www.ti.com
Table of Contents
User’s Guide
LM5152EVM-BST Evaluation Module
ABSTRACT
The LM5152EVM-BST evaluation module (EVM) showcases the features and performance of the LM5152-Q1
wide input voltage synchronous boost controller, including the following:
•
•
•
•
•
•
•
•
Low IQ operation
Internal feedback resistors
Bypass mode operation when VIN is greater than the VOUT regulation target
Dynamic output voltage tracking
STATUS indicator
Programmable frequency
Clock dithering
Programmable UVLO
The EVM is designed to maintain the minimum output of 8.5 V at 440 kHz during the automotive cranking down
to 2.5-V boost input.
This EVM is designed for ease of configuration, enabling a user to evaluate the device for an automotive
application. Functionality includes the following:
•
•
•
•
•
•
•
•
Low IQ operation
Internal feedback resistors
Bypass mode operation when VIN is greater than VOUT
Dynamic output voltage tracking
STATUS indicator
Programmable frequency dithering
Programmable undervoltage lockout (UVLO)
Overvoltage protection
Table of Contents
1 Introduction.............................................................................................................................................................................3
1.1 Applications........................................................................................................................................................................3
1.2 Features............................................................................................................................................................................. 3
2 EVM Setup............................................................................................................................................................................... 4
2.1 EVM Characteristics...........................................................................................................................................................5
2.2 EVM Connectors and Test Points...................................................................................................................................... 5
3 Test Setup and Procedures....................................................................................................................................................7
3.1 Equipment.......................................................................................................................................................................... 7
4 Test Results.............................................................................................................................................................................8
4.1 Efficiency ...........................................................................................................................................................................8
4.2 Loop Response ................................................................................................................................................................. 8
4.3 Thermal Performance........................................................................................................................................................ 9
4.4 Typical Waveforms........................................................................................................................................................... 10
5 PCB Layers............................................................................................................................................................................11
6 Schematic..............................................................................................................................................................................12
7 Bill of Materials..................................................................................................................................................................... 13
List of Figures
Figure 1-1. Typical Application Circuit......................................................................................................................................... 3
Figure 2-1. EVM Photo................................................................................................................................................................ 4
SNVU792 – SEPTEMBER 2021
Submit Document Feedback
LM5152EVM-BST Evaluation Module
Copyright © 2021 Texas Instruments Incorporated
1
Trademarks
www.ti.com
Figure 3-1. EVM Test Setup.........................................................................................................................................................7
Figure 4-1. Efficiency: VOUT = 8.5 V, FPWM Mode......................................................................................................................8
Figure 4-2. 2.5-V Loop Response at 4-A Load............................................................................................................................ 8
Figure 4-3. Thermal Performance: VIN = 2.5 V, VOUT = 8.5 V, IOUT = 4 A, No Forced Airflow..................................................... 9
Figure 4-4. Program 1, DaimlerChrysler Engine-Cranking Test Pulse, DC-10615 (C1: VOUT, C3: VIN, C4: STATUS)............10
Figure 4-5. Program 2, Volkswagen Warm-Start Test Pulse, VW80000 (C1: VOUT, C3: VIN, C4: STATUS)........................... 10
Figure 4-6. Program 3, Volkswagen Cold-Start Test Pulse, VW80000 (C1: VOUT, C3: VIN, C4: STATUS)............................. 10
Figure 4-7. Load Transient Test (2 A to 4 A to 2 A at 4-V Input)................................................................................................10
Figure 5-1. Layout: Top Silk Screen........................................................................................................................................... 11
Figure 5-2. Layout: Top Layer.................................................................................................................................................... 11
Figure 5-3. Layout: Signal Layer 1............................................................................................................................................. 11
Figure 5-4. Layout: Signal Layer 2............................................................................................................................................. 11
Figure 5-5. Layout: Bottom Layer...............................................................................................................................................11
Figure 5-6. Layout: Bottom Silk Screen..................................................................................................................................... 11
Figure 6-1. Schematic................................................................................................................................................................12
List of Tables
Table 2-1. EVM Characteristics .................................................................................................................................................. 5
Table 2-2. Power Connections.....................................................................................................................................................5
Table 2-3. Programmable Jumper Connections.......................................................................................................................... 5
Table 2-4. Probe Points............................................................................................................................................................... 6
Table 7-1. Bill of Materials..........................................................................................................................................................13
Trademarks
All trademarks are the property of their respective owners.
