Ratings: LM5022-Q1 ........................................ Recommended Operating Conditions....................... Thermal Information .................................................. Electrical Characteristics .......................................... Typical Characteristics .............................................. 7.4 Device Functional Modes........................................ 12 8 Application and Implementation ........................ 14 8.1 Application Information............................................ 14 8.2 Typical Application ................................................. 14 9 Power Supply Recommendations...................... 28 10 Layout................................................................... 28 10.1 Layout Guidelines ................................................. 28 10.2 Layout Example .................................................... 30 11 Device and Documentation Support ................. 31 11.1 11.2 11.3 11.4 11.5 Detailed Description .............................................. 9 7.1 Overview ................................................................... 9 7.2 Functional Block Diagram ......................................... 9 7.3 Feature Description................................................. 10 Device Support...................................................... Community Resources.......................................... Trademarks ........................................................... Electrostatic Discharge Caution ............................ Glossary ................................................................ 31 31 31 31 31 12 Mechanical, Packaging, and Orderable Information ........................................................... 31 4 Revision History 2 DATE REVISION NOTES March 2016 * Initial release. Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 LM5022-Q1 www.ti.com SNVSAG9 – MARCH 2016 5 Pin Configuration and Functions DGS Package 10-Pin VSSOP Top View 1 2 3 4 5 VIN SS FB RT COMP CS VCC UVLO OUT GND 10 9 8 7 6 Pin Functions PIN NO. NAME 1 VIN 2 TYPE DESCRIPTION APPLICATION INFORMATION I Source input voltage Input to the start-up regulator. Operates from 6 V to 60 V. FB I Feedback pin Inverting input to the internal voltage error amplifier. The non-inverting input of the error amplifier connects to a 1.25-V reference. 3 COMP I/O Error amplifier output and PWM comparator input The control loop compensation components connect between this pin and the FB pin. 4 VCC O Output of the internal, high voltage linear regulator. This pin should be bypassed to the GND pin with a ceramic capacitor. 5 OUT O Output of MOSFET gate driver Connect this pin to the gate of the external MOSFET. The gate driver has a 1-A peak current capability. 6 GND - System ground 7 UVLO I Input undervoltage lockout 8 CS I Current sense input An external resistor connected from this pin to GND sets the oscillator frequency. This pin can also accept an AC-coupled input for synchronization from an external clock. An external capacitor placed from this pin to ground will be charged by a 10-µA current source, creating a ramp voltage to control the regulator start-up. 9 RT/SYNC I Oscillator frequency adjust pin and synchronization input 10 SS I Soft-start pin Set the start-up and shutdown levels by connecting this pin to the input voltage through a resistor divider. A 20-µA current source provides hysteresis. Input for the switch current used for current mode control and for current limiting. Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 3 LM5022-Q1 SNVSAG9 – MARCH 2016 www.ti.com 6 Specifications 6.1 Absolute Maximum Ratings over operating free-air temperature range (unless otherwise noted) (1) (2) MIN MAX UNIT VIN to GND –0.3 65 V VCC to GND –0.3 16 V RT/SYNC to GND –0.3 5.5 V OUT to GND –1.5V for < 100 ns All other pins to GND –0.3 Power dissipation 7 Junction temperature (3) Soldering information 150 °C Vapor phase (60 sec.) 215 °C Infrared (15 sec.) 220 °C 150 °C Storage temperature, Tstg (1) (2) (3) V Internally limited –65 Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. If Military/Aerospace specified devices are required, contact the Texas Instruments Sales Office/ Distributors for availability and specifications. High junction temperatures degrade operating lifetimes. Operating lifetime is de-rated for junction temperatures greater than 125°C. 6.2 ESD Ratings: LM5022-Q1 V(ESD) (1) (2) VALUE UNIT Human body model (HBM), per AEC Q100-002 (1) ±2000 V Charged device model (CDM), per AEC Q100-011 (2) ±750 V AEC Q100-002 indicates HBM stressing is done in accordance with the ANSI/ESDA/JEDEC JS-001 specification. This is the passing level per ANSI/ESDA/JEDEC JS-001. JEDEC document JEP155 states that 500 V HBM allows safe manufacturing with a standard ESD control process Level listed above is the passing level per EIA-JEDEC JESD22-C101. JEDEC document JEP157 states that 250 V CDM allows safe manufacturing with a standard ESD control process. 6.3 Recommended Operating Conditions over operating free-air temperature range (unless otherwise noted) (1) MIN Supply voltage NOM MAX 6 60 UNIT V External voltage at VCC 7.5 14 V Junction temperature –40 125 °C (1) Operating Ratings are conditions under the device is intended to be functional. For specifications and test conditions, see Electrical Characteristics 6.4 Thermal Information LM5022-Q1 THERMAL METRIC (1) DGS (VSSOP) UNIT 10 PINS RθJA Junction-to-ambient thermal resistance RθJC(top) Junction-to-case (top) thermal resistance RθJB Junction-to-board thermal resistance ψJT Junction-to-top characterization parameter 5.7 °C/W ψJB Junction-to-board characterization parameter 80 °C/W RθJC(bot) Junction-to-case (bottom) thermal resistance N/A °C/W (1) 4 161.5 °C/W 56 °C/W 81.3 °C/W For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953. Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 LM5022-Q1 www.ti.com SNVSAG9 – MARCH 2016 6.5 Electrical Characteristics Typical limits apply for TJ = 25°C and are provided for reference purposes only; minimum and maximum limits apply over the junction temperature (TJ) range of –40°C to +125°C. VIN = 24 V and RT = 27.4 kΩ, unless otherwise indicated. (1) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 1.225 1.250 1.275 V 6.6 7 7.4 3.5 4 SYSTEM PARAMETERS VFB FB Pin Voltage START-UP REGULATOR VCC Regulation 10 V ≤ VIN ≤ 60 V, ICC = 1 mA VCC Regulation 6 V ≤ VIN < 10 V, VCC Pin Open Circuit ICC Supply Current OUT Pin Capacitance = 0 VCC = 10 V ICC-LIM VCC Current Limit VCC = 0 V, ( (3), VIN - VCC Dropout Voltage Across Bypass Switch ICC = 0 mA, ƒSW < 200 kHz 6 V ≤ VIN ≤ 8.5 V VBYP-HI Bypass Switch Turn-off Threshold VIN increasing 8.7 V VBYP-HYS Bypass Switch Threshold Hysteresis VIN Decreasing 260 mV ZVCC VCC Pin Output Impedance 0 mA ≤ ICC ≤ 5 mA VCC (2) (2) ) 5 15 35 mA mA 200 VIN = 6 V V mV 58 VIN = 8 V 53 VIN = 24 V 1.6 Ω VCC-HI VCC Pin UVLO Rising Threshold VCC-HYS VCC Pin UVLO Falling Hysteresis 5 V IVIN Start-up Regulator Leakage VIN = 60 V 150 500 µA IIN-SD Shutdown Current VUVLO = 0 V, VCC = Open Circuit 350 450 µA 300 mV ERROR AMPLIFIER GBW Gain Bandwidth ADC DC Gain ICOMP COMP Pin Current Sink Capability VFB = 1.5 V VCOMP = 1 V 4 MHz 75 dB 5 17 1.22 1.25 1.28 16 20 24 mA UVLO VSD Shutdown Threshold ISD-HYS Shutdown Hysteresis Current Source V µA CURRENT LIMIT tLIM-DLY Delay from ILIM to Output VCS Current Limit Threshold Voltage tBLK Leading Edge Blanking Time RCS CS Pin Sink Impedance CS steps from 0 V to 0.6 V OUT transitions to 90% of VCC 30 0.434 0.5 ns 0.55 65 Blanking active 40 V ns 75 Ω SOFT-START ISS Soft-start Current Source 7 10 13 µA VSS-OFF Soft-start to COMP Offset 0.344 0.55 0.75 V (1) (2) (3) All minimum and maximum limits are specified by correlating the electrical characteristics to process and temperature variations and applying statistical process control. The junction temperature (TJ in °C) is calculated from the ambient temperature (TA in °C) and power dissipation (PD in Watts) as follows: TJ = TA + (PD • RθJA) where RθJA (in °C/W) is the package thermal impedance provided in the Thermal Information section. VCC provides bias for the internal gate drive and control circuits. Device thermal limitations may limit usable range. Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 5 LM5022-Q1 SNVSAG9 – MARCH 2016 www.ti.com Electrical Characteristics (continued) Typical limits apply for TJ = 25°C and are provided for reference purposes only; minimum and maximum limits apply over the junction temperature (TJ) range of –40°C to +125°C. VIN = 24 V and RT = 27.4 kΩ, unless otherwise indicated.(1) PARAMETER TEST CONDITIONS MIN TYP MAX UNIT OSCILLATOR fSW VSYNC-HI RT to GND = 84.5 kΩ See (4) 170 200 230 kHz RT to GND = 27.4 kΩ See (4) 525 600 675 kHz RT to GND = 16.2 kΩ See (4) 865 990 1115 kHz RT to GND = 6.65 kΩ (4) 1910 2240 2570 kHz See Synchronization Rising Threshold 3.8 V PWM COMPARATOR tCOMP-DLY Delay from COMP to OUT Transition VCOMP = 2 V CS stepped from 0 V to 0.4 V 25 DMIN Minimum Duty Cycle VCOMP = 0 V DMAX Maximum Duty Cycle APWM COMP to PWM Comparator Gain VCOMP-OC COMP Pin Open Circuit Voltage VFB = 0 V 4.3 5.2 6.1 V ICOMP-SC COMP Pin Short Circuit Current VCOMP = 0 V, VFB = 0V 0.6 1.1 1.5 mA 83 110 137 mV ns 0% 90% 95% 0.33 V/V SLOPE COMPENSATION VSLOPE Slope Compensation Amplitude MOSFET DRIVER VSAT-HI Output High Saturation Voltage (VCC – VOUT) IOUT = 50 mA 0.25 0.75 V VSAT-LO Output Low Saturation Voltage (VOUT) IOUT = 100 mA 0.25 0.75 V tRISE OUT Pin Rise Time OUT Pin load = 1 nF 18 ns tFALL OUT Pin Fall Time OUT Pin load = 1 nF 15 ns THERMAL CHARACTERISTICS TSD Thermal Shutdown Threshold 165 °C TSD-HYS Thermal Shutdown Hysteresis 25 °C (4) 6 Specification applies to the oscillator frequency. Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 LM5022-Q1 www.ti.com SNVSAG9 – MARCH 2016 6.6 Typical Characteristics VO = 40 V VIN = 24 V Figure 1. Efficiency, Example Circuit BOM TA = 25°C Figure 2. VFB vs. Temperature TA = 25°C Figure 3. VFB vs. VIN Figure 4. VCC vs. VIN RT = 16.2 KΩ TA = 25°C Figure 5. Maximum Duty Cycle vs. ƒSW Figure 6. ƒSW vs. Temperature Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 7 LM5022-Q1 SNVSAG9 – MARCH 2016 www.ti.com Typical Characteristics (continued) SWITCHING FREQUENCY (kHz) 2320 2310 2300 2290 2280 2270 2260 2250 2240 2230 2220 2210 -60 -40 -20 0 20 40 60 80 TEMPERATURE (oC) 100 120 140 RT = 6.65 KΩ Figure 7. ƒSW vs. Temperature Figure 8. SS vs. Temperature Figure 9. OUT Pin TRISE vs. Gate Capacitance Figure 10. OUT Pin TFALL vs. Gate Capacitance 85 75 RT (k:) 65 55 45 35 25 15 5 200 400 600 800 1000 1200 1400 1600 1800 2000 2200 SWITCHING FREQUNECY (kHz) TA = 25°C Figure 11. RT vs. ƒSW 8 Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 LM5022-Q1 www.ti.com SNVSAG9 – MARCH 2016 7 Detailed Description 7.1 Overview The LM5022-Q1 is a low-side N-channel MOSFET controller that contains all of the features needed to implement single ended power converter topologies. The LM5022-Q1 includes a high-voltage startup regulator that operates over a wide input range of 6 V to 60 V. The PWM controller is designed for high speed capability including an oscillator frequency range up to 2.2 MHz and total propagation delays less than 100 ns. Additional features include an error amplifier, precision reference, input under-voltage lockout, cycle-by-cycle current limit, slope compensation, soft-start, oscillator sync capability and thermal shutdown. The LM5022-Q1 is designed for current-mode control power converters that require a single drive output, such as boost and SEPIC topologies. The LM5022-Q1 provides all of the advantages of current-mode control including input voltage feed-forward, cycle-by-cycle current limiting and simplified loop compensation. 7.2 Functional Block Diagram BYPASS SWITCH (6V to 8.7V) VCC VIN 7V SERIES REGULATOR REFERENCE ENABLE + - UVLO 5V 1.25V LOGIC 1.25V UVLO HYSTERESIS CLK (20 PA) RT/SYNC OSC DRIVER 45 PA Max Duty Limit 0 S Q R Q OUT 5V COMP GND 5k 1.25V PWM 100 k: FB + - LOGIC 1.4V 50 k: SS CS 2 k: 0.5V SS 10 PA SS + - CLK + LEB Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 9 LM5022-Q1 SNVSAG9 – MARCH 2016 www.ti.com 7.3 Feature Description 7.3.1 High Voltage Start-Up Regulator The LM5022-Q1 contains an internal high-voltage start-up regulator that allows the VIN pin to be connected directly to line voltages as high as 60 V. The regulator output is internally current limited to 35 mA (typical). When power is applied, the regulator is enabled and sources current into an external capacitor, CF, connected to the VCC pin. The recommended capacitance range for CF is 0.1 µF to 100 µF. When the voltage on the VCC pin reaches the rising threshold of 5 V, the controller output is enabled. The controller will remain enabled until VCC falls below 4.7 V. In applications using a transformer, an auxiliary winding can be connected through a diode to the VCC pin. This winding should raise the VCC pin voltage to above 7.5 V to shut off the internal startup regulator. Powering VCC from an auxiliary winding improves conversion efficiency while reducing the power dissipated in the controller. The capacitance of CF must be high enough that it maintains the VCC voltage greater than the VCC UVLO falling threshold (4.7 V) during the initial start-up. During a fault condition when the converter auxiliary winding is inactive, external current draw on the VCC line should be limited such that the power dissipated in the start-up regulator does not exceed the maximum power dissipation capability of the controller. An external start-up or other bias rail can be used instead of the internal start-up regulator by connecting the VCC and the VIN pins together and feeding the external bias voltage (7.5 V to 14 V) to the two pins. 7.3.2 Input Undervoltage Detector The LM5022-Q1 contains an input undervoltage lockout (UVLO) circuit. UVLO is programmed by connecting the UVLO pin to the center point of an external voltage divider from VIN to GND. The resistor divider must be designed such that the voltage at the UVLO pin is greater than 1.25 V when VIN is in the desired operating range. If the under voltage threshold is not met, all functions of the controller are disabled and the controller remains in a low power standby state. UVLO hysteresis is accomplished with an internal 20 µA current source that is switched on or off into the impedance of the set-point divider. When the UVLO threshold is exceeded, the current source is activated to instantly raise the voltage at the UVLO pin. When the UVLO pin voltage falls below the 1.25 V threshold the current source is turned off, causing the voltage at the UVLO pin to fall. The UVLO pin can also be used to implement a remote enable / disable function. If an external transistor pulls the UVLO pin below the 1.25 V threshold, the converter will be disabled. This external shutdown method is shown in Figure 12. VIN VIN RUV2 LM5022 UVLO ON/OFF RUV1 2N7000 or Equivalent GND Figure 12. Enable/Disable Using UVLO 10 Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 LM5022-Q1 www.ti.com SNVSAG9 – MARCH 2016 Feature Description (continued) 7.3.3 Error Amplifier An internal high gain error amplifier is provided within the LM5022-Q1. The amplifier’s non-inverting input is internally set to a fixed reference voltage of 1.25 V. The inverting input is connected to the FB pin. In nonisolated applications such as the boost converter the output voltage, VO, is connected to the FB pin through a resistor divider. The control loop compensation components are connected between the COMP and FB pins. For most isolated applications the error amplifier function is implemented on the secondary side of the converter and the internal error amplifier is not used. The internal error amplifier is configured as an open drain output and can be disabled by connecting the FB pin to ground. An internal 5-kΩ pullup resistor between a 5-V reference and COMP can be used as the pull-up for an opto-coupler in isolated applications. 