2
LM5152EVM-BST Evaluation Module
SNVU792 – SEPTEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
Introduction
1 Introduction
The LM5152EVM-BST evaluation module is designed to evaluate the operation and performance of the
LM5152-Q1 low-IQ synchronous boost controller. The EVM operates over an input voltage range of 2.5 V to
36 V and requires minimum of 7-V input to start up. The EVM provides a 8.5-V output with a maximum load
current of 4 A at 2.5-V input or 6 A at 4.5-V input. Figure 1-1 shows the standard application circuit for the
LM5152EVM-BST evaluation module.
VLOAD
VLOAD
CVCC
COUT
VOUT
CHB
HO
RS
SW
LM
VCC
RT
HB
QH
VSUPPLY
BIAS
RT
CSS
LM5152
SS
CHF
STATUS
QL
LO
PGND
VLOAD
COMP
RCOMP CCOMP
MODE
CSN
AGND
CSP
VREF
CVREF
RUVLOT
UVLO
SYNC/DITHER
TRK
RVREFT
RUVLOB
RVREFB
Figure 1-1. Typical Application Circuit
1.1 Applications
•
•
Automotive start-stop application
Automotive backup power supply application
1.2 Features
The LM5152EVM-BST has the following features:
•
•
•
•
•
•
•
•
•
•
•
Input voltage range from 2.5 V to 36 V (7 V to start up)
Internal low leakage current high-impedance feedback resistors with programmable output voltage
Operating frequency of 440 kHz with externally clock synchronization up or down by 20%
Bypass mode operation when VIN is greater than VOUT
Selectable forced PWM (FPWM), skip mode, or diode emulation using the MODE pin
High power conversion efficiency across a wide operating range
Cycle-by-cycle peak current limiting
Optional frequency dithering for improved EMI performance
Boost STATUS indicator
Programmable soft-start time
Programmable line undervoltage lockout (UVLO)
SNVU792 – SEPTEMBER 2021
Submit Document Feedback
LM5152EVM-BST Evaluation Module
Copyright © 2021 Texas Instruments Incorporated
3
EVM Setup
www.ti.com
2 EVM Setup
Section 2 describes the operating conditions for the EVM, as well as the configuration points of the evaluation
module.
Figure 2-1. EVM Photo
CAUTION
Prolonged operation with low input voltage at full power will cause heating of Q1, Q4, L2, and R3.
Board surface is hot. Do not touch! Contact may cause burns.
4
LM5152EVM-BST Evaluation Module
SNVU792 – SEPTEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
EVM Setup
2.1 EVM Characteristics
Table 2-1 details the EVM characteristics.
Table 2-1. EVM Characteristics
PARAMETER
TEST CONDITION
Input voltage range
Operation
MIN
TYP
MAX
UNIT
2.5
13.5
36
V
Start-up voltage
7
Input current
V
17
Output voltage
A
8.5
V
Output current1
2.5 V ≤ VSUPPLY < 4.5 V
4
A
Output current2
4.5 V ≤ VSUPPLY < 36 V
6
A
Switching frequency
440
kHz
2.2 EVM Connectors and Test Points
Section 2 describes the connection points of the evaluation module. Table 2-2 to Table 2-4 describe these
connections. Table 2-2 lists the power connections of the evaluation module. These connections are intended to
handle relatively large currents.