7.3.4 Current Sensing and Current Limiting The LM5022-Q1 provides a cycle-by-cycle over current protection function. Current limit is accomplished by an internal current sense comparator. If the voltage at the current sense comparator input exceeds 0.5 V, the MOSFET gate drive will be immediately terminated. A small RC filter, located near the controller, is recommended to filter noise from the current sense signal. The CS input has an internal MOSFET which discharges the CS pin capacitance at the conclusion of every cycle. The discharge device remains on an additional 65 ns after the beginning of the new cycle to attenuate leading edge ringing on the current sense signal. The LM5022-Q1 current sense and PWM comparators are very fast, and may respond to short duration noise pulses. Layout considerations are critical for the current sense filter and sense resistor. The capacitor associated with the CS filter must be located very close to the device and connected directly to the pins of the controller (CS and GND). If a current sense transformer is used, both leads of the transformer secondary should be routed to the sense resistor and the current sense filter network. The current sense resistor can be located between the source of the primary power MOSFET and power ground, but it must be a low inductance type. When designing with a current sense resistor all of the noise sensitive low-power ground connections should be connected together locally to the controller and a single connection should be made to the high current power ground (sense resistor ground point). 7.3.5 PWM Comparator and Slope Compensation The PWM comparator compares the current ramp signal with the error voltage derived from the error amplifier output. The error amplifier output voltage at the COMP pin is offset by 1.4 V and then further attenuated by a 3:1 resistor divider. The PWM comparator polarity is such that 0 V on the COMP pin will result in a zero duty cycle at the controller output. For duty cycles greater than 50%, current mode control circuits can experience subharmonic oscillation. By adding an additional fixed-slope voltage ramp signal (slope compensation) this oscillation can be avoided. Proper slope compensation damps the double pole associated with current mode control (see Control Loop Compensation) and eases the design of the control loop compensator. The LM5022Q1 generates the slope compensation with a sawtooth-waveform current source with a slope of 45 µA × ƒSW, generated by the clock (see Figure 13). This current flows through an internal 2-kΩ resistor to create a minimum compensation ramp with a slope of 100 mV × ƒSW (typical). The slope of the compensation ramp increases when external resistance is added for filtering the current sense (RS1) or in the position RS2. As shown in Figure 13 and the Functional Block Diagram, the sensed current slope and the compensation slope add together to create the signal used for current limiting and for the control loop itself. Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 11 LM5022-Q1 SNVSAG9 – MARCH 2016 www.ti.com Feature Description (continued) LM5022 ISW 45 PA 0 RS1 RS2 CS 2 k: 0.5V RSNS CSNS + Current Limit VCL Figure 13. Slope Compensation In peak current mode control the optimal slope compensation is proportional to the slope of the inductor current during the power switch off-time. For boost converters the inductor current slope while the MOSFET is off is (VO VIN) / L. This relationship is combined with the requirements to set the peak current limit and is used to select RSNS and RS2 in Application and Implementation. 7.3.6 Soft Start The soft-start feature allows the power converter output to gradually reach the initial steady state output voltage, thereby reducing start-up stresses and current surges. At power on, after the VCC and input under-voltage lockout thresholds are satisfied, an internal 10-µA current source charges an external capacitor connected to the SS pin. The capacitor voltage will ramp up slowly and will limit the COMP pin voltage and the switch current. 7.3.7 MOSFET Gate Driver The LM5022-Q1 provides an internal gate driver through the OUT pin that can source and sink a peak current of 1 A to control external, ground-referenced N-channel MOSFETs. 7.3.8 Thermal Shutdown Internal thermal shutdown circuitry is provided to protect the LM5022-Q1 in the event that the maximum junction temperature is exceeded. When activated, typically at 165°C, the controller is forced into a low power standby state, disabling the output driver and the VCC regulator. After the temperature is reduced (typical hysteresis is 25°C) the VCC regulator will be re-enabled and the LM5022-Q1 will perform a soft start. 7.4 Device Functional Modes 7.4.1 Oscillator, Shutdown, and SYNC A single external resistor, RT, connected between the RT/SYNC and GND pins sets the LM5022-Q1 oscillator frequency. To set the switching frequency, ƒSW, RT can be calculated from: RT (1 - 8 ´ 10 = -8 ´ fSW fSW ´ 5.77 ´ 10 ) -11 where • • 12 fSW is in Hz RT is in Ω (1) Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 LM5022-Q1 www.ti.com SNVSAG9 – MARCH 2016 Device Functional Modes (continued) The LM5022-Q1 can also be synchronized to an external clock. The external clock must have a higher frequency than the free running oscillator frequency set by the RT resistor. The clock signal should be capacitively coupled into the RT/SYNC pin with a 100-pF capacitor as shown in Figure 14. A peak voltage level greater than 3.8 V at the RT/SYNC pin is required for detection of the sync pulse. The sync pulse width should be set between 15 ns to 150 ns by the external components. The RT resistor is always required, whether the oscillator is free running or externally synchronized. The voltage at the RT/SYNC pin is internally regulated to 2 V, and the typical delay from a logic high at the RT/SYNC pin to the rise of the OUT pin voltage is 120 ns. RT should be located very close to the device and connected directly to the pins of the controller (RT/SYNC and GND). LM5022 EXTERNAL CLOCK CSS RT/SYNC 100 pF RT 15 ns to 150 ns EXTERNAL CLOCK 120 ns (Typical) OUT PIN Figure 14. SYNC Operation Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 13 LM5022-Q1 SNVSAG9 – MARCH 2016 www.ti.com 8 Application and Implementation NOTE Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI’s customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality. 8.1 Application Information The most common circuit controlled by the LM5022-Q1 is a non-isolated boost regulator. The boost regulator steps up the input voltage and has a duty ratio D of: D= VO - VIN + VD VO + VD where • VD is the forward voltage drop of the output diode (2) The following is a design procedure for selecting all the components for the boost converter circuit shown in Figure 15. The application is "in-cabin" automotive, meaning that the operating ambient temperature ranges from –20°C to 85°C. This circuit operates in continuous conduction mode (CCM), where inductor current stays above 0 A at all times, and delivers an output voltage of 40 V ±2% at a maximum output current of 0.5A. Additionally, the regulator must be able to handle a load transient of up to 0.5 A while keeping VO within ±4%. The voltage input comes from the battery/alternator system of an automobile, where the standard range 9 V to 16 V and transients of up to 32 V must not cause any malfunction. 8.2 Typical Application VIN = 9V to 16V CIN1,2 L1 VO = 40V D1 CINX Q1 CO1,2 RS1 VIN OUT RT CS RT RS2 UVLO CSS RUV1 LM5022 RUV2 COX SS RSNS CCS GND CF VCC COMP RFB2 FB R1 C2 RFB1 C1 Figure 15. LM5022-Q1 Typical Application 8.2.1 Design Requirements For typical low-side controller applications, use the parameters listed in Table 1. 