Table 2-2. Power Connections
JUMPER
PIN
DESCRIPTION
J1
VIN+
Positive input voltage power for the evaluation module
J2
VOUT+
Positive output voltage power for the evaluation module
J4
GND
Negative output voltage power for the evaluation module
J5
VIN–
Negative input voltage power for the evaluation module
Table 2-3 lists the EVM jumpers and test points that configure the LM5152-Q1 as desired. These jumpers can
set different modes of operation or provide signals to different pins of the LM5152-Q1.
Table 2-3. Programmable Jumper Connections
JUMPER
J7
PINS
DESCRIPTION
DEFAULT CONNECTION
Pin 1 to Pin 2
SYNC/DITHER/VH/CP is pulled to VCC through a 1-kΩ resistor
to enable the internal charge pump or enable the VCC holdup
functionality. This connection must not be made if the J10 is
populated.
Pin 2 to Pin 3
SYNC/DITHER/VH/CP is pulled to AGND through a 1-kΩ
resistor to disable the internal charge-pump and VCC holdup
functionality.
Open
If an external clock synchronization on J10 is used, leave this
jumper open.
J9
VTRK_D
PWM signal applied through a two stage low-pass filters to the
TRK pin. R17 must be populated.
J10
Pin 1 to Pin 2
SYNC/DITHER/VH/CP pulled to ground, disabling dithering,
internal charge-pump functionality, and VCC holdup
functionality. J10 must not be populated when J7 is populated
between pin 1 and pin 2.
Open
Dithering is enabled. To synchronize to an external clock,
remove C37.
Pin 1 to Pin 2
Bypass D1 to tie either VIN or VOUT nets to the BIAS pin.
Open
Either VIN or VOUT is supplied through D1 to the BIAS pin.
Pin 1 to Pin 2
VIN is supplied to the BIAS pin. This is the default connection.
Pin 2 to Pin 3
VOUT is supplied to the BIAS pin.
J11
J12
SNVU792 – SEPTEMBER 2021
Submit Document Feedback
X
X
X
X
LM5152EVM-BST Evaluation Module
Copyright © 2021 Texas Instruments Incorporated
5
EVM Setup
www.ti.com
Table 2-3. Programmable Jumper Connections (continued)
JUMPER
J13
PINS
DESCRIPTION
DEFAULT CONNECTION
Pin 1 to Pin 2
Connect an auxiliary power supply that can be used to supply
power to the BIAS pin. J11 must be open if this is populated.
Pin 2 to Pin 3
Connect VCC to BIAS.
Open
J14
X
Pin 1 to Pin 2
Configures light-load switching operation to be FPWM
Pin 2 to Pin 3
Configures light-load switching operation to be diode emulation
Open
Configures light-load switching operation to be skip
TP6
Positive input to the VAUX net
TP7
Negative input to the VAUX net
TP8
Positive input to the TRK pin
TP9
Negative input to the TRK pin
X
Table 2-4 indicates the dedicated voltage probe points of the EVM. These points are used to make
measurements on the EVM.
Table 2-4. Probe Points
SENSE POINT
6
NAME
DESCRIPTION
TP1
VIN+
TP2
VOUT+
Sense point for the positive input voltage
TP3
SW
Sense point for the switch node of the boost
controller
TP4
GND
Sense point for the negative output voltage
TP5
VIN–
Sense point for the negative input voltage
J3
PGND
Power ground connection
J6
PGND
Power ground connection
J8
1
BIAS
2
VCC
3
STATUS
4
UVLO
5
COMP
6
SS
7
AGND
Sense point for the positive output voltage
LM5152EVM-BST Evaluation Module
SNVU792 – SEPTEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
Test Setup and Procedures
3 Test Setup and Procedures
Figure 3-1 shows the required test setup to recreate the results found in Section 4.
Voltmeter 1
VIN
Power Supply
-
+
Voltmeter 1
VOUT
V
COM
V
COM
Ammeter 1
IIN
A
COM
Ammeter
IOUT
A
Electronic Load
VOUT
COM
+
-
Figure 3-1. EVM Test Setup
3.1 Equipment
The following test equipment is needed to test the LM5152EVM-BST as shown in Figure 3-1.
•
•
•
•
Power supply: The input voltage source (VIN) must be a variable supply with minimum efficiency level V. The
power supply must source 2.5 V to 36 V and be able to supply more than 20 A of current. TI recommends
using an external power supply that complies with applicable regional safety standards such as (by example)
the following:
– UL
– CSA
– VDE
– PSE
Electronic load: Load connected to the output of the evaluation module. The electronic load must be able to
handle up to 36 V and dissipate 100 W at 8.5 V.
Multimeters: For DC measurements
– Voltmeter 1 (VIN): Capable of measuring the input voltage range up to 36 V
– Voltmeter 2 (VOUT): Capable of measuring output voltage of 36 V
– Ammeter 1 (IIN): Capable of 20-A DC measurement. A shunt resistor can also be used to measure the
input current.
– Ammeter 2 (IOUT): Capable of at least 6-A DC measurement
Oscilloscope: Minimum of 20-MHz bandwidth and 10x probes
SNVU792 – SEPTEMBER 2021
Submit Document Feedback
LM5152EVM-BST Evaluation Module
Copyright © 2021 Texas Instruments Incorporated
7
Test Results
www.ti.com
4 Test Results
Section 4 covers the test results of the evaluation module.
4.1 Efficiency
100
Efficiency [%]
90
80
70
VSUPPLY=7.5 [V]
VSUPPLY=6.5 [V]
VSUPPLY=5.5 [V]
60
0
0.5
1
1.5
2
IOUT [A]
2.5
3
3.5
4
Figure 4-1. Efficiency: VOUT = 8.5 V, FPWM Mode
4.2 Loop Response
Figure 4-2. 2.5-V Loop Response at 4-A Load
8
LM5152EVM-BST Evaluation Module
SNVU792 – SEPTEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
Test Results
4.3 Thermal Performance
L2
Q4
Q1
Figure 4-3. Thermal Performance: VIN = 2.5 V, VOUT = 8.5 V, IOUT = 4 A, No Forced Airflow
SNVU792 – SEPTEMBER 2021
Submit Document Feedback
LM5152EVM-BST Evaluation Module
Copyright © 2021 Texas Instruments Incorporated
9
Test Results
www.ti.com
4.4 Typical Waveforms
Texas Instruments HVAL068A automotive cranking simulator is used during cranking test.
Figure 4-4. Program 1, DaimlerChrysler EngineCranking Test Pulse, DC-10615 (C1: VOUT, C3: VIN,
C4: STATUS)
Figure 4-5. Program 2, Volkswagen Warm-Start
Test Pulse, VW80000 (C1: VOUT, C3: VIN, C4:
STATUS)
Figure 4-6. Program 3, Volkswagen Cold-Start Test Figure 4-7. Load Transient Test (2 A to 4 A to 2 A at
Pulse, VW80000 (C1: VOUT, C3: VIN, C4: STATUS)
4-V Input)
10
LM5152EVM-BST Evaluation Module
SNVU792 – SEPTEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
PCB Layers
5 PCB Layers
Figure 5-1 through Figure 5-6 illustrate the EVM PCB layout.
Figure 5-1. Layout: Top Silk Screen
Figure 5-2. Layout: Top Layer
Figure 5-3. Layout: Signal Layer 1
Figure 5-4. Layout: Signal Layer 2
Figure 5-5. Layout: Bottom Layer
Figure 5-6. Layout: Bottom Silk Screen
SNVU792 – SEPTEMBER 2021
Submit Document Feedback
LM5152EVM-BST Evaluation Module
Copyright © 2021 Texas Instruments Incorporated
11
Schematic
www.ti.com
6 Schematic
Figure 6-1 illustrates the EVM schematic.
Figure 6-1. Schematic
12
LM5152EVM-BST Evaluation Module
SNVU792 – SEPTEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
Schematic
7 Bill of Materials
Section 7 details the EVM bill of materials.