14 Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 LM5022-Q1 www.ti.com SNVSAG9 – MARCH 2016 Typical Application (continued) Table 1. Design Parameters DESIGN PARAMETER EXAMPLE VALUE Minimum input voltage 9 V to 16 V Minimum output voltage 40 V Output current 500 mA Switching frequency 500 kHz Table 2. BOM for Example Circuit ID PART NUMBER TYPE SIZE PARAMETERS QTY VENDOR U1 LM5022-Q1 Low-Side Controller 10-pin VSSOP 60V 1 TI Q1 Si4850EY MOSFET SO-8 60V, 31mΩ, 27nC 1 Vishay D1 CMSH2-60M Schottky Diode SMA 60V, 2A 1 Central Semi L1 SLF12575T-M3R2 Inductor 12.5 x 12.5 x 7.5 mm 33µH, 3.2A, 40mΩ 1 TDK Cin1, Cin2 C4532X7R1H475M Capacitor 1812 4.7µF, 50V, 3mΩ 2 TDK Co1, Co2 C5750X7R2A475M Capacitor 2220 4.7µF,100V, 3mΩ 2 TDK Cf C2012X7R1E105K Capacitor 0805 1µF, 25V 1 TDK Cinx Cox C2012X7R2A104M Capacitor 0805 100nF, 100V 2 TDK C1 VJ0805A561KXXAT Capacitor 0805 560pF 10% 1 Vishay C2 VJ0805Y124KXXAT Capacitor 0805 120nF 10% 1 Vishay Css VJ0805Y103KXXAT Capacitor 0805 10nF 10% 1 Vishay Ccs VJ0805Y102KXXAT Capacitor 0805 1nF 10% 1 Vishay R1 CRCW08053011F Resistor 0805 3.01kΩ 1% 1 Vishay Rfb1 CRCW08056490F Resistor 0805 649Ω 1% 1 Vishay Rfb2 CRCW08052002F Resistor 0805 20kΩ 1% 1 Vishay Rs1 CRCW0805101J Resistor 0805 100Ω 5% 1 Vishay Rs2 CRCW08053571F Resistor 0805 3.57kΩ 1% 1 Vishay Rsns ERJL14KF10C Resistor 1210 100mΩ, 1%, 0.5W 1 Panasonic Rt CRCW08053322F Resistor 0805 33.2kΩ 1% 1 Vishay Ruv1 CRCW08052611F Resistor 0805 2.61kΩ 1% 1 Vishay Ruv2 CRCW08051002F Resistor 0805 10kΩ 1% 1 Vishay 8.2.2 Detailed Design Procedure 8.2.2.1 Switching Frequency The selection of switching frequency is based on the tradeoffs between size, cost, and efficiency. In general, a lower frequency means larger, more expensive inductors and capacitors will be needed. A higher switching frequency generally results in a smaller but less efficient solution, as the power MOSFET gate capacitances must be charged and discharged more often in a given amount of time. For this application, a frequency of 500 kHz was selected as a good compromise between the size of the inductor and efficiency. PCB area and component height are restricted in this application. Following the equation given for RT in Equation 1, a 33.2-kΩ 1% resistor should be used to switch at 500 kHz. 8.2.2.2 MOSFET Selection of the power MOSFET is governed by tradeoffs between cost, size, and efficiency. Breaking down the losses in the MOSFET is one way to determine relative efficiencies between different devices. For this example, the SO-8 package provides a balance of a small footprint with good efficiency. Losses in the MOSFET can be broken down into conduction loss, gate charging loss, and switching loss. Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 15 LM5022-Q1 SNVSAG9 – MARCH 2016 www.ti.com Conduction, or I2R loss, PC, is approximately: PC = D x IO 1-D 2 x RDSON x 1.3 (3) The factor 1.3 accounts for the increase in MOSFET on resistance due to heating. Alternatively, the factor of 1.3 can be ignored and the maximum on resistance of the MOSFET can be used. Gate charging loss, PG, results from the current required to charge and discharge the gate capacitance of the power MOSFET and is approximated as: PG = VCC × QG × fSW (4) QG is the total gate charge of the MOSFET. Gate charge loss differs from conduction and switching losses because the actual dissipation occurs in the LM5022-Q1 and not in the MOSFET itself. If no external bias is applied to the VCC pin, additional loss in the LM5022-Q1 IC occurs as the MOSFET driving current flows through the VCC regulator. This loss, PVCC, is estimated as: PVCC = (VIN – VCC) × QG × fSW (5) Switching loss, PSW, occurs during the brief transition period as the MOSFET turns on and off. During the transition period both current and voltage are present in the channel of the MOSFET. The loss can be approximated as: PSW = 0.5 × VIN × [IO / (1 – D)] × (tR + tF) × ƒSW where • • tR is the rise time of the MOSFET tF is the fall time of the MOSFET (6) For this example, the maximum drain-to-source voltage applied across the MOSFET is VO plus the ringing due to parasitic inductance and capacitance. The maximum drive voltage at the gate of the high side MOSFET is VCC, or 7 V typical. The MOSFET selected must be able to withstand 40V plus any ringing from drain to source, and be able to handle at least 7V plus ringing from gate to source. A minimum voltage rating of 50VD-S and 10VG-S MOSFET will be used. Comparing the losses in a spreadsheet leads to a 60VD-S rated MOSFET in SO-8 with an RDSON of 22 mΩ (the maximum vallue is 31 mΩ), a gate charge of 27 nC, and rise and falls times of 10 ns and 12 ns, respectively. 8.2.2.3 Output Diode The boost regulator requires an output diode D1 (see Figure 15) to carrying the inductor current during the MOSFET off-time. The most efficient choice for D1 is a Schottky diode due to low forward drop and near-zero reverse recovery time. D1 must be rated to handle the maximum output voltage plus any switching node ringing when the MOSFET is on. In practice, all switching converters have some ringing at the switching node due to the diode parasitic capacitance and the lead inductance. D1 must also be rated to handle the average output current, IO. The overall converter efficiency becomes more dependent on the selection of D1 at low duty cycles, where the boost diode carries the load current for an increasing percentage of the time. This power dissipation can be calculating by checking the typical diode forward voltage, VD, from the I-V curve on the diode's datasheet and then multiplying it by IO. Diode datasheets will also provide a typical junction-to-ambient thermal resistance, RθJA, which can be used to estimate the operating die temperature of the Schottky. Multiplying the power dissipation (PD = IO × VD) by RθJA gives the temperature rise. The diode case size can then be selected to maintain the Schottky diode temperature below the operational maximum. 16 Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 LM5022-Q1 www.ti.com SNVSAG9 – MARCH 2016 In this example a Schottky diode rated to 60 V and 1 A will be suitable, as the maximum diode current will be 0.5 A. A small case such as SOD-123 can be used if a small footprint is critical. Larger case sizes generally have lower RθJA and lower forward voltage drop, so for better efficiency the larger SMA case size will be used. 8.2.2.4 Boost Inductor The first criterion for selecting an inductor is the inductance itself. In fixed-frequency boost converters this value is based on the desired peak-to-peak ripple current, ΔiL, which flows in the inductor along with the average inductor current, IL. For a boost converter in CCM IL is greater than the average output current, IO. The two currents are related by the following expression: IL = IO / (1 – D) (7) As with switching frequency, the inductance used is a tradeoff between size and cost. Larger inductance means lower input ripple current, however because the inductor is connected to the output during the off-time only there is a limit to the reduction in output ripple voltage. Lower inductance results in smaller, less expensive magnetics. An inductance that gives a ripple current of 30% to 50% of IL is a good starting point for a CCM boost converter. Minimum inductance should be calculated at the extremes of input voltage to find the operating condition with the highest requirement: VIN x D L1 = fSW x 'iL (8) By calculating in terms of amperes, volts, and megahertz, the inductance value will come out in micro henries. In order to ensure that the boost regulator operates in CCM a second equation is needed, and must also be evaluated at the corners of input voltage to find the minimum inductance required: D(1-D) x VIN L2 = IO x fSW (9) By calculating in terms of volts, amps and megahertz the inductance value will come out in µH. For this design ΔiL will be set to 40% of the maximum IL. Duty cycle is evaluated first at VIN(MIN) and at VIN(MAX). Second, the average inductor current is evaluated at the two input voltages. Third, the inductor ripple current is determined. Finally, the inductance can be calculated, and a standard inductor value selected that meets all the criteria. 