Table 7-1. Bill of Materials
DESIGNATOR
QTY
VALUE
DESCRIPTION
PACKAGE
REFERENCE
PART NUMBER
MANUFACTURER
C2, C24, C25, C26
4
120 µF
CAP ALUM POLY HYB 120UF 50 V
SMD
RADIAL
EEH-ZC1H121P
Panasonic
C3
1
1000 pF
CAP, CERM, 1000 pF, 50 V, ±10%,
X7R, 0603
603
C0603X102K5RACTU
Kemet
C4
1
0.1 μF
CAP, CERM, 0.1 μF, 50 V, ±10%,
X7R, 0603
603
C1608X7R1H104K080AA
TDK
C5, C7
2
0.01 μF
CAP, CERM, 0.01 µF, 100 V, ±10%,
X7R, 0603
603
885012206114
Wurth Elektronik
C6, C8, C9, C10, C11
5
10 μF
CAP, CERM, 10 μF, 50 V, ±10%,
X7R, 1210
1210
GRM32ER71H106KA12L
MuRata
C12, C13, C14, C15,
C22, C31, C32
7
0.1 μF
CAP, CERM, 0.1 μF, 100 V, ±10%,
X7R, AEC-Q200 Grade 1, 0603
603
GCJ188R72A104KA01D
MuRata
C16, C17, C18, C19,
C20, C21
6
10 μF
CAP, CERM, 10 µF, 50 V, ±10%,
X7R, 1210
1210
CL32B106KBJNNWE
Samsung
C23
1
100 pF
CAP, CERM, 100 pF, 50 V, ±5%,
603
C0G/NP0, AEC-Q200 Grade 0, 0603
CGA3E2NP01H101J080AA
TDK
C29
1
4.7 μF
CAP, CERM, 4.7 μF, 16 V, ±10%,
X6S, 0603
603
C1608X6S1C475K080AC
TDK
C33
1
100 pF
CAP, CERM, 100 pF, 50 V, ±1%,
C0G/NP0, 0603
603
C0603C101F5GACTU
Kemet
C34
1
0.33 μF
CAP, CERM, 0.33 μF, 10 V, ±10%,
X5R, 0603
603
C0603C334K8PACTU
Kemet
C35, C36
2
0.22 μF
CAP, CERM, 0.22 μF, 50 V, ±10%,
X7R, AEC-Q200 Grade 1, 0603
603
CGA3E3X7R1H224K080AB
TDK
C37
1
6800 pF
CAP, CERM, 6800 pF, 50 V, ±5%,
C0G/NP0, 0603
603
GRM1885C1H682JA01D
MuRata
C38
1
4700 pF
CAP, CERM, 4700 pF, 100 V, ±5%,
C0G/NP0, 0603
603
C0603C472J1GAC7867
Kemet
C39
1
100 pF
CAP, CERM, 100 pF, 50 V, ±5%,
C0G/NP0, 0603
603
C0603C101J5GACTU
Kemet
C40
1
470 pF
CAP, CERM, 470 pF, 50 V, ±5%,
C0G/NP0, 0603
603
06035A471JAT2A
AVX
D1
1
60 V
Diode, Schottky, 60 V, 1 A,
SOD-123F
SOD-123F
PMEG6010CEH,115
Nexperia
H1, H2, H3, H4
4
NY PMS 440 0025 PH
B&F
Machine Screw, Round, #4-40 x 1/4, Screw
Nylon, Philips panhead
SNVU792 – SEPTEMBER 2021
Submit Document Feedback
LM5152EVM-BST Evaluation Module
Copyright © 2021 Texas Instruments Incorporated
13
Schematic
www.ti.com
Table 7-1. Bill of Materials (continued)
DESIGNATOR
QTY
H5, H6, H7, H8
DESCRIPTION
PACKAGE
REFERENCE
PART NUMBER
MANUFACTURER
4
Standoff, Hex, 0.5"L #4-40 Nylon
Standoff
1902C
Keystone
J1, J2, J4, J5
4
TERMINAL SCREW PC 30AMP, TH
12.9 × 6.3 × 7.9 mm
8199
Keystone
J3, J6
2
TEST POINT SLOTTED .118", TH
Slot
1040
Keystone
J7, J12, J13, J14
4
Header, 100 mil, 3 × 1, Gold, TH
3 × 1 Header
TSW-103-07-G-S
Samtec
J8
1
Header, 100mil, 7 × 1, Gold, TH
7 × 1 Header
TSW-107-07-G-S
Samtec
J9, J10, J11
3
Header, 100 mil, 2 × 1, Gold, TH
2 × 1 Header
TSW-102-07-G-S
Samtec
L2
1
1 μH
Inductor, Shielded, Composite, 1 μH, 7.2 × 7 × 7.5 mm
25 A, 0.00255 Ω, SMD
XAL7070-102MEB
Coilcraft
Q1
1
60 V
MOSFET, N-CH, 60 V, 100 A, AECQ101, SO-8FL
SO-8FL
NVMFS5C645NLWFAFT1G
ON Semiconductor
ALT
40 V
MOSFET N-CH 40-V 27-A/100-A
TDSON
TDSON-8 FL
BSC022N04LS6
Infineon
1
60 V
MOSFET, N-CH, 60 V, 17 A, AECQ101, SO-8FL
SO-8FL
NVMFS5C670NLWFAFT1G
ON Semiconductor
ALT
40 V
MOSFET N-CH 40-V 27-A/100-A
TDSON
TDSON-8 FL
BSC022N04LS6
Infineon
R2
1
0
RES, 0, 5%, 2 W, 2512 WIDE
2512 WIDE
RCL12250000Z0EG
Vishay Draloric
R3A
1
3m
3 ±1% 1-W Chip Resistor Wide 1206 1206
WSL06123L000FEA
Vishay
R4, R5, R8, R11, R15
5
0
RES, 0, 5%, 0.1 W, AEC-Q200
Grade 0, 0603
603
ERJ-3GEY0R00V
Panasonic
R6
1
100
RES, 100, 1%, 0.1 W, 0603
603
RC0603FR-07100RL
Yageo
R10
1
2
RES, 2.0, 5%, 0.1 W, AEC-Q200
Grade 0, 0603
603
CRCW06032R00JNEA
Vishay-Dale
R12
1
0
RES, 0, 5%, 0.1 W, 0603
603
RC0603JR-070RL
Yageo
R13
1
100 k
RES, 100 k, 1%, 0.1 W, AEC-Q200
Grade 0, 0603
603
CRCW0603100KFKEA
Vishay-Dale
R14
1
36.5 k
RES, 36.5 k, 1%, 0.1 W, AEC-Q200
Grade 0, 0603
603
CRCW060336K5FKEA
Vishay-Dale
R16
1
1.00 k
RES, 1.00 k, 1%, 0.1 W, AEC-Q200
Grade 0, 0603
603
CRCW06031K00FKEA
Vishay-Dale
R18, R19
2
80.6 k
RES, 80.6 k, 1%, 0.1 W, AEC-Q200
Grade 0, 0603
603
CRCW060380K6FKEA
Vishay-Dale
R20
1
8.66 k
RES, 8.66 k, 1%, 0.1 W, 0603
603
RC0603FR-078K66L
Yageo
R21
1
49.9 k
RES, 49.9 k, 1%, 0.1 W, AEC-Q200
Grade 0, 0603
603
ERJ-3EKF4992V
Panasonic
R22
1
22.6 k
RES, 22.6 k, 1%, 0.1 W, 0603
603
RC0603FR-0722K6L
Yageo
R23
1
56.2 k
RES, 56.2 k, 1%, 0.1 W, 0603
603
RC0603FR-0756K2L
Yageo
Q4
14
VALUE
LM5152EVM-BST Evaluation Module
SNVU792 – SEPTEMBER 2021
Submit Document Feedback
Copyright © 2021 Texas Instruments Incorporated
www.ti.com
Schematic
Table 7-1. Bill of Materials (continued)
DESIGNATOR
QTY
VALUE
DESCRIPTION
PACKAGE
REFERENCE
PART NUMBER
MANUFACTURER
R24
1
41.2 k
RES, 41.2 k, 1%, 0.1 W, 0603
603
RC0603FR-0741K2L
Yageo
SH-J1, SH-J2, SH-J3,
SH-J4
4
Single Operation 2.54mm Pitch
Open Top Jumper Socket
2.54mm
M7582-05
Harwin
TP1, TP2, TP6, TP7
4
Test Point, Miniature, Red, TH
Red Miniature
5000
Keystone
TP3
1
Test Point, Miniature, SMT
Miniature
5015
Keystone
TP4, TP5, TP8, TP9
4
Test Point, Miniature, Black, TH
Black Miniature
5001
Keystone
U1
1
Automotive Low-IQ Synchronous
Boost Controller for Start-stop
VQFN20
LM5152QRGRRQ1
Texas Instruments
C1
0
2200 pF