1. Inductance for Minimum Input Voltage DVIN(MIN) = (40 – 9 + 0.5) / (40 + 0.5) = 78% IL-VIN(MIN) = 0.5 / (1 – 0.78) = 2.3 A ΔiL = 0.4 × 2.3 A = 0.92 A L1-VIN(MIN) = L2-VIN(MIN) = (10) 9 x 0.78 = 15.3 PH 0.5 x 0.92 (11) 0.78 x 0.22 x 9 = 6.2 PH 0.5 x 0.5 (12) 2. Inductance for Maximum Input Voltage DVIN(MAX) = (40 – 16 + 0.5) / (40 + 0.5) = 60% IL-VIN(MIAX) = 0.5 / (1 – 0.6) = 1.25A ΔiL = 0.4 × 1.25 A = 0.5 A L1-VIN(MAX) = L2-VIN(MAX) = 16 x 0.6 = 38.4 PH 0.5 x 0.5 (13) (14) 0.6 x 0.4 x 16 = 15.4 PH 0.5 x 0.5 (15) Maximum average inductor current occurs at VIN(MIN), and the corresponding inductor ripple current is 0.92 AP-P. Selecting an inductance that exceeds the ripple current requirement at VIN(MIN) and the requirement to stay in CCM for VIN(MAX) provides a tradeoff that allows smaller magnetics at the cost of higher ripple current at maximum input voltage. For this example, a 33-µH inductor will satisfy these requirements. Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 17 LM5022-Q1 SNVSAG9 – MARCH 2016 www.ti.com The second criterion for selecting an inductor is the peak current carrying capability. This is the level above which the inductor will saturate. In saturation the inductance can drop off severely, resulting in higher peak current that may overheat the inductor or push the converter into current limit. In a boost converter, peak current, IPK, is equal to the maximum average inductor current plus one half of the ripple current. First, the current ripple must be determined under the conditions that give maximum average inductor current: VIN x D 'iL = fSW x L (16) Maximum average inductor current occurs at VIN(MIN). Using the selected inductance of 33 µH yields the following: ΔiL = (9 × 0.78) / (0.5 × 33) = 425 mAP-P (17) The highest peak inductor current over all operating conditions is therefore: IPK = IL + 0.5 × ΔiL = 2.3 + 0.213 = 2.51 A (18) Hence an inductor must be selected that has a peak current rating greater than 2.5 A and an average current rating greater than 2.3A. One possibility is an off-the-shelf 33 µH ±20% inductor that can handle a peak current of 3.2 A and an average current of 3.4 A. Finally, the inductor current ripple is recalculated at the maximum input voltage: ΔiL-VIN(MAX) = (16 × 0.6) / (0.5 × 33) = 0.58AP-P (19) 8.2.2.5 Output Capacitor The output capacitor in a boost regulator supplies current to the load during the MOSFET on-time and also filters the AC portion of the load current during the off-time. This capacitor determines the steady state output voltage ripple, ΔVO, a critical parameter for all voltage regulators. Output capacitors are selected based on their capacitance, CO, their equivalent series resistance (ESR) and their RMS or AC current rating. The magnitude of ΔVO is comprised of three parts, and in steady state the ripple voltage during the on-time is equal to the ripple voltage during the off-time. For simplicity the analysis will be performed for the MOSFET turning off (off-time) only. The first part of the ripple voltage is the surge created as the output diode D1 turns on. At this point inductor/diode current is at the peak value, and the ripple voltage increase can be calculated as: ΔVO1 = IPK × ESR (20) The second portion of the ripple voltage is the increase due to the charging of CO through the output diode. This portion can be approximated as: ΔVO2 = (IO / CO) × (D / ƒSW) (21) The final portion of the ripple voltage is a decrease due to the flow of the diode/inductor current through the output capacitor’s ESR. This decrease can be calculated as: ΔVO3 = ΔiL × ESR (22) The total change in output voltage is then: ΔVO = ΔVO1 + ΔVO2 – ΔVO3 (23) The combination of two positive terms and one negative term may yield an output voltage ripple with a net rise or a net fall during the converter off-time. The ESR of the output capacitor(s) has a strong influence on the slope and direction of ΔVO. Capacitors with high ESR such as tantalum and aluminum electrolytic create an output voltage ripple that is dominated by ΔVO1 and ΔVO3, with a shape shown in Figure 16. Ceramic capacitors, in contrast, have very low ESR and lower capacitance. The shape of the output ripple voltage is dominated by ΔVO2, with a shape shown in Figure 17. 18 Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 LM5022-Q1 www.ti.com SNVSAG9 – MARCH 2016 ÂvO VO ID Figure 16. ΔVO Using High ESR Capacitors ÂvO VO ID Figure 17. ΔVO Using Low ESR Capacitors For this example the small size and high temperature rating of ceramic capacitors make them a good choice. The output ripple voltage waveform of Figure 17 is assumed, and the capacitance will be selected first. The desired ΔVO is ±2% of 40V, or 0.8VP-P. Beginning with the calculation for ΔVO2, the required minimum capacitance is: CO-MIN = (IO / ΔVO) x (DMAX / fSW) CO-MIN = (0.5 / 0.8) x (0.77 / 5 x 105) = 0.96 µF (24) The next higher standard 20% capacitor value is 1 µF, however to provide margin for component tolerance and load transients two capacitors rated 4.7 µF each will be used. Ceramic capacitors rated 4.7 µF ±20% are available from many manufacturers. The minimum quality dielectric that is suitable for switching power supply output capacitors is X5R, while X7R (or better) is preferred. Careful attention must be paid to the DC voltage rating and case size, as ceramic capacitors can lose 60% or more of their rated capacitance at the maximum DC voltage. This is the reason that ceramic capacitors are often de-rated to 50% of their capacitance at their working voltage. The output capacitors for this example will have a 100V rating in a 2220 case size. The typical ESR of the selected capacitors is 3 mΩ each, and in parallel is approximately 1.5 mΩ. The worstcase value for ΔVO1 occurs during the peak current at minimum input voltage: ΔVO1 = 2.5 × 0.0015 = 4 mV (25) The worst-case capacitor charging ripple occurs at maximum duty cycle: ΔVO2 = (0.5 / 9.4 × 10-6) x (0.77 / 5 × 105) = 82 mV (26) Finally, the worst-case value for ΔVO3 occurs when inductor ripple current is highest, at maximum input voltage: ΔVO3 = 0.58 × 0.0015 = 1 mV (negligible) (27) The output voltage ripple can be estimated by summing the three terms: ΔVO = 4 mV + 82 mV - 1 mV = 85 mV (28) The RMS current through the output capacitor(s) can be estimated using the following, worst-case equation: Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 19 LM5022-Q1 SNVSAG9 – MARCH 2016 www.ti.com IO-RMS = 1.13 x IL x D x (1 - D) (29) The highest RMS current occurs at minimum input voltage. For this example the maximum output capacitor RMS current is: IO-RMS(MAX) = 1.13 × 2.3 × (0.78 x 0.22)0.5 = 1.08 ARMS (30) These 2220 case size devices are capable of sustaining RMS currents of over 3A each, making them more than adequate for this application. 8.2.2.6 VCC Decoupling Capacitor The VCC pin should be decoupled with a ceramic capacitor placed as close as possible to the VCC and GND pins of the LM5022-Q1. The decoupling capacitor should have a minimum X5R or X7R type dielectric to ensure that the capacitance remains stable over voltage and temperature, and be rated to a minimum of 470 nF. One good choice is a 1-µF device with X7R dielectric and 1206 case size rated to 25 V. 8.2.2.7 Input Capacitor The input capacitors to a boost regulator control the input voltage ripple, ΔVIN, hold up the input voltage during load transients, and prevent impedance mismatch (also called power supply interaction) between the LM5022-Q1 and the inductance of the input leads. Selection of input capacitors is based on their capacitance, ESR, and RMS current rating. The minimum value of ESR can be selected based on the maximum output current transient, ISTEP, using the following expression: (1-D) x 'vIN ESRMIN = 2 x ISTEP (31) For this example the maximum load step is equal to the load current, or 0.5A. The maximum permissible ΔVIN during load transients is 4%P-P. ΔVIN and duty cycle are taken at minimum input voltage to give the worst-case value: ESRMIN = [(1 – 0.77) × 0.36] / (2 × 0.5) = 83 mΩ (32) The minimum input capacitance can be selected based on ΔVIN, based on the drop in VIN during a load transient, or based on prevention of power supply interaction. In general, the requirement for greatest capacitance comes from the power supply interaction. The inductance and resistance of the input source must be estimated, and if this information is not available, they can be assumed to be 1 µH and 0.1 Ω, respectively. Minimum capacitance is then estimated as: CMIN = 2 x LS x VO x IO 2 VIN x RS (33) As with ESR, the worst-case, highest minimum capacitance calculation comes at the minimum input voltage. Using the default estimates for LS and RS, minimum capacitance is: CMIN = 2 x 1P x 40 x 0.5 2 9 x 0.1 = 4.9 PF (34) The next highest standard 20% capacitor value is 6.8 µF, but because the actual input source impedance and resistance are not known, two 4.7 µF capacitors will be used. In general, doubling the calculated value of input capacitance provides a good safety margin. The final calculation is for the RMS current. For boost converters operating in CCM this can be estimated as: IRMS = 0.29 × ΔiL(MAX) (35) From the inductor section, maximum inductor ripple current is 0.58 A, hence the input capacitor(s) must be rated to handle 0.29 × 0.58 = 170 mARMS. The input capacitors can be ceramic, tantalum, aluminum, or almost any type, however the low capacitance requirement makes ceramic capacitors particularly attractive. As with the output capacitors, the minimum quality dielectric used should X5R, with X7R or better preferred. The voltage rating for input capacitors need not be as conservative as the output capacitors, as the need for capacitance decreases as input voltage increases. For this example, the capacitor selected will be 4.7 µF ±20%, rated to 50 V, in the 1812 case size. The RMS current rating of these capacitors is over 2A each, more than enough for this application. 20 Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 LM5022-Q1 www.ti.com SNVSAG9 – MARCH 2016 8.2.2.8 Current Sense Filter Parasitic circuit capacitance, inductance and gate drive current create a spike in the current sense voltage at the point where Q1 turns on. In order to prevent this spike from terminating the on-time prematurely, every circuit should have a low-pass filter that consists of CCS and RS1, shown in Figure 15. The time constant of this filter should be long enough to reduce the parasitic spike without significantly affecting the shape of the actual current sense voltage. The recommended range for RS1 is between 10 Ω and 500 Ω, and the recommended range for CCS is between 100 pF and 2.2 nF. For this example, the values of RS1 and CCS will be 100Ω and 1 nF, respectively. 8.2.2.9 RSNS, RS2 and Current Limit The current sensing resistor RSNS is used for steady state regulation of the inductor current and to sense overcurrent conditions. The slope compensation resistor is used to ensure control loop stability, and both resistors affect the current limit threshold. The RSNS value selected must be low enough to keep the power dissipation to a minimum, yet high enough to provide good signal-to-noise ratio for the current sensing circuitry. RSNS, and RS2 should be set so that the current limit comparator, with a threshold of 0.5 V, trips before the sensed current exceeds the peak current rating of the inductor, without limiting the output power in steady state. For this example the peak current, at VIN(MIN), is 2.5 A, while the inductor itself is rated to 3.2 A. The threshold for current limit, ILIM, is set slightly between these two values to account for tolerance of the circuit components, at a level of 3 A. The required resistor calculation must take into account both the switch current through RSNS and the compensation ramp current flowing through the internal 2 kΩ, RS1 and RS2 resistors. RSNS should be selected first because it is a power resistor with more limited selection. The following equation should be evaluated at VIN(MIN), when duty cycle is highest: RSNS = RSNS = L x fSW x VCL (VO ± VIN) x 3 x D + L x fSW x ILIM 33 x 0.5 x 0.5 (40 - 9) x 3 x 0.78 + 33 x 0.5 x 3 (36) = 0.068: where • • L is in µH fSW in MHz (37) The closest 5% value is 100 mΩ. Power dissipation in RSNS can be estimated by calculating the average current. The worst-case average current through RSNS occurs at minimum input voltage/maximum duty cycle and can be calculated as: PCS = IO 2 1-D x RSNS x D (38) (39) PCS = [(0.5 / 0.22)2 x 0.1] × 0.78 = 0.4W For this example a 0.1 Ω ±1%, thick-film chip resistor in a 1210 case size rated to 0.5W will be used. With RSNS selected, RS2 can be determined using the following expression: VCL - IILIM x RSNS RS2 = RS2 = 45P x D - 2000 - RS1 (40) 0.5 - 3 x 0.1 - 2000 - 100 = 3598: 45P x 0.78 (41) The closest 1% tolerance value is 3.57 kΩ. 8.2.2.10 Control Loop Compensation The LM5022-Q1 uses peak current-mode PWM control to correct changes in output voltage due to line and load transients. Peak current-mode provides inherent cycle-by-cycle current limiting, improved line transient response, and easier control loop compensation. Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 21 LM5022-Q1 SNVSAG9 – MARCH 2016 www.ti.com The control loop is comprised of two parts. The first is the power stage, which consists of the pulse width modulator, output filter, and the load. The second part is the error amplifier, which is an op-amp configured as an inverting amplifier. Figure 18 shows the regulator control loop components. L + C O D VIN + - RO RSNS RC + C2 R1 RFB2 + RFB1 C1 VREF + - Figure 18. Power Stage and Error Amplifier One popular method for selecting the compensation components is to create Bode plots of gain and phase for the power stage and error amplifier. Combined, they make the overall bandwidth and phase margin of the regulator easy to determine. Software tools such as Excel, MathCAD, and Matlab are useful for observing how changes in compensation or the power stage affect system gain and phase. The power stage in a CCM peak current mode boost converter consists of the DC gain, APS, a single low frequency pole, ƒLFP, the ESR zero, ƒZESR, a right-half plane zero, ƒRHP, and a double pole resulting from the sampling of the peak current. The power stage transfer function (also called the Control-to-Output transfer function) can be written: æ s öæ s ö ç1 + ÷ ç1 ÷ wZESR ø è wRHP ø è GPS = APS ´ æ s öæ s s2 ö ÷ + ç1 + ÷ çç 1 + Qn ´ wn w2n ø÷ wLEP ø è è where • APS = the DC gain is defined as: (42) (1 - D) x RO 2 x RSNS where (43) RO = VO / IO (44) The system ESR zero is: ZZESR = 1 RC x C O (45) The low frequency pole is: ZLEP = 22 1 0.5 x (RO + ESR) x CO (46) Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 LM5022-Q1 www.ti.com SNVSAG9 – MARCH 2016 The right-half plane zero is: VIN 2 RO x VO ZRHP = L (47) The sampling double pole quality factor is: 1 Qn = S -D + 0.5 + (1 - D) Se Sn (48) The sampling double corner frequency is: ωn = π × fSW (49) The natural inductor current slope is: Sn = RSNS × VIN / L (50) The external ramp slope is: Se = 45 µA × (2000 + RS1 + RS2)] x ƒSW (51) In the equation for APS, DC gain is highest when input voltage and output current are at the maximum. In this the example those conditions are VIN = 16 V and IO = 500 mA. 60 180 45 120 POWER STAGE PHASE (°) POWER STAGE GAIN (dB) DC gain is 44 dB. The low frequency pole fP = 2πωP is at 423 Hz, the ESR zero fZ = 2πωZ is at 5.6 MHz, and the right-half plane zero ƒRHP = 2πωRHP is at 61 kHz. The sampling double-pole occurs at one-half of the switching frequency. Proper selection of slope compensation (via RS2) is most evident the sampling double pole. A wellselected RS2 value eliminates peaking in the gain and reduces the rate of change of the phase lag. Gain and phase plots for the power stage are shown in Figure 19 and Figure 20. 