CAP, CERM, 2200 pF, 100 V, ±10%,
X7R, 0603
603
GRM188R72A222KA01D
MuRata
C27, C28
0
0.1 μF
CAP, CERM, 0.1 μF, 100 V, ±10%,
X7R, AEC-Q200 Grade 1, 0603
603
GCJ188R72A104KA01D
MuRata
C30
0
0.1 μF
CAP, CERM, 0.1 μF, 50 V, ±10%,
X7R, 0603
603
C1608X7R1H104K080AA
TDK
C41
0
100 pF
CAP, CERM, 100 pF, 50 V, ±1%,
C0G/NP0, 0603
603
C0603C101F5GACTU
Kemet
L1
0
1 μH
Inductor, Shielded, Composite, 1 μH, XAL7030
21.8 A, 0.00455 Ω, SMD
XAL7030-102MEB
Coilcraft
Q2
0
60 V
MOSFET, N-CH, 60 V, 100 A, AECQ101, SO-8FL
SO-8FL
NVMFS5C645NLWFAFT1G
ON Semiconductor
Q3
0
60 V
MOSFET, N-CH, 60 V, 17 A, AECQ101, SO-8FL
SO-8FL
NVMFS5C670NLWFAFT1G
ON Semiconductor
R1
0
2
RES, 2.00, 1%, 0.5 W, AEC-Q200
Grade 0, 1210
1210
ERJ-14BQF2R0U
Panasonic
R3
0
0.003
RES, 0.003, 1%, 3 W, AEC-Q200
Grade 0, 2512 WIDE
2512 WIDE
KRL6432E-M-R003-F-T1
Susumu Co Ltd
R7
0
0
RES, 0, 5%, 0.1 W, AEC-Q200
Grade 0, 0603
603
ERJ-3GEY0R00V
Panasonic
R9
0
2
RES, 2.0, 5%, 0.1 W, AEC-Q200
Grade 0, 0603
603
CRCW06032R00JNEA
Vishay-Dale
R17
0
80.6k
RES, 80.6 k, 1%, 0.1 W, AEC-Q200
Grade 0, 0603
603
CRCW060380K6FKEA
Vishay-Dale
SNVU792 – SEPTEMBER 2021
Submit Document Feedback
LM5152EVM-BST Evaluation Module
Copyright © 2021 Texas Instruments Incorporated
15
IMPORTANT NOTICE AND DISCLAIMER
TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE
DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES “AS IS”
AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD
PARTY INTELLECTUAL PROPERTY RIGHTS.
These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate
TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable
standards, and any other safety, security, regulatory or other requirements.
These resources are subject to change without notice. TI grants you permission to use these resources only for development of an
application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license
is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you
will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these
resources.
TI’s products are provided subject to TI’s Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with
such TI products. TI’s provision of these resources does not expand or otherwise alter TI’s applicable warranties or warranty disclaimers for
TI products.
TI objects to and rejects any additional or different terms you may have proposed. IMPORTANT NOTICE
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2022, Texas Instruments Incorporated