30 15 0 -15 -30 100 1k 10k 100k 1M 60 0 -60 -120 -180 100 1k 10k 100k 1M FREQUENCY (Hz) FREQUENCY (Hz) Figure 19. Power Stage Gain and Phase Figure 20. Power Stage Gain and Phase The single pole causes a roll-off in the gain of –20 dB/decade at lower frequency. The combination of the RHP zero and sampling double pole maintain the slope out to beyond the switching frequency. The phase tends towards –90° at lower frequency but then increases to –180° and beyond from the RHP zero and the sampling double pole. The effect of the ESR zero is not seen because its frequency is several decades above the switching frequency. The combination of increasing gain and decreasing phase makes converters with RHP zeroes difficult to compensate. Setting the overall control loop bandwidth to 1/3 to 1/10 of the RHP zero frequency minimizes these negative effects, but requires a compromise in the control loop bandwidth. If this loop were left uncompensated, the bandwidth would be 89 kHz and the phase margin -54°. The converter would oscillate, and therefore is compensated using the error amplifier and a few passive components. The transfer function of the compensation block, GEA, can be derived by treating the error amplifier as an inverting op-amp with input impedance ZI and feedback impedance ZF. The majority of applications will require a Type II, or two-pole one-zero amplifier, shown in Figure 18. The LaPlace domain transfer function for this Type II network is given by the following: Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 23 LM5022-Q1 SNVSAG9 – MARCH 2016 GEA = ZF 1 x = ZI RFB2 (C1 + C2) www.ti.com s x R1 x C2 +1 s x R1 x C1 x C2 s +1 C1 + C2 (52) Many techniques exist for selecting the compensation component values. The following method is based upon setting the mid-band gain of the error amplifier transfer function first and then positioning the compensation zero and pole: 1. Determine the desired control loop bandwidth: The control loop bandwidth, ƒ0dB, is the point at which the total control loop gain (H = GPS × GEA) is equal to 0 dB. For this example, a low bandwidth of 10 kHz, or approximately 1/6th of the RHP zero frequency, is chosen because of the wide variation in input voltage. 2. Determine the gain of the power stage at ƒ0dB: This value, A, can be read graphically from the gain plot of GPS or calculated by replacing the ‘s’ terms in GPS with ‘2 πf0dB’. For this example the gain at 10 kHz is approximately 16 dB. 3. Calculate the negative of A and convert it to a linear gain: By setting the mid-band gain of the error amplifier to the negative of the power stage gain at f0dB, the control loop gain will equal 0 dB at that frequency. For this example, –16 dB = 0.15V/V. 4. Select the resistance of the top feedback divider resistor RFB2: This value is arbitrary, however selecting a resistance between 10 kΩ and 100 kΩ will lead to practical values of R1, C1 and C2. For this example, RFB2 = 20 kΩ 1%. 5. Set R1 = A × RFB2: For this example: R1 = 0.15 × 20000 = 3 kΩ 6. Select a frequency for the compensation zero, ƒZ1: The suggested placement for this zero is at the low frequency pole of the power stage, ƒLFP = ωLFP / 2π. For this example, ƒZ1 = ƒLFP = 423 Hz 7. Set C2 = 1 : 2S x R1 x fZ1 For this example, C2 = 125 nF 8. Select a frequency for the compensation pole, ƒP1: The suggested placement for this pole is at one-fifth of the switching frequency. For this example, ƒP1 = 100 kHz 9. Set C1 = C2 : 2S x C2 x R1 x fP1 -1 For this example, C1 = 530 pF 10. Plug the closest 1% tolerance values for RFB2 and R1, then the closest 10% values for C1 and C2 into GEA and model the error amp: The open-loop gain and bandwidth of the LM5022-Q1’s internal error amplifier are 75 dB and 4 MHz, respectively. Their effect on GEA can be modeled using the following expression: OPG = 2S x GBW 2S x GBW s+ ADC ADC is a linear gain, the linear equivalent of 75 dB is approximately 5600V/V. C1 = 560 pF 10%, C2 = 120 nF 10%, R1 = 3.01 kΩ 1% 11. Plot or evaluate the actual error amplifier transfer function: GEA-ACTUAL = 24 GEA x OPG 1 + GEA x OPG Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 LM5022-Q1 www.ti.com SNVSAG9 – MARCH 2016 OVERALL LOOP GAIN (dB) 60 40 20 0 -20 -40 -60 100 1k 10k 100k 1M FREQUENCY (Hz) Figure 21. Overall Loop Gain and Phase OVERALL LOOP PHASE (°) 180 120 60 0 -60 -120 -180 100 1k 10k 100k 1M FREQUENCY (Hz) Figure 22. Overall Loop Gain and Phase 12. Plot or evaluate the complete control loop transfer function: The complete control loop transfer function is obtained by multiplying the power stage and error amplifier functions together. The bandwidth and phase margin can then be read graphically or evaluated numerically. The bandwidth of this example circuit at VIN = 16 V is 10.5 kHz, with a phase margin of 66°. 13. Re-evaluate at the corners of input voltage and output current: Boost converters exhibit significant change in their loop response when VIN and IO change. With the compensation fixed, the total control loop gain and phase should be checked to ensure a minimum phase margin of 45° over both line and load. 8.2.2.11 Efficiency Calculations A reasonable estimation for the efficiency of a boost regulator controlled by the LM5022-Q1 can be obtained by adding together the loss is each current carrying element and using the equation: K= PO PO + Ptotal-loss (53) Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 25 LM5022-Q1 SNVSAG9 – MARCH 2016 www.ti.com The following shows an efficiency calculation to complement the circuit design from Device Functional Modes. Output power for this circuit is 40 V x 0.5 A = 20 W. Input voltage is assumed to be 13.8 V, and the calculations used assume that the converter runs in CCM. Duty cycle for VIN = 13.8V is 66%, and the average inductor current is 1.5 A. 8.2.2.11.1 Chip Operating Loss This term accounts for the current drawn at the VIN pin. This current, IIN, drives the logic circuitry and the power MOSFETs. The gate driving loss term from MOSFET is included in the chip operating loss. For the LM5022-Q1, IIN is equal to the steady state operating current, ICC, plus the MOSFET driving current, IGC. Power is lost as this current passes through the internal linear regulator of the LM5022-Q1. IGC = QG × ƒSW IGC = 27 nC × 500 kHz = 13.5 mA (54) ICC is typically 3.5 mA, taken from the Electrical Characteristics table. Chip Operating Loss is then: PQ = VIN × (IQ + IGC) PQ = 13.8 × (3.5 m + 13.5m) = 235 mW (55) 8.2.2.11.2 MOSFET Switching Loss PSW = 0.5 × VIN × IL × (tR + tF) x fSW PSW = 0.5 × 13.8 × 1.5 × (10 ns + 12 ns) x 5 × 105 = 114 mW (56) 8.2.2.11.3 MOSFET and RSNS Conduction Loss PC = D × (IL2 × (RDSON × 1.3 + RSNS)) PC = 0.66 × (1.52 × (0.029 + 0.1)) = 192 mW (57) 8.2.2.11.4 Output Diode Loss The average output diode current is equal to IO, or 0.5 A. The estimated forward drop, VD, is 0.5 V. The output diode loss is therefore: PD1 = IO × VD PD1 = 0.5 × 0.5 = 0.25 W (58) 8.2.2.11.5 Input Capacitor Loss This term represents the loss as input ripple current passes through the ESR of the input capacitor bank. In this equation ‘n’ is the number of capacitors in parallel. The 4.7 µF input capacitors selected have a combined ESR of approximately 1.5 mΩ, and ΔiL for a 13.8V input is 0.55A: PCIN = IIN-RMS2 x ESR n IIN-RMS = 0.29 x ΔiL = 0.29 × 0.55 = 0.16 A PCIN = [0.162 × 0.0015] / 2 = 0.02 mW (negligible) (59) (60) 8.2.2.11.6 Output Capacitor Loss This term is calculated using the same method as the input capacitor loss, substituting the output capacitor RMS current for VIN = 13.8 V. The output capacitors' combined ESR is also approximately 1.5 mΩ. IO-RMS = 1.13 × 1.5 × (0.66 x 0.34)0.5 = 0.8 A PCO = [0.8 × 0.0015] / 2 = 0.6 mW (61) 8.2.2.11.7 Boost Inductor Loss The typical DCR of the selected inductor is 40 mΩ. PDCR = IL2 × DCR PDCR = 1.52 × 0.04 = 90 mW (62) Core loss in the inductor is estimated to be equal to the DCR loss, adding an additional 90 mW to the total inductor loss. 8.2.2.11.8 Total Loss PLOSS = Sum of All Loss Terms = 972 mW (63) 8.2.2.11.9 Efficiency η = 20 / (20 + 0.972) = 95% 26 (64) Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 LM5022-Q1 www.ti.com SNVSAG9 – MARCH 2016 8.2.3 Application Curves 10V/DIV VO SW 10V/DIV 1 és/DIV VIN = 9-V Figure 23. Efficiency vs. Load Current IO = 0.5-A Figure 24. SW Node Voltage 10V/DIV VO VO SW 50 mV/DIV 10V/DIV 1 és/DIV VIN = 16-V 1 és/DIV IO = 0.5-A VIN = 9-V IO = 0.5-A Figure 25. SW Node Voltage Figure 26. Output Voltage Ripple (AC Coupled) 200 mA/DIV IO VO VO 2V/DIV 50 mV/DIV 400 és/DIV 1 és/DIV VIN = 16-V IO = 0.5-A VIN = 9-V IO = 50mA 500mA Figure 27. Output Voltage Ripple (AC Coupled) Figure 28. Load Transient Response Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 27 LM5022-Q1 SNVSAG9 – MARCH 2016 www.ti.com 200 mA/DIV IO VO 1V/DIV 1 ms/DIV VIN = 16-V IO = 50mA - 500mA Figure 29. Load Transient Response 9 Power Supply Recommendations LM5022-Q1 is a power management device. The power supply for the device can be any DC voltage source within the specified input range. 10 Layout 10.1 Layout Guidelines To produce an optimal power solution with the LM5022-Q1, good layout and design of the PCB are as critical as component selection. The following are the several guidelines in order to create a good layout of the PCB, as based on Figure 15. 1. Using a low ESR ceramic capacitor, place CINX as close as possible to the VIN and GND pins of the LM5022-Q1. 2. Using a low ESR ceramic capacitor, place COX close to the load as possible of the LM5022-Q1 3. Using a low ESR ceramic capacitor place CF close to the VCC and GND pins of the LM5022-Q1 4. Minimize the loop area formed by the output capacitor connections (Co1, Co2 ), by D1 and Rsns. Making sure the cathode of D1 and Rsns are position next to each other and place Co1(+ )and Co1( -) close to D1 cathode and Rsns (-) respectively. 5. Rsns (+) should be connected to the CS pin with a separate trace made as short as possible. This trace should be routed away from the inductor and the switch node (where D1, Q1, and L1 connect). 6. Minimize the trace length to the FB pin by positioning RFB1 and RFB2 close to the LM5022-Q1 7. Route the VOUT sense path away from noisy node and connect it as close as possible to the positive side of COX. 10.1.1 Filter Capacitors The low-value ceramic filter capacitors are most effective when the inductance of the current loops that they filter, is minimized. Place CINX as close as possible to the VIN and GND pins of the LM5022-Q1. Place COX close to the load, and CF next to the VCC and GND pins of the LM5022-Q1. 10.1.2 Sense Lines The top of RSNS should be connected to the CS pin with a separate trace, made as short as possible. Route this trace away from the inductor and the switch node (where D1, Q1, and L1 connect). For the voltage loop, keep RFB1and RFB2 close to the LM5022-Q1 and run a trace, as close as possible, to the positive side of COX to RFB2. As with the CS line, the FB line should be routed away from the inductor and the switch node. These measures minimize the length of high impedance lines and reduce noise pickup. 28 Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 LM5022-Q1 www.ti.com SNVSAG9 – MARCH 2016 Layout Guidelines (continued) 10.1.3 Compact Layout 1. Parasitic inductance can be reduced by keeping the power path components close together. As described above in point 4 in the Layout Guidelines, keep the high slew-rate current loops as tight as possible. Short, thick traces or copper pours (shapes) are best 2. The switch node should be just large enough to connect all the components together without excessive heating from the current it carries. The LM5022-Q1 (boost converter) operates in two distinct cycles whose high current paths are shown in Figure 30: + - Figure 30. Boost Converter Current Loops The dark grey, inner loops represent the high current paths during the MOSFET on-time. The light grey, outer loop represents the high current path during the off-time. 10.1.4 Ground Plane and Shape Routing The diagram of Figure 30 is useful for analyzing the flow of continuous current vs. the flow of pulsating currents. The circuit paths with current flow during both the on-time and off-time are considered to be continuous current, while those that carry current during the on-time or off-time only are pulsating currents. Preference in routing should be given to the pulsating current paths, as these are the portions of the circuit most likely to emit EMI. The ground plane of a PCB is a conductor and return path, and it is susceptible to noise injection just as any other circuit path. The continuous current paths on the ground net can be routed on the system ground plane with less risk of injecting noise into other circuits. The path between the input source, input capacitor and the MOSFET and the path between the output capacitor and the load are examples of continuous current paths. In contrast, the path between the grounded side of the power switch and the negative output capacitor terminal carries a large high slew-rate pulsating current. This path should be routed with a short, thick shape, preferably on the component side of the PCB. Too keep the parasitic inductance low, multiple vias in parallel should be placed on the negative pads of the input and output capacitors to connect the component side to the ground plane. Vias should not be placed directly at the grounded side of the MOSFET (or RSNS) as they tend to inject noise into the ground plane. A second pulsating current loop is the gate drive loop formed by the OUT and VCC pins, Q1, RSNS and capacitor CF. These loops must be kept small. Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 29 LM5022-Q1 SNVSAG9 – MARCH 2016 www.ti.com 10.2 Layout Example Figure 31. Typical Top Layer Overlay of the LM5022 Evaluation Board Figure 32. Typical Bottom Layer Overlay of the LM5022 Evaluation Board 30 Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 LM5022-Q1 www.ti.com SNVSAG9 – MARCH 2016 11 Device and Documentation Support 11.1 Device Support 11.1.1 Third-Party Products Disclaimer TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE. 11.1.2 Design Support WEBENCH software uses an iterative design procedure and accesses comprehensive databases of components. For more details, go to www.ti.com/webench. 11.2 Community Resources The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use. TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers. Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support. 11.3 Trademarks E2E is a trademark of Texas Instruments. All other trademarks are the property of their respective owners. 11.4 Electrostatic Discharge Caution These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates. 11.5 Glossary SLYZ022 — TI Glossary. This glossary lists and explains terms, acronyms, and definitions. 12 Mechanical, Packaging, and Orderable Information The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation. Submit Documentation Feedback Copyright © 2016, Texas Instruments Incorporated Product Folder Links: LM5022-Q1 31 PACKAGE OPTION ADDENDUM www.ti.com 10-Dec-2020 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Pins Package Drawing Qty Eco Plan (2) Lead finish/ Ball material MSL Peak Temp Op Temp (°C) Device Marking (3) (4/5) (6) LM5022QDGSRQ1 ACTIVE VSSOP DGS 10 1000 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 5Q22 LM5022QDGSTQ1 ACTIVE VSSOP DGS 10 250 RoHS & Green SN Level-1-260C-UNLIM -40 to 125 5Q22 (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free". RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption. Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of
LM5022QDGSTQ1 价格&库存

很抱歉,暂时无法提供与“LM5022QDGSTQ1”相匹配的价格&库存,您可以联系我们找货

免费人工找货